

Photographic
Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The inatitute has attempted to obtain the beat original copy avalleble for fllming. Foaturce of this copy which may be billiegrophieally unigue. which may alter any of the imagee in the reproduction, or which may significantly change the veual mothod of filming. ore chceked below.

Celoured cevera/
Couverture do cevber
Covers dameged/
Coviertiro endommegto
Covors rectored and/or laminated/
Couverture reateurto ct/ou palliculise
Cover tide miseing/
Le titre de couverture inangue
Colourad mapa/
Carteo chegraphiques en coulour
Coloured ink fi.e. other then blue or blecky
Inere do coubeur II.c. sutre que blowe ou noled)
Coloured platee end/or illuotrutiona/
Plonctes el/ou illustradione en coubour
Bound whth other matorial/
Rellb evec dievtres decuments
Tight Cinding may eouse shadown or dibtertion alome intevior mergin/
Le rollure serrte part amerer do l'ombre ou do ta timortion to long do ia marge fintiorioure

Diank lecvae addad during reutoration may - cppear wielith the tont. Winnever pecelble, these hove bour sivistant from filminy
II se peut que eartsince pogee Blanches ajouthee lors d'une repteuration epperciscont dems io torito.
 pes ches filusios.

Linstitur a mierofilimb to meillour examplatre qu'll Iul e itt pomalble de se procurer. Lee dotalis do eot axemplaire qui sont peut-ttre uniques du polint de vue blbllographique, qui peuvent modiflor une imege reprodulte. ou qul pouvent oxiger une modificerion dana la míthede normale de fillmage sunt indiquis cb-deccous.

Colourad pagea/
Pages do couldur
Puges damaged/
Pages endommagdes
Pages reatored and/or taminotnd/
Pages reatiurtes ot/ou pelliculies
Pages diecolourad, stained or fozed/
Pages dícolordes, tachotios ou piqubes
Pages detached/
Pages ditachses

Showthrough/

Treneparence

Quallty of print variced
Quallts intigale de l'impreseion
Includee supplomentary moterial/
Comprend du motsrid supplímentaire
\square Only edition avalleblal
Seute Adition diepenible
Pagee wholly or partiolly obscured by arrate allpe. thasues, ate., hove been refilmad to onsure the beut poselble imagel Les pages totaloment ou partibllement obseureles par un fouilict d'orrata, une polure. ete., ont thil fimber in nouveeu do fegon 1 obtenlr to molloure image peadtio.

This kem is filmed at the reduction ratio ehecked below/
Co document ext film's ou taux do reduction indiaus el-deceous.

The eepy filmed here hee been repreduced thanks to the generedty of:

The leot recorded frame on ench mierefleho shell eenteln the eymbel \rightarrow Imeaning "CONTHMUED"), or the eymbel ∇ (meaning "ENO"). whilhever appllies.

Mepe, plates, charti, ©te., moy be flimed ot diviorent riduction racies. Theec teo leme to be contrity inctuctod in eno ceppecure ero flumed beginming in the upper ioft hend eermer, laft to Afht and tep to bettem, se many fromes se required. The following clagreme tilutrete the method:

L'oxemplaire finme fut reprodult grioe ito atnerreatis da:

Now Brunowick Mucoum Sclut Soln

Les fmages sulvantes civt Cté reppodultee swee b. Alue grend sein, compte tenu do to cendlites ot. do to notious do liexemplatio filmb, et en conformith avec los conditiont des contrat do filmege.

Les emempleine origincurs dont in ocuverture en pepier ate Impoimio cont filmbe en commengant par io premior chot et en terminant solt par io dornitio pape cral comperto une cirprointo dimprepalon ou dithutrution, sets par io cocend plot, scion to ces. Tou sies everee cromplaires, orlaincus cont flimio en commongent par io pountive pege qui comperto unc compreinto dimpreation ou dillumeration oe en terminemt par is domilire pece qui comperte une tello empreinte.

Un dee aymbeles eulvents apporeftre sur io dennitre lonege do chague mileroficho. scion is cea: io aymbelo \rightarrow slanifio "A SUIVNE", lo oymbelo ∇ slgative "FIN".

Lea carteo, plonchros, tablacux, cee., parvent tero fimele A doe trux de réduction exrírents.
Loneque lo doeument ext trep erend pour tire
 do lencis aupirtour gouchs, do gaucho 1 drote. et do haut en bes, en prenamt io nombers difmeges níceceaine. Lee diagremmee subvents inurerent io méthode.

1	2	3
4	5	6

Atlantic Memoir, page. 225 to 334.

Al IV'R. H.L.ant:

MEMOIR,
 DESCRIPTIVE AND EXPLANATORY,
 OF THB
 NORTHERN
 ATLANTIC OCEAN:
 AND COMPRISING
 INSTRUCTIONS, GENERAL AND PARTICULAR,
 FOR

THE NAVIGATION OF THAT SEA:

BY JOHN PURDY.
eleventh edition ; materially improved, BY ALEXANDER G. FINDLAY, Follow of the Royal Giographical Socioty.

LONDON:
PRINTED BY AND FOR RICHARD HOLMES LAURIE, 63, FLEEE STREET, E.O.
1861.
"O'br the glad waters of the dark blue Sea, Our thoughts as boundless, and our souls as fré, Far as the breeze can bear, the billows foam,
Survey our Empine, and behold our Home."
(Lord Byron.)

11
[ENTERED AT GTATIONERS' HALL.]

PREFACE.

E present Work has been before the Publio for half a century,-a period that has messed a total change in the aspect and requirements of Hydrography, as in moat er aepartments of knowledge.

Professing to deal with the subject in its present condition, this Edition bears no. emblance to the Work in its original form, except in the title it bears : every topio 1 every page has been changed by the gradual or sudden accession of facts which dern industry and refinement bring to bear upon every branch of inquiry.

There has been no greater advance made during any portion of the long time that elapeed since its first appearance, than has taken place during the last ten years; a to represent that advance this Edition has been entirely remodelled, and may be sidered rather as a new Work upon the former arrangement, than as a revised. pdnction.

The great distinction between modern progress and that which the various itions in former years had to record, is, that each branch of Science in now elaboely investigated by Government, aud to these labours the painstaking individual scarcely hope to add anything.

The most refined and exact Surveys of the shores and banks, with all their endant features, have in many cases been completed and published within these years. In the subject of Meteorology vast progress has been made in the same erval; and the United States' Government claim the gratitude of every sailor for' labors in this department.

The examination of the bottom of the oceal, almost a new subject, and yet in its fancy, has already dispelled many of those dangers which were formerly believed to ist. The beantiful Lighthouse systems; the various features which have been minated in the Wind and Current aysterne, and their bearing upon the best routes traverving the Ocean; the more exact aequaintance with the magnetical condition the Earth, and the nost important connexion this has with the increasing number iron ships, with many other subjects, will be duly discussed in the ensuing pages.

To enumerate the authoritien to which we are indebted would be to offer a long t; we have duly acknowledged them throughout the Work: and we truat that thic eventh Eidition may do good service to the mariner in ite quiet utility, as has been ne by those which have preceded it.
A. G. Findlay.

PREFACE TO THE EIGHTH EDITION.

This work is designed to impart to the Navigator the Means of Safery over the Atlantic; to develop the silent and imperceptiblo Causes of Error and Shipwreck; to point out tice Best Routes to the numerous Ports of this Occan; and to communicate useful Hints on General Nautical Practice.

Seven editions have already been honoured by the pablic approbation ; and, stimulated by such encouragement, no attention has been spared in rendering an Eighth still more worthy of acceptance.

A comparison of the latter Editions with those that preceded them, will show how much wo have been indebted to numerous friends for ceent and important information. We have had, again and again, to thank Captain Livingston, of Liverpool, for his numerous and valuable communications. In like manner have we been indebted to Liteutenant John Evans (a), R.N., and to Commander Edward Dunsterville, whose information more fully appears in another work.*
To the subject of Currents, in particular, it will be found that our attention has been directed. These currents hare at length excited that inquiry into their nature and causes which the importance of the sulject demands. This has been especially evinced by the curious and elaborate work composed by the late Major Renneli; which has confirmed, generally, all that we had previously stated, and has, moreover, explained several essential particulars before nuknown. Further investigations havo been promised; so that we may expect, ultimately, an accurate view of all the Athantic Currents, as they predominate in the different scasons.
We enlarge the more especially upon the Currents, because, as now treated on, they are to seamen almost a NEW SUBJECT. To the majority it is, at least, one on which they particularly require information. If this position be doubted, consult tho melaneholy events produced by them, which are deserised in the present volume, and take into consideration the incomparable number of sinilar cases which must necessurily hnve escaped our noticed; and of which miany have been the indubitable effëts effects of a confidence arising from ignorance and self-conceit. \dagger

[^0]
PREFACE TO THE EIGHTH EDITION.

In preenting the former Edition, we had to return our thanks for thoir valuable communications, to John Mrickellar, Esq., since Rear-Admiral of the White; and to the Mercantile Captains, Jumes Wallace Monteath, of Liverpool ; John Wilson and Thomas FIamlin, of Greenock; Wm. J. Capes, then of the Lady Mackworth; John Steele Park, of the Carshalton Park; and Thos. Wilson, of the Henry Wellesley. To several of these gentlemen, to the late Captain Midgley, and to Captain Georye Cheveley, we have again been obliged for important and valuable additions, now incorporated in the work.

To Lieutenant Charles Hare, R.N., we are indebted for the route described by him for ships bound to New Brunswick, \&c., in the succeeding pages 437, 439. This route is so evidently and greatly advantageous to every commander and merchant in that trade, as to demand particular notice. To the friendship of Mr. Wm. Heron, of Greenock (since deceased), we have been indebted for several matters of importance; among which will be found some explanation of the currents about the southern coast of Newfoundland; currents which, while unknown, have probably been the cause of so many wrecks on that coast.

The important communications of an accomplished efflicer, Lieutenant Greevelink, late of the Dutoh Royal Navy, which have added so considerably to a due knowledge of the West Indian Seas, have been incorporated and acknowledged in the "Colombian Navigator ;" and so much of a general nature, as the subject required, has been re-introduced in the present volume.

In the Tables of Positions and Directions, many additions have been made from the Observations and Surveys of the officers appointed to the surveying service by their Lordships of the Admiralty, as well as by other scientific men. The new documents more eapecially include the Memoir and Surveys of the Baron Roussin,' of the French Navy; with those of Captains Wm. F. Owen, Richard Owen, Edvorrd Belcher, Thos. Boteler, Wm. Mudye, A. T.E. Vidal, John Washington, and H. W. Bayfield, of the British Navy; Colonel Sabine, of the Royal Artillery; with many articles from the " Nautical Magazine, \&c., as noticed and acknowledged hereafter.
The Directors of the "Deposito Hydrografico" of Madrid have done us the honour of translating for, and inserting into, the "Derrotero de las Antillas" all that we had herctofore collected on the subject of Currents, and have superadded thercto some additional and valuable remarks, which we have incorporated in this work. Numerous facts, of late date, illustrating the general set of currents, will be found described under their proper heads.

- The summary descriptions of all the Lighthouses on the different coasts, will, we trust, be considered as an important and useful nadition; inasmuch as they will, if attended to, prevent those accidents which have so frequently happened from mistaking one light for another, examples of which will be noticed hereafter.

Our ardent wishes are, as our strenuous efforts have been, devoted to the improvement of Hydrography ; and we therefore, again, earnestly solicit communications for future correction, \&c. Such communications are particularly acceptable, because original and authentic; and, therefore, more to be depended upon than the imperfect statements ecmmonly given in newspapers and other publications, as we have already had occasion to notice. The great importance of the latter has, however, been admitted; and we may here repeat the observation, that "A serieseof such notices, propebly authenticated, announcing the discovery and position of danoens, new determinations of the sitnations of places, \&c., with the particulars of the obscrvations, and names of the observers, would be very beneficial to the public scrvice. Had such a measure been adopted years ago, many fine ships which, and
about Nowfoundlund, including the Tweed; the Comus, the Harpooner, the Jrake, and tho Sperce; und to these may be ulded the Lady Sherbrooke, from Londonderry to the River St. Lawronce, lost near Port-au-Breque, East of Cape Raco, Newfoundland, in July, 1831, when 300 persons perishod !
brave sailors who, have been lost, might still have been in existence." We have urged this argument repeatedly, and have had the pleasure of seefing that, to a certain degree, the suggestion has been adopted.
The Volume lately published, entitied "A Sailing Direotory for the Ethiopic or Southern Atlantic Ocean," may be conisidered as a continuation of the present work. It deecribes, in a similar manner, the Islands and Dangers of that Ocean, the Coast of Africa from Sherboro Island to the Cape of Good Hope and Algoa Bay, and the Coasts of Brasil, \&c., from the River Marainon Southward, to Cape Horn, including the Falkland Islands, South Shetland, \&o.

John Purdy.

The First Edition of this work appeared, without preface or apology, in the year 1812: a second was soon required, and, during the lifetime of its original composer, eight editions were called for, to the last of which the foregoing preface was affixed.

Before submitting a Ninth to public notice, the present Editor felt some diffdence in attempting to improve that which had enployed so mnch of the time and talent of the late Mr. Purdy ; but, as Hydrography, and the many branchcs of science therewith connected, are continually recuiving fresh accessions, from the zeal and activity of the numerons observers that are at present labouring in the wide field of research, some revision was rendered absolutely necessary.

In the performance of this task, many redundances were to be removed, many important points to be dilated on. It is hoped that no source of authentic information has been overlooked, and that the work, as it is, offers a correct picture of the state of our Hydrographical knowledge at the present time.

Our thanks are due to many kind contributors, whose names and observations are recorded throughout the work, and we here tender them our acknowledgments.

Alex. G. Findlay.
"We have t, to a certain Ethiopic or resent work. the Coast of Bay, and the m , including n Purdy.
, in the year ial composer, was affixed.
me diffidence and talent of cience thereand activity 1 of research,
uoved, many ntic informaicture of the

ervations are

 ments.Findlay.

CONTENTS.

SECTIONI.

GENERAL REMARKS, WITH TABLES OF DETERMINED POBITIONS, ANI) THE AU'THORITIES, ETC., INCLUDING THE VARIATION OF THE COMPASS, ETC.
PAGE
General Remaris 1
Limits of the Atlantic, 1; Remarks on the Charts, 2, 3; Length of CoestLine, 5,6 .

1. England and Waales-Positions of Places, 7; notes 10
2. Islands and Coasts of Scotland-Positions, 11; notes 13
3. Coasts of Ireland, \&c.-Positions of Places, 14 ; notes 16
4. Norway and Sweden-Positions of Places, 17 ; notes 20
5. Denmark, Germany, and Holland-Positions of Places, 21 ; notes 24
6. Coasts of France, \&c.-Positions of Places, 25 ; notes 27.
7. Spain and Portugal-Positions of Places, 28 ; notes 31
8. Coasts of Africa-Positions of Places, 33 ; notes. 38
9. The Azores or Western Islands-Positions 40
10. The Madeira and Canary Islands-Positions. 42
11. The Cape Verde Islands-Positions 44
12. The Færoe Islands, Iceland, Greenland, Labrador, and Newfoundland- Positions. 46
13. Gulf and River of St. Lawrence, with Breton Island-Positions 53
14. Nova Scotia, \&e., Southern Coasty-Positions, 51 ; New Brunswick 62
15. The United States-Positions, 64 ; notes 69
16. The Bermuda Islands-Positions 73
17. The Bahama and Passage Islands-Positions 74
18. Cnba, Jamaica, \&c.-Positions 79
19. St. Domingo or Hayti, Porto Rico, and the Virgin Islands-Positions 84
20. The Caribbee and Leeward Islands-Positions 89
21. The Coasts of Guyana, Colombia, \&c., to the ${ }^{\text {Mexican Sea, inclusive- }}$ Positions 92

SECTION II.

DESCRIPTION AND LIST OF LIGHTHOUSES.

Lighthoubes and their Illumination 97
Lighthouses and Light-vessels, 97 ; Lamps, 97 ; Catoptric or ReflectorSystem, 98 ; Intermitting Light, 99 ; Dioptric or Lens System, 99 ;Dia-catoptric Prisms, 101 ; Fixed and Flashing Light, 101 ; HolophotalSystem, 102; Orders of Lens Lights. 102; Kange and Character ofLights, 103; Description of Tubles, 104.
List of Lighthouses

England, Thames Mouth, 105 ; South Coast, 106, 7, 8 ; West Coast, 109; Walos, 110 ; England, North-West Coast, 111, 112; East Coast, 113-115.
Scotland, East Coast, 116, 7; Orkney and Shetland Isles, 118, 9 ; Hebrides and West Coast, 119-121.
Ireland, South Coast, 122; East Coast, 123 ; North and West Coast, 124, 125.
Norway and White Sea, 126-129; Sweden, West Coast, 130; Denmark, West Coast, 130 ; Hanover, Netherlands, 131-133 ; Belyium, 134:
France, North Coast, 135-137; Channel Islands, 188; West Coast, 140-143.
Spain, North Coast, 144, 145 ; Portuyal, 145 ; Spain, South Coast, 146.
British America; Nowfoundland, 147; Gulf of St. Lawrence, 147, 148 ; New. Bronswick, Nova Scotia, \&c., 149, 150.
United States, Maine, 153; New Hampshire and Massachusetts, 155; Rhode Island and Connecticut, 158, 159 ; New York, \&c., 160 ; New Jersey and Virginia, 161; Maryland, 162 ; North Carolina, 164 ; South Carolina, 165; Georgia and Florida, 167; Gulf of Mexico, 168-170.
West Indies, Bahamas and Cuba, 171; Jamaica, \&e., 172 ; Guayana, 173; Tierra Firme, 174,
Allantic Isles, 175 ; Africa, West Coast, 175.

SECTION III.

GENERAL OBSERVATIONS ON THE WINDS, TIDES, AND CURRENTS, AND ON THE DIFFERENT PASSAGES OVER THE NORTH ATLANTIC GCEAN.
I.-Of the Winds.

General Remarks, 176; Halley and Hadloy's Theories, 177, 8; Wind System, 179, 180; Foree of Winds, 180, 1; Table of Force and Velocity, 182; Land and Sea Breczes, \&e., 183.
The Trade Wind, 184 ; N.E. Trades, 184 ; North Limit, 185 ; South Limit, Table, 186 ; Prevalence, 187, 8 ; Summary, 189.
Winds on the Athantic Isles, 180; at Jamaica, 191; West Indies, in general, 100 ; Bahama Islands, 102; Greater Antillas, 191; the Bayamos, near Cuba, 192.
Guyana, Cumana, \&e., 193; Gulf of Moxico, 196; the Norths, 194; Florida Kays, 196, 7.

Equatorial Winds and Calms.. 198
Limits Defned, 198; Table of Extent, 199; the Cloud-ring and Rains, 200.
Winds on the African Coast; 200; Winds and Seasons by Captain Midgley, 201; Coast of Guinea, 202; Windward Coast, 203; the Harmattan, \&.c., 203-202.
Winds and Calms on the Tropics, 20B; at the Bermudas, 207.

MEMOIR, ETC.

:st Coast,
Denmark, 134.

Coast,
st, 146,
147, 148 ;
tts, 155 ;
60; New
1; South 3-170.
na, 173;

South
dies, in to Bay-
$184 ;$

SECTION I.

REMARKS ON THE CHART, WITH TABLËS OF DETERMINED POSITIONS, AND THE AUTHORITIES; ETC., WITH THE VARIATION OF THE COMPASS.

The North Atlantic Ocean is the smallest of all the great divisions of the Ocean, but it has ever been of far greater importance to man than all others colleotively. It owes this great maritime superiority to the great proportionate length of its varied coast line, which perhaps nearly equals all other navigable sean, and to the vast area drained by the rivers falling into it, which give ready access and intercommunication to seats of dense and inland population. It is from these causes that the inhabitants of its maritime countries, have, in all ages, applied themselves to navigation ; and it is more than probable that the facilities afforded by it for commerce and travel, that the nations who inhabit the vicinities of those vast inland seas and bays which distinguish the Atlantic, have made greater progress in civilization than in any other part of the globe.

The area of the North Atlantic, does not comprise more than about one eleventh part of the entire ocean. From its having been the great highway for so many ages, its history, features, and phenomena, are better known than any other, and we are now enabled to give a far more perfect view of it-in every aspect-than of the rest of the world of waters.

It may be important in some mercantile quentions to define the boundaries of the various divisions of the Ocean but this has not been authoritively done for the whole of the worid.

In 1845, the Royal Geographical Society of London, appointed a committoe to defne the limits of the various oceans; and their report defines:-
"The limits of Arotic and Antaretio Oceans, respectively to be the Aretic and Antarctio Circies; that the limits of the Atlantio on the north and south, be the Aretio and Antaretic Circles ; that ita western limit be the coast of Amorica, as far mouth as Cape Horn, and thence prolonged on the meridian of that eape, until it

INTRODUCTION.

meete the Antarctic Circle; that its eastern limit be the shores of Europe, and Africa, as fir sonth as the Cape of Good Hope, and thence prolonged on the meridian of Cape Lagulhas, till that meridian cuts the Antarctic Cirole."

Our present work deals exclusively with the northern portion of the area thus defined, or that part which is separated from the wouthern by the Equator.

The length of the coast linen which bound the North Atlantic and its chief bayn, (except the Mediterranean, measured around their principal sinuosities, is not less than 62,000 miles ; if more minntely estimated it would amount to much more. A table is given presently, which will shew the numbers which make up this oum, and which are relatively equal. Of these coaster about 7,000 miles, or one ninth, remain unsurveyed; but they are the Aretic regions, unfrequented by commerce. Of the remainder, two-fifths have been surveyed by the British Government, and three-fifths by foreign powers.

The coasts of the Atlantic are now represented with the most minute accuracy in nearly all places of interest to the sailor. The elaborate surveys, which have now nearly approached completion, have been in progress during a greater portion of the present century; and in some cases, as the coasts of Spain, and some parts of our own ahores, at the latter part of the last century.

The first portion of this volume consists of a selection of the principal geographical points established in these operations, and appended to them are some notes, which will sufficiently explain their nature. In former editions we were led to discuss the merits of various anthonties and the discrepances between them, which were often considerable in amount; but now these differences have been so removed, and such minute exactness attained, that whatever notes there may be on this topic, muat be rather taken as subjects of curiosity, than of practical utility.

It is therefore manifestly imponsible that the seaman in the ordinary pursuit of his calling can hope to improve what has cost so much labour, and such refined appliancen. Almost every point in the geographic tables which follow may be taken as a point of departure by which he may correct his reckoning or rate his chronometer ; and the explanatory notes eppended, will serve to give him confldence, and afford information upon this important seotion of hydrography.

The first chart of the Atlantic apon a large acale, was published in Amsterdam by the predecesiors in the still existing and respectable house of Van Keulen, in the middle of the lant century. It was imued nnder the title of the Spamish or Woot Indian Sea; it contained some useful details, amidst a thoucand errors. The cocond, entitled a Chart of the Atlantic Ocean, was engraved at London, on the circular projection, invented by Mr. Murdoch, but was found to be extremely inaccurate; and the cenidrector added to the Archipelego of Cape Verde, two iolands, under the names of 6t, Philip and St. John, neither of which exinted; thene name being mometimer given by the Portuguese to the Islands Fogo and Brava.

The next, which was the firut of the kind published in this country, was constructed by M. de le Roohette, a painutaking and talented hydrographer, in 1777; and was published by the house whence the present work issues, in that year. It was
pe, and Atrica, e meridian of
it the aree thus tor.
I its chief bays, ies, is not lees nuch more. A this rum, and e ninth, remain merce. Of the and three-fifths
ute accuracy in rhich have now portion of the me parts of our
incipal geograare nome noten, were led to disem, which were so removed, and this topio, muut
nary pursuit of such refined apfollow may be ing or rate his him confidence,

1 in Amsterdam Van Keulen, in the Spanish or nd errors. The don, on the oirhely inaceurates ands, under the on namoes being
antry, was conpher; in 1777; tt year. It wno
drawn upon the becie of the qbewt ns of M. Fleuripu, and for many years was in large demand; of which wome dog fere of proof may arise from its having been during the period repentedly copied, and illegally republinhed. In the courco of time inany improvements were obtrined, and it was superseded in 1812, by another of the mame scale and sive, conotructed by Mr. John Puriy, a name well known to marinore for many yearn. This chart, in ite various editions, did good service to meamen for a long period, and atill in demerving of confidence, an repreienting mont of the features roquisite, with sufficient accuracy, to ensure the mafety of navigation.

These charts in their turn, having required many improvemente, from the great acquisition of exact knowledge which characteriven the present day, it whe deemed necessary to supersede them by the new charts before alluded to, which have latoly been published by the proprietor of this work, as compiled from the now nearly perfect geographical data. They moreover exibit, at one view, a nummary, in a graphic form, of all that range of phenomena with which hydrography has of late beem enriched.

But there is one drawbeck to the great increase of obwervation. Each department of hydrography is overloaded for practical every day use, and the meaman would waste much time in endeavouring to elicit some system from the multifarious anthorities he has now before him. A system of mean results has therefore been adoptod, as will be hereafter explained, under the various sections which follow.

Hydrography, as at present understood, commenced with Captain Cook, in his celebrated first voyage to the South Seas, in 1768. Previous to this, our consth were represented and corrected by the rude draughts and imperfect reckenings of painstaking mariners, in the pursuit of their profession; but the extended practioe of lunars, and the use of chronometers, soon made great improvements in geographio representation. Captain Cook, prior to his appointment to the great Exploring Expedition, was employed in surveying portions of the Gulf of St. Lawrence; and the irst work which he published was a series of charts of the nouth and west coasts of Newfoundland. It is very interesting to know that the great circumnavigatorn' eariest workn have outlived all their contemporaries. His charts, publiahed by the prelecessor of the proprietor of this work, are still in demand, as the ouly faithful epresentations extant.

Our prement object is not to give a history of the progress of charts, or we might ere present a long catalogne of those worthy observers, who, by patient inventiga. lon, and multiplied observation, made the geography of the coeen nearly an good, or the mariner'n use, an the far more elaborate publie survey" which have mupersoded hem. These last have the exclusive merit of being connected, and each portion laced in exact relation to every other portion $-a$ feature which in owing to the mags ificient eyaterse of triangulation, which are now extended over the the most imporint portions of the civilized world. The degree of accuracy, and the extent of theee, aay be underntood, when it in umerted that the whole of the ponitions hereafter given I the comits of Europe, Between Norway and Spain, do not vary from the aboolubs. ruth, more than a few feot.

It is the defect of detachod observations that they do not exactly acceord with

INTAODUCTION.

those by difforment indiviaunla. It whan the dimetpmanien arieng from thim sounce, which neowitated the dicouisionn formerly given on Attintio geography. But etill there in much that thas noful which in now eolipmed in the works of the predeoessors of modern curvayort. Towad the ond of liat century, there were several namee which deserve eapecinl mention here, as their workn will bear every compariean with thono of their more favoned ruccemotr. Among these was Murdoch Mackenxie, who surveyed' a large portion of the wentern shores of Sootland, and all the coast in the north of Ireland. Greme Spence, an admirable surveyor, whoee labors have even yet not been entirely superseded, surveyed the southern coasts of England, between 1772 and 1812.
The consts of Spain and Portugal laid down in accordance with the valuable Survoys of Toffio, Fransini, \&oc, and in the delineation of the African Coasts, with the inlande off the same, the positions afforded by Mewrs. Fleurieu, Verdun de la Crenne, Borics, Pingre, and Rowmin of France, were the anthoricies for our charts.

The American Coants were originally exhibited according to the observations and marvoye of our illustrious countryman, Captain Cook, as before mentioned; thowe of Lieutenant Michael Lane, of Mr. Den Barrea, of Captain Holland, of Menars. Wright, Mason, Diron, and De Mayne, reetifled with the observations of Dr. Rittenhoose, Mr. Ellicott, Mr. Hasoler, and other astronomera, \&oc., of the United States.

For the correct delineation of the West India Islands, much of our earlier information was derived from the labort of Messrs. Puysegur, Verdun, Borda, Pingre, and other foreign officers, whowe namen will be for ever entitled to respect. They were the pioneers who were followed by the skilful observers acting under the orderu of the Hydrographic Directory of Madrid; particularly the Captains Joaquin Fr. Fidalgo, Comme de Churruca, and Jose del Rio; to whom, and to the Baron von Humboldt, Mewrr.Oltmanns, \&e., we were indebted for the proximate situations of many pointri of Spanish America. These have again been adjuated by British Officers.

The numerous surveyors who have seconded these scientifio leaders in the completion of our hydrographio reprementions, will be alluded to in connection with their respective labors hereafter.

While we can refer with confidence to the charts of the various coast linet, as being so perfect, that no posaible alteration will be made in the fixed featuren of the land, that could be rendered applicable upon a general chart, thore is one branch that in not so satinfactory. This is tho list of detached dangers, as rooke or ahoals, whioh have been from time to time reported, and whioh, dieproved, are a constant and daily source of great anxioty to those who have to pass their vicinity. To deal with the conflicting and ambiguous atatementa recorded, is mont perplexing. Still it is most emential that no danger ahould remain unparked, although itu exintence or situation may be involved in great doubt. It is of the utmont importance to the feollity and enfety of navigation, that thewe dangere should be correotly placed and charactorizeu, and in the aase of a sreeh diseovery; some tent, an by the sounding lead, ought to be applied, to determine its absolute existence. This is nort mont im-
perative; without such grarantee, , any wuch announcoment in noxt to worthlom, en being authentic, and most mischievors, as leading to distrust and anxiety. All that wo know of this subject is recorded in a later part of this work, and in the chart, but it may be itated that of late the extended practice of deep sea soandings, has actually disproved the existence of many apparently well-authenticated dangers, and thrown very great doubt upon many others.

It has been above stated that the length of the conat line of the North Atlantic Ocean, between the Arctic Circle and the Equator (excluding the Mediterraneain), in about 62,000 , miles more or less. This estimsto is higher than has been usually attributed, but it is the remult of a meamrement around the present surveyed coarta omitting the minor sinuositien and smaller inletw. If these were taken into the wsount the sum would be much greater, as may be supposed, apon an examination, for example, of the vast range of islete which front the coasts of Norway and Finland, but it is the length of line over which the patient marine surveyor has had to toil in the ezecution of his arduous but most important duties. These numbers, however, but faintly express, as indeed anything we could nay here would fall ahort of telling how much has been done to bring the hydrography of this ocean to its present condition. It is enough here to draw the seaman's attention to a few of the results of those costly and laborious surveys which he benefits by.

Of the 62,334 milen of nea coast, the English Government have surveyed about 23,600 miles ; foreign governments about 31,600 miles, the remaining being unsurveyed.

Of the cosats of Europe, the English Admiralty and Ordnance have only aurveyed about one fourth, or 5000 miles out of 20,000 miles.

The following table of the details of the length; \&re., of cach country, in therefore given rather as a matter of curiouity, than material utility, and will form a fitting introduction to the Geographic tablen which follow.

COUXTRY.	BURYEYED EY.	dati Of numyey.	Extent of Const G. milea	total G. Milam.
England; South Coast and	Brit. Ordnce			
Chanuel Islands	\& Admiralty.	1792-1852.	488.	
" East Coast	Ditto.	$1830-1859$.	470.	
	Ditto.	1772-1860.	748.	
Cousto, and Islands	Ditto.	1816-1850.	610.	
" West Coast and Tslands	Ditto.	1750-1860.	400.	
Ireland \qquad	Ord. \& Admlty.	1828-1888.	1320.	
Total Britisr IsLes	Dan.8̇ํ..Gts.		. . .	6236.
Denmark; East Coant and Inl.	Daninh Govt.			2900.
Mecklonburg	Ditto		1080.	
Prusaia. . .	Prus.\&Dan. Gt.		630.	
Rumin and Finlond			2720.	

INTRODUCTION．

COUNTRE	0v2vixip 27.	DAYE OE SURVEX．	Extent of Oonet G．mile	$\begin{aligned} & \text { Tomal } G . \\ & \text { Milen. } \end{aligned}$
				－7，
Swedon	Swedish Gov．	arentio \％－Tide 573	2860.	
Total Baltre，\＆co．．．．．．．	（1）			7290.
Denmark：West Const and Frertio Islands	Danich Covt．	1841－1806．		730.
Hanover	Dutch Govt．			180
Holland	Ditto．			540．
Belgium	French Govt．	1816－1839．	if：	3）64．
France	is Ditto．	＂＂		1687.
Spain（to Gibraltar）．．．．．．．．	Spanish Govt．		\＆ 6 \％	915.
Portugal Total Coabts of Eubope	Various．			$\begin{gathered} 840 \\ 20,082 \end{gathered}$
Marooco \＆re，．．．．．．．．．．．．．．	Er．\＆Brit．Gte．	1835－185	460.	，\％浬方
Agadir to Equator	British Gort．	1826.	4480.	4890
Total Atlantic Iblands ．．．	British Govt．	1783－1846．		$\begin{aligned} & 4890 . \\ & 2990 . \end{aligned}$
Icoland ${ }^{\text {a }}$	Danish Govt．	1826.	1500.	教．
Greenland	not surveyed．		2000.	1．
Hrdson＇s Bay，\＆z．，	Ditto．		4000.	
Labrador；East Coast ．．．．．．．	Ditto．		1140.	
Total Arctic Islands ．．				7140.
Newfoundland；E．and S．Coasts i	British Govt．	1765－1834．		2765.
Gulf of St．Lawrence ．．．．．．	Ditto．	1768，1818，1849．		2820.
Cape Breton，Nove Scotia，and New Brunswick	Ditto．	1824－1860．		1765．
United States East Coast．．．．	U．S．Govt．	1817－	$3735 .$	
Toral United States	Ditto．		2770.	6505.
Mexico，and Central America	Span．\＆Brit．Gt．	1808.		$3295 .$
Colombia and Guayana．．．．	Epan．F．\＆Brit．			4100.
	Various．			
Haiti and Cuba ．．．．．．．．．．	not proply．sur．		2350.	
Various Islands			685.	
Total Weer Indigs				5882.
TOTAL EUROPE				20，082．
AFRICA．				4890.
ISLANDS				2990.
AMERICA				34，372．

Total Lienath of the Coasts of the North Atlantic Ocean．．．．62，334 Geo．Milem．．

 Inl

POSITIONS OF PLACES, ETC.

I. ENGLAND AND WALES.

\because The Fiaures in. Brackets refer to the Norzs subjoined to each dection.
The Variations of tag Compass \&e., follow these Noter.

HREENWICH; Royal Obseayatory[1] ONDon; Cupola of St. Paul's Cathedral raverend; Church heerness ; Flagetaff
farwich; Lighthouse..... house
Lowestoft Lighthouse.
romer Lighthouse
purn High Lighthouse..
lamborough Lighthouse Iartlepool Heugh Light. underland LighthouseNo.
1.
ynemouth Lighthouse...
Jarn Island ; S. W. Lighthouse.
erwick Lighthouse
Torth Foreland; Lighthouse
outh Foreland; High Lighthouse
over Castle; the Keep..
ollatone Church
Iew Romney Church
ydd Churoh
pungeness Lighthouse ..
exhill Church
eeahey Head Lighthouse righton Church horeham Church elsey Church hichenter Spire pa-Ower Light-veswel .. ortamouth College embridge Light-vesmel. outh-men Castlo
Elahot Cartlo
puthampton Pier
(urst Cantle; Eant Light unnowe: Station in the Survey
. Catherine's Lighthouse, Inlo of Wight

Latitode.	nowariudy.
- ' " "	$\therefore 1$
5128.40	000
613049	0647 W .
512639	02210 E.
612647	04460 -
515638	11725 -
$62 \quad 636$	$13512-$
522912	14528 -
525527	1196
533441	$0711=$
54668	0451
644147	11027 -
5455.6	12137
65116	124.52
563655	13915
654563	158.57
612230	12848 -
51823	12222 -
61-746	11923 -
51.445	1116 -
50697	06622 -
5357	05429 -
$\begin{array}{lllll}50 & 54 & 46 \\ 50\end{array}$	05818 -
505045	02848 -
504415	01258 -
504932	0740 W .
5050	01619 19-
504519	04565 -
505011	04643 -
503941	039 52-
5048.2	$\begin{array}{llll}1 & 6 & 15 \\ 1 & 1 & 40\end{array}$
504140	1180
604639	$1{ }^{1} 514$ -
50497	1186
506342	12423 -
504228	1326
80378	11150
503430	1747 -

The Astronomern Royal.

The Grand Triaonometrical or Ordnance Stuper, one of the great works of which our country ought to feel proud. It was commenced with a view to ascertain the difference of longitude between the Observatories of Paris and Greenwich, under General Roy. The principal triangulation was gradually extended under the successive directions of Colonel Williams, General Mudge, General Colby, Col. Hall, and Col. Sir Henry James. 'It was completed and the account of it published in 1858. The bases upon which it is constructed were measured on the shore of Plain, and upen Salisbury Lough Foyle, Ireland, and the refinement attained may be judged of whenitiastated that the difference between the calculated and measured lengths of these bases was less than $2 \frac{1}{2}$ inches. The mean length of the sides of the great triangles is 35.4 miles, of which 11 exceed 100 miles in length; the longent is 111 miles, i. e. from Slieve Donard in Ireland, county Down, to Sca Fell, Cumberland.
[1] Grianwiok.-From 720 observations of the Pole Star, made during eighteen month, of 1825 and 1826, the latitude of the Royal Obmervatory mas deduoed as $51^{\circ} 28^{\prime} 38^{\prime \prime} \mathrm{By} \mathrm{a}$ Iator correotion it in placed $51^{\circ} 28^{\prime} 40^{\prime \prime}, 16$.

19	LATITYD.	Len, w.	Avinomitres, 4
		- '	
Noedles Lighth	503990	13432 -	The Grand trigonometric or Ordnance Suryey
Christchurch H	504238	$14431-$	of England, \&c., described in
Portland Upper Lighthouse	50 50 50 31 18	$\begin{array}{llll}1 & 58 \\ 2 & 58 \\ 2 & 27 & 18\end{array}$	the preceding page. ${ }^{\text {a }}$:
Lyme Cobb ${ }^{\text {a }}$	504311	25529 -	
Hob's or Bob's nose	502750	$32643-$	79.2.
Berry Head; Flagstaff	50242	32814 -	
Start Point ; Lighthouse.	501318	33828 -	
Bolt Head; Sirgnal Station	501315	348	
Eddystone Lighthouse .	501049	41553	Remarks:
Mewstone, near Plymouth Sound	501831	$633-$	As a matter of curiosity
Plymouth New Church ..	502222	4716	it may be mentioned that by
Plymouth Old Church	502215	$4 \quad 732$	the Equatorial radius of the
St. Nicholas' or Drake's Is-			Earth is found to be 20,926,500
land, Plymonth Sound.	60224	41818	feet; and the Polar radius
Lighthouse, on the Breakwater			is $20,865,400$ feet, and a mean degree of the meridian contains
Meridian Tablet, on the	502022		
Breakwater [2] Penlee Beacon	601959	$\begin{array}{llll}4 & 8 & 52 \\ 4 & 10\end{array}$	the earth isas 293 to 294, and the mean density is $\mathbf{5 . 3 1 6}$.
Penlee Beacon Ra.......	501225	$41040=$	
DodmanorDeadman Point,	6018	41229	1834, it was stated that Dr.
St. ${ }_{\text {Flagstaff }} \ldots$	601320	4481 -	Turris, had ascertained, in the
Lighthouse \because.....	50835	45931 -	summer of 182, , by the com-
Pendennis Castle; Flagstaff	50849	5245 -	chronometers, carried back-
St Kevern Steeple	5083	$5{ }^{5} 588$	ward and forward between
Blackhoad; Flagstaff . .	50	5635	Greenwich and Falmonth, that
Lizard East Lighthouse. .	495734	${ }_{5}^{5} 124$	
St. Michael's Mount St. Paul's Steeple, Mount's	5073	52837	seconds of time, or 1 minute.
Bay	50685	53243 -	and 6 seconds too little, by the first Trigonometric Survey. In
St. Leven's, or Guethens-			consequenoe, 29 of the best
Wras Point ; Flagsta	$50 \quad 216$	54046 -	chronometers belonging to the
Wolf Rock; Beacon	495645	54814 -	Admiralty were subsequently
Land's End Stone	5048	54131 -	committed to the care of the
Longships Lighthousei.	50 ¢ 44	54443	doctor, and a vosel wan ap-
Scilily IsLands; 8t.			pointed wherein he was to sail,
	496330	620	backward and forward, betwoen Dover and Falmouth, until the
Windmill	495432	81859 -	longitude in time, between these.
Flaretaff ; St. Mary's			stations, and between them and
Flagstaff at the Fort	4955	81813 -	station, was settled beyond any
Day-Mark	49582	61553	doubt. The rosult was, as to all places on the South Const of
Bishop Rock Lichthouse	495229	62639	England, between the meridianit
St.Agnes' Beacon, Cornwall	501828	¢ 1257 -	of Greenwich and Falmonth, if
Godrevy Island Lighthouse	501432	$62350-$	1 socond be added to every
Trevose Head , Lighthouse	${ }_{50}^{50} 32355$	${ }^{5} 2828$	of
Fartland Point:..........	61121	43121	exact longitude, according to
house			the chronometers, will be ob-
Minchead Steople	61.1242		tained. These direrences have
Braunton Snnde Lower Lighthouse	$61 \quad 417$	412	angles, now completed.

POSITIONS OF PLACES.

ENGLAND AND WALES-CONTINUEPD.

Hrcusy

D TRIGONOME nance Survey c., described in page.

arks.

er of euriosity ntioned that by to computations 1 radius of the to be 20,926,600 - Polar radins bet, and a mean aeridian containa The ellipticity of 93 to 294, and the s 5.316.
blic journale of stated that Dr. scertained, in the 22, by the comirtoen excellent carried backorward botween d Falmouth, that longitude of the en given at 4.1 ne , or 1 minnte. too little, by the etric Survey. In 29 of the best belonging to the ree oubsequently the care of the voisel was apin he was to sail, forward, between. month, until the ne , between these etween them and an intermediato ttiled beyond any esult was, as to He South Conat of oen the meridian and Falmonth, if dded to every gitude, an given al Surver, the de, accorifing to ers, will be obdifferences have irely sottled by ation of the trinmpleted.

	Lattivde.	Low. w.	AUTHORITIEs.
Skinburness Lighthouse ...	54.5246	3 2: 46	
Workington Chapel	543828	33411	The Grand Trigonombitic
Sontherness ; Lighthouse.	545222	33537	or Ordnancer Survey of Eng-
Crifell; Station in the Surver, $1,831 \mathrm{ft}$. above the sea	545644	33655	
Isle or Man.			
Point of Ayre Light. . . .	542456	4221	? \% ¢ !
North Berule ; Station, 1,804 feet high	54.1727	42332	\cdots
Snea Fell; Stat. 2,4000t.	541550	42735	- Mras
Calf of Man, Upper Lighthouse	$54-314$	44937	
Peel; Lighthouse.	541245	44233	

NOTES.

1. The Maritime Surveys of our coasts are now so complete (with some partial exceptions,) that little can be desired for the use of the navigator. These works, based chiefly upon the Ordnance Survey, would occnpy too mnoh space here to enumerate, bnt it would seem to be somewhat unjust if no allusion was made to the predecessors of our present government surveyors, who, with very limited means and great personal labour produced such excellent charts, that even in the present day they would be most trustworthy guides. The names of the two Murdoch Mackenxies, Græme Spence, and Joseph Huddart, deserve all gratitude.
2. On the inside of Plymouth Breakwater is a landing-pier, and on the East end of this, which is about eqv distant yrom either end of the breakwater, is a granite pillar, with a brass plate, on which is engraved its correct latitude and longitude, $60^{\circ} 19^{\prime} 59^{\prime \prime}$, and $4^{\circ} 8^{\prime} 52^{\prime \prime}$ W. Here ships of war, by Admiralty Order, rate their chronometers before proceeding to sea.

Admiral FitzRoy has remarked in his voyage of the 'Beagle,' that the longitude of this station, by the Ordnance Survey, would be $4^{\circ} 7^{\prime} 41^{\prime \prime} \cdot 7$; but, by applying a portion of the error detected by Dr. Tiarks, in his clironometric observations between Greenwich and Falmouth, viz. 47.09", or $1^{\prime} 1^{\prime \prime} \cdot 35$, the corrected longitude of the station will be $4^{\circ} 8^{\prime} 52^{\prime \prime}$. "Our chronometers made it $0^{\prime} 40^{\prime \prime} \cdot 2$ to the eastward of the corrected longitude, and $0^{\prime} 19^{\prime \prime} \cdot 6$ to the westward of the original determination by the Ordnance Survey."-Captain FitzRoy's Appendix, p. 320.
3. St. Agnes' Lighthodse, Scilly.-The observations rade for determining the situation of St. Agnes Lighthouse, at the commencement of the third voyage of Captain Cook, proved to beincorrect. It appeared from these observations, to be in latitude $49^{\circ} 55^{\prime}$, longitude $6^{\circ} 45^{\prime}$. This error, of more than 25 minutes of longitude, was very injurious ; inasmuch as many Charts were subsequently regulated by the deduction. For, the Lizard Point having been previously determined by Dr. Bradley, these islands were, in consequence, placed that distance too far from the Land's End. Notwithstanding this great error, however, it does not appear that it was the cause of any serious disaster to shipping.

VARIATIONS OF THE COMPASS, 1861.

In the latter part of this volume, some observations on the general subject will be found, among which, the secular change, which has now increased to a considerable amount, since many of the surveys were made, and which therefore requires attention, the more especially since the introduction of an improved class of instruments, and the care demanded in the navigation of iron-ships. We here give the present variation, reserving such remarks upon former results, for the section specially devoted to the subject.

The variation is now decreasing on the south-east Coast of England at the rate of about $\hat{\sigma}^{\prime} \mathbf{2 7 ^ { * }}$ per annum ; on the north-east of England about 6^{\prime} per annum, and on
the west coast, about $5^{\prime}-20^{\prime \prime}$.
The Weoterly Variation at Greenwich is $21^{\circ} 20^{\prime}$. In 1853 it was $28^{\circ} 8^{\prime} ;$ in 1855 , $21^{\circ} 46^{\prime}$; in Decomber, 1858, 21° 29. In the Thames mouth, at the Nore, $20^{\circ} 3^{\prime}$; of the North Foreland, $20^{\circ} 35^{\prime}$. When Græme Spence made his survey in 1795, it was $22^{\circ} 50^{\prime}$; it went on increasing till 1818, and has since decreased. Off Hastingr, it is now $21^{\circ} 0^{\prime}$; at Spithead, in 1813, it was nearly 25°, and at Portsmouth Oboervatory it was stated to be $24^{\prime} 15^{\prime}$; it is now $21^{\circ} 45^{\circ}$; at Poole, Dorsetshire, it is $22^{\circ} 0^{\prime}$; at Dartmonth, $22^{\circ} 40^{\circ}$; At Plymonth, $23^{\circ} 0^{\prime}$; at the Scilly Islands, 24°.

At Bristol it is $22^{\circ} 35^{\prime}$; at Cardiff, $23^{\circ} 0^{\prime}$; at Milford Haven, 24°; at Landy Island, $23^{\circ} 50^{\prime}$; at Bardsey Island and Holyhead, $24^{\circ} 10$; at Liverpool, abont $23^{\circ} 33^{\prime}$ (in 1838, it was 26°); in the fairway of the Irish Sea, $24^{\circ} 40^{\prime}$; the Isle of Man, $24^{\circ} 50^{\circ}$.

On the Eastern Coast, it is at Yarmonth, $20^{\circ} 50^{\prime}$; Gromer, $21^{\circ} 0^{\prime}$; Lymn Deeps, $21^{\circ} 30^{\prime}$; Hall, $22^{\circ} 0^{\prime}$; Hartlepool and Tees Bay, $23^{\circ} 0^{\prime}$; the Tyne, $23^{\circ} 25^{\prime}$; Berwick-on-Tweed, $24^{\circ} 0^{\prime}$.

2. ISLANDS AND OOASTS OF SCOTLAND.

ith some partial -These works, h space here to was made to the 7 limited means n in the present Murdoch Mac-
the East end of er, is a granite le and longitude, order, rate their
the longitude of applying a porvations between itude of the staeastward of the etermination by
for determining third voyage of ons, to be in latigitude, was very I the deduction. Bradley, these ad's End. Notwas the cause of
ral subject will d to a considererefore requires class of instrue here give the section specially
id at the rate of annum, and on

Lat. n.	Lon. w.	AUtiohrtize.
\bigcirc	- ' "	
555723	31048	The Grand Trigonometri-
56.21	3 8 5 3	cal or Ordnance Survex of
56118	${ }^{2} 333121$	Great Britain, at present under
561431	$\begin{array}{lllll}3 & 13 & 10 \\ 2 & 34 & 10\end{array}$	the direction of Colonel Sir
$\begin{array}{cc}56 & 17 \\ 56 & 0\end{array}$	$\begin{array}{rrrr} 2 & 34 \\ 2 & 40 \\ 2 \end{array}$	
$\begin{array}{llll}56 & 26 & 4 \\ 56 & 28 & 41\end{array}$	$\begin{array}{lll} 2 & 23 & 7 \\ 2 & 58 & 26 \end{array}$	
56287	2 44-53	
663345	23453	
$\begin{array}{llll}563655 \\ 5642 & 5\end{array}$	$\begin{array}{llr}2 & 29 & 24 \\ 2 & 26 & 6\end{array}$	
564231	$2 \begin{aligned} & 2 \\ & 2\end{aligned}$	
$57 \quad 815$	232	
57857	2542	
$57 \quad 833$	246	
571011	$\begin{array}{llll}2 & 6 & 3\end{array}$	
571552	$\begin{array}{llll}2 & 3 & 57 \\ 1 & 4 & \end{array}$	
572814	14622	
573044	11 47 1 32	
573652	$1 \begin{array}{llll}1 & 50 & 39\end{array}$	
$\begin{array}{rl}57 & 41 \\ 57 & 51 \\ 51\end{array}$	$\begin{array}{llll}2 & 0 & 6 \\ 2 & 1 & 0\end{array}$	
574138	21738	
5740 b	$230^{\circ} 0$	
574315	32020	
575155	34631	
$\begin{array}{ll} 58 & 28 \\ 58 & 38 \\ 58 & 28 \end{array}$	($\begin{array}{llll}3 & 2 & 5 \\ 3 & 1 & 7 \\ 3 & 2 & \end{array}$	
584019	3 22 29	
584126	25523	
585749	32341	
$5842 \quad 2$	32019	
58470	33160	

Ros ${ }^{\text {a }}$	Lax. x	20.3. w.	* 4 Utaortidat it is
It of Sande		- :	\cdots
	591642	22250	The Grand Teiconometri-
Nort Ronaldshay;			oal or Ordnamee Survey, as
Lightwe	5923 - 5	22210	before stated.
Stropmay itulliof in Sur			
Fair Island ; Summ	593264	13750	
Foul Inland; summit (1,369			
feet)	60828	2540	
North Rona Island	59716	54847	
SHETLAND.-Sumburgh			The Observations of Mr.
Head Lighthouse.. [4]	$\begin{array}{llll}59 & 51 & 17 \\ 60 & 7 & 51\end{array}$	1.1623 1	Gbo. Thomas, R.N., on his
Lerwick ; the Fort			Survey of Shetland, \&c., 1825 to 1833.
Flagstaff	60	1841	
Gardie House on Brassa	60	1740	
Whalsey Island ; summit	60201	1022	
Brury Inle, Out Skerries	$\begin{array}{llll}60 & 2 & 41\end{array}$	$\begin{array}{llll}0 & 45 & 2 \\ 1 & 3\end{array}$	
Yell Isle; Reafrith Kirk	603555	$1{ }^{1} 346$	
Strandburg Ness, Fetlar	60 3351	0 3336	
Fetlar Isle; summit Haaf Gruna; summit	603712 6039	(1) 5156	
Halta Island; summit.	60 3944	(1)	
Saxavord; Stn.in Survey	604939	0 5020	
Lambness, on Unst	60490	04540	
Burraford Holmes	60510	05330	
Ramna Stacks ${ }^{\text {Ve Skerries, off Saint }}$	603936	11840	
Ve Skerries, off Saint Magnus Bay	602230	14910	
Fugloe Skerry, near Pa-			
	602015	1450	
Scalloway Castle ..	60831	11625	
Western Coasts	583730	33150	based on the Ordnance Trian-
Cape Wrath; Lighthouse	583733	4952	gulation. ., ?
Laxford ; N. W. Point	582440	5820	
Rn Stoer, Light Building	581552	522.12	
Butt of the Lewi	58310	${ }_{6}^{6} 1535$	
RuRea ; Station in Survey	57508	54553	
Stornoway Lighthouse, in Lewis.	581130	62210	
Cleisham in Lewis	575749	64838	
GlashorGicalpa; Lighthouse	575126	6383	
Storr Hill, in Mull	573025	61052	
St. Kilda ; Peak at N.E.end	57492	83530	
Ben More, S. Uist ; Statn.	671531	71735	
Barra Head ; Lizonouse	56478	739.9	
Skerryvore Lightho Fo	561924	7645	
Lighthouse	664545	61330	
Tobermorey, Mull ; Lit ax			-
Runa Gal Rock.	663835	- 940	- - \%
Lismore Lighthouse; Sonad of Mull	562720	53623	
Ben Tartevil, on Tart-abhaile, Islay Island	554332	62632	

ISLANDS AND COASTS OF SCOTLAND-CONTHNULD.

NOTES.

1. Edinburgh.-The geographic position of the Astronomical Observatory on the Calton Hill, was given by thie Ordnance Survey, in 1816, as $3^{\circ} 10^{\prime} 64$,' W. But this result appears to have been affected by a singular cause, which demonstrates the refinement to which these operations have been carried. It has since been found that the attraction of the mass of Arthur's Seat, (a hill to the sonthward of it ,) has drawn the plumb-line (or zenith sector) towanis it, and thus produced an error of several seconds in the calculation. This error was established in 1839, by Professor Henderson, who made the longitude $3^{\circ} 10^{\prime} 45^{\prime \prime}$. Some very interesting experiments were made on this curious point, during the late Ordnance Survey, by which, not only the effect of mountainous masses on surveying operations was ascertained, but also the density of the earth was established.

Since the completion of the triangulation of the Ordnance Survey, a new principle for ascertaining the difference of longitude has oome into operation. The extension of the electric telegraph has placed Greenwich Observatory in direct connexion wit? winet other important observatories; and in April, 1857, a series of instantaneous signals was transmitted between it and Edinburgh, under the direction, at the latter place, of Professor Piazzi Smyth, the worthy son of the excellent Admiral Smyth, well known to all sailors. These experiments definitely settled its longitude at $12^{\mathrm{m}} 43^{\circ} .048$ in time, or $3^{\circ} 10^{\prime} 45^{\prime \prime} .72$ in arc, confirming Mr. Henderson's previous result.
2. Eastern Coasts of Scotland.-The Eastern Coasts of Scotland have all been well surveyed by our Admiralty, upon the basis of the Ordnance triangulation. The off-shore soundings, however, are not yet completed.
3. Orkneys., \&C.-The Orkney Islands were originally surveyed by the elder Mackenzie. Murdoch Mackenzie, F.R.S., was the first surveyor of our coasts who conducted his operations on right principles. His first work, Orcadia; or the Orkney Islands, with part of Lewis, was done at his own expense. Its accuracy is great, and its ntility is still unequalled. It was published in 1750 . He was afterwards employed by the king in surveying the consts of Ireland, \&e. Later in life, his
works were attacked, most unjustly, by Dr. Anderson, which called foith suitable replies, and justification from John Clark, of Eldin, in 1785. . This work may be said to have commenced the Admiralty Surveys.

They have since employed very many years of examination under the late Commander Thomas, R.N., and others.
4. West of Scotland, and the Hebrides:-Up to quite a recent date, the charts of the whole of this portion of our shores remained nearly in the same state that they were left by Murdoch Mackensie. Notwithstanding their imperfections, however, statistica have shewn that no great deiriment to navigation arose from their "diegraceful" condition, an epithet which will take 25 years of organized surveying partien, and $£ 250,000$ to remove. We may here add that they were examined, and partially surveyed, by Captain Joseph Huddart, whose charts were long of good service.

3. COASTS OF IRELAND, ETC.

The Northern Coast.

Tory Island; Lighthouse Fannet Point; Lighthouse Innistrahul; Lighthouse.. Inishowen Head; Lighthouse
Magilligan Tower, L. Foyle Port Rush
Bengore Head......... [1] Rathlin Isle; Church
KnocklaidMountn. (1690ft)
Fair Head

The Eastern Coast.

Tor Point
Garron Point
The Maidens; South Rock Light
Hunter Rock (9 feet)
Black Head
Carrickfergus Castle
Belfast; Mouth of the Lagan DeDivis Mount (1800 ft .)
Bangor Castle
Copeland Lighthouse
Donaghadee; Pier Head Ballyhalbert; Fort South Rock, Lighthouse .
St.John'sPoint; Lighthouse Slieve Donard, (2797 feet) Carlingford Lighthouse

Clogher Head (1580 feet)

Drogheda; Centre
Balbriggan Light.
St. Patricis's island
Rockabill Lighthouse
Lambay Island; summit

Lat. N.	IoN. w.	AUTHORITIRS
- ' "	- ! "	
551627	6150	- The Surveys of Captain Wy.
551634	73752	Mudar, R.N., F.R.A.S., made
552556	71337	in co-operation with the Grand Trigonometrical Survey of Ire
651338	65538	land, 1828-52.
651132	65758	
551230	65015	
55150	62835	
551735	6122	
551810	61040	
65 9 43 5	61457	1
551330	6830	
551150	6 4	
$65 \quad 30$	6.5830	
545564	5435	
545245	54530	
54460	6420	
544235	54915	
64360	5560	
643640	$\begin{array}{llll}6 & 1 & 0\end{array}$	
543920	54040	
044145	${ }_{5}^{5} 3180$	
C4 3838	532.25	
642930	52810	
642366	${ }^{5} 254$	
6413 1	5 5 5	
$\begin{array}{rrr}641048 \\ 64 & 1 & 11\end{array}$	$\begin{array}{cccc}5 & 56 & 9 \\ 8 & 4 & 4\end{array}$	
$64 \quad 239$	6139	
83 4740	6140	
634250	$\begin{array}{llll}6 & 22 \\ 0\end{array}$	
633048 63	$\begin{array}{lllll}6 & 10 & 53 \\ 8 & 5 & 20\end{array}$	
83 3545	$6{ }^{6} 530$	
632020	620	

led forth auitable is work may be ter the late ComIt date, the charts le state that they ctions, however, trom their " divd surveying pare examined, and are long of good

RITIRS,
of Captain Wx. F.R.A.S., made with the Grand Survey of Ire-

	Lat. N.	Lon. w.	AUTHORITIES.
	- ' "	- " "	
Hcwth Hill; peak (565 ft.)	532223	648	The Grand Trigonomer-
Howth Bailey; Lighthouse	53214	635	mical Survex í Treland, and
Poolbeg Lighthouse	532031	$6{ }^{6} 981$	the Surveys of the late Captain
DUBLIN ; Nelson's Pil.[2]	53210	61645	Mudas and other Officers,
Kingstown ; Lighthouse..	$\begin{array}{llll}53 & 18 & 5\end{array}$	690	1828-52.
Wieklow Head Upper Light	525754	$6{ }^{6}$	
Tara Hill	524156	61258	
Forth Mountain	521867	63339	
Roslare Sand Hill	521845	62221	
Tuskar Lighthouse	52129	612.22	
The Southern Coast.			
Saltees Light-vessel	52218	63815	
Coningmore Rock	52445	63749	
Hook Lighthouse, near Waterford	52724	65543	
Helwick Head	$\begin{array}{llll}52 & 3 & 6\end{array}$	73240	
Mount Knockmeldown	5213.33	7550	
Roche Point; Lighthouse	514733	81514	
Robert Head. \quad. . .	514355	8200	
Kinsale ; Sonthern Light. .	513611	83158	
Stags of Castlehaven	512815	91346	
Cape Clear; Old Lighthouse[3]	51262	92030	
Fastnet Rock, Lighthouse	51. 2318	93625	
Crookhaven; Lighthouse	512835	94231	
Mizen Head	512715	9500	
Mount Gabriel	513330	9320	
Sheep Head	513255	95140	
Hungry Hill; Station in Survey.	514113	94727	
RoanharrioR.in Bantry Bay	5141	9476	
Signal Tower, Bear Island	613743	95340	
The Western Coast.			
Dursey Island, South Point	51355	101410	
Bull Rock [4]	513550	101830	
Skelligs ; Lighthouse	51466	103220	
Valentia Isle; Fort Cromwell	518650	101815	
Station Feaghmaan			
Station at Went end [4] Doulus Head.	516522	102041	
Doulus Head.	61676	1019	
DunmoreHead, Dingle Bay	6263	1029.0	
Foze Rock	5210	103940	
Inishtuiskero Island......	52720	103430	
Mount Brandon, Station. .	5214 6	101510	
KilcradanHead, Lighthouse	62344	94234	
Scattery I., Kound Tower	623042	93115	
Loop Head, Lighthouse . .	521338	95556	
Mutton Iblana, Lijhthouse	ถ̄3 $15 \overline{14}$	$9 \quad 310$	
Arran Island, Lighthouse	63738	$942{ }^{\circ}$	
8lyne Head, N. Lighthouse	532358	10141	
Inishgort Lighthouse . . .	834935	04012	

COASTS OF IRELAND, ETO.-Continued.

	Lat. N.	LON. W.	AUTHORITIES.
	- 1."	- .	-
Clare Island, Lighthouse. .	534938	95858	The Grand Trigonomet-
Achil Head	535820	10160	Rical Surver, \&c. . .
Slieve More, Achil Island	54035	10326	
Eagle Island; Lighthouse	541659	$\begin{array}{llll}10 & 5 & 32\end{array}$	
Tawnaghmore, Station .	541739	$\begin{array}{llll}9 & 35 & 47\end{array}$	
Telling or Teelin Head . .	544030	84610	
RathlinO'BirneLighthouse	543947	84952	
St.John's Point, Lighthouse	54348	82733	
Ballyshannon Church ...	543011	81147	
Slieve League (summit 1979 feet)	54395	84238	
Bloody Farland (summit 1060 feet)	55814	81541	
Muckish Hill ; Eastern part	55621	75949	

NOTES.

1. The positions of places on the Irish coasts depend upon the observations made in the Trigonometrical or Ordnance Survey. The principal triangles, commencing with the measurement of the base on the east side of Lough Foyle, in 1826-8, have been extended over the whole area, between that period and 1832, and give results which may be practically taken as absolutely correet.

Since that period, the minute surveys of the land on a very large scale, have also been completed; and upon this basis our Admiralty surveyors have constructed our present charts, by adding the soundings and maritime features outside the low water-line. This series has only recently been completed for the use of the sailor, as shewn on our charts. The names of Mudge, Bedford, Wolfe, Beeehey, Frazer, Church, and other offieers, should be mentioned in connexion with these operations.
2. Dublin.-The Astronomic Observatory, 3 miles N.W. of. Dublin, in latitade $52^{\circ} 23^{\prime} 13^{\prime \prime}$, and longitude $6^{\circ} 20^{\prime} 30^{\prime \prime}$, is a point verified by triangulation as well as by observation.
3. South-West Coasts.-The surveys by Mackenzio, for many years the only guide to the mariner, placed all the south-west part of Ireland several miles too far to the south, an error, however which has been corrected a long period.
4. Valentia.-Ono of the most important geodetical operations in connexion with the Ordnance Survey, was the ehronometric determination of the difference of longitude between Valentia and Greenwich, in December, 1845. This arc, one of the largest that could be measured in the British Isles, has been of very great importance, as well in verifying the accuracy of the Trigonometrical Survey, as in determining the true figure of the earth. It was carried on by Piofessor Airy, the Astronomer Royal, assisted by Mr. Sheepshanks, Mr. Hartnup, Mr. Hind, and several other observers, by means of 30 pocket chronometers. The stations were Greenwich, Liverpool Observatory, a temporary observatory at Kingatown, and Feaghmaan, at Valentia. The final determination of the longitudes chronometrically, wero-Liverpool, 12^{m} $0^{\mathrm{m} .05}$; Kingstown, $24^{\mathrm{m}} 31^{\circ} \cdot 20$; and Valentia, $41^{\mathrm{mm}} 23^{3} .23$. By the Ordnanco Survey, these longitudes were made,-Liverpool, $12^{\mathrm{m}} 0^{\circ} .35$; Kingstown, $24^{\mathrm{m}} 31^{\circ} .48$; and Valentia, $41^{\mathrm{m}} \mathbf{2 3}^{\mathrm{n}} .07$.

VARIATIONS OF THE COMPASS, 1861.

Dublin, $25^{\circ} 25^{\prime} \mathrm{W} . ;$ Wicklow and the Tuskar Roek, $25^{\circ} 0^{\prime} \mathrm{W} . ;$ Waterford, $25^{\circ} 12^{\prime}$ W.; Cork, $25^{\circ} 50^{\prime}$ W.; Kinsale, 26° W.; Fastnet Rock, $26^{\circ} 25^{\prime}$ W.; Valentia, $20^{\circ} 40^{\circ}$ W.; Mouth of the Shamion, $20^{\circ} 50^{\prime}$ W.; Galway, $29^{\circ} \frac{10^{\circ}}{}{ }^{\circ}$ W.; Broad haven, $27^{\circ} 35^{\prime}$ W.; Donegal Bay, 27° W.; Lough Foyle, $26^{\circ} 45^{\prime}$ W.; Raghlin Island, $26^{\circ} \mathrm{W}$.; Belfast, $25^{\circ} 42^{\prime} \mathrm{W}$; Lough Strangford, $25^{\circ} 30^{\prime} \mathrm{W}$.

4. NORWAY AND SWEDEN.

RITIES.

Trigonomet-

\& C .
bservations made les, commencing e, in 1826-8, have , and give results
large scale, have have constructed es outside the low se of the sailor, as Beechey, Frazer, these operations. ublin, in latitude ation as well as by
ay years the only veral miles too far iod.
in connexion with difference of lonis arc, one of the great importance, as in determining , the Astronomer A several other obGreenwich, Livermaan, at Valentia. --Liverpool, 12^{m} Ordnanco Survey, $24^{\mathrm{m}} 31^{\circ} .48$; and
W. Watorford, $3^{\circ} 25^{\prime}$ W.; Valen $8^{\circ} 46^{\circ} \mathrm{W} . ;$ Drodd 15' W.; Raghlin

	lat. n.	Lon. E.	acthorities.
		- ' "	
Trenen Island; summit[1]	063020	12430	The Trigonometrical Sur-
Mangvardkua; conical bea-			VEY, made by order of the Nor-
con Donnæs हैe ; Church at N.	6618,30	124120	wegian Government, by CAPT. Vibe, \&c., as explained in the
end	66125	123630	Notes.
Björn Market-pl.	6650	123530	
Donnmes Fjeld....	$66 \quad 20$	12240	
Alsten öe ; Syv Sostre Mts. S. one.	65550	1232	
Skjervær I; Klep harbour	654645	113540	
Sola Island; summit	654020	11450	
Vegen Island; Gulsvaagfjeld Mountain	653915	11510	
- Vegtinden Mt.	653745	11540	
Sjelva beacon, off Minland	654225	121950	
Ḧ̈̈holmtinderne Mt., S. periz	65 360	1226	
Anà l ${ }^{\text {co..tten Mountain .. }}$	653332	12260	
Kvalije ; summit	651330	1210	
Helgeland Oflissen beacon, oft K valöe	651310	115430	
Heilhornet ; remarkable			
Mountain.	65432	12912	
Leköe; summit	65443	113730	
Vigten Islands; outer Island, N.E. point	645825	1111	
- Sulaijeld Mount.	64540	10490	
-Indre or Inner Id.,			
Rorvig on E. side	645130	11150	
Folden Fjord; Grinna beacon on North side.		105920	
Kvernholmen beacon	644725	11930	
Prestoe Light, near Næeröe	644335	104645	
Gjöen ; Brakstad	644020	111340	
Otter ${ }^{\text {öen; }}$ Findanger Fjeld	643625	$\begin{array}{lll}11 & 7 & 0\end{array}$	
Halmöe ; Villa Lighthouse	643248	104158	
Oxbaasheia; Village at			
North end	643230	102550	
Buholmene, cone beacon	$04{ }^{2} \mathbf{2} 30$	102820	
Vigs Sjelen; summit	641530	10240	
Osen, Church . .	641745	103130	
Alminding oo; Hvalhovden or S. point	64100	$10 \quad 130$	
Fro berne; Halten Island;			
centre.	641035	0280	
Leikua beacon, off Lysö	635540	95730	
Suuls Fjord; Sulen Yower	635045	83310	
Fröien Island; Titterod-			
den, or West point	63405	82210	
Uiv öl centre	634030	9100	
Great Kopperen Hill; on			
Mainland . . .	63484	0430	
Iitteren Island; W. point	632036 18	8 8 8	
- Omdastjeici on N . side	633335	8380	
rondhjem Channel ; Teruingen Lighthouse	6320	0 0 0	

	lat. n.	Lon. m .	AUthoritims.
		- " "	
Trondhjem Channel; Agddenees Lighthouse. . Trondejem; Munkholmen Light			The Thigonometrical Sur-
	633815	94930	VET, made by order of the
			Norwegian Government, by
	$\begin{array}{lll}63 & 27 & 10\end{array}$	102450	CAPT. VIBE, \&c., as explained
	632549	102345	in the Notes.
Smoelen Island; Maaberg Tuva on North side	632638	$8 \quad 030$	
Eddó; Trondhjem S. channel, Light on Ringholm			
	631845	81325	
Grib Islands, centre	$\begin{array}{rrrr}63 & 14 & 0 \\ 63 & 7 & 20\end{array}$	$\begin{array}{rrrr}7 & 35 & 0 \\ 7 & 38 & 15\end{array}$	
$\begin{array}{r} \text { Aver ó, N.E. point. } \ldots \text {.... } \\ \hline \text { Mroknokken Mt. . } \end{array}$			
	62590	73230	,
Christiansand; Light on Leervig Island	63630	7420	
Frey ben ; Frey Kollen M M .	$63 \quad 230$	7440	
Qvitholm; Lighthouse ..	63215	71230	
Stevshest ; summit	6259	7120	
Böesund; Boeveret church	62550	65415	
Sandö; Church	624931	6350	
Romsdals Oerno ; Harr ö church	62 A7 0	62810	
-Harams o ; Church			
at W. end . $\ldots \ldots \ldots \ldots$	623940	61050	
-Lepsö ; Light-vessel			
on reef \ldots. \ldots. \ldots. .	623530	61430	
Walderö, Light. on S point	6230 b	6725	
God-o ; Light on Hogstein Point	62280		"
Hessö ; Sugar Loaf	623750	6 68150 681	
Rondö; Lighthouse..... .	62350	53510	
	621935	51610	
Stadtland; Quitenes at North end.	621215	51415	
	$62 \quad 530$	$\begin{array}{llll}5 & 8 & 5\end{array}$	
Bremanger Land; Olderveggen Point.			
	615020	44640	
Froe Soen ; Smor Haven...	614530	4580	
	61380	449 sv	
Kind 8 ; summit	613260	44525	
Alden ; summit.	61290	4480	
Bue Land; Yatsteon	$\begin{array}{llll}61 & 1730\end{array}$	43610	
Udverr; Anchorage Feye Oosen; Light on Hellise	$61 \quad 230$	43030	
		4435	
	60450	4436	
Bergen North Channel;	605040	44016	
Holzenc̈; Light on Skxollanger			
	603630	45720	
Bergen; Cathedral …..	602330	5210	
nes	60240	61842	
Leerb; Light on W. side. .	6014	5110	
Kors Fjord; Marsteen beacon	60745	522	

POSITIONS OF PLACES.
NORWAY AND SWEDEN-CONTIMUED.

rize

 order of the rernment, by , as explained| hat. m. | Lon, x . | AUTHORITIRS. |
| :---: | :---: | :---: |
| - ' " | - " " | |
| $\begin{array}{llll}60 & 5 & 15\end{array}$ | 61220 | The Trigonometrical SurVEY, \&c., as before stated. |
| 595915 | 514.0 | |
| 5958 | 5450 | - |
| 595430 | $5 \quad 50$ | |
| 5948 0 | 6200 | |
| 593140 | 51440 | |
| 592540 | $\because 5.80$ | |
| 592515 | 51530 | |
| 591030 | 52020 | |
| . 69810 | 5170 | |
| 601315 | 5290 | |
| 5983.57 | 5238 | |
| 585812 | 54515 | |
| ${ }^{59} 929$ | 5 5 5645 | |
| 585530 | 5310 | |
| 585130 | 53645 | |
| 584530 | 5 5 898 | |
| 583718 | 53750 | |
| 582520 | 55935 | |
| 581035 | 63720 | |
| $58 \quad 635$ | 63410 | |
| 56
 58
 58
 78 | $7{ }^{7} 30$ | |
| $\begin{array}{lllll}57 & 58 & 10 \\ 58\end{array}$ | 730 | |
| 58 3 5
 58 8 4
 8 | $\begin{array}{lcc}7 & 51.5 \\ 8 & 5\end{array}$ | |
| $\begin{array}{ccc}58 & 8 & 4 \\ 58 & 8 & 10\end{array}$ | 8 3
 8 $\mathbf{3}$
 8 3 | |
| (1) 68 | $\begin{array}{llll}8 & 0 & 36 \\ 8 & 3 & 35\end{array}$ | |
| 58.650 | 8135 | |
| 581150 | 82345 | |
| 581520 | 83130 | |
| 582020 | 8410 | |
| 582450 | 8480 | - |
| 582820 | 84725 | |
| 58824 | 8 8 8 8 7415 | |
| 882710 | ${ }_{8} 8215$ | |
| 583130 | 86940 | |
| 583610 | $\begin{array}{llll}9 & 5 & 5\end{array}$ | |
| 584240 | 0 015 0 | |
| 58460 | 9858 | |

NORWAY AND SWEDEN-Continued.

NOTES.

1. Coast of Norway.-The Trigonometrical Survey of the Western coasts of Norway to the northward of Trondhjem, was commenced by Lietut. Vibe, assisted by Lieuts. Paludan and Hagerup, in June, 1828, by order of tho Norwegian Government. It was continued by those officers, under the direction of Captain Vibe, to the frontiers of Russian Lapland, till 1849. Their elaborate charts, published at intervals, between 1835 and 1849, shew the extraordinary features of this coast, a complete labyrinth of islets and rocks, which all written description must utterly fail in giving any notion of. We have given the positions of the more prominent laindmarks, but there are few points which can be made available for the mariner's use, except the information afforded by their valuable charts.
2. Trondhjem, \&.C.-The ancient eathedral of Trondhjem or Drontheim, once one of the finest in Europe, lies as stated in the table, and was the northern limit of the survey earried on by the Danish Government, prior to the transfer of the courts to Sweden.

The coasts to the south were trigonometrically and astronomically surveyed by Commissioner N. A. Vibe, before mentioned, assisted by Lieut. D'Aubert, and Captain C. F. Grove, as far as Stavanger and Egefleld. The charts issued under Admiral Klint, (a well-known name,) leave little to be desired, and the nature of the country, the geological formation being of primary gneiss, granite, and other very hard rocks, will prove that but little change can arise from the wear of the sea.
3. Ekersund or Egorrsund, \&c.-The charts of the south coast of Norway, between Eglefield and Jeddsren and Christiansand, were published in 1800. The triangulation was carried on by the same officers as before mentioned, Captains Grove and Vibe, and Lieut. D'Aubert.

This seetion of the coast is dependant on the positions of Stavanger and Christinnsand Churches. Lindersues, or the Naze of Nortway, as it is genorally called, was made by the triangulation to be in latitude $57^{\circ} 58^{\prime} 0^{\prime \prime} \mathrm{N}$. By the Astronomical observations of Messrs. Rich and Vibe, in $1781,57^{\circ} 58^{\circ} 48^{\prime \prime}$ N.

Detween Ekessund and Christiansand; the trinngulation was re-examined in 1855-6. by Lieut. Schie, assisted by Herr C. Diriks and Lieut. H. Wille; between Arendal Jomfruland, these operations were carried on by the same offecers in 1803-5. The portion

POSITIONS OF PLACES.

of coast between Arendal and Christiansand was examined in 1854-5, by Herr Diriks and Lieut. Wille, under Major Vibe.

VARIATIONS OF THE COMPASS, 1861.

At the Treenen Islands, $16^{\circ} \mathrm{W}$. (It was observed as 19° in 1837); at the Vigten Islands, between 17° and $18^{\circ} \mathrm{W}$.; at Trondhjem, $17^{\circ} 40^{\prime} \mathrm{W}$.; Christiansand $19^{\circ} 42^{\prime}$ W. ; at Stadtland, $21^{\circ} \mathrm{W}$.; at Bergen, $20^{\circ} 35^{\circ} \mathrm{W}$. ; at Stavanger, $20^{\circ} \mathrm{O}^{\prime} \mathrm{W}$; at Ekersund, $19^{\circ} 45^{\prime} \mathrm{W}$. ; at the Naze, $19^{\circ} 10^{\prime} \mathrm{W}$.; at Arendal, $18^{\circ} \mathrm{W}$.; at Christiania Fjord, $17^{\circ} \mathrm{W}$. ; at Gotheborg, $15^{\circ} 40^{\prime} \mathrm{W}$.

These variations are now decreasing at the rate of 6^{\prime} to $6^{\prime} 30^{\prime \prime}$ per annum.

5. DENMARK, GERMANY, AND HOLLAND.

Western coasts t. Vibe, assisted wegian Governf Captain Vibe, rts, published at of this coast, a must utterly fail prominent laindpe mariner's use,

Drontheim, once horthern limit of fer of the courts
ally surveyed by ert, and Captain under Admiral e of the country, very hard rocks,
t of Norway, be800. The trianptains Grove and
nger and Christgencrally called, he Astronomical
mined in 1855-6. between Arendal ;33-5. The portion

103756
95630
$10 \quad 0$
94930
94240
94740
85930
83610
8300
81456
81215
81045
81055
8150
81125
8415
7415
82110
82330
83140
83230
82340
820 0
81632
82135
82232
81330
8170
83412
84120
8250
$\begin{array}{lll}9 & 3 & 10\end{array}$
83625

The Chart published by the Danish Government 1841.

	Lat. N.	LON. m .	AUTHORITIES.
	, "	- ${ }^{\text {, }}$	
Eider Channel; Lightvessel	541045	83435	
Eiderstedt; Hitz Bank beacon	451710	8390	
Tonning ; South Church ..	541855	85630	1
Büsum ; Harbour. .	54740	85150	
Helgoland; Lighthouse	541049	7530	
Bösch Sand beacon. . . [1]	54530	83750	
Elbe River; Light-vessel, No 1.	$54 \quad 010$	81811	
- Scharhörn beacon	585716	82435	
HeLight-vessel No. 3...	435830	83150	The Survey made by the
Hanover, Oldenburg\&e.			Prusilan Admiralty-1858-9.
Neuwerk High Lighthouse	5355	82950	
Kugel or Ball beacon . . .	535320	84118	
Cuxhaven Lighthouse	535228	84220	
Glückstadt ; Pier light . .	534720	92550	-
Altona; Observatory....	533245	95639	
Hamburg; Observatory ..	533159	95831	
Weser River; New Channel Lightship.	534825	8820	
- Ever Sand beacons	53415	82130	
-Bremer beacon Lighthouse	534250	81440	
Longwarden; Church		814	,
Bremerhaven; Church		8183	
Bremen; Observatory.	$\begin{array}{rrr}50 \\ 63 & 488 \\ \end{array}$	83415	
JadeRiver; Minsener Olde		84248	- . .
Ooge beacon	534645	$8 \quad 035$	
Hooksiel ; Windmill	5338 0	8122	
Heppens; Navy Harbour Entrance	53310	$8 \quad 920$	
-Waterworks tower	5331	$8 \quad 743$	
Wangeroog; New Lighthouse	534728	$\begin{array}{lll}7 & 53 & 59\end{array}$	
Church	534732	7515	
Spikeroog, centre.	534530	7420	-
Langeroog; beacon on Os terende	534525	73555	
\longrightarrow Osterende village	53450	7290	
Baltrum; Village at W.ond	53445	72250	
Norderney beacon	534320	$7 \quad 950$	
-; Conversation House	534225	$\begin{array}{llll}7 & 8 & 35\end{array}$	
Juist; Eastern Village...	534040	700	
Coast of Holland [2]			The GreatTrianoulation by
Borkum; Light tower	533510	6 4016	Baron Krayenhoff, and the
Rottum; House	533220	63146	Surveys of Admiral Ryk, Capts.
Delfzyl ; Church	531058	65538	Keuchenius, and Van Rhyn.
Emiden; Church	53222	71215	
Schiermonnik-oog; High Lighthouse	532919	6942	.
Ameland; Hollum church Tower	632812		
Terschelfing ; Brandaris			
Lighthouse	532140	51254	

	lat. N.	LON, E.	AUTHORITIES.
Belaium.	- ' "	- ,	The Great Trianoulation by Baron Krayenhoff, \&c.
Brussels; Royal Observatory[5]	505111	41715	,
Paard Markt Lightvessel	512340	3200	
North Hinder Lightvessel	513640	23435	
Heist; Lighthouse......	51200	3140	
Blankenberg ; Light on Fort	511855	3880	
Ostende; New Light . . :	511425	25557	
Nieuport; Light at Entrance.	51825	24350	

NOTES.

1. Elbe and Weser Rivers.-The details given in the table, are taken from the New Survey of these entrances, made by the Prussian Admiralty, and published in 1859. The longitudes are dependant on that of the well-known Observatory at Altona.
2. Holland.-The charts of the Coasts of Holland, are based upon the great triangulation of that country, by the Lieut-General C.R.T., Krayenhoff, the account of which was published in 1813. Upon the points thus established, the coasts and channels about Vieland, Ameland, \&e., were surveyed by the late Captain-Lieut. S. J. Keuchenius, published in 1831-34; the Texel Channels by Lieut. A. Van Rhyn, 1840; the Zuider Zee, by the same in 1841; the Schelde Channels, by the lato Vice-Admiral J. E. Ryk, 1841 ; Goeree and the Maas, by the same, in 1827 ; and Brouwershaven Gat, by Captain Keuchenius, 1826. These fine surveys are deserving of all confidence.
3. Amsterdam.-The triangulation of the Baron Krayenhoff was depeadant on the position of the western tower of the Cathedral of Amsterdam, which was considered to be in longitude $4^{\circ} 53^{\prime} 16^{\prime \prime} .86 \mathrm{E}$. Its true longitude, by electric signal, appears to be as shewn $4^{\circ} 53^{\prime} \mathbf{2}^{\prime \prime} .55 \mathrm{E}$. By a Government notice, dated August 1st 1826, Greenwich is named as the first meridian for Netherlands hydrography.
4. Leiden.--The National Observatory of Leiden was established in 1854, under Professor Kaiser. Its longitude was obtained by electric telegraph time-slgnals, between Paris and Leiden, and is fixed at $17^{\mathrm{m}} 56^{\circ} .60$ in time, or $4^{5} 29^{\prime} 9^{\prime \prime} .0$. E. in arc. From this longitude, that of Amsterdam, and all others have been regulated.
5. Time Signals have been established at Willemsoord for the Nieuwe Diep, at Hellevoetsluis, and at Flushing. They were placed in electric connexion with the Observatory at Leiden, in September, 1859.
6. Brossers.-The Observatory at Brussels was considered by the observations conducted therein, to be in latitude $50^{\circ} 51^{\prime} 10^{\prime \prime} .7$, longitude, $0^{\mathrm{h}} 17^{\mathrm{m}} 29^{\circ} .0$ in time, E. of Greenwich. Although this position may not affect those of the coast, which were obtained by an independent process of triangulation, yet the change in the assuaned longitude of the Observatory of Paris, with corresponding alterations in the relative connexions between that and other observatories, will affect the longitudes of places on the coasts, in such a minute degrec, it is true, that it is perfectly inappreciable by the means at the ordinary sailor's command; yet it is noticed here to shew to what refinement these operations are carried on. It will also demonstrate the almost insuperable difficulty there is in arriving at an exact conclusion. This subject has been alluded to in connexion with the Edinburgh Observatory, and will be hereafter with that of Paris.

In 1859, a scries of instantaneous electric signals was made to connect the observatories of Brussels, Berlin, Altona, \&c., and the longitude of Brussels, as given by M. Quctelet, comes out as $17^{\mathrm{m}} 28^{\circ} .9$, or $4^{\circ} 17^{\prime} 30^{\prime \prime} .50$, East of Greenwich -a very close approximation to the independent assumption.

VARIATIONS OF THE COMPASS.-1861.

At the Scaw Point, $16^{\circ} \mathbf{2 5}$ W. ; at Hantsholmen, $17^{\circ} 43^{\prime}$ W.; at the Horn Reefs, $17^{\circ} 45^{\prime} \mathrm{W}$; at Hamburg, $16^{\circ} 0^{\prime}$ W.; Bremerhaven $17^{\circ} 0^{\circ}$; Hclgoland, $17^{\circ} 40^{\prime} \mathrm{W}$.; Emden; $17^{\circ} 50^{\prime} \mathrm{W}$.

At Terschelling, $18^{\circ} 45^{\prime}$ W.; at the Texel and Amsterdam, $19^{\circ} 0^{\prime} \mathrm{W}$. ; at Urk, \&c., $18^{\circ} 30^{\prime}$; Brouwershaven, Walcheren, \&e., $19^{\circ} 20^{\prime}$; Ostende, $10^{\circ} 45^{\prime} \mathrm{W}$.
'These variations are decreasing at the rate of $6^{\prime} 30^{\prime \prime}$ per annum.

6. OOASTS OF FRANCE.

Northern Coast.

PARIS; Imperial Observatory [1]
Belgian Frontier; Corps de Gard
Bergues; great Spire
Dunkirk; great Tower ...
-Leuguenaard Tower
Cassel; Western Momint . .
Gravelines ; Church Spire
Oye ; Station in Survey ..
Calais ; Spire
New Lighthouse. .
Coquelles ; West Mill
Blanc-Nez; Guard-house. .
Mont Couple ; summit. ...
Gris-Nez Lighthouse
Ambleteuse; Windmill ..
Boulogne; Colonine de la Grand Armée

Cathedral....
Caped'Alprec'h Lighthouse
Lornel Pt. Light
Titaples
Touquet; S. Light
Berck; Light on HautBanc
Cayeux Lighthouse
réport, Steeple .
Dieppe; St. Jacques Ch.
illy Lighthouse
t. Valery en Caux; Chapel écamp; Abbey - d' Antifer
. La Heve; N. Lighthouse e Havre; Steeple of Notre Dame Ionfleur ; Western Light yestreham Church....... ferville
. Marcouf Is., Lighthouse a Hougue Lighthouse .. ape Barfleur Lighthouse herbourg ; Fort Central on the Digue.

485013
51455

latitude.	Lonolude.
- , "	-
485013	220 9E.

Originally from the triangles intended merely for the admeasurement of the degrees of the meridian in France, but ultimately carried on throughout the kingdom. These were commenced by M. Picard, who effected an admeasurement between Paris and Amiens in 1669, and finally completed by Messrs. Mechain and Delambre, in 1798; after having exercised the abilities and industry of M. Cassini the elder, his son, and grandson; and of MM. Miraldi and De la Caille, with other of the most eminent French astronomers, \&c., to the present time. COASTS OF FRANCE-CONTINUED.

	zativde.	Longitude.	AUTHORITIES.
	- "	- '	A. ${ }^{\text {a }}$
Querqueville ; Spire	49.3955	1420 W.	\cdots -
Cape La Hague ; Lighthouse	494321		
Alderney ; East Mill	494252	$\begin{array}{llll}1 & 2 & 22 & 7\end{array}$	ey by Capt. Mar-
Casquets; S. Lighthouse..	494322	22242 -	tin White, R.N.
Guernsey ; St. Pierre Pier			
Jersey; St. Helier Victoria	4927 0	2330	
Pier ..	491033	2718 -	
Chausey Island; Lighthouse	485213	14940	
C. Carteret; Lighthouse. .	492227	$14831-$	The excellent Surveys of
Granville; Lighthouse ..	48507	$13652-$	the Coast by the French Engi-
Cape Freinel; Lighthouse	48415	$21915-$	neers, under the direction of M.
Le Rohinet ; Islet	484033	$22853-$	Beautemps Beaupre, 1830-31.
Cape d'Erqui . . .	483845	$22924-$	The account of the operations
Les Comtesses; Western Rock	483858	23436 -	has been drawn up by" M. Bégat.
Grand Lejon (Rock)	48450	$23958-$	
Harbour Isle, off St. Quay	48402	24835 -	
Isle Bréhat ; N. E. Point	485154	$25921-$,
Héaux de Bréhat; Lighthouse	485433	$\begin{array}{lll}3 & 517\end{array}$	
Les Sept Iles; Lighthouse	. 485246	$32933-$	
Ile de Bas; Lighthouse .. near the West end	484445	$4142-$	
Ouessant or Ushant ; Lighthouse	482831	$5 \times 31-$	
The Bay of Biscay.			
Lampaul	483340	438 5-	
Kermorvan ; Lighthouse. .	482144	$44731-$	
St. Mathieu; Lighthouse	481949	$44757-$	
Portzic; Lighthouse	482129	$33210-$	11 ii 6 .
Brest ; St. Louis	482320	42814 -	
Crozon ; Church	481448	42838 -	
Bec du Ras ; Lighthouse. .	$48-22$	4443 -	
Ile de Sein ; Lighthouse.	$48 \quad 235$	$452-9$ -	
Penmarc'h; Lighthouse . .	474753	42236 -	
Penfret; Lighthouse	474317	35721 -	The Hydrographic Sur-
Ile do Groix; Western			VEYS of the Western Coasts
Lighthouse	473855	33041 -	of France, made under the
Port Louis ; St. Pierre . .	474231	32034 -	direction of M. Beadtemps
Belle Ile; Lighthouse on S.W. Point	471843	31343	Beaupré; an Exposition of which, by M. Daussy, was
S.W. Borderun Signal	4721.1	$\begin{array}{llll}3 & 13 & 55\end{array}$	published at Paris, by author-
Ile Hodic ; Lighthouse	472032	25211 -	ity, in the years 1829 and
Le Four; Lighthouse.	471753	$238 \quad 9$ -	$1839 .$
Aiguillon; Lighthouse	471433	$\begin{array}{llll}2 & 15 & 0 & -\end{array}$	
Pilier; Lighthouse . . .	47236	22165 -	Remarks.
Ile d'Yeu ; Lighthouse	46435	$223.0-$	Reankis.
St. Gilles sur Vie	464146	$15514-$	
La Chaume; Lighthouse	462942	14750 -	longitudes, as given in the Con-
Sables d’Olonne; Lighthouse	462928	$14735-$	naissance des Temps, compared with those in the Charts of the

COASTS OF FRANCE-Continusid.
by Capt. MarR.N.
ent Surveys of he French Engize direction of M. eaupré, 1830-31. of the operations ewn up by M. made under the M. Beautemps an Exposition of M. Daussy, was Paris, by authoryears 1829 and事事

lattiude.	Lonartude.
- 1 "	- '
461444	13348 W .
461226	12157 -
$46 \cdot 921$	1930 -
46. 252	12447 -
46036	11048 -
454130	11525 -
45378	-1 1 154 -
453514	11030 -
451155	- 4446 -
445016	03355
453429	13.39 -
433926	$12544=$
443757	$1813-$
433136	1306
432926	$12757-$
432938	13340 -
432344	14119 -

NOTES.

Paris. -The grand operations, in point of accuracy, for the determination of the length of the degrees of the meridian, have taken place since 1783. In that year, a memorial was transmitted by M. Cassini de Thury to the Right Hon. Charles James Fox; then Secretary of State, This application caused the operations by General Roy, already explained, which afterwards extended into a General Survey.: This gentleman, in England,"acted in conjunction with Messrs. Cassini, Mechain, and Legendre, in France ; but it unfortunately happened that the results of the two parties did not exactly agree; that of the British officers being, for the difference of longitude, $2^{\circ} 19^{\prime} 51^{\prime \prime}$, while that of the French was $2^{\circ} 23^{\prime} 15^{\prime \prime}$.

In order to determine this question, the subject was resumed in 1821, on the suggestion of the French authorities. The operations were consequently repeated under the direction of commissioners, nominated, respectively, by the Academy of Sciences and the Royal Society. An account of the operations and results have been given in the "Transactions" of the latter, and the determination was that $2^{\circ} 20^{\prime} 22^{\prime \prime}$ is the difference between the meridians of Paris and Greenwich. It was also attempted in 1825, by the respective governments on a plan suggested we believe by Mr. (now Sir John Herschel, and Captain (now General) Sabine, and Colonel Bonne, of simultaneous observations of rocket signals at a chain of stations ; but they failed on the French side, and the result, $2^{\circ} 20^{\prime} 22^{\prime \prime}$, was not considered satisfactory.

Notwithstanding the immense labour and consummate skill employed in these measurements, the results obtained were doubtful, and it was reserved for the private means of a commercial association to settle the question by means of the electric telegraph. The death of M. Arago, delayed the French preparatious which were organized when M. Le Verrier became Superintendent of the Paris Observatory, and several thousand signals were transmitted in 1854, so many, in fact, that a large portion were rejected, leaving 1700, or nearly 2,000 , which were thought unexceptionable. Each observation is probably as accurate as the mean of all former observations, and the means of all shew previous results to be in error nearly a second of time (a large quantity in astronomy,) and which, corrected, is nearly certain to its hundredth part.

The mean result of these final electric observations, is that the D.L. between Greenwich and Paris Observatoriés, is $8^{m} 20^{\circ} .63$ of time, or $2^{\circ} 20^{\circ} 9^{\circ} .4 \overline{5}$ in arc.

POSITIONS OF PLACES

We have been more diffuse, perhaps, than necessary on this point, but it is perhaps the most important geodetical operation ever undertaken.
2. The re-examination of the northern coasts of France and the triangulated Survey of the Western Shores was originated in 1814, by a memorial addressed to Louis XVIII. by Admiral Rosily, and Admiral Rossel, but from political events it was not commenced till 1816, and then M. Beantemps Beaupré started the Survey from Brest. The triangulation was based npon the carefully observed position of the Tour de Crozon, and carried ont by M. Dausey down to the frontiers of Spain. The noble Atlas, since completed, is the best eulogy that can be presented for these im. portant works.

VARIATIONS OF THE COMPASS- 1861.

At Dunkirk, $19^{\circ} 50^{\circ} \mathrm{W}$. $;$ Calais, $20^{\circ} 0^{\circ} \mathrm{W} . ;$ Dieppe, $20^{\circ} 25^{\prime} \mathrm{W}$.; Le Harre, 20° $42^{\prime} \mathrm{W}$. ; Cherbourg, $21^{\circ} 36^{\prime}$ W.; Alderney, $22^{\circ} 0^{\prime}$ W.; Jersey, $21^{\circ} 45^{\prime}$ W.; St. Malo, $21^{\circ} 15^{\prime}$ W.; Brest, $22^{\circ} 25^{\prime}$; Ushant, $22^{\circ} 50^{\prime}$ W.; Belle Isle, $22^{\circ} 0^{\prime}$ W.; Mouth of the Loire River, $21^{\circ} 0^{\prime} \mathrm{W}$; Ille de Ré, $20^{\circ} 20^{\circ} 26^{\prime} \mathrm{W}$; Corduan Lighthouse, $20^{\circ} 18^{\prime}$ W.; Bordeaux, $19^{\circ} 56^{\prime}$ W.; Bayonne and Socoa, $20^{\circ} 0^{\prime}$ W.

7. COASTS OF SPAIN AND PORTUGAL.

	latitude.	LoN. w.	AUTHOMITIRS.
North Coast of Spain [1]..................		- . "	The valuable Surveys of Don Vicente Tofino, and Don Josef Varela, of the Spanish Ma-
Cape La Higuera; Lighthouse	432335	14658	rine, and of Major Franzini, of
Fuenterrabia.............	432146	147	the Portuguese Royal Engineers,
Port Passages; Cape La Plata Lighthouse	432021	15933	M. Saulnier de Yauhello, Capt.
San Sebastian ; Mt. Igualdo Lighthouse	431928	2026	Florez, Capt. W. H. Smyth, R.N., and others.
Guetaria; Atalaya or tower	431850	21230	
Motrico; Atalaya \ldots....	43200	224.25	
Cape Machichaco; Lighthouse	4328	24926	
Punts Galea; Lighthouse	432236	$\begin{array}{llll}3 & 4 & 2\end{array}$	
Portugalete	43200	$\begin{array}{llll}3 & 3 & 0\end{array}$	
Bilbao ; Bridge	431510	25525	
Castro Urdiales; Santa Ana Castle Light	43, 2410	3168	
Santona; Light Building on Mount \qquad	432730	31640	
Cape Ajo ; extremo	5332	32625	
Santander; Mouro Island Lighthouse	432837	34543	
Cape Mayor; Lighthouse	433015	347	
San Martin de la Arena; Suancen Church	432610	4035	
Cape Oyambre; oxtreme	432530	42068	
San Vicente dela Barguera	432350	42445	
Llanes; San Pedro Point	432730	44540	
Cape Prictro extremity...	432848	45040	
Sella R.; E. point near Rivadesella	43310	560	
Cape Lastres	433320	41745	
Gifon; Sta. Catnlina Point	$\begin{array}{rrr} 43 & 35 & 13 \\ 43 & 37 & 0 \end{array}$	$\left\lvert\, \begin{array}{lll} 5 & 38 & 2 \\ 5 & 30 & 0 \end{array}\right.$	

Cape Avile Cudill
Lig - COASTS OF SPAIN AND PORTUGAL-COMTINUED.

Le Havre, 20° , W. ; St. Malo, W.; Mouth of hthouse, $20^{\circ} 18^{\prime}$
rtise.
Uurveys of Don , and Don Johe Spanish Maor Franzini, of loyal Engineers, o observations of Vauhello, Capt. W. H. Smyth, e triangulated al addressed to itical events it ted the Survey position of the of Spain. The ed for these im-

	lat. n.	Lon. W.	AUthoritiss.	
	- , "	- . "		
Cape Peñas ; Lighthouse. .	434220	65020	The Charts pablished	
Aviles R.; Forcada Point	433830	6 568	Spanish Government,	
Cudillero; Revallera Point				
Light...............	433610	693		
Cape Bidio ; extreme	43380	6150		
Cape Busto ${ }^{\text {a }}$ Lighthouse	433610	62848		
Ria de Navia; Campel Pt.	433430	6 4420	+	
Orrio de Tapia Island; Lishthouse	443536	65826		
Rivadeo ; Pancha Isiland				
Lighthouse \quad ¢ ${ }^{\text {a }}$	433440	$7 \quad 415$		
Foz; Point de los Cairos	433525	7160		
Port Vivero; Socastro Pt.	434328	73740		
Estaca Point; Lighthouse	434730	74324		
Cape Ortegal ; extreme ...	434610	75650		
Cardelaria Point; Tower	434156	830		
Cedeira; Point Pantin....	434048	$8{ }^{8} 865$		
Cape Prior; Lighthouse.. Cape Priorino; Lighthouse	433340	$810 \cdot 9$		
on the Little Cape ...	482750	82033		
Ferrol; West Mole.... [2]	432835	81425		
Coruña; Tower of Hercules Light	4323	8248		
- St. Antonio Castle	43220	8225		
Sisargas Is.; Lighthcuse on 1 Mayor				
Cape Villano; Lighthouse	43 9 40	91268		
Camarinas ; Mole	4380	91040		
West Coabt of Spain.				
Sape Toriñana; extreme..	$43 \quad 430$	91715		
fape Finisterre; Light-				
on S. extremo	425239	91524		
orcubion ; Light on Cape Ce	425450			
emedio Point; extreme	424745	0735		
Turos Bay; Lourp Mt. on				
North side.......	424430	9330		
ape Corrobedo ; Light.	423438	9		
alcociro Point; extremo rosa Bay; Sta. Eugenia	42310	0113		
Church	42330	85756		
\qquad ; Salbora Island; Light on South Point				
Light on South Point ${ }^{\text {a }}$ Carril Church	$\begin{array}{ll} 42 & 27 \\ 42 & 36 \\ 42 \end{array}$	$\begin{array}{rrr} 0 & 0 & 23 \\ 8 & 45 & 0 \end{array}$		
Lieht Arose Island;				
- Light on North Point...	42348	85158		
© nza Island; Galera Point ontevedra Bay; Cape	42207	85430		
Udra	42200	84850		
-Pontevedral centre	422530	83720		
yona or Cies Islands; Caballe or Notih Point	$42{ }^{\text {4 }}$		- -	
\qquad ; Middlo Island;	221400			
Light on Mount Faro ..	42122	8046		

	LAT. N.	LON. W.	* : AUTHORITIRS.
	.	- 0 "	
Bayona Is: ; Boeiro Island, off S. end			The Charts published by the Spanisi Government, \&c.
Vigo Bay ; Cape Hombre,	42:10 12	85266	Spanibi Government, \&c.
rock off..............	421445	85040	; \quad a
-Vigo; Castro Castle	421335	84130	$x=\ldots$
- N.S. de la Guia ; Cas-			
tle Light*.............	42156	841.2	
Ferro	42850	$8.49 \quad 0$	
Bayona Church	42645	8490	
Cape Silleyro ; extreme -	4260	8-52 7	
Orullada Point; extreme	4210	-8-63 0	
Minho River; Mount St. Tecla Chapel	41660	84925	
Coast of Portuaal.			
River Minho; Castillo..		84830	
' Point	4160 6	84830	- \because \% ${ }^{\text {an }}$
Viana; Castellode Santiago	414125	8.4346	- . . .
River Neiva; Entrance..	413730	842.0	
Esposende .	41,310	83930	
Villa do Conde	412130	8350	
River Douro; Light at N.S. de Suz[3]	4199		Captain Sir Edward Belcher, R.N., 1833.
Oporto ; San Joao de Foz	41884	8:37 0	
Aveiro; Town	4038 -0	83930	
Cape Mondego Lighthouse	40120	85512	
Peniahe ; Lightinouse on Cape Carvoeiro	39218	92416	
Berlengas ; Light on great Island	. 3925 -	93017	
Farilhoens ; centre	39290	93166	
Cape Roca; Lighthouse..	38466	9300	. B.
Tagus River; Bugio Fort light	3839 (918 9	
LISBON; Observatory[4]	384225	988.15	
Cape Espichel ; Lighthouse	$3824 \quad 9$	9130	
Setuval or St. Ubes; Light on Fort d'Outao	38319	863.0	
Cape Sines ; Fort.	$38 \quad 00$	85130	
Cape Sardao	373130	8490	
Cape St Vicente; Convent light.	37 2 1	98064	
Lagos ${ }^{\text {principal }}$ Chureh. .	37840	83745	. ${ }^{\text {a }}$
Piedado Point	37664	83730	! : \% ,
Villa do Nueva do Pontiñao	$\begin{array}{lll}36 & 7 & 30\end{array}$	83110	
	$37 \quad 30$	8140	1 l
Cape Santa Maria; Light.	$38 \quad 66 \quad 0$	746×0	
Soutil Coast of Spain.			,
Guadiana River: Ayamonte Mouth	37110	7180	
Odiol River; Lights for Huelva	371322	68134	$\begin{array}{ll} \because & \ddots \\ \because & \ddots \\ \vdots \end{array}$

NUED.
coritires.
publighed by the ERNMENT, \&C.

Edward Belcher,

POSITIONS OF PLACES.			
COASTS OF	SPAIN AND PORTUGAL-Continued.		
	-	- .	
Guadalquiver River; Pta. de Malandar Light	364620	62163	The Charts published by the Spanisi Government, \&c.
San Lacar de Barrameda; great Church	$3645 \quad 5$	62210	
Chipiona; Church tower	3644		
Light	364415	62546	
Observatory [5] —San Sebastian Cas-	362745	61216	Q 3 , 5
tle ; Light.	363110	61854	
Cape Trafalgar ; Tower on West side.............	361045	$6 \quad 212$	
Pta. Gracia ; Tower	$\begin{array}{llll}36 & 5 & 5\end{array}$	54958	
Mt. Sella del Papa, summit (1567 feet).	36616	54620	
Pt. Paloma	36 6 6	64240	
Tarifa; Lighthouse on S. point	355947	53645	
Pta. Acebuche	36248	52815	
Carnero Tower	$\begin{array}{lll}36 & 4 & 30\end{array}$	52550	
Algesiras ; Verte I. Light	$\begin{array}{llll}36 & 715\end{array}$	52616	.
Gibraltar ; New Mole			
Europa Point; ' Victoris			
Lighthouse	36,622	6210	-

NOTES.

1. The Norti Coast of Spain.-The whole of the North coasts of Spain were excellently surveyed and delineated by Don Vicente Tofino de San Miguel in the yeara 1787-81; at the same period that our hydrography was being enriched by the talent and labours of Mackenzie, Spence, and others. The Spanish Charte, still moat usoful, exhibit the minute details of this iron-bound coast with such fidelity, that hut iittle change has been found necessary upon a re-amination. Thin doubtless is in come degree owing to the geological structure of the country, which, devoid of loping beaches, presents a much more effective barrier to the degrading action of the sea, while the South-West Coast of France, at the bottom of the Bay of Biscay, is embarrassed by those immeuse collections of sand, \&e.; the debris of the consta to the west of it, which is carried thither by the prevalent wind-waves and currents.

But while the details of this Survey are so excellent, later, and more correot pberryations shew that there are some great errors in the relative ponition of the principal points. This was detected, among other operations, by the early observations of M. Bory. and perhaps by the Spanish surveys, which were taken possession of by the French, at the inventment of Madrid. Later, the Survey made by M. SAulnitr pe Vauirello, of the French Marine, shewed that Cape Machichaco was placed nearly 10 ' too far eastward, and other points from 4' npwards, also too far to the east. These great errors are now, if not entirely removed, so nearly adjusted, that the disrepances are too small to affect navigetion. The positions, especially the longitudes, fiven in tho table, are in accordance with the oharts published by the Deposito Hirograffeo at Madrid in 1846.
2. Coabt of Galicia.-The North-wost coast of Spain was re-examined by

Capt. Don J. F. Florex, of the Spanish Navy, in 1895-s6. His Survey seems to shew the accuracy of his predecessor Tofiño. The positions of Captain Florez have been followed.
3. River Douro.-This river was surveyed by Commander (now Sir Edward) Belcher, R.N., in 1833. His determinations, which coincide with those made by Admiral W. H. Smyth, when a lieutenant, in 1811-12, serve to correct the positions previously given by Tofiño. In former editions of this work, we had to acknowledge our obligations in this, as in many other instanees, to Admiral Smyth, for his improvements in hydrography. It is sufficient here to repeat them.
4. Lisbon.-The longitude of Lisbon had been previously assumed as $9^{\circ} 8^{\prime} 40^{\prime \prime}$, being a mean result of observations made by the astronomers De la Caille. Pingré, and Messier, according to a great number of eclipses of the first satellite of Jupiter. The occultation of a star by the moon, October 5, 1753, with a corresponding one at Paris, gave one minute more. Captain Fitzwilliam Owen, in the menoir of his important expeditions to Portugal and Africa, assigns to the Arsenal of Lisbon 38° $4218^{\prime \prime}$ N., and $9^{\circ} 8^{\prime} 54^{\prime \prime}$ W., from observations made in H.M.S. Leven, in 1819 and 1822.
5. Cadiz.-The position of the Observatory in the city of Cadiz is established as $36^{\circ} 32^{\prime} 0^{\prime \prime} \mathrm{N}$. , and $6^{\circ} 17^{\prime} 30^{\prime \prime}$ W. The New Observatory (Real Observatorio) of San Fernando, in the Isle of Leon, is in $3637^{\prime} 43^{\prime \prime} \mathrm{N}$., and $6^{8} 12^{\prime} 16^{\prime \prime} \mathrm{W}$.
6. Gibraltar, \&n-Mr. Charles Rumker gives the position of Europa Point, Gibraltar, as $36^{\circ} 5^{\prime} 15^{\prime \prime}$ W.-(Edinburgh Phil. Journal, vol i. p. 322.) The late Captain Bauza, of the Hydrographic establishment at Madrid, gave Tarifa in $38^{\circ} 0^{\prime}$. This accords with Mr. Rumker; but Captain Livingston made the latitude of Europa Point, by sextant and artificial horizon, in $1820,36^{\circ} 6^{\prime} 10^{\prime \prime \prime}$, and eractly the same on another day, by the sea horizon. Captain Symth has given Gibraltar in $36^{\circ} 6^{\prime} 30^{\prime \prime}$, and $5^{\circ} 21^{\prime} 12^{\prime \prime}$.

It is to be nbserved that Lieutenant Raper adopts $5^{\circ} 21^{\prime} 17^{\prime \prime}$, as the longitudo of the Mole (or Europa Point in $5^{\circ} 22^{\circ} 0^{\prime \prime}$), and this is from the observations of Captain Smyth ; Captain Shirreff, $5^{\circ} 20^{\prime} 16^{\prime \prime}$; and Captain Vidal, $5^{\circ} 21^{\prime} 42$. This position is important, as it affects the longitudes of the West Coast of Africa.

The Hydrographie features of the important Strait of Gibraltar appear to have been very imperfectly known, and a single sounding made by Captain Smyth, which bronght up water containing three times the ordinary quantity of salt, has served as matorial for speculation ever since. It is singular, that amongst the thousands of ships which have passed through this ehannel, not one should have recorded an attempt to verify such an important point. The depth, too, appears to have been much misunderstood, and overrated, the greatcist being about 500 fathoms, instead of above 1000 fathoms, as was argued from one imperfect experiment. These faets have been brought to light by the Survey made by the Freneh Government, by M. C.A. Vincendon Dumoulin, underthe orders of the indefatigable Capt. Ch. Philippe de Kerhallet in H.I.S. Phare, in 1854-5.

VARIATIONS OF THE COMPASS- 1861.

At Funterrabia, $20^{\circ} \mathrm{W} . ;$ Bilbao, $20^{\circ} 35^{\prime} \mathrm{W}$; Santander, $21^{\circ} 0^{\prime} \mathrm{W} . ;$ Cape Pe has, $21^{\circ} 40^{\prime} \mathrm{W} . ;$ Cape Ortegal, $22^{\circ} 40^{\prime} \mathrm{W} . ;$ Coruña, $22^{\circ} 3^{\prime} \mathrm{W} . ;$ Corcabion and Cape

At Villa do Conde, $22^{\circ} 15^{\prime} \mathrm{W} . ;$ Lisbon, $21^{\circ} 50^{\prime} \mathrm{W} . ;$ Cape St Vincent, $21^{\circ} 25^{\prime} \mathrm{W}$. Cape Sta. Maria, $21^{\circ} \mathrm{W} . ;$ Cadiz, $23^{\circ} 25^{\prime} \mathrm{W} . ;$ Cape Trafalgar, $20^{\circ} 10^{\prime} \mathrm{W}$. Tarifa, 19^{\prime} 62^{\prime} W.; Gibraltar, $19^{\circ} 48^{\prime} \mathrm{W}$.

These variations are decreasing at the rate of from 2^{\prime} in the S.W. portions of the const, to $\mathbf{4}^{\prime}$ per annum in the Eastern parts.
s Survey seems to ptain Florez have
(now Sir Edward) hose made by Adthe positions pread to acknowledge nyth, for his im-
umed as $9^{\circ} 8^{\prime} 40^{\prime \prime}$, la Caille. Pingré, tellite of Jupiter. corresponding ono the menoir of his enal of Lisbon 38° even, in 1819 and
iz is established as servatorio) of San
of Europa Point, 2.) The late CapTarifa in $36^{\circ} 0^{\prime}$. latitude of Europa anctly the same on altar in $36^{\circ} 6^{\prime} 30^{\prime \prime}$,
as the longitudo of vations of Captain

This position is
tar appear to havo tain Smyth, which salt, has served as t the thousands of ve recorded an ato have been much b, instead of above se facts have been M. C.A. Vincenpe de Kerhallet in
$\mathbf{0}^{\prime}$ W. ; Cape $\mathbf{P e}$ renbion and Cape $3^{\circ} 30^{\prime}$ W.
incent, $21^{\circ} 25^{\prime} \mathrm{W}$. ${ }^{10}$ W. Tarifa, 19

- portions of the

8. COAST OF AFRICA.

Ceuta; Almina Pt. Light
Sierra Bullones or Apes Hill; (summit)........
Tangier Bay; Cape Malabata, tower
Tangier ; N.E. part of town
Cape Spartel; Pitch ..[1]
Arzilla
El Araiche
Old Mamora .
Mehedia.
Faz or Fez
Mekinez
Slas or Salec.
Rabat.
El Mansoria[2]
Point Fidallah
Dar-el-Beida.
Azamor
Mazagan
Cape Blanco ; North 3380
E! Waladia 3348 0
Cape Cantin
Asfee or Saffi
Marocco; Centre[3]
Suerrah, or Mogodor ..
Cape Tefelneh
Cape Ghir or Geer
Ras Aferni
Agadir, or Santa Cruz
Cape Aguluh
Cape Nun, or Inoon.
PortoCansado;Entrance[4]
Cape Juby.
False Cape Boiador
Cape Boiador, or Bojador
Penha Grande; summit
Seven Capes; Central Cape
Angra dos Cavallos
Rio do Ouro, or Gold River;
Entrance, North Point. .
Cintra Bay ; North Point
Con; South Point
Cape Barbas
Pedra da Gell
Cape Corvociro
Centre
Cape Blanco
Cape Mirik; the Down ..
Tanit Bay; the Down....
Angel's Hillocks; Southern
The Two Palm Trees of Portandik
Down of Red Sand
Sceond ditto
Huts of Inguiagher

Lat. n.	Lon. w.	AUTHoartirs.
- , "		
3553.38	517	Capt. C. P. de Kerhallet and M.
356335	5250	
3548 N0	54512	
35475	54840	
3547 . 0	5560	
352930	60	Captain Washington and Lieu-
351250	69	
345230	625	Captain T. Boteler, R.N., 1828.
3418	636	Captain Washington, R.N., 1830.
$\begin{array}{llll}34 & 6 & 3\end{array}$	45815	Don Juan Badia y Leblich, other-
335830	7300	wise called Ali Bey, 1804.
$\begin{array}{ll}34 & 245 \\ 34 & 2\end{array}$	645.30	Captains Botelerand Washington 1828 and 1830 .
$\begin{array}{lll}34 & 230\end{array}$	6460	1828 and 1830.
334610	7200	
3344 0	72332	Captain Washington and Lieu-
333630	73524	tenant Smith, R.N., on the
33 17 38	8150	Mission to Marocco, 1829,1830;
33150	8290	and the Survey of Lieutenents
33 8 0 33	83880	William Arlett and H. Kelletr,
33480	8480	1835.
323227	01450	
321815	9120	Captain T. Boteler, R.N., 1828.
$\begin{array}{llll}31 & 37 & 0 \\ 31 & \end{array}$	7360	Don Juan Rddia and Captain
313030	946	Washington.
$\begin{array}{lll}31 & 4 & 0\end{array}$	94730	Lieutenant Arlett.
3038	953	Captain 'T. Botele', 1828.
303730	952	The Chevalier de Borda, 1776.
30 30 29 ${ }^{36}$	93556	ObservationsofLieutenantsArlett
$\begin{array}{lll}29 & 49 & 0 \\ 28 & 45 & 45\end{array}$	9 48 11 4 10 12 10	836.
$28 \quad 20$	12140	
275750	12515	
262515	141230	Lieutenant Arlett, \&c., 1835.
2672	143034	
2578	145053	
244112	$15 \quad 0 \quad 30$	
24812	153618	The observations of Captain W. Fitzwilliam Owen, and those
233618	$15 \quad 5830$	of M. le Baron Roussin, compa-
$\begin{array}{llll}23 & 7 & 0 \\ 22 & 58\end{array}$	16 9 15 18 14	red with those of the Chevalier Borda. (See Note 4.)
225636	16 14 10 18 10	Borda. (See Note 4.)
221930 2212	$\begin{array}{llrr}16 & 39 & 12 \\ 16 & 48 & 4\end{array}$	
214644	165640	by repeated observations, found
21, 470	17436	Capo Blanoo in latitudo $20^{\circ} \mathbf{4 6}^{\prime} \mathbf{2 6 \prime \prime}$,
18250	16320	longitude $17^{\circ} \mathbf{4}^{\prime} 10^{\prime \prime}$.
10348	161220	
182930	162	H.M.S. Ezk, Captain Purchas,
1818 \%4	$10 \quad 212$	1826.
1785	1612	Latitudes, Captain Roussin; Lon-
105.5	16250	gituden inferred by Chart, and
's5 24	1630	unee tain.

COAST OF AFRICA-CONTINUED.

	hat. . N.	LoN. x .	horities.
		- . "	
St. Louis, Senegal ; Light-			
house on Govt. House..	16048	1631	Captain (afterwards Admiral and
Bar of the Senegal; North Point	155518	16300	Baron) Roussin, in the years 1817 and 1818
Little Paps, near Cape			
Verde; Northern one ..	$\begin{array}{llll}14 & 56 \\ 14 & 24\end{array}$	$17{ }_{17}^{4} 30$	
Cape Verde; extremity	144430	17320	Captain Roussin, and M. Givry.
Almadia Rocks, off C.Verde;			Captain Fitzwilliam Ower.
Highestand Westernmost	$\begin{array}{ll}144429 \\ 14 & 39 \\ 50\end{array}$	173330 172430	
Cape Naze $\quad \therefore$.	143130	17720	Captains Owen and Boteler.
Portudal ; Village	142718	$17 \quad 312$	Captain W.F. Owen, R.N., 1824.
Point Serine	14180	165630	Captain 'T. Boteler, 1829.
Joal ; Town	1410	164945	Captains Owen and Boteler.
RIVER GAMBIA:-			
Bathurst Town ; Flagstaff	13280	163518	Survey of the River Gambia, from
Bird Island; Flagstaff	133912	164030	its Entrance to Pisania, by Cap-
Cape St. Mary ...[9]	133012	164124	tain Richard Owen, R.N., as-
James Fort	13,940	162212	sisted by Messrs. E. O. Tudor
Tankrowell	13250	16348	and S. M. Mercer, 1826.
Elephant Isle: West	132630	152036	
Yamamaroo Town	13420	145830	Survey of the River Gambia, \&c.
M'Carthy's Isle; Fort			
George P	13330	144530	
Pisania, or Pisaneea.	133154	143418	-
Bald Cape	$\begin{array}{llll}13 & 22 & 30 \\ 13 & 7\end{array}$	164920	
Point St. Pedro River Souta Bird Islet ...	13 715 12 43 30	1648 1649	
River Souta; Bird Islet .. River Casamanza; North	124330	16490	$\text { sloop Hecla, } 1829 .$
Point of the entrance ..	123520	1648	
Cape Roxo	12210	164440	
Breakers of Falulo; West Point		163830	Captains Roussin and W. F.
Isle of Cayo ; South Point	114950	16200	
Bissao; Portuguese Fort	11510	15376	
BIJOOGA ISLANDS, \&c.			
Papakawa Islet.	$\begin{array}{llll}11 & 36 & 30\end{array}$	155412	
Arcas Isle; Centre	114115	15399	
Bolola Town; RioGrande	$\begin{array}{llll}11 & 36 & 0\end{array}$	15	
Bulama Island; East End	113442	153024	and the adjacent Coast of Afri-
Bossessame, or Tombelly; North Point	11290	T5 30	ca, by the officers of H.M. ship
S.W. Point	111924	$15 \quad 3212$	Leven, Captain W. F. Oweu, 1826.
Gallinha Isle; WestPoint N. E. Hog Island; E.	112742	154630	
Island; E.	11200	154042	- In 1830, Captain Belcher, in H.M.S. Etna, from his observations,
Kanyabac; N,E. Point	$\begin{array}{llll}11 & 18 & 4 \\ 11 & 18\end{array}$	15430	made Pullam Leland, Sonth end, in
Ote C.W. Point	111012	164812	
Orango ; S.E. Point	$\begin{array}{lll}11 & 3 & 12 \\ 11 & 6 & 0\end{array}$	$\begin{array}{llll}16 & 55 & 12 \\ 16 & 16\end{array}$	the North ond of Alentray, in

COAST OF AFRICA-Continued.

MITIES.
ards Admiral and sin, in the years 8.
n , and M. Givry.
lliam Ower.
and Boteler.
Owen, R.N., 1824.
teler, 1829.
1 and Boteler.

River Gambia, from to Pisania, by Cap1 Owen, R.N., asesers. E. O. Tudor पercer, 1826.

River Gambia, \&e.
as Boteler, in H.M. , 1829.
ussin and W. F. b, 1821, 1826.
e Bijooga Islands, acent Coast of Afrifficers of H.M. whip tain W. F. Owen,

Captain Boloher, in rom his observations, tsland, Sonth ond, in - and $16^{\circ} 48^{\prime} 5_{z} W$.: ad of Alentrazs, in and $15^{\circ} 20^{\prime} 30^{\prime \prime} \mathrm{W}$.

Lat. N.	Lon. w.
- , "	
105618	155740
105142	1545
133712	152630
10300	1511
103637	1442
1057 0	142148
101140	1428
1020	146
045	1328

ISLES DE LOS:-
Crawford Isle Establishment.
Tamara; Arethusa, or North Point ; West Point
Matacong Island; Centre Yelleboa Island; Centre .. Parrot Island; Centre....
Cape Sierra Leone; Extremity,lighthouse[10] Sierra Leone; King Tom's Point False Cape; Extremity .. Cape Chilling or Shilling Banana Isles; Highest peak lantain Islands ; Gillmorris Bencal Pools assa; Extreme Point urtle Isles; North Isle; Centre
pe St. Anne; Extremity hoals of St. Anne:-
Northern Extremity Southern Extremity Western Limit
ork Isle, in Sherbro; ${ }^{\text {Ri}}$ ver; Huts
hebar, Sherbro' Kive.... oom Kittam River; Forks iver Galinhas; Entrance ape Mount, (1,046 feet) ;
Western Beach.
t. Paul's River; Entrance
ape Mesurado; Extremity (Lighthouse) .. Tonrovia; Govt. House. . unk River; Marshall, an American Settlement: Agent's House
assa; Director's House. .
South Breaker
Pullam Island; South Point Alcatras Islet; Centre .. Conflict Reef; Centre.... Rio Nunez; Entrance, Sand Isle ; Rebucko Town Cape Verga; Summit.... Pongas River; Entrance Mount Kakulimah

92724

9	51	0	13	40

92830
9140
85542
8530
$830 \quad 0$
$\begin{array}{rrr}8 & 30 & 6 \\ 8 & 29 & 42 \\ 8 & 25 & 48 \\ 8 & 9 & 3 \\ 8 & 5 & 4 \\ 8 & 5\end{array}$

7	55	12	13	3	12
7	54	36	13	2	48

7	54	36	13	2
7	55	30	13	2

| 740 | 48 | 13 | 418 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllll}7 & 34 & 0 & 12 & 67 & 0\end{array}$
$\begin{array}{lll}7 & 56 & 0\end{array}$ (Notascer-
$\begin{array}{lll}7 & 31 & 30 \\ 7 & \text { tained.) }\end{array}$

7	38	0	13	29

${ }^{-} 732 \quad 0 \quad 122642$
$\begin{array}{llllll}7 & 22 & 48 & 12 & 31 & 30\end{array}$
71424
701
6430
6220
61916
6196
$\begin{array}{lll}6 & 8 & 0 \\ 6 & 8 & 0\end{array}$
102245
65450

184830

135130
132530
141745
$1315 \quad 0$
131745
131430
131418
131748
131012
181612
131512
Captain (now Sir E.) Belcher.
Lieut.Austin, in theAfrican, 1827.
Captain Bolcher.

Captain W. F. Owen, in the Leven, 1826; confirmed by himaelf in the Eden, and by Captain ? ${ }^{\prime}$ urchas in the Esk, 1827.

Captain W, F. Owen, in the L_{6} ven, 1826.

Capt. A. T. E. Vidal, in H.M. ships Etna and Raven, 135 tc 1839.

COAST OF AFRICA-Continued.

	lat. n.	lonatude.	AUthonities.
	- "	- , "	
River Sestros, or Grand Cestos; South Entrance		93445 W.	Captain A. T. E. Vidal, in H.M.
Bafion Point.............	$\begin{array}{rrr}5 & 26 \\ 5 & 9 & 10\end{array}$	91730 -	ships, Etna and Raven, 1835 to 1839.
Bloo Bara, or Barbarra			
Factory ; Sinou .i....	45915	9285	
Middle Neefoo, or Niffou. .	4453	$832 \quad 2$ -	
Cape Palmas; Lighthouse	4229	74416 -	
Tahou	42447	$72130-$	
Grand Bereby \qquad	4393	65430 -	
St. Andrew's River, King George's Town, within Swartou Corner.	4578	6347 -	
River Fresco, or Rio de Lagos; off the Mouth	$5 \begin{array}{lll}5 & 1 & 8\end{array}$	5,32 5 -	
Grand Lahou	588	45740 -	
Jack Jaques	5118	4268 -	
Assinee River ; Anchorage S.E. of the Mouth ;	53	312	
Apollonia	45845	$235 \quad 5$ -	
Fort St. Anthony	45218	21445 -	
Cape Three Points	44430	2. 545 -	
Acquidah	445127	228 -	
Dixcove	44745	15640 -	
Elmina, or St. George del Mina	550	12230	
Cape Coabt Cabtle.; Southern Turret; Timeball.	5625	1125 -	Gcorge Maclean, Esq.
Maurec, or Moree ; Flagstaff	$\begin{array}{lll}5 & 730\end{array}$	1120	Captain W. F. Owen, in the
Annamaboe; Flagstaff	51012	1712 -	Eden, 1827; and Capt. Pur-
Cormantine ; Flagstaff .if	61030	1538 -	chas, in the Esk, same year.
Tantumquerry ; Flagstaff	$\begin{array}{lll} 5 & 13 & 30 \\ 5 & 12 & 30 \end{array}$	04648 -	Lon. of Acera, by 4 good chronometors of H.M. ship Dryad,
Devil's Hill ${ }^{\text {s }}$ summit	51836	0390	Captain Hayes, in Feb., 1832, $0^{\circ} 15^{\circ} 2^{\prime \prime} \mathrm{W}$ lat. $6^{\circ} 32^{\prime} 27^{\prime \prime}$ N
Barracoe; Point	5 5 5 5		
Accra; British Flagstaff	5320	0 11 30 0 18 12 -	Captain Vidal. Captain Purchas.
Ningo; Fort.	5332 5 545	0 0 0 18148 E.	Captains Owen and Purchas.
Volta River; Entrance ..	54718	04218 -	Captain Kelly, in the Pheasant.
Cape St. Paul	54430	05218 -	Captains Owen and Purchas.
Quitta; Flagstaff	55436	05418 -	Captain B. M. Kelly.
	5550	05548 -	Captain Purchas.
Padiana ; Town	65742	05718 -	
Little Popoe ; Road.	$\begin{array}{llll}6 & 13 & 0 \\ 6 & 19\end{array}$	1 38 0 1 46 	Captain B. M. Kelly.
Grand Popoe; Road	$\begin{array}{llll}6 & 19 & 0 \\ 6 & 18 & 0\end{array}$	$\begin{array}{lllll}1 & 46 & 0 \\ 1 & 43 & 48 & \text { 二 }\end{array}$	
Whydah, or Ajudah	6116 6 19	${ }_{2}^{1} 500$ 二	Captain Purchas, in Ezk, 1827.
Appee	6220	$2250-$	
Porto-Novos Hill	6200	$2340-$	
Road	6190	23400	
Badagry ; Mount	6240	$24330-$	
Lagos River; Entrance	$\begin{array}{lll}6 & 20 & 0 \\ 6 & 24 & 0\end{array}$	$\begin{array}{rl} 3 & 4748 \\ 3 & 22 \end{array} \underset{0}{ }$	
\qquad ; End of the Sandy Beach	6200	4270	

POSITIONS OF PLACES.
COAST OF AFRICA-Continved.
E. Vidal, in H.M. and Raven, 1835
ean, Esq.
F. Owen, in the ; and Capt. Pure Esk, same year. ra, by 4 good chroH.M. ship Dryad, es, in Feb., 1832, lat. $5^{\circ} 32^{\prime} 27^{\prime \prime} \mathrm{N}$.

lattiteds.	LON. 8. ${ }^{\text {a }}$	AUTHORITIES.
- "	- 1	
543 0N.	5440	Captain Vidal.
6340 -	5	Captain Purchas
428 0-	5.4130	Captain A. T. E. Vidal, in
41924 -	55433	H.M. sloop Barracouta, 1826. (Longitude of the Bar of the
$4150-$	5550	Quorra, Captain William
4170 -	8150	Allen, 1833.)
418 0-	6240	Captain Vidal, in the Etna, and Captain Purchas, in the
42240 -	700	Esk, 1857; and Captain Vidal and Boteler 1826.
42340 -	770	
4360	8190	
429 0-	8320	
357 0-	91348	
3530 -	$\begin{array}{ccc}9 & 0 & 0 \\ 9 & 12 & 0\end{array}$	
413 0-	9120	
467 0-	9180	
$5150-$	8510	
$05554-$	21945	
03748 -	9210	
$03030-$	92030	
1840 -	92135	
018 5-	9200	
03612 s.	84517	
3350 N.	84630	Captain Vidal.
34725 -	83924	
3 34 3 45 48	8 47 17 8 47	
34538 - $34615-$	$\begin{array}{lll}8 & 47 & 0 \\ 8 & 54 & 24\end{array}$	Captain W. F. Owen, in the Eden, 1327.
$\begin{array}{ll} 3 & 46 \\ 8 & 15 \\ 8 & 18 \end{array}$	$\left\lvert\, \begin{array}{lll} 8 & 54 & 24 \\ 8 & 56 & 18 \end{array}\right.$	
31130 -	8400	
$\begin{array}{llll}3 & 15 & 30 \\ 3 & 19 & \\ 3\end{array}$	$825 \quad 6$	
3 3 3 1948 -	${ }^{8} 2442$	
3 26 3 18	8.2742 8.32	
$1230-$	71048	Captains Purchas and Kelly.
0270	6450	
$02830-$	0140	
$000-$	63630	H.M.S. North Star.
1250 S .	542.45	Captain Purchas.

NOTES.

1. Capr Spartel.-In the Connaissance des Temps this cape is stated to be in latitude $35^{\circ} 48^{\prime} 40^{\prime \prime}$, and longitude $5^{\circ} .53^{\prime} 1^{\prime \prime}$. In the Requisite Tables it is stated to be in lat. $35^{\circ} 46^{\prime} 0^{\prime \prime}$, lon. $5^{\circ} 57^{\prime} 12^{\prime \prime}$. The remarks of the late Mr. William Chapman, master of H.M.S. Illustrious, appear to confirm the longitude of Tofiño, from whom he differs only 40 seconds in latitude, which he represents as so much more to the southward. The observations of Captain Smyth give the lat. $35^{\circ} .47^{\prime} 15^{\prime \prime}$, and the lon. $5^{\circ} 55^{\prime} 45^{\prime \prime}$, by chronometer and lunars, as shewn in the table. The coast, from Cape Spartol to Cape Bojador, was surveyed in the Etna and Raven, under Lieutenants Arlett and Kellett, 1835, as afterwards noticed.
2. Empire of Marocco.-The points determined by Captain Washington we owe to an excellent paper, entitled " Geographical, Notice of the Empine of Marocco; by Lientenant Washington. R.N.", given in the first volume of the "Journal of the hoyal Geographical Society,". 1831 ; a communication replete with interesting and useful information. Captain. Washington is now the Hydrographer to the Navy.
3. City of Marocco.-The scientific traveller, Don Juan Badia y Leblich, commonly called Ali Bey, from his observations in 1803-4, gave the centre of Marocco as in $31^{8} 37^{\prime}$, and $7^{\circ} 35^{\prime} 30^{\prime \prime}$. On reference to the Astronomical Journal of Captain Washington, there appear upwards of 100 sights for determining the longitude of the city. Distances between moon and sun ; moon and stars East and West of her; and altitudes of the moon when in the prime vertical,-the mean results of which give the longitude of a garden at the S.W. angle of the city: lon. $7^{\circ} 36^{\prime}$ W., lat. $31^{\circ} 37^{\circ} 20^{\prime \prime}$; mean of about 20 mer. alts. of the sun. Variation, from numerous observations by Schmalcalder's compass, $20 \frac{1^{\circ}}{}{ }^{\circ}$ W.-Geographical Journal, vol. i. pp. 1<9, 141.
4. Cape Gerr., \&e.-M. le Chevalier Jean Chas. de Borda was charged, in 1776, by Louis XVI., with a commission to the Canary Islands and the coast of Africa, for the express purpose of making observations, and determining the ohief points of the Canary Islands, \&c. He was furnished with timekeepers, by which he ascertained the positions, as they have appeared in different Charts and Tables. On this expedition, M. de Borda, in the ship La Boussole, was accompanied by the Espiegle, M. le Chastenet Puysegur, who afterwards composed the Pilot for St. Domingo ; also by Captain Don Josef Varela, and another intelligent officer of the Spanish marine; all of whom assisted in the operations. The results proved to be numerous and important; and they served for the general rectification of the coast as far to the southward as Cape Verde.

But in the years 1817-18, Captain (afterwards Baron) Roussin was employed by the French Government in surveying the coast between Cape Bojador, in $26^{8} 7^{\prime}$ N., and the Isles de Los, in $9 \frac{1}{2}^{\circ}$; and this officer has given, most satisfactorily, many points not before ascertained.

Again, in 1820 and 1821, Captain William Fitzwilliam Owen, in H.M.S. Leven, was commissioned by the British Admiralty to examine and settle the coast from Cape Noon southward: and his observatious have still further, and in a much more important degrec, tended to perfect tho hydrography of Western Africa. To Captain Owen's work, therefore, we refer most particularly in the Tables ; and have only to add that there is a remarkable coincidence, iu general, in the results of the two commanders ; and that even in comparing either with those of M. de Borda, the differences, practically considered, are of little moment.

A survey of the Canary Islands, and the continental coast thence northward to Cape Spartel, was made by Lieutenants William Arlett and H. Kellett, commanders of the Etna and Raven, in 1835; the particulars of which are given in the "Journal of the Royal Geographical Society," vol. vi., 1836, and from these we derive the corrected positions given in the Table, as more fully shown hereafter.
5. Cape, Barbas.-In the Admiralty translation of M. Roussin's Memoir (page 17,) the longitude of Cape Barbas is misjrinted $17^{\circ} 30^{\prime}$.-M. de Borda made it $16^{\circ} 39^{\prime} 45^{\prime \prime}$; Captain Owen, $16^{\circ} 30^{\prime} 12^{\prime \prime}$; as in the Table.
is stated to be in 3 it is stated to illiam Chapman, lino, from whom wach more to the ${ }^{\circ} 47^{\prime} 15^{\prime \prime}$, and the The coust, from n, under Lieuten-

Washington we rive of RILarocco: " Journal of the interesting and to the Nary.
ia y Leblich, comtre of Marocco as irnal of Captain 3 the longitude of and West of her; results of which on. $7^{\circ} 36^{\prime}$ W., lat. n, from numerous urnal, vol. i. pp.
charged, in 1776, oast of Africa, for ohief points of the tich he ascertained es. On this expey the Espiegle, M. t. Domingo ; also e Spanish marine; pumerous and imps far to the south-
was emplored by jador, in $26^{\circ} 7^{\prime} \mathrm{N}$., atisfactorily, many
in H.M.S. Leven, ttle the coast from nd in a much more frica. To Captain ; and have only to s of the two comBorda, the differ-
hence northward to ellett, commanders n in the "Journal we derive the cor-

Memoir (page 17, made it $16^{\circ} \mathbf{3} 9^{\prime} \mathbf{4 5}$ ";
6.-Capr Corvoeiro.-We assume as Cape Corvociro a point in $21^{\circ} 46^{\prime}$, according to M. Roussin, and not $21^{\circ} 13^{\prime}$, as given by Captain Owen. The longitude, in the translation of M. Roussin's Mcmoir, is misprinted as $19^{\circ} 14^{\prime} 55^{\prime \prime}$, which is, we presume, the Paris longitude- $16^{\circ} 54^{\prime} 46^{\prime \prime}$ from Greenwich.
7. Portandik.-The two palm trees are the first seen in sailing hither from Cape Bojador. Portandik is supposed to have been situated about a mile to the scuthward of this spot, but not a vestige of it remained in 1818, when it was visited by Captain Roussin. It has recently been ceded to France, in exchange for Albreda, on the Gambiu-See the description in Section III. hereafter.
8. Goree.-The position formerly given was $14^{\circ}, 40^{\prime} 10^{\prime \prime} \mathrm{N}$., and $17^{\circ} 24 \frac{1^{\prime}}{}$ W., from the observations of M. Fleurieu, 1769, and of M.M. de Verdun, Borda, and Pingré. Coptain Boteler, in 1829, made it the same. The Argo frigate, Captain Hallowell, 1802 , gave the lat. $14^{\circ} 30^{\prime}$, and lon. $17^{\circ} 24^{\circ} 58^{\prime \prime}$.
9. Cape St. Mary.-From observations in H.M.S. Esk, Captain Purchas, in 1826, the position of Cape St. Mary has been given at $13^{\circ} 29^{\prime}$ N., and $16^{\circ} 45^{\prime} 12^{\prime \prime}$ W.; Bird Island, at $13^{\circ} 40^{\prime} \mathrm{N}$., and $16^{\circ} 54^{\prime} 12^{\prime \prime} \mathrm{W}$. The results shew that the points lie at least as far to the West, as shewn by the Survey.
10. Sierra Leone, \&c.-In preparing the former editions of this work, we collected a large number of observations, which had been made, from time to time on the coast of Guinea, \&c., between Sierra Leone and Cape Lopez; they included those previously given by the officers of H.M. ships Argo, Amelia, Inconstant, Tartar, and others, and we finally appended to such as we selected for the tabular statement the following remarks:-"Although we have paid the uthost attention in the comparison of different results, charts, and descriptions as shewn in the Tables and Notes, we are by no means satisfied with the conclusions as to many points eastward of Cape Palmas and St. And ?w's Bay. Indeed, all that has yet been done by the naval officers, and others, prove unly the necessity of a new series, in order to establish so much as may be correct, and to rectify so much as may not be so." Happily, such rectification has taken place, and many doubts, even on the most important points, have recently vanishcd.

We give a specimen, on the longitude of Cape Sierra Leone. Many years ago, the late Sir George Young gave the longitude of this cape as $12^{\circ} 33^{\prime} 47^{\prime \prime} ;$ the French Tables afterward, as $12^{\circ} 34^{\prime}$; the Requisite Tables, $13^{\circ} 9^{\prime} 17^{\prime \prime}$; H.M.S. Argo, 1802, as $13^{\circ} 12^{\prime}$; the Inconstant, 1816, the same; the Amelia, in 1812, $13^{\circ} 17^{\prime} 30^{\prime \prime}$; the Leven, (Captain Owen), in 1826, 13' $18^{\prime} 0^{\prime \prime}$; the Eden, (Captain Owen), in 1827, $13^{\circ} 01^{\prime} 10^{\prime \prime}$; Captain Sabine, Royal Artillery, in 1822, $13^{\circ} 19^{\prime} 0^{\prime}$; and Captain Purchas, in 1827, $13^{\circ} 19^{\prime} 12^{\prime \prime}$. Hence we adopt Captain Owen's longitude as given in the Table. It may be added, that Lieutenant Raper assumes the North Battery to be in $13^{\circ} 14^{\prime} 30^{\prime \prime}$ or nearly as in the Table.

By 318 lunar distances (23 sets), taken in the West Bastion of Fort Thornton, at Frectown, Captain Sabine, in 1822, made the longitude of that spot $13^{\circ} 15^{\prime} 11^{\prime \prime}, W$.; and in 1827, Captain Owen in the Eden, made that of the Victualling Office $13^{\circ} 14^{\prime} 30^{\prime \prime}$ Latitude of the latter, $8^{\circ} 30^{\prime} 6^{\prime \prime}$; of Fort Thornton, by Captain Sabine, $8^{\circ} 29^{\prime} 21^{\prime \prime}$.

Fort Thornton stands on the highest ground in its own immediate neighbourhood, excepting a small hill on which a martello tower is built, at a distanoe rather exceeding a quarter of a mile. The situation of Freetown, however, may be more generally stated to be at the foot, on the northern side of the range of mountains, which, coming from the interior, finds here its termination in the sea, and gives the name to the cape, harbour, and colony of Sierra Leono: the general height of the range, so far is it has yet been explored, is from 2,000 to 3,000 feet. The principal geological ceature in the neighbourhood of Sierra Leone, is a red granite, of easy and rapid de-composition."-Captain Sabine's Notes.)
coast of GUinea, between Cape Three Points and Cape Lopez, inluding the Islands. Although we described this portion of coast in the "Directry for the Ethiopio or Southern Atlantie Ocean," we have considered it proper to ontinue the series of points in the Table; and for a description of the cosst, and emarks upon the positions, we refer the reader to the above work.
11. River Quorra.-This important river is described in the Directory mentioned in the preceding note. In the beautiful Chart of it, by Captain William Allen, published in 1857, the East point of the entrance, formerly given by mistake in $6^{\circ} 4^{\prime}$ E., is laid down in lat. $4^{\circ} 20^{\prime}$ N., and lon. $5^{\circ} 55^{\circ}$ E. The bar, with 2 to 4 fathoms over it, extends two leagues southward from the mouth of the river, which demonstrates the strength of the ebb tide. Within the bar, in an extent of 4 miles, the depths are 6 and 7 fathoms, but diminishing thence upward.

VARIATIONS OF THE COMPASS, 1861.

At Ceuta, it is $12^{\circ} 50^{\prime}$; (in 1811, the variation was found to be $22 \frac{1}{1}^{\circ} \mathrm{W}$.) At Cape Spartel, 20°. Between Cape Spartel and Saff Bay, it is, at present, from 20° to $20^{\circ} 10^{\prime} \mathrm{W}$. at Marocco, in 1804 , it was found to be $20^{\circ} 38^{\prime} 40^{\prime \prime} \mathrm{W}$; between Saff Bay and the Canary Islands, it is now $20^{\circ} 25^{\circ}$. In 1835, at Mogodor, it was $191^{\circ} \mathrm{W}$. it is now $20^{\circ} 20^{\prime}$; and at Cape Nun, $20^{\circ} 25^{\prime}$. Near Cintra Bay, in $23^{\prime \prime} 5^{\prime \prime}$; it was 191° in 1817 : near Cape Blanco, it is $19^{\circ} 20^{\prime}$; Bar of the Senegal and Goree, $19^{\circ} 40^{\prime}$; Cape Roxo, $17^{\circ} 20^{\prime}$; Bissao, and mouth of the Rio Grande, $19^{\circ} 20^{\prime}$; Isles de Los, in 1856, 18°; at present. $19^{\circ} 5^{\prime}$; Off Cape Palmas, in $1820,18^{\circ} 50^{\prime}$ (it is now $19^{\circ} 50^{\prime}$); in the neighbourhood of Cape Mesurado, in 1839, $19^{\circ} 30^{\prime}$; off Cape Three Points, and thence to Benin Bar, 20° W. ; mouth of the Quorra, in 1833, as at present, $20^{\circ} \mathrm{W}$.
9. THE AZORES, OR WESTERN ISLANDS.

Formigas, or Ants:
Formigao, or Hermigon; highest Rock
Dollabarats Shoal, 11 ft . Santa Maria, or St. Mary:
Punto do Castello,orS.E. Point
Villa do Porto
Maldebarca Rock, off the N.W. Point[1]

Pta. dos Matos
San Miguel, or St. Michael's:
Ferraria, or West Point
City of Ponta Delgada; Castle
Villa Franca; Island
Pta. Retorta; S.W. Pt.
Punta de la Marquesa, or East point[2]
Pta. da Ajuda
Morro da Ribeira Grande
Porto Capellas; Morro
Pta. de Bretanha...... .
Terceira:
Monte del Brasil, near Angra
Praya; Pta. de Malmarenda
Pta. de Serrata, or W.pt.
St. George:
Pta. del Topo, or Island off S.E. point

İt. N.	Lon. w.
© \%"	
371644	24476
371430	204325
$36 \quad 530$	$25 \quad 130$
365630	25045
365931	25123
37050	24450
375140	25520
37440	254115
37270	25420
374425	251045
374815	$25 \quad 825$
375150	$25 \quad 19 \quad 30$
375032	252940
375030	254145.
375440	254735
383833	271410
384410	2730
38460	272350
38336	274627

to Directory menain William Allen, en by mistake in vith 2 to 4 fathoms er, which demonent of 4 miles, the
be 221° W.) At resent, from 20° to W.; between Saffi dor, it was $191^{\circ} \mathrm{W}$. , in $23^{\prime \prime} 5^{\prime}$; it was and Goree, $19^{\circ} 40^{\prime} ;$ 0^{\prime}; Isles de Los, in (it is now $19^{\circ} 50^{\prime}$); Three Points, and at present, 20°. W.

DS.
rhoritizs.
made by Capt. 'idal, 1842. THE AZORES, OR WESTERN IBLANDB-CONTINUED.

Pta. de Rosales, or N.W Point. Graciosa:
Fort at Praya
Pta. de Fozo do Porto, or W. point
Pico:
The summit of the peak Pta. da Ilha or E. point Magdalena Rocks, off W. point
Fayal : The S.E. point, or Morro de N.S. dela Guia Caldeira; summit 3351 ft . Pta. da Negra ; W. point Flores : Sta. Cruz Fort[3] Corvo: the Southern point, orPta. del Perqueiro-alto

lat. N .	LoN. w:	AUTHORItizs.
- ,	- . ${ }^{\text {c }}$	
38456	282015	The Survey by Captain A. T. E. Vidal, in 1842-44.
$\begin{array}{llll}32 & 3 & 5\end{array}$	275846	1
$\begin{array}{lll}39 & 410\end{array}$	28 4 43	
38250	282812	
$3825-0$	$28 \quad 245$	
38325	$2834 \quad 0$	
4883120	2838	
$\begin{array}{cccc}38 & 34 & 30 \\ 38 & 36 & 0\end{array}$	$\begin{array}{rrrr}28 & 44 & 0 \\ 28 & 50 & 40\end{array}$	
$\begin{array}{llll}38 & 36 & 0 \\ 39 & 27 & 3\end{array}$	$\begin{array}{llll}2818 & 8 \\ 31\end{array}$	
$3940 \quad 7$	318 0	

NOTES.

1. Azores.-The voyage of M. Fleurieu, in the Isis frigate, made in 1760606 , and published in 1773, furnished several observations of the points of the Azores, as shown by the marine clooks of M. Ferdinand Berthoud, andverified, in great measure, by more numerous observations of Don Vicente Tofiño, made in 1788. The difference in the results of these two observers was generally inconsiderable; so small, indeed, that it may rather be considered as an agreement.
M. Fleurieu ascertained the position of the Mount of Brasil, near Angra, in Terceira, to be $38^{\circ} 38^{\prime} 37^{\prime \prime} \mathrm{N}$., and $27^{\circ} 12^{\prime} 27^{\prime \prime} \mathrm{W}$. 'Tofiño's result was $38^{\circ} 38^{\prime} 10$,', and $27^{\circ} 14^{\prime} 40^{\prime \prime}$; a remarkable coincidence, considering the distance of time at which the observations were made. The longitude of this spot was, therefore, assumed by the Spanish commander, as the meridian referred to from the points subsequently determined. The summit of the mount, as given by Captain FitzRoy, R.N., is in $38^{8} 38^{\prime} 3 \mathbf{j u}$, and $27^{\circ} 12^{\prime} 54^{\prime \prime}$.

Captain Alexander T. E. Vidal, R.N., who re-surveyed these islands, makes the Fort at Villa do Porto, in St. Mary's, in lat. $36^{\circ} 56^{\prime} 30$, and lon. $25^{\circ} 9^{\prime} 45^{\prime \prime}$ W.
2. St. Michaels., \&c.-In our former statements we noticed the erroneous positions of St. Michael's Terceira, \&e., which had, from time to time, appeared in the Requisite Tables and Connaissance des Tems ; but, as the doubts have vanished, it Fould be no longer useful to repeat those remarks. Captain FitzRoy gives St. Bras Castle, near Porta Delgada, as $37^{\circ} 43^{\prime} 58^{\prime}$ and $25^{\circ} 40^{\prime} 16^{\prime \prime}$.

3 .Flones and Corvo. -The longitudes of these islends were given according to the results of Tofiño ; they differ slightly from those of Captain Vidal as now stated. Vide the Chart of the Azores, Canary Islands, and opposite coasts, with the harbours, Rc., constructed by the editor, and published by the proprietor, of this work.

VARIATIONS OF THE COMPASS.

At St. Michael's, in 1826, the variation was $24^{\circ} 15^{\prime}$ W. At Flores, $19^{\circ} \mathrm{W}$. Capain Livingston, by means of many observations, near Ponta Delgada, found it about $25^{\circ} \mathrm{W}$., in 1818. This gentleman properly observes, that differences may be ascribed 0 the volcanic commotions and ferruginous nature of the country. See Nnte on the ariation at Tenerife, herenfter.
The present variation (1861), as estimated by Mr. F. J. Evans, R.N., is from $24^{\circ} 50^{\prime}$ n the Southom Eastern part of the group, to 27° in the North-western portion. This ariation is slightly increasing.
10. THE MADEIRA AND CANARY ISLANDS.

\cdots	lat. n.	LON. W.	AUthonitirs.
Madeira:	- ' "	- "	
Town of Funohal, British			ship Investigator, 1801; Gen.
Consul's Garden .. [1]	323822	165445	Sir Thomas Brisbane, 1821.
Camera de Lobos	323835	16590	
Punta del Parga, the			
West Point $\ldots \ldots$.	32487	171620	
Tristao, or N.W. Point. .	325125	17127	
S. Jorge point Cape Garajao, or Brazen	354840	165440	Captain W. Fitzwilliam Owen, 1820,1827
Head; S.E. extremity	323718	165142	
Pta. de S. Lourenzo, the			
East point. . $\ldots \ldots \ldots$	324334	164012	
Pieo Ruivo;summit, 0050 feet	35450	16570	\ldots
Porto Santo: Villa Baleira on the South side[2]	33 3.30	16203	Captain A. T. E. Vidal, 1844.
Baixo Island, South point	$32 \quad 5910$	161850	
Dezertas:			
Chao Island; Sail Rock	323545	16330	
Bugio Island; Agulha point \qquad	32240	162820	
The Salvaoes:			
Middle of th: Great Salvage \qquad [3]	$30 \quad 830$	155536	
Lanzarote, orlangerote:			
Allegranza Isle, off the North end	292530	133030	
Port de Naos...........	286830	133230	
Fuertaventura:			
Isle of Lobos, Pt. Martino.	284530	134830	
Point Jandia, the S.W point \qquad	2830	14310	
Canaria, or Grand CaNARY:			
The Isleta, or N.E point	28110	15250	
Point Arguineguin, or			
South point	274455	154010	
Point Aldea, tho West point	2810	$16 \quad 030$	
Tenerifr, or Tenerifre:			
Santa Cruz ; Mole Lt. [4]	282833	161456	
Pico de Teide ${ }^{\text {s }}$ summit	281635	$1638 \quad 2$	
Orotava (N.W. side) . ${ }^{\text {a }}$	28250	16330	
Pta de Anaga, E. point	283350	18680	
Pta. de la Rasca, S. point	28030	18410	
Gomera: The Port		$17 \quad 556$	
Pta. de Calera, W\%. point.:	28645	17.220	
Palma:			
Sta. Crus, on the E. side	284030	174428	
Taxacerte, on the W. side	283812	175585	
Ferro: Port de Hierro	274630	176422	
Point Orchilla, s. ${ }^{\text {s. }}$ W. Pt .	274220	$18 \quad 945$	
Pta.de la Restinga, or S.Pt.	27373	175050	

DA.

rtise.

Flinders, H.M. r, 1801; Gen. bane, 1821.
itzwilliam Owen,
E. Vidal, 1844.

NOTES.

1. Funchal.-The latitude of Funchal is well ascertained. The longitude was estimated by M. Bory, in 1772, at $10^{\circ} 56^{\prime}$, as it has since stood in the French Tables. It is unnecessary to repeat the varying results of other observers, the differences having been decided by our respected countryman, Captain Flinders, from whose observations, in H.M. ship Investigator, 1801, the latitude of the road appeared to be $32^{\circ} 37^{\prime} 44^{\prime \prime}$, and the greatest longitude, by any of six timekeepers, $10^{\circ} 54^{\prime} 26$.

His Excellency Sir Thomas Brisbane, on his voyage to Now South Wales (1821), obtained his time at the house of Mr. J. W. Gordon, at Funchal, by four excellent chronometers, by which the mean longitude was concluded as $16^{\circ} 54^{\prime} 36^{\prime \prime}$. At the same time the latitude of the tower, on Mr. Gordon's house, was found to be $32^{\circ} 38^{\prime}$ $19 \cdot 7^{\prime \prime}$, and that of the Loo Rock, $32^{\circ} 37^{\prime} 53 \cdot 8^{\prime \prime}$. The longitude given by Sir Thomas Brisbane was confirmed by ten Admiralty chronometers, under the care of Dr. Tiarks, in 1823, which gave for the longitude of the British Consul's Garden, $16^{\circ} 54^{\prime} 45^{\prime \prime}$ (in time $1^{1{ }^{1}} 7^{\mathrm{m}} 39^{\circ}$), the position given in the Table.

Captain Fitzwilliam Owen, from observations in H.M. ship Leven, in 1820, gives the landing-place, near the Loo Castle, in $32^{\circ} 37^{\prime} 42^{\prime \prime} \mathrm{N}$., and $16^{\circ} 55^{\prime} 30^{\prime \prime} \mathrm{W}$.

Desertas.-Captain Flinders states the southern end of the Bujio to be in latitade $32^{\circ} 24^{\prime} 20^{\prime \prime}$, which differs less than a mile from its position as previously given on the charts; and he discovered a small ledge of rocks projecting from under the cliffs at the S.W. part of this island. Captain Owen gives the North end of the North Deserta in $32^{\circ} 36^{\prime} 30^{\prime \prime} \mathrm{N}$., and $16^{\circ} 33^{\prime}$ W. The South end of the Seuthern 1sle (Bujio) he gives in $32^{\circ} 28^{\prime} 30^{\prime \prime}$ N., and $31^{\circ} 18^{\prime} \mathrm{W}$. It may probably be rather more eastward, but certainly not more West.
2. Porto Santo.-A plan of this island. from a survey by Lieutenant-Colonel Roberts and Captain Thomas Wolley, of H.M. ship Arethusa (1802), states, in general terms, the latitude of the town to be $33^{\circ} 2^{\prime}$, and its longitude $16^{\circ} 35^{\prime}$, which is only twenty minutes East of the meridian of Funchal. But, in the former edition of this work, upon a comparison of this statement with the differeut Tables and Charts, it was considered that the difference should be at least 37 minutes, and it was assumed in the Table. This has been in a measure confirmed by the recent observations of Captain Vidal, whose position is that given, the difference being $34^{\prime} 42^{\prime}$. See the Chart of the Azores and Canary Islands before mentioned. The Requisite Tables and Connaissance des Tems give the la titude of the middle of the isle $36^{\circ} 5^{\prime}$, and the longitude $10^{\circ} 14^{\prime} 51^{\prime \prime}$, and $16^{\circ} 17^{\prime} 34^{\prime \prime}$. Captain Owen gives the governor's house in $33^{\circ} 2^{\prime}$ $64^{\prime \prime} \mathrm{N}$., and $16^{\circ} 18^{\prime} 48^{\prime \prime} \mathrm{W}$.
3. The Salfages.-The longitude of the Great Snlvage, as furnished by flve British East India Jonrnals, differs from $15^{\circ} 34^{\prime}$ to $16^{\circ} 1^{\prime}$. The mean result of these is $15^{\circ} 48^{\prime} \mathrm{W}$. Yet we have not deemed this evidenco sufficient to cause a deviation from the position assigned in the Table.
M. La Pérouse has observed: "We were employed on the 18th of August, 1785, in taking observations off the Salvage, and I think its longitude may be fixed in $18^{\circ} 13^{\prime}$, ($15^{\circ} 53^{\prime}$ from Greenwich), and its latitude $30^{\circ} 8^{\prime} 15^{\prime \prime}$."

Captain Wm. Mudge, R.N., who, with Captain Vidal, surveyed the Great Salvage in 1820 , places its South side in $30^{\circ} 7^{\prime} 39^{\prime \prime} N_{\text {., and }} 15^{\circ} 60^{\prime} 18^{\prime \prime}$ W.: und he says of it-. "This Island is obviously of volcanic origin, and consists principally of a dark-coloured black rock, the dotached parts of which, as well as the whole, exhibit strong marks of fixed magnetic polarity. Even the dust of the roads, and of the floors of the cottages, has the same character as the rock itself, and may be gathered up, like steel filinge by means of a bar magnet.
"The compass was singularly deranged at the three stations taken on the survey, and the extreme difference in its variations amounted to about 72° at a less distance than a mile. At the frot atation, onie morning, Mr. Durniord, one of the pariy, laid down his watch, and on returning to the same place again it was found that the watch had gained two hours in the interval, an aeceleration due to the magnetic action of the rock upon the balance."

POSITIONS OF PLACES.

4. Tenerife, The porition of Sta. Crus in the Table is that given by Capt. Vidal in his completion of the survey of these islands (1844.) The previous observations have placed the longitude generally one or two minutes more, or to the westward of those in the Table.
M. La Pérouse says, "Several observations were made at Santa Crus, in Tenerife, Which we think may be fixed at $18^{\circ} 38^{\prime} 30^{\prime \prime}\left(16^{\circ} 16^{\prime} 21^{\prime \prime}\right.$ from Greenwich), and $28^{\circ} 27^{\prime} 30^{\prime \prime}$ N." Ini 1817 , the Baron Roussin, of the French Nary, plaeed the Mole Head of Sta. Crus in $28^{\circ} 27^{\prime} 58^{\prime \prime}$ N., and $16^{\circ} 19^{\prime} 0^{\prime \prime}$ W.; and from thls meridian he deduced, by ohronometers, the longitudes of all the coast between Cape Boiador and the Isles de Los, which have already been described.

Captain Fitswilliam Owen, from his observations in the Leven, 1820, gives the Mole Head in $28^{\circ} 27^{\prime} 54^{\prime \prime} \mathrm{N}$., and $16^{\circ} 15^{\circ} 0^{\prime \prime} \mathrm{W}$. The Peak he gives in $22^{\circ} 16^{\prime} 24^{\prime \prime} \mathrm{N}$., and $16^{\circ} 39^{\prime} \mathrm{W}$.

The general mean of the longitude of the Mole of Santa Crua, from the observations of Captains Pérouse, Bligh, Vancouver, and Krusenstern, of M. Quenot, and tho Baron Alexander de Humboldt, is $16^{\circ} 15^{\prime} 18^{\prime \prime}$.

VARIATIONS OF THE COMPASS.-1861.

Between Porto Santo and Madeira, the mean variation is about 22°. In the road of Santa Crus, Tenerife, it is rather less, if we may conclude that it has been correctly ascertained; but M. de Humboldt has noticed that the variation differs several degrees, according to the place where the observation is made, at the Mole, or at several points to the North, along the shore; and, he adds, we must not be surprised at these deviations in a place surrounded by volcanio rooks. "I remarked, with M. Gray Lussac, that, on the declivity of Vesuvius, and the inside of its crater, the intensity of its magnetic forces is modifled by the proximity of the lavas."-(Personal Narr., vol. i. p. 117.) Captain Owen gives the variation at Porto Santo at $231^{\circ} \mathrm{W}$. Mr. Evans estimates it at 22° W. in 1861. The same authority makes it about 21° at Tenerife, and $20^{\circ} 30^{\prime}$ at Fuerteventura. It is slightly deoreasing.

11. THE OAPE VERDE ISLANDS.

| | LAT. | N. | Lor | w. | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

n by Capt. Vidal ious observations the westward of

Crus, in Tenerifo, h), and $28^{\circ} 27^{\prime} 30^{\prime \prime}$ tole Head of Sta. dednced, by chro1 the Isles de Los,
$n, 1820$, gives the in $22^{\circ} 16^{\prime} 24^{\prime \prime} \mathrm{N}$.,
from the observaQuenot, and tho
22°. In the road t it has been cortion differs several at the Mole, or at st not be surprised marked, with M. crater, the inten-Invas."-(Personal Santo at $231^{\circ} \mathrm{W}$. makes it about 21°

10nitizs.
of the Capo Verde ioutenants (afterins) Vidal and ; taken by order Commissioners of y, in the years d 1821, compared ervations of Caposter, Owen, \&e.

THE CAPE VERDE ISLANDS-CONTIUED.

	LAT. N.	LON. W.	AUTHORITLAS:
	- "	- ' ${ }^{\text {c }}$	\because
St. Nichoras: - it			…ㅅ.. ${ }^{\text {j }}$
East Point	169430	2400	The Survey by Lieuts. Vidal
North point	16420	242120	and Mudge, 1819-21.
West point	16380	24270	
South point	162830	$2419 \quad 0$	
Raza : Enst point	16380	243830	1
Sr. LuCia: ${ }^{\text {/ }}$			4 ¢ ¢ ¢ .
East point	1646	24420	, A.
North point	16490	244730	
St. Vincent :			
Porto Grande ${ }_{\text {a }}$	1664 0	2510	
ST. Antonio : [4]			
North point	17120	25645	
West point	1740	252310	
South point	1655.0	251925	
East point	$17 \quad 530$	2505	

NOTES.

1. Sal.-A particular in our Third Section, hereusler.
2.-Maxo.-In the course of the year 1810, while surveying the Island Mayo, Lieutenants Vidal and Mudge found the hills upon which they were carrying on heir operations so strongly magnetic, that the needle belonging to the theodolite beame wholly useless; the dip increasing so much that the ncedle could not traverse, in consequence of one end of it being drawn down to the fuce of the instrument, \&o.
2. Porto Prata.--The longitude of this place appears to be well determined; particular attention having been directed to it by many of our most skilful navigators. Captain FitzRoy places the West point or landing-place on Quail Island (called also fun Point), at Porto Preye, in lon. $23^{\circ} 30^{\prime} 0^{\prime \prime}$ W. Captain P. P. King had made it (30 $30^{\prime} 17^{\prime \prime}$; Captain Vidal, $23^{\circ} 31^{\prime} 28^{\prime \prime}$; and Captain Owen, $23^{\circ} 31^{\circ} 3^{\prime \prime}$; thereforo $33^{\circ} 30^{\prime} 34^{\prime \prime}$, the longitude formerly assigned to it by Mr. Purdy. in previous editions of his work, cennot be far from the truth. This was deduced from the observations of Yesers. Fleurieu, Borda, Verdun, \&ec., of Mr. R. Keilor, Captains P. Heywood, Yortlock, \&o.
3. St. Antonio.-Admiral Von Krusenstern, in the relation of his noyage round he world, says, "On the 6th of November, (1803), at day-break, we perceived the sland of St. Antonio, at the distance of from 25 to 28 miles. As the wind was hoderate, I held directly to the westward, to keen still more away from the land, as alms are very frequent in the neighbourhood of lofty islands. At roon we had an bservation in lat. $17^{\circ} 65^{\circ}$. The S.W. point of tho island bore, at the time, $8.24^{\circ} \mathrm{E}$., istant about 45 milos. I now steered W.S.W., and as tho wind freshened toward the vening, S.W. by W. The next day, at noon, the S.W. part of the Island of St. utonio bore 86°, distant about 64 milen; and I again held S.S.W.
"The mean of a rariety of lanar observations, taken this morning, made our lontude, redueed to mid-day, $26^{\circ} 17^{\prime} 7^{\prime \prime}$. By the watches it was $26^{\circ} 24^{\prime} 20^{\prime \prime}$. I reconed the longitude of the S.W. point of St. Antonio, by Arnold's largo timepiece, 0. 128, the best of our chronometers, $25^{\circ} 24^{\prime} 0^{\prime \prime}$."-(Mr. Hoppner's Translution, 33.)

Captain Plituders, 伍the relation of his voyage (vol. i. p. 26), said that he found 0 variation near the western side of St. Antonio, on the evening of 14th August, 301, before making the land, $13^{\circ} 61^{\prime}$; and the next evening, $13^{\circ} 3$, when 4 leagues

POSITIONS OF PLACES.

to the westwari. Ho had not an opportunity of making observations to debermine the situation of the illund, but, uccording to his estimation, it would appear to be even more to the eastivard than the situation now assigned; as he supposes the high land near the S.W. point to be in $25^{\circ} 12^{\prime} \mathrm{W}$.

Captain King made Terrafal Bay, at the S.W. ond, by elvien chronometers, in lon. $25^{\circ} 20^{\prime} 1^{\prime \prime}$; Captain Owen made it $25^{\circ} 21^{\prime} 42^{\prime \prime}$, and Captein Foster, $25^{\circ} 22^{\circ} 56^{\prime \prime}$: therefore, from these it will be about $25^{\circ} 21^{\prime} 3^{\prime} y^{\prime}$ end the West point, $25^{\circ} 23^{\prime} 10^{\prime \prime}$.

For further informat ", see the Chart of he Cape Verde Islands, pablished by the proprietor of this wurk; and see, aiso, the description ces St. Antonio hereafter. VARIATIONS OF THE COMPASS-1861.
In 1826, the variations of the compess near St. Antonio were found to be new 16°; at Porto Praya, St. Ifgo, $15^{\circ} \mathrm{W}$. The mean rariation allowed by Captaing Vidal and Mudge, in 1819-21, is 14°. It is now (1861), 17° in the Western, and 18° \mathbf{W}. in the Eastern portion of the group. It is increasing at the rate of $\mathbf{3}^{\prime}$ per annum.
12. THE FARROE IBLLES, IGELAND, GREENLAND, LAERADOR, AND NEWFOUNDLAND.

	unf. n.	LoN. w.	Authoritris.
THE FEROEISI,ANDS.		- ' "	
Murken Islet	61 123 40	63730	The Surrey by Capr. Borm,
Sudero, Porkerji	61 61 61 61 30	642 648 6 0	of the Danish Navy, 1790-8, published in 1806, subsequently
Waag of; Sorwaag	$62{ }^{6}$	71230	corrected.
Myggenms; West point..	$\begin{array}{cc}62 & 6 \\ 62 & 0 \\ 6 & 40\end{array}$	736 643 64 0	
	62220	656	
Faglo ; Esat point	621840	6100	
ICELAND.			
Reliliarik	64920	214210	The Davish Survey, 1845, , 8e.
Cape Reikiances	634835	22420	
Fugle Skiærene; G"una-	634015	2390	
Herdiservigi Strand ehurch	63 600	21380	
Skalholt	6460	20300	
Mount Hekla ; summit	636840	193830	
Westmaņerne; Biarnereye	83280	20150	
Portland; \$. point of Ice-			
land 1.	632345	196	
Oster Joikel	${ }^{63} 2480$		
	63 64 18 18 580	16 15 158 88 30	
Hvalsbak Islet	64370	13210	
Rode Fiord ; Krosnces...	65130	133250	
Hornnwe; East point of Iceland	651050		
Langances ; N.E. point ..	66230	14280	
Tiornes .,	661340	1770	
Grimsey; church	683330	1800	
Hioar enurich	654530	10.50	
Skagen; Skagataa		$20 \quad 330$	

POBITIONS OF PLACES

THE FAROE IALLES ICELAND, GREENLAND, \&C-CONTMUED.
vations to determine ld appear to be even oposes the high land
en chronometers, in Foster, $25^{\circ} 22^{\prime} 56^{4}$ int, $25^{\circ} 23^{\prime} 10^{\prime \prime}$.
dands, pablished by Antonio hereafter.
re found to be near llowed by Captaim he Western, and 18° the rate of 3^{\prime} per

D, LIABRADOR,

THORITIBE.
rey by Capt. Born anish Navy, 1790-s n 1806, subsequently

EL Survey, 1845, "8c

North Cape
Staalbierg Huk; W. point Ondverdarnees
Sneefields Jbkel
GREENLAND.
Cape Danell. ©......[1]
Dannebrogs Oe or Isle
Cape Löwenorn
Colberger Heide
Cape Mosting
Cape Juel
Kinarbio
Cape Bill
Cape Tordenskiold
Cape Discord
Cape Valloe
Statenhuk, otherwise Cape
Farewell [1]
Cape Christian
Friedrichsthal
Nennortalik; Commercial Establishment Julianeshaab
Cape Thorraldsen.
Cape Desolation
fape Absalon
Prederikshaab
Lichtenfels
Fiskernmes
Godthaab
Holstoinborg

LABRADOR.

Button's Isles ; Middle Port Manvers; Entrunce[2] Nain, a Moravian Settlemt. Leveret Islet, at the Entrance of Netsbuktoke, or Sandwich Bay .. [3] Vol? Island; North End potted Island; N.E. end Kound Hill Island
lawke Island; S.E. point Cape St. Michacl
Cape St. Francis. [4]
point Spear

NEWFOUNDLAND.

elle-Isle, N.E. point. ... -Lighthouseon 8. pt. tape St. Lewis; Smail peningula on S.E. point

66	37	0	36	10	0
65	18	0	38	30	0
64	30	0	39	30	0
64	8	0	40	7	0
63	40	0	40	15	0
63	15	0	40	50	0
62	47	0	41	42	0
62	1	0	41	57	0
61	24	0	42	15	0
60	53	0	42	26	0

60	38	0	42	40

$\begin{array}{llllll}59 & 49 & 12 & 43 & 53 & 40\end{array}$
594930

60	0	10	44	37	0

60	7	45	45	16	0

$604254 \quad 461044$
6044

60	48	0	48	10	0
61	3	0	48	23	0

62	2	0	50	2
63	0			

$\begin{array}{lllllll}63 & 5 & 0 & 51 & 31 & 0\end{array}$

63	8	0	51	21	0

64105
66 bs 32
$\begin{array}{lll}60 & 35 & 0 \\ 57 & 0 & 0 \\ 58 & 24 & 0\end{array}$
$6520 \quad 0$
6155 C
61480
Connaissunce des Tems, \&ce.
Captain T. Manby, R.N., 1808. Inferred from Port Manvers.

The Admiralty Surveys, by Lieutenant Michael Lane, \&c., to 1790.

The Suryey by Captain Fredk. Bullock, R.N.

THE FARRE ISLES, ICELAND, GREENLAND, \&C.-CONTINUED.

COASTS OF NEWFOUNDLAND-CONTINUED.

Rear-Admiral) H.
ralty Surveys, by ince Captain) Fred. :, and his assistants, Smith, \&c.; 1823, nd 1826. The lon: sted by the Obserptain H. W. Bay-

MARES.

xcellent Surveys, is nt desideratum has ; for before they , the coasts which were comparatively though frequented y the fishers.-BriNavigator.

Lat. N.	LON. W.	, \% AUTHORITIES.
,	- . "	
496530	552730	Th3 Admiralty Surveyors,
4947°	55520	Messrs. George Holbrook and
49370	5540 0	William Bullock, 1819 to 1826,
49330	65370	adjusted by the Observations of
		I. . J. Jones, 1828, Admiral Bayfield, 1859, \&c.
49320	$65.17-0$	Bayfield, 1859, \&c. .t.
$4936 \quad 0$	$54 \quad 780$	
494135	5424.0	
494420	541736	1
493930	5410	
$4936 \quad 0$	53460	
496145	$54 \quad 40$	
4947 0	64640	
49640	534343	
494421	531320	
49290	54140)
4930 0	5400	
4922.18	534330	
495355	533620	
49.196	532688	
49180	$\begin{array}{llll}53 & 32 & 8\end{array}$	\%
491340	532220	
$49 \quad 915$	533630	
$4944 n$	535730	
486820	$5330 \quad 0$	
486330	532740	
48508	53383	
484050	$63 \quad 3638$	
483715	532748	
483715	632148	
48486	53715	
48420	5380	
484240	$\begin{array}{llll}53 & 8 & 0\end{array}$	
483228	531164	Rrmaris.

In former editions the longitr des of the S.E. and South coasts were deduced from the observations and Surveys of Captain Jnmes Cook, Licutenant M. Lane, Messiz. Cassini, Vordun, Borda Pingre, and Owon; and these were, gonerally, from 10 to 15 minutes eastward of those now given in the Table: but the longitude of the Burgeo Isles [Ficlipse I.] remains as given by Capt:in Cook; and thnt of St. Pierre may, also, be considcrod as the samo.

COASTS OF NEWFOUNDLAND-Continued.

	lat. n.	Lon. w.	Authorities.
St. Jorn's ; Light on Fort			
Amherst, S. entrance ..	473350	523955	The Admiralty Surveyors, as
Cape Spear ; Lighthouse	473053	523640	berore.
Bull Head..............	47181	524433	
Cape Broyle, N. point of. .	$47 \quad 352$	525040	A Survey of Port St. Pierre, by
Cape Ballard	464646	525657	Lieuteuant Du Petit Thouars,gives
Cape Race; Lighthouse	463912	$53 \quad 243$	the Government House, N.E.
Virgin Pocks, on the Great Bank of Newifoundland	462630	505520	
Trepassey Harbour ; Shin-	464332		nomers, Messrs. Verdun, Borda and Pingre, in the voyage of I
Cape Pine; Lighthouse	46374	533148	Flore, 1771, gave the town of St
St. Mary's Cape ; Lighthouse	464925	$54 \quad 933$	Wi, and thus confirmed the pre-
Placentia Harbour	471511	53503	Islands, by Captain Cook, from
Little Southern Harbour	474332	534938	solar eclipse, in August, 1766.-
Extremity of Placentia Bay	474946	535214	Phil. Trans, 1767.
Bordeaux Harbour	474528	525330	
Great Burin Island; Light on Dodding Head	$47 \quad 130$	55	
Cape Chapeaurouge ..	465419	551920	
St. Pierre ; Lighthcuse on Galantry Head.	464530	$56 \quad 654$	
Cape Miquelon.	47811	561730	
Connaigre Shoal	472357	555719	
Pass Island	47292	501113	
Cape La Hune	473155	565023	
Outer Penguin Island	4722	56587	
Burgeo Islands; Eclipse Island	47366	573615	
Cape Ray; S. extreme[9]	47372	59188	Captain (now Rear-Admiral)
Cod Roy Isle ; S. side	475238	592335	H. W. Bayfield, 1827 to 1860
Cape St. George	482854	591144	and Captain Jamea Cook..
Red Isle; S.E. point	483350	521326	
South Head of the Bay of Islands	49612	582050	
Cow Head	495512	574825	
Port Saunders ; Entrance			
N.E. point	503836	571853	
Point Mich; Westextremity	504139	572423	
Point Ferolle ; Cove Point, N.E, extremity \qquad	51214	$56 \quad 248$	
Anchor Point ...	511430	574240	
Green Islet ; N.E. Extremity	512418	563353	
Cajersan ${ }_{\text {a }}$	51385	555328	

NOTES.

1. Sape Farewell.-In the Maps and charts in general, the name of Cape Farewell is attached to the southern point of the continent of Greenland. In the Dutch charts, which have heen republished in London, the same name is applied to an island, at the assumed distance of 45 leagues N.N.W. from that point. Hence, one point has frequently been mistaken for, or blended with another ; and this affords,
therefore, one reason for the discordant accounts of longitude, \&c. Such mistakes are not likely again to occur, as will be seen from the following statement.

In the first volume of the "Journal of the Royal Geographical Socicty" is given an account of Discoveries on the Eastern Coast of Greenland, by Captain Graah, of the Danish Royal Nary, in 1829, who proceeded along the coast from Staten Hook, to the parallel of $65 \frac{1}{2}^{\circ}$, and who has disproved the existence of any ancient European colony apon it. In a single boat; amid difficulties almost insuperable, with only two Greenland men and four women, M. Graah reached an island, in latitude $65^{\circ} 18^{\prime} ;$ longitude, computed, $38^{\circ} 27^{\prime}$; he proceeded ouward until stopped by an insurmountable barrier of ice, and was íceed to zeturn to the S.W,

All the coast appeared to be colder, more barren. and miserable, than the western coast. "It may be said to consist of one uninterrupted glacier, exhibiting only a few patches of vegetation, generally on the banks of the rivers, and elsewhere, often advancing into the sea and forming promontories of ice, which are passed with so mach the more danger that they frequently fall in avalanches."

During the whole summer of 1829 there was not one day which could be called warm ; and, before the 14th of June, the thermometer had never risen above 53°. At Ekolumius. in lat, $63^{\circ} 30^{\prime}$, the vegetation appeared to be superior to that of eny other part of the coast, even of Julianeshaab, on the S.W., reputed to be the most favored part of that coast. BL': the vegetation appears to consist only in a fine grass, which withers quickly when exposed to the warmth of the sun, and in some anti-scorbatio plants, as sorrel and scurvy grass, with one or two kinds of flowers, and low bushes of willow and birch, not exceeding two feet in growth.

The food of the natives is principally the dried flesh of the seal, with io little game and fish. Captain Graah makes mention of bears, hares, birds, and salmon ; but he says that, "even at the latitude of $63^{\circ} 36^{\prime}$, reindeers, and hares are known only by name." The people, in their moral charaeter, he describes as very estimable; "and the reported good nature of the hasbands, the submission of their wives, the obedience of the children, and the mutual affection and confldence of the whole community, make it difficult io remember that they are pagans." It was the good faith, the hos-pitality, the kind and genercus dispositions, of these children of nature, that enabled M. Graah to overcome the difficulties by which he was surrounded.

On the 3rd of November, 1831, Captain Graah returned to Copenhagen from a second voyage along the coust of Greenland, but without having passed much to the northward of his former limit. The Geographic Society of Paris subsequently presented their gold medal to the captain, accompanied by the diploma, for his persevering and indefatigable attempts in exploring this coast.

During his last stay, Captain Granh determined the lengitudes of the two southern Danish settlements, Julianeshaab - Nennortalic, with great precision, by means of occultations of fixed stars, \&ce; cthí we also gaii, by his observations, the positions of Cape Farewell, never before ascertained, and Cape Christian, another promontory of the same island : Cape Farewell, lat. $69^{\circ} 49^{\prime} 12^{\prime \prime}$, lon. $43^{\circ} 53^{\prime} 40^{\prime \prime}$: Cape Christian, lat. $59^{\circ} 42^{\prime} 30^{\prime \prime}$, lon $44^{\circ} 45^{\prime} 0^{\prime \prime}$.

The eastern coast, is distinguished by the name of the late excellent King Frederick VI.
2. Port Mantrrs, formerly called Saltpetre Haven, was visited and explored by the Thalia and Medusa frigates, which wooded and watered here, in August, 1808. Of the mode in which the longitude was determined, we have not been informed. The coast, as well as that of Greenland, now appears more to the westward than it was formerly represented.
Of Port Manvers a particular plan is given on our Chart of the Northern Ocean. Without the entrance, on the East, are two groups of small isles, and near it is a cluster of dangerous rocks. The entrance itself is less than a mile broad, but the and within opens into a fine basin, on the shores of which are wood, water, and winged game, in abundance. At about 2 leagues, true South, from the entrance, is

3. SANDwICH BAY.-This fino harbour was surveyed by Lieutenant Michael Lane,
in 1771, but not the different entrances. The defect, was, however, remedied by Lieutenant Robert Pearce, of H.M.S. Farourits, in 1820. A range of mountaine, called Mealy Mountains, stand on the N.W. side of the harbour, and, being 1,482 feet high, always covered with snow, may be seen from without Wolf siand, a digtance of 17 leaguea.
4. Capa St. Francris.-The coast in the vicinity of Cape St. Francis was surveyed by Mr. J. L., Roberts, of H.M.S., Favourite, in 1820. At half a mile W.S.W. from the cape is St, Francis Harbour ; and at $1 \frac{1}{3}$ miles north-westward from the same is Sealing or Seal Bight. St. Francis Harbour is snug and secure, but very small, and generally filled with vessels, during the fishing season, as a considerable fishery is carried on in its vicinity. Sealing Bight is mose commodious; and here water may be conveniently had, but no wood.
6. Cape Norman.-This cape is placed by Rear-Admiral Bayfield in $51^{\circ} 37^{\prime} 57^{\prime}$ North, and $25^{\circ} 53^{\prime} 28^{\prime \prime}$, or $6^{\prime} 20^{\prime \prime}$ to the West of the former surveys; and the longitudes of the whole of the N.E. coast, as far as Cape Freels, have been made in accordance with this,-See Note 8.
6. Cape Freels.-In tho valuable survey northward of Cape Freels, by Lieut. Froderick Bullock, 1823-24, this cape is placed $E^{\prime} 10^{\prime \prime}$ South of the same, as given in the survey southward, by Messrs. Holbrook and William Bullock, in 1817 ; to connect his with the southern parts, we have given the latter authority. .
7. Cape Bonavista.-The assigned positions of this cape, is an evidenee of the uncertainty which exists in the longitudes of this survey. The first sheet of the survey by Messrs. Holbrook and Bullock, made the longitude $52^{\circ} 59^{\prime} 15^{\prime \prime}$ " In the reissue, shortly afterwards, of the same sheet, it was shifted to longitude $53^{\circ} 8^{\prime} \mathbf{2 0}^{\prime \prime}$, or $8^{\prime} 35^{\prime \prime}$ further west, nearly as it now stands.
8. St. Jorn's-The longitudes of all the places on the eastern coast of Newfoundland are given westivard of those assigned in the early editions of this work, and as also reported in the British American Navigator.

The longitude of St. John's, as deduced from the observations of Captain James Cook, Lieutenant Michael Lane, Messrs. Cassini, Verdun, Borda, Pingre, and Owen, would be generally from fifteen to ten minutes eastward of the longitude in the Table ; Fort Amherst, at the entrance of the harbour, having been given in $52^{\circ} 29^{\prime}$ W.; or $13^{\prime} 45^{\prime \prime}$ eastward of the later observations.

In the years 1828, 1829, and 1830, the officers of H.M.S. Hussar, under the orders of Rear-Admiral Sir Charles Ogle, made many observations in this part of the world; and the result given by Mr. John Jones, for the longitude of Fort Townsend, is $54^{\circ} 45^{\prime} 22^{\prime \prime}$ W., and latitude $47^{\circ} 33^{\prime} 42^{\prime \prime}$, and which position was recorded in the fort itself.

The last determination by Admiral Bayficld as given in the table, removes this longitude $3^{\prime} 8^{\prime \prime}$ to the eastward. The coasts to the northward appear to have been been given much more to the westward. It is necessary to notice these discrepances here, althougl the amounts of differences as now settled, are not important to the general navibator.
9. Cape Ray, \&c.-The South and West coasts of Newfoundland are still represented according to the surveys of the circuminavigator, Captain James Cook and Michael Lane, at the latter part of the last century. The original charts, published by Mr. Laurie's predecessors, are still in request, and it will be scen, upon comparison, that the positions given in Cook's first work are still found to be near the truth.

NEWFOUNDLAND.-The description of the coasts and harbours of this island with ample directions for the navigation, \&c., will be found in the "British American Navigator," published by Mr. Laurie.

VARIATIONS OF THE COMPASS, 1861.

Iceland.-At the East end of Iceland, the present variation is $38^{\circ} \mathrm{W}$.; at Ingolfs Hofde, $39^{\circ} \mathrm{W}$.; at Portland, or the South Point, $41^{\circ} \mathrm{W}$.; at Fugle Skimrene $41^{\circ} 30^{\prime}$ W. ; at Reikiavik, $4 \mathbf{3}^{\circ} \mathbf{4} \mathbf{0}^{\prime}$; at Staalbierg Huk, or the West point, 47°; at the North
wever, remedied b, range of mountaine, ur, and, being 1,482 Wolf saland, a dis-

St. Francis was surhalf a mile W.S.W. tward from the same ure, but very emall, considerable fishery and here water may
ayfield in $51^{\circ} 37^{\prime} 67^{\prime}$. cys; and the longibeen made in accor-
pe Freels, by Lieut. he sarne, as given in in 1817: to connect
is an evidence of the he first sheet of the $0^{\circ} 69^{\prime} 15^{\prime \prime}$ In the rengitude $53^{\circ} \mathbf{8}^{\prime} \mathbf{2 0 ^ { \prime \prime }}$, or
n coast of Newfoundf this work, and as
ms of Captain James , Pingré, and Owen, the longitude in the bcen given in $52^{\circ} 29^{\prime}$

Hussar, under the ions in this part of tude of Fort Townsion was recorded in
table, remöves this appear to have been ce these discrepances not important to the
dland are still reprein James Cook and al charts, published en, upon comparison, near the truth.
bours of this island "British American
-38° W.; at Ingolfs le Skiærene $41^{\circ} 30^{\prime}$ 47°; at the North

Cape, $40^{\circ} 90^{\prime}$ W. Inorearing at the rate of $2^{\prime} 25^{\prime \prime}$ per annum.
Greenland-At Cape Farewell, at present it is about $52^{\circ} 80^{\prime}$, at Oape Mosting, on the East coast, about 57^{\top} W. ; at Nennortalic, on the South coast, about $53^{\circ} 20^{\circ}$; at Frederikshab, $55^{\circ} \mathrm{W}$. These variations have incroased about $2^{\circ} 30^{\prime}$ nince 1831.

Nuwfoundunnd. East Coast.-Belle Yisle, Lark Harbour, $37^{\circ} 30^{\circ}$ W. (according to Mr. Evans, R.N., it is 39°) at Cape Norman, it is 38° W. $;$ at the entrance of Canada Bay, 36° W.; St. Barbe, or Horse Isles, 35°; Cape St. John, 94°. 50^{\prime} W.;
Wadham Isles, $35^{\circ} 0^{\prime}$; Cape Freels, $34^{\circ} 30^{\prime}$ W.; Cape Bonavista, $33^{\circ} 30^{\prime}$ W.; St. John's, $31^{\circ} 30^{\prime}$ W.; Cape Race, 30° W.

South and Weat Coasts.-Cape Freels, $29^{\circ} 50^{\prime}$ W. ; Cape ChapeanRonge, $29^{\circ} 40^{\prime}$ W. St. Pierre; $28^{\circ} 25^{\prime}$.W.; Burgeo Islands, $29^{\circ} 0^{\prime}$ W.; Cape Ray, $28^{\circ} 0^{\prime}$.W.; (it was 27° 37^{\prime} in 1858) ; Cape St. George, $29^{\circ} 0^{\prime}$ W. ; Cow Head, $33^{\circ} 32^{\prime}$ in 1859; Flower Cove, West entrance of Belle Isle Strait, $\mathbf{3 6}^{\circ} 52^{\prime}$ W. (in 1859.)

These variations are increasing at the rate of 7^{\prime} per annum in the southern, and 8^{\prime} to 10^{\prime} per annum in the northern parts of Newfoundland and Labrador.

13. GULF AND RIVER OF ST. IAAWRENCE, WITH OAPE BRETON ISLAND.

GULF AND RIVER OF ST: LAWRENCE \&C.-COMTIMUXD.

POSITIONS OF PLACES.
GULF AND RIVER OF ST. LAWRENCE-CONTINUED.

Jeremies Trading Post .. Port Neuf; Church Tadousac(SaguenayRiver); Store on Beach.
Chicoutimi (Saguenay River; Trading Post
Isle aux Coudres; West point of Laprairie Bay QUEBEC; N. Bastion [6] ; Wolf Monument ; Flagstaff, King's Bastion, Citadel

River St. Lawrenof; above Quebec.

St. Jean des Chaillons; R. C. Steeple

Cap Madeline; R.C. steeple Three Rivers; E. steeple Point du Lack. C. Steeple Borel ; Episcopal Church Repentigny; R.C. steeple Montreal; Gate Island N. end Lighthouse -; R.C.Cathedral[7]
River St. Lawrence S. Shore.

Dauphin River; Orleans Isle, S.W. pt. of entrance Stone Pillar I. Lighthouse Kamouraska; N.E. pt. of Crow Island
BrandyPots ; S. pt. of S.Rk. Loup River; N. pt. of Ent. Red Island; Lighthouse .. Green Island ; Lighthouse Razade Rocks ; N. E. one Bicquette Island ; Lightho. Bic I.; N.E. Ex. of S.E.Rf. Barnaby I., North-east pt. Camille Mt. ; sumt. 2,036ft. Metis ; Reef off Little Metis Matan R.; S.W. point. of Entrance Cape Chatte; Extreme ... Mt. Lewis R.; E. pt of Ent. Great Fox Bay; Centre of Cape Rozier ; Lighthouso lape Gaspe; Flower-pt. rk.
TEW BRUNSWICK, \&c. ape Despair; Extreme..

Lat. No:	LON, W.	AUTHORITIES.
- ' "	"	
4852.45	684646	The Siurveys hy Admiral H.W.
483717	$69 \quad 5 \quad 53$	Bayfield, 1827-60.
$48 \quad 832$	69.42	
4828	71. 451	"
472440	70. 2452	
$4649 \quad 0$	711249	$\left.3 x^{3}+340^{2}+2\right\}$
464838	711231	

GULF AND RIVER OF GY. LAWRENCE, \&c.-OONTINUED.

	lat. N.	Lon. w.	AUthorimizs.
		- . ${ }^{\text {c }}$	
Macquerear Pt; N.E. Ex.	$48 \cdot 1218$	644614	.
PortDanial ; N. side W. pt.	48.910	64 56: 65	
Paspebiac ; Episcopal Ch.	48147	65156	
Bonaventure Ptt. ${ }^{\text {P }}$. Extr.	$48 \quad 0.17$	$65 \quad 2626$	
Carlton, or Tracadigush Point N.W Extreme.		$68 \quad 710$	
Dathousie Island; E. print	48416	662126	
Black Rock ; Station on ..	4751.64	65: 4530	5
Bathurst Har.; Carrou Pt.	473919	653659	(1)
Mizzenetio Point ; Station	4760 ! 2	646843	(1)
Caraquette Island; S.E.ex-- treme of Sandy Spit .	474919	64:5145	
Shippigan Harbour; Fall's Wharf	474452	644212	
Miscou Island, Lighthouse	4819	642928	
Shippigan Gully ; N. Ent.	474324	643936	
Miramichi ; Bai dn Vin IgLand, N.E. Extre:ne . . .	47619	$65 \quad 421$	
Escuminao Pt, Lighthouse	$47 \quad 432$	644717	
Richibacto River; N. beacon at Entrance	4643	644732	
BuctougheRiv.; Sta. atEn.	462855	$64 \quad 3745$	-
Cocagne Head, Ex. of Cliff	462131	64. 3141	-
Shedje, Episoopal Church	461415	643332	
Cape Tormentine ; N.W. extreme of Joureman Is.	4610 0	63.42.7	
Trgirish Head, Bay Verte;			
Pugwash; Episcopal Cö.	4551	$63 \quad 3018$	
Amet Island, East Extreme	455015	63840	
Pictou Harbour; Lightho.	$45412 ¢$	623910	
Pictou Is., Lightho. E. end	454950	622964	
Cepe George; Station in Ballantine Cove	455140	616432	
Antigonish Har. N. beacon	454149	615256	
Pomquet Island; S.E. Ex.	453917	61445	
Gutor Cansos Light N.Ent.	454142	612842	
PRINCE EDWARD ISLAND.			
North Point ExtremeofCliff	47341	63593	
W. Pt. ; High Water Extr.	463714	64230	
Cape Egmont Stn. on Extr.	462411	$64 \quad 739$	
Bedeque Harbour © Green's			
Wharfi.	462332	634710	
CapeTraverne; Ex. of Cliff St.Peter'n In. I Station S.W.	461317	633851	
Extreme	$46 \quad 669$	631129	
Charlottetown; Flagstaff			
on Fort.............[8]	461355	637	
Prim Point Lighthoune	$46 \quad 310$	$63 \quad 180$	
Panmure Iuland; Lightho.	46.877	62.27 .24	
E. Pt.; Ditn. on ex. of viiff		$61{ }^{6} \mathbf{8} 72$	
St. Peter's Harbour; Sand Hill, E. side of entrance	462644	624368	

Tracad point Grenvi Sand
Richmo Roya Cascum
Cape K
CAPE 1
Bear H
Plaster
Bridg

M^{\prime} Kee

Port Ho
Sonth
Sea Wol on 80 Chetican
Cape St.
Cape No
Cape Eg
Inganich
St. Anne Point
Carey P_{1} entran Cunet Po
Sydney
house 0
Table He
Flint Iol on Nor
Scuiari Is.
Menadou
Cape Bret
Cabarus Cape
Louisburg
Michaux
Extrem
L'Ardoise Steepie
St. Peter $]$
St. Peter 1
West sic

MADAI

Crando-dis
sage; S
Arichat H_{1}
man inla
Point..

GULF AND RIVER OF \&T. LAWRENCE; \&C. CONTINUED.

	max. n.	Low w.	AUTHORITES
Tracadie Harbour, Eastern point of Entrance	462451	$63 \quad 144$	The Surveys by Admiral H.W. Bayfield,1827-60. and Command-
Grenville Harbour, High		6314	er Olebar, R.N.
Sand Hill near Entrance	46.3050	632729	
Richmond Bay: Station on			
Royalty point	463355	53150	
Cascumpeqne Har. Light.	464822	$64 \quad 20$	
Cape Kildare; Extreme . .	465257	635744	
CAPE BRETONISLAND			
Bear Head; Extreme	45336	61176	
Plaster Cove; N. end of Bridge	453866	612336	
M' Keen Point; Extreme	4538.61	612554	
Port Hood; Harbeur Lt.at Sonth Entrance	4600	613140	
See Wolf Island; Lightho. on summit.	462130	611633	
Chetican Point; S. extreme	463622	61258	
Cape St. Lawrence ; N. ex.	47264	603536	
Cape North; N. extreme. .	47335	602458	
Cape Egmont; E. extreme	46811	60183	
Inganioh; Archibald point	464181	602118	
St. Anne Harbory ; Beach Point	461741	603225	
Carey Point ; W. side of entrance of Gt . Bras d'or	461141	602480	
Cunet Point; Extreme	462032	601716	
Sydney Harbour; Lighthouse on Flat Point	461612		
Table Head; Extreme	481314	69674	
Flint Island, Lighthouse on North-east end			
Scuiari Island; Lighthous	$46 \quad 213$	694018	
Menadou Harbour .	46029	694968	
Cape Breton; Extrme	456714	69473	
Gabarus Bay; Church on Cape	45427		
Louisburg , Lighthouse	456434	695716	
Michaux Point; Station on			
	453411	60410	
LArdoise ; R. C. Church Steeple	453645	604569	
St. Peter Island, S.W. Ex.	453564	604839	
Bt. Peter Bay ; Old Fort on Went side of Haulover.	453921	60524	
MADAME ISLAND.			
Grando-digue Lennox Passage; Station	453549	61111	
Ariohat Harbour : Joreoy-			
man island, N. extreme	453025	$\begin{array}{llll}61 & 3 & 7\end{array}$	
Point [............... .	48.20		
	45.20		

NOTES.

1. GULF of S'T. LAWRENCE.-Among the difficulties of the navigation in tho Gulf of St. Lawrence are the fogs and ices. In spring, the entrance and eastern parts of the gulf are frequently covered with ice, and versels are sometimes beset for many days. Being unfitted for contending with this danger, they often sufier from it, and are occasionally lost; but all danger from ice, is far less than that which arises from the prevalence of fogs; these may occur at any time during the open or navigable season, but are most frequent in the early part of summer; they are rare, and never of long continuance, during westerly winds, but seldom fnil to accompany an ensterly wind of any strength or duration. This observation is, however, subject to restriction, according to locality or season. Thus winds between the Sonth and West, which are usually clear weather winds above Anticosti, are frequently accompanied with fog in the eastern parts of the gulf. Winds between the South and East are almost always accompanied with rain and fog in every part. E.N.E. winds above Cape de Monts, at the mouth of the river, are often E.S.E. or S.E. winde in the gulf, being changed in direction by the high lands of the South coast, and have, therefore, in genersl the same foggy character. This is said of winds of considerable strength and duration, and which may extend over great distances. Moderute and partial fine weather winds may occur withont fog at any season, and in any locality. In the early part of the navigable season, especially in the months of April and May, with clear weather, N.E. winds are of frequent occurrence, and they sometimes occur at other seasons, and in every part of the gulf and river.

The fogs sometimes last several days in succession, and to a vessel either running up or beating down, during their continuance, there is no safe guide but the constant use of the deep-sea lead, with a chart containing correct soundings.

The fogs which accompany easterly gales extend high up into the atmosphere, and cannot be looked over from any part of the rigging of a ship. They, however, are not so thick as those which occur in calms after a strong wind, and which are often so dense as to conceal a vessel within hail; whilst the former frequently admit the land or other objects to be distinguished at the distance of half a mile or wors, in the day time.

The denso fogs which ocour in calms, and even in very light winds, often extend only to small elevations above the sea; so that it sometimes happens, when objects are hidden at the distance of fifty yards from the deck, they can be plainly seen by a person 50 or 60 feet up the rigging. In the months of October and November, the loges and rain that accompany easteriy gales, are replaced by thick snow, which causes equu! embarrassment to the navigator.-Admiral Bayfeld.
2. The Island of St. Padl lies N. 52° E., true, 10 milea from Cape North; it is about $1 \frac{1}{4}$ miles in length from North to South, and inclining to the eastward at the North end. Its average breadth is about a quarter of a mile. The margin in rocky and precipitous almost all round, indented on the Northeesst and North-west sides by two coves, in both of which afford shelter during the prevalence of certain winds. The cove on the N.W. affords a small and bold beach, about 150 feet long, where a landing may be effected, but generally with diffioulty, by reason of the continual uwell of the sea.

There is good anchorage all round the island, and close in-shore, which circumstance enables vessels to lie there with any winds, by shifting their stations as the wind and weather require. The current runs generally about 4 miles an hour, and nearly S.S.E.

St. Paul's has been noted for the great number of wreeks which have been found on its shores, arising from the frequent fogs and tempestuons weather, the uncertain currents, and abrupt nature of its coast, \&e. : but on this inland are now two lighthouses, one near its northern, and the other near its southern extremity; of which, one will always be open, unless to a vemel near the central rocks. The northern light, brilliant and fixed, is about 130 feet above the level of the sea; it can be seen to the mouthward on any bearing execpting between N. by E. and E. by N., when It in obscured by the hills to the southward of it. The nouthern light may be mecn
from the northward on any bearing except between S.S.B. and Weut, when it is obscured by the hills to the northward of it. Range of light from each tower, six: leagues. Boats to render assistance, and gans for signals.
3. The Magdalen Islands.-These islands have been surveyed by Lieutenant P. E. Collins, in 1833, and a beautiful chart of them has been published by the Admiralty. They form an irregular group, and are named respectively, Entry Island, Amherst, Grindstone, Alright, Wolfe, Grosse, and Cofin Islands; exclusive of Bryon or Crose Island, and the Bird Islets, which lie more to the North. Of these, Amherat is the most sonthern and principal island, but Entry Ioland is the highest, and is 580 feet above the sea; visible from 8 to 9 leagues off.

It often happens, from the prevalence of westerly gales, in the fall of the year, that ships bound to Quebec, after entering the gulf, have been driven out again, or they have contended until their crews were worn out, and have gone to the low ports for cargoes, when, by taking an anchorage, they would have secured their passage. These islands may be approached, generally, by the lead, to 7 fathoms of water.

Bryon or Cross Island.-The North side has stoep cliffs of red sandstone, firm which reefs extend 2 or 3 miles. Approach no nearer than in 8 fathoms. On thu South side there is good shelter, with North and West winds, in 6 fathoms, saidy bottom, the East end of the ialand bearing E. by S., and the reef to the westward bearing West. In this road is a strong underset, which makes a ship at her anchors, roll heavily.

These inlands are fully desoribed in the British American Navigator, pp. 87-89.

4. Anticosti.-This island, with one exception, has no bay or harbour capable of affording shelter to shipping in general: it is uncultivated; yet, rude and unhospitable as its aspect may be, it is not absolutely unprovided with the means of succouring the distress of such as suffer shipwreck on its coasta, there being government agents who reside upon it, (and, with the lighthouse keepers, are the sole inhabitants,) at different stations, all the year, furnished with provisions for the uso of those who have the misfortune to need them. Boards are placed in difficrent parts, describing the distance and direction to these friendly spots ; these establishments were first made in the year 1809.
$"$ One of thene provision posts is at two leagues to the S.E. from the West end of the island, in Fllis's Cove or Grand Bay! the second at the lighthouse at the S.W. point; the third at Shallop Creek, otherwise called Jupiter River; and the fourth ai ${ }^{\text {i }}$ the eastern lighthouse on Heath Point."

The South shore of the island is dangerous; bat, to modify its character, four beacons have been erected-1. With a small triangular head, 40 feet high, on the South point. 2. At Pavillon River, large triangle, with cross over. 3. Six miles East of Salt Lake Bay, large triangular head. 4. On Cape St. Mary, with a eross (1851).

6. LABRADOR.-The Descriptions and Directions by Captain Bayfleld, of

 this hitherto but little-known region, are given in the "British American Navigator," p. 91, \&c.6.-QUEBEC.-In the early editions of this work, the longitude of Quebee was tated to be $71^{\circ} 10^{\prime}$, "according to the observations of M. lo Marquis de Lotbiniere, M. Bedard, Director of the Seminary of St. Louia, and Captain Holland, M. Mechain computed the longitude to be $71^{\circ} 10^{\circ}$, by several eclipses of Jupiter's frat satellite, bbserved by Messrs. Lotbinierco and Holland; and the passage of Venus that Captain Holland observed in 1769 . All the observatione, made at difforent times, have given rery coherent results."-Vide American 2 rame., vol. i., \&s.
The abovo passage, from "Analyais of a General Chart," \&o. Pariy, 1786, shows ho position in which Quebee was laid down in the Charts $;$ and it agreed with that fiven in the "Connaissance des Temm." But Quebeo wes nfterwards extitited conlderaiby more to the eastward. Mr. Wright, in his chart of 1807, made it $70^{\circ} \mathbf{2 7}{ }^{\circ}$. Tho Requisite Tables, of 1802, gave latitude $46^{\circ} 48^{\prime} 38^{\prime \prime}$, longitude $71^{\circ} 5^{\prime} 5^{\prime} 22^{\prime \prime}$. Colonel Bouchette, in hils work on Canada, 1815, given $46^{\circ} 48^{\prime} 49 \mathrm{~N}$. , and $71^{\circ} 11^{\prime} \mathrm{W}$. In the
years 1819, 1820, and 1821, the officers of H.M.S. Newoastle, provided with fopr chronometers, made many observations in the river; and these observations may be judged of by the longitude they placed Quebec in for three successive years, assuming Halifax as in $63^{\circ} 33^{\prime} 40^{\prime \prime}$; July 16th, 1819, $71^{\circ} 12^{\prime} 48^{\prime \prime}$; June 19th, $1820,71^{\circ} 13^{\prime} 14^{\prime \prime}$; July 5 th, $1821,71^{\circ} 12^{\prime} 25^{\prime \prime}$. The greatest difference is 49^{\prime}, and the mean of the whole is 1^{1} farther West than longitude given in 1819.

From these and other observations combined, the late Mr. Purdy placed Quebeo in longitude $71^{\circ} 13^{\prime}$, in the charts, \&\&., whioh he constructed, as they still remain.

When the eharts of Captain H.W. Bayfield were published in 1837, they were based upon a longitude of $71^{\circ} 16^{\prime} \mathrm{W}$. for Quebec. This has been shown to be in error nearly $8 \frac{1}{8}$ minutes of are, by electric telegraphic signais transmitted between Quebec and Cambridge Observatory, in Massachusetts, by Lieut. E. D. Ashe, R.N., in September and Octaber 1857.

The position of Cambridge, as will be seen in the Note on that longitude on a subsequent page, is definitely settied as $71^{\circ} 7^{\prime} 58^{\prime \prime} \cdot 55$, and the mean difference between that observatory and the Observitory in Mann's Bastion in the Citadel of Quebec, as determined by LieutenantAshe, is $0^{\circ} 4^{\prime} 34^{\prime \prime} \cdot 17$, which ${ }^{\prime}$ laces Quebec in $71^{\circ} 12^{\prime} 32^{\prime \prime} \cdot 72$.
7. Montreal.-The longitude of Gate Island, opposite the Cathedral, and the Hotel Dien, is given by Captain Bayfield in $73^{\circ} \mathbf{3 4} 4^{\prime} 38^{\prime \prime}$ (erroneously on Admiralty Charts, as $68^{\circ} 54^{\prime} 88^{\prime \prime}$).

Lieutenant Ashe, R.N., as stated above, in continuation of his work on electric time-signals, obtained the difference of longitude between Quebee and Viger Square, 630 feet west of Gate Island, on Marah 12th, 1857, as $2^{\circ} 20^{\prime} 45^{\prime \prime} \cdot 5$, which makes it in longitude $73^{\circ} 33^{\prime} 18^{\prime \prime} \cdot 12$, as shewn in the Table.
8. Charlottetown and Prisce Edward's Ibland.--The position of the flag. staff in the Fort of Charlottetown, has recently been given by Rear-Admiral Bayfeld as $46^{\circ} 13^{\prime} 66^{\prime \prime}$, lon. $63^{\circ} 7^{\prime} 23^{\prime \prime}$ W. It had been before placed 3^{\prime} more to the West, but the exact difference of longitude between this pcint and Quebec, has lately been dotermined by the electrio telegraph, as $8^{\circ} 5^{\prime} 26^{\prime \prime}$

VARIATIONS OF THE COMPASS.-1861.

There is no part of tho world where the secular change in the magnetic variation in proceeding at e greater rate than in the vicinity of Labrador, and the N.E. portion of Newfoun lland. This fact is very important in connexion with the fine surveys which havo been made at periods of from 30 years since to the present time, inasmuch as the variations given at their completion, will vary from one-third to half a point from what it is at the present period.

At St. \because aul's Island, it is about $26^{\circ} 40^{\prime} \mathrm{W}$. 1 at the Magdalen Islands, $26^{\circ} 16^{\prime}$ W.; Eant point of Anticoati, $27^{\circ} 12^{\prime}$ (in 1852); at the West Point, $27^{\circ} 0^{\prime} W_{\text {. }}$; at Wapitagun Harbour, in Jabrador, $32^{\circ} 17^{\prime}$ (in 1859); at Kegashlca Bay, $31^{\circ} 9^{\prime}$; at the Bay of Seven Islands, $25^{\circ} 0^{\prime}$ W.; a. Point du Monts, $24^{\circ} 0^{\prime}$ W.

River St. Lavores:ce.-At the entrance of the Saguenay River, $10^{\circ} 0^{\prime}$ W. ; at Quebee, $1 e^{\prime} 22^{\prime} \mathrm{W}$. ; at Montreal, $10^{\circ} 0^{\prime} \mathrm{W}$.

At Charlottetown, Yrince Edicard Island, $22^{\circ} 50^{\prime}$ W. $;$ Miscor Island, ontranco of Cinalour Bay, $23^{\circ} 10^{\prime}$ W.: at Sydney Harbour, Capo Breton Island, $24^{\circ} 18^{\prime}$ W. Louisbourg Harbour, $24^{\circ} 21^{\prime}$ W.; at Gabarus Bay, $23^{\circ} 40^{\prime} \mathrm{W}$.

These variations ars now increasing at the rate of 5^{\prime} or 6^{\prime} per annum.
$\mathrm{Mr}, \mathrm{Bain}$, in his ". Eseay on the Variation of the compass," noticed a frequent and remarkable aberration which hes been found on approaching the vicinity of Capp Chatto. He says, "In the River of St. Lawrence, the shange in the variation should be most particularly attended to, as it leads a ship, both in going up and coming down, on the coast most to be avoided." Mr. B. has shewn that, in coming down, in May, 1813, he found it necensnry to steer a different course from the opposite one followd in going up, under very similar circumstances, a few days bofore. The difference erceeded a point. Both in going up and down, there wan a breeze of 8 and 9 knoth weather uncommonly fine, and every cireumatance extremely favourable for remarka
d with towr tions nay be uss, assuming , $71^{\circ} 13^{\prime} 14^{\prime \prime}$ of the whole
laced Quebeo 1 remain.
37, they were nown to be in itted between 1. Ashe, R.N.,
longitude on a rence between lel of Quebec, $71^{\circ} 12^{\prime} 32^{\prime \prime} \cdot 72$. edral, and the on Admiralty
ork on electric Viger Square, oh makes it in
tion of the flag: dmiral Bayfeld , the West, but lately been de-
gnetic variation he N.E. portion the fine survey! time, inasmuch to half a point
nds, $25^{\circ} 16^{\prime} \mathbf{W}$. V. ; at Wapits$9^{\prime}$; at the Bay
0^{\prime} W. $;$ at Quo
and, ontranco of $\mathrm{nd}, 24^{\circ} 18^{\prime}$ W.;
um.
a frequent and vicinity of Cap variation should id coming down g down, in May ite one followed ho difference ex 8 and 9 knoth blo for remarks

Subsequent to the above period, the Zealous, ship of war, had a very narrow escape in going up the river, the compasses in the binnacle, being so much affected by local attractions, that, had the fog zot cleared away at the moment it did, the ship must have run on shore, not far from Cape Chatte, she being in 12 fathoms. But in a subsequent part of this work, will be found some remarks which demonstrate that this aberration only occurs when the vessel is close in shore.
14. NOTA sCOTIA, ETO.-(Southiern Coabts.)

	zat. N.	IoN. w.	AUTEORTtise.
	-., "	- , "	
SABLE ISLAND : [1]			The Surveys by Admiral H.W.
West Flagstaff	432824	$60 \quad 315$	Bayfield, and CommandersShort-
West extreme of Grassy			'and and Orlebar, R.N., 1827.60.
Sand Hills	495644	$60 \quad 856$	
East Extreme	435857	59 45 58	
The MAJNLAND : [2]			
Cranberry Is. ; Lightho.	451945	605654	
Canso Harbour ; Cutier 18land, S.E. Extreme	452042	605927	
- ; Steeple of Church	452010	615925	
White Head Island ; Light.	451158	61 8	
White Haven; Observation station in Marshall Cove	451437	611143	
Borry Head; Extreme	451187	611858	
Mew Harbour Head; Nob	$45 \quad 97$	612821	
Harbour Island ; N.E. Pt.	45-825	613649	
Isaac Harbour ; Red Head, summit	$45 \quad 939$	613862	
Country Harbour ; Station			
Hollins Head; summit ..	45419	614457	
Wedge Island ; Beacon .	$45 \quad 036$	612247	
St. Mary River; above			
Episeopal Church.......	45812	6158	
ship Point	45028	6218	
Mary Joseph Harbour ;			
Lobster Point extreme. .	445753		
Beaver Island ; Lighthouse	444933	622038	
Salmon Riv. $;$ W. of wharf Sheet Harbour ; $\&$ mile	44 64. 32	622338	
N.W.tromWateringCove	443411	623037	
Taylor Head : summit....	444724	62338	
Pope Harbour; Harbour	444750	32 3910	
Ship Harbour ; Islet near			
Salmon Point	:4 4659	624913	
Egg Toland; Centre	443980	62520	
Jedore Harbour; Marsh Pt.	444319	$63 \quad 039$	
Jedore Rock ; Centre	443949	33 0 57 1	
Jedore Head; Point . ${ }^{\text {a }}$	444022	63 3 314	
Graham Head s summit ..	443744	${ }_{68}^{63} 178$	
Wevil Ioland ; Lighthouse	443448	632751	
house, Maugher Beach. .	44306	633218	

Laurenceton Head; sunmit
HALIFAX; Dockyard Observatory [3]
Holderness Island, on the S.W. side of Margaret's Bay
Green Island; off Mahone Bay
Cross Island; of Tuvenburg Harbour ; Liklithouse. .
Cape Le Have; Irorbound Ioland; Livinthnnse....
Medway Head; A © niralty Head, Lightherwse.
Coffin's Island Lighthouse, near Liverpool Harbear
Mouton or Matoon Island
Shelburne or Capo Rosereay Lighthoure on Macnuit Island
Baccaro Point Light on East side of Port Latsur
Irasil Rocis
Sosi Island; Lighthouse; hale mile from S. point
Cape Pourchu, near Yarmoutin; Lighthouse....
Bryer's lilaná; Lighthouse
Point Prim; Lightho. (Entrance of An as in is Basin)
BlackRock Point Iightho.
Horton Bluat; Lighthouse
Partridge Island Light, in the Mines Channel
Cape Chisnecto
NEW BRUNSWICK.
Cape Enrage; Ligh'house
Quako Head; Lighthouse Partridge Island; Lightho. City of St. John
Point Lepreui; Lighthouse

LAT. N.	Low.	AUTHORITIES.
- . ${ }^{\text {c }}$	- '"	
44 44.38 44	$\begin{array}{lll} 63 & 17 & 23 \\ 63 & 21 & 35 \end{array}$	The surveys by Admiral Bhy field 1853.

Thessurvey made by Mr.Joseph F. W. Dee Darres, $17 \% 0$, with vabsequent mendations.

The surveys by Counmander Shortland, R.N., Admiral Bayfield 8:c.

Lieuts. Harding and Kortwright, R.N.

43	23	34	66	1	50

43	47	30	66	10	18
44	14	57	68	23	2

$\begin{array}{lllllll}44 & 40 & 50 & 65 & 57 & 49\end{array}$

45	10	48	64	48	30
45	6	15	64	2	30

43	23	0	64	8	30
45	22	0	04	18	

45	36	0	64	47	10
45	19	36	65	22	34
45	14	2	66	4	0
45	15	30	66	4	18
45	3	00	66	27	33

The surveys by Admiral Buy.
$4420 \quad 0 \quad 64 \quad 7 \quad 0$

4

 ,43

$$
14
$$

$$
\begin{array}{l|l}
r & 43 \\
\hline & 43
\end{array}
$$

NOTES.

1. Sable Island.--On this island 'here is an establishment $p+$ the of ship-wrecked mariners.-Nova Scotia 1 The establishment was for 4 , 1803 , by the Provincial Legislature of Nc otia, at the recommendatio: as late Sir John Wentworth, then Lieutenant-Governor; and has since prover is wcans of saving many lires. To the annnal grant is now added an equal sum frow rie. Tmperial Government.

The houso occupied by the superintendent stands on the North side, is 215

움버렬
臭

ORTYIEA.
by Admiral Bay-
made ny Mr. Joseph fares, $17 \% 0$, with aendations.
yes by Commander LN., Admiral Bay-
larding and Mort-
ant $f r$ the $-i$ of vas for rover 1803, ndation o: cos late rover as. scans of sum frow ri. is Tope-
fathoms from the West end of the Grassy Sand Hills, ir 1852. Neaxit is the West Flagstaff; the East Flagstaff is 2,280 fathoms from the "Northeast end of the Grass Sand Hills, and the middle Flagstaff is on the South ide of the Island. There are residents at each flagstaff to afford assistance. There are several fresh-water ponds, is shown on the particular chart; but, wherever the surface is :moist, fresh water mary be cishained by digging from 1 to 3 feet deep.

The Signals established, and used to communicate with the island, by any vessel visiting or nosing, are explained in the Colombian Navigator, 1832, vol. i. pi xviii. Th flag ne g on the island is red, white, and blue, horizontally. A gun fired, parcicuiarly th inly weather, will draw the attention of the inhabitants.
2. NOVA SCOTIA. -The coasts of Nova Scotia have been heretofore laid down from the surveys of Mr. Dis Barres, with emendations by Mr. A. Lockwood, R.N., and various corrections in position by Admiral Owen and others. Since the completina of the ancrey of the Canadian coasts, our Admiralty Surveyors, Admirals Bayfield and I. W. Owen, with Captains Shortland and Orlebar, have been proceeding with the reexamination of the S.E. shores of Nova Scotia, and those of part of the Bay of "andy, the results of which, as far West as Halifax, as shewn in the table.
-We have noticed, in a former work, that the bulk and price of the showy work of M. Des Barres, never suffered it to come into general use; and, consequently, the new names which he assigned to different points and places have remained generally unknown. Mr. Lockwood says,-" The original names of the places are restored, by which only they are known to the inhabitants and fishermen. M. Des Barres, in attaching to them the names of noblemen, and men of power, has made his charts of less value ; and, in one or two instances, has created serious blunders. Inquire of the people of Jedore for Port Egmont, or those of Sheet Harbour for Port North, they know them not; nor would they ever be induced to adopt them. Jestico, a harsh, unpleasant, and unmeaning name, is preferred to Port Hood, although the latter is more pleasing to the car, and pronounced and recollected with ease: all attempts to change the rude Indian names for others of a finer texture have failed; even New Jerusalem and Acadia have expired." This complaint was also repeated by French authors. In the reedit charts, however, the name Port Howe is made to supersede Raspberry Harbour.
3. Halifax.-In former editions of this work the following appears :-"The latitude of the Naval Yard of Halifax, from observations very carefully made by the officers of H.M.S. Niemen, in 1822 ,was $44^{\circ} 39^{\prime} 37^{\prime \prime}$. This was gained by eleven meridian altitudes with the artificial horizon, and several observations made on each side of noon at small intervals; the mean true altitudes being computed from the hour angles. The longitude, $63^{\circ} 33^{\prime} 43^{\prime \prime}$, was obtained as the mean result of more than 30 gets of lunar distances. We formerly gave the longitude of M. Decs Barres, \&co., as $3^{33^{\circ}} 32^{\prime} 40^{\prime \prime}$, and therefore presume that a statement of $63^{\circ} 37^{\prime} 48^{\prime \prime}$, which has lately appeared, is 4 ' too far West."

Captain Bayfield, as above stated, assumed the longitude of the Dockyard, in his surrey to be $63^{\circ} 37^{\prime \prime} 48^{\prime \prime}$. The late Admiral W.F. Owen, in H.M.S. ship "Columbia," in 1844 , made it $63^{\circ} 35^{\prime} 28^{\prime \prime}$ W. The late respecter Lieut. Raper, takes it as a secondPry meridian as $63^{\circ} 37^{\prime} 26^{\prime \prime}$, or, as Captain Bayticla.

Recent observations shew that 3 . . Lee Barres longitude is as near the truth, asci lentally perhaps, as that rear: tug from the record operations of Admiral Bayfield, mean between the two prisons being that which must now be adopted.
In the determination of this, and of other longitudes, the Nectric Telegraph has lecided the question beyond controversy.
The difference of longitude between Cambridge Observatory, Massachusetts, and hat of Halifax T/ookyard, has Den determined, electrically, by Professor Bond, and Captain Shorthand, R.N., to be $0^{\mathrm{h}} 30^{\mathrm{m}} 9^{\prime}$ in time, or $7^{\circ} 32^{\prime} \underline{2} 3^{\prime \prime} \cdot 45$ in arc. This meritihal difference applied to the determined longitude of Cambridge, as shewn in tho ore, or $71^{\circ} 7^{\prime} 58^{\prime \prime} 55^{\prime \prime}$, makes Halifax Dockyard Observatory to be in $63^{\circ} 38^{\prime} 35^{\prime \prime}$. W. North side io 215

POSITIONS OF PLACES

4. Sens IsLand.-"M. Des Barres places tho southernmost point of the southern Seal Iele in lat. $43^{\circ} 25^{\prime} 25^{\prime \prime}$, and lon. $66^{\circ} 0^{\prime} 35^{\prime \prime}$. Later charts have itin lat. $43^{\circ} 26^{\prime} 35^{\prime \prime}$; but our correspondent, Lient. Hare, gave the latitude of the South point $43^{\circ} 22^{\prime} 23^{\prime \prime}$, ef four miles more to the southeoard. . This result, since confirmed, will account for so many ahips having been yesily cast away, on coming out of the Bay of Fundy. A very strong in-dranght, Foth on the ebb and flood, sets toward the isles, and in the vicinity, equal to 4 tats an hour, and they should not be approached without a commanding breeze."

VARIATIONS OF THE COMPASS-1861.

At Sable 1sland, $21^{\circ} 40^{\prime}$ W.; at Cape Canso, $22^{\circ} 30^{\prime}$ W.; at Country Harbour' $21^{\circ} 40^{\prime}$ W.; at Indian Bay, $20^{\circ} 35^{\prime}$; Marie et Joseph Bay, $20^{\prime \prime} 40^{\prime}$ W. 3 at Sheet Harbour, $20^{\circ} 10^{\prime} \mathrm{W}$; ; at Jedore Head, $20^{\circ} 10^{\circ} \mathrm{W}$. ; at Halifax, $19^{\circ} 35^{\prime} \mathrm{W}$; at Liverpool Bay, $18^{\circ} 0^{\prime}$ W.; Cape Roseway, $17^{\circ} 0^{\prime}$ W.; Cape Sable, $16^{\circ} 6^{\prime}$ W.; Basin of Mines, $20^{\circ} 0^{\prime}$ W.; St. John's, New Brunswiek, $18^{\circ} 5^{\prime}$ W.; Great Manan Island, $17^{\circ} 0^{\prime}$ W.
15. THE UNITED STATES.

	lat. n.	Lons. w.	Authorities.
P			The surveys by S. Holland,
Passamaquoddy Bay; Light			Esq., with subsequent correc-
on Quoddy Head	44490	66570	tions.
Mittle River; Light at ent.	443922	671035	
Mechins Lightho, on E.one(Brit.)	44300	67.530	
Machias Bay, Light on Tibby Island			
Moose a-bec or Moose peak;			
Mistake Island Light ..	442852	673143	
Petit Manan ; Lighthouse on 8 . end \qquad	44220	67520	
Mount Deeret Island; Station at S.E. end . . .			The Triangulation mode
MountDesert Rock; Light.	436930	$68 \quad 441$	Survey, under the guperinten.
Isle au Haut; Light on Saddle Back Islet	$41 \quad 147$	$68 \quad 349$	dance of Professor A. D. Bache.
Matinicus Rock; Lightho.	$43 \quad 5115$	68.4758	
Penobscot Bay; Ragged Mountain on W. side.	441244	$69 \quad 912$	
- Owls Head Lightho.	44610	69	
ManheganIsland; Lightho.	434615	691825	
Cape Small ; Station 5 miles North of Cape ..		695054	mary triangulation aro distin. guished by small capitals.
Portland Head; Lightho.	432722	701238	
Cape Elizabeth; E. Light	433656	701210	
Fletcher's Neck; Light on Wood Island	432723	701954	
Cape Porpoise Harbour ;			
Light on Goat Island ..	43200	702814	
Cape Neddook, Station .	43101	70367	
York Harbour; Light on Boon Island	43715	702844	
Nrw Hampshink.			
Agamenticus Hill; station on summit	431323	704141	

te southern

 $43^{\circ} 26^{\prime} 35^{\prime \prime} ;$ $43^{\circ} 22^{\prime} 23^{\prime \prime}$, ount for so Fundy. A , and in the hout a com-y Harbour' Sheet Harat Liverpool n of Mines, $17^{\circ} 0^{\prime} \mathrm{W}$.
S. Holland, uent correc-

ATION made "ates' Coast superinten.D. Bache.
s of tho priaro distinprals.

THE UNITED STATES-Continumd.

- ;Minot's Ledge ; Light

Scituate ; UnitarianChurch
Plymouth Harbour; Pier Head
Sandwich ; Church Spire..
Barnstaple; Beach Point Light.
Billinsgate Point Lightho.
Cape Cod; Provincetown, Orthodox Church Spire
-: Race Point; light.
-; Highlands Lightho.
-; Nausett centre Light
Monomoy Island; Light at S. end
Nantucké Island; Clifr W. of Harbour.
-; S. towered Church - ; Light on Great or N.E. Point
-; Sankaty Head Light - ; Tuckanuck ; Telegraph at W. end $\ldots .$.
Davis South shoal, Lightvessel, about
Muskeget Island; N.E. pt. Martha's Vinoyard; Cape Poge Lighthouse
-; Edgartown; Spire
-; Holmes' Hole ; spire -; West Chnoi, "North point Light -; Indiañ Iilll on N.W. side . -; Gay IIcad; Lightho.

4216 9
421159
704536
415844
703927
414526
703014
414319
$41 \quad 61 \quad 37$
$7017 \quad 7$
$70 \quad 4 \quad 34$
42 • 52
$42 \quad 342$
$42 \quad 2 \quad 21$
415136
413333
411733
411654
$412322 \quad 70 \quad 269$
411615
411812
405630
412012
$412{ }^{2}:$
$4122: 3$
412855
4120
4120 \%

695953
$70 \quad 7 \quad 7$
$70 \quad 6 \quad 11$
701131
701451
$70 \quad 353$
$69 \quad 5718$
$70 \quad 269$
695810
701513
$6952 \quad 0$
701813
702720
703120
703634
703626
$7040 \quad 55$
$7050 \quad 23$
*** For the purposos of the Survey, the coast of the United .States is divided into eleven sections, (nine of whioh are on the Atlantio Coast) in ell of which the work is carried on simultaneously, tho Survey being in different stages of progress in the several sections. These several sectiuns are defined as follows:- Soction I. From Passamaquodjy Bay to Point Jndith. Section II. From Point Judith to Cape Henlopen. Section III. From Cape Henlopon tc Cape Henry. Section IV. From Cape Honry to Cape Fear. Section V. From Cape Fear to the St. Mary' River. Section VI. From tho St. Mary's River to St. Joseph's Bay. Section VII. From St Josepn's Bay to Mobile Bay. Section VIII. From Mobile Bay to Vermilion Bay. Section IX. From Vermilion Bay to the Rio Grando. Section X. Ooast of California, San Diego Bay, to 42nd parsilol. Section XI. Coast of Oregon, 4ind to 49th parallel. The Tahles give the latitudes and longitudes of the trigonometrical point in each seotion. The manner in which these data have been obtainod may be briefly explained here:

THE UNITED STATES-CONTINUED.

No Man's Land; Station on centre
Cuttyhunk; Light on S.W. Point
Nashon Island; station
Nobska Liglthouse
Mattapoiset ; Lt. on Ned's Point
New Bedford; Fort
Seconnet Point, East Rock Rhode Island.
Newport; Spire ; Beaver Tail Light
Quaker Hill, near N. end
Bristol; Court House
Providence; Unitarian Ch.
Point Judith ; Lighthowse
BlockId.; Lighton N. point
W; Beacon Hill at S. end
Watch Hill ; Lighthouse..
Connecticut and New
YoRk.
Long Island Sound
Montauk Point;Lightho.
Plum Id. Lighthouse ..
New London; Presbyterian Church spire....
ConnecticutRiver; Light on Saybrook Point . .
Falkner's IslandLightho.
Newhaven; EpiscopalCh. Min Light on Five Mill Point.
Stratford Point; Light.
Throg's Neck; Lightho.
Lands Point Lighthouse
Eaton's Point ; Lightho.
Old Field Pt., Lightho.
Horton's Point Lightho.
Long Island, South side; Shinnecoik Bay N. point
Fire Island; Lighthouse. .
NEW YORK; City Hall
taff ; Navy Yard Flag-
NEW JEREEY
Sandy Hook; Lighthouse
Highlands of Navesink; lighthouse
Barnegat Inlet ; Lightho..
Little Egg Har.; Boarding House at North end of Tucker Island
$\because \cdot .$.
Absecum Inlet; Light on South side.
Cape May; New Lightho.

Lat. \%.	Low. 7.	AUTHORITIES.
-	,	
		The Great Taiangulation
41150	70 会 4	${ }^{\text {a }}$ de for the United Sates'
		Coast Surver, under the su-
4124 ¢0	70.4140	perintendance of Professor A.D.
412923	704448	Bache.
413050	703936	
41391	70481	
413725	705425	
41272	711153	
412912	71195	
412654	712415	
413455	711531	
414010	711646	
412926	712435	
412128	$\begin{array}{llll}71 & 29 & 10\end{array}$	
411327	$\begin{array}{llll}71 & 34 & 48\end{array}$	In each section a base line of
411030	$\begin{array}{llll}71 & 36 & 27\end{array}$	rom five to ton miles in length is measured with all possible accu-
411812	715148	measured with all possible accuracy. A series of triangles, deriving the length of their sides from this base, is then established along
41413	$\begin{array}{lll}71 & 51 & 42\end{array}$	the coast, by the measurement of the angles between the intervis-
411024	721258	ible stations. In this primary series the triangles are made as
412116	7266	large as the nature of the country will permit, because the liability
411615	702052	to errorincreases with the number
411241	723930	of triangles. On the bases furnished by the
411811	728549	On the bases furnished by the sides of the primary triangles, a
411464	725451	sacondary triangulation is next established extonding along the
4189	$\begin{array}{ll}73 & 6 \\ 73 & 29\end{array}$	coast, and over the amaller bayo
404817	$\begin{array}{llll}73 & 47 & 36\end{array}$	and scunds, and determining a
405155	7344	largo number of puints at distan-
405712	732361	ces of a few miles apart.
405834	73724	The distances between the points
4150	722651	thus determined, as givon in the Tables, are liable tir an average
40510	763036	error oi about one foot insix niter,
403763	731251	until a final arljustanent betweon the base liaes shall have ween
404243	$74 \quad 39$	the base baes shall have neen made.
40422	73596	Ls, on the completion of the priy triangulation in each section, several series form one con-
402739	74024	uncted chain, the different bases
402342	738925	aiford verifications of each other, and of the triangulation connect-
394549	74641	ing them. The first three sections are thus coinected at present.
393048	741812	
3928	742535	
385550	746751	-

innaulation ITED SATEs' under the surofessor A.D.
a a base line of iles in length is 4 possible accutriangles, deritheir sides from stablished along te measuremient een the intervisIn this primary ;los are made as re of the country use the liability with the number
furnished by the ary triangles, a fulation is next ding along the the smaller bays determining a points at distanapart.
etween the points as givon in the o ty an average foot insix miles, ustanent between shall have veen
pletion of the priin in each section, 3 form one con. - different bases as of each other, gulation connectfrst three section d at present.

[...	L4***	Lox. w .	Avtionitise.
		- - "	
Delaware Bay and River ;			The Great Trianculation
Egg Inland Lighthouse	391031	$\begin{array}{llll}75 & 8 & 37\end{array}$	made for the Unitid States
Cohansey Lighthouse	392018	752145	Coast Survex, under the su-
Philadelphia;GirardCol-			perintendence of Profensor A.D.
lege $\ldots \ldots \ldots$........	395823	751030	Bache.
-; Navy Yard	395547	7588	
Wilmington ; Light at			
Christiania River......	394815	753132	
Bombay Hook ; Lightho.	392146	753055	
Cape Henlopen; High			
Lighthouse	384838	$75 \quad 619$	
Indian River ; Salt Works $\ldots ~$	383535	$75 \quad 350$	
Virainia.			
Assateague T.A. ; Lightho. at Southenci.	376437	752140	
Hog Island; Lighthouse at			
South end	372318	754212	
Cape Charles; Lichthouse	$37 \quad 748$	$75 \quad 5248$	
Chesapeake Bay			
Sandy Point; station on.E. side	373838	755654	
Tangier Island; station on T, side	3) 4754		
Sharpo'sIsland; Lightho.	383744	762231	
Baltimore; Le retto.	391539	763514	
WASHINGTC ; Cap-			
itol Dome	385320	$77 \quad 051$	
\%; National Observe [4]	385339	$77 \quad 323$	
Potomae River ; Smich's			
Point Light	375314	761434	
Cape Henry; Lighthouse North Carolina.	383529	$76 \quad 048$	
Entrance to Pamlico Sound; Body Island Light	354721	753120	
Stevenson's Point; North			
side Albemarle Sound[5]	36618	761043	
Cape Hatteras; high Light.	351511	763033	
Omit Extremity......	351450	753040	
Ocracoke Inlet; Light on West end of Island	35631	755828	
Cape Lookout; Lighthouse	343720	763041	
\bigcirc; Extremity	343160	763110	
Beaufort Inlet; S. Light			
near Fort Macon	344143	7840	
Bogue Inlet ; Entr., about	34380	7760	
Cape Fear River; Light on			
Federal Point	33584	775453	
Cape Fear; Lighthouse on			
Bald Head..	335218	775949	
Tittle ; South Extreme..	334955	77.5730	
Little River; Entrance South Carolina.	33410	783430	
Geergo Town; Light at			
Entrance of Pedee River	331331	$79 \quad 644$	

	Lat. N.	Los. W.	AUTHORITIES.
	- '	- ' ${ }^{\prime}$	
Cape Romain; Light on			The Great Triangulation
Raccoon Key $\therefore \therefore . .$.	3314	7917 6	made for the Unired Statrs'
Bull's Bay; (Refuge har-			Coast Survey, under the' an-
- bour) Light at N. end of			perintendence of Professor A.D.
Bulls Island	3265.42	793033	BAOHE.
Charleston; Lighthouse on Morris Island, at W. Ent.			
Morris Island, at W. Ent.	324165	795229	
\qquad St. Michael's Ch.[5] North Edisto River; East	324633	796538	
North Edisto River ; East end of Base line $1 \frac{5}{4}$ miles W. of Entrance			
St. Helena Sound; Light-	$3283 \quad 17$	801320	
ship at Entrance.....	322444	802131	
Savannah River; Tybee			
Lighthouse	32121	805033	
Savannah; Exchange Spire	$\begin{array}{lll}32 & 4 & 53\end{array}$	81	
Sapelo Bar ; Blackbeard Psland, East Point	313010		
St. Simon's Sound; Light-			
house on N . side	31346	813229	
St. Andrew's Sound; Light			
on Little Cumberland Id. Florida.	305332	813225	
St. Mary's River ; Light on		3	
N. end of Amolia Island	303926	813054	
Fernandina; Railroadwharf	304017	812742	
St. John's River ; Light-			
St. Augustine Inlet; ${ }_{\text {Light }}^{\text {L }}$	302142	81.2730	
on Anastasia Island....	295048	811911	
Cape Canaveral ; Light. . .	$28 \quad 270$	80330	
Jupiter Inlet ; Lighthouse	265526	8056	
Cape Floxida; Lighthouse on Biscayne Key . [7]	25410		
Florida Reefs; Lighthouse	25410	$80 \quad 30$	
near Coffin's Patches . .	243746	81643	
\longrightarrow; Sand Key Lightho.	242630	815112	
Key West; Lt. on S.W.pt.	243232	814920	
M-Tifts Observatory	243331	81.470	
Marquesas; S.E. point .-	243254	82532	
Dry Tortugas; Lighthouse on Bush Key	243720	825340	
Cape Sable ; Fort Poinsett	$25 \quad 6 \quad 0$	8190	:
Cape Romano	$25 \quad 51$	81570	
Sanibel Island, East	262730	8210 -	
Tampa Bay ; Egmont Key Lighthouse	2736 0	824545	
Anclote Keys ; Inlet	$2817 \quad 0$	82540	
Cedar Keys; Lighthouse on Scahorsc Key	$\begin{array}{lll}29 & 5 & 45\end{array}$	$\begin{array}{llll}83 & 4 & 50\end{array}$	
St. Marks Harbour Light.	30	841037	
Dog Id. ; Lt. near W. end	29460	843442	
Cape St. George ; Lightho.	293610	845838	
Cupe St. Blas; Lighthouse	294141	852434	
Pensacola Bay; Lighthouse	30190	87.1724	

POAITIONS OF PLAUAS.

THE UNITED STATES.-CoNTUNU

inNoulation CTRD States nder the surofessor A.D.

Lax. \%.	Lon. W.	\therefore Avthomitma.
-	- .	
		The Great Trinaulation made for the United States
301348	88025	Coast SURvey, under the buperintendance of Professor A.D.
301427	881353	Backe.
304126	88,129	
301321	883058	
301265	88571	- 42.
$30-322$	885149	
29883		
$28 \quad 5838$	$8921 \quad 0$	
295730	$90 \quad 218$	
2940	901630	
2919.30	91330	
29 48 65	985019	
292235	944540	
291814	944633	
282068	962357	
272353	965630	
26.452	97114	

NOTES.

GENERAL NOTE.-In the year 1807, the United States'Legislature determined upon the survey of the coast. This was not properly commenced until 1817, when some base lines were measured, and triangles taken. In 1832 the operations were resumed, under its original superintendent, Mr. F. R. Hassler.

In 1842, a plan was drawn up by Congress for its further organization, under which it has since continned under the able superintendance of Professor A. D. Bache. In the conduction of this extensive survey, every refinement and appliance to ensure accuracy is employed, and many new and important discoveries in geodetio science have been made.

The latitudes and longitudes of the points between Mount Dosert Island, in Maine, and the Chesapeake, are connected together in the triangulation. South of this, the burvey has only been carried on in detached portions, as stated in the respective notes, and their points given are dependent on the accuracy of the position of the primary tation in each section.

As ghown in the Note on page 65 the whole of the coasts of the United States, is Bivided into eleven sections, of which two are composed of the Pacific Coasts, and tho
geographio connexion between Anerica and the rent of the world, is mainly depench ant on the position of the Observatory of Cambridge near Boston.

Tho positions given are taken from a list of nearly 4,000 points, established in the course of the survey, as pnblished in $1851-3$, with a slight subsequent correction. But each place may now be taken by the mariner as absolutely accurate, as the amount of probable error is so small, as to be totally beyond his means of detecting. Therefore each lighthouse, cape, \&c., will equally well serve to correct his reckoning, or rate his chronometer, as the primary observatory.

1. BOSTON.-Dr. Bowditch, from six astronomic observations, vix., two transits and four solar eclipses, made the longitude of Boston as $4^{h} 44^{\prime} 16^{\prime \prime} .6$; and it was the opinion of Dr. Bowditch that this longitude was more accurately ascertained than that of any other place in the United States. The State of Massachusette was surveyed trigonometrically, by Simeon Borden, and Robert Treat Paynej Esqrs., and the survey was based on the position of Boston State House. "From observations in 1829 and 1830, " says Mr. Borden, "I made the longitude of the State House, as 4n $44^{\prime} 144^{"} .0^{\prime \prime}$; and by the great solar eclipse, May 15th, 1836, $4^{\mathrm{h}} 44^{\prime} 19^{\prime \prime} .6:$ mean of the whole, 71° $4^{\prime} 13^{\prime \prime} .5$, or only $8^{\prime \prime \prime}$ more than in the Table. The latitude deduced as $42^{\circ} 21^{\prime} 22^{\prime \prime} .7$, was from 636 observations.
2. Cambridgz Obsertatory.-The longitude of the Observatory of Cambridge near Boston, is the primary meridian of the greater portion of N.W. America, inasmuch as the longitudes of most other places have been referred to it by trianculation, or by electric signal. Its relation to Greenwich has also employed years of assiduons labour and consummate skill, and may now be considered as entirely established, within probably an insignificant amount of error.

Prior to the year 1849, the astronomic observations systematically carried on there had resulted in a longitude assumed as $71^{\circ} 8^{\prime} 0^{\prime \prime} .0$ West of Greenwich. When the positions of the United States' Coast Survey stations were published in 1851, it was assumed as $71^{\circ} 7^{\prime} 22^{\prime \prime} .5$, from the following data :-Moon culminations at various observatories referred to Cambridge, $4^{\mathrm{h}} 44^{\mathrm{m}} 28^{\circ} .4$; by eclipses and necultations in the same manner, $4^{\mathrm{h}} 44^{\mathrm{m}} 29^{\circ} .6$, and by chronometric differences to that date $4^{\mathrm{h}} 44^{\mathrm{m}} 30^{\circ} .1$. This latter determination was afterwards assumed by Professor Bond to be very nearly the true longitude.

But in 1855, the chronometrie operations were again resumed early in January and the first meridional distance was carried by the steamer America, June 5th, and the last by the return of the Africa to Boston, October 26th, 1855. There were six voyages across the Atlantic, between Boston and Liverpool, and the total number od chronometers used was fifty two, and the final longitude determined is as follows:-

Cambridge $71^{\circ} 7^{\prime} 58^{\prime \prime} .55$ West of Greenwich, which is here assumed. 'This longitude which is $1^{\circ} 79$ in excess of the longitude of 1851, is a very close approximation to that established by Dr. Bowditch and Mr. Borden for Boston as in the previous note, and is also nearly identical with that of New Yorik, as obtained by Mr. Dents chronometers in 1839. For these reasons the result of 1855 has been preferred, and 36^{4} hy been added to the longitudes given in the extensive tables published by the United Statee' Coast Survey department in 1851, above alluded to.

The longitudes in Sections I, II, III, and V, of the United States' Furveg, are $\dot{0}$ pondant oui this.
5. NEW YORK.-In the Ladies and Geneleman's Diary, or Vixi lates' At
s mainly dependestablished in the quent correction. ate, as the amount detecting. Therehis reckoning, or
, viz., two transits 6 ; and it was the y ascertained than isetts was surveyed rre., and the survey ations in 1829 and e, as $4^{\mathrm{n}} 44^{\prime} 14^{\prime \prime} .6^{\prime \prime}$; n of the whole, 71° 3d as $42^{\circ} 21^{\prime} 22^{\prime \prime} .7$,
tory of Cambridge W. America, inas it by trianculation, 1 years of assiduous intirely established,
tatically carried on Greenwich. When ublished in 1851, it ninations at various necultations in the at date $4 \mathrm{~h} 44^{\mathrm{m}} 30.1$.
Bond to be very
d carly in January erica, June $\overline{\mathrm{th}}$, and 5. There were six the total number of hed is as follows:-
3231.92
3231.75
3231.84
120.05

431.89 or

ed. This longitade' see approximation to the previous note, Mr. Dents chronom eferred, and $36^{\prime \prime}$ he ished by the United

[^1] or Vive I tates' Al
manac, for 1820, Mr. Nash, the Editor, having the reputation of an excellent observer, gives particulars of a great many meridian and circum-meridional observations taken at his school, Broadway, New York, from which he infers the latitude of No. 331, Broadway, as $40^{\circ} 42^{\prime} 58^{\prime \prime}$. The difference of latitude, trigonometrically found, between Mr. Nash's and the City Hall, was somewhat less than 1,300 feet, which, assumed as $13^{\prime \prime}$, gives the latitude of the City Hall $42^{\circ} 42^{\prime} 45^{\prime \prime}$, i. e., allowing $40^{\circ} 42^{\prime}$ 58^{4}. as the latitude of of No 331, Broadway. By observations of a solar eclipse, which Dr. Bowden observed at New York, he found the difference of longitude between Greenwich and Colombia College equal to $47^{\circ} 0^{\prime} 45^{\prime \prime} \mathrm{W}$. On the 29th of May, 1818, at a few minutes past noon, the longitude of No. 331, Broadway, by the mean of three distances of the sun and moon, appeared to be $74^{\circ} 0^{\prime} 42^{\prime \prime}$, and Mr. Nash adds, "I am inclined for the present, to place the City Hall in 74° W."

By seventy lunar distances, forty of Pollux East, and thirty of Aldebaran West of the moon, in December, 1822, and January, 1823, Captain Sabine gave the longitude of the cupola of Colombia College, New York, as $74^{\circ} \mathbf{3}^{\prime} 2 \mathbf{2 7}^{\prime \prime}$, and the latitude which he assigns to it is $40^{\circ} 42^{\prime} 43^{\prime \prime}$. Mr. De Witt, on his survey of the province, gave the longitude as $74^{\circ} 3^{\prime}$.

The chronometers of Messrs. Arnold and Dent, however, appear to have decided the longitude of Now York. Four of them were embarked in the British Queen steam-vessel, under the care of Captain Roberts, on her first voyage from England to America in July and August, 1839, and gained the longitude of the City Hall in New, York, as $4^{\prime \prime} 56^{\prime} 3^{\prime \prime} .35^{\circ}\left(=74^{\circ} 0^{\prime} 49^{\prime \prime}\right)$. A second experiment was made on the next voyage of the same vessel, in October and November of the same year, by another set of four chronometers, and by this the difference of longitude between the Obscrvatory at Greenwich and the City Hall, New York, appeared to be 4 ${ }^{4} 56^{\prime} 0.24^{\prime \prime}$. Say $74^{\circ} 0^{\prime} 10^{\prime \prime} . M$. Daussy, the French Hydrographer, had previously given it in the Connaissance des Tems as $4^{h} 56^{\prime} 0^{\prime \prime} .72$, or $74^{\circ} 0^{\prime} 11^{\prime \prime}$-(See Athenoum, Nos. 621 and 629, September and November, 1839.)

By the determination of the United Coast Survey, from data up to 1851, it was in longitude $74^{\circ} 0^{\prime} 3^{\prime \prime} .09$; but, by the subsequent correction of the Cambridge longitude as shewn above, it is in $74^{\circ} 0^{\prime} 39^{\prime \prime}$, as in the Table, very nearly identical with the determination of M. Daussy and Mr. Dent
4. Wasminaton.-In our former editions, the Dome of the Capitol is placed in longitude $77^{\prime \prime} 0^{\prime} 20^{\prime \prime}$, from tho Stato Survey of 1816. This is shown to be nearly correct.

Seaton Station in the City of Washington, is the point to which all telegraphio differences of longitude are referred, and which have now placed it in connexion with most of the important places on the coasts of North West America, and established beyond controversy, their true rolative longitudes.
5. Norti Carolina.-The longitudes of the coasts South of Cape Henry, at the Chesapeake, as far as Cape Fear, or Seetion IV, of the United States Coast Survey, are dependant on that of Stevenson's Point, the West point of Little River, on the North side of Albemarle Sound. The Base line upon which the triangulation was established, was measured upon Body's Island, on the Coast of Pamlico Scund, and the South end of it is near the Lighthouse. The positions are given, subject to future sorrections, both for the longitude of the primary point, and for that of tho great rriangles not yet obtained.
6. Cirarleston.-The longitude of Charleston was obtained from Seaton Station, in Washington, by Electrie Telegraph, in 1850, by Professor Walker and Lieutenant Gibbes. Section V. of tho United States' Coast Survey system is thus connectad with the rest of the series, but the triangulation has not yet been extended along the coastr of South Carolina. The longitude of Charleston Lighthouse now give!, is dentical with that we assumed in former editions and in the Colombuan Navigator fol. I., as obtained by Mr. James Elford, a mathematician of Charlenton.
7. Cape Florida, \&e.-In 1845, Captain Edward Barnett, R.N., made a runuing survey of the Coast of Florida and the adjueent banks. iva iongitudes
were forand by eipht chronometers by meridian distance from Havana, and th other
Rhode
Nev
$7^{\circ} 10^{\prime}$
Egg
Henlo
$2^{\circ} 0^{\prime}$ W
Pamlic
The
in abor
To
3.5 per
and 5^{\prime},
The
N.W.b
of Caro
At
Romain
$4^{\circ} 0^{\prime}$ E.
E.; Cap achuola Orleans, 0.5 per a introduced was in some degree removed if this were taken. With this view, if any meridian were to be assumed for the United States, that of 90° West of Greenwich, wherever it may fall, is the fittest. If in the course of the operations any correction be found necessary to this meridian, as marked in some part of New Orleans, let it be removed accordingly. Thus, the first meridian of the United States, would be onefourth of the circumference, or six hours in time West of that of Greenwich.

VARIATIONS OF THE COMPASS-1861.

Tho question of Magnetic Variation or Dcelination, has received mueh attention from the Survey department under the superintendence of Professor Bache, who, with Mr. J. E. Hilgard, have reported on the suljeet.

Tho exact observations at present collected, have not been sufficient to establish the exact amount of secular change which is neeessary to bring the observed result of former years in accordance with the existing Variation. As the amounts given in Professor Bache's and Mr. Hilgard's tables are for various epoehs between 1844 and 1856, we have taken the secular change at the amounts estimated by Mr. F.J. Evans, R.N., in 1858, and added them to those quoted in the American list, to bring them down to the epoeh 1861.

Near Great Manan Island, $17^{\circ} 0^{\prime}$ W.; Mount Desert 1sland, $15^{\prime} 0^{\prime}$ W.; West side of Penobscot Bay, $14^{\circ} 5^{\prime} 3^{\prime} \mathrm{W}$; Cape Small, Kennebee River, $12^{\circ} 67^{\prime} \mathrm{W}$.; Portland, Maine, $12^{\circ} 48^{\prime} \mathrm{W} . ;$ Fleteher's Neek, $12^{\circ} 14^{\prime} \mathrm{W}$.; Isles of Shoals, off Portsmouth $11^{\circ} 45^{\prime} \mathrm{W} . ;$ Newhury Port, $11^{\circ} 0^{\prime} \mathrm{W} .$, Annis Squam, near Cape Ann, $12^{\circ} 38^{\prime} \mathrm{W}$.
 tueket Island, $10^{\circ} \mathbf{3 0}$ W. ; Martha's Vineyard, 106° W.; 'Point Judith; Providenes,

Iount
Station
Town 0 Castle Isl
Castle
St. David
Port Cun
Entranc Harbou
till's Br Extrem Torth R limit of ong Bar, Western the surr W. Brea Extremi

1. Betw Tey of miralty.
and th other Florida in for the lon. to their estihan Captain in November, difference of to point out urvey shall be
tation of SecMexican fron-
matively from ation was not

States' Coast ent, and these consideration ermined in the
starting point; tables than at partment cominconvenience distances, and is carried on in mended, if any : New Orleans
n lon. $90^{\circ} 0^{\prime} 0^{\prime \prime}$, element bcing his view, if any of Greenwich, any correction rleans, let it be would be onenwich.
much attention eho, who, with
ent to establish served rosult of ounts given in between 1844 ed by Mr. F.J. n list, to bring
W.; West side W.; Portland, ff Portsmouth, $\mathrm{m}, 12^{\circ} 38^{\prime} \mathrm{W} \cdot$; $2 \mathbf{N}^{\prime} \mathrm{W} .1$ Nañ h; Providence,

Rhode Island, $10^{\circ} \mathbf{2}^{\prime} \mathbf{W}$.
New London, Connecticnt, $8^{\circ} 49^{\circ} \mathrm{W}$; New Haven, $7^{\circ} 33^{\prime} \mathrm{W} . ;$ New York City, $7^{\circ} 10^{\prime} \mathrm{W}$. ; Sandy Hook, $6^{\circ}{ }^{\circ} 2^{\prime} \mathrm{W}$. ; Girard College, Philadelphia, $5^{\circ} 2^{\prime} \mathrm{W}$. ; Little Egg Harbour, $5^{\circ} 42^{\prime}$ W.; Cape May, Entrance to Delawere Bay, $4^{\circ}{ }^{\circ} 5^{\prime}$ W.; Cape Henlopen, $3^{\circ} 57^{\prime} \mathrm{W}$.; Entrance to Chesapeake Ray, $2^{\circ} 10^{\prime}$ W.; Washington City, $2^{\circ} 0^{\prime} \mathrm{W} . ;$ (much affected by local attraction) ; Albemarle Sound, East part, $14^{\circ} 5^{\prime} \mathbf{W}$. Pamlico Sound, $1^{\circ} 0^{\prime} \mathrm{W} . ;$ Cape Hatteras, $1^{\circ} 30^{\prime} \mathrm{W}$.

The line of No Variation intersects the coast to the Westward of Cape Lookout, in about longitude $76^{\circ} 50^{\circ} \mathrm{W}$.

To the North-westward of this line, the Westerly Variation is increasing about 3.5 per annum in the vicinity of Cape Hatteras; about $\bar{\delta}^{\prime} .0$ perannum near New York, and $5^{\prime}, 3$ per annum on the Coast of Maine.

The lines of equal variation run about N.W. and S.E. true on the Coast of Maine; N.W. by W. and S.E. by E. about New York, and N.N.W. and SS.E. on the Coast of Carolina and Georgia.

At Wilmington and Cape Fear the Easterly Variation is about $1^{\circ} 0^{\prime}$; at Cape Romain, Cape Fear, $2^{\circ} 0^{\prime}$ E.; Charleston, $2^{\circ}{ }^{\circ} 0^{\prime}$ E.; a ai Savannah, $3^{\circ} 30^{\prime}{ }^{\prime}$ E.; at Darien, $4^{\circ} 0^{\prime}$ E.; St. Augustine, $4^{\circ} 15^{\prime}$ E.; Capes Canaveral, and Florida; $4^{\circ} 10^{\prime}$ and $4^{\circ} 15^{\prime}$ E.; Cape Sable, Florida, $5^{\circ} 0^{\prime}$ E.; Key West, $5^{\circ} 30^{\prime}$ E.; Tumpa Bay, $5^{\circ} 7^{\prime}$ E.; Apalachuola Bay, $6^{\circ} 0^{\prime}$ E.; Mobile, $7^{\circ} 0^{\prime}$ E.; Mouths of the Mississippi, $7^{\circ} 30^{\prime}$; New Orleans, $7^{\circ} \mathbf{4 5}$ E.; Galveston, 9°. These variations are increasing at the rate of 0.5 per annum.
16. THE BERMUDA ISLANDS.

	lat. n.	Lon. w.	Authoritims.
	- ' "	- '"	
Ireland İlaind; Flagstaff[1]	321930	645140	
Wreck Hill [2]	321645	645440	
Gibbis Hill Lighthouse,			
light revolving every			
minute, (362 feet) ${ }^{\text {c }}$ [3$]$	32154	645136	
${ }^{-M o u n t ~ L a n g t o n ~ ; ~ S i g n a l ~}$			
Station North of the			
Town of Hamilton	321830	644812	
Castle Island ; Entrance of Castle Harbour	32210	(6: 4030	The Trigonometrical Survey
St. David's Head . . .	322250	643846	by Captain Thomas Hurd, R.N..
Fort Cunningham; at the			unde: the orders of the British
Entrance of St. George's			Admiralty, between the years
Harbour	322313	643937	1783 and 1797, adjusted by the
Aill's Breaker ; Eastern			observations of Captain Edward Barnett, R.N., 1846.
Extremity of the Reef. . Torth Rock ; Northern	322348	64410	Barnett, R.N., 1846.
orth Rock ; Northern limit of Reef	323030	644655	
long Bar, N.W. end; the		,	
Western Extremity of			
the surrounding lieef . .	321640	$65 \quad 220$	
Extremity of Roef	321330	645330	-

NOTES.

1. Between the yeara 1783 and 1797 , Captain T. Hucd, ti.N., was employed in the Hey of these beantiful islands, the outline of which survey is published by the British imiralty. Captain Hurd dedueed his longitndes from Wreek Hill, which, from. ite
position, as reoently ascertaimed, may be taken as 4^{\prime} or $5^{\prime} \mathbf{E}$. of the correct longitude. In the chart of the Bermuda Islands, as published by Mr. Laurie, we have placed the islands in the longitudes, which, from the accuracy of Captain Barnett's observations, we may suppose to be finally settled.

Irelair Island.-The position of Bastion C, which serves as as a groundwork for the rest, was determined by meridian latitudes; and the longitude, we presume, is by chronometer, from the West Indies. The detail of these operations is given by Captain Edward Barnett, R.N., in the Bermuda Royal Gazette, August 25th, 1826.
2. Wreck Hill.-As we have mentioned, Captain Hurd considered this to be in lat. $32^{\circ} 15^{\prime} 20^{\prime \prime}$, and lon. $64^{\circ} 50^{\prime}$; but, according to the corrected position of Ireland Island flagstaff, this is $1^{\prime} 25^{\prime \prime}$ South, and $4^{\circ} 40^{\prime}$ E. of its right place.
3. Gibb's Hul Lighthouse.-The position of this was obtained by triangulation from Ireland Isiand ; but, on applying these calculations to Captain Hurd's survey, we find some small discrepances; but as they are not of sufficient magnitude te affect navigation, wo have not attempted to adjust them.

The lighthouse is an important structure, composed of iron, constructed in London, from the designs of Mr. Alexander Gordon, E.C., and erected under the superintendence of Mr. George Grove, in 1845. Its total height is 133 ft . 9 in ., and the light was first shown May 1st, 1846. The tower is painted white, and in the day time will appear like a sail. The light revolves, and shows a bright glare every minute, but a fainter continuous light is visible within 15 or 20 miles off. It is 362 feet above the sea, and may be seen from a frigate's deck 7 or 8 leagues, but has been seen quite bright at 33 miles off. The light apparatus is dioptric, or from lenses of the first order. The light is intercepted between N. $43^{\circ} 24^{\prime} E$, true, or N.E. $\frac{1}{5}$ E. by compase, and N. $47^{\circ} 34^{\circ}$ E., true, N.E. by E. mag., and N. $57^{\circ} 35^{\prime}$ E., true, N.E. by E. $\frac{3}{2}$ E. mag., by the hills on the South side of the island.

Veriation, $7^{\circ} 1^{\prime}$ W.-October, 1845, and as at present.

17. THE BAHAMA AND PASSAGE ISLANDS.

 THE BAHAMA AND PASSAGE ISLANDS-Continued.
ct longitude. ve placed the observations,
groundwork , we presume, as is given by 25th, 1826.
d this to be in ion of Ireland triangulation d's survey, we itude to affect
ucted in Londer the super9 in ., and the and in the day ht glare every off. It is 362 s, but has been from lenses of r N.E. $\frac{1}{8}$ E. by ., true, N.E. by

DS.

ITIES.
vard Barneth
f Mr. Anthony R.N., 1831 *)

	lat. n.	LoN. W.	AUTEOMItizs.
	- ' "	- ' "	
Ragged Island; Flagstaff	221140	754717	The Observations of Captain
Racoon Kay ; Beacon.	222150	754939	Richard Owen, R.N., 1831-32.
Channel Kay	223215	755250	
Jamaica South Kay.	224256	$75 \quad 5446$	
Man of War Kay ; N.end	224720	75540	
Flamingo Kay; Hill ..	22520	$75 \quad 536$	Rrmaris.
Water Kay; S,W. point	2258	7545	A description of, and directions
Yoma or Long Island:			for, these isiles and passages, accor-
Sonth Point of the Isle	2250	74520	ding with the New Surveyn, are
Great Har.; Entrance ..	237	745230	given in the copious Notes pro-
Michael Bank; 12 fathoms.	$\begin{array}{lll}23 & 915\end{array}$	744530	fixed to the second volume of the Colombian Navigator, edition of
Whale, or North point. .	234137	75200	1848, pages 212, 213.
Exuma ; the Beacon	233153	754921	
Galliot Cut, on the Bank: .	23550	76150	
Eleuthera ; S.E. Point	24370	$\begin{array}{llll}76 & 9 & 23\end{array}$	
-; Govenor's Harb.	251115	761453	
-; James' Cistern	$\begin{array}{llll}25 & 21 & 0\end{array}$	76230	
- Harbour Island	2530	76390	
\qquad ; Egg Island Reef; Extremity .. [3]	25340	76 55. 30	The Surveys of Captain
The Isles, \&c., on N.W.: Flceming Channel ; Bca-			Richard Owen, Captain E. Bar-
Flceming Channel ; Bcacon	251645	7655	nett, Lieutenant T. Smith, R.N., \&c., 1836-1842.
Douglas Chan.; Entrance	$25 \quad 730$	$77 \quad 245$	
Nassau, New Providence			
	25	77224	
Joulter Kays ; N. Exty. ${ }^{\text {a }}$ (${ }^{\text {andros IsLes : Morgan's }}$	251930	$78 \quad 830$	
Andros Isles : Morgan'3 Bluff, or N.E. Point....			
Bluff, or N.E. Point. . .	251024	$78 \quad 130$	
High Kay, on the E.Coast	243930	774250	
Golding Kay . ${ }^{\text {a }}$. ${ }^{\text {a }}$	241340	773720	
Green Kay, in the Gulf	$24 \quad 212$	77100	
Berry Isles:			
S. Stirrap Kay ; N.W.pt.	25255	775630	
Great Stirrup Kay; E. Point	254940	775345	
Holmes' Kay ; Centre	$25 \quad 3740$	77440	
GreatIsaac ; Lighthouse[5]	$26 \quad 20$	79630	
Western Side of the Great			
Bank:			
Moselle Bank; Bemini Isles	2549	791730	
GunKay;Lighthouse[6]	253435	791850	
Brown's Kay . .	252340	79130	
South Riding Rock;			
Beacon	25140	7910 n	
Orange Kays; Middle..	245030	$79 \quad 024$	
Southern Part of the Bank:			
Guincho, or Ginger Kay	22450	78880	
Lobos, or Wolf Kay	222250	77360	
Mucaras, or Diamond			
Point Cavo Verde ar	22100	77100	
$\mathbf{K}_{\text {aj }}$	$22 \quad 140$	7510	
Kay of St. Domingo [8]	214220	754445	

	lat. n.	LoN. w.	Authorities.
THE		- " "	The Surveys of Captain
Little St. Salvador ; W. Point			Richard Owen, R.N., 1831-2.
	243622	75580	
St. Salvador; Columbus or S.E, Point			
$\underline{\text {; }}$; Hawk's Neat, or	24830	71648	
S.W. Point	24850	753230	
Con.W. Point	244110	754530	
Conception. Island; S. end	234846	75680	
Southamptun Reef; Exty.	235515	$75 \begin{array}{lll}7 & 7\end{array}$	
Rum Kay; S.E. White Cliffs			
	$\begin{array}{llll}23 & 38 & 40 \\ 23 & 39 & 0\end{array}$	744720 74	
Watling's Island; Large ${ }^{\text {a }}$			
W. .r.Rncis ai the N.end	241015	742830	
The W. Point	235627	74340	
Hinchinbroke Rock......	235640	742833	
Samana or A, ood Kays :			
East Low Kay $\ldots ~$ 23 5 0 73 36 43 Westernmost			
Southern Reef	23445	73450	
PlanasorFlat Kays; Centre	223510	73330	
Crooked Islands, \&c.:			
The N.E. Breaker	224330	73470	
N.E. Reef; Exurwity.	22470	734945	
Mount Pisgah	224410	74733	
Bird Rock, off N.W. Pt.	2251	742215	- The Miraporios Bank and
Fortune Isle, or Long Kay; S. Point	2232	74230	Kays were surveyed by Mr. De Mayne, in 1827. The Bank i
Castle Isle [10]	2270	741845	eloven and a half miles in aztent
North Rucki.	$\begin{array}{lll}22 & 750\end{array}$	743240	shoals upon it are \mathbf{v}
South Kay ; Sand-hills Hobart's Breaker's ; S.E.	2250	743215	from the S.E. With the wind
End	215830	742730	blowing strong from the north wand
Diana, or Monkey Bank;			thore is a heavy swell upon thom.
Centre	22310	744730	The current generally sets from
Mariguana, or Mayaguana; S.W. Puint	222145	$73 \quad 930$	the N.E. over the shoals at the rate of 1 mile an hour.
Eastern End of E. Reef	22180	723816	
The Caycos:			
Cape Comet,N.E. Pt.[11]	214250	712788	
Large House near the Booby Rocks			
The Three Maries.	215730	${ }_{72}{ }^{7} 41830$	
West Caycos; South End	213730	714433	
P.o' ' niciales N.W.pt.	215240	72203	
We ${ }_{\text {cos, }}$ or Littlo Cayeo;			
South Point	213730	722833	
Went Sand Spit	21220	7250	
South Shinel	2120	714433	
Swimmer Shoal	$21 \quad 5$	71200	
The Hogrties; N.W.Kiry	214130	73500	

Great
The
Midd
S.W

Math
Lant
S.E.
N.E.

Little I
Turks'
Edym
Sand
Salt
Grand
Squar
S.E. E

Weste
Silver
Bax
East
S.E. F
N.W.
S.W. 1

Baso de Ban
Northe
Easter
South-

1. MA ot repre cyors. ositions
2.
3. Ab

Hole in t igh. It may be se cing 160 pstanco ol iles from
During
ghthouse
the eas
thoms,
round.-
3. Eac
i. ii., p.

THE BAHAMA AND PASSAGE ISLLANDS.-Continued.
of Captain l.N., 1831-2.
vos Bany and yed by Mr. De Tho Bank is miles in eztent N.W., and the ery dangerous, zose advancing With the wind a the northward and at all times rell apon thom. rally sots from 3 shoals at the ur.

lat. n.	Lon. w.	AUTHoRItiEs.
- . "	- ' "	- .
$21 \quad 730$	733930	
21.145	7341	
20550	7239	
20580	733930	
205630	731924	
205745	73 9 48	
212030	726930	
212915	726533	
213040	$\begin{array}{llll}73 & 433\end{array}$	

Turga' Island Pabsage.-Near the S.E. end or Elbow of the Caycos Bank, is a shoal in lat. $21^{\circ} 4^{\circ}$, lon. $71^{\circ} 31^{\prime} 32^{\prime \prime}$, having over it, in some parts, only 5 feet of water, and lying with a bushy kay on the bank bearing N. by W. (by compass) 6 or 7 miles. Lat. by merid. alt. : lon. by two good chronometers, made by Barraud : one giving $71^{\circ} 31^{\prime} 6^{\prime \prime}$; the other, $71^{\circ} 32^{\circ} 0^{\prime \prime}-$ Edwd. Dunsterville H.M.S. Carnation.)

The Snrveys of Mr. Anthony De Mayne, \&c.

NOTES.

1. Matanilla Bank.-The Matanilla Bank, to the northward of tho reef, is ot represented in Mr. De Mayne's Chart, although given in that of the Spanish surcyors. It has been examined by Captain Edward Barnett, R.N., in 1846, and the ositions corrected accordingly.-See, further, Colombian Navigator, 1848, vol ii. 203.
2. Abaco Liahthouse.-Of the light-tower near the South end of Abeco, or Hole in the Wall', the baso is 80 feet above high water, and the tower is 85 feet igh. It is painted red and white. The light revolves onee in every minute, and nay be seen in all directions, exeept where the high parts of the land intervene, and cing 160 fect above the level of the sea, it will be visible in elear weather, at the istance of 15 miles, to an eye elevated 10 feet; 17 miles to one elevated 20 feet; 19 iiles from 40 feet; and 21 iniles from 80 fect.
During ordinary winds there is good anchorage in 10 and 11 fathoms, with the ghthouse bearing E. by N. about half a milo from shore. The edge of the bank, tho eastward of the lighthouse, is nearly $1 \frac{9}{\frac{y}{6}}$ miles from shore, with 23 to 16 thoms, extending out to the S.S.E. in a tongue of soundings, with quito clear round.-"Colombian Navigator,", vol. ii., pp. 199, 201.
3. Ego Island Rerp.-The Iorton Real deseribed in the Coiombían Navigaior, i. ii., p. 162, does not exist! Captain Kiebard Owen has shown that the vessel
really struck on Egg Island Reef, just to the northward of Royal Izland and not more than a mile from Goulding Kay.-For particulars, see "Colombian Navigator," vol. ii. p. 209.
4. Nassad.-The position appears to be finally settled as in the Cable. The Spanish Surveyors gave the town as in $25^{\circ} 4^{\prime} 33^{\circ}$ N., and $77^{\circ} 19^{\prime} 30^{\prime \prime}$ W. Mr. De Mayne as $25^{\circ} 5^{\prime} 18^{\prime \prime} \mathrm{N}$, and $77^{\circ} 19^{\prime} \mathrm{W}$. The lighthouse, showing a harbour light, since improved, and similar to that on Abaco, is 70 feet above the level of the sea; it is on the West end of Hog Island, and therefore to be left on the port or North side, when entering into the harbour.
5. Great Isanc.-This islet is described in the Colombian Navigator, vol. ii. p. 217. It is moderately high, has several wells of fresh water, and abundance of large shell-fish. The Providence droggers water here. It is now remarkable for the very fine iron lighthouse erected on it in 1859; it is 145 feet high, painted in broad red and white bands, and shows a fine revolving light from reflectors every half minute.
6. Gun Kay.-The important lighthouse on this Kay shows a brilliant revolving light every minute all round the compass, at an elevation of 80 feet, visible 12 to .u miles off.
7. Diamond Ponnt of the Mucaras.-The Mucaras, Lavanderas, and Lobos, with the dangers on the bank in the vicinity, have been surveyed, with great care, by Captain Edward Barnett, whose positions are those given in the Table. This portion of the bank was formerly represented, as in the Spanish Charts, rather more to the South, and 6^{\prime} more to the East.
8. Kay of St. Domingo.-The southern part of the Great Bank, on which this kay is situate, is very dangerous by night. The kay had formerly the appearance of a sail, but, in 1835, the crew of the Thunder erected a beacon of stones, about 15 feet high, upon the centre of it; the other part of the kay is about 5 feet only abore water. It is a rocky, arid spot, producing nothing but a little samphire and wild grass.-"Colombian Navigator," vol. ii. p. 214.
9. Rum Kap.-This island was formerly very erroneously represented on the charts, both as to magnitude and position. The white cliffs at the S.E. end are remarkable, and may be seen 6 leagues off.-See "Colombian Navigator", vol ii. p. 228.
10. Castle Isle.--The point appears to be finally settled. Former observations gave $22^{\circ} 7^{\prime} 45^{\prime \prime} \mathrm{N}$., and $74^{\circ} 17^{\prime} 30^{\prime \prime} \mathrm{W}$.
11. Carcos. Captain Livingstone's Remarks on the Northern Reefs of the Caycos, aud the danger of approaching them without great caution, may be found in the "Colombian Navigator," vol. ii. p. 245. Captain Livingston says-" i am perfectly satisfied that any vessel shaping a course from off the rocks, to weather the N.W. point of the Caycos by any chart hitherto published, will infallibly get entangled among the reefs on the West side of the Watering Bay. When a vessel once gets embayed among then, it must be next to impossible to beat out; as the reefs extending from the land to the eastward, hook suddenly round, at their cuter extremity, to the southward. Thus a vessel may be in blue and deep water while the hcok of the ref is ontside her. I have three times examined the appearance of these reefs from the masi-heads of different vessels, and each time they appeared to me more dangerous than they had previously done."-(This was written in 1848.)
12. Great Inagua.-This island has been surveyed by Lieutenant Lawrence R.N.: Mathew Town, a new settlement, lies 3 miles northward of the S.W. point On the South-cast coast of Inagua are several detached coral reefy about, and at some distance from, the S.E. point. On one of these H.M.S. Statira was lost; and ou another, if not the same, the bark Emerald, Captain Noekells, struck, at 5 p.m., 11th June, 1834, on her passage from Jamnica to London. The bark was on it for two hours, while the small islet off the S.E. point bore West, distant 4 miles, and the nearest shore was 5 miles off. The depth of wator was about 18 feet. The captain observes that, as broken reefs may extend a oong wcy out, vessels in passing shonld not advance within 10 miics of the shore. The Emerald was so muci damaged tha
it becar saved is in her 1
13.
14.

covered the S.V certaine North-e 18 mile and No 15.
form: i water 0 17 fatho bank is :

The sau, in western the Croo 10^{\prime}; and variation
S.E. a

Cape de
Peak of
St.IAGo the ent
Port Gue
—Esco
Cape M
Port Mat
--Bara
-Mara

- Nave
-Caya
$\xrightarrow[\text { Pu,tarag }]{ }$
Port Cay
East Po
-Yagu
-Canai
-Tanar
—Cabor
-Bane
nd and not vigator," vol.

The Spanish De Mayne as ce improved, on the West hen entering
tor, vol. ii. p. ance of large for the very in broad red alf minute.
ant revolving, isible 12 to
, and Lobos, great care, by This portion r more to tho
on which this appearance of , about 15 feet et only abore hire and wild
sented on the E. end ars re, vol ii. p. 228.
r observations
of the Caycom efound in the am perfectly ther the N.W. get entangled :ssel once gets eefs extending tremity, to the ook of the reel reefs from the hore dangerous
int Lawrence e S.V. point. t , and at some s lost ; and ou at 5 p.m., 1 th 3 on it for tro niles, and the The captain passing shonld damaged thal
it became necessary to abandon her; and on thenext day, at seven p.m., her crew were saved in a Spanish schooner, bound for Philadelphia, being then, with 9 feet of water in her hold, in lat. $20^{\circ} 36^{\prime}$, lon. $73^{\circ} 10^{\prime}, 24$ miles to the south ${ }^{-r d}$ of Inagua.
13. Grand Turk.-An iron lighthouse, 400 yards wiunis the North point.
14. Silver Kay Bank.-It seems that the Fletcher Reef, said to have heen discovered near the S.W. extremity of the Siin , Kay Rank, in 1833, really exists on the S.W. part of that Bank, the true form of wiich has, for the first time, been ascertained by Captain Owen and assisting officers, as now exhibited on the charts. Its North-east side is extremely dangerous, having a claster of rocky heads, extending 18 miles, and even with the water. There are also detached patches on the North and North-western parts.
15. The Bajo de Navidad has been deseribed as a fine clear jank of an oval form: its greatest length 22 miles North and South, and 11 in brcadth; the least water on it 11 fathoms, which is on the South-east edge. The general depths 16 and 17 fathoms, very even bottom, coral and sand ; the water being of a darkish hue, the bank is not easily distinguished.

VARIATIONS OF THE COMPASS.- 1861.

The present variation at the head of the Matanilla Bank is about 4° E. At Nassau, in Providenee Island, it was found, in 1836, to be $3 \frac{1}{1}^{\circ}$ E. At Gun Kay, on the western side of the Great Bank, $4^{\circ} 30^{\prime}$ E. ; nt the Jumentos and Eleuthera, 3°; at the Crooked Islands and Watling's ïsland, nearly the same; at the Caycos it was 3° 10^{\prime}; and at Turks' Islands, $2^{\circ} 5^{\circ} 4^{\prime}, 1836$. There is but little secular change in the variation hereabouts, and therefore the amounts given above are still correct.
18. CUBA, JAMAICA, ETC.

	lat. n.	Lon. w.	Artherimits.
	- , "	- . "	
S.E. and East of Cuba.			Spanish Survipors, \&c.
Cape de Cruz	195011	774515	
Peak of Tarquino[1]	2030	76510	
St.Iago de Cuba, Morro at the ent. ; Lighthouse [2]	195729	755848	
Port Guantanamo ; Entr.	195510	$75 \quad 2025$	
-Escondido ; East point	195530	751220	
- ${ }^{\text {aitiqueri }}$; Entrance	201	$\begin{array}{llll}75 & 110\end{array}$	
Cape Maysi, or Maize[3]	2014	$\begin{array}{llll}74 & 7 & 37\end{array}$	
Port Mata ; Entrancei	201720	743141	
-Baracoa; Entrance [4]	202136	742931	
-Maravi; Entrance \quad.	202430	742735	
-Navas; Entrance :-	202935	742950	
- Cayaguaneque; E.pt.	203030	74310	
-Taco; West Point ..	203220	74340	
Pu, Jaragua S Entrance	203240	743640	
Pusta de Guarico . $\mathrm{Ma}^{\text {c... }}$	20390	744045	
East Point.............	20420	74475	
-Yaguaneque; Entrance	204150	7458	
-Cananova; Entranee	20420	75025	-
-Tabollas Entrance - Entrance.	204220	75	
-Canamo ; Entranee,	204410	751150	
-Nipe ; Entranee . .	204540	785	
-Banes; S.E. - Point. .	205330	$7534 \quad 0$	

Punta de Mulas

Northern Kays and Coast of Cuba.

Port Sama; Entrance....
——Naranjo; Entrarce..
——Vita; Entrance......
-Bariay; Entrance .
——Jururu; Entrance....
-Jibara; Entrance.....
——del Padre; Entrance
-Malagueta ; Entrance

- Manati ; Entrance ...
——Nuevitas Grandes; Entrance
Punta Maternillos [5]
Cayo Romano; S.E. Pt.[6] Cayo Verde, or Green Kay Cayo Confites; North Pt. Double-Headed Shot; N.W. Kay
Cayo de Sal, or Salt Kay.. Cayo Cruz del Padre...... Matanzas; Castello de S . Severino
HAVANA, Morro 3 Lighthouse …........[8] near the Steam Wharf Port del Mariel ; Entrance
Port Cavanas ; Entrance
Bahis Honda ; Entrance..
Guaijaoon ; Pan or Hill ..

S.W. Coast of Cuba.

Cape Antonio; Roncali Lighthouse
......... $[9]$
Cape Corrientes [9]
Llana or Mangrove Point
Isle of Pines ; Cape Francé
\qquad ; Extreme S. point
Bri; Indian Riv. Entr.
Bahia do Jagua, or Cienfuegos; Lighthouse.....[10]
Trinidad; City of......
Puerto Casilda; Entrance
Cayo Blanco de Saza; W. Point
————East

Point

Cape Larza de Tierra; East Point
Cayo Breton; East Foint

CUBA, JAMAICA, \&o.-Continued.

Ig under tis ish Covernsse of ascerneters, \&c., the principal ndies ; with ptain Foster, c.
the situation ${ }^{1}$ Cuba, which y the Spanish des havebeen ed: those of e more to the with the large , Bahama Old by the Direc(Madrid, and
f the harbours i, having a narbordered witha pening into a which afford rind. Of such anamo, Esconata, and Barace of the latter Iaco, Yaguanamo, Cabonico anes, Naranjo, Padre, Malavitas, Havana, da, and Jagua.
veyors, \&c.
n, R.N.
; R.N., 1858.
rveyors, \&o.,

	lat. N.	Lon w.	AUthorities.
	- . "	- . ${ }^{\text {c }}$	
Booa Grande ; Entrance	2058	792345	
The Grand Cayman : S.W.Bay,Ft.Gcorge[11]	191745	81243	Latitude, Captain R. Owen
JAMAICA and Isles Adjacent. [12]			
Morant Kays; N.E. Kay. .	172630	75550	
Morat or S.W. Kay..	172345	75580	
Morant, or East point of Jamaica; Lighthouse[12]	17 б6	761119	
Yallah's Point	175145	763630	
Plum Point	175515	764655	The mean of numerous Ob-
Port Royal Dockyard	175551	765045	servatious, taking into account
Kingston ; Church	175757	764735	those of Messrs. Leard, Robert-
Portland Point	174350	$77 \quad 724$	son, De Mayne, and Dunsterville,
Portland Rock ${ }^{(13)}$	17830	77280	of Mr. F. Owen, and Captain
Pedro Kays; N.E. Kay 14)	$17{ }^{6}$ ¢	77460	Edward Sabine; adjusted by
Pedro Bluff	175130	774524	the meridian of Port Royal
Black River ; Entrance	18110	775315	Dockyard, as ascertained by
John's Point	181130	${ }^{7} 81780$	Captain Richard Owen, in 1830.
South Negril	181545	782530	-For particulars, see the "Co-
Montego Bay \mathbf{P}	183130	$77 \quad 590$	lombian Navigator," vol. ii., page
Galina Point	182730	76580	xviii, and the Chart of Jamaica,
Annotta Bay ; the Town	18190	774945	with its Harbours, published by
Port Antonio; Navy Id.	181440	$7631 \quad 0$	Mr. Laurie.
Formigas ; N.E. Part	183430	754130	
; S.E. Part	18270	75420	
(${ }^{\text {S }}$ S.W. Part	18260	$75 \quad 5130$	
Navaza; Centre of the Isle	182445		
BaxoNuevo;SandyKay (15)	$15 \quad 53 \quad 0$	$78 \quad 3830$	The Survey of Captain
Serranilla ; S.W. Kay (16)	154745	795043	Richard Owen, in 1835.

NOTES.

CUBA in General.-It may be observed that the Coasts of Cuba, with some partial exceptions, has not been hydrographically surveyed, consequently that many of the positions given, especially on the South Coast, are not to be depended on. For example, the South Coast of the Isle of Pines, it is said, is shown too far to the northward on the Spanish Charts; while the coast about Puerto Casilda, and to the East of it, is 7 miles too far South. We are unable to state positively as to the relative correctness of the positions, and therefore they must be received with caution.

1. Pear of Tarquino.-We have given the Peak of Tarqnino according to Captain Bird Allen, who determined the position of the peak from the ship, by observation dnring three days' calm, after leaving Port Royal, as lat. $20^{\circ} 3^{\prime}, 1$ on. $76^{\circ} 51^{\prime}$, or $4 \frac{1}{2}$ minutes beyond that given by the Spanish authorities. The peak is about 5,500 feet high above the level of the nea.
2. St. Iago de Cuba.-Mr. Nicholls, Master of the Sheerwater brig of war, in 1819, communicated the situation of the Morro Castle of St. Iago, from observations made in that ship, as follows :-Latitude observed, $19^{\circ} E 7^{\prime} 50^{\prime \prime}$: longitude by lunars, $70^{\circ} 2^{\prime} 45^{\prime \prime}$: by chronometer $76^{\circ} 0^{\prime}$. The Spanish Chart of the hariour represents the Momo as in $76^{\circ} 55^{\circ} 33^{\prime \prime} \mathrm{W}$. In the last Chart it is given as $76^{\circ} 0^{\prime}$.

image evaluation TEST TARGET (MT-3)

Photographic Sciences Corporation

A lighthouse has been erected on the table-land, about 300 feet to windward, or East of, the Morro, to point out the entrance to the harbour, and prevent vessels running to leeward of it during the night. The light revolves in 1 minute at 223 feet, and is visible at 20 miles.
3. Cape Maysi.-Captain Foster places $\mathrm{Ca}_{2} e$ Maize in $74^{\circ} \mathbf{8 1}^{\prime} 18^{\prime \prime}$, considering Chagres as $78^{\circ} 57^{\prime} 19^{\prime \prime}$. Captain Owen makes it $74^{\circ} 8^{\prime} 0^{\prime \prime}$. It may be observed that Captain Foster's longitudes appear to be uiont 3 minutes easterly ($2^{\prime} 56^{\prime \prime}$), and this correction applied to his positions will properly adjust them; this will place Cape Maysi, in accordance with Captain Owen's determination.
4. Port Baracoa.-Captain Foster found the difference of lungitude between this and Cape Maysi to be $21^{\prime} 54^{\prime \prime}$, which gives the position in the Table. The point of observation is the Fort of Point Barlovento, on the weather point of the harbour.
5. Nueviras.-The channel into this harbour is to the S. by E., 4 milen from Paint Maternillos. On Point Maternillos a lighthouse showing a revolving light aw 170 feet above high water is constructed. It has "Colon" painted on it. Beside" this there are lighthousee constructing at the Cayo Paredon Grande, Cayo Lobos, and Cayo Confites.

At Cardenas Bay, also on the North Coast of Cuba, there is a revolving light shown on Piedras Kay (lat. $23^{\circ} 14^{\prime}$, lon. $81^{\circ} 7^{\prime}$), and a red and white or revolving light on the Cayo de Aña.
6. Cayo Romano, \&ec.-In theyear 1781, M le Marquis de Chabert, when proceeding from St. Domingo to the Chesapeake, had an opportunity of obeerving, by chronometers, the longitude of Cayo Romano, Port Matanzas, and the Pan of Matanzas; and his results were for the first, $77^{\circ} 39^{\prime} 45^{\prime \prime}$ W., and for the lairt, $81^{\circ} 36^{\prime} 30^{\prime \prime}$, being, in the mean, only 2 minutes to the westward of the late determinations.
7. Double-Headed Shox.-The position, cccording to the last edition of the Spanish Chart, of the Mexican Sea \&c., edited by Admiral Don Joese de Espinosa; first Director of the Hydrographic Establishment at Madrid, is lat. $23^{\circ}{ }^{\circ} 6^{\circ}$ 28 ${ }^{\prime \prime}$, lon. $83^{\circ} 21^{\prime} 0^{\prime \prime}$. In the first edition, publinhed (by order of the Minister of Marine, Don Juan de Langara) in 1779, the N.W. Kay was represented in lat $23^{\circ} 53^{\prime}$, lon. $80^{\circ} 14^{\prime}$, Mr. De Mayne places the N.W. Kay in $23^{\circ} 65^{\prime}$ N., and $80^{\circ} 26^{\prime}$ W.

This is not the only variation to be found in the different editions of the Spanish Charts, even on points marked as determined; although the observations of the Spanish officers are generally admitted, by thowe who have given them an examination, to be excellent. It may not be superfluous here to notice, that the eastern extremity of Florida, in lat, $28^{\circ} 35^{\prime}$, appenred in the first edition of these charts in $80^{\circ} 6 y^{\prime}$ W., but, in the last edition, it is placed in $79^{\circ} 641^{\prime}$, or 11^{\prime} more to the eastward.

On the north-westernmost and highent of the narrow ridge of detached barren rocks, known as the Double-Headed Shot Kays, a lighthouse has been erected by the British Government, in lat. $23^{\circ} 56^{\prime} 28^{\prime \prime}$ N., lon. $8027^{\prime} 38^{\prime \prime}$. The light is fixed, and 100 feet above the sea; the tower being 54 feet high, it is visible from 14 to 20 milos, according to the height of the observer, in all directions, except S.S.W. $\frac{1}{4}$ W., where, at 9 milee distant, it will be hidden by Water Kay.
8. Havana and Lighmousz.-The position formerly given was lat. $23^{\circ} 8^{\prime} 18^{\prime \prime}$ N., lon. $82^{\circ} 22^{\prime} 4^{\prime \prime} \mathrm{W}$. The longitude being the menn of twenty results from stan eclipeed by the moon, by Don Josef Joachim de Ferrer, 1808, 9, 10,11, 12. This place, which is taken by Lioutenant Raper as a secondary meridian, in ponsidered by him as in lon. $82^{\circ} 21^{\circ} 87^{\prime \prime} \mathrm{W}$. The difference, $17^{\prime \prime}$, between this and Mr. Purdy', position, as given in our previous editions, is but trifing.

The Lighthouse on the Morro upon the castern Point of the Harbour, exhibits a brilliant revolving light, which appears in its full lustre once in a minute. Although an inferior light, it may be distinotly seen, in clear weather, between $3 \frac{1}{5}$ and 4 leaguen off.
9. Cape Antonio, Isle of Pines, \&e.-On the 12th of August, 1817, Captain Livingston came to an anchor off Cape Antonio, in 7 fathoms; and by an excellent olvervation, found his latitude to be $21^{\circ} 68^{\prime}$ b4"; thim confirm that whioh han boen
given by the Bpanish offiberv. The longitude if well extablished between $85^{\circ} 57^{\prime}$ and $84^{\circ} 68^{\prime}$. The Baron von Humboldt gives $84^{\circ} 67^{\prime \prime}$; Captain Owen, $64^{\circ} 58^{\prime} \mid$, the Bpaninh officers had previously given' it as $8 r^{\circ}{ }^{\circ} 7^{\prime} \mathbf{3 0}$, now confirmed.

A Lightrouse called the Roncali Tower, and having that word painted on it, 117 feet in height, stands on the cape. It exhibite a brilliant revolving light every minute, at an elevation of 170 feet ahove high water, and is consequently visible at 14 miles distance, Is was first ohown in 1850, and must prove exceedingly cervicaable to navigation.
10. JAGUA.-A lighthouse, showing a brilliant fixed light at 82 feot above high water, has been built (1850) on the East point of the entrance, Point Colorados. The tower is 45 feet high, and has "Villanneva" painted on it.
11. Grand Caymans.-The latitude of the S.W. Kay of the Grand Cayman, as observed by Captain Livingston, August 5th, 1817, appeared to be $19^{\circ} 14^{\prime}$, not $19^{\circ} 11^{\prime}$, the parallel formerly assigned: the longitude was communicated to ns by the late Captain Hurd, as a determination to be relied on; and it appears to have been confrmed by Captain J.W. Monteith, as shown in the "Cclombian Navigator," vol. i.. page 98.

The S.E. point, as communicated by Mr. Dunsterville, lies in lat $10^{\circ} 16^{\prime} \mathrm{N}$., and lon. $81^{\circ} 6^{\prime} 40 \mathrm{~W}$. The village on the West, formerly the Hogsties, is now called Georgetovon, but the most populous village is Boddentown, on the South.
12. JAMAICA in general. - "In his outline of Jamaica, 1821, Mr. De Mayne given Morant, or the eastern point, in longitude $76^{\circ} 12^{\prime}$, and Sonth Negril, or the western point, in $78^{\circ} 25^{\prime}$ W. By reference to the Table it will be ieen that we give the one in $76^{\circ} 11^{\prime} 19^{\prime \prime}$, and the other in $78^{\circ} 25^{\prime} 30^{\prime \prime}$.
"Mr. Leard, in his Survey of 1791, gave MorantPoint in $76^{\circ} 3^{\prime}$, and South Negril in $71^{\circ} 33^{\prime}$; consequently he representud the island more than 16^{\prime} longer then it has since been exhibited; and there is reasn for believing that the lengti is rather lem than greater than that which we have given. The northern coast, it also appears, has beon placed too far North from 1 to 2 miles. We have attempted to adjust these differences, still adhering to the safe side, on the New Chart of Jamaica and its Harbours, pablished by Mr. Laurie, and we give, with confidence, from several communications, Point Morant more, and South Negril less, to the West, than as shewn on former Charta."-J. Purdy.--See farther, the Note on Port Royal and Kingston, in vol. ij. of the "Colombian Navigator."

It may here be remarked, that Lientenant Kaper assumed Port Royal as $76^{\circ} 50^{\prime} 54^{\prime \prime}$, bat considered that it was not satisfactorily settled. From subsequent calculations from data sapplied by Commander Barnett's chronometrio differences, he has arrived at the conclusion that it is $76^{\circ} 51^{\prime} 47^{\prime \prime}$, or 1^{\prime} more than his forner ! mgitude, or than that given in our Table; we have still adhered to the safe side.

Morant Point Iighthouco.-On November 1st, 1842, a bright light, revolving once in every minnte has been shown from an iron light-tower on this point, at 103 feet above the level of the sea, and can be soen at 7 leagues. It is invisible to the eastward of N.E. by E. by compass.

This iron tower was made in London, in little more than two months, and weighs 100 tons ; diumeter at the base, 18\% feet; at the top, 11\% feet ; iron 1 inch thiok; the tower 105 feet high, 16 of whioh are sunk in the ground. Is is painted white.
13. Portland Rock.-The Portland Rock is a single Kay, 15 to 20 feet above the sea, and covered with small bushes. It has been variously 1 spresented in from latitude $17^{\circ} 7 y^{\prime}$ to $17^{\circ} 13^{\prime}$, and from lon. $70^{\circ} 32^{\prime}$ to $77^{\circ} 31^{\prime}$. It Mr. De Mayne's Chart it appears in $17^{\circ} 7 \frac{1}{}^{\prime} \mathrm{N}$., and $77^{\circ} 20^{\prime} \mathrm{W}$. The position givon in our Table cannot, we think, be far from the truth.-Soe "Colombian Navigator," vol. ii. p. 84.

The officers of II.M.S. Winchestor, in 1834, by numerous altitudes, \&c., gained the latitude of the rock as $17^{\circ} 725^{\prime \prime}$, and lon. $77^{\circ} 27^{\prime} 4^{\prime \prime}$.
14. Pedao Kays,-Theso Kays have been laid down from a late survey, as shown on the Chart of Jamaica; they are deseribed in the "Colombian Navigator," vol. iii.

1yce 15. Baxo Nugyo.-Acoording to the Spaninh offleorn, 1804, the oxtent of thin aboal is about 7 miles from North to Sonth; and 14 miles from East to Went. All the eastern part is a reef, very atoop-to; but, on the West, the depth diminishen gradnally: At. $1 \frac{1}{\text { milee from the northern extremity in the Sandy Kay, given in the Ta- }}$ ble. The BAxO del ConcBox, which is repromented on the charts to the E.8.E. of the Now Shoul, has beer partioularly meorohed for, but could not be found.

The ahoal wae erramined by H.M. gurveying ahip. Thumdor, Maroh, 1685; the mall kay, given in the Table whas found to be 4 feet figh, and a cable's length Eart and Went, at 6 milen N.E. from the southern breakers ; it presents no appearance of vegetation, and is composed of coarse coral, sand, and stones.-Colombian Navigator, vol. iii. p. 248.
16. Errranilhua.-This bank, with ita kaye, formerly much misrepresented, lie between the parallels of $15^{\circ} 35^{\prime}$ and $15^{\circ} 65^{\prime}$ N., and the meridians of $79^{\circ} 41^{\prime}$ and $80^{\circ} 5^{\circ}$. On its eastern and southem sides are several kajs and reeff. On the Northcast side is a detached patch of rocks, on which the see constantly breals; it is just awash, but, in fine weather, a rock will show about 2 feet out of the water. Between it and the main bank is a safe passage, of not less than six fathoms, bordering clowe to the western side of the reef. In clear weather, by day, all the rocky patches are esaily avoided, bat it is very dangerous to appmech by night.-Colombran Navigator, vol. iti. page 248.

VARIATIONS OF THE COMPASS-1861.

At the West enci of Ouba, and about the Isles of Pinen, the present variation is ebout $6^{\circ} \mathrm{E}$. Near the East end, about 4 degrees. At the Grand Cayman, $5^{\circ} \mathbf{4 5 ^ { \prime }} \mathrm{E}$. At Port Royal, Jamaica, Mr. Leard in 1791, gave it as $6^{\circ} 50^{\circ} \mathrm{E}$. $;$ but there is reason to believe that, for a long time patt, it has not exceeded 5°. In 1824, Mr. De Mayne gave it as $4^{\circ} 40^{\prime}$ only. At Morant Point, $4^{\circ} \iota 0^{\circ}$ E. 1861. These tariations are very slowly docreasing.
18. ST. DOMINGO OR HAYII, PORTO-RICO, AND THE VIRGIN ISLANDS.

ET. DOMINGO.

Isle of Mona; the Midale
Hobero ${ }_{3}$ Right Bank. ...
Punta Macons ranohos ..
Isle of Seona ; Sandy beach near W. Point
Boca de Quiebon, or Chaboni, Punta Barlovento
Boca de la Romana; Commandant's house
Macorís Point
Isle of Santa Catalina ; W. Point
City of Banto Domingo; Cathedral, W. portal (1)

- Signal Tower on W. Point
Baraona; Village in Neiba Bay
Alta-Vela, or the High Sail
(2)

Lat. m.	Lon. T .	At 1.
,	- '	
		:. $\mathrm{im}_{\text {a }}$,
18 6 0	67490	
185850	$69 \quad 397$	Sir Robert H. Schomburgk,
18480	682950	F.R.G.S., 1852.
181018	684653	
182420	686823	. $\%$
182782	685837	,
182560	691925	- 1
18100	6920	-
182817	696226	- . ${ }^{\text {a }}$
182822	0982	
		Captain Rioti. Owen, R.Ny
18122	71645	and EDw: Donsterville, Enqy
182850	713944	R.N., 1820, 27, 32.

ST. DOMINGO, PORTO-RICO, \&O.-CONTINUED.

Cape Jacquemel, or Jacmel
Pta. Ajugas, or Falre Cape
Fiayle Rook
Aquin Bay; the Diamond Rock
St. Louis ; the Old Fort . .
Aux Cayes; the Thwn
Isle a Vache; E. point....
Point Abacou
Point a Gravois
Cape Tiburon; Extremity
Irois Bay; House on the Beach.
Isle of Navaza; Middle ..
Cape Dame Marie, or Donna Maria
Port Jeremie
Pirogues, on the Rochelois Reef
Hummock of Petit Gonave
Isle of Gonave; West point
Port at Prince; Fort Bigithon
Arcadins ; Northernmont
8t. Mare, or St. Mark'e pt.
Port Piment
St.NisholanMole,Ft.George
Port al ${ }^{\prime}$ Eou
Port Paix ; Carenage Point
Tortue or Tortuga Isle; W. Point

- East

Point
CITY of CAPB HAYtien; Watering Place

10
194640
196445
196840
106850
19490
194030
102130
191640
1920
183430
181048
SLAND of PORTO-RICO.

Sape St. Juan, or N.E. Pt. Torro Cabtle of St. Juan oint Bruguen, or N.W. Point 10 Desecho, or Zacheo guadille Town

Lat. N.	LON. w .	AUTHORITIS
- . ${ }^{\text {c }}$	- ${ }^{\text {- }}$	
181020	72 93 15	
17 46:0	71420	Captain R. Owex, R.N., and
17390	714145	Commander E. Duxereiviulis,
181848	78200	
181427	733130	
181110	73440	
1840	734430	
18.0	7346	1+17, 4 , 4 -
1818120	$73 \quad 55 \quad 30$	
18220	742732	
182848	742933	\%
182446	$75 \quad 30$	
183630	742713	(10)
18380	74.0	
183720	73120	
182861	725339	
18 65 26	731833	
183212	722225	
1848	7238	
19210	72610	
1937	73180	
194930	$\begin{array}{llll}73 & 27 & 33\end{array}$	
19 58 19 10 8	73 5 30	
	724846	
20820	725750	
2010	72360	
194640	721042	
195445	71400	
196840	$\begin{array}{llll}71 & 630\end{array}$	
196350	7147	
19490	70420	
194030	$6955 \quad 0$	The Observations of the Span-
192130	691413	ish Offlcers ; partioularly thowe
191540	$69 \quad 615$	of Captaine Don Cosme de Chur-
19200	$\begin{array}{llll}68 & 53 & 30\end{array}$	ruca, and Francisco Fidalgo
183430	682030	\&c.
181848	6830	
182420	6530	For somo important semarks
		on the Navigation about Porto-
1820 0	6870	on the Oaribbee Island, do., by
183118	$67 \quad 70$	Captain Zarhtmann, Hydroprapher of the tho Danish R yal Nary,
182348	072740	
$18 \mathbf{8} \mathbf{2 0} 10$	$67 \quad 17$	$\mathrm{pp} . \mathrm{xim}, \text { xx. }$

PORTO-RICO, VIRGIN ISLANDS, \&C--CONTINOED.

	Lát. N.	Low .w.	AUTHORTILE.
	- 1	- 1	489.3
Point Algarrob	18140	67730	The Spanish Surveyors.
Puerto Guanica; Elast point	176744	665245	
Caxa de Muertos, or Coffin; 8. W. Point	176030	66850	
The VIRGIN ISLANDS.			
Anegada; West point.	1850	642512	The Survey by Liout. G.B,
S Sast point.... (5)	184348	641620	Lawrence, R.N., 1848.
Soldier, or North point	184545	642020	
S.E. End	183630	6411	
Herman Reef, 16 feet; $\mathrm{S} . \mathrm{pt}$.	18.3330	6414	
Virgin Gorda; Pajaros, or East point	183042	6419	
Ginger Isle ; Ventre......	182345	642841	
Tortola; Road Town, Fort			
Burt St. John's ; S. S. E. point.	$\begin{array}{lll}18 & 25 & 9 \\ 18 & 19 & 0\end{array}$	$\begin{array}{cccc}64 & 37 & 0 \\ 64 & 44 & 20 \\ 64 & 30\end{array}$	
Sta. Monica Rock, (9 feet)	1819 0	643930	wn
St. Thomas Harbour;			
Fort Christian . ${ }^{\text {a }}$. (6)	182027	645540	
The Bergantin or Carvel. .	1818 0	6570	
St. Croix or Santa Cruz:			communication made to Mr.
Eastern Extremity of the Island \qquad (7)	174530		Dunsterville, by Sir A. Lang, of Sl. Croix, Jan. 21, 1832.
The Lang Observatory (8)	174432	64418	
-Harbour of Christianstwed; Flagstaff of the Outer Point Battery, called Fort Louisa Au-			
gusta . . : (9) Fort Christianswærn, in the Town of Christian-	174528	644142	The general height of the top of the hills in St. Croix is from 800 to 850 English feet above the
stred; Flagstaff	174469	644158	level of the sea, excepting tomal
Salt River Point (10)	174712	644445	the northern side of. the north
Hams or N.W. Bluff (11)	174624	6452	western distriot of the iskland
Fort at Fredericksteed or West End; Flagstaff(12)	174310	646248	where they ascend higher, and
Sandy Point ; thes.W. Ex-			Eagle, is 1,156 feet above the lered
tremity of the Island (13)	174030	645348	of the sea. Its summit is in 4 $17^{\circ} 45^{\prime} 62^{\prime \prime}$, and lon. $64^{\circ} 48^{\prime} 31^{\prime \prime}$
Buck Isle; East Extremity \qquad (14)	174718		Along the greater part of two
\qquad North-West	174718		South side of the isiland a ledged
Extremity $\ldots \ldots \ldots$	174730	643737	from shoro, in some places,
feet above the level of			neariy 2 milos. ${ }_{\text {channels }}$ through these reefs, pruc
the sea	174715	64373	ticable for amall vessele only.

NOTES.

1. Santo Domingo.-We previously gave the longitude of the City as $69^{\circ} 68^{\prime}$, on the authority of the Spanish Officers, Captains Don L. Argedas, and J. A. Sartorio, who observed an eclipse here in 1780, with a subsequent correction of $1^{\prime \prime}$. This result was considered by the talented and energetio Sir Robert H. Schomburgle, F.R.G.S., on his appointment to the Dominican consulate in 1849, to be too fay. Went, and he accordingly made many observations, and collected others of anthenticity, and places it as stated iu the Table. See Naut. Mag., August, 1852, pp. 412, 418.
2. Alta Vela, or the High Sail.-This is a high rooky islet, which serves as a general point of departure to all ships bound from the eastward to Jamaica, \&co. It is peaked, and appears to the northward, at a distance, like a dome, emerging above a mist or fog.-See, further, the Book of Directions above mentioned. .

On the anthority of tha respected and scientific Admiral Espinosa, of the Spanish Navy, we formerly gave Alta-Vela in lon. $71^{\circ} 22^{\prime}$ W., instead of a more westerly position, which had previously been assigned: but it is now fully proved that this is wrong, and that the true longitude is about 71 ${ }^{\circ} 40^{\prime}$. Mr. Dunsterville, from the mean of observations in 1828 snd 1829 , made it $79^{\circ} 39^{\prime} 26^{\prime \prime}$.W. Captain R. Owen as in the Table, makes the summit in $71^{\circ} 39^{\prime} 44^{\prime \prime} \mathrm{W}$.
3. Morro of St. Juan-The Harbour of St. Juan, was surveyed by Don Comme de Churruca, in 1794. The position given in the Table is from the statement of Don Iosef Cerquero, director of the Royal Observatory in the Isle of Leon, near Cadis. The particulars are given in the "Colombian Navigator," vol. ii. page xvii.; and the longitude, as there noticed, is considered as one of the best established in America.
4. Agoadilla. -The situation of Aguadilla, as given by the Spanish Officers, in $18^{\circ} 25^{\prime} 53^{\prime \prime} \mathrm{N}$., and $67^{\circ} 6^{\prime} 20^{\prime \prime} \mathrm{W}$. Admiral Mackellar gives it as $18^{3} 24^{\prime} 57^{\prime \prime} \mathrm{N}$., and $37^{\circ} 8^{\prime \prime} 25^{\prime \prime} \mathrm{W}$. In this, as in some other instances, tie mean of the two is the position given in the Table.
6. Anvgada, with its reefs, were surveyed by Mr. (since Sir) Robert Herman schomburgk, the distinguished traveller, in 1832. We formerly enumerated, in the lescription of the Caribbean Isles, the number of wrecks that lay upon the reefis in [811 ; and Sir R. Schomburgk has noticed that, between 1811, bnd 1832, twenty one American, seventeen West-Indian, fiftcen Spanish, nine British, two Frenoh, two Awelish; and one Portaguese were wrecked here; and this in attributed, ohiefly to the nsensible operation of the currents, as will be shown hereafter.
6. St. Thomas's.-With the position of Fort Christian, as given in the Table, rom a Danish Survey, compare the communication of Captain J.W. Monteath, "Coombian Navigator," vol. ifi. note 3, p. xx. ' But upon this point, we have received he following communication from Major Sir Andrew Lang:-"The bearings of the agstaff of Covoet's Battery, from my observatory (see note 8, hereafter), N. $21^{\circ} 54^{\prime} 27^{\prime \prime}$
5 ., from the true meridian, were determined by myself with a Troughton's altitude, cimuth, and traneit circle. Notwithatanding the distance, (371 miles), the flagataff as distinotly seen with the telescope of the circle, aud intersected with the vertical ire. Considering the latitude of the fliggataff, $18^{\circ} 19,32^{\prime \prime}$ N., which must be near it, hen its longitade is as stated, $64^{\circ} 55^{\prime} .45^{\circ}$ W., as deduced from my position; but t ow strongly suppect that it is a little more to the North, say in $18^{\circ} 19^{\circ} 45^{\prime \prime}$; if so, its pngitude, as deduced from my atation, will be $64^{\circ} 65^{\circ} 50^{\prime \prime}$ W., and the latitude and ngitude of Fort Christian would, on the ssine data, be lat. $18^{\circ} 20^{\prime} 39^{\prime \prime}$ N., longitude $\bullet^{\circ} 65^{\prime \prime} 39^{\prime \prime} \mathrm{W}$. (This is now oonfirmed). Fort Cowel is on the very top of an emience (275 feet above the level of the sea) which rises at tho sonthern extremity of a ngue of land which forms the western side of the entrance, as also the western pore of St. Thomas's Harbour."-Signed, Andrew Lang.
A lighthouse has been erected at Muhlenfeldt's Battery, on the East point of the trance of the Harbour of St Thomas. The light is red, the lantern having rod panes 8.E., S., and S.W., and is erected at 95 feet; first shown, August, 1844. To go car West of the Triangles, the East angle of the lighthouse is frouifht to bear in a
 North of the tower, and is visible by night from the reflection of the lamp; this will clear the Tricngles by a cable's length; the more the kitchen is covered the greater the distance from these rocks.

At the ling's wharf, in the town (West of Christiana Fort) a lamp with a red glase towards the harbour, will at the same time be seen West of Point Muhlenfeldt; this bcing free, ships adfely bear away for the harbour.

Prince Rupert's Rock, near the middle of the entrance to the harbour, wil. alway be kept whitewashed, and thereby be visible at night.
7. ST. CROIX.-Fully 9 nautio miles from the eastern extremity, N.E. by E. 1. E. (true), and about 11 miles E. by N. from the East point of Buck Island, corrmenoes the eastern extremity of an extensive bank or shoal, the northern limit of which rounds off from thence to the N.W., and soon after stretches westerly, inclining to the South of a westerily direction toward Buck Island Shoals and reefa, with which it may be considered as connected. The northern edge of the shoal is a coral ledge, everal milen in extent, on which $6 \frac{1}{3}$ fathoms of water is the least depth yet found; The more common depthe being 6, 6 , and 7 fathoms. The sea has been observed to break on the whole line of the northern edge, and to the very extremity of the bank, in an alarming manner, during a northerly ground swell in the winter months.
8. Oberrvatory of Sir Andrew Lang.-" The height of the observatory abovo the sea is 440 Englinh feet. The latitude is true to within one second. The longitude is the result, I may say, of the labour of years, and the present assumption of $64^{\circ} 41^{\prime} 0^{\prime \prime}$ in are, or $4^{h} 18^{\prime} 44^{\prime}$ in time, West from Greenwich, I consider to be determined with almost suoh absolute certainty, that I do not think the error in the determination can excoed four aeconds' in time, or one minute in arc, and I trust is less. On that datum the longitudes of the other stations are accurately determined. All the latitudes are certain to one or two seconds." -Andr. Lang.
[From the obsercatory communioation by signal, according to Captain Marryat's code, will be attended to. The observatory is situated about 1 mile to the E.S.E. of the town of Christiansted. In elear woesther the shoals are distinctly seen.-E. Dunsterville.]
9. Christianstad.-Nearly 1 mile due North from the entranoe of the harbour of Christianstred is the western extremity of a reef called the Scotch Reef, which stretches arom thence, with its shoals, fully $1 \frac{1}{\frac{1}{2}}$ miles to the E.N.E., rendering the spproach to the harbour very dangerous to strangers.
10. Salt River.- Salt River Point is comparatively a low point, and one of tho most northerly in the island. About one fourth of a mile to the North of it is a dangerous sunken rock, called the White Horse, on which the sea generally breaks.
11. Hams Blofr, along its northern part, is bold-to.
12. Fredericistad, or. Went-end Bay, is an extensive and beantiful bay, affording excellent and smooth anohorage, except where the wind has westing; but likeall anohoragen of that open kind, it then becomes dangerous.
13. Sandy Point.-To the South of this low and deoeiving point, at nearlys mile, there extends a dangerous reef to which a good berth should always be given
14. Buck Island.-This island, except on its sonthern side, is surronnded with dangerous riefe and shoals, extending fully 1 mile to the W.N.W. of the N.W. point of the island; fully two miles to the eastward of its eastern extremity; and aboot 1 mile to the North of the island; forming, in the intervening bearings, a circuitow connexion of the greatest dangers, whioh all prudent persons will avoid approaching.

VARIATIONS OF THE COMPASS.-1861.

At the East end of Santo Domingo, it is about $2^{\circ} 32^{\prime}$ E. $;$ at the City of Sarto Domingo, $3^{\circ} 0^{\prime}$ E. ; at the Went ond, $4^{\circ} 0^{\prime}$ E. At Portc Rioo, about $2^{\prime} 0^{\prime}$ E. $;$ about Tortola, $1^{\wedge} 30^{\prime}$ E. $;$ at Ancgada, about $1^{\circ} 10^{\prime}$ E.
20. THE OARIBBEE AND LEEWARD ISLANDS.

	Lat.	Lon. w.	Avthosimms.
Caribbes Iblands. [1]			Lieat. E. Lawrance, RN. Mr.
Sombero Landing on \qquad [2]	183545	632745	Parsons, RNN, \&cc.
side.	181615	631610	
Anguilla; Cutom House			
on North nide	18130	63440	
St. Martra's 3 Philipgburgh, Fort William ..	18 125	63-424	af!
- Wert Point	18.325	6310	
Saba; the middle....	1738 0	63140	
St. Bartholomew; Fort			
Gustavia . ${ }^{\text {a }}$. .	175360	625130	
St. Eustatius;Orange'Town	17290	62590	\%
8r. Christopiezr's; Basso-			
	17180	624230	
Nevis ; Charlestown	17850	623660	
Redonda; the Pinnacle, 600 feet \qquad	$1655 \quad 0$	63190	
Montserrat; Plymonth on			
South side.	16430	624330	
Antigua; St. John's Rood,			
Fort James [4]	17640	615121	
Ft. Byham on N.E. side	17×20	614617	
Dockyard Flagstaff, English Harbour	1700	614542	
Desirade or Deseade ; N.E.			
Point[0]	16220	6058 0	
Guadaloursj Basse-Terre			
[6] . ${ }^{\text {co..... }}$	$15 \quad 5930$	614538	
	$15 \quad 5750$	6117 0	
The Saintes ; St. Paul, Bolt Head, S.W. Point	155120	613730	
Aves Islet … ${ }^{\text {a }}$..... [7]	15420	623745	
Dominica;Rd. ofRosean [8]	151830	612515	
Martiniqus, Ft. Royal[9]	$1438 \cdot 7$	$61 \quad 438$	
St. Lucia; Pt. Moulacique or South Point	1341		
St. Vincent; Kingston	13120	61150	
Barbados ; Bridgetown;			
Fort Beckwith [10]	13630	593646	
Grenada; Fort 8t. George			
	$12 \begin{array}{lll}12 & 2 & 54 \\ 11\end{array}$	61.4830	
Tobago; N.E. Point. . [12] Scarborough Port ; King	112013	603230	
George Port	11100		
-; S.W. End	$11 \begin{array}{lll}11 & 7 & 35\end{array}$	605130	
Trinidad: [13] Point Gatera, N.E. Pt.			Captain E. Columbine, R.N
Point Galoota; 8.E. Pt.	$\begin{array}{lr} 10 & 50 \\ 10 & 90 \\ \hline 0 \end{array}$	606820	
Boca de Navios, or Ship			
Ohannel ${ }^{\text {W }}$. ${ }^{\text {a }}$	104145	614530.	
PORT SPAIM ; Water			
Battery	103842	613145	
restigos ; Centre Maroarita:	112315	$63 \quad 560$	\% . . - .any -
Pampatar Castle	$10^{\circ} 5915$	034830	

THE CARIBBEE AND LEEWARD ISLANDS.-CONTLNURD.

	LAT. \%.	Los. 7 .	AUTEORITIES.
	- " ${ }^{\text {c }}$	- ${ }^{\text {- }}$	
Margasita; North Point	111030	635330	The admirable Survey of the
Pta de Arenas, or Sandy			Coasts of Venezuela, \&c., by Don
Point	10590	642430	Joáquin Francisco Fidalgo, and
Blanquilla; North Point.	115430	644150	other Spanish Officers. Publish-
Tortuga; East Point	105445	651350	ed by the : Direccion Hidrogra-
Orchilla \% N.E. Breakers. .	115245	66, 6.30	fico, at Madrid, in 1816 and
Shoal of Two Fathoms	12915	66620	1817. The longitudes adjusted.
Lon Roques or Roccas :			
N.E. Islet $\ldots \ldots \ldots$	115840	663920	\% 7
Islas de Aven (Birds' Is.) :			
Windward Isle . .	1157730	972820	, 7 - . ${ }^{\text {a }}$ - 4
Leeward Isle	115930	674235	
Buen-Ayre ; N.E. Point	1214	681830	
Curagao ; S. Point Light	12.230	682230	+1
Curacao ; North Point .	12240	$69 \quad 9 \quad 0$	
Bay of St. Anna; Entrance	12620	685543	
Little Curacao ; N. End	1200	683713	
Oruba ; 8.E. Point	122345	6957.30	31452

NOTES.

1. Windwarl and Leeward Istands.-Under the denomination of Windzoard Islands, the navigators of France and Spain include the whole range from the Virgins to Trinidad; and, under that of Leoward Islands, the range which exists between Trinidad and the Gulf of Maracaybo. This distinction is natural and proper, and we have adopted it, in preference to the former distinction in the English charts, which includes, under the name of Leeward Islands, those from Porto Rico to Dominica only ; and, under that of Windward Islands, those from Martinique to Tobago.

The observations of the Spanish officers for determining the respective situations of the Caribbee Islands were very numerous and important, and our late charts have been regulated chiefly thereby. Some later corrections have, however, been made, particularly in the northern part of the range, and in the Virgin Isles.
2. Sombrero.-This solitary islet is a flat and rocky eminence, 24 miles in length, N.N.E. and S.S.W., without any hummock, having neither quadruped nor vcgetable upon it, excepting grass, and that generally dry, with a few weeds, \&co. It is even dentitute of water. It has been surveyed by our Admiralty, but see 'Colombian Naeigator," vol. iii. p. 64.
3. St. Christopher's.-In January, 1782, the Marquis de Chabert took nine meridian altitudes, whence he concluded the latitude to be nearly as in the Table. The longitude by his marine clocks, previnusly examined at Martinque, appeared as $62^{\circ} 52^{\prime} 30^{\prime \prime}$. Mr. Zahrtmann made the lifference of longitude between it and St. Thomas's $2^{\circ} 13^{\prime} 27^{\prime \prime}$, or in $62^{\circ} 42^{\prime} 13^{\prime \prime}$ as in the Table.
4. Antigua:-Our former position was a close approximation to that of Captain E.' Barnett, R.N., whose fine survey of 1848, gives a perfect picture of the Island.
5. Desirade.-From observations made by the Chev. de Borda, he computed the latitude of the N.E. point as $16^{\circ} 20^{\prime} 30$.
Oaptain Monteith, in lat. $16^{\circ} 58^{\prime}$, by three observations. Longitude of a ship by chronometer, $61^{\circ} 9^{\prime} 45^{\prime \prime}$; by lunars, $61^{\circ} 14^{\prime} 38^{\prime \prime}$; mean, $61^{\circ} 12^{\prime} 12^{\prime \prime}$. Bearing of Deslrade, S. 5° E., distance, 36 miles, which gives 3^{\prime} of departure- lon $3^{\prime} 5^{5^{\circ}}$. Hence longitude of the centre of Desirade, $61^{\circ} 9^{\prime} 7^{\prime \prime}$.
6. Guadaloupr.-The latitude of Basse-Terre has been confirmed from observations of M. de Verdun, \&z. The longitude (assuming Fort Royal, Martinique, as in $61^{\circ} 9^{\prime}$) appeared to be $61^{\circ} \mathbf{4 8 ~} 15^{\prime \prime}$; but if Martinique is $4^{\circ} 50^{\prime}$ East of this, it will place

Crasd Thom surem $44^{\prime} 16$
the i visible $19^{\circ} \mathrm{W}$ from 1 and eh three
The la
as 16°
7. Lawra coverad ably la

Messrs 91' to
9. of Mes ville gi

In t 1824 an of the f by M. ro, \&ce, and the

The by M. Z and St. differene St. Thom
10. B Michael', as $59^{\circ} 43$ differenc will give

In 18 with 17 $45^{\prime \prime} .6 \mathrm{~W}$.
11. G as $12^{\circ} 2^{\prime}$ c only $20^{\prime \prime} 1$ 1833, mad
12. T the the \mathbf{E}_{1} position f The Barol as $10^{\circ} 20^{\prime}$ place Tob was intenc des Tome. place Tobe been settle

Guadaloupe in $61^{\circ} 43^{\prime} 25^{\circ}$. The difference of longitude between Guadaloupe and St . Thomas ($64^{\circ} 55^{\prime} 40^{\prime \prime}$) was found by Mr. Zahrtmann to be $3^{\circ} 10^{\prime} 2^{\prime \prime}$, and another measurement makes it $40^{\circ} 35^{\prime}$ West of Guadaloupe; these combined will place it in 61° $44^{\prime} 16^{\prime \prime}$, nearly as in the Table.

A lighthouse on Terre de Bas Islet (or Petite Terre) at the eastern extremity of the island of Guadalonpe, shown a fixed light at 108 feet above high water, and in visible in all directiong for 5 leaguen. A rock, called the Baloine duc Sud, bears 8 . 19° W., 2,920 feet from the lighthouse. Shipe coming from the eastward will find from 13 to 20 fathoms water, at the distance of 2 niles North or South of the light, and should not approach it nearer. M. Tondu, in 1783, concluded the longitude, by three immeraions and two emersions of the first satellite of Jupiter, to be $61^{\circ} 48$. The latitude of Pointe des Chateaux, the eastern point, was observed by M. de Borda as $16^{\circ} 12^{\prime} 30^{\prime \prime}$.
7. Aves Islex. -The position of this small kay was ascertained by Lientenant Lawrance in 1850. It has been lately much visited for a stratum of guano which covercd it, and which was the subject of some dispute. When removed, it will probably leave the place but a bare reef.
8. Rossav.-The latitude of this place, according to the result of observations by Messrs. Verdun, \&eo., is $15^{\circ} 18^{\prime} 23^{\prime \prime}$. But the French officers have given the longitude 91^{\prime} to the westwand of that shown in the Table, which cannot be correct.
9. Martiniauz.-The latitude accords with that resulting from the observations of Messrs. Verdun, Borda, \&c., who conoluded the longitude as $61^{\circ} 0^{\prime}$. Mr. Dunsterville gives the longitude of the Diamond Rock as $61^{\circ} 6^{\prime \prime}$.

In the Survey of Martinique, executed by order of the French Government in 1824 and 1825, as shown in third volume of the Colombian Navigator, the longitude of the flagstaff of Fort St. Louis, on; which all the other longitudes depend, is assumed by M. Monnier as $61^{\circ} 1^{\prime} 26^{\prime \prime}$. This was arrived at by measurements from Rio Janeiro , \&c., and is 3^{\prime} less than that now given. See Note 10, in that volume, page xxi, and the Table in page 91 ; which may be compared with the Notes hereto annexed.

The longitude in the Table is assumed from a mean of chronometric measurements by M. Zahrtmann and M. Lartigue, between this and the observatories of St. Croix and 8t. Thomas, positions which may be considered as finally determined. These differences of longitude are taken as $3^{\circ} 36^{\prime} 58^{\prime \prime}$ East of St . Croix, and $3^{\circ} 51^{\prime} 7^{\prime \prime}$ from St. Thomas.
10. Barbados.-The late Dr. Nevil Maskelyne communicated the latitude of St. Michael's Church, in Bridgetown, as $13^{\circ} 5^{\prime} 30^{\prime \prime}$. The longitude has since been given as $59^{\circ} 43^{\prime} 40^{\prime \prime}$ and $69^{\circ} 41^{\prime} 15^{\prime \prime}$. From four separate measurements of the meridional difference between Port Royal and Barbsdos, it may be taken as $17^{\circ} 13^{\prime} 10^{\prime \prime}$, which will give $69^{\circ} 37^{\prime} 35^{\prime \prime}$ as the longitude of Farkados.

In 1850, Lieutenant G. B. Lawrance, by a careful measurement from St. Thomas with 17 chionometers, made Fort Beckwith as in the Table, in longitude $69^{\circ} \mathbf{3 6}$ $45^{4} .6 \mathrm{~W}$.
11. Grenada.-In 1779, M. de Chabert concluded the latitude of Fort 8t. George as $12^{\circ} 2^{\prime} 2^{\prime \prime} 4^{\prime \prime}$, and its longitude 42 N West of Fort Royal, Martinique. This varies $^{\prime 2}$ only $20^{\prime \prime}$ from the statement in the Table. Captain G. Daniell, of H.M.S. Vietor, in 1833 , made the longitude $61^{\circ} 48^{\prime} 90^{\prime \prime}$. It was surveyed by Mr. James Young.
12. Tobaco.-M. de Chabert. 1781, made the longitude of the S.W. Poinis 20^{\prime} to the the East of Fort Royal, Martinique: this places the point in only $60^{\circ} 71^{\prime}$ W. The position formerly given in the Connaissance des Tems was $11^{\circ} 6^{\prime} \mathrm{N}$. and $60^{\circ} 49^{\prime} \mathrm{W}$. The Baron Alex. do-Humboldt, in his 'Personal Narrative' (Engl. Transi.), gives it as $10^{\circ} 20^{\prime} 13^{\prime \prime} \mathrm{N}$., and $60^{\circ} 27^{\prime} 30^{\prime \prime} \mathrm{W}$. The latter is evidently a great error, as it would place Tobago directly East of the body of Trinidad. Wo presume that the N.E. end was intended, and that in $11^{\circ} 20^{\prime} 13^{\prime \prime}$ N., not $11^{\circ} 10^{\prime} 13^{\prime \prime}$, as given in the Connaissance des Toms. But if, upon conjecture, we take M. Humboldt's longitude thus, we shall place Tobago too far to the East : for it is allowed that the situation of Trinidad has been settled by the Ipanish surveyors, and it is well known that the high land of

POSITIONS OF PLAOESS.

Trinidad in een from the ahips at anchor in Courland Bay, over tie land of Sands: Point, which could not be the case if the former anthoritiee were correct. See the Chart of the Conste, \&C., Srom Tobego to Barcelona, publiched by Mr. Laurie. Captain Daniell, in H.M.S. Victor, 1833, made the longitnde of Great Courland Bay $60^{\circ} 61^{\prime} 15^{\circ \prime}$.
A Lighiowno on Bacolet Point, at the Port of Soarborough, shows a brilliant Axed light at 128 foet; frrst chown August 1at, 1844. The Minister Rook bearn E.S.E. from the light, distant $1 \frac{1}{5}$ miles.
13. Port Spary in Tansipid.-Captain Foster (vol. ii. page 249) makee Fort St. Davids at Port Spain, $0^{h} 52^{\prime} 0.8^{\prime \prime}$ West of Pard, which we have placed in $48^{\circ} 80^{\prime} 12^{\prime \prime}$ (Ethiop Mem, page xxxiii.), therefore it will make it in $61^{\circ} 30^{\prime} 24^{\prime \prime}$. M. Zahrtmann stateis it to be $8^{3} 10^{\prime} 12^{\prime \prime}$ East of 8 . Croir- $01^{\circ} 30^{\prime} 48^{\prime \prime}$; Captain Owen maken it $15^{\circ} 19^{\prime} 0^{\prime \prime}$ East of Port Royal, or $61^{\circ} 31^{\prime} 45^{\prime \prime}$, which is adopted by Lieutenant Raper; this is $2^{\prime} 30^{\prime \prime}$ Weat of the position quoted in the former edition ; it has, therefore been mabatracted from the longitude of Trinidad. The longitude, according to Lientenent Lawrence, is $61^{\circ} 81^{\prime} 0^{\prime \prime}$.

Captain (now General).Edward Sabine R.A., has, from a great number of observations, given the position of the Protestant church in Port Spain, as $10^{\circ} 38^{\prime} 58^{\prime \prime}$ N., and $61^{\circ} \delta 5^{\prime} 0^{\prime \prime}$ W. This new and beantifal church is said by Captain 8 . to be one of the many improvements and decorations for which Port Spain is indebted to its late governor, Sir Ralph Woodford, and which have rendered it one of the handsomest towns in the British colonies.

VARIATIONS OF THE COMPASS-1861.

In the ohannel between Porto-Rieo and the Virgin Islands the variation is about $1^{\circ} 40^{\prime}$ East; but on the East of Anegada it diminishes to $0^{\circ} 40^{\circ}$ East. At Antigua and Guadalonpe it is 1° East ; and nearly the same thence to Barbados. At Granada \&e., $1^{\circ} 30^{\prime}$ East; and Trinidad, 2° East. These Easterly variations are slowly decreasing.

21. THE COASTS OF GUYANA, COLOMBIA, ETC., TO THE

 MEXIOAN SEA, INOLUSIVE.| | mat. n. | rox. w. | AUthorimime. |
| :---: | :---: | :---: | :---: |
| | | | |
| Capr Norti | 181 | 49600 P | M. De la Condamine and |
| Mount Mayes, a landmark. . | 36 | 60860 op | the French Engineers ; inclu |
| Cape Orange | 4220 | 51250 p | ding Lientenant Roman Des |
| | 357 468 4 60 | $\begin{array}{lll}51 & 27 & 0 p \\ 6214 & 36\end{array}$ | fosses, whosurreyed the "lles du Salut" in 1834. |
| Islen du Salut; I . Royale .. | ${ }_{5}^{4} 1610$ | ${ }_{52} 5288$ | Capt. the Beron Rousain, 1820. |
| Riv. Marowyne; Dutch post | 5680 | 636520 | |
| | 6110 | 64330 | tenant Bispohop Greevelink |
| Mot Creek | $\begin{array}{llll}6 & 1 & 30\end{array}$ | 54.3741 | late of the Netherlandish Navy |
| Cameron's Plantation | 55530 | 5456 | in the brig Echo, 1833-37. |
| Paraicaribo; Church | 6.6820 443 | $\begin{array}{llll}56 & 9 & 48 \\ 56 & 10 & 30\end{array}$ | |
| River Corentyn; Nickerie Battery, on the Enot | 44380 56738 | $\begin{array}{cc}56 & 52 \\ 56\end{array}$ | chomburgk. |
| Mery's Hope, on the Weat | 6330 | $57 \quad 20$ | The Topographical Surveys adjusted by the lon oitnde |
| Berbice; Crab Isle, light | 62430 | 47220 | Demerary, as given by Captrin |
| the Lighthouve . | 64920 | 681130 | Owen, \&o. |
| River Essequibo; extremity of the Leguan Bank | 7020 | $6818 \quad 0$ | Sir R. Schomburgk. |

THE COASTS OF GUYANA, COLOMBIA, EO-OON2LNUED.

-itiotratur	Lax. ${ }^{\text {r }}$.	L0x w	Avthomitis.
Boca de Guayma	825	6968	The Spanich 8 ourreys of the
Riv			Don Joaquin Francisco Fidalgo;
Punta or Point Barim	84480	6040	and other Spanich Oflicert. Pub.
Isle Cangrejos; N.E. pt.	8510	60220	lishod by the Diroccion Hidiro-
Trinidad. Sed the procoding Section page 88.			grafoo, at Madrid, in 1816 and 1817.
Peñas Point	1044	616125	
Cape Three Points	104516	6240.15	
Cape Malapasqua.	104250	631	
Cumana, the City of . [3]	102787	641028	
Fuerto de Mochima; Entrance	1024	6321	The whole of the Colombian coant, from the Inland of Trinided
Isla Borracha ; N.E. point	101840	644446	to Chagres has beon so finely and
barcrlona, Moro	1013.15	644345	accuratoly aurveyed by Don Joa-
Piritu Isles; Centre	1090	6486	quin Fidalgo, and other Spanich
Isle Unare: Centro	10515	651525	offlcers, as to leare nothing more
Cape Codera	103554	666	to wivh for, 00 fare as the murvey
Chuspa ; Point	10 39, s0	-68 20	extends; the Bouth aide of the
La Guayra ; Road	10370	6856	Guif of remazwala only excepted.
City of Caracas (S			longitudos have been made. See
Puerto do	102910	676145	Notes.
Purato Cabello; Ent.	102946	$\begin{array}{lll}68 & 2 & 0\end{array}$	
Punta Tuoacas ; South Kay	10430	6817	
Punta de San Juan	11.9	682835	Spanish Surveys of the
Punta del Ubero	111980	684715	Coants of Venezuela, \&c.
Punta del Manzan	113116	6922	
Vela de Coro.	112830	6940 6	
Capr S. Roman	12110	70885	
Punta de la Marcolla	12 S	701920	
Santa Anna do Coro	11240	694780	
Fort or Castle of Zapara	108880	713880	
Maracaibo; Town	10390	71480	
Punta de Espada	124	$71 \quad 960$	
Bahia Honda, Entrance.	12200	714835	
Capr la Vela \ldots......	12110	721335	
Rio de la Hacha;	$\begin{array}{llll}11 & 33 & 30 \\ 11 & 10\end{array}$	725650	
Cape 8. Augustin	$\begin{array}{llll}11 & 16 & 0\end{array}$	73 38	Magdalona, and is noticed no such
Cape S. Juan de Guia	112045	74.220	in the Colombian Navigator, vol.iil.
Cape de la Ajuja	$\begin{array}{llll}11 & 18 & 80\end{array}$	741420	There is mid to be a jool, at
Bairia Marta........ [4]	1116	7416	five and a hal? mile to the W.S.W
Rio Magdalena: Boco de Rio Vi			of the Morso, in lon. $75^{\circ} 10^{\circ}$, and, at about three and a half miles from
Boco de Ceniza.	11.820	746345	the nearest land, notlaid down on
Pueblo de Barranquillas	1059	744827	the Spaninh Ohart. It hae 6 fa-
Punta de Eavanilla	11.20	750225	thoms of water around it, with
Morro Hermosa*	1058	$75 \quad 210$	only 11 foet on its contre. The
Cascabel Rock	105810	75	Oa
Palmarita Shoal	105145	751625	
Punta de la Galera	10470	752630	thereiore be the name.
Punta de Canoas	103415	76.330	
CARTAGENA;	1026.0	753315	
Salmedina Bank (2 fins.)	$\begin{array}{llll}10 & 23 & 0\end{array}$	724045	
Boco Chica;	$\begin{array}{ll} 10 \\ 10 & 30 \\ 10 \end{array}$	753617	

THE COASTS OF COLOMBIA, \&C.-CONIINULD:

.N., 1854.
tt, 1840.
and eurveys d Owen, in nd Thunder, 1837.
coasts of the om Oape Gratatoche, incluhoals between a Costa Rich under the ablo Oxon ; LiellBird $\mathbf{A l l e m}$; eptain Edhoorl t Jas. Cannom, micers of the ese importank ans of correct in the repre of Hondura, given a true Rio and Colof which wore d.-Colombinan 24.

Lat. x .	Lon. w .
-" "	- . "
$16 \quad 130$	855930
16 30 0	854737
162345	86.19
16745	866330
172430	836250
185615	831138
153855	8654
154845	872756
154710	83440
154745	883850
154945	884832
161415	883554
163053	$88 \% 30$
17415	8816
172920	881130
16550	874350
164220	875057
171211	873224
172820	8727
17830	885558
173615	874640
17150	88045
171925	$88 \quad 020$
172055	875915
173315	$88 \quad 454$
182330	8723
18460	8719
$\begin{array}{llll}19 & 17 & 30 \\ 19 & 38\end{array}$	87280
193615	872515
201145	872550
20160	865939
203530	864434
211210	864315
2100	86440
213350	8756
212730	87250
$\begin{array}{llllll}21 & 36 & 15\end{array}$	88100
2110 B	90.247
21100	90 ¢ 530
$20 \cdot 50$	903010
195045	90330
22460	904015
23270	8948
$22{ }^{2} 36$	894250
208484	021321
22710	012430

AUTHORItIEs.

The observations and Surveys of Captain Richard Owen, \& \%

Rimares.

The town of Balize is the onty regular evtablishment which the English settlers have formed in this country: It is immediately open to the sea; and though the situation is low, the groups of lofty cocoa-nut trees, with the thiokly interspersed and lively foliage of the tamarind, contribate to give a very picturesque and pleasing effect to the dwellings of the inhabitants, independent of the advantage that is conferred by their grateful ehade. The reen and lays of the coant are those named Glover's Moof, the Lighthowes Recof and Kays, Twrwaf, or the Drowned Ieland, and the Northern Triangle. The Lighthouse Roef has been generally known under the name of the Rautern Reef; it is 8 leagrees in extent from N.N.E. to S.S.W., and is steep-to, excepting the S.E. point, nowdistinguished by its lighthouse.

The Observations and surveys of Captain Richard Owen, \&'c.

The Survers of Captain Edw Barnett, R.N., of H.M.S. Thunder, 1837.

	Lat. N:	LON, W.	AUTHORTTMS.
	- '	- ${ }^{\prime}$	
Jevinal Point	19120	90) 630	The Spanish Surveys of the exican Sea, 1808-1814, with
Punta do Xicalang	18410	9180	omendations by Admiral Mac:
Barra de S. Pedro	18.40	92250	kellar, of the Britinh Nevy, and
Burse do Tabasco	183430	92350	by the Baron Ales. von Hum
Barra d Shiltepeque	182630	92690	boldty \&e.
Rio Tupilaho; Entrance of	18260	93210	
Barme do Gommeoalca	1810 -	$9417 \quad 0$	
Ia Barilla	18100	94300	
Punti do 8. Juan	1818 0	9433 . 0	
Roos Partida, or Clajt $R 2 k$.	18430	$\begin{array}{llll}95 & 2 & 0\end{array}$	\%
Bamba de Alvarado : \cdot.	18450	95420	
VERA CRJJZ; The Jight howe	101216	98712	
Xalapa	19308	$2655 \quad 0$	- . - + + ¢ ¢ ¢ S \% \%
Corre do Perote	193264	9780	
Peak of Orizaba or Orizava	19217	971215	
Puebla de los Angelem. . . .	19015	$98 \quad 245$	
Toluca	191619	992145	
Temonco	193040	986115	
Mexico	192545	$99 \quad 5 \quad 30$	
Cape Rozo	21 16.0	9718 0	
Barra de Tampico	221566	975018	
Barra de. Santander.	2343^{10}	$08 \quad 20$	
Boquillas Cerradas	250	97450	
Rio Grande del Norte, or Rio Bravo, Mouth of ; Boundary	25660	971130	- - incti.

NOTES.

1. Catrane.-The situation of this town was given by M. De la Condamine, in 1774, from four eclipses of the first satellite of Jupiter; as in $82^{\circ} 18^{\prime} 30^{\prime \prime}$; but the longitude in the Table is inferred from Maranham : the difference of longitude between them having been ascertained by MM. Roussin and Lartigue.
2. Coast between the Marowyne and Bram's Point.-To Lieutenant B. Greovelink, late of the Netherlandish Navy, the public is indebted for that valuable description of the coasts of Guyane and its several ports, which is in vol. iii. of the Colom. Nav.
3. Cuxana. - The Baron von Humboldt gives the longitude (as calculated by M. Oltmanna) as $64^{\circ} \theta^{\prime} 38^{\prime \prime} ;$ tise chronometric difference between it and St. Thomas, as cecertained by M. Zahrtmann, is $0^{\circ} 44^{\prime} 18^{\prime \prime}$, which makes it as in the table, $64^{\circ} 10^{\prime} 28^{\prime \prime}$.
4. Santa Marta.-The meridional distance between Port Royal and Santa Marta, by several mes.surements, is $2^{\circ} 35^{\circ} 45^{\prime \prime}$, which gives the longitude in tho table.
5. Caledonia. Harbour. - The position of Scorpion Kay, in this harbour, wa ascertained by Mr. Parsons, R.N., in H.M.S. Soorpion in 1864. It is important, 4 correeting the Spanish survers of this coast, nsed in determining the practionbility of forming a navigable canal between the Atlantio and Pacifio Oceans. VARIATIONS OF THE COMPASS.- $\mathbf{1 8 6 1}$.
Acoording to the Chart of Lieutonant F.J. Evane, R.N., which, however differs in some respeets from previous anthoritios, the line of No Variation passey within the coant of Guyana, from the entrance of the Amacons to near Cayenne.

The variation is thus at Cape North, about $0^{\circ} 30^{\prime}$ West; at Surinam, about $1^{\circ} 30^{\circ}$ Bart at Demerara, \&oo., $2^{\circ} 5^{\prime}$ East; Trinidad, $2^{\circ} 30^{\prime}$ Eut ; Caracas, $3^{\circ} 50^{\prime}$ Eaut; Ouragao, $4^{\circ} 0^{\prime}$ Easi; Santa Marta, $5^{\circ} 25^{\circ}$ East; Gulf of Darien, $6^{\circ} 30^{\prime}$ East; Chapres, $6^{\circ} 50^{\circ}$ E.

Theme variations appear to be very alowly deoreasing.
eys of the -1814, with niral Mac: Nevy: and von Hum.
ondamine, ia bnt the lonude between
int B. Greoable dencripColom. Nav. ulated by M. -Thomas, as , $64^{\circ} 10^{\prime} 28^{\prime \prime}$. Santa Mario table. harbour, was mportant, 4 practionability ns.
ver differs in within the

1 $1^{\circ} 30^{\prime}$ Raut $_{i}$ tt; Ouracian Es, $6^{\circ} 60^{\circ}$ E. flust.

SECTION II.

LIGHTHOUSES,

AND THEIR ILLUMINATION.

The Lighthouse Systems at present in operation on the shores of the Atlantic Ocean are well worthy of far greater attention than they generally receive, both for the regularity and perfection of their arrangements, and for the beautiful adaptations of science which they exhibit. A few remarks on their nature will therefore be an appropriate introduction to the lists and descriptions of the lights which follow.
It is of the utmost importance to the sailor, that one light ahould be readily and clearly distinguished from another; the melancholy effects or mistakes on this point are too familiar. Every means, therefore, of so distinguishing a light, should be made use of; and one point in furtherance of this, is the system employed in the illumination of the lighthouses, between the various methods of whioh it will be seen that there are some well-marked or minor features, which serve to give a distinotive character to lights which may have, otherwise, the same general appearance.
Lighthouses consist of two classes ; those built on the land, whioh do not differ, in the principles of their construction, from ordinary buildings and those erected on inolated rocks, such as the Eddystone, and that on the Heaux de Brehat; which have demanded the most refined judgment and skill to combat with the enormous force of the waves. Another description of erection consists of iron piles, either secured to the rocks, or on a large scrow forced into the sand, which support the lighthouse. An example will be found in the Maplin Lighthonse, in the mouth of the Thames.
Light-vessels, employed where buildings have been hitherto impracticable, are of peculiar construction, and always painted red, with their name, in conspicuous white letters, on their sides, and carry at their mast-hcads one or more skeleton balls, as' described, which, in cases of the vessels driving, are lowered, in indication of such an ocourrence. During fogs or snow storms, from each of these vessels is sounded at regular intervals a Chinese gong, the very peculiar and powerfal sound emitted by which is not to be mistaken for anything else. Light-ships are very atrongly moored, either with a single mushroom anchor, or with a span and bridle.
The lamps used for the illumination of lighthouses are apon the principlo invented by Argand, about 1780. The amallest of them consiots of a single cylindrisal wick, of nearly an inch in diameter, and the alr is made to ascend through the tube to the: centre of the flame, by means of a glass chimney placbd aronnd it, and does not differ from that in universal use. This single wiok lamp is used for the parabolio reflectors; and there are usually several of them in a lighthouse. Where a single and more powerful' light is required, a lamp of moro complicated oonstruction, thoogh of tho meme prinsiple, in employed. The largest has four ooncentrio wicks, the outside or largent being sf inches in diameter, and the oentral or mmalleat five-sixthe of an inch., Irom the great heat which this powerful lanup evolves during ita burning; which is puffieint to char the wiokn; the oil in made to flow copionaly over thom, $n 0$ that. the fuantity supplied to them is about four times moro, thian in conoumed at the time.. nith in effected either by meann of small pumpa, moved by olockwork, or by apring:
or weights pressing on the reservoir, or by the prensure of condoured air. The lamp with four wickn is of the first order; for the second it has throe wioks, for the third two, and the fourth one wiok.

The oil now employed both in the English and French lighthouses is called colsa oil, and is expresed from the seed of a species of rape or wild calbage. Formerly the bent sperm oil was used in the English lights till 1852.

The effect of a lamp in issaing rays, is to flll a aphere whose difineter is donble that of the distance to which such a light can be meen. But as only those rays are serviceable which are visible in a horizontal or nearly horizontal direction, thoee which pan beyond these limits must be turned into it. To do thin we have two alternatives, one to reffect the light by polished mirrors, the other to refract it by glass lenses placed before the light.

When polished silver reflectors are used behind the light, it is oulled the Catoptric syatem, and is that most generally in use in England.

Where glass lenses are used before or around the light, it is ealled the Dioptric syutem, and is that most generally in use in France. Hence thewe two systems are frequently known by the names of the respective countries.

The Catoptric or reflecting aystem is dependent apon the peculiar properties of the parabolic curve, to which the reflectors are formed. The parabola is a conic section which has within it a point called the focus (which is the situation of the flame in the reflector, and if a line be drawn from the focus to any point on the parabolic curve, another line drawn from that point parallel to the axis of the parabola, will form an equal angle on either side of it. Now the reflector, composed of copper lined with silver, is formed by the section of the revolution of a parabola, and if a part of light from the focus be reflected from its polished surface, it is thrown off, or reflected in s direction perfeotly parallel to its axis. The point of light in the focus thus sends forth a cylinder of fight, whoee diameter is equal to the donble ordinate or opening or month of the refleotor. Supposing, then, that we wished to produce a complete circle of light all around the hrizon, it is evident that it could not be done with any number of such instruments $;$ there would be dark intervals between the direotion of their axes, if they were placed in a oircle. But here another ciroumstance ocours. The flame used is not a point of light, but is nearly an inch in diameter; and this subtends an angle at the vertex (or bottom of the reflector) of $14^{\circ} 22^{\prime}$, in the reflectors ordinarily used in the Trinity House lighta, which are 21 inches in diameter and 4 inches in focal length. Therefore, combined with other circumstances, about 15° or 17° of divergence may be considered effective, and it would take from 25 to 33 of auch reflectors to mako a complete circle of light.

The brillianoy of the ray from this reflector is considerably stronger in the direction of the axis, that is, when viewed direotly in front, than it is for some distance on either side of that direction ; and at great distances, in fixed lights, when you are in the direction between the axis of the adjoining reflectors, the light is frequently glimmering and feeble, but a small change in the position of the ship brings you again into the brighter beam of the reflector, one of whioh, it will be understood, is only in sight at a time. This is an important observation to the sailor, in distingrishing one fired light from another, of different descriptions of apparatus.

When a revolving light is required, a number of these reflectors is flxed to the sidem of a triangular or quadrangular iron frame, and the whole caused to revolve in rigulier periods, by means of clockwork. The reflectors on each aide of the revolving framo, from four to eight in number, are thus successively directed to every point of the horison; and the combined result of their rays forms a flash of greater or lew duration, cocording to the rapidity of their revolution.

From the amount of divergence the period during which such a light will remnin viable is from 12 to 16 meconds, the light gradually inoreasing, and as gradually dimininhting. And as the aotion of the refeotor is only in the direetion to which it it pleced, the intorvals between the flaehes will be quito dark, for a shorter or longor poriod, ccoording to the distance from whioh it is viewed, whether it is beyond that to which the unaisinted flame will reach.

> The a fixed each of withon In flo are sma lighto, joints, rolling mast, an during light-ve the mast Anap such a of Mr . R denly ob This feat to their flecting 0
There Bordier single lan the revol is taken flecting
The lig are distin only one from its is
The fin Hutchinso in the Liv curve now

- The Dit action on 1 flame, and through; explained
:When a glass or w course, thi emerges fr in which it of the lens, cone of ray of the lenn,
In the ar fiths of th construoted in the midd light would sach a masa to its prope of difficult n 'To obviat
-The light from a revolving catoptric or reflecting eystema in much brighter than from a fixed light on either principle, as you have the combined effect of several reflectors, each of which gives an equal amount of light, it is calculated, to $\mathbf{3 5 0}$ to 450 suich lighte withont any reflectors.
In floating light-vemeln the light is always shown from parabolic reffectors. Thewe are smaller than those uned in lighthouses, being 12 inchem in diameter. For fred lights, eight lampe and puflectors, each sumpended on gimbals, or on ball and pooketjoints, so that they always maintain their perpendicularity, notwithstanding the rolling of the vessel, are arranged in an octagonal lantern, whioh goes round the mast, and is hauled up to the mast-head when on service, and is let down on the deck during the day, or while the lamps are trimming. Revolving lights for floating light-vessels have four lampe, and similar reflectors, and the lantern revolves around: the mast.
An apparatus for producing an intermitting light, of the only appearance to which such a term is applicable, is in use in three of the Scottish lighthouses, ins invention of Mr. Robert Stevenson, It is an arrangement by meens of which the light is suiddenly obscured by an eclipser, and as suddenly appears again at its full brilliancy. This feature distinguishes it completely from revolving lights, which come gradually to their greatest brightness, and as gradually decrease, and this either from the reflecting or refracting apparatus.
There is yet another sort of reflector in use in France for harbour lights, called the Bordier Marcet apparatus, from its inventor, or the sideral lamp. It is used with a single lamp, and consints of a circular reflector, about 131 inches diameter, formed by the revolution of a parabola around its focus in a horizontal plane; the centre of this is taken out to admit the lamp, which thus has all around it, above and below, a reflecting surface, which sends its apward and downward rays in a horizontal direction.
The lights in the onsuing list, which are upon the catoptric or reflecting system; are distingnished by this mark \bullet. Their magnitude, or order, is not indicated, as only one reflector is usually visible at a time; the class of the light is to be inferred from its importance.
The first notice we have of the use of parabolic reflectors in given by William Hutchinson, in his "Practical Seamanship," published in 1777, as having been used in the Liverpool lighthouses, erected in the year 1763. The formula for the parabolio curve now used wes given by Captain Joseph Huddart.
The Dioptric or lenticular system is next to be considered, and depends for its action on the refracting propertiea of glass. In this the apparatus is placed before the flame, and derives its name, dioptric, fróm a Greek word, signifying anything looked through; or lentioular, from ita being composed of lennes. Its principle may be thus explained :-
: When a ray of light passes out of a rarer into a denser medium, as from air into glass or water, or cice versa, it is refracted, or bent, out of its original direction. of course, this new direction is dependent upon the direction in which it enters into, or emerges from, this second medium. This is familiarly explained in the burning-glam, in which it will be seen that a oylinder of parallel rays of the sun entering one side of the lena, are so deflected, that upon their issuing from it on the other, they form a cone of raye whose apex is at a certain distance, dependent on the curved side or sidee of the lens, called the focal distance.
In the application of plano-convex lensen of 3 feet foous, to the controlling of twofifhhs of the entire sphore of light, they must be 2 feet 6 inches in diameter, and if constructed of the usual form of smaller lenses, would be several inches in thioknews in the middle. This would occasion merious inconveniences: a large portion of the light would be aboorbod in its paseages there would be great diffloulty in procuring such n masis of glass of anything approaching to uniform density; which is nocemary to its proper action; and it would be also of very great weight, and consequently, be of difficult management.
'Io obviate thewe difficulties (for a burning-glans), it occurred to Sir David Brewster
in 1811, and to M. Augustin Freanel in 1819, that the same optical effects might be preverved if a large portion of the solid part of the lens were removed; becinuse the feftective properties of the lens depend upon the relative direction of its surfaces. They therefore proposed the lens now in use for lighthouse purpowen. It is called the polyzonal or annular lens, becanse it consists of a series of zones or rings, instead of beinge of one uniiform curve or surface. It is a plano-convex lens, having the ourved aurfice cut into rings, which are brought into one plane, and the relative direction of the outer curved surface to the inner flat one is preserved in the separate rings of which the lens is built. There is one great advantage in this method, that the lons may be built to any size, and yet not be thioker, and may be made square, so as to economize every portion of light which may be thrown on the zones of the breadth of their diameter. The dioptrio system was perfected by the late M. Augustin Frennel, the director of the French lighte, and is sometimes called by his name.
For a revolving light of the first order, or largest size, eight of these lensea are formed into an octengular belt of 6 feet 0.5 inch in diameter, having the flame of the lamp in their common focus. Therefore as the action of these lenses is the reverse of that of the burning glass, by sending forth parallel rays of light, which enter the lens in the form of a cone from the focus within ; this part of the apparatus will send forth eight beams of light in the direction of their axes, or the lines between the lamp and their centres; between these directions the light will not be seen. The apparatus being made to revolve, say, in eight minutes, by means of machinery, it follows that a bright beam, gradually increasing in intensity, and then diminishing, will be prosented to the eye each time that one of these lenses passes before it, that is, once every minnte.
The duration of these flashes is dependent on the power of divergence in the lens. If the light were a mathematical point, as supposed in the case of the reflector, the flash would last but a single instant, but the breadth of the flame being $3: 30$ inches, this, at the focal distance of 3 feet, subtends an angle of $5^{\circ} 9^{\prime}$, and consequently the duration of the flash is while this angle is passing, or about seven seconds. These separate lenses form the principal or most powerful portion of a revolving dioptric light.
For a fixed light on the dioptrie principle, another adaptation of it is used. As the object is now only to bend those rays, which would pass upwards or downwards into a hosizontal direction, and not to interfere with the direction of those which pass laterally; the central portion of the apparaus is formed into a continuous belt, or rather series of belts, whose section is identical with that of the polyzonal lens. It will be evident that such an arragement distribntes the light evenly all round the direction in which it is placed, and thus affords a means of distinction for the sailor, to discriminate such a fixed light from one on the catoptrie or reflecting principle, when the light is not quite even all round, but is strongest when immediately in front of the reflector.

The central portions of the apparatus which we have been describing economive abont two-fifths of the whole rays issuing from the central lamp, but does not affect those which pass above or below thoir action, and whioh would therefore bo lost for useful effect withont some additional controlling apparatus. This is of two kinds: either reflocting, being formed of numorous silvered glass mirrors, or else of reflecting and refracting glass prisms.

The upper series of this additional portion, in the original form of the larger apparatus, consists of a series of seven rings, covered with plates of looking-glans, which are inclined towards the flamo at such an angle, that thoy reflect the light in a horisontal direction, and thus add their effeet to the power of the central portion of the lenses. The same remarks apply to the lower series, or the four beneath the flame; and they may be considered, as each of the faces, forming a portion of the parabolic curve, whose focus is in the flame of the lamp. In a first order light apparatus on this system'there are 264 separate mirrors in the 11 zones. But this portion of the apparatns is now in course of change for the following, in all the English and French lights.

In the carlier period of the ir troduction of the dioptric system, a more beautiful
cdapta dioptri lenses. Mr. 1 increas
Whe $41^{\circ} 49^{\prime}$, of no in The pr upper that the ceived outer si
This fulfil ite which t more of power 0 their go
The d
eccordin
In ar ratus, af flashes f of a ligb This disi principl generall
There although the two and the stead of principal of $10 \frac{2}{2}$ ir octagona mirrors, This upp lenses. following the lowe caused b principal having p mall ant Among varied by fixed dio drical ele clements beams to entire app tho sectio another s more effe horizonta
might be cance the surthen. called the instead of the eurved lirection of e rings of It the lens re, so as to breadth of in Fremenel, lame of the e reverse of iter the lens 1 send forth - lamp and e apparatus follows that will be pro, onco every
in the lens. effector, tho $3 \cdot 30$ inchen, quently the mas. Theso ing dioptric sed. As the mwards into which pass nous belt, or mall lens. It 1 round the rr the saidor, og principle, tely in front
g economise pes not afficot bo lost for two kinds: so of refect-
larger appa. glans, which hit in a horiortion of the a the flame: the parabolio apparatus on ortion of the and French
edaptation of ceionce wan alone uned for tho smaller apparatur, in the form of catadioptric or totally reflecting prismatic glame conee, above and below the principal lenses. It has been introduced into the largeet apparatus, npon the suggention of Mr. Alan Stevenson, the engineer of the Scottish lighthouses, and has most materially. increased the efficiency of the whole system.
When a ray of light is thrown on a glass aurface at a more acate angle than $41^{\circ} 49^{\prime}$, instead of passing out again it is totally reflocted from that point, and it is of no importance whether it is within the body of the glase or on its external purfeve: The prismatic zones are so arranged in the form of a cupola over the flame, that the upper and curved surfaces of each of them shall be at such an angle to the focal flame. that the ray issuing from it shall, after being. refracted from the under side; be roceived upon the inner aurface of the upper side, be again refracted, and issue from the. outer side in a perfectly horizontal direction.
This is one of the greatest refluements of practical science, and so perfectly does it fulfil its office, that the only lose of light is that which is absorbed by the glaes of which the prisms are composed.- These cata-dioptrio zones are necessarily very much more costly than the ordinary catoptric or reflecting zonos, but they inorease the power of this part of the apparatus more than in a corresponding degree, though their goneral effects are not otherwise distinguishable from one another.

The distance to which the light from these zones is visible is about 10 or 8 sea miles, sccording as the apparatus is of the first or second order.
In a revolving lenticular light, therefore, the upper and lower portions of the apparatus, affording a constant and steady light, are visible in the intervuls between the flashes from the central lenses, and this subordinate light will serve to fix the ponition of a light during such interval, if it is seen within the distance of 8 or 10 miles, This distinguishes a lenticular revolving light most clearly from one on the catoptria principle, or from parabolic reflectors, the intervals between the flashes of which are generally total beyond the distance of 2,3 , or 4 miles.
There is a more complicated system in uso for dioptric revolving lights, whioh, although there is no example of them in the English Channol, as they are in use in the two finest lighthouses in the world, the Cordouan, at the mouth of the Gironde, and the new Skerryvore, off the. West coast of Scotland, we will here describe. Instead of the bands of parabolie mirrors, or cata-dioptrio zones, above the central and principal lenses, the apparatus is dia-catoptric, being composed of eight amaller lenten of 19 inches of focal distance, inclining inwards towards the flame, and forming an octagonal frustrum of a cone of 50° inolination. These are surmounted by plane mirrors, placed so as to reflect horizontally the beams transferred by these lenses. This upper apparatus is fixed at an angle of 7° from that of the eight great vertical lenses. The whole of the apparatus is caused to revolve in eight minutes, and the following is its distant effect. Within 8 miles a constant steady light is seen from the lower zones, and once in every minute a small flash is seen for a few seconds, csused by the upper portion of the apparatus. Soon after this smaller flash, the principal lens gives the brightest boam, which may be seen more than 30 miles; this having passed, the smaller flash, after a period, succeeds, and thus in each minute a mall and a large flash are visible.
Among the French system of lights is an apparatus which shows a fixed light varied by a bright flash at regular intervals. The apparatus consists of the ordinary fixed dioptric light with the refracting belt, which is composed of horizontal oylindrical elements. Round this central belt one or more panels of vertically oylindrical clements is made to revolve. This revolving panel causes the horizontally divergent beams to be parallelized in azimuth, and thns the appearance of the light from the entire apparatus will be a fixed light, then a whort eclipee caused by the deflection of tho section of light by the revolving panel, then the bright flash from the panel, then another short eelipse, and then tho steady light again. The same appearance is also more effectually produced by constructing the apparatus of alternate segments of horizontal cylindrical elements and polygonal lenuen. Sometimest the riash is of a red
colour, the revolving panel being stained for that purpose, as in the case of the new light on Ciausey in the Chinnel Islands, and several othera.

The only means of distinguinhing one light from another in that of causing it to revolve or fiesh at different intervals, as is almont exclusively used in the French lights, or by means of colour, as is more in use in our own harbour and tide lights. The colour which alone seems adapted for this purpose is red, and this'is applied to dioptrio lampo by a cylinder of raby-ooloured glass, stained with a preparation of gold, pleced around the lamp; or if to the ordinary reflector, a pane of this coloured glans placed before the reflector. The use of colour is objectionable on the score of the gratly diminished power of such a light. In a bright light, revolving and showing alternate red flashes, thene last will not be visible so far of as the bright light, and give the appearance of longer or unequal intervals in its appearance.

There is some waste of light in both the systems. In the catoptric it is that angle comprieed between the angle formed by the lips of the reflector and the flame and the horizontal ray, which strikes the outer edge of the reflector. That portion of the light which pames upwards is, of course, lost for useful effect: the other portions may be considered as worviceable, In the year 1849, Mr. Thomas Stevenson, son of Robert; brother of Alan Stevenson, proposed some arrangements which obviate this loem, upon what is termed the holophotal system.*

The ordinary paraboloidal reflector is rendered holophotal as follows :- \mathbf{A} small portion of the back of the reflector is con off; for this is substituted a portion of a spherical mirror of the same focus. In front of the flame a lens with three diacafoptric rings is added. The action of the spherical refiector is to return all the rays impinged on it back through the flame, and thus on to the posterior sides of the lens and diacatoptric rings. Therefore, all the rays which emerge from the lens, \&c., will be horizontal, and the renuainder, those impinging on the paraboloid, will also be reflected in the same direction. Peterhead light (1859) is on this principle. The Horrburgh Lighthouse, in the strait of Singapore, is fitted with 9 such holophotal reflectors; three on each face of a revolving frame, each side of which, it is said, gives as much light as five refiectors of the ordinary kind. This was completed in 1851. Another one, on a large scale, is at Hoy Sound, Orkney. A similar apparatus, a red light, was placed at Wick, in Caithnem, in 1851.
Dioptrio lights are divided into 4, or rather 6 orders, according to their magnitude:

1. The frat order apparatus is 6 feet 0.5 inch in diameter, and is illuminated by a lamp with four wicks, of $3 \cdot 39$ inches, 2.52 inches, 1.69 inches, and - 88 inch diameter, respectively. It is indicated in the following list by the flgure 1.
2. The second order apparatus is 4 feet $7 \cdot 13$ inches in diameter, and is illuminated by a lamp with three wicks of 2.6 inches, 1.8 inches, and $\cdot 9$ inch in diameter, respectively, and is indicated by the figure 2.
3. The third order is subdivided into two sizes, larger and smaller. The first apparatus (grand modele) is $\mathbf{3}$ feet 3.38 inches in diameter; and the second (petit modele) 1 foot 769 inches in diameter. They are each illuminated by a lamp with two wicks, the larger of 1.61 and 807 inches diameter respectively, and the smaller of 1.20 and -589 inches in diameter. They are shown in the list by the figure 3. All the lights of this order in the English Channel are of the larger size.
4. The fourth order, or harbour light, is also subdivided into two sizes, the larger (grind modelle) 1 foot 2.77 inohes in diaméter, the smaller (petit modele) 11.81 inches in diameter. They are illuminated by a single cylindrical wicked lamp of 94 inch or 85 inch in diameter. As the sub-division of this order is unnecessary to the sailor it is distinguished in the list by the figure 4.

In addition to the magnitude of the apparatus. the description of it will also serve usefully to distinguish one light from another. Therefore, the different ayntems em-

LIGHTHOUSES AND THRIR ILLUMINATION.

 asing it to 10 Frenoh ide lights. applied to paration of is coloured the score revolving the bright nee.that angle me and the of the light ons may be of Robert; s lose, apon
:-A small ortion of a hree diacalll the rays. of the lens 1s, \&c., will 1 also be reThe Horslophotal re3 said, gives ed in 1851. uratus, a red
magnitude:
inated by a Ih diameter,
illuminated iameter, re-
e first appatit modele) two wicks, of 1.20 and the lights
, the larger
1.81 inohes
. 94 inch or
the sailor
1 also serve yntems em-
ployed, as dencribed in the foregoing paragrapha, are designated by the letterm a, b, a, d attached to the figures indicating their sires, as followe :-
a. A feod dioptric light apparaton, having a dioptric. belt and oati-dioptric prinmatic zonen. This is the most perfect ajatem for fixed light apparatus.
b. A rovolving light apparatus, concisting of eight polyzonal lenses, surmounted by the cata-dioptric prisms. The appearance of this light, beyond the distance of 8 or 10 miles, acoording to the aize of the apparatus, is that of a brilliant flach of 7 to 9 seconds' duration. Within that distance the fainter light between the flamhes is virible.
c. A fxed light, varied by flashes. Its appearance, which distinguishes it from any other, npon clove attention, is, 1st, the intensity and duration of the fired light; and, 2nd, by the short duration of the eclipse which precedes and follown each brighter flawh.

d. A holophotal apparatus, described as above.

The range (portée) of the different lights, as given in the table, represeints this element very incompletely, inasmach as the distance there given is dependent on the elevation of the light, and consequent distance of the horizon. The flashes of the principal revolving dioptric lights may be, and have been, seen 50 or 60 miles bff, when they are above the horizon, and it may be taken for granted that; should the atmosphere be favourable, any of the larger lights may be seen from whatever distance they may be sought for from the greatest attainable elevation.

The height of the lights above the sea-level is given in the tables from the level of high water at opring tides, and consequently is their minimum height. This will cause the distance to which they are visible to be increased (with the exception of floating lights) when it is low water, by an amount equivalent to the depression of the sea surface at that period.

Atmospheric changes, of courses, have the most important effect on the range, visibility, and appearance of lights. In a very clear transparent atmosphere they will have nearly a white appearance ; during foggy weather, particularly the dry haze sometimes predominant on soundings, they will have more or less of yellow or reddiah tinge.

Lights may be divided into three classes according to their nantical importance :1. Coast hights, those which serve for the mariner to recognise the land on approaching it, and are thus of the greatest power; they are marked in the following lists in capital letters, thus-USHANT, LIZARD, \&c.
2. Harbour and Leading Lights.-These, of less importance than the former in thid general system, are used to indicate a port or narrower channel. Some of these, though more limited in their immediate object, may be as important as the first class. Thus the Gull Stream light-ressel, though of limited approaches, is most useful in marking the centre of the Goodwin ; it is therefore placed among the first class. The second class is shown in emall capitals, as-Shoreham, Cherbouag, \&o.
3. Tide lights ahow when a harbour has a certain depth of water and is accessible. They are frequently red, and, consequently, are of less power. They are marked in italics, as Ramegate, Boulogne, \&c.

Farther details are given and alluded to in our recent Work, " A Description and List of the Lighthouses of the World, 1881," to which the reader is referred.

EXPLANATION OF THE TABLES.

NAME AND CHARACTER OF LIGHT-First Coldmn.

The pefacipal coust lights are given in capitals, as N. FORELAND. Secondary lights to monller caspitalo, as Brozainer Harbour." Tide lights in italich, an Ramogatt. Tha charrates of the Hight follown its name.

GEOGRAPHICAL POSITION-GEOND COLUKN.

Tho latitudes and longitudes here given are prossumed to be accurate, within less than r, for all the coants of the Δ tlantio Ocean and its Seas. In other parts of the world it may vary comewhat more; but there is no great discropanoy, auch as would lead to rarioun concoquencen, by tating any one of them as a point of departure.

DESCRIPTION OF THE LIGHT, \&c.-THIRD COLUMN.

In this, any peculiarity of the light, or period of a Tide light, is noticed; and also the direction of double lights. In many cases the bearing of two lights whan in one will lond clear of a danger, as the S. Foreland in one, W. by N., clears S. and of the Goodwin, 80. Special direotions will explain this.

DESCRIPTION OF APPARATUS-FOURTH COLUMN.

In this, the aigns to indicate the sort of light apparatus in use in each case:-

- signiffes a catoptrio, or reffector light: (Soe page 14, ido.)
$1 \mathrm{a}, 2,3 \mathrm{~d}$, \&c., indicate dioptric, or lons lights, the figure showing the order or give, 1at, 2nd, 3nd, to 6th order. (See page 26.).
e, a fxed lenticular light. (Page 22.)
b, a jevolving lenticular light. (Page 21.)
0, anted and lashing light. (Page 23.)
d, a holophotal light. (Page 26.)
These figures and letters will serve to explain the peculiarities of the Lenticular Syntem, as in operation therein.

HEIGHT ABOVE HIGH WATER-MIFTH COLUMN.

This gives the height of the flame in feet above the highest tide level, consequently it is its minimum height, and is increased by the tidal range of the place. The height of the Lighthouse itself, from base to summit, is given cometimes in the third column.

VISIBLE IN MILES-Sixth Column.

This gives the minimum distance to which the light can be meen, in clear weather, from a height of 10 feet above the eoe level. But in the oase of the principal lights this bat imperfectly represents their range, as they could be seen at any dirtanoe attainalle by increased elevation. In the use of colowred lights this range is given according to their prerumed power.

YEAR.ESTABLISHED-Seventh Column.

Tho date of the first exhibition of the light is usually given; but ites character, \&co, may have been frequently changed in the interval.

LGHTHOUSES.

ITGLATD.
ently it is is height of the mn.

Swanage Pier \square 1

Poons
Two red lights

PORTLAND
High lt., br. and fixed Low lt., br. and fixed

Portland Breakfatran One fixed red light
$|\cdots . .$.

Shambles Shoal LeaVes. One fixed light

Kame and Charreter of Light.	$\begin{aligned} & \text { Lat. N. } \\ & \text { Lone. W. } \\ & 0 \end{aligned}$	1-8) $\quad \%$	Desoriptiona, teo.					早妥

Tyomeovers
Two rad fired lighta.

	Oneon a limeatone tower on 8.W. and of Denn ; other on a house	

| Bar | pie | -1 20 \| 6| 1889 |
| :---: | :---: | :---: |
| | | |

One brilliant revolving light, visible every minute

Plinouta Breatwatar. One bright and one rod light

Patmoutr Harbova One bright fixed light
EDDYSTONE
One brilliant fixed it.

50 20.4 On W. and; bright to seaward, 49.5 bat red E. of N.E. \& E. from

20	68

Q | 1844

| 50 22. | Δ tower, 20 feet high, on the W. |
| :--- | :--- | - $129|6| 1822$

50 \%	Barbican pier head.

|2a| 72|18|1769
 on the roci, which covers 14 ft
at high water. Bell in fogs

Falmouti
One rev. lt. in 20 neoc.
LIZARD
Two brilliant fixed lta.
WOLF ROOK
One light, proposed:
Ponsamos Tide Light A fixed rod light, while 15 ft. inside; grown while less
$\left|\begin{array}{ll}50 & 8.6\end{array}\right|$ A white tower, 62 foet high, on

- | 72|12|1835 $459.5 \mid$. St, Anthony's Point \mid

$\left.\right|_{\bullet} ^{\bullet}\left|\begin{array}{l|l}229 \\ 232 & 20 \\ 20\end{array}\right|^{1751}$
| - | .. | . . | 1801

SOILLY minute
BISHOP ROCK $|4952.5|$ On the 8.W. rock. A noblo \mid 1a| $110|16| 1868$ One fixed bright light
$\left|\begin{array}{cc}49 & 56.7 \\ .8 .48 .2\end{array}\right|$
50%
(Proposed, on the rook.)
A vhito builiding, 22 feet high,
on the 8 . pier hoad. By day,
a bell. while 16 feet.

531.

(Proposed, on the rook.)
A vhito builiding, 22 feet high,
on the 8 . pier hoad. By day,
a bell. while 16 feet.
Proposed, on the roak.)
A vhito brillding, 22 feet high,
on the 8 pper head. By day,
a ball while 16 feet.

 GODE One TREV Two

 Brintol Thamnel.
LUNDY ISLAND

MUMBLES
One bright fixed light
$\left|\begin{array}{cc}51 & 34 \\ 3 & 58.2\end{array}\right|$

Helwick Liout-Vensrl
One br, rev. It. 1 min.

ILanolly
Two fixed lightm

Wales.

8. BISHOP ROOK

One br. rev. It, 20 secs.
Cardigan Bay Lt.- Fess.
One rev. rad lt, go ness.

Aberyatwith
BARDSEE ISLAND One bright fixed light
Carrenaryon fixed light
SOUTH STACK ROOK Ono br, rev. It. 2 min.

Holyhead Harbour
One bright fixed light
——BreakwaterLt.-Ves. \| | One rad It. near E. ind of works | | $|20|$ | 1850

SKERRIES
One bright fled light
Anlace Port
LYNUS or RELIAN PT. Ono intermitting light

Mammal

AIR POINT
One br. or red fixed $1 t$.

LIVERPOOL N.W.LT. SHIP
Throe br. fixed lights
| | Two fixed lights occasionally .. |

53	8.	$\begin{array}{c}\text { Rod light on Llanddwyn Point ; } \\ 4\end{array} 24.7$						
bright light on pier head			$\left.\left.\begin{gathered}\text { Rod light on Llanddwyn Point; } \\ \text { bright light on pier head } . . .\end{gathered}	\bullet	{ }^{60}\right	^{5} \right\rvert\, \begin{aligned} & 1845 \\ & 1858\end{aligned}$	53	18.4
---:	---:							
4	41.9	\left\lvert\, \(\begin{gathered}White tower, 						

fogs a rove, light f is shown at 40\end{gathered}\right.\) White tower, 84 feet. During $|\bullet| 201|19| 1809$ foot. Bell, gun, de.
$\left|\begin{array}{rr}53 & 18.8 \\ 4 & 37.1\end{array}\right| 0$
On the old pier head; a rod light - | 44 | 11 | 1820 also to N.N.E. ia bell and gun red lights on jetty
$\begin{array}{r}53 \\ \hline\end{array}$
A white tower, 78 feet high, on the highest inland
la | 117 | 16 | 1803
5325. 430. 53 25. A white building, 36 foot high. One br. light when practicable $1 \bullet|28| 9 \mid 1817$ Lt. vie. 8 nee. ; eclippod 2 secs.
 Du Point
la| 01 | $10 \mid 1837$
5321.4 A pile lighthouse; it. is red only 3 19.2 within Hoyle Sand; fog bell - | 42 | $9 \mid 1844$

53 27. In ct Ans off the Horsoand Helbro
$\begin{array}{rr}3 & 17.4\end{array}$ Channels; bursa bim lt. overy

- | 36 | 10 | 1814 2 hours ; a black ball. In fogs,
......
Between South Bishop and Bard- $|\bullet| 40 \mid$ | $18 n 0$ dey Id. lighthouses. 1 $L_{\text {awe }}$

Clary
One
Poult
WAL
One
One
ST. B One

Whity
2. ${ }^{1} \frac{1}{2}$

Marin

One
Working Two

H Ha aTD.
IIGETHOUSES.
Wrot Oonit
ini

Same read Charration of UIsht.		ription, 4es			
IIoruars ifTwo br, fized lights " $\left\|\begin{array}{rr}53 & 23.7 \\ 3 & 10.7\end{array}\right\|$ In one, 8.W. by S., 1,200 feetapart, near the Ohurch			$\begin{array}{l\|l\|l} 5 & 18 & 17 \\ 1 & 11 & \end{array}$		
Ono bright fixed light	53				
br. twice; ral once	53 3 26.6	a jued light, while 11 th., down Rock Chaznel and up Morsey			
Formar Lioht-V	533	the	$\|24\|$		
One red tixed ligh	5332.	Near the	$\mid 1856$		
$\begin{aligned} & \text { Inale } \\ & \text { Uppe } \end{aligned}$	3		9		
Iythams I		One fixed			
	$\begin{array}{rr} 53 & 55 . \\ 3 . & 0 . \end{array}$		80 13 1841 80 9		
One bright fixed. li	$\begin{array}{rl} 53 & 57 \\ 3 \end{array}$				
Two bright fixed lig					
One fixed rod light	$\begin{array}{cc} 54 & 1 \\ 3 & 0 \end{array}$		\bullet		
oultox PizR		0	6a\| 48	8	185
One br. rev. lt. 1 min. One red fixed light	$\begin{array}{rrr} 54 & 2.9 \\ 3 & 10.6 \end{array}$	W. $\frac{4}{3}$ W., 340 yards apart. A rad lt. also on Railway Viaduct	$\bullet 1701$		

GT. BEES HEAD One bright fixod light

Whitehaven

1. One rev. 1t., 2 min.
2. Tweofred lighte

Harrington Tido Light

 One fized lightWorkington Tide Lighto Two fixed lightn

54	30.8	A white tower, 43 foot high	$\bullet\|338\| 23 \mid 1821$

5433.2
$\begin{array}{rr}54 & 33.2 \\ 3 & 35.8\end{array}$

54 37. \mid On the pier head, while 8 feet $|-|44| 11| 1848$ 3 34. water. Red ball while 8 feet

S4 39. On the onds of St. John't and $|\ldots| 63|11| 1826$
.. | 47 | 11 | 1828

3 35. Wooden piers, E. and W., 380 feet appari, while 8 foot wator

-rime aid Clarneter of Light.	$\left\lvert\, \begin{gathered} \text { Latat. N. N. } \\ \text { Long. } \\ 0.0 \end{gathered}\right.$	Deseriptioa, \&o.		
Mantpoit One br., one tite light One grovi, one rad light	54 3 3 30.3	Fixed lt. on Onter pier head. Tide light, whilo 8 ft., on Inner pier. Rad lt. on Starboard side, and grom its, on North Tongie....	$\begin{aligned} & 48 \\ & 40 \end{aligned}$	$\begin{array}{l\|l} 12 & 1798 \\ 10 & 1858 \end{array}$
Bozway Light-Fegaiz Ono rad light	$\begin{array}{r} 5448 . \\ 333 . \end{array}$	11 fme. in Robin Rigg Ohannel. Black ball; a ball in fogs	101	$6 \mid 1841$
Lyy Sonz One bright fixed light	$\left.\right\|_{54} ^{54} \begin{array}{rl} 51.8 \\ 3 & 34.7 \end{array}$	On piles on the rocks. A bell in fogs		$6 \text { \| } 1841$
Srnnaumasen One red light	$\left\|\begin{array}{cc} 54 & 52.5 \\ 3 & 33 . \end{array}\right\|^{2}$	A White wooden building, 82 ft. high, on Silloth Point........		

Curlioh Port Trich Light | | A lamp on the pier head | .. | . . | . . | 1841 Inle of Inan.
PONNT OF AYR $\quad \mid 54$ 24.9 A A stone tower, 90 feet high, t| \mid | $103|15| 1818$ Δ rov. lt., br. and rod, 2 min.
422. mile S.W. of the Point
| | Bright lt. on E. side of entrance | .. | 21 | 8 | 1811
CALF OF MAN

Two br. rpp. 1 to., 2 min. $\left.\begin{array}{|rr|}54 & 3 . \\ 4 & 50\end{array} \right\rvert\,$ \mid Two atone towers, 560 feet apart, $|\bullet|$| 375 | 25 | 1818 |
| :--- | :--- | :--- | :--- |

Poxt Er. Mary \quad | | One bright light on pier head .. |•| $25|9| 1812$

Darby Hiven
Two fired lighte

$12 \mid 1906$ $10 \mid 1858$

$0 \mid 1841$

6 | 1841

Mamo and Charrotere oi Irioht.	Lot. N. - : '	Demoription, tor.			
$\begin{aligned} & \text { Hagwior } \\ & \text { Two fixed } \end{aligned}$	58 56.6 17.4		09 18 28 18 10 		
$\underset{T w 0}{D_{\text {Nonsi }}}$		Building on the extreme point supersede present Harwich	1861		
Landg			6a\| ..	. 11848	
ORFORDNESS Two bright fix	$\left\lvert\, \begin{array}{rrr}52 & 5.6 \\ 1 & 35.2\end{array}\right.$		$\left.\left\|\begin{array}{l}88 \\ 68\end{array}\right\| \begin{aligned} & 14 \\ & 18\end{aligned} \right\rvert\,$		
Pakefield			$68\|9\| 1832$		
LOWESTOFT Two brightive	52 129.2 1.45 .5		$\left.\begin{array}{r}119 \\ 46\end{array}\|c\| c_{16}^{18}\right\|^{1600}$		
Sx. NICHO	52				
Coorle Liont Vabian One brt. rev. lt. 1 min.					
	1	high			
Thre			38 10 170		
Two bright fired lights					
	52				
max \& Owfa Lt. - Vis. Upper revol. 1 min., low fixed light	$\begin{array}{lll}53 & 8.6 \\ 2 & 1 .\end{array}$	In 16 fms. between thes Sand lts. at unequal heights ; two balls	$\begin{array}{l\|l\|l} 88 & 10 & 1840 \\ 27 \end{array}{ }^{2}$		
One bri. revol. 1 min			$\left.\left.74\right\|^{23}\right\|_{1833} ^{1719}$		
One bright fixed light		E. over the Roaring Middle Sand	2n \| 109	16	1805

Onp quiok revol. light	$\left\lvert\, \begin{array}{ll} 53 & 8.7 \\ 0 & 25.7 \end{array}\right.$	$\left\lvert\, \begin{gathered}\text { In } 27 \text { fathomen off tho hook of the } \\ \text { Long Sand } ~\end{gathered}\right.$	$34\|10\| 1828$					
Dudanor Liariv-Vza. ${ }^{3}$ Oné bright fixed light	$\left\lvert\, \begin{array}{ll} 5215 . \\ 0 & 56 . \end{array}\right.$	$\left\lvert\, \begin{aligned} & \text { In } 9 \text { fathome near B. side of the } \\ & \text { Shoed }\end{aligned}\right.$						
Spurar Liqut-Vrasis Ono her. rev. lt. $\frac{1}{3}$ min.	$\left\lvert\, \begin{array}{ll} 53 & 34 \\ 0 & 83 . \end{array}\right.$	\| In 9 fathoms off the Point.			$10 \mid 1820$			
	$\left\|\begin{array}{ccc}53 & 34.7 \\ 0 & 7.3\end{array}\right\|$	$\left.\right\|_{\text {In one N.W. } 1 \text { N. }}(168 \text { yarde. The }$	$\left\|\begin{array}{l}1 a \\ 4 a\end{array}\right\|$	$\begin{aligned} & 93 \\ & 64 \end{aligned}$	$\begin{array}{l\|l} 15 & 1776 \\ 12 & 1861 \end{array}$			
RIVER HUMIBER								
	\| :c.a.:	One bright fixed 1t. off Spurn Pt.						
	\| W. 50m 1							
	1	1 One bright fixed lt. to W.S.W.				\| 1849		
Tillingholm	$\left\|\begin{array}{cc} 53 & 39 . \\ 0 & 12 . \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { Lights in one N.W. Lead up the } \\ & \text { river, and when S. by W. lead } \\ & \text { down } \end{aligned}\right.$	- 1	$\left.\begin{array}{l\|l} 68 \\ 36 \end{array}\right\|^{11}$		${ }^{11} \left\lvert\, \begin{gathered} 1836 \\ 1862 \end{gathered}\right.$		
anll	\|	One bright fixed light					\| 1836	
Hebble 1 One red	$\left.\right\|_{53} ^{53} \begin{gathered} 4 . \\ 0 \end{gathered}$					$6 \mid 1839$		
	$\left\|\begin{array}{cc} 54 & 5.7 \\ 0 & 11.7 \end{array}\right\|$	$\begin{array}{\|l} \text { On the North Pier-head while } 9 \\ \text { feet water. } \end{array}$	$1 \because 1$			$8 \text { \| } 1862$		
FLAMBORO' HEAD Ope revol. light, 2 min. bright, • bright and rod alternately	$\left\|\begin{array}{cc} 54 & 6.9 \\ 0 & 4.8 \end{array}\right\|$	A white tower 87 feet high. Bearing N.N.E. clears N. end of Smithio. \qquad	$\text { \| } 214 \text { \| } 20 \text { \| } 1806$					
wborough Tidh Light. One fixed light, red to seaward	$\left\|\begin{array}{cc} 54 & 27 \\ \hdashline 0 & 23 . \\ & 23 \end{array}\right\|$	While 10 feot water ; on Vincent, Pier. A ball by day 1			$18 \text { \| } 1806$		
GH WHITBY Two bright fixed ligh	$\left\|\begin{array}{r\|} 54 \\ 0.28 .7 \\ 0 \\ \hline \end{array}\right\|$	In one B. by It. 를 E. (258 yarda apart). A rod light from N. tower over the Sicar		$\left.\begin{gathered} 240 \\ e n^{2} \end{gathered}\right\|^{28}$		$\left.\right\|^{1868}$		
$\begin{aligned} & \text { ight } \\ & \text { nn } \\ & \text { lig } \end{aligned}$	$\left\lvert\, \begin{array}{cc} 54 & 30 . \\ 0 & 37 . \\ & \end{array}\right.$	Green tide light on W. Pier from 2 hours flood to 2 hours ebb. E. Pier light rad to S . but grom to N. of Rock buoy	$\bullet \left\lvert\, \begin{array}{l\|l\|l} 83 & 13 & 1831 \\ \bullet & 64 & 10 \end{array} 1865\right.$					

TEES BAY

 High be., low rad lt. 1 13. ally. In ope lead over the bar $\left|\begin{array}{ll|l|} & & 10\end{array}\right|$

High bright, low rad stide light
1.10 .4 from half flood to half ebb.... $4 a|62|$ 4

Nome amd Charioler of IIght.	$\begin{gathered} \text { Let. X. } \\ \text { Long. W. } \\ 0 . \end{gathered}$					
ST. ABB'S HEAD One bright fired light	$\left\lvert\, \begin{gathered} 5 s^{2} 35 \\ 50 \end{gathered}\right.$	Builling (1860)	$\text { 1a \| .. \| .. \| } 1860$			
\qquad	$\left\|\begin{array}{cc} 56 & 0 . \\ 2 & 30.7 \end{array}\right\|$	Ono fired br. light at each, from July to October	$\text { . \\| .. \| . . \| } 1867$			
ITOHKEHIH One br. rev. 1t. 1 min.	$\left\lvert\, \begin{array}{ll}56 & 3 \\ 3 & 8 .\end{array}\right.$	\mid A white tower, 45 feet high $\ldots . . \mid$	${ }^{2 b}$ \| 220	18	1804	
Framaniow One fixed light		On the pier head ; all night, excopt in moonlight \qquad	$\text { - \| } 20\|6\| 1889$			
Loith Rod light on E. pier White light on W. plex	$\left\lvert\, \begin{array}{cc}55 \\ 3 & 59 . \\ & 80 .\end{array}\right.$	A grom it, under the whits one on W. pier while 8 ft ; the grown changed to rod when Dook gaten are opea	$66\|28\| 10 \mid 1829$			
Srowhaven	\|	\| One bright light on the pier....		\| ..	$20 \mid 61$	
Grintor	1......	\| One rad light on pier head \| 33	6	1845	
Granompoutr One fixed light		At the entrance of the River Oarron \qquad	$\text { - \| } 33\|10\| 1847$			
Inverisitiena	1......	\|Two rod lights on W. Quay 1 \|.	. .	${ }^{1866}$
Burntisland East Pior \qquad Porry Pior A fixed light on each	$\left\lvert\, \begin{array}{ccc}56 & 4 \\ 3 & 14 \\ \ldots & \ldots\end{array}\right.$	Aleo a mall rod it. at Newhalls, and a whits one at Queensferry, for parsage boats only				
Kirgcandr One fixed light	$\begin{array}{\|cc\|} 56 & 7 . \\ 3 \end{array}$	On E. pier head. Red to seaward; whits when Harbour is open..	\|..	29181	nt	
Buckhaven ; .. \|......	A whict light on E. pier head ..	$\mathrm{s}\|17\| 9 \mid 1854$				
St. Moras One red, and one bs. 1t.	$\left\|\begin{array}{ll} 56 & 12.5 \\ .3 & 46.3 \end{array}\right\|$					
Pittinnwent Three fired roil lights	$\left\lvert\, \begin{array}{ccc}56 & 13 . \\ 2 & 43.5 \\ \cdots \cdots & \\ \end{array}\right.$					
Angtrutizer One rodand one groonlt.	$\left\|\begin{array}{ll} 56 & 13.3 \\ .3 & 41.8 \end{array}\right\|$					
Crlinkpyma One fixed red light)	$\left\|\begin{array}{c} \text { On a house, in W. of Harbour ; } \\ \text { only while boats are out } \end{array}\right\| \text {.................... }$				
ISLE OF MAY Two brilliant Axed Its.	$\left\lvert\, \begin{array}{lll}56 & 11.1 \\ 2 & 33.3\end{array}\right.$	On the summit of the island, N.E. side ; N.N.E. \ddagger E., and B.S.W. \& W., 750 feet apart				
BELL ROCK One rev. light, bright and red alternately, every 2 minutes	$\left\lvert\, \begin{array}{ccc}56 & 26.1 \\ 2 & 23.1\end{array}\right.$	A tower, 117 feet high; on the Bell Rock, at 10 feet below high water. A bell is sounded every half minute in fogs	$\text { - \| } 90\|14\| 1811$			
ST. ANDREW'S Two fixed lights	$\left\lvert\, \begin{array}{ll} 56 & 20 . \\ 2 & 47 . \end{array}\right.$	On the pier head, and a turret in Cathedral wall	$\begin{array}{\|c\|c\|c\|c} \bullet & -30 & 6 & 1825 \\ 50 & 100 & 6 & 1849 \end{array}$			

BUDDONTEMSS orTAY Two brilliant fired lta.

 Pozt or Onale
Two Axed lighte

Nympory

Dundiz Harboun
 Two fired rod, light

Arpzonry
One rad fired light

Prizritiod
One bri, and one rodit.

Macdury
One red fred light
Bantr
Two whith, one rad, itts.

Elgin and Lowbmouts .
COVESEA SKEERRIES One ser. lt. 1 min.

| 57 | 30 |
| :--- | :--- | :--- | :--- | :--- | :--- |$|$ White on albow of W. Pier in S. \mid a $\left\lvert\, \begin{array}{ll}24 & 10\end{array} 1834\right.$ Harbour; and rad, on W. Piers a $|26|_{10} \mid 1849$ in N. Harbour

-•| 36| 6|1841
$\left|\begin{array}{cc|c|c|c|}57 & \text { 40. } \\ 2 & \text { 30. }\end{array}\right|^{\text {On the W. pier head }}|\bullet|$ 25| $8 \mid 1829$
 and one high white lt., with lower rod lt. in the upper part of the New Harbour
| | One grown light on 8. pier head. . | .. | $80 \mid$. . | 1858 57 43.2 On Craig Head. It is rad from \mid lb | $160|18| 1836$ 320.3
56 33. ${ }^{\circ} \mathrm{On}^{1}$ the N. pier, Then vemela \mid | $24|8| 1826$

56 26. On the W. Ferry pier, N.N. F and S.s.W., 63 yards apart .. | 10 | 7 | \cdots |
| :--- | :--- | :--- |
| 16 | 8 | \cdots |

GIRDLENESS Two bright fired lightw	$\|$57 8.2 3 3.	In one tower	${ }^{18}$			1883
Aberdien One bright fixed light Two rad (or grem) fized lights	$\left\|\begin{array}{cc} 57 & 8.5 \\ 1 & 4.1 \end{array}\right\|$	On N. pier head, from half flood to high water. When entrance is safe the two lta. are red: when	\because	40 40 80	8	

The rest is bright

Omomenyt Pontr One rui faced lizht	57 4x.	A tower, 42 feot higk, on une	1		\| 1846
TARBITS NTESS One inform. $1 \mathrm{tn}, 8 \mathrm{~min}$.	57 57 38.48.	Bright 21 min., ealipsod 1 min. ; Tithin Moray Frith it is visible alway	- \|175		880

Iatheromahiol One fired wiste light

Wioz or Pulimesy Tower One red light

58	26.
3	On the N. pier head, during July
and Angunt	

ITOSS HIAAD $\left|5^{8} 28.6\right|$ From N.E. a N. to W.N.W. the $|\mathbf{L b}| 275|20| 1840$ One rev. It. half min.

DUNNTH HRAD
Ono bright flred light
PENTTLAND SKER.
Two bright fixed lights
Hownems
One fired light

$\begin{array}{rr}58 & 40.3 \\ 3 & 22.3\end{array}$

58	41.4	Two stone towers, 118 and 88 th.
2	55.4	high, N.N.J. and 8.8.W., 100

| $1 a$ | 170 | 18 | 1794 |
| :--- | :--- | :--- | :--- | . . $1140|18|$

$\left|\begin{array}{rr}58 & 37.5 \\ 3 & 31.8\end{array}\right|$ Building on the Head

1a	$\mathbf{8 4 6}$	$\mathbf{8 8}$	1831
la	170	18	1794
.	140	18	

Orizney Ialands.

Cartios
One br. rev. 1t., 1 min. Hoy fousd
High lt., mad or while
Inow light, bright

Kraxwazs
S. One bright fired light
gTART POINT One fired bright light
N. RONALDSHA Ono br. finh. Itro 10 scos.

 . 222.4 Sanda Island...................
 N. Point
223.6

A white tower 78 th. high, on the Head, Hoy Id.

-	115	10	1851
-	55	7	1851

- | $20|9| 1854$

Shetiand Islande.

 One beight fired lightBRESSAX
One rev. red and white $1 t ., 1$ min.

SUMBURGH HRAAD $\mid 59$ 5r. \mid A stone tower, 55 foet high, on | \bullet | $800|22| 1812$

| 59 | 5 F. | A stone tower, 55 feet high, on | $\bullet\|800\| 22 \mid 1812$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

$\left.\right|^{60} 6.1$ Tower, 58 toet high, on 23. side \mid 2b | 105 | 16 | 1858

Xame as

WHAL One b

NORTH One b

Cape w

 OneS. Roma One

Kxlb A One b

Oronsay
One b
Hebry
Butt of
Storanow
One fil
Moxack
GLASS
One fis
Ustrenta One br
BARRA
One in

SKERR
One re
ARDNA
One fix
Saund or
One fix
LISMOI One fix

LOCH E One fix

Oban
Priadda
Crinan C

$0|11| 1840$
$0|0| 1846$
| 18 | 1830

9	4	\cdots
4	8	\cdots

| | . | | 1852
16 | 8 | 1851
$5|30| 1849$

16 | 83 | 1881

10	18	1794
10	18	

. | . . | 1880

16 | 16 ! 1858

15851		
65	10	1851

$20|9| 1854$
10| 18 | 1806
0| 18 | 1854

P | $22 \mid 1812$
6| 16 | 1868

	ITGRUHEOUEMSS.		-			
Nume ned Charetur of Uisht.	$\begin{aligned} & \text { Lat. N. } \\ & \text { Long. W. } \end{aligned}$ $0 \cdot 1$	Decoription, eto.				
$\begin{aligned} & \text { WHAISEY SKER } \\ & \text { One br. rev. It., I min. } \end{aligned}$		A. white tower, 98 feet high, om Bound Skerry	\|b	145	18	185
NORTH UNST One bright or ra	6051.3 0.53.	Red between S.S.IT \& E., and E.E. by E. $\frac{1}{2}$ F. A whito tower on N. part of Ieland	12 \| 235	$21 \mid$ 1854		
$\begin{gathered} \text { Caps } \\ \text { On } \end{gathered}$		White and rod alternately				
S. Rova Ong f		N.E. Point of Island	857			
Kyle Axin, Loch Aisiz One bright fixeil light		s.w. Point of Gillean Island ..				
Oronsay Island One bright fixed light		S.E. part of Sleat Sound	7			
Hebrides Is						
Butr or		Building on N. Point	0			
Stornowa One fix	6	200 yards apart; rev. overy it min, on Arnish Point				
Monach or Hyaxara	57	Building on W. Island N.E. Point of Island, Harris Isles \qquad	\| $1 \mathrm{a} \mid$.. \| \cdot. \| 1880			
GLASS ISLAND One fixed bright light	57592.		$19 \text { \| } 130 \text { \| } 17 \mid 1789$			
Ustrenisi One bright or rod lt.	$\begin{aligned} & 5715 \\ & 7 \\ & 10 \end{aligned}$	E. side of S. Uist. Redz vis. between S.S.W. and N.E. by theS. \& E.	\| 19	176	18	1857
BARRA HEAD One intermitting light	56 78. 78.	Vis. $2 \frac{1}{2} \min$. and dark $\frac{1}{2} \min$. On top of Bernera Island \qquad	\| $\left.\right\|^{\text {\| } 880\|33\| 1833}$			
SKERRYVORE One rev. light,	$\begin{array}{cc} 56 & 19.3 \\ 7 & 6.5 \end{array}$	On the Rock \qquad	10 \| 150	18	1844	
ARDNAMURCHAN One fixed bright light	$\left\lvert\, \begin{array}{cc}56 & 43.6 \\ 6 & 3\end{array}\right.$	On the Point \qquad	\| 1 a	180	18	1849
Sound of Muls One fixed light	$\text { \| } 56{ }_{k}^{68} .$	Red 1t. N. to Sea; graem, towards Rocks; white, towards Mull Sd.	$\|\cdots\| 65\|12\| 1857$			
LISMORE One fixed bright light		On Musdile Island	1833			
LOCH EIL One fixed bright light		On Corran Point. It. is rod between N.E. by E., and S.W. by W. ${ }^{2}$ W. \qquad				
Oban	A Lantern on the Pier	\| ..	. $\left.\right\|^{1858}$		
Phladda Ibland	5619.0 $5 \quad 39.5$		One fixed br.lt., shows red fromN. \| . .	42	11	1860
Crinan Canal		\| One red light on E. side	$\|25\| \leqslant \mid 1851$			

mo mal Charnote of Light.	Loni. N.	Demoription, Aos.			
mon Roor or Som MAOm		P	.. 1 .01 1 - 1860		
	$\left\|\begin{array}{cc} 55 & 36 . \pi \\ 6 & 7.5 \\ \hdashline 5 & 45.8 \\ 5 & 2.8 \end{array}\right\|$	XV. Point of Inles Idand ... Building			
RHYNNS OF One finh. 1t.,		$\begin{gathered} \text { Orent } \\ \text { of } \end{gathered}$			
Port inlien One fixed b		On Oarraig Fradda entrance			
MULL OF OANTMREB One fixed bright light		8.	- \| 297	22	1787
SANDA ISLAND One fixed rod light		On	50		
$\mathrm{Dava}_{\mathrm{Om}}$		1. part \qquad	154		
Campb		On Old pier head. Rad, when bearing N.W.	$\cdots\|18\| 2 \mid \ldots .$		
Ardrishaig		$1{ }^{1}$	41850		
PLIADDA Two Aleed bright lta.	$\begin{array}{\|cc\|}55 \\ 5 \\ 5 & 76.0 \\ 7.1\end{array}$	One 62 t. above the other. Id. off S.E. Pt. of Arran Id.	$\because \left\lvert\, \begin{array}{c\|c\|c} 180 & 17 & 1790 \\ & 77 & 14 \end{array}\right.$		
CLYDE RIVER 					
Toward One br, xev. It., 1 m.	$\left\lvert\, \begin{array}{ll}55 & 51.7 \\ 4 \\ 59.2\end{array}\right.$	On the Point			
Cloch One fixed bright lt.	$\left\|\begin{array}{rr} 55 & 56.6 \\ 4 & 52.6 \end{array}\right\|$	On the	1797		
Gramoci Two read, and 1 whicto light	5557.	The rad Its., 1 mile N.N.W. of Custom House, 140 yds . apart W.S.W. W., and E.N.E. W. The whito light in front of Custom House.	$\left\|\begin{array}{l\|l\|l\|l} 40 \\ 26 \end{array}\right\| \because 1834$		
Port Glasgow		One fixed red light	$18 \mid 3$		
Cardross One fixed red light		On the Pillar Bank	\| 22	4	1849
Bowling Bay		\| Small lt. at Firth of Olyde	. \| 12	$2 \mid 1849$	
Donald's Quay		\| A red light, 200 feet from	9		
Broomielaw		\| A Bude light	18		
Auahenlech		\| A whitelt., $\mathbf{4}^{\text {m m }}$. above Pt. Glasg			
Garmoyle Light		$\begin{array}{\|c} \text { A floating lt., } 3 \text { miles above Pt. } \\ \text { Glasgow } \end{array}$..1 .. $1 . .1$		

Name and Charsoter of Uight.	Iat. N. -	Demeription, 40.					
Rod Ountle One flixed bright lt.	On piles, on outer edge of Ridge Shoml.					
White Ceptro One fised bright it:	On piles, ET. aide of Channel. . . .	$\text { . }\|26\| . . \mid 148$				
Ture One fixed bright lt.	On pilet, 8.ET. mide of Ohannol ..	$\|\cdots\| 25\|\ldots\| 1850$				
Cunnyberry One fixed bright it.	On pilei, N.W. side of Chanmel	$\|\cdots\| 26\|\ldots\| 1848$				
Oulmose Point:	A Iantarn on a Mnot...........	\| . \mid \| 45	. $\mid 1848$			
Culkeeragh	\| Bright light E. side of entrance	\| ..	60	..	1861	
Boom Hall	\| One fired rod light	\| .		12	..	1859
Rom Bay Lt. Vemeel	\| One fired bright light	\| .		20	..	1859
Rock Mill	\|	\| One firod roilit, near the Mill	\mid..\| 15	. .	1859		
INNISTRAHUL One br. ser. lt., $2 \downarrow \mathrm{~min}$.	$\left\lvert\, \begin{array}{cc} 55 & 25.9 \\ 7 & 13.6 \end{array}\right.$	A whito tower, ti feet high. On N.E. part of Imland	$\|\bullet\| 181\|18\| 1812$				
LOUGH SWILLY One rad or bright light	$\left\lvert\, \begin{array}{cc} 56 & 36.6 \\ 7 & 37.9 \end{array}\right.$	On Fannot Point; rad reaward, bright towards tho Lough	$\|\bullet\| 00\|14\| 1816$				
TORY ISTAND One fired bright light	\| 5 S ${ }_{8} 16.4$	On the N.W. Point of Inland ..	$\text { \| } 10 \text { \| } 125\|16\| 1832$				
Arampoza Townd One finahing br. light	$\|$55 0.9 8 33.6	Building (1861) on N.W. Point	$\left.\right\|^{2 b}\|\cdots\| \cdots \mid \ldots$.				
RATHLIN-O-BIRNE Ono flach. Ith, 20 cocl.	54 39.8 8 49.9	Racitowarde Mainlandand Sound. To be a fixed light after Amanmose is lightod	$\left.\right\|^{2 b\|116\| 16 \mid 1866}$				
KILLYBEGS St. John'』 Point	$\left.\right\|_{84} ^{54} 34.18$	One fixed bright light	- \| 98	14	1831		
Eotten İland	1......	One fixed bright light	\| $0100\|19\| 1830$				
8LIGO Black Rook	$\left\lvert\, \begin{array}{ll} 54 \\ \hline 8 . \\ 37 . \end{array}\right.$	Ono fired bright light in the Bay	- \| 79	18	1836		
Oyotar Imland	Two tred br. Ita, in 1 8.S.IR, ¢5.	- \| $40\|11\| 1887$				
Broadmatem One br. or rad fired It.		On Gubacinhel Pt. White to seaward ; rod townsde W. aide of Harbour \qquad	$\left.\right\|^{86\|87\| 12 \mid 1856}$				
EAGLE RONK Two bright fized lights	54 10 87.	$\left\lvert\, \begin{aligned} & 3 \text { miles from Irria Hd. In one } \\ & \text { E. by N., and W. by } 8 \text { E., } 182 \\ & \text { yarde apart } \end{aligned}\right.$	$\|\bullet\| 220\|20\| \ldots .0$				
BLAOK ROOK One light intended	\| 151.	Building (1881). 1 .. \|			

Mneo mad Ohergoter of Lichat.	$\left\|\begin{array}{c} \text { Int. } \mathrm{X} . \\ \text { Long. } \\ 0 \end{array}\right\|$	Deceription, te.			
		${ }_{\mathrm{O}_{\mathrm{Poi}}}$	$0\|841\| 27 \mid 1806$		
margone Imux		One fixed brigh	\| 36	10	1827
SLTNE HEAD One rov. rod and brig light, 2 min., and fued bright light	$\left\lvert\, \begin{array}{ccc}53 \\ 10 & 33.9\end{array}\right.$	N. light rov., with one red and two br. faces ; the rev. and fixod lte. in one N. $\frac{3}{2}$ E. and 8 . W., 142 yarde apart	$\left.\bullet\left\|\begin{array}{l} 128 \\ 116 \end{array}\right\|_{14}^{15} \right\rvert\, 1826$		
GALWAY BAY Fhrioz Iajund Onie rev. bright light	$\begin{gathered} 53 \\ \hline 8.9 \\ 9 \\ 51.5 \end{gathered}$	On W. Point. Bright fiach every 8 min .	lb \| 116	18	
Intizata One bright we railto	$\begin{array}{cc} 53 & 2.7 \\ -9 & 31.5 \end{array}$	Rad in direction of Finnis Rock	$\left.1\right\|^{1}\|110\| 16 \mid$		
Muttom Inland One fired bright lt	$\begin{aligned} & 33 \text { 15.2 } \\ & 9 \cdot 3.2 \end{aligned}$	On centre of İland, off Calway	.. 133110		

SHANNON, RIVER
LOOPHEAD One fired bright its.
Khoradar One bright or radit.

One Axed bright light
SKELLIGS
Two fixed bright lighta One bright or ral light

Bantay Bay
One fixed bright light $\left|\begin{array}{rr|}51 & 39.2 \\ 9 & 44.8\end{array}\right|$ 2. entrance to Bearhaven $|\bullet|$ | $86|12| 1847$

$5234.8 \mid$ On the Point. Red to sea ward ; | | 138 | 16 | 1824 $942.6 \mid$ bright to River| \mid. 18.

morway.

Hokkingon,
Malang Fiond
Axpinass
One fixed and fiash. It.
Klopen, or Gloppen One fixed bright light
LOFOTTEN ISLANDS Svins fixod red light

69 36. \mid N. side of Hokking Id. From $|48| 66|14| 1869$ 17 50.5 Aug. 16 to May 1

| 69 | 19.5 From Aug. 16 to May 1. Flash | $2 d\|148\| 20 \mid 1859$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

16 9. every 3 min. \mid 年 $184|11| 1857$
 13 4.5 Septo 1 to April 14 \qquad
68 3. Near Balstad. Septomber 1 to \mid | $196|11| 1867$ $\left|\begin{array}{ll}13 & 34.5\end{array}\right|$ April 14

HIMNNINGSV AER

One finied \& flanh. $1 t$.
 One firod bright light
Sjarholmen
One fixed bright light
Stamsund
One fized bright light
68 8.5 \mid Quitverden. Flash every 3 min. $|-|118| 16| 1867$
1414.5 August 16 to May 1

Went Conat
1437.14

14

| 68 | 9.5 | Skraaven's Harbour. Sopt. 1 to $\|\cdots\|$.. $81\|\leqslant\|1856\|$ |
| :---: | :---: | :---: | :---: | 14 41.5 Apsil 14

Hammerfost
One flued bright light
Vaag, or N. Hellig Var One fixed bright light

| 70 | 40.2 | Extremity of Fuglenios Island. | 6a $\|30\| 11 \mid 1869$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | 40. | Aug. 26 to April $20 \ldots{ }^{2}$ | | | 23 40. Aug. 25 to April 20

Munk Holm Ono fixed bright it.

Agdenis Une fixed bright lt.

harwoter of Light.	$\begin{gathered} \text { Lat. X. } \\ \text { Long. E. } \\ \bullet . \end{gathered}$	- Deacription, te.			安	
TRONDHJEM One fired bright light	$\left\lvert\, \begin{array}{rl} 63 & 18.7 \\ 8 & 13.4 \end{array}\right.$	On the Ringholm Rock, half mile from E. Pt. of Eddo. Aug. 1 to May 16.	$\text { \|6a\| } 61\|14\| 1849$			
Leorvig One fixed bright light	$\left.\right\|^{63} \begin{array}{rr} 6.5 \\ 7 & 42 . \end{array}$	On N. side of Island. Ang. 1 to May 16	$\|\cdots\| \cdots\|\ldots\| 1838$			
OHRISTIANSUND	$\left\lvert\, \begin{array}{rr} 63 & 7.3 \\ 7 & 38.2 \end{array}\right.$	On Stavnas, N.E. Point of Averö. Aug. 1 to May 16	160	$\|65\| 12$	$\text { \| } 1842$	
QVITHOLS ${ }_{\text {One fixed and flash. It }}^{\text {One }}$			$\text { 2d \| } 134 \text { \| } 19 \mid 1842$			
Walderhong One fixed bright light	$\left\lvert\, \begin{array}{cc} 62 & 30.1 \\ 6 & 7.4 \end{array}\right.$		$\|\cdots\| 41\|\leqslant\| 1860$			
Lepao Resp Lr. Vebeen One fixed bright light	$\left\|\begin{array}{cc} 62 & 35.5 \\ 6 & 14.5 \end{array}\right\| \text { An } 3 \text { fris. on B.E. part of Reef. }$		$\|\because\| 25\|\leqslant\| 1858$			
Hoamtas One fixed and flash. It			4d\| 11	$12 \mid \ldots$		

One fixed bright light 535.1 to May 16

 One fired bright light
 One fixed bright light
Leorben Ialand
One fired bright light
Pir Holm
One fixed bright light
Öxhammer
One fired bright light
GLOTTERO, BELBÖ FIORD.

One fixed bright its
Folgerben
One fixed bright light
Midtholmen
One fixed bright light
60 14. \mid W. side of Island. July 16 to $|.|$.67 : \mid | 1855 5 11. May 16.............................

 Onv fized bright light

12 | 1840

Ono fixed and final. it.

Luis Fingrisn
One fixed rod light
$\left|\begin{array}{cc}58 & 49.5 \\ 5 & 30.7\end{array}\right|$ On the Island \mid sa | $68|12| 1860$
EGRRÖ
Gzundeund Hose One fixed br. light
W. Point or Island One fixed br. light
Vimemoditim One fixed br. light

Parvis
Ono fixed bright light
IISTMRR
Three Axed br. Hight

 57 59. White and red tower 88 ft high, | Id | 164 | 24 | 1858

NAZE OF NORWAY or LINDESNLAS One fixed \& flanch. It.
$7 \cdot 3$. on the Cape. Finch of 12 woos. every minute \qquad
ss 8.2 In Chrintianmand Fiona, on'B.W. |. | 27 | 10 | 1832
One fixed rad light

OXOZ IsLAND One fixed bright lIght

Name and Charseter of Light.	$\begin{aligned} & \text { Lat. N. } \\ & \text { Long. E. } \\ & \bullet \text { - } \end{aligned}$	Description, 20.					
TORONGEN IDS. Two fixed bright lights	58.24 .1 847.7	On Outer Torungen, and Inner Torungen, N.N.E., 1,200 yds. apart.........	\|2a		134 \|	$\|20\|$	1844
Stangholms Ioland One flred rod light	$\begin{aligned} & 88 \\ & 9 \\ & 9 \end{aligned}$	Tellow building on E. Point .	5a			865	
JOMERUTAAND One fired and flash. 1t.	$\begin{aligned} & 5^{8} 52.2 \\ & 9.86 .3 \end{aligned}$	White tower, 86 ft high, on a low Island. Flash every $\frac{1}{2}$ min. Dark between flashes at 8 m .	2d			1839.	
Lavartangema One fired bright light	$\left\lvert\, \begin{array}{ccc}58 & 59.7 \\ 9 & 45.8\end{array}\right.$	Yellow tower on S. Point of Langot Island	$6 \mathrm{a}$			839	
Frederikwroma One fired green light	$\begin{array}{ll} 5^{8} & 59.5 \\ 10 & 4.5 \end{array}$	Stavernsi, S. Pt., E. sido of Thannel. July 15 to Juie 1		101		186\%.	
OHRISTIANTA FIORD.							
FARRDER One fixed brigh	$\left\lvert\, \begin{array}{cc} 59 & 2 . \\ 10 & 32: 1 \end{array}\right.$	Bed tower, 184 ft. high, with Fhite belt, on Iit. Frerder. Fog bell		4		857	
Torgaumiar Tatard One fixed bright lt.	$\begin{array}{\|cr\|}59 & 9.5 \\ 10 & 50.3\end{array}$	On S. P		87		1859	
FUL̈FHUK ISTLAND One fixed \& flath. It.	$\begin{array}{ll} 59 & 11: \\ 10 & 36.7 \end{array}$	White ower, 41 feet high. Flash every 8 minutes	40	67		1850	
Torgerse Inland One fixed bright lt	$\left\lvert\, \begin{array}{ll}59 & 15.5 \\ 10 & 30.9\end{array}\right.$	On N.W. Point. July 15 to June 1			18	1861	
Moss Havn One fired rad light	$\left\lvert\, \begin{array}{ll} 59 & 26.4 \\ 10 & 39.8 \end{array}\right.$	5. side of Canal. October 1 March 31		10		1857	
Bagto Ibsind One fixed bright ltw	$\left\lvert\, \begin{array}{lll}59 & 23.3 \\ 10 & 33 .\end{array}\right.$	Tellow building on N. E. Point		88		1848	
Illd Point One fixed bright lt.	$\left\lvert\, \begin{array}{ll} 59 & 31.9 \\ 10 & 26.3 \end{array}\right.$	E. side of entrance to Dramm Fiord. July 16 to May 31 ..			6	1840	
Filtvedt One fixed bright it.	$\left\lvert\, \begin{array}{ll} 59 & 347 \\ 10 & 37.7 \end{array}\right.$	On W. shore.' July. 16. to 'May 81		24		1840	
Steilene Island	One fixed light. July . 31 to May 81	6a			1887	
Heg Holm	. ${ }^{\circ}$	One fixed light on N. Pt. July 15 to May 16	6al			1826	

LIGEMEHOUSESG.
E. Elbo, ote.

Name and Character of Light.	Lat. N.	- Desoription, \&c.			\|c.		
GKAGEN, or SIAW One fired bright light	$\left\lvert\, \begin{array}{cc}57 \\ 10 & 44.1 \\ 10\end{array}\right.$	Ice signals ahown. Red ball on the Old Lt. H. if the Leaso Lto Tessel is not at her station ..	$\|1 a\| 144$ \| 16	1858			

Agozr Cran. Lr. Vrassl $|5645.5|$ Within the Channel. Nov. $15|6 a| 30|10| 1860$
One fixed bright light SYLT

Two flxed lights
One fixed and flash. light
$\left|\begin{array}{cc}55 & 3.5 \\ 8 & 3.4\end{array}\right|$
to March 20.......

Two fixed lts. (the Western red-

$$
\left|\begin{array}{r|r|r}
4 a & 63 & 10 \\
\cdots & 72 & 18 \\
\ldots & 205 & 20
\end{array}\right|
$$

$$
\begin{array}{l|l|r|r|}
\text { ish) on List or N. end of Id. } \\
\text { B.E. by E. A E., } 2,910 \text { yards } & \ldots & 205 & 18 \\
\hline
\end{array}
$$ apart. The fixed lt, will flash overy 4 m ., in village of Kamp, and changes to red when over the Bar.

1852
\qquad

Two fixed bright lts.
 |..| .. | $5 \mid 1852$
Two fired bright its.,
AMRUM ISLAND.
One rev. br. lt., $\frac{1}{\frac{1}{2} \text { min. }}$
MDER LTT. VESSEL - One fixed bright light
$\left|\begin{array}{ll}54.41: 5 \\ 34.3\end{array}\right|$ W.yk Harbour. In one lead in

54	$3^{8.5}$	On, the Island

| 140 | 14 | 1853
$54.10 .7 \mid$ In 47 fims. at Mouth of River. \mid.. | 34 | 10 | 1805

River ㅍlbe.

 One fixed bright lt.
. \mid
Vensel

III. Inner Light Vessel $|\cdots \cdots|$

One fixed br. 1t. Three Masts; |.a| 29 | .. | 1857 red flag, with wh. square at M.
NEUWERK
Two fixed bright lits

One fixed brigtt light
$\left|\begin{array}{lll}53 & 53.5 \\ 8 & 4.7\end{array}\right|$
N.W. $\frac{3}{4}$ N., and N.W.
$\left.\begin{gathered}\text { Brick tower, } 66 \mathrm{ft.} \text { high, W. side } \\ \text { of ontranco. It is a fixed lt. up }\end{gathered} \right\rvert\,$..| $80|12| 1853$ of ontranco. It is a fixed lt. up the River.
One fired and flash. lt.
$\left\lvert\, \begin{array}{cc}53 & 52.3 \\ 8 & 43\end{array}\right.$
$\left|\begin{array}{ll}53 & 53.7 \\ 9 & 15 .\end{array}\right|$
On E. sido
from ice
, when River is free
|. 1
..

One fired red light
$\left|\begin{array}{rr}53 & 47.5 \\ 9 & 24.5\end{array}\right|$ On N. Pior
24|8|1846
Gitickstadit
One fixed red light

HAEOVRE.
 WESER RIVER.

 HOHE WEG FLAT

One Axed bright lit.
One fixed red and br. ught.
Bremerhaven
One br., one red lt.
Heppens
WANGEROOG
One rev. br. 1t., 2 min.
$\begin{array}{ll}53 & 42.8 \\ 8 & 149\end{array}$
In one tower. Lower lt. from N .

| $2 a$ | 112 | 15 | 1856 |
| :--- | :--- | :--- | :--- | by W. \& W., to E. by 8. : it chows rod to the Dwasgatt ..

$\cdots . . .\left|\begin{array}{c}\text { Brighit light at } 10 \text { fest at now } \\ \text { Harb. ; red lt. on old Port Mole }\end{array}\right| \cdot|. .|10| \ldots$. | | A small light near new Harbour | . | | . . | . . |
 754.2 feethigh; a beacon to E. by N.
$5335.5 \mid$ A red briok tower, 110 ft high, $|2 a| 142$ | 18 | 1817 640.4 at entrance of River Ems
One fixed bright light
Fha Rivis
One fixed bright light

FIMY:GRTA.NDS.

ZUIDER ZEEH.

Staporing One fixed brightit.

Schoifand Island One fixed bright $1 t$.

 One fixed bright lt."
Markry Ibland. $\quad|\ldots .$.$| |$
 One fixed bright lt.
Wieringen Two fixed bright lita.

5253.4	On W. of Id., N. and S., 448	39 6	${ }^{6}$. \cdot.
	yards apart	10 4	1	

There are also amall Harbour lights in the Zuider Zoe at Workum, Hindelopen, De Lemme, Blokzyl, Genemuiden, Kampen, Elburg, Harderwyk, Nykerk, Muiden, Edam, Hocm, Enllhuiomi, Metiembit, de.

TERSCHELITNG
One rev: br. It: 1 , 1 min .
VLIELANND
One fized bright light
IVInown Dres.
One fixed bright light
One fired rod light

One fixed bright light
EGMOND-AAN-ZEE
Two fixed bright lts.

Zandvoort
One fized light
Noordwijk-aan-Zee
One fixed bright light
TKatwijk-aan-Zee
SOHEVENINGEN
One fixed bright light
VOORNE ISLAND. Brielle Harbour

Stoenen Baak
Oostroorne
One br. and one rad One br. and
fixed light
Helurvortaluis
O One fixed bright it.
GOEREE ISLAND.
Middelharnis " 1
GORDEREEDE OF GOEREE
One fixed light
Kwaden Hoek" | | One fixed bright light | .. | .. | .. | 1857
Steenen Baak | | Red lt. to W., on N. side of Id. | . . | 98 | 10 | 1858
SCHOUWEN ISLAND.
Ossonhoek | | One fixed bright light | .. | 23 | 8 | 1859
 Two fixed br, lights $\left\lvert\, \begin{aligned} & 37.5\end{aligned}\right.$

Vorklikker, or guide lt. |

WALCHIGREN ID.
Sloo : | | Light S. of Middelburg Harbour | .. | 83 | 8 |

FLUSHING . $\left|\begin{array}{rr}51 & 26.4 \\ 3 & 347\end{array}\right|$ On Westhaven Bastion \mid.. $|~ 49| 10 ; \ldots$
S. beveriand ID.

Bormilas $\quad\left|\begin{array}{c}5 \times 25 . \\ 3.44\end{array}\right|$ One fived bright light $\left.\right|^{4 a \mid} 35|0| 1847$

THOLEN ISLAND.

Stavenisse $\quad \mid \ldots \ldots$ | Bright lt. at E. Angle of Haven \| ... | $27|5| \ldots$

One fixed bright light
Willemstad
One fired bright light $\left|\begin{array}{cc}51 \\ 4 & 41.8 \\ 4 & 26.7\end{array}\right|$ In front of Bastion............. \mid. \mid | $41|10| \ldots .$.
Strijen-Sas \quad One fixed bright light $\left|\begin{array}{cc}51 & 42.7 \\ 4 & 35.6\end{array}\right|$ W. Heads of Outer Haven \mid.. | $48|6| \ldots$
Dordscha Kil
One fired bright light $\left|\begin{array}{cc}51 \\ 4 & 43.4 \\ 4 & 37.5\end{array}\right|$ W. extremity of Dordt Channel \mid.. | $48|10| \ldots$

Krab
Mas River
|...... | In Old Maas. One bright light | ...| $31|2| \ldots$
$\left|\ldots . .\left|\begin{array}{c}\text { Small Harbour lights at Sohie- } \\ \text { dam, Pernis, and Vlaardingen }\end{array}\right| \cdots\right| \ldots|\ldots| \ldots$

Namo and Charscter of Ifght.	Lat. N. Lont.	Dreoription, 400			部	

 Three fixed br. lighta

Wazde Ponvt and $|5059.7|$ Br, lt., with rad flash every $20|. .|34| 10| 1859$. One fired and flash. it.
OALATS $\quad|5057.7|$ Fized lit, with flach overy 4 min. \mid 1d | $190|20| 1848$
One fired and flash. 1t.
diluis Hambova
Two lta and one Traple.

DAPE GRISNFE.
One rev. br. 1t., $\frac{1}{2}$ min.
Boulogne
Two fixed bright 1tw., and one fixed red lt.

ALPRECK POINT : $50 \cdot 41.9 \mid$ A. br, 1 t., with red finih every $2 \mid$ 4d | 181 | 12 | 1842 One fixed and flash. It.

ETAPLES O OANCEE RIVER Two fixed br. Ita.
$\begin{array}{ll}5031.4 \\ 1 & 35\end{array}$
135.5

At Touquet, 8. side of Month of River, in towers 171 tt. high, N.N.E, and S.8.W., 273 yards apart.

Tro br. Its. in one tower ; higher 1t. while of th. : lower it., from high vator to 9 ft. ebb. Red lt. on N.E. Jetty while 9i feet ..
Tower, 46 frot high, $\&$ milo I. of | Ib | 194 | 22 | 1842 Oape. Eclipwes not total at 12 m .
 min. Tower, 83 ft . higb, 24 miles S.W. of Boulogne

1a | 174 | 20 | 1852
\square

Lornel Point
| | One fired It. on N. aide of Mouth | | $52|6| \ldots$
Pt. 耳aut-bang or Berce $\mid 50$ 24. \mid N. wide of Month of l'Anthie \mid 4a| $66|10| 1836$ One fired bright light
.133 .5 Biver

$$
\begin{array}{c|c|c|c}
& 18 & 18 & 2 \\
\hline 68 & 33 & 9 & \ldots .
\end{array}
$$ be weather, on w. Jetty; and bry tias light on Fort Rouge while 8 feot

SOMME RIVER.

Crotoy One fixed bright lt.	$\left\|\begin{array}{rr} 50 & 12.9 \\ 1 & 37.3 \end{array}\right\|$	On' N. side of entrance. Tide lfoht while 8 feet.	4 \| 1851	
Hourdel Point One fixed bright lt.	$\|$50 12.9	On S. side of entrance. Tide light while 2 feet...............	.. \| 4	1852

CAYEUX Onefixed and flash.lt.

Cayeux
One fixed bright li.

On S. vide of entrance. Fixed \mid 8d | $92|16| 1836$ light, with flagh every 4 min.
812 yards S.W. of Oayenx light, | | . | . . | 1858 from at houss flood to 11 ebb.

Qne fixed bright, light

Kame and Charnoter of Light.	$\begin{gathered} \text { Lat. N. } \\ \text { Long. E. } \\ 0 \cdot \end{gathered}$	Description, de. ${ }^{\text {a }}$,
-				1		
		ford to 2 hours afterhigh water;		27		
		unil hish mat				
		until high water				
ATLLT PONNT One rev. br. It. 1 min.						
Er. Varehy-in-Caux One br. 1 rod fxed lt.	$\left\|\begin{array}{ll} 49 & 5.1 \\ 0 & 42.7 \end{array}\right\|$	Bright tiat light on W. Jetty while $8 \frac{1}{2}$ feet. Red It. on E. Jetty	$\|\cdot\|$	$\begin{aligned} & 29 \\ & 24 \end{aligned}$	$\begin{array}{l\|l} 6 & 1857 \\ 8 & 1857 \end{array}$	
FEOAMP One fixed bright light	$\left\|\begin{array}{rrr}49 & 46.1 \\ 0 & 22.3\end{array}\right\|$	On Fagnet Point, above the chalk clifif. Sometimes obscured by fog	$\text { la \| } 426^{\prime}\|18\| 1836$			
Fécamy Harbour		Fixed and flash. Red tide light on N. Jetty while 10 ft : Fixed rod light on S. end of Jetty		39 29	10 3	\ldots

RIVER SETNE.

LA HEVE
Two fixed bright lta.
HAVRE
One fixed bright lt.
|49 30.7 |Two towers, 66 ft . high, on the \mid la | $397|20| \ldots$ Cape, 8.W. $\frac{1}{\frac{1}{2}}$ S., 69 yds. apart

HOC
One fixed bright lt. Hode Point
Tancarville
Villequier

Caudebecquet
Neuville

Aivicr | | One bright lit. near the Church | $|\ldots| \leq \mid \ldots$

Quilzaracut One fixed bright lt.

In Roque
Bervillo
 | | One bright light on the Point.. ! ! ! . ! 8 !.... | ere.... | One bright light N. of Church.. | | $|| 8,.1 \ldots$.

2 rame and Charneter of Light.	$\left\|\begin{array}{c} \text { Lat. N. } \\ \text { Long. E. } \\ \text { Lons. W. W. } \\ 0 \end{array}\right\|$		颜		
HONFLEUR Two fired br. lights	$\begin{array}{\|lll\|}49 & 25.5 \\ 0 & 13.6\end{array}$	On Hospital Jotty, N. W. and of Tower; and lide light on E. Jetty, while 6y feet	68	828	16 1857 6 1848
Touguba Rivivé Two fixed bright lights	$\left\|\begin{array}{cc} 49 & 21.7 \\ -0 & 4.5 \end{array}\right\|$	W. side, 153 yds. apart. Lover $l t$. while 7 foet on Bar. In one lead in \qquad			61
L'Ozin River Twu fixed bright lts. One fired rad light		Br. Its. on Church and Redoubt of Oyestreham, W. side of entr. Red Tide lt. on N. ond of W. Jetty, 3 hours before and after. high water \qquad	\bullet		

Coursenilles
One fixed bright light
POINTE DE VER \cdot...
One fixed and flash, lt.
Port-mn-Dzbsin
Two fixed bright lights
Grandeamp One fixed bright light
Port p'IBrour
Two fired bright lighta
Sti. Miazcour One fired bright light
Moraciuta
One Axed bright light
La Hovovn'
One fred bright light
Samaz Pontr
One firod bright light

barfleur

One rov. br. It. $\frac{1}{2}$ m.; e^{2} Two Axod bright lto.

Livi Caps One Axod and flash, lt. cilerboura
8|....
$10 \mid \ldots$
$8!. .$.
$8.1 \ldots$ Pruḱr Inlann
One fixed bright lt, Ia Drovit

One fixed \& flnsh, It. One nxod groen light Ono red light
4920.3 On W. Jetty Head

- $130|6|$ isb7 - 27.5
4920.5800 yards from the ahore. Fixod light, with flash every 4 min.

\qquad $4923 .\left.\frac{1}{2}\right|^{875}$ yards West of Ciürch| \mid | $126|8| 1836$ $\pm 2.6 \mid$

 $\left|\begin{array}{cc}49 & 34.3 \\ 1 & 16.4\end{array}\right|$ At B. end of Fort $\left.\right|^{\text {6a }}|86| 10 \mid 1836$

 1E., 800 yardes apart
4941.8 |Towor, 108 foet high. Lt.i br., $|4 \mathrm{~d}| \mathbf{1 1 5}|12| 1858$ 188.5 with rod flach overy 8 min. | Red light on P. Jotty........ \mid |n | $83|3| 1838$

pornry rod light on W. Head

		H0U.E.			
Srame and Charnoter of IIsht.	Lent. . ${ }_{\text {L }}$	Desoription, to.			
Qumaunvicing FozrOne fixed bright 1t. $\left\|\begin{array}{cc}49.40 .3 \\ 49.8\end{array}\right\|$On the Guad					
OAPE DE LA HAGUE One fixoo bright light	494	On the top of Groes du Ras Rock, half milo trom Cape	$14 \text { \| } 167 \text { \| } 18 \text { \| } 1857$		
CASKBIS Three rev. bre. lifiste, 20 neces.	$\left\|\begin{array}{rr} 49 & 43.4 \\ 2 & 23.5 \end{array}\right\|$	(Britinb). Plcood triangalaply on the highoat Rook, E. $\frac{1}{4}$ N., 62 yardsi 8.W. $1 . \mathrm{W}, 46$ yarda; and N.W. $\frac{1}{4}$ W., $2 i$ yde. apart	$\begin{array}{c\|r\|r\|r} \bullet & 118 & 16 & 1728 \\ . . & . . & \ldots & 1865 \end{array}$		
$\begin{aligned} & \text { HANOIS or HANO:- } \\ & \text { VIMAX ROOKS } \\ & \text { One light building } \end{aligned}$	$\left\lvert\, \begin{array}{rrr}49 & 25.8 \\ 3 & 43.3\end{array}\right.$	(British). Buil	\| . .	.	$\left.\right\|^{1861}$
Gumerser One fixed bright light			\| 1832		
JERSEY					
Vemchut Beraxtater Ong fired bright it.	$\left.\begin{array}{rrr} 49 & 13.3 \\ 2 & 1.2 \end{array} \right\rvert\,$	(Britiah). On the Outer end, fn Bt. Catherine's Bay	60 \| 11	1867	
St. Henter One fixed bright lt. ; One fixed mill.; and One fixed blue light	$\begin{array}{\|cc\|}49 & 10.5 \\ 2 & 7.3\end{array}$	Bright light on Victoria or 8. Fier; rod light on Abbert or N. Pier; dime light on Oid NV. Pier.	\bullet 81 $\mathbf{6}$ 1868 \bullet 16 8 188 . 17 8 1886		
Dielette One fired br. and roilt.	49 83.1 51.7	On Jetty Head. Rod It. at hoed of Harbour. N.W. and S.E., 169 yarde apart	\because 28 8 6 88 1858		
CAPE CARTERRET One sor. br. lit., \ddagger min.	$\text { I } 48.5$	Tower, 40 feet high, on Cape	.		
Portbail Two Axed rol lighte	$\left\lvert\, \begin{aligned} & 4920 . \\ & 1 \\ & 13 \end{aligned}\right.$	On Churah Tower and Point Dume, B.W. A B., 958 ydu. mpart	-. 1 -. \| 1		1850
S6n	$\text { 9 } 39.5$	Building, 1861	- 1 $0 \cdot 1 \cdot 0$		
Rtonevilite Ono fixed bright light	$\left\|\begin{array}{cc} 49 & 0.5 \\ 1 & 34.9 \end{array}\right\|$	On	6a\| 88	10	1868
CHAUSEY IBLANDS Ono fixed and fiach. ith	$\left\|\begin{array}{ll} 48 & 52.2 \\ 89.4 \end{array}\right\|$	On 8.E. Point. A br. It., with red fimh overy 4 min.	88\| 181	16	1847
GRANVILIE One fixed bright 1t., \& Ono Axed railight:	$\left\lvert\, \begin{array}{ll}48 & 50.1 \\ 8 \\ 36.9\end{array}\right.$	Bright it, on Granville Rook, or Cape Lhon. Rad lt. on Mole Hiced, W. adde of entrance	88 164 15 1859 8 88		
ET. Mazo One fixed bright light	$\left\|\begin{array}{cc} 48 & 39 . \\ 2 & 1.7 \end{array}\right\|$	On the new Molo des Noíren ..	6a \| 89	$10 \mid 1812$	
CAPE ERMHIML One rev, br. lth, \& min.	$\left\|\begin{array}{ll} 4^{8} .48 .7 \\ 2 & 19.2 \end{array}\right\|$	Towrer, 78 fiot high, on' the Onpo			
Lhouz Pome One fixed bright light	$\left\|\begin{array}{ll} 4_{8}^{8} & 32.2 \\ 2 & 43.2 \end{array}\right\|$	On Point Aiglo	$60\|40\| 10 \mid 1857$		
Ines Bamp Quat Ong âzed bright light	$\left\|\begin{array}{ll} 4_{2}^{5} \\ 20.6 \\ 40.6 \end{array}\right\|$	On Earbour Ioland	6 m ! 40 ! 10 ! 1850		

[^2]

Sr. Haniza
One fixed bright lt. ; Onefized rul li.; and One fixed blue light
Gouray Pier Head One lieleted br. and railt.

OAPE CARTERRET
One ser. bs. It., t min.
Portbail
Two Axed rad lightm
Senequet
Regnzimis
Ono axd blt

49 10.5 Bright light on Victorian or 8. Pier; rad light on Albert or N. Pior ; awo light on Old One fixed bright light | . . | .. | .. | 1857
 $\left.4922.4\right|^{\text {Tower, } 40 \text { feet high, on Oape .. }\left.\right|^{26}|202| 18 \mid \text {..... }}$
 $\left\lvert\, \begin{array}{cc}49 & 5.5 \\ -1 & 39.8\end{array}\right.$ Bullaing 1861 On Agon Point 6a| 88 | 10 | 1860

On A.E. Point. A br. It., with
1

6a! 40!10!1850
$\left|\begin{array}{rr}49 & 0.5 \\ 1 & 34\end{array}\right|$
-
149.4

Smpt Inos	+48.52.7	Towes, 82 feot high, on E, end	
enf fred a	329.5	of He aux Moinow. Fisod, with	

 One Arod rad 1t, and One arad beight light of 8t. Antoine, and br. It. on

PERROS BAY

Pigeon Howe : ... | | Bright light on S. uhore of Bay | .. | $89|12| 1860$

 Ono 329.1 |

morlaix

Ine Noiran
One fixed tellach. It.
Tous ri Lakps
One fixed bright it.
$\left|\begin{array}{ll}48 \\ 3 & 50.4 \\ 3 & 3.6\end{array}\right|$
$\left|\begin{array}{rrr}48 & 38.2 \\ 3 & 53.2\end{array}\right|$

ABERTRAOH

1. One bright and 1 grown light ; aloo
2. One ran and 1 br. light
oumsgant, of DBHANT One fized bright it.
Conavar Pozr Ono Axed bright light

$4828.5 \mid$ N.IT. Point of Id. A second it. \mid 1a | $272|18| \ldots$ 33.5 $\left\lvert\, \begin{gathered}\text { N.IR. Point of Id. } \\ \text { on } \\ \text { O.W. } \\ \text { (1861). } \\ \text { Point } \\ \text { An }\end{gathered}\right.$

Fized light, with flach overy $\left.2\right|^{\text {ad }}|40| 10 \mid \ldots .$.
minuten........................ (There in alico a mmall roal lh. on $|\mathrm{Fa}| 285|12| \ldots .$. the Chittoan du Taurean for the anchorage.)

BELT

LIGHPEOUAKA.

Nrame an : ix manit-t of Xight.

Iat. N. Long. W. 0 '			镜

BFLLE TLS

 vion Oine pued brilight.3..9.3

 Huxdia It.
... One fixed bright light
$\left|\begin{array}{ll}47 & 20.5 \\ 2 & 53\end{array}\right|$
Tower, 89 feet high, 800 yda . W.
5a| $85|10| 1836$
.QUIBERON BAY
Li Trionoven
One fixed ard finh. light

Navalo Port
One fixed bright it.
Penlan Point
One flixed bright light.
LE FOUR
Croisio Port
Two fixed bright lat:

LOIRE RIVER

Point '1Eve
One fixed red light

Cosonzes Towrar ! | One flxod and flash. lt., flash $2 \mathrm{~m} . \mid$ 3d | 128 | 14 !
St. Nacaire \quad.... | | One Axed br. light, on Mole Head | Ba | $26|8| 1834$

Pierre al l'Gill | | Ono faxed light proposed (1861). | .. | .. | .. |
St. Nicholan I. | | Red light proposed (1861). | . | . . | . . |
Mindine Tower || | One Axed ligint proposed (1881). | .. | . . | .. |

One fixed bright light
 $\mid 216.1$ of St. Martin | .
 One fixed and flaoh: It:

Ono fixod bright ith

One flxed bright it

IWE DC RE

| HAUT.BANO DU | 4615.8 | On the Shoal | -00000040000.0. | 3 l 1 | 72 \| 16 | 1864 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NORD | 135.20 | | | | |
| One fixed br, It. | | | . | | |

One fixed bright It.

ILE D'OLERON
18 | 141 | 18 | 1838
Ia Péroting
One fred bright It. Chatean PortTwo fixed br. ly.BIVER GIRONDE

BIVER GTRONDR
COUBRE POINT $|45.48,5|$ Tower, 100 seot Lifh, on NT. potat $|20| 121 \mid$ E| 1800 One fized bright it.

Falatis and Trave Niam Ono roil \& 1 bs. It.

Pontaillace
One rev. rid and br.
light light

Royan
8t. George One fixed rol light
${ }_{8}^{\text {Sorico }}$ One fred vilifght
De Grams
One fixed bright it.
Taruars Bame Liaiti

4538.2 ; Wooden Tower, 105 ft high, on | $3 \mathrm{~b} \mid 177$ | 15 | 1856 | I 3.7 | the Table land. Rod and white |
| :---: | :---: |
| altornatoly, for 20 sect. | |

- | 36 | 6 |....

$\left|\begin{array}{c}45 \\ -35.4 \\ 58.9\end{array}\right|$ On tho Sandhille at 8umio on \mid •O | $121|12| 1860$
 $4530.7 \mid$ One fired bright light; in four | 5 a $|88| 9 \mid 1845$ © 59.1 futhoma, on W. nide
$\left|\begin{array}{ll}45 & 27.6 \\ 0.0 & 45.3\end{array}\right|$ On Weat Bank of Biver $\left.\right|^{\text {6a } \mid ~} 88|10| 1860$ Tour cie By Lt. Vemol One fixed bright 14.

Mapon Light Vemel
Ho de Patiras One fired bright it.
Trompeloup
Richard
Gaet
Pauillac

CONTIS

One rev. rail and britut
Adour Rran
Ono fixed bright light
BIARRIMZ One rev, br. lt. t min.

Soona Poqe One fixed bright light

Hourtin \quad | | Two lighta, propoeed (1881) \mid. . \mid. \mid.. \mid....

$\left|\begin{array}{cc}45 & 12.4 \\ 0 & 42 .\end{array}\right|$ On the North part of the Inland \mid. \mid | $48|12| 1860$
 \| | Fized rod lt, on W. wide of River | 4a| $66|8| 1845$. | | Fixodrod light. | i. | . . | . . | $\left|\begin{array}{cc}45 & 11.9 \\ 0 & 44.9\end{array}\right|$ Two mannllat, on landing-place $|\ldots| \cdots|\ldots| \ldots$

 | 43 29.6 | Tower, 144 teot high, on Point | 1b | 240 | 22 | 133.6

Bt. Martin :.......,

Fuenterbadia
One fixed bright light
Pasaoks Port
Oue fixed bright light

13	20.3	Cape la Plata, near W. entranice	$4 \mathrm{a}\|486\| 14 \mid 1865$

SAN SEBASTIAN $\because|43.19 .4|$ Mount Igueldo, W. side. Flash $/ 3 \mathrm{~d} / 431$ | 16 / 1855 One fixed and flash. lt.
MACHICHACO CAPE One fixed and flash. lt.

43 28. Bright fixed light, with flash |ld | 260 | 18 | 1852
BILBAO
Ono fixed bright light
.249 .4 every $\&$ min.

3	4	entrarce

Santona

SANTANDER
Mouro IsLand $\mid \ldots \ldots$ | One fized bright light | 5 | 141 | 12 | 1860

Llanea

Griox

ORRIO DE TAPIA ID.
Pancha Islaxd
One fixed luright lighit

CAPE ESTACA'
One rev. hr. lt., 1 'min.

 Une fixed and flash. itt: \cdot

CORUNNA

One nixed and itasn. iti

POBTUGAL.
Pavoa de Varzim $\quad \mid$...... | Fishing lts., 15 m . N. of Oporio | .. | .. | . . | 1857
OPORTO $\quad \because \quad 4 \mathrm{II} 9.1$ At Nossa Sonhora da Luz. (Bad $|\bullet| 220|20| 1834$ One rev. dor. lt., 6 min.
 One fued bright light
BERLENGAS
One rev. br. lt., 3 min. One fixed bright light One rev. br. and red light, 1% min.
RIVER TAGUS One fixed bright lt.
San Julian One fired bright lt.
BUGIO
One rev, bs. lt.; 1t m.

Belem

Ono atred row light
OAPE ESPIOHEL One fixed bright light

CAPE ROCA $\quad \cdots 3^{8 .} 46.5 \mid$ Light red and white alternately. $|\bullet| 598|21| 1772$

Guia $\quad 3^{8}$ 4r. \mid Square tower, 96 feet high, at $|\bullet| 207|12| 1771$
39 25. Square tower, 100 feet high, on $|\bullet| 365|25| 1848 ~_{\text {| }}$ 931.2 Great Berlenga Mslnnd 9 30. $\left|\begin{array}{c}\text { Round tower, } 52 \text { ft. high, } \\ \text { mile N.E. of Cape }\end{array}\right|$ 927.2 Nossa sonhora da Guia.......
$\left.\right|^{38} 39.7$ | Square towor, 120 feet high, in $|\bullet| 128|12| 1848$
 $\left|\begin{array}{cc}3^{8} & 40.8 \\ 9 & 17.6\end{array}\right|$ In Fort, near Castle $|\bullet| 88|6| 1847$

Corunra, St. Antonio Oas. | | Fised light, building (1861) | 6a | .. | .. | OISARGAS ISLANDS $\left|43 \mathbf{2 n}^{21.8}\right|$ On Tila Mayor, N. Peak. Fixed \mid |d | $858|11| 1853$ One fired and fleah. it.
Oapy Vnenyos
One fixed bright light.
$\left|\begin{array}{cc}43 & 9.8 \\ 9.82 .9\end{array}\right|^{\text {Camarinas }}$........................ $\left.\right|^{46}|225| 10 \mid 1854$

Ohpios
One red fixed light

 One fixed bright light
Saltora Ialand
Ono fixed and flash lt.

.

VIGO
One fized and flash. lt.
42 15.1 1 On Castle of La Guia, it m. N.E. \mid 4d | 102 | 10 | 1844 8 41. of Vigo. Flash every 3 min .

ame asd Conructor of High	Lat. N. Long. W. óc.	- . . Deceription, te		
APF SANTA MARTA One fixed bright light	765	Oape		

BPAII.

 GUADIANA RIVER Four fixed lightsHelva Two fixed br. lts."
Cartaya
GUADALQUIVIR R. Ohipiona
Trpiritu Sento
Melandar Point One fired bright it.
Salmeding Rocke
Boxiauma
OADIZ
One sev. 1t., 1 min.
OAPE TRAFALGAR
TARIFA
One fired bright light

$|\ldots . .$.$| | Fired lt. in River, building (1861) | 3a | .. | .. |$
| | Temporary It. on Church Tower | 6a | 72| 8 | 1855
| | Fized red light | .. | .. | .. | 1854

$\left.\right|_{6} ^{36}$ 27. ${ }^{44}$. Fixed bright lt. building (1861) | |.. | .. | .. |,
| | Fixed bright light | .. | 52 | 7| 1854
 . 6.18 .9 . feet. Br. \& red flash altarnately

$\left.\left.\left.\left.\left|\begin{array}{cc}36 & 0 . \\ 5 & 36.6\end{array}\right|^{\text {On the Island, } 8 . \text { of town }}\right|^{12}\right|^{132}\right|^{20}\right|_{1855} ^{1813}$

GIBRALTAR

 LUROPA POINTOne fixed bright lt. Old Mole, S .
New Mole Head
Ragged Staff
Old Mole Head, N.

| | Green to N. ; br. to W. ; red to S. | .. | .. | .. | 1857
| | Red light at end of works | .. | .. | .. |
| | Green light at landing place | . . | .. | .. |
| | Fired rod light | . . | . . | . . | 1850

Harocco

CEUTA
One rev., bright lt.

rame and Chasnoter of Iight.		Demeription, tre.				安	
MOUR POINT One fredibright	$\left\lvert\, \begin{array}{cc\|c\|c\|c\|c\|} 51 & 27.6 & \text { White tower, } 109 \text { feet high, ou } & 2 \times\|165\| 18 \mid 1858 . \\ 56 & 50.9 & \text { the Ptos, s.I, side of Fortean } & \end{array}\right.$						
		Circular brick Tower, on theIoland.......................... \| $98\|12\| 1858$					
APE BONAVISTA One rev. lt, br. and r alternately, 2 min .		Tower, 86 foet high, striped red and wisite vertically, on Cape. (Lot. apparatus from Bell Rock; te. of Scotland.)					
		8. side of Oatalina Harbour, in \|	$86\|15\| 1857$ Trinity Bay.				
AOOALHAO, or BACCALIEO ID. One rev. br. It., 20 s.	$\begin{array}{lll}48 & \\ 5^{2} & 4\end{array}$	photal exparatus...............					
HARBOUR GRACS One fixed bright light Two fixed ltn. on B6ach beacon	47 53 42.7	One light on Id. at entrance, 4 miles from the town. 2 lts., 11 yds. apart, on Point of Beach Entrance					
One fixed bright lig	$\begin{aligned} & 4739 \\ & 52 \\ & 39 \end{aligned}$	On Fort Amherst, S. ontrance ofHarbour. Gun in fog $\ldots . . .$.\| $110\|12\| 1852$					
APE SPEAR One rev. br. It., 1 min.	$\begin{array}{lll}47 & 30.9 \\ 5 & 36.7\end{array}$						

CAPE PINE $\left|4^{6} 37.1\right|$ Round iron tower, 56 feet high, | | $314|30| 1851$
One rev. br. lt., 娄 min.

CAPE ST. MARY
One rev. 1t., br. and red alternately, 1 min .
| 15 | 1840
| . . | 1857
| .. \|
| .. |
| .. | 1850
| 23 | 1855

One fired bright light 64 12.

 One fired bright it.
B.W. IOINT
One rev. br. lt., 1 m. $\left|\begin{array}{cc}49 & 23.7 \\ 63 & 35.8\end{array}\right| \begin{array}{ll}\text { Conical grey tower, } 78 \text { foet high }\end{array}|\bullet| 100|15| 1881$ One fixed bright it.

64 32. high
 PONNT DE MONTS One fixed bright light

67 1% mile N.E. of Point

River Bt. Lawrence.

BICQUETTE ID.
One rev.br.lt., 2 min.
$\left|\begin{array}{cc}4^{8} & 25.2 \\ 68 & 53.5\end{array}\right|^{\text {On }}$ W. Point. Hour gun, during $\begin{gathered}\text { fogs and anow }\end{gathered}|\cdot| 112|16| 1844$
RED ISLET BANK
One fixed red light $\left|\begin{array}{ll}4^{8} & \text { 4.3 } \\ 69 & \text { 33.1 }\end{array}\right|$ On S.W. Point \mid...| $76|12| 1848$
 One fixed bright light \qquad

One rev. br. lt., $1 \neq \min$.

Note.-The Lights on the apper part of the River St. Lawrence, and those on the Great American Lakos are omitted, as not being of service to oversea vessels.

Nomenes Charrotive of IIfht.	$\left\|\begin{array}{cc} \text { Lath } & 2 . \\ \text { Longe } \\ 0 & , \end{array}\right\|$	Devaription, iso,				㐌昜

JEW BRUNSWIOL

NOVA SCOITA.

Pictov Hazbove $|4541.4|$ Tower, ats. red and white, vor- $|\bullet| 85|11| 1834$ One fixed br. lt., and one red light
$\left|\begin{array}{ll}45 & 48.4 \\ 62 & 39.5\end{array}\right|$ tical. S. Point of entrance. Lowgr light rad

PIOTOU ISLAND
One fixed bright it. $\left|\begin{array}{ll}45 & 49.8 \\ 62 & 30.2\end{array}\right|$ Whito tower, on E. Point....... \mid.. | $62|12| 1853$

CANSO GUT

 One fixed bright it.
yarde in ehore.

8. Thrranion Two fixed bright Its. | 45.31 .5 |
| :--- |
| $6 . ~$ |
| 1.6 |
| . | Tower white, with black dia-

 mond, on Trddy Point, 8 yda. aphst

Prince Edward Ialand.

 One fired bright light

 One fired bright light
Cascumpeque One fixed bright light

Breton Island.

 One fired br. or rod lt.

Notc.--The Uighthouses of Nova Scotin and New Brunswiok, where necensaary, are painted with blaok or red atripes, de., to distinguioh the towern from the land; as, after the snow is gone oft the land, the scoumulations agalnot the fences, which generally run at right angles to the coast, and which continue for come time after it has dicappeared from the fields themsolves, have oxsetly the appoarance of a white tower, and freguont! mifteauk ōvēn tione mequainted with the consth.

HOVA SCOTLA.

One fixed bright light CAPE CANSO

Two fired bright Its.

WHITE HEAD ID.
Revolving lt., 20 secs.
BEAVBR IDS.' "
One rev. br. It., 2 min.
HALIFAX

One fixed fod light
Sherbrook 'Sower One fixd ivight light SAMBRO ID. One fired bright light
MALAGUASH, or LUTNBNBURG BAY
One rev, light, 1 min,
One fired bright light

45 12. \mid White tower, on S.W. extremity $|\cdot|$ | 56 | 11 ! 1858 4449.6
62
30.2 Tower, white, with 2 blaok balle,

- | 70|12|1846

6230,2 on E.E. part of E. Beaver, or William Island \qquad $\left\lvert\, \begin{array}{ll}44 & 36.6 \\ \mid\end{array}\right.$ Tower, white, with red roof, on \mid. $|~ 68| 10 \mid 1815$ 6338.9 Mauger Beach, E. adide of entr.
$\left|\begin{array}{ll}44 & 26.2 \\ 63 & 33.6\end{array}\right|$ White tower, on middle of Id. $|\cdots| 115|20| 1768$
$44 \quad 20$
$64 \quad 7$

 $-$| 90 | 14 | 1882 |
| ---: | ---: | ---: |
| 66 | 8 | |

CAPE LE HEVE
One rev. 1t., $\frac{1}{1}$ min.
Mexway or Midway Head

One fixed bright lt.

$\left|\begin{array}{ll}44 & 25.7 \\ 64 & 66.5\end{array}\right|$

$\left.$| White tower on 8. aide of |
| :---: |
| Ironbound Iuland |$\ldots|70| 18 \right\rvert\, 1856$

LIVERPOOL BAY

One flxed bright lt.

Wave
Ruec
Ren
On
SHIE
TW

POR!
On
Pabn
$\mathbf{O n}$

B
SEAI
One
YAR]

BRY
One
PETH
Two
DIGB
LIS
$\underset{\text { Will }}{\text { Marsh }}$
Oni
Margaa
One
BLaO
One
HORT
One
Bason
One
Parabor
One
Apple
Two
Ganns One

 Bat af Fundy.
 Onp fired bright light
 FOURCHU One rev. br. lt., 1 1 m.

DIGBY, or ANNAPO- $|440.8|$ Tower, striped vertically, on S. $|\bullet| 76|18| 1817$ LIS

Point of entrance

Parsborough. $\mid 45$ 23. |White tower, on Partridge Id. \mid.. | $80 \mid$ 9| 1852 One fixed bright light
$\mid{ }_{64}$ 8. \mid on W. vide of River \mid
 Two fixed bright lta. 6450.

Horizontal lighta, 24 ft. apart
Gennmatoma Iuland One fixod bright Heght

Fame and Charnoter of Light.	$\left\lvert\, \begin{gathered} \text { Lat. N. } \\ \text { Long. W. } \\ 0 \end{gathered}\right.$	Description, *o.			者	

GAPE ENRAGE

QUACO One rev. br. 1t., 20 secs.
ST. JOHN'S HARB.
Partuider Ibland One fixed oright lt.
45 14. Tower, triped vertically red and white. Steam whistle every
| 110 | 20 | 1832
APR ENRAGK

129 | 20 | 1832

Striped vertically, white and

35 | 10 | 1888 Beacon Tower One fixed bright light 1..... red. $\left|\begin{array}{ll}45 & 3.8 \\ 66 & 27.1\end{array}\right|$ Tower, striped horizontally, red red ${ }^{\text {part }}$ | 81 | 185 | |
| :--- | :--- | :--- |
| 68 | 15 | 1831 | Two fixed bright lin 3 tes and white lta. vert., 28 ft . apart

 $\left.\begin{gathered}\text { Pozr Sr. Anpraw } \\ \text { One fixed bright light }\end{gathered}\left|\begin{array}{cc}45 & 4.2 \\ 67 & 4\end{array}\right| \begin{gathered}\text { N. Point of entrance }\end{gathered} \right\rvert\,$.. | $85|10| 1833$

 GANNET ROOK One sev. light, 20 soce.

WEST QUODDY head

One firod bright lt.
Lititis Rivas
One fixed and flash 1t.
Round Island
Limax Ibland
One fixed bright light
MOOSE PEAK $\left\lvert\, \begin{array}{ll}44 & 28.9\end{array}\right.$ White tower, 40 feet high, on $|2 b| 65|14| 1856$ One rev. br. It., 80 a.
NASHES ISLAND
One fixed \& flash. red lt.
Narrajuaus One fixed bright light
petit manan One fixed and flash. It.
Winter Hambour One fixed bright light
MOUNT DESERT One fixed bright light

BAKER'S ISLAND

 One fixed and flash. It.BEÁr ISLAND One fixed bright light
Basa Harbour Head One fixed and flach. red light
Spoon Iolnnd
 $\left|\begin{array}{ll}44 & 39.4 \\ 67 & 10.6\end{array}\right|$

On Island, at entrance. Flash ${ }^{\text {Bd }}|.40| 12 \mid 1856$ every $1 \frac{1}{\frac{1}{2}} \mathrm{~min}$.
| In Machias Bay. Proposed (1861) | .. | . . | . . |
| 44 34.1 \mid In Machirs Bay. Grey towor, $|4 a|$ | $62|13| 1856$ $\left.\begin{array}{|ll|} & 67 \\ 21.2\end{array} \right\rvert\, \quad 35$ feet high. Fog bell $\left|\begin{array}{ll}67 & 31.7\end{array}\right|$ Mistake Island
|E. side of Pleasant River \mid |d | $47|12| 1858$ $\left|\begin{array}{ll}44 & 28.7 \\ 67 & 44.5\end{array}\right|$

MASSACEUSETTTS.

Description, \&e.

Goat Ibland
One fixed bright light

BOON ISLAND
One fixed bright light

Iat. N.
Lang. W.

$$
1
$$

 $\left|\begin{array}{rr|l|l|l|l|l}43 & 7.3 & \text { W. part ; off York Harbour } & \text { 2a } & 133 & 17 & 1812 \\ 70 & 28.7\end{array}\right| \begin{array}{llll} & \end{array}$

NEW HAMPGHIRE.

WHALE'S BACK Ono fixod and flash lt.

| WHITE ISLAND | $\begin{array}{cc}42 & 58 . \\ \text { One rev. br. lt., } \frac{1}{2} \min . & \text { S. W. Id. of Isle of Shoals....... } \\ 70 & 2 \mathrm{3b.2}\end{array}$ | 87 | 15 | 1821 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1858 | | | | |

Newbury Port
Two fixod bright lts.
Ipfwich Harboun
Ono fixed \& flash lt., \&
Ono fixed bright light
Wigwam Point One fixed bright light

Straitsmouth Harbour One fixed ixight light

| 42 | 48.4 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 70 | 49.3 | $\begin{array}{c}\text { B. dide of entrance to Port, Mer- } \\ \text { rimack River, } 167 \text { yds. apart }\end{array}$ | 5 a | $\left.\begin{array}{rl}54 & 13 \\ 20 & 1809 \\ 5 & 1857\end{array}\right]$ |

BOSTON BAY

TCEETHOUS19.

Name and Chameter 28 Light.	$\left\lvert\, \begin{gathered} \text { Lat. N. } \\ \text { Long. W. } \\ 0 \end{gathered}\right.$	Demeription, ter.,		哭		

CAPE COD BAY

 ©

Ponisuck Rre Lr. Vegs. | | One fixed br. lt., off Ohntham .. | | 45 | 12 | 1819
 O.a. "ixed bright light

Handennchief Lt. Vess. One ixed bright light

$\left.\left.\left|\begin{array}{cc}41 & 39.1 \\ 70 & 8.3\end{array}\right|^{\text {N. of Vineyard Sound } ~}\right|^{5 \pi}|40| 8 \right\rvert\, 1854$
Dass Rivgr
Ono fixed bright lights
DISIIOPAND CLERKS SHOAL

Ono rev. br. li., $\frac{1}{2} \mathrm{~m}$.
Succonnebset Shoal Lr. VpisezL

Ono fixed bright It.
NANTUCKFIT
Cino flxod bright light
4134.3
$70 \quad 15.9$
N. part. Fog boll
|4b|59|14|1858

One fixed and flash. light of Nantucket Island. Flash of 10 aecs. every min.
SOUTH SHOAL LT. VESSLLL

Two fixed bright lts.
 69 Fog bell, horn, and gan

VINEYARD SOUND

GAYHEAD One flash. br. light
Hyannis Harbour One fixed bright lt.
Tuckanuck Shoal Lt. Vessel One fixed bright lt.

Nantucket Cliff
Two fired bright Its. Brant
One fixed bright lt.
Nantucket Harbour One fixed bright lt.
CAPE POGE
One fixed bright lt.
Eidaartown One \&ixed bright lt.

BUZZARD'S BAY

 One fired bright lt.

 entrance to Wemiport Harb...

Nume and Character of Light.	$\left\|\begin{array}{c} \text { Lat. N. } \\ \text { Long. W. } \\ 0 \end{array}\right\|$: y \quad D Desoription, \&c.				

RHODE ISLAND.

Branton's Rare Lioht

Vassan ${ }_{\text {Twn uized bright lta. }}$

In 13 fms., E. sido of entranco $1 \bullet 1$\begin{tabular}{c}
50

\hline

0 \& 12 \& 1853
\end{tabular} BTAVER TAIL One fixed bright light $\left|\begin{array}{ll}41 & 26.9 \\ 71 & 24.3\end{array}\right|$S. Pt. of Connecticut Id,

$\left.\left.{ }^{86}\right|^{15}\right|_{1858} ^{1793}$ trance to Newport Harbour .. $3 a$ trance to Newport Harbour .. \mid | 1856
Lide Rocx
man Rocx Oned bright light $|\ldots . .$.$| S. side of Newport Harbour.... | 6 a|30| 11 \mid 1854$.

NarRAGANSETT BAY

 Ono fixed bright lt. $\left|{ }_{71} 19.9\right|$ bour $\left.\right|^{\text {4 }} \mid 1857$

Bristol Ferry $\left|4^{1} 3^{8.7}\right|$ N. side of entrance to Mount $|6 a| 85|10| 1855$ One fixed bright lt.
Warmick One fixod bright lt.

POINT JUDITH

One rev. lt., 15 secs.

CONNECIICUT.

LONG ISLAND SOUND

LONG ISLAND SOUND

 Gardinor's Island | | Fixed bright light, on N. Point |6a| $29 \mid$. $6 \mid 1855$

| Cednr Island |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ono fixod bright lt. |\(\left|\begin{array}{ll}41 \& 2.4

72 \& 15.9\end{array}\right|\) Sag Harbour, Long Island $\left.\right|^{6 a} |$| 34 | 10 | 1839 |
| :---: | :---: | :---: |
| 1850 | | |

Calves' Island
Ono fixed bright it.

Dovil's Wharf \quad | | Fixed br. 1t.,4m. above Essex Tn. |6a| .. | $3 \mid 1856$
 One fixed bright lt.
IIORTON'S POINT Ono fixed bright lt.

Eatox's Nick One fixod bright lt.

Lloyd's Marboun Oze fixod bright it.
Nowwale Tbland One rev. red and br. lt., $1 \frac{\mathrm{~min}}{}$.

Exzcution Rocks One fixd bright it:

Name and Charncter of Light．	Lat．N． Long．W． －	Description，\＆c．	呂喏		缶品	

LONG ISLAND SOUND

NEW YORK AND

 NEW JERSEY

GREAT WEST，or｜ 40 51．｜N．side；tower， 150 ft．high，on $|12| 160|20| 1857$ SHINNECOCK，BAY One fixed bright lt．

One rev．br．t t， 1 min．

Two fixed bright lts．
HIGHLANDS OF

NAVESINK One fixed br．lt．，and One rev．br．lt．，$\frac{1}{\frac{1}{2}} \mathrm{~m}$ ．

S．of Sandy Hook， 100 yards

1	
2 b	248

48
\mid
1840

OANDY HOOK
｜ 40 27．6 ${ }^{\text {S }}$ S．entrance to Now York Harb．
3a
$74 \quad 0.4$

E．lt．is N．by W．？mile，and
W．lt．N．W．
？m．，from mainlt． 6a

| 80 | 15 | 1762 |
| :--- | :--- | :--- | :--- |

${ }_{35}{ }^{15}$
1857

Main Cuannki
Two fired bright lts．
 74 4．Chapel Hill，half mile apart．． \mid 3a $|224|$｜
$\left|\begin{array}{lll}40 & 27 . \\ 74 & 8.2\end{array}\right| \begin{array}{ll} & \text { Near Point Comfort }\end{array}$ \qquad 1856 Two fixed bright lts．

$$
\left|\begin{array}{ll|l}
2 a & 40 & 12 \\
3 a & 76 & 14
\end{array}\right|
$$

NEWARK BAY
 Ono fized bright lt．

Comir Stake
Pasanie River $\quad|\ldots . .$.$| Fized br．lt．，at Mouth of River｜6a｜40｜ 10 \mid 1849$
Elibow \qquad ｜Fixed br．It．，$\frac{1}{2}$ m．N．of PassaicLt．｜Ga｜．．｜．．｜ 1854

K, \&a.

USITED STATES. IHGHTHOUSES, ENW JERSEY, AO. 161

Varairia.

One fixed and ilash. 1t.

 One fixed bright lt.
Maurice River | | Fized br.lt.,S.W. of HaystackId. | 6a| 45 | $10 \mid 1849$

Mavon River (\because :e fixed bright lt.

Coranzes:
One fixed bright It.
Bombay Hook
One fixed bright lt.
Rerdy Island
One fixed bright lt.
Christiana River ,
One fixed bright lt.
Fort Miffin

RIVER

 | 30 | 20.3 | W. side of Creek, N. side of | $5 a$ | 46 | 11 | 1838 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

39	43.3	At Wilmington, N. side.........	4s	48	11	1835
75	31.4					
1855						

39	45.8	Red and white tower, 150 feet	lb	165	22	1831
74	6.7	high; S. side of Inlet........				1858

BARNEGAT SHOALS One rev. br. 1t., 10 secs.

One fixed bright light
39 22. \mid Tower, 160 feet high, on S. side |l| 1a | 167 | 22 | 1856 $\mid 74$ 25.6 \mid of Inlet

Two fixed bright lts.
CAPE MAY
One fixed and flash. br. light, $1 \frac{1}{6} \mathrm{~min}$.

CAPE HENLOPEN $\quad 3^{8} 46.6 |$| | S. side Delaware Bay. Lower It. | la | 180 | 20 | 1792 |
| :---: | :---: | :---: | :---: | :---: | :---: |

DELAWARE BAY AND
$\left|\begin{array}{ll}38 & 55.8 \\ 74 & 57.8\end{array}\right|$

N. side Delaware Bay. (A tower,				
150 ft. high, with La rev. br. lt.	Id	84	14	1823

Name and Character of Light.
Lat. N.
Demoription, tre.

NEW JERSKY.

\qquad ASSATEAGUE ID. One fixed bright light
Hoe Ibland One fixed bright light

37	54.6	$\begin{array}{c}\text { Between Chesapeake and Deln- } \\ 75 \\ 21.7\end{array}$	$\begin{array}{c}\text { ware Bays, 2 m. from S.W. P't. }\end{array}$	80	14

Name and Character of Light．		Desoription，do．	耍			最惖		
CHESAPEAKE BA								
APE CHARLES	［rr $\begin{array}{r}7.8 \\ 752 \\ 52.8\end{array}$	N.						
CAPE HENRY One fixed br．light	$\left\|\begin{array}{ll} 56 & 55.5 \\ 76 & 0.8 \end{array}\right\|$	S．side of entrance	$\left.\right\|^{2 a} \mid$	$\left.{ }^{29}\right\|^{17}$		｜ 1791		
Hampton Roade Whiovarby Spit Lr．Veserit		8，of entrance to Hampton	$1 \cdot 1$	$\left.\begin{aligned} & 48 \\ & 36 \end{aligned} \right\rvert\,$				
OLD PT．COMFO	$\left\lvert\, \begin{array}{ll}37 & 0 \\ 76 & 88.7\end{array}\right.$	One on N．side of entrance to James＇River；the other on S．W．Point \qquad	$\left\|\begin{array}{l} 4 a \\ 6 a \end{array}\right\|$	$\begin{array}{l\|l} 48 & 11 \\ 21 & \end{array}$				
Orarry Island One fred brig	－．．．．．	W．side of entrance to Elizabeth River，near Norfolk．Fog bell and horn \qquad	$\|6 a\|$	${ }^{62}$		1820		
Naval Hospital	．．．．．．｜Fixed bright light，on the Wharf｜6a｜			－		${ }^{6}{ }^{\circ} 1857$		
JAMES RIVER	｜．．．．．．｜Fixed br．lt．，below Sandy Point｜6a｜			271				
White Shoal								
Point of Shoals	．．．．．	｜Fired bright light，on the Shoal．｜6a｜				271	｜ 1854	
p	｜．．．．．．｜Fized bright light，on the Shoul			271	9 \｜ 1854			
Jordan＇s Point	Fi							

 One flxed bright 1t．$\left|\begin{array}{cc}76 & 3 .\end{array}\right|$

York Spit Lt．Vessel｜．．．．．．．｜Fixed br．lt．，in 4 fms．，off Spit｜｜ $40|9| 1855$

 One fired bright lt．
Windmine Pt．Lr．Ves． One fixed bright lt．

$\left.\left.\left.\left.\left.\right|_{\text {S．E．part of Shoal，N．side of }} ^{\text {Rappahannock River ．．．．．．．．}}\right|^{\bullet}\right|^{34}\right|^{10}\right|_{1864} ^{1834}$

MARYLAND．

CHESAPEAKE BAY AND RIVERS
© Smith Pr. Liont Ves. Two fixed bright lta.
Foo Ponrr
One fixed bright lt. Ocity Iscivod
Ope fired bright lt..
$\mid \ldots .$.

| 3^{8} | 2.7 | Smith Itland, entratice of Po- | 5 sa | 80 | 10 | 1827 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 75 | 2.8 | tomac Biver | | | | |

$\left.\begin{array}{ll}75 & 2.8\end{array} \right\rvert\,$ Ope fized bxight lto . $75 \cdot 5 \mathrm{k} .1 \mathrm{I}$.
tomac River $\left.\left.\right|^{\text {da }}\right|^{1855}$

| Entrance of Nayticolae Biver ... | 6a | 86 | 10 | 1832 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \ldots. | | | | |

One fired \& flash. 1t.
Sharp Ibland
One Gied bright it.
$\left\lvert\, \begin{array}{ll}38 & 37.7 \\ 76 & 22.5\end{array}\right.$

| N. Point ; entrance of Choptank | 5a | 41 | 10 | 1838 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P | | | | |

 One fixed bright lt.

PATAPSCO RIVER

| Norry Ponst | $\left.\begin{array}{ll}39 & 11.6 \\ 76 & 26.2\end{array} \right\rvert\,$ N. oide of entrance............... | 6a | 83 | 10 | 1824 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Two fized br. lts. | 11 | 1856 | | | |

 SUSQUEHANNA R.

 One fixed br. light

POTOMAO RIVER

Name and Chametor of Wisht.	$\left\|\begin{array}{c} \text { Lat. N. } . \\ \text { Long. W. } \\ 0 \end{array}\right\|$	Desoriptiom, to.				空空

POTOMAO RIVER

 One fired br. lt.
Fort Washington" | | Fixed bright light, on the Wharf | 6a | .. | 6 | 1867

Bowler Rock Lt. Vessel | | Fixed bright light | | | .. | 5 | 1835

KORTH CAROLITA.

 and one fixed br. lt.
 from Point
PAMLICO SOUND OCRACOKE ID. One fixed bright lt. $\begin{array}{lll}35 & 6.5 \\ 75 & 58.5\end{array}$
W. ond

4a	76	15	1828
1854			

Royar Shoas Lst. Ves. | | One fixed kr. It., on S.W. Point | | | 43 | 11 | 1826
Rotal Broal $\quad \mid$...... | Fized and flash. 1t., on N.W. Pt. | 4d | $83|11| 1857$
Haubour Id. Lx. Vas. $\left|\ldots \ldots .\left|\begin{array}{c}\text { Br. It. on Bari, betwoen Pamlico } \\ \text { and Core Sds. }\end{array}\right| \bullet\right| 84|10| 1836$
BrantId. ShoalLr.V. | | Br. light, S. part of Pamlico Sd. | $|45| 11 \mid 1851$
Nevaz R. Lr. Vessel | | Bright light, off Marsh Point .. | | | 88 | 11 | 1828

Lono Shoal Lt. Ves. | | Fixed br.lt.,on E. Point. Bell,eto. | | | 46 | 11 | 1854

Roanaks Rivar Itr. Vab. | | Fized bright lt., near ontrance. . | | | 41 | 11 | 1835

D, te.

Yiuble in

堵| Nreme med Charnoter of IIght. | $\left\|\begin{array}{c} \text { Iat. N. } \\ \text { Long. Wr. } \\ 0 \end{array}\right\|$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BOGUE BANKS Two fixed bright lts. | 34 7640.7 | Beanfort Harbour, near Fort Macon. In one, N.W. \& W., and B.E. $\frac{1}{4}$ E., t mile apart .. | 50
 30 | 18
 10 | 1865 |
| FetmoparshoalsIt. T. Two Axed bright lighta | $\begin{array}{ll} 33 & 35 . \\ 77 & 50 . \end{array}$ | In 10 fathoms, 1 mile from Outer Shoal
 | | | |
| OAPE FEAR One fixed bright light | 33 52.3
 77 59.8 | White tower, 92 feet high, on Bald Head, E. side of Cape Fear River, 4 m. from Capo.. | 10% | 16 | 1818 1855 |
| FEDERAT POINTY
 One fixed bright light | $\left.\begin{array}{ll} 33 & 58.7 \\ 77 & 54.9 \end{array} \right\rvert\,$ | $\left.\left.\begin{gathered}\text { N. side of Tnlet, N. of entrance } \\ \text { of Cape Fear River........... }\end{gathered}\right\|^{\text {se }} \right\rvert\,$ | 46 | 21 | $\begin{aligned} & 1816 \\ & 1856 \end{aligned}$ |
| OAPE ERAR RIVISR | | | | | |
| Oax Inland
 Two fixed bright Ite. | $\begin{array}{ll} 33 & 53.3 \\ 78 & 1.6 \end{array}$ | 8 m. below Wilmington, N. en E. \mid 5a and S. a $\frac{a}{2}$ W., 267 yarde apart | $\begin{aligned} & 87 \\ & 27 \end{aligned}$ | - | 1849 1856 |
| Pricisos Criere Two fixed bright Its. | $\left\lvert\, \begin{array}{ll} 33 & 56.1 \\ 77 & 59.2 \end{array}\right.$ | Entrance of Creek, W. bank of \mid 6a | 25 | 0 | 1850 |
| HORSE-SHOE LIT.V One fized bright lt. | $\left\|\begin{array}{ll} 33 & 56.3 \\ 77 & 55.4 \end{array}\right\|$ | Between N6w Inlet and Price日 Croek | | | 1851 |
| Campbell', or Big. Id. One fixed bright it. | $\left\lvert\, \begin{array}{lll}34 & 6.9 \\ 77 & 56.9\end{array}\right.$ | On S.W. corner \| ba $^{\text {\| }}$ | 25 | | $\begin{aligned} & 1849 \\ & 1856 \end{aligned}$ |
| Orton's Point One fixed bright it. | $\begin{array}{lr} 34 & 3.4 \\ 77 & 56.2 \end{array}$ | W. Bank of River $\left.\right\|^{\text {6a }} \mid$ | 25 | | 1849 1855 |
| Upper Jetty Range Iwo fired bright Itn. | $\begin{array}{ll} 34 & 12.8 \\ 77 & 56.3 \end{array}$ | 2. side of River, 3 miles below 16 a Wilmington, 267 yards apart | 42 | 8 | 1855 |

SOUTE CAROLINA.

One fized bright light $\left|\begin{array}{ll}79 & 6.7\end{array}\right|$ entrance to Pedee River $\left.\left.\right|^{18}\right|^{1854}$

 One fixed bright light
 Vrasil
Two fixed bright lta. 7943.6 of Sullivan Island. Fog horn

CHARLESTON HARB.

FORT SUMTER | |One Axed bright light|5a| $57|10| 1856$
Castle Pineknes
Buttery Bencon
| | Ono fixed rod light | 6a| $60|10| 1886$
| | Gas light on E. ond of Battery | . . | 45 | .. | 1067

Namo and Charnoter of Wight．	Lat．N．		害品	呂	星家	
anmoava Lr．Vesser		1t in 47 fms in Sown				

CEORGIA．

Mervin＇s Induatry Lr．
Veasel
Two fixed bright lts．
$\left\lvert\, \begin{array}{ll}32 & 5.5 \\ 80 & 35.2\end{array}\right.$
15 miles E．of Tybee Light．Fog horn and bell

TYBEE ISLAND
Two fized bright ltw．

SAVANNAII RIVER

bie Knoul Ls．Vem．	．${ }^{\circ}$	Fixed bright light，N．of Id． Bell and horn				$\begin{aligned} & 1848 \\ & 1857 \end{aligned}$
Cockspur Island One Axed bright it．	32 1. 80 52.8	On a Knoll，E．end	$5 a^{\circ}$	25		$\begin{aligned} & 1840 \\ & 1856 \end{aligned}$
Oyster Beds	．．．．．．	Fixed red lt．，opp．Cockspur Id．	6a	85		1849 1856
Fig；Island One fixed bright $1 t$ ．	$\left\lvert\, \begin{array}{ll}32 & 5 . \\ 85 & 3.6\end{array}\right.$	On E．end，in Sayanaah Rilver． Tog bell	6 a	26		$\begin{aligned} & 1848 \\ & 1856 \end{aligned}$
The Bay	1．．．．．．	Gas light，in Sava		77		1858
SAPELO ISLAND One fixed and flash．1t．， One fixed bright light	$\begin{array}{lll}31 & 21.5 \\ 81 & 24 .\end{array}$	Tower，striped rod and，wh．；flash overy 40 secs．8．end of Id． N．side of Doboy Sound．Fired light in front of former \qquad	4d	74 60	14	1820 1864 1858

WOLF ISLAND
Two fixed bright lights
$\begin{array}{|ll|}31 & 18.2 \\ 81 & 20.3\end{array}$
 ST．SIMON ISTLAND One fixed bright light
LITTLE OUMBER－
ILAND IGLAND
One fixed bright lt．

| 31 | 3.8 |
| ---: | ---: | ---: |
| 81 | 32.5 |

8．ond，on N．nide of St．Simon＇s Sound

$3 a$	80	14	1811
			1856

TLORIDA．

AMELIA ISLAND
1．One rev．br．It． $1 \frac{1}{8}$ m．， and 1 fixed bright lt．
2．Iwo fised bright lts．

ST．JOHN＇S RIVER

One fixed bright light

sb	104	17	1838
	$\ddot{6}$	6	1856
6 Ga	12	1858	
	35	9	

Name and Character of Light.

KEY WEST

LRY TORTUGAS

GARDEN, or BUSII KEY
One fixed bright lt.
Eomont
One flxed bright lt.

CEDAR KEYS
One tixed and flash. It.

Name and Character of Light.	$\begin{gathered} \text { Lat. N. } \\ \text { Long. W. } \\ 0 \end{gathered}$	Desoription, te.				
LAKE PONTCHARTRAIN						
Bayou St. Joms One fixed bright lt.	$\begin{array}{ll}30 & 2 \\ 90 & 4\end{array}$	6 miles N. of New Orleans ...		39 10	1811 1855	
Now Canal	Fixed bright light, at entrance.	581	$33 \mid 10$	183F	
Tchefuncta River		Fixed br. lt., near Madisonville	5al	38 \| 11	1887	
Pase Mazchao One fized bright lt.	30 17.8 90 12.7	S. side, between Mäurepas and Pontchartrain Lakes	$4 a \mid$	$45\|10\|$	$\begin{aligned} & 1838 \\ & 185 \% \end{aligned}$	
CHANDELEUR ID. One fixed bright light	$\begin{array}{\|rr\|}30 & 3.4 \\ 88 & 51.8\end{array}$	White tower, 50 feet high, on N. end	$4 a \mid$	$50 \mid 13$	184E	
MOUTHS OF MISSISSIPPI						
PASS A L'OUTRE One fixed bright lt,	$\left\lvert\, \begin{array}{ll}29 & 8.6 \\ 89 & 1.5\end{array}\right.$	Black towor, 09 ft . high, on Middle Ground Id., N. side of entrance	3a	$\left.77\right\|^{15}$	$185 t^{\prime}$ $185 E$	
GORDON ISLAND Onerev. br. 1t., 1才 m.	$\begin{array}{\|rr\|}28 & 59.7 \\ 89 & 7.4\end{array}$	S. Point of Id. South Pass, S. W. side	$\mathbf{3 b}$	$60{ }^{13}$	1831 1858	
Deer Island One fixed bright lt.	. $\cdot . .$.	At junction of S.W. and N.E.	6al	. 1	185\%	
SOTTH WEST PASS One fixed bright lt	$\left\|\begin{array}{lll}28 & 58.5 \\ 89 & 2 \mathrm{I} .\end{array}\right\|$	White tower, $68 \mathrm{ft}. \mathrm{high} ,\mathrm{on} \mathrm{W}$. side of entrance of River	$3 \mathrm{a} \mid$	70 . 15	1831 185%	
Tmballiza Bay One fixed bright light	$\begin{array}{ll}29 & 4 . \\ 90 & 16.5\end{array}$	W. side, Grand Pass	$4 a \mid$	$60 \mid 1$	1858	
SHIP TSLAND SHOAL One fixed and flash. 1t.	$\left\|\begin{array}{ll} 28 & 55.1 \\ 90 & 55.9 \end{array}\right\|$	Brown pile lighthouse. Fised lt., with flash every $\frac{1}{\mathbf{3}}$ min.	$2 d$	$110 \mid 17$	186C	
8.W. REEEF One fixed red light	$\left\lvert\, \begin{array}{ll}29 & 25 . \\ 91 & 30 .\end{array}\right.$	On the Roef.	$4 a \mid$	49\|12		1858
Shbis Kiys One fixed bright light	$\left\lvert\, \begin{array}{ll} 29 & 30 . \\ 91 & 49 . \end{array}\right.$	Pile lighthouse, 81 feet high, on 8. extromity.	$3 \mathrm{a} \mid$	71 \| 13		185¢
SABINE PASS One fixed and flauh. It.	$\left\lvert\, \begin{array}{ll}29 & 43.9 \\ 93 & 50.3\end{array}\right.$	White towor, 75 feet high, on Brant Point, E. side of River. Flash every $1 \frac{1}{3}$ min.		$85 \mid 16$	1856	
THEA8.						
GALVESTON BAT						
BOLIVAR POINT One fixed bright lt.	$\left\|\begin{array}{ll} 29 & 22.6 \\ 94 & 4.5 \cdot 7 \end{array}\right\|$	Red tower, 89 feet high, N. side of ontrance to Galv eston Harb.	3 a	100 ${ }^{16}$	$\begin{aligned} & 1852 \\ & 1858 \end{aligned}$	
Galveston	2 fixed br. lta., in range of Chan.	6 a	. . \| 10	1860	
Galveston Beacons	2 fixed brightits., in the city ..	6 a	44 \|	1856	
Fialf-moon Shoal One fixed bright 1 t.	-•....	Botween Polican Id. and Dollar Point. Fog bell.	$6 \mathrm{a} \mid$	$35 \mid 10$	1854	
Rod Fiah Bar	Fixed bright light. Feg bell ..	681	35\|10	1854	
Clopper's Bar	c....	Fixed bright light. Fog bell : :	6a!	$38: 10$	1854	

Name and Charncter of Light.	$\begin{aligned} & \text { Lat. N. } \\ & \text { L.ong. W. } \\ & 0 \end{aligned}$	Doso-stion, to.	号剳					
MIATAGORDA BAY								
MATAGORDA LD. One rev. br. lt., $1 \frac{1}{8} \mathrm{~m}$.	$\begin{array}{ll}28 & 21 . \\ 96 & 23.9\end{array}$	Tower, with bands, 79 feet high, on E. Point	8b	96 16	1852			
Half-moon Reof	\|	Fixed br.lt., on E. end. Foghorn	6a	$40\|6\| 1558$				
Swash								
ARANSAS PASS One fixed bright light	$\left\lvert\, \begin{array}{ll} 27 & 53.4 \\ 96 & 56.5 \end{array}\right.$	Brown tower, 55 feet high, on Lów Island, on N. side		601	1856			
MRATOS SANTIAGO								
Padre Islakd One fixed bright lt.	$\begin{array}{rr} 26 & 6 . \\ 07 & 12 . \end{array}$	S. Point, N. side of entrance ..		36 \| 10	1852			
ISABEL POINT Onv ised \& flash. it.	$\left\lvert\, \begin{array}{cc} 26 & 4.9 \\ 97 & 11.1 \end{array}\right.$	Flash every min. White tower, 57 feet high, on the Point. . . .		$82 \mid 16$	1852 1857			
Bic Grande	Building, 1881		-				

Name and Character of Iight.	Lat. N. Long. W.	- Deseription, \&e.		港	
ABACO One rev. br. 1t., 1 min.	$\begin{array}{lll}25 & 51.5 \\ 77 & 10.7\end{array}$	(British). White and red tower, 85 feet high, on S.E. Point, or Hole in the Wall	$\ldots 1160$	8	
NASSAU HARBOUR One fixed bright light	$\left\lvert\, \begin{array}{ll} 25 & 5.6 \\ 77 & 22 . \end{array}\right.$	(British). Stone tower, 68 feet high, on W. Point of Hog Id.			
great isalo One rev. br. lt.,	$\begin{array}{ll}6 & 2 . \\ 2 & 6.5\end{array}$	(British). Red and white tower, 145 feet high, on Island	-	39	
GUN KAY One rev. br. lt., $1 \frac{1}{4}$ m.	$\left\|\begin{array}{ll} 25 & 34.6 \\ 79 & 18.8 \end{array}\right\|$	(British). Tower, 70 seet high; near S. Point	$\|\cdots\| 80 \mid 12$	36	
KAY SAL BANK . One fixed bright light	$\begin{aligned} & 23 \\ & 80 \\ & 80 \\ & 28.5 \end{aligned}$	(British). White and red tower, 58 feot high, on N. Elbow Kay		39	
KAY LOBOS One fixed bright light	$\left\|\begin{array}{rr} 22 & 22.8 \\ 77 & 35.8 \end{array}\right\|$	(British). Rod and whito iron towor, 160 feet high, on Kay	$1 a\|146\|$	1860	
TURKS ISLAND One fixed and flash. lt.	$\begin{array}{cc} 21 & 31 . \\ 71 & 7.7 \end{array}$	(British). White tower, 60 feet high, 400 yards from N. end. Flash every $\frac{1}{4}$ min.............	.. \| 108		1852

CUBA (Spanish).

ISLE OF PINES $\left\lvert\, \begin{array}{ll}21 & \text { 26. } \\ \text { Proposed, } 1801, \text { on Cape Pepe } . . & { }^{2 b}|111| 16 \mid \ldots . .\end{array}\right.$ One rev. bright light 8_{3} 6.
 One rev. br. 1t., 1 m.

GOBERNADORA
One rev, bright light $\left|\begin{array}{cc}23 & 0 . \\ 83 & 13.2\end{array}\right| \begin{aligned} & \text { Proposed, 1861, on the Point } . . \\ & { }^{2 b}|111| 16 \mid \ldots . .\end{aligned}$

One fixed \& flash. 1t.
Port Santa Crus | | Fixed bright light|...|..| 7 | 1858

Note, -a-The Iatteudes and longltudes on the Const of Cube aro uneertain, probably to a conulderuble amount.

LIGHTHOUSĖS.

CUBA, 86.

ne and Chareoter of Lid	Lat. N. Long. W. -	¢ Deneription, te.				等

 One rev. br. $1 \mathrm{lt}, \mathrm{I}$ m. $\mid 80$ 30. \mid feet high, on the Kay
Anguila
One fired \& flash. It.
KAY PAREDONE GRANDE Onefixed \& flash. 1t.

 One rev. br. i., 1 m.

LUCREZIA
One rev. brightlt.

CAPE MAYSI
One fixed bright $1 \mathrm{lt}^{\prime}$.

Building, 1861. [There is a tem- ${ }^{2 a|124| 15 \mid \ldots . . .}$ 74 7. porary lt. at 53 ft ., vis. 10 m.])
$\left|\begin{array}{ll|l|}21 & \text { 10. } \\ 75 & 38 .\end{array}\right|$ Building, 1861, on the Point ...
1
\square

JATAICA (English).

MORANT POINT
One rov. br. It., 1 m.
Plum Pont One fixed red or br. It.

Fort Augusta One fixed red orbr. It.

SANTO DOMINGO
One fixed bright light
$\left|\begin{array}{cc|c|c|c|c|}17 & 56 . \\ 76 & 11.2\end{array}\right|$ White tower, 96 feet high...... $|\ldots| 115|15| 1842$
 $\left|7^{6} 47.\right| \frac{7}{4}$ E. Br. from N. $\frac{1}{4}$ E. to S.E.
$\left|\begin{array}{c|c}17 & 57 . \\ 76 & 53 .\end{array}\right|$ Red to E. ; bright to S. \& W. .. $|\ldots| 40|..| \ldots$

SANTA CRUZ, or ET: CROIX ISLAND One fixed bright lt:

ST. THOMAS One fixed bright light

SOMBRERO

 6455.1 lenfels Point
 Montse.rrat

Two fixed br. lights, \& One red light

St. Vin One
Trinida Cne
Tonado One fif

BARBA Carlis Ono 8. PO One

GU
Cayenne One f

Sunimay One fis

BERBIC LT,
One fix
DEMER
Lioht One
E. Bm

WESY DIDIES, TH THETHOUSES. CARIBBAEIA, EO. 173

GUUADALOUUPE (French).

Dominica

St. Luore
Three fixed bright 1 ts.

 One lixed bright light-

Gue fixed bright light

BARBADOS (British).

$$
5937.2 \text { of } \mathrm{E}
$$

 GUAYANA.

 One fixed bright light

Point
berbice Harbour
LT. VESSEL
One fixed brighì light

619.3	(British). Near E. Point of en-	15\|1850
5722.5	trance-...........	

DEMERARA (British).

E. Bw: One ixed bright lt.

Nam and Charnoter of Iight．	$\left\|\begin{array}{c} \text { Lat. N. N. } \\ \text { Long. W. } \\ 0 \end{array}\right\|$	Ftiariot Description，\＆c．			号号	突

 One

SIER

 One fixed bright light
$79.53 . \mid$ Manzanillo Island
．．．．．．．．．．．

Belize
Three fixed bright lts．
Tunmepr Kays

GULF OF MEXICO

Tampico

CANT
Santa C One fi

Anaga
Grand
One H

AZORE
ERN
St．Mrice
Propos

AFRICA．
IITHTHOUSES．
West Coast． 175

Name and Character of Light．	Lnt．N． Long．W． －	Description，\＆c．	㦴空			容

Gorée Tsland
One fized bright light

ATLANTIC ISLANDS．

BERMUDAS．
One rev．br．lt．， 1 min．

3	1846

13	1846

$10 \mid 1852$
．． 1856
． 1 ．．．．

15 ｜．．．．
． 1 ．．．．

32	15.1
64	51.6

on Gible Hill all round，except between S 48° W．，and G． 52° W．$;$ and
also S． 53° W．to 5.62° W．．． $\left\lvert\, \begin{aligned} & 48^{\circ} \text { W．，and } 8.52^{\circ} \text { W．} \text { i and }^{\circ} \text { and } \\ & \text { also S．} 53^{\circ} \text { W．to } \mathbf{S .} 62^{\circ} \text { W．．．}\end{aligned}\right.$
－｜ 362 ｜ $24 \mid 1846$

CANARY ISLES．

 One fixed bright light

$|$| 28 | 28.6 | （Spanish）．Teneriffe Island ；on | ．．｜ $36\|5\| 1857$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | 14.9 | Mole Head ．．．．．．．．．．．．．．．．．． | | | |

Anaga

Grand Canary Island One fixed bright light

AZORES，or WEST． FRRN ISLANDS．

St．Micharl
Proposed fixed light

Photographic Sciences
Corporation

SECTION III.

GENERAL OBSERVATIONS ON THE WINDS, TIDES, AND CURRENTS; AND ON THE DIFFERENT PASSAGES OVER THE NORTH ATLANTIC OOEAN.

1.-OF THE WINDS.

GKMIHRAT BEMCARKS.-(1.) The stady of the winds is the most important branch of Marine Meteorology. It has ever been a favourite subject for speculation, but man's finite powers and limited views have hitherto failed to. give us a compiete and satiafactory view, in all respects, of that vast system of aerial circulation by which this globe is made fit for an habitation. Within the last ten years, however, the subject has assumed a new form, and more definite results have been arrived at; so that much that was before difficult to be understood; is now made perfectly demonstrable. Still, however, doubts may be permitted as to whether the data hitherto collected and arranged are of that exact natuis which will allow those certain deductions necessary for a scientific axiom, and therefoze, even now, we are not in a position to assert that the circulation of the atmosphere is carried on in all particulars under the systems which are now reoognized as correct.
But as the sailor deals not with speculation, but applies the facts of nature to his use, the mode in which the whole mase of the atmosphere is interchanged and mingled is important to him only as a field of observation which he enjoys with the rest of mankind. The present object being practical utility, the theory of the winds will be very briefly alluded to here, leaving the reader to those numerous and voluminous works now extant on these subjects for a more full elucidation of them.
(2.) An a broad and primary principle, it may be affirmed, the complete circulation of the atmosphere, by which any particle of the air has in its course, pasised over every portion of the earth's surface, is demonstrated by the fact that the air is composed of precisely the same elementary oonstituents in every part of the world. This fact wan experimenially demonstrated by the French Academy of Sciences many years since, who had bottles of air most carefully collected in all regions and sabmitted to the mont rigid analysis, which failed to discover any difference whatever. It is manifert in a natural sense also, by its cupporting animal and vegetable life universally in the same mannor. If it were not so, the air over a apecial region would, in the course of agen, have become subject to the emanations and influences of the earth it covered. The name remark holds good also with the water of the ocean, equally universal in its definite characteristics, and from the same cause, as.will be shown hereafter. Tho manner in which this is carried on is atill involved in some mystery.
(3.) In the year 1086, Edmund Halley" proposed the Thenry of the Trade Winds. and Monsoons, which if now generally received as an approximation to the true solution. He aftorwarls altered hic viewn, whioh were revised and extended by George Hadley in 1735. \dagger The following is a briof summary of them :-

[^3](4.) The sun is constantly vertical over some part of the earth between the tropics, and this sone is consequently maintained at a much higher temperature than the regions nearer the Poles. This heat on the earth's surface is imparted to the air, which is, therefore, displaced and buoyed up from the surface, and the colder, and therefore heavier, air from without glides in, on both sides, along the surface; while the displaced air, thus raised above its due level, and unsustained by any lateral pressure, flows over, as it were, and forms an upper current in the contrary direction, or towards the Poles; which being cooled in its course, and also sucked down to supply the deficiency in the extra-tropical regions, keeps up thus a continnal circulation.

Since the Equator revolves much more rapidly than the portions nearer the Poles, it follows, that a mass of air flowing towards the Equator must be deficient in rotary velocity, and, therefore, unable to leep up with the speed of the new surface over which it is brought. Hence these currents from the North and South must, as they glide along the aurface, at the same time lag or hang back, and drag upon it in the direction opposite to the earth's rotation, i.c., from East to West. Thus, from simple mortherly and southerly winds, they become permanent north-easteriy and south easterly winds.

The lengths of the diurnal circles increase very alowly near to the Equator, and for several degrees on each side of it hardly change at all. It follows from this, then, that as these winds approach the Equator, their easterly tendency must diminish; and at the Equator must be expected to lose their easterly character altogether. And not only this ; but the northern and sonthern currents, here meeting and opposing, will mutually destroy each other, leaving only the actions of local causes, which may lie in one region in one way, and in another a different one.

The result of this, then, is the production of two great tropical belts of northcasterly and south-easterly winds, while the winds in the equatorial belt which separates the two former should be free from any steady prevalence of an easterly character, and should also be comparatively calm. All these cousequences are agreeable to observed fact, and constitute the ayntem of the regular trade woinds.
(5.) The constant friction of the earth upon the air near the Equator, it may be objecter, would; by degrees, destroy the rotation of the whole mand; bat it is compensated in this manner. The heated equatorial air, rigirg and flowing off toward the Poles, carries with it a rotatory velocity much greater than hat of the surface over which it passes in ita northward and southward progress.-His: it will gain more and more on the surface of the earth, and assume more and r westerly relative direction ; and when, at length, it necesparily returns to the PL in its circulation, which it must do, more or less, in all its course, it will act on it by its friction as a powerful S.W. wind in the northern hemisphere, and a N.W. wind in the sonthrra, and thus restore the equilibrium. This is the origin of the S.W. and westerly gales so prevalent in our latitudes, and of the almost universal westerly winds in the North Atiantic.?

[^4]he tropics, - than the to the air, colder, and ace; while iny lateral direction, d down to continual
: the Poles, it in rotary urface over th, as they n it in the rom simple and south-
tor, and for , then, that sh; and at

And not posing, will 1 may lio in
ts of northwhich sepaan eapterly - are agree-
p, it may be it is comtoward the surface over gain more srly relative oirculation, riction as a e sonthrm, sterly gales a the North
orms, which, pre the viems advert to it t arise from tive velocity ower strata; m their doven. Their ght to be, in Fs, that this of nuy mases tho friction over such a so encounter f from thoir chol will be
(6.) Now it will be seen, that by this theory the trade winds moot near the Equator, leaving a belt of calins of various breadth between them. Acoording to Commander Maury, the winds here being neutralized rise up and crose each othery the wind brought by the S.E. trade passing over N.E. trade as a B.W. upper currents and, having pessed the calms or variables of the Tropic of Cancer, it appears, as the ordinary anti-trade or S.W. prevalent wind. The chief physical fact npon which this theory is besed is the red dust, found frequently to fall on vessels near the: Cape Verdes, and in the Mediterranean, where it is called scirocco dust (as coming from the South). This red dust was found by Ehrenberg to consist of mioroscopic infusoria and organisations, whose habitat, as far as was hnowon, is in South America. But this argament miny be demurred to from the limited extent this dust falls npon compared with the vast area from which it is said to be derived:
(7.) There is another great difficulty in the reception of this theory, in the great breadth, in some parts, of that intervening band of calms that these supposed currents are to oross each other. In the eastern part of the Atlantic, it is frcm 300 to 600 miles in breadth. If this great interchange of directions were continually going on with such a vast amount of atmosphere, we may safely conclude that the lower strata would not be charncterized by the calms or "doldrams" they are known by:
(8.) The more reasonable argument, in the present state of our knowledge, is, that the trade winds reaching this belt of calm, by far the greater part of this indranght will rise on its own side, and revert towards the pole of its own denomination in a precisely opposite direction to that by whioh it arrived. In the parts of the equatorial regions, where this intervening calm belt is much narrower, is on the. East coast of America; this croming may tale place, and the upper currents pass on towards the poles of contrary names. At all events, this view of the circulation of the atmosphere will matisfy our frst proposition,-that every particle of air has been so commingled with the rent that it produces the universality of character which is demonstrated to exist. Thene theories are practically unimportant to the sailor in his profession, bat are highly interesting" to him as a nuibject of observation and reflection.

It has been held by many that the solar heat combinad with the revolntion of the earth, is sufficient to account for the generb (phenomena of the winds; but there are still some dificulties in the way of accounting for some of the periodical winds which are found to recur with great regularity. This has been reasoned for by Mr. Hopkins, who argues that the Trade wind at times blows towards areas of great condensationes in other words, that a great rain-fall occasions a corresponding indranght t. Another agent in giving the easterly direction to the Trade winds, suggested by Commander Maury to be Magnetism; but this subject, of the magnetism of the air and the influsince of the solar heat on it, is as yet hidden too mach in obscurity to draw any certain deductions therefiom.
(9.) There is one feature of the atmosphere which has been involved in some obscurity, or, at least, has been the subject of controversy. It is the condition of aqueous vapour, at all times present in the air. It is a very important question, as upon this water-bearing prnperty of the air, evaporation, condensation, and rain depend, and consequently climate and fertility so the earth. The doubts may be briefly stated. The eminent ohemist, Dalton, demonstrated that one gas (and aqueous vapour is such) could permeate or exist in connexion with another gas without diaplacing its bull, and that water was thus diffused through the atmoophere without inoreasing its volume. Therefore, in estimating the height of the barometer, account must be taken of the amount (or weight), and elasticity (or tension) of the vapour, aud subtracted from the height of the mercury, to give the true weight of the dry air. With a dew point temperature of $87^{\circ} 35^{\prime}$ the pressure of moisture is equal

[^5]to the weight of 1.29 inchev of meroury, and muit be subtractad from the heightilisim by the barometer, as above itated. Thin is the view hold by Dalton, Ure, Regranith Daniell, Sir Henry Jamen, \&o.
In opponition to this, Profemor Patton, of Bombay, maintained that moisture did dipplace an equal ur equivalent volume of air, and that therefore it was only the fif forence of their amount which ahould be applied as a correction, and he coitimated the amionat of vapour above stated to be equal to a pressare of only; 0.518 of an inch of merciry. But the firt theory is thought to be the mont fearible."
(10.) Leaving the field of conjecture, we come to the actual condition of the atmosphere which covers the North Atlantic Ocean in perticular, and generally the whole earth. Itt olevation of weight is ascertained by the barometer, as is well known. According to the decrease in the height of the mercury on asconding to great elevation, it is calculated that at 15 miles the air is rarefied to abont 25,000 fimes, and at 80 or 90 a perfect vacuum exists. It presses with a mean force 14.751 bs . per square inch, and forms one $1,125,000$ th part of the mass of the whole earth. The Trade winds do not reach more than to 3 miles in height,' and it is probable that an the phenomena of olouds and vapours occur beneath the height of 4 to 5 miles.
(11.) If the surface of the earth were evenly covered with land or water, or a combination of both, the phenomena of the Trade and Anti-Trade winds would form aymetrical zones around the globe; but the relative proportions are very different in the two hemispheres, being 100 land to 150 water in the northern, and 100 to 628 in the southern. \dagger. There is a still greater contrast, if we take the horizon of Iondon - a great circle dividing the earth into two hemigpheres. It will be then seen, that London is in the centre of that half which includew all the land, except Australia; and the other half all the water of our globe. From this cause the line of meeting between the N.E. and S.E. Trades is in all seasons northward of the Equator in the Atlantio; and, from the land inflecices on the Trade winds to the N.T. of Africe, there is a wide space of calms, or doldrums, whose base lies against that continent, and its apex stretching toward the coast of Braxil, as is readily seen by the illustration of the Trade winds diagram, which will explain far better this peculiarity than a verbal description.
(12.) The force with which the wind blows is the chief consideration of the sailor in connexion with the study of the subject. This force is readily measured in a fixed observatory, or on board a ship at anchor; but not wo when she is under sail, as it is manifent that she is then apparently feeling less wind than is actually blowing, from being drifted before it. We have had some singular accounts of nome of the fine - lipper ahips scudding at an immense rate before a gale which has been marked as of no extraordinary violence, while other ships, dull sailorm, have been dismasted or disabled by the fury of the same gale, from their not being able to bear away before its great velocity. Therefore the recorded force of the winds met with at see should be erbject to this qualification, -what are the sailing powers of the ahip which has recorded them. We have no standard of mea-rates for the wind as yet. Perhapa it would add to the value of such observations if the sailing powers of all ships engaged in adding to our knowledge were tented when both clowe hauled and running free apon a wind of known velocity.

In former timen the vague terms of breese, gale, hurrioane, \&c. sufficed to describe the relative oharacter of the wind. The late Sir Francis Beaufort devised a system of ample notation which more exactly defined theme forces, and which is now in univernal use, at sec. The figures prefixed indicate the entimated oharacter of the wind :-

[^6]- In addition to the figures, showing the force of the wind, the state of the weather is to be understood by letters, as follows :-

Letteri indicating the otate of the Weather (Beaufort Notation).

b Blue Blyy.	m Misty (hary).	Ugly (threatening)
c Clonds (detrohed).	- Overcast.	pearance of Weath
d Drisuling Rain.	p Passing Showert.	v Vipibility. Objects at
1 Foggy.	q Equally.	distance unumally vi-
g. Gloom.	7 Rain.	sible.
h Hail.	s Snow.	W Wet (Deyw).
1 Lightning.	t Thunder.	,

Norn. - A bar (-) or dot (.) under any letter augmenta ita signication:-thum 1 very fogey, r heary rain, I hoiry and continuing rain, de., do. .:

TABLE, showing the Force and Velocity of the Wind from light Lirs to heavy Gales, and Tempests.

Pressure in lbs. on Square Foot.	Velocity.		Popular Descriptions.
	Feet per	H	
0.0020.0040.0190.0320.0430.0650.0710.0900.1000.1120.1300.1620.2280.2600.2910.3640.3900.4520.5210.5510.6500.7800.8300.8840.9101.0421.1701.2501.3021.4701.5631.6301.7902			Gentle airs (unappreciable by gange). (Beaufort scale, 1). Light airs ((just appreciable by gauge); would fill the lightest sail of a yacht (2). Light breezes; such as would fill the lightest sails of a large ship (3). Moderate breezee, in which ahip cap carry all sail (4). Freah breezes,-topgallant sails and royals (5). $\left\{\begin{array}{l}\text { Freah winds; reefs (6). } \\ \text { Strong winds ; treble reefed top- } \\ \text { sails (7). } \\ \begin{array}{l}\text { Gales ; close reefed topsails and reefed } \\ \text { courses (8). }\end{array} \\ \left\{\begin{array}{l}\text { Strong gales ; close reefed topsails, and } \\ \text { stay sails (} 8 \text {). }\end{array}\right.\end{array}\right.$ $\left\{\begin{array}{l}\text { Heavy gales and storms (10). } \\ \text { Very heavy gales; great storms; tem- } \\ \text { pests (11). } \\ \text { Tornadoes; cyclones; hurricanes (12). }\end{array}\right.$
		3.8	
		4.5	
		$7 \cdot 6$	
		8.2	
		11	
		12	
		13	
		$13 \cdot 6$	
		15	
		16	
		16.5	
		17	
		${ }_{19}^{18 \cdot 6}$	
		21	
		26.40 28.52	
		32	
		34	
		41	
		48.2	
		53.91 68.18	
		107	

uld fill the ip (3).

There is ao doubt that thewe figures may be open to some doubt, as the gubject in a difficult one, and they are given independent of the different forces exerted by aqueouse vapour and by air. Sir Henry James has also given a.table, more complicated, but which does not very materially differ from the above, which will sufice, for the suilor's use.
(15.) In estimating the diminishing pressure on the barometer during the progress of a gale, it is rather difficult to understand how the force which must, in some degree, compress the air, and therefore make it more denise and heavy, besides the idea that such a force may tend to heap up the atmosphere in soino part of the area, can show a less wright of air. There is one view whioh has not been made prominent, -that the horizontal force exerted by the progrest of the wind may lessen its downward vertical forice of pressure in the same way that a railway: train in quick motion does not deflect a bridge as the same train would do if going slower; or as a skater can pass awiftly over ice that would infallibly break with his weighi when quiemcent; or as the apparently anomalous lose of gravity in the gyroseope when in motion. However, these conaiderations have no effect on the phenomena of a falling barometer with a rising wind.
(16.) The alternation of the sea and land breezes in warm latitutes is an important feature in coast navigation. Its cause is generally well understood. It is owing to the different powers of radiation and absorption of heat possessed by land and water. So that, generally, when the day temperature is highest on the land, the strongest will be the alternating breezes. During the day the radiation of the sun's heat on the land causes the air to expand and rise from the surface, and then the sea air rushes in to fill the void. It frequently occurs that the surface of the soil will show a temperature of 120° under the meridian sun, and sinks to 50° or 60° during the night; while the sea, rarely having a higher temperature than 80°, and, from being a bad radiator, fluctuates but very little; it follows that it is alternately warmer and colder than the land, and hence the phenomena in question. The minimum temperature of the 24 hours being a little before sunrise, and the maximum about 2 p.m., the change of these breezes occurs generally at some little time after those hours.
(17.) The wind decidedly veers rond the compass according to the sun's motion, i.e., from N. through N.E., E., S.E. to S., and so on, often making a complete circuit in that direction, or more than one in succession; (perhaps occupying many days in so doing, but it rarely veers, and very rarely or never makes a complete circuit in the contrary direction. This has been shown by Professor Dove to be the direct consequence of the rotation of the earth; and, although the observation was recorded by Lord Bacon in 1600, it is now known as Doce's Lavo of Gyration.*
(18.) Professor Coffin, from his elaborate discussions, thinks him authorized to lay down, as a general description of the winds of the northern hen isphere,-1at. That from high northern latitudes the winds proceed in a southerly direction, but veer towards the west as they approach \& limit ranging from about lat. 66° on the western continent to about lat. 68°. on the eastern, where they become irregular and disappear. The area of this zune is about $11,000,000$ square miles. 2nd. That further south there is a belt of westerly winds, less than 2,000 miles in breadth entirely encircling the earth; the westerly direction being clearly defined in the middle of the belt, but gradually disappearing as we approach the limits on either side. The area of this zone is entimated to be about $26,870,000$ square miles. 3rd. That south of the zone last named the mean direction of the wind is easterly. This area is estimated to contain $60,760,000$ square milen. \dagger. Profeseor Dove contends that there are but two Systems, the 1st and 3rd of the foregoing. \ddagger

[^7](i9.) The wind reyione af the North Attantio may be thue defined :-To the north of tho Tropic of Capeer ate the Anti-2racks, or Pasoage Winde, which, thouigh variable; have a general N.E. tendenoy. South of thewe is a belt of calms and variable: winds, dietinguished by a high barometer, called by Commander. Maury the "Calme of Cancor"," known to sailors as the "horse latitudes." This bolt varies botwreen 30° and 35° north, scconding to the season. Sonth of thim, and extending to about 8° to 5° north, but varying in its monthern as in its northern limits, is the great region of the N.J. Tradoc. In the spece between the Equator and this region of Traden are the "Doldruma," or calma, of the Equator ; and upon the Atrican coast there in a regular alternation of the windes, similar to the Monsoons in other parts. Bach of theeo regions will be treated of soparately.
(20.) In the spacee which separate these wind systems those hurricanes, tornados, typhoong, or cyolones occur, which are caused by the action of cursents of air moving in oppotity directions; their phenomena are farther controlled by the infuence of the land they appronch or pass over. This important brarich of the present subject is fully conkiderod herenfter, but the occurrenoe of storms is an exceptional cace in the vast system of of atmospheric circulation we have been considering.

THETRADEWIND.

(21.) The region of the Trade winds occupies nearly one-half of the entire surfece. of the globe. From their constancy and regularity, they form by far the most important part of the circulatory sygtem of the atmosphere, although generally their strength is inferior to many of thbse smaller brit compensating currents which are experienced in extra-tropical regions.
(22.) The source from which the ensuing statiotics of the varions winds described, is the extensive collection of observations recorded in the Pilot Charts of Lieut. M. F. Maury, U.S.N., published in 1849. This immense mass of figures hat been analyzed and placed in a graphic form by the Meteorological Department of the Board of Trade, under the direction of Rear-Adml. FitaRoy (Aug. 1855). It has also been done by the Royal Netherlandish Meteorological Institute, which has been foremost in advancing the good cause of this investigation. On our Chart of the North Atlantic Ocean, in four aheets, to which this Work especially refers, these wind records are also arranged in a simple and comprehensive graphic form. The observations on the Trade winds of the globe, collected in Maury's Chart, amount to 1,169,353; for those of the North Atlantio, 220,000.
(23.) The Torth-eat Trade Wind blows over the tropical region between lat. $36^{\circ} \mathrm{N}$. and the Equator, seldom, however, reaching these extremes. When uninterrupted by gales or hurricanes, caused by the disturbing influences of land or rain, it is a mir weather region that procured for it the term of "The Lady's Gulf ${ }^{m}$ by the old Spaniards. From the difference 0.055 inches in the observed mean barometrio preesure by the Dutch in the N.E. and S.E. Trades, between the parallels of 5° and 20°, which is 29.968 inches lor the former and 30.023 for the latter, it is interred by Capt. Maury that the greater pressure in the S.E. Trades indicates a greater
general subject in the works of Kämtz and Romme, who have also laboriously studied and generalised the phenomens of the winds, and to whose laboure much that is here said is owing. But by far the largeot collection of obwervations, arranged in order, is contained in Capt. Mraury's "Pliot Charts," before alluded to, "hich are well known to all sailors.

- Thin torma, Anti-Trades, in adopted by Sir John Herschel: it is expreesive and approprinto. By others they have beon named Countor-7rado, which dosignation may more exeotly define the upper currenta over the Trade Winds. They have aleo been vaguely called "The Variables," a term which in bent conAned to the characteristio of the balts of oalm or ahifting winde about the Tropicm.

force and veloeity* than the N.E. Trades. Thic, as investigated by Commender Maury, ham been indicated by the rate of vemell doily paming through them. He has compared the mailings of 2,235 vescols, and finds that tho homeward bound vemole crome the Traden of the North Atlantic with the wind abeam at an average rate of 8.6 knots per hour, and acrows the Trades of the South Atlantic at an average of 6 knots. An the latter is with the wind generally dead aft, he argues that this rate would be increased 2 or $2 \frac{1}{6}$ knots with the wind on the beam, and make the difference still more evident. The comparative duration of each of these winde in the Athantio is thum given by Capt. Maury :-

Between Latitudes.	N.E. Trades.		S.E. Tradzs.	
	Mean Direction.	Aunual Duration.	Mean Direction.	Annual Duration.
0° and ${ }^{\circ}$.	N. 48 E.	76 days	E. 348.	308 days
510	N. 46 E.	118 days	E. 418 8.	308 days.
1015.	N. 47 E .	208 "	E. 37 S.	305
15 20	N. $46 \mathrm{E}$.	197 "	E. 34 \$.	255
$20 \quad 25$	N. 43 E .	167 "	E. 34 S.	163
Means	N. 46 E.	153 days	E. 36.8.	272 dayi. \dagger

(24.) The N.E., like the S.E., Trade wind, blows over a wider area in the eastern part of the Atlantic than on the American side, as at the meridian of $10^{\circ} \mathrm{W}$. they extend from 35° or $38^{\circ} \mathrm{N}$. to 25° or $28^{\circ} \mathrm{S}$.; while on the American side the N. limits is 28° or $30^{\circ} \mathrm{N}$. to 23° or 25°. . : but on the Eastern side the intervening space of calms in much wider. The extent and linits will be best comprehended by an inspection of the diagrams adjoining, which are formed from the tabular. statements drawn ap by Commander Maury and by the Dutch Meteorological Institute. They will explain better the various lines and fluctuations than would be done by a long series of words.
(25.) The Northern limit of the N.E. Trade wind, as will be seen, extends on the eastern side of the Atlentic, that is off the coast of Africa, to lat. 35° as a mean, in August and September, being then at its greatent northern extent; but it is frequently encountered when in lat. 38°, or sometimes even at 40°. To the westward of the meridian of 30° the northern edge seldom extends northward of 33° or 34°, while toward the Bahamas the northern limit in $30^{\circ} \mathrm{N}$. This extreme northern declinetion appears to be attained in August and September, as has been said above, When following the sun in its sonthward course it reaches its southern limits in March or April. In January its mean limit on the eastern side is abont the Canaries; over the eastern half of the Atlantio in abont $25^{\circ} \mathrm{N}$. ; in the centre abont $22^{\circ} \mathrm{N}$., and on the Bahamas it seldom vibrates to any great extent throughout the year.

[^8](26.) The extent of variation between the northern edge of the Trade winds when first encountered, as shown by Maury's Trade Wind Charts, seems to be as much as 10 degrees of latitude, wide range of probability, and in many cases thete appears from these Charts to be as much chance of meeting them in one latitude as another. Of course this is taking into account the belt of calms and variable winds usually (btit inot always) found on the edge of the Trades, which will be spokeri of presently.
(27). The southern edge of the N.E. Trade wind is limited in the eastern part by that broad region so embarassing to the sailor known as the "doldrums," or especially during the northern summer months. by a set of winds blowing towards the coast of Africa, known of old as the West African S.W. Monsoon. This wedgeshaped area; whose apex reaches in July to 40° or 45° W., extends on the African coast at that period from $50^{\circ} \mathrm{N}$. to 16° or $17^{\circ} \mathrm{N}$. To the west of this there is still a belt of almost constant rain, "under the equatorial clouid ring," which, however, is much narrower, and, perhaps, at times may not be encountered, called the Equatorial calmis. The Trade wind is at its sontherly limit in March and April, reaching in mid ocean sometimes to $3^{\circ} \mathrm{S}$., but seldom so far as $3^{\circ} \mathrm{N}$. on the E. side. It remains there for two or three months, and then advances northward till August and September, when it is seldom found south of the parallel of $9^{\circ} \mathrm{N}$. ; indeed this parallel may be taken as the mean limit of the N.E. Trades. This northern division of the Trade wind is owing to the unequal distribution of land in the two hemispheren (11).

The following useful Table is that drawn up by the late Capt. Horsburgh, as the limits usually found in the track generally pursued by the East Indiamen :-

TABLE, showing the Equinoctial Limits of the N.E. and S.E. Trado Winde, between the Meridians of 18 and 26 degrees' West.

N.E. TRADE WIND.			S.E. TRADE WIND.		interval BETWEEN.
() CESASES	General Extremes.	Probable Mean.	General Extremes.	Probable Mean.	Mean Breadth.
In January at.	3° to $10^{\circ} \mathrm{N}$.	$6^{\circ} \mathrm{N}$.	00° to $4^{\circ} \mathrm{N}$.	2a0'N.	24 degrees.
Febraary.	2 to 10 N.		0 to 3 -		
March .	2 to 8 -	4i	$0 \frac{1}{8}$ to $21-$		
April.	21 to 9	6	0 to $21-$	1	3
May	4 to 10 -	64	0 to 4	$3{ }^{3}$	4
June ..	64 to $13-$	8. -	0 to 5 -		81
July :	ct to 14-	11 -	1 to $6-$		7
August	11 to 15 -	$13-$	1 to 5		910
September	$9 \text { to } 14-$	113^{-}	1. to 5 -		
October . November	$\begin{aligned} & 7 \text { to } 14 \div \\ & 8 \text { to } 11 \div \end{aligned}$	10 -	$\begin{array}{ll}1 & \text { to } 5 \\ 1 & \text { to } 5\end{array}$		7
December	3 to 7.	81 二	1 to 41-	34 -	2 "

(28.) The direction of the N.E. Trade ivind is an important nautical consideration. Its mean direction in the circuit of the earth is estimated at N. 47° E., but it varics considerably under the influence of the land, and especially so in the N. Atlantic. As mentioned above, the Trade wind blows much more from the northward to the eastward of long 25°,-that is, within 400 or 800 miles of the African cuast,--than it does in the open oceat. Between the Canaries and Cape Verdes, during the northern nummer montha, it blows from N.N.E. and N.E. for 56 days out of every 100.

During the winter months, from January to March, the wind in the neighbourhood of Cape Verie drawe very much toward the land, or from N.W. and W. This point will be more disoumed in a later part of thin Work.
(29.) In order more fully to exemplify the duration and direction of the Tride wind the adjoining diagrams have been eolected from the Chart of the North Atlantic ispheres (11). sburgh, an the ten:-

Winds, between
interval
BETHEEN.
Mean. Breadth.

consideration. ., but it varies e N. Atlantio. rthward to the coast,-than it g the northern 7y 100.
neighbourhood V. This point North Atlantio
Diagrams illustruting the direction of
THE N.E. TRADE WIND. between Latikudes 10° \& $20^{\prime \prime} \cdot \mathcal{N}$:

FIG. 3. Lon. wo 50 m:

FIG. 6.

nhunt the

Windwarl l!

FIE. 2.

FIG. 4.

FIG. 6.

\qquad
from th
requiro roquiro

Ocears. They will ghn the particulars of the wind between the parallels of 10° and $20^{\circ} \mathrm{N}$. $;$ that is, inc s from Maury's Piloi in thength of the N.L. Mradem Haey have been adapted centage of winds from any quarter in each of the four calendar seasons; and also the amount per cent. of calnas enccuntered. The plate will explain the different arrows, indicating the ceasons, which are supposed to represent winds blowing toward the centre of the circle, because the winds take their naine from the quarter from whence they come. Their length is proportioned to the duration or frequency, according to the scale attaehed; so that by applying the compasses to any one of the arrows it will give, according to the scale, the amount of wind per cent. for that direction. These arrows are given for 16 points of the compass, omitting the "by" pointa; and in each season these arrows altogether make up the length of 3 inches, that of the scale given.* In the centre of each diagram is given the amount per cent. of calms encountered in the respective seasons. As the force of the winds is not given in the Pilot Charts this register of the calms is the more important, as it is the only scale we ean apply to the force of this wind; as, by analogy, we may argue that where calms predominate there also do light and baffling winds, and the reverse.
(30.) An analysis of the wind-roses in Capt. Maury's Chart, from which these diagrams are constructed, will give the following figures as the prevalence and direction of the winds along the main strength of the N.E. Trades in the N. Atlantic. It must be premised, however, that these figures, as well as the data from which they are derived, will give only a general view of the phenomena likely to be encountered, and the chances per cent. that a ship will have of meeting with similar winds or calms. The figures in these columns give the number of days (or observations) the wind blows in each hundred, from the respective directions :-

Fig. 1.-In the neighbourhood of the Cape Verde Islands.

	Between N. \& E.	E. \& S.	S.\&W.	W.\&N	Mean.	Frequent.	Calms.
Winter	73	12	10	7	N.F.	E.N.E.	1.1
Spring	76	18	4	2	N.E.	N.E., N.N.E.	1.8
Summor	70	14	4	12	N.N.E.	N.N.E.	8.6
Autumn	63	22	6	9	N.E.	E.N.E.	4.7

Fig. 2.-Betiocen Lats. 10° and $20^{\circ} \mathrm{N}$. , and Longs. 30° and $40^{\circ} \mathrm{W}$.

Wintor Spring Summor Autunin Autun	45 48 48 32	41 48 32 61	2 2 12 0	2 2 8	$\begin{array}{\|c} \text { E. by N. } \frac{1}{1} \mathrm{~N} \\ \text { E.N. } \\ \text { E. N.E } \\ \text { E. by N. } \end{array}$	$\begin{gathered} \text { East } \\ \text { E East } \\ \text { N.E. to } \\ \text { E. East } \end{gathered}$	$\begin{aligned} & 2.6 \\ & 8.8 \\ & 6.8 \\ & 6 . \end{aligned}$

- Thom is one remark which it la necessary to make hore respeeting these wind observations (220,000 in number). They have beon taken from a yast quantity of different \log books, whowo remarks ure not made with that dofinite necuracy nocossary for scientifio precision. A alight inspeotion of the figurve givon on tho diagram, or of the Board of Trade Charta, will show that in those data the direction of tho wind is loosely and indofnitoly given throughout. Thus, a wind betwoon N. and E. is sot down as a N.E. wind, sc., \&c., and not so ofton as a N.N.E. or E.N.E. as must renlly occur. Consoqnently, the arrows represonting those principal or cardinal points are longor than they ought to be, and the intormediate onen shorter; in fact, thoy form a zig-zng or irregular curve around the centre: wherons it is manifost that this ourvo should bo somewhat symmotrical, and that the wind blows from the intermodiate pnints in some rogular ratio to those on oithor side of it. Until wo get more exact records addod togothor in gront numbers, as has boen done in the Pilot Charts with these imperfoct loga, it is plainly futilo to draw any procise or rofnod conclusions from their tenahing. This is not aaid to undorrate thoir value. To the anilor; whe only requires a gonorally exact knowiedge of tho subject, thoy teach as much almost as he roquires to know as to the direotion of tho wind. The force is still a desidoratum.

Fig. 3.-Betwoen Lats. 10° and 20° N., and Longs. 40° and 50°. W.

-6,4	$\begin{aligned} & \text { Between } \\ & \text { N. \& E. } \end{aligned}$	E. \& 8.	S.\&W.	W.eN	Mean.	Frequert,	Oalms,
Winter	60	26	8	6	N.E. ${ }^{\text {a }}$ E.	N.E. ${ }_{\text {c }}$	1.7
Spring	70	25	0		N.E. by E.	N.E.	0.6
Summer	63	29	4	4	N.E.byE. ${ }^{\text {a }}$ E.	N.E.	6.
Autumn	50	34	4	2	N.E. + E.	N.E.	3.1

Fig. 4.-Between Lats. 10° and 20° N., and Longs. 50° and $60^{\circ} \mathrm{W}$.

Fig. 5.-In the East part of the Caribbean Sea, near the Windroard Isles.

Winter	42	46	0	2	E. by N. $\frac{1}{2}$ N.	East.	1.
Spring	35	63	2	0	E. $\frac{1}{2}$ N.	"	0.7
Summer	33	61	3	3	East.	"	0.3
Antumn	44	31	2	3	E. by N.	"	4.1.

Fig. 6. In the West part of the Caribbean Sea, South of Jamaica, \&o.

Winter	47	42	6	5	E. by N.	N.E., E.	6.7
Spring	42	60	8	0	E. by N.	E.	2.9
Summer	44	66	0	0	E.N.E.	E.	10.
Autumn	64	43	3	0	E.N.E.	N.E., E.	9.6

(81.) In examining the figures in these tables, and the illustrative diagrams, it will be seen by Fig. 1, that the wind about the Cape Verde Islands, or that part of the Atlantic most frequently crossed by vessels from Europe, that the mean direction of the Trade wind is to the northward of N.E.; and further, that calms and light airs are more prevalent than farther to the westward, especially in the summer and autumn months, July to December, in the former season. It has always been held that the wind draws more to the castward as you get to the westward of the usual crossing of the Equator, and this an inspection of Fig. 2 will verify, when it is seen that the mean direction is South of E.N.E., and that the calms, taking the year round, are less frequent.

Whether the Cape Verde Archipelago has an influence in thus canning the Trade to assume a more easterly direction to the westward cannot very well be determined; but it is certain that this E.N.E. direction is not maintained between longitude 40° and the Wcst Indies, as Figs. 8 and 4 show that winds hold persistently to the N.E., or a little to the S. of it, althongh winds to the northward of N.E. are very rare. It in probable, aleo, that the winds recorded from the other directions are exceptional.

The easterly direction of the Trade wind in the Caribbean Sea will be readily noticed. It will be further remarked on in the observations on the winds of the West Indies hereafter.
(32.) The calendar seasons of northern latitudes are here taken as the quarters of the year. In the American Charts these seasons are made to include the month before the usual reckoning : thus, Winter begins with December; Spring, with March, \&o. Perhaps the latter mode of division would be rather more applicable to the tropical phenomona than that here chomen, because it appears that the changes in the inter tropical seasons (to which, however, the terms Winter, Spring, \&e., are not
" 51
assum
they v
Septe W.S. 1
meridi
more
winds

To
withir
occur
(34.)
differe
where
nately
altern
qualit
high,
on the
eddy,
wester
being
the ca
The
extend
applicable) seem rather to coincide with the American calculation. But as these changes are certainly not simultaneous in the northern latitudes, and, as including suoh a difference would involve some confusion, tho ordinary terms used to denignate European seasons is here adhered to as being readily comprehendeí and sufficiently exact.
(33.) The following summary of Trade winds was given by Commander Maury in connexion with his "Wind and Corrent Chart":-

- ".There is a marked difference in the prevailing direction of the wind, not only according to the season of the year, but also according to different parts of the ocean, includiug even those parts which are between the same parallels of latitude, but in different longitudes.
"As a general rale it may be remarked, 1st, that in the North Atlantic the nearer to the coast of Africa and the Equator, the more the so-called N.E. Trade winde haul to the South.
" 2nd. That to the West of lon. 45°, between 20° and 80° N., the N.E. Trades blow much more steadily in May, June, July, and September, than they do the rest of the year; and that during the other months, particularly in March, they blow between these parallels nearly alike from all points of the compess.
" 3 rd . That between lat. 15° and $20^{\circ} \mathrm{N}$. they are most variable; West of lon. 35° in the months of September, October, and November ; while to the East of 30°, between the parallels, they are most variable in February, March, April, and October.
"4th. That between lat. 10° and 15° to the West of 35°, they are steadily between E.N.E. and S.E., except in July, August, September, October, and November, when they are more variable, being most variable in the three montes first named. To the East of 35° W., between thene parallels, they may be said to lose their trade character during the months of July, August, September, and October, particularly in August and September, when they blow nearly alike from the four quartere. Calms, too, are more frequent here in these months.
" 5 th. That between the Equator and $10^{\circ} \mathrm{N}$., to the East of lon. 30°, the winds assume a new feature. It may be said, almost literally, that in this part of the ocean they uniformly blow, when they blow at all, during the months of July, August, and September, from some point between S.E. and W. They blow most between S. and W.S.W., and very rarely from any point between N. and E.S.E. To the West of this meridian, during the same months, they blow most between S.E. and N.E., inolining more and more to the North as you go West. These are the months in which the winde vary most in this part of the ocean."

To the foregoing general remarks the following, respecting particular localities within the scope of the Trade wind, are added. Further application of them will occur in the Instructions for making passages, \&e.
(34.) WIIDS 02 THE ATLANTTIC ISLEs, -The winds upon and near the different island in the Atlantic Ocean are very variable and uncertain, especially where the land is high and irregular. In general, regular sea and land breezes alter-nately prevail; the sea-breeze by day and the land-breeze by night, as the land is alternately heated and cooled: but the direction of these breezes is varied by the quality and figure of the land, and other local circumstances. If the land be very high, it generally intercepts the prevailing wind, and so affects the air as to prodnce, on the lec-aide, either a calm, a gentle breeze in an opposite direction, or a kind of eddy, which is sometimes very troublesome to shipping. Such is the case under the western part of Madeira, and to leeward of the Canary Islands; the Grand Canury being so high as to stop the current of the N.E. wind, which prevails there; and on the eastern side there is a calm, or a gentle breeze from S.W.
The caims and eddy winds, occasioned by the figure and height of the Canarics, extend from 10 to 30 leagues beyond them to the S . W., according to the height of
the respactive islands. The boundary of the calma may be eeen: for, within them, the water is smooth; without them is the regolar undulation of the sea, cansed by the general wind; and, at the edge of them, the winds, by setting in opposite directions, prodnce a breaking of the waver, with a foam, like the billows on a rocky ahoal, juit beneath the surface of the ocean.
From a consideration of the particulars now described, the cance of thowe copions dews which fall in the night, on the islands, \&o., situated within the tropics, will be apparent. For, ase the great power of the sun by day causen an extraordinary evapomation of the ocean, so, in the night, the exhalation, ceasing to retain the mame degree of levity acquired from the heat of the: sun, becomes, by the absence of the power which produced it, so dense and heavy as again to fall back to the earth. The air, at the rame time, cooling, by the same cause, is also affected by the descending moisture, and thipe acquires an additional tendency to increase the land-breeze.
(35.) WEST IITDIES IN GENERAL.-The following description of the winds prevailing over these regions, in the different seasons, has been extracted chiefly from Captain Livingston's translation of the Derroterode las Antillas, or Spanish Directory for the West Indien, now included in the Colombian Navigator.
On the eastern coasts of America, and among its islands, the course of the general easterly or Trade-wind is uninterrupted, though subject to some modifications in direction and force.' At a short distanee from the land the sea-breeze calms at night, and is replaced by the land-breeze : this variation happens every day, unless a strong wind prevails from the northward or southward; the frst of these being experienced from Ootober to May, and the second in July, August, and September,
The general easterly wind, of the tropical regions, is felt on the coast of Guyana and on the coasts of the Colombian qnd Mexican Beas, but with variations, which may be denominated diurnal and annual. The diurnal period is that which the sea-breeve causes, and which strikes the coast usually at an angle of two points, less or more acoording to the locality and other circumstances ; and then the land-wind, which, coming from the interior, always blows off shore. The sea-breeze comes on at about nine or ten in the forenoon, and continues while the sum is above the horizon, increasing its force as that luminary augments its altitude, and diminishing in a similar proportion, as the sun's altitude decreases. Thus, when the sun is on the meridian, the sea-breeze is at the maximum of its strength; and at the time that the sun reaches the horizon this brecze has, perceptibly, ceased. The land-breeze commences before midnight, and continnes until the rising of the sun; sometimes longer. A space of some hours intervencs between the land-breeze ceasing and the sea-breeze coming on, during which there is a perfect calm.

The annual period of the Trade-wind here is produced by the proximity or distanoe of the sun, which occasions the only two seasons known in the tropics, the rainy and the dry seasons. The first is when the sun is in the tropic of Cancex, and heary rains with loud thunder are prevalent. In this season the wind is generally to the southward of East, but interrupted by frequent calms, yet it occasionally blows with force, and obscures the atmosphere.
When the sun removes to the tropic of Capricorn the dry season commences, and then the Trade-wind, whioh is steady at N.E., is cool and agreeable. At this scason, N. and N.W. winds are sometimes found, blowing with much force; and, indeed, in some degree, they regularly alternate with the general wind, as they are more frequent in Noveriver and Deecmber than in February and Maroh.

In the change of the seasons there is a remarkable difference : for in April and May no change is experienced in the atmosphere, and the weather is, in gencral, beantifully fine; but in August, September, and October, there are usually calms, or very light winds : and dreadful hurricanes, in these months, sometimes render the navigation perilous. From these perils, however, are generally exempted the Island Trinidad, the coasts of Colombia (laty Terra Firma), the Bays of ISarien and Honduras, and tho Bight of Vera Crux, which the hurricanes seldom reach. In the space of sea
hin them, ed by the lirectione, mone
between the greater Antillas* and the cdast of Colombia, the general N.E. or Traddwind regularly prevails; but near the shore local peculiarities are found.
(36.) It has been remarked, by Captain F. Chamier, of the British Nary, that " about Barbados and the Windward Islands, from Tobago to Barbnda, the wind will be found to veer more to the northward in the early part of the year, than in the monthis of June, July, and Angust." In the more northerly islands, as Dóminica, Montserrat, Antigua, Nevis, \&c., the wind, in the evenings of January, Fcbivary, and March, veers round to abont N. or N.N.E.; blows fresh in squalls; and, fiom the exterisive space of ocean over whioh it travels, becomes cool and very refreming. The thermometer, even in English Harbour, Antigua, in the above months, at eight o'clook p.m., I never saw above 76°. In this season of the year the sickness of the hot monthis is no longer experienced; the general lassitude of the mornings and noons of July and August seems forgotten; and nu man who visited these islands during the first three months of the year would believe that the change of seventy or eighty days could make such an amazing difference in the look, as well as in the energy, of the inhabitants of the Windward Islands. In the change of seasons, from wet to dry, a great difference is experienced in the winds. In April and May the atmosphere to, in general, clear, and fine weather prevails; but in August, September, and October, calras, or very light winds, are not uncommon, und strong hurricanes-blow in these months.

At the Greater Antillas the sea-breeze constantly prevails by day, and the land-breeze by night. These land breezes are the freshest which are known, and assist much in getting to the éastward or remounting to windward, which, without them, would be almost iinpossible. At the Lesser Antillas, as Dominica, Martioiquë, St. Lucia, \&c., there are no land-breezes.
(37.) JATMIOA-At JAMAICA the air is, in most places, hot and unfavourable to European constitutions; but the cool sea-breezes, which set in every morning, render the air more tolerable : and that upon the high grounds is temperate, pure, and cooling. It lightens almost every night, but without much thander : nevertheless, when the latter happens, it is very terrible, and roars tremendously.

On the northern side of the island the sea-breeze from the sonth-eastward comes on in the morning and gradually increases until noon, when it is strongest: at two or three in the afternoon its force diminishes ; and, in general, it entirely ceased by five o'clock. About eight in the evening the land-breeze begins: this breeze extends to the distance of four leagues to the southward from the island. It increasen until midnight, and ceases at about four in the morning.

The sea and land-breeses are more regular than otherwise from the latter part of January until May. In the middle of May the se breeze generally prevails for several days and nights, especially about the time of fall and change of the moon; and thus they continue throughout June and part of July; from that time the seabreeze diminishes, varies, and veers round to S. by W.; or S.S.W., with frequent calms. August, September, and October, are the hurricane months, in which there generally are strong gales of wind, with much rain.
In December, Jannary and February, when the North winds predominate, their force checks the sea-breeze. The southern coast is that which, of course, is least exposed to these winds, being sheltered, in a great measure, by the mountains. When combined with the land-breeze they render the air very cold and unhealthy.
During the months of July and August the sea-breeze about the island generally blows impetulously, and in freqnent squalls. At this season vessels bound hence to Europe would have the most advantageons passage through the Strait and Stream of Florida; but in October northerly winds frequently extend over all the Bahamas, Cuba, and, for some time, on the North side of Jamaioa; but the current of air forced upward by the mountains of the latter, and its strength is spent in the heights. In scasons when it is more impetuous, it rushes through the windings and defilés of

[^9]the mountains upon the northern coast, particularly in the neighbourhood of Kingston, and has been known to continue for some day.
During the winter, the land-breeze is more general off the shores than in summer: it cometimen continues throughout the day as well as night; and weaterly winds provail over all the space between Jamaicu and Cuba, and ever to the Island of Haytio or St. Domingo. They have been experienced from Port-Royal, through the Windward Channel; but this is not generally the case.
In November, southerly vinds prevail on the South side of the island, and have been known to extend from the Mosquito shore, whence vessels have arrived in five or six days that might, at other times, have been as many weeks, when beating against the sea-breeze. The southerly winds are generally faint; nor do they come upon the land until it be heated by the sun, and are often expelled by a fresh land-breeze soon after mid-day, which abates in a fow hours.
The return of the sea-breeze, falling sooner or later in Autumn, is gradual : first approaching at the East end, then advancing a little ; and, in some years, it reaches Morant Point fourteen or twenty days before it is felt above Kingston. It also blows for a wreek or two later on the East end of the island than at Kingston; and has been known, in some years, to prevail there in the day time during the whole time it was unfelt at the foomer place.
(38.) The Bahama Islands are all within the influence of the Trade-winds. Their lowness, of course, exempts them from the regular land wind, but in the summer season a light breeze frequently comes from the Florida shore in the night, and reaches the western side of the Little Bahama bank, but no farther. At this period the wind generally prevails to the southward of East, and the more so as their north-west extreme is approached; the weather is then very variable, and equalls rush down with great violence, acepmpanied with heavy rains and an oppresaive atmosphere. They are within the zone of hurricanes, and a year soldom passes without their being visited by a heavy gale at least, from the S.E., which inflicts serious damage both on shore and at sea.

In the winter months, from abont November to the middle of March, the Trade wind is frequently interrupted by N.W. and North winds. In December and January this may be expected almost weekly. Previously to this change the wind will draw round to the 8 onth and 8 . W. About 24 hours after, or less, dark masses of clouds will be seen rising from the westward, and in a short time the wind will rush down suddenly from that quarter with the foree of a double or triple-reefed top-sail breeze. It will soon veer round to the N.W. and North with clear weather, and remain between these points two or three dayn. It will then haul gradually to the N.E., perhapm with increased force, elcompanied by heary mqualls, and wear itself out at East in the courne of a few dayin The barometer is scarcely any guide.
(39.) Among the local winds are to be ranked the Bayamos, violent gasts which blow from the land on the South side of Cuba, and are so termed from being felt more severely off the Bight of Bayamo or Buena Esperanza, than off any other part of the coact.

When heary and dense olouds gather over the mountains, a Bayamo blast may be expected : after this, the surest prognostic is the thunder, which invariably precedes the gust: it is, therefore, advisable to take in all sail with the greatest expedition, so soon as the first or most distant olap of thunder is heard, the wind following it almost immediately. Fortunately, however, these dreadful squalls are of short duration; but, an a repetition of them frequently occurs at intervals of half an hour or an hour, great attention in necessary, especially during the night, to prevent the ship's being unpropared; as it in almost certain that, if she were overtaken by one of these squalls whilot under mil, whe would either upmet or lose her masts.
These sudden tempests are attended with sheet and forked lightning, vivid in the extreme; and the ffashen, following each other in quick succession, have the momentary effect of illuminating every object, and leave behind them a sort of blue indeseribable appearance; the ien whitered with foam, and the rain faile in torrents, nurpaning any, perhapw, witnewed in other regions; for it appears as if the
dual : first it reaches also blows d has been ime it was out in the the night, c. At this no as their and iqualls oppresaive asses with iots serious
the Trade od January will draw of clouds rush down ail breeze. nd remain b the N.E. self out at
ousts which 3 felt more part of the
ast may be y precedes edition, so 3 it almost duration ; or an hoar, ip's being ene squalls
vid in the e the moort of blue a fails in 3 an if the
elonds had opened their store of waters to deluge the earth : in fact, we cannot better desoribe the extreme heaviness of the shower, than by giving the sailor's observation on it, namely, that it "comes down by buckets full." The Bayamo squall, however, althieugh the most awful of any in the Caribbean Sea, and creating much anxiety to those exposed to his fury, is grand and sublime."-Lieutenant' Evans," Revision of Geographio Terms," p. 107.
(40.) On the Coists of Guyana, the Derrotero again continues, there are no landbreezes, nor more wind than is generally experienced between the tropics. In January, February, and March, the winds here blow from North to E.N.E., and the weather is clear. In April, May, and June, the winds are from E. to S.E. In July, August, and September, there are calms, with tornadoes from South and S.W.; and in October, November, and December, there are continued rains, while the sky is, in general, obseured by clouds. In the dry season, which is from Jannary to June, the heat is very great; and in the wet season, from August to November, rains and thunder are constant and violent.

On the Coasts of Cumana and Caraccas, to Cape la Vela, the breeze follows the regular course; but from that cape to Cape San Blas the general wind alters its direction; for it blows from N.E. or N.N.E., excepting in the months of March, April, May, and June, when it comes to E.N.E., and is then so uncommonly stiong as to render it necessary for vessels to lie-to. These gales, which are well known to mariners; extend from about mid-channel to within 2 or 3 leagues of the coast, where they become weak, especially at night. On this coast, about the Bay of Nicaragua, are westerly winds, which the pilots of that country call Vendavales (rainy winds), in the months from July to December; but these winds never pass the parallel of 15° N., nor do they blow. constantly, but alternate with the sea-breeze.

Upon the Mosquito Shone, Honduras, and Eastern Coast of Yucatan, the -general winds or breezes prevail in February, March, April, and May; but, during the first two of these months, they are occasionally interrupted by Norths. In June, July, and Angust, the winds here are from the eastward and westward of Sonth, with tornadoes and calms. In September, October, November, December, and January, they are from the northward or southward of West, with frequent gales from W.S.W., and North.
On the Northern and Western Coasts of Yucatan, between Cape Catoche and Point Piedras or Desconocida, and thence to Campeche, there is no other thein the N.E. or genieral wind, interrupted by hard Norths in the season of them ; and, about the end of April, tornadoes commenoe from N.E. to S.E. These tornadoes genierally form in the afternoon; continue about an hour; and, by nightfall, the serenity of the atmosphere is re-established. The season of the tornadoes continues until September, and in all the time there are sca-breezes upon the coast, which blow from N.N.W. to N.E. It has been remarked that, as the breeze is more fresh, the more fierce is the tornado, especially from June to September. The sea-breezes come on at about eleven of the day, and at night the wind gets ronnd to E.N.E., E.S.E., or S.E., so that it may be, in some degree, considered as a land-breeze.

On the Coast of the Mexican Sea, from Vera Cruz to Tampico, the breeze from E.S.E. and East prevails in April, May, June, and July; and at night the landbreeze comes off from South to S.W.: but if the land-breeze is from the N.W., with rain, the wind, on the day following, will be from North, N.N.E., or N.E., particularly in August and September : these winds are denominated, in the country, Vientos

[^10]de Cabeza o Vondavales (head winds or rainy winds); they are not strong, nor do they raise the sea : with them, therefore, a vessel may take an anchorage as well as with the general breeze; but they impede getting out, for which the land-breeze is required. The Vientos de Cabeza, or head-winds, reach to about 20 or 30 leagues from the coast, at which distance are found those at East and E.S.E.
(41.) From the middle of September until the month of March cantion is necessary in making Vera Cruz, for the Norths are then very heavy. The narrowness of this harbour, the obstruction formed by the shoals at its entrance, and the slender shelter it affords from the Norths, render an attempt to make it, during one of them; extremely dangerous, for it will be impossible to take the anchoreze. The following description of the winds here has been written by Don Bernarlo de Orta, a captain in the Spanish Navy, who has been captain of the port, and who surveyed it.

Although in the Mexican Sea it cannot be said that there is any other constant wind than the general breeze of this region, yet, from September to March, the North winds interrupt the general course, and, in some degree, divide the year into two seasous, wet and $d r y$, or of the Breezes and Norths: the first, in which the breezes are settled, is from March to September; and the second, in which the Norths blow, is from September to March. For greater clearness, we shall explain each separately.
(42.) The Norths. - The flrst of the Norths is regularly felt in the month of September; but, in this month and the following one, October, the Norths do not blow with much force. Sometimes it happens that they do not appear; but, in that case, the breeze is interrupted by heavy rains and tornadoes. In November the Norths are established, blow with much strength, ànd continue a length of time, during December, January, and February. "In these months, after they begin, they increase fast; and in four hours, or a little more, attain their utmost strength, with which they continue blowing for forty-eight hours; but afterward, though they do not cease for some days, they are mioderate. In these months the Norths are obscure and north-westerly, and they come on so frequently that there is, in general, not more than four or six days between them. In March and April they are neither so frequent, nor last so long, and are clearer, but yet they are more flerce for the first twenty-four brurs, and have less north-westing. In the interval before November, in which, as we .uve said, the Norths are established, the weather is beautiful, and the general breeze blows with great regularity by day ; the land-breeze as regularly by night.

There are various signs by which the coming on of a North may be foreseen: such are, the wind steady at South; the moisture of the walls, and of the pavements of the houses and streets; seeing clearly the Peak of Orizaba and the Mountains of Perote and Villa Rica, with the cloud on those of St. Martin, having folds like a white sheet; the increase of heat and of dew ; and a thick fog, or low scud, flying with velocity to the sonthward: but the most certain of all is the barometer; for this instrument, in the time of the Norths at Vera Crus, does not vary more, between its highest and lowest range, than 0.8 ; that is to say, it does not rise higher than 30.6 inches, nor fall lower than 29.8 inches. The descent of the mercury predicts the Norths; but they do not begin to blow the moment it sinks, which it always does a short time before the North comes on: at these times lightnings appear on the horizon, especially from N.W. to N.E.; the sea sparkles; cobwebs are seen on the rigging, if by day: with such warnings trust not to the weather, for a North will infallibly come on.

This wind generally moderates at the setting of the sun; that is, it does not retain the same strength which it had from nine in the morning to three in the afternoon, unless it commence in the evening or at night, for then it miy increase. Gometimes it happens that, after dark, or a little before midnight, it is found to be the landwind, from the not thward and westward; in which case, should it get round to the southward of West, the North will be at an end, and the general breeze will, to a certainty, come on at its regular hour: but, if that does not happen at the rising of the sun, or afterward, and at the turn of the tide, it will return to blow from the North, with the same violence as on the day before, and then it is called a Norte de Marea, or Tide North.

The Norths also sometimes conclude by taking to the northward and eastward, which is more certain; for if the wind in the evening gets to N.E., although the sky. remain covered the day following, but by night the land-breeze has been from the northward and westward, the regular breeze will surely ensue in the evening, good weather succeeding and continuing for four or six days; the latter period being the longest that it will last to, in the season of the Norths: bnt, if the wind retrograde from N.E. to N.N.E. or North, the weather will be atill unsettled.
Examples are not wanting of Norths happening in May, June, July, and August, at which times they are most furious, and are called Nortes del Hiseso Colorado: the more moderate are called Chocolateros, but these are rather uncommon."
(43.) The Wet Season, or Season of the Breezes, is from March to. September; the breezes at the end of March, and through the whole month of April, as already. explained, are, from time to time, interrupted by Norths, and are from E.S.E., very fresh; the sky sometimes clear, at other times obscure. At times these tonch from 8.E., and continne all night, without giving place to the land-breeze, which prevails, in general, every night, excepting when the North wind is on. The land-breeze is freahest when the rains have begun.

After the sun passes the zenith of Vera Cruz, and until he returns to it, that is, from the 16 th of May to the 27th of July, the breezes are of the lightest description, almost calms, with much mist or haze, and slight tornadoes. After that time the pleasant breezes from N.W. to N.E. sometimes remain fixed.
From the 27th of July to the middle of October, when the Norths become established, the tornadnes are flerce, with heavy rains, thunder, and lightning: those which bring the heaviest winds are from the Eest, but they are also those of the shortest duration.
In the Season of the Breezes the total variation of the barometer is $0 \cdot 4$; the greatent ascent of the mercury is to 30.36 inches, and its greatest decent to 29.96 inches. The thermometer in July rises to 87°, and does not fall to 821° : in December it rises to $80 \frac{1}{6}^{\circ}$, but never falls below $66 \frac{1}{1}^{\circ}$. This, it must be understood, was ascertained in the shade, the instrument being placed in one of the coolest and best ventilated halls in the castle.
In the months of August and September, rarely a year passes withont hurricanes near Florida and the Northern Antillas; but to Vera Cruz, or any part of the coast thence to Campeché, they never arrive; all that is felt being the heavy sea, which has arisen in the higher latitudes. Hurricanes begin to the northward and eastward; and, although they do not always go round the same way, yet, in general, they next go to the southward and eastward, with thick squally weather and rain.

[^11]Prom Tampion the Bay of San Bernarino, breezen, from the mouthward and tides were made by the officers of the U.S. Coast Survey, between June, 1847, ate Pulveston in Texas, lat. $29^{\circ} 18^{\prime}$ N.; long, $94^{\circ} 46^{\prime}$ W.: at Fort Morgan, Mobile Bey flaput the middle of the North contrint. $30^{\circ} 13^{\prime} \mathrm{N} . ;$ long. $88^{\circ} 0^{\prime} \mathrm{W} .:$ and at Key Wear, n of the Florids Keyn, in lat. $24^{\circ} 38^{\prime}$; long. $84^{\circ} 48^{\prime} \mathrm{W}$. These observa tions, however, have the same imperfection as that noticed in the note (${ }^{*}$) on page, 187,-that the winds are not recorded equally for all points of the compass. Howá ever, the following general remarks are useful and interesting as derived from these obnervations, and are arranged in the form of diagrams, which need not be repeated here.
(a) Winds from some northern quarter prevail from September until February; both inclusive, and southwardly winds from March to August, inclusive. Winds from the eastward prevail throughont the year, except at Fort Morgan in May, June, July, and August, when the sea-breeze is from the south-west. In the whole year the winds from the same quarter north and south balance. each other nearly, whils the eastwardly wind greatly predominates over the westwardly.
(b) As remarked in my former paper, the months may be classed, according to the prevailing winds, into the following classes:-The winter, consisting of December. and January; the spring, of March and April; the summer, of May, June, and July; of preparation for change, August; the autumn, of September, October, and November.

The winter and summer types are extremely distinct. At Key West, in December and January, north-east and north are the prevailing winds; at Fort Morgan, north, east-sonth-east and east ; at Galveston, north and north-west, then east-north-east and south-east. I suppose the general course of the north-east Trade wind to be disd turbed by local action at Fort Morgan and (alveston, the local position of greatest warmth being the Gulf.

The summer type, May, June, and July, gives south-east as the prevailing wind at Key West; the south-east, south, and south-west (sea-breeze) at Fort Morgan; the south, south-east, and east at Galveston, blowing towards the land.

August resembles July, with the appearance of winds which prevail in the autumn.

In September, October, and November, at Key West, east-north-east prevail; at Fort Morgan, north, north-east, east ; and at Galveston, north, north-east, east, and north-rest.
In March and April, the spring period, south-east, south-sonth-east, and east winds prevail at Key West; north, south-south-east, and east-south-east at Fort Morgan ; and north, south-east, and south at Galveston.
February resembles January with a preparation for the spin line August, it is characterized at Fort Morgan and Galveston by a \dot{c}, dicuinution in the quantity of wind.
January presents the full winter type of the winds on the Gulf, and June and July the full summer type. The changes are quite gradual and tolerably regular from one extreme tu vo other.
(c) The foi Tue nsauctions are made from these observations in regard to the least and y en and. ander of wind in the principal directions in different portions of the year.

The nortls wise is a minimuin at the three places in July, and a maximum in Jamuary. It is a very remarkable feature at all three places in January, The north-

Galv

passing

spring
The
of east
servatic
In th
rupted
norther
sary to
from th
27°, anc
whole c
west wa
west almost dies out at all three from May, to September, frrst gaining strength at Galveston; in October, and reaching its maximam in all the places in December. Its quantity at Key West and Fort Morgan is small when at the maximum.
The northers and north-westers both appear in force in April, at Galveston. There is very little weat wind at either place, but more at Fort Morgan than either of the othern, and chiefly during the months of Jqne and July.
South-west wind is of rare ocourrence except at Fort Morgan, where it conatitutes the sea-breeze of summer, and reaches its maximum in June und July, suddenly diminishing in September.
There is bat little south wind at Key West ; at Fort Morgan it increases in amount in the spring and is the greatest in June. It is decidedly a marked feature as one of the prevailing apring winds at Galveston, reaching its maximum in May and becoicing quite small in August, re-appearing in the winter, and rapidly increasing i4 hind
The nor h-east wind is a minimum at the three places in July and Angust; is lavegest in quantity in September, October, November, and December, at Key West ; is Weptember and October at Fort Morgan ; and in September, December, and January at Galveston. : The sudden increaso of this wind in September, after its small quantity in August, is remarkable at all three places.

The winds intermediate between north-east and south-east occur during the changes from north-east to south-east, and it would be of little value to refer to the greatest and least quantities.
The south-east wind is a minimum in December and January at Key West; in January and February at Fort Morgan ; in December and January at Galveston. It is a maximum at Key West in July, but, being replaced during the summer to a great extent by the sea-breeze (S.W.) at Fort Morgan, makes its maximum in November, and at Galveston in May, doubtless from the disturbing effect of the land; it is again large in July. This is the sea-breeze of Key West, and, as well as the south wind, that of Galveston.
(d) The movement of the prevailing wind at Key West, where the disturbing causes of the land are the least, is very instructive.
The prevailing wind in April, May, Jane, and July is the sonth-east, hauling to the eastward in August, and becoming east-south-east. In September and October it passes further north to east-north-east, and in November and December becomes north-east; in January it reaches north; returning southward in February, it is north-north-east, in March east, and reaches the south-east in April. The local action is thus seen to prevail for the greater part of the year over the general. For the whole year the south-east wind exceeds any other from an eastwardly point.

The eastwardly wind at Fort Morgan reaches no further south than east-s atheast, in the spring and summer. In September the prevailing wind is north-east, possing to east-north-east in October, and back to east-south-east in the winter and spring The general tendency for the year is then east-south-east.
The changes at Galveston resemble those at Key West, the general absence of east-north-east and east-south-east winds being due to defects in the observations.

In the Strait of Florida the breezes are the prevailing winds, but they are interrupted by Norths in the winter, and by calms in the summer. Although the northern limit of this channel is within the boundary of the Trade-wind, it is necessary to remeinber that, in winter, or from November to April, the variable winds from the south ward and eastward, and southward and westward, are met with in lat. 27°, and even before: and in summer, from May until September, the winds in the whole channel are variable from the southward and eastward; and southward and westwaru.
ard to the t portions

EQUATORIAL CALMS AND WINDS.

(45.) The N.E. and S.E. Trade, blowing toward each other, meet and are nentralized near the Equator (6.) This neutral line of calms and varying winds is sometimes known by the name of the "Doldrums," an unconth term, which, we think, has had unmerited authority given to it of late. It is, perhaps, a corruption of the Spanish doloroso, or old Portuguese dolorio, " tormenting."

Commander Maury says, "It has a mean average breadth (around the globe) of about six degrees of latitude. In this region, the air which is brought to the Equator by the north-east and south-east trades ascends. This belt of calms always separatos these two trade wind zone, and travels up and down with them. If we liken this belt of equatorial calms to an immense atmospherical trough, extending, as it does, entirely around the earth; and if we liken the N.E. and S.E. trade winds to two streams discharging themselves into it, we shall see that we have two currents perpstually running in at the bottom, and that therefore we must have as much air as the two currents bring in at the boitom to flow out of the top. What flows out at the top is carried back north and south by these apper currents (6.), which are thus proved to exist and to flow counter to the trade winds." *

This belt of calms follows the sun in his annual course, though the limits do not range so much in latitude as the sun does in declination, and, generally, they pass from one extreme of latitude to the other in about three months. The whole system of wind and calm belts move northward from the latter part of May till some time in August : they then remain almost stationary till the approach of winter, when they commence to go southward, and proceed in that direction from December till February or March.
"The great 'sun swing' of this calm belt," says Capt. Maury, "is annual in its occurrence; it marks the seasons and divides the year into wet and dry for all those places that are within the are of its majestic sweep. But there are other subordinate and minor influences which are continually taking place in the atmosphere, and which are aiso calculated to alter the place of this calm belt, and to produce cbanges in the thermal status of the air which the Trade winds move. These are, unusually severe winters or hot summers; remarkable spells of weather, such as long continuous rains or draughts over areas of considerable extent. Either within or near the Tradewind belts it is tremblingly alive to all such influences, and they keep it in continual agitation; accordingly we find that such is its state, that, within certain boundaries, it is continually changing place and limits. This fact is abundantly proved by the apeed of ships, whose log-books show that it is by no means a rare occurrence for one vessel, after she has been dallying in the Doldrums for days in the vain effort to cross that calm belt, to sce another coming up to her, 'hand over fist,' with fair winds, and crossing the belt after a delay in it of only a fow hours instead of days." \dagger
(46.) These remarks of Capt. Maury, coupled with the experience of most sailors who cross the line, will demonstrate that the limits of this calm belt cannot be very exactly defined, and it is only the doctrine of chances that can determine whether any particular ship will lose the trades and encounter these doldrums.' On page. 186 (27), is given the table drawn up by Capt. Horsburgh as the probable equinootial limits of the N.E. and S.E. Trades, and consequently of the intervening belt of calms. This applics to that part of them, between 18° and 26° W., which was usually traversed by the East India Compars, ships ; but, as a more westerly crossing is now advocated by many, the following approximate estimate of the breadth of this calm belt is derived from Maury's 'Trade Wind Chart, and given by Dr. Van Galen : \ddagger -

[^12]
Mon
 $\overline{ }$
 Jan.
 Feb.
 Marc

TABLE of the Average Extent of the Equinoctial Calns.
neutral B is somethink, has on of the globe) of te Equator 3 separatos liken this as it does, nds to two rents perauch air as lows out at h are thus
its do not , they pass ole system me time in when they eember till
nual in its or all those subordinate phere, and ree changes , unusually continuous the Traden continual boundaries, pved by the nee for one in effort to fair winds, s." \dagger
nost sailors not be very hether any e. 186 (27), al limits of lms. This aversed by advocated lm belt is
rdam, 1850.

Month	Limits.	$\left\lvert\, \begin{gathered} 50^{\circ} \text { to } 45^{\circ} \\ \text { W. } \end{gathered}\right.$	$\begin{array}{\|l\|} 45^{\circ} \text { to } 40^{\circ} \\ \text { W. } \end{array}$	$\begin{gathered} 40^{\circ} \text { to } 35^{\circ} \\ \text { W. } \end{gathered}$	$\mid 35^{\circ} \text { to } 30^{\circ} \mid$ W.	$\left\|\begin{array}{c} 30^{\circ} \text { to } 25^{\circ} \\ \mathrm{W} . \end{array}\right\|^{2}$	$\begin{array}{\|c} 25^{\circ} \text { to } 20^{\circ} \\ \mathrm{W} . \end{array}$	$\begin{gathered} 20^{\circ} \text { to } 15^{\circ} \\ \mathrm{W} . \end{gathered}$
Jan.	$\left\{\begin{array}{l}\text { N. } \\ \text { S. }\end{array}\right.$	$3^{\circ} \mathrm{N}$.	${ }_{\mathbf{3}}^{\mathbf{3}^{\circ} \mathbf{N} .}$	$2^{\circ} \mathrm{N}$	${ }_{2}^{2^{\circ} \mathrm{N}}$	$\mathbf{3}^{3^{\circ} \mathrm{N} .}$	$3^{\circ} \mathrm{N}$	$6^{\circ} \mathrm{N}$
Feb.	$\left\{\begin{array}{l}\text { N. } \\ \text { S. }\end{array}\right.$	3	3 3	2	1	${ }^{3} \mathrm{~S}$ S.	4 0	$\underset{0}{6}$
March.	(N.	3	2	0	1	2 N.	4 t S.	$\begin{aligned} & 5 \\ & 0 \end{aligned}$
April.	$\left\{\begin{array}{l}\text { N. } \\ \text { S. }\end{array}\right.$	3	2	1 s .	1	$\begin{aligned} & 2 \mathrm{~N} . \\ & 2 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 3 \mathrm{~N} . \\ & 1 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 6 \\ & 0 \end{aligned}$
May.	$\left\{\begin{array}{l}\mathrm{N} . \\ \mathrm{S} .\end{array}\right.$	4	4	$-{ }_{1}^{3 \mathrm{~N} .}$	3 1	$\begin{aligned} & 4 \mathrm{~N} . \\ & 1 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 5 \mathrm{~N} . \\ & 0 \end{aligned}$	6 1
June.	$\left\{\begin{array}{l}\text { N. } \\ \text { S. }\end{array}\right.$	6	6 4	1	8	${ }_{0} 0 \mathrm{~N}$.	8 1	9 1
July.	$\left\{\begin{array}{l}\text { N. } \\ \text { S. }\end{array}\right.$	8	9 5	9 3	11 4	11 2	12	$\overline{1}$
Aug.	$\left\{\begin{array}{l}\text { N. } \\ \text { S. }\end{array}\right.$	11 8	12 6	12 4	12 4	12 2	13 2	$\overline{1}$
Sept.	$\left\{\begin{array}{l}\text { N. } \\ \text { S. }\end{array}\right.$	11 8	12	12 5	10 4	12 2	12 1	$\overline{1}$
Oct.	$\left\{\begin{array}{l}\text { N. } \\ \text { S. }\end{array}\right.$	10	10 0	10 5	10 4	10 2	11 1	$\overline{1}$
Nov.	$\left\{\begin{array}{l}\text { N. } \\ \text { S. }\end{array}\right.$	6	6	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 3 \end{aligned}$	6 2	8 1	10
Dec.	$\left\{\begin{array}{l}\text { N. } \\ \text { S. }\end{array}\right.$	$2{ }^{2}-$	4	4	3 3	4 1	5	7

This table will show that, during the winter months, and in the western part of the ocean, the limits of the Trade winds, (which is that given in tho table) approximate, and leave no interval of calm. In the northern summer months, however, the calm belt is much more distinctly marked, although its mean breadth is not one-third or one-half what it is in the eastern side. This fact is also graphically explained by the diagram facing page 185. As was said before on page 186 (26.), the linits of the Trades vary to the extent of 10^{\prime} of latitude, and thereforo the figures given above can only be taken as a possible approximation.
There is one remark, which it may be as well to urge here: that, as this belt of calms runs cast and went, the navigutor will clear them soonest by making a direct Southern or Northern course, as far as possible, as ho thus runs dircetly across them; by beating too much East or West he is retarding himself in their direction.

- (47.) The Trade winds are essentially evaporating winds. From their high tomperature, in pasuing over a large extent of ocean, they become loaded with aqueous vapour, which becomes evident when they meet and neutralize each other in this zone of equatorial calms.

The result is the formation of the "cloud ring" of Capt. Maury, which he likens to the rings of Saturn or the belts of Jupiter. Under this oppressive and constant companion of the equatorial calm the rain falls in torrents, and by the progress of the siun in the ecliptic it causes the phenomena of the tropical seasons, divided, as is well known, into the wet and dry. A consideration of the chart and the shifting of this belt will explain how it is that some places have two rainy seasons and others only one, by the passing of this cloud ring over them.
"It is broader than the belt of calms out of which it arizes. As the air, with it vapours, rises up in this calm belt and ascends, these vapours aro condensed into clouds, and this condensation is followed by a turgid intumescence which causes the clouds to overflow the calm belt as it veers both to the north and to the south. The air, flowing off in the same direction, assumes the character of winds that form the upper currents that are counter (5.) to the Trade winds. These currents carry the clouds still farther to the north and south, and thus make the cloud ring broader. At least, we infer such to be the case, for the rains are found to extend out on to the Trade winds, and often to a considerable distance north and south of the calm belt."
(47.) This oppressive region, most tedious to navigators, is, however, not at all times subject to this great amount of deposition, which has procured for it the appellation of "The Rains;" and especially during the winter months, when its oxtent is more limited, it may be crossed without encountering either those torrents of rain, or almost unbearable calms. This compensating belt to the evaporation of the trades of course is subject to squalls, and especially to thunder-storms, the natural result of ti: conflicting elements. Altogether, its effect on the health and spirits, its enervating influences, its oppressive and damp heat, mako it one of the most unpleasant paits of the globe.*

Winds on the African Coast.

(48.) The influence of the land upon the Trade winds, and the intervening calme, is very powerful on the eastern side of the Atlantic; and the peculiar conflguration of the coast of Guinea, trending as it does along the very axis or line of division of the northern and southern wind systems, causes a different set of phenomena to arise. During that part of the year when the sun is in the southern hemisphere, the Trades, and calms follow the normal or usual course, as it is then exerting its maximum force on the sea with its low absorptive and radiative powers; but when, during the northern summer, it is raising the temperature of the land of the Guinea coast, a new phase arises from the heated atmosphere over the land drawing the wind towards it, and instead of a S.E. or N.E. wind we have a South and S.W. wind occurring with great regularity. Major Rennell says, "in the space lengthwise, between Cape Verde and Cape Mesurado, and in certain places to the extent of 70 leagues off shore, (50 off Sierra Leone, a regular change of winds and currents takes place, according to the seasons : that is to say, a N.F. or North wind and S.E. current, from September to June; and in the rest of the year, S.W. wind and N.E. or northerly currents, in effoct a monsoon; and this extends, in respect of the wind, nearly through the whole space between the two continents. \dagger

* Attention to porsonal cloanlinoss is very important during the detention caused by these calms. Dampier gives a quaint description of the ill effocts of his mon not drying their clothes and lying down on their hammooks while wot, which eaused all to becomo offensive and open to attacks of disease. Capt. Marry says, "The emigrant shipa from Europe to Australia have to cross it. They are often baffled in it for two or three weoks ; then the children and passengers who are dolicate in hoalth suffor most. It is a frightful grave-yard on the wayvide to that golden land."
\dagger The existence and character of this S.W. African monsoon was thus early recognized
 to thom hy our American friendn, is thorefore not quite applicable.
e likens to stant com. of the sum as is well fing of thits thers onl'y r, with iti lensed into causes the outh. The at form the s carry the roader. At on to the f the calm not at all t the appelits extent is of rain, or he trades isi cesult of twe enervating ant paits of
ening calms, Aguration of fision of the cna to arise. , the Trades cimum force during the coast, a new towards it, urring with Cape Verde hore, (50 off ding to the eptember to nts, in effect whole space
on caused by drying their me offensive m Europe to ks ; then the 1 grave-yard y recognized เที่oัที, given
(49.) In Dampier's Discourne on the Trade Winds, and his ullistrative Ohart. (1697), we find a solution of the origin of theme S.W. winds, which is that will hold to he moot feceible. It is, that they are derived from the S.E. Tradea, and not from a diversion of the N.E. Trades. This also has been suggeoted in the "Mercantile. Marine Magaxine". of 1856," the data being derived from Maury's Charts. "An important element in determining the reality or otherwise of this suggeation is the position of the calms. Are they interposed between the N.E. trade and monsoon, or between the monsoon and S.E. trade? Rut this consideration may not have great ${ }^{\prime}$ weight in this region of calms, and besides the probability of this origin is increased by the data for the direction of the B.E. trade, which is shown not to blow with regularity to the cast of a line joining Cape Palmas and Angola.
(50.) There in another conclusive evidence of the westerly extension of these monsoons in the easterly current that is met with almost constantly during the seasons of their prevalence. These are very persistent as far as longitude $40^{\circ} \mathrm{W}$., and are times encountered as far north as lat. 10°; but more usually between 6° and $11^{\circ} \mathrm{N}$. This origin of the anomalous Guinea current was indicated in our Chart of the Atlantic, published in 1858. A similar current is shown to exist in the Pacific Ocean west of Panama Bay. This feature will be farther dilated on when we come to the Section on Currents.
(51.) These South, S.S.W. and S.W. winds prevail, according to Maury's Pilot Charts, chiefly during the months of July, August, September, and October, and are then felt as far to the westward es 35° or 40° W., between the parallels of 5° and 8°. N. In the western tract of this aree they diminish in frequency as the sun proceede to the S., and are scarcely felt in the North Atlantic during the months of December, January, and February. The chances of encountering this adverse wind must have an important bearing on the choice of a route for crossing the Equator during these months. Between December and April, which is the season most visited by calms, the wind has still a southern tendency; but during the season of the monsoon the calms are at a minimum near the coast. It is difficult to explain in words the relative duration, force, or frequency of, the winds in this changeable locality, without an appeal to the Chart. The reader is referred to that facing page 185, and to the Chart of the North Atlantic, in 4 sheets, before alluded to.
(52.) Winds and Seasons.-The following remarks, by the late Capt. Midgley, who had great experience on the African const, will be found of service in explaining the character of the wind and seasons:-
I will here offer a few remarks on the general variable winds and weather which provail between the parallels of 4° and $10^{\circ} \mathrm{N}$., and the meridians of 18° and 25° West; or between the N.E. and S.E. trade winds.
The winds generally incline from the southward, between the trades, and few vessels pass from one trade wind to the other without meeting with very unpleasant weather, in the ahape of calms, light baffing winds, squalls, and rain, particularly when the sun is much to the northward.
In June, July, and August, heavy squalln seem to prevail from the S.W., with a great deal of rain, and the wind often blows hard from this quarter for several hours together, and then falls calm, leaving a heary and confused ahort sea, which cause a veseel to labour and strain more than she would do in a gale of wind.
When the sun is far to the southward, the weather is comparatively fine, with light southerly and 8.E. winds, occaionally, however, interrupted by equalls and rain and the calms are of shorter duration, owing, probably, to the limited breadth of the apace between the trade winde at this season.
In this part of the ocean, when mueh lightning is soen in a heary dense cloud, in any quarter of tho compass, the wind may be expected to come out suddenly from that
quarter, eopecially if there is any rain, even though the wind may bo blowing at the mime tine with moderate force from an opposite quarter.
Forked or chain lightning is the almost sure forerunner of a heavy squall; it is a monitor whose warning should not be neglected.*
Wherever there is mnch lightning, and the wind is unsteady and baffling about, prepare for a change. A heavy dense cloud, having a squally appearance, may tise and pass slowly over the vessel directly to leeward, with perhaps fittle or no increase of wind; and when the danger may be supposed over, the vessel is suddenly taken aback with a smart squall. This, I presume, arises from the cloud which has just. gone over the ship, being opposed in its progress to leeward by a stronger current of air from the opposite quarter. On this account, when clouds are in motion from opposite quarters of the compass, a better look-out, if possible, should be kept to leeward than to windward.
Keeping a good look-out upon the surface of the water is an excellent method of judging of the force of wind in an approaching squall; but on account of the heary: rain which invariably accompanies the squalls alluded to, very little sound judgment can be exercised with respect to their strength; they are generally, however, tolerably: heary, and require sail to be considerably reduced.
- In June, July, and Angnst, the weather is very wet and squally. Sometimes dense masses of clouds are seen in rapid motion from the S.E., southward, and S.W. quarters of the horizon: these clouds have a bulky and confused appearance, as if tumbling or rolling over each other; are of a dirty, dark drab colour, with ragged edges, and inky-looking small clouds flying about the edges of them. In their approach towards the zenith they gradually appear to unite and forn the apex of an angle, and thus united blow with incredible violence from the S.W. quarter (veering' about two or three points or more) for upwards of two hours, during which time the rain descends in torrents, perhaps accompanied by a waterspout or whirlwind.

Ships should be well prepared for these dangerous visitors; for they come with a similar vinlence to the arched whise squall of the West Indies. I have experienced two squalis of the above description (both in the month of July), and in one of them lost a good fore-topsail, after the reef tackles, \&e., were hauled out snug, and the ship had been for some time running directly before the wind. Upon both occasions my barometer fell three-tenths of an inch very suddenly, which enabled me to take in sail in time; for the squalls did not look particularly alarming until about eight or ten minutes before they reached the ship
To the inexperienced in this part of the ocean, I would beg to remark, that much shoet lightning is always auspicious, and forked or chain lightning universally so ; and the latter is, in some degree, indicative of a change, as well as of an increase of wind.
After the wind has blown steadily, with fine weather for a few hours, and it ther begins to be variable, and fly suddenly about, squalls and rain may be expected.
The moon has great influence on the weather ; for it is mostly squally and unsettled, with mnch rain, about the full and change.
I perfectly agreo with Captain Cheveley, that the month of July is, perhaps, the worst in the year for making southing between the trades. I have made two homeward passages in July between the meridians of 22° and 26° West, and met upon each occasion with the same weather as described by that gentleman ; namely, strong 8.W. winds, hard squalls, and torrents of rain, with a heavy short sea, and northerly ourrenta.
(53.) Betveen Capo Blanco and the entrance of the River Gambia, during the monthe of November, December, January, February, and March, the winds from the

- In those parts of the North Atlentic Ooean which nre not in the general influence of the trades, I have very froquently remurked that lightning is indicative of a ehange of wind.

Eaist and N.E. are prevalent. In this time the nights are cool; but acarcely has the sun arisen above the horizon, when-the air becomes dry and parching. Neverthelews these five months are the winter in this part of Africa, and this is the mont healthy season. Between the Gambia and Cape Palmas the inland winds, during the same season, are variable.
In June, July, August, September, and October, the country situated between Cape Verga nd Cape Mount is mnch exposed to hurricanes or tornadoes. These, however, do not occur in any part of the coast northward of Cape. Verga.
From the 20th degree of North latitude to the environs of the line, the months of July, August, Septembef, and October, are those of the rainy season, when the atmosphere emits its waters to the earth; the only difference is, twenty days sooner or later in the arrival of these torrents. During the other eight months in the year there does not fall a single drop of water.

Between the Cape Verde Islands, and in their neighbourhood, sontherly and S.W. winds generally blow in July; August, September, and October. These islands, when the sun is in their zenith, are generally surrounded by thick fogs.

From Sierra Leone to Cape Palmas the ordinary course of the winds on the coast is from W.N.W., and beyond Cape Palmas, from W.S.W. to S.W. and S.S.W.;

Although, in the Gulf of Guinea, the wind blows generally from the sonthward, and S.S.W. toward the coast, they take, in South latitude, a more westerly direction near the land, and then prevail from S.W. and W.S.W. between Cape Lopez and Benguela. But they veer proportionally more southerly as the distance increases from the coast.
Windward Coast, \&c. -The name of Windevard Cbast has been given by our navigators to the whole of that coast which extends from Cape Mount to the River Assince, where the Gold Coast commences: it includes the three particular coasts 'called, 1st, Grain, or Pcpper Const ; 2nd, Ivory, or Teeth Coast; 3rd, the Coast of Adon, or Quaqua.

From January until May the weather here, along-hore, is commonly fair and clear, with cooling breezes, and gentle southerly winds. But, about the middle of May, South and S.E. winds begin, accompanied not only wish hurricanes and stormy gusts, but also with thumder, lightning, and great rains, which continue, more or less, until the conclusion of the year.

On the Gold Const, from Assinee to the River Volta, the wind, in January, begins to blow from tho S.W. quarter, and becomes stronger in February, bringing with it sometimes rain, and sometimes a hurricane. About the end of March, and beginning of April, those heavy tempests, called by the Portuguese tornadoes, arise, accompanied .with a deluge of rain, thunder, and lightning; these continue to the end of May, and are announced by the darkness of the sky in the S.E.

During the rainy season, that is, in May and July, little or no land-winds are felt; but, from thio sca, it blows from the S.W. and W.S.W., making a very great swell, . Which continues even in August, although the rains begin to cease in that month.
'I'he weather becomes fair in September, and the air:clear, with gentle Sonth winda; and this continues till January, the hottest days being in December.

1. (54.) The HARTCATTAK.-On the Gold Coast, as well as the windward coast, an eaaterly wind, called the Marmattan, prevails during the months of December, January, and February. This wind comes on indiscriminately, at any hour of the day, at any time of the tide, at any period of the moon, and continues sometimes only a day or two, nometimes five or six days, and it has been known to last fifteen or sixteen days. There are generally three or four returns of it in every season; it blows with a moderate force, not quite so strong as the sea-breeze, which every day sets in, during the fair season, from the West, W.S.W., and S.W.; but somewhat stronger than the land-wind, at Hight, from the Noitli und N.N.W. In the "Yhiosopical "Iransactions," vol. 1xxi., for the year 1781, am account of the Harmattan was first
given by LKatthero Dolson, M.D., F.R.S.; from the inquiriew and obvervations of Mfro Norrio, of which the following is the substance:-
On that part of the coast of AArica which lien between Cape Verde and Cape Lopes, a singular periodical easterly wind, named; by the natives, the Hormicin, prevaib ; during the months of December, January, and February. Cape Lopes Hes tor the : south ward of the line. At the Isles de Lon, which lie to the northward of Sieiral Leone, thip wind blows from the S.S.E. $;$ on the Gold Const; from the N.E.; and at Cape Lopez and the River Gaboon, from the N.N.E.

- The Harmattan comes on as above described. A fog or haze always accompanies. it, and the gloom is sometimes so great as to render near objects obscure. The sun is thus concealed the greatest part of the day, and appears only a few hours about noon, and then of a mild red colowr. At 2 or 3 miles from shore the fog is not so thick as on the beach; and, at 4 or 5 leagues distance, it is entirely lost, though the Harmattan is felt for 10 or 12 leagues, and blows fresh enough to alter the course of the current.
Extreme dryness is a property of this wind. No dew falls during its continuance, nor in there the least appearance of moisture in the atmosphere. All vegetables are much injured, and many destroyed. The seams in the sides and decks of thips become very leaky, though the planks are 2 to 3 inches thick. Iron-bound canks require the hoops to be frequently driven tighter, and a cask of ram or brandy can acarcely be preserved; for unless kept constantly moistened the hoops fly off. The Harmattan has, likewise, very disagreeable effects on the skin, lips, and nose, which become tiore.

The effects of the Harmattan in evaporation are great ; as will appear by the following comparative statement:-At Liverpool, the annual evaporation is abont 36 inches; at Whydah, 64 inches; but, under the influence of the Harmattan; at the rate of 133 inches.

This wind, though so prejudicial to vegetable life, is highly conducive to health; so that fluxes, fevers, small-pox, \&c., generally disappear in spite of the doctor; and it contribntes to the cure of ulcers and cataneous eruptions. The baieful effects which have been said to arise from the prevalence of this wind proceed from the periodical rains, which fall in March, Aprif, \&co., and are ushered in by the tornadoes from the N.E. and E.N.E., accompanied with violent thunder and lightning, and very heavy showers. The earth, drenched by these showers, and sected upon by an intense solar heat, so soon as the storm is over, sends forth such noisome vapours as are the oceasion of putrid fevers and other diseases.

On this coast, from the middle of February to the first week in March, \& wind up the coast, from S.S.W. to S.S.E., prevails for abont three weeks. The tornado season is part of March, all April, and the greater part of May, abont twelve weeks. The rainy season is from the latter end of May, all June, and to abont the 20th of July, about eight weeks. Hence, high wind, and squally, with very heavy rains; to the middle of August, about three weeks. The rain ceases, and then, for the first three weeks in September, the weather is foggy and close, without any breeze. From this time, for abont six weeks, the wind blows fresh down the coast; the tornadoes and southerly wind then succeed, with some rain, generally called the latter rains, about four weeke, to the beginning of December, when the Harmattan seaton commences.
(85.) Remarks by Baron Roussin.-Cape Bojador to the Isles de Los.-On the whole extent of the African coast there are but two seasons; namely, the Rainy and Dry Sxacons. The division of the two is connected with the periods when themn crosses from one hemisphere to the other, and is modified as he advances to, or mecedes from the Equator.

The Rainy Szason commences at each place on the coast to the northward of the Equator, at the time when the sun passes the zenith of that place in his course to the nerthward. It is, usually, during the month preceding this.avent, that the ehange of weather takes place. It may; therefore, be calculated, that, at the Islen de Los, the first point exposed to the rainy season, and which lie in $9 j^{\circ}$ N., the first violent

at Gor

 later. paralleN.E. te

Novem
of Dee
E.S.E.

It is
on at d
times f
interru
two hi
Februa
the mo
become
tioned.
ing: 0
so mucl
oof 4 ris. pe Lopes, provaile ef ton the: of Sieita ; and at ompaniea The sun is out noon, aick as on the Har. tre of the
by thio moon; for they almost always commence, and are most violent, on the daye of the new and foll.

The Rainy Season ends in very violent equalls with intervals of calm, of which there are at least two, and frequently more, during the twenty-four hourn $;$ and we remiarked, that they generally happen on the rising or setting of the sun or moon. In the country; these squalls are generally called Iornadoes ; but, according to the bent information, the tornado, properly speaking, is to be met with only to the southward of Cape Verga. They gencrally hegin to form themselves in the N.E. or E.N.E. quarter of the horizon, which seems completely on fred during an hour or more. The storm then gradually shifts round to E. and E.S.E., becoming darker in the horison. Having arrived at S.E., it attains its full vigour, when thunder and lightning booome incessant. A moment of absolute calm then takes place, which is caused by the obstruction which the usual winds from the N.W. meet with from this immense mass of clouds. Shortly after, a small arch is formed at the horizon, which increases and rises rapidly. The more defined the edge of this arch appears, the more violent will be the storm, as it is a proof that the column of air has divided much heavier clouds, and is more confined. When the summit of this arch has attained an altitude of about 45 ; the hurricane bursts forth, and torrents of rain immediately follow. The crisis of its greatest violence generally lasts from 15^{\prime} to 20^{\prime}; it afterwards gradually becomes weaker; and finally nothing remains but rain, attended with very little wind. It then shifts round from S.E. to W.S.W., then to the quarter from which the usual winds blow, to exhaust itself to the northward in another squall from the S.E.

The Rainy Season, at any place, continues from four to six monthe, according to its proximity to the Equator, and the tornadoes continue to decrease, both in frequency and violence, during the two latter months of the season. In ten days or a fortnight after the sun has passed the zenith of any place on his way to the Sonth, it is conidered as free from bad weather. On the 15th of November a gun is fired at Goree, which announces the return of the fine season.
The squalls here spoken of, and the winds whioh proceed or follow them, generally occupying so very small a portion of the year, may be considered as momentary convulsions in a state of climate almost unchangeable; a sky nearly always serene, and generally clear.

On the greater part of the African coast, from Cape Bojador to the Isles de Los, regular winds blow, and no rain ever falls during eight months. The prevailing winds in this country blow from N.E. to N.W. ; it may, therefore, be said, that they follow the direction of the coast from North to South, and that they seldom vary from the limits here assigned.
The Dry Season commences in the latter part of October at Senegal; a little later at Goree; and at each intermediate place toward the Equator it becomes gradually later. It is not till the beginning of December that its return is observed in the parallel of the Isles de Los.
(56.) Romarks on the Harmattan, by Baron Roussin.-Although the winds from N.E. to N.W. prevail on the N.W. coast of Africa during the dry season, that is, from November to May, they are, nevertheless, occasionally interrupted between the 1 st of December and the 1st of February by the land-wind, which blows from E.N.E. to E.S.E., and sometimes with violence.

It is this wind which the inhabitants of the country call the Harmattan. It comes on at different periods in the above interval, and blows during one, two, and sometimes flve or six successive days. This continuance, however, is rare, as it is generally interrupted by the sea-breezes, which commence about noon, after a oalm of one or two hours. These alternato land and sea-breezes generally last till the end of February, when the usual winds entirely prevail. The Harmattan, which passes over the most arid country of the globe, is of an extremely dry nature, and would probably become insupportable, were it not frequently allayed by the sea-breezes above mentioned. Notwithatanding the salutary effect of those breeses, the drought is estoniching; en long es the Marmittan iastr. Mankind are inconvenienced; vegetables suffer so much an to be nearly killed; the sun loses its brilliance, and is only to be scen
when near noon t the aand, brought with it from the desert, pervades the atmosphere; and prevents objects from being distinguished at the distance of a quarter of a mile Nevertheless, the effect of the Harmattan is not really injurious to health; it is remarked, that it even purifles the atmosphere, by destroying the noxious vapours with which it is replete on the conclusion of the rainy qeason. It is usually on the return of the Harmattan, that recovery commences from disorders which are incident to the climate.
The fog which accompanies the Harmattan loses nothing of its density when leagues out at sea. On the edge of the Bank of Argain, which is 10 leagues from the land, it prevented our distinguishing the horizon during three successive days: This state of the atmosphere is not permanent, but varies with the winds which produce it; and, in general, independent of the Harmattan, the African coast, from Cape Bojador to Cape Verde, is continually covered, during the whole dry season, with a white mist, which is seen from the sea much sooner than the land, of which it is a sure indication. This mist, which is nothing but sand, the extreme fineness of which allows of its being supported by the least agitated air, is particularly remarkable on that part of the desert between the parallel of 22° and Senegal. We have seen it at the distance of 5 leagues, when the coast could scarcely be seen at 3 leagues. This dust, alluded to on page 179, is farther remarked on at the end of this. Volume.
(57.) Remarks, by Capt. T. Boteler, of H.M.S. Hecla, 1829.-The Harmattan Season sets in with November, or about a month earlier than off the Gambia, and prevails throngh December and part of January, but not quite constantly ; for occasional intervals of clear weather, accompanied by the refreshing sea-breeze from the N.W., sometimes afford a respite to its oppressive effects. Nor does the Harmattan blow uniformly, either in the same direction, or with the same strength; for it ranges through eight points of the compass, from N.N.E. to E.S.E. ; and, however fiery at the commencement, declines, after the first month, to a comparatively light breeze.

The pecullar haze which more or less envelopes the coast of Africa at all times, is at its maximum daring the influence of the Harmattan; and, though. partially dispersed by the tornadoes and the rainy season, returns with increased density when they cease. Strangers should, therefore, be on their guard when estimating their distance from the land, as the deceptive effect of this haze makes it \cdot appear much farther off than it really is; for the contrast which the coast present to the eye, in different states of tho atmosphere, is very great. In clear weather the vicw of the fertile shelving hills in the Isles de Los, the stupendous features of the distant mountains, the plains corcred with trees, and the beautifal little Island of Matacong (described hereafter), are highly interesting; while, in hary weather, nothing is visible but a low mangrove coast, envelcped in mist, with an indistinct opening of a river here or there, or perhaps a column of smoke rising from a native village.
The Rainy Season continucs for four months, from May to September; but the tornadoes, which invariably accompany it's commencement and termination, generally cease between those periods. They blow from the E.S.E., and with great fury ; but they seldom last more than three hours. The prevalent winds, during the rest of the rainy season, are from southward and westward, and are usually so light as to give way in the afternoon to the N.W. sea-brecze.

Winds and Calms on the Tropic.

(58.) Between the N.E. trades, and the westerly winds which prevail more or less to the northward of them, there is a belt of variable and light winds, which have, perhaps somewhat vaguely, been called the Calms of Cancer,-a term which will not express its characteristics.
It is called, also, the Horse Latitudes, from the fact that vessels in former years, employed in carrying horses to the West Indies, were frequently obliged to throw them overboard during the embarrassment cansed by the continual changen, sudden gusts and calms, rains, thunder and lightning, which are general in it (19., p. 184).

> immed winds for an peratu and ta quick

In t tinaes West,
hot.
mosphere; of a mile lth; it is as vapanes ly on the. ce incident ex ye tilxure ty when is from the ays: Thia ch produce Cape Bo 30n, with a ioh it is ss of which arkable on seen it at res. This me.
. (59.) This zone is caused by the uniting, or interohanging, of those upper but contrary currents which pass northwards over the N.E. trades in conseg' 'se of the heat acquired under the tropical sun having reached the northern of 10 of thia saperheating influence. They here neet the currents passing southwards to feed the trades from the polar regiona, and thus pressing against them cause the high barometer peculiar to this belt, standing as it does at a higher level than either to the north or south of it. Capt. Maury infers that the mean height of the mercury in this belt is 30.21 in ., and at the Equator at 29.93 in . Admiral FitsRoy states the mean height of the barometer in the latitude of England to be $29 \cdot 95^{\prime}$. This greater height of the mercury, showing increased pressure, will be an index to the sailor that he has reached this intervening belt between the Passage and Trade winds.

From the lower part of this zone pass out two currents of air, one to feed the N.E: Trades, as before described, and the other to form the Anti-Trades, or Passage winds; and it is fed by the polar and tropical counter currents which flow over these different wind systems.
(60.) The mean latitude of this belt is from 30° to $35^{\circ} \mathrm{N}$., but varying with the motion of the sun in the ecliptic, as explained in (25.) on p. 185. In fact, the northern edge of the Trade wind may be taken as the axis over which this belt moves, sometimes of great breadth, as 10°; at others not felt at all. The mean position of these tropical calms, \&c., will be best comprehended by an inspection of the diagram facing p. 185. As is well known, this belt is the line upon which the dreaded cyclones turn; they pass to the W.N.W., to the south of it ; and to the E.N.E., to the north of it; showing the origin of the struggle between the polar and tropical currents, which is evident in their tremendous phenomena.
(61.) As was said in (26.), p. 186, the range over which the northern limits of the N.E. trade is met with seems to be, from Maury's Chart, about 10°; but as this chart is apparently not quite perfect, or, at least, is not derived from sufficient data to pronounce absolutely upon, it may be said that the mean position of the tropical calms in the various seasons of the year cannot with certainty be predicted; but as it does not offer the same obstacles to navigation as those of the equatorial regions, it is of lesa importance to the sailor, who, by his usual sagacity and prudence, may guard against the squalls, thunder-storms, and calms which characterize it.
(62.) To the westward of the meridian of $50^{\circ} \mathrm{W}$.,-that is, the western half of the N.E. trade in the North Atlantio, -the trade is very light during the months of September and October; perhaps at other times of the summer and autumn. They will be most felt between the parallels of 15° and 25°; but not with any certainty near the American coast. This region may therefore be added to the troplcal calms during these months.

As examples of the winds, as observed upon the lands lying in this belt, we select the remarks upon the Bermudas :-
(63.) BFRRMUDAS.-The winter, or cold season, at 3ermudas, is the most agreeable, and lasts fros November to March,-the mean temperature being 60° : the predominant winds are then from the westward; if to the northward of this, fine, hard weather, with a clear sky, accompanies them. This is the favourable time for refitting ship, painting, \&c. The close of this is often a very fine, bright day, with little wind and partial calms, when the wind is certain of going round to the S.W.; the weather becoming hazy, damp, subject to heavy rains and gales. The thermometcr immediately attains 60° to 70°. These alternate nerth-westerly and south-westerly winds prevail through nine months of the year, the wind remaining at no other point for any length of time. This change is exhibited by a difference of 14° in the temperature. At this season, it seems advisable for ships bound to the southward to wait and take the first set-in of the north-westerly winds. In most cases, it will ensure a. quick run to the Variables, and often to the 'Irades.-Mr. II. Davy.

In the latter part of February spring commences, and the weather usually continaes mild, with refreshing showers of rain and gentle breezes from the South and West, until the end of May. In June the summer sets in, and the weather becomes hot. Calms now succeed to the gentle breezes of May; the nir is sultry and op-:
premive, and long droughts are common, which are often broken up by heary thunderatorma. In September the weather changes its character, and becomes again milla and agreenblo.

The dew-point in Bermuda usually ranges high. The climate, being therefore moint, is fivourable to vegetation at all measona, except during the droughts of summer, and the storms of winter.

Hurricanes and tempentin are very frequent, as is to he expected from the proximity of the iales to the variable limit of the Trade and other prevailing winds. Few. sutumns pass without hurricanen of more or lese violence,

The Bermuda Squacls are sudden and violent tempesta, occurring particalarly in the winter eeason.

According to the observations registered at Her Majesty's Dockyard, in 1853, 4, the easterly winds, or those to the E. of N. or S., prevailed for a mean of 139 days, and westerly winds for 186 days; the remainder being made up of calms and variable winde."

THE ANTI-TRADES, or PASSAGE WINDS.

(64.) In a previous page, 184 (19.), the reason is given for applying the term AntiTrades to the variable, but westerly, winds which prevail to the northward of the Tropic of Cancer. In the consideration of these winds, which only extend over an area, compared to that of the Trade winds, as 5 is to 12, (thus showing their vastly. inferior importance in the atmospheric economy,) it will be found that it is impossible to aizurately define their direction and character at any particular season. The great difference which exists between the winds and seasons of 1 sferent years, which, however, when combined with a series, show a well marked and consistent average, will demonstrate that it is only the doctrine of chances which can determine whether a single ship will encounter a particular wind at a particular time and place. Therefore this Section will be less definite in its tearhings than that on the Trade - inds.
\because (65.) The most accurate and extensive observations, - extensive because con-tinnous,-which have been'made npon the direction and force of the wind in these latitudes, are those made upon land, and especially by self-registering instruments; Which have been in operation for a series of years, which give absolntely the quantity and path of the wind passing over the observatory during their operation. But, as will be shown presently, these observations, however excellent, are fallacious; they do not give the correct normal direction of the wind, but that of the wind under the powerfal infnence of the adjacent land and its configurations. In future years this miay be obviated by the erection of these anemometers on isolated spots, as has been done at Bermuda, in our latitudes, as at St. Kilda, or any other position distant from any great mase of land. \dagger
(66.) The rocsterly predominance of Anti-Trades will be more manifest from an

La
Lor

Lon.

[^13]

examination of the quantity (or force) of the winds, rather than its prevalence, from those quarters; so that mere numerical preponderance gives an imperfect notion of the real proportion of westerly or easterly winds. Thus, as has been before remarked on p. 187, the Pilot Charts of Capt. Maury, though the result of vast labour and of the first importance as one grand repertory of facts, are deflcient in this respect. A perfect Wind Chart is yet to be constructed.
(67.) Liverpool.-At the Liverpool Observatory, an anemometer, the invention of Mr. A. Follett Osler, F.R.S., registered the force, or rather the motion and direction of the air, for the years 1852, 3,4 , and 5 ; and the lines thus drawn by the machine itself are reduced on the diagram-shown. The lines represent the actual direction and distance, according to scale, travelled by the wind over the instrument. Upon looking at these lines, except the general tendency to the eastward, there is no similarity between the years; yet, by taking the absolute motion throughout the year of the wind from any quarter, and forming a single diagram, there is seen to be a remarkable identity in them all.

Thus, the main direction of the wind in 1854, was rather to the southward of West ; in 1852, it was to N.W.; and in the other two years, although to the West, yet the wind was very devious.
Notwithstanding the wide difference in the line formed in these different years, yet, if the whole amount of wind in each year is arranged graphically for each point of the compass, they are very similar to each other, showing that a fixed law prevails; which is still more evident if the duration of their prevalence were taken instead of their quantity or velocity. This is shown on the wind-stars on the diagram.

These diagrams will demonstrate the uncertainty there is in predicting from past experience what will be the character of the wind at any time, and at the same time will show that the mean of the chances will be contracted within very narrow limits.
(68.) The total amount of the horizontal motion of the air at Liverpool, as registered by the anemometer, is also exceedingly alike in different ycars, as is shown by these figures:-

	Wind in Miles.	Calms.		Rain.		Duration,		
1852	114,276	19 hours. 27 4 12 		$\begin{aligned} & 31 \cdot 59 \text { inches. } \\ & 22 \cdot 47 \quad " \\ & 22 \cdot 11 \quad " \\ & 22 \cdot 57 \end{aligned}$		683 hours.		
1853	105,089			625 "				
1854	128,283			537 "				
1855	103,405			540 "				
Mean.	112,889	$15 \cdot 6$	"			24.69	"	$24 \text { days } 21 \text { "hours. }$

The ecasons have an influence in the velocity of the wind; thus these observations show, that in Winter (Dec. to Feb.), the mean rate is $15 \cdot 6$ miles per hour; Spring (Maroh to May), 12.1 miles per hour; Summer (June to Aug.), 11.8 miles per hour; and Autumn (Sept. to Nov.), 11.5 milcs per hour. Tho day winds are stronger than at night: thua, at midnight, it travels $11 \cdot 2$ miles per hour; 6 a.m., $11 \cdot 8$ milos per hour; 9 a.m., $12 \cdot 9$ miles; noon, $15 \cdot 2$ miles; 3 p.m., $14 \cdot 6$ miles; $6 \mathrm{p} . \mathrm{m} .12 \cdot 7$ miles; and 9 p.m., 11.6 miles per hour.

Direction.	$\begin{gathered} \text { Miles } \\ \text { per:Hour. } \end{gathered}$
N.N.E.	. 6.2
N.E.	. $6 \cdot 6$
E.N.E.	. $7 \cdot 8$
E.	.11.0
E.S.E.	. $9 \cdot 6$
S.E.	. $11 \cdot 6$
8.S.E.	. $11 \cdot 4$
8.	$10 \cdot 3$
S.S.W.	. $11 \cdot 8$
S.W.	.16•7
W.S.W.	. $15 \cdot 5$
W.	. $18 \cdot 9$
W.N.W.	, 19•0
N.W.	. $17 \cdot 4$
N.N.W.	. .12.7
N.	. 7.8

But the more important general deduction to be derived from these observations is the fact, as before alluded to (67.), that all winds having a westerly bearing travel very much the fastent; those from sonth to east procced at a much slower rate: while such as come from the north and east average but little more thon a third of the rate of the westerly winds. All this is made clear by a glance at the adjoining column of figures, which gives the mean rate in miles per hour of the winds from the various directions ; and will show further, that the windroses and flgures of Maury's and other charts do not give an accurate knowledge of this zone of winds, as the westerly winds, though by them made greatly to predominate; do not show the actual amount of those winds by, perhaps, one-half or two-thirds their real quantity. All the strongest gales recorded in those years come from wentern quarters.
(60.) Notwithstanding that the results shown by the Liverpool anemometer are of the ntmost value, and great labour and skill have been exercised in reducing them to a comprehensive form by Mr. Hartnup, the able superintendent; yet they contain evidence of the interference of land influences, as alluded to in (65.), on page 208. By his last dissertations,* as here shown, the winds from N.N.W. and S.S.E. were most prevalent, whereas the prevalent direction in England is from the west, with the polar current from the N.E.; showing that the form of the valley of the Mersey has much to do with diverting the normal direction of the wind. Still these observations, as before stated, are most instructive and important.
(70.) There is one remark respeoting land observations, which is important:u All the synoptio charts hitherto advanced at the Board of Trade exhibit a marked diminution of force on land compared with that on the sea coast. Indeed, the coast itself offers similar evidence in its stunted, sloping trees, and comparative barrenness." \dagger The trees in many localities form excellent wind-vanes, as, by their growth, they show exactly the direetion from whence the most powerful and persistent winds come.

It would seem, also, that the land has a tendeney to draw the wind towards it, so as in some measure to make it appear that the prevalent direction is more across the line of direction of that coast than is really the case. Looking at, the simultaneous observations now daily collected and publislied for a great extent of coast, this is very apparent. All these arguments tend to lessen the value, in some degree, of those extended and accurate records of the winds on land. The mean direction of the wind, derived from land observations, however, as given by Kämtz and Dove, is as follows:-

ngland	W.	Denmark
France an	S. $88^{\circ} \mathrm{W}$.	Sweden
Germany	S, $76^{\circ} \mathrm{W}$.	N. part of United States . .S. $80^{\circ} \mathrm{W}$.

(71.) English Channel.-The following are the results of fifteen consceutive years' observations upon the wind taken by M. Nell de Breautc, at the Chapelle, near Dieppe, at an elevation of 410 feet above the sea :-

[^14]\dagger Third Number, Metoor. Papors, by Admiral FitzRoy, 1858, p. 00.

A
otion to be t, as before a westerly those from ate : while verage but te westerly ance at the the mean the various the windcharts do is zone of them made the actual one-half or e strongest om wentern
neter are of ing them to ley contain ge 208. By - were most t, with the Mersey has bservations,
aportant :it a marked 1 , the coast tive barreneir growth, persistent
wards it, so - across the multaneous this is very ee, of those pf the wind, Dove, is as
${ }^{\circ} \mathrm{w}$.
${ }^{\circ} \mathbf{W}$.
${ }^{0} \mathrm{~W}$.
utive years' car Dicppe,

1e Direction from theso

Direction of the Wind	Mean number of Days.	Maximum.	Minimum.
\cdots South.	37	In 1828- 54 days.	1820 and 1825-28 days.
, S.W.	93	- 1823-121 "	. 1831-67 "
1) West.	48	1830-72 ",	1829-31 "
N.W.	52	1825-72 "	1832-38 "
- North.	36	1819-56 "	1821-21 "
\% N.E.	41	1826-54*"	1828-22 ${ }^{\text {a }}$
East.	$\stackrel{23}{31}$	1820-41 ${ }^{\text {1818 }}$ "	$1821-12$ $1827-19$
			1827-19 "
	Total, 361 Days.		

From this table the following conclusions may be drawn :-
In the 365 days of the year therc are about 361 of wind, and 4 or 5 of dead calm.
If the horizon is divided into four equal parts, there will be
135 days with the wind between South and West,*

94	$"$	between West and North,
71	$"$	b
61	between North and East,	
between Eart and South.		

And consequently there are:-
The maximum of winds between South and West takes placein November and December. The minimum ", May and June. The maximum of winds between West and North takes place in July and August. The minimum " October and December. The maximum of windsbetween North and East takes place in May and June.
The minimum " October and November. The maximum of winds betwëen East and South takes place in December and June. The minimum " " June and July.
Moderate winds from North and N.E. are those which bring fine weather. In summer the N.E. wind blows more particularly in the afternoon; in the morning the wind is S.E., a slight breeze, and towards noon it changes quickly to N.E.; then it freshens, and towards the evening it sinks ; at night it is calm, and the coolness condenses the vapours. When this condensation does not take place, it is a sign of a change of wind.
Dead calms are of rare occurrence, and do not last long, except during summer. When they occur in winter, it is regarded as the precursor of bad weather. It is alwaye, in reality, an indication of a change in the direction of the wind.
(72.) The foregoing remarks will be ample for the purpose of giving the sailor an idea of the relative duration, force, and direetion of the wind in that part of the Atlantic. Reverting to the obwervation made on page 209, it may be re-stated, that from the variable nature of its changes and the great difference that is found to occur between one period and another, yet when these are combined in a long series of observations there is great similarity, yet it cannot be prodicted cr asserted with certainty that e particular wind will occur at a certain time; but what has been said will show what the chances are of such wind occurring. For the further service of the mariner, in foretelling what weather is approaching, he is referred to Admiral FitzRoy's "Burometer Manual."
(73.) In the open ocean, between Europe and America, we have only the numerical

[^15]results collected in Capt. Maury's Pilot Charts, as a source from whence to deduce any exact system. These, us the foregoing remarks will show, are in some degree fallacious, in not giving the force or quantity of wind, as well as its frequency, in any direction,-a very important consideration to the sailor in making use of "these brave west winds." However, they are very valuable in enabling him to form a conclusion as to the chances he may have of meeting with any wind.

The diagrams adjoining have been drawn up from the Pilot Charts in the same manner as those given on page 187, to illustrate the Trade winds. They are selected from those parts of the ocean most generally traversed by ships crossing it in the strength of these westerly winds. Their localities are shown by the latitude and longitude assigned to snoh diagram, which thus represents the wind in the region for 150 miles around that position. But, as will be seen at a glance, there is a great similarity in the general features of them all.

The principle upon which these wind-roses are constructed is explained on page 187 (29.); and the six examples there given are analyzed in that page. The remark in the note (${ }^{\circ}$) should be particularly attended to in connexion with the observations on these Anti-Trade winds, as it is clearly futile to endeavour to lay down any refined rule for their practical application. As there certiainly is a donbt as to the accuracy of the recorded direction of the wind to the extent of two points,-to lay down roles for sailing over any area with a course limited to a few degrees, certainly appears to be a needless refinement with such data to argue upon.
(74.) In comparing these observations, recorded by Mr. Osler's self-registering wind-guage at fiverpool, as shown in page 209, with the second diagram adjoining, that for lat. $52^{\circ} \mathrm{N} .$, long. $15^{\circ} \mathrm{W}$., or off the Went coast of Ireland, where we might expect to find some degree of similarity, there appears to be scarely any accordance at first sight. But upon referring to the ovidence of the greater force of the weesterly winds over the easterly, as shown by the figures (68.) p. 210, we arrive at a reason why this apparent discrepancy exists. If the arrows on the west (or windward) side of these diagrams were enlarged in proportion to the relative force, and the easterly arrows diminished in like manner, there would be a much nearer approximation. This comparison will demonstrate how the direction of the valley of the Mersey, and the line of docks and walls at Liverpool around the Observatory, have diverted the true direction of the winds. For the purpose of still further exemplifying this, the mean of the observations recorded at Birmingham for 4 years, by another anemometer of Mr: Osler's, is given. Although this is inland, and necessarily subjeet to land influences, the south-westerly preponderance is most clearly marked, and would probably be much more like those in open ocean could the latter be registered by similar means.

The diagrams, ps we give them, or the figures in Maury's Chart, must be siudied shouid any greater exactness in the relative duration of any wind be required than can be acquired at a cursory glance; and in the former case, as was before explained, the length of the award applied to the scale at the bottom of the plate will give the exact ratio per cent. of the wind represented by that arrow.

One general remark only need be given : it is, that about the Azores the greatest irregularity in the direction of the wind appears to occur in these latitudes ; during the summer months the wind is frequently from northern quarters, driving before it the cooler water from the polar regions, and thus abnormally reducing the temperature. Besides this, there appears to be a conflict between this southern and western tendency, and the 'Trade which is established to the west of them.
(75.) AmeriOA-Gulf and River of St. Lawrence.-Rear-Admiral Bayfield states that, during the navigable season, the prevailing winds are either directly up or directly down the estuary of St. Lawrence, following the course of the chains of high lands on either side of the great valley of the river. Thus a S.E. wind in the gulf becomes E.S.E. between Anticosti and the South coast, E.N.E. above Point de Monts, and N.E. above Green Island. The westerly winds do not appear to be so much guided in direction by the high lands, excepting along the South coast, where a W.S.W. wind at the Isle Ric has been seen to become Weat, W.N. W., nnd iN.W., on running down along the high and curved South coast, until it became a N.N.W. wind at Cape Gaspe. These
wind being easter ths ea As th wind gulf. in sum quent succee of stro clear. north consid quentl snow,
Thu
hour o partiou fully a
Stro nearly by a w the am East ar derate. times succeed
In th decreas on the North not so occasior dayligh miles of weathe be foun of the n fall wit shore al winds i experie commor decided quiok 8
Nova nearly rather r a north anchora appeara unawar Whene
Sabl.
always
winter,
to deduce ne degree y, in any i " thees rma a conthe same - selected it in the itude and region for s a great

egistering

 joining, we might ccordance - veesterly. mason why d) side of e easterly ximation. ersey; and rerted the g this, the emometer et to land ould proby similare mudied ired than xplained, give the
ρ greatest ; during before it temperawestern

Bayfield etly up or s of high becomes and N.E. direction the Inle long the Thene
winds frequently blow strong for three or four days in succession : the westerly winds being almost always accompanied with fine, dry, clear, and sunny weather; the easterly winds as frequently with the contrary, cold, wet, and foggy. In the spring ths easterly winds prevail most, frequently blowing for several weeks in succession. As the summer advances, the westerly winds become more frequent, and the S.W. wind may be said to be the prevailing wind in summer, in all parts of the river anid gulf. Light South winds take place occasionally; but North winds are not common in summer, although they sometimes occur. Steady North winds do not blow frequently before September, excepting for a few hours at a time, when they generally suoceed easterly winds which have died away to a calm, forming the commencement of strong winds, and usually veering to the S.W. The N.W. wind is dry, with bright clear sky, flying cionds, and showers. After the autumnal equinox, winds to the northward of West become more common, and are then often strong, steady winds of considerable duration. In the months of October and November the N.W. wind frequently blows with great violence, in heavy squalls, with passing showers of hail and snow, anci :sttended with sharp frost.
Thunder-storms are not uncommon in July and August ; they seldom last above an hour or two, but the wind proceeding from them is, in general, violent and sudden, particularly when near the mountainous part of the coast; sail should, therefore, be fully and quickly reduced on their approach.
Strong winds seldom veer from one quarter of the compass to another directly or nearly contrary ; in general, they die away by degrees to a calm, and are succeeded by a wind in the opposite direction. It is not here meant, that they may not veer to the amount of several points. N.W. winds seldom veer round br North and N.E. to East and S.E.; but they do frequently, by degrees, to the S.W., after becoming moderate. S.W. winds seldom veer by the N.W. and North to the eastward, but sometimes by the South to 8.E. and East. Easterly winds generally decrease to a calm, succeeded by a wind from the opposite direction.
In the fine weather westerly winds of summer a fresh top-gallant breeze will often decrease to a light breeze or calm at night, and spring up again from the same quarter on the following morning : under these circumstances only may a land-breeze off the North coast be called for. The same has been observed of the Soutt coast also, but not so decidedly, nor extending so far off shore. Admiral Bayfield adds, "I have occasionally carried the North land-wind nearly over to the South coast just before daylight; but have never observed the South land-wind extend more than 5 or 6 miles off, and that very rarely. Under the same circumstances, that is, with a fine weather westerly wind going down with the sun, a S.W. land-breeze will frequently be found blowing off the North coast of Anticosti at night and during the early part of the morning. If, however, the weather be not settled fair, and the wind does not fall with the sun, it will usually prove worse than uscless to run a vessel olose in shore at night in the hope of a breeze off the land. Such is the usual course of the winds in common seasons, in which a very heavy gale of wind will probably not be experienced from May to October, although close-reefed top-sail breezes are usuaily common enough. Occasionally, however, there are years, the character of which is decidedly stormy. Gales of wind, of considerable strength, then follow each other in quick succession, and from opposite quarters.
Nova-ScotiA.-The prevailing winds on all the coast are from W.S.W. to S.W., nearly as steady as trade wincin; exoepting that, during the summer months, they are rather more southerly, accompanied with but little intermission by fog, which requires a north-wosterly wind to disporse it. It is, therefore, recommended not to leave an anchorage widhout making arrangements for reaching another before dark, or the appearance of a fog coming on, which, with a S.W. wind, is so sudden, that you are unawares chiveloped in it; nor to keep at sea during the night, if it can be avoided. Whenever the wind blows directly off the land the fog is soon dispersed.
Sable Inland.-In the anring and summer monthe dense fogi or rain aimost always accompany all winds from the sea, from E.N.E., round sonth, to W.S.W. In winter, the rain is frequently replaced by snow. During the autumnal and winter
months, winds from between North and Went become more frequent, and, being off the land, are always accompanied with clear weather.

Strong gales of wind do not often occur in May, June, or July; but, atter the middle of August, they are often of great strength, and it becomes the more necessary to attend carefully to the indications of the barometer. Strong winds from Rast, round South, to W.S.W., are always accompanied by a falling barometer. When, therefore, these winds begin to abate, and the barometer at the same time ceases to fall, a change of wind, more or less sudden, to the opposite direction may be expected; with a rising barometer and fine weather; and if it be winter, with intense frost, coating the vessel, her sails and rigging, with ice.

Again, a high barometer, stationary or beginning to tall, indicates that a S.E. or S.W. wind, with accompanying rain and fog, is not far distant; and if, at the same time, there be a bank of clouds rising above the north-western horizon, the indication is certain.

South Carolina, \&c.-About this coast, if the wind blows hard from the N.E. quarter, without rain, it commonly continues so for some time, perhaps three or four days; but, if such winds are attended with rain, they generally shift to the East; E.S.E., and S.E. S.E. winds blow right in on the coast; but they seldom blow dry, or continue long: in six, eight, or ten hours after their commencement, the sky begins to look dirty, which soon produces rain. When it comes to blow and rain very hard, you may be sure the wind will fly round to the N.W. quarter, and blow hard for twenty or thirty hours, with a clear sky.
N.W. winds are always attended with olear weather; they sometimes blow very hard, but seldom for longer than thirty hours. The most lasting winds are those which blow from the S.S.W. and W.N.W., and from the North to the E.N.E. The weather is most settled when the wind is any of these quarters.

In summer time, thunder-gusts are very common on this coast; they always come from the N.W. quarter, and are sometimes so heavy that no canvas can withstand their fury: they come on so suddenly, that the greatest precantion is necessary to guard against the effects of their violence.

HURRICANES.

(76.) Among the most extraordinary phenomena of nature, may be classed those tremendous meteors, the hurricanes and tornadoes of the tropical regions. Until within a recent period they were very imperfectly understood, and were only regarded as terrible convulsions of the aerial system, when all order seemed to be broken up. But these, like many other apparent anomalies in nature, have been found reducible to system; and their various scemingly eapricious motions all subject to general rules, which, in this case, have been aptly denominated "The Law of Storms."
The discussions on the progressice nnture of hurricanes appear to have originated in a paper, entitled, "Remorks on the Prevailing Storms of the Atlantic Coast of the North American States, by William C. Redfeld, of the City of New York;" which has proved to be a very important and valuable addition to nautical literature. The subject, adopting the "Redfield Theory," has since been amplified and illustrated by the lite Lieutenant-Colonel (afterwards Sir) William Reid, R.E. and C.B., Governor of the Bermudas and of Malta, in his beautiful volume, bearing for the title, "An A^{+4} empt to Develop the Law of Storms by means of Facts, arranged according to Place and Time, and hence to point out a Cause for the Variable Winds, with a view
s blow very Is are those I.N.E. The

Uways come a withstand necessary to
classed those ions. Until ere only reto be broken been found 1 subject to The Law of
to practioal use in Navigation," \&e. As connected with this subject, the names of Redpield and Reid will be imperishable."
We say that the discussion appears to have originated in the before-mentioned works; but, withont deciding on the claims of priority, it must be mentioned that; berides the names of Reid and Redfield, those of Mr. Piddington, at Calcutta; Dr. Thom, in the Indian Ocean; of Mr. Espy, in America, and of Professor Dove, at Berlin, must be enrolled with them, as the primary instigators of the inquiry into the origin and nature of storms.
There are various names applied to these storms: Revolving storms, Hurricanes, Tornadoes (Spanish and expressive "turned"), Cyclones, Typhoons, \&c.; but all are meant to dewcribe the same thing.

In the foregoing remarks on the winds, on pages 178, 179, the general theory of atmospheric circulation is described; and in (19.) and (20.), page 184, is a resume of the whole, which will show the localities in which these phenomena occur. The sabject is also illustrated by the plate at the commencement of this Volume.
(77.) Although the "Law if Storms" is now fully recognized, yet opinion ia still divided as to the real character and condition of these remarkable meteors. Reid, Redfield, and others, contend that they are real vortices-currerts of air revolving round a progressing centre ; others, as Thom, contend that the wind blows in spirals around this centre; Espy, that the wind blows toward the centre : others, again, oonsider that vertical motion of the air will explain many of the phenomena. It is also argued, that, instead of a circle, the form of the storm is elongated, ellipsoidal, or even straight, moving broadside onwards. Jinman considers that, as the air is blowing away from one area another current necessarily blows towards and into that area, causing the peculiar features of these hurricanes. It would be out of place, and far too discursive for this Work, to discuss these various propositions. They may readily be found in the numerous works extant.

One remark may suffico. Is it not possible, nay, probable, that each of these theories may be correct as to individual cyclones, which may be (and are). of such varied character as not to be reducible in all cases to a fixed rule P However, it is certain that in many examples the true revolving storm is the proper appellation, and the rules now applied will give the means of avoiding their fury.

In our description of the Winds, \&c., page 184, we gave the theory that has been nniversally received as the cause of the Trade-winds and their attendant phenomena in the general atmospheric currents.
(78.) From all the investigations on the subject, the following conclusions have been arrived at. The hurricane, or rotary storm, commences within the tropics, on either side of the Equator; those in North latitude, the motion of the revolving circle is from right to left, past the North, or against the sun: while the storm progresses to the W.N.W., N.W., North ; forming a cycloidal curve in about $30^{\circ} \mathrm{N}$. fat., and runs off to the N.E.
South of the Equator, or in the southern hemisphere, this rule is reversed, the storm revolving from left to right, and passing onwards in a S.W., and finally in a S.E. course.
The diameter of these circular vortices varies from 40 to 50 or even 1,000 miles, probably increasing in size in their onward progress. Their rate of travelling varies from 3 to 50 miles per hour.
There are numerous minor peculiarities connected with these Cyclones, which will

[^16]be gathered from the subsequent remarks. But the great point with the mariner is to avoid their fury, and, having ascertained their character and his relative position on the meteor, to make the best course for getting away from it. Colonel Sir William Reid's "Law," is simple, and will be best given in his own words.
(79.) Colonel Sir W. Reid's Rule for laying Ships to in Hurricanes.-That tack on which a ship should be laid-to in a hurricane has hitherto been a problem to be solved, and is one which seamen have long considered important to have explained.
In these tempests, when a vessel is lying-to, and the wind veers by the ship's head, she is in danger of getting stern-way, even when no sail is set; for in a hurricane the wind's force upon the masts and yards alone will produce this effent ehould the wind veer ahead, and it is supposed that vessels have often foundered from this cause.
When the wind veers aft, as it is called, or by the stern, this danger is avoided, and a ship then comes up to the wind, instead of having to break off from it.
If great storms obey fixed laws, and the explanation of them in this Work be the true one, then the rule for laying a ship to follows like the corollary of a problem already solved. In order to define the two sides of a storm, that side will be called the right-hand semicircle which is on the right of a storn's course, as we look in the direction in which it is moving, just as we speak of the right bank of a river.
The rule for laying a ship to will be, when in the right-hand semicircle to heave-to on the starboard tack, and when in the left-hand semicircle to heave-to on the port tack in both hemispheres."
(81.) Mr. Redfield says:-"At stations within the trepics, the changes of wind, during the passage of the hurricane, are sometimes kpown to exceed those which pertain to the passage of a regular circuit of wind; these changes sometimes ruuning through the entire circuit of the compass, and even more. Again, they have been known to shift backwoard and forvand, in alternate and fitful changes, when near the crisis of the storm. These phenomena, so far from disproving the rotative character of these gales, only prove something more, and afford, at least, probable evidence in support of one or both of the following positions, viz. :-1. That high land and other obstructions often produce sudden and fitful gusts and changes in these violent winds. 2. That, in accordance with our observations of minor vortices, the axis of rotation io often impelled, excentrically, around a smaller circuit, in the interior of the advancing storm.
"In the northern intertropical latitudes the recession or departure of the sontheastern limb of the storm appears to be followed, not unfrequently, by strong squalls or gusts from S.E., this being the true course of the general trade-wind that determines the track of the storm. These gusts, or squalls, if mistaken for the regular action of the hurricane, may occasion erroneous deductions in regard to the course of the atorm.
"At stations apparently within the regular track of the storm, there will sometimes be an absence of violent wind; or the violence will pertain to only one of the phases, which the storm presents, in its regular course over such locality.
"Some storms are interrupted in their development by the near approach of another storm. Care must be taken, therefore, not to mistake the N.E. wind of a storm whone north-western limb is thus intercepted by a bordering storm, and which hence is som times followed by the natural current of air from the S.W. quarter, for the changes that pertain to the centre of the gale."

Mr. Redfield says, in conclusion, "That courses and developments of the storms Which pass over the Island of Great Britain are believed io be more complex than on the shores of the United States. It is not improbable that the course of many European storms is in a south-eastern direction. A comparison of marine reports has shown me that, while a storm was blowing at West or W.S.W. in the English

[^17] ve position ir William
pat tack on blem to be xplained.
ship's head, uricane the ld the wind cause.
voided, and
Vork be the a problem ill be called look in the ver.
to heave-to he port tack
es of wind, which peraes ruuning have been en near the ve character evidence in ad and other olent winds. f rotation is of the ad-
the southrong squalls that deterthe regular othe course

1 sometimes the phases,
pproach of wind of a and which quarter, for
the storms lex than on many Eureports has he English
and " Thas

Channel, it was blowing S.E. at Elsinore ; at N.E. on the East coast of Scotland; and at North and N.W. in the Irish Channel; thus exhibiting, plainly, a rotation to the left : but it is on careful investigations, hereafter to be made, that we must rely for a proper development of the system of European storms." *
(82.) The Season which is m- liable to these visitations is between July and October; they are comparatively rare during other months, though not entirely unknown. The following is a list of 113, arranged in the months they occurred in the West Indies, taken from Mr. Birt's Hand-Book:-

Jan	Feb. Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total.	
0	1	26	0	0	4	15	36	25	27	1	2	113

Iconsuder the hurrearnewacon hroter Comrnences wiot the pull moon in Augrust and ases notend till ohe full moth in Qetoket, axe thet the thit dry afted the first quarter of the m orn io the m set Mngerrus time of the mrnoh, tilt, of counse as It a dely been navigating in theee wresis portyerightyexip, beanle Re supposed toknow muceh abowe it.
in the barometric column. It by no means follows that, practically, this will always be found : a ship may only skirt the exterior of the storm, and, consequently, the mercury will only rise, or ossillate, according to the relative position of the hurricane and the ship; but it nay be taken as an indication, when the barometer begins slowly to rise after being depressed, that the greatest danger has passed over, or that the ship is steering away from it. Therefore, should there be any sudden change in the barometer, either rising or falling, its indications should never be neglected, especially during the period, and in the regions, subject to these storms. \ddagger The barometer sometimes sinks two inches during the progress of a hurricane.-(See Reid, pp. 268, 271.)

One great advantage in the Ancroid barometer is, that its variations occur simultaneously with their causes. In the mercuial barometer, the friction of the mercury on the tube, and other reasons, concur to make the column rise or fall at some time after the change has occurred. In this the Aneroid barometer possesses great advantage, and it has unother very great claim to notice,-that it clearly shows very minute changes, which the oscillation or pumping motion of the mercury in bad weather will not allow to be estimated.
(84.) The main object of the navigator, when assailed by a hurricane, should be to keep his vessel clear of the centre of rotation, as there the strengti of the wind concentrates, sudden shifts take place, and heavy and confused seas break. It is obvious, that the nearer the vortex is approached the quicker the shift of wind will be, and vice tersd.

- "American Journal of Science and Arts," vol, xxxv.
 † "Reid," p. 421.

\ddagger In connexion with barometrio changes, we may here ndvert to the constitution of the atmosphere, as mentioned on p. 180. To that statement we will add the ponclusions arrived at by Professor Dove, of Berlin, from his observations. In the northern hemisphere, the barometer falls during E.S.E. and E. winds, passes from falling to rising during S.W., rises with W.N.W. and N., and has its maximum rise with N.E. wind.
The thermometor rises with E.S.E. and S. winds, has its maximum with S.W., fulls with W.N.W. and N., and its minimum at N.E.

The olaeticity of vapoeser inorensos with E.S.E. and ©. winds, has its maximum at S.W., and diminishos during the wind's progress by W. and N.W. to N; at N.E. it has a minimum.
be gathered from the subsequent remarks. But the great point with the mariner is to avoid their fury, and, having ascertained their character and his relative position on the meteor, to make the best course for getting away from it. Colonel Sir William Reid's "Law," is simple, and will be best given in his own words.
(79.) Colonel Sir W. Reid's Rule for laying Ships to in Hurricanes.-That tack on which a ship should be laid-to in a hurricane has hitherto been a problem to be solved, and is one which seamen have long considered important to have explained.

In these tempests, when a vessel is lying-to, and the wind veers by the ship's head, she is in danger of getting stern-way, even when no sail is set; for in a hurricane the wind's force upon the masts and yards alone will produce this effect should the wind

When tl a ship their If great true one, $t]$ already sol the right-h direction is

The rule on the star in both her
(81.) M
during the passage of the hurricane, are sometimes known to exceed those which pertain to the passage of a regular circuit of wind; these changes sometimes running through the entire circuit of the compass, and even more. Again, they have been known to shift backward and forvoard, in alternate and fitful changes, when near the crisis of the storm. These phenomena, so far from disproving the rotative character of these gales, only prove something more, and afford, at least, probable evidence in support of one or both of the following positions, viz. :-1. That high land and other obstructions often produce sudden and fitful gusts and changes in these violent winds. 2. That, in accordance with our observations of minor vertices, the axis of rotation is often impelled, excentrically, around a smaller circuit, in the interior of the advancing storm.
" In the northern intertropical latitudes the recession or departure of the southeastern limb of the storm appears to be followed, not infrequently, by strong squalls or gusts from S.E., this being the true course of the general trade-wind that determines the track of the storm. These gusts, or squalls, if mistaken for the regular action of the hurricane, may occasion erroneous deductions in regard to the course of the storm.
"At stations apparently within the regular track of the storm, there will sometimes be an absence of violent wind; or the violence will pertain to only one of the phases, which the storm presents, in its regular course over such locality.
"Some storms are interrupted in their development by the near approach of another storm. Care must be taken, therefore, not to mistake the N.E. Wind of a storm whose north-western limb is thus intercepted by a bordering storm, and which hence is sometimes followed by the natural current of air from the S.W. quarter, for the changes that pertain to the centre of the gale."
Mr. Redfield says, in conclusion, "That courses and developments of the storms which pass over the Island of Great Britain are believed to be more complex than on the shores of the United States. It is not improbable that the course of many European storms is in a southeastern direction. A comparison of marine reports has shown me that, while a storm was blowing at West or W.S.W. in the English

[^18]Chan
and
the 1
for a
(82
Otto
unkn
the V

Channel, it was blowing S.E. at Elsinore ; at N.E. on the East coast of Scotland; and at North and N.W. in the Irish Channel; thus exhibiting, plainly, a rotation to the left : but it is on careful investigations, hereafter to be made, that we must rely for a proper development of the system of European storms." *
(82.) The Season which is most liable to these visitations is between July and October; they are comparatively rare during other months, though not entirely unknown. The following is a list of 112, arranged in the months they occurred in ihe West Indies, taken from Mr. Birt's Hand-Book:-

(83.) The Barometer will be found an unerring indicator of the approach of these meteors, provided proper attention be paid to its monitions. As a general law, the Collowing will be its.usual vibrations:-Just previous to the commencement of the harricane, the mercury will suddenly rise above its ordinary level $; \dagger$ soon after it will begin to fall, and the wind probably rises, showing that the storm has began. The mercurial column then begins to descend, rapidly at first, and then more slowly; till the centre of the hurricane has passed over, when it begins gradually to rise, and the reverse of the commencement ensues; it attains a higher level, and then as suddenly falls to the mean height. This is supposing the whole of the meteor to pass over, and the centre to be crossed; the mercury showing the quantity of atmosphere above. Upon a little consideration, it will be evident that the form of the upper surface of the revolving storm, or the section of the vortex, is described by the rariations in the barometric column. It by no means follows that, practically, this will ai ways be found : a ship may only skirt the exterior of the storm, and, consequently, the mercury will only rise, or ossillate, according to the relative position of the hurricane and the ship, bit it may be taken as an indication, when the barometer begins slowly to rise after being depressed, that the greatest danger has passed over, or that the ship is steering away from it. Therefore, should there be any sudden change in the barometer, either rising or falling, its indications should never be neglected, especially daring the period, and in the regions, subject to these storms. \ddagger The barometer sometimes sinks two inches during the progress of a hurricane.-(See Reid, pp. 268, 271.)
One great advantage in the Ancroid barometer is, that its variations occur simultaneously with their causes. In the mercurial barometer, the friction of the mercury on the tube, and other reasons, concur to make the column rise or fall at some time after the change has oceurred. In this the Aneroid barometer possesses great advantege, and it has another very great claim to notice,-that it clearly shows very minute changes, which the oscillation or pumping motion of the mercury in bad weather will not allow to be estimated.
(84.) The main object of the navigator, vhen assailed by a hurricane, should be to keep his vessel clear of the centre of rotation, as there the strangth of the wind concentrates, sudden shifts take place, and heary and confused seas break. It is obvious, that the nearer the vortex is approached the quicker the shift of wind will be, and tice versâ.

* "American Journal of Science and Arts," vol. Exxv, †" Reid," p. 421.
\ddagger In connexion with barometric changes, we may here advert to the constitution of thr atmosphere, as mentioned on p. 180. To that statement we will add the conclusions arrived at by Professor Dové, of Berlin, from his observations. In the northern hemisphere, the barometer falls during E.S.E. and E, winds, passes from falling to risiug during S.W., rises with W.N.W. and N., and has its maximum riso with N. W. wind.

The thernometer rises with E.S.E. and S. winds, has its maximum with S.W., fulls with W.N.W. and N., and its minimum at N.F.

The olasticity of vapour increases with W.E.E. and S. winds, has its maximum at M.W., and diminishes during the wind's progress by W. and N.W. to N; at N.E. it has a minimum,

The centre of the storm is most likely to be different at various times: but it is certain that, in some cases, a certain interval occurs, and this of considerable extent; while in others it has been thought that there is no calm or open space free from its impetuosity. At all events, it must naturally be supposed, that the nearer the proximity of the centre the greater must be the danger from the force of the wind, and its more quickly shifting its direction.

Lieutenant Erans remarks that, "When fairly under the dominion or power of the storm, and in any part of the area, except in the immediate vicinage of the centre of rotation, a ship will not be liable to be taken aback; because, if scudding, she would not intersect the wind; and if she be lying-to, it will either break her off or draw aft gradually, according to the tack she is on: but the case may be different under certain circumstances. Most ships are dismasted at the crisis ; that is to say, at the time the wind blows strongest, which is always on the nearest approach from the centre to any given position. The point at which the wind of the hurricane commences, if observed, will make known to the observer the verge under which he is placed.
(85.) Prognostics.-With that threatening aspect of the aky which generally precedes all storms, -such as the greasy halo round the sun or moon, the rolled and tufted forms of the clouds, with their lurid streaks of light and extraordinary colours, and the heavy bank clinging to the horizon with its darting forks and threads of pale lightning, -every seaman is acquainted. The best and surest of all warnings will, however, be found in that invaluable and seldom-failing monitor, the barometer ; the language of which, in the torid zone, is unmistakeable, because there it is usually so tranquil and undisturbed. When any such warning sy mptoms are observed in any quarter of the world it may be supposed that no time will be lost in making all due preparation, and especially if to such menacing appearances be added the confused and troubled agitation of the sea which often precedes these revolving storms, and always shows that they are at no great distance. But if these combined prognostics should occur within the limits of those regions in which these cyclones occur, let the seaman immediately consider the possibility, at least, of his being about to encounter a storm of that revolving type of which we have been treating.*
(86.) Acting under this anticipation, his first care should be to discover the position of the storm with respect to the vessel, or, in other words, to ascertain its bearing. Fortunately this is a problem of extreme facility, for, as we have already stated, it is one of the remarkable laws of these storms that in opposite hemispheres they revolve in opposite directions-in North latitudes against the course of the sun, that is to say, from right to left, or in a direction contrary to the movement of the hands of a watch, and in South latitudes from left to right; and, secondly, it is known that, no matter how great or how little may be the size of the storm-field, the wind continually blows in a circular course round and round a centre or vortex. It therefore necessarily and demonstratively follows that this centre must always be at right angles to that circular course; or, in other words, that the bearing of the centre lies 8 points of the compass from the direction of the wind. Now, these two considerations are quite enough for our purpose, for they enable us to answer the question instantly and certainly by the following general rule :-

* Although it is true that the prognostics of a common coming storm are, in genoral, aufficiently plain to bo understood by a spectator, from the angty appearance of the firmament, yet it is also true that there is no particular indication in any one quarter of the horizon sufficiontly marked, like the space occupied by the Black squall panoply of the Caribbean Sea;-so that an acuto seaman shall say, "thence wil' the blast come." On the contrary, the clouds gather together (we speak from experience) in dense masses, of a cinereous hue, in every direction, until the whole canopy of herven is overspread, and tho gloom at last becomes so intense that, even at mid-day, to speak within bounds, beyond a quarter of a mile no object can be even indistinctly seen. Thore are, however, some degrees of variation in the intensity of the obscurity; but we all know that the measure of distance by the eye upon such an exciting occasion is not likely to be very exact; at one period in a hurricane, just as the ship was dismasted, at the crisis, near noon, we could not clearly diatinguish the end of the bowsprit from the quarter-deck.-Licutenant Eirans.

: but it is le extent ; ee from its aearer the the wind,
wer of the e centre of she would r draw aft under cerat the time e centre to nmences, if aced.
terally prerolled and ry colours, eads of pale nings will, meter ; the susually so ved in any ing all due he confused storms, and prognostics :cur, let the o encounter
the position its bearing. stated, it is hey revolve at is to say, of a watch, , no matter nally blows ssarily and o that cirpints of the is are quite ly and cer-
in general, the firmaarter of the oply of the 9." On the nasses, of a rad, and the s, beyond a me degrees of distance period in a clearly dig-
(87.) Bule.-Look to the wind's eye,-wet its bearing by the compass,-take the 8th point to the RIGFT thercof-and that will be the bearing of the centre of the storm if in north latitude; or, if in south latitude, the 8th point to the IBFIT of the direction of the wind. For example : suppose the vessel to be in $14^{\circ} \mathrm{N}$. latitude, the wind from E.S.E., and the barometer and sky indicating a coming gale,-then, look at the compass, take the 8th point to the right of E.S.E., and S.S.W. will infallibly be the bearing of the brewing storm, if it be of a revolving type. Or, under similar appearances of the weather in $14^{\circ} \mathrm{S}$. latitude, with the wind S.W., take 8 points to the left of S.W., and S.E. will consequently be the direction of the centre of the impending gale. In the former case, the vessel will be on thn northern edge of the storm-field; and in the latter, she will be somewhere in its north-western segment.

-

(06. j In order to gimplify this subject, and render it perfectiy clear, a copy of the figure annexed (obligingly communicated to Mr. Purdy by the late Lieutenant Evans,
who wrote on this subject under the name of "Stormy Jack"), may be drawn on thick. paper or card-board. The onter circle to be fixed, representing the points of the horizon; the inner circle, with index, to be moveable, and attached, with a button in the centre, so as to revolve on the outer or under circle: thus the inner circle may represent the phases of the wind, as it gyrates round a centre; the arrows showing the revolution of the aerial current from right to left. The moveable circle is subdivided into four quadrants, for the purpose of facilitating the mode of operation.

Here (says Lieutenant Evans) it will be obvious that, if a vessel be caught under the N.N.W. verge of the hurricane, the wind; as shown by the arrow annexed to that point, will be, apparently, from E.N.E., and the changes will be seen as they occur progressively. On the N.E. verge of the hurricane the wind will appear to come from the S.E. On the North verge the wind will be East; and if on the West, it will be northerly, as shown in the figure.

The subject, when considered, will be readily understood: only bearing in mind that the shifts of wind will appear, in most cases, to be from left to right, while the general wind is actually pursuing quite a contrary direction.
(89.) To use the instrument, formed as above, place the moveable circle upon the under one, East, in juxtaposition with the North point of the horizon. The vessel's position may be marked as a stationary spot on the outer or under circle-say under the N.N.W. verge, where the wind is at E.N.E. ; then move the upper circle in the line of progression to the N.W., which is the general line pursued, and the changes of the wind will be seen as they oceur on the object marked.

The direction of the wind is independent of the progression of the storm ; and as the current of air, whilst sweeping round the centre, pursucs one unvaried path, it follows that, under every point of the horizon, there will be experienced a wind blowing at right angles to it, unchangeable in its direction ; thus, under the North point of the horizon, there will be an East wind; under the South point, a West wind; and under the East point, a South wind. So that, were the storm stationary, a ship scudding round the entire circle, from any given position, would experience the wind from every point of the compass, in regular succession; but this, as the fact is, can very rarely, if ever, happen, on account of the progressive movement of the entire meteor.

As these storms do not pursue a uniform velocity, the rate of their actual progression can be arrived at only after they have ceased to act on any two or more stationary spots; or upon two ships, by noting the exact time each experienced the first shock of the hurricane, and also the time of its departure, respectively. Some cause or causes operate to accelerate the rate at one time, and retard it at another.

On reference to the preceding diagram, it will be seen, that if a ship first encounters a hurricane with the wind at E.N.E., she will be under the N.W. verge; and as the progression is (generaily) to the N.W., the changes of the wind will be to the eastward, going round to the S.E. and South, and ending with it at about S.W. by S. Apparently these changes will be from right to left.
It becomes necessary here to observe, that, although the general medium course of the hurricane in the West Indies has been found to be N.W., yet in two or three instances we have reason for believing that either a deviation in particular parts of its course, or otherwise a vibration of oscillation of the entire metcor, has taken place. Any deviation, however, from the gencral course pursued by the storm to the N.W. can easily be detected, from the veering of the wind; as that ought to be regular, when the progressive path of the storm is regular, except at or near the vortex. For instance, if the hurricane commences at E.N.E., and the wind does not follow the regular successive changes, as noted above, we may be assured that the storm is not pursuing a course to the N.W.; and the true line of progression may be ascertained by the circle, so as to gain the corresponding points of change to those which occur.

Again, if the storm commences at North, the wind ought to veer (under the same progressive direction of N.W.) to the N.W., West, and.end with it about W. by S. or W.S.W. !lut if, after the wind has got io West, the storm should end with it at South (as it did at Antigua in 1804), we shall be assured that a deviation had takon

븝 sou con hav ac wh gui pes of t is to
place at the westward in the progression, or otherwise a vibration or oscillation to the southward.

The uncertainty of these aberratioiss should not deter the navigator from placing confidence in the general remarks here given, as these (based on Mr. Redfield's theory) have been arrived at from experience, from facts which are incontrovertible, and from a careful study of the subject ; and besides, should these variations not happen, and to a certainty they do not always occur (at least on the ocean), he may benefit by them; whilst, under a case of their occurrence, no rules can possibly be given for his guidance; he must place his vessel in the best position his judgrent points ont, and passively await the result.

We shall now endeavour to explain, in the plainest manner we can, the operation of the wind, and its effects on a vessel in each of the quadrants, when the progression is to the N.W.
(90.) First, or N.E. Quadrant.-Wind from South to East. The changes of wind, if a vessel be lying-to, will appear to take place from left to right throughout : as the wind will seem to draw round them from the eastward toward the Sonth, although it is in fact proceeding the contrary way, or from right to left.

The navigator's attention is particularly directed to this apparent paradox; for, whilst he notes the wind down in his journal as veering with the sun, it is all the time, as remarked before, going the contrary way! The delusion is occasioned by the progression of the hurricane to the N.W., which, by receaing from the vessel's position, has the effect of bringing up the more southerly phases of the wind in succession, and, consequently, imparting to these an apparent contrary direction to that which the whole current of air is actually pursuing. This deceptory process is somewhat similar to the well-known astronomical illusion every day before our eyes: we allude to the apparent course of the great luminary. Not only can we imagine, from the evidence of our sense of seeing (not at all times to be depended upon), that the sun is moving from East to West, but, in common parhance, such idea is invariably expressed ; yet everybody knows that this is only apparent, and that the delusion is occasioned by the diurnal rotation of the earth round its axis from West to East.
This point, however, once clearly understood, will no longer perplex us ; and the best mode to adopt, in order to avoid being puzzled, is, to use tho moveable circle with the phases of the wind marked on the rim, placing it over the fixed circle with the points of the horizon marked to represent the ocean.

We nov proceed with the first guadrant. If a ship scuds to the northward, the direction of the alicrations of the wind will in a great measure depend upon her velocity, as she is crossing obliquely the course of the progression: if she keeps pace with the northerly advance of the storm, the wind will remain the same; if she exceeds it, the wind will draw round in the eastward; and if the progression outstrips her, the changes will be to the southward. In either of the latter cases the variations will be few, in all probability; and the westerly progress may be expected to cause the ship to be speedily thrown out of the cirele of operations.
im course of or three inparts of its taken place. to the N.W. be regular, ortex. For follow the torm is not ascertained ioh occur.
er the same V. by S. or with it at had taken

A ship is likely to enter this quadrant only under the northern verge from the North to the N.E. point : if she happens to bo standing to the southward, within the limits of the trade-wind, she will be liable to be taken aback; but if standing to the northward, of course she will not.
(01.) Second, or S.E. Quadrant.-Wind from West to South. A ship lying-to, with the wind from any point between South and S.W., the shifts will be from the southward toward the West, apparently from left to right. If the wind be between the S.I. and West, there will be few if any changes, as the ship will be near tho posterior line of the progression; what changes may happen will probubly be from West towards the South. The vessel will soon be clear of the commotion. It seems pretty evident that a vessel will not, in the first instance, be liable to fell under the S.E. verge in this quadrant, for this reason-that she cannot overtake the hurrleane, as its velocity, in all probability, at any time would exceed her rate of sailing. Sho may, however, just touch literully about the southern verge, where she would get the
wind from the West. To enter this quadrant, therefore, a ship must pasg through some other.
(93.) Third, or S. W. Quadrant.-Wind from North to West. A ship lying-to, the wind from the northward (as the storm progresses) will draw rouild to the westward, from right to left, truly as apparently so.

As a ship scuds to the southward and eastward, the wind will draw round in the same manner as mentioned above. It appears obvious, that a vensel falling into the storm, under any point in this quadrant, would merely feel the "brwsh," but she will be liable to be taken aback if standing to the northward or north-eastward on first entering the scene of operation, supposing her to be within the limits of the trade-wind.
(94.) Fourth, or N.W. Quadrant.-Wind from East to North. If a ship lien-to with the wind at any point between East and N.E., it will appear to draw round from left to right, or from N.E. by E. to East. If she lies-to with the wind between N.E. and North, the shifte will be from right to left, or from N.E. by N. to North. Under the N.W. verge (where the wind is at N.E.), a ship, being there in the line of the anterior progression, will drift, probably, into or very near to the centre of the circle, which, on account of the sudden shifting of the wind there, should, if possible, be avoided, as there the greatest danger may correotly be considered as existing.

If a ship scuds, under the same circumstances of winds, the changes will appear the same as above given; but slower in the first instance, and quicker in the second, for these reasons: that in the one case, the points of change are receding from her as she advances ; and in the other, they draw toward her approach, her velocity through the water accelerating the alterations; and this difference is occasioned by the progremsion to tho N.W.

Within the limits of the trade-wind, if a ship be standing to the southward, she will not be liable to be taken aback, or striking the storm in this quadirant, but she would be so if steering to the northward.

It should be constantly held in remembrance, that, under all circumstances, the wind remains the same; or, in other words, that under any given point of the horizon, the wind will be found to blow from a particular direction unchangeable, so that there is actually no shifting; the changes observable being occasioned by the progression of the storm to the N.W., and the movements of a vessel.

From this peculiar character of the tempent, the course which a ship will parsue through the circle of operstions, as also the suocesaive changes of the wind, as thewo appear to take place, become an easy problem to solve, after having noted the point from whieh the first wind or the first shift, is felt, protiderl no divergency in tho course, or vibratory motion of the metcor, takes place.

Although a ship in most cases, we imagine, may be more likely to fall into the circle of operations nnder the north-western verge of the storm than in any other part, as that is the anterior advancing section, no general rules can be laid down for the guidanee of the mariner for placing his ship in such a position so as to ensure her not being taken aback when the storm shall be first felt, because until that moment arrives, when the direction of the first blast is to become his "polar star," he cannot, with unerring certainty, anticipate his position with respect to the particular verge of the hurricane that is approaching him.

Under nuch unavoidable circumatansen, he must use his best judgment in preparation for meeting the worst, and be ready to lay his vessel to, or to scud, according to the direction of tho wind first experienced. To be quite sure of what he is about to do, perhaps the safest plan would be to wait until the first shift takes place after the commencement of the storm ; by which measure, his position would be confirmed, a point of material consequence to arrive at.

Fivery experienced seaman, after having, given the theory his best attention, and mnde himeolf familiar with the whole woring of tho wonderfui meteor, will of courwe follow the dictates of his own mature judgment, upon an occasion that will assuredly
call upo whi first
our we a natu ally sensi plan must are n
call forth the full exercise of it. Withont, therefore, presuming or desiring to obtrude upon him the manncr we ourselves should act under a case of such uncertainty, which would demand all the resources of mind of the individual commander, for the first time placed iń such a dilemma, we shall nevertheless offer it here a mere :llustration.
Let us, then, sappose that we are steering to the northward in our ship, within the limits of the trade-wind (cali it E.N.E.), and that certain prognostics appear, which our judgment informs us forbode a storm. If it happens to be the hurricane season, we are bound by prudence to prepare the ship for encountering a tempest of that nature, even though appearances may induce us to think that such would not eventually happen; for, whether a mere common gale or a hurricane should follow, every sensible person will admit that, during that season, it is the wisest, as it is the safest plan, to be prepared to meet the worst that may happen under such appearances. It must be recollected, that nature herself proclaims the warning, and her admonitions are not to be disregarded with impunity.
Without loss of time, we make the ship snug, hatches battened down, \&c. This done, we should bring her to the wind on the starboard tack, with her head to the northward, with a fore and a mizen storm stay-sail. We cannot, as we said before, anticipate under what verge of the storm we shall enter, but we shall have done all that prudence can dictate, by lying-to without square sails, and of course making our minds up to have the fore-and-afters blown to shreds by the new wind, come from whatsoever quarter it may. In this position we must wait patiently until the first shift of wind takes place. If this shold be from E.N.E. to E. by N. and East, we should make ourselves easy in the position obtained, with refcrence to the particular verge : i. ϵ atorm, as well as in that we had placed the ship; having the assurance (from \quad of wind) that the anterior verge which had struck us, would be now runni $-y$ at the rate of from 15 to 20 miles an hour, whilst our drift to the westward would not exceed 31 miles in the same time; so that every point that the wind drew round toward the South, would tell as plainly as if a map of the whole operations were suspended in the heavens overhead, for our consolation, that our exit from the commotion was rapidly drawing nearer and nearer; and that, if the ship proved equal to contend with the crisis, and no vibration occurred, we should escape the centre.

This may sound, in the style of the celebrated Francis Moore, of predicting memory, very like "taking a peep into futurity." We are not, however, studying the doctrine of probabilities. As far as we at present know of the matter, and (thanks to Mr. Redfield) we have gained a pretty general insight into it, there appears but two circumstances at all likely to upset our calculations and foresight of what is to happen, and there are, as intimated before, a divergency in the line of progression, or a vibration of the entire meteor; and here we are taught, thent, with all the wide and searching capacity of our minds, there is a point beyond which it is not permitted man to peer. We have been allowed, however, to glean enough of the economy of this wonderful phenomenon, to excite our unfeigned gratitude to Him "who rules the whirlwind and the atorm." We proceed:-

On the other hand, if the shift of wind was to the N.E., or even a point on cither side, we should immediately know that we were in the "very jaws of the lion;" and to escape being overwhelmed in the vortex we 2. ust run for it.* On this occasion, every moment is of importance, when we bear in mind that we are now in the path which the centre will follow. To the S.W., therefore, wo start away, not without an impressive dread, as the wind comes veering round and round toward the North, of a too close approximation to the vortex, toward which curve the ship makes inclines. If we could tell the exact diameter of the hurricanc, and its precise rate of progression, we could calculate pretty accurately whether, and at what distance, we should
tention, and fill of courso ill assuredly

[^19]pass the centre; but as these data can never be obtained, we have nothing otherwise than prudence, to gude us in this particular case, the most perilous that can oceur.
There is a very nien point to be determined upon at this juncture, and one, although there will be but a few minutes for decision, that should not be rashly settled; a sort of choice between the scalping-knife and the tomahawl-a very forlorn hope, take which measure you please; it is this: to scud under square sail, or to run with bare poles? Now, however desirable i is that top-sail should be carried in a storm where the waves ris to a great height, f d lreak in heavy surf, and a ship's way is lessened as she drops into the trough, to prevent her frcm being pooped, yet, we say, although it should be practicable to set a close-reefed main-topsail, the propriety of so doing is questiunable until the wind has drawn round to the westward of North (and then it might as well be left alone), for not kefore that will the dreaded centre have been passed; and as there can be no certainty of a ship's safety until that "consummation" has been accomplished, the chance of being taken aback with equare sail deserves the most serious consideration of the commander. The danger in both cases is imminent; bnt, in determining for ourselves, we should run with bare poles, until finally thrown out of the storm. Indeed, after al. the judgment, care, anciety, and apprehension which may be displayed and felt on so trying an occasion, our pproximation, notwithstanding the vessel's dash of 12 or 18 knots, may be so near the vortex as that every stick shall be blown out of her. And we impressively declare our conviction, that hitherto the majority, if not all, the vessels that have been lost in hurricanes and typhoons, have foundered by falling into the centre with square sail set whilst scudding. On lying-to, no sail would stand the disruptive puffis for five seconds!
We have ourselves, in utter ignorance of the op erations as they occur, and are here stated, been scudding in a frigate, partly dismasted, with reefed main-sail (the only sail available), before the iurious blast of a hurricane, after the wind had veered to the S.W. As it happened, we had fortunately dropped into the second quadrant: and were drawing near our exit, but we knew nothing of that; and if it had happencd in the fourth quadrant, and we had got into the centre, there is no doubt but that the ship must have foundered! But to proceed:-

No other resource is available to us under such circumstances as described above; and no other alternative remains except the desperate one of heaving-to, defying the fary of the storm, and taking the chance of being thrown directly into the centre of commotion; where, if the ship should not founder, she would, there is scarcely a doubt, lose her masts, and be otherwise completely assailed at all points by the raging clements !
The N.W. v rge of the hurricane, whilst it advances in that direction, is the "very head ard cront" of the danger, the nucleus of which follows, in a direct line, the advance of that point. The conscquences, be they the foundering of the ship, or the loss of her masts, \&o., are inevitable, if prompt and active measures ave not taken to get ont of that position.
Should the wind, at first, keep steady at E.N.E. for some time, which it would do (if the storm is of great extent) when a ship enters under the N.N.W. verge, the navigator may be a littic puzzled how to act, as anticipating a shift, to determine his position; he need be under no apprehension; the shift will come in due time (according to the extent of the circumierence) from the li. by N., and so gradually round (but quickening as he approaches the centre) to the southward: he may, however; expect to loose some of his spars when the crisis arrives.

We have dwelt longer apon the action of the wind in the fourth or N.W. quadrant, because under this anterior verge the greatest peril may follow; and we may now be permitted to express a hope that mariners may derive some little advantage from the perusal of this paper, as the writer has devoted his hest attention to the subject with the sole view of reudering them, as brother sailora, a service.
joiñ Evans.
(95.) We will elose this portien of our remarks wilis some general observations on

the

 weing otherot that can , although led; a sort hope, take (with bare orm where is lessencd 7, although so doing is and then it have been ummation" leserves the imminent; dly thrown prehensiox nation, notvortex as re our coneen lost in square sail ffis for five
nd are here il (the only d veered to adrant: and lappencd in ut that the
lbed above; lefying the e centre of scarcely a the raging
the " very t line, the hip, or the ken to get
t would do verge, the ermine his ne (accordally round , however,
or N.W. v; and we nome little t attention rice.
Sitans.
vations on
the subjeot by Captain Richard Leighton; of Montrose, to whose kinduess and talent wf : : - ? - debted for numerous additions to hydrography:-
" "st. Outward-bound ships. As the S.E. storm-wind is generally nearly directly in front of the storm, on meeting with that wind and a falling barometer, \&c., you should bear off freely to the north-westward, thet is, nearly at right angles with the route of the gale, and all that you run that way will increase your distance from the centre when it passes you; whilst, if you run westwarc, you will pass so near to the centre that you will be taken aback by the wind flying into the north-westward; the object is to skirt the gale, and haul more westerly as the wind veers to the eastward.
" 2 nd . When the wind is to the southward of S.E., it appears that you must pass through the right-hand semicircle, and should haul to and hold all the soutiern that you can; lay down the bearing and distance of the centre, and as soon as practicable, by a second bearing and distance, estimate the route of the gale and its progress.
" 3rd. Estimate your distance, and the course that you are likely to make, clear of leeway, and some veering in the wind, and this will give you an idea at what distance you are likely to pass the centre, and what is likely to oceur. Knowledge is power. Most carry sail long enough, but many don't set it soon enough.
"4th. The farther the wind is to the sonthward, the nearer you must pass to the centre, and as the wind veers and breaks her off, she will ley in the trough of the sea, and is most likely to get damage that way, so that if the wind gets loose, it is time to be upon the right tack (that is, the starboard tack, with westerly winds, in the Atlantic, being in the right-hand semicircle). Every one knows best what his own ship will bear, and what she will perform; however, if you vill go ahead till the last minute, when the barometer stops falling, it is hiyh time to have her round upon the right tack, as there is generally a tremendous gust shortly after the barometer stops falling: or, when she has made a slight rise, and the ship should be upon the starboard tack, that she may come up and bow the sea when she takes it.
" 5 th. To wait for ' the lull,' or the 'sky to the westward lighting up, to indicate the shift,' will often be too late.
"0th. Eight miles por hour, I think, is a fair medium for the rate of progress of rotatory gales in the Atlantic ani Southern Indian Oceans. The regular West India cyclone travels generally much quicker, and some Mauritius cyclones have a very slow movement; that which the Charles ifeddle scudded three and a halp times round, only progressed about $2 \frac{1}{2}$ miles per hour.-At Sea, August, 1851,R. Leighton."
(96.) EXAMPLEN-TO illustrate the preceding remarks and directions, accounts of a series of revolving storms is given. They are illustrated by the map before alluded to at the commencement of the work.

Routes on the Chart-No. I. Trinidad to Yucatan, over the middle of the Caribbean Sca, June 23 to 28, 1831.
No. II. Barbadoes to the Mississippi, August 10 to 17, 1831.
No. III. Guadaloupe to the Bank of Newfoundland, August 17 to 29, 1827.
No. IV. Guadaloupe and Antigua to Charlestown, and thence to the Bay of Fundy, Scptember 3 to 10, 1804.
No. V. Antigua, passing over Cuba, to the coast of Texas, August 12 to 18, 1835.
No. VI. Barbuda to Charlestown, and thence to the Bank of Newfoundland, August 12 to 10, 1830.
No. VII. From the intersection of 20° North and 60° West (N.E. of Barbudn), paseing to the West of Bermuda, and thence N.E. to the parallel of $42 \frac{1}{3}^{\circ}$, September 29 to October 2, 18 cu .
No. VIII. From the parallel of 22° (North of Porto-Rico) to Cape IIntteras, to the coast of Maine, September 1 to $5,1821$.

No. IX. From near the same spot as No. VIII., on a similar ronte, but more to the eastward, Angust 22 to 27, 1830.

No. X. From the parallel of 30° North, on the East side of the Florida Stream, to Cape Sable of Nova Scotia; January 13 to 16, 1831.

No. XI. Inland storm, over the lakes, and thence to the Gulf of St. Lawrence, November 10 to 12, 1835.

The route designated as No. I. is that of the hurricane which visited the Islands of Trinidad, Tobago, and Grenada, on the 23rd of June, 1831. Pursuing its course through the Caribbean Sea, it was subsequently encountered by H.M. schooner Minx, and other vessels, and its swell was thrown with great force upn the south-eastern shores of Jamaica on the 25th, while passing that island, where the wind at this time was light from the northward. After sweeping through the Caribbean Sea, the hurricane entered upon the coast of Yucatan, on the night of the 27th, having moved over the entire route from Triridad to the western shore of the Bay of Honduras, in a little more than 100 hours, a distance of nearly 1700 miles, equal to 17 .miles an hour.

Track No. II. is that of the hurricane which desolated Barbados in the night of the 10th of August, 1831 ; and which passed Porto-Rico on the 12th; Aux Cayes, in Hayti, and S. Iago de Cuba, on the 13th; Matanzas on the 14th; was enconntered off the Tortugas on the 15 th; in the Mexican Sea on the 16 th, and was at Mobile, .Pensacola, and New Orleans on the 17 th; a distance of 2,000 miles in about 150 hours, exceeding $13 \frac{1}{2}$ miles an hour. Its course, until it crossed the tropic of Cancer, was nearly W.N.W. Mr. Redfield adds-" in pursuing its northern course, after leaving the ocean level, it must have encountered the mountain region of the Alleganies, and was periuaps uisorganized by the resistance opposed by these elevations. It appears, however, to have caused heavy rains in a large pxtent of country northeastward of the Mexican Sea."

Track No. III. is that of the destructiue hurricane which swept over the Windward Islands, 17th August, 1827 ; visited St. Martin and St. Thomas on the 18th; passed the N.E. coast of Hayti on the 19th ; Turks' Islands, on the 20th; the Bahamas on the 21st and 22nd; was enrountered on the coast of Florida and South Carolina on the 23rd and 24th; off Cape Hatteras on the 25th; off the Delaware on the 26th; off Nantucket on the 27th, and off Sable Isle and Bank on the 28th... Its ascertained course and progess were nearly 3,000 miles in about eleven days; or at the average rate of about 11 miles an hour. The direction of its route, before crossing the tropic, nearly $\mathrm{N} .61^{\circ} \mathrm{W}$., and in lat. 40°, while moving eastward, $\mathrm{N} .58^{\circ} \mathrm{E}$.

Track No. IV. An extensive hurricane of September, 1804, which swept over the Windward Islands on the 3rd of that month; the Virgin Islands aud Porto-Rico on the 4th; Turks' Islands on the oth ; the Bahamas and the Strait of Florida on the 6th; the coast of Georgia and the Carolinas on the 7th ; Chesapeake and Delaware, with the continuous portions of Virginia, Maryland, and New Jersey, on the 8th; and the States of Massachusets, New Hampshire, and Maine, on the 9th; being on the high lands of New Hampshire a violrut snow-storm. The destructive action of this storm was widely exteuded on both sides of the track indicated upon the chart, and the same fact pertains in a greater or less degree to the other storms herein mentioned. It appears to have passed from Martiuique and the other Windward Islands to Boston, by the usual curvilincar route, in about six days; a distance of more than 2,200 miles, at an average progress of about $15 \frac{1}{3}$ miles an hour.

Track: No. V. The route of the hurrieane which ravaged Antigua, Nevis, and St. Kitt's, in the afternoon and night of August 12th, 1835 ; St. Thomas, St. Croix, and Porto-Rice, on the 13th; Hayti and Turks' Islands on the 14th ; the vicinity of Matanzas and Havana on the 15th; was enenuntered off the Tortugas, on the Bank of Florida, on the 16 th ; in lat. $27^{\circ} 21^{\prime}$, long. 94°, and other points on the 17 th and 18 th; and at Matamoras, near the Mexican shore, lat. $26^{\circ} 4^{\prime}$, on the 18 th, where it was most violent during the succeeding night. It also passed over Galveston Bay, in Texas, and there blew with violence from the S.E.; while at the mouths of the Mississippi and along the northern shopes of the gulf, the gale was not felt. This

stor

for
sho
prof
7
pass
Tur
the
New
18tb
day:
than
Mr.
be fi
locit
15,0
now
22th
serib
grea
fell
avers
Tr
This
Turk
the le
the 3
Long
Conn
appea
miles
Unite
Tra count the B and 2 Amer some

$$
T r a
$$

coast track on the nearly the su

Tra Onturi from t portio directi being with e direeti Lake ${ }^{2}$ Scotin. of the Alleelevations. intry north-
r the Windon the 18th; the Bahamas uth Carolina on the 26th; s ascertained the average g the tropic,
ept over the prto-Rico on rida on the à Delaware, on the 8th; h ; being on vo action of in the chart, herein menward Islands f more than
evis, and St. t. Croix, and inity of Mathe Bank of th and 18th; where it was iston Bay, in ouths of the ot felt. This
storm is remarkable, as moving more directly and farther to the West, than is usunl for storms which pass near the West Indian Islands, it having reached the Mexican shores before commencing ity swcep to the northward. Course, abjut N. 73° W.: progress more than 2,200 miles in six days; neurly equal to $15 \frac{1}{8}$ miles an hour.

Track No. VI. The memorable srale of August, 1830, described hereafter, which, passing close by the Windward Islands, visited St. Thomas on the. 12 th was near Turks ${ }^{\circ}$ Islands on the 13th; at the Bahamas on the 14th ; castern coast of Florida on the 15th; coasts of Georgia aud the Carolinas on the 16th; off Virginia, Maryland, New Jersey, and New York on 're 17th, off George's Bank and Cape Sable on the 18th; and over the Newfoundland Bank on the 19th; having occupied about seven days in its asecrtained course from near the Windward Islands, a distance of more than 3,000 miles ; the rate of its progress being equal to 18 miles an hour. If, adds Mr. Redfield, we suppose the actual velocity of the wind, in its rotary movement, to be five times greater than this rate of progress, which is not beyond the known velocity of such winds, it will be found equal, in this pericd, to a rectilinear course of 15,000 miles. The same remark applies, in substance, to all the storms which are now passing under review.

Track No. VII. was encountered to the northward of the Caribbee Islands on the 22th of September, 1830 ; its route was to the eastward of all those previously described, and was fcund on the Grand Bank of Newfoundland, October 2, having caused great damage and destruction, on its widely-extended track, to the many vessels which fell in its way. The ascertained route may be estimated at 1,800 miles, and the average progress 25 miles an hour.

Track No. VIII., experienced in September, 1821, as more fully shown hereafter. This hurricane was extremely violent; it was encountered to the north-eastward of Turks' Islands, on the 1st of the month; to the northward of the Bahamas and near the latitude of 30° on the 2nd; on the coast oí the Carolinas early in the morning of the 3rd; and from thence, in the course of that day, along the coast of New York and Long Island; and it is represented to have continced its course across the States of Connecticut, Massachusets, New Hamp3hire, and Maine. The diameter of the sturm appears to have exceeded 100 miles; its ascertained route and progress about 1,800 niles in sixty hours, equal to 30 miles an hour.

A similar bat less violent st:rm swept along the same portion of the coast of the United States on the 28th of April, $183 \dot{j}$.

Track No. IX. The route of a violent and extensive hurricane, which was encountered to the noithward of Turks' Islands, August the 22nd, 1830; northward of the Bahamas on the 23rd; and off the const of the United States on the 24th, 25 th, and 26 th of the same month. It produced much damage, but scarcely reached the American shores. Its duration was ubout forty hours, and progress more tardy than some others.

Track No. X. A violent hurricane and snow-storm, which swept along the American coast from the parallel of 30° North, on the 5 th and 6 th of llecember, 1830. This track corresponds to another storm of similar character, which swept along the coast on the 13th, 14th, and 15th of January, 1831. These violent winter storms exhibiter، nearly the same phases of awind and general characteristics as those which appear in the summer and autumn.

Traok No. XI. The violent inland storm which passed over the Lakes Erie and Onturio on the 11th of November, 1835. This storm was very extensive, spreading from the sea-coast of Virginia into the Canadas, to a limit unknown. The anterior portion of this gale was but moderately felt, and its access was noted chiefly by the direction of the wind and the great fall of the barometer; the violence of the stom being exhibited eliefly by the pesterior and colder portion of the gale, as is common with extensive overland storms. The ragular progression of the storm, in an easterly direction, was established by facts collected by Mr. Redfield, from the borders of Laike Michigan to the Gulf of St. Lawrence und the coasts of New England and Nova Scotin.

In perusing the descriptions above, it is to be noted that the lines on the Chart representing the routes, are given by Mr. Redfield as but approximations to the centre of the traok or course of the soveral storms; and the gales are to be considered as extending their rotative circuit from 50 to 300 miles or more, on each side of the delineations; the superficial extent of the storm being estimated both by ectual information and by its duration at any point near the central portion of its route, as compared with its average rate of progress.

The circular figure which appears upon the Chart, on Tracks Nos. I., V., and VII., will serve, in some degree, to illustrate the course of the wind in the various portions of the superficies covered by the storm, and also to explain the changes in the direction of the wind, which occur successively at various points, during the regular progress of the gale.
(97.) HURRICANES of 1780.-From want of adequate information on the subject, it was formerly assumed that the menorable hurricane of the year 1780, which dispersed and destroyed nearly all the british fleet in the West Indies, took its course from W.N.W. to E.S.E. ; but from aathentic documents, acquired by Colonel Reid, it has been shown that two great storms occurred nearly at the same time, and these have been frequently confounded together, and considered but as one. The first dostroyed the town of Savanna-la-Mar, on the Uid of October, 1780. The second, and by far the gieater one, passed over Barbadocs on the 10th and 11th of the same month, as will be shown hereafter.
The first or Savanna Hurricane appears to have progressed from the S.E. to the western part of Jamaica, and thence passed in a N.N.E. direction over Cuba, the Great Bahama Bank, and Island of St. Salvador, continuing nearly in the same direction to the parallel of $35^{\circ} \mathrm{N}$., in long. $69^{\circ} \mathrm{W}$., whereabout its ravages probably ceased. Between the 5th and 7th of October, it annoyed the squadron under Rear-Admiral Rowley, between the parallels of 28° and $29 \frac{1}{4}^{\circ}$, long. $72 \frac{1}{6}^{\circ}$ to $75^{\circ},{ }^{\circ}$ previous to which, at half-past five in the morning of the 4th, the Phenic frigate, under Sir Hyde Parker, was diviven on shore and wrecked at about 3 leagues to the eastward of Cape Cruz, Cuba. At eleven p.m. of the. 2nd, the ship was off Port Antonio, Jamaica, when the wind began to blow, with a stormy appearance to the eastward, and she then close-reefed her topsails. At eight a.m. of the 3rd, the wind was E.N.E., with oceasional heavy squalls; and Sir Hyde remarked that the weather had the same appearance as he had observed in the commencement of a hurricane in the East Indies. He then ordered the topsails to be taken in, and wore the ship, in order to keep mid-channel between Jamaica and Cuba.
At two p.m. the Phamix lay-to, with a storm mizen staysail, and her head to the northward. When night set in, the storm increased with great violence. At midnight the wind was S.E., and the ship drawing upon Cuba, the captain proposed to wcar her, but no canvas could withstand the wind at this time, and under the direction of the first lieutenant, Archer, she was wore by sending 200 of the crew into the fore-rigging. When about io cut away the masts, the ship took the ground, and if she had not been driven on shore she must have foundered. All the ship's company were saved, excepting twenty, most of whom were lost with the main-mast, and washed overboard.

Of the ships in Rear-Admiral Rowley's squadron, above mentioned, on the 6th and 7th of Outober, the Hector, Berwick, Bristol, Trident, and Ruby, were disabled, and mostly dismasted. They had been sent by the Admiral, Sir Peter Parker, to convoy a flcet part of the way to Europe, and had subsequently the misfortune, in the same month, to meet the great hurricane, next described.
The Savanna burricane seems to have originated within the Caribbean Sea, and aot to have passed over the Eastern Antillas, nor touched on the continental coast to the southward. The Scarburuugh frigate, which was lying a few days before in
the Chart the centre red as exof the decual infors route, as
, and VII., as portions the directe regular
he subject, which discits course lonel Reid, , and these he first desecond, and ame month,
S.E. to the a, the Great direction to eased. Be-ear-Admiral is to which, r Sir Hyde urd of Cape naica, when nd she then , with occaame appeares. He then mid-channel
nead to the e. At midproposed to F the direcew into the pund, and if is company a-mast, aud
the 6th and sabled, and , to convoy a the same
n Sea, and tal coast to s before in

Montego Bay, was lost, and it is supposed that she foundered near the western end of Jamaica.*
The Great Hurricane, which commenced at Barbadoes on the 10 th of October, $1780, \dagger$ with preceded in the evening. of the 9 th by weather remarkably calm, but the sky surprisingly red and fiery, and during the night much rain fell. The storm approached from the S.E., and the ships of the squadron stationed here experienced the hurricane, each in turn, according to the place she was in. A letter from Dr. Blane, dated from the Sandwich, Sir Geo. Rodney's flag-ship, stated that it was not previously apprehended that there would be anything more than such a gale as they experience, from time to time, at that season; but, on the evening of the 10th, the wind rose to such a degree of violence as clearly to amount to what is called a hurricane, At eight p.m. it began to make impression on all the houses, by tearing off the roofs, and overthrowing some of the walls. As the inhabitants had never been accustomed to such a convulsion of nature, they remained for some time in security, but they now began to began to be in the utmost consternation. *" ". It was thought to be at its greatest height at midnigh', and did not abate considerably until eight next morning: During all this time, most of the inhabitants had deserted their houses, to avoid being buricd in the ruins; and every age, sex, and condition, were exposed in the flelds to the impetuous wind, incessnnt torrents of rain, and the terrors of thunder and lightning. Many were overwhelmed in the ruins, either by clinging ior shelter too long in the buildings, or attempting to save whas was valuable, or by laavoidable acsidents in the fall of walls, roofs, and furniture, the materials of which were projected to great distances. Even the bodies of men and cattle were lifted off and carried above the ground. From an estimate of the number of deaths reported to the governor, they amounted to more than 3,000 . All the finits of the earth were destroyed; most of the trees torn up by the roots, and many of them stripped of their bark. The sca rose so high as to destroy the fort, carrying the great guns many yards from the platform, and demolishing the houses near the beach. A ship was driven on shore against one of the buildings of the naval hospital, which, by this shock, and by the impetuosity of the wind and sca, was entirely destroyed and swept away. * * *The mole-hcad was swept away; and ridges of coral rock were thrown up to above the surface of the water: but the harbour and roadstead were, upon the whole, improved, having decpencd in some places six feet, in others many fathoms. The crust of coral, which had been the work of ages, leaving a soft oozy bottom, and many shells and fish were found ashore which had been previously unknown.
The hurricane passed, in succession, over the Islands of St. Vincent, St. Lucia, Martinique, and Dominica, and included within its area those of Guadaloupe, St. Christopher, St. Eustatius, \&c. At St. Vincent, every building was blown down, and the town destroyed. At St. Lucia, which was near the centre of the hurricane, all the barracks and other buildings were blown down and the slips diiven to sea. At Martinique, likewise, all the ships that had brought troops and provisions were blown off the island. On the 12th, four ships with their crews foundered in Fort Royal Bay. The other ships were blown out of the roads. In the town of St. Pierre, on the N.W: coast, cvery house was blown down, and more thant 1,000 people perished. At Fort Royal, the cathedral, seven churches, other religious editices, many public buildings, and 1,400 houses, were blown down, as was the hospital of Notie Dame, in which 1,600 sick and wounded, the greatest part of whom were buried in the ruins. The number of persons who perished in Martinique is said to have been 9,000 . Dominica likewise suffered greatly, and Guadaloupe was within the northern verge of the hurricane.
At St. Eustatius, although not far within the N.E. verge, the loss was very great.

[^20]On the 10th of October, at eleven a.m., the sky on a sudden blackened all round; it looked as dismal as night, attended with the most violent rains, thunder, lightning, and wind. In the afternoon the gale increased; seven ships were driven on shore near the North point, dashed to pieces on the rocks, and tboir crews perished. Nineteen vessels cut their cables ana went to sea. In the nipht every house to the northward and southward was blown down, or washed away with the inhabitants into the sea, a few only escaping. The houses to the East and West were not so much hurt till the afternoon of the 11th, when the wind, on a sudden, shifted to the eastward; and at night it blew with redoubled fury, and swept away every house; but the forts, barracks, hospital, cathedral, and four churches, remained. Here between 4,000 and 5,000 persons are supposed to have lost their lives.

Advancing north-westward, the centre of the hurricane on the 14th had reached to the Mona Passage, on the West of Porto-Rico. Here the Ulysses and Pomona, with a fleet under their convoy, suffered greatly, and here the Deal Castle frigate was wrecked. Another frigate, the Diamond, fell within the western verge of the storm on the 15th, but happily escaped by passing Alto-Vela, on the South side of Hayti. Above the parallel of 20° the Stirling Castle, 64, was lost on the Silver Kay Bank, and most of her crew perished. On the 18 th we find, in about $22 \frac{1}{2}$ N., and $69^{\circ} \mathrm{W}$.; the Trident, Ruby, Bristol, Hector, and Grafton, men-of-war, on the S.W. verge of the storm. The ship last mentioned, on the 16th, at noon, was in lat. $26 \frac{1}{2}^{\circ}$, long. (by estimation) $71^{\circ} 30^{\prime}$; heavy gales and oloudy veather ; lying-to under trysails; the gales split the sails to ribands. On the 18th, lying-to; strong gales and heavy squalls. -17 th to 18 th, carried rapidly to the south-eastward, when the Trident, Ruby, and Hector, came in sight as above. At eleven a.m. spoke the latter, in great distress.
${ }^{7}$ The Ruby, Trident, and Bristol, on the 15 th, were as high as $27 \frac{1}{2}$ N., and they, too, from the western border of the hurricane, were driven to the southward, until they joined company.

Here the detail becomes imperfect, until we reach the Bermudas; but to the N.E. of these isles we find the Bervick, 74, on the 19th, which had fallen, on the 17 th, within the border of the hurricane from a position to the W.N.W., near the latitude of 35°. This ship had previously been one of Rear-Admiral Rowley's squ9dron; she was proceeding to England under jury-unasts, and had reached to the North of the latitude of the Bermudas when the hurricane overtook her. On the 16th, at eleven a.m., during calm, there was a great swell from the eastward. On the 17th, at one p.in., she was taken aback; wore ship and handeủ topsails: at threc, squally, with rain; loosed the topsails; six to eight, wind E. by N., fresh gales. On the 18th, winds variable from the eastward, E. by N. to E.S.E.; after midnight, strong gales and heavy squalls. At noon, by estimation, Bermudas S. 53° E. 31 leagues.-19th, at one a.m., weather moderate, and the ship proceeded on her course.

On the 18th about fifty vessels were driven on shore at Bermuda.
We have been the more particular in giving these details, from having formerly reen misled by imperfect data. In the delineation of the "Great Hurricane," given by Colonel Reid, he first assumes a circle having a radius of about 170 miles, which gradually expands, on its N.W., North, and N.E. course, to 270 , with, we may presume, a diminished and proportionate momentum, on the parallel of Bermuda. The colonel observes that, on reading the logs and the various accounts of this harricane, and comparing the different reports of the wind, it will be found that no storm yet described, more strongly than this proves the rotatory nature of hurricanes.
(98.) Trinidad, Jume, 1831.-(No. I. on the Churt.)-It will not readily be forgotten that, on the 23rd of June, 1831, Trinidad, in the parallel of $10 \frac{1}{2}^{\circ} \mathrm{N}$., experienced one of the most awful storms of wind and rain ever remembered by the oldest inhabitant. The gale commenced at five o'clock on Thursday morning, and continued till eleven; the wind, after shifting from East, North, West, and South, finally settled at S.W., and blew without intermission until three in the afternoon. Eleven or twelve vessels were driven on shore, and several of them severely damaged.
It was subsequently stated that the hurricane was felt at all the southern islands,
wher Gran
loss i
herea
the 1 peries part Vince to th betwe it arr over 1 On th distri that 0 and to on the
the 30
Orlea
it can
Almo:
craft
The si
The g
heavy Barba

At
storm of the as in t weste

The
Orlear
The
St. L
year.
is noti
beauty
waste.
tree, it
every
every
shocki
The
but in wind, increas lightni and fro storm ; peals o fire), and bc founda

The
round; it lightning, on share ed. Ninethe northtts into the mach hurt eastward; t the forts, 4,000 and
reached to mona, with frigate was the storm of Hayti. Kay Bank, and 69° W., V . verge of , long. (by ysails; the and heavy he Trident, er, in great
d they, too, , until they
to the N.E. on the 17th, the latitude andron; she orth of the eleven a.m., tt one p.m., with rain; 18th, winds r gales and s.- 19 th , at

1g formerly ane," given inles, which re may prenuda. The h hurricane, storm yet ienced one inhabitant. till eleven; ed at S.W., elve vessels
rn islands,
where the loss it occasioned was very great. Such a storm had not happened at Granada since the year 1780; the devastation was extensive and dreadful; and the loss in that colony was estimated at $£ 80,000$. Its course to Yucatan is described hereafter.
(99.) Barbadoes, August, 1831.-(No. II. on the Chart.)-In the night following the 10 th of August, one of the most devastating hurricanes that had ever been experienced visited Barbadoes. Not a single house was left uninjured, and the greater part were levelled with the ground. On the 11th it passed over the Islands of St. Vincent and St. Lucia, extending a portion of its inflnence to Martinique and islands to the N.W., and to Granada on the South, but exhibiting its principal violence between 121° and $14^{\circ} \mathrm{N}$., or the parallels of Barbadoes and Martinique. On the 12th it arrived on the southern coast of Porto-Rico; from the 12th to the 13th it swept over the South side of Hayti, and extended its influence as far southward as Jamaica. On the 13th it raged on the eastern portion of Cuba, sweeping in its course c er large districts. The town of Aux Cayes, in Hayti, was almost destroyed by its force, and that of S. Iago de Cuba was very much damaged. On the 14th it was at Havanna; and toward the West end of Cuba. On the 15th it proceeded north-westward, and on the 16th and 17 th it arrived on the northern shores of the Mexican Sea, in abont the 30th degree of latitude, raging simuitaneously at Pensacola, Mobile, and New Orleans, where its effects were continued till the 18th. At New Or: it came on in dreadful gales, from N.E. to S.E., accompanied with corrents of rain. Almost all the shipping in the river were driven on shore, and very few of the smaller craft escaped total wreck. The back part of the city was completely inundated. The sugar-canes, above and below the city, were laid flat, and the loss was enormous. The gale was felt at Natchez, 300 miles up the river; and hereabout it spent itself in heavy rains, after having occupied a period of six days in the cycloidal course from Barbadoes.

At most of the islands, during the hurricane, the winds in the earlier part of the storm were from a northern quarter, and in its later periods from a southern quarter, of the horizon; from which it results, that the gyratory action was from right to left, as in the storms which pass to the northward of the great islands, and along the western coast of the ocean.

The distance passed over by the storm, in its passage from Barbadoes to New Orleans, is equal to 2,100 nautic miles. The average rate about 14 miles an hour.

The details of the storm in August, 1831, as it affected Barbadoes, St. Vineent, and St. Lucia, were given in the Times newspaper of the 10th of October, in the same year. In the despatch of his Excellency Sir James Lyon, governor of Barbadoes, it is noticed that, on the evening of the 10th, the sun set on a landscape of the greatest beauty and fortility, and rose on the following morning over an utter desolation and a waste. The prospect at daybreak on the 11th was that of January in Europe-every tree, if not entirely rooted up, was deprived of its foliage, and of many of its branches; every house within view was levelled with the ground, or materially damaged ; and cvery hour brought intelligence of the most lamentable accidents and of very many shocking deaths.

The evening of the 10th was not remarkable for any peculiarity of appearance; but in the night it began to rain, accompanied with flashes of lightning and high wind, which appeared to come from the North and Eas;t; toward midnight the wind increased, and was more to the westward and S.W. ; the rain fell in torrents, and the lightning was vivid in the extreme; at one o'clock the hurricane had commenced, and from two until daybreak it is impossible to convey any idea of the violence of the storm; no language can sufficiently express its horrors. The noise of the wind, the peals of thunder, and the rapidly repeated flashes of lightning (more like sheets of fire), and the impenetrable darkness which succeeded them, the crash of walls, roofs, and beams, were all mixed in appalling confusion, and every house shook to its foundation.

The tempest did not entirely cease, nor the atmosphere clear up, until about uine
o'clock in the morning of the 11th, when many families were found to be buried in the ruins; and the few ships in Carlisle Bay were driven high on the strand.

At an early hour on the morning of the 12th, the storm commenced from the northward on St. Vincent, but was not much felt at Kingstown and the shipping on the West until about half-past eight, when its violont effects were excessively destructive. Every vessel at the anchorage, with the exception of one, was cast on shore, and every plantation sustaiued damage, more or less, by the total destruction of crops and provisions, buildings, works, and negro-houses.

St. Lucia, it appears, did not suffer so much as St. Vincent; but even here the destruction was immense. In the night of Wednesday, the 10th, the same night on which the hurricane commenced at Barbadoes, the sky had a very heavy. lowering appearance; and early on the next morning, with the wind at North, it began to blow very fresh; which continued increasing, accompanied with rain, nntil five o'clock; and by seven, or half-past seven, the prognostics of a hurricane appeared; by a little after eight the harbour presented a most awful appearance, the sea ran mountains high, and broke on the South side with the utmost violence, and the vessels in the anchorage became ungovernable. In this coluition the town was situated from half-past eight to twelve o'clock, when the wind, which had prevaiied in frequent and violent gusts, became more moderate, and before two o'clock it was comparatively calm. During the continuance of the storm it rained unceasingly, but not violently, and the wind seemed to vary very little from its ordinary direction.
(100.) Hurricane of 1830.-The storm which passed the city of New York, on the 17 th of August, 1830, was there, and along all the coast nortliward of Cape Hatteras, considered as a north-east storm.-(See Chart, Route VI.)

It appears that this commenced at the Island of St. Thomas, in the West Indics, on the night between the 12 th and 13 th of August. On its progress, in the afternoon of the 14th, it commenced at the Bahama Islands, and continued during the succeeding night, the wind almost round the compass during the existence of tho storm. On the 15th, in the Florida Channel, its effects were very disastrous. Without the strait, in lat $26^{\circ} 51^{\prime}$, lon. $79^{\circ} 40^{\prime}$, the gale was severe from N.N.E. to S.W. Late on the same day, off St. Augustin, it was equally so. At 20 miles North of St. Mary's, from eight p.m. on the 15 th , to two a.m. on the 16th, it was from an eastern quarter, then changed to S.W.

Off Tybee and at Savanna, on the night of the 15th, it changed to N.W. at nine a.m. on the 16 th, and blew till twelve. On the 18th, at Charleston, the gale was from S.E. and East, till four p.m.; then N.E. and round to N.W. At Wilmington (N. Carol.) the storm was from the East, and veered subsequently to the West. In the vioinity of Cape Hatteras, at sea, the storm was very heavy from S.E., and shifted to N.W.

Early in the morning of the 17 th, the gale was felt severely in the Chesapeake, from the N.E. Off the capes of Virginia, on the 17 th, lat. $36^{\circ} 20^{\prime}$, lon. $74^{\circ} 2^{\prime}$, "a perfect hurricane," from South to S.S.E., from five a.m. to two p.m., then shifted to N.W.

Off Cape May, lat. 32°, lon. $74^{\circ} 15^{\prime}$, in the afternoon of the 17 th, a heavy gale from E.N.E. Coast of New Jersey, same afternoon, heary at N.E. Again, in lat. 39°, lon. 73°, at E.N.E. In the same latitude, lon. $70^{\circ} 30^{\prime}$, a " tremendous gale," commencing at S.S.E., and veering to North.

Afternoon and evening of the 17th, at New York and in Long Island Sound, gale at N.N.E. and N.E. Off Nantucket Shoals, at eight p.m., severe at N.E. by E. In the night of the 17th, off Nantucket, and in the Gulf Stream, lat $38^{\circ} 15^{\prime}$, lon. $67^{\circ} 30^{\prime}$, "tremendous," commencing at South, and veering, with increasing severity, to S.W., West, and N.W. Peninsula of Cape Cod, in the night between the 17th and 18th, severe at N.E. ; 18th, at Salem and Newbury, heavy gale from N.E. In lat. $39^{\circ} 51^{\prime}$, lon. 69°, severe from S.E., suddenly shifting to North. In lat. $41^{\circ} 20^{\prime}$, lon. $60^{\circ} 25^{\prime}$, " tremendous hurricane," from N.N.E.

Off Sable Island, in the night of the 18 th, lat. 43°, lon. 591°, "tremendous heary
gale," from South and S.W. to West and N.W. In lat. 43°, lon. 58°, a severe galo from the Sonth ; the manner of change not reported.

This remarkable storm appears to have passed orer the whole route above described in about six days, at an average of about 16 miles an hour ; the duration of its most violent portion, at the several points over whieh it passed, may be stated at from seven to twelve hours; and the width of its track is supposed to have been from 150 to 200 miles.
" On the western part of the Atlantic Ocean, between the parallel of New York and the northern limit of the trade-wind, the prevailing winds, for a considerable period, both previously and subsequently to the oceurrence of this storm, were southwesterly, or from the sonthern quarter; and over the whole breadth of the Atlantic, on the ronte frequented by ships in the European trade, fresh south-western or westerly winds also prevailed at the same period, for many weeks. These faets are well established by numerous marine journals, which have been consulted in relation to this subject.

Of the vorticular or rotative character of the storm, striking evidence has been afforded by the journals of two ships, the Britannia and the Illinois, both bound from Ameriea to Europe; the particulars of which are fully given in the Exposition by Mr. Redfield.
(101.) In about a veeek after the storm last described, nnother occurred, which passed New York on the 26th and 27th of August, and which was, also, 1 this crast, a N.E. storm, of about three days' duration. From the eastward of the Bahal as it appears to have passed northwardly between the Florida Stream and the Berasudas; and touching the American shore near Cape Hatteras, raged with great fury for about forty hours at each locality, as it swept the great central carve of the coast; and passing from thence, continued its course over George's Bank, in. an arth-easterly direction. It was evidently of greater compass, and slower progn ss, than the preceding storm, as is proved by a collation of the varions reports of mariners; and its long duration, and its effects were almost equally violent.

The next remarkable series of hurricanes appear to have originated in the vicinity of the Windward Islands, near the close of September, 1830 , and which, passing westward of the Bermudas, on a course nearly North, assumcd thence a more easterly course, toward the southern edge of the Grand Bank of Newfoundland.-(See the Chart, Route VII.)
This storm was very disastrons. In lat. $20{ }^{\circ}$, lon. 63°, it commenced, on September 22, at one p.m., and continued till half-past six p.m., from N.E. and S.W. alternately. On the same day it passed thrungh lat. $22^{\circ} 46^{\prime}$, lon. 65°. At night, on the 30th, in lat. $26^{\circ} 7^{\prime}$, lon. $66 \frac{1}{\circ}^{\circ}$, "very heavy," for five hours and a half. On the 1st of October it arrived at lat. $30^{\circ} 38^{\prime}$, lon. 63°; severe at S.E., shifted to N.W. : thence it was found in lat. 33°, lon. $66 \frac{1}{2}^{\circ}$; lat. $34^{\circ} 9^{\prime}$, lon. $66^{\circ} 12^{\circ}$: lat. 63°, lon. 68°; lat. 38°, lon. 63°; lat. $38 \frac{1}{2}^{\circ}$, lon. 57°; lat. 40°, lon. 61°; lat. $40^{\circ} 25^{\prime}$, lon. $63^{\circ} 24^{\circ}$; lat. 41°, lon. 55°, and very severe. By an average estimate of rates and distances, it appears to have proceeded at the rate of abont 27 miles an hour.
The extensive hurricane of 1804, which swept orer most of the Windward Islands in the West Indies, commenced at Martinique, on the 3rd of September, reached Savanna on the 7th, Boston on the 9th, and became a snovo-storm on its arrival in the interior of New Hampshire.
The great gale of 1815 commenced at St. Bartholomew's on the 11th of September, and reached Rhode Island on the morning of the 23rd, where it was awfully destructive from the S.E., while in the south-eastern parts of Massachusets, it was then blowing at South; at New London from East to S.E. ; and at New York from North to N.N.W.
(102.) A S. E. storm, in September, 1821-(sec Chart, Track VIII.)-was experienced in the central parts of Connecticut, commenced blowing violently from E.S.E. and S.E., at about six p.m. on the 3rd of September, having been preceded by a fresh wind from the nouthern quarter, and flying clouds. It continued blowing in heavy
gusts, and with increasing fury, till abont ten p.m., when the wind suddenly subsided. A calm or lull, of perhaps fifteen minutes' duration, ensued, but was terminated by a violent gust from the N.W., which continued till about eleven p.m., and then gradually abated. Much damage was sustained, and fruit-trees, corn, \&c., were uniformly prostrated toward the N.W.

At New York the same storm was experienced, with at least equal violence, abov's three hours earlier than in Connecticut, but blowing from a more eastern quarter. In the north-eastern parts of Massachusets it was experienced some hours later; and at Providence, in Rhode Island, the storm was felc in the south-eastern quarter, but not severely; as was, also, the case in the south-eastern parts of Connecticut. In the N.W. portions of the latter state, and the adjacent towns of Massachusets, the gale blew with its chief violence from the N.W. quarter, and the trees and corn were uniformly prostrated toward the S.E.

At New York the gale was from N.E. to East, and commenced blowing with violence at five p.m., continued with great fury for three hours, and then changed to West. More damage was sustained in two hours than was ever before witnessed in the city, the wind increasing during the afternoon, and at sunset was a hurricane. At the time of low water the wharfs wero overflowed, the water having risen 13 feet in an hour. Previous to setting in of the gale, the wind was from South to S.E., bat changed to the N.E. at the commencement of the storm, and blew with great fury till evening, and then shifted to the westward.

ON MAKING USE OF HURRICANES.

(103.) It has been proposed by Mr. Piddington to make use of these storms, by taking advantage of the favourable wind which some portions of their circumference offer for expediting the voyage. This has also been proposed by Sir W. Keid, in his "Law of Storms." Mr. Piddington has given rules for this, in the regiors he has made more particularly his stndy-the Indian and China Seas; but here the hurricanes do not appear to travel at so great a speed as those of the Atlantic.

In order to benefit by the hurricane, several conditions are necessary; and it need not be again insisted on, that any error or ignorance of the centre of rotation may be fatal. Of course the first consideration is, in what purt of the circumference is the ship, and in what bearing is its centre P-then, at what rate, and in what direction, is it travelling P-and is it so violent that the ship cannot weather it? All these things must be weighed well by the mariner, before he endeavours to lay his ship on that tack which will appear the best to forward his voyage. Should the storm be advancing in the same direction as his course, and the position of the ship be upon the anterior verge, should it travel at a rate above that which he can keep up with it, it is evident that it will pass over him, and the consequences need not be remarked upon. Should the vessel be upon the posterior verge of the hurricane, it will, if travelling at 20 or 30 miles an hour, soon leave it, and then ne advantage can follow.

Thus, to " make use of a hurricane," several conditions aro absolutely necessary : these are-" 1 . The ship must get into the storm precisely where the wind blows fair for prosecution of the voyage-which is quite a matter of chance. 2. If sho happen to do so, she must, to derive benefit, regulate her speed exactly to that of the meteor. Can she do that at pleasure P There would be no difficulty in ascertaining the fact of her preserving Ler station, or not, by the wind remaining steady, or veering; but there is a necessity that would bind her, and which cannot be evaded with impunity whe, a high sea follows:-she must carry a certain proportion of sail to provent her from being pooped. Now this sail may give her a greater velocity than the meteor at the time: hence she would run ahead of it. Again, the rate of the meteor may be greater than her utmost speed; hence she would be ejected."*
y subsided. nated by gradually rmly prosence, abov'í m quarter. later; and uarter, but at. In the ts, the gale corn were
wing with changed to itnessed in ricane. At 13 feet in S.E., but eat fury till
storms, by cumference Reid, in his ors he has the harrind it need ion may be rence is the t direction, All these his ship on he storm be hip be upon ep up with not be reurricane, it pantage can
necessary : wind blows
2. If she that of the secrtaining dy, or veervaded with n of sail to locity than rate of the ."

WATERSPOUTS.

(104.) The well-known phenomenon, called a Waterspout, which is frequently seen on the Atlantic, proceeding from black dense clouds, always appears in warm weather, generally in calms, or with little wind; but they have been seen during a fresh gale. It has been shown, by the celebrated Dr. Franklin, and other writers, that a whirl wind on land, and a waterspout at sea, arise from the same general causea, and may be considered as one and the same. At sea they are commonly harmeses, unless ships happen to be immediately under them; but if, in the progressive motion of the whirl, it passes from the sea over the land, and there suddenly breaks, violent and mischievous torrents are the consequence. At sea, after the spont breaks, the water descends in the form of very heavy rain. In the vicinity of a spout, the wind commonly flies round in sudden gusts; and all ships should therefore take in their square sails.

That a waterspout and whirlwind are identical, has been amply demonstrated by those who have seen this meteor pass from the sea to land, and the contrury. They have both a progressive as well as circular motion ; they usually appcar after calms and great heats, and mostly happen in the warmer latitudes.
(105.) Marine waterspouts, therefore, are caused by the action of atmospheric currents. Malte-Brun thus describes them:-"Underneath a dense sloud, the sea became agitated with violent commotions, the waves dart rapidly towand the centre of the agitated mass of water, on arriving at which they are dispersed into aqueous vapours, and rise whirling round, in a spiral direction, toward the cloud. This conical ascending column is met by another descending column, which leans coward the water, and joins with it. In many cases the marine colnine is from 50 to 80 fathoms in diameter near its base. Both columns, however, diminish toward the middle, where they unite; so that here they do not extend more than 3 to 4 feet in diameter. The entire column presents itself in the shape of a hollow cylindor, or tube of glass, empty within. It glides over the sea without any wind being felt; indeed, several have been seen at onee following different directions. When the elond and the marine base of the waterspout move with unequal velocitics, the lower cone is often seen to incline sideways, or even to bend, and finally to burst in pieces. A noise is then heard, like the noise of a cataract falling in a deep valley : lightning frequently issues from the very bosom of the waterspout, particularly when it breaks; but no thunder is ever heard."

In order to prevent the danger which a vessel would be exposed to by coming in contact with these tremendous colums, it is the practice to discharge upon them a cannon-ball, which, passing through them, causes them to burst, and consequently removes all chances injury connected with them. This phenomenon is accounted for in the following manner:-Two winds meet-a vortex ensues: any eloud which happens to lie between them is condensed into a conical form, and turned round with great velocity; this whirling motion drives from the centre of the cloud all the particles oontained in it; a vacuum is thereby produced, and water, or any other body lying bencath this vacuum, is carried into it upon the usual and well-known principle. The cannon-ball, breaking this cylinder, which is always partly hollow, causes it to fall to picces, in the same manner as a touch upon the surface of a bubble reduces the resplendent mass to a drop of conmon water.
(106.) The following deacription of a Waterspout, seen during a fresh gale upon the coast of North America, was written by the late Mr. Murdo Downie.
"Upon the forenoon of the 9th of October, 1795, while cruising in his Majesty's ships Resolution, of 74 gunn (then bearing the flug of the late Admirui Murray), in company with H.M.S. Africa, of 64 guns, commanded by the late Admiral, then Captuin, Home, in lat. 32°, and long. 661° W., having the wind at N.N.W. blowing a
fresh gale, and the ship steering by the wind East for the Islands of Benuudas, we were surprised with a vaterspout, formed in an instant, dircetly to leeward, at about 2 miles, or little more, distant. Both the Afrioa and we fired several 18 -pound shot at it, which fell a little short ; and, although some of the shot fell very near, yet they had no visible effect upon it. Its appcarance was that of a long slender pillar, with the upper end spreading into a large dense clond, of which it seemed to form a part, and the lower end reached to within about 20 or 30 feet of the sea, where it was obscured from the sight by the water's being violently thrown up and agitated, so as to resemble a number of fountains or water-engines playing perpendicularly round the lower end of the apont. The pillar became more transparent in proportion as it decreased in sive from the cloud downward, until at the lower end, where it was almost perfectly so ; and a small column, of an equal diamcter, and more transparent than the rest, appeared up through the middle, so that about the lower end it resembled. an empty glass tube in appearance; from thence the transparent column in the middle became gradually obscured, the higher up, by the opacity of the outside, until it altogether disappeared near the cloud. The spout appeared at its full size, or nearly so, when first seen, and began to decrease shortly after, nud turning gradually smaller, it in a short time vanished in a slight shower.
"We were too intently gazing at this extraordinary phenomenon to mark the exact time it lested, but supposed it to continue ten or fifteen minutes; ind its distance from the ship was pretty accurately ascertained by the shot fired at it uearly reaching; but what appeared most remarkable was, that, although the wind blew so strong a gale, that the ship could carry only reefed topsails (fiom which the velocity of the wind cannot be estimated at less than 30 or 40 miles an hour), yet the waterspout seemed to move but very little from the place where it was first seen. The ship was going at ihe rate of of $\frac{1}{2}$ miles an hour, and increasing her distance from the spout; yet, after continuing the above-mentioned time, it was considerably within the verge of the visible horizon, as scen from the quarter-deck, when it vanished (as upon the quarter-deck the eye was elevated 22 fect above the surface of the sea, the horizon would therefore be seen about 6 miles distant) : now, allowing the whip to have increased her distance from the spot half a mile during its continuance, and that it vaniehed a mile within the verge of the visible horizon, which, together with 2 miles it was distant when first seen, will make in all $3 \frac{1}{2}$ miles, which, taken from 6 miles (the distance of the visible horizon), leaves $2 f$ miles for the spout to move in ten minutes; whereas the wind must have gone at least δ milev is that time, and consequently $2 \frac{1}{2}$ miles faster than the waterspout. Indeed it is very piobable the waterspout did not move so much, in proportion to the wind, as the above calculation gives the least difference between their motions that could have been allowed from the observations : the intention of this calculation being prineipally to prove that the waterspout in some measure reristed the force of the wind.
"I have always observed, that waterspouts, lightning, and other electrical phenomena, are far less frequent toward the middle of the ocean than they are upon tho land, or near it ; and when they happen upon the sea, the cloud that contains them is generally observed to have come from off the land; from which reawon we find that clectrical phenomena are more frequent, a a d are found to reach to a greater distance, upon the sea bordering the East const of North America, than upon that bordering the West coast of Europe; because of the prevailing westerly winds carrying the clouds charged with electric fluid off the land upon the sea near the American coast; whereas upon the European coast these winds confine the clouds upon the land. It is also a known fnet, that within the limits of the N.E. trade-winds, and half-way between the Cape Verde and Windward West India Islands, more especially in the latitude of these islands, searcely any of these electrieal appearances ever happen ; whereas upon the shores of Africa and America, in the sume climate, they frequently rage with great fury."
(108.) Description of Waterepouts by the late Mr. George Maxvoll.-There can be no doubt that waterpouts have, in most eases, been accompanied with electrieal phenomems and it is equally certein that the apirill und ascending motion of the water hus been produced by a gyratory movement in the air, arising from the meeting of
mudas, we d, at about pound shot r , yet they illar, with rma a part, it was obed, so as to round the on as it dewas almost narent than resembled the middle ntil it alto-- nearly so, ly smaller,
k the exact ts distance arly reachd blew so he velocity the water1. The ship the spout; 1 the verge us upon the he horizon to have inand that it vith 2 miles om 6 miles love in ten and consethe wateration gives rom the obthe water-
trical pheo upon the ins them is e find that r distance, bordering rying the can coast ; land. It is If-way belly in the - happen; frequently
ere can be rical phethe water heeting of
two opposite winds. Mr. Maxwell had opportunities, during several royages to the Congo, of frequently witnessing this interesting phenomenon; and in a drawing, from which the subjoined figure has been made, he has represented the different states of a waterspout, as they mont commonly occur.

At their first formation, Mr. Maxwell says, they appear as nt A, where the black cloud drops from a level surface into a conical form, before the disturbance at the surface of the sea, as shown at 1 , is observed. The effect produced at 1 is like that of a smoking furnace. The black conical cloud now continues to descend, as shown at B, till it almost reaches the surface of the sea, and the smoke-like appearance rises higher and higher, till it forms an union with ihe eloud from which the spout appears to be suspended. In this condition it is said to put on its most terrifio appearance to the mariners who have the misfortune to be in its neighbourhood. When the spot begins to disperse, it assumes the appearance shown at C. The black cloud geacrally draws itself up in a ragged form, but leaves a thin transparent tube, $\mathbf{C} \mathbf{E}$, which reaches the water, whore the smoke-like commotion still prevails. Mr. Maxwell observed, at this time, in the upper part of the tube, a very curious motion.

This singular faet, of the existence of a transparent tube, confirms a description, by Mr. Alexander Stewart, of waterspouts which he saw in the Mediterranean, in 1701. "It was observable of all of them, but chiefly of the large pillar, that toward the end it began to appear like a hollow canal, only black in the borders, but white in the middle; and though at first it was altogether black and opaquo, yet one could very distinctly perceive the sen-water to fly up along the middle of thrs canal as smoke cloes up a chimney, and that with great swiftness, and a very pereeptible motion; and then, soon after, the spout or causl burst in the middle, and disappeared by little and little; the boiling up and the pillar-like form of the sea-water continuing always the last, even for some considernble time after the spout disappeared, nud perhaps till the spout appeared again, or re-formed itself, which it commonly did in tho mame place as before, breaking and forming itsel! again suveral times in a quarter or half' un hour."-" Phil. 'I'runs., 1702."

Captain (now Admiral) Willium H. Sinyth, in his interesting volume on Sicily aud
the Sicilian Islans, has noticed, that "waterspouts and various singular meteoric phenomena occur in that neighbourhood. Among the latter, on a warm, clondy, and hazy day, the 14th of March, 1811, it began to rain in large drops, that appeared muddy, and they deposited a very minute sand of a yellowish red colour. The wind, on the day before, had been blowing strongly from the S.S.W. to the N.E.; and, during the time the rain fell, was from the \mathcal{B}. W., which leads to the supposition that it was transported from the deverts of Africa."-This remark accords with a number of others on the sand from the Sahara or Desert, which is carried by the wind over the Atlantie, to an almost incredible distance from the western coast.
(108.) Ts the preceding descriptions we now annex another, as given by the Honourable Captain Napier, R.N., F.R.S.E., in 1814.
"On the 6th of September, 1814, in lat. $3 C^{\circ} 47^{\prime}$ N., and long. $62^{\circ} 40^{\prime}$ W., \dagger at halfpast one p.m., the wind being variable between W.N. W. and N.N.E., the ship steering S.F., an extraordinary sort of whirlwind was observed to form abont 3 cables' length from the starboard bow of H.M.S. Erne. It carried the water up along with it in a cylindrical form, in diameter, to appearance, like that of a water-butt, gradually rising in height, increasing in bulk, advancing in a southerly direction, and, when at the distance of a mile from the ship, it ontinued stationary, for several minutes, boiling and foaming at the base, discharging an immense column of water, with a rushing or hissing noise, into the overhanging clouds; turning itself with a quick spiral motion, constantly bending and straightening, according as it was affected by the variable winds, which now prevailed from all points of the compass. It next retnrned to the northward, in direct opposition to the then prevailing wind, and right upon the ship's starboard beam, whose course was altered to East, in hopes of letting it pass astern. Ite approach, however, was so rapid, that we were obliged to resort to the usual expedient of a broadside, for the purpose of averting any danger that might be apprehended; when, after firing several shots, and one, in particular, having passed right through it, at the distance of one-third from its base, it appeared for a minute as if cut horizontally in two parts, the divisions waving to and fro in different directions, as agitated by opposite winds, till they again joined for a time, and at last dissipated in an immense dark cloud or shower of rain.
"The near edge showered in large heavy drops on the ship's deck, until the cloud was quite exhausted.
"At the time of its being separated by the effect of the shot, or more probably by the agitation occasioned in the air by the discharge of several guns, its base was considerably within half a mile of the ship, covering a portion of the surface of the water at least half a furlong, or 300 feet in diameter, from one extreme circunference of ebullition to the other; and tho neck of the cloud into which it discharged itself appeared to have an altitude of 40° of the quadrant, while the cloud itself extended overhoad, and all around, to a very considerable distance.
"Allowing, then, from the ship, a baso of little more than one-third of a nautic mile, say 2,050 feet, and an angle of 40° to the top of the neck, we shall then have, for the perpendicular height of che spout, about 1,720 feet, or very nearly onc-third of a statute mile. A little before it burst, two other waterspouts, of an inferior size, were sbserved to the southward, but their continuance was of short duration.
"When danger was no longer to be apprehended, I observed the brometer, and found it at $30 \cdot 1$ inches, with tho surface of the mercury very convex; an appearance whicia it had not x asumed when at the name height at noon, about two hours before; the thermometer stood at 82°, having risen 1° since that time.
" I)uring the continuance of the waterspout, and the subsequent rain, which might be a little more than half an hour, the wind blew from all points of tho compass at

* Colonel Reld has given, in his "Law oi Storms," a chapter (xi.) on "Waterspouts anil the Sinuller Whirlwinds," with severul benutiful flgures of the sume, which havo boen ropeatel in the "Nutical Magazias," ot July, 1830.
+ About 45 loaguen S.E. from the Bormudus.-E'D.
eteoric phecloudy, and at appeared The wind, N.E. ; and, cosition that th a number e wind over ven by the
V., \dagger at halfo ship steernt 3 cables' along with t, gradually nd, when at inutes, boilth a rushing uick spiral eted by the xt retnrned right apon tting it pass esort to the at might be ving passed or a minute erent direcand at last
il the cloud
probably by was conof the water mference of arged itself plf extended
of a nautic then have, y one-third nferior sizo, ion.
ometer, and appearance purs before ;
hich might compass at ve beon ro-
different times, generally shifting ${ }^{\circ}$ opposite points, never longer than a fresh breeze for a moment, but in most instances quite light. It was unattended with any thunder or lightning, and the water that fell from the cloud was perfectly fresh.
" Having witnessed this extraordinary pheuomenon, I endeavoured to ascertain its cause.*
"Although this phenomenon was rather terrific in appearance, yet I am not nelined to think it would have been attended with any serious calamity to the ship, had even the whole quantity fallen on board, allowing the loftier sails to have been taken in, the hatches battened down, and scappers open. The cylinder or spont: coming in contact with the masts and rigging, would naturally be destroyed; and the air rushing in, ins hanlancously, to restore the equilibrium, the torrent would thus be checked in its fall to the mere weight or force of a tropical descent. I have heard many reports of ravages committed by these aqueous meteors, but never yet met a person who had actually witnessed or experienced any such distressing effects."

ir.-OFTHETIDES.

(109.) As introductory to a General Table of the Tides, we shall give a few passages from. M. Malte-Brun, explanatory of the subject; and also the results of the recent extensivo observations and profound researches of Professor Whewell and Sir John Lubbock.
The water of the sea yields to the slightest impression; and, although its density and weight combine to retain it in a constant equilibrium, it is agitated to a certain depth by rapid and varied motions. These motions may be olassed according to the manner in which the particles move, and according to the nature of the agents which cause the motion.
Three kinds of motion may be distinguished in the sea, considered in reference to their causes. The Tides are siderral motions, because they depend upon the influence of the heavenly bodies. General Currents, and the greatest numbor of Particular Currents, have their causes in the very element that is agitated by them; these, then, are motions of the sea itself. The third kind comprehends atmospheric motions, produced by the action of the winds.
The Tides are regular and periodical oscillations, which the seas undergo from the attraction of the celestial bodies, principally those of the moon and sun.
(110.) Action of the Moon.-Let us first consider the sinule action of the moon upon the sea; supposing that luminary to be in the plane of the Equator. It is evident that, if the moon exerted upon all the particles of the sea an equal attraction, and parallel to the eerth's centre of gravity, the entire system of the globe, and of the waters which cover it, would bo influenced by a common motion, and their relative equilibrium would not suffer any ehange. The equilibrium is disturbed only by the difference between the attractiona which the moon exerts, and the inequality of their directions. Some parts of the globe are are directly attracted by the mon; others only obliquely. The former are in conjunction nith tho moon; ant so ine drawn from the cenire of the two planets would pass through their zenitis lho latter are in quadrature with the moon-that is to say, a line drawn from the terres-t:- ". 4 centre to their zenith would make an anglo of 90° with the line which oonnects the centres of the two planets. The attracting force acting obliquely is decomposed by the obliquity of its angle of incidence : thus the parts in conjunction being more

[^21]strongly attracted than thiose in quadrature, the weight of their particles is diminished. It is necessary, then, to there lwing an equilibrinm in all parts of the sea, that the watere shmid rise under the moon, in order that the excess of weight of the particles in quvlvitus 3 , ubove those in conjunctiol, may be compensated by the greater height of the :er.
The watrs, however, rise, not only on the side where the attracting plenet is, but, also, on the opposite side; because, if the planet attract the supcrior waters more thans it attracts the centre of the exrih, it also attracts this centre nucre than it atruacts tho inferior waters in the opposite hemispherc. These wuters will thex approach less toward the attracting planet, than the centre of the carth approwchest to it. They rill remain as far off, from and behind the centre, as the superior weters atwince fion it on the side of the moon.
Two promontories, or eminences of water, will therefore be forsed by the action of the moon apon the earth; -one ove the side toward the moon; the other on the side opposite to it; which gives the sea an appearesce of an elungated spheroid, w!ose great axis will pass through the centre of the moon and of the earth. It is high tide nader the moon and in the opposite point at 180 degrees of distance; consuque.tly, in the two intermediate points, or at 90 degrees of distance fiom the moon, tho tide will be love.
The earth, by its rotatory motion, successively presents to the moon, iat t.e space of twenty-four hours, all iis meridians, which, consequently, are found by turns, and at an intervis z^{2} six lours, sometimes under under the moon, and sometimes at a distance of 90 de fore ir it ; hence it follows that, during the time which passes between the departuce ot the morn from one meridian, and its return to the samo meridiar, that is. is tre spuce of a lunar day, which exceeds the solar day by about filty minates and a ! 6 'j, the waters of the sea will ebb twiec, and flow twice, in every part of the earth, aithough in a manner almost inseusible in those places which are distant from the path or orbit of the moon.
(111.) Action of the Sun.-If we now imagine the sun to be in the plane of the Equator, it is evident that, as its action is similar to that of the moon, it should excite in the oceun an agitation similar to the lunar tides. Thus the sea would ebb twico and flow twice during a solar day; but, on account of the inımense distance from the sun, those sular tides will be much smaller than those which result from the action of the mon.

On account of the inequality which exists between the solar and lunar days, the action of the sun will sometimes change the position of the lunar tides, and at other times will unite its influence with that of the moon. In the syzigies, or conjunctions, the action of the moon concurs with that of the sun to raise the waters. This is the reason why the highest tides happer ut new and full moon; or when the moon is in its first or third quarters. In the quadratures, the waters of the sea are depressed by the action of the sun, at the same point where the action of the moon raises them, and reciprocally. Thus the tides of the quadratures ought to be less.

The height of the tidal wave produced by the moon is as that produced by the sun as 100 to 33, when combined, of course, they produce the spring tide, as above staticu; opposcd, they make neaps, the range of them being as 138 to 82 , or nearly as 7 to 3 . Newton (from the Severn tides) made it $4 \cdot 48$ to 1 , which is far too large. Laplace from the Brest observations, makes it $2 \cdot 90$ to 1, and Sir John Lubbock and Dr. Wheweil about $2 \cdot 60$ to 1 . Of course, these relations are very much controlled in action by the configuration of the coast or channel.
(112.) What we have already explained regards the position "f the sun and moon in the Equator. Let us now consider these hedvenly bodies it ir various declinations, and we shail see the elevation vary in the inverse rati e cube of the digtance of the water.

Without entering inte 4 ails, which would require atoleal demonstrations, we shall remark only, the proximity of the sun an sems to be the cause to which we must retic the extraordinary equinocti. wh, which happen most frequently ; the one before the vernal equinox, and the other . tor tho autumnal; that
is, bc near tions syzig
diminished. a, that the he particles ater height
anet is, but, s more then atiracts the proach less
They vill nce from it
he action of on the side roid, whose is high tide asugue.tly, on, the tide
atie spaco turns, and res at a dishich passes o the samo ly by about ce, in evory which are lane of the ould excite d ebb twice ce from the he action of
r days, the ud at other njunetions, This is the moon is in epressed by sthem, and
by the sun ove statcu; as 7 to 3. Laplace Dr. Whed in action
and moon us declinaof the dis-
is, both of them at the time when th/, sun, passing through the meridional signs, is nearest us. But this does not happra every year, because there are sometimes variations produced by the situation of fise orbit of the moon, and by the distance of the syzigies from the equinoxes.
(113.) This, then, is the genere theory of the tides, and from these observations their general laws may be inferred; but it has been reserved for later times to pursue the inquiry into detail, and ti uevelop the minor effects which modify, and in some places totally change, the character of the tides. It is chiefly to the Nev . Dr . Whewell, now Master of Trinity College, Cambridge, and to Sir. John Lubboek, that our present knowledge of the tide laws is owing, and from their observations we will give some extracts.
(114.) In the Rev. Dr. Whewell's papers on the subject of the Tides, he com-mences:-" Ever since the time of Newron, his explanation of the gencral phenomena of the tides, by means of the action of the moon and the sun, has bcen assented to by all philosophers who have given their attention to the subject. But, even up to the prent day, this general explanation has not been pursued into its results in detail, so as to show its bearing on the special phenomena of particular places,- to connect the actual tides of all the different parts of the world,-and to account for their seeming anomalies. With regard to this alone, of all the consequences of the law of universal gravitation, the task of bringing the developed theory into comparison with multiplied and extensive observation is still incomplete; we might say, is still to be begun."*
(115.) The Tidal Wave.-The tidal wave is not owing to the transfer of the body of water, which would be a current, but to an elevation of its surface. This motion is, as readily conceived, compatible with immense velocity; and it may be taken as a rule, that the broader the wave, the greater will be its velocity.. If the earth werc in equilibrium, and its surface entirely covered with water, and under the influence of the moon's attraction, it would assume the form of an ellipsoid, having the semiaxis directed towards the moon longer by about 58 inches than that transverse to it; that is, the water would become higher by that amount. This is merely adduced to show what may be the amount of the lum-tidal wave, without entering into any other considerations.
(116.) Velocity of the Tidal Wave.-As the whole of the tidal wave must circulate around the globe in twenty-four hours nearly, the velocity must be very great; but it is greatly modifled. In the middle of the Atlantic it would appear to travel at the rate of about 700 miles an hour, but on the coast it is widely different; hence its velocity along the eastern coast of England varies from 35 miles to 160 miles per hour.
In the opon ocean, where nothing intervenes to obstruct the course of the tidal wave, it travels prolably with regularity ; and it may be presumed that its height is also inconsiderable. But when this wave, from an open ocean, approaches a narrow channel, such as the Bristol or English Channel-from being hemmed in, as it were, it forms a tide-current. Now, along the centre of such a channel the tidal wave would travel with much greater speed than on the sides. Hence the distances at which the hour-marks representing high water will be wide apart in the centre, and transverse to its gencral direction; while, on the shores, the direetion of the wave would be altered, and it will aprroach parallel to the shore; hence the hour-marks will be close together, and parwliel to $\ldots 9$ general direction of the main tide-current.
The therwave, udroneing thsough the contracting channel, towards the end becorves wi great height, aid, as at Bristcl, and in the Bay of Fundy, sometimes rise w the enormous height of 50 or 70 feet : just in the same manner that the surf runs up a shelving beach.
The variation in the height of the tide (as is found to be the case in some parts of

[^22]the coast of France), between places near each other, and having high water at the same time, is to be gecounted for by the convex form of the tidal wave.
In some parts of the wrorld, as in Australia, Kamtschatisa, \&c., the tides offer very singular anomalies. At Adelaide, in South Australia, it is high water only once in the twenty-four hourn, and that during the night. This arises from what are called interferences, whereby two distinct sets of tidal waves, in their combination, produce apparent sest."
i11.) One of the most important circumstances of this subject is, that, in an open channel, the flood current (the current which runs till high water) will continue running for three hours afterwards, or till half ebb; and the ebb current, which then begins, will run after low water till half flood. The time of slack water is intermediate between the times of high water and low water. In proportion as the channel is obstructed at the further end, the flood ourrent runs for a shorter time after flood; and in a closed creek, the flood current ends at high water. \dagger
Another error to correct is this:-"That the time of the ehange of current, or the time of slack voater, as it may be termed, never coincides with the time of high water, except close in-shore, and within its influence; the interval is generally considerqble. Great confusion has arisen from these two times not being properly distinguishdd." - Phil. Trans.,' 1833, p. 162.
(118.) : The Establishment of the Port.-The vulgar establishment of the poit is the interval of time by which the time of high water fo' . ows the moon's transit on the day of the new and full moon.' This is, corrected, the mean value of the interval, freed from the semi-menstrual inequality. Its value at the London Docks is one hour twenty-six minutes, by the mean of all the observations.- PPhil. Trans.;' 134, p. 19.

The Corrected Establishment. The mean luni-tidal interval, or corrected establishment of each place, differs from the vulgar establishment, or time of high water for new and full moon; for the time of high water at syzigy is affected by the semimenstrual inequality belonging to the moon's position one or two day's earlier, and is therefore later by about thirty minutes than the mean interval would give it. f.
(119.) The Semi-monthly Inequality.-The interval of tide and moon's transit is affected by a considerable inequality, which goes through its period twice in the spuce of one month; it may be considered as depending upon the moon's distance from the sun in right ascension, or, which is the same thing, on the solar time of the moon's transit. The difference of the greatest and least intervals at London is one haur twenty-eight minutes. 5
(120.) The Age of the Tide.-The tide does not depend upon ile passage of the moon upon that particular day or hour, bnt from some previous transit; hence the tide is observed to take place at London at two o'clock on the days of new and full moon; therefore, as the tide of London is found to be determined by the position of the sun and moon upon two days and a half before it occurs, one hour twenty-six minutes is the corrected establishment for London, as stated above. II
(121.) Difference of the Tioo Diurnal Tides.-It has been remarked in varions places by separate observers, that the evening tide is higher than the morning tide in one part of the year, and lower at another. This is thus explained by Newton. From the vernal to the autumnal equinox, the sun has North declination; and as the moon's orbit is never much inciined to the sun's, a line drawn from the earth's centre to the moon would meet the earth's surface, on the side towards the sun, in North latitude. Now, sueh a line is the axis of the tide-spheroid, supposing the tide to be always under the moon ; and the tide taking place when the moon in the meridian is higher, as the place is nearer to the vertices or pnints where the axis of the tide-opheroid meets the earth's surface. Hence, in this case, the tides which occur on the side of
the ed than highe
be cod
water
of En referr or low

The strate exact the se cult to on the stands Georg the N Castle nearly course but is
(128
This pressu tained lieight Londo depres rises barom Ross iv These marinc ntmost be maid in refe which alterns sea it 1 pagate this wi sarily onc.
every which cated, fully d
Upo mach t
Cape of about t in aceo

[^23]† "Phil. Trans.," 2832, p. 215.
f Phil. Trans." 18 M , p. 19. y once in tre called produce inue runiich then interme e channel ter flood; nt , or the gh woater, considerly distintransit on interval, ks is one uns.' 134,
cted estaigh water the semiier, and is from the he moon's one haur
age of the hence the and full position of wenty-dix
in various ng tide in on. From the moon's tre to the h latitude. be always is higher, e-apheroid he side of
the eartl next the sun, or the day tides, would be larger for a place in North latitude than the tides on the opposite side. For a similar reason, the night tides would be higher in winter.
(122.) Height of Mean Water.-The mean between high and low water is found to be constant and permanent, however much may be the difierence of high and low water. It has been found, from a great number of observations on the south coast of England, not to vary mare than 2 or 3 inches ; therefore all heights ought to be referred to the mean level of the sea, instead of the vague and uncertain data of high or low water.

The refined surveying operations which have of late been completed have demorstrated one aingular fact, which could only have been elicited in the laborious and exact processes carried on during the Ordnance Survey. It is, that the mean level of the sea, as we amsume it, is not a level, from whatever cause it may arise, and it is diffcult to assign one. It is found that the mean level of the sea arouind Ireland is lower on the South than it is on the North coast. Taking Courtown in Wicklow as the standard-a spot remarkable as the node or axis of the great tidal wave of the St. George's Channel, and when there is itite or no rise or fall, that at Ballycastle on the North, the mean seas level is higher by 0.881 foot, and lower on the South at Castle Townvend by 0.938 foot than it does at Courtown. Thus the mean level is nearly 1 foot 10 inches higher on the North than it is on the South of Ireland. Of course this fact has no bearing upon the seaman's application of tidal phonomena, but is curious.
(123.) It has been fonnd that a low barometer causes a higher tide and the reverse. This element, in the disturbance of the regalar tides, the effects of aimospheric pressure, has been estimated by different observers, and its amount has been ascertained with considerable accuracy. Thus, at Liverpool, there is a difference in the height of high water of 10.1 inches for a variation of 0.91 in the barometer; and at London it has been calculated by Mr. Dession that the water rises 6.3 inches for 90 depression of the barometer. M. Dausey has amcertained that, at Brest, the ocean rises $\mathbf{2 2 3}$ metre, or $8 \cdot 78$ inches, for a depression of 0158 metre, or $6: 52$ inch in the barometer. \dagger These results are nearly identical with those ascertained by Sir James Ross in th3 Arctic regions in 1848 by means of the steady level of the winter ice. These refinements in tidal calculations are, perhaps, of little value for the puot al marincr when at sea; they may be useful in entering a doy; but they are oi the utmost service in generalising the phenomena of the tides, upon which so little, it may be maid, is known that may be applied.
(124.) The foregoing are the princijpal effects of the causes which produce the tides, in reference to their rise and fall. There is another branch of the aubject, however, which is of great importance to the navigator; that is, the currents formed by the alternate elevation and depression of the ocean. As before mentioned, in the open sea it may be considered that there is no tidal current, and that the tidal wave is propagated without any actual displacement in the particles of the water. But when this wave approaches the coast, the case is widely different, and the wave must necessarily form a current, sometimes flowing in one direction, and at others in the opposite one. This variation in the progress of the flood and ebb-tide wave wasy with every locality, and is influenced by the particular configuration of the sicisi, sce., by which it passes. The question of the form and transmission of waves is so complicated, and invelving mathematical analysis of so high an order, that it cannot be usefully dwelt on here.
Upon the direction in which the great tidal wave is propagated, we at present have much to learn. It has been supposed by Sir J. Lubbork, that it travels from tho Cape of Good Hope to Gibraltar in twelve hours; from Gibraltar to Edinburgh in about twelv" l :rs; and from Edinburgh to London in about twelve hours, \ddagger which is in accord with Bernouilli's theory. Passing north-eastward from the South

Atlantic, it strikes the south-west shores of Great Britain and Ireland, and becomes divided by these lands; one portion of the great wave passes northward to the west of Ireland, a portion of it enters by the North Channel, and meets a large portion from the south which has passed up the St. George's Channel; another passes up the English Channel passing on to the North Sea along the Dutch and German coasta, and with another portion of the western branch which enters the North Sea between Norway and Scotland, oauserc cin (nlation of tides which is still involved in some obscurity, but which is lai" usiowtwhere; the remainder passes north-eastward along the Norway onseti cu to the Eular basin. Along the American coast the great wave passes from soull to north, making high water at a later hour continually, and entering the various bays and outlets in the same manner. It may at once be mentioned that in low latitudes the rise and fall of the tide is very inconsiderable, and therefore comparatively unimportant.
(125.) In 1834, from the recommendation of the Rev. Professor Whewell, a series of tide observations were made, during a for coast-guard stations in Great Britain and ireland $;$ and in the following year a much much more extensive series was taken simultaneously between the 8th and 28th of June. "The chain of places of observation extended from the mouth of the Mississippi round the Kays of Florida, along the coast of North America, as far as Nova Scotia; end from the Straits of Gibraltar along the shores of Europe, to the North Cape of Norway. The number of places of observation was twenty-eight in America, seven in Spain, seven in Portugal, sixteen in France, five in Belgium, eightcen in the Netherlands, twenty-four in Denmark, and twenty-four in Norway; and observations were made by the crast-guard of this country at 318 places in England and Scotland, and at 219 places in Ireland." This large number of observations was also undertaken at the instigation of Professor Whewell, and their reduction was made by Mr. Dession and assistants, under his directions. The details and results are given in the "Philosophical Tranśactions," 1836, p. 289, et sec.

These observations have given us a far greater insight into the nature of the tidal progress than was had heretofore. A still more refined sories was eer ied on for the English Channel by Adm. Beechey as heretofore shown.
(126.) In the ensuing tide table for the North Atlantic the vulgar establishment (118) is given as the tidal hour at full and change, except in some cases, which are noticed as being the corrected establishment of the port. These figures are taken chiefly from the Government Nautical Surveys and the special observations which have been made in various places. They are given, also, in the Admiralty Tide Tak'es for 1860.

The height of the tide is here quoted as the range-that is, the difference of level between high and low water both as springs and neaps; so that the figures giving neaps do n nt represent the amount above the low water spring tides, but the higher level generally of one-fourih of the difference of range.

Attached to the table are some brief remarks on peculiaritics of the tidal phenomena, in the form of notes.

TIDE TABLE.

The Figures in Brackets (1.) refer to the subjoined Notes.

England-Thames and South Coast.

	h.' m.	ft.	ft .
London Bridge (1.)	27	19	$14 \frac{1}{4}$
London Docks . . .	157	$19 \frac{1}{2}$	
Gravesend.	110	$17 \frac{1}{9}$	
Nore	1230	151	11.
Margate	1140	$15 \frac{1}{8}$	$10 \frac{1}{8}$
Ramsgate	1144	15	9
Deal	1115	16	
Dover (2.)	1112	$18 \frac{3}{4}$	11
Folkstone	117	20	13
Dungeness	1045	$21 \frac{8}{4}$	17
Rye Bay	1120	22	121
Hastings	1053	24	13
Beachy Head	1120	20	10
Newhaven..	1151	20	10
Shoreham	1134	18	10
Littlehampton	1136	16	$7 \frac{1}{4}$
Selsea Bill .	1145	163	$8 \frac{1}{8}$
Portsmouth Dock Yard	1141	123	$6 \frac{1}{2}$
Ǔonthampton (3.)..	$\begin{cases}10 & 30 \\ 12 & 45\end{cases}$	13	6,
West Cowes	1045	12?	61
Hurst, C mber	$\begin{cases}10 & 0 \\ 12 & 0\end{cases}$	73	4
Needles Point	9 46	$7 \frac{1}{6}$	3
Christchurch	$\left\{\begin{array}{rrr}9 & 0 \\ 11 & 30\end{array}\right.$	5	
Poole	$\left\{\begin{array}{rr}9 & 10 \\ 12 & 45\end{array}\right.$	61	3
Portland Breakwater...........	$\begin{array}{rrr}12 & 45 \\ 7 & 1\end{array}$	$6{ }_{4}^{3}$	$2 \frac{1}{4}$
Bridport	65	$11 \frac{1}{4}$	41
Exmouth	621	121	$5 \frac{1}{4}$
Torbay	60	$13 \frac{1}{4}$	$6 \frac{1}{2}$
Dartmouth	616	14	6
Devonport Dock Yard	543	151	. $7 \frac{1}{3}$
Plymouth Breakwater	537	$15 \frac{1}{3}$	$7 \frac{1}{2}$
Fowey	514	15	$7 \frac{1}{3}$
Falmouth	457	16	8
Lizard	50	$14 \frac{1}{4}$	7
Penzance	430	16	8
Scilly Indes	430	20	10

England and Wales, West Coast.

St. Ives	h. m. 4.	ft.	ft.
Padstow	513	$20 \frac{1}{5}$	12 ${ }^{4}$
Lundy Island (4.)	515	27	13
Barnstaple (Bar) .	530	19	9
Bideford	67	16	8
llfracombe	542	$27 \frac{1}{2}$	$14 \frac{1}{8}$
Bridgewater Bar	650	35	18
Portishead ...'	716	$41 \frac{1}{4}$	211
Bristol (King Road)	656	44	22
Chepstow	730	$50 ?$	
Newport	7 10?	24 ?	
Cardiff .	659	38	21.
Swansea	556	30	15
Ilanelly Bar	616	28	14
Tenby	60	27	13
Milford Haven (entrance)	552	22	
Pembroke Dk. Yard	612	21	10
Cardigan (5.) ...	71	14	
Aberystwyth	731	$13 \frac{1}{2}$	61
Bardsey Island	740	15	
Caernarvon	933	139	7年
Holyhead	1011	16	$8 \frac{1}{3}$
Beaumaris	1032	218	11年
Chester	1030	26	
Liverpool	1123	26	141
Formby Point	1035	28	
Ribble Lighthouse	1051	24	10
et	$\begin{array}{ll}11 & 11\end{array}$	27	15
et	1112	$26 \frac{1}{1}$	14, ${ }^{\frac{1}{4}}$
Lancaster	1116	$8 \frac{1}{3}$	
Poulton-lc-Sands	1126	$27 \frac{1}{4}$	16
Piel Harbour (Pier)	115	28	14
Whitchaven	1114	$23 \frac{1}{4}$	$12{ }^{4}$
Workington	114	20	10
Maryport	113	18	8
Southerness	1120	28	
Annan Foot	1156	20	8
Port Carlisle	1210	20 ?	8 ?

Isle of Man.

| Douglas | 11 | 12 | $20 \frac{3}{4}$ | $11 \frac{3}{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Ramsey | 11 | 15 | 19 | $12 \frac{1}{3}$ |

Place.	High Water, Fall and Change.	Range.		Place.	Higia Water, Full and Change.	Range.		
		Sps.	Nps.			Spe.	Nps.	
	h. m.	ft.	ft.		m.	ft.	ft.	
Peel	118	164	9	Widowall	93	10	5	
Calf Sound	1117	164	91	Otterswick	913	11	$5 \frac{1}{2}$	
Port, St. Mary	1110.	20	12					
Castletown .	1110	20	12	Shet	d Isles.			
Scotland, West Coast.				Balta	9 ¢0	6	3	
				Lerwick	1030	6	2	
Kircudbright	1110	$\mid 23$		Scalloway	930 945	$5{ }_{4}^{4}$	3	
Troon.	1150	10	5	Fair Isle	110	5	1	
Port Patrick	1110	15	9	Fair Lole				
Loch Ryan	1112	11						
Campbellton.	11.45	83	4					
Ayrt.	1150	$8{ }_{6}$	6					
Ardrossan	1145	10	6	Duncansby Ness ..				
Largs...	1150	10		Wick......	1122	9_{4}^{3}	6	
Greenock . . .	0 8 0	${ }_{9}{ }^{2}$	$6 \frac{1}{2}$	Cromarty	11.58	14	8	
Port Glasgow	018	9		Inverness	1218	12	7	
Dumbarton	040	9		Peterhead	034	$10{ }^{\frac{3}{4}}$	$5{ }^{3}$	
Glasgow ..	125	2		Aberdeen	1.0	12	8	
Burnt Isles, Kyles				Montrose	125	13	7	
of Bute ... ${ }^{\text {a }}$	11.50	10	6	Arbroath	135	14	8	
Ardrishaig,		9		Tay Bar	$2 \cdot 0$	16	2	
Gigha Sound	$2 \cdot 22$	4	1	Dundee	- 232	$4{ }^{4}$	$7{ }^{7}$	
Jura, E. Coast	456	34	14	Leith	2178 2	$16{ }^{162}$	9	
Easdale Sound	525	10-12		Dunba		152	7	
Crinan	449	6	$1{ }^{4}$					
Loch Aline	533	$13{ }^{1}$	7	Englanà	ast Co	.	4 ¢	

Loch Eil
Portree, I. of Sky
Kyle Akin …..
Broom
Poolewe, Loch Ewe
Berneray, Island of Harris
Stornoway
Cape Wrath
Thurso
Swona, E. side.
Great Skerry, East side

Orkneys.

Stromness		10	5
Kirkwall	109	10	5
Deer Sound	1030	10	5

Range.

Sps.	Nps.
ft.	ft.
10	5
11	$5 \frac{1}{2}$

10	4
$9{ }^{\text {a }}$	8
14	8
12	
$10{ }^{2}$	${ }^{\text {5a }}$
12	8
13	7
14	8
16	12
$4 \geq$	$7{ }^{7}$
16%	9
152	7

$\begin{aligned} & 15 \\ & 14 \frac{3}{6} \end{aligned}$	
14.	
14\%	7
15	
15	
15	81
16	8
$18 \frac{3}{4}$	$10 \frac{}{4}$
20:	114
23	23
14:	$7 \frac{1}{1}$
6	2
61	4
8	5
12	6
112	8
$13 \frac{1}{6}$	
12	. 4

	High	Rang			High	Rang	
	Change.	Sps.	Nps.		Change.	Sps.	Nps.
Ireland, Nouth and East Coasts.					n.	ft .	ft.
				Ga			
Cape Clear	h. m.	ft.	f.	Liscanor Bay	423	13	$6 \frac{1}{6}$
	40	9		River Shan			
Baltimore.	4.23 443	110	$6{ }_{4}$	Limerick ${ }_{\text {\% }}$ Foynes I d.	6.20 535	${ }_{15}^{17}$	$8{ }^{93}$
Kinsale	443 51	111	63 7	Toynes 1sd.	635 457	14.	7
Queenstown Ballycotton	454	12	71	Kilbaha	416	13	61
Balycotton	514	$12{ }^{\frac{3}{2}}$	71	Valentia Harbour	342	11	$6 \frac{1}{6}$
Ballinacourty, Dungarvan	512	12	6	Kenmare River,	352	10	
Waterford (Duncannon Fort)				Bantry Harbou	347	10	$6 \frac{1}{4}$
	520	12.	7	Castletown, Bear-			
	721	5	21	haven	414	$9{ }^{\text {\% }}$	1
Arklow	845	4	2	Black Ball Har	340		.
Wicklow .	1029	9	4	Dunmenus Har	357		5
Dalkey Island	1045	13	9	Crookhave			6
	1110	11	61	Skull		${ }^{*}$	$5 \frac{1}{6}$
Dublin Bar	1112	13	7	Cape Clear		9	
Harbour	119	12	7				
	1040	11			cay.		
Dundalk	110	17	10	Lofoten	12		6
Carlingford, Bar ..	1040	17	9	Vrero	12 0	9	6
	110	16	8	Tree Islands	1145	7	
Ardglass Strangford, Bar	1030	15	8	Romdals Islan	1045	6	
" Portaferry	12	14	9	Bergen	130	4	
Ireland, North and West Coasts.				North Sea, East Coast.			
Donaghadee	1113	111	7	Skagen or the Skaw'	- 556	1	
Belfast	1043	$9 \frac{1}{3}$	$6 \frac{1}{1}$	Blaavand Point	144	5	
	10.30	$10{ }^{\circ}$		Hierting .	245	5	
Tor Point ${ }^{\text {c }}$	- 40		4	Eider, Tonning	21	9	
Ballycastle Bay ...	${ }^{6} 8$	4		Elbe, Hamburg	529	$6{ }^{6}$	
	68	$5 \frac{1}{4}$	2	" Cuxhaven		10	
Coleraine	624	$6{ }^{4}$	2	Entr	120	11	
Londonderry	81	$7{ }_{4}^{4}$	$3{ }_{4}$	Helgoland	1133	9	5
				Weser, onter light vessel			
Swilly	- 542	12.	52		$\begin{array}{ll}11 & 30 \\ 10\end{array}$	9	
Sheephaven Gweedore Bay	- 525	12	5_{5}^{5}	Ems (outer buoy)	11 9	7	
	532	11	5	Ameland ${ }^{\text {Tersehelling }}$	840	6	
Inishkeel .	510	11	4	Amsterdam		18	
Killibegs	- 5131	11.	4			18 4	
Ballyshannon (Bar)Sligo Bay	($\begin{array}{r}5 \\ 5 \\ 5 \\ \hline\end{array}$	10		Nieuwediep Texel (outside shig.	630	4	3
	- 511	$\underline{11}$		Texille (outside shis.)	30	5	
Killala Bay	522	-10,	S	Hellevoetsluis	230	8	4
Broadhaven Har- bour		10.	5	Flushing	120	15	
Achillbeg	- 514	10	6_{4}^{4}	Ostend	1225	19	11
Westport	457	12.	6	Nieuport	12	16	12
Inishbofin	434	12:	7				
Roundstone	428	131	$6 \frac{1}{4}$	France,	North Coa		
Greatman Bay Killeany, Arrau Is.	- 439	15,	$7 \frac{1}{6}$	Dunkerque		16 ${ }^{\text {s }}$	12
	428	131		Gravelines	120	19	11

Place.	High	Kange.		Place.	High Water, Full and Change.	Range.	
	Change.	Sps.	Nps.			Sps.	Nps.
	h. m.	ft.	ft .		h. m.	ft.	ft.
Calais	1149	198	$11 \frac{1}{4}$	Peniche	154		
Cape Grisnez	1127	21	12	Lisbon Bar	230	16	
Boulugne	1125	25	14	Setubal	230	8	
Cayeux	116	27	15	Lagos	27	13	
Dieppe	1044	23	13	Cadiz .	145	91	
Fécainp	951	22	121	Gibraltar, old Mole			
Havre	929	23	11	(8)...........	220	31	
Honfleur	851	17	9	Malaga	120	3	
Cherloury.	749	17	8				
Alderney	646	17	8	Atla	ic Isles.		\because
Guernsey	630	25	14		(io Toles.		
Goury	76	22	13	Funchal Bay, Ma-	1248	7	
Jersey, St. Aubin. .	621	32	14	deira.........			
Carteret	625	31	14	St. Michael, Azores	1230	6	
St. Germain	620	42	16	Terceira "	1232	41	
Régneville	620	35	17	Fayal	1145	4	
Granville .	613	37	17	Bermudas, Irelanu			
Ile de Chausey . . .	$6{ }_{6} 9$	35	17	Island Dock Yard	74	4	
Cancale	620	37	17	Porto Praya	6 0?	5	
Les Minquiers . . .	66	35	17	Sal, Cape Verde Is.	745	6	*
St. Malo	65	35	17	Puerto de la Luz,			
Brehat	551	31	16	Gran Canaria ..	1252	10	
Héaux Lights	545	31	16				
Tréguier	532	25	12		frica.		
Ploumanach .	6 4 4	24	12				
Morlaix Road	453	24	12	Ceuta (9.)	110 142		
Isle de Bas	449 414	23	11	Tangrer Mogador	142 20		
Abervrae'h Ushant (7.)	414 3142	22 101	10	Mogador Cape Bojador	2 12	10	
Ushant (7.)	332	10!	$8!$	Cape Bojador . . . ${ }^{\text {Cape Blanco. . . }}$	$\begin{array}{rrr}12 & 0 \\ 11 & 48\end{array}$	6	
France, West Coast.				Portendik	100	6	
				Senegal	1030		
Brest	347	19	84	Cape Verde	745	3	
Isle do Sein	321	17\%	74	River Gambia . . .	810	6-9	
Concarneau	312	13	64	Bijougalds., Or-			
Prt. Louis,L'Orient	311	13	6	ango Channel ..	100	11	
St. Nazaire	340	154	71	River Nuncz,	100	15	8
Ile de Noirmoutier	32	16	7	Isles do Los	630	13	
Ile d'Oleron	360	19		Mellacorce iit. . . .	740	11	
Bordeaux	680	14	114	Scarcies Rivers ..	710	10	
Cordourn Lt. honse	337	13	71	Sierra Leono	755	8	
Arcachon	437	11	71	Banana Islnnds ..	815	9	
Boucaut, Adour R.	339	$8{ }^{4}$	6	Gallinas River ..	645	4	
Bayoune	345	12	8	Mlonrovia	60	0	
Samin and Portugal.				Cape Y'almas	430	4	
				Grand Lahou	420	4	
				Cape Three I'oints	40	4	
Port Prssage	30	12	6	St. George d'El-			
Bilbao	320	9		mina.	430	6	
Santander	330	15	9	Cape Coast Cavtle	430	6	
Corunna	30	15		River Lagos .	60	2	
Cape Finisterse . .	30			" Forcar ${ }^{\text {. }}$	422	5	
Oporto	230	10		"Benin.	115	7	

$\cdots{ }^{\text {ancolt }}$	High	Range.	
Place.	Full and Change.	Sps.	Nps.
	h. m.	ft.	ft.
Niger, Nun (en trance \qquad	48	6	
Bonny and New Calabar Rivers. .	50	9	
Cameroons River ..		6	
Fernando Po	40	7	
Princes Id.	345	$4{ }^{3}$	
St. Thomas Id.	325	$4 \frac{1}{6}$	
Anno Bom Id. .	345	5	

Newofoundland (10).

Little Mecatt	1030	5
New and Old $\mathrm{Fe}-$ rolle \qquad	1145	
Bays of St. Genevieve and St. Barbe \qquad	1130	
Isle Verte, or Green Island. .	9 0	
Bay of Pistolet	645	5
Croque Harbour	630	61
Triton Harbour in Notre Dame Bay	60	6
St. John's.	730	7
Placentia Harbour	915	8
St. Pierre and Miquolon	9.3	6-7
Between Cape Chapeau Rouge and Cape Ray gene- rally	90	7-8
Beyond Cape Ray, northward, the tide is inconsideable.		

Labrador and Gulf St. Lavorence.

	High Water, Change.	Range.		ace.		Range.		
		Sps.	Nps.			Sps.	Nps.	
Bay of Fundy, Nova Scotia.					h. m.	t.		
				Portsmouth*	1128	$9{ }^{2}$	$7{ }^{1} \mathrm{P}$	
E. side, Cape Sable	h. m .	ft.	ft.	Nowburyport*	1122	101	${ }^{61}$	
Island	80	7		Salem**	$\begin{array}{ll}1113 \\ 11 & 30\end{array}$	$1{ }^{10}$	$7 \frac{1}{3}$	
Cape Sable	830	9	$4 \frac{1}{2}$	Marblehead . Boston Light	$\begin{array}{ll}11 & 11 \\ 11\end{array}$			
Cape Sable,				Boston Light ${ }^{*}$.....	1112	11	8 P	
$\xrightarrow{\text { Pubnico }}$	$\begin{array}{ll}9 & 0 \\ 9 & 3\end{array}$	${ }_{12}^{12}$	81	oston	1127	$11 \frac{1}{4}$	8 P	
Tusket River	933	13	7	Plymouth	1130	11		
Jebogue	947	161	64	Barnst	11	9		
Yarmouth	1011	161	$8 \frac{1}{3}$	Cape Cod	1130	13		
Cape St. Mary	1030	19	9	Monomy Point.	1130	6		
West Port, Grand				St. Georgo Shoals	1030	7		
Passage	1047	21_{1}	10	Nantucket ${ }^{\text {Edgartown }}$	1224	3 t	.	
Sanily Cove, East	1039	$22 \cdot$	12	Holmes Hole*.	1143	$1{ }_{6}$	$1{ }^{1}$	
Annapolis	$\begin{array}{ll}11 & 0 \\ 10 & 51\end{array}$	${ }_{26} 3$		Gay Head	+ 77	,		
Gulliver Hole	1051	28	13.	Tarpaulin Cove	84	24	2	
Digby Gut . ${ }^{\text {a }}$.	$\begin{array}{lr}11 & 2 \\ 11 & 14\end{array}$	28.	181	Bird Island Light*	789	$6{ }_{4}^{1}$	3	
Young Cove Point	$\begin{array}{lll}11 & 14 \\ 11 & 22\end{array}$	32 34 34	18.	New Bedford, en-	769			
Port George	$\begin{array}{ll}11 & 22 \\ 11 & 27\end{array}$	${ }_{35}^{34}$	${ }_{20}^{19}$	$\text { ew Bedford, en- } \text { tranee }$	757	41	$2{ }^{\text {a }}$	
Black Rock		35		Newport*	745	4		
house	1136	371	21	Point Judith	732	3	34	
Spencer Anchor-				Montauk Point Sandy Hook*	810 789	51	${ }^{12}$	
ago	1150	$40 \frac{1}{4}$	22	New Yorl		51	38	
Parsborough West Bay, Basin of				Long Island Sound.				
Mines	124	451	25					
Horton, do	125	50	$27 \frac{1}{4}$	Throgs Neck*	1120	91	${ }^{6}$	
				Sands Point*	1113	9	61	
Bay of Fundy, New Brunswick.				Oyster Bay*	117	94	51	
Cumberland Basin, Sackville				Bridgeport ${ }^{\text {a }}$	$\begin{array}{ll}11 & 11 \\ 11 & 18\end{array}$	8	${ }_{5}{ }^{\text {P }}$	
	1148	50	24	New Haven**	1116 928	${ }_{3}^{64}$	5 2	
Cape Chignecto(12)	110	32		New London*	$\begin{array}{ll}9 & 28 \\ 9 & 7\end{array}$	${ }_{3}^{31}$	2 ?	
Quaco	$\begin{array}{lll}11 & 31 \\ 11 & 24\end{array}$	${ }_{22}^{32}$	${ }_{12}^{18}$	Stonington*	9 9	$3{ }^{3}$	21	
St. John Campobello	$\begin{array}{ll}11 & 24 \\ 11 & 20\end{array}$	${ }_{25}^{26}$	12	Watch Hil				
Campobello	$\begin{array}{rr}11 & 20 \\ 11 & 3\end{array}$	228	${ }_{10}^{12}$	Delaware Bay and River.				
West Quoddy....	$\begin{aligned} & 11 \\ & 1130 \end{aligned}$	25	104	Philadelphia* ... 118				
Passaniaquoddy ${ }_{\text {Grand }}$								
Grand Harbour, Grand Manan .	111	7	11%	New Castle* ${ }^{\text {Nahens River }}{ }^{\text {a }}$	115 95 98	7	64 ?	
Machias,				Cape Henlopen	80	3-4		
	1058	13	10	Higbees, CaneMay*	833	61	4	
United States.-Portland to New York.				Delaware Break water*		4	3	
$\begin{aligned} & \text { Mount Desert Is- } \\ & \text { land (13) } \\ & \text { Portland }{ }^{*} \text {. } \end{aligned}$	1110	13		Chesapeake Bay and Rivers.				
	1125	10	$7 \pm$ P	Rishmond**	$\begin{aligned} & 428 \\ & 214 \end{aligned}$			

[^24]
Baltit
 Cape
 Point
 Cape
 fort
 Unito
 Hatte
 Cape
 Oorac Beauf
 Smith
 Cape
 Charle
 Savam
 Cape
 Sand
 Cay \mathbf{W}
 Tampe
 Pensac
 Mobile
 Missise
 pass
 Galves

Vera 0 Triang
(1.) water whilst the we longer run out
(2.)
underst which great \mathbf{r}

* Fr
rected

Range.

ps.	Nps.	
$\overline{\mathrm{ft}}$	ft.	
9 ${ }^{2}$		
9	$6 \frac{1}{7}$	
$10 \frac{1}{2}$	$7 \frac{1}{3}$	
12	8 ?	
11		
$11 \frac{1}{2}$	8 8	
11^{+}		
13		
7		
3	${ }_{1}^{27}$	
2		
1	$1 \frac{1}{4}$	
7	2	
5	31	
4	${ }^{2} \frac{3}{3}$	
4	${ }^{3}$	
3	14	
2		
	38	

 ver.

3
4
3

7	5
7	$6 \frac{1}{2} P$
7	5
$3-4$	4
$6 \frac{1}{4}$	4
$4 \frac{1}{4}$	3

vers.

1	High	Ran	ge.		High	Ran	ge.	
	Full and Change.	Sps.	Nps.	Place.	Change.	Sps.	Nps.	
Baltimore*	h. m.		ft_{1}	Campeche	h. m.	2	ft_{11}	
Cape Henry	740	4		Cape Catoche	1930 930	1		
Aunapolis*	438	1	$\frac{3}{4}$	Cozumel	830	18		
Point Lookout*	1258	2	$\frac{3}{4}$	Royal Harbour, Ru-				
Cape Charles	745	5		atan	743	31		
Old Point Com-				Cape Gracias Harb.	1030	2		
, fort*	817	3.1	2	Man of War Cay ..	810	2		
United States-North	th Carolin	na to	Texas.	Blewficlds Greytuwn	$\begin{array}{cc}1 & 50 \\ 9 & 0\end{array}$	$4{ }_{1}^{4}$		
Hatteras Inlet* .	74							
Cape Hatteras . . .	90	5						
Ocracocke Inlet . .	90							
Beaufort**	726	$3 \frac{1}{4}$	21 ?	West Ind	dia 1slands			
Smithville*	719	${ }^{51}$	3.					
Cape Fear. .	70	7		Havana, Cuba		3		
Chargetown	70	4		Cape Haytien, St.		3		
Charleston*	713 313	${ }_{6}^{61}$		Gun Cay	830	3		
Cape Florida:	831	$1{ }^{3}$	$1{ }^{1}$	Abaco	80	3		
Sand Cay*	840	2	1	Nassau, New Provi-				
Cay West*	925	23		dence...	730	3-4		
Tampa Bay*	1121	$1 \frac{1}{2}$	1	Guinchos Kay	740	3		
Pensacola		2		Clarence Harbour,				
Mobile		2		Long Island Exuma			$2 \frac{1}{2}$	
Mississippi S. W.		$1 \frac{1}{6}$		Exuma .i........	720 70	$2{ }_{2}^{1}$		
		4		Inagua	80	3	2	
Gulf of Mexico.				San Juan, Porto Rico \ldots.	$8 \quad 2$			
				1				
Vera Cruz Triangles					Cruz.	730		\$
		13		Alsgadn	830	$1 \frac{1}{6}$		

RENARKS ON THE TIDE TABLE.

(1.) River Thames.- - During strong north-westerly gales, the tide marks high water earlier in the River Thames than otherwise, and does not givo so much water, whilst the ebb tide runs out later, and marks lower; but, npon the gales abating and the weather moderating, the tides jut in and rise much higher, whilst they also rum longer before ligh water is marked, and with more velocity of eurrent, nor do they run out so long or so low.
(2.) Englisif Channel.-The tides of the Englieh Channel were but imperfectly understood till Rear Admiral Beechey, R.N., investigated a mass of observations which had boen made about the year 1847, and whieh demonstrated that there was a great resemblance in the characteristics of the tidal phenomena of the English and

[^25]Irish Channels, , and this investigation led to a more extensive series of observations throughout the English Channel, which were also discussed by Admiral Becchey. From his valuable contribution to science and the mariner in the "Philosophical Transactions" for 1851,* we make the following extract :-

Instead of the progressive changes of stream turning progressively later as the tide advances up the strait, they cease at a certain point, which is in the English Channel, between the Start and Gulf of St. Malo; and in the North Sea, between the Texel and the Estuary of Lynn; and between these spets there is a tide peculiar to the Channel, quite distinct from that of the seas on either side of it, which are alwaya running in contrary directions.

When these streams meet, the tide is ever varying in its direction, according as the strength of one stream prevails over that of the other, giving to the water a rotatory motion, without scarcely an interval of slack water; while in the space between them tho tide sets steadily towards Dover, while the water is rising there, and away from it while it is falling at that place. This "true Channel stream" is about 180 miles in extent in either direction, from the point of union of the tides in the Strait of Dover to the region of rotatory tides off Lynn, and off the Start and St. Malo.

As the true Channel streams are always running in opposite courses, there is necessarily a point where they meet and separate; and this occurs in the strait of Dover. But in this strait the stream, although it first obeys one tide and then another, does not sluck with the Channel streams, but is found to be still running at high and low water on the shore, at which times those streams are at rest, so that the Strait of Dover never has slack water throughout its whole extent at any time. I have in consequence called this an intermediate tide.

The limits of neither of the streams appear to be stationary, but range to and fro as the tide rises and falls at Dover, travelling to the eastward on both sides, and at high and low water suddenly shifting 60 miles to the westward to recommence their easterly course with the next tide; and although so far apart, they possess the remarkable peculiarity of shifting together; so that the Channel streams preserve, as nearly as possible, the same relative dimensions.

In the Strait of Dover this line of meeting and of separation oscillates between Beachy Head and the North Foreland, a distance of about 60 miles. When the water on the shore at Dover begins to fall, a separation of the Channel streams begins off Beachy Head. As the fall continues, this line creeps to the castward; at two hours after high water it has reached Hastings; at three hours, Rye; and thus it travels on until at low water by the shore it has arrived nearly at the North Foreland on one side of the strait, and at Dunkirk on the other. At this time the Channel streams on both sides slack, but in that portion which I call the internediate stream, in the Strait of Dover, the water is still running to the westward; and when the new Chumnel streams make, as the water rises on the shore, this intermediate portion is found to unite with, or to oppose, one or the other of these streams, according as it was before the reverse; so that, as before mentioned, the line of meeting at low water appears off Beachey Head to recommence its easterly courso. This intermediate stream forms a remarkable feature in the tidal system of the Channel; it is well established, as the line of meeting and of separation oceupies a very limited space, and it seems to be entirely due to the contracted form of the Channel in this immediate locality preventing the free escape of the water.
Captain Bullock, in order to test the point of separation, anchored two vessels a mile apart between Beachy Head and Dungeness; and found both vessels at the sume time to ride with their heads in opposite directions in obedience to the strcams, which were then running oppposite ways.
The Channel Stream, which I have described as running between the intermediate stream and the rotatory or mixed streams at the outer extremities of the Channel, pusues a steady course along the main trunk of the Strait, slacking only towards

[^26]high a trary t a prog its wh former low w of the
A that th while f Channe
waters, found a ing rou times.

It wi posite s similar
(4.)
their m exceede French tho cha extraor page 24

With that cha in prope Botwee with g Throug two hou makes Worm's

At L neaps 1 and nea stream
to the v Island, of flow the nea]

It sho about fi them ; end of
which
3 upon
shore;

[^27]rrations Becehey. ssophical

the tide

 Channel, te Texel ar to tho , always rotatory sen them vay from 80 miles Strait of 10 . is necesd Dover. her, docs and low Strait of have in o aná fro es, and nt nce their si the reeserve, asbetween When the streams ward; at and thus rth Fore Channel - strcum, when the eportion ing ns it ow water rmediato it is well paec, and umediato
vessels a the samo s, which

rmediate

 Chamel, towardshigh and low water at Dover, when it is preparing to invert its course; and, contrary to the generally received opinion of a progressive slack water in a strait having a progressive establishment, this stream has the peculiarity of slacking throughout its whole extent at nearly the same time ; and this time, as was anticipated in my former paper (" Phil. Trans.," 1848), corresponds nearly with the time of high and low water on the shore at Dover, the site of the combined wave, and the virtual head of the tide.

A simple rule thus suffices to guide the sailor up the main Channel 'stream. It is that the stream runs toward Dover while the woater is rising there, and awoy from it while falling. The tidal hours for Dover, therefore, answer for the whole of the Channel.
(3.) Southampton, \&C.-This port has the singular advantage of having two high waters, which adds not a little to its dock facilities. The same phenomena is also found at other places within the Isle of Wight, and is owing to the Channel tide passing round either end of the Isle of Wight, and arriving at the peint at different times.

It will be observed that at Poole the rise and fall is insignificant, while on the opposito side of the Channcl we have the gigantic tides of the Bay of St. Male, a similar feature to that which is found in the St. George's Channel.
(4.) Bristol Channel.-The tides of the Bristol Channel are remarkable for their magnitude and rapidity. There are few places in the world where they are execeded. The Bay of Fundy, Nova Scotia, and the Bay of Mont St. Michel, on the French coast, aro somewhat analogous. The effect of these rushing waters is to alter the channels and shift the banks in the upper portion of the Bristol Channel in a most extraordinary manner. Some idea is given in our Directions for the Bristol Channel, page 24.

Without the Bristol Channel spring tides rise from 22 to 24 and 26 feet; but is that ehannel narrows, or contracts in ite breadth, the yelecity and vertical rise inerease in proportion; and so much that, in King Road, it rises to the beight of 8 fathoms.* Between Nash Point and Bridgewater Bay, past Hurlstone Point, \&c., the tide sets with great velocity over the Culver Sand, into Bridgewater Bay and Iliver. Through Caldy Sound; the streem from Caermarthen Bay makes westward nearly two hours before the flood has done running without the island; and the stream makes enstward through the Sound, as well as between the Helwick Sand and Worm's Head, nearly two hours before the channcl ebl ccases.

At Lundy Island ordinary spring tides rise 27 feet, equinoctial springs 31 feet, and neaps 13 fect. In Barnstaple Bay, ordinary springs rise 25 feet, equinoctial 28 feet, and neaps 15 feet. In this bay, at from two to three miles from shore, a gentle stream sets to the eastward, from the time of low water to four hours' flood, and then to the westward until low water again. In mid-channel between this bay and Lundy Island, the streams of flood and ebb set tide and tide each way, aceording to the time of flowing on the shore, at the rate of three miles an hour on springs and two upon the neap.s, allowing half an hour slacking and veering out.
It should be understeod that, within the range of Swansea Bay and its offing at about five miles west of the Skarweathers, the first quarter-flood sets directly townrd them ; after which and until half-flood, it sweeps one mile outside, nearing the west end of the Nash Sands; and ultimately setting, till high water, S.S.E. by compass, which points well outside of all. It averages a rate of 4 and 5 knots on springs, and 3 upon neaps, and changes exactly at the same time that it ceases to rise on the shore; but slack water always lasts half an hour.

[^28]It has been observed, that over the shoals, and through the different channels, the velocity of the tides is greatly increasel, and there is reason for believing that on springs the rate is nearly six knots.

There is always a strong tide under these shoals, which is, of course, increased or decreased according to the vertical rise. This is of consequence when working up near them, as some advantage may, in the daytime, be taken of it, by keeping on the proper side. Its influence will be manifest to any vessel thus situated, as she would nearly make her course good when under their lee, but swept away furiously on opening the different passuges. Should it be desirable to have the true tide it will thorefore be requisite to keep on the north or south side of all the shoals, according to the ebb or flood.
(5.) St. George's Channel.-Much that has been aaid of the English Channel tides is applicable to those of the St. George's Channel.

In the St. George's or Irish Channel, experiments have shown that, notwithstanding the variety of times of high water throughout the Channel, the turn of the stream over all that part which may be called the fair navigable portion of the Channel is nearly simultancous; that the northern and southern streams in both channels commence and end in all parts (practically speaking) at nearly the same time; and that that time happens to correspond nearly with the time of high and low water on the shore at the entrance of Liverpool and of Morecambe Bay,* a spot remarkable as heing the point where the opposite tides, coming round the extremities of Ireland, terninate. So that it is necessary only to know the times of high aud low water at either of these places to determine the hour when the stream of either tide will comrence or terminate in any part of the Channel. For this purpose the Liverpool tide table may be used, pubtracting 16 from the times there given, in consequence of the Canning Dock being later in its high water then the point which is considered as the head of the tide.

The tide from the Atlantic enters the Irish Channel by twe channels; of which Carnsere Point, the S.E. point of Ireland, and St. David's Head, the S.W. point of Wales, are the limits of the southern ons; and Rathlin and the Mull of Cantyre the boundaries of the northern.
The central portion of the stream of flood, or ingoing stream runs nearly in a line from a point midway between the Tuskar and the Bishops, to a position 16 miles due west of Holyhead; beyond which it begins to expand eastward and westward; but its main body preserves its direction straight forward towards the Calf of Man and on towards Maughold Head. Here it is urrested by the flood or southern stream from the North Channel coming round the Point of Ayr, and is first turned round to the eastward by it, and then goes on with it at an easy rate direct for Morecambe Bay ; thus changing its direction ncarly eight points.
The outer portions of the stream are necessarily deflected from the course of the great body of the water by the impediments of banks on the Irish side of the Channel, and by the tortuous form of the coast on the Welsh. The eastern portion rushes with great rapidity between the Smalls, Grassholm, and Milford Haven towards the Bishops, which it passes at a rate of between 4 and 5 knots; sets sharply round those rocks in an E.N.E. direction, right over the Bass Bank, and into Cardigan Bay; makes the circuit of that bay, and sets out again towards Bardsey, at the other extremity of i ; the stream still continuing outside towards the South Stack, which it rounds, setting towards the Skerries nt a rate of upwards of 4 knots; and, finally, turns sharp round those rocks for Liverpool and Morecambe Bay; completing in its way the high water in the Menai, and filling the Dee, the Mersey, and the Ribble.
The zoestern portion of the stream, after passing the Saltees, runs nearly in the direction of the Tuskar, sets sharply round it, and then takes a N.E. $\frac{1}{\frac{1}{8} \text { N. direction, }}$

[^29]settin tacki ebb, Bant wher the r it enc tion overf disco
Lamb
them
lingf
rema
perce
Such
In
Islan
flows
ing to chann of the
Th Islanc
tion 0
there
Jurby
with
the bs
Maug cambe
notori
out by
vessel
Suc
duced design
The
excep
coast.
(6.)
develo
rence
that j
abstra schem occup. betwe on wh tide : at all a tidel
\mathbf{A}
cusse3
furthe
Marrs
" Tl
Senita
setting fairly along the coast, but over the banks skirting the shore; so that vessels tacking near the inner edge of the sands on the flood, and on the outer edge on the ebb, have been carried uyon them and lost, especially upon the Arklow and Codling Banks. Abreast of the Arklow is situated that remarkable spot in the Irish Channel, where the tide scarcely rises or falls. The, stream, notwithstanding, sweeps past it at the rate of 4 knots at the springs, and reaches the parallel of Wicklow Head. Here it encounters an extensive projection of the Codling Bank; and while the outer portion takes the circuit of the bank, the inner stream sweeps over it, occasioning an overfall and strong rippling all round the edge, by which the bank may generally be discovered. Beyond this point the streans unite and flow on towards Howth and Lambay, growing gra dually weaker as they proceed, until they ultimately expend themselves in a large space of still water situated between the Isle of Man and Carlingford. There we have not been able to detect any stream; for there another remarkable phenomenon occurs-the water rising and falling, withont having any perceptible stream. This space of still water is marked by a bottom of blue mud. Such is the course of the flowing water at the Southern Channel.

In the North Channel the stream enters between the Mull of Cantyre and Rathlin Island simultaneously with that passing the Tuskar into the Soathern Channel, but flows in the contrary direction. It runs at the rate of 3 knots at the springs, increasing to 5 knots near the Mull, and to 4 near Tor Point on the opposite side of the channel. The main body sweeps to the S. by E. taking nearly the general direction of the channel, but pressing more heavily on the Wigtonshire coast.

The central portion midway between the Mull of Galloway and the Copeland Islands presses on towards the northern half of the Isle of Man; and while one portion of it ffows towards the Point of Ayr, the other makes for Contrary Head, and is there turned back to the N.E. at a right angle nearly to its early course. Passing Jurby Point, it re-unites with the other portion of the stream, and they jointly rush with a rapidity of from 4 to 5 knots round the Point of Ayr, and directly across all the banks lying off there, and catshing up the stream from the South Channel off Maughold Head, they hurry on together towards that great point of union, Morecambe Bay. This bay, the grand receptacle of the streams from both channels, is notorious for its hugo banks of sand, and also remarkable for a deep channel scoured out by the streain, and known as the Lune Deep, which is the great beacon to all vessels bound to that place.

Such is a general description of the streams in the Irish Channel, which are produced by the flowing of the water, or which, for the purpose of distinction, we may designate the ingoing streams.

The ebbing or outgoing streams do not materially differ from the reverse of those, except that in the southern channel they press rather more over towards the Inish coast.
(6.) The North Sea.-The complicated tidal systrm of the North Sea was first developed by the Rev. Dr. Whewell in 1833, and although there may be some difference of opinion upon various points urged by the author in the "PLilos. Trans." for that j° ar, still the main features seem to be established. The the following is the abstract:-"It appears that we may best combine all the facts into a consistent scheme by dividing the German Ocean into two rotary systems of tide waves; ono occupying the space from Norfolk and Holland to Norway; and the other the space between the Netherlands and England. In the former space the cotidal lines, or those on which the tides are at the same time, revolve around a point where there is no tide; for it is clear that at a point where all the tidal lines meet, it is high water at all hours, that is, the tide vanishes. In the latter space we may suppose similarly a tidoless centre, about which tho cotidal lines revolve."
A further colleetion of exact observations having been made in 1850-51, and discussed by Admiral Beechey, as before alluded to in the English Channel, a still further insight has been given, and the following summary was drawn up by Mr. Jno. Murray, C.E., 1861 :-
"The great stream of flood from the Atlantic, after traversing the western coast of Seniand, upproaches the Orkney and Shetland Isles from the north-west, passing
eastward through these groups, and after combining with the stream through the Pentland Frith, ran southward along the east coast of Caithness. The same great stream of flood also reaches the coast of Norway, and in latitude 62° separated, one branch running to the north, and the other south. The latter stream impinges apon Kinnaird Head and Rattray Point, throwing a br nch into the Moray Frith. The eastern branch of this stream continues its course southward, until checked by St. Andrew's Bay and the shoals off the coast of Fife, passing from thence into the Friths of Tay and Forth. In consequence of the Bell Rock, and other patches north of it, the stream of flood is divided; and as the flood in the deep water is pressed forward with greater velocity than the streams which traverses the more shallow water of the coast, the main stream arrives sooner, and splits off Dunbar and St. Abb's. Head, entering the Frith of Forth in a north-westerly direction, and penetrating a considerable distance within it, before the other streams which run parallel with the coast. Sonthward from St. Abb's Head the stream of flood is nninterrupted, until it encountered the projecting coast from Redcar eastward; and the tidal waters are in consequence heaped up in Tees Bay. This stream continues its course, and off Whithy joins the main stream coming due south from the deep water. The united streams con.anues their course to Flamborough Head, sending a bmnch suddenly round this point to the westward, which sweeps Bridlington Bay and the low coast of Holderness. Another branch makes for the mouth of the Humber; but the main stream takes a south-easterly direction, and as the depth of the sea is reduced, by an extensive shoal off the coast of Norfolk, the stream of flood is forced forward, scooping. out in its passage the Inner Silver Pit. From thence it runs into Lynn Deeps and fills the Great Wash. Arother branch was scoopt out the channels called the Coal and Sole Pits, and continues its course between numerous long narrow banks, which much retarls the velocity of the tidal stream. The stream. The stream of flood off Yarmouth resumes its southerly course, hugging the coasts of Suffolk and Essex, until it fell into the estuary of the Thames.

Returning now to the great flood stream off Flamborough Head, the main set ran almost due east between the shoal ground off the coast of Norfolk, and the Outer Well Bank, scouring out a channel called the Outer Silver Pit, between it and the shoals. Continuing onwards to the Texel, it threw off a branch southward, which made for the month of the Thames and the Schelde; and this current met with the flood issuing through the Straits of Dover, the one neutralizing the other. Obse; $\mathrm{va}-$ tions made by the late Capt. Hewett, R.N., in lat. $52^{\circ} 27^{\prime} 30^{\prime \prime}$ N., long. $3^{\circ} 14^{\prime} 30^{\prime}$ E., showed, as had been previously pointed out by the Rev. Dr. Whewell, that no rise and fall of the tide could exist in that part of the North Sea; and that, therefore, the surface between the two opposite coasts must assume a convex form at low water by the shores, and a concave one at high water. The great stream of flood made for the mouths of the Weser and the Elbe, sweeping the coast of Friesland, and being forced in a northerly direction along the coast of Denmark, it impinged on an extensive recf off the extreme point of Jutland, which altered its course. It then took the name of an cbb-tide, and after uniting with the constant outset from the Baltic, ran in a northeasterly direction, meeting the flood entering the North Sen between Norway and Scotland, to renew the race it had just run.
(7.) Bay of Biscay.-On the eoasts of the bay, the tidal wave advancing from the westward, makes high water almost at the same hour all around its shores; and the range also does not vary greatly.
(8.) Strait of Gibraltar.-In the middle of the Strait of Gibraltar, the current mostly and generally sets to the East : but, on each side, the flood tide sets to the westward. On the European side, West of the Isle of Tarifa, it is high water at eleven o'clock, but the stream without continues to run until two o'clock. On the opposite shore of Africa, is is high water at ten o'clock, and the stream without continues to run until one o'clock : after which periods it changes on either side, and runs eastward with the general current. Near the shores are many changes, counter-currents, and whirl- jol , caused by, and varying with, the winds.
(9.) Aprica.- The currents on the African coast (hereafter explained) render the given tinice of high water uncertain.

Bet Chart
In bar, sets fir

Between Cape Cantia and Cape Blanco they are strong, and set as shown on the Chart.

In the road-without the Sencgal, the current sets chiefly to the S.W. From the bar, strong freshes come down after the - ins, and a powerful current of fresh water sets from the river to some distance car to sea.

In the Bay of Yoff, to the N.E. of Cape Verde, the currents set rapidly, and sometimes in very dangerous winls.

At the mouth of the Gambia the greatest rise in the dry season is not more than 6 feet. Here the tide continues to run on the surface for an hour and a half after it ceases flowing on the shore.

The level of the sea, in the vicinity of Cape Coast Castle, is higher, by at least 6 feet, in the rainy season (which is the season of the strong S.W. and southerly winds, between April and September), than in the more serene weather of the dry season.

In the rainy season, or S.W. monsoon, trunks of trees are frequently carried on shore, and found at 6 or 8 feet above the level of the sea, of the other season; and the tides ebb and flow regularly in the several rivers; but, in the dry season, the same rivers run ebb constantly; the level of the sea being then too low to ullow the tidewaters to enter the mouths of the rivers.

Some Remarks on the tides about Cape Blanco, the Channels of the Bissagos, \&c., are given in the Description of the Coast hereafter.
(10.) Newfoundland.-On all the coasts of Newfoundland the tides are very irregular; being greatly influenced by the prevailing wind. On all the eastern coast they have nearly the same rising; springs about 6 feet; neaps 4. At the entrance of St. John's they set in a bore.
Between Cape La Hune and Cape Ray the flood sets to the westward in the offing, very irregularly, but generally two or three houre, after high water on shore. See more particularly our "British American Navigator, dc." published by Mr. Laurie.
(11.) River St. Lawrence.-At 3 leagues below Tadous:c, or the Saguenay, is the eddy of the flood, and the stream on the surface always sets thence downward. Off Tadousac, the tide ebbs six hours eight minutes. Both streams hore run threequarters of an hour after high and low wate:. At Green Island, it ebbs six hours twenty-four minutes, and flows six hours.

At the Isle aux Coudres, it ebbs six hours twenty minutes, and flows six hours. Here the ebb stream continues an hour and a quarter after low water, and the flood three-quarters of an hour after high water. Within the Pillars, off St. Jean, the tide ebbs six hours fifty minutes, and flows five hours twenty-five minutes. Both streams continue to run an hour after high and low water by the shore, but they are influenced in duration by strong winds.

At the Isle of Orleans, the stream ebbs seven hours, and flows flve hours twenty minutes. At Quebec, it flows four hours forty-ive minutes only, but an hour longer as above.

From Green Island to Quebec the tides rise irregularly, but vary considerably. From Coudre to Quebec the water falls 4 feet before the tide makes duwn. At the Isle of Coudre, in spring tides, the ebb runs at the rate of 2 knots. The next strongest ebb is between Apple and Basque Islen; the obb of the River Saguenay uniting here, it runs full 7 knots in spring tides; yet, cithough the ebb is so strong, the flood is scarcely perceptible; and below the Isle of Bic, there is no appearance of a flood tide.
(12.) Bay of Fundy.-Off Cape Sable the tide runs at the rate of 3 , and sometinies 4, miles an hour; and in the Bor of Fundy the tides are very rapid. Cape DOr and Cape Chignceto are high lands, with very steep cliffs, and deep water close under them. The same kind of shore com.; ms to the head of Chignecte. Bay where very exiensive fiats of mud and quichea are left to dry at low water. Hore the
tides come in a bore, rushing in with great rdpidity : they are known to flow at the equinoxes from 60 to 70 feet perpendicular ; and it is remarkable that, at the sam -time, they rise in the Bay Verte, on the northern side of the isthmus, only 8 feet.
(13.) Mount Deger. Jutia-At Mount Desert Rook the atream of flood divides to run eastward and wisiward. With the Skntiock Hills about N.N.E., and within 4 or 5 leagues of those of Mount Demert, the flood stream setr: A. N.E., and the ebb, W.S.W.; but, at the distance of 9 or 10 leagues from the land, ilw carrent, in general, gets to the S.W. and more westward. From the Mount Desert Rock to the Fox Illands, at the ontrance of the Bay of Penobscot, the flood stream sets W.S.W. along shore ; but it, nevertheless, runs up to the northward into Isle Haute Bay, \&c.
(14.) Nantucket, \&e.-Off this this island and its vicinity is that romarkable, but dingerous collection of thoaln, which are so well known to all who navigate these waters. Their form and situation, and also the peculiarities of the Cape Cod peninsula lead to the inference that there is some singular effects of the tides and currents hereabout to which these peculiarities are owing. This subject has been partially investigated by the United States Coast Survey, but a complete report has not yet been issued.
"The region about Nantucket and Martha's Vineyard is the dividing space between the cotidal hours of xii. and Xv., and in this locality the combination of two apparently distinct tide-waves is observed. This combination presents the most ong .tucket and Martha's Vineyard Sounds, and distorting the tide-wave generally, not only in these sounds, but also on the open sea coast of Nantucket and Martha's Vineyard Islands, and in Mustkeget Channel.
"The great disturbance of the ocean level thus prodnced gives rise to those remarkable currents so peculiar to this neighbourhood, and so disastrous to commerce."
(15.) Florida, \&c.-Near Kay West, on the Florida Reef, the tides are, in some measure, regular within the reef : the flood setting to the westward, and the ebb contrary. To the wistward, between the Tortugas and Cayo Marques, the flood sets variably through to the northward, and ebbs to the E.S.E.

It is remarks ? that, on the South side of these kays, the flood comes from the south-eastwar: ; but wa the North side of then, all the way from Kay West, the flood runs to the eastward, along the edge of the bank, and to the southward, through the little channels, in order to fill up the intermediate bays and lagoons, with the assistance of the flood from the southward.
Westward of Kay West there is a general current to the south-westward, along the reef, and to some distance to the South side of it.

In Chatham Bay it runs tide and half-tide; viz., three hours flood, then three hours ebb : next, nine hours flood, \&c. Hero, in some places, it is a mere fall; but in some of the channels it is as much as four men can do to stem the current with a boat.
During a S.E. gale or storm the wator in the bays and rivers of West Florida has been known to rise 7 feet perpendicular, and vessels of burden have been driven in, among twe pine trees, at some distance from shore.

From Cape Roman, northward and westward, the tide seems to ebb and flow only once in the twenty-four hours; but it is irregular, and much governed by the winds. Yet the effects in a dry season are very perceptible in the rivers at a distanoe from the sea.
(16.) Bahamas, \&c.-Although, at the Bahamas, the rise and fall are inconsiderable, the tide of flood sets an indraught on the northern part of the Little Bahama Bank from every point of the compass, which renders an approach very dangerous. The tide sets with some force directly on.and off the western side of the Grand Bank of Bahama; particularly at the full and change of the moon. High water at halfpast seven or thereabout. Rise, 3 to $\mathbf{4}$ feet. - On the Middle Ground of this bank the fides set in every dipention.
from the the flood pugh the ee assist-
d, along
en three all ; but t with a
rida has riven in,
ow only 0 winds. oe tirom consideBahama ngerous. nd Bank at halfbank the

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

In Providence N.W. Channel the current runs generally to the eastward, about 2 miles an hour.

Near Egg Island, to the N.W. of Eleuthera, it is, however, uncertain, and great attention should be paid to the lead. In the passage within Egg Island the tide runis at the rate of 4 miles, and rises above 4 feet; the flood setting eastward, and strongly. over the reefs.

About the Berry Islands and Providence the water rises 2 feet higher when the sun comes to the northward of the line, than it does when the sun is to the sonthward, and its strength is in a similar proportion. Here and at the Bemini Isles the flood sets to the N.E.

III.-OFTHECURRENTS.

(127.) GEsigRAL RHMARKS.-A Current is at present to be understood to be a stream on, or a particular set in the direction of, the surface of the sea, occasioned by winds and other impulses, exclusive of (but which may be influenced by) the causes of the tides. It is an observation of Dampier, that Curberts are scarcely ever felt bot at sea, and Tides but upon the coasts; and it is certainly an established fact that currents prevail mostly in those parts where the tides are weak and scarcely perceptible, or where the sea, apparently little influeniced by the causes of the tides, is disposed to a quiescent state. This will be obvious by an attentive consideration of the following descriptions. The necessity of attention to the silent, imperceptible, and therefore dangerons operation of currente, will be equally apparent.
(128.) The usual method of estimating the existence, direction, and velocity of a current, as is well known, is the comparison between the observed position of a ship and that obtained by dead-reckoning. It may be as well to observe in the outset, that this only method of observations involves some amount of fallacy, as a current will be the general receiver of all errors or i nperfections of observation, and beyond doubt the strength of currents ras been frequently exaggerated from this very cause. Now, as the latitude is attained far more casily and accurately than the longitude, it follows that this exaggeration has been ohiefly shown in those currents supposed to move to east and west. Still, by combining a large number of observations, we may safely conclude that they will noutralize cach others errors, and afford something like an accurate conelusion.
(129) We have an excellent respository of n, vant number of current observations in the claborate charts of Major Rennell, still the great mine for facts in surface current theory. Commander Maury's charts likewise afford a great addition to our stock of knowledge. This is also increased by numerous detached observations soattered through many works. All these, as far as attainable, have all been integrated at a great expenditure of labour, in the Chert of the North Atlantic Ocean, which this work particularly elucidates. In pursuing these calculations it was found that in many localities the currents were represented as most devious and erratic, frequently of great strength, and yet on a mean, showing that there was no continued wet of the waters in any special direction. The diagrams of the direction of the wind at the Liverpool Observatory, page 209, in their more complicated parts, give a good notion of their motions, as their paths, when traced, resemble each other much. In other parts, as in the great Equatorial Current, the motion, as estimated, is remarkably uniform, and this demonstrates that these observations generally are entitled to confidence.
(130.) In founding any theories of circulation or movement of the ocean waters
upon the basis of these, acknowledged to be, imperfect observations, it may be objected that many of them are now old, and therefore still less trustworthy. To this it may be replied, that they were mostly taken in wooden ships by careful navigatore in an age when great pains was taken with the dead-reckoning. A donbt may very fairly be expressed whether the observations of an equal number of modern ships would give as trustworthy results. Modern speed, less attention to D.R., more refined astronomy superseding it, and, above all, the greater quantity of iron in modern ships, which acting on the compass, will inevitably tend to invalidate the most carefully kept log, will all tend to give confidence in these old observations.
(131.) Bottles.-It has been a well-known practice for many years to send these floating messengers as indicators of currents. In 1843, Captain A. B. Becher, R.N., drew up a very interesting chart of the North Atlantic with the points of "despatch and arrival" of a very large number of these current bottles. The practice and the accuracy of the teaching of these bottles led to a long controversy, which however certainly did not tend to overturn their authority, so it need not be longer adverted to here than to say that the principal objection to them was, that they were rather impelled by the prevailing wind than drifted in the current. But this is also a demonstration of what can be otherwise proved, that the wind and surface currents of the Atlantic and other oceans obey the same law, and move very much in the same circuits. These bottles, then, will form an important part of the subsequent demonatrations of the direction and rate of currents. The chart of Captain Becher's alluded to, bears intrinsic evidence of its trustworthy character, as in each region the bottles obey precisely the law which would, a priori, be laid down for them.

Further speculations as to the causes of the currents, and the general view of their circulation and character, is reserved for the end of this section.
(132.) It may be observed that this section deals chiefly with the surface currents of the Atlantic, as that is the only feature which affects navigation. But this superficial action is not the only point to be considered in relation to ocean currents, as it will not explain many phenomena known to exist, and the few experiments and facts we have of the movement and condition of the lower strata of the ocean do not as yet afford us the means of judging accurately of what is the real system of circulation.
(133.) That the water of the occan does cireulate over and intermingle with cvery portion of the water-surface of the globe is certain. Its composition and character is everywhere, in every region, exactly the same. This universality of character can only be accounted for by inferring that the ocean-waters are continually being intermingled, as is the case with the atmosphere, as before described (2.) page 177.

It may be objected that the specific gravity of the surface water varies considerably in different regions, and that is therefore an argument against this intermingling of the sea waters. But it will be found that there are local causes which affect the saltness of the surface-water. In the Aretic regions, where it is frequently found of great density or increased saltness, it is doubtless caused by the formation of ice subtracting the fresh water from the surface. Again, in the equatorial regions, it is usually found of low specific gravity, or containing less salt, which may also be accounted for by the great rain-fall which, by intermingling the light fresh water with the surface, lowers its density. Very much speculation has been used on this variation in the surface density and on its dynamio effects, in producing currents and other phenomena.

But it is deferentially urged against this reasoning, that almost all the experimenta upon the density made upon the water at any considerable depth (above 20 or 30 fathoms) show a remarkable uniformity in the density in all regions ($1 \cdot 0027$), as will be shown in a later part of this book, and that, therefore, the real character of sea water, belov local infuences, is everywhere neariy the same.
(134.) But we have a remarkable proof, lately obtained, that not only the upper strata, hut almo the whole ocean to its bed is of one universal character. l)uring the voyago of H.M.S. Bulldog, in the summer of 1860, for the purpose of obtaining the
lay be obTo this 1avigators may very dern ships re refined lern ships, t carefully
send these her, R.N., "despatch ce and the h however r adverted ere rather is also a e currents a the same int demon-- Becher's region the ew of their ce currents this superrents, as it ments and le ocean do 1 system of

with every

 haracter is racter can eing inter177.pnsiderably ningling of et the saltly found of of ice subgions, it is nay also be resh water sed on this rrents and
when nearly midway between Ireland and Greenland, they brought up from the depth of 1,260 fathoms, that is nearly $1 \frac{1}{8}$ statute mule, several live starfish, which had clasped their slender arms ronnd that part of the sounding line which lay on the bottom. Now, as the process of winding this line in would occnpy upwards of an hour, and these delicate animals having passed through all the strata still attached and alive, it follows that had the water varied in character even in a slight degree, that they would have loosened their hold and have died.

Besides this, immense quantities of microscopic animals have been brought np from their living places at greater depths, disproving the idea that these minute creatures had lived on the surface, and when dend had sunk to the bottom. All this goes to prove that sea water is everwhere and at all depths alike.

It is needless to pursue this subject farther now. It will be found more amplified hereafter, when the question of the depth of the Atlantic is discussed. It is only here cited in order that should the mariner in the course of his voyage be able, from his observations, to add to the knowledge of thisinteresting but new subject, it will afford him great interest, and be beneficial to the rest of the world.
(135.) The subject of the temperature of the ocean will be, treated of specially at the end of the work. It is of importance in some localities, as it will indicate the changing from one current to another, as from the Gulf Stream into the cold Arctic current within it, or the reverse. It was formerly thought that a decrease of temperature was a sure indication of approaching shoal water, and its study was therefore inculcated as a precautionary measure. This point, however, has been shown to be, in general, fallacious. It arose from the fact that vessels crossing the Gulf Stream, on attaining soundings on the American coast, experienced a very sudden decrease of heat in the water. This is now accounted for in a very different way, therefore this topic is not of so much importance in the practice of navigation as was formeriy thought.
(136.) Of Currents there are two distinctions:-1. The Drift Current: 2. The Stream Current.
The Drift or Drift Current is the meve effect of a constant or very prevalent wind on the surface water, impelling it to leeward until it meets with some obstacle which stops it, and occasions an accumulation and consequent stream of current. It matters not whether the obstacle be land, or bankis, or a stream of current already formed. The drift current is generally shallow, and at a mean, perhaps, of no more than half a mile an hour, when the wind is constant and a good breeze. Such a current, from a predominance of westerly winds, occupies the northern region of the Atlantic, from the N.W. and West to the E.N.E. and S.E. ; and such, likewise, is the central portion of the ocean under the influence of the trade wind.

The Stream Current is formed by the accumulated waters of a drift current. It is more limited, but it mey be of any bulk, or depth, or velocity. Of such is the temporary stream setting at times from the Bay of Biscay to the West of Ireland; and of such is the Florida or Gulf Stream, setting from the Mexican Sea to the Banks of Newfoundland, and terminating to the West of the Azores.

In some parts the current is compounded of drift and stream ; for a stream, already formed, may pase through the region of a prevalent wind, in a direction according with that of its drift current, and receive an accelcration of motion from it accordingly. Of such is the Equatorial Current, which will be presently noticed.
(137.) Of the currents and regions of the Atlentic, the first in order, from the Land's End of England, is Rennell's Current, a temporary but extensive stream, which sets at times from the Bay of Biscay to the westward and N.W., athwart the entrance of the English Channel, and to the westward of Cape Clear.

Second.-The Easterly and S.E. Drift Currents to the coasts of Europe and Africa, and southerly to the Coast of Guinea.

Third.-The African or Guinea Current, an Eanterly strcam across the Atlantic between 5° and 8^{\prime} N., und continuing along the coast of Africa, into the Bights of Benin and Biatra, with a westerly outset from the same.

Fourth.-The Sargasso Sea or central area, between the Azores, Canaries, and Bermudas; \&ec., in which it seems that there is no particular current, and is covered with the well-known Sargasse or Gulf Weed.

Fith. The Equatorial Currents, the vast streams caused by the trade winds. That of the N.E. Trade running from between the tropic and Cape Verde, on the eastern side, towards the Carribee Islands, having a general westward tendency, and that from the S.E. Trade, which is usually found to the N. of the equator, passing atroagly to the westward, sonth of the counter or easterly current, number thrie above, and then strongly to the W.N.W. along the Colombian coast, joining the N.E. Trade current in the Caribbean Sea.

Sixth.-The Currents of the Colombian or Caribbean Sea, and the Mexican Stream, a continuation of the Great Equatorial Streams into the Mexican Sea, from the south-eastward and eastward.

Seventh.-The Fiorida or Gulf Stream, an outset from the Mexican Sea, setting thence to the north-eastward, through the Strait of Florida, and thence eastward toward the Newfoundland Bank and Azores, \&c.

Eighth.-The Arctic or Labrador Current, passing southwards from Davis Strait down the coast of Labradoz, round Newfoundland, and thence south-westward past Nova Scotia and the coast of the United States inside the Gulf Stream.
In explaining this subject, we shall endeavour, in the first place to establish the facts which prove the existence of these currents, and then attempt to deduce the causes, according to the given description.

1.-OF RENNELL'S CURRENT; OR THE CURRENT ATHWART THE ENTRANCE OF THE ENGLISH CHANNEL.

(138.) This current, which is occasionally of considerable breadth and strength, frequently sets athwart the entrance of the channel to the N.W. and W.N.W. at some distance to the westward of the Isles of Ushant and Scilly.. As it apparently depends on temporary circumstances, it is considered as a temporary stream ; and, although a certain quantity of northerly indraught is always to be allowed for, with the tide of flood, on approaching the Scilly Islands, the current, unless with particular winds on the ocean, will be scarcely, if at all, perceptible.

The general causes of currents, so far as they depend upon the state of the winds, \&c., are generally known to seamen ; and that a long-continued wind, in one particular direction, will either produce a stream where no obstruction exists, of causes an accumulation of the water against an opposing coast, until a reverberation takes place, nceds no demonstration. The latter appears to be the case in the present instance. A long and continual prevalence of westcrly and eouth-westerly winds, in combination with a current that commonly sets into the sonthern part of the Bay of Biscay, occasions an accumulation of water in the Bay, which sceks a an escape, by setting to the N.W. or W.N.W., within the limits described by the half-arrows in the accompany Chart.
It would be very difficult to understand how that the great prepondorance of winds from the westward of North and South, which prevail in the latitudes of Cape Finisterre, should not have some cffect in forcing the water toward the eoast; and if so, what can become of it, nnless it forms some current, which wo should very naturally expect to find would follow the trend of the coast against which it is propelled.
That such a current does actually prevail is too well known to be longer doubted. Mr. Kelly, the author of a treatise on Navigation, in two volumes, published in 1733, has given a particular instance of it ;" by which he shows that a ship becalmed
naries, and is covered
ade winds. de, on the dency, and or, passing aber thr; 8 the N.E.

Mexican Sea, from
jea, setting e eastward 3, or causes Ition takes present inwinds, in the Bay of escape, by ows in the
of winds lape Finisand if so, naturally lled.
doubted. blished in becalmed
with her sails furled for forty-eight houm, was in that time carried by the current 46 miles to the northward; and we have many subsequent examples of vessels which have been set, by the course of the stream, to the northward, or upon the rocks, of Scilly. But the writer to whom we are more particularly indebted for an elncidation: of the subject, is the late Major Rennull, " who has given an illustration of it, which places it beyond all controversy; and from whose paper, published in the "Philosophical Transactions" of the year 1793, wo extract the following observa-tions:-
" In crossing the eastern part of the Atlantic, the Hector, East India øhip, Captain Williams, in 1778 , encountered, between the parallels of 42° and 49°, very strong westerly gales; but particularly between the 16 th and 24 th of January, when, atintervals, it blew with uncommon violence. It varied two or more points, both to the North and S.W., but blew longest from the northern point ; and extended, as subsequently appeared, from the coast of Nova Scotia to that of Spain.
"Within 60 or 70 leagues of the meridian of Scilly, on the 30 th of January, be-, tween the parallels of 49° and 50°, the effect of the current was first experienced, which set the ship to the North of her intended parallel, by nearly half a degree, in. the interval between two observations of latitude; namely, in two days. The wind,

[^30]ever afterward, prevented the ship from regaining the parallel; for although the northern set was trifing, from the 31st until she arrived near Scilly, yet the wind, being scant and light, never enabled her to overcomo the tendoncy of the current. It is also to be observed, that the direction of the current was much more westerly than northerly; the ship crossed it on so very oblique a course as to be in it a long time, and was driven, as it appears, nearly 30 leagues to the West by it; having soundings in 73 fathoms, in the latitude of Scilly, and afterwards ran 150 miles by the log, directly East, before she reached the length of the islands : ranning, in effect, 120 miles, and shallowed the water only 9 fathoms.
"The current was not only sensible by the observations of latitude, but by ripplings on the surface of the water, and by the direction of the lead line. In consequence of all, the ship was driven to the North of Scilly, and barely able to lay a course through the passage between those islands and the Land's End.
"There being no timekeeper on board, the longitude was uncertain; but it was concluded that the current, at times, extends to 60 leagues West of Scilly, and runs close to the West of the islands. The breadth of the stream, where the Hector crossed over it, was supposed to be about 30 leagues.
"A journal of the Atlas, East India ship, Captain Cooper, furnishes mnch clearer proofs, both of the existence of the current, and the rate of its motion. This ship, outward bound, in January, 1787, had advanced 55 leagues to the westward of Ushant, when violent gales began at South, and for four days continued between that point and W. by S. ; during which time the ship was lying-to, with her head to N.W. On the 5th day the wind abated, but was S.W.; stormy weather then ensued for nine days, the wind blowing from all points between South and S.S.W., but-chiefly, and most violently, from W.S.W. and S.W ; and when the ship then proceeded southward on her voyage, she was, by the reckoning, only $2 \frac{1}{4}$ degrees of longitude West of Cape Finisterre; but, by timekeepers, more than four degrees and a half.
"On the day the gales commenced, the reckoning was within fourteen minutes of that by the timekeepers; the latter being more westerly, owing to the current. On the third day after, the difference was about twenty-four minutes, when the.ship was 25 leagues S.W. from Scilly, in soundings of 70 fathoms. The ship, in lon. $8^{\circ} 28^{\prime}$, had entered into the stream ; and, its course being opposite to that of the Hector, it facilitated her progress, and carried her clear of the S.W. coast of Ireland.
"After this, in the course of fifty-one hours, the ship had set two whole degrees to the westward of her reckoning; and in the forty-five hours following, she had a farther set of twenty-three minutes; so that, in four days only, she had been carried by the current no less than 2 degrees and 23 minutes; and, since the gale began, $2^{\circ} 32^{\prime}$ of lon., or 93 nautic miles.
" It consequently appears, that the Atlas experienced a westerly current, from about 24 leagues W.S.W. of Scilly, to near 4 degrees of longitude West of the meridian of Cape Clear, where its effect was imperceptible. It may, therefore, be inferred, that the stream goes off to the N.W. iu the parallel of 51°; between long. 14° and 15°, and the S.W. coast of Ireland.
: "No northern set is indicated in the journal of the Atlas. This would have been remarkable, had the weather permi cled nice attention to the reckoning; but it is to be remarked, that observations on the latitude were not regularly made; and besides, that the great distance of 36 miles was allowed for only twenty hours' drift to tho N.W., when the ship was lying-to.
" From the nature of this current it must be obvious that its velocity will always be proportionate with the strength and direction of the wind, by which its direction will also be regulated, and that the middle of the stream will preserve its original course in a greater degree than its borders. The direction of this appears to beN.W. by W., the eastern border more North; and the western more West; so that the northern current is stronger close to the West of Scilly than more to the westward.
"From the foregoing observations may be deduced the following inferences:-
" 1st. That ships, which cross the current obliquely, steering a true E. by S. course

or x

tough the the wind, urrent. It terly than long time, soundings y the \log; effect, 120

degrees to

 she had a en carried egan, $2^{\circ} 32^{\prime}$from about e meridian e inferred, g. 14° and
have been but it is to nd besides, rift to the
or more southerly, will continue longer in it, and be more affected by i t, than those which steer more directly across it. In crossing it with light winds, the effect will be the same. Allowance must be made for the more northerly direction of the easterix edge of the current.
" 2 nd. That, after a continuance of westerly gales, even should a good observation of latitude be made, it would be imprudent to run eastward from the Atlantic during a long night. For a ship might remain in the current so long as to be drifted from a. parallel, deemed a very safe one, to that of the Rocks of Scilly. It is, therefore, recommended, that vessels, at such times, should keep, at the highest, $48^{\circ} 45^{\prime}$, because in $49^{\circ} 30^{\prime}$ the whole effect of the current may be experienced in the worst situation. But from the current in $48^{\circ} 45^{\prime}$, a southerly wind will set the ship into the Channel. In time of peace, coming from the Atlantic, it would be still better to make Ushant.
" 3rd. That ships, bound to the westward from the Channel, with a south-westerly. wind, so that it may appear indifferent which tack they go on, should prefer the port tack, as they will then have the beneflt of the current."

In a Supplementary Paper on the Effects of Westerly Winds in raising the Level of the English Channel, dated 22nd June, 1809, Major Rennell has stated:-
(139.) "In the Observations on a Current that often prevails to the Westioard of Scilly, which I had the honour to lay before the Royal Society many years ago, I slightly mentioned, as connected with the same subject, the effects of strong westerly winds in raising the level of the British Channel ; and the escape of the suyerincumbent waters, through the Strait of Dover, into the then lower level of the North Sea.
"The recent loss of the Britannia, East India ship, Captain Birch, on the Goodwin Sands, has impressed this fact more strongly on my mind; as I have no doubt that her loss was occasioned by a current; produced by the running off of the accumulated waters ; a violent gale from the westward then prevailing. The circumstances under which she was lost were generally these :-
"In January last she sailed from the anchorage between Dover and the South Foreland (on her way to Portsmouth), and was soon after assailed by a violent gale between the West and S.W. The thick weather preventing a view of the lights, the pilot was left entirely to the reckoning and the lead; and when it was concluded that the ship was quite clear of the Goodwin, she struck on the north-easiern extremity of the southernmost of those sands; and this difference between the reckoning (after due allowance being made for the tides) and the actual position I conclude was owing to the northerly stream of current, which caught the ship, when she drifted to the back or eastern side of the Goodwin.
"The fact of the high level' of the Channel, during strong winds, between the West and S.W., cannot be doubted; because the increased height of the tides in the southern ports, at such times, is obvious to every discerning eye. Indeed, the form of the upper part of the Channel, in particular, is such as to receive and retain, for a time, the principal part of the water forced in, as may be seen by the Chart; and as a part of this water is continually escaping by the Strait of Jover, it will produce a current, which must greatly disturb the reckonings of such ships as navigate the Strait, when thick weather prevents the land, or the lights of the Forelands and the North Goodwin, from being seen.
" I observe, in a new publication of Messrs. Laurie and Whittle, entitled Sailing Directions, \&c., of the. English Channel, that, throughout the channel, it is admitted by the experienced persons whom they quote, that strong S.W. winds 'cause the flood tide to run an hour, or more, longer than at common times; or, in other words, that a current overcomes the ebb tide a full hour; not to mention how much it may accelerate the one, and retard the other, during the remainder of the time.
" It is evident that the direotion of the current under under consideration will be influenced by the form and position of the opposite shores at the entrance of the strait; and, as these are materially different, so must the direction of the stream be within the influence of each side respectively. For instance, on the English side, the
current, having taken the direction of the shore between Dungeness and the South Foncland, will set generally to the N.E., through that side of the strait.- (See the Chart.) But, on the French side, circumstances must be very different; for the shore of Boulogne, trending almost due North, will give the current a like direction, since it cannot turn sharp round the point of Grisnex, to the north-eastward, but must preeerre a great proportion of its northerly course, until it mixes with the waters of the North See; and it may be remarked, that the Britannia, when driven to the eastward of the Goodwin, would fall into this very line of current.
"There in another circumstance to be taken into the aocount, which is, that the shore of Bowlogne, presenting a direct obstacle to the water impelled by the westerly winds, will occasion a higher level of the sea there than elsewhere; and, of course, a stronger line of the current toward the Goodwin. -(See the Chart.)
" It must, therefore, be inferred, that a ship passing the Strait of Dover, at the back of the Goodwin Sands, during the prevalence of strong West or S.W. winds, will be carried many miles to the northward of her reckoning; and, if compelled to depend on it, may be subject to great hazard, from the Goodwin.
"It will be understood, of course, that although the stream of current alone has been considered here (in ordor to simplify the subject), yet that, in the applioation of these remarks, the regular tides must also be taken into the account. But, from my ignorance of their detail, I can say no more than that I conceive the great body of the tide from the Channel must be subject to much the same laws as the current itself. The opposite tide will, doubtless, occasion various inflections of the current, as it blends itself with it; or may absolutely suspend it; and the subject can never be perfectly understood without a particular attention to the velocity and direction of the tides in moderate weather, to serve as a good ground work."

FURTHER OBSERVATIONS ON RENNELL'S CURRENT.

(140.) After the publication of the first paper on the current of the Channel, and the supplementary paper immediately preceding, Major Rennell published some further important observations upon it, which were read before the Royal Society, April 13, 1813, and from which we have the following extracts:-
"During the interval of twenty-one years, since the Society did me the honour to receive my Observations on the Current to the Westward of Scilly, more facts relating to that current have been collected, as well as observations on its effects, in different parts of its course, between Cape Finisterre and Scilly ; the whole tending to confirmation of the general system set forth in 1793; and, in one instance, affording perhaps a clearer proof of the strength of the stream, in respect to its northerly directicn, than any of those adduced on the former occasion.
"In pursuing the detail of these facts and observations, I shall begin the neighbourhood of Cape Finisterre, and proceed with the course of the current, along the Bay of Biscay; ahd thence across the mouth of the English Channel to Scilly, and the entrance of St. George's Channel.
"The first three facte regard the current from the open sea, setting into the South side of the Bay of Biscay, and along the North coast of Spain; which current has been supposed in the former paper to be occasioned by the prevalent westerly winds, which force the water near the shore into the bay, and along the southern coast of it. The water so displaced would be followed, of course, by the adjacent water behind it, in the open sea; and so on successively, to a certain extent. This cause must surely be referred to as the origin of the Scilly Current.
" I. The first case is that of the Earl Cornvallis, East India ship. The circumstance occurred on her ontward passage ; she was well provided with timekeepers, as most of the India ships are. .
"On the 12th of March, 1791 , between the parallels of 43^{\prime} and 44°, and at $3^{\circ} 45^{\prime}$ of
the South -(See the the shore tion, since must preers of the eastward that the westerly (course, a
ver, at the W. winds, mpelled to lioation of t from my sody of the rent itself. rent, as it in never be lirection of
lannel, and ished some pal Society,
honour to cts relating in different to confirming perhaps ectien, than
the neigh, along the Scilly, and
the South current has erly winds, coast of it. r behind it, must surely

The circumekeepers, as
at $3^{\circ} 45^{\prime}$ of
longitude West of Cape Finisterre (about 53 leagues), this ship experienced an easterly current, equal to 26 marine miles. Her position being direetly opposite to the line of the southern coast of the Bay of Biscay, it is a fair conclusion, that the current was occasioned by the cause above mentioned, or, as seamen call it, the indraught of the bay ; which, it appears, extends to at least 53 leagues from. the shore. And as the rate, in this placo, extends one mile per hour, it may be supposed that the effect extends to a still greater distance.
"It may here be remarked that the same ship, in coming out of the chops of the Chaunel a few days before, was set 24 miles to the westward, 15 to the northward, in the courso of twenty-four hours; that is, 38 miles, in a direction of N.W. by W; This may be supposed ta be the same stream of current in its.course from the bay toward Scilly.
" II. The second fact is that of the drift of a bottle, which was thrown out of a Danish ship (I believe sent on discovery), since the publication of the former paper.
"The bottle was thrown out in lat. $44 \frac{1}{\circ}^{\circ}$, long. 12° West from Greenwich, that is, about 48 miles to the N.E. of the Cornvallis's station, at the time she began to feel the current, on the 11th of March. It was taken up by a sentinel on duty, near Cape Ortegal, and, as was supposed, at the moment of its driving into the surf. If this was really the fact, the bottle, according to the date of the letter contained in it, must have been carried, at the rate of half a mile per hour, in the direction of about E. hy S. 1 S. ; the distance was about 64 leagues.
"The report of this circumstance was transmitted, by the French Consul at Corunna, to the Academy of Sciences at Paris.
" It may be observed that the drift of the bottle was much to the South of East, wherean that of the Cornwallis was East; that is, both pointed toward Cape Ortegal or its vicinity : as if the main stream of the current was concentrated there.

- "-With respeet to the velocity of the current in the present case, all, of course, depends on the time of the arrival of the bottle at the shore. It might have been thrown up long before it was seen, and washed off again by the tide, or surge, of the sca. The direction, the most important point, cannot be questioned.
" III. The third fact is very simple, and perfectly couclusive. Off Cape Ortegal, at a considerable offing, Admiral Knight found the current, at the rate of one mile per hour, setting to the E.S.E.; that is, nearly along shore.
"The reader will immediately perccive that these three facts converge, as it were, to one point ; that is, in the proof that the waters of the Atlantic flow into the Bay of Biscay, along the North coast of Spain.
" It would neem that the north-westerly current, by Scilly, did not, at least in many cases, balance the easterly current round Cape Ortegal and the land of Finisterre.* The loss of his Majesty's frigate Apollo, with most of her convoy, may surely be attributed to the operation of this current. Captain (afterwards Commissioner) Wallace assured me, that after having made as ho supposed, ample allowance for clearing Finisterre, yct, in the night, he had a very narrow escape from shipwreck. Very many others have been brought into the same kind of danger; so that the iand of Finisterre, were it not discernible at a considerable distance, and its offiug clear of rocks and shallows, and, moreover, situated in a finer climate, would prove a kind of Scilly to mariners.
"I have not been able to obtain any proofs on record concerning the course of the current round the Bay of Biscay. I formerly collected some information from a French commander respecting it. He said, that the setting of the current along the

[^31]coast of France, to the North and N.W., was a fact well underntood; and even acted on by many in the ehoice of the tack, on which the current gave the greatest advantage, with dead winds.
"One circumstance, and that a very striking one, in recpect to this particular, is that the soundings in the Bay of Biscay show little or no muddy bottom to the southward of the Gironde River; but everywhere to the northward. This seems to show that the mud of the Gironde, Chavente, Loire, \&c., \&c., is all carried to the northward; and by what cause but a northerly carrent P Had the motion of the sea been variable, the mod would surely have been distributed to the South, as well as to the South, of the mouth of the Gironde. The alluvial embouchurce of the riverw in general here, and the positions of the banks formed by them, in the sea, point to the North or N.W.; apparently the effect of the same sea-current.*
" IV. In continuation of this current along the Bay of Biscay, I shall next mention that Captain (afterward Admiral) John Payne assured me, that, being in H.M.S. Russell, in a severe gale of wind at S.W., and with the ledge of rocks called tho Saintes, not far to leeward, he was under apprehensions for the safety of the ship during the whole night, but, to his surprise, found himself carried clear of the danger by a current, which set the ship, in all, about 70 miles to the N.W.
"V. The flowing of the tides, on the West of Scilly, cannot well be accounted for, on any other supposition, than that the flood is prolonged by a southerly carrent. The flood tide is known to run nine hours to the northward; but the ebb, in the opposite direction, only three hours. This particular had not come to my knowledge when the paper of 1793 was written.
"VI. Our navigators, in earlier times, appear to have entered the English Channel on a more southerly parallel than they have done in later times. For, although they might have been ignorant of the real cause of their disturbance in their course, yet many of them believed that there was an indraught, as they called.it, into the St. George's Channel; so that one effect of the current, that is, the northern set, had not passed unobserved, although the cause was not understood; nor, of course, could it be known when to expect. But I have also heard it remarked by sea-officers as long ago as I san remember, that ' it was unaccountable what should occasion their runining down so much distance, in coming in with the land from the westward.' I never heard, however, that there was any suspicion of a current setting westward.
"The idea of a northern indraught into St. Gcorge's Channel (but which applies equally to the current West of Scilly) is clearly set forth in a publication by Captain Joseph Mead, in 1757; but which came to my knowledge only very lately, by tho favour of Mr. Purdy. Captain Mead first relates the case of the ship Hope, of Liverpool, bound from the coast of Guinea to that port, in November, 1735. (Preface, p. iii.)
" • Having had a good observation, by which they found they had the Irish Channel open, the wind continued to blow strong from between the South and West, but mostly from the formor. Having no other observation [of latitude] for six days, in whiclr time they earried sail constantly, they by reckoning expected to fall in with Cape Clear; but in the following night they fell in with the Blasquets.' These islands and rocks are situated in lat. $82^{\circ} 10^{\prime}$, or about 48 milea to the North, and one degree of longitude to the westward of Cape Clear.
"Again (page 10) he says, that the Bristol merchant-ships, winich fall in with Cape Clear, on their homeward passago [from the West Indics, \&ic.], shapo their course

[^32] the souths to show the northe sea been as to the rivers in int to the
next menin H.M.S. called the f the ship he danger
onnted for, y current. a the oppoedge when ough they course, yet to the St. et, had not could it. bo ers as long their ruti1. I never d.
ich applies by Captain ely, by the - Hope, of 735. (Prc-
sh Channel West, but ix days, in all in with ts.' These h, and one
with Cape heir course
night bo led n had been nlong that on tho lank to expmind, than might
from thence, with a large wind, to the high land near Padstow; which is the land they choose to make to lead them to the entrance of the Bristol Channel. That, in estimating this course, they allowed 4 or 5 degrees in the bearing, to compensate for the indraught int2 St. George's Channel. This angle would give about 13 or 14 nautio miles; and is probably what they found by experience to be the general amount of the northern set.
" He goes on to say that, in like manner, the safety of ships, after they come into soundings, until they reach Scilly, depended on their making no less allowance than Bristol men do in the other Channel. For, says he, 'experience informs me that, from the commencement of soundinge, in lat. $49^{\circ} 30^{\prime} \mathrm{N}$., to the length of Seilly, in fair weather, I had found the northern indraught to be 6 or 8 . miles in the twentyhours.'".

Here, then, the fact of the northern set is a second time recognised, though without any suspicion, any more than before, of there being a westerly set also.

Here it may be proper to state, what appears to me to be a very important fact; although perhaps not connected with the current in question, but materially affecting the safety of the navigation between the English Channel and Dublin. It was communicated to the author by Captain Evans, a gentleman who superintends the harbour-works at Holyhead, and who has had much experience in the navigation of tho Irish Sea.
"All navigators (says he) in their voyage from the Land's End to Dublin, find themselves more or less carrie? to the eastward, while running up St. George's Channel; which is the canse of so many vessels finding themselves in Cardigan Bay; where in tempestuous weather and westerly winds many have been lost.* And this he justly supposes to be occasioned by a current setting to the north-eastward."

From subsequent communications, it has been shown that the wator sets into the Bay of Biscay from the N.W. as well as the West, at times as high as the parallel of 47 ; and it is supposed that a whirl is sometimes formed by the outer part of the water; that tho bay discharges to the N.W., turning to the west, and round the South and S.E., while the inner part shoots to the N.W. and W.N.W. Hence it may be concluded that, when the volume of water received, and, of course, the velocity, is vory great, the whirl to the left or West is farther removed to the N.W., and the contrary.

Of this current Captain Livingston says :-"I have seen, in a late magazine, some ons alleging that Rennell's Current, athwart the channel, is imaginary. I know the contrary from experience, and perfectly remember, that in 1813, while master of the Lark sloop, I was set one day twenty-four minutes North of dead reekoning, equal to one milo an hour, but can say nothing as to the westing. On coming lately from Bordeaux, 1819, we were set by it seventeen minutes North in twenty-four hours; but, as a passenger, I had, at this time, no opportunity of keeping a reckouing."

On the 13th July, 1826, the ship Carshalton Park, Captain J. S. Park, entered upon tho Bank of Soundings on the parallel of 40°, and between the meridians of 11° and 0^{\prime} W., Rennell's Current was then found to be setting with dangerous strength. 'The ship crossed it rapidly; running all the time at the rate of 7 knots, but was swept 14 or 15 miles to the N.W. by W. It had been previously ascertained that $n o$ current excited, nor was any found eastward of 0° W. Tho wind was between S.W. and N.W., flying about in squalls.

At nine a.m., on the 14th, Captain Park made the Lizard, bearing N.E., and had the satisfaction to find his chronometer perfectly correct.
(141.) Furtier Demonstration.-To the preceding dovelopment, by Major Ihennell, wo may with propriety add a notice of the loss of La Jeune Emma, of Cherbourg, commanded by Chacelot do Chatillon, in the night of November 28, 1828; an

[^33]extraordinary and memomable instance of the operation of the current. This veanel, of about 400 tons, from Martinique, was bound to Havre de Grace, with colonial produce. She had, in her passage, encountered several severe gales (we preaume from the S.W.) and had shipped two heavy seas. On advancing toward the English Chonnel, the weather was hazy, and thus continued for several days, so that no observation could be taken, and the reckoning consequently became erroneous. At length a lighthouse was seen, supposed by the captain to be that of Ushant, and a course was shaped accordingly ; but this unhappily brought the vessel to the Cefn Sidan Sands, within the Bar of Cuermarthen Harbour, and the next day became a total wreck. The captain and passengers were drowned, and from a crew of nineteen only six were saved.

The narrative states that thero is not, perhaps, a beach of this kingdom, where there is a more flurious sea running, during the prevalence of south-westerly winds, than Cefin Sidan Sands, nor any which has proved more eminently disastrous to thowe who have been so unfortunate as to have been driven on them.

The event proved that the lighthouse, which had previously been supposed to: be that of Ushant, on tho French coast, was really that of Lundy Island, in the Bristol Channel ; The latitude of Lundy Lighthouse is $51^{\circ} 10^{\prime}$; that of Ushant $48^{\circ} 28^{\prime}$. The difference of lafitude between the two is, therofore, $2^{\prime}{ }^{\prime} 42^{\prime}$, or 102 miles; a difference snrely too great to have been effected by merely ordinary circumstances, but which may; in the absence of positive information, be assumed as a presumptive proof of the operation and strength of Rennelfs Chrrent. This case is not cited as cxhibiting any circumstances which proper preenution could not have avoided, but is here quoted from a multitude of others where the error is on the same side, and all of which tend to confirm the previous remarks.

EXPERIMENTS ON THE CURRENT.

(142.) Inset into the Bay of Biscay.-A bottle from the Lady Louisa, bound to St. Michael's, in lat. 45', long. 13' 45^{\prime}, 2nd February, 1830, found on the coast of Lit, in the province of Bayonne, 14th of ()ctober, in tho same year.

Channel Soundinas into the Bay.-Bottle from the brig Hope, from Havannah, 31st March, 1838 , in lat. $50^{\circ} 10^{\circ}$, long. $9^{\circ} 43^{\prime}$; wind atrong from the eastivard for three days ; found on the 1st of June, 1838, on the const of Rochefort; having probably been first impelled to the S.W. by the ebb tide and provalent wind, and thence following the general inset to the South and East.

Query.-"Why should the sea be higher, or more dangerous, in the Bay of Biseay than it is in the middle of the Atlantic or elsewhere? Is it really so? are questions often asked.
"I believe that there is a shorter, higher, and consequently worse sea, in and near the Bay of Biseny, than is often found in other pinces, und attribute it to the effeet of immense Atlantic waves rolling into a deep bight, where they close upon ench other, and receive vibratory undulations from each shore; augmented, perhups, by the peculiar formation of the bottom of that bay, the variation in depth, und the effects of enrrents, which, when running over uneven ground, or against the wind, alone causo a heavy swell; a striking exempliffention of which may be seen on the Bank of Agulhas, near the Cape of Good Hope."-Captain MiteRoy, vol. ii. p. 45.

From Channel Soundinas to the Weat of Scotland.-A bottle thrown from the ship Duke of Marlborough, Captain Jeffery, by Mr. George 'Thom, near the Sole Bank, in lat. $43^{\circ} 38$ ', long. θ° W.; found on the shore of Carsaig, neur the middle of the South aide of the Ishind Mull, 14th April, 1821, and made known by Mr. Hector Muclean. At the time this botito wan thrown into the sen, the sinip was on its pasknge to loudon fiom the Cope of Good Hope, and an allowance was made for current to the N.W. of 12 miles to the twenty-lour hours. From the spot in which it was
dropp
West

coast

Vendé
E.S.E
influe

four h

about
about
N. 40

Ins
Capta
(lat. 5
caster easter

The
Noven
long.
and w
Ins Park, on th
long.
A
wind the N on th $44^{\circ} 40$
is vemel, colonial ume from English no obserit length a course fn Sidan ne a total teen only
m , where ly winds, sto thowe
osed to:" he 1e Bristol 28'. Tho difference out which oof of the biting any re quoted hich tend
bound to ust of Lit,

Iavannah, l for three pably been following
of Biscay questions
and ncar o effect of ach other, s, by the beffects of lone cause Bank of
dropped, it cor:- uquentionable that the bottle was carried by the current to the West and Nortly $:$ Ireland, and thence between Ila and Mull, to the place in which it was found. It has, therefore, well answered Mr. Thom's purpose of confirning Rennell's Current.

Bay of Biscay to the North of Scotland.-A bottle, enclosing a song composed on board, from the Great Western steamer, on her voyage to New York, at midnight of September 10, 1838, in lat. $48^{\circ} 3^{\prime}$ N., long. $8^{\circ} 52^{\circ} \mathrm{W}$.; picked up by Captain Thornton, of the Ceres, in passing through the Pentland Frith, on the 16th of the same month. It must, therefore, have drifted to the north-westward and northward, off the western coast of Ireland, and thence to the N.E. and East, by the general drift from the Greenland Seas.
St. Georae's Cinannel.-A bottle from the ship Oaprey, of Glasgow, Alexander M'Gill, master, which sailed from Greenock. This bottle (No. 310.) was thrown into the sea 1st March, 1822, on the ship's return from Calcutta, in lat. $49^{\circ} \bar{\sigma} 4^{\prime} \mathbf{N}$., and long. $12^{\circ} 20^{\prime}$ W. It was found on the shore, upon the South side of Milford Haven, on the 6 th of the following month, April.
Easterly Current to Bristol Channel.-A bottle from the brig Albert, K. L. Robertson, master, lat. $47^{\circ} 20^{\prime}$ N., long. 22° W., 24th Jauuary, 1822, on the passage from Virginia to England, the wind then about W.N.W., and had so prevailed for two or three days. Found in Rockham Bay, about 4 miles West from Ilfracombe, 29th July, 1822, and attested by the agents to Lloyd's.

Bay or Biscay, North Side.-A bottle from the ship Graham Moore, 6th of July, 1821, in lat. $47^{\circ} 47^{\prime}$ N., long. $7^{\circ} 51^{\prime}$ W.; found, 15 th of September, 1821, on the coast of St. Jean de Mont, arrondissement of Sables d'Olonne, department of La Vendée; and made known by the Journal de Paris. This bottle was impelled in an E.S.E. direction, the morth-westerly current not then provailing, and was within tho influence of the tide.

By Captain Livingston's Journal, 28th November, 1820, "It appears that in twentyfour hours, ending at noon of yesterday (on the passage from Gibraltar), we made about 15 miles North by current; and in twenty-four hours, ending at noon this day, about 13 North; and in the two days rather more than $20^{\prime} \mathbf{E}$. Therefore about N. $401^{\prime} \mathrm{E} .37$ miles in the forty-eight hours."

Inset to, and outset from, tiff Bay of Biscay.-A bottle from the Iris, Captain Skinner, in lat. 47°, long. 21°, 9 th September, 1802 ; found at the Isle of Skye (lat. $57^{\circ} 15^{\prime}$, long. $6^{\circ} 20^{\prime}$), 22nd February, 1803. (Probably carried into the bay on an castern direction, subsequently northward by IRennell's Current, and thence by the eastern drift to Scotland.)

The ship Jessie, Bevan, master, left London for the Bahamas, about the 13th of November, 1833. She was struck by lightning and abandoned by her crew, in lat. 45°, long. 14°, and on the 5th of February, 1834, drove on the Isle Groix, near L'Orient, and was immediately dashed to pieces.

Inset; Bay of Biscay.-A bottle from the Carshalton Park, Licutenant J. Steclo Park, 27th July, 1827 , in lat. $48^{\circ} 39^{\prime}$, long. $10^{\circ} 21^{\prime}$; taken up, 21st Debember, 1827, on the shore of Pembron Road, near the Loire, in the Bay of Biscay, lat. $47^{\circ} 19^{\prime}$, long. $2^{\circ} 30^{\prime} \mathrm{W}$.

A bottle from H.M.S. Arrow, in lat. $48^{\circ} 30^{\prime}$, long. $9^{\circ} 25^{\prime}$, 14th July, 1838 ; wind from S.W. for five days, a fresh gale, and then S.W. Another bottle from the Maitland, transport, in lat. $49^{\circ} 5^{\prime}$, long. $18^{\circ} 19^{\prime}, 10$ th March, 1838 . Both found, on the 20th of February, 1839, on the shore of Areachon, in the bay, lat. about $44^{\circ} 40^{\prime} \mathrm{N}$.

A metal cylinder, cast from H.M.S. Chanticleer, Captain H. T. Austin, 3rd of Mny, 1831, In lat. $44^{\circ} 38 \frac{1}{3}$, long. $11^{\circ} 4^{\prime} \mathrm{W} . ;$ found near Vivero, on the North coast of Spain, 12:解 of September following, at about iō0 miles rrom the spot where it was dropped into the sea.
A bottle from the bark Mary, of London, Abyah Locke, master, 12th of April,

1832, in lat. $48^{\circ} 30^{\prime}$, long. $16^{\circ} \cdot 56^{\prime}$; found on the coast of Jart, lat. $\mathbf{3 6 ^ { \circ }} \mathbf{2 5 ^ { \prime }}$, 4th March, 1833.

Another bottle, from the same vessel, 1 th April, 1832 , in lat. $46^{\circ} 15^{\prime}$, long. $17^{\circ} 58^{\prime}$; found near Cape Feret, $44^{\circ} 38^{\prime}$, 21st February, 1833.

A bottle thrown ofer from the Wrillington, August 23rd, 1837, in lat. $45^{\circ} 10^{\prime} \mathrm{N}$., long. $12^{\circ} 58^{\prime} \mathrm{W}$. ; thrown on the South coast of the Isle of Re, probably about the end of February, 1838 ; found March 2nd, 1838.

Tide Water on Soundings.-A bottle from the bark Wallace, of Alloa, bound to Van Diemen's Land, 12th of April, 1835, in lat. $52^{\circ} 13^{\prime}$, long. 15°. Picked up at 5 miles from Ushant, 21st of August. 1835.
A bottle from the Kent, troop-ship, in lat. $50^{\circ} 20^{\prime}$, long. $19^{\circ} 0^{\prime}$ W., August 19 th, 1836. Picked up near Cape Blancnez, a few miles from Boulogne, December 20th, in the same year.

Bay of Biscay, South Side.-A bottle from the schooner Morning Star, of Liverpool, Captain Andrew Livingston, 7th of October, 1821, lat. $42^{\circ} 45^{\prime} 39^{\prime \prime} \mathrm{N}$., long. $13^{\circ} 3^{\prime} 21^{\prime \prime} \mathrm{W}$. Found abont 29 miles to the northward of Bayonne, in the arrondissement de Dux, lat. $43^{\circ} 58^{\prime}$ N., long. $1^{\circ} 20^{\prime}$ W., and made known by the direction of the Minister of the Marine and Colonies of France in the Moniteur of, January 24, 1822.

One of the most singular routes of the kind that we have met with was a bottle covered with barnacles, picked up at the Mizen Head, on the S.W. of Ireland, Oct. 19, 1837. Its enclosed note stated tbat it was dropped off Cape Horn, from the Salem, R. Crukers, master, of the United States, in lat. $53^{\circ} 3^{\prime}$ S., and long. $67^{\circ} 5^{\prime}$ West, on the 24th of June, 1830.
(143.) The daily rate of the inset into the Bay of Biscay, as estimated from the drift of the bottles quoted in Captain Becher's Chart (131), is as follows :-The numbers refer to the Bottle Chart in the "Nautical Magazine for November, 1852No. 2 (drifted 250 miles), 4.8 miles per day; No. 3 (230 m .), 3.3 m .; No 3 a , (270 m): 4.6 m. ; No. 3 (420 m.), 1.8 m. ; No. 11 (150 m.), 0.7 m. ; No. $11 a(100), 3 \mathrm{~m}$. ; No. 16 (200 m.), $1.2 \mathrm{~m} . ;$ No. 28 (700 m .), 45 m. ; No. 28 (700 m.), 2.2 m ; ; No. 33 (650 m.$), 4 \cdot 1 \mathrm{~m} . ;$ No. $37 a(680 \mathrm{~m}$.), $2 \mathrm{~m} . ;$ No. $40(980 \mathrm{~m}$.), $3 \cdot 1 \mathrm{~m}$. It will be seen that the longest courses have the quickest rates, so that we may suppose that when the bottles become entangled in the shore tides and devious drifts, that they do not travel so fast in direct distance. The mean rate of all these bottles is $\mathbf{3 . 2 6}$ miles per day. The rate at which those travel ap the English Channel is very much greater, averaging 11 to 14 miles per day.

The foregoing are the principal arguments and facts upon which the existence of the thwart-channel current is inferred. That there is some cause for tho drifting of the varions vessels, \&e., in a northward and westward direction, there cun be no doubt; nor can there be any doubt that the stream varics both in strength and in direction. Without inquiring into the sufficiency of the cause to produce theso effects, or of the correctnees of the vicws promulgated by Major Rennell, the foregoing remarks have been repeated, as criginally given; and hero we would add that they were formed long before any correct knowledge of the tides or of the tidal currents was acquired, and also that a very just estimate of the amount of derangoment of the regular tides, or of the set of the eurrent across the mouths of the Einglish and St. George's Channels, is formed from his iissertations. The remarkable revolution of the tidal streams at the entrance of the English Channel caused by the crose action of that wave proceeding up, the English Channel with that of the wave coming northward, has been well developed in the observations discussed by Admiral Beechey as stated on p. 252.

2.-THE EASTERLY AND B.E DRIFT-CUBRRNTS TO THE COAGTS OF EUROPE ANI AFRICA.

(144.) The currents on the shores of the Atlantic seem to have different tendencies to the South and North of the English Channel. They are certainly very devious and uncertain ; but along the West Coast of Ireland and Scotiand, as well as on the offing, the general set is to the northward. Off the southern part of the Bay of the Bay of Biscay there is a well-marked current to the S.E. and bouthooard, not only during those periods when the westerly winds have been prevalent, and causing the Rennell's Current last described, bnt it appears to be constantiy met with; and, therefore; in sailing southward from British ports, this tendenoy of the waters should be carefully considered, especially when the shores are neared, for there they ran strongest.
(145.) By a careful calculation of the currents experienced by the ships cited in Maury's and Repnellis Charts, they appear to set with great regularity, and constantly to the south-eastward. The experience of 82 ships for the year gives a mean direo tion and rate of 9.1 miles per day to E. 34° 8. for the offing of 350 miles of Cape Finisterre and the northern part of Portugal. The average of the monthi is greater than thin:-Jenuary; $0 \cdot 4$ mites to S. 40° Eant; February, March, April, 11, 16.9, 12.8 miles per day to E. 24° S. ; May, July, $12 \% 8,10 \cdot$ milea per day S. 25° E.; Aug. October, November, $20.2,10.5,16.7$ miles per day to S.S. E. Theee, compared with the drifts of bottles, show that the latter must be affected by surface causes, as their rate of travelling is much leas.* All theme observations are integrated on the Chart of the North Atlantic referred to previously.
(146.) In addition to theso remarks we give, as in previous editionn, the partieulars of various bottles and other experiments, which are very intereating, and will be merviceable in estimates of what amount of current may be expected in this part of the voyage.
South-Eabtraly Curazet off Channrl Soundings.-In Augunt, 1826, Capt Livingston, in the Jane, between lat. $48^{\circ} 53^{\prime}$, long. $16^{\circ} 7^{\prime}$, and Cape Clear, had a set of $1^{\prime \prime} 14^{\prime}$ S. and $1^{\circ} 54$ ' E. So that in four days the vessel was set, by a counter current, 74 miles S . and 65 E., or nearly $\mathrm{S} .41^{\circ} \mathrm{E}$. about 99 miles ; equal to a daily average of 24t miles.
Toward tar Bay of Biscay.-The ship Carshalton Park, Captain J. Steele Park, on returning from Jamaica to London, in July, 1824, in lat. 48°, and long. 130, got into a stream setting to the southward, and which thence operated so strongly against the ship, that some diffloulty was found in getting suffioiently far to the northward for a good Channel track. The wind shifted suddenly from S.W. to North; the vessel immediately hauled up E. by $8 . ;$ and although the weather was fine, and the water quite mooth, she made no better than a true E. by N. course.
Captain Park says, "The moon happened to be near the full abont this time; and I had opportunities for ascertaining the latitude by her meridian altitude three or four nights in succession before we made the land; therefore I could not be mistaken as to the etrength and direction of this current ; for the interval between the observations of sun and moon was only ten or eleven hours; and the greatest attention was paid to the steerage. ${ }^{\prime} \dagger$

[^34]Off thes Coabr of Portugal.-A bottle from the brig Proeland, Captain T. Midgloy (from Liverpool to Africa), in lat. $41^{\circ} 30^{\circ}$ N., long. $14^{\circ} 28^{\prime} \mathrm{W}$., 11th of February, 1833. Picked up close to the shore, off the Harbonr of Vigo, on the 1ot of March following; having traversed, in a true E. \& N. direction, about 80 leaguen.
'St. Gzozar's Channel to Cape St. Vincent.-On the 14th of Auguat, 1823, Captain Livingaton, in the aloop Favorite, on his pasage from Liverpool to Gibraltar, took his departure from the Smalls Iighthouse, and thence he regularly made obeervations on the current, \&co, so far as adverve weather permitted. On the 23 rd he had arrived on the parallel of $46^{\circ} 28^{\prime}$; previously to which the course seems to have been materially affected by the tire, but here the differences amounted to $51^{\prime} 55^{\prime \prime}$ southerly; and only $4^{\prime} 39^{\prime \prime}$ N. From lat. $46^{\circ} 28^{\prime}$, August 23, to lat. $36^{\circ} 52^{\prime}$, Auguast 31, the current invariably predominated to the southward, and between these parallels amounted to 89 miles in the eight days.
At $4^{4}{ }^{53}$ m of August 31, with Cape St. Vincent bearing true North, an excellent meridian altitude of the planet Saturn gave lat. $36^{\circ} 52^{\prime} 8^{\prime \prime}$. The total southing to thin point gave $2^{\circ} 18^{\prime}$, and the difference of longitude between dead-reckoning and that by landfall gave $1^{\circ} 42^{\prime} 7^{\prime \prime}$ of easting.
In the brig Friende, of Glasgow, 24th August; 1820, Captain Livingston states"The current set us round Cape St. Vincent without our having seen the cape, though we steered cournes for the purpose of seeing it, and we were looking out for it, when I got a lunar, and ascertained that we were then past it. Immediately after this the sea became mooth, being broken off by the cape."

Between Cape Finisterre and the Azorzs, the general drift of the surface of the aea appears to be to the south-eastward; varying, however, to the East and Weat, and eron to the northward, as the winds operate, either one way or the other, more especially during winter, as already noticed.
HI,M.S. Pactolus, in May, 1818, experienced a current south a little East, at the aresage rate of $\mathbf{3 0}$ miles a day, from the English Channel to St. Michael's.

Csptain Charles Hare, in the brig Ward, from New Brunswick, Sept., 1823, with weaterly winds, which had prevailed for fourteen days, between lat. $43^{\circ} 40^{\prime}$ and $45^{\circ} \mathbf{2 0}$, long. 221° to 16°, found the current E.S.E. $1 \frac{1}{3}$ miles in the hour.

Between Portuoal and the Western Islands.-Captain George Cheveley, June, 1830, lat, 44° to 27°, long. 11° to 21°, current S.E., three quarters of a mile an hour.

Captain W. J. Capes, on his passage in the Lady Mackwoorth, from England to the Weat Indies, in August and September, 1823, found the currente as follow, taking the ahip's ponition at noon :-

Aug. 27	Lat.	43°		$12{ }^{\circ}$	40^{\prime}	Current eanterly.
28		42	43	12	17,	By good chronometric obwervation, the current had set 30 miles to the eantward. .
29	-	43	41	12	28,	Current, 10 miles E.S.E.
30		41	42	12	28,	Current, 25^{\prime} easting and 11^{\prime} southing, by good observation.
31		30	3	13	23,	Current, 9^{\prime} to the S. and 14' to the E.
Sept. 1		38	5	14	17,	No current perceptible in the 24 hours.
2		35	59	15	8,	Current, 26 milee to the southward.
3		34	8	15	85,	Current southerly, 3 or 4 miles.
4		33	1	18	7,	Porto Santo, distant 4 or 5 leagues.
6		32	22	18	49,	

thin interval of 11 h .51 m ., 68 milet by the $\log _{\text {g }}$ carrefully attended to, in amooth water. Now, allowing 21 pointa of variation, we ought to have made 26^{\prime} of northing; whereas, in point of fact, we made 18^{\prime} only."
Infuenced, probably, by the Channel ebb, the curreat appeared ajeo to have a tendenoy

Japtain T. V., 11 th of co, on the , about 80
guast, 1823, Gibraltar, de obeorva3 hrd he had have been sontherly; 1, the cur3 amounted
on statesa the cape, ing ont for iately after
rface of the I Went, and more eape-
liast, at the
1823, with $13^{\circ} 40^{\prime}$ and
peloy, June, an hour.
land to the taking the
pn, the curtward.
uthing, by
e \mathbf{E}.
hours.
rd.
s.
water. Now, sas, in point
a tendenoy

Sept. 6 . Lat. $31^{\circ} 16^{\circ}$ Lon. $17^{\circ} 26^{\prime} \quad$ Current, 7 miles to the nouth ward.

Current, 10 miles ditto.
Current, 17' S. and 13^{\prime} E.
No obwervation on current.
Current, 16 ' to the southward.
Current, 15^{\prime} to ditto.
Current, 4^{\prime} to the S. and 13^{\prime} W.
8th April, 1823.-Captain Hamlin, in the ship George IV., on the pasage from Greenock to St. Thomas's, found that they were much to the southward of deadreckoning on several dayn, and during the last twenty-four houxs not leme than 15 miles. Lat. at noon, $38^{\circ} .50^{\prime}$, long. 19°, or more than 300 miles E. by N., true, from St. Michael's.
The Current along the Coast of Portugal appears to met nearly in the direction of that coast. On the 25th of October, 1810 , a gun-boat for the service of Cadiv, being in tow of the Rebuff gun-brig, broke adrift in a gale of wind, in lat. $39^{\circ} 44^{\prime}$, and long. $9^{\prime} 38^{\prime} \mathrm{W}$. On the 19th of November following, his Majesty's sloop of war Columbine, when cruising 8 or 9 miles to the westward of Cadiz Lighthouse, observed a gun-boat to leeward, which proved to be the identical boat that twenty-five days beiore had broken adrift from the Rebuff. The distance traversed by the boat was about 350 miles, or 14 miles a day, ohiefly by the current, the wind in the meantime being so various as nearly to render the dritt negative, or, if anything, against the set of the current.
On the currents setting toward the Bay of Biscay and the Strait of Gibraltar, Captain, afterward Admiral, Sir Erasmus Gover made observations in five passagen to Madeira, from which he conolnded the most general direction to be to the S.E., and the mean veloeity abont 11 miles in every 50 leagues."
In proceeding to Tonerife, Sir Eras. Gower observed a constant current setting to the southward at the rate of a mile an hour; equal to 22 miles in the distance between Madeira and that island.

Captain Mackintosh, of the Kindustan, who had made twenty passages in this ronte, generally experienced a current from the 39th degree of latitude to that of the Canaries. In this part of the ocean he generally found, from repeated and accurate observations, that this current set to the E.S.E. He found it strongent opposite to the entrance into the Mediterranean or Strait of Gibraltar ; and, in one voyage, the

[^35]current was compitted; by his chronontater; to sot ebovit 40 mirew per day. This curs rent inclines more sontherly an it apptamehes the Canaries. . It otrikem on. the sonst of Marocco, and takes, aboit Cape Boiador, a diffirent direction. Nearly in-shorb, from an indefinite point, one part of the ntream sets noithward towied the Strait of Gibraltar, and the other part sets to the sonthward.
M. Ib Bavon Le Roussin, in the corvette Bayadere, bound from Rochefort to Brasil, in February, 1819, after passing Cape Finisterre, found the prevailing winds from noon to noon ard currentes as follow:-

But on arriving at the Canaries, with the wind N. and N.E., the current had changed.
On the course of the same vessel, from Brest toward Brasil, in October, 1821, the current had set on the least twenty-four hours (October 6), lat 40°. $24^{\prime} \mathbf{8 6} 6^{\prime \prime}$, long. $14^{\circ} 29^{\prime} 30^{\prime \prime}, \mathrm{S} .15^{\circ} \mathrm{E} .20$ miles ; on the three following days, nearly in the same direetion, but with lees than half the strength. In lat. $35^{\circ} 20^{\prime} 50^{\prime \prime}$, long. $12^{\prime} 64^{\prime} 40^{\prime \prime}, 15$ miles S. E. In lat. $33^{\circ} 54^{\prime}$, lon. $12^{\circ} 48^{\circ}$, it had set only 6 miles $\mathrm{S} .5^{8} \mathrm{E}$.; but, on the next day, in $34^{\circ} 18^{\prime} 24^{\prime \prime}$ N., and $12^{\circ} 21^{\prime}$. W., 25 miles $\mathrm{S} .25^{\circ}$ E.; and again in $34^{\circ} 14^{\prime} 34^{\prime \prime}$, and $12^{\circ} 13^{\prime}$, South, 20 miles. Off the African coast, lat. $32^{\circ} 36^{\prime} 20^{\prime \prime}$, long. $13^{\circ} 16^{\prime \prime} 20^{\prime \prime}$, it had set 32 miles to the S . W., or in a durection nearly parallel with the shore.
At about 74 leagues W. $\frac{1}{}$ S. frem Cape Mondego, on the 9 th of June, 1709, M. de Humboldt, in the sloop Pizarro, was on his voyage to the West Indies; and, on this day, in lat. $39^{\circ} 50^{\prime}$, and long. $13^{\circ} 50^{\prime}$, he says that they began to feel the effects of the current setting toward the Strait of Gibraltar, \&c. From the parallel of 37° to that of 33° the vessel was sometimes carried, in twenty-four hours, from 18 to 28 miles to the eastward. The direction of the current was, at first, E. by S.; but nearer the strait it became due East, and it assumed a more eoutherly direction on the passage toward Tenerife. "Several pilots, who frequent the Canary Lelands, have gound themsolves on the coast of Lanzarote, when they expected to make good their landing on Tenerife."

Thefrigaten Sta. Maria de la Cabeza and Lucia sailed from Cadiz, 12th April, 1795, and on the 17th, at six a.m., they made Point Naga, in Tenerife, when they found, by a comparison with their chronometers, that the current had carried them sixty-two minutes to the eastward.

Don Vincents Tofno had, ten years before, proceeded in the Incia, from Cadiz, for Mogodor ; he sailed on the 27th of April, 1785, and on the 1st of May, before midday, arrived at the last-hamed port. On the 6th he sailed from it, ond on the morning of the 8 th anchored again in Cadiz. On his voyage out, he found that the current, in four days, had set him $21 \frac{1}{4}$ miles S. 18° E., and on his return S. 49° W. 39 miles. This variation of the current shows, that the waters throughout all this extent do not alwaysrun to the S.E., but that they vary, with the line of coast, to the south-westward also.

Admiral Don. Cosme de Churruca sailed from Cadiz on the 15th of Jnne, 1792, for the parpose of surveying the West Indian Islands and Spanish Main. He took his departure at half-past three p.m., in lat. $36^{\circ} 29^{\prime} 25^{\prime \prime}$, and long. $0^{\circ} 6^{\prime} 40^{\prime \prime} \mathrm{W}$. of Cadiz. In his Journal he says, "It is well known among our seamen, that in the Bight of Cadiz (that is, the coast comprehended between Cape St. Mary and Cape Tratalgar) there is a current setting constantly to the eastward; but as, near the shore, the effect of the tide must necessarily be felt, it may also modify the dircetion of the current. When we established our point of departure, the strength of the ebb had already begun to decrease; but as, during the early part of the night, we were unable to get
eny conmiderable distarice from the shore, we consequently felt all the force of the flood tide setting to the northward; and this appearis. to have been the reason why Fe experienced a current to the N.E. ; for the current which commonly setro into the Strait of Gibriltar, combined with the flood tide, ought nearly to give that N.E. direction. Ater our departure, and from midday of the 16 th, wo sailed with variablo. winds until the 21st, when the wind becime fired at I.N.E., and we found that, in the twenty-four hours, from the 21 st to the ezind, the current had set $8.42^{\circ} \mathrm{E}$. $9 t$ miles; though in consequerce of unceitainty in the dead reckoning, and the variabloness of the wind, it is possible the error was contracted vithout any carrent; the situation at midday of the 22nd being in lat. $30^{\circ} 18^{\prime} 61^{\prime \prime} \mathrm{N}$. , and long. $16^{\circ} 17^{\prime}$ Weut. The intention was to ascertain the position of the Salvages, which were seen tho. same evening, and he then makes the following reffections:-"The whole error of longitude by dead-reckoning was $34^{\prime} 6^{\prime \prime}$. East; the sum of all the errors in latitude, after various compensations, was abont $3^{\prime} 45^{\prime \prime}$ to the North; therefore, the total error mado during the voyage was $34^{\prime} 8^{\prime \prime}$ to the Eastward, and $3^{\prime} 45^{\prime \prime}$ to the Southward; and as if we had experienced a daily set of 4 miles $S .82^{\circ} 35^{\prime}$ E."
H.M.S. Pique was once set to the S.E., 98 miles in five days, between Cape Finisterre and Madeira. H:M.S. Raleigh, Angust, 1826, found the current from off Cape St. Mary, toward the Strait, to set W. $34^{\circ} \mathrm{S} .28$ miles in the twenty-four hours.
(147.) The following observations on the currents between the Canary and Cape Yerde Islands, have been selected from Commander Maury's "Sailing Directions," 1859, vol. ii. The experience of all the ships whose logs are there recorded, is nearly unanimous in stating the sortherly and easterly drift. Of course the vibration of the Trade winds with the seasons has much to do with the southern limit of this southerly set, as will be seen below :-
Ship Jenny Pitts, Captain J. L. Snow, December, 27, 1853, lat. $30^{\circ} 3^{\prime}$ N., long. $20^{\circ} 0^{\prime}$ W., current 8 miles S. by W.; 28th, $28^{\circ} 52^{\prime}$ N., $18^{\circ} 10^{\prime}$ W.; $^{6} 6$ miles S.S.W.; 30 th, $25^{\circ} 26^{\prime}$ N., $18^{\circ} 26^{\prime}$ W., 8 miles S. by E.; January $1,1859,19^{\circ} 61^{\prime}$ N., $22^{\circ} 65^{\prime}$ W., 8 miles S. by E.; 2nd, $16^{\circ} 42^{\prime}$ N., $21^{8} 23^{\prime}$ W., 10 miles S.; 3 rd, $13^{\circ} 42^{\prime}$ N., 22° W., 8 miles S .

Ship Margaret Mitchell, Captain T. Jameson, January 11, 1854, lat. $30^{\circ} 16^{\prime} \mathrm{N} .$, long. $17^{\circ} 35^{\prime} \mathrm{W} .,^{\prime} 22$ miles E . by S.; 13 th, $26^{\circ} 7^{\prime} \mathrm{N}$. , long. $20^{\circ} 24^{\prime} \mathrm{W}$., S. $39^{\circ} \mathrm{W}$. 14 miles ; $14 \mathrm{th}, 24^{\circ} 15^{\prime} \mathrm{N} ., 20^{\circ} 11^{\prime}$ W., 12 miles E. by S.; 16 th, $20^{\circ} 18^{\prime}$ N., $20^{\circ} 34^{\prime}$ W., 18 miles S. $\frac{3}{8} \mathrm{~W}$.

Ship Romance of the Sea (W. W. Heury), February 18, 1855 , lat. $30^{\circ} 10^{\prime} \mathrm{N}$. , long. $18^{\circ} 10^{\prime}$ W., $1 /$ knot N.E.; $19 t h, 29^{\circ} 20^{\prime}$ N., $19^{\circ} 0^{\prime}$ W., $1 \frac{1}{4}$ knot N.E.; 20th, $20^{\circ} 0^{\prime} \mathrm{N}^{\prime}$., $19^{\circ} 28^{\prime}$ W., 1 knot E.N.E.

Ship Gloriana, Captain Henry Toynbee, from London to Sydney, April 22, 1855,
 N. 25° E.; 25 th, $23^{\circ} 38^{\prime}$ N., $22^{\circ} 50^{\prime}$ W., $4 \frac{1}{4}$ miles N. 12° W.; 20 th, $20^{\circ} 37^{\prime}$ N., $24^{\circ} 22^{\prime}$ W., $6+$ miles N. 15° E. $; 27$ th, $17^{\circ} 22^{\prime}$ N., $26^{\circ} 4^{\prime}$ W., 91 miles S. 57° W.; 28th, $14^{\circ} 5^{\prime} \mathrm{N} ., 26^{\circ} 23^{\prime} \mathrm{W}$., 16 miles S. $60^{\circ} \mathrm{W}$.; 29 th, $11^{\circ} 12^{\prime} \mathrm{N}$., $26^{\circ} 36^{\prime} \mathrm{W}$., 30 miles

Ship Resolute (D. McKenvie), Juno 17th, 1854, lat. $29^{\circ} 54^{\prime} \mathrm{N} ., 21^{\circ} 12^{\prime} \mathrm{W} ., 12$ miles 8. 60° E.; 19 th, $26^{\circ} 1^{\prime}$ N., $24^{\circ} 2^{\prime}$ W., 12 miles, S. 13° E. ; $21 \mathrm{st}, 21^{\circ} 44^{\prime}$ N., $26^{\circ} 22^{\prime}$ W.,

Ship Orion (H. Libbey), July 3, 1856, $29^{\circ} 5^{\prime}$ N., $23^{\circ} 30^{\prime}$ W., 12 miles S.

Ship Panther ($\mathrm{N} . \mathrm{G}$. Weoks), August 10, 1854, lat. $28^{\circ} 9^{\prime}$ N.; $22^{\circ} 30^{\prime} \mathrm{W}$., 12 miles W.s.W.; 12th, $z^{\circ} 3^{\circ} 32^{\prime}$ N., $25^{\circ} 38^{\prime}$ W., 15 miles W.S.W., \&c. Note.-The ship was at this time in the N.E. Trades, which have during the summer reached to the higher

Ship Furricane (St. Very), August 22nd, 1855, lat. $30^{\circ} 31^{\prime} \mathrm{N} ., 18^{\circ} 0^{\prime} \mathrm{W} ., 12$ miles S.W:; 23rd, $27^{\circ} 11^{\prime} \mathrm{N} ., 10^{\circ} 15^{\prime} \mathrm{W} ., 8$ miles S. $\frac{1}{2} \mathrm{~W} . ; 24 \mathrm{th}, 23^{\circ} 60^{\prime} \mathrm{N} ., 19^{\circ} 25^{\prime} \mathrm{W}$,, 11 miles S. by W.; 25 th, 21° N., $19 j^{\circ}$ W., 6 miles S. $i^{\text {W. }}$: $26 \mathrm{th}, 18^{\circ} 4^{\prime}$ N.,
8. $0^{\circ} \mathrm{W}$. 12 miles W.S.W. latitude. $10^{\prime} 4 \mathbf{s}^{\prime} \mathrm{W} ., 7$ miles S. $\frac{1}{3} \mathrm{~W}$.

1792, for le took his of Cadiz. Bight of Tratalgar) , the effect e current. ad already ble to get

Cadiv, for fore midthe mornat the cur40° W. 39 11 this exst, to the

Barque Mou (B. Buxton), August 17, 1859, lat. $25^{\circ} 41^{\prime}$ N., $21^{\circ} 14^{\prime}$ W., 12 miles S. I $^{\prime}$ 18 the $23^{\circ} 16^{\circ} \mathrm{N} ., 22^{\circ} 54^{\prime} \mathrm{W}$., 8 miles 8.
Barque Adlor (E. Thiel), October, 27, 1849, lat. $25^{\circ} 17^{\prime}$ N., $23^{\circ} 33^{\prime} \mathrm{W} ., 27$ milem 8. 31° W., two days; 30th, $18^{\circ} 13^{\prime}$ N., $25^{\circ} 40^{\prime}$ W., 13 miles S.W.; 310t 15°, 5^{\prime} No, $26^{\circ} 35^{\prime}$ W., 12 miles S. W. ${ }^{\prime}$ W. (trevie wind).

Ship Colorado (Ricker), October 19th, 1855, lat. $31^{\circ} 15^{\prime} \mathrm{N} ., 16^{\circ} 49^{\prime} \mathrm{W}$, 12 milee S.E. ; 20th, $28^{\circ} 33^{\prime} \mathrm{N}_{\text {., }} 18^{\circ} 47^{\prime}$ W., 24 milee S.S.E. 321 tt, $26^{\circ} 16^{\prime}$ N., $20^{\circ} 11^{\prime}$ W., 12 miles S.W.; $24^{\circ} 22^{\prime} \mathrm{N}$., $21^{\circ} 15^{\prime} \mathrm{W}$., 6 miles, S.W.
(147.) Mr. James Grey Jacknon, in his valuable "Account of the Empire of Merocco," has stated, that the coast, between the latitudes of 20 and 32 degrees North, is a demert country, interspersed with immense hills of loose sand, which are, from time to time, driven by the wind into various forms, and so impregnate the air with sand, for many miles out to sea, as to give the atmosphere an appearance of hayy weather; navigators, not aware of this circumatance, never suspect, during such appearances, that they are near lard; until they discover the breakers on the const, which is, in some parts, so extremely flat, that a person may walk a mile into the men without being over the knees; so that ships atrike when at a considerable distance from the beach; added to thin, there is a current, which sets in from the Weat toward Africa with inconceivable force and rapidity, with which the navigator being generally unacquainted, he loses his reckoning, and, in the course of a night, perhape, when he expects to clear the African coast, in his passage sonthward, he is alarmed with the appearance of shoal water; and, before he has time to recover himself, finds his ship aground on a desert shore, where neither habitation nor human being is visible. In this state his fears are soon increased by a persuasion that he must either perish in fighting a horde of wild Arabs, or submit to become their captive ; for soon after a ship strikes, some wandering Arabs, strolling from their duar in the desert, perceive the maste from the sandrhills; and, without coming to the shore, repair to their horde, perhape 30 or 40 miles off, to apprise them of the wreck, when they immediately assemble, arming themselves with daggers, guns, and ondgels. Sometimes two or three days or more elapse before they make their appearance on the coust, where they await the usual alternative of the crew either delivering themselves up, rather th: gerish with hunger, or throwing themselves into the sea.
(148.) But to resume the description of the currents:-M. de Fleuriev, in his illustrations of the voyage of Etienne Marchand, states, that in a run which ho himself made, in 1768-69, in the Isis frigate, from Cadiz to Tenerife, by a direct course, and with a steady breeze from N.E. to E.N.E., he had an opportunity of ascertaining the constant effect of the current, which sets to the eastward so long as a ship sails in the tract of sea situated to the westward of the Strait of Gibraltar, and at a little distance from it, during the four days employed in this run. On the first day, the
 the fourth, 1^{\prime}; when the current ceased, in lat. 31°, to be perceptible.
Therefore, during the first three days, the movement impressed on the ship to the eastward, carried her toward that side $33 \frac{1}{1}^{\prime}$, or 37 童 miles ; and, by a mean, ह.3out 8 miles in twenty-four hours.-(Voyage de C'Isis, en 1768 et 1769.)
The ship of M. Marchand, named the Solide, left Cape Spartel, bearing South, on the 29 th of December, 1790 , and made the Peak of Tenerife, bearing S. 61° E. about 35 leagues distant, on the 5 th of January, 1791. In this time it was found that a current had set the ship 39 miles E. 13° S., equal to a mean drift of 5.8 miles per day of twenty-four hours.
From the 5th to the 9th of January, inclusive, when the ship, on the latter day, was in lat. $21^{\circ} 24^{\prime}$, long. $19^{\circ} 26^{\circ}$ (from Greenwich), it was sound that the current had

- London, quarto, 1809. See, aleo, the affecting "Narrative of the Shipwreck and Captivity of M. de Brisson," in 1787; and that of Robert Adams, wrecked in the American ship Charles, John Horton, master, 1810. The latter is noticed mone particularly, with others, in the Description of the Coants of Africa, hereafter.

wet h

Berve the II In and, met in to ha
tion; the o Vino equal Ar of O three Amor appr intere serva by M Journ derive repea
Majo
(14) cautio to hav of our multit board check
set her 601 miles E. $13^{9}{ }^{\circ} \mathrm{S}$., being at a mean rate of $12 \frac{1}{s}$ miles in twenty-four hours.
Between lat. $21^{\circ} 24^{\prime}$, long. $19^{\circ} 26^{\prime}$ (as above), and the Isle of Mayo, during an interval of five days, the ship was carried, by the current, $35 \frac{1}{4}$ miles W. $300^{\circ} \mathrm{8}$., or at the mean ratu of $7 \cdot 1$ miles in twenty-four hours.

In July, 1792, the Soijde returned to the westward and northward of the Azores; and, on the parallel of $41^{\circ} 42^{\prime}$, at the distance of about 2° North of Corvo, she had a met in one day of 9 miles S. 29°. E. Proceeding thence toward Lisbon. she appeared to have a met, in three days, of 27 miles W. 19° S., equal to θ^{\prime} per day in that direction ; but, in the following six days, from the N.E., of the Azores to Cape St. Vincent, the current set 74 miles E. 253° S., equal to 12.3^{\prime} per day; and between Cape. St. Vincent and Cape Spartel, in forty-two hours, she found an indraught of 30 miles E., equal to $17 \frac{1}{\prime}$ per day, setting toward the Strait of Gibraltar.

Arrica.-The ship Montezuma, of Liverpool, Knnbley, master, sailed on the 26th of October, 1810, for Bravil, but was wrecked on the 23rd of the next month, at three a.m., on the African coast, somewhere between Capes Noon and Bejador. Among the crew, who were taken and sold by the Arabs, was Alexander Scott, an apprentice: this person was detained in the country for nearly six years; and a very interesting account of his captivity, drawn up by Dr. Traill, with geographical observations on his routes, and remarks on the currents which produced the catastrophe, by Major Rennell, were given in the fourth volume of the Edinburgh Philoooptical Journal. As these remarks give a very clear notion of the movement of the waters, derived from observation, which have not since been contradicted or superseded, we repeat them as heretofore.

Major. Rennell's Remares on the Currents between Cape Finisterre and the Canary Islands.

(149.) "I should consider myself highly culpable, if I neglected to state, by way of caution to nevigators, the result of my inquiries respecting the currents which appear to have caused the shipwreck of the Montezuma, and of a great number of other ships of our own and other nations, on the western coast of Barbary ; having examined a multitude of journals of ships that have sailed in that track, with timekeepers on board, and which have also, when opportunities presented themselves, had their rate checked by celestial observations.
"The general result is, that navigatore, who depart from the parallel of the southern part of the Bay of Bengal (or say 45°), and sail in the usual track southward, will be assailed first by a S.E. current, and then by an easterly one, until they have passed the parallel of Cape Finisterre; when the current will again turn to the South of East, and gradually become a S.E. current, till, having passed Cape St. Vincent, it becomes easterly again ; owing, no doubt, to the indraught of the Strait of Gibraltar; and this easterly current is pretty general across the mouth of the bay, between Cape St. Vincent and Cape Cantin.
"Beyond this bay (which may be termed the funnel, of which the strait itself is the apout) the current again becomes S.E., or rather more southerly (as it is more easterly toward Cape Finisterre), and continues as far as the parallel of 25°, and is, moreover, felt beyond Madeira westward; that is, at least 130 leagues from the coast of Africa; beyond which a S.W. current takes place, owing, doubtless, to the operation of the N.E. trade-wind.
"The rate of motion of this current varies very considerably at different times; that is, from 12 to 20 or more miles in twenty-four hours. I consider 16 as rather below the mean rate. I have one example of 140 miles in eight days, in one of his Majesty's ships, equal to $17 \frac{1}{2}$ miles per day; and. in another, of only 12 . And in a very well kept East India ship's journal, 170 in nine days to Madeira, or 19 per day. The direction of the stream fikewise varies, but commonly more toward the South than the East, after passing the mouth of the strait.
"Near the coasts of Spain and Portugal, commonly called the Wall, the current is always very much southerly, owing, perhaps, to the falling in, obliquely on the shore, of the great mass of water brought by the S.E: current; whick can run ofi only

t. Ft $^{1+}$ South, and round Cape St. Vincent toward the etraits month. And - Canary Idimade; and between them and the coost of Barbary, the curronts alar.

"It may lat takell for granted that the whole surface of that part of the Atlantic Ocean, from the parallel of 40° to 45°, if least, and to 100 to 130 leagues off shore, is in motion toward the mouth of the Strait of Gibraltar.
" According to what has been said, in the course of the above remarks, it muat be expected that a ship sailing in the usual traok to Madeira or the Canaries will be carried to the south-eastward, at the rate of 18 miles per day, that is, even if she hai Pair wind, she will be carried by cuirrent 150 or 160 miles to the south-eastwant, in (lus cuarse of her ซoyage to Madeira or the Canaries; and, consequently, on a S.E. by S. course will be carried 80 or 90 to the eastward of her intended port. If we suppose a S.E. course, the error in easting will be no lese than 109; which dintance, if they are bound to Tenerife, would carry them to Allegranse or Fortoventura; and, if intending to make Allegranza, would place them on shore on the coest of Barbary. The French and Spaniards report that their shipe have often made Allegranza when they supposed themselves on the line toward Tenerife. It must be added that, if a ship had a long passage, the error would be greater in proportion. and might pomibly amount to 200 miles of easting.
"It would seem advisable, therefore, that every ship going to the Canaries, or ixktending to sail between those islands and the main land of Africa, and being without timekeepers, as that class of merchant ships commonly are, should, to every day's reckoning, add ten miles of easting. This would, in the first instance, prevent them from deceiving themselves as they went forward; in like manner, as it is better to net a clock forward at once, than to charge one's memory continually with its being too slow. Ten miles do not seem too much as a cautionary measure, as a ship has very lately been carried 99 miles to the East in eight days in that track. What would not have been the error had she had even a moderately long passage?
"It is this current which has furnished the roving Arabs of the Desert with their victims from every nation, and the good Mr. Willshire* with objects of benevolence." -27th February, 1819.
The Eliza, commanded by John Scarchwell, sailed from Cork for Rio Janeiro, with settlers, on the 12th of August, 1827, and ran sahore on the coast of Africa, during a fog, on the 25th of the same month. Whilst making signals of distress, three fish-ing-boats from Canary came to her assistance, and succeeded in aaving all the lives on board, consisting of 18 mariners, 244 men, 46 women, and 42 children; in all, 350 persons, who arrived at Canary on the 3rd of September.

About the end of Uctober, in the same year, the Olymphe, from Havre for Buenom Ayres, with colonists, was cast away on the same part of the African coast. The passengers, about 300 in number, consisting of French, English, Germans, and Swiss, vire taken from the shore, saved from captivity by Canarian fishing-boats, and conviged to the Grand Canary, where they were landed on the 7th of November. Such have been, even within a few years, the effects of the current!

The preceding description of the currents between the L gisin Chanel and Canary Islands was corroborated, in 1826, by Captain R. H. Newhr, rit ${ }^{2}$ which left Dartmouth on the 21st of July, and was set tc ise a reckuning, while crossing the Bay of Biscay, $1^{\circ} 21^{\circ}$ of longitude in iorty-qight hours. On Monday, the 25th of the same month, the entrance of Ribadeo bore S.W. by compase, abjut 15 miles, and the vessel was then in about $6^{\circ} 55^{\prime}$. West.
it. ffect of the easterly current was proved by the bearing: of a remarkable morns. - ilsnd. and some whitish cliffs on the shore; and Captain Newby says, the scho mo: 3 viting to the eastward as fast as I have noticed a ship to lose ground

[^36]BETWEEN CAPE FINISTERRE AND THE CANARY ISLANDS. 281

nth. And

 he eurrontsto the eastward while standing in-shore off Beachey Head during a strong flood tide and moderate westerly breeze. At about five p.m. the wind veered to the N.E., and even then, although the vessel was going at the rate of $3 \frac{1}{2}$ knote through the water, she made very little way to the westward till toward sun-down, when the breeze freshened to 7 or 8 knots.

During the night, passed Cape Ortegal ; and the next morning, at six a.m., the light-tower at the entrance of Corunna bore South.
It did not appear that the current relaxed in strength between the time of observing the inland objects, and that when the wind freshened. Mr. N. adds, that is the third time he has experienced its effect, without ever perceiving it to set at all to the westward. The last.time previous was on the 9th and 10th of September, 1835.

At three p.m., July 27th, 1836, Cape Finisterre bore E.S.E. by compass [true East], distant about 12 miles. A fresh breeze from E.N.E. prevailed up to the following rows, when the current had set to the southward about 14 miles, as frequently found on the Portuguese coast at this season of the year.

July 28 to August 1, inclusive, variable weather and north-easterly winds to lat. $29^{\circ} 15^{\circ}$, long. by acoount, $19^{\circ} 52^{\prime} \mathrm{W}$. On the 1st of August it was found that the schooner had missed Madeira in her attempt to make and pass the West end of that island, and at one p.m. the dark, bold, northern end of Palma came in sight from under a dispersing clond, and bearing by compass about W.S.W., distant 7 leagues.

Upon going over the last two days' work, it appeared that, instead of passing, as supposed, to the westward of Madeira, the Napoleon was actually without a sight of the island to the eastward, and had the vessel been involved in fog, or have been bound to Lanzarote or Forteventura, and steering, by reckoning, a fair course for them, the consequence must have been that she would have fallen into broken water when least least expected, or have grounded on the main shore, somewhat between Cape Ghir and Cape Noon, and property, if not life, would have been lost. It is, moreover, to be observed, that the sea had been, for the most part, comparatively smooth; had there been a strong N.W. swell, such as is commonly felt toward the mouth of the Strait of Gibraltar, then the vessel must have been set farther to the castward of her reckoning.

After making the North end of Palma, the breeze continuing rather light at N.E., the vessel hauled on a W.N.W. course, in order to get the westward of the island, and so as to avoid the risk of getting into the calms or eddy winds to leeward of it; but up to sunset she made very slow progress westward; the swell was short and cross from the northward, and there appeared to be a strong current from the N.W. toward the island, and the captain found it necessary to steer N.W., but still the vessel was found to be approaching the North side of the island. At nine p.m. he began to be alarmed at his proximity to land; braced up the yards and trimmed sails by the wind, but the breeze died away so light, and the swell kept up se cross, that at ten it was thought the vessel must be driven upon the island, unless a spot conld be found for the anchor to take hold of; but, in about half an hour after, it was found that they had gained a different stream of current, and the vessel was visibly set from a S.S.E. to a S.W., or to the westward of a S.W., direction ; and after passing a headland which appeared in the night to be the N.W. part of the island, and sloping toward the sea, the breeze again freshened, and the vessel increased her distance from the black and inaccessible-looking shore of Palm.

Captain FitzRoy, in H.M.S. Beagle, January 15, 1842, says:-" In consequence of a thick haze, very prevalent about the Cape Verde Islands, land was not distinctly seen until we were within three miles of it, and we then found ourselves rather too far westward, owing to a current setting toward the West, at the rate two knots an hour; this was close to the North point of St. Iago. Next day we anchored in Port Praya."

(150.)-The Baron Roussin's Remarks on tee Curbents between Capz bojador and the isles de los.

The general currents on the African coast, between Cape Bojador and the Isles de Los, with the exeeption of some places subject to a more or less regular tide, are uniform during the eight months which comprise the fine season. They follow ex actly the trend of the coast from North to South.

From Cape Bojador to the Bay of St. Cyprian (lat $22^{\circ} 20^{\prime}$) they therefore set to the S.S.W., from that bay to Cape Blanco ; and along the whole extent of the Bank of Arguin to its western point, which is in the parallel of $20^{\circ} 6^{\prime} 20^{\prime \prime} \mathrm{N}$., they set S . by W. To the southward of this point the waters, being no longer guided by the edge of the bank, which turns abruptly to the S.E., do not follow in a body, within a certain space, any fixed or determined direction. One part of their mass experiences a number of irregular windings, until, finding itself in the active body of the general current, which left the bank at its most salient point, it rejoins it, and is carried on as before.

In the vicinity of Tanit Bay, in the parallel of $19^{\circ} 10^{\prime} \mathrm{N}$., it again resumes its former direction, and follows the trend of the coast, thas setting to the southward as far as the two Palms, near Portandik, and from thence S.S.W. to the Marigot of Musquitoes. It then sets S . $\frac{1}{2}$., till abreast of the Bar of the Senegal, where, in a space of 4 leagues in circumference, it is disturbed by the stream of that river. This stream is so strong as to oblige vessels at the anchorage off the bar to tend to it, in spite of the strongest winds. The current, joined by the waters of the Senegal, pursues its course along the coast, which trends to the S.W., observing a very gentle curve, which forms the Bay of Yof, and which terminates at Cape Verde. The strong currents hitherto pretended to set into the Bay of Yof are, therefore, merely chimerieal, and the depth given to this bay in all the charts is no less so. Cape Verde being the most western point of Africa, and hence forming an obstruction to the general direction of the waters which flow along that coast, mnst occasion a great variety of currents in its vieinity. It is, in fact, what takes place, and it would, therefore, be difficult to define a particular one. This only appears certain: vessels passing in sight of Cape Verde are not cirried on it, as is generally supposed; but, on the contrary, they are swept off by the prevailing tendency which the waters have to flow to seaward. In running close to the Almadie Rocks, this repulsion is sensibly felt during the eight months which I have mentioned : it appears that the current rushes between the rocks, and spreads itself in different direetions.

Inmediately to the southward of Cape Verde the current is almost impereeptible, and it is scarcely possiblo to assign any particular direetion to it as far as Cape Naze. The whole of the coast lying between this cape and Cape Manual forms a welldefined bay, totally free from current, and in which there is not a single river. The same is observed with respeet to the roadstead of Goree, although, according to the observations of Mr. Adanson, a regular tide exists there, with a rise and fall of 2 feet 6 inches. In the offling of Cape Verde the current has been always found to set to the southward. From Cape Naze it again follows the direction of the coast, interrupted only at the mouths of the prineipal rivers, which lie between this cape and Cape Roxo. From this point, localities of a very different nature produce particular effects in the current. The Arehipelago of the Bissagos here succeeds the straight onast which extends to the northward. Large rivers empty themselves amongst these islands, forr":ng various channels, more or less encumbered with sand-banks. These obstacles cause a varicty of currents, which will be explained when treating on the Bissagos.

Strength of the General Current.-The rate of the general current on the African coast, deduced from numerous observations, has never exceeded a mile and five-tenths per hour on the coast itself, and on the outer edge of tho bnnks: and more frequently it has been found from sevon to nine-tenths of a mile. This is diminished one-third, and frequently one-half, at a distance of 4 leagues from the coast. Should a vcssel

Caps

Islea de , are uni* ex retly set to the e Bank of set S. by y the edge , within a xperiences he general rried on as
resumes its thward as rot of Muswhere, in a iver. This nd to it, in negal, purvery gentle The strong rely chimeVerde being the general t variety of acrefore, be passing in on the cone to flow to ensibly felt rent rushes
perceptible, Cape Naze. rms a wellriver. The ding to the all of 2 feet ad to set to coast, interis cape and e particular he straight es amongst sand-banks. treating ou
the African 1 five-tenths ofrequently d one-third, ald a vcesel
have ran past her port, there is no fear of her stemming this current, and, by long boards, easily regaining her destination.

In the rainy season, which is from the commencement of June to the end of October, as the winds blow from various directions, the currents are no longer regular, and it is impossible to establish any positive law respecting them; bnt, even under these circumstances, their strength is not so great, but that it may be surmounted.

3.-THE AFRICAN OR GUINEA CURRENT:

being an easterly stream across the atlantic, and along the coast of AFRICA, INTO THE BIGHTS OF BENIN AND BIAFRA.
(151.) In the description of the winds (6.) p. 179, and (49,50.) p. 201, it is shown that between the N.E. and S.E. trade-winds there is a be't of calms and variable winds, which on the African coast assume the character of monsoons, as during the summer months especially the wind blows more or less toward the African coast.

In the ourrents there appears to be an analogous system, as there is an easterly current flowing with considerable velocity eastward, in an opposite direction to the great equatorial drifts on either side of it. Its existence and character along the Guinea coast has been long known, hence the name applied to it; but the origin of the current does not appear to have been well understood hitherto. It has been supposed that it is a continuation of that current which we have just described as passing southward from Western Europe.
(152.) But in tracing the currents of the Paciflc Ocean,* we find that there exists a precisely similar current in that great ocean setting into the Bay of Panama, in the same latitude. This current is traced very far to the westward-in fact, nearly across the ocean.

In a similar way it can be shown that this Guinea current, instead of being limited west tward by the Canary Islands, has its origin, or a portion of it, nearly over on the coast of South America. This is almost certain as regards the summer and autumn months, as this easterly drift is almost always encountered between latitudes 4° and $8^{\circ} \mathrm{N}$. over the whole breadth of the Atlantic.

This, therefore, is the origin of the main body of the Guinea current, which is doubtless increased by the southerly current before alluded to, and which in itself is but a continuation of the easterly drift from the gulf stream.
We are not yet quite in a position to speculate on the cause of this seeming anomaly, because the current is strong and persistent, not weak and variable as the winds which blow over it. As we as yet know very little of those subsurface actions which must play a very important part in the great circulation of ocean waters; it must be reserved for more extended experiment to enable us to pronounce absolutely on its real character.
(153.) Commencing with the ordinary westernmost part traversed by vessels crossing the equator, we select from Conmander Maury's Sailing Directions the following facts :-
(154.) Capt. II. T. Wulter, barque Phantom, says:-In July, 1853, between lat. 5° and $8^{\circ} \mathbf{N}$., and about long. 36° and $38^{\circ} \mathbf{W}$., the current set us fast to the eastward. Again, in August, 1854, about the same latitude and longitude, the current set is 110 miles N.N.E. in three days. Capt. Millet writes :-Dec. 25, 1855 , lat. 4° N., long. 29° W., have experienced an easterly current these last two days. I have always noticed such along these latitudes, sometimes more to the northward than this, and in lat $1^{\circ} \mathrm{N} .$, and long. 44°.

[^37]We have here examples at opposite seasons of this current in the western crussing
$5^{\circ} 10^{\prime}$ of the Atlantic.

Ship James Brown (Capt. C. W. Kerlin), Jan. 12, 1856, lat. 8 ${ }^{\circ}$ 43' N., long. $31^{\circ} 37^{\prime}$ W. : current 20 miles East. 13th, lat. $5^{\circ} 30^{\prime}$ N., long. $30^{\circ} 21^{\prime}$ W. : 28 miles East. Crossed the equator on the 16th, and experienced north-westerly current.

Ship Margaret Mitchell, Jan. 23, 1854, lat. $4^{\circ} 36^{\prime}$ N., long. $22^{\circ} 25^{\prime}$ W.: 13 miles E. by S. 24th : lat. $3^{\top} 1^{\prime}$ N., long $22^{\circ} 30^{\prime}$ W., S. by E. 20 miles.

Ship Gravina (C. Sprague), March 4, 1855, lat. $2^{\circ} 48^{\prime}$ N., long. $26^{\circ} 46^{\prime}$ W., S. 34° East, 17 miles. 6th : lat. $1^{\circ} 22^{\prime}$ N., long. $27^{\circ} 43^{\prime}$ W., 12 miles N. by E.
Barque Eglantine (Gleason), April 7, 1855, lat. $11^{\circ} 28^{\prime}$ N., long. $24^{\circ} 25^{\prime}$ W. : current setting to eastward, though the ship was steering S. by W. $\frac{1}{8}$ W.

Ship Mary L. Sutton (P. E. Rowland), April 24, 1856, lat. $16^{\circ} \mathbf{4}^{\prime}$ N., long. $33^{\circ} 30^{\prime}$ W. : current E. 45 miles. 2jth, lat. $12^{\circ} 40^{\prime}$ N., long. $32^{\circ} 32^{\prime}$ W.: East 10 miles. 26th, lat., $9^{\circ} 22^{\prime}$ N., long. $31^{\circ} 20^{\prime}$ W.: Last 10 miles. (This is more to the northward than usual.)
Ship Aetos (D. McLaughlin), May 18, 1856, lat. $5^{\circ} 43^{\prime}$ N., long. $24^{\circ} 44^{\prime}$ W.: 24 miles E. by N. $19 t h$, lat. $3^{\circ} 39^{\prime}$ N., long. $24^{\circ} 44^{\prime}$ W. : 14 miles E.N.E. 20th, lat. $2^{\circ} 56^{\prime}$ N., long. $24^{\circ} 0^{\prime}$ W.: 15 miles E.N.E. 21st, lat. $2^{\circ} 16^{\prime}$ N., long. $23^{\circ} 34^{\prime}$ W.: 15 miles E.N.E. 22 nd, lat. $1^{\circ} 20^{\prime}$ N., long. $20^{\circ} 15^{\prime}$ W. : 10 miles N.E.
Ship Educin Flye (W. Flye), June 27, 1856, lat. $5^{\circ} 38^{\prime}$ N., long. $26^{\circ} 17^{\prime} \mathrm{W} .: ~ N ~ .3^{\circ}$ E., rate 1.2 miles per hour. 28th, lat. $4^{\circ} 5^{\prime}$ N., long. $27^{\circ} 29^{\prime}$ W.: N. 18° E., i, iuo per hour. 29th, lat. $3^{\circ} 52^{\prime}$ N., long. $25^{\circ} 12^{\prime}$ W.: N. 22° E., rate $1 \cdot 3$ mile per hote.
Ship Panther (N. G. Weeks), Aug. 10th, 1854, lat. $7^{\circ} 57^{\prime}$ N., long 25° o4' W. : 24 miles E. by S. 20 th, lat $6^{\circ} 55^{\prime}$ N., long. $23^{\circ} 28^{\prime}$ W.: N.E. $\frac{3}{2}$ E., 48 miles. 21 st, lat. $5^{\circ} 41^{\prime} N$. long. $20^{\circ} 30^{\prime}$ W., 48 miles N.E. by E. s E. 22 nd, lat. $4^{\circ} 56^{\prime}$ N., long. $18^{\circ} 7^{\prime}$ W. : E. by N., $1 \cdot 2$ miles per hour. 23rd, lat. $2^{\circ} 41^{\prime}$ N., long. $20^{\circ} 4^{\prime} \mathrm{W}$. : 1 mile per hour S.E. by S.

Barque Mea (B. Buxton), August 27, 1840, lat. $5^{\circ} 57^{\prime}$ N., long. $19^{\circ} 32^{\prime}$ W.: $\frac{1}{s}$ knot N.E. 28th, lat. $4^{\circ} 12^{\prime}$ N., long. $17^{\circ} 33^{\prime}$ W.: $\frac{1}{y}$ knot N.E. $29 t h, l^{\prime}$ lat. $4^{\circ} 0^{\prime}$ N., long. $19^{\circ} 47^{\prime}$ W.: 6 miles E.N.E.

Brig Director, Capt. Skinner writes:-"You perccive that I had a strong current between lat 7° and 5° N. on Sept. 7-10. Not getting an observation for 4 days, I found the brig nearly 3° further East than I expected; whether I had it in one, two, three, or the fourth day, I cannot say, but suppose I had some each day. I was speaking with several captains, and they, say that they have always found a strong current about them going to the eastward.'

Capt. Maury adds-" An eastwardly current is often found north of the line in summer and fall; and at those seasons it may be counted on with some degree of certainty." (This refers to the western crossing of the equator recommended by Capt, Maury.)

Ship Flying Dutchman (A. Hubbard), Oct. 12, 1854, lat $8^{\circ} 55^{\prime} \mathrm{N}$., long. $40^{\circ} 52^{\prime} \mathrm{W}$. -"I notice for the last two days (from lat. $11^{\circ} 28^{\prime}$) the lines of agitated waters, previously noticed, appear all to run nearly E.N.E. and W.S.W., and follow each other at regular intervals of some four or five miles; the motion of the waves running at right angles to the line of rip. Oct. 14, lat. $6^{\circ} 40^{\prime}$ N., long. $39^{\circ} 4^{\prime}$ W. : current East, 1 knot, 15 th, lat. $6^{\circ} 50^{\prime}$ N., long. $37^{\circ} 26^{\prime}$ W.: current East $1 \frac{1}{}$ knots. One year ago last July I experienced a similar current in the same latitnde, but some 10^{n} further East. Oct. 16th, lat. $6^{\circ} 49^{\prime}$ N., long. 36 25' W.: current Last $1 \frac{1}{t}$ knots. 17 th, lat. $6^{\circ} 29$ N., long. $35^{\circ} 18^{\prime}$ W. : current S. 70° E., 2 knots. 18 th, lat. $5^{\circ} 50^{\prime}$ N., long. $35^{\circ} 10^{\prime} \mathrm{W}$. : current east, northing $1 \frac{1}{}$ knots. 19th, lat. $5^{\circ} 43^{\prime}$ N., long. $33^{\circ} 33^{\prime} \mathrm{W}$. : current enst, southerly $1 \frac{1}{7}$ knots, slight current rips. Oct. 20, no current. All these dnys generally calm, or light variable airs."
 N.E. 1 mile. 28 th, lut. $\boldsymbol{j}^{\prime 2} 24^{\prime}$ N., long. $29^{\prime} 50^{\prime}$ W. : eurrent N.l'. 1 mile. $29 t h$, lat.

Sch W.: breat Shi miles Bar knots lat. 6

The
Maur menti work very 1 curreI chang
(15: Africs it ass the C miles Its calcul 17.4 m May, to 26 .
(151 Bight makin
The origin has pr curren direct tempe from
(15:
the ou contin
at 2°.
Benin
Africe
and \mathbf{b}
Equat mundi mando
$5^{\circ} 10^{\prime}$ N., long. $30^{\circ} 0^{\prime}$ W. : current N.E. 2 miles. 30 th, lat. $4^{\circ} 40^{\prime}$ N., long. $30^{\circ} 0^{\prime}$ W. : N.E. 2 miles.

Ship Robert Patten (G. S. Paine), Oct. 30, 1856, lat. $10^{\circ} 14^{\prime}$ N., long. $33^{\circ} 50^{\prime}$ W. : "tremendous tide rips, the strongest 1 ever saw." Oct. 31, lat. $8^{\circ} 26^{\prime}$ N., long. $32^{\circ} 28^{\prime}$ W. : current changes to eastward $\frac{1}{6}$ knot per hour.

Ship Scargo (N. Crowell), Oct. 4, 1856, lat. $6^{\circ} 53^{\prime}$ N., long. $25^{\circ} 13^{\prime}$ W.: 24 miles East. 5th, lat. $6^{\circ} 25^{\prime}$ N., long. $24^{\circ} 42^{\prime}$ W. : 18 miles E. by S. 6th, lat. $5^{\circ} 36^{\prime}$ N., long. 24° W. : 18 miles E. by S. 7th, lat. $4^{\circ} 48^{\prime}$ N., long. $23^{\circ} 29^{\prime} \mathrm{W}: 18$ miles E . by S .
Schooner Thomas A. Ward (J. D. Hoff), Oct. 12, 1855, lat. $6^{\circ} 5^{\prime}$ N., long. $27^{\circ} 40^{\prime}$ W. : the last twenty-four hours have been the most calm that ever I saw, not a breath from any quarter, and a terrible rolling sea. We drifted S.E. 35 miles.

Ship Colorado (Ricker), Nov. 1, 1855, lat $5^{\circ} 51^{\prime}$ N., long. $21^{\circ} 54^{\prime} \mathrm{W}$: current 20 miles S.E. 2nd, lat. $5^{\circ} 22^{\prime}$ N., long. $20^{\circ} 55^{\prime}$ W. : 29 miles S.E.

Barque Clara (E. Cook, jun.), Dec. 9, 1854, lat 6 ${ }^{\circ}$ 48' $^{\prime}$ F., long. $26^{\circ}{ }^{56}$ W. : $1 \cdot 3$ knots per hour N 35° E. 10 th, lat. $6^{\circ} 9^{\prime}$ N., long. $27^{\circ} 57^{\prime}$ W.: 1 knot N. 62° E. 11 th, lat. $6^{\circ} 10^{\prime}$ N., long. $26^{\circ} 46^{\prime}$ W.: 0.8 knot N. 37° E.

The foregoing are the principal notices of this easterly current as recorded in Capt. Maury's Sailing Directions, vol. ii., eighth edition, and, in fact, is nearly all that is mentioned on currents, as but very few, if any, of the abstract logs quoted in that work mentioned any westerly or other currents, the only exception being that in some very few cases a northerly set is noticed. Besides this, there is frequent mention of current or tide rips, often of a very formidable character, denoting great activity and change in the currents of this troublesome region.
(155.) The easterly current thus passing across the Atlantic strikes the coast of Africa about Sierra Leone and the coast of Liberia. Of course, when near the shore, it assumes its direction to the S.E., and runs with great velocity. As is shown by the Chart of the Currents at page 259, its mean annual velocity is between $14 \cdot 1$ miles and 26.5 miles per day, strongest in the summer monchs.

Its mean direction off Cape Palmas and Cape Coast Castle is E. 12° N., and its calculated velocity from Major Rennell's and Mury's observations is-for January, $17 \cdot 4$ miles to $27 \cdot 6$ miles ; February, 26 miles to 32 miles ; April, 11.5 to 33.7 milep \cdot May, $22 \cdot 7$ miles to 36 miles; June, 30 miles; July, 18.2 miles; August, $15 \cdot 7$ miles to 26.4 miles per day. These are from the records of 75 observations.
(156.) Its southern edge appears to be in about 21° to $2^{\circ} \mathrm{N}$. up to the head of Bight, and as the southern streams set in an opposite direction, they are serviceable in making a return passage as presently explained.

The temperature of the Guinea current is high, nnd demonstrates its equatorial origin, although the branch of it which comes from the northward past Cape Verde has probably a lower temperature as coming from a higher latitude. The equatorial current to the southward of the Guinea current is also of a lower temperature, coming direct along the African coast from the southern polar regions. The mean summer temperature is about 78°, but in our winter and autumn months it is higher, being from 82.6° to 83° as a mean, and sometimes it is found higher than this.
(157.) At the distance of about 59 leagues South of Cape Palmas (long. $7 \frac{1}{3}^{\circ}$ W.) the outer border of the Guinea current sets to the East; and the sume direction of it continucs to a similar distance South of Cape Thrce Points (long. $2^{\circ} \mathrm{W}$.); we thence, at 2° North of the Line, find it take a more northerly course, toward the Bight of Benin and the Bight of Biafra; in the latter it mixes with the waters of the South African Current, which, coming from the South, set thenee to the North and N.W., and both, uniting, form a head in the bight. From this bight and sonthward of the Equator the currents thus blended set to the S.W., W.N.W., and NW., in one exmanding and united stream, which greatly facilitates the passenge of ships from Fernando bo to Sievin Jeome.
The prevaleace of the Harmattan wind, which has been deseribed (p. 203), mist
interrupt the course of this current; but its existence. at other times, nearly as described, has long been confirmed, and is incontestable.
(158.) Near Cape Mount the current sets in toward the shore as above stated. The ship Charles, a French whaler, in 1833, was wrecked on the coast of Liberia, at about 30 leagues to the S.E. of Cape Mesurado, probably on the reefs near the River Sestros. This vessel had left the port of Havre for the fishery near Tristan da Cunha, in the Southern Ocean, but the captain, while intending to run along the coast beyond Cape Palmas, in the hope of falling in with whales, unfortunately lost his reckoning, by being deprived, for forty-eight hours, of all means of taking observations : and was moving at the estimated rate of 7 miles an hour, when he found himself close on shore in the midst of breakers, which in the course of the night forced him on the reef and dashed the ship to pieces. The captain and crew got safe to land, but were soon stripped by the blacks, and the captain himself left without covering. In this condition they made their way along the shore to the N.W., until they reached Cape Mesurado, where they were received with all kindness by the colonial agent of Liberia, who sent them in a small government schooner to the Isle Goree. The catastrophe is evidently attributable to this easterly current.
On the western side of Cape Palmas it sets along shore with such force to the S.E., that ships which do not steer a point nearer than the true course will be carried from the land. About Cape.Three Points, likewise, the stream runs strongly to the eastward, and freqnently sets directly in upon the reefs about that cape. Eastward cf this cape the current has carried many experienced mariners, bound to Cape Coast or Annamaboe, to leeward of those ports, and occasioned much trouble, with delay, in beating up again. About Terra Formosa, in July and August, the current has also been found to set strongly to the eastward.
(159.) The Equatorial Currant, which sets from the Bight of Biafra, and then westerly to the southward of the Line, has been illustrated, as already explained, in our "Directory for the Ethiopic Ocean," by Mr. Jas. Finlaison. That gentleman has shown how, by taking advantage of it, ships may effect, without difficulty, a passage from the bight to Sierru Leone, His instructions are as follow :-
"Ships bound from the Bight of Biafra to Sierra Leone, if from Calabar River, when the wind does not permit them to proceed by the N.W. of Fernando Po, may pass between that island and Camaroens River, when they will find a strong current setting to the southward, out of the River Del Rey. After they have advanced to the southward of Fernando Po, they nust endeavour to make all the southing and westing they can; passing either to the eastward or northward of Prince's Island, as winds will permit. On the East side of this island the current sets strongly to the southward, at the rate of a knot and a half; westward of Prince's Island, it generally sets strongly to the N.E. at the same rate.*
"Having arrived to the southward of Prince's Island, if the ship will lie no higher than W.N.W., tack immediately, and try to cross the Line ; for by so doing you will keep out of the strong N.E. current that sets toward the Bights of Benin and Biafra. After you have crossed the Line, you will find that you are nearly out of the easterly current. In the parallel of 1° South you will find the current set to the westward, at the rate of one mile an hour. In the month of May or June, when the sun has a high declination, tho trade-wind is far to the southward, and you will not gain the regular breeze nearer than in 3° South. This breeze commences from S. by $W^{\mathscr{F}}$. As you make

[^38]westir the cu westw eastw: may $14^{\circ} 40$ from 2 the fai
" H passag been t
(160
now b which
even are cor to win than r will of and yo
Alth
it may
Verde
(50 off
to the
to Jun
effect,
space 1
The
its cou
latitud
rapidit
Guinea
may b
of S.W
Islands
(161.
curious
1843, i
58th J
rate of
miles d
at Par
above 1
its rato
Curren
A bo
August direct
the Eq
except
westing, the wind will be fonnd to haul more to the southward and eastward, and the current increases to the rate of $1 \frac{1}{6}$ knots in an hour, until you arrive as far to the westward as 15° West. On proceeding hence to Sierra Leone, come no farther to the eastward than 15° West, until you are as far to the northward as $8^{\circ} 30^{\prime} \mathrm{N}$. ; then you may steer boldly in for the cape. You will strike soundings in that paralle in $14^{\circ} 40^{\prime} \mathrm{W}$.; and as you approach the cape the soundings will be found very irregular, from 20 fathoms to 12 at a cast. You will then be 7 leagues from the cape, and in the fair track of the river.
"Having given these directions to our prize-master, they generally made the passage from Fernando Po and Bonny in five weeks ; merchant vessels have frequently been three months, by keeping in shore."
(160.) In his investigation of the Guinea Current, Major Rennell says: "I have now brought you to the Cape Verde Islands, by what is called the Outer Passage, and which is to be preferred, at all seasons, for ships bound to the southward; because, even when the S.W. monsoon prevails,* between lat. 15° and the Equator, and you are compelled to go to the eastward (between June and September, you will be farther to windward, and will have a more steady wind, and favourable current to the S.E., than near the coast of Sierra Leone, \&c. But if you are bound to Sierra Leone you will of course keep a southerly course from the Canary Islands (Palma and Ferro), and you will find a favourable current the whole way to that place.

Although yon will, at this season, carry a fair wind with you to Sierra Leone, yet it may be proper to inform you that, within the space, lengthwise, between Cape Verde and Cape Mesurado, and in certain places to the extent of 70 leagues off shore (50 off Sierra Leone), a regular change of winds and currents takes places, according to the seasons; that is to say, a N.E. or North wind and S.E. current from September to June; and, in the rest of the year, S.W. wind and N.E. or northerly currents, in effect, a monsoon; and this extends, in respect of the winds, nearly through the wholo space between the two continents.

The current in the offing, in the parallels South of Cape Roxo, $12 \frac{1^{\circ}}{}{ }^{\circ} \mathrm{N}$., continues its course, gradually bending more and more to the south-castward, till about the latitude of $5^{\circ} \mathrm{N}$. it turns decisively to the East; and running with considerable rapidity, sometimes at the rate of 2 knots, it ranges along the whole coast of Guinea until it is partly dissipated in the Bight of Benin, \&ic. The Guinea Current may be taken at 60 leagues in breadth; its greatest rapidity is during the season of S.W. winds in the sea lying West of Sierra Leone and South of the Cape Verde Islands.
(161.) Botrics.-We have not many bottle experiments on this current. One is eurious. A bottle from the ship Kinnear (Captain Kelsall), thrown over May 15th, 1843, in lat. $6^{\circ} 1^{\prime}$ N., long. $24^{\circ} 5^{\prime}$ W., was picked up near the River Nunez on the 58th July, following; the direct distance is 650 miles, which in 74 days shows a daily rate of 9 miles. Another bottle from the same ship thrown over a week before 127 miles due north (lat. $8^{\circ} 8^{\prime}$ N.), was picked up 86 days afterwards on August 12, 1843, at Paraiba, on the Brazilian. coast, the direct distance would give it a daily rate of above 14 miles per day, but as it went probably to westward and thence southward its rate was greater. These two bottles show the limits of the Equator and Guinca Currents.

A bottle from the Windermere, thrown over in lat. $4^{\circ} 6^{\prime} \mathrm{N}$., long. $20^{\circ} 0^{\prime} \mathrm{W}$., on August 20, 1850, was picked up at Lahou, on the Ivory coast, on March 0, 1851. A direet course would make its rate $4 \cdot 5$ miles per day, but as it was probably carricd by the Equatorial Current till caught in the Guinea Current, we cannot argue much, except that it is an ovidence of the direction of the Guinca Current.

[^39]: A bottle from the brig Freeland, Captain T. Midgley, of Liverpool, in lat. $1^{\circ} 13^{\prime} \mathrm{S}$., and long. $4^{\circ} 11^{\prime}$ W., 31st July, 1835, picked up in the surf at Grand Cestros, lat. $4^{\circ} 39^{\prime} \mathbb{N}^{\circ}$., long. $8^{\circ} 6^{\prime} \mathrm{W}$., on the 1 玄th of November following ; and forwarded to England by Captain Penrice, of the brig Meg Merrilies, belonging to the same owner. This was probably carried on a circuitous route to the westward by the stream South of the Line; and thence to the North and N.E. by the in-shore current.

4.-THE SARGASSO SEA.

(162.) The central portion of the Atlantic, that is comprised between the Trade wind and Anti-trade wind systems (19), p. 184, also bounded on the south by the westerly drifts of the Trade winds, and to the north by the easterly current, presently described, appears to be a different physical condition to the other portions of the Atlantic Ocean, and indeed from any other portion of the globe.

Its apparently chief characteristic is well expressed by the name now usually applied to it-the Sargasso, or Weedy Sea. The well-known gulf-weed, which is found more or less over its whole area, seems to be quite peculiar to it. There may be a somewhat analagous physical condition in the North Pacific, but this is not so easily defined. This gulf-weed is constantly found, in greater or less quantity, seattered over its whole area, and when it is found on places not its usual habitat, it may be safely inferred that it has drifted out of this extensive area by the action of the current.
(163.) It is very difficult to define the limits within which this gulf-weed is found. It is more than probable that the fluctuations of the season, greatly affects them as it doed the limits of the Trade winds and intervening calms, the more particularly as it is to the varying currents caused by these winds that the weed is retained in its locality. Consequently we may look for its N. and S. boundaries more to the southward during the northern winter months, and the reverse during the summer. The tropic, or about the parallel of $23^{\circ} \mathrm{N}$., may be its southern edge in the longitude of the Azores, from whence this limit extends to the Virgin Islands and the Bahamas. Its northern edge runs from the Azores to the outer edge of the Gulf Stream off Cape Hatteras. It is not so abundant to the westward of the meridian of the Azores. This will give a breadth of 1,000 miles in its eastern part, and a length of 3,000 miles from E. to W. As before stated, its limits may change greatly at different times, but it may always be looked for within this area, that is, between the southern edge of the Gulf Stream and the northern limit of the Equatorial Current.
(164.) There has been much speculation as to the causes and conditions which have made and retained this peculiar area in its integrity.
Major Rennell says:-"It has been observed that the waters of the Atlantic have a greater tendency toward the middle of the ocean than otherwise, and this seems to indicate a reduced level, forming a kind of hollow space or depressed surfaee. It is certain that the setting of the currents is such as might be expected to take place if such a hollow existed; for the currents do really set into the Sargasso Sea from the North and from the South; whilst in the middle part, although within the region of the Trade wind, the currents are not regular, but indicate a kind of vortex.*
By others it is considered as an immense eddy or whirlpool, formed by the inclination of the water to the westward, caused by the influence of the Trade winds and the Gulf Stream.
Others, again, argue that it is a raised surface, maintained in a quiescent condition by the suriounding currents, and retaining all that is poured into it by the surrounding influences.

[^40]$1^{\circ} 13^{\prime} \mathrm{S}$. zatros, lat. forwarded , the same he stream int.
the Trade th by the , presently ons of the
,w usually 1, which is There may is is not so ntity, scattat, it may tion of the
d is found. them as it ticularly as ained in its , the southamer. The ongitude of e Bahamas. am off Cape zores. This miles from mes, but it edge of the
which have
tlantic have is seems to faee. It is ake place if a from the he region of
the inclinawinds and
at condition e surround-

It is also considered as the grand receptacle of the Gulf Stream, which receiving at the Asores, here turns into this space all that it has transported through its long course.
All these theories have some facts to bear them up in some degree, but others can be adduced to show their futility.
(165.) It is here urged that a simple explanation can be given of this curious region, in the analagous condition of the atmosphere, so powerful an agent in the production or alteration of ocean drifts and currents.
By referring to Maury's Trade Wind Charts, cited on page 186 (26.), it will be seen that there is an uncertainty about meeting with the northern edge of the N.E. trade winds through an extent of at least 10° of latitude; add to this the vibration of this zone of trade winds consequent on the motion of the sun in the Ecliptic, which amounts to from 5° to 8° in latitude, as exemplified in the diagram of the limits of the trade winds at page 185, we have a range of 15° to 18° of latitude over which, during some portion of the year, and over a large section of it throughout the year, that there is nothing but light airs and variable winds, being, in fact, the "horse latitudes," see pages 206-7 (58 to 61 .).

Under this zone, therefore, the sea is subject to no continued or regular dxift, and consequently whatever is thrown on to its surface will remain for a long time, and the Sargasso, or gulf-weed being one of the few marine plants which lives when broken from its rocky bed, it may exist here for a very long period, and thus accumulate by the fresh additions constantly making by the outer or eastern edge of the Gulf Stream, as well as that drifted around the northern part of the Atlantic, and passing by the S.E. Current by the Azores (144.) into this quiescent zone. That the Gulf Stream is the primary feeder to this weedy sea will be shown presently.
(166.) There is another condition also which favours the maintenance and growth of this peculiar plant. The temperature of this water is very equable, less warm than that under the more vertical sun, and not varying more than 6^{3} or 7° Fahr. throughout the year in the eastern part, or 8° or 9° in the western part. This temperature is, as said, lower than that of the southern part of the great equatorial streams to the south of it, but it is higher than that of the current, which sets S.E. and S. between the Azores and Spain, and lower than that of the surface of the Gulf of Mexico and the early course of the Gulf Stream. It may, therefore, be considered that it approximates to the water-climate of the bottom of the Gulf of Mexico, that of the sea around the Bahamas, \&c., where it is known that this weed grows naturally.
(167.) The Sargasso, or gulf-weed, which is its peculiar characteristic, is one of the few plants, aquatic or terrestrial, which will live and flourish when separated from its native stem. Its appearance is too well known to require any detaif. The sea was called Sargaçao by the early Portuguese navigators, from the weed bearing berries like grapcs, "sarga." This term has thus been corrupted into Sargasso, and been applied to the plant itself instead of the place it grows on. There are more than one species of it known to botanists, as sargassum vulgare, \&c. It is frequently called fucus natans-floating sea-weed; and is known to sailors as gulf-weed, that famous' stream being always more or less marked with it.

The old story of Columbus, who had much difficulty with his men, when they de-, clared that even the sea changed its nature into terrestrial to prevent his proceeding on his discovery voyage to America, has been oft repeated.

The sea is commonly studded over, like an inundated meadow, with the bushes, which are in some places very abundant, and in others more dispersed. "If we could imagine the surface of a wide extended moor, oovered with water, the furze and heath bushes would appear something like the clusters of fucus scattered over the thickest part of this sea."

The fructification of all sea-weeds is peculiar, but they require a fixed basis to vegetate. Although apparently flourishing in vast areas in this Sargasso Sea, they: can only be leoked on as cut fowers rather than as complete plants, although their constitution enables them to live a long period without being fixed to their parent
rock like most other alge. They are found in every atate of decay, and when old they become covered with minute and beantiful parasitic growths, which deserve much attention to those who have the leisure and taste to examine them, especially with the microscope, which in this repion reveals a vast and little known world. Besides this, too, the tufts afford protection and shelter to a vast quantity and variety of minute fishes, crabs, and other crustacea and animalculæ, which will afford an inexhaustible fund of interest to the observer. Naturally enough, there is a limit to its separate existence, and when subjected to any change of temperature, or difference of locality unsuitable, by a continuons wind or current, large areas become decayed, die, and sink to the bottom, to be renewed by the continual fresh importations from the Gulf of Mexico.
It is sometimes drifted on to the shores of the Rritish Isles and Western Europe, and appears among the other sea-weeds in the works on algology, but it is accepted as a shipwrecked stranger, not as a native of our shores.
(168.) The gulf of Mexico abounds with the native growths of the Sargasso-weed. It is found attached to the rocks, at the bottom, in most parts of it. The soundings on the Campeche Bank, Chiriqui, the Andros Islands, on the Bahama Banks, New Providence, \&c., all furnish the supply of growing plants. The spores (or seeds) of these become attached to these rocks in the manner usual with all algæ, and the yonng plant grows, not from a root, because the attachment to the rock is not of that nature, till it attains some size, when offering greater resistance to the progress of the continual current than the stalk is able to bear, it becomes detached, rises to the surface, and then is borne onward by the stream till it emerges through the Gulf of Florida by the Gulf Stream. As will be shown hereafter, this stream has a tendency to throw all floating bodies off to the right hand of its course, it follows, that this weed is gradually cast off into this central area, aided probably by the westerly prevalence of the winds which at times occur in this part.

One opinion may be safely controverted, that which assigns the depths of the Atlantic over which it is found as its native place. The great depth and consequent cold disproving the possibility of a plant living in such extremes of temperature.

We give a number of examples and opinions on this subject, as in previous editions, but any new light which can be thrown upon the physical condition of this peculiar region, would be well worth the study of any one who will undertake it. But little has been added to our stock of knowledge for many years.
(169.) Captain Livingston, in his way from New Orleans to the Strait of Florida, saw large quantities of it ; and every one who has navigated the Gulf Stream has remarked the weed in it, or along its borders. Sir Philip Broke and the Baron Alexander von Humboldt say, that the stream contains a great deal. Sir Philip says: "We were always surrounded with gulf-weed." Major Rennell adds, "He spoke of that part of the Gulf Stream out in the Atlantic; the others might speak of other parts."

In the second volume of the "Colombian Navigator," 1848, p. 220, is a description of the Andros Isles, as lately surveyed, and it is there shown, that in the great sponging district, upon the Bahama Bank, West of Andres, vast quantities of the gulfweed are produced; and this is one of the beds irom which the ocean has been supplied."
On the weed found in the ocean, we have the following remarks, by Captain Jivingston, whose name has so frequently occurred in the preceding pages :-
'."Many persons suppose that the gulf-weed (fucus natans) grows upon the rocks about the Bermudas; others, that it originates among the Florida Reefs; and a third party, that it grows upon the water, without ever adhering to anything fixed.
"All these positions seem to me equally wide of truth. Neither on the Bermuda Roeks, nor among the Florida Reefs, has a single branch of gulf-weed ever been found growing upon the rocks; and, among all the gulf-weed met on the ocean, no person ham ever found a single tuft with roots, or that, on mature examination, could be supponed, by any person of sound judgment, to have grown on the surface of the

wat

from
deca
when old deserve specially m world. d variety afford an limit to difference decayed, ions from

Europe, accepted
ssso-weed. sonndings unks, New - seeds) of the young nat nature, the conte surface, of Florida y to throw his weed is evalence of
ths of the consequent cature. us editions, is peculiar But little

of Florida,

 Stream has the Baron Sir Philip adds, " He ht speak ofdescription reat spongf the gulfn has been

Captain ever been e ocean, no ation, could face of the
water. On the contrary, every stalk of the weed seems to have been broken off short from something to which it firmly grew, and all the ends of these stalks are uniformly decayed, or dried up, from the end to a short distance.
" It has' been stated, as a well-known fact, that the fucus natans grows on the rocks along the Gulf of Paria, and on the coasts of Caraccas, \&cc. If this be the case, it is rather strange that it should not rather grow on other rocks and coasts of the West Indies. It has also been stated, that in the whole sea of floating bushes, Mar do Sargasso, not a withered plant is ever discovered. This is not true, as I have seen abundance of the fucus natans in a state of great decay. I note the following from my journal of the Brilliant, from Gibraltar towards Havanna: 8th February, 1819, ' the weed much decayed;' 9th. ' weed passed through, a.m., much decayed;' 10th, p.m., ' passed through much decayed weed; I remark, that the farther we run to the westward, the more decayed is the gulf-weed;' 13th, 'the gulf-weed begins to look fresher.**
"These particulars have been given, in order to show that I have not spoken at random ; on the contrary, actually made my remarks on the spot. Some of the weed was quite brown, and in small fragments, evidently separated into such by its state of decay. It is true, that the weed soon decays when it is taken out of the water, as I have often tried the experiment. The weed is never of a verdant green colour, but seems as if blanched from having been, in some degree, hid from light: I suppose from vegetating under water."
(170.) Mr. Turner, who has so well made known the family of the sea-weeds, and many other celebrated botanists, think that the greater part of the fuci (weeds) which we gather on the surface of the ocean, and which, from the 23rd to the 35 th degree of latitude, and 30th of longitude, appear to the mariner like a vast inundated meadow, grow primitively at the bottom of the ocean, and float only in their ripened state, when they are torn off by the motion of the waves.

To the North of the Cape Verde Islands, we met with great masses of floating seaweeds. They were the tropic grape, fucus natans, which grows on submarine rocks, between the Equator and lat. 40°, both North and South. I am assured from the comparison of a great number of journals, that, in the basin of the Atlantic Ocean, there exist two banks of weeds, very different from each other. The most extensive is a little to the West of the meridian of Fryal, one of the Azores, between lat. 25° and lat. 36°. The temperature of the ocean, in these latitudes, is from 61° to 68°; and the North winds, which sometimes reign there very tempestuously, drive floating isles of weed even to the parallels of 24° and 20°. The vessels which return to Europe, either from the Rio Plata or the Cape of Good Hope, cross these banks, which the Spanish pilots consider as at an equal distance from the Antillas and Canaries. The second bank of fuci (weed) is but little known ; it occupies a much small space between the 22nd and 26th degrees of latitude, 80 leagues East of the meridian of the Bahamas. It is found on the passage from the Caycos to the Bermudas. In the latitudes just described, the fuci, far from being fued to the bottom, float in separate masses on the surface of the water. .
" It were to be wished that navigators would heave the lead more frequently in the latitudes covered with weeds.
"The causes that unroot these weeds, at depths where it is generally thought the sea is slightly agitated, are not sufficiently known. It has been said, that if the fucus adhere to the rocks with the greatest firmness before the display of its fructification, it separates with great facility after this period, or during the season which suspends its vegetation, like that of the terrestrial plants. The fish and the molluscæ

* On the 8th of February, the Brilliant was in $24^{\circ} 17^{\prime}$ N., and $65^{\circ} 1^{\prime}$ W. On the 9th, in $24^{\circ} 34^{\prime} \mathrm{N}$. , and $66^{\circ} 59^{\circ} \mathrm{W}$. On the 10th, in $24^{\circ} 61^{\prime} \mathrm{N}$., and $68^{\circ} 39^{\prime} \mathrm{W}$. On the 12 th, in $25^{\circ} 34^{\prime} \mathrm{N}$., and $71^{\circ} 5^{\prime} \mathrm{W}$. On the 9 th, the ship passed the meridian of Porto Rico, and was hence procoeding toward Providence Channel, Bnhama. The decayed weed, wé havo nó doubt, had driftod from the central bed of the ocean.-ED.
that gnaw the stems of the sea-weeds no doubt contribute also to detach them from their roots.
"On proceeding hence, toward the West Indies, from the 22nd degree of latitude, we found the surface of the sea covered with flying fish, which threw themselves up into the air 12, 15, or 18 feet high, and fell down on the deck. I do not hesitate to speak of un object, of which voyagers discourse as frequently as of dolphins, sharks, sea-sickness, and the phosphorescence of the ocean. Nene of these objects can fail of affording interesting observations to those who make them their study."
(171.) Captain Bourke, in the brig Archibald, December, 1815, found large quantities of the weed near the parallel of 20°, to the northward of the Island Porto Rico, and of the eastern part of Hayti; but on the passage through the Bahama Channel, eastward of the meridian of 70°, and on the North sides of Hayti and Cuba, none of the weed was seen. This may be accounted for on the supposition that it was drifted by the current from the great bed of weed to the N.E., as before explained.

Lieut. John Evans, R.N., states :-"In November, 1810, H.M.S. Belvedere, in the centre of the Atlantic, lat. 33°.20', long. $41^{\circ} 37^{\prime}$, passed through prodigious quantities of fucus satans, in line North and Sonth, as far as the eye could see; and notwithstanding that there prevailed a very heavy swell from the North, their position was not altered. The quantity of this weed met with between the 30 th and 36 th degrees of latitude is really astonishing; at times you may sail for leagues thoough it, covering, as a mantle, the surface of the sea. I have often seen it in hines about 300 or 400 fathoms in length (sometimes only a few yards), and frequently in large and small patches of irregular shape, but generally in a circular form. The deep-sea line should be put over the side frequently in this particular part of the Atiantic."

On the 17th April, 1828, at noon, in the Mexican Sea, a vessel under the command of Lieut. John Evans was in lat. $26^{\circ} 52^{\prime}$, long. $89^{\circ} 17^{\prime}$. On this day fucus natans, or gulf-weed, was seen, in parallel lines, S.S.E, and N.N.W. It was in flower, and completely covered with young barnacles. "From the lat. 25° to 28° in this sea we met with the fucus in parallel lines S.S.E. and N.N.W.; it flowers like fern and other cryptogamia." In calms the fuci float near the surfacs: some of the leaves appearing above water; the patches seen in the Florida Stream, aid the bunches examined, were old, brown, and covered with young barnacles.
In the year 1825 the brig Erin, from the Pacific Ocean to Liverpool, when to the westward of the Azores, passed compact parallels of fucus nutans ir lat. 39° 59', long. $33^{\circ} 46^{\prime}$. The weed was less broken than any they had before seen; the nodules large and of a deep yellow-brown colour, and the lines extending, as far as the eye could reach, in a direction about S. by E., being nearly at right angles with the vessel's line, which was E. by N. The wind was S.E. by S., strong gales and a heavy sea.
(172.) The fucus natans is found in localities to the eastward of the Sargasso Sea. For the following communication we are indebted to the late Captain Thomas Midgley, and it is a great acquisition to our knowledge of the wide range that this plavt has :-
"On my outward passage to Africa in a perfect calm, at daylight of the morning of 18 th of January, 1841 , in lat. $6^{\circ} 46^{\prime} \mathrm{N}$., and long. $44^{\circ} 56^{\circ} W^{\circ}$., I found the ship amongst a number of small bunches of weed, and many cuttle-ngh shells.
" On carefully examining some of the bunches of weed, I was surprised to find it the true fucus natans, or Sargasso or gulf-weed, being, in every respect, precisely the same as that found in the N.E. trades, but apparently much fresher, having exactly the same kind of oblong, narrow, serrated leaf, same stem, same nodules, and just the same pale yellow colour. The pods were also surrounded with a very fine kind of net-work (flustra), and there were a very few minute barnacles attached to the stem, which scarcely showed any marks of decay ; indeed, the two bunches brought on board (which were each about 4 inches in diameter) appeared to have been but very recently separated from the parent stem, and they cach contained a small, but very lively, erab.
"The lively fresh appearance of the weed, and the two crabs, induced me to try for soundings, and, as the weather was perfectly calm and the water smooth, I was enabled to get a perpendicular cast of 112 fathoms, with a well-armed heavy lead, but found no bottom.
"The weed was in detached and emall bunches, and could only have extended over a comparatively limited space; for when a breese of wind sprang up, and the vessel had sailed 20 miles to the eastward, there was not a single sprig or bunch to be seen.
"This weed appears to be unknown upon the Krou coast, for I had two intelligent natives of Sangwin and Grand Sestros on board at the time I pieked the weed up, and they severally declared they had never seen it apon any part of the coast.
"The vessel had been perfectly becalmed for fourteen hours previous and two hours subsequent to the time of picking up the weed, so that she gradually drifted amongst it by a current, which I found, by good observations and carefully-kept reckoning, to set E. by S. by compass, very nearly three-quarters of a mile per hour. Temperature of water, when weed was picked up at daylight, 79°, and at noon, 81° Fahrenheit."
(It had evidently been drifted out of the area by the current described on p. 283. Its not being known farther East is probably owing to the difference of temperature of the sea, which kills the weed before it arrives there.)
(173.) Mr. Luccock in his Notes on Brasil, has likewise described the Green or Weedy Sea. He states that it extends from 11° to 35° of North latitude, and from 30° of longitude to an indefinite distance westward. "Here," he says, " the ocean is covered by nodules of sea-weed, from 3 to 18 inches in diameter, somewhat resembling in form a cauliflower when stripped of its leaves. They float lightly on the water, in parallel lines, at a very few yards from each other, and have a yellow-brown colour, like the long stringy flbre which is sometimes seen floating in the English Channel, and which I sappose to be the natural colour of all marine plants, growing deeply beneath the surface of the water. These nodules, or spherules, are composcd of a vast number of small branches, about half an inch long, which shoot from each other at an angle of about 40°; hence they multiply continually toward the superficies of the sphere; und each extreme point produces a round seed-vessel. This is little more than one-tenth part of an inch in diameter, is hollow, and contains a small reddish-brown meed, scarcely occupying one-fifth part of the husk. The leaf of the plant springs from the joints of the branches, is oblong, indented at the edges, about $1 \frac{1}{8}$ inches long, and a quarter of an inch broad.
"When the nodule is dexterously taken up, all the branches may be traced to one principal stalk; and this invariably shows a fracture, the part by which it has been joined to some larger stem. This fracture is frequently quite fresh, and, in large and vigorous plants, shows distinctly a woody part and a cortex. On the edges of the latter, the first symptoms of decay appear. They become brown, and separate themselves from the wood. This also then assumes a darker colour, and exhibits the regular process of disorganisation, just in the same manner as does a slip from a currant or gooseberry bush. In process of time, the whole of the plant assumes a darker hue; and, as it decays, floats considerably lower than it did. When kept out of the water for a few hours, it becomes harsh and brown, and acquires the peculiar smell of marine vegetables in a state of putrefaction.
"A great number of very minute barnacles are found upon the leaves and stalks. The seed-pod is usually enveloped in a sort of honcycomb work, which may be taken from it, and, when examined by a lens, resembles in appearance the net-work in a fly's eye. (This is called fustra.) Among other inhabitants of the plant, is frequently a number of small crabs, perfectly formed, and evidently young, yet vigorous and active; and when a nodule, taken fresh from the water at night, is hung up in a small cabin, it emits phosphorescent light enough to render objects visible.
"The singular arrangoment of the plants, in parallel lines, is evidently owing to the wind, whose direction they always observe. Each nodule places itsolif uider the
lee of its more windward neighkour, and thus observes the law of floating bodies when exposed to a current of air. Should the wind suddenly change, as it sometimes does, a point or two, in this part of the Atlantic, and blow strong, these lines become broken, and form what are commonly called felds of weed. These, however, are generally small, and seldom, I suspect, wemain long so disarranged.
"In the month of October, I have run with a fine schooner, due North, through the N.E. trades, in the longitude of 26°, and found no weed, being perhaps to the East of it. In the month of March, on board a different vessel, we formed a diagonal line, from 26° to 44° West, across the parallels from 11° to 44°, and saw a great quautity of it. In May, of another year, along the same track, there was much less observed; yet I dare not say that these dates are sufficient to point out the season of ripening, maturity, and decay of the plant, although I have never taken up a nodule which was not full of seed-pods, and never heard of a person who had noticed one destitute of them. It is said, that whales come down to the vicinity of Bermuda at a particular season, and feed upon these plants; yet I do not recollect ever seeing an individual of that species in the Weedy Sea; but, on the contrary, have noticed a deficiency of fishes in general; and most, if not all, of those which I have seen opened on board, appeared to live, not upon vegetable food, but their fellow-inhabitants of the waters. It is probable, however, that none but such will take a bait or approach a vessel."

Captain Martin White, R.N., says:-"It is certainly remarkable that the loci natales of the fucus natans (spread, as it is, among the other rejectamenta of the sea, so profusely over the Atlantic, Indian, and Pacific Oceans), should have remained so long undiscovered; we are informed, however, that two varieties havo been found in the Red Sea, and a solitary specimen has been produced by Dr. Wright from the West Indies, another by Guinani from the Mediterranean; but without any remarks as to the soil it grew upon, or the depth of water where taken, both of which are very important. It is stated, also, to have been received from Bermuda, and to have been seen on the rocks along the Gulf of Paria, and on the coast of Caraccas; but, if the latter were so, would it not be also found on the coasts contiguous? I do not presume to question the fact of the fucus natans having been received from Bermuda; nevertheless, I have often heard surprise expressed at not finding this weed growing among the rocks at that island, and still more at its absence from the anchorage eastward of New Providence, where, to my knowledge, the water is'so clear as to render it quite possible to distinguish the varieties, even under the ship's bottom."-Remarks on the Winds, the Tides, and the Currents of the Ocean, p. 144.

5.-THE EQUATORIAL CURRENTS.

(174.) The name which is usually given to the great drifts of the trade winds, having as wide a range or latitude as 50° or 60°, is scarcely expressive. The Equatorial Current, strictly speaking, is the counter-current we have just described. However, the drift which is intended passes to the S.W. and West of the Azores and Canaries, and from the coast of Africa to the Gulf of Mexico, northward of the easterly counter-current in the North Atlantic; while the great drift of the S.E. trade wind, crossing the Equator, southward of the counter-current, and running strongly to the N.N.W., along the coast of Guayana, joins its strength to the northern portion, and thus, together, passes through the Caribbean Sea.
(175.) The drift of the N.E. trade is not so powerful probably as that of the S.E. trade, as the interference of the land causes such a great change in the regularity of the winds which certainly must be taken as the greatest cause in the production of these currents. The mean rate has been over-estimated in former times by many observers. In its northern limits in the open ocean its annual average, from a careful calculation, amounts to from 8.2 miles to 11.6 miles per day; in its southern and stronger portion it is from 16 to 22.4 miles per day. Westward of the Cape Verde

Island northi the rat pare in series
(176 Norfol and lat had set tion, u

In 1 Azores Winds

Nov. 2
ng bodies sometimes es become vever, are , through tps to the diagonal reat quanh less obseason of pa nodule oticed one ermuda at seeing an noticed a have seen w-inhablta bait or
the loci of the sea, mained so a found in from the y remarks h are very have been but, if the o not preBermuda; d growing orage easts to render -Remarks

Islands, its mean direction is nearly due West, whioh is remarkable, considering the northing of the trade wind. It would seem scarcely necessary to enlarge much npon the rate and extent of this well-known current; but, as it may be interesting to compare individual experience with that of preceding voyages, we give as heretofore a: series of examples by which the ordinary rate and circumstances may be reckoned on.
(176.) EXAMPLES.-Captain J. W. Monteath ; on his passage from Liverpool to Norfolk, in Virginia, in February, 1816, between the Island of Terceira, Azores, and lat. 32°, long. 45°, in a run of eight days, by lunar observations, found the current had set the vessel three degrees to the W.S.W. of the reekoning; but from this position, until his arrival in the Florida Stream, little or no current was found.

In 1823 the corvette Bayadere, Captain Roussin, on approaching and passing the Azores, apon her return from Rio Janeiro, Nov. 20 to Nov. 25, found the prevailing Winds and Currents as follow:-

$$
\text { Latitude, }_{0}^{\text {Longitude. }} \quad \text { Winds. } \quad \text { Current. }
$$

Nov. 24, 264812 . $3324 \quad 50 \quad$ E. by S. to W. S. 46 W. M. 23

Here, therefore, the line of distinction between these currents was experienced in a very sensible degree.
In June, 1816, H.M:S. Pactolus experienced a southerly and sonth-westerly current of 10 miles a day between St. Michael's and lat. 36°, long. $42 x^{\circ}$. This must have been on the tail of the Gulf Stream and in the Weedy Sea. The Pactolus felt no other current on her way to the Bermudas until she came within 70 miles of those islands, and then had a current of 13 miles a day W.S.W.

Captain W. J. Capes, in the Lady Mackworth, in September, 1823, from the 14th of that month to the 8th of October, pursued his direet course to Barbadoes, from lat. $24^{\circ} 0^{\prime}$, long. $25^{\circ} 1^{\prime}$, his situation at noon on the 14th. He says that, from leaving the Island Ferro, we found the current setting us at the rate of from 3 to 5 miles a day westward, and generally a little southing. The weather was remarkably fine all the way to Barbadoes, and always fair, so that I never took in a royal; the logglasses well adjusted, as well as the log-line; but, on making Barbadoes, we found the chronometer to be remarkably correct, and that the ship was 112 miles a head of dead-reckoning.

To the south-westward of Madeira, between the island and lat. $28^{\circ} 0^{\prime}$, long. $18^{\circ} 24^{\prime}$, Captain Livingston found the set to be $14^{\prime} 38^{\prime \prime}$ S., and $37^{\prime} 5^{\prime \prime}$ W., 10th and 11 th April, 1826.

Proceeding south-westward, from the spot last mentioned, to lat. $14^{\circ} 7^{\prime}$, long. $44^{\circ} 6^{\prime}$, in fifteen days the sets were $14^{\prime} 40^{\prime \prime}$ N., $1^{\prime} 11^{\prime \prime}$ S. ; $11^{\prime} 15^{\prime \prime}$ E. ; and $2^{\prime} 6^{\prime \prime}$ W.Surplus effect, $56^{\prime} \mathbf{2} 0^{\prime \prime} \mathrm{S}$., and $1^{\prime} 54^{\prime \prime} \mathrm{W}$.

7th Dec., 1810.-H.M.S. Belvedere sailed from Bermuda, and proceeded toward the Azores. On the 21 st (fourtecn days' run to the eastward), lat. observed $36^{\circ} 22^{\prime} \mathrm{N}$., long. by account, $34^{\circ} 9^{\prime}$ W., by lunar, $35^{\circ} 5^{\prime}$, by ehron., $35^{\circ} 0^{\prime}$; leaving 51^{\prime} for westerly current.

25th of Novemder, 1790.-The merchant ship Rosalia sailed from Cadiz for Vera Cruz, having, as passengers on board, Don Josef de Espinosa and Don Ciriaco Cevallos, officers of the Spanish navy, who had two good chronometers. This chip made Cape Cabron, on the N.E. side of Hayti, after a voyage of twenty-three days, and it was then found that the currents had carried them four degrees to the westward of dead-reckoning; and that, consequently, the daily drift averaged about 7 miles.

In 1770, a small vessel laden with corn, and bound from the Island of Lanzarote, one of the Canaries, to Santa Cruz, Teneriffe, was driven to sea, while none of the crew were on board. The motion of the waters, to the South and West, carried it to America, where it went on shore, at La Guayra, near Caraccas.
By the Jane, Captain Livingston, toward Demerary, between lat. $14^{\circ} 7^{\prime} \mathrm{N} .$, long. $44^{\circ} 6^{\prime}$, and lat. $6^{\circ} 53^{\prime}$, long; $57^{\circ} 18^{\prime}$, in six days, ending 30 th April, 1826 , the sets of current were $33^{\prime} 10^{\prime \prime}$ N., $21^{\prime} 25^{\prime \prime}$ S.; $0^{\prime} 0^{\prime \prime}$ E., $3^{\circ} 16^{\prime} 50^{\prime \prime}$ W. Surplus effect (fer Equatorial Current), $11^{\prime} 45^{\prime \prime} \mathrm{N}$. , and $3^{\circ} 13^{\prime} 50^{\prime \prime} \mathrm{W}$.
In November, 1825, between Maranham, on the North coast of Brazil, and lat. $6^{\circ} 8^{\prime}$ N., long. $47^{\circ} 17^{\prime} \mathrm{W}$., Captain Livingston was set $1^{\circ} 12^{\prime} 35^{\prime \prime}$ N., and $1^{\circ} 55^{\prime} 28^{\prime \prime}$ W., without any southerly or easterly differences.
(177.) It will be scarcely necessary to recapitulate the evidence upon which the mean rate is set down in the Chart of the Atlantic Ocean before referred to (see (22.) p. 184). Suffice it to say that the rate which may be anticipated when going southward ontside the Cape Verdes to $8^{\circ} \mathrm{N}$. will be from 12 to 20 miles per day.. In longitude 40° the westerly set reaches frequently to the Equator, and averages 15 to 22 miles per day. The General Chart of the Currents at page 259, will sufficiently explain this part of the subject. As the current is well established, we need not extract the numerous observations given by Capt. Maury as they almost all tend to the same conclusion. But the drift of bottles is so marked an evidence that we give a number of instances which will be very instructive.
(178.) Bottles.-The following have been selected from Captain Becher's list, explaining his bottle chart in the "Nautical Magazine," of November, 1852. It has been before quoted from (13:.), page 260 :-

Ship.	Signature.	Where left.			Wherefound.			息害
		Year	Latitude. N.	Long. W.				
							M.	M.
Thunder	Owen	1833	$28 \cdot 4$	25.5	Bahamas	506	2750	4
Osprey		1822	13.3	$39 \cdot 2$	Bahamas	218	2610	$12 \cdot 1$
C. Dunmore	Robertson,. .	1828	$27 \cdot 4$	28.0	Cuba	437	2530	$5 \cdot 8$
Kate	Cresswell	${ }_{1836}^{1825}$	24.0 17.9	$19 \cdot 0$	Musquitia	519	3300	3
Echo		83				26		$15 \cdot 1$
Stratford	Locke	836	14.5	34	Antig		1410	-
Osprey		1820	$4 \cdot 1$	24.3	Barbadoes	139	2220	18.
Wm. Lockerby	Parker	1838	14.1.	25.2	Grenadines	169	2110	$12 \cdot 4$
Osprey		1820	5.2	24.7	Martinique	322	2300	$7 \cdot 1$
Osprey		1822	$6 \cdot 2$	15.6	Trinidad .	192	2920	12
C. McCarthy	Field	1824	22.0	53.5	S. Salvador	226	1200	5.7
Harlequin	Cunningham	1881	24.7	$30 \cdot 4$	Turks Islard. .	300	2300	$7 \cdot 6$
Calliope	Kuper	1843	$19 \cdot 2$	$30 \cdot 8$	Caicos -..	375	2250	${ }^{6}$
Two Brothers.		1826	C. Verde	Ids.	Crooked Island	382	2800	$7 \cdot 1$
D. of Marlboro'	Thorn	1820	C. Verde	Ids.	Hayti	283	2610	$0 \cdot 2$
Nisus	Rey	1842	14.5	34.4	Martinique	277	2100	$7 \cdot 6$
Mary	Locke	1836	14.5	$34 \cdot 4$	Barbuda .	278	1700	
Enterprise	Collinson	1850	$1 \cdot 1$	20.8	Honduras	367	3800	$10 \cdot 3$
Investigator	McClure	1850	12.4	$28 \cdot 1$	Ambergris K.	186	3610	
Rapid	Measum	1852	0.5 S .	22.6	Martiniquo	158	2430	$15 \cdot 6$
Sophia....	Saxon	1848	\%.2	$40 \cdot 3$	Grenada	151	1320	8.7
Race-horse	Home	1835	$8 \cdot 6$	52.0	St. Vincent	35	610	17•4
Race-horse	Home	1835	$1 \cdot 3$	478	Tobago	50	1000	
Race-horse	Home	1835	11.5	61.5	Maracaibo....	17	240	14.

Th avera dista। a mos the n natio
(17 forme
W
$\operatorname{tain} J$
up on
Ce
Nock
$12^{\circ} 3$
the la
S.W.
and V
miles
Al
$37^{\circ} 50$
by Co
Ba
David
1122,
Cer
in thi
south
Ces
of Ba
Foun
of D
the vi
from 1
thenc
MA
borou
Júne,
June,
Gu
of Jur
Spani
barna
no dor
rains.
Son
with i
whot,
and w
the w
$12{ }^{4} 58$
coast
by W ef the rried it to

The mean rate of travelling of all these bottles is 10.6 miles per day. But this average requires several qualifications which will make it considerably higher. The distances are measured direct, but it is most probable that these messengers pursued a more or less devious course. Again, it will be seen that the bottles thrown out on the northern part of this trade wind drift have travelled much slower to their destination than those which started from near the equator.
(179.) Besides the above we add the following examples of bottle drifta from our former editions.

Westerly Drift to St. Eustatius.-A bottle from the ship Wm. Miles, Captain James Pike, bound to Jamaica, lat. $18^{\circ} \mathbf{2 8}$, long. $57^{\circ} 20^{\prime}$ (date omitted). Picked up on the beach of St. Eustatius, 26th of February, 1839.

Central Drift to the Virain Isles.-A bottle from the Emerald, Captain Nockells, bound to Jamaica, 17th December, 1831, in lat. $36^{\circ} 40^{\prime}$, long., by chron.; $12^{\circ} 32^{\prime}$. Found on the North side of Anegada, 8th January, 1833. The ${ }^{\circ}$ ads for the last three days, previous to the 17th of December, were from North and N.W. to S.W. For eight days preceding these it blew a continued and heavy gale from S.W. and W.N.W.; the bark lying-to the whole time, and drifting from lat. $41^{\circ} 28^{\prime}, 227$ miles to the northward.

A bottle from the ship Isabella, of Leith, 2nd April, 1835, in lat. $23^{\circ} 19^{\prime}$, N., long. $37^{\circ} 50^{\prime}$ W. Having lost the N.E. trade in the morning. Wind then E.S.E. Found by Cooper's Island, near Tortola, 13th September, 1836.

Rquatorial Current to Tobago.-A bottle from the schooner Julia, Wm. Davidson, master, in lat. 6° N., and long. 40° W., Nov. 6, 1821. Found 7th of March, 1122, near the shore of Little Rocky Bay, Tobago.

Central Drift and Equatorial Currents.-A bottle from the ship Gambia, in the River Gambia, lat. 134° N., in the latter part of 1831. Picked up on the southern side of Virgin Gorda, lat. $18^{\circ} 30^{\prime}$.

Central Drift and Equatorial Cunrents.-A bottle from the Two Brothers, of Baltimore, in lat. 17° N., long. 28° W. (off St. Antonio), 21 st of November, 1828. Found at Acklin's or South Crooked Island, in lat. $22^{\circ} 12^{\prime}$ N., long. $74^{\circ} 18^{\prime}$, on the 8th of December, 1827. Hence it appears to have drifted, in a W. by N. direction, from the vicinity of the Cape Verde Isles to the West Indies, under influence of the Drift from the N.E. and the Equatorial Current, probably in the first instance W.S.W. and thence W.N.W.

Madeira to the West Indies.-A bottle from the ship Symmetry, of Scarborough, Captain Smith, on her way from Leith to Buenos Ayres, off Madeira, Oth of Júne, 1825. Picked up at Salt Kay, Turks' Islands, after a lapse of ten years, 9 th of June, 1835.

Guxana to St. Vincent's-A bottle thrown into the sea on the 20th of May, 1835, in the latitude of Demerary ; picked up in Sable Bay, St. Vincent's, on the 24th of June. At the same time several large trees were washed ashore, among them a Spanish cedar, and which, from their appearance (beling covered with a coat of barnacles and sea-weed), must have been a long time in the water; these were, no doubt, driven out to sea by the overflowing of the Orinoco, occasioned by the heary rains.

Some years back a very large cedar came on shore at Sable or Sandy Bay, bringing with it a large female boa oonstrictor, which took to the neighbouring wood, and whon shot, some days after, was found to contain many young ones, nearly ready to escape; and which, but for the destruction of the old one, would have taken up their abode in the woods.

A bottle thrown from the Osprey nt noon, on the 1st of April, 1820, in lat. $12^{\circ} 50^{\prime}$ S., long. $29^{\circ} 10^{\prime} \mathrm{W}$., was found, 10th of Junc, 1820, on the Barra Grande. coast of Brazil, latitude about $\boldsymbol{g}^{\circ} \mathbf{2 0 ^ { \prime }} \mathbf{S}$. Its true direction seems to have been \mathbf{N}. \mathbf{W} : by W. I W. Attested by Messrs. Low and Co., of Magato, in the province of Pernambuco.

Cape Verde Isles to Brazil.-The Hazard, of Greenock, August 4th, 1812, lost the N.E. trade, in lat. 11° N., long. 25° W.; and the wind, until the 12 th, varied from West to S.W.; from the 12th to the 17th it generally blew from South, never exceeding one point easterly. Gained the S.E. trade on the 17 th, in lat. $2^{\circ}{ }^{\circ}$., long. $27^{\circ} 30^{\prime} \mathrm{W}^{\circ}$; the trade kept southward between Penedo de S. Pedro, or St. Pauls Islets, and the coast of Brazil (at. Rio Doce), and experienced a westerly current amounting to nearly four degrees. Attested by Captain J. W. Moneath.

Between Madeira and Brazil.-In the Jane, Captain Livingston, April and May, 1824, found a surplus effect of currents, between Madeira and Brasilian Trinidad in thirty-nine days, equal to $1^{\circ} 19^{\prime} 47^{\prime \prime} S$., and $6^{\circ} 3^{\prime} \mathrm{W}$.

Finally, Captain Sabine has shown, that in 1822, after H.M.S. Pheasant sailed from Maranham; she entered the current, the full strength of which she had quitted to g° to that place, and it was then found to be running with the astonishing rapidity of 99 miles in twenty-fours hours. On the 10 th of September, at ten a.m., while proceeding in the full strength of the current, exceeding 4 knots an hour, a sudden and very great discolouration of the water ahead was announced from the mast-head; the ship being then in $5^{\circ} 8^{\prime} \mathrm{N}$., and $50^{\circ} 28^{\prime} \mathrm{W}$. (both by observation), it was evident, that the discoloured water could be no other than the stream of the Marañon, pursuing its original impulse at no less than 300 miles from the month of the river, its waters not being yet mingled with the blice waters of the ocean, of greater specifio gravity, on the surface of which it had pnrsued its conrse. It was running about 88 miles in thirty-four hours.;
(180.) The foregoing is a sufficient elucidation of the features, velocity and limits of the N.E. trade wind drift of the Atlantic, but, as has been before mentioned, particularly in (27 to 33 .), pages 186-189, the division between the the northern and southern systems of wind, and copsequently of current, being to the northward of the equator, and consequently that the South Atlantic Current, enters the Caribbean Sea, and increases the force of the Gulf Stream.
(181.) The SOUTH EQUATORIAL CURRENT, which passes over the equator in its northern portion, has a mean velocity of about 20 to 26 miles per day in the open ocean, and its direction is, like that of the Northern Equatorial Current, nearly due east. Setting upon the northern coast of South America, it runs with great velocity clowe in-shore at times, sometimes reaching 100 miles per day, and not unusually $\mathbf{6 0}$ miles. It is scarcely necessary to dilate on this current, as it appears to be regularly and constantly met with. Its progress through the Caribbean Sea, \&o., will be dealt with in the next section.
(182.) It will be seen that throughout the breadth of this ocean that the set of the atream is not to S.W. or N.W., as might be expected from the direction of the trade winds, which may be taken as the prime mover of these mighty drifts, but oastioard.

This fact would seem to indicate that the rotation of the earth on its axis has more to do with its motion than has usually been attributed to it. But our present knowledge of the subject is not sufficiently extensive or accurate to define what amount of action is due to that source, or how much to the wind, lunar influences, or temperature, all of which combine to produce the phenomens we are considering. Theoretical epeculations, however, are not necessary in a practical work, although they may be interesting.
(183.) Arrived at the Barrier formed by the line of the Antillas, a arge portion of tbe etream is necessarily arrested, the remainder pouring through the openings, which between Barbuda and Trinidnd are not in the aggregate 230 miles in width, or not one-half of the range. From this, or other causen, the westerly drift through tho Caribbean Sea is not so persistent, probably, as it is in the ocean to the castward, as will be preiently described.
(184.) Of the currents in the vicinity of Anegada and Virgin Islands Sir Robert Schomburgk mays:-
" lt is well known that the tropical current, caumed by the earth'n rotation, sets to
th, 1812 th, varied th, never N., long. St. Paul's Iy current

April and

 Trinidadant sailed ad quitted g rapidity .m., while ; a sudden nast-head; as evident, ion, pursuo river, its ter specifio ting about and limits ioned, parrthern and ward of the ibbean Sea,

the equator

 day in the rent, nearly with great hd not unappears to in Sea, \&c.,0 set of the tion of the drifts, but
is has more sent knowamount of r temperaTheoretical hey may be
portion of openings, n width, or hrough the astward, as
dion, sets to
the wentward, and ite grand movement in these latitudes is directed through the Caribbean Sea; but it is probable that a branch of it, turned aside by the northeastern coast of South America, sweeps along the Caribbean Islands to the N.W. till it reaches the Bahamas; and it is this branch which, at present, attracts my particular attention, and in proof of the existence of which I adduce the following remarks:-"
"Vessels bound from America to the West Indies, and chiefly to St. Thomas's, frequently find themselves to the North of the Virgin Islands ; and this deviation from their intended course has proved but too often fatal, having brought them on the reefs of Anegada when they thought themselves far to the southward of. that dangerous island. Nor can repeated occurrences like these be attributed ex-; clusively to errors in the observations for determining the latitude, or to false reckoning."

The American brig William and Thomas left New York 28th of October, 1829. Made Bermuda on the seventh day after departure, when, contrary winds retarding her course, land was discovered in the morning of November 15th : according to reckoning, it was supposed to be St. Martin's; but it was fortunately known, on approaching, to be Virgin Gorda, or probably, in the night, the vessel would have gone on the reefs of Anegada.

The English brig Francis, bound from Nassau, in New Providence, to Trinidad, cloudy weather having precluded an observation for several days, was supposed to befar distant from Anegada, but making land in the evening, supposed to be St. Martin's, was wrecked at eleven p.m. on the reefs of Anegada.
The American brig Lewio, bound from Pi iladelphia to St. Thomas's and Maracaybes and supposed on the day previous to be on the paralle! of St. Thomas's, was wrecked on the south-eastern reef of Anegada, 9th or April, 1831.

During his continuance at Anegada, Mr. Schomburgk acquired additional proofs of the existence of a north-westerly current. He found on the south-eastern reef several buoys with tyer [coir] ropes attached to them, which appeared to come from St. Martin's. On the 24th of September, 1831, after a severe gale, two buoye were found on the same reef, which had probably been attached to anchors on some ground to the S.E.

On sounding between Virgin Gorda and Anegada, Sir R. Schomburgk threw the log every thirty minutes, and taking bearings of some remarkable objects, the drift was found to be always westerly: and the result appeared to be the same whether tho tides set North or South. On one day he left his anchorage, and sailed 10 miles to the northward of Anegada, where the boat was lowered, and rendered stationary by means of a kettle filled with stones, it being then southern tide; in spite of which the \log was carried N.W. by W. A similar experiment was made in the waters between Virgin Gorda and Anegada, with the advantage of anchoring ; and the net was alwaya the same, the drift being nearly one knot.

The north-western or ebb tide between Anegada and Tortola is much stronger than the flood to the S.E.; undoubtedly from the circumstanoe that tide and current work the same way.

On these ciroumstances Sir R. Schomburgk observes, that the wind, from March to June, frequently blows from the South and S.E., and the velocity of the N.W. current will be thus increased; in consequence of which, vessels bound during that time for these islands are more subject to error in their course than at any other period; and lighter bodies being more influenced by currents than heavier ones may be taken as the specific cause of the last remark.
(185.) EXCEPTIONS.-The equatorial drift in not alvaye encountered. As will

[^41]be seen it is not a ver rapid motion of the waters, and therefore other causes will readily alter or reverse its action.
\because Major Rennell has said :-" Experience most fully proves, that although nature effects all her operations in such a manner as that, ultimately, the whole system is balanced and preserved, "yet that, in detail, she often appears irregular, according to our limited comprehension. The trade winds-and the currents of the ocean partake of these irregularitiex, although the general system is upheld. The trade winds in the Atlantic are often unsteady, even to 5° or 6^{6} within their northern boundary; and instead of N.E. winds, there are found N.W., and even S.W. winds, for many daya consecntively; and this state of things prevents the drift current from being so regular there, as in the heart of the trades.
"Anomalies also take place in the great Equatorial Current, and in that of the 8.E. trade. The former has been known, at one time, to run to the eastward, or directly opposite to its general, and as is commonly understood, perpetual course ; and at about the same rate, and with it, the whole mass of water from $5^{\circ} \mathrm{N}$. to $12^{\circ} \mathrm{S}$. At another time, a like anomaly took place between the parallels of $2^{\circ} \mathrm{N}^{\circ}$ and $7^{\circ} \mathrm{S}$. This latter was observed to take place at 6° or 7° to the eastward of Cape St. Roque; but the other abont midway between the two continents. In a third case, nearly in the middle, the current ceased altogether: or rather there was neither an easterly nor a westerly current. This happened in Febriary ; the other two in July and August." -(pp. 66, 67.)*

The instance as given in the Spanish Derrotero, is as follows :-

The deceased Amiral Don Conmé de Churruca sailed from Cadiz on the 15th June, 1792, for the purpose of surveying the West India Islands and Spanish Main. On the 6th July he crossed the Tropic of Cancer in $28^{\circ} 56^{\prime}$ West of Greenwich, without having discovered any error in the dead reckoning; neither did they find any on the 8th: the trade wind was then freeh, and it was remarked that it attained the greatest strength when the sun was on the meridian, by night as well as by day.
"On the 10th of July they found a current of 1 and 1-10th miles per hour, setting N. 49° E., reckoned for two days: care had been taken to heave the log very freqnently, and always on any alteration of the sail carried. Their course was S. 64° W. From the 10th to the 12 th they also found a current setting N. $31 \mathrm{~g}^{\circ}$ E., nearly a mile an hour; from noon of the 12th to noon of the 14th the current had carried the vessel to the N.F. 44t miles out of her course; and at noon of the 15 th, 17 miles N. $21^{\circ} \mathbf{W}$.
"At noon of the 17th they found that in the preceding forty-eight hours the vessel had been carried 43 miles to the N.E. of her reckoning. On the 18th, in the evening, they saw the Island Tobago bearing \mathbf{S}. $55^{\circ} \mathrm{W}$. By making this island, they found that the reckoning by account was $2^{\circ} 13^{\prime} 45^{\prime \prime}$ ahead of the ship; equal, in this parallel, to 43j leaguen: and Don Corme thereupon made the following reflections :-

[^42]h nature system is ording to n partake winds in tary ; and lany days so regular
at of the itward, or turse ; and to $12^{\circ} \mathrm{s}$. and $7^{\boldsymbol{c}} \mathrm{S}$. t. Roque ; nearly in sterly nor August."
(5th June, n. On the h , without any on the 10 greatent ur, setting 3 very froS. $64^{\circ} \mathrm{W}$. ., nearly a carried the $\mathrm{a}, 17$ miles
the vessel th, in the his island, aip; equal, following
mber, 1838, current of nerally supa. Captain rs found the 6 fathoms t one under istance-line, d-reckoning
as gruen in temperature the 2nd of th from 100 niber, 1859.
© "In ten daye, between the parallels of $21^{\circ} 45^{\prime}$ and $11^{\circ} 44^{\prime}$, and the meridians (Weat of Greenwich) of $33^{\circ} 30^{\prime}$ and $59^{\circ} 50^{\prime}$, the vessel was set $2^{\circ} 48^{\prime} 27^{\prime \prime}$ to the North, and $2^{\circ} 27^{\prime} 45^{\prime \prime}$, to the East, of dead-reckoning, or 71t leagues, as if they had experienced a daily current of $21 \frac{1}{2}$ miles, setting $\mathrm{N} .38^{\circ} \mathrm{E}$. This great error cainot be attributed to any carelessness in making ap the dead reckoning, nor to its insufficiency, for it is known that a log-line marked to 50 z English feet, between knot and knot, ought not to measure distances greater than those sailed: gnd, censequently, it must be concluded that they had a constant and powerful current setting them to the N.E.
"There can be no donbt," Don Cosme says, " of the existence of a carient to the westward in the tropical zone: the action of the moon must necessarily produce it; and the axperiense of navigators, who have generally found their vessels ahead of their dead-reckoning on making the coast of America. The constant action of the trade wind must also co-operate, and it would be temerity to oppose an opinion so satisfactorily established, and so generally adopted. My own observatior x are, however, certain; my dead-reckoning was most circumspectly and proixily made np, and there can be no possibility of a doubt that we experienced a ourrent to the N.E."

The Rollers, or Heafy Ground Swble, of the nurth-eastern portion of the Antillas, which has, from time to time, produed so much mischief, was first described by Mr. R. H. Schomburgk, as shown in the Journal fof the Royal Geographic Society, 1835, and copious extracts from the name are given in the third volume of the "Colombian Navigator," to which the reader is referred for a more complete explication of the subject.

The phenomenon appears to be caused by the meeting and combination of the drift from the N.E., and the Equatorial Current from the S.E. or S.S.E. It rises, rapers, and subsides, says Mr. Schomburgk, when the air is calm, when there has been no indication whatever of a previous gale, or even when light aira have, for a considerable period preceding, come from the southward of East. The waves approach in gentle undulations, but suddenly swell against the shore, and break with the greatest impetuosity. The rise takes place sometimes gradually, but more frequently quite unexpectedly, the waves reaching an uncommon height.

A heavy "Ground See" is distinguished by something grand and sublime. The see approaches in undulating masses, which spr?denly rise to large ridges, crested with foam, and form billows that burst npon the beach with the greatest impetuosity; the spray flying, where the waves dash against cliffs, often more than 100 feet high, attended with loud roarings resembling thunder, which subside into a rumbling noise, caused by the nodules and fragments of rock with which the breaker was charged when advancing, which on its retreat roll backward, and are again driven forward by the next surge. Wave then follows upon wave in quick succession, there being apparently only a short interval after the third. The sea, for many miles from shore, assumes a peculiar aspect, different tints of blue, from the lightest to the darkest, forming a strong contrast with the snowy foam of the breaking waves, when they strike against a hidden rock, or with the white line visible along the whole coast. The Eastern hahamas, the north-eastern coast of Jamaica and Hayti, but ohiefly Porto-Rico and the Virgin Islands, and, in a less degree, the northern Caribbee Islands, are subjected to this ground sea.

It may be considered as a rule that, whenever the wind gets to the northward of East for a day or two, there will be a ground sea on the northern side of the islands. The friction of the wind on the surface of the water causes little elevations or ridges, which by continuance of the force gradually increase, chiefly when the wind sweeps over e great extent of water. Finding no resistance, and having sufficient depth to sink directly down, they proceed with the direction of the wind and remain natural, waves, until they meet repercussion from dashing against the shore, when they rise to an elevation much above their natural state.

The period when the ground sea sets in is generally October, and it continues though with somo intermission, titi Aprii and May. The wind accompanying or pre-
oeding a ground sea is, generally, from the East of North; the winds are, therefore, propelled, more or less, in a western as well as southern direction, and the Bahamas; and even Bermuda, may escape, whilst the islands from Barbadoes to Porto Rico, but: more particularly the latter and the Virgin Islands, receive its first impulse.

A southern gale will likewise prodnce a heary swell on the southern side of these iolands ; and, during the gale of the 30th and 31st Aug ist, 1833, this was felt with great violence on the southern shore. But generally speaking, neither in force nor duration are these surges to be compared with those of the northern side; the group of the Virgin Islands being protected, in this direction, by the Carribbean. Islands or by the Colombiam coasts, and not exposed to the swell of the main ocean.

To one who crosses, during a severe ground sea, from the southern side of Tortola to the northern, where the breadth of the island is inconsiderable, the singular spectaclo is afforded of the sea, which, on the sonthern side is perhaps "as smooth as glass," on the northern shore tossing, foaming, and roaring, as if agitated by a severe gale. The effect is most curious, and if it were not for the warning that is heard long before the cause becomes visible, one might fancy the wand of a magician in action.

The northern coast of Porto Rico is subjected to a ground sea, of scarcely less force, and which has had the same effect on its coast as that of the Virgin Isles. The 'Old English Pilot" observes that the sea along the North coast of Porto Rico "beats sometimes very ragingly." The force of the waves that batter against the cliffs on which the Moro stands is amazing; and any observer will admit that the spray is mometimes carried more than 100 feet high. It has been said that, several years ago, a brig, in consequence of carelessness, here became unmanageable, and was soon dashed to pieces against the cliffs, but few of the crew escaping.

6.-THE CURRENTS OF THE COLOMBIAN OR CARIBBEAN SEA, AND THE MEXICAN GULF.

(186.) "On the Colombian coast, from Trinidad to Cape la Vela, the current sweepa the frontier islands, inclining something to the South, aceording to the straits which it comes from, and running about $1 \frac{1}{2}$ miles an hour, with little difference. Between the islands and the coast, and particularly in the proximity of the latter. it has been remarked that the current at times runs to the West, and at others to the East. From Cape le Vela the principal part of the current runs W.N.W.; and, as it spreads, its velocity diminishes. There is, however, a branch, which runs with the velocity of about a mile an hour, directing itself toward the coast about Cartagens. From this point, and in the space of sea comprehended between 14° of latitude and the coast, it has, however; been observed, that, in the dry stason, the current runs to the westward, and in the season of the rains, to the eastward.
"On the Mosquito shore, and in the Bay of Hondurus, no rule can be given for the alterations of the current. All that can be said is, at a good distance from land, it has generally been found setting towards the N.W.
" In orossing from the coast, or from Cartagena, to the islands, it has been discovered that from La Guayra to the eastern part of Hayti, on a voyage made in December, a difference of 106 miles to the westward was found during the seven days the voyage lasted."-Derrotero do las Antillas.
(187.) The Baron Alexander von Humboldt, in deseribing his passage from Cu mana, westward, to La Guayra, said :-"The gencral motion of the waters betweet the tropics toward the West is felt strongly on the coast during two-thirds of the year only. In the months of September, Oetober, and November, the current often flows toward the East, for fifteen or twenty days in succession. Vessels on their way from La Guayra to Porto Cabello have been known to be unable to stem the current that runs from West to East, although they had the wind astern. The cause of these anomalies is not yet discovered. The pilots think that they are the effeot of some
gales o violent precede after Person
(188 the aft to mak shore, the eas an hou 11 to 4 The na which,
" He
for the
in prop moons; as thre sufficier a risk 0
(189.
" Rem
Bisscho of servi Surinar month, and the much \mathbf{r} passed 1 to the 8

On tl up from with a soarce a the 18 tt] $39^{\circ} \cdot 30^{\prime}$ the who weak, a half a ;

After had left this spa $39^{\circ} 25^{\prime}$), $45^{\circ} 37$ ', it was s the suce S.E. br 28th (la Ethiopi the bour fathoms

Altho amine 0 and the rated by and as
herefore, 3ahamas, Rico, but

of these

 felt with force nor he group slands orP Tortola singular 3 smooth ted by a g that is magician 0 " beats cliffs on spray is cears ago, on dashed
gales of wind from the N.W.in the Gulf of Mexico; yet these gales are much more violent in spring than in autumn. It is also remarkable, that the current to the East precedes the change of the wind. It begins to be felt, at first, during a calm; and after some days the wind itself follows the current, and becomes fixed in the West."Personal Narrative, vol. iii. p. 378.
(188.) Captain C. S. Cochrane, R.N., in his Journal, 16th March, 1823, sayg-"In the afternoon we perceived high land through the haze, and hauled up for it, wishing to make a point about 50 miles to the windward of Santa Marta; but, on getting inshore, we found that we were 7 miles to the leetsard of that place, the current from the eastward having been running for the last twenty-four hours upward of $2 \frac{1}{l}$ knots an hour; which agrees with Baron Humboldt's account, that the current runs from 11 to 4 knots an hour, according to the force of the wind and season of the year. The natives say, that the moon likewise has a considerable effect on this current, which, at the changes of new and full, runs to the eastivard for 24 hours.
" Here I must caution all captains of ships navigating on this line of coast to allow for the current, in general, at least $1 \frac{1}{4}$ knots per hour, on an average, with an inorease in proportion to the stri a th of the breeze, sind an abatement at the new and full mouns; otherwise vessels heavily laden, overshooting their ports, may lose as much as three weeks by having to stand away nearly to the Antillas before they can get sufficiently to windward to gain the port they have missed; and even men-ol-war run a risk of carrying away spars and masts in heating np."-Vol. i. p. 52.
(189.) In the third volume of the "Colombian Navigator," 1839, may be found "Remarks on the Currents of the Atlantic and West Indies made by Lient. A. H. Bissehop Greevelink, in the Echo, a brig of the Dutch Royal Navy, uuring four years of service, 1833-1837," and which describe the route of that vessel from England to Surinam, in August and September, 1833. On the evening of the 13th of the latter month, the Echo, having arrive in lat. 17° N., and long $35^{\circ} \mathrm{W}$., lost the trade-wind, and the wind then shifted to the N.W., with a strong breeze, gloomy weather, and much rain, during the twenty-four hours. The following day the wind, diminishing, passed to the S.W. and S.S.E., and terminated in a calm; currents weak and variable to the S,W. and eastward.

On the morning of the 16 th, in lat. $14^{\circ} 40^{\prime}$, and long. $36^{\circ} 20^{\prime}$, a light breeze sprung up from the S.E., and from that time till we reached the coast we had to struggle with a never-ceasing variety of wind and weather, continual rains with squalls, and scarce a day passing without lightning in one or other quarter of the horizon. On the 18th we passed by several ripplings or eddies, being then in lat. 12°, and long. $39^{\circ} \cdot 30^{\prime} \mathrm{W}$. They usually stretched from East to West, and were often seen to eover the whole surface, everywhere boiling and bubbling as in a cauldron. Current always weak, and during the last forty-eight hours to the West and W.N.W. at a rate of half a mile an hour.
After losing the trade-wind we had to creep over more than 900 miles, as the wind had left us, in every appearance, for ever; the rates were copious and continual in this space, and lightning was seen very frequently. On the 18 th (lat. $11^{\circ} 52^{\prime}$, long: $39^{\circ} 25^{\prime}$), we passed through a number of eddies; and on the 24 th (lat. $8^{\circ} 3^{\prime}$, long. $45^{\circ} 37^{\prime}$), the first indication of a change in the colour of the sea became visible: yet it was slight, and may be attributed to a branch of the northerly current observed in the succeeding day. On the 27 th (lat. $5^{\circ} 52^{\prime}$, long. $48^{\circ} 38^{\prime}$), we received a gentle S.E. breeze, which brought us, though slowly, toward the coast. In the night of the 28 th (lat. $5^{\circ} 7^{\prime}$, long. $49^{\circ} 56^{\prime}$), we crossed the edge of meeting currents from the Ethiopic Ocean and Brazilian shore and from the Marañon ; after which we entered the boundary of the tides. In the evening of September 30 came to anchor in $5 \frac{1}{6}$ fathoms. In the night observed longitude by chronometer, $54^{\circ} 11^{\prime} 45^{\prime \prime}$.

Although we had not seen land since we lost sight of the Lizard, by which to examine our timekeepers, I felt not the least doubt about their rate (the one a Knebel and the other a Parkinson and Frodsham), by their reciprocal conformity, corroborated by my lunar observations (which, by-the-by, I think are never to be neglected); and as I was desirous to obtain mome observations about the currents, so peculiarly
remarkable in these seas, I took every opportunity which circumstancen allowed to satisfy my curiosity.

On the 22nd of September and subsequent days the ripplings became lena in number; and on the 24th, in the afternoon, about the 8th degree of latitude and 46th of longitude, we perceived the first change in the colour of the water from the common blue to a somewhat darker hue, and, as this was a somewhat uncommon cese, I attribnted it to a branch of current observed the following day at noon, seetting due North, at the rate of more than a mile an hoor, straight across a sonth-easterly current observed during the preceding days, mingling the muddy waters of the Marañon and other rivers with those of the ocean. From the 24th till the 28th nothing particular occurred; we were always steering to the S.W. with light, variable winds, and a continuance of rain sufficient to penetrate our very bones. Currents weak and changeable, being lastly observed to have run N. by W. 18 miles in twenty-four hours. This at present I call weak, being afterward accustomed to fall in with a velocity of twice and thrice that number of miles. At noon we altered our course to W.S.W., being then in lat $5^{\circ} 7^{\prime}$, and long. $49^{\circ} 55^{\prime} 55^{\prime \prime}$.

In the night, however, having a lunar altitude, we were not' a little surprised at finding the ship thrown 35 miles to the northward of her supposed situation, althongh I may say to have been prepared for this occurrence by Capt. Edw. Sabine's relation in the Memoir, whose track we were crossing just then, in the same month.

At break of day we saw the water totally altered in colour, and thickly mingled with mud, as if we were sailing in a flood of ochre; hove the lead, and found 45 fathoms, fine sand, white and black. At seven in the morning, by chronometric ob. servations, I found the westerly offset $33^{\prime} 38^{\prime \prime}$; and finally, at noon, in lat. $5^{\circ} 21^{\prime} 49^{\prime \prime}$, lon. $51^{\circ} 46^{\prime} 15^{\prime \prime}$, it appeared evident that the current, in the last twenty-four hours, had been running with the rapidity of 67 miles to the $N .30^{\circ}$. W. In the afternoon we perceived the land toward the S.W. by S., being the Family Islands of Cayenne, and at the same time we entered the boundary of the tides.
This, indeed, seems to confirm the opinion of those seamen who attribute the principal strength of currents hereabout to the waters of the Marañon, \&c., predominating over those of the ocean ; but this is to be admitted in a partial degree only; for, as operating on the general direction of the Equatorial Current, I esteem it as of no influence at all.
(190.) The numerons voyages made by the Echo in the West Indian Seas, with a particular detail of each, more especially in regard to the currents, are given in the volume above mentioned; and from these voyages and experiments the general inductions are, that between the Caribbee Ielands and the coast of Guyana, in the months of August, September, and October, the current veered to the northward of North-west, and in other monthe more westerly, or even to the southward of West, as in November and December, 1834; but we learn, aloo, that the greatest velncity of current has been observed in August and September, when the Marañon is at its lowest level, as well as in December and March, when this river begins to increase and attains its greatest height ; even on examining the details, in order to discover any regularity in its force, we find an irregularity reconcileable only with that of the wind; and, more generally, by applying the theory of trade-winds, and their influence upoia the surface water of the ocean.

After having once rebonnded from the Brazilian coast, the united Equatorial and Ethiopic Currents are again compelled to retire westward by influence of the S.E. trade-wind (apparently, also, by the disposition of the waters in these regions to retire westward); and, although at pressing the Murañon, which disembogues toward the N.E., the combined current may, in some degree, and according to ite variable form and strength, derive an impulse to the northward, yet it soon yields to the force of the N.E. trade-wind, and the south-westerly drift thereby produced, which sets toward the Caribbee Islands.

In proportion to the force and extent of these winds, the general current is pressed toward the shore of Guyana, as in ilecember, 183ju, añ̉ November and Decomber,

1834 ; or allowed to expand freely to the North, as in August, September, and October; yea, even to the N.E, as in March, 1837, especially when preceded by long and violent indraughts, and followed by calm weather.

By influence of the Marañon waters, the general current is prevented from sweeping the coast to the westward of Cape North ; as the stream of this great river, being unobstructed, seems to gather - its strength, and force the western boundary of that gigantic drift to an uncertain distance from shore. In this manner we may acconnt for the weak westerly current, creeping along that part of the coast comprehended between the Maranion and Gulf of Paria, called the region of the tides, and which is produced by the remaining effuxion of the Maran̂on, confined between the western border of the general current and the muddy banks of Guyana. It is incorrect to fix this border in 9 fathoms of waten as I have found it in twice and thrice that depth; but on the other hand, I think that, if what has been supposed by Admiral Cosme de Churraca should ever again happen,-I mean the destroying of the Equatorial Current by the action of the rivers,-the Atlantio will be found of a whitish hue, so far as these currents shall reach, because their thick muddy waters never mingle with thoee of the ccean until they have been subdned by, and are at rest with, them.

The direction of currents in the Atlantic is reconcileable with the force and direction of the trade-wind, but not without exceptions; because the height of the water-level in the Caribbean Sea will somnetimes baffle every calculation both within and withont the raoge of islands, as shown indubitably by experiments founded, not only upon the method of ascertaining ourrents at sea, but also within sight of land, and observations made on shore along the coasts. It has also been found that during calm weather, even with strong easterly winds, the currents have sometimes been running for days together to the eastward, especially in the latter parts of January and July, When, by the then prevailing strong winds, the water is heaped up in a very uncommon degree, and the inner part of the Caribbean Sea, most probably overoharged, succeeds in re-entablishing its equilibrium by forsaking the power of its wrathful driver. In this manner, I think, we ought to reconcile those oircumstancea mentioned by that illustrious Spanish oommander.

In the Caribbean Sea the force and direction of currents are more distinctly modified by the direction of the wind. With continual light winds and smooth water the currents are generally weak, augmenting only in proportion to the increasing wind. This may serve as a proof that, among other less perceptible causea, nnder which they are governed here, wind is the most powerful agent; for the indraught throngh the channels appears plainly to proceed from the force and extent of the trade-winds. In this sea, from the Windward Islands westward, is 72° of longitude, the general direction of currents, observed during onr four years' cruise, was N.W. and westerly; the weakest in October, November, April, and May, the strongeat in December, January, February, and March, along the ooast of Vonezuela, and in July and Angust in the northern parts; bat, in genera, so much always always depended ou the force of the wind, that, with few exceptions, almost every voyage woas affected by a force of current corresponding to that of the proeailing wind.
(101.) Extracts from the Journals of Lieutenant Greevelink. - "In January, 1834, the Echo, in crossing the Caribbean Sea, from Curacao to windward, experienced a drift of 40 milea to the Weat, and escaped only by running straight for the coast of Hayti, beating to windward along that and the coast of Porto Rico, with the best success, and even assisted by weak easterly currents when near the shore. Wind from the E.N.E.. sometimes blowing a gale; but, when sheltered by the land, the water was tolerably smooth.
"In December, 1836, the Echo, then on her passage from Surinam to Curacao, with sharp breezes, found the current sweeping through the channel between Tobago and Granada, and farther on, along the Leeward Islands, with a velocity of more than 2 miles an hour to the W. by A. ; hut, in October, 1836, on tho same route, with light winds and calms, the water ran for days together to the northward, at the rate of only half a mile an hour.

[^43]winds, spent six days in beating up against a current of 40 miles mean daily strength; and on the 8th of April left La Guayra for Porto Cabello, in the bight to the westward, when, instead of making this passage in some hours, she had, during three days, to contend with light, variable, and even westerly winds, and currents to the N.E. 15 miles daily.
"The Baron von Humdoldt's remark about the increase of the currents near the Testigos proved true on our approach to the same islands, in December, 1835.* In the morning of the 12th, the longitude observed was $62^{\circ} 45^{\prime} 15^{\prime \prime}$, and the difference West in twenty-four hours appeared to be $32^{\prime} 15^{\prime \prime}$; shortly after, that cluster of rocks came in sight; and at noon, at the very moment that the sun passed the mi idian, the S.W. island, placed by Don J. F. Fidalgo in $63^{\circ} 12^{\prime}$, bore East, distance one mile, having run by $\log 20$ miles to the W . $\frac{4}{4} \mathrm{~N}$; so that, during these last four hours, the westerly difference amounted to 8 miles, whereas, in former watches, it was only $5 \frac{1}{3}$ miles.
" A similar circumstance, we have reason to believe, also takes place at other groups of this range of sunken islands, and near such capes as are low and reaching far out, so as to obstruct the motion of the water beneath, and thereby redouble the force of the surface current; as denoted by the many instances of shipwreck and carcases of vessels (sad admonishers of precaution) spread among these flat," barren rocks, and prodnced solely by the irregularity of currents, which baffle every calculation, even those of the coast traders.
" But this variety in the westerly currents here is not the only cause of danger. The total change in the setting of the currents from West to East is of a nature which requires the utmost care and attention, as they not only occasionally happen with calms, but also sometimes with fresh breezes from the eastward. One of the firstmentioned instances, particularly remarkable, we observed during our passige, in October, from Surinam, through the Channel of Granada, toward Curacao. On the 7th and 8th, between the Island of Tobago and Cape Malapasqua, the water flowed to the N. by E. and N. by W., with a trifing foree; when suddenly, on the 9th, we had a difference of $17^{\prime} 54^{\prime \prime}$ North, and 34^{\prime} West; and on the following day; at the new moon, we were driven $11^{\prime} 12^{\prime \prime}$ to the North, and 35^{\prime} ' $54^{\prime \prime}$ to the eastward of our supposed situation. This case was too singular not to excite our attention, as the high mountains of Caracas showed us almost hourly the East or westerly direction in which we were driven; the weather being perfectly calm, and the water constantly smooth, by which means we were able to verify our chronometrical observations; and to remove every doubt respecting the truth of so extraordinary a circumstance, the result whereof was as follows:-
"By the westerly current we drifted in sight of the high land near La Guayra, and leept working np against the strong easterly set in the whole following day. On the 10 th, from seven in the morning till four in the afternoon; we had 14 miles difference West, agreeing with the bearing of Monte Avila. From that time till six in the evening; when that mountain; of which we had lost sight for a moment by drifting to the westward, again became visible, the water flowed again to the eastward; and on the 11th, at six in the morning, with an observed latitude, and the said mountain bearing S.E.' by S., we were in long $67^{\circ} 21^{\prime}$; and this by calculation being $67^{\circ} 47^{\prime}$, we found a difference of 26 miles to the eastward in sixteen hours: . From this time till four in the afternoon, again 10 miles to the West; and from thence until the following morning, 22 miles easterly difference. During the night we hove-to, to the sonthward of Caracas Bay, Curacao, and were obliged to keep Little Curaçao in mind, as the current was setting strongly to the eastward.
" Whether this flux and reflux were caused by the moon (then new), or by any other agent, I shall not attempt to determine. Indisputably there occasionally

[^44]strength ; the westing three nts to the 8 near the 835. ${ }^{\bullet}$ In difference r of rocks mexidian, tance one last four lees, it was er groups Ig far out, 10 force of zarcases of rocki, and tion, even
of danger. ture which ppen with the firstassage, in , On the ter flowed 1e 9th, we ay; at the ard of our as the high irection in constantly ations, and stance, the

a Guayra,

 day. On biles differ1 six in the by drifting ward; and 1 mountain $67^{\circ} 47^{\prime}$, we is time till the followthe southn mind, asor by any ccasionally

July, 1799, velocity was bs, a heap of
appear satisfactory reasons for ascribing to that luminary some influence over the currents in these regions, and the above-mentioned case is probably one of them; but; as Captain Livingston says on the sub)ect, 'the winds have a still more powerful inflnence.' Indeed, when roving in these seas, studying the Memoir and the Culumbian Navigator, and enjoying the pleasure of reading all that science and skill have ever produced in the description of these regions, we always meet with Captain Livingston's remarks as so many illustrations, and feel a continued increase of respect for so accomplished a navigator.
"The reflux of the current to the eastward, for some hours daily, we had also occasion to observe, in January, 1834, near the coast of Hayti, Porto Rico, and even in the Atlantie, while working up with smart breezes, and even with very strong winds; and once, in May, 1835, a merchant vessel, steering for Curacao, with her mainmast broken, passed in the night to the southward of Buen-ayre and Little Curacao, without seeing the land, being totally unacquainted with any existing current, and consequently with her real situation. At daybreak, finding herself opposite the eastern part of Curacao, and supposing it to be the Island of Buen-ayre, she stood to the West for Curaçao, as she thought; but on her passing the harbour of St. Anna, she guessed her error, and tried to gain the entrance, in which phe succeeded toward sunset, after hard struggling with a strong wind and a rough sea, but assisted by a current to the eastward.
" It should be borne in mind that the captain of this vessel was unprovided with a time-keeper, from want of which he knew nothing about easterly or westerly currents; and if, on his approaching Buen-ayre, he had accidently stood a few miles to the N.W., so as to make its northern coast, he would have found a watery grave, designated, perhaps, only by some piece of floating timber, a sslinter, or broken spar.
"The uninterrupted easterly currents alluded to have already been mentioned by Baron A, von Humboldt; and, whenever I witnessed them, I found them' just as described by that celebrated traveller. It may, however, be remarked that although this change in the general motion of the water is most common in the three months quoted, and chiefly along the Colombian coast, yet sometimes it also happens in other months, and in othier parts of the Caribbean Sea; as we, in fact, once experienced it in December, once in April, near the coast above mentioned, and once in March, on our passage from Guadalonpe to Barbadoes, during. which vessels from St. Vineent's made their way toward the same islands in a few hours."
(192.) Mr. Town, in his "Directions for the Colombian Coast,"* has said :"Althcagh between the Island of Jamaica and the Spanish Main westerly currents are most frequent, yet they do not always prevail ; for ships have been known to be driven by the current from 50 to 60 miles to the eastward in four or five days. From the beginning of May till November (the rainy season), the sea-breeze seldom or never blows home to the main ; and ships going there should never go to the southward of the latitude of 11°, until they are at least 40 or 50 miles to the westward of their intended port; after which they may make a South course, as the land-breeze, which is generally from the S.W., and the streng easterly current, will set you to the enstward of your intended port, if great care be not token. When to the eastward, if light winds prevail, you must stand to the northward until yon meet the sea-breeze, which will be between the latitudes of 10° and 11°, and then run to the westward.
"Being off Porto Bello, in H.M.S. Salishury, on or about the 12th of August, 1816, and being a little to the castward of that port, with light variable winds for several days, the ship was to the eastward, at the rate of 30 miles per day; and, having been afterwards placed in the same situation, I found it necessary to make the land well to the westward, and to keep elose to it. From November until May (the dry season) you should endeavour to make the land well to the eastward, and run along shore; as

[^45]the sea breezes generally blow very strongly, and the current sets to the westward at the aate of about 2 or 3 miles an hour.
"Between Chagre and Porto Bello, during the rainy season, there is generally a northerly current, at the rate of from $1 \frac{1}{4}$ to $2 \frac{1}{2}$ miles an hour. After the end of the rainy season the current sets to the sonthward and westward, and strong southerly. and easterly winds prevail here. From November until May (the dry season) the southerly and westerly are very light winds, except in squalls, which ond with heavy rain. In sudden squalls you will often have the wind from all points of the compass.
"If at Chagre at any time during the rainy season (May till November), and bound to the eastward, endeavour to get 4 or 5 leagues from the land so soon as you can; foa the winds are, in general, very light, and the current very strong. The latter sets from Chagre directly on the rocks of Porto Bello, and thence along the land from E. by N., E.N.E., E.S.E., and according as the land lies; its general rate being from $1 \frac{1}{2}$ to $2 t$ miles in an hour. Great care should be taken when near the land, if a heary squall and rain appear to be coming on. During this you will have the wind from all points of the compass, and often so strong that all sail must be taken in.
"In crossing the Gulf of Darien, little or no current will be found: wherever there is any, it sets about South, S. by W., or S. by E., up the gulf.
"Near Cartagena the current generally goes with the wind; but off the Islands of Rosarito it sets to the N.W. and N.N.W., from 1 to 2 miles an hour.
"Between Cartagena and the Magdalena, in the rainy season, you cannot put any dependence on the winds or currents; but, from November to May, the trade wind blows home.
"I should recommend, if turning to. windward, with strong trade winds, to keep the shore close-to; whereas, by going off from the land, you will not ouly have a heavy sea, but also a strong N.W. current. If you have light variable winds, approach no nearer to the land than 4 or 5 leagues, as yon may be certain of eastorly current."
Captain Livingston says:-"During five weeks in which I remained at Cartagena, in June and July, 1817, the current in-shore set constantly and strongly to the northward, at a rate, I am convinced, of not less than $1 \frac{1}{1}$ miles an hour, or nearly as strong as the Mississippi at New Orleans: I have seen the Esk sloop of war, current-rode against a very fresh sea-breeze, when at anchor, nearly West from the city, distant about half a mile."
(193.) Upon the Current between the Grand Cayman and Cape Antonio, Capt. Monteath had said: "In the months of May, 1814 and 1815 (two voyages in whioh I. was chief mate of the ship Prinee Regent, from Kingston); in June, 1817, in the ship Fame ; and in April and December, 1820, in the ship Mary, between Grand Cayman Island and Cape Antonio, I invariably found the current setting strong to the eastward, or E.S.E.; and I have heard it generally remarked that vessels shaping a course from the Caymans for Cape Antonio have found themselves off, or even to the eastwe.rd of, Cape Corrientes: this has, in the above cases, invarisbly happened to myself."

Farther on, "In my passage from Kingston toward Campeche, in the ship Fame, June, 1817, between Cape Antonio and Cape Catoche, I folsnd the current to set due North, 27 miles, in a run of eighteen hours."

We have already given, in a preceding page, the remarks of the Spanish navigators on the Currents of the Mosquito Shore and Bay of Honduras. We now add those of our friends Captains W. J. Capes, of London, and John Burnett, of Port Glasgow.

Captain Capes says :-" Between Jamaica and Bonacca the current generally sets to the northward and westward. Here, in May, 1816, I was set 60 miles to the westward by the eurrent, and found that it set rather northerly, from one quarter to half a mile an hour."
" If my op setting so on bay) f the W get do reason her be ships t the c :

Cap
"W Mauge ward, Reef a to sail soon a
" In
runs a
In the M, Lat. a northe
In 1 curren the no very 8 seven lighter sail an
(194
in lat.
the sot easter at the
Ser
ship T at Ha rate 10
Tob
from \mathbf{P}
up on
2000 n
WIN
Thund
by S .
24 th 0
Hay
Coulte
month
Fint
Home,
22nd,
uver \mathbf{F}
enerally a end of the southerly casoon) the end with ints of the nber), and son as you ong. The along the neral rate 1 near the 1 will have il must be rever there Islands of ot put any trade wind ls, to keep ouly have able winds, of easterly

Cartagena,

 the northy as strong arrent-rode ity, distantonio, Capt. in whioh I 817, in the veen Grand strong, to els shaping or even to y happened

Fame, June, due North,
anish navi© now add ett, of Port
nerally sets to the westrter to half
"If a ship be lying-to, under Ratcan, it will not be amise to try the current. It inmy opinion that the ourrent about Bonacca takes two different direetions; one part. eetting to the N.W., and the other part branohing to the S.S.W. I have found it so on several trials, which is the reason that I prefer taking a departure (for the: bay) from the middle or East end of Rattan: for, if a ship take her departure from the West end, her course will be N.N.W.; but it very frequently happens that ships, get down on those reefs when they take their departure from the West end. The: reason is this : a ship steering N.W. from the West end has more of the current on her beam, which sweeps round the end of Rattan very strong at times; consequently, ships that take their departure from the East or middle part ro not feel so much of the current."

Captain Burnett, in his directions for sailing from the Bay of Howduras, says:-
"When the trade wind prevails, a current, often very strong, sets down between Mauger Kay and the Northern Triangle; there, dividing itself, it sets to the sonthward, between Turneff and the main reef, and to the northward between the Triangle Reef and Ambergris Kay: It is most advisable, with the wind from East to E.S.E., to sail to leeward of the Triangle, as you will have a strong ourrent in your favour no soon as you bring it to the eastward of you.
"In the channel between the Island Cosumel and the shore, the current along ehore runs at the rate of nearly 21 miles an hour, till lost in the Mexican Sea."

In the ship George IV., 14th of March, 1824, Captain. Hamlin found the inset into the Mexican Sea, along the coast of Yucatan, E.E. 42 miles in the twenty-four hours. Lat. at noon $19^{\circ} 24^{\prime}$, long. $87^{\circ} 7^{\prime}$. On the next day it set toward Campeche Bank, northerly $\mathbf{0 0}$ miles.

In the brig Recovery, 5th of September, 1822, the same commander found the current on the N.E. side of the Yucatan or Campeche Bank setting about. $1 \frac{1}{4}$ miles to the northward. Next day, on proceeding toward the Mississipi, weather calm and very sultry, at five p.m. saw two very large waterspouts to the N.W. At half-past seven a smart squall came on suddenly. At eight cleared up; light winds with much lightening. At ten, next morning, severe squalls, which split the main top-gallantsail and boom mainsail. Lat. at noon $25^{\circ} 42^{\prime}$, loug. $86^{\circ} 53^{\prime}$.
(194.) Bottles.-Caribbean Sea to Yucatan.-A bottle from H.M.S. Chanticleor, in lat. $15^{\circ} 29^{\prime}$, long. $76^{\circ}{ }^{\circ}$, at noon on the 53rd of February, 1831 (the ship being to the sonthward of Jamaica), was picked up on the 20th of the next Aprif upon the eastern coast of Xucatan, after having traversed over a distance of nearly $\mathbf{7 0 0}$ miles, at the rate of 28 miles per day.
Serranilla to Yucatan.-A bottle from a buat belonging to H.M. surveyingship Thunder, at anchor under Serranilla West Kay, 10th of March, 1834 ; picked up at Half-Moon Kay, in the Bay of Honduras, on the 23rd of the next month, April; rate 10 miles per day.

Tobago to the Cayman.-A bottle from the American brig Emma, on her way from Philadelphia to Berbice, 17 th of June, 1838 , in lat. $11^{\circ} 4^{\prime}$, long. $58^{\circ} 50^{\prime}$; picked up on the 27th of the following August, upon the eastera shore of the Grand Cayman, 2000 miles, at the rate of $\mathbf{2 8 \cdot 6}$ miles per day.

Windward Channel, between Jamaica and Hayti.-A bottle from H.M.S. Thunder, in lat. $18^{\circ} 56^{\prime}$, long. $74^{\circ} 56^{\prime}$, 7th of April, 1839 ; current then setting S.W. by S. half a knot; picked up in the Grand Anse, near Jeremie (long. $7^{\circ} 1^{\prime}$), on the 24 th of the same month.

Hayti to Florida.-A bottle, some years ago, from the ship Robert, Captain Coulter, eastward of Alta Vela, on the south coast of Hayti ; picked up about thirteen months afterward on the shore near St. Mary's in Florida.

Frimm bottlen enumerated in Captain Becher's list:-Ship Race-horse, Captain Home, thrown over in lat. $12^{\circ} 12$, long. $65^{\circ} 50^{\prime}$, 17th April, 1836 ; pieked up April 22nd, it Bonaire, 150 miles in 5 days. Ship Chanticleer, Captain Austen, thrown over February, 23 ra , 1831 , in lat. $15^{-{ }^{\circ}} 30^{\prime}$, long. $7 \hat{6}^{\circ} ;$ picked up on the east coast of

Yucatan, April 30th, 680 miles in 56 days. H.M.S. Thunder, Captain Barnett, thrown over at Chagres, April 29th, 1840; reached Belize, October 1st, 1840. H.M.S. Thunder, March 10th, 1834, started at Serranilla Bank; picked up near Belize, April 23rd, 575 miles in 44 days.
(195.) On the northern coast of Hayti, and in the Windward Passages, there does not appear to be any general current. Ou the North side of Cuba the case is nearly the same; but in the channel here is a regular tide throughout the year, subject, however, to certain variations.

The currents of the Caribbean Sea appear to be varied by the influence of the moon and change of seasons, and combine, in some degree, with the tides; especially abont Cuba, Jamaica, and Hayti.
In the Cahama Passages the currents are devious; both weather and lee-currents having been found. These, also, appear to be influenced by the tidal causes; for the tides are operative on the banks, and sometimes set strongly.
(196.) Baifama Islands, \&e.-The following is extracted from Captain Maury's "Sailing Directions," eighth edition, vol.. ii. Captain Wm. C. Berry says:-
"Having had long expecence in the trade between New York and New Orleans, I herewith furnish you with a few remarks on winds and currents. For the last six years I have commanded the ship Vichisburgh, constantly trading between these two ports. In making the passage out, after passing the Hole-in-the-Wall, I have frequently found a current from one to three miles per hour, setting to the eastward through the north-west channel of Providenee, particularly after the wind has prevailed from the eastward a few days. This no doubt has been the cause of putting a number of vessels on shore among the Berry Islands. I have latterly made it a point to take the last bearings of the light on the Hole-in-the-Wall, and either haul up or keep off as I found the current; generally running on a west course until quite down with Little Stirrup Keys, then steering W. by N. $\frac{1}{2}$ N., by compass, if in the night, nntil I was up with the Great Isaacs. The last three voyages, having reached the the vicinity of the Little Isaacs in the day time, I have hauled in on the bank between the western Little Isaacs and the east Brother Rock, and steered S.W. by W., by compass, which has brought me out in good passing distance from the Moselle Shoal. During one of my summer passages out, after passing the above shoal, I was compelled to anchor, and remained there for six days. The wind during all this time was light from the southward, and I could not help remarking the regularity of the current setting along the Bemini Islands, ebb and flow, about two miles per hour. This continues as far as Gun Key, when close in little or no current is experienced, except the ebb and flow, which is directly off the bank. In orossing the Santaren Channel, the current is governed greatly by the winds; with strong southerly winds the current sets about N.N.W., two milos per hour ; on the other hand, with strong northerly winds, little or no current is felt. After leaving the Doublo-headed-Shot Key, I have generally hauled over for the Florida Reef, and in the day time kept close-in, when I have frequently found an eddy current setting to the westward from one to one and a half miles per hour. After passing the Tortugas, I havo invariably felt a southerly current until I had reached the longitude of $84^{\circ} 30^{\prime}$ W., and even further than this at times, as will be seen by referring to my journals, particularly in November, 1848.
"Returning from New Orleans, I have always made it a point to keep to the westward until I had reached the longitude 85°, latitude 28°, before keeping off. $\mathbf{M y}$ object in doing this is, that tho wind here generally prevails from the northward and eastward, and that the current generally sets to the southward and eastward, which generally facilitates the passage. After rounding the Tortugas, with the wind from the eastward, 1 have gonerally beat down on the. Florida side, knowing that the strongest current prevails on that shore, unless too close-in. From Curysfort Reef to Matanilla, I have always endeavoured to keep in the centre of the stream. During all my royages, I have made it a rule to steer from Matanilla to latitude 22°, N . by W., and then north to latitude 31 ${ }^{\circ}$, before hauling uip N.E. by N. ; by so doing I have, with a fow exceptions, kept the strongest current. On some other oceasions, I have hauled up on a N.E. by N. course, when in latitude 30°, longitude $\mathbf{7 0 ^ { \prime }} \mathbf{4 0 ^ { \prime }}$, and
have
Hatte accoun (197 been a Derro In t nearly point 1 Betu but the Betu northe these is

Betu
on the
The
Northu
tigua,
At t]
Virgin
1 to $1 \frac{1}{2}$
In th as freq S.W.; Porto 1 at the of Port the we instanc

From current S.W. a From W.N.Y per hou pages.
(198. which, to feed à priori stant \mathbf{e} into op and Ho

Upon (151 to ward, attribu increas

- On south \&c.; bu Isands.
have soon found myself on the eastern edge of the gulf. After rounding Cape Hatteras, it is advisable to keep to the westward, especially in the winter season, on account of the prevailing westerly winds."
(197.) The following is an additional dertail of the best information we have been able to collect of the currents in the Caribbean and Mexican Seas, from the Derrotero de las Antillas, \&e.

In the Channel between Trinidad and Grenada tho current has been found to set nearly West; on the South side half a point southerly, and on the North side half a point northerly. Its velociiy from 1 mile to $1 \frac{1}{2}$ and 2 miles per hour.

Betwoen Granada and St. Vincent's, among the Granadines, the currents are devious; but the general inset appears to be W. by N.

Between St. Vincent's and St. Lucia the current, from the castward, sets in more northerly; and within, on the West, it has been found setting to the N.W. Between these islands it seems to be as strong as in any other part of the range.

Between St. Lucia and Martinique it has been found nearly North. Very variablo on the western side of the latter.

The current sets nearly in the same manner between Martinique and Dominica. Northward of Guadaloupe, it sets W. S. ; and between Montserrat and Antigua, N.W.

At the distance of about 1°, within the range of the Caribbee Islands, and to the Virgin Islands, the current has been found setting, in general, to the W.N.W. from 1 to $1 \frac{1}{3}$ miles an hour. \dagger

In the Mona Passage, between Porto Rico and Hayti, the current has been marked as frequently setting to the N.W., and we have instances of a set through to the S.W.; but Captain Monteath, in February, 1816, when proceeding southward toward Porto Rico, in from lat $23 \frac{1}{}^{\circ}$ to 22°, long. 64° to 65°, found the current seting N.N.E. at the rate of 20 miles in the twenty-four hours : and he says, that off the N.W. point of Porto Rico it invariabiy set from the Caribbean Sea to the North and N.N.E. On the western side of the passage it set North, 2 miles an hour: but there have been instances of an inset from the N.W.

From Trinidad, westivard, and off the North side of the Spanish Leeward Isles, the current has been found setting West and S.W. to the Gulf of Maracaybo ; thence S.W. also to Cartagena: but it varies, as already described.

From Cartagena toward tbo Channel of Yucatan it has been found N.N.W., N.W., W.N.W., and N.W. by N., from 1 to nearly 2 miles, and then decreasing to $1 \frac{1}{2}$ miles per hour. It has also been found setting to the eastward, as shown in the present pages.
(198.) Counter Currents.-From the foregoing it will be seen that the great drift which, passing from the Atlantio through the Caribbean Sea into the Gulf of Mexico to feed the Gulf Stream, is not nearly so constant nor so strong as might be argued, a priori, from the apparent magnitude of that mighty current. Not only is it inconstant even in the mid-channel, but it is diverted by local causes und land conflgurations into opposite directions, as is shown to be the case in the great Bays of Guatemala and Honduras, as described below.

Upon referring to the description of tho Equatorial counter-current, as recited in (151 to 161.) pages 283 to 288 , it is ahown ihat it extends much farther to the westward, during the period when the sun is in northern signs, than had been beforo attributed to it. This western extension of the Guinca Current, coincident with the increase of the belt of Equatorial calms (45.) page 198, and (50.) page 201; may owe

[^46]its origin to the same causes, hitherto almost unexplained, as that to which this uncertainty of the great westerly drift across the Caribbean Sea is owing.

Whether it is owing to the influence of tide, the effect of distant and local winds, or of temperature, or of some hitherto unexplained effect of the earth's rotation, has yet to be argued. It is probable that hereafter a systematic examination of these apparently contradietory phenomena will lead to some important conclusions in the general subject of meteorology.
(199.) In the Bays of Guatemala and Honddras, as above said, the currents are frequently found to be running rapidly from west to east, especially near the shores." This counter-carrent is seldom encountered outside the lines which join their onter points. From Cape la Vela, or north ward of the Gulf of Venezuela, the current generally sets to the N.W. toward the Channel of Yucatan, as has been before remarked.
"In the space between Cape Gracias a Dios and Cape de la Vela offshoots and eddies from the great Equatorial current are found. This assertion is not merely grounded on those of former navigators, or on the examination of the coast ontline, but on actual experience.*
"A writer worthy of great respect, Captain Mackellar, R.N., has stated-" The current between the island of Jamaica and the Spanish main, or coast of Colombia, is not always to be depended upon as setting to the westward, as is generally supposed; for, in crossing from Jamaica to the main, ships have been known to be driven to the eastward by the current.' This circumstance must be of rare occurrence at the northern part of the passage, and is here mentioned to make known its possibility. I myself have made the runs across between Jamaica and the opposite main at many times and seasons, and ame, therefore, governed by practice as well as theory in the following remarks.

- 1st. Local Current between the south side of Jamaica, the Morant Kays, and Pedro Shoale. This is very uncertain, both in rate and direction. Its rate may be from 0 to $1 \frac{1}{2}$ knot per hour ; and it direotion either north, east, or west, aocording to existing circumstances.

At the Morant Kays, the current is known to be variable. Over the Pedro Shoals it is supposed almost ever to run in a westerly direction. Between these two dangers, therefore, it behoves a ship at night to be full of precaution, and not to rely on the continuance of any current she may have ascertained, wheh either to the northward or southward of her then situation.
2nd. Current southecard of the Morant Kays and Pedro Bank, or between the parallels of 17° and 15°. This current runs, perhaps always, true West to N.W. by W. from 20 to 55 miles per day.

Among the Mosquito Shoals the currents are equally strong and more uncertain. Between latitude 15° and a line extending from Cape do la Vela and Cape Gracias a Dios, inoluding some of the Mosquito Kays, the direction is W.S.W. to N.W. 20 to 40 miles per day.
3. Southword of the imaginary line between the Capes de la Vela and Oracias a Dios and to the distance of 30 miles from the coast, the sets are so very variable as to as to baffle all system. Sometimes no current whatever is felt; at other periods it may run north, south, east, or west, 35 milea a day. Let it be borne in mind, however, that their direction is very seldom toward the oast, but generelly toward the veest. St. Andrew's Isle and the frontier rocks of the Mosquito Bank are equally beect by changeable currents, of velocities amounting to fffty miles a day.
4. Inshore or Land Current, between Cape Manzanillo, near Porto Bello, and San Juan do Nicaragua. This current sets from westward to eastward. It is an eddy, striking out from the Caritbean Current at Cape Gracias a Dios, and eventually returring into it, with a broken and divided force, to the north of Cartagena. The
bread offing. the co

The rapidi knots same.
(20 of Pin curren rate of 1817, Spani notice southV single have and I separa: howev The wi recoile have b
;201.
x
c
trom th their p
Fron soribed times, has, we unknov

Capt betwee about 2 strong Our fri
night o
Mr. yearra' station quently the mod
In an from a
Hispan
of the
the mod
it; and as 1 fo current instane
On ti
that the
ocal winds, tation, has in of these ions in the

10 currents y near the h join their the current seen before not merely ast outline,
ated-C The Jolombia, is 7 supposed;
riven to the ence at the ssibility. I in at many eory in the
, and Pedro be from 0 to existing
edro Shoals wo dangers, rely on the - northward
between the to N.W. by
uncertain. e Gracias a N.W. 20 to
d Gracias a riable as to er periods it mind, howtoward the are equally

10, and San is an eddy, entually rogena. The
breadth of this current extends from the land to a distance of abont $\mathbf{3 0}$ miles in the offing. Its rate is from one to two knots, and its direction parallel to the curvature of the coast and capes.

The streams ont of numerous rivers, entering this ourrent, seems to increase its rapidity; for close in shore, between the rivers, the rate is seldom less than two knota; at eix miles off the land it runs about one knot; and at a greater distance the same.
(200.) From Cape Antonio the current sets, at times, to the E.S.E., past the Isle of Pines. Captain Livingston has informed us that, in March, 1818, he foand the current between the Great Cayman and Isle of Pines to set in that direction, at the rate of fully $2 \frac{1}{2}$ miles in an hour, or 60 miles in the twenty-four hours. In August, 1817, he found the set nearly the same, but the current not half so strong. The Spanish Directory says:-" From Cape de Cruz, on the South side of Cuba, it is noticed that there is a constant current to the westward, with some inclination to the sonthward or northward, und which has been known sometimes to set 20 miles in a single day." In opposition to this, the exact words of Captain Livingston are-" I have twice experienced a strong current, setting about E.S.E., between the Caymans and Isle of Pines; and on the latter of these occasions both my mate and myself separately calculated it to set about 60 miles per day, or $2 \frac{1}{6}$ miles per hour. This, however, I incline to think a very particular case, such as may but seldom occur. The winds at this time were light and westerly. On the other occasion, so far as I recoilect, it set about 12 or 14 miles per day only. All my papers on these subjects have been lost ; bnt the first instance was too remarkable to be forgotten."
(201.) Off the South side of Cuba the current has frequently been found setting to n. \because : ward when the moon is increasing, or in her first two quarters; and thus it c.....s from Cape Antonio to Cape Maize. It is represented that it runs to the and for a fortnight, and then to the westward about the same time. Coasters trom the Caymans commonly take the advantage of the easterly current for making their passages to Jamaica.

From this information we may conjecture that the current, which has been described as setting to the E.S.E. from Cape Antonio to, is not permanent, but, at times, on the contrary, imperceptible, according to the age of the moon; and this has, we beliove, been verified, in several instances, while the cause has remained unknown.

Captain Manderson had stated, that when a strong easterly wind has been blowing between Cube and Florida, vessels heaving-to off the South side of Cape Antonio, at about 2 leagues from shore, have, in the course of one night, been carried against a strong sea breeze, nearly as high as Cape Corrientes, being a distance of 10 leagues. Our friend Captain Rowland Bourke, when once lying-to in the Archibald for the night off Cape Antonio, found himself next rnorning off Cape Corrientes.

Mr. Dunsterville has said, "I am firmly established in an opinion, from twelve years' observation, that not only cre the winds and weather on the West India station influenced by the changes of tho moon, but the currents also ; and it is frequently found that, if the waters run to the eastward, it is at the change and full of the moon."

In an old book, already noticed (Kelly's Navigation, vol. i., 1733), is an abstract from a journal, which contains the following passage:-"Between the West end of Hispaniola and the Island of Jamaica, if I took my departure upon a full or change of the moon, I found that I made many leagues more than I did at the quarters of the moon. At the full and change I was looking out for the land long before I saw it; and at the quarters, I was down upon it long before I looked for it. The reasons, as I found afterward, were, that the full and change made a atroug windward current, and the contreiy on the quarters. This has been exemplified in many instances."

On this subject Captain Livingston says, "It is a prevailing opinion with many, that the moon governs entirely the currents among the West India Iklands. No
doubt the moon has some effect on them, but the winds have a still more powerful infurence.
" It is rarely, indeed, on the North side of the Island of Jamaica that there is a westerly current when the North and N.W. winds prevail ; the current then always, or almost always, setting to the eastward.
"On the South side of Cr^{\prime} "a, when the wind is westerly, which it often is, you are aiw- ps certain of a r, 9owing eurrent ruand Cape Antonio. This is easily account u for; as when the iresh trade-wind ceases, and the westerly winds set in, the barrier is, in some degree, removed, which confined the waters in the Mexican Sea, and they seek to regain thicir level as well by the channel of Yucatan as by the Strait of Florida."
Between the Isle of Pines and main land of Cuba is a strong north-easterly indraught, generally running from 1 to $1 \frac{1}{2}$ miles an hour, and which has caused the less of many vessels on St. Felipe Kays and the dangerous bank stretching therefrom to the westward.
In the Winciward Channel ci' Jamaica, the carrent generally sets with the wind to leeward or S.W.; yet both here and at Jamaica it is variable. Some have affirmed that, when a current runs to leeward, on the South side of Jamaica, there is frequently one setting eastward on the North side ; and, at other times, no current is to be perceived; also that, when a lee current runs on the North shore, the same circumstances may be perceived on the South shore as were before observed on the North.
(202.) Channel of Yucatan.-The principal entrance from the Caribbean Sea into the Gulf of Mexico is 110 miles in width, between Cape Antonio, marked by its fine lighthouse, and Cape Catoche, the N.E. point of Yucatar. The current most usually sets with considerable rapidity to the northward through it.

According to the calculation of all rettainable observations derived from Major Rennell, Commander Maury, \&c., the following is the mean rate of the current in the various months:-January, 33 miles per day; February, 34 miles per day; Mareh, 36 miles; April, 33 miles; May, 17 miles; June, 26 miles; July, 39 miles; August, 31 miles; September, 30 miles; October, 38 miles; November, 36 miles; December, 48 miles per day. These velocities are much inforior to what might be supposed from the magnitude of the outset as formerly caleulated, but this, as will be seen presently, has been over-stated.
(203.) At times the current is very strong, and every precaution should be taken against ${ }^{+}$.

The : ip Carshalton Park, Captain J. Steele Park, sailed for Jamaiea for London oa he 20th May, 1824. At noon on the 27th she was off the S.W. side of Cuba, in lat. $21^{\circ} .26^{\prime}$, long. (by chronometer and lunars) $84^{\circ} 47^{\prime} \mathrm{W}$. Hero was dicovered a current setting to the N.W. nt the rate of 2 miles an hour. At half-past seven Cape Antonio bore N.W. 5 or 6 milcs. "The current to the N.W.," says Captain Park, "swept us into the Gulf of Mexico; and there we were beating about three or four days, making northing and westing in spite of our teeth. All this time the wind was easterly, and we might have cruised about there till Christmas, had the wind not got a little to the southward of East, which enabled us to get over to the N.E. side, where we found the current running directly opposite to the former," being now in the Florida Stream.

At about 40 miles northword of Cape Catoche the eurrent has been found N.W. by W.; ehanging thence to S.S.W. off the N.W. point of Yucatan, nearly at the same distance from the coasi. Rate, something less than half a mile an hour.
(204.) Gulf of Mexico.-The Mexican Sea appears to be the receptacle and terminus of all the waters flowing westward, and although we are not perfectly aequainted with all the featares of the currents, yet sufficient is known to warrant the afflrmation, that the current through the Yucatan Chamnel diverging to eastward and westward, the western braneh circulates a-ound the wiole of the shores of the Gulf to westward northward, and those flowing castward and south-eastward joins the
existerr
Uuî:
On
Renrie
lation,
Yucata to 31 n
(205
high as of the their h the At]

It is
"The
liancy
flashed
observe wake, the oce
"Th intense is a fine Phosph large a with a water
(206.
from th
Ther
Gulf \mathbf{S} bifuricu this Yu
" H.
commar
Jamaici
Aug. 2
the cou
that the
it keeps
coast of
surrent
mixture
current
mixed u
canoe p
" It n
with th
waters.
"Anc
the Equ
Oct. 24,
(207.)
ward an
set with
Bank, al
from the
there is a en always,
on is, you is easily ads set in , Mexican as by the asterly ined the loss erefrom to
he wind to ve affirmed frequently to be perme circume North.
ibbean Sea rked by its rrent most
rom Major rent in the y ; Mareh, s; August, December, e supposed be seen pre-
be taken
for London of Cuba, in dicovered a seven Cape tain Park, ree or four e wind was nd not got side, wiere how in the
d N.W. by it tine same
ptacle and pt perfectly warrant the stward and of the Gulf d joins the
ecistern, and perhaps principal, branch of the Yucatan current, forming the mighty ưvî́ stream.

On the Chart of the North Atlantic before mentioned the observations given in Rennell's and Maury's Chart having been integrated, it plainly shows that the circulation stated above does exist, and that it follows the main trends of the coasts of Yucatan and Mexico, and thence along the coast of Texas, at rates varying from 14 to 31 miles per day.
(205.) The mean temperature of the water of the Gulf of Mexico is probably as high as any part of the ocean, from several manifest canses, and hence it is, in the bed of the sea, that those nurseries of the Sargasso weed exist (168.), which, torn from their habitat by the force of the current, are drifted into that great central area of the Atlantic, to which they give the characteristic peculiarly.
It is also probable that animal life is peculiar and abundant in these tepid waters. "The phosphorescent lights observed in the Mexican Sea shine with greater brilliancy (April) than I had noticed elsewhere: some of these were very large, and flashed like the priming of a gun, sometimes at a loug distance from the ship. I observed that the little shing spiracles were confined to the sides of the vessel and her wake, and that the waves, when they broke into foam, did not (as in other parts of the ocean) sparkle.
"The colour of the water in the Sea of Mexico is of a dark indigo, darker or more intense than that of the ocean generally ; the colour of the sea in the Florida Channel is a fine blue, not so dark as that of the Sea of Mexico, or of the ocean generally. Phosphorescent lights are equally abundant in the Florida Stream, some unusually large and brilliant; and some of the small lights appeared to spring out of the water with a sweep motion, which I had never before observed; the temperature of the water was 79°, that of the air $76^{\circ} . "-J . E$.
(206.) The following exemplification of the currents of the Mexican Gulf is taken from the eighth edition of Maury's "Sailing Direetions," vol. ii., p. 17 :-
There is a constant set from the Carribbean Sea into the Mexican Gulf to flud the Gulf Stream. Vessels passing up to the northward may take advantage of it. It is bifuricated just after entering the Gulf. The bottlo paper of the Hermes followed this Yucatan current to the "fork," and then took the western branch.
" H.M.S. Hermes, 15th Ar $-1,1858$, lat $17^{\circ} 59^{\prime}$ N., long. $78^{\circ} 50^{\prime}$ W., H. Congton, commander, J. E. Solfieet, Luaster. This bottle thrown over at the West end of Jamaica, was found on the South point of Padre Island, lat. $28^{\circ} 5^{\prime}$ N., long. $97^{\circ} 10^{\prime}$ W., Aug. 23, 1807, and forwarded by Mr. J. R. Baker, who saye, ' The drift shown by the course of this bottle confirms my own observations since I have been here, viz., that the current divides between Cape Antonio and Cape Catoehe, the western part of it keeps a westeily course until it reaches this coast between San Fernandino on the coast of Mexico, and Corpus Christi on Texas, where it meets the south-westerly current from the const of Florida and Louisiana. And it is strange to remark the mixture of floating objects thrown on the beach of this coast by this mecting of the carrents. Flat boats, oars, saw-lcgs, clap-boards, old skiffs, \&e., from the Mississippi mixed up with branches of the mangrove, mahogany, bay cedar, young cocoa-nuts, canoe paddles of mahogany, \&c., from the Carribbean Sca and coost of Honduras.'
"It may be remarked on this that the easterly winds may have something to do with the westerly drift from the Mississippi of objeets which goat high out of the waters.
"Another bottle, from the ship Admiral, S. Pieken, commander, th. own over on the Equator, long. 30° W., 17 th February, 1850, came ashore at Aransas Pass, Texas, Oct. 24, 1856, 250 days afterwards, ha ing drifted. 4,300 miles, or 16 miles per day."
(207.) It is diffleult to define the separation between the currents which pass eastward and westward to the North of the Yucatan Channel. It is cortain that they set with a casiderable velocity to the southward and south-eastward over the Tortugas Bank, and also to the S.E. from the Mississippi. Perhaps a line might be drawn from the eentre of the strait to the mouth of the Mississippi, to the west of which it
will usually be found that the streams have westing in them, and to the east of it that they set towards the Gulf of Florida.

In the strait between Cuba and the F lurida Reefs, that great stream which is described in the next section, has really its zommencement.

Curren gether able \mathbf{G} North. Fherid
" lt Gulph go to blow. went fi at thei been g take a ordinar live in them in sail; y them b is raise Curren two dif and the seen th double

It is, made f The tal to why commol consult acquain ignoran laid its alterati pier an must h delayed
(210.
great s
which turned out of t for suc) " Exan Mississ was sti the floo overtur Mississ though
its infl
The heat of it, and the Gu see wh torial s the lev

Current that draws down on the North sides of Hispaniola and Cuba, passes altogether with great strength through the Gulph of Florida, which is the most remarkable Gulph in the World for its Currents, because it always sets very strong to the North. Yet near the shores on each side this Gulph there are tiles especially on the Flcrida shore; and Ships may pass which way they please, if they are acquainted.
" It has formerly been accounted very dangerous to meet with a North in this Gulph; and for that Reason our Jamaica ships, to avoid them, have rather chosen to go to the Eastward and pass through the Cacuses in the season that the Norths do blow. The Cacuses are sands that lye off the N.W. end of Hispaniola. Those that went from Port Royal in J_{1}.rica had good rcason for this; for if a North took them at their going ont, it would help them forword in their way, which, should they have been going towards the Gulph, it would obstruct them. Then besides, if a North take a ship in the Gulph, the Wind blowing against the Current makes an extraordinary Sea, and so thick come the Waves one after another that a ship can't possibly live in it, yet of late they go through at all times oi the Year, and if a North takes them in the Gulph, they put away right betore the Wind and Sea, with a small heed sail; yet the Current is then as strong or stronger than at other times, and forces them back, stern formost against both Wind and Sea ; for tho' the surface of the Sea is raised in Waves and driven violently with the Winds to the southward, yet the Current underneath runs still to the Northward; neither is it any strange thing to see two different Currents at one place and time, the superficial Water running one way, and that underneath running a quite contrary: For sometimes at an anchor, I have seen the Cable carryed thus by two different Streams, the under part having been doubled one way, and the upper pait the contrary."

It is, therefore, somewhat surprising that a clain should of late years have been made for Dr. Franklin as the real discoverer of its nature and its warmth in 1770. The tale is this: Beirrg in London in that year he was consulted by the 'Ireasury as to why the Falmouth packets were geners lly a fortnight longer to New York than common traders were from Loadon to Providence, Rhode Island P He, therofore, consulted a Nantucket whaler, who explained that the Rhode Island captains being aequainted with the Gulf Stream, avoided it, while the Falmouth commanders being ignorant of it, were set back 60 or 70 (!!) miles a day by it. The Nantucket captain laid its course on a chart, which is also stated to have been followed almost without an alteration. Without stopping to refute this altogether, which may be done by Dampier and iis predecessors, it will be evident that something else than the Gulf Stream must have reiarded them 60 or 70 miles a day in that latitude, if they were thus delayed.
(210.) Causks.-There have been very many speculations as to the cause of this great stream, but they have been promulgated before any increase of knowledge upon which to found arguments, and as has been said above, recent investigations have overturned most of those which have been advanced. It has been supposed that it runs out of the Gulf of Mexico from the superior level of that sea, but facts are wanting for such an assumption. Captain Manderson, R.N., promulgated an opinion in his "Examination as to the true course of the Florida Stream," that it was owing to the Mississippi and the floods from the other rivers falling into the Gulf of Mexico. It was still further argued that the velocity of the Gulf stream might be determined by the flood from theso rivers. But Captain Andrew Livingston, in our former editions, overturned this hypothesis by showing that what is poured into the sea by the river Mississippi is not a three thousandth part of the volume of the Gulf Strea:n. He thought that it might be accounted for by the motion of the sun in the ecliptic, and its influence on the Atlantic waters.

The effects of temperature is also advanced as the prime mover, by increasing the heat of the water it expands, and thus becomes higher than the cooler waters beyond it, and as the Gulf of Mexico has the highest temperature here is the head water of the Gulf Stream on that account. Sir John Herschel says on this point:-"Let us see what this declivity, formed by unequl temperature, would amount to. The equatorial surface-water has a temperature of 84°; at 7,200 teet, the temperature is 39°, the level of which temperature rises to the surfuce in lat. 56 '. Tuking the dilatability
of sea-water to be the same as fresh, a uniform increase of temperature from 39° to 84° would dilate a column of 7,200 feet by 10 feet (or 9.971 feet more exactly), at which height, therefore, above the spheroid of equilibrium (or above the sea level in 56°), the equatorial surface is actually raised by this cilatation. An arc of 56° on the earth's surface is 3360 geograpical miles, so that (were the water to run direct north) we have a slope of 1-28th of an inch per mile for the water so raised to run down. As the accelerating form, corresponding to such a slope (of $1-10$ th of a second, $0 \cdot 1^{\prime \prime}$ of arc) is less than the two-millionth part of gravity, we may dismiss this, as a cause capable of creating only a very trifling surface drift, even were it the proper direction to form, by concentration, a current from east to west; which it would not be, but the very reverse."

Evaporation has been assumed as another cause, but it can be shown that the lines of maximum evaporation are near tine tropics, that is near to the point where the Gulf Stream removes and flows away from, instead of running towards, if this be taken as a sole cause. But the line of greatest precipitation is near the equator, and therefore the surface-water of the ocean is lightcr, or of less specifle gravity than under the evaporating tropical infuences to which line this source of instability will cause the waters to flow directly towards, throughout the whole circuit, and not in the form of partial stream. Besides this, it may be shown by the few experiments hitherto recorded, that the density of sea-water, at some fathoms below the surface, is rery nearly the same all over the ocean, so that suiface experiments afford but imperfect data upon which little or nothing ean be greunded in our present state of knowledge.
(211.) There have been so many objections raised to the plain fact that the trade and anti-trade winds will account for many or most of the phenomena of oceanic circulation, that it would be far too diseursive for a practical work to enter into such a field speculation. As has been stated before (2.) 177, the winds and water of the Atlantic seem to follow much the same law, as far as their different natures will alluw, that is, they circulate more or less around a central axis or areathe ealms of Cancer in the one case, and the Sargasso Sea in the other. All further theory must be sought for in those works which deal with speculative science.

Captain Maury has adduced arguments against the theory of assuming the trade winds as the prime cause of the Gulf Stream, in opposition to the line of reasouing followed by Sir John Herschel. He has drawn up several tables to show that the S.E. Trades have a greatly preponderating force over the N.E. Trades in the Atlantic, but throughout he proceeds on the assumption that the equator is the dicision between the two systems. This basis, which he elsewhere disproves, will very inadequately explain the relative force and duration of the two trade winds, as is shown in (23.), on page 184. In fact from arguing in this way, he endeavours to prove, that from the much greater force, (nearly twice) of the southern trades, from their much greater constancy, and still further, that from the greater preponderance of westerly winds within the tropies, on the north side of the equator, that the North-East Trade Wind scarcely blows at all in the North Atlantic. A position which is amply disproved by his pilot charts, and by the experience of all sailors. It need scarcely be argued against that the S.E. trades have quadruple the force, and nearly double the duration of the N.E. trades, making them eight times as important.

But besides this, the wind and current charts demonstrate that the S.E. trades, and their consequent drift, are almost always felt throughout nearly the whole year, to the north of the equator, and in fact send a large proportion of the water into the Caribbean Sea (11.), page 180. The trade winds may thercfore be held to be a great cause of the Gulf Stream.
(212.) The Gulf Stream has had from very carly times a very bad reputation among ship-masters for its dangerous character, and the hundreds of wrecks and millions of property which have bestrewed its margin have given good oceasion for such a character. For not only is it to be dreaded for its stormy character, but also its violent strearn renders a ship quite unmanageable during a calin, and at these times should hazy wrather occur, and the samenese of the shores mislead the stranger, ho is open
from 39° to exactly), at sea level in of 56° on the lirect north) in down. As cond, $0 \cdot 1^{\prime \prime}$ of a , as a cause roper direcld not be, but hat the lines ere the Gulf be taken as and therefore an under the rill cause the the form of litherto rerfaco, is rery 1 but impersent state of
hat the trade a of oceanic nter into such and water of erent natures cis or areae other. All h speculative ing the trade of reasouing show that the the Atlantic, ision between inadequately hown in (23.), ve, that from much greater vesterly winds t Trade Wind disproved by ely be argued e the duration
E. trades, and whole year, to ater into the to be a great
atation among nd millions of r such a chaliso its violent times should er, ho is open
to many difficulties and dangers. But the excellent system of beaconage along the Florida Reefs, as presently described, and the important lights which direet by night, have very much reduced its bad chacater, and diminished the employment of that enterprising race, the wreckers of Kcy West and the Florida Keys. Still the high rates of insurance for ships which navigate it, and which are yet maintained, although not so entirely as formerly, show that the reputation was not quite groundless.
(213.) Characteristics. The indications of the stream are the appearance and the temperature of the water. 'The stream, in its lower latitudes and usual course, in fair water, where it flows uninterrupted, may be known by its smooth and clear biue surface; for, without the line formed by a ripple on its edge, the water in some places appears like boiling water of a blue colour; and, in other places, it foams like the waters of a cataract, even in dead calms, and in places which are fathomless.

On the outer edge of the stream, especially in fair weather, there are great ripplings, which are very perceptible. The appearance of the sea-weed, by day, is an indication of this edge of the stream; this weed being, commonly, on the edge without the stream, in greater quantity and. larger clusiers than within it.

It has been said that the water within the stream does not sparkle in the night. We are assured by Captain Livingston that, though this is a. sommon, it is a misconccived, idea. "I have frequently seen it sparkle much; even last night it sparkled considerably, when we were in about $25^{\circ} \mathrm{N}$. , and 80° or $79^{\circ} 40^{\circ} \mathrm{W}$.; and off Cape Roman, Cape Fear, Cape Hatteras, and the entrance of the Deleware, I have seen the water sparkle pretty much, though I think not equal to what it does in many other parts of the ocean."-In the Stream, 10th of September, 1818. A. L.
"It has been mentioned by Dr. Franklin, that the water of the Gulf Stream does not sparkle in the nijht. This, so far as my observations go, is incorrect: I saw little or no difference between that and the other water on the coast; but, if there was any, that of the Gulf Stream was the most sparkling and luminous. It may, however, be observed, that the same water is very different, at different times, in this respect.
"The same ingenious writer and philosopher likewise observes, that the gulf-weed is a sign of bcing in the stream. This is in part true, but by no means to be considered as a general rule, because the water on the borders of the stream is constantly mixing with the adjoining water, and leaving some of the weed behixd, which consequently falls into the eddy currents, and is carried off many leagues."
(214) Extent.-The Gulf Stream commences its great career between the Tortugas Bank and the coast of Cuba, therefore the line joining the Dry Tortugas and Havana may be taken as its starting point. It is here 95 miles wide. At the channel between the Kay Sal Bank and Sombrero Kay it is only 48 miles wide; off Cape Florida, its narrowest (and shallowest) part, it is 45 miles. Bctween the edge of sonndings off Jupiter Inlet and the Matanilla Reefs it is miles. This part of the Gulf Stream, which confines it, before it shoots off uncontrolled into the Atlantic is 330 miles :ong.

Pursuing its way northward, its warmest waters and strongest current keeps near to the edge of the bank of soundings which fronts the coasts of Georgia and the Carolinus, following the general curve very strictly, and in its muin strength keeping 50 miles off Cape Hatteras. This portion of its course from the channel within the Matanilla is about 590 miles further.

To the northward of this it still follows the edge of the banks of soundings, and being diverted more to the east by the obstacles lying off it, gradually winds more
eastward towards the parallel of 40°, and stirting the southern enge of the Grand Banks of Newfoundland, it proceeds with diminished velocity and temperature to about the meridian of 40° West, when its further drift to the westward caunot be distinguished from that to the north and south of it. This further course may be taken at about 1,600 miles. The total distance we have thas gone over will be about 2,500 miles, throughout the whole of which its characteristics may be distinctly traced, although its lateral boundaries are not so easily defined. It has been usual to extend its independent existence some 1,200 or 1,500 miles further to the shores of Western Europe, as before stated, but when its volume in the outset, or in its narrowest part, is considered, it will be no great sacrifice of previously formed opinions to curtail it of its more extended features.
(215.) Throughont its latter course its left-hand margin carries the greatest strength. In the Gulf of Florida its southern side is the most powerful. Northward of the gulf its eastern and south-eastern side is difficult to define, as it is found that the Gulf Stream may be said to consist of several longitudinal bands of water, as presently described. To the southward of British North America its force gradually disappears till it is lost in the central still water of the Sargasso Sea. The diagram of the currents which elucidates this secticn will give a clearer idea of its relation to the great circulatory system, than any long description can do.
(216.) Depth.-Deep-sea sounding has of late years been conducted with such precision and certainty that any doubts which were formerly held on this topic ought to be abandoned. It is true that the labour and appliances can only be at the command of Government vessels in their extended use ; but the United States' Goverument officers have done well to maintain their national honour in their endeavours to elucidate their famous current.

We are now made intimate with the former hidden mysterics of the commencement of the Gulf Stream, through the observations conducted by the United States' Coast Survey between 1855 and 1859. In the first named year, Lieutenant-Commander Craven obtained soundings and temperatures along the bottom of the stream in its narrowest part, 45 miles wide, between Cape Florida and the Bemini Isles, which are so remarkable as to overturn all preconceived notions. The next seation is from the Carysfort Reef Lighthouse to the Bahama Bank, about 50 miles southward of the former, and was examined by Lieutenant-Commander Creven in May, 1859. The next, by the same offlcer, and in April of the same year, is between Sombrero Kay on the Florida Reefs to the West point of the Salt Kay Bank, and thence to the coast of Cuba, near Cayo Piedras; and the fourth is at the point where the Gulf Stream, as a stream, may be said to commence, between the Dry Tortugas and the, Havana. This was examined by Commander Sands in 1858.

In the section between the Tortugas and the Havana, 13 stations were observed, the distance across being about 95 miles. The stations are not quite equally distributed in distance over the whole interval ; but the following figures will give the common results. The stations commence from the northern side :-

$$
\begin{array}{llllllllll}
33 & 35 & 65 & 130 & 200 & 330 & 520 & 610 & 710 & 770 \\
\text { fathoms. }
\end{array}
$$

It will be seen tnat the deepest water, about 800 fathoms, is on the Cuban side, being within five miles of Havana. This characteristic is followed all the way along the Cuban side and that of the Great Banks. This effect seems to have been produced by the action of the sub-current in wearing a deeper channel upon the concave side of the stream. At the Havana, as above shown, thore is an abrupt descent of nearly a mile within five miles of the shore, while, on the side of the Tortugas and Kay West the water is comparatively shallow and the descent gradual.
This fact goes to confirm the conclusion that the strong current of the Gulf Stream makes the circuit of the Gulf of Mexico (204.), since if it impinged directly upon the land of Kay West and the Tortugas, we should find its effects in the wearing of a deeper channel on that side.
(217.) The next section is about 120 miles farther East, from the Sombrero Light-
house
miles.
The side bei (218. Bank, were ob

The of
(219.)
the nary
West tr
(220.) hence w 2,700 fer face to 4 the bott and hens crossing presently

The fa side will westwar
(221.)
carried o
stream,
It is di
accompas
geograpl
Reports
The ge observe points on tauk Poi to 1848. Reef, to St. Simo Georgeto Fear, and

On the nautical miles so fathoms, after cros hundred from five miles fro bottom w interestin
After c
atruek so
te Grand rature to ot be disbe taken ront 2,500 ly traced, to extend Western west part, rtail it of

greatest

North; is found of water, its force asso Sea. a clearer escription
house to the Salt Kay Bank, and 4 stations were observed in the distance of forty-five miles.

$60 \quad 130 \quad 600 \quad 375$ fathoms.

The last being within 5 miles of the Salt Kay Bank, the descent from the Florida side being more gradual.
.(218.) The nezt seetion is between the Carysfort Lighthouse and the Great Bahama Bank, a line bearing about E. by S. and W. by N. true, distance 63 miles. 6 stations were observed, commenoing from the Florida side ; they were as follow:-

$$
120380 P \quad 500 ? \quad 470 P \quad 370 ? \quad 213 \text { fathoms. }
$$

The steepent descent is that on the eastern side of the stream as before noticed.
(219.) The next is the most important because the most remarkable-that across the narrows of Cape Florida, a distance of 45 miles. It was taken nearly East and West true, and at equal distances 5 miles apart. The depths were as fulow :-

| 72 | 170 | 170 | 260 | 300 | 315 | 325 | 300 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | fathoms.

$320 \quad 370$
(220.) The shallowest and narrowest part of the stream is therefore here. From hence westward there is a rapid descent of the bottom from 350 to 800 fathoms, or 2,700 feet, in a distance of 200 miles ; and the temperature sinlss from 80° on the surface to 40° at the bottom. At this last section, also, instead of t,e even curve which the bottomseems to have as in the sonthern sections, it is here somewhat irregular; and hence northward there are some curious variations of temperature discovered in crossing the axis of the stream which are uot found to the south-westward, as will be presently explained.

The fact of the shoalest part of the bed of the Gulf Strcam being on the Florida side will account for the existence, on that side almost exclusively, of a counter or westward current, which will be more fully dilated on hereafter.
(221.) The same process of deep-sea sounding and gaining the temperature has been carried on at various points to the northward on lines perpendicular to the axis of the stream, extending from the shore to beyond its outer limits.

It is difficult to explain the nature of these soundings and their results without the accompanying diagrams; but they are, of course, of more utility to the physical geographer than to the sailor. What follows on this head is mainly derived from the Reports of the United States' Coast Survey.

The general plan of exploration of the Gulf Stream, laid down in 1845, was to observe the phenomena on sections perpendicular to its axis from well-determined points on the coast. In pursuance of this design, sections were run from near Montauk Point, Sandy Hook, Cape Henlopen, Cape Henry, and Cape Hatteras, previous to 1848. Lieut. Comg. Craven was directed in 1853, in returning from the Florida Reef, to run four sections across the stream from near Cape Canaveral, St. Augustine, St. Simons, and Charleston ; and Lieut. Comg. Maffit, after closing his work at Georgetown, South Carolina, to run three sections respectively from Charleston, Cape Fear, and Cape Hatteras.

On the Charleston section, bottom was carried from ten fathoms, thirty-eight nautical miles south-east from Charleston Light, to one hundred fathoms, sixty-five miles south-east from the light. The bottom was not reached at five hundred fathoms, nor in 600 fathoms in the stream. At 97 miles from Charleston Light, after crossing the warmest water of the Gulf Stream, bottom was struck in three hundred fathoms in the main strength of the current, and was kept at variable depthe, from five hundred to three hundred and seventy fathoms to two hundred and seven miles from the coast, or eighty miles beyond the outer limit of the stream. The bottom was brought up in every case, and has been preserved, showing some very interesting results.

After crossing the Gulf Stream on the Canaveral section, Lieut. Comg. Craven struck sounding at four hundred fathome at sixty-nine miles from the coast. It
appears thus that the existence of soundings of from three hundred to four hundred
150 fa fathoms, after crossing the Gulf Stream at these two points of our coast, was discovered independently by the two officers nearly at the same time. In the subsequent sections run by the Corvin, soundings were struck one hundred and twenty-five miles off St. Simons in five hundred fathoms, and off Charleston in four hnndred and eighty fathoms.

The form of the bottom on the Charleston and Canaveral sections shoals gradually from the shore to fifty-three and thirty-six miles respectively, then suddenly falls off to below the depth of six hundred fathoms. On the Charleston section, ninety-six miles from the coast, is a range of hills steep on the land side, and having a height of eighteen hundred feet and a base of about eleven miles on the seaward side; a second range one hundred and thirty-six miles from the coast, fifteen hundred feet high and twenty-eight miles base towards the shore, and six hundred feet high, with a base of about seventeen miles, on the outer side. Beyond this is a more gradual rise. On the Canaveral section the inner range is sixty-eight miles from the coast. In fact; on the Canaveral section, after sounding at the depth of one thousand and sixty fathoms, the steamer drifting about a mile and a quarter, 1 e line showed bottom at four hundred and sicty fathoms. Both are stated to have been good up and down casts. These first observations, while they are merely a foundation to build upon, are undoubtedly in the highest degree interesting and important in their connexion with the phenomena of the Gulf Stream.

On the sections from Cape Fear and Cape Hatteras, after leaving the shoals near the shore, the depths increase very rapidly.

Lieut. Comg. Craven noticed ripples in connexion with the irregularities of the bottom on the Charleston section. Similar ripples were observed on the Sandy-hook section and on the Montauk section in 1845, and were compared to the "rips" on the Nantucket shoals. These are, howeyer, probably a secondary effect of the irregularities by the changes of current produced.
(222.) As far, then, as Cape Hatteras the bed of the Gulf Stream has been found not to exceed 600 fathoms in depth, and is in many parts very irregular. We know but little as yet to the northward of this; but infer that the ocean is here very deep, as at 100 miles N.E. of Cape Hatteras Lieutenant Lee, U.S.N., in the Dolphin, found it to be 1,460 fathoms ; and at 225 miles south of Nantucket, Lieutenant Berryman, in the same vessel, found the depth to be 2,920 fathoms. South of Sable Island, in lat. $40^{\circ} \frac{1}{8} \mathrm{~N} ., 2,750$ fathoms were found. South of the Grand Bank, from 1,700 to to 2,710 and 3,130 fathoms were found by the Dolphin, These are depths to which the Gulf Stream can have no influence, as it will be shown that even in its narrowest part it does not reach to the bottom. Although thus deprived of a large portion of the magnitnde with which it was formerly believed to be invested, it is not the less a wonderful stream, as it is able so expanded and thinned out to maintain its course and character unimpaired over the counter-currents of a totally different origin and nature which flow beneath it.
(223.) Breadth.-As has been stated before, it is difficult to define the exact boundaries of the Gulf Stream, which is, in fact, but one out of a series of several. But whilst the more minute examination which has been made has added something to our knowledge of its features, it has not hitherto been sufficiently extensive to fix its limits, either by an average, or, if it is more exactly defined, to give us the position of its margin in different seasons. However, as numerous observations have been given on its drift, we may give a rude approximation to its extent from the positions where the drift has been found to be appreciable. In the narrowest part it Is about 40 miles broad - a breadth it maintains to abreast of Cape Canaveral. Off Charleston, it is about 70 miles ; off Cape Look-out, 100 miles; off Cape Hatteras, 120 miles; while off Nantucket, it is probably expanded to 300 miles, so that it has widened to more than seven times the extent it commenced with. This fact ought to direct attention to its physical condition, more particularly as its warm waters could not be, arguing from this, more than 10 to 20 fathoms deep, if, as is shown, it does not extend, as warm water, to one-half the depth of the narrows of Capo Florida, or
N. W. there which
hundred , was disubsequent -flve miles nd eighty

150 fathoms. Some explanation of this anomaly may be found in the fact of the N. W. current along the North side of the Bahamas as shown on page 299; and there is little doubt but that this drift is also the parent of some of those warm belts which have been encountered outside the main stream.
(224.) Velocity.-Our knowledge of the velocity of the Gulf Stream is not sufficientiy extensive to pronounce absolutely at what rate it flows as a mean rate. It is very irregular in all parts, and there has been no systematic collection of observations recorded on the sabject. The results of a large number are given in our Chart of the North Atlantic; but, as will be seen from the following summary, there are more variations than can be reconcileable with the change of the seasons.

Between the Tortugas and Florida, it has been found to run at the following rates : January, $\mathbf{4 0}$ to 60 miles per day; March, 64 miles; April, 36 miles ; May, 64 miles ; June, 24 (P) miles; July, 26 (P) miles; August, 65 miles; September, 28 miles; October, 48 miles; November, 30 miles ; December, 31 miles.

In the narrows off Cape Florida-January, 54 miles; March, 112 miles; June, 60 miles; July, 96 miles; August, 78 miles; October, 42 (P) miles; November, 76 miles.

Farther north these rates are diminished, as we find that in the parallel of $30^{\circ} \mathrm{N}$. the mean rates are-For January, 58 miles; April, 33 miles; May, 97 miles; September, 84 miles; October, 50 miles.

Off the Chesapeake, the mean daily rate is 45.5 miles; off Nantucket, 55 miles; South of Sable Island, 36 miles; South of Newfoundland, 28 or 20 miles; and South of the Grand Bank, not more than 15 miles per day.
(225.) The latter part of the month of Angust and beginning of September is the period in which the Gulf Stream runs in its greatest strength and highest temperature. Its weakest and lowest is in February. In October the abrenm is considerably weaker; and it fluctuates in all seasons according to circumstr nces. The strength of its western and northern borders, in its entire and vast extent, is much greater than those on the East and South, which have invariably a tendency to spread over the occan in whirls or eddies, and which are, therefore, comparatively weak.

The winds are found to affect the position of the surface considerably. Between Cuba and Florida northerly winds press it southward toward the shore of the former; southerly winds have a contrary effect. When turned to the North, easterly winds press it to the Florida side, and westerly winds nearer to the Bahamas. Southerly winds cause it to spread, and so may thosefrom the North.

In the Strait of Florida, within the Bahamas, when a northerly gale, increased to a storm, opposes the stream in its course, this adverse power causes it to fill all the channels and openings amongst the Martyr Isles and Reefs, and to overflow all tho low coast. Shipping have even been carried over the low kays, and left dry on shore.

In the month of Scptember, 1769, there happonal an inundation, which covered the tops of the highest trees on the Cayo Largo, $\dot{\text { unc., and during. Which the Ledbury }}$ snow, John Lorain, master, was carried over the reef by the N.W. current of the stream, caused by a gale from the N.E. The vessel bilged in shallow water, but an anchor was thrown out, and the next day tho vessel was found to have grounded on Elliot's Kay, with its anchor among the trees.

The water is supposed at times to have risen to the height of 33 feet; and to have been running against the fury of the of the winds at the rate of 7 miles an hour. During these times the Strait of Florida exhibits a scene beyond description.
Besides the effect which different winds have upon the stream, it is subject to another power that also directs it toward or from the coast; and that is, the moon, which, according to her position, has different effects upon it, not, however, in equal power with those of the wind; but the disposition of the stream is increased to its extreme, if the effect of both the wind and the moon are combined; for, at this time, the occan rising highest, this regulates tho flood and ebb, and divides them in proportionate times; consequently it directs and increases them, with an easterly moon and
wind to the West, and with a westerly moon and wind to the East; so that the Weat and East shores are at times deprived of, and at other times overflowed by, tides, occasioned by these vicissitudes.

The boisterous East, N.E., and North winds which affect the Gulf Stream, generally begin in September, and eontinue until March; when, if the moon happens, just at the time to be on the full or change, they commonly end with a hurricane.
(226.) Lient. J. C. Walsh, of the U.S.S. Taney, in 1849-50, made several irciertating experiments on the temperature and extent of the Gulf Stream, the first in October, 1849. On the 31st of that month he first encountered the Gulf Stream, in lat. $37^{\circ} 22^{\prime} \mathrm{N}$., long. $71^{\circ} 26^{\prime} \mathrm{W}$., the temperature of the water suddenly rising from 66° to 76° and 77°, the air being at 53° and 54°; by making a S.S.E. course good, they got out of it, judging from the water getting back to 70°, in lat. $36^{\circ} 16^{\prime} \mathrm{N}$., long. $70^{\circ} 57^{\prime}$ W., the breadth being 71 miles ; the velocity being about 3.6 knote per hour.

Re-crossing the stream, on his return, May 30th, 1850, he entered it in lat. $35^{\circ} 30^{\prime}$ N., long. $72^{\circ} 35^{\prime}$ W.; the temperature at eight a.m. being 71.8°; at 50 fathoms, 71.8°; at 100 fathoms, 67°; the air, 70°. At noon, the sarface was 785°; at (50 fathoms, 77.5 ; at 100 fathoms, 72.5°; the air 76°. Its velocity was 2.5 knots per hour, setting $N .77^{\circ}$ E. He left in lat. $36^{\circ} 42^{\prime}$ N., long. $72^{\circ} 10^{\prime}$, bearing from the point of entranee N. 16° E. 78 miles, which, therefore, appears to be the breadth at this time. When on soundings next day, June 18t, in lat. 39° N., long. $70^{\circ} 30^{\prime}$ W., the water showed as low as 51° at the surface, and maintained an average temperature of 53° until he reached New York. This was a difference of 28° from the adjoining Gulf Stream. Shoals of porpoises and black fish were seen in the hot waters of tho stream ; but little gulf weed in it, but much at its outer edges.
(227.) Captain Livingston has said :-" The calculations of the velocity of the Gulf Stream are not to be depended on. I have found it setting at the rate of 5 knots, and even upwards. Thiswas on the 16th and 17th of August, 1817. On the 19th and 20th of February, 1819, it seemed to be almost imperceptible. In September, 1819, it set at mach about the rate deacribed in the sharts."
One remarkable instance of its diverging from the usually supposed velocity is given in a communication of Captain Giles, of the barque Charles, who found it to run 5 and 51 knots, in January, 1843. "The first day I began to make any material progress was with the Tortugas bearing about S.E. ; the following day I had a current of 53 milen S.E. by S. ; the noxt day, 60 miles S.S.E. E. I was then in lat. $24^{\circ} 10^{\prime}$, long. $83^{\circ} 0^{\prime} \mathrm{W}$. The weather would not permit our sighting the Tortugas, though we passed them very closely. The next day we made, by very good observations, 76 miles of due easteily current, which, with the ship's work, place, her in lat. $24^{\circ} 12^{\prime}$, and long. $81^{\circ} 33^{\prime} \mathrm{W}$. The succeeding day, towards dark, the wind being strong from E.S.E., and considering myself in the vicinity of the indravght of the Great Inlet, I put the ship's head to the southward, under ciose-reefed topsails, and nothing more set, and reached her to till daylight, that being twelve hours good; towards noon it fell calm. I then found that we had been get nearly in the direction that the elbow of the land trends, one hundred and ten miles, we being at noon in lat. $25^{\circ} 15^{\prime}$ N., long. $79^{\circ} 45^{\prime} \mathrm{W}$. The following day we had light, variable airs and calms, heavy rain, much thunder and lightning, and very thick weather (as it had been the day proviously). We picked ournelvs np at noon, lat. $27^{\circ} 20^{\prime} \mathrm{N}$. and long. $79^{\circ} 30^{\prime}$ W., having had the current N. by E. one hundred and twenty miles. I intended to pass through the Providence N.W. channel, but the current sweeps us past the mouth of it in the light airs which we had on the last two days of our passage."
(228.) Captain (now General) Sabine, F.R.S., says :-"There can be little hesitation in attributing the unusual extension of the stream in particular yoarm to its greater initial velocity. It has been computed by Major Rennell; from the known velocity of the stream, at different points of its course, that in the summer months, when its rapidity is greatest, the water requires about eleven weeks to run from the outiet of the Mexicuin Seex to the Az̃orés, being about 3,000 geographicial miles.
" July and August are generally the months of the greatest initial velocity of the
stream derahg
" Th
The ter
" In one-thi Novem
" On
northe $36^{\circ} 14 '$ 65°. 1 a differ the we genera bppks as a dr than as at eigh tallen t followi 19th, i) 41.5°. Hook of the progre

Rem
and 28 twenty ward 0 $72^{\circ} 30^{\prime}$ twenty 86 mile 67°, it miles.
within
In th
Hamli $31^{\circ} 8^{\prime}, 1$
Rem precedi Mexic tonio, stream is gene peot th was co chrono
" W
influen
came 0
froin
favour
During
stream, and the period when the levels of the Caribbean and Mexican Seas are mont derahged.
" The initial velocity in November, 1822, was 70 miles in the twenty-four hours. The temperature $80^{\circ} \cdot 8$ to $80^{\circ} \cdot 5$. After passing Cape Hatteras, 77 miles.

Remarks on the Stream, by Captain W. J. Monteaih.-Between lat. 25 40° and $28^{\circ} 20^{\prime}$, Captain Monteath found the current in the strait had set $8{ }^{\circ} \mathrm{J}$ miles in the twenty-four hours of June 27, 1820. On the southern border of the stream (northward of the parallel of Cape Hatteras), 6th July, 1820, lat. $35^{\circ} 20^{\prime}$ to $36^{\circ} 30$, long. $72^{\circ} 30^{\prime}$ to $71^{\circ} 3^{\prime}$, Captain Monteath found the current setting $\mathrm{N} .45^{\circ} \mathrm{E} .75$ miles in the twenty-four hours. Next day, July 7, to lat. $37^{\circ} 40^{\prime}$, long. 69°, he found it N. $53^{\circ} \mathrm{E}$. 80 miles in twenty-four hours. On the following day, July 8 , to lat $38^{\circ} 38^{\prime}$, long. 67°, it ran N. 58° E. 31 miles. July 9 , to lat. $39^{\circ} 10^{\prime}$, long. $86^{\circ} 10^{\prime}$, westward only 10 miles. The observations were continued each day, by chronometer, which agreed within a few miles.

In the stream, on the 21 st of March, 1824, lat. at noon, $29^{\circ} 4^{\prime}$, long. $\mathbf{7 9}^{\circ} 22^{\prime}$ Captain Ilamlin found the stream had set North 83 miles; on the next day, lat. at noon, $31^{\circ} 8^{\prime}$, long. 79°, N.N.W. 63 miles.

Remarks on the Stream, \&e., by Captain J. Steelo Park.-We have given on a preeeding page (314.) Captain Park's deacription of the north-westerly inset into the Mexican Sea, and his notice of the outset from the same. After rounding Cape Antonio, the land of Cuba was not seen. At this time (the latter days of May, 1824) the stream along the Florida side, and even in the strait, was by no means so strong as it is generally found. In the narrowest part, where, of course, we have a right to expeot the greatest velocity, it was running at the rate of only $2 \frac{1}{2}$ miles an hour. This was correctly ascertained by moridian altitudes of sun and moon, and an excellent chronometer.
" When we cleared the gulf," Captain Park adds, "I was anxious to keep in the influence of the stream, and pass near the tail of the Bank of Newfoundland, but it. came on to blow hard from the northward, in lat. $34^{\circ} 35^{\prime}$, and long. $72^{\circ} 20^{\prime}$ (E. by S . from Cape Hatteras). This, of course, drove us away to the eastward, out of the favourito track, and wo passed about 300 miles to the northward of the Bermudas. During this gale for soveral days a current was found to proceed from the castward to
the W.S.W.; but in lat. 38°, and long. about 59°, the ship was in the Gulf Stream, setting finely to the N.E.
"On June 23rd, at noon, lat. $37^{\circ} 51^{\prime}$, long. $61^{\circ} 54^{\prime}$; June 24th, lat. $39^{\circ} 66^{\prime}$, long. $57^{\circ} 26^{\prime}$ (by altitudes and chronometer). Here the ship really made $4^{\circ} 28^{\prime}$ of easting in the twenty-four hours' run, and the \log gave only $8^{\circ} 16^{\prime}$. In the same time much northing was made. The true difference of latitude was 125 minntes, but the log gave about 80 only. The vessel had been running all the time E. by N. by compass, and went through the water 173 miles. Allowing half a point of variation, gives the true course N.E. by E. $\frac{1}{8}$ E. Subsequently, on making Scilly, there was not an error in the watch of a single mile,
(229.) Temperature.-The high temperature of the Gulf Stream is one of its chief characteristics; and has attracted from very early times almost as much attention as its velocity; A work was composed on this subject, entitled "Thermometrical Naviantion," written by Colonel Jonathan Williams, and published at Philadelphia, 1799, from which the following extracts are given.

Commodore Truxton says:-"In the stream the water is mnch warmer than the air; indeed, I have known it 10° warmer; but as soon as you get within the stream (that is, between it and the coast), the water becomes colder than the air; and the more as you get on soundings, and approach the shore. If mariners, who have not the opportunity of `etermining their longitude by celestial observations, will only carry with them a good thermometer, and try the temperature of the water, and compare it with that of the air every two hours, they may always know when they come into, or go out of, the Gulf Stream. Indeed, I have always made a practice, when at sea, of comparing the temperature of the air and water daily, and often very frequently, during the day, throughout the voyage: whereby I immediately discovered anything of a current that way going, and afterward found its strength and directions by observations for the latitude and longitude. It is of the utmost consequence, in making a passage to and from Europe, to be acqnainted with this Gulf Stream; as, by keeping in it, when bound eastward, you shorten your voyage; and by avoiding it, when returning to the. westward, you facilitate it inconceivably: so much so, that I have frequently, when bound from Europe to America, spoke European ships, unaequainted with the strength and extent of it, off the Banks of Newfoundland, and been in port a very considerable time before them, by keeping ont of the stream; whereas they lengthened their passage by keeping in it. The gencral course of the Gulf Stream being marked on the ehart, I would advise those who make the northern passage from Europe never to come nearer the inner line it, by choice, than 10 or 15 leagues; and then the probability will be that their passage will be assisted by the help of a counter-current, which often runs within it. In coming off a voyage from the southward, be sure to steer N.W. when approaching the stream, if the wind will permit you; and continue that course until you are within it, which may be easily known by the temperature of the water, as before mentioned. I have always oonsidered it of the utmost consequence, when bound in, to cross the stream as speedily as possible; lest I should be visited by calms or adverse winds, and by those means driven far out of my way, which would prolong the voyage considerably, especially in the winter reason."
By the journals of Captain W. Billings, of Philadelphia, it appears that, in June, 1791, tho water on the coast of America was at the temperature of 61°, and in tho Gulf Stream at 77". By thuse of Mr. Williams, it appears that, in November, 1789, the water on the coast was 47°, and in the Gulf Stream at 70°, viz.:-

The difference of heat is, therefore, greater in winter than in summer.
In the Amarict of son tons, Captain Heth, for Richmend, Yirginia, 2nd May, 1817. "After a series of bafling winds and boisterous weather, we flind ourselves on the
weste Yester air re warm Birkb
" O_{1}
Youns
the m
the G
next n
whenc
which
From
By ${ }^{1}$
to dist
sure of
from 1
Suppo
stream
know
infallit
off age
distanc
have a
run off
take tl
The
June, 1
but ret
airs, an
stream
in con
Cape \mathbf{I}
The ve the san seven d been m
(230) the tem with o that th the ten
" In
of the
It was
Novem and oth distane
веетв danger, examin regions

Now
in somo
and cer
to clain
sary th

Stream,
66', long. easting me much the \log compass, gives the tan error

Pits chief attention etrical ladelphia,
western, or in, side of the Gulf Stream, and, of course, not far from our destination: Yesterday the temperature of the air was 65°, and of the water 71°. To-day, the air remains at 65° but the water has fallen to 50°. We have, therefore, crossed this warm ocean river, which flows from the Gulf of Mexico."-" Notzs" of Maurice Birkbeck.
"On my voyage from Philadelphia to Kingston, Jamaica, on board of the Schqoner Young Dasher, October, 1817, I particularly attended to the thermometer. Close off the mouth of the Delaware, in about 16 fathoms, it stood at 60°; on the inner edge of the Gulf Stream, it rose pretty rapidly, to 66°, and, in the course of an hour, to 76°; next morning, 78°, which heat continued till we were to the southward of Bermuda; whence it gradually increased, until between Cuba, Hayti, and Jamaica, it was $8 \mathbf{2 0}^{\circ}$, which appears to me to be the mean temperature of the see water about Jamaica."From memory, 26th August, 1818. Andrew Livingston.

By the advantage of knowing how near to the coast a ship may venture, and how to distinguish the Gulf Stream from the water between it and the coast, we can be sure of a favourable current either way, and a small vessel might make a short voyage from Halifax to Georgia, which is thought by some a longer one than to Europe. Suppose you had the wind ahead all the way; take your deperture and stand for the stream; so soon as you find the water increase in heat, about half as much as you know it would when in the stream, heave about, and stand for the coast; you will infallibly discover the edge of the soundings by the cooling of the water; then stand off again, and so on to the end of the voyage; when it is. almost certain that the distance would be run in a shorter time thain if there were no stream; for you would have a favourable inside current. On the return passage, take your departure, and run off till you get into the warmest water, which will be middle of the stream, and take the advantage of its current.

The following fact may serve to iliustrate the propriety of these directions. In June, 1798, the mail packet for Charlestown had twenty-five days' passage in going, but returned in seven. The captain accounted for this by having calms, or very light airs, and a northerly current. This was the true cause. He was in the middle of the stream, where there generally are calms or light winds; the edges, only, which come in contact with colder regions, being tempestuous. After being in the latitude of Cape Hatteras, he found himself in that of Cape Henry (37 leagues to the northward). The vessel, however, arrived at last; and on the return voyage the captain steered the same course back again, and with the same light airs ho performed the voyage in seven days. Had the captain known the use of the thermometer, need he to have been much longer in going than in coming?
(230.) From the fact that when crossing the Gulf Stream from east to West, that the temperature suddenly fell when its western edge was passed, that is, coincident!y with obtaining soundings, it was argued by Colonel Williams, and long maintazied that the thermometer would certainly indicate the approach to soundings by a fiti is the temperatpre of the water in any part of the occan.
"In June, 1701, Captain W. Billings, of Philadelphia, in lat. 39°, long. 56°, abreast of the Banks of Newfoundland, found that the mercury in the thermometer fell 10°. It was near the same place that a similar obervation was made by I)r. Franklin, in November, 1776; and another by Mr. Williams, in November, 1789, who from these and other facts infers that, "By the coincidence of these three journals, at so great a distance of time, and without any connexion with each other, this important fact scems to he established:-A navigator may discover his approach toward objeets of danger, when he is at such a distance as to be able easily to avoid them, by attenticely examining the temperature of the sea; the water over banks and shoals, in these regions, being colder, in general, than that of the deep ocen."

Now nlthough this remark holds good as to this portion of the American coast, and in some other parts of the world, under similar influences, yet it is founded on a fallney, and certainly has not that universal application which former obsel vers endeavoured to claim for it. This question is now generally well-understood; and it is only neeesmary thus to refer to it, as a memorial of past times. When it wus first promulgated,
the extension of the Arctic Current to the southward in sueh a remarkable manner inside the Gulf Stream was not suspected. And although Mr. Gedfield's views, given hereafter, are now fully maintained, yet the more extended observations of the United States Coast Survey, have revealed such singular facts, that even now we must confess that our knowledge of the compensating system of the ocean is exceedingly imperfect.
(231.) The mean surface temperature of the Gnlf Stream, in the early part of its course may be ascertained from the vast and confused mass of figures contained in Captain Maury's Thermal Charts. The temperatures there recorded, however, show large variations between themselves in the same periods. This may arise from two causes-the one from the variation known to exist in the stream itself (234.), and which is frequently considerable; and the other from the imperfection of the thermometers used, and this, as many of the observations appear to have been derived frem voyages made before standard thermometers were employed, may include a considerable portion of the discrepencies which exist.

The following are the result of the calculations for the temperature of the main strength of the current from the narrows of the Little Bahama Bank to the meridian of Halifax. To the eastward of this, or longitude 60°, the temperature, especially in winter and spring, becomes rapid y lower and very irregular, as will be presently alluded to, and therefore our comparison will now be limited to this section, which comprises a distance of about 1,200 miles, and which is traversed by the stream in about 25 to 35 days. The degrees are Fahrenheit.

Winter.-Off the Matanilla Reefs, $77^{\circ} \cdot 2$; off Charleston, $75^{\circ} \cdot 9$; off Cape Fear, $73^{\circ} \cdot 6$; off Cape Hatteras, $71^{\circ} 0$; off the Capes of Virginia, $71^{\circ} \cdot 0$; S.E. of New York, $70^{\circ} \cdot 5$; S.E. of Nantucket, $67^{\circ} \cdot 9$; south of Halifax, $62^{\circ} \cdot 5$. It has thus cooled $14^{\circ} \cdot 7$ in its passage.

Spring.-In the Florida Channel, $77^{\circ} \cdot 5$; off Charleston, $76^{\circ} \cdot 5$; off Cape Fear, $74^{\circ} \cdot 7$; off Cape Hatteras, $72^{\circ} \cdot 0$; off the Capes of Virginia, $72^{\circ} \cdot \mathbf{O}$; S.E. of New York, $70^{\circ} 5^{\circ}$; S.E. of Nantucket, $67^{\circ} \cdot 4$; south of Halifax, $63^{\circ} \cdot 5$. In the latter part of its course it is cooler in the spring than its ratio to the earlier part, owing to the higher velocity of the Arctic Current, which flows under and mixes with it.

Summer.- In the Struit of Florida, $83^{\circ} \cdot 2$; off Charleston, $82^{\circ} \cdot 4$; off Cape Fear, $81^{\circ} \cdot 2$; off Cape Hatteras, $79^{\circ} \cdot 8^{\circ}$; off the Chesapeake, $79^{\circ} \cdot 8$; S.E. of New York, $79^{\circ} \cdot 2$; S.E. of Nantucket, 80°; south of Nova Scotia, $77^{\circ} \cdot 9$. Here the water preserves its heat without much diminution being only $5^{\circ} \cdot 3$ colder than when it leaves the gulf.

Autumn.-In the Florida Strait $81^{\circ} \cdot 7$; off Charleston, $81^{\circ} \cdot 6$; off Cape Fear, 78°; off Cape Hatteras, $75^{\circ} \cdot 5$; off the Chesapeake, $75^{\circ} \cdot 5$; off New York, $73^{\circ} \cdot 0$; off Nantucket, $71^{\circ} \cdot 5$; south of Nova Scotia, $69^{\circ} \cdot 2$.
(232.) Upon comparing these temperatures, which are carried so many miles unimpaired by the Gulf Streem with the inner Arctic Current between the stream and the shores of Virginia, New Jersey, New York, \&c., a surprising difference will be seen, espiccially in the spring months, when the difference is at a mean 30°, and at other seasons from 15° to 23°. This will be more fully entered into in the next seetion.
(233.) it has been found that the temperature of the stream varies in a greater degree thain could be accounted for by the climates it had passed through, being sometimes warmer to the north, and cooler to the south, of any particular position. This seems to be ancounted for by the variability of the source of the stream in the Galf of Mexico and elsewhere, which it would be very difficult to follow up to ariy specifle determination; but this, practically, is of minor importanco to the pailor.
(234.) The Gulf Stream was found, in the early operations in its inveatigation in 1845-48, to consist of a series of alternations of cold and warm water, a fact which was very surprising at the time, but the resuits of the iater expiorations in i6z̄̈, entirely confirm the former ones in this respect. In fact, the Gulf Stream is merely
one of a on the F the oold entirely fact is of from ger Report.

On th It is now bottom, the ang position fact, tha
(235.)
flowed or magnitu conclusio narrowe plexing How this shoula p tance fro plained these low upon it, move in t compensa monies of a perpetu his creat

We ha Of the p following Survey
"The formerly
Canavera
as on tha
100 fatho
23 nautic
wards the
June, 185
temperate
cold wall
temperat
Gulf stre
maxima a
cessive m
as a gener

- In th
gained fro thormome the difforit and platin the effects tained, nar
manner s , given United re must edingly
t of its ined in r, show sm two 4.), and e therderived clude a
he main aeridian cially in resently 1, which ream in

iles un-

 eam and will be , and at the next
greater

 h, being position. m in the w up to 0 to the
ation in

 ct which in i $\mathbf{i} \overline{\tilde{5}} \mathbf{0}$, s merelyone of a number of bands of r arm water separated by cold water. The observations on the Hatteras, Cape Fear, and Charleston sections, show a counter-current where the cold streaks are found; and as these observations and those for temperature are entirely independent of each other, the coincidence in result is very striking. This fact is of too great importance not to be very carefully followed up. It would appear, from general reasoning, that this was not unlikely to be the case."-Trnited States' Report.

On the land side the division between the cool and warm water is very distinct. It is now concluded that this separation into distinct beits is owing to the form of the bottnm, as they appear to be strongest north of the section of Cape Canaveral, where the 1 ang of submarine hills and dules (221) is found very much to coincide with the position of these cool and warm belts; and this conclusion is strengthened by the fact, that sonth of Cape Florida, where the bottom is even, they disappear altogether.
(235.) Submarine Temperatures.-It was formerly held that the Gulf Stream flowed on in one majestic cunent of warm water from its surface to ito bed. The magnitude of its effects and the extent of its area seemed to leave room for no other conclusion. But the first observation of ice-oold water at a small depth in its narrowest and strongest part overturned all these hypotheses, and left a most perplexing condition in which we are at a loss to know where to look for an explanation.* How this cold water, flowing directly contrary to the course of the upper strata, shoud preserve its polar characteristic almost unimpaired to such an enormous distance from its origia, and under such apparently adverse circumstances, cannot be explained with our present views. Again, by what power, or source of action, are these lower strata made to move in an opposite direction to those superincumbent upon it, and which, it might be supposed, would be acted on by the same laws and move in the same manner? It is one of the most remarkable evidences of that grand compensating system by which the Great Creator has commanded that all the harmonies of the universe shall be maintained-which keeps the atmosphere and ocean in a perpetual condition of interchange, and thus makes them fit for the sustenance of his creatures.

We have alluded to this universal intermingling of the ocean waters before (133). Of the presence of polar water in these tropical regions there can be no doubt. The following extract from the Report of the Superintendent of the U.S. Government Survey will place it beyond question :-
"The southern sections present, on a small scale, the same phenomena which we formerly traced over a large expanse in the more northern ones. Examining the Canaveral section, which is the furthest south, we see the cold wall almost as plninly as on that from Sandy Hook; the curve, showing the mean results between 70 and 100 fathoms, rises some 17 degrees, from $57 \frac{1}{2}^{\circ}$ to $74 \frac{1}{2}^{\circ}$ Fahrenheit, in the distnnco of 23 nautical miles. The warm water, overlying the cold, is decper in its overflow towards the shore-that is all. After passing through the warmest water, which, in June, 1853, was only 801° Fahrenheit at two fathoms and a half, there is a fall of temperature of sevcrel degrees, followed by a rise. On the St. Simons section the cold wall is again well shown, and is the first of those distinet bands of minimum temperature dividing four maxima, of which the greatest body of warm water of the Gulf Stream is the second from tho shore. Near the surface the first and fourth maxima are the highest; at 15 fathoms, the first and second; at 150 fathoms, the successive maxima rise as they receito from the shore. The Charleston section presents, as a general feature, between 25 fathoms aud 200 fathoms four minima and threo

[^47]maxima. Within the cold wall minimum is a decided woarm belt, and probably fuicher in-shore is a cold one. The rise in the mean of the temperatures at 20 $a^{\text {nd }} 40$ fuhoms is 11° Fahrenheit, na nely, from 64° to 73°. The advantage of not relyirg a suface temperatures, or chose near the surface, where the distribution is so mnci b.as regular and marked tban below, will be recognised in all these results, and was early provided for in my instructions.
"The underlying cold water from the northers regions is as nlain in tio soathern sectionsas it was in the more northern. 400 fathoms verbically below the wamest water of the Gulf Stream, on the Cape Henlopen section, in August, 1846, the texiperature was 49° Fahrenheit, and in the same position off Cape Canaverll, ise vu pe, 1853 , it was $48 \frac{1}{\circ}^{\circ}$ The latitude corresponding to the fivis temycrature was bouri $37^{\circ} 0^{\circ}$, and to the last about $28^{\circ} 20^{\prime}$. Lient.. Charles H. Davis, in October, 1845, found a temperature of 40° at 1,000 fatlioms, in lat. $39^{\circ} 25^{\prime}$, ind long. $69^{\circ} 01^{\prime}$, and Lieut. George M. Bache 40° हt 2.160 fath $2 m s$, in lat. $34^{\circ} 13^{\prime}$, long: $68^{\circ} 05^{\prime}$. Lient. S. P. Lee, in August, 1847, found 37° below the Guif Stream, at the depth of 1,000 fathoms, in lat. $35^{\prime \prime} 26^{\prime}$, long. $73^{\circ} 12^{\prime}$; and agair 48° beyond the Gulf Strees, a, as the same depth, in lat. $30^{\circ} 10^{\prime}$, and long. $68^{\circ} 9^{\circ}$. Liext. Hichaxd Bache, in Maly, $1 \$ 48$, found a temperature of 42° at 1,003 fathoms, in lat. $35^{\circ} \circ 6^{\prime}$, and long. $74^{\circ} 7^{\prime}$, icelow the surface of the Gulf Stream. -
"The 解t that the side limits of the polar current recede from the shore as the depth in penses, is clearly marked on all the sections. Directly down below the mexinus acfice texperatiae we soon plunge into this cold current, the warmer water receding tow the shose and at 400 fathoms reach temperatures, the differences between whis, athe uncth aud south are of an order corresponding to the variations of the ocean watirs in difierent years and at different seasons. For example, at the uepth of 400 fathoms, on the Sandy Hook section, in 1846, vertically below the crest of the Gulf Stream the temprature was 51° Fahrenheit; on the Henlopen section, at the corresponding point, 51°; on the Cape Henry sectioa, $54 \frac{1^{\circ}}{}{ }^{\circ}$ in 1848 , on the Cape Heary section, $52_{2}{ }^{\circ}$; and on the Hatteras section, $52{ }^{\circ}$; in 1853, on the Hatteras section, 51°; and on the Cape Fear section, 54°; all the foregoing observations being maçs in July and August of the several years. In June, 1853, the temperature at the point and depth before noted, on the Charleston section, was 55°, and near Cape Florida, 14 miles E.N.E. from the light, was 51°, varying from 54° to 46° in the intermediato localities. The low temperature of 46° was observed on the Canaveral section. The temperature at 400 fathoms, near Cape Florida, is the same as was observed on the Sandy Honk section in July, 1846, viz., 48°.
"I remarked that these differences came within the annual changes near the surface. Not to complicate the examination with surface irregularities, if we compare the maximum temperatures nt 12 or 15 fathoms below the surface of the different sections, in the same year, we shall find, as a general rule, an increase of temperature in passing southward, as $81^{\circ}, 83^{\circ}, 82^{\circ}$, from the Sandy Hook to the Cape Henry section ; in 1846, 75 ${ }^{\circ}$, 76 ${ }^{\circ}, 77 \mathrm{k}^{\circ}$, 791_{8}°, from the Charleston secti Cape Canaveral. But in successive years we have for the highest temperature at 12 fathoms, on the Cape Henry section, higher than that of Hatteras: and the temperature in July, 1846, on the axis of the Gulf Stream, higher at Sanity Hook than in June, 1853, at Canaveral, by a degree and a half, and higher than Charleston by five and a half degrees. It is obvious that here an interesting field of inquiry opens, requiring careful research."*
(236.) The Cold Wall.-The separation between the warm, deep, blne waters of the Gulf Stream and the inner cold counter-current is sot atimes so well marked that "one end of a ship is sometimes scen in the one, and the thicr end in the other current." Aithough it does not follow that this line ars arcation is as distinct as Captain Maury says as above, yet a remarkable feat is been eliminated by the United States' Cuis t Survey so often quoted he: \quad _ wat the separation between the two currente, $\%$ well marked beneath the : and to the greatest depths, as

[^48]to have sion bet coast of diagran resting marked

It wa quent r the Tor marked overflop

The s that the tunity f forced v would a be the \mathbf{c} of the follow 1
(237.) southw counter in the f flow fro
(238.) surveys with. main st Mexical channel north. by whic as an ed has beet stayed i informe
(239.) this vici who is, vailing,

A intr westerly rent pre directio for from miles ou

Wher strongen 5 Stern Crysiou Curysfo The

- Seo

 p. 250 .\dagger silli
to hare obtained for it the title of "ae "Cold Wall," being, in fact, an upright division between them. This peculi, city has been found to exist almost aloug the whole coast of the United States, where the stream skirts the bank of soundings. Without diagrams the features cannot \mathbf{b} : made quite intelligible ; but the main fact, so interesting to the physical geogrıpher, is as above stated-that there appears to be a marked non-affinity between che waters flowing in opposite directions.
It was at first supposed tie cold well was cut off at Cape Hatteras, bnt the subsequent researches have qualified this notion. The cold water has been traced as far as the Tortugas. Off the Sombrero Kry the existence of the cold wall was strongly marked at depths varying from 70 to 100 fathoms, while everywhere the warm water overflows the cold wall, and reaches quite to the shore.
The shallowness of the stream in the Strait of Florida, connected with the fact that that the bottom falls off rapidly to the north and south, afforded an excellent opportunity for testing the question whether the cold water of the under polar current is forced upwards by the change in depth-as, should this be the case, the cold water would appear in the shallow part of the strait; and this has actually been found to be the case, as the warm furface water of the temperature of 80° and the cold water of the bottom of the temperature of 49° nearly approach each other. It does not follow by this that the "waters run up hill," as Has been stated.
(237.) COUNTER CURRENTS.-Besides the great arctic current which flows southward inside the stream to be described in the nezt section, there are some other counter currents on each side of the stream which require notice here. The appear in the first part of its course in the Gulf of Florida, where they have been known to flow from the earliest times, as has been alluded to in (200.), page 316.
(238.) The Counter Current along the Florida Reefs is marked on all the old surveys of these reefs, and is, during the summer months especially, frequently met with. It may be readily accounted for. On page 320 (216.) it will be seen that the maiu strength of the Gulf Stream, after passing the "Great Whirlpool" * of the Mexican Gulf, runs with the greatest swiftness past the coast of Cuba, and that the channel is by much the deepest close to the south side, slopes more gradually from the north. On the shallower water, but not within the reefs, this counter current runs, by which a vessel may with ease and knowledge work to westward. It may be taken as an eddy, aided by the trade wind, which may give it an additional impetus. It has been well elucidated by Lieutenant E. B. Hunt, Engineer, U.S.A., who, having stayed in the neighbourhood for some time, obtained some particulars from the wellinformed residents of these Kays. \dagger
(239.) Captain Geiger, who for some thirty years, has been observing the waters of this vicinity, most of that time having acted as a pilot off Kay West harbour, and who is, perhaps, better acquainted than any other person with the currents there prevailing, gives the following statement of facts :-
A atrong worth or north-east wind keeps the Gulf Stream back, and makes a westerly current near the shore. During June, July, and August, the westerly current prevails more than the easterly current from 5 to 15 miles from the reef.' The direction of the current depends nostly on the wind. The westerly current prevails for from one-third to two-fifths the entire time from year to year for from 2 to 15 miles outside the reef off the west. He has known it 25 to 30 miles off Sand Kay.
When the Gulf Stream is strongest on the Cuba shore, the westerly current is strongest on the acrib side; and when it is weakest along the Cuba shore, the Gulf Strecm ate cioso cisug the reef. He has found the westerly current as far up as Chysiort, but ret frequen $4 j$, and not broad or strong. This current broadens from arysfort to the we:ctrard, and continues about constant along its course.
The tide: on the two sides of the reof are about six hours apart on an average, but

[^49]set, on the whole, as much one way as the other over the reef. Sometimes there is a narrow easterly current for a mile from the reef, then a westerly current; and then the Gulf Stream. A considerable number of the Gulf traders know of, and make use of, this current in going westwardly. After northers the westerly current may be expected. Sometimes in crossing to Havana no Gulf Stream indications are found, and sometimes a westerly current is foand along the north shore of Cuba.

Nsiwithstanding Captain Geiger's long observation of these currents, he says that ie is quite unable to reduce them to rule, or in any way to know beforehand how the current will be found to set.
Captain Richardson, pilot of the United States' Coast Survey steamer Corwen, says:-"The westerly current appears irregularly chiefly in winter, but sometimes during the prevalence of the regular trades. It extends from 10 to 15 miles off from Sand Kay, and runs sometimes 2 miles per hour. It never prevails over the reef proper. It spreads further from the reef as it goes west. Off Indian Kay it sometimes extends 7 miles from the edge of the reef; at Bahia Honda, sometinips 10 miles; and at Sand Kay, from 10 to 15 miles. Some years (as in the winter of 1856-7) there was very little of this current. The Gulf Stream usually runs stronger on the Cuban side. In one case, in 1852, two vessels bound east passed Tortugas which separated about 100 miles in twenty-four hours, by one captain knowing this current and the channel, while the other kept in the westerly or counter current. The tide below the Quicksands and Tortugas sets flood N.N.E., and ebb S.S.E., differing from the Charts."
(240.) Bnt this counter current, also, is felt on the Cuban side sometimes, probably all the way from the Bahamas Old Channel. Of this we have several instances from the commuvications of Captain Livingston and others; the most singular of these, however, is that of Captain Laudon, of the brig Perry, on returning, in the latter part of November, 1827, from Ner Orleans to Liverpool. Captain Loudon had made the Iron Hills in Cuba; shorily after noon he tacked ship to the northward and westward about 8 or 9 miles cff shore; next day he kept beating to windward, as near to the middle of the strait as he could judge, and, without sighting the land on either side, the wind then blowing a fresh gale to the northward; and he continued beating in the same manner until about eight a.m. of the second day, when, by reckoning, he ought to have been near the Salt Kays; but obtaining a lunar observation, it showed, to his astonishment, his longitude to be to the westward of 83°. Supposing his observation to be erroneous, he took a second set of lunar distances, which gave a similar result. Still, however, doubtful, he stood on, and in a short time afterward gained soundings on the Tortugas Bank! The northerly gale had now abated, and he worked his vessel in, on soundings, to the northward of tisn Dry Tortugas. With a favourable wind he ran through the Tortugas Channel; iavi as light and baffling winds succeeded, he made for the stream as it became dusk, and with such wind got through the strait in the two following days, having, on his way, found the eurrent very rapid along the Martyrs.

Captain Loudon justly remarked, that so extraordinary a circumstance, of which he is positively certain, ought to be generally known.
" Masters of vessels from Vera Cruz, \&c., to Havana, often lengthen their voyage by keeping away too much to the southward after rounding the Dry Tortugas, fearful of being carried away to the eastward of Havana by the strength of the Florida Stream! Some bave fetched in about the Port of Honda, the Cock's Comb, and one vetsel even as low as Cape Antonio!"-Lieut. John Evans.
(241.) Off-set or Easterly Drift from the Gulf Stream, on the North and N.E. of the Bahamas, \&e.-The Gulf Stream about the Bahamas appears to have a drift or tendency to the eastward; and there is reason to believe that an offset of the stream, from without the Maternillo Bank, sets, if not generally, very frequently, to the eastward and S,E. With the usual set of the currents along the eastern range of the Bahama Islands, we are not accurately acquainted; but with a N.W. wind we have no doubt that it is in a S.E. direction. The Eur opa, a shing war, returning to Jamaica by this passage from a cruise off Harana, in 1787, steered

East on
have br
southw
Passag

serves,

ocean,
Islands
Our current the Bal westing by exce Dispatc by obse noon, w Observ and wo
" In five day was the 1819, in five day tion, 68
" Int had bee from th been pa in proce in Virgi in the 1 East.

Capte windwa Passage Anegad vessels are not
" In navigat general which b were ab grees, o
" The the nor a ship f allowed my pass havo w frequen the S.W Capte the nc shi), witno it 11 mile

East on the parallel of $30^{\circ} \mathrm{N}$. with a westerly wind, until the run was supposed to have brought her on the meridian of Turks' Islands, by which it was intended to pass southward; but an easter'y current hod swept her along as high as that of the Mona Passage. Captain Manderson, of the Royal Navy, who first noticed this event, observes, "If it were once ascertained that a current was common in that part of the ocean, might it not be favourable for vessels bound from Jamaica to the Caribbee Islands, especially in the summer months, during the prevalence of the sea breezes ?"

Our respected friend, Captain Livingston says:-"I have no doubt that there is a current, or rather off-set, from the Gulf Stream to windward, between Bermnda and the Bahamas. In the Brilliant we found ourselves retarded very much in making westing when running for the Hole in the Wall, one day, abont 30 miles of longitude, by excellent observations, the truth of which was confirmed by our land-fall. In the Dispatch, we got out of the gulf on the 13th of March, 1819, when we were at noon, by observation, in lat. $28^{\circ} 0^{\circ}$, long., by account, $79^{\circ} 12^{\prime}$; on the 20 th of March, at noon, we were, by meridian altitude, in lat. 29°. 48^{\prime}, and long., by account, $72^{\circ} 32^{\prime}$. Observations by sun and moon, a good lunar of three sights, altitudes and distances, and worked three times, gave $71^{\circ} \mathbf{1 8} 8^{\prime} \mathbf{3 0} 0^{\prime \prime}$.
"In the schooner Young Dasher, January, 1818, I spoke an American vessel, out five days from the Chesapeake, in lat. $24^{\circ} 40^{\prime}$, or thereabont; my longitude by lunars was then about $69^{\circ} 50^{\prime}$; his, by dead-reckoning, was $72^{\circ} 20^{\circ}$. On the 11 th of February, 1819, in lat. about $25^{\circ} 10^{\prime}$ N., we spoke the schooner Hester, Captain Lawrence, out five days from Bermuda, bound to Jamaica; his long. was $69^{\circ} 15^{\prime}$; ours, by observation, $68^{\circ} 39^{\prime}$.
" In the ship Fame, Captain J. W. Monteath, a good lunarian, assured me that he had been carried 3° and upwards to the castward, between the time of his departure from the American coast and making the Windward Passages; but this may have been partly occasioned bj the Gulf Stream, which he may have crossed too obliquely in proceeding from Norfolk." The Fame, above mentioned, was bound from Nortolk, in Virginia, to Kingston, Jamaica, in May, 1815; and in a run of thirteen days, until in the lat. of 29°, and long. 61°, it was found that the current had set the vessel $3^{\circ} 10^{\prime}$ East.

Captain Livingston adds, that "Captain Hall, in the brig Lowland Lase. passed to windward of Porto Rico, when he thought that he had run throufi ${ }^{2}$ Mona Passage. Captain Patterson, of the brig Clyde, as I ers informed, pas lis down the Anegada Passage, when he intended to have made the Mona. I have heard of two vessels falling to leeward, but both were commanded by men whose names, as seamen, are not entitled to notice.
"In addition to the above notices, I have been assured, by an intelligent Spanish navigator, that about thirty years since, vessels bound from Havana to Europe used generally to cut off 3° of longitude from their reckoning, on account of this set, which he said was considered then as certainly existing. At that time the charts were about a degree wrong, which would reduce the Spaniard's allowance to 2 degrees, or thereby.
"These notices tend to prove that an easterly off-set from the Gulf Stream sets to the northward of the Bahamas; of this I am so firmly convince : v. ? in charge of a ship from the Havanna, or even New Orleans, bound to Jaiaiaca, I should, if allowed to follow my own plan, run out the Strait of Florida, and attempt making my passage with the aid of this off-set. This is to be understood, in case I should not have westerly winds in the southern parallels ; for such winds are, I am told, mure frequent than formerly ; and I know that they are liy no means of rare occurrence on the S.W. of Cuba."

Captain Thomas Hamlin, in the brig Recovery, then in the Gulf Stream, was set to the in in pard 104 miles, in the twenty-four hours of the 20th March, 1820. The shi), whe at noon, $28^{\circ} 4^{\prime} \mathrm{N} ., 79^{\circ} 50^{\prime} \mathrm{W}$. To the north-eastward, on the next day, witno 't the stream, in lat. $29^{\circ} 30^{\prime}$, long. $77^{\circ} 25^{\prime}$, the current was found to have set only 11 miles North, but considerably more to the eastward.

On the 16th February, 1811, the ship Mars, under the same commander, was at
the back of the Maternillo Bank, and no northerly current was found; and nearly 2° further eastward, in $28^{\circ} 7^{\prime} \mathrm{N}$. , and $76^{\circ} 58^{\prime} \mathrm{W}$., the current in twenty-four houss had set $3^{\circ} \mathrm{S}$. and $14^{\circ} \mathrm{E}$. The ship was, therefore, evidently in the off-set froca the Gulf Stream.
(242.) The last remark is one that would be adduced by man- to prove that the surface of the Gulf Stream is roof-shaped, and that any floating body remaining inactive on it has a tendency to drift to its margins, especially to the eastward and south-eastward. Firce this sumption will be borne out by more exact observation, it is difficult in jude ast there certainly seems to be some ground for the opinion, as ite siges eopcially are marked by a larger collection of Gulf weed and other drift matter than are found in the centre. Again, there seems to be a tendency for vessels to be floated to the East and S.E. without their knowing it. It has been argued by Captain Maury that this may be owing to the effeet of the earth's rotation, which runs the current from under the ship, and as, as he says, the tendeney of a railway train going north or south, is to run off the rails to the eastward of its ronte. This has been made the subjsct of some its,n...ing experiments by M. Foucault and others; but we know so little thut it were fuitile to argue on it.
(242.) In the northern regions of the stream, when the cold upon land is in winter most intense, which is generally between December and March, heavy and continued gaics very frequently prevail, which commonly proceed from between the north and west, across the course of the stream, from Cape Hatteras until past George's Bunk, and bend its direction to the eastwurd; being aided at the same time by the discharge of the great bays and rivers, increased by the force of the wind blowing down them, and the constant supply of stream that passes along the coast of the Carolinas, the whole produces so strong a carrent to the eastward as to render it impossible for a ship to approach the coast until a change of wind commences.

During tho prevalence of a southerly or easterly wind, which is not so common here, it has been found that the current is forced close to, and in some parts upon, the edge of soundings; being thus bent iu between the wind and the shoal grounds near the shore, the breadth is greatly diminished, and the velocitr proportionably in creased. This circumstance has been in particular observed from about the longitude of Block lsland, along the edge of the Nantueket Bank, thence beyond George's Bank, and also along the coasts of Georgia and part of South Carolina. In the first instance, that the southerly winds forced the current to the edge of soundings, where it then ran from $1 \frac{1}{5}$ to 2 knots; and in the latter instance, that the easterly wind forced the current upon soundings. With West and N.W. winds, the stream would be removed some leagues further off.

From what has been said, it is clear that the eddies abont the edges of the stream must vary according to the circumstances abope explained. Along these edges, but more particularly clong the nuter edge, there is generally a current in a different direction, which is secelersted by the wind in proportion to its strength, blowing contrary to the stream, and retarded, or perhaps altogether obstructed, by the wind blowing in the direction of the stream. In the latter case the limits of the stream will be extended.
(243.) Physical grography of 1 he Channel of the Gulf Stream.-The peculiar and dangerous character of the shores of the Gulf, end the necessity which existed for the establishment of some merna of averting the mischief it annually occasioned, led to a minute examinatic 7 of 1. . Seatures so gcologically and geographically interesting, which has been mad ractically useful by the erection of a fine line of beacons and the necessary lighth upon the Florida Reefs.

Professor Agassiz, who investigated thes subject, has shown that the Florida Kays and Reefs are essentially of corr formation in various stages of existence. At Kay West, the basis of this of this is shown to be a coarse oolitic rock with cross stratifications, and dipping at various angles in different directions. The formation of coral upon this rock extends not only over the Kays, but also to the main laud of Florida, and by a careful process of inquiry and reasoning it may be inferred that a very different order of thingse existed at ne very remote period of the world's history.
nearly 2° nurs had the Gulf

We have a peninsula-a narro, flat strip of land, projecting for about five degrees from the main land, between the Atlantic ocean and the Gulf of Mexico, and forming an effective barrier between the waters of the two seas, which otherwise, even by the change if a few feet in the relative level of the intervening peninsula, would communicate teely with one another; and this peninsula we now know to have been added to the continent, step by step, in a southerly direction.

We know that the time cannot be far behind us when the present reef, with its few kays, did not exist, and when the channel, therefore, was broader, and the Gulf Stream flowed directly along the main range of kays. We know, further, that at some carlier period the kays themselves were not yet formed, and that the channel between Cuba and Florida was wider still, washing freely over the grounds now known as the mud flats, between the kays and the main land, and that there was then nothing to impede a free communication between the Gulf of Mexico and the Atlantic ocean.

If it is true that the Gulf Stream and the south-west winds have an influence in determining the course of the isothermal lines upon the two sides of the Atlantic, and of rasing beyond their normal altitude the mean annual temperatures of northwest Diurope, then we may look to the physical changes which have occurred on the south-eastern extremity of the North American continent for the cause, or at least a partial cause, of those changes of temperature which have taken place in the beginning of the present period, in those very north-western portions of Europe which are now so much warmer than the corresponding latitudes on the American continent, and which, soon after the accumulation of the glacial drift, had as low mean annual temperatures as the coasts of Labrador, Nova Scotia, and New England in our day.

The present condition of the Florida country then is this;-On the outer edge we have "the reef", a submerged line of danger to the navigator, which rises nearly to the surface of the water, on which every variety of coral life is developed. It follows the line of Kays within it in a perfectly parallel curve, and forms the boundary to the Ship Channel inside it for hundreds of miles. Upon this line and space are small patches which rise above the surface, of course of dead coral, and upon these is gradually heaped the débris of the reef, in the from of sand and broken coral till it attains a permanent level above the surface. Within this reef is a channel which has a depth of from 2 to 7 and 8 fathoms, which, with care and some knowledge, may be navigated, and which has various openings to it through the reef.

These Kays consist generally of coral boulders and the fragments of coral and shells heaped up by the action of the waves, and which have become agglutinated by some ob-cure process, till they become flrm land, not by the upheaval of old coral growths, but by the action of a stormy sea and tremendous waves. They are generally level, and it is only at times that the water rises sufficiently to occount for their elevation. We have noticed on page - an instance long recorded of an extraordinary rise in the waters.
In the year 1846, the water rose eight and a half feet above high-water mark at Key Vacas. Key West was entirely inundated during the same gale; and though that island is somewhat protected by the reef, even at present the rushes, driven upon it by the flood, may be seen among the trees and bushes, at a beight almost equal to its loftiest summit. In 1841 the water rose ten feet alore high-water mark at Cape Romaine, on the western shore of the peninsula.

This brief notice must suffice on this head. Proceeding still further northward, we find an important result of the operation of the Gulf Stream, in the formation of the range of the Sea Islands of Georgia, so famous for the growth of its peculiar cotton. These low alluvial deposits are the results of gradual accretion still going on, which affords a genial soil for the cotton plant, while the tepid waters of the Gulf Stream, which rush past them, tempers the easterly winds which blow on this scaboard, and add their important influences to the peculiar growth of this cotton plant.
(244.) Although its shores afford many living wonders, the bed of the Gulf Stream is still more the subject o! marvel. The bottom has been brought up in considerable quantities from the greatest depths, and has been found to consist almost entirely of
minute animal forms, covered with or having skeletons of a salearoncs or siliceous riature. The following is the account given of them by Mr. L. F. Yourtales, U.S. Coast Survey; they were procured by Lieutenant Craven, U.S. Navy, as before stated:-

Lat. $26^{\circ} 12^{\prime}$, long. $79^{\circ} 54^{\prime}$ (off Hillsborough Inlet), depth 500 fathoms. This specimen consists almost entirely of foraminifere with a very small proportion of quartzose sand, estimated at about 10 per cent. in bulk. Globigerina rubra forms the mass, with a pretty large proportion of Rotalina cultrata, Orbulina universa, and Textularia turbo. It also contains minute gasteropods (natica hassa?) and fragments of the shell of a crab. The whole is of a chalky white colour, only a few of the globigering being pink.

Lat. $27^{\circ} 37^{\prime}$, long. $79^{\circ} 19^{\prime}$, depth 600 fathoms; has the appearance of fine white mud, mixed with yellow sand. It is composed entirely of foraminiferæ and their fragments, in the form of a fine powder. No silex.

Lat. $28^{\circ} 24^{\prime}$, long. $79^{\circ} 13^{\prime}$ (on the outer edge of the stream off Cape Canaveral), depth 1,050 fathoms. Composed of foraminiferw; silicious sand in almost imperceptible quantity. A small portion taken from the lower part of the specimen, after shaking it with water, only showed one or two per cent. of silicious sand after dissolution in acid. Globigerina rubra (white, yellow, and pink-the two first colours predominant) forms the greater bulk. Also, Orbulina universa, Rotalina cultrata, Bayleyi and Ehrenbergii. Of other animal remains there were fonnd pieces of coral (cariophillia-? -some white and worn; and some brown, and in better condition), a piece of a large Gasteropod, old; and worn pieces of Anatifa, and very small pteropods (spiratella).

Lat. $29^{\circ} 48^{\prime} 0^{\prime \prime}$, long. $79^{\circ} 31^{\prime} 0^{\prime \prime}$ (in the strength of the stream off St. Augustin), depth 560 fathoms. Globigerina, rubra and Rotalina cultrata, in about equal proportions. No quartzose sand or other material.

Lat. $29^{\circ} 48^{\prime} 0^{\prime \prime}$, long. $79^{\circ} 17^{\prime} 0^{\prime \prime}$, depth 450 fathoms. Globigerina, Orbulinae, and Rotaline (R. cultrata). No quartzose sand. It contains, also, considerable numbers of very delicate shells of pteropod molluscs, belonging to the genera Hyalæa, Spirialis, and Spiratella ; also, small picees of coral.
Lat. $31^{\circ} 32^{\prime}$, long. $78^{\circ} 20^{\prime}$ (in the centre of the stream off Savannah), depth $\mathbf{6 0 0}$ fathoms. Consists in foraminifere and small shells, and in fragments of shells and corals. The foraminifore are chifly larger specimens of a kind of Rotalina, of a rough ard heavy appearance. The other kinds found among them present also a similar appearance. The fragments of shells and corals are worn and rounded, and seem to indicate an agitation of the water near the bottom.

The scientific names attached to these minute creatures can be explained in other works. But some interesting questions arise on this unexpected discovery. The first is, did these creatures live and die in their present position ? or were they living on the surface, and when dead have fallen to the bottom? At first it was considered that the latter was the true solution of the difficulty, but later researches have made it almost certain that their natural locality is in these vast depths, and that here they grow and accumulate, perhaps forming vast deposits similar to those of our chalk and marl formations, which, as it is well known consist for the most part of the calcareous coverings of microscopic animalculæ. In the changes which have occurred in the geological history of the crust of our earth, there are but few animals which have passed through several epochs. But the Foraminifera, the Globigerina, so abundantly found as above, is also most abundantly met with fossilised in the chalk. They are met with in this apparently light-brown mud brought up by the sounding machine, of all dimensions, from less than one-thousandth of an inch in diameter up to more than one-sixteenth of an inch. They are very beautiful objects in the microscope, and as quoted above, are found to be coloured pink, \&c., showing that light does penetrate to these vast depths, and they also contain the animal tissucs, which demonstrate that they are, or have been, recently alive. This latter point was not belicved to be possible beyond 300 or 400 fathoms a few years since, but the important discovery of live star-fish brought up from the depth of 1260 fathoms, between Greenland and

Icelans also br by Lie
(245 and up peratu ditions betwee for the tock, is an exal same
"Th from g (taking depths Blanc.
"A hithert mnddy mud a minnte or smal quantit
" Wh
or reddi
" Ful animal carbona
" Wh
scope, minute
" Mas
chloric
the dep
"The
referred of the d estimate certainl the who Globrigen Forami an inch sixtieth skeleton head.
"The
not mor
"The matter a with sili

These
yet havi
together
siliceous ales, U.S. as before his speciquartzose pass, with extularia the shell bigerinø
hite mud, ragments, naveral), mpercepnen, after ter dissoth colours cultrata, 8 of coral dition), a pteropods

Augustin),

 propor-lina, and numbers Spirialis,

epth 600

 hells and lina, of a nt also a nded, and
in other

 The first ing on the lered that e made it here they chalk and calcareous ed in the hich have pundantly They are achine, of more than e , and as penetrate monstrate ved to be seovery of hland andIceland (as quoted on page 261) ahow this opinion to be unfounded. A.toorm was also brought up from 725 fathoms at 180 miles E.N.E. of Trinity Bay, Newfoundland, by Lieutenant Dayman, in 1857.
(245.) It is shown above that the bottom at the greater depthe of 1,000 fathoma and upwards consisted almost exclusively of these minute organisms, and that the temperature at these depths is about 40° Fahrenheit. The same circumstances and conditions are found to exist in a very remote part of the ocean; that above alluded to, between the British Isles, Iceland, and Greenland. In the operations of sounding for the Atlantic Telegraph Cable by Lieutenant Dayman, in 1857, and Sir L. M'Clintock, in 1860, the bottom was plentifully brought up from these high latitudes. In an examination, by Professor Huxley, of these deposits, he found them almost in the same condition as they had been found by Mr. Pourtales in the Gulf Stream.
"The soundings which present most attraction to the naturalist are those obtained from great depths. Those which I have examined range from 1,700 to 2,400 fathoms (taking the depths marked upon the labels of the bottles), that is to say, from depths equivalent to heights between that of the Peak of Teneriffe and that of Mont Blanc.
"A singular uniformity of character pervades these soundings so far as I have hitherto gone. As they lie undisturbed they form an excessively fine, light brown, muddy sediment at the bottom of the bottles in which they are preserved; but in this mud a certain slight grittiness can be detected, arising from the intermixture of minnte hard particles (hardly any exceeding 1-50th of an inch in diameter), in larger or smaller. proportions, and, as might be expected, always existing in much greater quantity towards the bottom of the deposit.
"When a little of this mud is taken out, and thoroughly dried, it leecomes white or reddish white, and (though less white) closely resembles very fine chalk.
"Fully nine tenths, as I imagine, by weight, of this deposit consists of minute animal organisms, called Foraminifera, provided with thick skeletons composed of carbonate of lime.
"When a little of the mud is diluted with water, and spread out under the microscope, the first thing that strikes the eye is the immense number of exceedingly minute granules and fragments which strew the field of vision.
"Many of these particles have a brownish colour, and are insoluble in strong hydrochloric and nitric acids; many are simply fragments of the organisms contained in the deposit, and siliceous or calcareous, as the case may be.
"The comparatively heavy and solid calcareous organisms to which I have above referred, are those which, by their larger forms, are the chief source of the grittiness of the deposit. They are nearly opaque, and appear white by reflected light. I have estimated their proportion as nine-tenths of the whole; of these nine-tenths I am certainly under the mark in saying, that eight and a half tenths, or 85 per cent. of the whole, consist of one genus, and, as I believe only one species of ForaminiferaGlobigerina, in all its various and multiform stages of growth. I have traced this, Foraminifer through a complete series of gradations from less than one thousandth of an inch in diameter, when it consists of only one or two cells, up to more than onesixtieth of an inch; but, except for the marked peculiarties in the structure of its skeleton, I should hardly have ventared to include all its protean varieties under one head.
"The other flve per cent. of the calcareous organisms are Foraminifera, of, at most, not more than four or five species.
"The remaining five per cent. of the whole deposit consist partly of the granular matter above mentioned, partly of animal and partly of vegetable organisms, provided with silicecus skeletons and envelopes."

These two regions, so remote from each other, under such opposite climates, and yet having such remarkable indentity in some particulars, are thus brought here together to suggest to the sailor, who passes unheedingly over these microscopic and
hitherto hidden worlds, a theme of wonder and enquiry, npon wheh volumes may be composed.
(246.) There is another singular point of resemblance, too, which would lead to the supposition that our theories of the internal heat of the globe, of the law of heat at great depths in the ocean, or that of the snb-surface circulation, may be at fault. It has been shown that 1,000 fathoms beneath the surface of the Gulf Stream, with a temperature of 83° and upwards, the water at its bed is not above 40°. Lieutenant Dayman found the temperature at 1,000 fathoms, in latitude $52^{\circ} \mathrm{N}$., longitude $30^{\circ} \mathrm{W}$., to be $40^{\circ} \cdot 8$; and in latitude $51^{\circ} \mathrm{N}$., longitude 40°, at the same depth, it was $32^{\circ} \cdot 7$, the surface temperature being $54^{\circ} \cdot 5$. The bed of the ocean, the habitation of the minute animaleule has the same climute in both instances.

These considerations must conclude this topie.

THE GULF STREAM SOUTH OF THE NEWFOUNDLAND BANK8.

(247.) The Gulf Stream, in the course described, has flowed with a gradually decreasing rate and temperature, and with a well defined north-western margin, the "cold wall," It brings its tropical character almost unimpaired op to the Nantueket Banks. These are almost the first outlying obstacles it encounters in its onward course, and their fosition and character would lead to the sapposition, that their existence was in some degree owing to the matter carried northward by the Gulf Stream, and that transported by the arctic current from the north-eastward, which here meet and pass each other on opposite courses. Tho very peculiar configuration of the Cape Cod peninsula will point to current-action in some former geologic era for its character.

The Gulf Stream appears to be diverted to the E.N.E. by the obstruction presented by the Nantucket Banks, and it then bears away past the banks which front Nova Footia and Newfoundland, skirting the lower edge of the Grand Banks. The main body of the stream still proceeds with considerable velocity from 28 to 16 miles per day, and its southern limit is gradually lost in the quiet water or varying drifts of the Sargasso Sea.
(248.) The northorly edge of the stream, if such it can be called, between the meridians of 70° and $40^{\circ} \mathrm{W}$. presents a very singular aspect, as it seems to be a perpetual struggle between the icy waters of the arctic regions and these tepid waters of the tropics. They here interlace and intersect enoh other in the most extraordinary way, "in the manner of the fingers of the clasped hands," and no definite limit can be assigned at any time for cither of these streams. It would be impossiblo by mere words to explain the entanglement of these two currents. The Thermal Charts of Maury will be the best exemplification, and the confusion they show in this part will tell how hopeless it must be to reduee them to an exact system.
The late respected and eminent Dr. Seoresby has left us some observations on this point, partly derived from his own experience and partly from remarks supplied to him by Captain Jas. Delano. They were read by him at Hull, in 1853, and as they bear upon our sulyject we here repeat a portion of them. It may be premised that Dr. Scoresby divides the ocean traversed, as usual in tho voyage between the English Channel and Long Island, U.S., into 6 seetions of 10° of longitude, the first three of which, from longitude 12° to long. 42° W., exhibit a striking uniformity of chacactor as regards the suiface temperature.
" In the fourth reotion, 42° to $52^{\circ} \mathrm{W}$., however, the indications respectively of the two great currents of the North Atlantic become striking and characteristio. Boyona the meridian of 42°, where the cold ourrent frm the north becomes first decided, an increase of its prevalency, gradually becoming more and more conspicuous, is observed. Thus in the two degrees' space, from 420 te $44^{\circ} \mathrm{W}$., the somowhat low temperature of 44° was only observed in one out of thirteen passages; but in the noxt two degrees a like moderate fall of tempersture (about 7° below the mean) occurred in three or four of the passages; in the next c a idional stripe, cold water was met with in cipht of the panenges (four or f. Fallinf from 10° to 10^{\prime} below the
mean)
24° bel with in
" W
tropical an occa warm to be in current passage the nex markod polar of the
"It i the east ice from eurrent

The
by pecu scendin space of The pre by the with a
"But in the 8 tions, in
"In sudden tude 57 found t at noon tude 57 W.N.W found te ehange 46°; bu hours! wards,

With the first longitu peared
"The analyse materia appeary diseussi ance in predom ward at
ad to the heat at at fault. Stream, sove 40°. $52^{\circ} \mathrm{N}$., the same ocean, et Banks. urse, and ence was , and that and pass Cape Có racter.
presented pont Nova The main miles per ifts of the ween the be a perid waters extraordilimit can by mere Charts of part will
on this upplied to d as they nised that e Engliah t three of chazactor
ely of the istic. Bet decided, icuous, is owhat low ut in the the mean) old water below the
mean) ; in the next, the cold water occurred in nine or ten passages (dx falling 10° to 24° below the mean) ; in the next stripe, longitude 50° to 52° W., the cold water met with in eight passages (five falling 12° to 22° below the uncan).
" Within the same section, 42° to $52^{\circ} \mathrm{W}$, very perceptible marks of an ascending tropical current occurred, yielding, in alternations with the cold water from the north, an occasional wermth of 66° to 68°. The prevalency, however, of the occurrence of warm water in this position of the Atlantic appears from the observations tabulated to be in reverse order (when sailing westward from longitude 42°) to that of the cold current; the first two-degree stripe presenting a rise of from 63° to 68° in six passages; the next, a rise of similar extent in five; the next, a smaller rise in four; the next, less marked in three ; and the last, 50° to $52^{\circ} \mathrm{W}$., in four, but still less marked. Hence from the observations it appeared, that the greatest prevalence of the polar currents (betwixt 42° and $62^{\circ} \mathrm{W}$.) is within the meridians of 46°, and 52°, and of the warmer current in 42° to $46^{\circ} \mathrm{W}$.
" It is within this meridional section mainly, corresponding in its central part with the eastern edge of the great bank of Newfoundland, in which the ioebergs and drift ice from the north are usually met with ; so that the prevalence of a descending polar current obtains actual demonstration,

The fifth section, reaching from 52° to $62^{\circ} \mathrm{W}$., is found to be equally characterised by peculiar phenomnna as the one preceding it. The general prevalence of the descending polar current is shown by the minimum temporature of each moridional space of 2°, ranging betwixt 32° and 42°, with a mean of the five minima of $37^{\circ} 2$. The prevalence of an ascending ourrent from south-westward is, in like manner, shown by the occurrence of a maximum surface temperature ranging betwixt 63° and 74°, with a mean of the five maxima of $68^{\circ} \cdot 9$.
"But the characteristic features of this fifth deciniate section were found to consist in the suddenness of the changes of the surface temperature and the various alternations, indicative of singular interlacings of warm and cold woter.
"In a passage in the Patrick Henry, in May, 1844, made by Dr. Scoresby, these sudden and alternating ohanges were remarkably prevalent. Thus when in longitude $57^{\circ} 0^{\prime}$ W. (lat. $41^{\circ} 31^{\prime}$ N.) the surface temperature, et 8 a.m. of May 17 th, wis found to be $60^{\circ} \cdot 5$; but after sailing W.N.W. (true) 10 miles, it was found to be 50°, at noon 16 miles further on the same course 46°. At $2 \mathrm{p} . \mathrm{m}$. of the same day, longitude $57^{\circ} 55^{\prime}$ W. the see was atill at 46°; but at 4 p.m., after 15 miles' sai'ing W.N.W., it had risen to 57°, and in 15 miles further in the same direction it was found to have fallen to 42° ! The next day, May 18th, presented further remarkable ohanges. At 8 a.m., longitude $59{ }^{\circ} 52^{\prime}$, latitude $42^{\circ} 8^{\prime}$ N., the surface temperature wam 46°; but at 10 a.m., 15 milos W. \& S., it had risen to 61°, a change of 15° in two hours ! At midnight, again, of the 10th-20th the sea was at 50°; four hours afterwarde, 26 miles to the S.W. by W., it was 63°.

Within this section the oold or polar current was found to be chiefly prevalent in the first and last of the two-degree apaces, but the most most no in the last, that is, in longitude 60° to $62^{\circ} \mathrm{W} . ;$ and the most prevalent examples of the Gulf Stream appeared within the meridians of 58° and 62°. W.
"The relations of the polar current and Culf Stream, as thus indicated by the analyses of thirteen transatlantic passagos generally, change, it should be observed, materially with the seasons of the year. Thus the descending polar current, which appears so prevalont within the western half of the belt of waters referred to in the discussion of the whole of the voyages, is found to be of somparative small importance in the summer and autumn passages, whilst the Gulf Stream is then the most predominant. Henee the shifting of the upper margin of the Guif Stream northward at these seasons, as popularly understoon, obtains very decided confirmation."*

[^50](249.) It has been stated, from the Information of Americancoasters, that the northern edge of the stream exteads to the latitude of $41^{\circ} 20^{\prime}$ or $41^{\circ} 30^{\prime}$, on the meridian of Sable Island ($60^{\circ} \mathrm{W}$.) ; but this assertion has been controverted by others, who have averred that its northern edge never ascends beyond the parallel of 40°. The latter is erroneous ; for many instances prove the contrary. Colonel Williams, in his "Thermometrical Navigation" (Philadelphia, 1799), states that the whirlpools of the eddy on the northers edge of the stream have been seen in lat $41^{\circ} 57^{\prime}$, long. $65^{\circ} 1^{\prime}$. He also observed great quantitios of weed, sapposed to be on the northern edge of the stream, in lat. $41^{\circ} 53^{\circ}$. long. $15^{\circ} 33^{\prime}$ It has subsequently been ascertained by Lieut. Charles Hare, R.N., that on the meridian of $57^{\circ} \mathrm{W}$. in the summer season (the rainy season of the Went Indies), the northern edge of the stream ranges np to $42 \frac{z}{2}^{\circ} \mathrm{N}$. ; and even in the winter months to above $42^{\circ} \mathrm{N}$.
(250.) There is one special feature in the irregularity of the temperature sonth of the Grand Bank: it is, that the arctic stream seems to set farther to the south by 2° or 3° on the meridian of the Bank, or 48° to 50° W., than it does either east or re:st of it. Thim is doubtless owing to the effect of the Bank in raising the cold lower stratum to the surface, and rendering it cooler than it would otherwise be from the latitude, and also that the southward current may be somewhat stronger here than it is on either side of it.

The ice which is annually drifted from Baffin's Bay, Greenland, and Labrador passes over the Bank, perhaps, in the greatest quantity in this tongue of cold water, which protrudes so far in to the Gulf Stream, and which is such a terror to navigaiion in this part of the route-a danger not diminished by the constant haze which overhangs it from the unequal temperature of the warm sea and the cool atmosphere.
(251.) Referring to the peculiar character of the land and shores in the neighbourbourhood, the opinion was alluded to in (247.), page 238, which made the existence and formation of the banks of Nantucket and Nova Scotia, as owing to the transporting influences of the Gulf Stream, bringing to the northward the déhris of the shores and bottom of the ocean which it passes in its course, and depositing the matter when it encounters the adverse aretic current from the northward. The eame argument may be held as to the Newfoundland. Banks, which probably owe a portion of their formation to the same origin. Besides this, there can be no doubt but that the icebergs which come down from the north in such enormous quantities in the spring and early summer bring large quantities of earth and rocks from the land where they are formed, and here deposit them as they melt. It might, therefore, be expected that these banks, in the quality of the boitom, will have a mixture both of tropical and of polar additions-a question of great interest to the goologist. But there is another opinion which may also be partially correct: it is, that they are natural plateaux upon which the marine deposits are laid and increase their elevation.
M. Beautemps-Beaupre (son of the famous hydrographer) procured fragments of the rock at the bottom in lat $40^{\circ} 16^{\prime}, 50^{\circ} 35^{\prime} \mathrm{W}$., 37 fathoms-a piece of rock containing shells and broken shells. It was brought by Captain Miliner, of the ship La Jeune Agathe, in June 6, 1844. In June, 1846, the same commander procured other and similar picees in $45^{\circ} 18^{\prime} \mathrm{N}$., long. $6^{\circ} 31^{\prime}$ W., in 38 fathoms; and again, in 1850 , in $45^{\circ} 15^{\prime}$ N., long. $56^{\circ} 8^{\prime} \mathrm{W}$., in 38 fathoms. He never found this rock but in this neighbourhood. It consisted of layers of a grey calcareous sandy stone, eontaining shells similar to the tertiary deposits on the sub-Apalachian hills of the Southern States; and, according to M. Elie do Beaumont, it verifles a conjecture of his, that these banks are but a submarine prolongation of the tertiary plateaux of Georgia, the Carolinas, and Maryland.*

A special section of this important subject in connection with transatlantic navigation is given hereafter.

[^51](25s
(250.) We are indebted to Captain Irminger, of the Royal Danish Navy, for a collection of obseryations and experiments on the currents of high northern latitudes, whieh he has published in a work in the Danish language. These observations stand aimost alone, and have still farther increased our knowledge of this interenting braneh of metairology. He hes also weil explained how it is that Iceland is in-
habitable, and possessed of a comparatively mild climate to what would be argued from its latitude and position. It is to the effeet of the warm waters brought to the East of the Newfoundland Banks by the Gulf Stream, which are drifted as far north and west as the west side of Iceland by the prevalent winds as before described.
(257.) Some of the data supplied to Commodore Irminger were collected by Captains Holböll and Ulrich, and others, in the voyages between Denmark and Ieeland, Greenland, \&e., in various men of war. Between Shetland and Iceland, the mean of the observations give a daily rate of current of 2.4 miles to N. 62° E.; but it was very irregular. It was strongest near the Shotlands, 4.7 miles per day N. 72° E.; and Iceland, $3 \cdot 1$ miles N. $47^{\circ} \mathrm{E}$. true. A northerly current was also found to run from $8 \cdot 2$ to 5 miles per day between Iceland and Greenland in April and September.

As regards the temperature, which is a sure test of the origin of the stream, it is found that between the meridian of Fair Island and $30^{\circ} \mathrm{W}$. there is no great variation in temperature," but the ocean to the westward of $30^{\circ} \mathrm{W}$. is found to increase in coldness as Greenland is approached. Again, it is found that the temperature of the ocean in spring is as high at South Iceland as it is at the Shetlands and Froroes, although lying several degrees more north. The observations for temperature between Iceland and Shetland show that there are stripes of warmer and cooler water, with a difference of temperature of $2^{\circ} \cdot 5$ to $4^{\circ} .5$ Fahrenheit, in a similar way to those noticed in (248.), page 339. These lines follow the direction of the current, but are not eonstant in their position.
The current runs in a north-westerly direction from long. $18^{\circ} \mathrm{W}$. toward Reikianess, the south-west cape of Iceland. Commodore Irminger found it in a mean of five days in May and June, 1846, to run in a N. 15° W. direction, at a mean rate of 4.3 miles per day. This northerly current on the west side of Ieland is well known to the fishermen, and in evidence of it the temperature of the water in Reikiavik Harbour nay be eited. In May and June it has been found to be $47^{\circ} 4$; in July, $63^{\circ} \cdot 3$; and in August, $51^{\circ} 6$; while on the coast of Greenland abreast of it the pean varies between 28° and 34° Fahrenheit. This warm current runs still farther northward till it is stopped by the southern drift, which sots south-westward from Spitzbergen down towards the sonth coast of Greenland and Davis Strait, and which approaches the N.W. point of Iceland.
(258.) There is, as has been stated, abundant proof that tropical products reach the shores of Portugal and Western Europe. But they are also found mueh to the northward. Several species of Mimosa (mimosa scandens, \&re.) are found on the coasts of Norway, the Faroe Islands, Ieeland, \&e., ameng other drift-wood frequently thrown ashore. In some cases this drift-wood is very abundant and serviceable to the inhabitants for fuel. On the Faroe Islands one place (Kirkeboe) used to afford the owner an annual revenue of 50 or 60 dollars, which, however, was diminishing. The wood seems to be fir, probably from America. One trunk was $5 \frac{1}{f}$ feet in circumference. On the north coast of Izcland very eonsiderable quantities are found, ameng which is larch, thought to be cedar by the inhabitants. This probably comes from Siberia.
(250.) As a general summary, then, it may be said tinat the anti-trades drift the waters brought by the Gult Stream to the meridian of the Newfoundland Banks in a north-westerly, westerly, and northerly direction, at a moderato rate, towards tho coasts of Portugal, the British Isles, Norway, and to Iceland. The further progress of this drift on to the arctic basin, around which it circulates, and finally emerges around the coast of Greenland, and thence down Labrador, and finally is lost in tho Gulf Stream as before explained. \dagger The final evidence of its action which will be here adduced is the drift of bottles, to which we have before referred (131.).

[^52]e argued ght to the far north bed.
collected Denmark land and : miles to $4 \cdot 7$ miles rrent was enland in
ream, it is eat variaacrease in re of the 1 Færoes, e between er, with a se noticed e not con-
d Reikiamean of an rate of ell known Reikiavik ; in July, the mean aer northom Spitznd which
reach the the north8 coasts of y thrown o the inffford the ing. The ircumford, among mes from
drift the anks in a fards the progress emerges st in tho h will be
(260.) Bottles.-The following statement of the drift of bottles is derived from Captain Becher's Bottle Chart. Many of the particulars contained in it have been given in our former editions, but they are here given entire, in order that an estimate may be formed of the strength of the current in which they have drifted. It may be premised that the length of their courses is given in the shortest or direct distance. It therefore underrates their progress, as they have doabtless not generally pursued the shortest track to their destination:-

Ship.	Signature.	Where left.			Where found.			
		Year.	$\begin{aligned} & \text { Lat. } \\ & \text { N. } \end{aligned}$	Long.				
							M.	M. ${ }^{\text {' }}$
Osprey	McGill....	1822	$49 \cdot 6$	12.5	Wales	36	270	7.5
Wallace	Robertson.	1835	52.2	15.0	Ushant	130	450	4.2
Tyne	R. Hope . .	1834	$46 \cdot 6$	16.9	Devon	71	600	8.4
Kent	W. L. . . .	1836	$50 \cdot 3$	$19 \cdot 0$	Boulogne	126	890	7.0
Niger	Merret	1839	$48 \cdot 2$	18.9	Quiberon	177	700	4.5
Bolivar		1840	$46 \cdot 9$	$18 \cdot 6$	France	94	700	7.0
Mary	Lock	1832	44.2	18.0	France	310	700	2.2
Ibbetson	of Stockton	1826	55.5	18.3	Killala	59	300	5.0
President	Scott	1836	48.5	$19 \cdot 6$	France	128	650	$4 \cdot 1$
Virginia		1838	42.2	$19 \cdot 3$	Cork	45	750	7.0
Persian	Mallard	1834	47.1	$20 \cdot 4$	Ireland	113	600	$4 \cdot 1$
Albert	Robertson	1822	47.3	21.9	Somerset	186	820	$4 \cdot 3$
Ardent	Duncan	1824	57.0	24.5	Lewis	1.1	610	$3 \cdot 6$
Superior	Munson	1842	53.8	24.0	Dunnet Head	175	800	$5 \cdot 0$
Enterprise		1833	$45 \cdot 1$	$24 \cdot 3$	France	316	980	$3 \cdot 1$
Mary	Godfrey	1840	47.3	27.4	Clare I.	111	850	$7 \cdot 7$
Orbit	Boot .	1811	46.8	$27 \cdot 0$	Ireland	330	860	$2 \cdot 7$
Romulus	Crawford. .	1819	57.8	30.7	Shetland	110	1000	$9 \cdot 1$
Helen	Butman	1834	$47 \cdot 3$	$33 \cdot 6$	Scilly	179	1150	6.4
Sandwich	Squire'....	1821	$50 \cdot 3$	$36 \cdot 4$	Hebrides	184	1100	6.3
J. Cropper	Marshall..	1824	$48 \cdot 3$	$38 \cdot 1$	Mounts Bay	398	1230	$2 \cdot 4$
Seine Britio		1811	$50 \cdot 7$ 18	$40 \cdot 3$	Kerry	274	1130	$4 \cdot 5$
British Qucen	Hamilton	1838	$43 \cdot 9$	$44 \cdot 5$	Newport	66	1709	25•7
Royal Union	Grant	1822	$48 \cdot 2$	45.2	Scilly	75	1450	$19 \cdot 9$
Elizabeth	J. E.	1819	47.0	49.2	Rathlin Islo	311	1600	6.0
Victoria		1834	45.0	50.0	Lands End	215	1760	8.2
Alexander	Parry	1818	$69 \cdot 1$	$52 \cdot 3$	Staffa.	437	2400	$5 \cdot 5$
Alexander	Parry	1818	62.0	54.0	Donegal	416	2600	6.2
Newcastle	Napier.	1810	$38 \cdot 9$	64.0	Ireland	356	2700	
J. Esdaile ...	King	1821	$36 \cdot 9$	71.8	Lancashire	495	3000	7.0
R. de Holland. .	Groeneld. .	1850	46.0	20.5	Glandore	345	680	$2 \cdot 0$
Jersy	Cook	1846	50.6	20.5	Brest	50	480	8.0
	Johnstone .	1847	47.3	21.7	Brest	206	700	.
Delia	Adey ..	1842	50.0	26.0	Ireland	138	60	$4 \cdot 6$
Normandie	Spalding	1844	57.1	33.2	Norway	228	1400	$0 \cdot 1$
Graham	Beach	1847	$51 \cdot 1$	45.5	Barnstaple	233	1560	6.7

These bottles taken from Captain Becher's list in the "Nautical Magarine," 1852, have been selected from those which have made the ordinary dritt. The chart which shows their direction, points most clearly to the westward and north-westward drift, although the rate is not high, boing for the above 6.6 miles per day, which, as is seid above, is probnbly below their antual mate. It will ulso be obwerved that their velocity varien
greatly, long course having been performed at a nile an hour and upwards, while in other cases their progress would be inappreciable in the navigation of a ship.
(261.) The effect, then, of this extension of the waters of the Gulf Stream will not have much influence on the course of a ship passing through it, and its general effect, it is believed, is properly represented in the ciagram of the currents, at page 259. Its general direction in its main strength will be a little to the north of east, between the latitudes of 43° and 50°, and its main mean velocity from 9 to 11 miles per day, but at times, as shown above, rising to above three times that rate, especially during and succeeding heavy westerly gales. Further to the north, that is, between latitudes 50° and 60°, its mean direction will be abont E.N.E., bearing more northward as it approaches the coast, and its rate from 5 to 8 miles per day. Still further northward, our scanty knowledge will only lead to the inference that it drifts irregularly to the N.N.E., and partially to the N.W. at times, but is then probably very feeble, and intermixed with the veins of cold water drifted by the N.E. winds which prevail in the latitudes above Norway, \&c.
Lastly, although its relation to navigation is not of very high importance, its effects in the great economy of the ocean are most important. By its influences the North Polar Basin is annually opened to navigation, and its shores made habitable to the wandering and scattered Esquimaux tribes, who flourish under the terrific winter temperature. It makes the north a marked contrast to the Southern Polar regions, where no warm gulf stream penetrates, and where, in' a constant deposition, those amazing ice fields are formed which cover the whole of the region in perpetual ice of many hundreds of feetin thickness. Were it not for thisintlux of warmer waters into the Arctic regions, where the mean annual temperature is beneath the freezing point, the whole of the Arctic circle would be like Antarctic, one solid mass of ice; sea, land, and everything being solidified into one immense mass, whose varying margin would protrude over the northern coasts of America and Asia, alternately dissolving with the summer, and increasing during the winter.

8.-THE ARCTIC, OR LABRADOR CURRENT.

(262.) The last section treated of the warmer tropical waters which passed into the northern regions, carrying with them the ameliorating influence on the Arctic climate. The present deals with the same waters as they emerge, at a minimum temperature from these frozen regions, and bring their ice and cold into the grand system of circulation and compensation.
The limits of the N.E. drift about Iceland has been mentioned in p. 242 (257.). To the west of this, then, we may place the great drift which comes down from beyond Spitzbergen, and transports the immense quantitics of ice upon the eastern shores of Greenland, which has generally rendered this, one of the most inclement regions of the world, unapproachable by ships. Several instances of this drift could be recited, but as it is not interesting to navigation, they need not be dilated on. The ice this curient brings into the low latitudes is an important consideration in the navigation of the Atlantic as is well known. This branch of the Arctic drít, however, does not probably furnish many of those gigantic icebergs, which, drifting down Davis Straits, float over the Newfundland Banks, and far into the northern margin of the Gulf Stream.
The estimated rate of this drift from. Spitzbergen, calculated from the rate of vessely in the pack-ice is from 8 to 14 miles per day."

[^53]* "An observation which it is interesting to mention here, and which gives a proof of the very little difference between the temperature of tie surface and that at some depth, is mentioned in the Voyage of Captain Graah, p. 21. He mays, 'The 5th of May, 1828, in lat. $57^{\circ} 36^{\prime} \mathrm{N}$., and $36^{\circ} 36^{\prime} \mathrm{W}$., Or., the temperatire of the surface was found $6^{\circ} 3\left(46^{\circ} \cdot \mathbf{2}\right.$ Fahrenheit), and at a depth of 660 feet $5^{\circ} \cdot 5^{\circ}$ plus R. ($44^{\circ} \cdot 5$ Fahrenheit).' This proves that there is no cold submarine current in the placo alluded to, to the S.E. of Cape Farewell. A still more conclusive oxporiment is recorded by Sir Edward Parry in the account of his flrst voyage, Jung 13, 1819 : in lat. $67^{\circ} 61^{\prime}$ N., long. $41^{\circ} \mathrm{b}^{\prime}$, with a very slight southerly current, the surface temperature was 401° Fahrenheit ; and at 235 fathoms 39°, a difference of only $1 \mathrm{f}^{\circ}$.-En."
\dagger "Journal of the Royal Geographical Society, vol. xxvi., 1856, pp. 40, 41."
southern coasts of Greenland,* and that this in-draught towards the land is undoubtedly the cause of the ice being so closely pressed on to these parts of the coast as it is so frequently on the S. coast, and almost constantly on the E. coast, rendering the eastern coast entirely inaccessible from the seaward. \dagger
"From the foregoing it seems to me to be demonstrated that the current from the ocean around Spitzbergen, which carries so considerable masses of ice, after it has passed along the E. coast of Greenland, turns westward and northward round Cape Farewell, withont detaching any branch to the south-westward, directly towards the banks of Newfoundland.
"This current afterwards runs northward along the S.W. coast of Greenland until about lat. 64° N., and at times even up to Holsteinborg, which is in about $67^{\circ} \mathrm{N} .{ }^{\prime \prime}$ Captain Irminger.
(265.) This current, then, after drifcing over the Atlantic, passes up the eastern shore of Davis Strait to and beyond the entrance of Baffin's Bay, between Cape Walsingham and Holsteinborg. It here encounters the southern set which passes down Ba.in's Bay, especially on its western side, transporting those immense icebergs which are annually launched from the glaciers of West Greenloud and other parts, as described by Dr. Rink. This current, which enters Baffin's Bay, especially by Lancaster Sound, is the grand outlet of the waters which run from west to east through the labyrinthine Archipelago, of late the scene of the exciting search for the expedition of Sir John Franklin, and is unquestionably the continuation of that drift past Spitzbergen, described in (262.).

It thus brings into warmer latitudes all the ice which remains from the melting iniluences of the Arctic summer, and also is continually floating southwards that which collects in Baffin's Bay and its inlets. Its southward drift is constant, winter and summer, as has been demonstrated by the drift of several vessels of the Arctie searching squadrons-as the Grinnell Expedition, Sir James Ross, H.M.S. Resolute, Sir L. M'Clintock, in the Fox, \&c.

About 10 miles per day may be taken as the drift down Baffin's Bay, as estimated by the author in the "Journal of the Royal Geographical Society," quoted above.
(266.) The Baffin's Bay Current and the Spitzbergen Current thus ioined in the strength, set with great force down the coast of Labrador, the westwrird tendency being probably owing to the earth's rotation, which here rapidly increases southwardly in these parallels. It is probable that it sets at from $1 \frac{1}{\frac{1}{2}}$ to 2 miles per hour close ashore on the Labrador coasts. But its chief interest to the sailor are the masses of drift ice and tremendous icebergs which it flonts southward across his track, and constitutes one of the most formidable dangers of the Transatlantic navigation. As

[^54]this if the lii curren
this is the most important feature it has, it will be dilated on more fully hereafter, as the limits within which these ice-drifts are encountered are also the limits of the current now being discussed.
(267.) These ice-drifte are seltom met with to the eastward of the meridian of 40°, that is, about 300 miles beyond the limits of the Grand Bank. Nearer to the Barks' they become mo nomerous, and some years the sea appears to be covered with them, and vast numbers : \boldsymbol{x} bergs ground on the baniks.

To the southward the extent of this ice-drift is uncertain, as it depends upon two causes:-the one, the force and extent of the Arctic Current from the northward; and the other, the depth to which the ice-bergs are immersed. As before mentioned, (248.) P. 338, there appears to be a perpetual struggle between the opposing forces of the Arctic Current and Gulf Stream to the southward of the banks. This process, invisible at other seasons, is made apparent during the season of the ice-drifts by the deeply immersed bergs passing quite into the course of the Gulf Stream under the influence of which they repidly disappear. As will be seen presently, the view now accepted of this phenomena is that the Gulf Stream overruns the cool waters proceeding southward and south-westward; and although the northern edge of the warm waters of the stream are met with in the summer months over the southern end of the Newfoundland Banks, or as high as 45° N., yet these bergs are found drifting as far south as 39°, and even to $36^{\circ} 10^{\circ}$, or 420 miles sonthward of the tail of the Banks, and beyond the limits of the Gulf Stream. This latter circumstance, however, is of rare occurrence.

As this debateable ground for the currents is peculiacly interesting, we give, as heretofore, the account of a passage during the ice season across this portion of the Atlantic. It may not differ from the ordinary experience of any seaman, but it points to some facts heretofore discussed.
(268.) Remarks from the journal of Lieutenant J. Steele Park.-"On Monday, ?th of July, 1827, our latitude at noon was $40^{\circ} 29^{\prime} \mathrm{N}$., and the long. $53^{\circ} 30^{\prime} \mathrm{W}$., by lunars and chronometer. The temperature of the water 73°, and the air 75°; the wind S.E. by E., a light breeze: the ship close-hauled on the starboard tack, lying N.E. by E., and going 2 knots (she was now in the Gulf Stream). At five p.m. tried the water agam, and found the temperature down to $67^{\circ}!$ Hove the ship to immediately to sound, but got no bottom with 100 fathoms of line, right ap and down. Nothing to be seen from the mast-head; no ice nis danger of any kind, and the temperature of the air not affected (a cold vein of weter from the north). Took altitudes for the chronometer at the same time, which waie the long. $63^{\circ} 18^{\prime}$. We then filled and made sail again. At half-past five the wat ${ }^{\circ}$ r was 1° warmer, viz., 68°; at six it was 69°; at seven, 69°; at eight, 70°; at ten, 70°; and at midnight it was 71°. On Tuesday morning, at four o'elock, the water was 72°; at eight it stood at 74°; and, at noon, 74°; when the latitude and longitude were $41^{\circ} 16^{\prime} \mathrm{N}$., $52^{\circ} 24^{\prime} \mathrm{W}$.
"Had the atmosphere not been perfectly clear when we hove the ship to, I should have suspected that we were in the vicinity of an iceberg, but it was serene and beautiful; therefore the sudten fall of 6° of the themnometer, in this part of the ocean, must be attributed to some other cause. There is a danger of some kind laid down about this spot, by Captain Watson, of Liverpool (to sey nothing of our old friend 'Daraith'). We have sailed over the very place where it appears in Purdy's Chart of the Atlantic. However, the water has been so remarkably smooth and unruffled, that we may have passed wit'in a ship's length of a 'rock even with the water,' without peroeiving it.
"I am inclined to believe, that we should have found the temperature of the sea below 67°, if it had been tried an hour or two sconer. We have a right to presume that it was rising when I first discovered the change; for, half-an-hour afterward, it was 68 , and it went on sogressively, getting warmer and warmer, until it mounted up 74°, and there it espped: thus furnishing a beautiful illustration of the susceptibility, and, t.c. 3 , the uscfulness, of this most simple of all instruments.
"The latitude of the ship (at five p. m. Monday) may be called $40^{\circ} 36^{\circ}$, zong. $58^{\circ} 13^{\prime}$.
"Wednesday July 11th.-The temperature of the water I try every four hours on ordinary occasiza; "und every hour, or every half hour, in approaching soundings or 'Vigie.' Now, the temperature of the water was 74° yesterday morning at eight o'oloce, and it continued nearly the same till midnight, when I found it cooling a little; it was then 71°. During the night it was neglected, and I can say nothing with certainty abont the temperature; but I felt a very sensible change in the atmosphere this morning. when I went on deck; and when I plunged the thermometer into the sea, I was surprised to see it down to 58°." We hove the ship to again, and passed the lead forward, but there was no bottom with 100 fathoms of line. As I knew we were only about the parallel of 42°, I did not expect soundings, but I thought it right to try, and make quite sure of the thing. The weather very fine, and nothing in sight from the mast-head. Thermometer in the shade 63°, with a southerly wind, and yesterday it was upwards of 70°. Altitudes for the chronometer were taken, when we hove-to, which made the long. $50^{\circ} 20^{\prime}$; and the observed latitude at noon was $42^{\circ} 7^{\prime}$. The ship made 5^{\prime} of northing in the interval between noon and the time we tried the lead, so we must have been in $42^{\circ} 2^{\prime} \mathrm{N}$., and $50^{\circ} 20^{\prime} \mathrm{W}$., at eight o'clock this morning, when the water was down to 58°. At nine it was 67°; at ten, 60°; at eleven, 56°; at noon, 56°; at two p.m., 57°; at four, 58°; at eight, 59 ; and at midnight, 60°.
"Sunday, July 15th.-There was very little change in the temperature of the water, from midnight of the 11 th till this day at noon, in lat. $44^{\circ} 17^{\prime}$, long. $45^{\circ} 4^{\prime}$. The cold has been diminishing gradually and very slowly (the atmosphere as well as the s:a), but the water is now up again to 70°, and the air to 74° (the ship had again got into Gulf Stream water).
"I presume the great difference in the temperature of the ocean-water, discovered on Wcdnesday morning, must be ascribed to the proximity of the Grand Bank of Newfoundlond; but if the generally received opinion be correct, that ' the water is' only ' 5° colder at the edge of the bank than the deep ocean,' how are we to account for a fall of 14° or 15° when we were unquestionably in very deep water, and 30 or 40 miles at trost, from the nearest soundings on the very tail of the bank? This is a probler 1 to wt pretend to know much about. \dagger
"By-the-hyc, I may notice here again (en passant) what I have had occasion to remark more than once before; that is, the northerly set which I have uniformly encountered near the tail of the bank. Now, on the 11th, last Wednesday, the weather was beautiful; but the next day a fag, with all the density so peculiar to this part of the ocean, closed round us, and we were left to grope about in the dark, or by dead reckoning. which is the same thing. We never got a glimpse of the blue sky until this morning, when, by chronometer and excellent lunar distance, together with the sun's meridian altitude, we find out that a current has swept us N. 10° E., 54 miles in three days. \ddagger The latitude to-day, at noon, is $44^{\circ} 17^{\prime}$ longitude, by chronometer and lunars, which go hand-in-hand uncommonly well, $45^{\circ} 4^{\prime}$.
"During the three days' fog the wind was southerly; we, of course, were standing to the eastward, and I could not understand why the temperature of the sea continued

[^55]so low
we w
the be
that
parall
we go
(26

> circuld
was n
inside
tempe
to the
earlier
drift P eddy

Its
to scie
the Un
was r
paper
".
monly
site to
$\therefore \mathrm{Ia}$
from t
first pl
its cou
the cor
must n
temper
most r
diate
" It
this ex
counte
charac
" Fr
appear
longat
shores
take n
off the
to Cap
" Ar
be met
the No
the So
ing the
eastwa
general
indicat
wind,
it is res
winds),
dogree
and to
so low and so nearly in the same state all the time; for, acoording to our calculation, we were making a great deal of easting, consequently increasing our distance from the bank: but, when it brightened up, the mystery was explained: we then discovered that the northerly current had carried the ship round the tail, on a course almost parallel to the edge of soundings; therefore the change was slow and gradual until we got beyond its influence."
(269.) The waters of the arctic ocean are thus brought again into that system of circulation which gives to sea water a universal character (133.). In former years it was not thought that its effects extended further than this, and the cool S.W. current inside the Gulf Stream was considered to be an eddy of that great current, whose. temperature was dependent on the "1 'lownes of the soundings, in contradistinction to the supposed unfathomable - ${ }^{2}$. Gui Stream. Captain Pornton, in the earlier editions of this work, had, to led to conclude that the southward drift past Newfoundland, and tl ur the Gulf of St. Lawrence with the eddy from the Gulf Stream com ma counter-current in question.
Its true character was first argl
Mr. W. C. Redpield, a name well-known to science. He drew up a summary
rks and suggestions for the obscrvers of
e of the : 4'. The ell as the ugain got

iscovered

 Bank of water is' o account 30 or 40 This is acasion to niformly ? weather is part of by dead sky until with the 54 miles onometer
sitanding continued
tered and rrent. It
the cooler a stronger解 was read before the American Philosophical Society in May, 1843. From that paper we will make a few extracts:-
". . . . From what source is that south-westerly current derived, which commonly prevails along the coast of the United States, in the direction which is opposite to the Gulf Stream P
\because I am aware that it is usually considered by seamen as an eddy current derived from the Gulf Stream; but from this view I am compelled to dissent. For, in the first place, this current never assumes the gyrating form of an eddy; but continues its course, when unobstructed by gales, in a direction which is generally parallel to the coast. But, secondly, in case this current be derived from the Gulf Stream, it must necessarily partake of the same elevated temperature; whereas the reduction of temperature which occurs on crossing the north-western limit of the Gulf Stream is most remarkable, and is almost without parallel in the Atlantic, except in the immediate vicinity of ice.
" It appears vain to allege the proximity of soundings or shallows as explaining this extraordinary change of temperature, for this cannot avail if the waters of the counter-current be derived from the Gulf Stream, to say nothing of the erroneous character of the position here noticed.
"From the evidence which is afforded by numerons facts and observations, it appears that the current in question is neither more nor less than a mere sluggish prolongation of the Polar or Labrador Current, which sweeps along the north-eastern shores of this continent and the Island of Newfoundland; and this current, if I mistake not, may be traced in its gradations of temperature, by the thermometer, from off the southern coasts of Newfoundland and Nova Scotia, through the entire distance, to Cape Hatteras, if not to Florida.
" An eddy current, off-setting to the Gulf Stream, would nowhere be so likely to be met with as at the point of intersection of this stream with the extremity of the

[^56]

IMAGE EVALUATION

 TEST TARGET (MT-3)

Grand Bank of Newfoundland, and sweeping from thence upon the souchern shores of the island of that name; and yet the Harbour of St. John's, in the southern part of Newfoundlaud, is known to have continned ice-bound, in 1831, so late as the month of June, althorgh in the latitude of Paris. This fact is a convincing proof of the unimpeded continuation of the Polar Current to the southward, in this region, notwithstanding the near proximity of the Gulf Stream."
(270.) The velocity of the current over the Banks and to the southward of Newfoundland is very variable, but at times is great. We can rather argue from its effects than from direct observation; for one result of this influx of warm water into a cold region is the production of dense fogs so peculiarly characteristic of the Banks. "Bank weather" is not favourable to astronomic observation, and hence the paucity of them.
(271.) Upon a survey of the Virgin Rocks, in July, 1829, the current at abont 80 milos E. by S. from Cape Race, was found setting over them to the W.S.W. at the rate of a mile an hour.

To different currents must be attribated the loss or the sloop Comus, the transport Harpooner, H.M.S. Drake, and the brig Spence, all of which were lost, at different times, upon one spot ; the little bay, called St. Shot's Bay, on the South coast of Newfoundland, and lying between Cape Freels and St. Mary's Bay. The particulari of all these melancholy events have been given in our "British American Navigator," 1861, and therefore need not be repeated. The Comus was from the Weest, and was lost in the night of the 24th of October, 1816, after having sounded, os supposed, on the inner edge of the Green Bank. The Harpooner, a transport, with troops, was from Quebee, and bound for London. She struck at 9 p.m. of November 10th, 1816. The Drake sailed from Halifax for St. John's, 20th June, 1822, under very favourable eircumstances, upon a directicourse, for Cape Race; but on the 23rd the weather became thick, and at noon she was supposed to be 90 miles from Cape Race, but at half-past seven p.m. breakers were reported ahead, and the ship was soon after a total wreck. The Spence was from Richibucto, in the Gulf of St. Lawrence, with lumber, bound to Liverpool, and was totally lost at St. Shot's, at four p.m., 16 th July, 1822. Another vessel, the George Canning, from Chaleur Bay to Aberdeen, was wrecked here, during a dense fog, on the 17 th of June, 1829.
The five vessels, it may be seen, were all from the westward, and all, it may be presumed, wereset to the northward as well as to the westward, of the situations which they were supposed to cocupy, and the route which each intended to pursue. They can be accounted for only by the supposition of currents winding round the coast, opposing each other, and operating as above explained; for it seems clear that the westerly current from the Grand Bank so opposes the easterly one as to limit its operation eastward, and give it a northern inflection; thus producing the indraught into the southern bays of the island.

It appears that the eouth-westerly current, over the Grand Bank, sets over the whole of the northern part of that bank. In a summer voyage, 1826 , lat. $46^{\circ} 24^{\prime}$, Lieutenant Hare (30th September) sounded on the outer edge of the bank, with thick blowing weather from S. W. $;$ and, on the next day, in $45^{\circ} 66^{\prime} \mathrm{N}$. , and $48^{\circ} 6^{\prime}$ W., had no bottom at 120 fathoms, with a very heavy swell from W.S.W., although he found that a current had carried him S. $67^{\circ} \mathrm{W} .34$ miles. Thus appeared, in close conjunction, a south-westerly current, with another from W.S.W., where the edges of the two entered into collision with each other.
(272.) The current whioh sets out of the Gulf of St. Lawrenee, between Newfoundland and Ereton Island, also adds its effect to the current setting to the S.W. It in composed of the stream of fresh water which conatantly sets down the river, and the water which enters from the Labrador current through the Strait of Belleisle.

The current usually sets into the Strait of Belleisle, between the island and the coast of Labrador. It transports immense quantities of ice in some years into the Guif, if they are not too large to be intercepted by the moderate dopth of the strait, although this feature varien very much indeed in different years. This current has been observed to run two miles an hour with the wind from N.E., while at other

time

 espe 30 strea TH cially is re time Bo whith ebb, the C the p exceechara
stant
blown direc that over const of wl

The effect gular been and c Islanc was Mr. water the en which June. $42^{\circ} 30$ glide 1 fourth
eastwa
"E
water, island, winds, coast. to the
so rapi
and na
of ton N.W., dry ba ing to N.W."
shores of n part of month of he unim-notwith-

of Now-

 from ite rater into te Banks. paucityabont 80 W. at the
times it in almost insensible, and it is stated sometimes to run in the opposite direction, especially during the ebb tides with S.W. winds, After it enters the Gulf, it runs 30 or 40 miles further, when it becomes dispersed and merged into the general streams.

The outset from the Gulf is very frequently of some considerable strength, especially with westerly winds or in calm weather. But its strength is reduced, or it even is retarded altogether, with opposing, winds, which have a powerful effect on it at all times.
Both these currents are modified by the tides, but in a way directly contrary; for, White the Strait of Belle Isle current is ameliorated by the flood, and retarded by the ebb, the other is increased by the ebb and checked by the flood tide which enters the Gulf from the southward. The tidal hour is therefore important in estimating the probable set of these currents, which, however, it may be said to be said to be exceedingly difficult at ail times to estimate and allow for correctly.
(273.) Sable Island has been famous for its wrecks, which greater knowledge and consequent caution have rendered less frequent. Its position and formation are remarkable, as it lies apparently in the strength of the Gulf Stream. Its dangerous character is greatly increased by the prevalent fogs, which are dense and very constant. Asis well known, it is a mere sand bank, with two parallel ridges of sand blown above the sea level, and forming a curve convex to the sonthward, showing the direction of its principal growth. .From each end extend long "bars" or shoals: that to the west extends 17 miles, and that to the east 14 miles, the whole extending over 50 miles. The westerly winds and current tending in the same direction are constantly wearing away the west end, and adding to the east, by drifting the mand of which it is formed and that which it brings to leeward.

The wrecks, which now average two annually, have usually occurred from the effects of the S. W. current which we are now considering, and which, though irregular in its action, has usually some effect on a ship's course; added to this, as has been previously shown, the Gulf Stream is here found with much diminished force, and consequently there are some anomalies in the immediate neighbourhood of Sable Island. The best account we have of the streams is that given by Mr. Darby, who was superintendent of the establishment here.

Mr. Darby has said, "On the south side of Sable Island, the current, in shoal water, with prevailing south and S.W. winds, sets rapidly eastward until it reachen the end of the N.E. Bar. It then unites and blends with the St. Lavorence Stream, which passes the bar in a S.S.W. direction, and runs strongest in April, May, and June. I have sufficiont reason for believing that the Gulf Stream, on the parallel of $42^{\circ} 30^{\circ}$, running E.N.E., occasions the St. Lawrence Stream, then running S.S.W., to glide to westward. The strength of this stream has never been noticed, and threefourths of the vessels lost on Sable Island have been supposed to have been to the eastioard of the island, when, in fact, they were in the longitude of it."
" Easterly, sontherly, and S.S.W. winds set a rapid ourrent along shore in shoal water, to W.N.W. and N.W.; that is, along the shore of the western end of the island, but not the eastern nor middle, as there the current, with southerly and S.W. winds, sets to the eastward. The natural tendency of the flood-tide is toward the coast. When it strikes the inland it flows to the eastward, over the N.E. Bank, and to the westward, over the N.W. Bank, and passes the west end, in a N.W. direction; so rapidly that it carries the sand with it; and the hills of the west end being high and narrow, they are undermined at their base by it, and tumble down some thousands of tons of sand at a time. This the current beneath catches, and eweeps awny to the N.W., increasing the baik. So soon as this current passes the extreme point of the dry bar, it tends more across the bank to the N.E.; the motion of the sea contributing to keep the sand in motion ; the current carrien it to the N.E.. and spreads to the N.W."
(274.) In following the course of this current along the coast of the United States, we havo no very clear notion of its mean velocity s but that it does run to the sonth ward, we have many evidencen, beaides the temperature of its waters. It is probable
that the surfece, at leant, in obedient to the varying of the vinde, which blow over it, but it preserves its course almost animpaired and quite appreciable on the surface as far south as Cape Hatteras, after which ita presence does not appear so manifent, except asa submarine current. In(220.)\&c., the presence of the cool water it transports is shown to exist, in a great degree, even aloee beneath the warmest and wtrongent partsof the Gulf Stream.
There is great evidence of current action all along the coast of the United States beyond the Cape Cod peninsula, itself of remarkable formation. The long straight lines of low alluvial shores, fronting extensive shallow lakes, separated from the ocean by narrow beaches thrown up by the sea, all bespeak the work of the ocean and its drifting waters.
There is another singular feature, too, in the more southern portions of its course. The long lines of shoals which project seaward from the Capes Hatteras, Fear, Lookout, \&ro., that in, in tie section where its surface action is not so manifest, indicate some process going on which as yet has not been entirely explained.

In a nantical sense the allusion to this current is sufficient to guard against its effecte in approaching the coant, or in taking advantage of it to work against the current of the Gulf Stream. No particular ingtructions have been issued respecting it, and therefore this will close our notice of it as an inner current of the Guli Stream.
(275.) But there is another part of the ocean in conneotion with this where the currenta are not strong or regular, but is peouliar. It is the part between the Bermudas and the coast of Georgia. There seems to be some connection with the fact of Cape Hatteras cutting of a portion of its sonthern progress and the very irregular temperatures that are met with to the sonth-eastward of that Cape. The cold veins alluded to on page 328 (234.) are, perhaps, a portion of this; but it certainly seems as if the culd water, after pasaing under the Gulf Stream, appears on the surface intermingled with the warmer waters of the Equatorial Current, and cause a slight drift to the south-eastward, and have something to do with that eastward tendency of the Gulf Stream (242.) in throwing off its floating objects to the eastward of its coursoa fuct which ham been attribnted to its being "roof-shaped," a form owing to the greater force and velocity rfits centre which causes the water along the middle of its courne to be higher than the Jateral portions.
In the southern part of ti rent its influence on navigation, as said above, is of minor consequence. Its pri. ...ut feature is its ice-transporting powers in the more northern portion of its career ; and an this has a most important bearing on the navigation between Europe and America, some notire on this point follows.

ICEBERGS. ICE ISLANDS, AND DRIFT ICE IN TIIE ARCTIC CURRENT.

(276.) Although we have notioed the annual floats of ice which descend from the northern regions, it may not be inapposite to recall to the seaman's mind the necessity of guarding ainst these tremendous and dangerous objects-more dangerous than permanent rocke, because unfixed, and more dreadful, because frequently obscured in now and fog.
The ice which is thus met with is of two dencriptions : that which is found on the surfice of the see during the polar winter-the field and floe-ice; and that which is formed in the course probably of many years upon land, and is periodically launched into the nea in the form of gigantio bergs of enormous height and dimensions.

Of the firut demcription of ioe no apecial mention is necessary, as its production and presence in the regions under consideration is very readily comprehended.
(277.) Ice-bergs are a mach more intereating subject, and their majestic proportions
at on
find

sary to

mount

[^57]vol. $\mathbf{x x i}$

+ It
where
a toinder
in case
lated in the vall into a c creasing pact ice suppliee largest glaciers
wo over it, surface as nifest, exansports is gent parts ted States 3 straight the ocean ran and its
its course. ear, Lookt, indicate
at once attract attention and invite inquiry as to ther formation; consequently wa find many account and speculationi have been advanced to account for them, and various localities pointed out as their birth-place.

Captain (afterwards Dr.) Scoresby, whowe opinion is invaluable, observes, "that, however dependent the ioe may have been on fand, from the time of its first appearance to its gaining an ascendancy over the waves of the ocean, sufficient to resint their ntmost ravages, and to arrest the progrems of maritime divcovery at a dintance of, perhaps, from 600 to 1,000 miles from the Pole, it in now ovident that the proximity of land is not essential, either for its existence, ith formstion, or its increase.
Dr. Scoreby's aoquaintance with ice-bergs in process of formation was confined to Spitabergen and portions of Greenland, where they do not form so marked a feature as has been found by others. It is to Dr. Rink, a resident in Greenland, that we are indebted for the most complete account of these marvellous phenomena, and in making a few extracts from his work, we may draw attention to the parallel condition of the south pole in producing these iceberge on a far more stupendous scale thani is found in the northern region ; for while in the north their dimensions are confined to a few handred yards, in the south they are very frequently miles in extent, and from 2,000 to $\mathbf{3 , 0 1 0}$ feet in thickness-a magnitude owing to the vast extent of country in which they are produced as explained on page 354 (281.). Their protrucion into the sea involves the same considerations as the "glacier theory" of the land, so very interesting and important in geological questione.
(278.) The larger icebergs in the northern regions rise above the surface of the see to the height of from 100 to 150 feet and upwards. and some are 4,000 feet in circumference. The part ubove can scarcely be considered more than one-eighth of that belono the surface of the water, so that the cubic contents of the iceberg may amount to $100,000,000$ of cubic ells, or abont $00,000,000$ cubic yards-a fragment of ice, which; if we suppose it to be fairly landed, would form a mountain about 1,000 feet in height. All agree that the icebergi of these arctio seas are originally formed on torra firm: from tho snow and raini which, from the severity of the climate, are never able to reach the ocean in a fluid state, but whioh, in the course of years, are traniformed into a mass of ice, and are then, through some physical agenoy, thrust forward into the sea. \dagger
The ice thrust forth into the sea, in the form of massy mountains, is originally formed over an enormous extent of country, from whence it, by an agency similar to that by which rae progress of glaciers is effected, is thrust forward to and brought to a 1 oint at the placo from whioh the icebergs proceed. For the formation of icebergs accordingly a tract of land of a certain extent is necessary, in which the sea forms so few and small creeks or inlets that rivers or watercourses of some magnitude must necessarily be present.
(279.) Where the above-montioned condition existe, in conjunction with the necessary temperature of the olimate, the formation of ice does not proceed from certain mountain heighis, but the whole country is covered with ice to a certain elovation:

[^58]mountains and vulloys are livellod to a uniform plane; the niver-beds are concealed; as coll as every vestige of the original form of the country. A movement, commericing far inland, thrusts the outer edge of this mass of ice forward towards the sea; and when it reachen the frith, it may be seen to sink, and to diverge and even extend out several miles. There the agenoy of the obliterated rivers may be observed in the greater or lesser rapidity with whioh the matter in a solid state is carried forward to. the ocean. The manay orust, still proserving its continuity, proceeds from the, shore, borne by the sea, until some, circumatance or other destroys the equilibriatm, and breakn some fragments off the outer edge, which is again thrust forward, and again detaches new fragments, thus continually renewing the supplies from the interior.

- (280.) A tract or body of land of the requisite size is, in the northern heminphere, only to be found in Groenland, and more enpecially in that part which lies to the north of the Arctic Circle, where in the interior, beyond the inlets of the mee, the country increasis in breadth from east to west, and affords space for the original birth-place of these large icebergs. Neither Spitsbergen, nor the narrower parts of Greenland, nor the peninsula nor the iolande which surround it, are adequate in nise to prodnce. the yearly excess of indissolnble ice which, from that large and unknowon ooptinent, is very slow ly protruded; and, as it seems, in a lesser degree toward the castern shores of Greenland, along which the icebergs are driven past Cape Farewell, the greatest guantity going to the west, into Baffn's Bay. The friths or flords, which, piercing far into the country, receive and transmit the iceberge, are called ice friths.
(281.) From November to June the water, in whioh the icebergs are to proceed to the occan, is so covered by the ocean iee, that they are shut np in the inner ice friths; but in July, and especially in August, they are carried in mass by the current to the open sea. This is called the ehooting out of the ice frith, which lasts till late in the gutumn, when the continual cesterly storms finally olear out the inner waters, unless the ieebergs are intercepted by certain banks, on which they sometimes remain long aground.
(282.) Icebergs consist mostly of hard, brittle ice, of which the white colour originates from very fine lineal pores, uniformly divided throngh the whole mass, all being of the same size, equi-distant, and parallel throughout the whole iocberg. This nniform structure may have arisen at the time it was formed in the interior of the country from corned snow-perhaps repeatedly thawed and frozen. The white iceberg is in many directions crossed by broad stripes of intense blue-coloured ice; which is quite elear, and either contains no air bladders, or, at all events, very irregular ones. These blue stripes are several feet in dimension, and in them are generally found "dirt bands" of foroign matters, such as stone, gravel, and clay, which tho icebergs carry off embodied in them. The blue ice is, by thawing, dissolved into regular large grains, which is not the case with the white ice that forms the main mass of the icebergs. It seems probable that these blue stripes are formed by a filling up of the fissures in the inland ice with water-perhaps mixed with snow, gravel, and stones ; and such a refrigeration of the water in the fissures may be supposed to be an important agenoy in setting in motion these great mountains of ice.*
Is wonld be out of place to enter into detail upon this subject, but from the abovementioned notioe, as well as the works of Dr. Scoresby and others, much interesting matter may. be gleaned. We must, therefore, consider them here as only affecting navigation.

[^59]ceaced; as nmencing sea; and xtend out ed in the orward to he, shore iom, and and again terior. misphere, the north - country irth-plece Hreenland, - prodnoe. ntiment, io ishores of e greatest , piercing proceed to ice friths ; ent to the late in the ters, unless main long
lour origia, all being This unirior of tho white ieeice, which y irregular a generally which tho solved into the main by a flling. gravel, and posed to be
the aboveintereating y affecting
substances of air, or is formed. y reparated ood to refer left in tho one of the msd, and if and purar
(283.) M(r. W. C. Middfold, to whom the world it 60 largety fondebted for his rov searchen in meteorology and physical gedgraphy, has publifhed a pamphlet, accom; panied by a chart, upon the ices of tho North Atlantic. In this he has clearly shown that the Gulf Stream passes over the cold Arctic Current, which transports the deeply immersed icebergs into and across it. "No impulsion but that of a vast carrent, eetting in a south-westerly direction, and passing beneath the Gulf Stream, could havo jarried these immense bodies to their observed positions, on rontes which cross the Gulf Current, in a region where ity average breadth has been found to be about 250 miles." Other observations on thir subject have been given on pages 338 to 340 . The same influence will also cause the presence of lioating poe in the Gulf of St. Lawrence, by carrying it throagh the Straits of Belle-Isle; but the depth of this would prevent the progrese of the larger icebergs (272.).

It need scarcely be mentioned; that great circumspection is neceseary in passing near the regions where these dangers may reasonably be expected. The following instances, belected from many others, may operate as sufficient cautions:-
(284.) On the 21 st of June, 1794, in lat. $45^{\circ} 18^{\prime}$, on the eastern ateep edge of the Grand Bank, in a thick fog, H.M. frigates Dedalus and Cores were suddenly involved amidst nome very high and dangerous islands of ioe. The weather was to thick that objects were not visible at 50 yards distant. The Deodalus, commanded by Sir Chat, H. Knowles, hauled up and passed close to the stern of a ship that lay stranded upon one of the ice islands, and sailed to windwaid of it through a great quantity of drift ice, and to leeward of another ice island. The Ceres, Ceptain Thomas Hamilton, passed in the same track, and saw the wreck a quarter of an hour after the Dadalus: The course was east, the wind S.W.; the sea very high, us the wind blew hard, the night preceding, from the south ward:
Again, on the 15 th June, 1810, the Dedalua, commandod by Captain Ingleffeld, with a fleet from Jamaica, in lat. $41^{\circ} 33^{\prime}$, and long. $51^{\circ} 17^{\prime}$, to the south ward of the Grand Bank, passed two icebergs, and the next day another; providentially, the fog; which had been very dense, cleared up for an hour, and allowed the fleet to clear the dangers.

On the 2nd of August, 1813, H.M.S. Bedford, 74, then bearing the flag of ViceAdrniral Stirling, accompanied by the Cyane, 20, Captain Forrest, and Favon, 18, Captain Fellows, with a fleet of 105 sail from Jamaica, at eight a.m., just as the fog cleared away, foll in with an extensive ridge of ice, having an iceberg at each extremity, and about one mile in extent, even with the water, over which the seas broke with considerable violence. Had the fog oot cleared up as it did, about thirty ships must have struck upon it, as that number were steering directly for this formidable reef, and were within the extent of it its sweep. The thermometer was at this time ranging from 63° to 65°, the lat. 45°, the long. $44^{\circ} 30^{\circ}$.

On the 31at of Ausust, 1816, Captain Gooday, in the mhip Jones, on his passage from St. Petersburg to Now York, in lat. $46^{\circ} 60^{\prime}$, long. $47^{\circ} 54^{\prime}$, saw an island of iee, from about 1 mile to $1 \frac{1}{2}$ miles long, and from 64 to 70 feet high. When frot scen, it appeared like a white cloud.

In January, 1818, the brig Anne, of Poole, W. Dayment, master, left the harbour of Greenspond, Newfoundland, in the morning, and in the evening of the same day got among ice; proceeded thus about 40 miles, and at daylight next morning was completely beset, and no opening to be seen in any direction from the mast-head. "In this state the vessel continued for fifteen days, driting with the ice about $\mathbf{6 0}$ miles S.E. by B., or about 4 miles in every twenty-four hours. The ice was now become very heary, high above the surface, and about 20 large bergs were in sight. With this ioe the ressel drove until she was in $44^{\circ} 87^{\prime} \mathrm{N}$., and about 800 miles to the southicastward of Cape Race, when, on the 17th of February, she got clear through the only opening that appeared t' the horizon from East to S.E., ail the rest of the circlo forming one compact body of ice, as far as the eyo could reach. The vessel had been shat in for twenty-nine daye, in the last fourteen of which whe drifted from lat. $46^{\circ} 57^{\prime}$ to lat. $44^{\circ} 37^{\prime}$, about 280 miles, or 20 miles a-day, S.E. by E., tremendous gales of wind blowing the whole time from the wewt to the N.W. In the course of thin
passage the master declared that he maiv more than 100 large talands of the solid blue ice, known to traders by the name of Greenland Ico.

On the 17 th day of the same month, January 1818, the brig Funchal, of Greenock, sailed from St. John's, Newfoundland. At abont 15 miles to the westward of this port she fell in with a field of ice coming down from the northward, about 8 miles in breadth; and extending to the northward beyond. the resch of sight. Having cleared this, and proceeded westerly about 250 miles, on the $20 t h$, in lat. 471°, she encountered a etill more extensive field, floating to the wesiward, in the midst of which was an iceberg ; she oleared this, though not without difficulty, and brought with her a gale of wind; with snow, sleet, and rain, the whole way to Scotland.
On the 6th of May, 1823, the Mountstone, of and from Plymouth, was lost on an iceberg, on her passage to Newfoundland. The master and crew, with passengers, in all ten persons, took to the boat, without provisions, trom which three only of the number were taken by a passing ship, on the 14th of the same month, the remainder having died of hunger!
Our next case is that of the Ajax, of Wiscasset, New England, on the passage toward London, March and April, 1826. The following is an extract of a letter from William S. Shavo, the commander, to his owners, on the subject. His means of protecting the vessel, under perilous circumstances, are worthy of especial notice.
"On the 12th of March, at four a.m. (sea account), between lat. 42° and 44° North, weather thick and clordy, with squalls of hail and anow, we ran the brig in between two reefs of ice, jamined together apparently in a solid mass, the sea being mach smoother than usual, which did not alarm us; we knew we were far from land or breakers, until we felt the ice alongside of us; as soon as we perceived which, we hove-to until daylight, when we found we were surrounded by a solid body of ice. Around us were 30 icebergy about 150 feet high, and nearly the size of Segwine Island. Finding the ice chafed us badly, we got out fenders. As we had run into the ice before the wind, it was impossible to get out the same way. At suirise discovered a narrow opening to-leeward, for which we steered under casy sail, and trove her through. We were now in a bay, about $1 \frac{1}{\frac{1}{2}}$ miles wide, the reefs on either side, and large cakes of ice in contact with us.
"The wind still blowing fresh at N.W., we kept her before it about 3 miles, but could not discover an opening to the southward and westward; tacked, and steered N.E. about 12 miles, it being very difficult to avoid the large cakes of ice that crowded thickly around us.
"Finding there was no opening in this direction, and that the two reefs extended as far as we could see; that there were numerous large islands of ice north of us, and an almost innumerable collection of small ones ahead, we concluded, at 10 a.m., to crowd her through the ice; and having prepared fenders of every kind, sach as old junk, spars, cordwood, bales of cotton, and part of one cable, we drifted her into it. We were now in the midst of the ice in a severe gale, accompanied with a thick nnowstorm; and had it not been for our precaution, in preparing fenders, the ice must have soon made a hole through us. At mid-day, old Sol deigned to show his brazen face, and laughed at our comical situation. This circumstance enabled us to take an observation, by which we found ourselves in lat. $44^{\circ} 30^{\prime}$ North, and long. 43° West (between the Azores and Newfoundland).
"As our fenders were nearly destroyed, we were compelled to cat up more of our cable, wooden fenders not sinking deep enough for the purpose of defence under water. You may judge of the diffeulty of crowding the brig through by our progress, which was but haif a mile an hour, under two reefed topsails and foresail, the wind blowing heavily. At one o'clock p.m., we suspended two bales of cotton under our chains, that they might not be carried away by rolling against the cakes of ice which we occasionally met, some of which were 100 feet circumference, and 6 feet thiok.
"At one time wo were so completely enolosed, that I got out, with part of the crew, and walked on the ice-a walk that few mariners have probably enjoyed at that distance from land on the Western Atlantic Oocan. At 8 h . in the evening, found the
girrounding ice much thlnner, and the islands less frequent; handed all sails exceppt the close-reofed main-topsail, which we hove to the mast to keep her from ranging ahead on the islands.
"At daylight, finding ourselves clear from the great body of ice, though not from the islands, we made sail, and steered E.S.E. and E.N.E. for three days, with a good breeze, and under short sail during the night. It was the opinion of all hands, that we sailed three hundred miles before we were clear of the large islands of ice ${ }^{m}$.
In July and August of the sime year, 1826, H.M.S. Ringdope was on her paisage from New York, and fell in with an immense iceberg of the' Banks' of Newfound. land, drifting to the sonthward, the magnitude and sudden appearance of which dstonished every person on board. For the description of an iceberg seen by Captain J. 8. Park, 29th June, 1826, see page 359.

In the month of March, 1828, several vessels arrived at New York, which had fallen in with islands of ice in lat. 43° to 44°, long. 47° to 49°. This was considered as unusually early in the season for such dangers to be met with. In this season, the brig Catharine and Hannah, Captain Lumsdsn, which afterwards arrived at Cork, picked up, on the 4th of May, in lat. $45^{\circ} 11^{\prime}$, long. 56° (near Banque-rean), a bont belong to the Superb, of and from Bristol, for Quebec, which ran foul of an iceberg on the 21 st of April, that stove her forward. This unfortunate occurrence obliged all hands to take to take to the pumps, at which they continued without intermission for two days and a night, when a schooner hove in sight; and the captain proceeded in the jolly-boat to treat with them to take the crew. While the captain was so engaged, the vessel being quite in a sinking state, the crew left the pumps to get the boats out to leave her. They succeeded in getting out a boat (the one subsequently picked np), and seven men got into her; upon which they unhooked the tackle; alipped from the ship, but could not regain her, and it coming on thick weather, they could not find the schooner; thus the unfortunato men were left without provisions, water, mast, sail, or anything that would enable them to struggle for existence, save and except two oars! In this state they were buffeted about for eleven days, when they were fallen in with by the Catharine and Hannah. Of the seven men only two were alive; and one of thesesurvived only twenty-four hours. It is almost saperfluous to say, that the only food which they had taken was from the bodies of deceased companions.

Captain Barclay, of the Brilliant, for Leith, from Quebec, which he left on the bth of June, 1829, and narrowly escaped shipwreck, having fallen in with a heavy body of ice, about 20 miles east of the entrance to the Strait of Belle-Isle, in fuggy weather. The vessel got elear on the 19th of June, after being three days and nights amongst them, and being oblig , to proceed $1 \frac{1}{2}$ degrees to the sonthward.

On the 11th of May, 1833, betw en the Onter and Grand Banks of Newfoundland, the brig Lady of the Lake, John Grant, master, from Belfast, with 230 passengers, in lat. $46^{\circ} 50^{\prime}$, long. $47^{\circ} 10^{\prime}$, fell in with ice, and while endeavouring to pass between two large pieces, a tongue under water in the ice strack the port bow, and stove it entirely in. It is not requisite here to repeat an afflicting detail; the consequence was, that the brig soon foundered, and only the captain, with fourteen other persous, were ultimately saved.

The barque Perthshire, R. Simpson, from Picton, Nova Scotia, fell in with a field of ice, in lat. $46^{\circ} 19^{\prime}$, long. $46^{\circ} 40^{\prime}$, on the 8th of June, 1845. It was about thirty miles in extent, and on its north end there was a ship, high and dry on the ice, with the crew on board; but could not render them any assistance.
(285.) The following are from Mr. Redfield :-On the 1st day of January, 1844, Captain Burroughs, in the ship Sully, met with an iceberg in the Atlantic, in lat. 45°, long. 48° This is earlier in the winter than any other case which we have met withCaptain B. States, that he had met with ice near this position on the 1st of February, on a formor vojage.

In September, 1822, Captain Couthouy say an iceberg aground on the easitern edge of the Grank Bank, in lat. $43^{\circ} 18^{\prime}$, long. $48^{\circ} 30^{\prime}$. Soundings 3 miles inside of it, the
depth wae found to be 105 fathoms. In the month of Aughit, 1827, the eame obmarver, while crowsing the banks, in lat. $46^{\circ} 30^{\prime}$, long. 48°. W., passed within lewe than a mile of a large iceberg, which was stranded in between 80 and 00 fathoms. He was so pear as to perceive distinctly large fragments of rocks, and quantities of earthy matter imbedded in the sides of the iceberg; and to see, from the fore-yard, that the witar, for at least a mile round it, wai fall of mud, stirred up from the bottom by the violent rolling and crushing of the mase.

On the 27th of April, 1829, Captain Conthouy passed, in lat. $36^{\circ} 10^{\prime}$ N., long. 39° W. (probably south of the Gulf Stream), an iceberg, eatimated to be a quarter of a mile long, asd from 80 to 100 feet high. It was much wasted in its upper portion, which was worn and broken into the most fanciful shapes. In 1831. at daylight of the 17 th of August, lat. $30^{\circ} 20^{\prime}$ N., long. $67^{\circ} 45^{\prime}$ W., upon the southern edge of the Gulf Stream, he fell in with several small icebergs, in such proximity to each other as to leave little doubt of their being fragments of a large one, which, weakened by the high temperature of the surrounding water, had fallen asunder during the strong gale which had prevailed from the S.E.-(Silliman's Journal, vol. xliii., 1842.)
Ship St. James, Meyer, July 12th, 1844, lat. 44°, long. $47^{\circ} 12^{\prime}$, passed twelve large iceberga ; July 20th, passed 25 ditto; and July 21 st, passed 30 ditto, lat $43^{\circ} 50^{\circ}$, long. $52^{\circ} 26^{\circ}$, saw the last of it.
Ship Formosa, Crawford, June 18th, 1842, lat. $38^{\circ} 40^{\prime}$, long. $47^{\circ} 20^{\prime}$, saw an iceberg 100 feet high, and 170 feet long.

- (288.) A very interesting item in our enumeration of ice-floes is that of those met with in April, iA 51, on which were the wrecks of two ships, which had the appear: ance of, and from all probabilitics were, the ships of the unfortunate Arctic expedition under Sir John Franklin. The particulars have been so extensively detailed desewhere, that we shall merely give the original announcement, which will suffice for the present purpose. Much more extended particulars will be found in the pablic newspapers of April 9th, 1852, and subsequently; the Naut. Mag., May, 1852, p. 265; et seq.; and the Parliamentary Paper on the Arctio expedition.

The brig Renovation; of Shields, Captain E. Coward, bound to Quebeo, on April 20th, 1851 , when near the east edge of the bank, in lat. $45^{\circ} 30^{\prime}$, wind N.E., fresh breezes, olear weather, as much as they could carry fore-topmast studding-sail, fell in with ice-floes, one of which was very large, with field-ice attached, on whioh there were two three-masted ships, having their masts struck and yards down, and all made snug; to all appearance they had passed the winter together on the ice. Took the spying-glass, and carefully ezamined them to see if there was any one on board, but could see no one, \&c., \&e. A further statement says they were apparently two fullrigged ships (one about 500 tons, the other 350), on an iceberg high and dry, the harger one on her beam-ends, \&r. Singularly enough this statement had been published in the Limerick Chronicle, May 28th, 1851, क- year ppovious.

In our minds there is no doubt but that these were the ill-fated ships. whioh had been drifted ont of Melville Sound and Baffin's Bay; and thus elnded all the elaborate and anxious searches that have been made. The incident is a singelar one in the history of arctic icee"

Thie Carlo Mauran, commanded by Mr. Tillinghors, passed on May 23, 24, 26, ;1851, between lats. $44^{4^{\circ}}$ and 45°; and loagst $49^{\circ}-54^{\circ}$ large quantities of ice.
On 7une 27, 1851, the Washington steamer, from New York to Sonthampton, passed 10 very large iceberga between longs. $60^{\circ}-45^{\circ}$ in lat. 47°.
(287.) Lieutenant Evans, the intelligent officer to whom we are indebted for a part

[^60]of th the Y ais the the \mathbf{B} fore, cantio
foggy
on ear
ing th
shoul the vi evider tinnus strong at the floatir tronbl would and th the At is to tl ing ex 1st of discove soon \mathbf{p} every ${ }^{3}$ of tem observi proach thermo be kep place in

Caut or ice which,

We
remark
The frequen short di over the
2. A thermor above.
3. Th its padd
(288.) elsewhen caution:
"June as the sa away, as and, at t Shortene although like land had clea
me ob mon then 18. He ? earthy that the a by the
of these oxtracts; says, " There is securcely a. doubt but that moist of the veieseln froint the West Indies and America; that have been missing; periched in the same manner. as the Mownitstone, icebergs having been met with somo degrees to the southward of the Banks of Newfoundland in June and July. The commanders of vessela, therefore, who have occasion to pass between the parallels of 35° and $50^{\circ} \mathrm{N}$., cannot be to0 cantious; a look-out man should be placed on the fore-yard during the night, and in foggy or hazy weather. also in the daytime; in addition to these, there ahould be one on each bow; and during a fog, the foresail should be hauled op, especially in cromeing the banke, where icebergs have been met with aground. Careful attention, too, should be paid to the thermometer, as experience has shown that it is an indicator of the vicinity of ice. Captain Franklin observes that tho epproach to ice would be evidently pointed out in those parts of the Atlantic where the surface is not continnually chilled by the passing and melting of ice, as in the Arctic Sea; and he strongly recommends a strict hourly attention to the thermometrical atate of the water at the surface, in all parts where ships are exposed to the dangerous concumion of floating icebergs, as a principal means of security. There would be very little trouble attending such a point of duty ; yet, we believe, there are many masters who would not undergo it, bat trust to chance the safety of their vessel, their own lives, and those of their crew and passengers. Many have made repeated voyages across the Atlantio without having seen floating ice, and, therefore, become incantious. It is to these we would particularly recommend the perusal of this paper. The following extract fully corroborates Captain Franklin's assertion :- The morning of the 1 st of August (bays Captain Lyon) was thick and foggy, with rain ; at 10 a.m. we discovered, through the haze, our first pice of lce; a small berg, of about 70 foet; we soon passed this and several others, but saw no floe or brash ice, although there was every reason to suppose that a pack was near, from the sudden smoothness and change of temperature in the water, now at 32°, while the air was at only 34° Repeated observations of thiskind have now bronght to a certainty the assertion, that the approach to ice from an open sea may be ascertained by the sudden change of the thermometer; and, acting from past experience, I caused the most active look-out to be kept, on observing it to fall suddenly this morning; yet this change first took place in a very thick fog, and we ran abont 10 miles before the ice was seen.'

Cautions.-" Captain Weddell recommends that, with a free side-wind, an iceberg or ice island should be passed on the windward side ; as by this mean the loose ice, which always drifts farthest, is avoided."

We may sum up the admonitions which have been given by the following remarks :-.

The indications of an iceberg are-1: A natural effalgence, or ice blink which frequently renders them visible at some distance, even in the darkest night. At a short distance this effulgence may appear like a white clond, extending over, or nearly over the vessel's masts.
2. A considerable decrease in the temperature of the water, as shown by the thermometer, in comparison with the heat of the adjacent sea, and with the air above.
3. The roaring of the sea at the base of a berg, which, excepting in a steamer with its paddles in action, may be heard by an attentive listener, when afar off.
(288.) Lieutenant J. Steele Parke, whose journal we have given extracts from elsewhere, recites the following incident which will speak for itself an inculcatory caution:-
"June 29th, 1826.-A light breeze from the southward, with foggy ' Bank weather, as the sailors call it. Steering E. by.S. At eight oclock this morning it cleared awry, and I took altitudes for my chronometer, which made the longitude $49^{\circ} 42^{\circ}$; and, at the same time, we discovered an island on the starboard beam, 3 or 4 miles off; Shortened sail, hove the ship to, and sent the mate to see what it roally was; for, although I had no doubt of its being an iceberg, yet it certainly looked womething like land ; and I did not wish to leave it in any kind of uncertainty. The fog, which had cleared away at eight o'clook, and left a beautiful blue sky, returned suddenly
whon the Doat was about half-way from the ship. The mate, an aotive, akilful senman, had a compass with him, and he apprehended no danger, but pushed on for the island, instead of returning, when he saw the fog spreading. Hour after hour passed away, and no appearance of the boat. Night came on, dark as the grave, with a cold, benumbing drinkle, and a \log so dense that we could scarcely see acroses the deek. Myigrand object was to keep the ship as near the same apot as powible.. All day and Cif nipht we kept the bell tolling, and fired a great gan occasionally : a tar barrel was also blasing at the main-yard arm, but all was unavailing. I shall never forget the terrors of that night. I reproached myself as the cause of their destruction; and I prayed most earnestly for daylight and elear weather. I thought daylight would never come ; but it came at last, and the fog was thicker, if poesible, than the day before. The most sangaine now began to despair. About five o'clock something was heard, like the blowing of a conch shell, buit so faint and indistinct that we thought it was only the echo of the great noise we were making on board. However, it was soon discovered that the sound was coming nearer and nearer : but, as no person on board knew that they had a shell in the boat, we were still in a sad state of anxiety: for it might, perhaps, be a ship sounding her shell in the fog, as usual at sea. In a few minutes the plash of oars was heard, and in five minutes more the boat was alongside, with all hands safe and sonnd, thank God! but cold and hungry enough. The mate tells me he rowed round the iceberg, which he thinks was aboat 300 feet in length, 150 feet in breadth, and 40 or 50 feet above the surface of the water. It was melting away rapidly: streams of water were gushing down its sides, and they had only got a few yards from it, on their return, when (to use his own words) 'it took a sally and fell over on its beam ends.' Our last sight of the ice, when bearing S.W. 3 or 4 miles, was in lat. $42^{\circ} 13^{\prime}$, long. $49^{\circ} 44^{\prime}$."*

These may be of service to vessels crossing the Atlantic, during the season of these fluating dangers, between March or February and July.

9.-GENERAL OBSERVATIONS ON THE CURRENTS.

Remarks by Lieutenant John Steele Parke, R.N. \dagger-Sailed from Falmouth (Jamaica), May the 23rd, 1826, and bore away for the "Strait of Florida.

May 30th.-Rounded Cape Antonio with a gentle breeze at E.N.E. In May, 1824, I found a current here setting with considerable strength into the Mexican Sea. This voyage there is none. I have perceived no current between the Grand Cayman and the S.W. end of Cuba; but there was a little easterly set between Jamaica and the Grand Cayman (200.) \ddagger The day we called there for turtle (the 27th) it was going to windward at the rate of a mile an hour.

June 1st.-In lat. $23^{\circ} 50^{\prime}$, long. $84^{\circ} 20^{\circ}$.-This day we first began to feel the influence of the current from the Mexican Sea.

It is well and truly remarked, by a skilful and a very intelligent navigator, in Purdy's "Memoir of the Atlantic," that, "the calculations of the velocity of the Gulf Stream are not ta be depended on." In the early part of June, 1824, it was running at the rate of $2 \frac{1}{5}$ miles an hour between the Bemini Isles and Florida: in July,

[^61]\ddagger The figures, thns (200.), refer to the sections in the preceding pages.

distance

 by cele weed (June eight o' noon.
westing dead re
tudes,

Iful sean for the r passed h' a cold, he deek. day and trel was rget the 1; and I ht would the day aing was thought r, it was erson on anxiety: 1. In a boat was enough. 0 feet in

It was they had it took a ing s.W.
n of these

Falmouth
lay, 1824, Sea. This yman and a and the as going
the influ-
igator, in the Gulf s running in July,
in length,
26. They pplication

1825, its velocity was 4 miles ncarly; and this voyage it is rather more than 4 . This has been ascertained by sidereal observations, made repeatedly during the night.
Let us now pursue our voyage. On the 7th of June we cleared the "Strait," and atood to the northward with an easterly wind. It was laid down as an established (and I believe an rncontroverted) position, that a rippling of the water is never meen in the Gulf Stream, but only on its outer edge. I have no objection to receive this doctrine as a general rule; but it is certainly not an infallible indication of the edge; for I have seen it more than once in the very heart of the stream. To-day, for instance; June 9, we are in lat. $32^{\circ} 10^{\prime}$, long. $78^{\circ} 2^{\prime}$, and I never suw the ocean more agitated by a current in my life, see (221.) page 322.

Every now and then we get into an extraordinary boiling, like the race of a spring tide over a shoal, and by a reference to the chart it will be seen that we are very far from the outer edge. It is true, the boundaries of the Gulf Stream cannot be laid down in a chart as fixed and unchangeable: the stream will be affected, both in its breadth and velocity, by causes that we know nothing of -causes that operate to-day, and may cease to-morrow : but there cannot be a doubt that these ripplings I speak of are in the strength of the stream, for the ship has been swept 60 miles $\mathrm{N} .40^{\circ} \mathrm{E}$. by the current in the last twenty- four hours.

June 10th.-Wind westerly; a moderate breeze; lat. $33^{\circ} 51^{\prime}$, long. $75^{\circ} 4^{\prime}$ - The current has carried us 58 miles N. 56° E. in the last twenty-four hours, and we have passed through four or five ripplings to-day as well as yesterday (222.).

June 11th.-Wind from S.W. to N.W.; a gentle breeze; lat. $34^{\circ} 38^{\prime}$, long. $73^{\circ} 23^{\prime}$. -Current has set us N. $76^{\circ} \mathrm{E} .9$ miles in the last twenty-four hours. No ripple seen to-day.

June 12th.-Wind westerly; a aice little breeze.-To-day and yesterday very little gulf-weed has been seen. A spring now and then. Yesterday the current was very weak, and to-day there is none at all. On the 9th and 10 th the sea was almost covered with weed, and we had then a beautiful current. It would almost appear that the weed (as well as the ripple) is but a fallacious test of this stream of streams. The truest indication is the temperature of the water. Compare the temperature of the water every four hours hours, and the rise or fall of the quicksilver will be a useful guide.

June 13th.-Wind from N.E. to East; a strong breeze and hazy weather; lat. $35^{\circ} 34^{\prime}$. -No altitudes for chronometer-the sun was not out at a proper time from moon. There seems to be northerly current. The dead reckoning agrees with the observed latitude.
June 14th.-Wind veering between North and East; a moderate breeze; lat. $36^{\circ} 10^{\prime}$, long. $70^{\circ} 55^{\circ}$.-A few sprigs of weed seen now and then, and we find a little current to the N.E.

June 15th.-Light wind and very variable; between N.E. and W.N.W.-In the last twenty-four hours the current has set N. $66^{\circ} \mathrm{E} .26$ miles ; a few sprigs of weed have been seen occasionally; lat. $36^{\circ} 34^{\prime}$, long. $70^{\circ} r^{\circ}$. At one p.m. got into a prodigious quantity of gulf-weed: the ocean covered with it for 2 or 3 miles. Passed through it in about half-an-hour, and during the remainder of the day saw very little: a cluster here and there, now and then (on the ontor edge of the stream).

June 16th.-Wind between N.E. and East; a fresh breeze.-The courses and distance, by compass and log, give the same easting and northing as the ship has made by celestial observations. Lat. $36^{\circ} 52^{\prime}$, long. $68^{\circ} 45^{\prime}$: we still pass sprigs of gulfweed (still on the eastern margin).

June 17th. - We have been standing to the northward since yesterday morning at eight o'clock, with the wind about East, and are now in lat. $37^{\circ} 50^{\prime}$, long. $68^{\circ} 50^{\circ}$, at noon. The log gives a true North course, and the chronometer gives five minutes of westing, therefore we may presume there is little or no current, for the latitude, by dead reckoning, agrees within a mile of the observation. P.M.-I Amd by altitudes, taken this afternbon at five o'clock, that the ship has made seventeer minutes
of earting by chronometer since the sights I took in the morning at nine. We must be getting into the stream again, for the ship has not made a single mile of earting, by fair calculation, according to dead reckoning. A few aprigs seen to-day.
June 18th.-The wind ham been steady at East all the last twenty-four hours, and we have been otanding to the ncrthward all the time. Theee currents of the ccean are puesling phenomena! The true course and distance by \log is N. 1 W. 50 miles; and what course do you think we have really and truly made by celestial observations P By the meridian altitude of the sun, our latitude is $38^{\circ} 7^{\prime}$, and the longitnde, by ohronometer and lumar, $67^{\circ} \mathbf{4 6}$. So we have made seventeen minutes of northing, whereas the run by log gives fifty minutes; and we have made sixty-four minutes of casting, when the most skilful seaman, without a knowledge of lunars or ohronometer, would say we have made five ofr six minutes of westing. This sweep of the current I fancy we must attribute to the combined action of two streams: one, the Gulf Stream, pursuing its ordinary course to the eastward; the othex, perhape, from the St. lawrence, running to the South.-Perhaps there may have. been a sontherly set occaaioned by the proximity of the Nantucket Shoals (247.).

June 19th.-Southerly wind, with foggy, miserable weather. No altitudes for chronometer or latitnde. By the \log we are in $38^{\circ} 45^{\prime} \mathrm{N}$., and $66^{\circ} 6^{\prime} \mathrm{W}$., at noon.Lffects of the Arctic Current (250.)

June 20th. -The same sort of weather as yesterday, with a moderate breeze from the S.S.E. By log we are in $39^{\circ} 59^{\prime}$, and $68^{\circ} 16^{\prime}$. P.M.-Passed some weed; long and stringy; not gulf-weed.

June 21st.-The wind drew round to the eastward last night, and we stood to the northrard. At one a.m. the sky brightened, and I was lucky enough to get an altitude of the moon, when she was just on the meridian, which made the latitude $41^{\circ} 15^{\prime} ;$ being 36 miles farther north than the latitude by account, since the observation on the i8th. Tacked and stood to the S.S.E. There has been very little current to the castward since the longitude was ascertained on the 18th: the log given nearly as much easting as the chronometer. Lat. $40^{\circ} 59^{\prime}$, long. $62^{\circ} 40^{\prime}$. We have seen a good many clusters of gulf-weed to-day. As we approach the usual northern limit of the tream, I am watching the weed particularly to see how far we ahall carry it.-Siee (248.) for the northern edge.

Jume 22nd.-The wind E.N.E., blowing hard, with a high sea and dark dismal weather (250.); but we got the meridian altitude of the sun; and also sights for the chronometer this morning at nine o'clock. The longitude was then $61^{\circ} 52^{\prime}$, therefore we are deoidedly in a fine easterly current. The log cannot possibly give a single mile of easting, for we have been lying-to, under the main-topsail, in a heavy gale of wind, all the twenty-four hours, with our head to the southward and eastward. The ship has also been carried to the North by the current : our latitude is $40^{\circ} 45^{\prime}$. So that she has really made forty-eight minntes of easting, and only fourteen minutes of southing: and the log gives thirty-eight minutes of southing, and six minutes of westing. Making every reasonable allowance for the inaccuracy of dead-reckoning, we may safely say the current has set us upward of 40 miles in a N.E. by E. direction (261.). No one can heve lese faith in dead reckoning thin I have; but still it is necensary to attend to it, in order to compare it with the ship's true position : for I am not awrare of any other means to determine the set and velocity of a current, in a gale of wind, but by comparing the common calculation by \log with the true place of the ohip, indionted by celential obeervations. P.M.-At five oclock, by chronometer, we have atill a fine current. No weed seen all day.

June 23rd.-Wind E.N.E. Still blowing hard; but lem aea, and wind abating. Ship's head to the S.E. Lat. $40^{\circ} 1^{\prime}$. P.M.-Fine weather again. Made sail. At hald-pant fonr got altituden for chronometer, and I am sorry to find we have lont the current. The longitude is $61^{\circ} 67^{\prime}$. Tacked ship immediately, and ntood to the northward. We have pased some weed to-day, both in large clusters and amall aprigig.

June 24th.-The wind came round to the S.S.E. in the night, and we shaped a
cour 61° it 61 and Afor five, eigh
ine. We agle mile rigs seen
ours, and he ccean 50 xniles ; lobservaongitude, northing, inutes of onometer, current I If Stream, St. Lawnet occa-
tudes for noon. -
ceze from eed; long

ood to the

 et an altide $41^{\circ} 15^{\prime} ;$ vation on ent to the nearly as en a good mit of the y it.-Sieerk dismal hts for the therefore a single y gale of ard, The - 45'. So minutes of inutes of eckoning, E. direcstill it is on: for I rent, in a e place of onometer,

1 abating. mail. $\boldsymbol{A t}$ wo have 1 stood to and mmall
shaped a
counse E. by N., with a light breeze. The longitude, by chronometer, this morning at eight o'clock, disappointed me very much: at half-past four p.m., yesterday, it was $61^{\circ} \mathrm{B7}$ ', and we have been atanding to the eastward almost all night. The log makes it $61^{\circ} 18^{\prime}$, and the chronometer, $61^{\circ} 45^{\prime}$! We have had a westerly set, undonbtedly; and a sontherly one too, for the latitude is $40^{\circ} 9^{\prime}$, and by the log it should be $40^{\circ} 16^{\prime}$. A few sprigs of weed in sight to-day. P.M.-Chronometer (at five o'clock) gives five minutes of easting more than the run by log, eince the altitudes in the morning at eight (the Arctic S.W. current felt).

June 25th.-Wind South: a gentle breeze and fine weather. Lat. $40^{\circ} 18^{\prime}$, long. $60^{\circ} 8^{\prime}$. No perceptible current these last twenty-four hours. Passed several sprigs of weed.

Junc 26th.-Wind sontherly, a steady 6 -knot breeze and fine weather. Steering E. by S. Lat. $4^{\circ} 3^{\prime}$, long. $56^{\circ} 46^{\prime}$.- Ship has gone 138 miles by log, and 165 by chronometer. The difference between chronometer and dead-reckoning must not always be attributed to a current. Some allowance must be made for the carelessnems of sailors (especially in the night watches) at the helm, and other circumstances relating to the run by log. However, I think I am warranted in saying we have beneffted something by a current. I make it N.E. by E. 10 or 12 miles. P.M.-The chronometer tells me (at six o'olock) that we have an easterly current.

June 27ith.-A moderate breeze at S.W. Running E. by S. Lat. 41° 27', long., by lr. 1 ars and chronometer, which differ very little, $53^{8} 41^{\prime}$ at noon. Carrent has eet us 15. 522° E. 26 miles in the last twenty-four hours. P.M.-Two sprigs of galf-weed this afternoon, in lat. $41^{\circ} 29^{\prime}$, long. $63^{\circ} 8^{\prime}$.

June 28th.-Steering E. by S. with a gentle 4-knot breeze at S.W.-The longitude by chronometer was $62^{\circ} 11^{\prime}$ this morning, and we made eleven minutes by \log between that time and noon. So we shall call the longitude $52^{\circ} 0^{\prime}$, and the latitude $41^{\circ} 50^{\circ}$. We have had a little northerly set these last twenty-four hours, 8 or 9 miles North, and 2 or 3 milee East. I have observed, in my last three voyages from Jamaica, that we have always felt 2 northerly current of some strength in this part of the ocean, setting toward the Bank of Newfoundland, in June and July. This, if 1 mistake not, is contrary to the generally received opinion (256). Some weed in sight to-day; a few sprigs decidedly gulf-weed : they had all the well-known characteristics of the regular gulf-weed; but there was some of a different kind, with long stringy stems.

June 20th.-Long. $49^{\circ} 42^{\prime}$, at 8 a.m., sew an immense ieeberg, whioh I sent the mate to see, as related on page 350.

June 30th.-Light breeze from the westward. When the boat returned this morning, made sail again on the same course, E. by S. At noon, atmosphere thiok as melted butter. No sights for chronometer or latitude, and I was in too much distress to attend to latitude or longitude by dead-reckoning.

July 1st.-Wenterly wind, with thick fog generally, but olearing away now and then during the day, so that I got a glimpse of the sun this morning for the chronometer, and also a good meridian altitude for the latitude. I was even lucky enough to get three sets of the lunar distances. I worked them all separately, as well as by the mean of the three sets, and they differed only 2 miles. The lunar is sixteen minutes to the eastward of the chronometer, but I rely more on the chronometer than the lunar. Lat. $42^{\circ} 46^{\prime}$, ohonometer, $47^{\circ} 11^{\prime}$, at nine a.m. Immediately after noon the fog returned with all its density.
July 2nd.-Wind westerly. Light breeze; 3 or 4 knote. -In confirmation of my position, that a ehip makes more northing than the log will give, near the Bank of Newfonudland, in this meason of the year (my remarks have been made in June and July only), I find we have made 28 or 80 milen of northing more than the deadreckoning can aocount for eatisfactorily since noon yesterday. The water is amooth, and we have been ateering one course, E. by S. $\frac{1}{\text { S }}$., with a fair wind: by log we have gone 82 miles, and I think the ship has been attended to an carefilly as one can expeot in a merchantman. The chronometer also gives more casting than the run by a very great deal. It oleared np about twolve o'elock, and gave me the meridian altitude;
lat. 43° 31. And tt brightened aytin at three p.m.i when my. chronometer gav44 ${ }^{\circ} 6^{\prime}$. The ourrent is unquentionably goin to the north ward and eastward $(254$, make it N. 61° E., 48 or 50 mile, mince nine colock yenterday, when the longitue was found by chronometer.

July 3rd.-Steering E. by 8. $\frac{78}{}$. Wind westerly, a nice iittle steady breeze.Longitude, by chronometer, this morning, at twenty-four minutes part eight, was 41° I4'; and the latitude $43^{\circ} 68^{\prime}$. Carrent had set un N. 73° E. 17 or 18 milew in the last twenty-four hours.

July 4th.-Wind wrenterly, a beantiful breeze. Running E. by S. $\frac{1}{8}$ 8.-It is my constant practice to take sight for the longitude two, thive, or four times a day, according to circumstances, as well as sidereal observations, for the latitude in the night watchens and by thema means I think it is a fair conolusion, that I cain discover, gouerally, the wet and velocity of a current very soon after the ahip beging to feel ita infuence. Now, the current ham been aetting altogether to the eentward during the last twenty-four hourn (N. 85° E. 10 miles), the longitude only will be disturbed, therefore the chronometer will be our truest gaide, and ahe tolle me that the current coned in $44^{\circ} 16^{\prime}$, longs. $38^{\circ} 32^{\prime}$. ...Thir I call the eastern boundary, or rather the termination, of the Florida Stream (214.). I saw some bunches of weed to-day; it was decidedly what is commonly called gulf-weed, the same kind that we met with in the Florida Stream, along the coast of North America, but it had not the same flourishing look. I call them bunchees, in contradirtinction to aprige; for the sprigs that we fall in with to the southward flout lightly on the surface, bnt those to the northward are more like banches of oakum-bunches of oakum eaturated with water, and almost stinking.
July סth.-Wind W.N.W. A fine steady breese. Running E. by S. $\mathcal{1}$ S. Lat. $41^{\circ} .55^{\prime}$, long. $35^{\circ} 45^{\prime}$. I have no doubt that the weed mentioned yesterday wasat the eastern end of the stream, for we have seen none since, and none was meen for two days before; and the ran, by log, gives now as much longitude as the chronometer. I fany we may presume that the weed was carried there by the Florida Current, unlese, indeed, we adopt the hypothesis, that the current has nothing to do with it: that it grow and ripens at the bottom of the sea; and, when in in itate of decay, the items are broken of by the agitation of the water, or some other mocidental cause, and then it comes to tho surface. Be that as it may, the weed, in this part of the ocean, I have invariably found in a perishing state; and I have generally found it fresh and healtiny in the atream awreping along the coast of America.
[From the 6th to the 14th of July, when the ship arrived at the Iisard, the Journal presents nothing remarkable, excepting a ourrent setting N.W. by W. on the edge of soundings. The ourrent on other days was scarcely perceptible.]

Major Rennell sayy:-"It is well known how oasily a current may be induced by the aotion of the wind, and how a strong S.W., a N.W., or even a N.E. wind, on our own coants, raises the tide to an extraordinary height in the English Channel, the River Thames, the East Coont of Britain, \&o., as those winds respectively provail. The ingenious Mr. Smeaton ascertained, by experiment, that in a canal of 4 miles in length, the water was kept up 4 inches higher at one end than at the other, merely by the action of the wind along the canal. The Baltio in kept ap 2 feet at least by a strong N.W. wind of any continuance; and the Caspian. Sea in higher, by ceveral feet, int either end, as a strong northerly or moutherly wind prevailo. It is likewiso known, that a large piece of water, 10 miles broad, and generally only a foet deep, has by a atrong wind, had its waters drived to one side, and mustained no na to hecome 6 foot deep, while the windward side was laid dry. Therefore, as water pent up so that it cannot escape soquires a highor level, no, in a place where it can eacape. the mame operation produces a ourrent, and this current will extond to a groater
or lo wind
certa
wind cause curre tropic came with runs Th increm One if Meni neilhe six ho Other is blen from t (288 in the United places) in vole overtur The fo offleer
" Th
lowere ourrent 4 feet, by a 1 line) ; the rat direotic under always to see t of over
or leen distance, ncoording to the forve by whith it is produced or kept up by the wind."
Thene fluots are so woll accortained, that it may generally be taken for granted, a certain degree of current will obtain on the Alantic, after a continuance of any uniforms wind, where the seen wonld be otherwive in a placid atate, and unaffected by other cavees. For it is suppowed that the winds, where uniform and permanent, produce currents equally uniform and permanent. Hence it is that the winde between the tropice, having a general courne westward, protrude the water of the Atlantio in the came direotion, and canse the flow of a current the came way, prlem where it meets with land, inlands, or ahsale, to obstruct its courne or change its direction, or where it runs through channels which draw it a different way.
There is rencon for believing that the great currente within the torrid sone are incresed by the influence of the moon, whioh draws them on from East to Wert (201.). One inmtance that curronts are affected. by this cause is, that in the Faro, or Strait of Meesina, between Sicily and Calabria, in the Mediterranean Sea, where there is neithor rine nor fall, a current weta to the northward and mouthward alternately, for six hourt, having every appearance of being governed solely by the lunar infipence. Other inatancees might be given ; and there is little doubt but the powrer of the winde is blended with the attraction of the moon in forming the currents which ret westerly from the Atlantio into the Went Indian Seen \dagger
(289.) Subicarine Currents.-Another feature of ocean currents has been elicited In the experiments made under the direction of the hydrographio departanent of the United States' Coant Survey (to whole labours we have had ocoasion to allude in other places), and that is, that the not of the submarine currents does not correcpond either in velocity or dirrection with thowe of the surface. How far suoh a singular, fhet will overturn our preconceived notions, it murt be lelt for more oxtended remprias to elicito The following is the account given by Lientonent Waleh, of the U.S. brig Tancy, the officer alluded to :-
"The surface ourrent was first tried br the usual mode (a heary iron kettle being lowered from a boat to the depth of, 80 fathoms); then, for the trial of the under current, a large chip-log, of the usual quadrantal form, the are of it meamaring full 4 feet, and heavily loaded with lead to make it aink and keep upright, was lowered by a light but atrong cod line to the depth of 126 fathoms (the length of the line); a barrega was attached an a float, and a log line fastened to this barrega; and the rate of motion of this float, an measured by this \log line and glans, as well as the direotion, as shown by a compass, were assumed as the velocity and net of the under current. No allowance was made for the drag of the barrega, which was always in a different direction from the surface ourrent. It was wonderful, indeed, to see this barrega move off against wind and sea, and surface current, at the rate of over one knot an hour, as was generally the case, and on one occasion as much

- Major Rennell, on the Thwart Ohannel Ourrent. It hay furthermore been noticed, that the effeot of wind in altering the level of the eurfice of water is atrongly exemplified in the reach which forms the pummit-level of the Forth and Clyde Canal in Sootland. Thin each is about 18 miles long, nearly in a etraight line, Esast and West. When a vesterly gale has blown for some time, the aotion of the wind sweeps away the water from the West end, sinking ity murfece, and acoumnlating it at the Fast end, where it ewoupen over the look-gates, in a stream sometimer 10 inches deep.- " Fd. Ph. Journ.," vol. vh. p. 71.
In a gale of wind, in 1823 , a part, or reaoh, of the Grami Jwnotion Cawal, was raised 21 inches.

The eficot of S.W. and southerly winde, on the level of the see upon the coant of Guinea, has been ahpwn on page 257.

+ Partioular convulaions in the Interior of the earth sometimes occacion an extraordinary derangement of the tide, \&o. After a late ocourrence of this nature in the Mediterrancan Sea, called by the Itallans a soa-carthguaho, the courre of the tides In the Grulf of Epessis wan totally deranged for the coven or eight aucoeoding daym. But the ehb and food wers sonaibli porooiver at intorvais of a quartat of an hour, half an hour, and an hour, during that whole apeoe of time.
- 17 knoth. The men in the boat could not reprees exclamations of surprice, for it really appeared as if some monster of the deep had hold of the weight below, and was walking of with it. I will eite from the log ceveral instances of themo experimenta.
"On KLay 11 th, 1850 , in lat. $24^{\circ} 48^{\prime}$ N., long. $65^{\circ} 25^{\prime}$ W., we found a surface current of one-third knot per hour, setting to the Weet, and an under current, at the depth of 126 fathoms, of the knot, setting W.S.W.; temperature of water at surface, $77^{\circ} 3^{\prime}$; at 60 fathoms, $77^{\circ} 5^{\prime}$; at 100 fathoms, $73^{\circ} 5^{\prime}$. The current felt by the vensel on that day (as deduced from the comparison of the true position obtained by astronomomical observations and chronometers, with thowe by dead reokoning) agreed with this trial of the surface current, being the same within a frection, vis., 0.3 knot westerly. On this day tho wea was covered with a apecien of medinas, of a dark red colour, spherical in shape, from one-eighth to three-ighthe of an inoh in diameter. ..
$"$ On May 12th, at four p.m., in lat. $25^{\circ} 65^{\prime}$ N., long. $05^{\circ} 43^{\prime}$ W., the inurice current was found to be one-third knot, eetting N.N.E., and the under current (at 126 fatho.) 14 knota, setting S.E., being the whrong nuder current I have alluded to $;$, this was well escertained by coveral trials; tempernture of water at aurfuce, 75 ; at 50 fathoms, 76°; at 100 fathoms, 69°. From this time, four p.m, to eight a.mi. the following mozning, we experienced a strong currrent of 1.3 knots per hour, setting N. 14^{8} E., as determined by the observation. While trying the currents in the boat, all hands remaining on board the schooner were employed mounding with 600 fathoms line, but failed to get the temperature at that depth, there being at that time too muoh swell.
"On May 13th, at half-past five p.m., in lat. $26^{\circ} 42^{\prime}$ N., long. $64^{\circ} 4^{\prime}$ W., the surfuce currents was found to be one-third knot, setting E. by 8.; the under current (at 126 fathoms) $1 \frac{1}{4}$ knots, setting.W.S.W.; at the same time obtained the following temperatures : at murface, $77^{\circ}{ }^{\circ} 5^{\prime}$; at 50 fathoms, $76^{\circ} .5^{\prime}$; at 100 fathoms, $75^{\circ} 5^{\prime} ;$ at 500 fathoms, 63°. The current felt by the schooner, in the interval betwreen eight a.m. and four p.m., was easterly 0.4 knot per hour, agreeing with the trial in the boat.
"On May 14th, in lat. $26^{\circ} 46^{\prime}$ N., long. $69^{\circ} 53^{\prime}$ W., found a alight surface drift, too small to be measured, wetting to the west waid, and an under current (at 126 fathoms) of $1 \frac{1}{2}$ knota, setting N . by E. No current had been acting on the vessel for the preceding sixteen hours, and dead reckoning agreeing with observations. On this day the sea being pretty smooth, we tried soundings with the wire, and got 1,050 fathoms without bottom, and we succeeded in getting, by one of Six's mell-registering thermometers (which came up uninjured by the immense premare) the temperature at that great depth, which was at 49°, while at the surface it was 77°.
"On May 18th, at nine a.m., in lat. $36^{\circ} 6^{\prime}$ N., long. $67^{\circ} 56^{\prime}$ W., found a surface current of one-third knot setting N.W. by N., and a very slight under-current (at 128 fathoms) not more than one-ixth knot, setting N.E. No current was felt by the vemsel during that day, but during the preceding night one-fourth knot per hour, setting N.W. Being calm and pretty smooth, we sounded during this day to the depth of $\mathbf{2 , 0 5 0}$ fathoms, when the wire broke without reaching bottom. The temperatare, at the surface, 70°; at 100 fathoms, 65°. The trial of currents on this day was one of the two oocasions which I have alluded to, on which we found a lew under current than that above it.
"On May 29th, at eleven a.m., in lat. $33^{\circ} 58^{\prime}$ N., long. 72° W., found the surface current ono-third knot, eetting S.E., and an under current (at 126 fathome) of one knot, setting W.N.W. Temperature at aurfuce, $71^{\circ} ;$ at 60 futhoma, $70.5^{\circ} ;$ at 100 fathoms, 67°. We were set during this day, as determined by the afternson obvervations, to the eastward, at the rate of one-half knot per hour. On this, which happened to be the last occacion of thene experimente, Itried the current at the depth to whioh the kettle was lowered (80 fathoms), which it would have been better always to have done. I founded it tended in the same direotion as that at 126 fathoms (counter to the surface current), but at so mall a rate that it could hardly be measured, not more than one-tenth knot per hour, the float moving at only thin umall rate, being hat onetenth of the velocity at which it had moved juut before, when trying it at 126 fathoms. This indioates that the kettie had just penetrated the under
current $;$ and thus, by this meene, it would appear practicable to measure the depth of the surfice curment, of its point of contact with the counter under current. Such exprecments in the Gulf Stream would be particularly interesting."

Captain Irminger, of the Royml Denich Nary, has also recorded some experimenta on submarine motion. They were made with an initrument invented by M. Aime, and dencribed in the "Anvalei de Chimie et de Phynique en 1845":
" March 17, 1849. - Weather calm, lat. $25^{\circ} 4^{\prime}$ N., long. $68^{\circ} 41^{\prime}$ W; the current indicator and self-registering thermometer lowered 2,934 feet, of nearly 500 fathoms, when the current was found setting N.W. true ; surface temperature, 78.8°, and at 500 fathoms 460°.
"In another part, in aight of Madeire, lat. $31^{\circ} 58^{\prime}$ N., long. $17^{\circ} 12^{\prime}$ W., Sept. 14, 1847; no surfice current; at 1,080 feet, or 330 fathoms, the current was running W.S.W true; temperature of surface, $76-1^{\circ}$; at 330 fathoms, $51 \cdot 8^{\circ}$. The surface current here usually seta to S.E."

With our prement imperfect moquaintance with this important branch of the snbject of currents, it would be uee'ry to build up any argument. We ahall, therelore, dismice it for the present, leaving it for the seaman to add to our atore of knowledge hereafter.
(290.) In the year 1804, Captain James Mandernon, of the Royal Navy, pablinhed "An Examination into the True Canse of the Stream of Florida," \&cC. In this treatise he considers the floods of the Missinsippi as the "prime mover of the Florida Stream "" and he presumee that it is caused by the waters which fall into the Gulf from that and other rivers. Captain Livingston, on the subject, says-"From the best information I could obtain, relative to the quantity of water discharged into the sea by the Mississippi, Rio Bravo, \&e., there seems no probability that, in the aggregate, they exceed a three-thonsandth part of the water which is discharged through the Strait, between the Florida Reefs and the Bemini Kays, or the narroweat part of the atrait." ${ }^{\text {e }}$

Upon the hypothesis of Captain Manderson it was subsequently stated, in an American work, that the velocity of the Gulf Stream might be calculated by the rise and fall of the floods in the Misoionippi. Thus is one error propagated upon another! "I have," adds Captain Livingston, "experience of the contrary. In August, 1818, the River Misaisaippi was uncommonly low, and I never saw the Gulf Stream run with greater velocity. The trade-winder raising the level of the Gulf of Mexico neem to me the principal cause of the Gulf Streem.
"I am of opinion that its velocity depends on the motion of the sun in the ecliptic, and the infinence he has upon the waters of the Atlantio ; as, when the sun's decination is north, the N.E. trado-wind blows fresher, and extends farther to the northward, than when the sun's declination is sonth. This causen a groater prewsure of Fater toward the Caribbean Sea, and a muperior elevation of the surface of the gulf of Mexico, the superfluous water of which ewapes by the Strait of Florida, where it is least opposed by the trado-wind, which only affects it laterally (except in the short distance between the Dry Tortugan and the Salt Kay Bank), and even there the effecte of the trade-wind must be very much diminiahed by the Bahama Bank, with the inlands and kays thereon.
"There can be little doobt that the attruction of the sun, while in the northern hemisphere, infiuescen the current which generally prevails about Madeira, and causes it to net with greater velocity toward the nouthward and eantward. One well-known

[^62]fact scems to corrobate this idea, namely, that the above-mentioned cutrent is always much stronger in the sumuier than in the winter months. On a reference to my journale it appears, that although we were considerable time in the limits over Which the influence of the Gulf Stream generally extends, in the forenconi of Fridiy, the 10th, and on the whole of the 2 ath of Tebruary, we felt its effects in a alight dogree only, the water appeuring during that time to have been perfeotly itationary. It may also be remarked, from the oournals of my voyage through the Streit of Florita, in September, 1818; in the ahip Asia, and in March, 1819, in the brig Diopatoh, how very little we geined, in the latter inotance, from the asoistance of the Wream, wher compared with the manner in which it hurried us to the northward on the former. All this tends to confirm me in the opinion that the velocity of the Gulf Stream depends almost onti-sly on the sun's place in the ecliptic."- ${ }^{n}$." \mathbf{L}.
It may here be remarked, that the Gulf Stream is augmented during the rainy season of the Weat Indies, and reaches its highest parallel (abont $43^{\circ} \mathrm{N}$. between 56° and 57° W.) in the summer only. In that spason it there apready over a vast extent of oceanio water. It is also to be recollected that in the same rainy season the waters of the Caribbean See, which in then surcharged, seek an escape along the Colombian coant to the cashoard, as well as by the Channel of Yicatan to the Weet.
(291.) The Eabyeriy Currents in the Northorn parts of the Atlantic, and which in the Bay of Biscay exert their tremendous effects so as to be proverbial, originate in the north, as we have described, and then conform to the winds, which in these regions are, as already shown, mostly from the N. W., and violent during a great part of the year.

The more general prevalence of westerly winds of the coasts of the United States operate to produce a depression of the water off thowe coasts, and of course contribute to an casterly tendincy, in the, waters of the ocean.
The indraught into the Strait of Gibraltar is attributed to the evaporation of the Mediterranean Sea, which appears to be the cause of the currents setting immediately in that direction, and of biassing the water from the West. ${ }^{\bullet}$

These circumstanoes, combined, must indisputably produce the set or drift of a great portion of the Atlantic to the east, E.S.E. and S.E., whioh, however, varies with the winds, with the seasons, and local circumstancee.

The auxiliary winds on the African coant are the means of continoing and carrying it down that coast in the manner in which it has been doscribed.

To the prevalence of westerly winds and easterly currents in to be attributed the shorter period of voyagen from America to Europe than from Europe to America; a fact entablished by general experience.

Abstract

At any considerable distance from the coast of America, the easterly current caused by the action of violent west or N.W. winds is seldom felt to the sonthward of latitude 38°; consoquently, the sea about the Bermudas, and thence southward, is free from the influence of this current. The cirrents here, though slow, are produced in the direction of the wind, particularly when it is of long continuance. These currents are found stronger near the islands and rocks of Bermuda than at a distance, because the obstruction which the water meets with from the islands causes it to run proportionably faster past their sides. In e hrisk gale the current here has been experienced from 12 to 18 miles in the twenty-four hours, in the direction of the wind; at other timen, when the wind was not eettled, no ourrent has been found.

Major Rennell is of opinion that those transient and contradictory currents that

[^63]are met with in the mid-oceari are owing to giales of wind, which mometimen are but narrow in their column of air, but affect the surfice very triongly so far as they extend.
The systom of ocean currents having, from the numerous observations before related, amidst a crowd of others, become tolerably well arranged and understood, may be readily comprehended, although it must not be considered that we have nothing more to learn npon the subject.
(292.) A great addition to Hydrography hae been laid before the world by the United Statee' Government, the remult of the Exploxing Expedition, under the orderi of Captain Charles Wilkes. From that work we extract the views of its author concerning the Hydrology of the North Atlantic.
"The approach of the Gulf Stream to our shores (United States) has been accribed to the influence of N.E. winds. These are known to affect the tides in our bayy and harbours ; but I am unwilling to admit that these are an adequate cause for the change in position and velocity of so great a body of water. The action is far too trivial to account for such an effect. It is certain, on the other hand, that the Gulf and Lebrador Streams both owe their existence to the unequal distribution of temperature on the earth's surface; there must be a difference in the intensity of the causes that act to produce these effects at different seasons of the year; and it may be inferred that the changes of the seasons act unequally upon the two streams. The force of the portion of the Labrador Current which follows the coast of the United Statem will, when superior, carry the Gulf Stream outwards, and when that force diminishes, the Gulf Stream will approach more nearly to the coast, and most nearly when its own relative force is the greatest. Whatever be the ultimate causes of the streams, it would appear that their enproximate causes are influenced by temperature, the Gulf Stream being increased in mass and velocity.when the temperature is higheet, and the Labrador Stream when it is lowent; and in conformity we find it a general impremion that the former is broader and more rapid in the summer of our climate than in winter. : I must, however, state that I have been anable from my own personal observation, either by the thermometer or the set of the vessel, to distinguish this increase of the Gulf Stream in summer. Thus, in my passage to England, in Aagust, 1846, from the time we passed to the east of St. George's Bank, in a latitude abont 1° to the south of it, we experienced a low temperature in the water, and the vessel was retarded. We were, therefore, in the Labrador Current.
"After the squadron had crossed the Gulf Stream we experienced little action from current till we reached Madeira, che whole difference between our dead: reckoning and the true place of the ship being no more than 176 miles in twenty-nix days.
"Before leaving this part of our subject, it may be as well to refer to facts familiarly known, but which did not come within the scope of our observations. The atream known on our coast by the epithet of gulf may often be traced upon the aurface, but with diminished velocity, entirely acroses the Atlantic; throwing, at some seasone, the seeds and drift of tropical olimates upon the British Islands, even as far north as the Shetlands. At other times, when the Gulf Stream ceases to flow, or is overpowered by the great Polar Current, they are carried by the latter to the S.E., on the coast of Spain and Portugal, which current has been so disastrous by the number of vessels that have been wrecked on Cape Finisterre, where it dividen, one branch of it passing. around the shores of the Bay of Biscay, along the western coast of France, and thence crossing the English Channel, which is now so well known as the Rennell Current while the main Polar Stream flows sonth, along the coast of Portugal, towarde Madeira, with a diminiahed volocity, as a surface ourrent.
"That the stream which sets upon Cape Finisterre is the origin of the Rennell, Current, the following remarks by Horsburgh clearly show :- The ourrent is found to set east from Maroh to November, particularly when west winde prevail; and ofr. Cape Finisterre, and near the nouthern part of the Bay of Biscay, it sets montily along the coast to the east; and along the east coast of the Bay it eetit to the north, parint to the west count of France.'

 sppears to exist. In lien of the former, we have the current familiarly knownine the Adrican Current, by its cauging so many dintremsing wreokn on that coart, and to Fhioh attention has often been drawn by the captivity and cruel alavery to which Chair crewn have been nubjected.
"As has been seen in the narrative, but little ourface ourrent wan found on one yeyafe from Madeira to the Cape de Verdes but the submarine stream whe atill cound, ai was shown by the low temperature of the deep-sea soundings. At, and in the neighbourhood of, the latter islands, and between them and Cape Verde, on the Atrican coast, a itrong surface ourrent is folt. In ondeavouring to acoount for this remarkable circumatance of the creation of a current; and its increased velocity, of thich overy narlgater tmuit be aware, when in the neighbourhood of many inlunds, and the efibets of whioh wo often experienced in our long. voyage, I thall now advert to the cance whioh, I think, is quite eufficient for the effect; and that is, the coovmuIntion of water caused by the obstructions that iolands offer to the onward flow of rebmarine streame, thut raising the level of the ooean in their vicinity, and concoguently a tondenoy to ran off, and thereby create a current where none was peroep; sible betore, or an increasd volocity in that which wee felt.
"To thin oause, then, I believe the currents around the Cape Verde Inlands owe their origin; as well as all others prevailing near inlande and banks; and, at corroborative proof of this, I will mention the fact, that, where no submarine Polar Stream exints, permanent currenta are not found. This will, I trust, be amply ahown in the sequel.

${ }^{3}$ " Beyond the Cape de Verdes, overfalls, rips, and a continued tendenoy to change in the curfice of the ooean, are experienoed, as if two great conflioting submarine currente were moeting at eome depth beneeth the surface. ".
"As we proceeded on our route from Porto Praya to Rio Janeiro, the same appearancer continued; but we did not meet the Equatorial stream until we had cromed the Equator and remched the latitude of $5^{\circ} 8$., and longitude $25^{\circ} \mathrm{W}$. It wres then parsuing ith course towards the coast of Bracil, whence, pacsing between the Windward Inles, it finally enters the Gulf of Mexico.
"This part of our passage afforded many interesting observations, exhibiting extanded rips, and the boilings above spoken of, alternating with amooth apaces, and variable currente, setting for a short time in one direction, and immediately afterFards in.the opposite. All spoke of a oonfliot of currents, and a forcible mingling of the wators beneeth the surface. From Porto Praya to Rio we were influenced by cenruates 200 miles, $\mathrm{N}_{0} \cdot 41^{\circ} \mathrm{W}$.
${ }^{2}$ " No current of the velocity here mentioned has over been experienced to the Bart. To what is this sudden increase and rapid flow to be imputed P or to what other canse cun it be imputed, but to a submarine stream, flowing directly on the shoal coast of Draril, and raising the level of the ocean on those banks whioh it endeavourn contanitly to rentore, by flowing off rapially in the opposite direetion?
"Before proceeding into the South Atlantio, I will recapitulate our results in the northern.

 ocean under the Equator, begomen more heated on the ogart of Bxail i apd oppowim the const of the United States retains, both in summer and winter, a tempencir no proaching to, or often exceeding, 80°. In the meantime, another great stream beta couth along the coants of Labrador and Nowfoundlaind; and, dividing at the baphe, a brengh of thit follows the line of coundings off Mopii Sootia and the United Btates, While another flows beneath the waters of the Gulf Stream, passes south, and mingle with the waters of the ocean, and affects the surface temperature where it comee in contict with inlands and banks. The uninterrupted fow of this vast Polar ©trocin is along the coast of Portugal and Spain, and a Binall part of it fown into the Bay of Biscay, caused by its striking upon Cape Finisterre, and forms eventually the Remneli Current; another part flows into the Mediterranean, in copsequence of the higher level of the stream, when compared with the water' of that son. The main branch now parsues its course on the surface, until Madeire and the Canaries ere reached in its course, beyond which it is no longer apparent. Bat below the vurface, as showh by the low temperature of the deep-sea soundings, a submarine stream parsuen its way to the Equator, where the watais again commenee the same round an befen.
" In the south portion of the space included within the above limits, is an expanse of wator whioh presents remarkable phenomena. Thin in called by the name of the Sargase Sem, and is noted for the quantity of the aquatic plant, known as the gelf. weed (fiveus palases) that in found in it. ${ }^{n}$.
(298.) Mont willingly would we give here, in eatence, an excellent paper with which we have been favoured by Captain R. Leightop, on the general nyatem of aeenn currents, but space will only allow a brief notice of it. Captain Leighton, from his own obeervations, aided by the remarks of othera, traces in a more connected manner than han hitherto been done the progress of cireulation in the ocean waterch, is follows:-

The amount of rain which falle in the Gulf of Moxioo and the besin of the Miraisaippi River cennot be the source of the Gulf Stream; for although there in \& wet and dry soeson in the West Indies, yet the amount of rain which falls thene is a mere sprinkling compared with the deluges of rain that fall in the whole of the conntriee surrounding the Bay of Bengal during the S.W. monsoon, which may be judged of by the fect that the average amnual fall of min at Maulmain, in six yearn, wes 15 feet ; and at Tavoy it was 16 feot, and it cometimes ruins for nis weoke withhout oenco. tion at Maulmain. In the Mexicen Gulf the great Migeiepippi is simont the only xiver of great magnitude; but what is thin comparad with the Gapgen, the Irawadi, the gittang; and the Selweea Rivery, all falling into the N.E. part of the Bey of Bepgelp Now, from this came, and from the N.E. mongoon driving the cursent along the weent count of Sumatra, and the S.E. trade hemming thp water into the Bay of Bengal, the only outlet for these influxes of fresh water wrould be the Straita of Malacca; and if the argument of fresh waters giving rise to the Gulf Stream or other currents held good, the Strait of Maleoea would be an unnavigable torrent; but it is not; therefore the natural inforence is, that the Gulf Btream is a continuance of the great tropical eurrent,

Captain Leighton argues that the trade-winds are the great motive pawer of the currenta; that the winds outside the tropic may, by their variablenesa, counteract each other, but the effeot of wind is well exemplified in the effects it has in retaruing the food-tides. The general features of the monsoons and the trade and passage winds, all tend to throw Iight on the movements of the surfice waters, and may be reconciled with thowe actions.

Considering these circumstances, the Indian Ocean, southward of Timor, appears well adapted to form the head-quarters of a great tropical cwneint meariy surround-

OBBERVATIONS ON THE CURRUNHS.

 etind the Cupo of Good Hope, where it give the beot prool of ite being a great and enthony water Wo live it egein in tho Athantio Ocoin (where it gives riee to two airoular ciurreate), and it is hoso called the Equatorial Cuireient-and eoin, the Difit Ourruat of the Caribbean Seo-and; lactly, in the North Atlartic, ain the Gull Stronm.

Captain Leighton then prooneds to trace an unbroken current from the Indian Oocin to the North Atlantio, by his obwervations made during a single voyage, as follown:-

Rarque Socroi to Calcutt, 1850 , November $4 t h$, in lat. 28° S., long. $78^{\circ} 0^{\prime} \mathrm{E}$,, to Nopamber 10th, in lat. $6^{\circ} 11^{\prime}$ S., and long. $84^{\circ} 7^{\prime}$ E., time eleven dayn, the currente veis N. 71° W., true ; and the distance 138 miles.

Barque Socret from Maulmain, 1851 , June 21 st, in lat. $8^{\circ} 22^{\prime} \mathrm{S}_{\text {, }}$, and long. $85^{\circ} \mathrm{E}$., to July 8 th, in lat. $28 j^{\circ}$ B., long. 44° E., the currents ran N. 82°.W. true ; and the distance 216 miles in meventeen days.

From July 8 th to the 17 th, in lat. 327° 8., long. 32° E., time nine days, and the currents S. $86^{\circ} \mathrm{W}$. true ; distance 52 miles.

From July 17 th to Auguat 5th, in lat. $33^{\circ} 46^{\prime}$ S., long. $15^{\circ} 16^{\prime}$ E. (bad weather in a erries of five rotary galem round the Cape of Good Hope), time nineteen days, and the currents $\mathcal{A} .66^{\circ}$ W. true ; distance 354 miles, or averaging 19 milen per day.

From August 5 th to August 21st, at St. Helena, time mixtoen days, currents N. $68^{\circ} \mathrm{W}$. true; and the distance 175 miles.

From Auguat 22nd, at St. Helena, to September 7th, in lat. $3^{\circ} 23^{\prime}$ N., long. $23^{\circ} 48^{\prime}$ W., time mirteen dayn, the currents $N .72^{\circ}$ W. true ; and the distance 241 miles.

There is thus manifestly a continuous current traced by this voyage from the borders of the Eastern Archipelago to the well-known tropical current of the North Atlantic. The paper then prooeeds to trace this current across the Atlantic into the Merican Grlf, where its final exit in the Gulf Stream proves that this latter is a prolongaiion of the great tropical current, which nearly encircles the earth.

In our recent "Directory for the Pacific Ocean". (1851, Part. II., p. 1238) we have dencribed the tropical currents of that great ocean, and demonstrated that this great westerly drift becomes broken up and enters the Oriental Archipelago through the numerous channels dividing the islandey and thus becomes neutralised as to its wentward cet. : We might, therefore, suppose that the open spaces in this archipelago will have a generally higher temperature than the rest of the ocean, and also be, as above argued, the initial point of the great curent aystems whioh circulate around the Indian and Atlantic Oceans.

The tendency of the waters in the North Atlantic certainly soem to be a circulation around the central portions known as the Sargaseo: Sea. We do not require the supposition of Major Rennell, that this is a hollow; or depremsion of the surface, into which the currents run on all sides; nor that of Lientenant Wilkes, that it is a raised aroa. This pheriomenon of the waters revolving around a central quiet space is also well exempliffed in the basin of the North. Pacitic on a magnificent scale; it is less so, but equally clear, in the area of the North Sea. It is true that the southward tendenoy of the Arctic waters in the Labrador Current, across the Newfoundland Bank, is to brenk in upon this uniform circulatory movement, still it is sufficiently symmetrical to form a feature in the great movement of the waters.

There is another current whowe origin was involved in some obscurity; it is the

(294.) years, nc now bea

Rude structive mation, and inco The con currents intimate avoided.
(295.)
with tho to its po be discu

The fe indinati adjustme an overlittle inf in comm elemente the safe

Magietic varlation.

Cuinea Corrent (151.). It is, certainly, partly due to the prolongation of the Atrican Current from the N.W., but, by analogy, we ahould suppose that it would recurve to the wentward when it got fairly within the scope of the trade-winds and consequent tropical drift.
Captain Leighton argues that it is a continuation of the central current, which, after passing betwee. He Sargasao Sea and the Bermudas, turns to the sonth-eastward towards and into the Gulf of Guinea, blending with the current from the North and eastward. This appears feasible, but what is this easterly current?
In the "Pacifio Directory"" 1851, pp. 1243-1247, there is an easterly current. ${ }^{\circ}$. scribed, which extends entirely across the Pacific between the latitudes of 4° and $10^{\circ} \mathrm{iv}$ This remarkable current would seem to be the effect of the Equatorial calms; or, rather, that the water, being driven by the N.E. and S.E. trades, is here heaped up, as it were, and not being able to reflow over the adjacent drifts, like the aerial currents, assumes the form of a counter-currents.

The question arises, Is there a similar current in the Atlantic Ocean P , By analogy we reply in the affirmative. But the configuration of the land, and the greater interferences that the currents have from each other, renders this fact less evident. Nevertheless, it can be fairly assumed that some portion of the Guinea Current is due to an Equatorial connter-current, which would set directly along the African coast into the Bights of Benin and Biafra, as the Pacifio counter-current sets into the Bay Panama. The arguments upon which the Atlantic counter-current may now be recognized are given on pages 283-288.

IV.-MAGNETIC VARIATION.

(294.) Among the changes which have come over the system of navigation of late years, none have been more imporiant than the different relation which the compass now bears to the ship as compared with its place in former times.

Rude instruments, unadjusted, with errors unsuspected, and under influences destructive to their accuracy, have given place to what may be, in some cases, over estimation, of this primary aid to the seaman. In its very nature the compass is imperfect and incompetent to show, at sea, the minute quantities, which are now disputed over. The consequence is, that it is made, like the topic we have just discussed, oceau currents, the scapegoat for many errors of seamanship and judgment, which a more intimate knowledge and therefore greater mistrust and induced caution would have avoided.
(295.) Our present task deals with the geographic distribution of magnetism, not with those local effects caused by the ship or its relations to outer circumetances, but to its position in the Atlantic. The other points, most important in themselves, must be discussed elsewhere.
The features of the earth's magnetism, as related to the ship, are the declination, inclination, and intensity. The dip and intensity are very important elements in the adjustment of the compass in its passage through the varied magnetic condition which an over-sea voyage across the Equator, conducts a ship through, but they have but little influence on the directive power of the needle in the latitudes usually traversed in commercial pursuits. The declination or variation is one of the mont important elements in navigation, and its correot entimation and application most essential to the safe conduct of a ship.
 to what it wae in former years are manifent. The great increase of tho noe of ison both forchip building on well as in tho fabrio of wooden ahipt, and the oomeoquont vastly increased influence that the ship has upon her compasses has been our ahief reacon why attention iz so imperatively demanded. Again, since the univerual use of steam, the courge of a vessel in passing directly from one point to another requires to be much more accurately laid, than it was thought necessary when wooden ships only were used.

Anothor reason, which has arisen in the course of years, in that caused by the necalar variation. The accurate government surveys, which have now been in progress for 30 or 40 years, in their carlier portions have, in many cases, remained as they wene isoued, and consequently this change from the variation of the compass they thow has amounted to a considerable quantity, sach as would endanger the safety of a vessel where they have been implicitly trusted to. The survey of uihe St. Lawrence, as commenced by Cape Bayfield, may be instanced.

The appreciation of this change, which has thue become mantifert simulteneously with the necessity for improved compasses and improved methods of using them, have placed the magnetic element in charts on a fresh basis. One most important wesult of this movement was the appointment by the Admiralty of the late Captain E. J. Johnson as superintendent, in 1842, of the Compaes Department. The great jimprovement in compasses dates from this appointwatrit, and the inventigation of the difilioult-and varying problems of local deviation h.. e been since pursuied by eminent men, among whom may be noticed Professor Airy, Dr. Bcoresby, W. Walker, Eeq, A.Ns Archibald \&mith, Esq., and many others. Theset rusearches hsve been mainly directed, as before obserred, to the effect the ship's irun has on her compasses. F.G. Evans, Eeq., R.N., who has sucoseded Captain Johnson, has drawn up a far more perfect chart of the geographic distribution of the magnetio variation than we hitherto poncossed; former oharts having become of impaired value from the lapse of time, and from the imperfection of the observations on which they were based. It is from this chart brought down to the period, 1861, by applying the secular ohange requisite to the chart of 1858 , that the illuatrative chart has been conmacucted.
(297.) The isogonic lines, or those upon which the variation is of the same amount, on this chart, will represent this element, generally as near as the ordinary ships compass will show it, and will serve to draw attention to any unsuspected change in the magneetism of the ship, besides affording the sailor some information when observation caunot be had.
(298.) The variation of the compase in all parts of the coarts of the Atlantic are given with the Tables of geographio poritions at the commencement of this work, und the amount of annual decrease or increase in this variation is also indicated. To thene notices therefore the reader is referred.
It is for the open ocean that the illustrative chart and these notes are intended, and on the chart are inserted the amount of annual change in different parts, so that the approximate variation may be ascertained in future years by applying the nocemary correction.
(299.) But it must not be supposed that this annual change is regular, and of the same amount in each year. By the accurate observations that are now self-recorded, the connexion betwoen these changes and apparently vary remote oamses have been identifed. One of thene, at the frrt giance a very angular one, is that the apota in the sun, if abment or present in large quantities, have a marked magnetio influenoe on the deolination, thum demonstrating the source from which the magnetism of the earth in chiefly derived. As the Green wich obmervations will illustrate our mubjeot as woll as any, and this volume might be fllled with interesting resulte on thin subjeet, the oxtrectes will be limited to the extracte from thowe obeorretions os boing aulleient to impart e notion of the ever varying amount of the magnetio yeriation.

Mantic are
work, and To theme
need, and p that the necemary
nd of the recorded, have been o sapota in Auence on the earth ot as well trivet, the Client to

Westebey MaGietio Variation at Gremwicy.

	1844.	1846.	1848.	1860.	1855.	1858.
	- " "					
January	231022	225056	22.50	$22.28 \quad 5$	214960	213247
February	231843	228017	2249 b	222728	21.4813	213214
March	231842	224921	225346	222854	21.48 .41	21.3231
April:	28.1842	2251.51	22.5227	22.2544	21.48 .44	21.3228
May	231923	224932	225246	$2225 \quad 1$	214825	21.2916
June	${ }^{23} 1919.8$	225148	225321	222447	215012	2127.34
July	231840	224924	225318	222341	21.4814	212828.
Auguart	231825	22.4933	225236	2222.4	214831	212724
September..	$2313{ }^{23}$	224855	22.5131	222543	21479	212843
October	22 2211.52	22 4755	225211	22191	${ }_{21} 14621$	$\begin{array}{llll}21 & 25 & 33 \\ 21 & 29\end{array}$
December	224941	224751	225140	221827	214564	212945
			2251,40	221827	214064	2128

(300.) Upon examing these colnmns of figures, it will be at once seen that the decreasing amount of westerly variation is very far from being regular, and that at nome times the variation is absolntely increasing, Thus the variation in June, 1847, $22^{\circ} 43^{\prime} 0^{\prime \prime}$; in June, $1848,22^{\circ} 53^{\prime} 21^{\prime \prime}$, an increase of $10^{\prime} 21^{\prime \prime}$. The decrease between Janvary, 1846, and January, 1847, was only $1^{\prime} 38^{\prime \prime} ;$ to January, $1848,1^{\prime} 4^{\prime \prime}$; to Jan. 1849, it decreased $14^{\prime} 6^{\prime \prime \prime}$; and to January, 1850, $5^{\prime} 51^{\prime \prime}$; the mean annual rate for these 4 years being $5^{\prime} 44^{\prime \prime}$. The variation in 1860 was about $21^{\circ} 32^{\prime}$, so that it had decreased $1^{\circ} 57^{\circ} 50^{\prime \prime}$ in the 14 years that had elapsed since 1844; or at the rate of $8^{\prime} 4^{\prime \prime}$ per annum; but its mean rate at Greenwich is abont $6 \frac{1}{\prime}$ at present.

The needle also varies very considerably at times in the course of the day, the maximum westerly declination is at $2 \mathrm{p} . \mathrm{m}$.. This diurnal change amounts to $7^{\prime}, 8^{\prime}, 9^{\prime}$, and 10'. This topio is so large and comprehensive, that it must be left to other works. In a later part of this volume some further remarks will be found. The present and the illustrative chart will suffice for the present purpose.

V.-OF PASSAGES OVER THE ATLANTIC.

1. GENERAL REMARKS.

(301.) In the preceding pages we have described those natural phenomens of winds, currents, \&c., which govern the track of a ship across the ocean. The object of the present section is, to apply these principles to the seaman's practice; but, previous to entering apon this portion of the task, we will make a few general observations upon great circle sailing, which has been revived as a new subject, when in fact it is one which was among the earliest principles recognised in navigation. This is not the place to enter into disquisitions on the working of great circle problems-that must be left to works apecially devoted to nautical mathematics. The excellent "Praotice of Navigation," by Lieutenant Raper, or Towson's Tablea, published by the Hydrographic Office, will be found excellent guidee; but still a greater simplicity in the application to ordinary purposes of navigation is a great desideratum, and one whioh, perhapa, we shall endeavour to supply at a future day.
Great circle sailing was known and acted on very early in the history of nevigition. It is more than probable that Cabot, Columbua, Magalhaons, and all the fint
great navigators, were acquainted with the subject;" but this, it must be remembered, was prior to the knowledge of the principles of finding the longitude. When Gerhard Mercator, in 1569, published a universal map, on the projection now known by his name, a new era commenced in navigation ; but its true principles were not correctly described till they were done so by Edw. Wright, in 1599. In this projection, as is well known, the meridians being parallel to each other, and straight lines, the latitude is distorted and increased in proportion as these meridians are more distant from each other than the correct difference of longitude would give for that latitude. Consequently a straight line drawn between any two points on a such a plane chart will give the correct compass bearing, which, if maintained throughout the course by a ship, will lead her from one point to the other. This course is well known as the rhumb course, and is that in universal use from its simplicity. But it is not the shortest course, except it be due East or West on the Equator, or North or South on a meridian, which are great circles. This course, developed on a sphere, is found to be a spiral, and is considerably removed from a great circle or shortest distance if a great extent of longitude is traversed by it. We need not pursue this subject, but an example will explain its application.
(302.) From a point off the Lizard, in lat. $50^{\circ} \mathrm{N}$., long. $5^{\circ} 30^{\prime} \mathrm{W}$., to Cape St. John's, in the Bay of Notre Dame, in Newfoundland, also in lat $50^{\circ} \mathrm{N}$., and $55^{\circ} 30^{\prime}$, the course, true, is of course West, and the distance on this parallel is $1,928 \frac{1}{\frac{1}{2}}$ miles. But if a ship were to quit the Lizard on a N. $70^{\circ} 20^{\prime} 30^{\prime \prime} W^{\prime}$. (true) course, and then gradually bearing more westward, attaining the latitude of $50^{\circ} 45^{\prime} \mathrm{N}$., in long. $30^{\circ} 30^{\prime}$ W., thence bearing more southward, and approaching Cape St. John's on a similar angle to the parallel that she had left the Lizard, she will have sailed over 1,893 miles, or $35 \frac{1}{2}$ less than on the parallel ; but, in her greatest separation, she will have been 165 miles diatant from the rhumb course. Therefore, if she were to take any course between this'great circle course and the parallel of 50°, she would have a less distance to traverse; and this is the great advantage which the great circle sailing offers-that of a wide range of choice (in a higher latitude) without increasing the distance.

Further, if she were to assume a course as much higher in latitude as the great circle course is above the rhumb, she will find that it will be of the same length as the latter. Thus, in the example cited, if on leaving the Lizard she were to bear away for a point in lat. $55^{\circ} 30^{\circ}$ N., long. $30^{\circ} 30^{\prime}$, and then approach Cape St. John's, such a curve will be found to be exactly $1,928 \frac{1}{3}$ miles in length, and yet be, in its maximum separation, 330 miles apart from the parallel. The advantage of such a range of choice will appear subsequently in the remarks upon the transatlantio passages.
(303.) The great difficulties in application of the principle of great circle sailing to practice are, the laborious nature of the calculations, now, however, much reduced, and the inference as to how a course so much at variance with that which the chart will apparently dictate as the most direct, will place a ship in respect to favourable winds or currents. Still, the scope it allows to the navigator must be consid „ed as no mean advantage, even if its shorter distance may not be an inducement to rigorously follow out its principles.
(304.) In the following general sailing directions, the application of the facts in

[^64]ph

> mu
wit
con
call
for
physical geography which have ber described in the preceding sections of this work must be left to the discretion of the amander in most cases. In fine weather and with fair winds, the estimation of the verious influences which affect the ship's course are not difficult to make. But it is the adverse circumstances of a voyage that call for the seaman's skill and intelligence, and what has been said will help him to form a judgment of what is going on and how best to proceed.

But there are an infinite variety of circumstances which render it impossible to lay down any fixed rule which may be implicitly followed to advantoge at all times. Therefore, in cases where a deflnite course is pointed out as the best to be pursued, and a vessel should be driven out of her intended route, it does not follow that it is right to endeavour to regain that course to pursue it afresh, but rather it should be considered that a fresh voyage has to be commenced, and the course shaped from the latest point as if it were a starting place.
(305.) A vessel under steam only is considered in the light of a sailing vessel with a fair wind. In a certain sense this is true, as it enables her to be independent of wind or current. But it should be remembered that the same contrarieties which affect and hinder a sailing vessel from pursuing a direct course, will also, in degrec, be adverse to the progress of a steamer; and, therefore, if a moderate deviation from the shortest ronte will lead her into more favouring winds or currents, that course will be most advantage to the vessel under steam as it is to the sailing ship.
There is one circumstance which may be mentioned respecting a ship under steam as to how she is affected by the direction and strength of this wind. If a vessel be steaming before a fresh breeze, strength No. 5, at the rate of 12 or 13 knots, she will experience a perfect calm, while the sailing vessel will be only able to carry her topgallant sails and royals. If she steams in the teeth of the wind, she will seem to have a strong gale, under which a sailing ship could only carry close-reefed topsails. This will be made apparent by consulting the table of the velocity of the wind on page 182. Now, a vessel steaming with the wind otherwise than directly fore or aft, will not feel the wind in its true direction; for it will appear to blow from that direction and with that force which is a combination of the rate and direction of the ship's course with that of the velocity and direction of the wind itself. Its apparent and real course and velocity may be found by constructing a parallelogram of forces-a well-known problem. It is for this reason that the wind as registered on board a steam-vessel does not give the correct bearing of its course, and it is much more disguised than it is in a sailing ship when close hauled, as alluded to in (12.) on page 180.
As the steam-vessel, then, may be considered in a great measure independent of wind or current, the great object of the past and succeding remarks is mainly applicable to sailing vessels.
(306.) It has been well observed thrt the wind systems of our globe naturally govern the tracks of ships crossing the oceans, the trade winds carrying them from east to west within he tropics, while the anti-trade or passage winds will bring them back again eastward beyond the tropics. If it were not for the intervening belt of calms, sailing directions for vessels going into opposite hemispheres would be of the simplest kind; but the well-known Equatorial embar'assments-"t the doldrums "generally make a very different matter of it, and cause many considerations to enter into the problem of shaping a course. In the North Atlantic, these obstacles of the intervening calms seem to be at their maximum, and in the future remarks one chief point, now still argued, will be found to be that which has engaged attention almost ever since over-sea voyages commenced-where is the best place to avoid these calms and contrarieties of the Equator.

The directions which follow will commence with our own country, although very briefly; for it is presumed that almost every one who will use this book is cither well qualified to navigate our own channels, or has more extended works on this point to guide him.

And even in the remarks on more distant voyages very brief notices would generally suffice, for most are now familiar with the varied particulars of the hydrography of the Atlantic as it affects a ship's passage. Notwithstanding the vast
labour that has been bestowed on the research into its phenomena, it does not seem that a corresponding advantage has accrued to shipping ; for in many cases the directions of a century since will be found as useful as those baseá upon these refined inquiries. However, one thing may be averred, that passages are now made with much greater certainty than formerly, and even if the average duration of a voyage is shortened a few hours, very mnch has been gained; and, by the comparison of a great number of voyages made under different circumstances, it may be safely pronounced which is the best course to pursue, and what the average length such a voyage will be.

2.-TO AND FROM THE ENGLISH CHANNEL.

Outward.

For vessels leaving the Downs, and having rounded the South Foreland, the track is W. by S. $\frac{1}{2}$ S. 21 miles to Dungeness, the depth 20 to 10 fathoms. From a mile off
 miles, and in depths varying from 18 *o 12 fathoms. In working down, and while to the eastward of Folkestone, stand in to 13 fathoms, and off towards the Varne to 16 fathoms. This latter bank has lost mych of its dangerous charecter by the placing of the light-vessel, which now marks its N.W. face. Between Dungeness and Bexhill keep outside of 9 or 10 fathoms, and within 25 fathoms. 'To the westward keep Beachy Head light or lighthouse in sight, which will keep you clear of the shoals. Having arrived at 4 miles south of Beachy Head, a course may be shaped down Channel. This course will necessarily be mnch controlled by the wind and tide; bus, under any circumstances, the English coast should not beleft. If the wind be contrary, the best position with the commencement of the ebb is inshore. The flood tide, especially at its cummencement, tends to the southward, filling the large indentations of the French coast before it sets Sair up the Channel, and then it sets on to the coast south of Boulogne. It is well to remember that the tidal streams throaghout the fairway of the English Channel set towards Dover while the tide is rising there, and away from it while falling, so that the Dover tide-table answers for the whole distance between the Lizard and Beachy Head. H.W. F. and C. at Dover 11h. 12m. All this is explained on pages 251-253 ante.
If the wind is favourable a W.N.W. ${ }^{\frac{1}{2}}$ W. course for 63 miles brings you off St. Catharine's Point ; from thence W. by N. 94 miles to the Start. In working down do not come nearer the Owers than in 20 fathoms, and to St. Catharine's than 22 fathoms. From thence to St. Alban's Head into not less than 22 fathoms toward the indraught. Between Portland Bill and the Start, if the weather be clear asd favourable, you may stand into Lyme Bay to 17 or 16 fathoms. Throughout all this course, keep off until in from 35 to 36 fathoms. From the Start to the Lizard, the course and distance are W. $\frac{8}{4}$ N. 64 miles, which course continued for 48 miles further brings the ship 10 miler south of the Bishop Light.
Throughout tho course as far as off Plymouth, the tides set fair up and down; westward of this, they revolve in all directions, and must be most carefully attended to, as is also most necessary when to the east of Beachy Head.

In case of bad weather or contrary winds, and necessity for shelter, the following places may be safely sought for. With the winds broad easterly or westerly, ships may stop ou either side of Dungeness, in East or West Bay, and also on cither side of Beachy Head, in Seaford Road, westward and eastward of the shoals on the other side, and near Bexhill; and with westerly winds the Park inside the Owers Lightvessel is also used. Within the Isle of Wight there is anchorage sheltered from all winds. Westward of the Wight, Studland Bay (near Poole) affords good shelter from westerly gales. The new Refuge Harbour in Portland Roadstead affords

TO AND FROM THE ENULISH C ANNEL.

ss not seem s the direclese refined made with f a voyage arison of a safely prouch a voy-
d, the track m a mile off W. ${ }^{\text {E }} 8.24$ nd while to Varne to 16 e placing of and Bexhill tward keep f the shoals. shaped down nd and tide; the wind be 3. The flood latge indensets on to the s throughout rising there, pr the whole er 11 h .12 m .
you off St . orking down harine's than homs toward be clear a.sd hout all this - Lizard, the miles further
p and down ; ully attended
the following esterly, ships on either side on the other Owers Lightered from all good shelter stead affords
security against nearly all winds. Good anohorage is so fonnd o snet noutherly winds in Torbay, Plymouth Sound, and Falmouth.
Most sailors have had some experienee of the detention caused by oontrary winds in the Englisi Channel. Some of the more remarkable of these detentions have long lived in remembrance. The Right Hon. Maurice Fitzgerald, in some evidence respecting the Western Harbours of Ireland, gave a curious illustration of the diffculties in making way against these westerly gales. An officer of considerable experience commanded a small vessel of war belonging to the Cork squadron. Information was received that a smuggler was to land on the western coast; he was ordered to cruise off the Skelligs to intercept her. He sailed from Cork, but was brought up six different times at Crookhaven, and, being extremely anxious to reach the ground upon which he was to cruise, he determined to sail round the north of Ireland, and he did so, and reached the Skellig in a very few days.

The detention of Rear-Admiral Christian was proverbially known. He sailed from Portsmouth with an expedition for the West Indies on Nov. 16, 1779, and, after having been repeatedly blown back, he did not ultimately clear the Channel till the end of the following March.

It seems that the wind generally draws np and down the Channel more or less, and does not blow true as in the open ocean. Thus, a westerly wind in the offing may become a W.N.W. wind in the English Channel, and a N.W. wind in the St. George's Channel ; and the same with the easterly winds. By referring to (67.), page 209, and the illustrative diagram, the reader will see some exemplification of this in the case of Liverpool, and in (71.), pages 211, 212, those of the English Channel are discussed, where it will be seen that the western predominate over the eastern quarters as 229 is. to 132 .

As a further illustration of the direction of the wind in the upper part of the Channel, we may adduce the following resumé of 10 years' observations made by the Royal Society:-

Table of the Winds Observed at the Royal Society'e Apartments in London.

	Easterly.	Westerly.		Easterly.	Westerly.
	1820	168	1826	129	187
1821	91	196	1827	115	189
1822	101	181	1828	104	192
1823	99	189	1829	130	171
1824	81	195			
1825	97	188	Mean	101	186

Or, supposing a feather to have been abandoned at the beginning of each of these years, the mean direction and number of days the feather would have advanced is as below :-

Year.	Direction.	Days.	Ycar.	Dircetion.	Days.
1820	S. $86^{\circ} \mathrm{E}$.	56	1825	S. $75^{\circ} 88 \mathrm{E}$.	86
1821	N. $89^{\circ} \mathrm{E}$.	92	1826	N. $58{ }^{\circ} \mathrm{E}$.	47
1822	N. 84' E.	72	1827	N. $58^{\circ} \mathrm{E}$.	54
1823	S. $811^{\circ} \mathbf{E}$.	81	1828	N. $39^{\circ} \mathrm{E}$.	95
1824	S. $74^{\circ} \mathbf{E}$.	91	1829	N. $57^{\circ} \mathrm{E}$.	38

Mean for 10 ycars N. 83^{\prime} E, 66 days per annum.

This shows how far the westerly predominate over the easterly directions. Northcasterly winds are at a maximum in May and June.

Our remarks as to the lighthonses and other points of departure will be useful to a ship leaving dock to gain a sea-rate for her chronometers. In the geographical tables, pages 7 and 8, the ohief land-marks are given to the minutest accuracy; and in the tables of lighthouses, the position of any one of the lights there given will equally answer as a point of departure.

Homeward.*

The Bristol Channel I consider safer to approach than either the British or St. George's Channels. The parallel of Trevose Head, on which stand the two lighthouses, has been generally recommended, and that on the parallel of Lundy Island may be used according to circumstances, direction of the wind, \&c. In thick or dark weather the soundings will indicate when you have passed a line cutting Scilly and St. Ann's Lights near Milford Haven, and also on nearing the shores on either side. The south side of Lufady is preferred, as you can go safely close round it, taking care to keep the light in sight above the land; and as there are generally pilots lying under the island, you are sure not to miss them by pursuing this route.
For approaching and proceeding up the British Channel, various directions have been given. 1st. Soundings. The great difficulty is that the soundings are very deep, and the same water may be got in different positions, both in latitude and longitude, so that a false position by dead-reckoning in the longitude, or in the latitude by the want of observations, is almost as likely to be confirmed as detected; I mean, by detached casts of the lead. As a precaution against this, I would advise ships (particularly those navigating by dead-reckoning) to "seek the ground early", so that by striking the edge of the bank they may obtain, as it were, a departure, and then take frequent casts of the lead, and make with them a table in the following form, noting the true course and distance between each two casts, and carefully observing the quality of the ground, as well as the depth of the water:-

$$
\text { True Course. | Distance. } \mid \text { Depth. I Quality of the Ground. }
$$

And where a few of these are obtained and sct off upon the chart, one will check the other. Ships, as well as steamers, have been lost by " not stopping to sound."
The prevalent winds are considered to be S.W. and westerly from May to December, both inclusive, and from January to April, both inclusive; although long and heavy S.W. and westerly gales may occur at this season, yet they are more frequently interrupted by northerly and N.E. winds, particularly in February and March. N.W. winds are considered to be generally of short duration.

To approach and pass Scilly, the parallel of $49^{\circ} 15^{\prime}$ to $49^{\circ} 25^{\prime}$ has generally been recommended ; in place of which I would recommend that from $49^{\circ} 30^{\prime}$ to $49^{\circ} 40^{\prime}$, according to the wind, \&c., as likely to be attended with greater safety; and if the Bishop Rock or Scilly be not made, having taken every precaution to ascertain the longitade, once that its meridian is past, strike for the Lizard, and, if possible, make it, and thence proceed by the rules of the best coasters. Lights can be seen when celestial observations cannot be made; and as the navigation is generally free from outlying dangers, courses should be shaped from one prominent point or light to the next, keeping at a moderato distance to ensure seeing them, if possible. The ships generally met with in this route are coasters, and they keep a good look-out, and are generally very anxious to get out of the way of large foreign-going ships.

Easterly Winds in the Winter and Spring Months.-Those winds are very destructive upon the East coast, and often cause heavy losses and great detention amongst the shipping ; and, although those winds may blow long and steady in all the channel, yet at times they do not extend to the westward of Cork, but more generally about

[^65]
8. North-

useful to a ical tables, and in the rill equally
tish or $8 t$. two lightndy Island ick or dark Scilly and either wide. taking care rilots lying

shave been

 y deep, and ongitude, so by the want by detached particularly by striking ke frequent ng the true equality of
ound.

ill check the und."
May to Degh long and efrequently and March.
nerally been 0^{\prime} to $49^{\circ} 40^{\circ}$, ; and if the scertain the ssible, make seen when ly free from light to the

The ships out, and are
ery destruction amongst the channel, erally about
the edge of soundings ; I have known them to blow long and remarkably steady in the Bristol Channel, and yet ships were arriving at Cork with heary S.W. wotnds. There is also a kind of periodical occurrence of easterly winds inpon the coasts of the United States of America, which have been described by Mr. W. C. Redfield, and he considers them as distinct from the revolving theory of the winds.

- Whilst speaking of soundings and channel navigation, I want to strongly urge the use of Caplain Sumners's method, as by it a single altitude, giving the line A A with a cast of the lead, or a bearing of the land, will often fix a ship's position with ocrtainty, and its many uses and advantages will soon suggest themselves after a little practice.

My reasons for dissenting from choosing the parallel of $49^{\circ} 15^{\prime}$ to $49^{\circ} 25^{\prime}$ to approach the Channel, are-

1st. A ship in this parallel will pass from 30 to 40 miles to the sonthward of Scilly, and will not expect to see it. I think this precantion attaches too much importance to Major Rennell's thwart channel current, which I do not consider to be a definite current, but only at times occasioned by a combination of circumstances, driving a great excess of water into the Bay of Biscay, and the excess of tide to the northward does not require so great an allowance.

2nd. That parallel is the centre of the dangerous group of Guernsey, Jersey, the Caskets, \&c., which, I believe, have caused more wrecks to ships bound up the British Channel than getting to the "northward of Scilly" has done, and the channel course trends to the northward, the difference of longitude between Scilly and the Caskets may appear great, but great errors occur in dead reckoning, and a ship goes far in a winter night and a westerly gale, but allowing them to avoid those dangers.

3rd. That parallel has led to or encouraged the imprudent and dangerous practice of galloping ap in mid-channcl, with neither anchor nor cable clear, and trusting to celestial observations and chronometers, as though it were in the middle of the Atlantic; and here we have the Conqueror, Reliance, \&c., sad examples of the effects of not making and keeping hold of the English coast, lights, \&c. A great deal was said and written about those cases, but I consider that the amount of error in the course and distance from a position off Scilly or the Lizard, to place a siup on shore between Boulogne and Calais, instead of being in a position off Dungeness, to be an every-day occurrence in navigating such a distance in tideways and blowing weather without any check to correct the account, and neither "storm-waves" nor "storm-currents" were required to cause them.

4th. Foreign-going masters generally keep at too great a distance from the land, by which they not only frequently miss a sight of lights, \&c., which it is important that they should see, but they lose the benefit of some degree of familiarity with the land, objects, \&c., which a nearer approach would give them, and which in the want of having to go into roadsteads, \&c., would be found of very great service.
5th. It is not by keeping near the land that ships get embayed and lost. If it were, colliers would never be safe; they are as much afraid of getting off the land as foreign-going masters generally are of coming near it. The general rule in coasting is to see every guide as you pass it (unless thick weather should prevent it, and in that case strict attention to the lead until you find the next); this rule and attention to the set and duration of the tides are the grand points in coasting.

Sh
West when the le than

Th
accur be pa partic

Th from its ex

Po runs the vessel wind an eb
Platt

[^66]Should there be a strong breeze and a heavy sea, the vessel may not weather the West Hoyle Sands, on the starboard tack; and great eaution is, therefore, required when going near them, as they are bold-to and very dangerous. In thick weather the lead must be eonstantly used, and, and the sands should not be approached nearer than in 10 fathoms of water.

The soundings along the north coast of Wales, eastward of Point Lynas, will pretty accurately determine the distance of the ship from the land, provided due attention be paid to the depth of water; but the quality of the soundings will not indicate the particular part of the coast she may be abreast of.

The Ormes Heads are very bold, and any vessel may safely steer a direct course from thence to Point Lynas, which may be known by the castellated building near its extremity, used as a lighthouse, and its telegraph station upon the summit.

Point Lynas and the land to the westward r^{C} it is very bold, but the ebb tide hence runs very strongly to the W.N.W. and through the Sound inside the Skerries. Off the Middle and West Mouse the spring ebbs ran at the rate of 7 knots; and all vessels should, consequently, give this part of the land a good berth, during light winds, at such times as the flood or ebb may be running strong; or they may, upon an ebb-tide, get into the vicinity, or perhaps upon, the Coal Rock or the Skerries Platters.

The Coal Rock bears E. $\frac{1}{5}$ S. $2 \frac{1}{2}$ miles from the Skerries, and lies with the West Mouse (a large rock always high above water) on with the two beacons on Carnel Point. By night, a red ray from the Skerries light will now point out its direetion. The Platters are nearly the whole length of the Skerries Rocks, and lie at about onethird of the distance between the Skerries and Carnel Point.

Beaumaris is a good harbour for all ships, into which a Liverpool pilot will eonduct them, provided no licensed pilot for the port may be found; but the Beaumaris pilot-boat is generally cruising off the chops of the bay, between the Ormes Heads and Lynas, or lying at anchor within it.

Holyhead is also an excellent harbour, now much more sheltered by the new Government pier.

(b) On takina the North Channel, and procreding thence to Tory Island.

If, after weathering the Hoyle Sands, the wind should be so far to the southward of west as to enabie a vessel to weather the Isle of Man, it may be a matter of consideration whether it be most advisable to go through the North or the South Channel; but this should not be hastily decided on. In the summer months the winds are more variable than in winter, and then it is certainly advisable to choose that passage which is nearest to the destined port; giving the preference to the North Channel if hound to British America, Newfoundland, or the nerthern ports of the United States. In winter, the prevalent winds are from S.W. and W.S.W., and these winds often blow steady for several days.

Should the North Channel be preferred, with southerly and S.S.W. to W.S.W. winds (and it should not be attempted with any others that have westing in them, especially by a stranger), it is advisable to take a departure from the lights on the Calf of Man, and steer a direct midchannol course, with a careful look-out, as tho passage is narrow and the tides very rapid, but running direetly through the Channel; the flood setting from the northward toward the Mull of Galloway. With a W.S.W. wind it will be necessary to keep the Irish shore aboard, after passing the two lights on the Maiden Rocks ; or it is possible, in a strong gale from this quarter, that there may be some difficulty in weathering the lsle of Ila.
The North Channel is well lighted, and has many excellent harbourn, fit for the largest ships, as Lough Foyle, Belfast Lough, Loch Ryan, Camphelton, Lamlash,
 they can get to sea with southerly and S.W. winds, when it may be difficult to get away from cither Lamlash or Campbelton.

After passing Tory Island, do not be too anxious to make southing, but steer well to the westward, if possible; for there is always a very heavy see and a strong indraught upon the west coast of Ireland, and strong westerly and W.N.W. gales are very prevalent in the winter. Although there are some excellent harbours in the N.W. of Ireland, they may be considered as inaccessible to a stranger, owing to the great difficulty of procuring a pilot in the winter season ; every exerition should, therefore, be made to keep off this dangerous and too often fatal coast.

The depth of water, or quality of the soundings in the North Channel, will give little or no indication of the progress of the vessel, so that a good look-out is here the mariner's best safeguard; the coasts on both sides being bold, excepting about the South Rock and Maiden Rock, both of which dangers are well lighted, but require a good berth in passing, particularly the latter.
In running through the North Channel with S.W. winds, every stitch of canvas should be carried that the vessel will possibly bear, as these winds often fly suddenly round to the N.W. quarter; and in that case blow so hard, for twenty-four or thirtysix hours, as to compel a vessel either to bear up for the South Channel, take a harbour, or lie-to in a narrow and dangerous channel for a more favourable wind.

(c.) On phoceeding bi the South Channel, and thence westward to the Ocean.

If it be intended to persevere in working down the South Channel, it will be the bast way to keep the Irish shore aboard by short tacks, should the weather be squally with heavy rain, as the vessel wilf then have the benefit of the N.W. wind and smoother water, should it fly round to that quarter, as is often the case. In dry or moderate weather there is little fear of a sudden shift of wind; and a vessel, in such case, may make a long board toward the coast of Wales. Should it come on to blow from the S.W., with much rain, get the Irish coast on board as soon as possible, especially in the winter.
Vessels passing up or down the South Channel with westerly winds will find a strong indraught setting into Caernarvon and Cardigan Bays, as well as into the Bristol Channel; and this may be probably, in some degree, accounted for by the following, and, perhaps, other causes:-Southerly, S.W., and westerly winds prevail over the Atlantic, betwcen the Azores and Great Britain, during eight or nine monthis of the year, causing the surface-current in this vast space to flow to the eastward; the tides in the neighbourhood of and to some distance westward of Scilly run nine hours out of the twelve to the northward, or into St. George's Channel, which, like the Strait of Gibraltar, has some resemblance in form to the pipe of a funnel; and it is probable that, in gales of winds from the S.W. quarter, there is very little, if any, ebb from the western edge of Shannel soundings to a position 15 leagues West from Scilly, and thence to the northward, on the same meridian, until within 15 leagues of the South coast of Ireland : neither do I think it at all unlikely that a portion of the stream of "Rennell's Current," which frequently, as I shall hereafter show, runs with velocity to the N.W., may bo diverted by westerly gales into a more northerly direction, aud being opposed in its course by the South coast of Ircland, finds its way to the eastward, and thus contributes to raise the level of the water, and make a strong tide or indraught into St. George's Channel.
This stroam of tide sets E.N.E. toward the Tuskar, and nearly in the same directoin, or a little more northerly, toward the Smalls, and rushes, with great velocity, past Skokham and Skomar, through the sound, towards St. David's Head, and along the South and East coasts of Cardigan Bay, from whenee it diverges toward Bardsey Island; in the sound between which island and the main it runs with great strength.
It is penerally advisable to keep the Irish shore aboard in turning down St. George's Channel, with S.W. winds and heavy rain. In the South Channel the lead will impart some idea of the position of the vessel, or, at rate, will indicate, by she depth of water, the probable distance of the vessel from the land. The banks on the ITish coant, between Howth Head and the Arklow Bank, may be safely approached to 20
; steer well strong inT. gales are jurs in the wing to the ion should,

1, will give -out is here pting about but require
of canvas fy suddenly ir or thirtynel, take a - wind.

vard to

will be the r be squally - wind and

In dry or ssel, in such on to blow as possible,
will find a as into the for by the inds prevail nine month e eastward; ly run nine which, liko nel; and it ttle, if any, West from 5 leagues of tion of the , runs with herly direcits way to ke a strong
the same with great vid's Head, it diverges t runs with
fathoms of water, and nearer should it be clear weather, which, by-the-bye, is not often the case in this neighbourhood. When near the N.E. end of the Arklow Bank, and from thence to the westward, no vessel should shoulen her water under 28 fathoms, withont daylight and constant caution. The lights on these banks require close attention, as they have of late been mistaken, which has led to several alterations in their character, as before noticed. The tides of both flood and ebb ran directly over these banks, in a N.N.E. and S.S.W. direction, and in light winds must be carefally attended to.

In beating to the westward, should a vessel shoalen her water on the coast of Wales to 30 fathoms, she will be quite far enough in-shore, and should tack immediately, for it should be recollected that there are 36 and 40 fathoms very close to Bardsey.

Should a vessel be caught with hard N.W. gales upon this dangerous coast, every exertion must be used, by carrying tant well-set sail, to get the ship round the Bardsey, when she will have St. Tudwal's Road (which is well sheltered with westerly winds) under her lee, but a pilot can seldom be obtained here. The fixed light of Bardsey is open to seaward only when it bears from N.E. $\frac{7}{4}$ E. to E. $\frac{4}{8}$ S. Should N.W. winds continue blowing hard, it will be better to run for St. Tudwal's Road, on the North, or to Fisgard Bay, on the South, than to persevere too long in attempting to work out of Cardigan Bay.
Any moderate-sized vessel may find gond and safe anchorage in Fisgard Bay, by running in to 2 or 3 cables' length from the Cow Rock, on the West side of the entrance, pud anchor when the land to the westward of it is shut in, and the rock bears N. by E., distant 4 cable's length. At this anchorage there is full 5 fathoms at low water, over a bottom of stiff clay and mud, which holds remarkably well, and the ship will lie well sheltered with all winds, except those from the Nerth round by the eastward to S.E. by E. or S.S.S. N.E. winds throw in a heavy sea.

The coast in the vicinity of Fisgard Bay is clean and bold, and the bay may be readily distinguished from the offing by the Cow Rock, which is always above water off the western point of the entrance, and by the remarkable appearance of Dinas Head (the easteru point), which, upon an easterly or S.E. bearing, exactly resembles the head of a large gurnet.
Were the advantages of Fisgard Bay more fully known, they would be duly appreciated. When the writer commanded the brig Freeland, of Liverpool, that vessel was disabled, by the loss of her sails, in the heavy N.W. gales which prevailed in December, 1833, and was obliged to run into this bay in order to save the vessel from a lee shore; and in this place she lay in safety, at single anchor, with 70 fathoms of chain, during the tremendous gales that caused the Liverpooi Lightship to part her moorings, and compelled her to run into the Mersey for shelter.

From what has been stated above, it will be seen that this bay is of easy access and egress, but it should never be used unless in a case of necessity, and then with a good and careful look-out at all times, and everything should be in readincss to trip the anchor at the moment the wind veers to the eastward of North, if the weather be not very moderate and settled.

On weathering the Smalls, when outward bonnd, it is advisable to keep well to the westward if the wind will permit, so as, on advancing mouthward, to give Scilly a largo berth-say of 18 or 20 leagues.

(d.) On proceeding by tee Soutif of Ireland, from tie Ocean to Liverpool, etc.

In coming from the westward, many navigators endeavour to make the Fastnet Rock and Cape Clear, as it is high land, and has an excellent revolving light. The coast in the neighbourhood is also generally bold. But I do not think this is an advisable plan for a stranger, unless he has obtained good observations a very short time previously; for I have known vessels to be detained several days in endeavouring to worle round the cape against strong boutheriy gaies and a N.W. currentunquestionably Rennelfs.

In two of these cases, one in 1836, and the other in 1839, two different shipmastern
ran with confidenge for Cape Clear, upon the faith of good observationg for latitude, taken forty-eight hours previously, and both made the Skellige on the starboard bow, when steering E. by S., with the wind from the southward and S.S.W., thick weather and rain. When the Skelligs were near, one of these gentlemen considered his vessel to be on the parallel of the cape, und the other (in 1839) thought that he was at least 10 to 15 miles to the sonthward of it. It may be proper, however, to add that the latter denied the existence of Rennell's Current, until he thus found the effect of i.

In thick, hazy weather, it may be well to run upon the parallel of $51^{\circ} \mathrm{N}$., until the vessel gets into 65 fathoms or less water; then steer E. by N. or E.N.E., keeping the lead occasionally going, and be careful not to advance into less than 40 fathomo, when a channel course of \mathbf{E}. by S. may be shaped, having constant recourse to the deepsea lead. By proceeding in this manner, it is probable that the land will be made in the vicinity of Waterford, or about the Saltee Islands. Waterford may be -known by its lighthouse on the Hook Point, on the East side of tre entrance of the harbour.

A little to the westward of Waterford are the threr towers, on Great Newton Head, and two towers, upon Brownston Head, as described in the Sailing Directory. The latter are abont 6 miles to the westward of the Hook Point of Waterford, and are too remarkable to be mistaken. The Saltee Islets are $4 \frac{1}{\frac{1}{2}}$ leagues to the eastward of the Hook Point, known by its tower and fixed light. The Great Saltee is high, and may be readily known by the Coningbeg Lightship, moored to the S.W. of it. No vessel should attempt to pass between the light-vessel and the land if it can possibly be avoided, the passage between beir r rocky and dangerous.

The weather is often very thiok on the Nymph Bank, with wind from the southward and N.W. quartar, and the Tuskar is, consequently, very difficult to make. The Smalls and Tuskar, on the opposite sides of the Channel, when seen in this thick weather, have often been mistaken for a large sloop with a peaked gsff-topsail set. No vessel should run with confidence ap St. George's Channel without previously seeing one or other of the lighthouses on these rockn, or the land in the vicinity, as the tides are hereabout very strong, and hidden dangers abound in the vicinity of both places, as shown by the charts. To the eastward of the Nymph Bank the weather generally becomes a little clearer than upon it.
The course may be safely altered when the Tuskar beara North, and an allowance of one point or more must be made for the direction of the wind; particularly if blowing from the N.W. quarter, as this wind not only increases the indraught into Cardigan and Ceernarvon Bays, but it throws a heavy sea upon the whole line of the coast of Wales northward of St. David's Head.
In ranning from the Smalls toward Holyhead, it is, at all times, advisable to steer a point or more to the northward of the direct course, unless there is ensting in the wind; and should Holyhead or the South Stack Lighthouse be made upon a bearing to the northward of N.E. by E. $\frac{1}{-1}$ E., the course should be altered a little, to bring it upon this bearing, otherwise the vessel may find some difficulty in weathering it upon an ebb-tide, if the wind should come out from the N.W. quarter, as there is a strong set (along the land) to the southward into Caernarvon Bay.

The island or rock called the South Stack, distinguished by its lighthouse, is very bold, but, with light winds and a flood tide, strangers should give it a berth of 3 or 4 miles, as there is much danger of being set inside the Skerries, if this is not attended to. In light winds and a flood tid3 steer well to the northward, until the Skerries bear E. by N., then gradually edge away to the eastward, until the lighthouse bears E, by S., distant 2 miles, when the flood tide, with a very little assisiance from the wind, will carry a vessel safely to the northward of it.
The Skerries may be approached by a stranger, on the north side, within a mile; and when the lighthouse bears S. by W., steer E. by N. 2 miles, and East 1 mile, or until the upper beacon on Carnel Point coines open to the enstward of the lower one, when the vessel will be clear to the eastward of the Coal Rock. On proceeding thence with a southetly wind, give'a smaii berth to the Middle Mouse, a large rock always above water, and very bold. On steering thence toward Point Lynas, takj particular care not to whut up the light if it be in the night. Should the light 'appen to be
shut
stan
it an
In
seen,
ebb
Lyna
manc
V
the S
look
state
do n
for,
Wes
an w
Lyna
patie
74
with
paint
their
hoist
brigh
may
light,
steaur
Th
in the simils

Alt
in thi
the g
the or
in son
limits

It i
Islan other
of the
early
been
"Nep
out lo
into 0
This
tions
allude
been
year.
side o
That
r latitude, oard bow, ck weather 1 his vessel he was at er, to add d the effect
, until the reeping the 10mo, when the deep11 be made rd may be nee of the
sat Newton Directory. erford, and e eastward Itee is high, S.W. of it. it can pos-
the southmake. The this thick topsail set. previously vicinity, as vicinity of the weather
a allowance ticularly if raught into line of the
le to nteer ting in the a bearing to bring it ing it upon in a atrong h of 3 or 4 ot attended e Skerries house bears from the
in a mile; 1 mile, or lower one, ling thence ook alway: particular pen to be
shut un instantly run to the northward or N.N.E. until it opens, and heave-to or stand off and on for \& pilot, about 4 or 5 miles to the eastward of the light, or between it and the Great Ormes Head.

In thick weather, after passing the Skerries, and at night if the light cannot be seen, great cantion is requisite in order to avoid the Coal hock, and keep clear of the ebb tide ranning through the Sound; for, apon an ebb tide, the land between Point Lynas and the Skerries must not be approached within 3 or 4 miles without a commanding and favourable breeze.

Vessels bound to Liverpool should make signal for a pilot immediately after passing the Skerries, as the pilots are very often well to the westward, and keep a diligent look-out; but should no boat be seen, cruise about for one, in the position before stated (between Lynas and the Ormes Head), as the tides here do not run strong; but do not, on any account, run a single mile to the eastward of the Great Ormes Head; for, should thiok weather come on, the vessel will be in danger of being upon the West Hoyle or the Burbo Banks, and lost. It sometimes, but rarely, happens, when an unusual number of vessels come up on one tide, that there is no pilot-boat on the Lynas atation, but it will only be left for a few hours, and vessels should wait with patience, for here a pilot is sure to be obtained.

The Liverpool pilut-boats are sloop-rigged, with a square-headed gaff-topoail, painted with a white bottom and black bulwarks, and have their number conspicuously painted on the foresail and mainsail. These boats have no topmast, but when upor their station carry a flag at the mast-head. If in the night fire guns occasionally, hoist a light, and show a torch composed of new rope-yarns, unlaid and saturated with bright varnish, then marled slack npon a stick. This shows an excellent light, which may be seen at a great distance; it is also much wetter and more noticed than a blue light, from the latter being so frequently used as a signal of recognition by passing steam-boats.

The Liverpool pilots are under very excellent regulations, are exceedingly skilful in their profession, and in point of character and conduct are not nurpassed by any similar body of men on the coast of Great Britain.

Although I have before noticed the necessity of an unremitting attention to the lead in thick weather, perhaps I may be excused for adding here, that such attention is of the greatest iniportance; as, owing to the velocity of the tides, it affords the mariner the only certain indication of his safety or danger, and contributes to relieve his mind in some degree from the anxiety he must feel whilst his vessel continus within the limits of this dangerous navigation.

4.-OF SHIPS BOUND ACROSS THE EQUATOR.

To and from the East Indies, etc.
It is probable that there has been more ciscussion upon the route from the British Islands to the Equator, and on the best meridian for crossing the line, than upon any other passage. And yet the results of theme inquiries as to this, the great highway of the ocean, have served to confirm in a great degree the opinions published in the early days of navigation, before any of the modern improvements and appliances had been brought to bear upon navigation.

The directions which were given by M. D'Apres de Manecillette in his great "Neptune Orientale," published nearly a century since, might be followed now without losing much, if any, of the adrantages which deep study and extensive inquiry into data lately acquired, would give to the shipmaster.

There is only one prominent point elicited, and that has come octi of the investigations undertaken in the United States, by the office under Captain Maury, so often alluded to in these pages. It is that a more westerly crossing of the Eqrator than has
 year. As will be evident, this has arisen from looking at the royage from the opposite side of the Atlantio to that on which almost all previous directions had been composed. Th s configuration of the land about the equatorial portion of the Atlantic is peculiar,
and causen the difficulties of a trans-equatorial voyage. The eantern point of the continent of Sonth America, the "great bugbear" Cape San Roque, as Maury calls it, and the land about Pernambuco, lying in the strength of the S.E. Trade, and the consequent strong current to leeward which runs past it; were constantly the dread of the older marineris whore ships made so much leeway, and were incapable of sailing on a wind as our modern clippers do. But from the improvements in ships and their rig and management, much that was formerly insuperable is now quite practicable, and many of the difficulties of clearing Cape San Roqué have vanished upon later inquiry. It is apon this fact that Maury bases the greater portion of his arguments for a more westerly crossing of the Equator than had been usually done previously.
The other difficulty, which also combines with Captain Maury's argument, is the intervening belt of calms and monsoons (which extends nearly ac-oss the ocean between the trade winds), which have a triangular form, the base lying upon the African coast, between Cape Verde and the Equator, and gradually getting narrower to the westward, as shown in (46.), on pp. 198, 199, and therefore by crossing them well to westward they are traversed in a shorler distance, and their detaining effects are much less experienced.
The great object, then, of all vessels from any port of the North Atlantic, whether on the European or American side, being to clear Cape San Roque, it follows that often the routes are the same from all quarters, and that the Equator is perhaps most advantageonsly crossed by all at the same point. This generally is the American argument, but, as will be seen presently, it not universally accepted yet. It is probable that as much advantage is gained by making the northern edge of the N.E. Trades at a proper point, as by leaving their southern limit, but this will be discussed hereafter. All these discussions of course refer to sailing vessels, those entirely dependent on the peculiar meteorological condition of the localities they have to traverse.

Steam-ships of course are in a different category, and the shortest distance is therefore their best route, provided it does not lead them through any adverse influences.

Now the Great Circle route from the Lizard to Cape Horn is probably nearly the best that conld be followed, even if it were not the mathematical course. It passes near to the west end of Madeira and the Cape Verde Islands, as is directed for sailing ships, and thence crosses the equator in longitude $31^{\circ} \frac{3}{2} \mathrm{~W}$. It almost touches Pernambuco and close to Rio de Janeiro towards the Strait of Le Maire, the total distance being $6988 \frac{1}{2}$ miles.

Again, the Great Circle route from New York to the Cape of Good Hope is a good ronte out or home. It outs the Equator in 22° W. passing through Ascension and just westward of St. Helena, the distance being 6877 miles.

To steam-vessels there will be no difficulty in following either of these nearest routes, and they will be only modiffed in eailing vessels by the force of the trade winds, which will make the course through the 'Irades more southerly than the Great Circle in going southwards.

Although a voyage round either of the great capes-tho Cape of Good Hope or Cape Horn-involves a more axtended problem than that of the passage over the North Atlantic, with which this book especially deals, yet the difficulties and all phenomena which regulate the whole voyage are encountered north of the Equator, and therefore the disoussion of the voyage to the Equator includes the whole diffloultien, and what would follow for the South Atlantic is simple and easily followed.

The General Instructions for making the passage from the English or St. George's Channels to the Equator may be very briefly summed up as follows:-

[^67]
curren

 should aroundIt is the inf directi give p wind chops is advi

In a was ad upa (30 ou Clear course vious 1 high s the di the sal time Finist starte of 4 d In the be sav Madei appro afford

Thi
her to
quick]
if the concalls it, d the condread of of sailing and their racticable, upon later his argucally done the ocean upon the - narrower sing them ing effects
c, whether dlows that haps most American It is prothe N.E. 9 discussed e entirely y have to
listance is y adverse
nearly the It passes for sailing uches Peral distance
bis a good ension and
se nearest the trade the Great

Hope or e over the ea and all Equator, the whole nd easily
3. Thence to the west of the Cape Verdes (or inside of them in the spring, December to April).
4. Thence to cross the Equator eastward of $30^{\circ} \mathrm{W}$.
(Each of these portions of the voyage will be discussed separately.)

1. Leaving the Ceannel.

As has been said before, the Great Circle course from the start to Pernambuco, commencing S.W. by W. $\frac{1}{4}$ W. (S. $37^{\circ} \frac{3}{4}$ W. true), carried on for 1220 miles, taking to a point 30 miles west of Madeira, passing 15 miles outside Ushant and 45 miles of Cape Toriñana or Cape Finisterre.

With every circumstance in a vessels favour, this course made good may be followed; but, as will be seen by former discussions, that she will be affected by numerous causes, which generally have a tendency to place her to the eastward of her course, and thus involves her among the dangers of the French and Spanish coasts.

A much more prudent course is at once to make your westing after leaving the entrance of the channel, as time will generally be saved by so doing, and all uncertainty avoided.

Therefore steer to the W.S.W. or S.W. by W. in fine weather after passing the Bishop Rock or the Lizard, until the longitude of 10° or 12° be attained. By doing this, the perplexing influence of the revolving tides which occur between the Start and the French coast, page 254, will be in some degree avoided. Again, the uncertain Rennell's Current, pages 262-272, will less affect a vessel, or if strong, will assist her in making the necessary offing.

But the most important object, in thus early in the passage getting to westward, is to avoid the well known indraught into the English and St. George's Channels and the Bay of Biscay, see (142.), pages 270-272. This westward tendency of the wind and current would, if not properly estimated, cause some difficulty in weathering Ushant, should the wind become at all adverse, and the strong tides, and dangerous navigation around these projeeting headlands, render them very anpleasant neighbours.

It is probable, too, that the wind may veer more to the westward, as you get beyond the influence of the St. George's Channel in drawing it towards its more northern direction ; and again, as westerly winds have a tendency to veer to the N.W., if you give plenty of sea room, you can pursue your course a point or two free. With the wind decidedly contrary to maicing a course to the south of west on reaching the chops of the channel, it may become a question as to how far a more northerly route is advisable.
In a discussion on the Packet Service about 1834, when a western port of Ireland was advocated as a better starting place than Falmouth, Sir Francis Beaufort drew up a comparison of 60 passages made by the Falmouth Packets in contrary winds (30 outwards, 30 homewards), and what would have been the advantage had Cape Clear have been the starting place instead of Falmouth, the desideratum being of course the safe weathering of Ushant and Cape Finisterre. Of course this was previous to the Steam Mail Service, and when then the Falmouth Packets were in a high state of efficiency, that is, from 1826 to 1830. Sir Francis Beaufort constructs the diagrams by laying off the tracks from Cape Clear of the vessels as if sailing with the same wind as that experienced by them in sailing from Falmouth. The average time occupied by the 30 outward packets from Falmouth to lat. $42^{\circ} 40^{\prime}$, off Cape Finisterre, was 9 days 12 hours, varying from 12 days to 6 days. Had the packets started from Cape Clear, they could have arrived at the same parallel in a mean time of 4 days and 21 hours, thus showing a saving of 4 days 11 hours, or nearly one-half. In the homeward route, the same mode of calcnlation shows that 4 days 9 hours inay be saved in the same manner. Now, as Cape Clear is abont the same distance from Madeira as the Land's End, it is clear that q vessel is in no worse position by approaching it. Crookhaven, or some of the harbours on the S.W. of Ireland, will afford her shelier as well as the S.W. of England.

This is said in caue the vessel encounters strong head winds which will not allow her to make southing, which after all is the grand objeot, in order that you may quickly gain the S.E. trade. If the ship will not lay better than N.W. on the port
tack, perhaps it is better to make a shoit board until the wind veers a little either way. If you are well to the westward of Ushant, and the weather moderate, supposing the ship will lay South or S. by W., you may safely stand on to the Southward; but. should the wcather be threatening, and a westerly gale apprehended, it will be prudent to keep the channel open, rather than by beating to windward, you get past Ushant, and thus embayed on the dangerous French coast, where also the wind is liable to shift close in shore. By keeping the English Channel under your lee, should you not be able to maintain your cousse, yon may then run for some shelter.

2. Passage to Madeira.

When the ship is sufficiently to windward of Ushant or Cape Tinisterre, there can be no difficulty in making for Madeira, so as to pass within sight of it to the westward.
Cape Finisterre should be passed at a considerable distance, or, at least, the course should be so shaped as to do so, for fear of the prevalent drift which is frequently powerful along the north coast of Spain, nnd the effect of the prevalent westerly winds should horse the vessel to leeward and into the Bay of Biscay, which is especially to be avoided. The prominent headlands of the coast of Spain being now marked by a fine system of lighthouses, there is less danger of mistaking the country than there was formerly, as in many parts it is difficult to make out the bays and inlets, and of course it is a most dangeroas iron-bound and lee-shore.
By sighting Madeira an opportunity is afforded of testing the rate of the chronometers, as a sufficient interval will have elapsed to gain a sea rate, and having it thus early in the voyage will avoid much uncertainty in the subsequent passage. It may be stated that any point of the island will answer equally for giving a longitude. The table on page 42 will give the position of the most prominent point, or the description and chart hereafter will give further information.

It is better to pass 7 or 8 leagues off Madeira, as the winds are generally steadier, particularly in winter. In November, December, and January, westerly gales prevail, which produce eddy winds and severe squalls near the land, occasioned by the mountains obstructing the regular course of the gales, and besides the weather here is very precarious.

However, notwithstanding all that has been said in former directions as to passing within sight of Madeira and the Cape Verdes, it is a question whether a more westerly course to the equator may not be attended with some advantages. There is some reason to think that the nearer the land the more baffling and uncertain the wind is, and, as its tendency is to the westward, it is argued that some gain of time has been found to arise from crossing the parallel of 30° (as well as the equator) on a more westerly meridian than that of Medeira. The following abstract was made by Lieut. Maury in the former editions of his "Sailing Directory" (in 1855), and showed the number of days (average) that it took from lát. 30° to the equator in the several crossings by 86 vessels :-

$$
\begin{align*}
& \text { East of } 16^{\circ} \text {................. } 24 \text { days from the mean of } 6 \tag{6}\\
& \text { Between } 16^{\circ} \text { and } 17^{\circ} \text {...... } 23 \text { " } 6
\end{align*}
$$

$$
\begin{aligned}
& \text { " } 18^{\circ} \text { " } 19^{\circ} \ldots \ldots . .24 \text { " } 24 . \\
& \text { " } 19^{\circ} \text { " } 20^{\circ} \ldots . . .23 \text { " } 19
\end{aligned}
$$

$$
\begin{aligned}
& \text { " } 21^{\circ} \text { " } 22^{\circ} \ldots . . .21 \text { " } 7 \\
& \text { " } 22^{\circ} \text { " } 23^{\circ} \text {...... } 18 \text { " } 6
\end{aligned}
$$

little either crate, supthe Southprehended, windward, where also nnel under in for some her a more There is certain the me gain of ell as the pg abstract " (in 1855), equator in
to the N.E. trade-winde of the Pacific that the descrts of Africa do to thone of the Atlantic; and though quick runs may be made now and then, both along the weat American and west African coast, yet, in the long run, experience in the Pacific has amply proved that the navigator saves time by leeping off from the coast, and so I θ prehend it will be here. Indeed, experience in the Atlantic goes directly to show me same thing, and to place the opinion almost out of the category of conjecture, for this is the very point npon which the advantages of the new route from the United States to the line are based.

The passage to the line from England and the English Channel ought not, on the average, to be as long by several days as it is from the United States. In the first place, the distance from the Land's End is not so great by two or three days' sail; and, in the next plaoe, the winds are fairer. Vessels bound to the line from any of the Atlantic ports of this country have to sail close hauled most of the way, but from Europe they go free.

If the performance of the ships whose abstract logs I have, and which furnish the data for these tables, be a fair specimen of what ships generally do on this ronte, and I suppose it is rather above than below, it would appear that the average passage the year round to the line from England and the English Channel is 36 days; the montis giving the longest averages, such as they are, being January and March 47 days, August 46, and June 39. The first two are evidently too long, their averages being determined from only two or three passages each. The average to the line from the United States has been brought down from 41 to 31 days; and the average from the British Isles and English Channel can be, I am encouraged to believe, reduced to less than the American average; and the observation, to be contained in the abstract logs that shall be kept for us during the next year or two, will, probably, enable us to decide this question.
In the meartime, the route which I ventured to recommend-not, however, without some misgivings, arising from the wand of more ample data-is the same, very nearly, for all vessels from whatever part of Europe.
They should aim, whenever the wind will allow the option, to cross the parallel of $30^{\circ} \mathrm{N}$., between the meridians of 25° and $30^{\circ} \mathrm{W}$., but should not contend with adverse winds for it; having reached this crossing, their course thence is due south for the line, between the same meridians. In summer and fall they should enter the southern hemisphere about the meridian of 30°, but during the rest of the year they will generally not be forced so far over to the west, though they should not care to go east of longitude 25°.

Vessels from as far north as the English Channel should aim to cross the parallel of 40°, between the meridians of 20° and 25°; and for this reason-besides that of winds a little more propitious-viz. : In erossing :e calms of Cancer the navigator wants to be in such a position that he may always be able to go on that tack which will carry him most rapidly across this belt of calms. In other words, he wants to be in that position where it is immaterial to him whether he be making easting or westing, provided he be on the tack which will give him the most southing. For this reason he should aim to enter the calm belt between longitude 25° and $30^{\circ} \mathrm{W}$.

The average crossing place of 30°, at present, is about the meridian of $19^{\circ} \mathrm{W}$.*
If the comparison of more extended observation and experience should bear ont this reasoning, that even a few hours are saved on the average in the trans-equatorial voyage, of course it bohoves every commander to follow out this line of procedure; but it will be seen there is some doubt as yet as to whether the advantages of this western route have been fully demonstrated, and we shall give the opinions of others presently on this point.

3. West, or East of the Cape Verde Islands.

If the line of reasoning held by Capt. Maury, as above quoted, be valid, there can
be no donbt as to which ronte to pursue，inside or ontside the Cape Verdes．But as a large number of vessels have used the inside route，evidently without much detriment to making a good passage，it will require a large amount of experience to subvert entirely the practice as hitherto followed．

We are greatly indebted to our Dutch neighbours for their zealous endeavours to improve hydrography in the direction pointed out in the Brussels Conference．The Royal Netherlands Meteorological Institute and the Meteorological Institute of Utrecht have done good service to the mariner in their excellent publications．The latter office has published a table of the times and crossings of 455 ．Dutch vessels from the Channel to the line，which we will give pisently ；but in this they have distin－ guished those who passed inside from those who went outside the Cape Verde Islands．To this list the Americans have added the sailings of 144 vessels，chiefly probably clippers，so that there is the experience of these 509 vessels to appeal to in the choice of the route in this part of the voyage．

Number of Vessels，Dutch and American，and their average time from the Lizard to the Line，by the passage east and by the passage west of the Cape Verde Islands．

，	AMERICAN．				DUTCK，			
	East．		west．		east．		west．	
	Days	Vessels	Days	Vessels	Days	Vessels	Days	Vessels
December	29.5	4	27	4	32.1	11	33.6 ．	16
January．	28.5	3	31.5	6	31.5	17	31	17^{-}
February ．．．．．．．．．．．．	27.8	2	28.9	11	35.3	9	32.9	11
Average and sum．．．．	28.6	9	29.1	31	32.9	37	32.5	44
March ．．．．．．．．．．．．．．	29.7	3	30.5	6	36.6	5	30.5	15
April ．	24.2	1	26.1	8	31.8	23	28.7	39
May ．．．．．．．．．．．．．．．．	32.1	5	31.8	12	33.2	9	32	34
Average and sum．${ }^{\text {a }}$ ．	28.7	9	29.5	26	33.9	37	30.4	88
June ．．．．．．．．．．．．．．．．	36.7	2	29.7	17	32.5	4	33.1	37
July	34.5	3	30.6	9	35.5	4	33.9	53
August ．．．．．．．．．．．．．．．	30.2	2	34.5	11	35.4	4	33.8	38
Average and sum．．．．	33.8	7	31.6	37	34.5	12	33.6	128
September	42.4	2	33.3	14	36.3	9	36.2	31
October ．	33.2	4	32	10	32.4	9	32.9	24
November	29.7	3	32	3	36.8	10	36.8	26
Average and sum．．．．	35.1	9	32.4	27	35.2	28	$35 \cdot 3$	81
Total average and sum	31.5	34	30.6	111	34.1	114	32.9	341

[^68]Bnt as-a h detriment to subvert
deavours to rence. The Institute of tions. The vessels from lave distinCape Verde sels, chiefly appeal to in
e Lizard to Islands.

WEST.

2ys
Vessels
3.6. 16 16
17 11

44
15
39
34
88
37
53
38
128
31
24
26
81
341

In this table the Dutch outnumber the American vessels, and the outside exceed the inside passages in the proportion of neariy 3 to 1. The Dutch and the outaide passages, therefore, give the most reliable averagen. Nevertheless, the monthly means for the passage west of the Cape Verde Islands ure uniformly in favour of the American vessels, except for January and August, wheu for January the mean of 17 Dutck passages is half a day shorter than the moan of 6 American ; and for August, when the mean of 38 Dutch passages is 18 hours short the mean of 11 American. The general mean of the outside passages for the year, however, is 2.3 days in favour of the American vessels, and one day in favour of those that go outside as against those that go inside of the Cape Vorde Islands.
There is a difficulty here in estimating the relative value of the American and Dutch results, as we do not know what the class and sailing powers of the two fleets were; but it is probable that the superiority of the American tracks would not be so great, if the Dutch had selected vessels of an equal elass for the comparison. However, it would seem that there is certainly some few hours' detention on the average by,going inside the islands compared with the outer passages contained in the foregoing tables.
In many cases, if they are taken singly, or in small groups, we shall find great diversity of result; but it is manifestly futile to endeavour to raise a system, or to subvert a decision, except upon a widely-extended experience. But as to the British passages in westing in this direction, we have no collection of logs recorded ond analysed for the purpose of obtaining the best mean result of their various rotten. There is no doubt that a very favourable comparison for the eastern route may be shown in numerous individual cases, and yet in others the time consumed has been very much greater.
Thus, Captain Robertson giver the duration of three voyages insido and three outside the Cape Verdes in the same ships, Simlah, Niagara, Clyde, and Sappho, between 1851 and 1860. The inside passages were in June and August, and made 37, 27, and 40 days respectively from the Line to the Start-average 35 days. The outside passages, made in November, January, and March, were 22, 20, and 19 daysaverage 20 days. The same voyages from $20^{\circ} \mathrm{N}$. to the Line took 22 , 13 , and 18 days for the inside passage-average 18 days; and 12, 8 , and $7 \frac{1}{8}$ days for the outside passage-average 9 days.
The experience of these voyages would incontestably prove that the inside passage is wrong ; but, reverting to our first summary on page 392, it shows also that the seasons were wrong for selecting these passages. 'Had they have been revursed, they would in all probability have been more equal, or, perhape, their superiority might have been reversed. They also demonstrate that the advantage gained by the westerly route is not conflned to that part of it North of the Cape Verdes, but is equally shown between them and the Equator; that is, if they be pursued at the wrong season, as is done here.
If tae reader will refer to the diagram at page 185, and to the table on page 199, he will see that the belt of calms and S.W. winds is very muth more extended to the westward in the northern summer months, and that whie the sun is in southern signs it does not appear to be nearly so extended. In fact, during December, January, and February, the westerly African winds are scarcely felt. As these winds are not usually encountered West of 22° or $23^{\circ} \mathrm{W}$, during December and April, the passage inside of the Cape Verdes may sometimes be advantageously pursued, bnt not in June and August:

Captain Sir Edward Belcher, in his outward voyage round the Cape of Good Hope, in the Samarang, March, 1843, diverged from the " beaten track," with considerable advantage. His reason for so doing was, that by crossing the Equator 10° or 15° more eastward than is usually done, when arrived in the parallel of St . Helena, he would be many miles to windwatd of the usual route. "Having always considered the eastern route the preferable, I attempted, on my homeward voyage, iu H.M.S. Sulphur, to reach Porto Praya direct from Ascension. In this, however, I failed, owing to the occurrence of westerly breezes driving us toward the African coast, until in the parallel of the Cape de V crde Islands, which proved that from the

Cape de Verdoe eoutherly towards the Equator in the month of June favourable breeses withont calme might be reckoned upon; and I was reminded that ships coming from Ancension and St. Helena generally make good passagen, passing to the ventward of the Cape de Verdes. My experience, whilst employed on the African station, taught me that a fair passage from the Cape de Verdes to Sierra Leone or the coant easterly, could always be antioipated, and that no retarding calms are to be met with on the verge of the African soundings. Vessels also from the Afriean coast, meeking Asoension for ohange of climate, find this remark applicable, and it might be fairly asammed that if we could reach the Equator under light airs and moderate breezes in a less number of days than the average passage to the twenty-fourth dogree of West longitude (the increased distance being impeded by many days' calm), and by crossing to the eastward of the tenth degree of West longitude, the westerly current would be avoided, and we should be able to fetch to windward of Ascension, or possibly sight St. Helena, many hundred miles to windward of the ' beaten track. The resilit proved as was antioipated. Leaving Porto Praya on March 7th, we experienced light and moderate breezes, with south-easterly current. Between the 7th and 21st of March, or from Porto Praya to the Equator on the ninth meridian of West longitude, we averaged 81 miles per day, and experienced no more than ten hours' calm. Before the south-westerly breezes quitted us, we had been oarried as far as 8° West. After light south-westerly airs, we were enabled, on the 28 th of March, by a succession of breezes from the S.E., to pass 150 miles to windward of Ascension, in $9^{\circ} 44^{\prime}$ E., arriving in Simon's Bay, Cape of Good Hope, on April 25th." -Voyage of the Samarang, pp. 7, 8.
This passage, which takes advantage of the easterly Guinea Current (pages 283288), will be more specially alluded to hereafter. If e. West African port should be sought, of course the advantages are on the side of the inner passage; but this, as said above, will be alluded to presently.

As each portion of the passage over the Atlantic is, in a great measure, dependent on the other, it cannot be pronounced on absolutely whether, of itself, one part of a course can be most advantageously pursued in a certain direction. In the next ensuing paragraphs, this yet undecided problem will be considered in connection with the further progress of the voygges.

4. Crossing the Equator.

In 1848, Lieutenant Maury published his Wind and Current Chart of the North Atlantic, upon which he marked the great circle track joining New York and long. 31° W. on the Equator, distance 3,370 miles, and upon this track was the following: -"The distance by the route usually pursued is upwards of 4,100 miles. Outwardbound vessels are recommended to try this route to Rio Janeiro. The tracks of vessels on this chart show the average passage from the United States to the Line to be 38 days, and to Rio 55 days. There is reason to believe that the prevailing wind along the (great circle) route here indicated will be found more favourable-steadier and stronger than they are by the usual route, and the distane is nearly 1,000 miles less. Hence I respectfully invite the attention of navigators to this route, under the expectation that, by taking it, they will shorten their passage several days."

By the chart on which this note is placed it seems that the practice of the American ships was to run down to westward between 34° and $40^{\circ} \mathrm{N}$., and cross the parallel of 60° between 30° and $38^{\circ} \mathrm{W}$. Naturally a better course would suggest itself, and the great circle course is that which would stand prominent. Captain Maury having recei red much encouragement by the adoption of an approximation to this track, to the great advantage to American voyages over the former easterly track, has argued strongly or. the advantages that would be gained by the route from Europe being made to cross the Equator on the same meridian (about $30^{\circ} \mathrm{W}$.). As this does not appear to be entirely accepted, we will give the experience on both sides in order thst the shipmaster mey form some opinion as tg their respective advantages.

On page 392 is given a table containing the times occupied in sailing from the "Lizard to the Line" inside and outside the Cape Verdes, as comyosed from the tables drawn up by the Utrecht Meteorological Institute. The following is the table itself,
－favourable ships com－ using to the the African Leone or the re to be met frican coast， it might be id moderate y－fourth de－ days＇calm）， the westerly Ascension， eaten track． 7th，we ex－ een the 7th meridian of re than ten n cairied as the 28th of vindward of April 25th．＂
pages 283－ rt should be but this，as
θ ，dependent le part of a In the next nection with
© the North k and long． β following： Outward－ ee tracks of the line to ailing wind le－steadier 1,000 miles e，under the ff the Ame－ d cross the uld suggest t．Captain ximation to terly track， rom Europe As this does des in order ses．
g from the drom the is the table

留 ） n

 	\％

 	앙	\％
 	袌	≥ 1
 	－	N
 	岛	栄
	응	${ }_{0}$

צO STMTIV\＆VI GHJ 』O NOTTOGSYGTNT

In this table the routes followed are those usually taken by all abips from Earope bound acroes the Equator, and the mean crossing of the Equator is about $22^{\circ} 40^{\prime}$.
In the last column, which must speak for itself, the comparative time of the routes East or Went of the Cape Verdes is shown. Where they are less for the inside pacsage is only in June, Ootober, and December. They are about equal in January and September.

The comparison and number of the ships is given before on page 392; but wo cannot be entirely satisfied with the remult, as in many monthe the number of ahips taking the inside passage is not sufficient to form a conclusion.
The following table is a summary of the information contained in the foregoing Dutch table, to which are added the mean results of the American loge, which are quoted at length in Maury's "Sailing Directions," 8th edition, 1859 :-

Days and crossings from the Lizard to $30^{\circ} \boldsymbol{N}$., and thence to the Line.

	american.				DUTCH.			
	To $30^{\circ} \mathrm{N}$.		Thenoe to 0°.		To $30^{\circ} \mathrm{N}$.		Thence to 0°.	
	Days.	Long.	Days.	Long.	Days.	Long.	Days.	Lon.
December		W.		W.		W.		W.
January	14.8	18.7	16.9	25.5	10.9 11.9	120	19.1	22.7
Fobruary	11.8	22.2	17.1	23.7	14.6	18.7	18.3	21
Means	12.8	20.6	16.4	25.2	14.4	18.3	18.6	22.1
Average miles per day	106	\ldots	111	\cdots	93	97
March	13.1	19.2	17.4	25.5	12.2	20.2	18.3	21.7
April.	10.5	20.5	15.6	26.5	11.3	18.7	16.1	23.7
May	12.4	18.5	19.4	24.2	12.5	19	19.5	23
Means	12	10.7	17.5	20.4	12	18.3	18	22.8
Average miles per day	112	\ldots	106	\ldots	112	. ${ }^{\text {a }}$	101
June	11.2	20.5	18.5	27.7	12.5	19	20.6	24.2
July	10.3	20.7	20.3	25.6	12.3	19.2	21.6	21.7
Angust	14.8	18.6	18.7	26.1	12.8	19.2	21	20.5
Means	12.1	20.3	19.6	20.4	12.5	18.1	21.1	22.1
Avorage miles per day	112	\ldots	94	107		85
September	12.1	10.8	20.9	25	12.8	18.5	23.4	21.7
October.	12.9	19.2	19.1	27.7	13	19.5	19.9	25.7
November.	11.2	20.2	20.8	31	12.9	18.2	20.7	23.7
Means	12.1	19.7	20.3	27.9	12.9	18.1	21.3	23.7
Average miles per day	. . .	112	. . ${ }^{\text {a }}$	91	\ldots	104		85
Yearly means	12.2	20.1	18.4	26.2	13.0	19.2	19.7	22.7
Yêariỳ âvr. milies per day	\cdots	111	-	100	. . .	104	92

ACROSS THE EQUATOR.

om Earopo $22^{\circ} 40^{\prime}$. the rontem r the inside in January

22; but wo er of ships
e foregoing , which are
ne.
hence to 0°.
ays. Lon.
Lays. Lon.
17.7
19.1
18.3
$18.6 \quad 22.1$
97
18.3 21.7
16.1
19.6

23
22.8

101
20.6
24.2
21.7
20.5
$21.1 \quad 22.1$
85
21.7
19.9
0.7
23.7
21.3

85
9.7
22.7

92

This table shows us the effect of neasons as well as of longitude. It also shows that the American ahips.make better time both before and after they crose $30^{\circ} \mathrm{N}$. than the Dutch do; but it does not reveal the causc of this difference, nor indicate whethe the better speed be due to the more westerly track of the Americans or to their superior sailing qualities. It shows, indeed, that in the winter time, and in the winter time alone, both the Dutch and Americans make better time from than they do to $30^{\circ} \mathrm{N}$. Consequently we infer that in wiuter the north-east trades are more reliable than the "variables" on the polar side of 30°, and the north-east trades are freshest in spring.
Let us pause to review a littie more olosely the winds, and survey the part of the ocean through which these vessels hold their way.
I am surprised to find the prevailing charaoter of the winds between the Lizard and $30^{\circ} \mathrm{N}$. as baffling as they are thence along the coast of Afrioa to the Line. The American track from the Lizard to $30^{\circ} \mathrm{N}$. is a little more westwardly, and we find the winds, as indioated by the average distance made good per day for the several seasons, much more steady by the American than they are by the Dutch track.

Average miles made good per day from the Lizard to 30° N. in each of the
four seasons.

	American.	Dutch.	Difference.
Winter	106	93	13
Spring	112	112	0
Summer	112	107	5
Fall	112	104	8

According to the seasons and the average rate of sailing, it appears that the Amoricans are remarkably uniform ; the Dutch not so much so ; and this we attribute, without hesitation, to the eircumstance that along thic American track the winds, if not fresher, are at least less bafling than they are along the Dutch track, which lies, on the average, more inshore.

This is what the pilot charts have indicated, and this is what all our investigations of routes running through this part of the ocean have suggested. But I did not expect to find the prevailing character of the winds between the Lizard and 30^{3} N., nor on the old route thence to the Line, so adverse and unpropitious as they appear to be, for their average force is here expressed by good ships in terms of $4 i$ knotes an hour.

A track still further from the land even than the American ; indeed one that leads from the Lizard to the meridian of 23° or 25° W., at its intersection with $30^{\circ} \mathrm{N}$., would, I oonjecture, take the navigator through a part of the ocean that would give him an average speed of five knots. Though the distance from the Lizard to $30^{\circ} \mathrm{N}$. would be eighty miles greater by this route than it is to the present crossing of that parallel at its intersection with $20^{\circ} \mathrm{W}$., the time from tho Lizard would, on account of both winds, sea and speed, be shortened ; and it is this time, not distanof, that our rescarches seek to shorten.

Hy the above table it is shown that the mean longitudo of the American crossing is $26 t^{\circ}$ W., while the Dutch is 224° W. ; and yet the contrast between their passages is not so great as the differenco in tho position with regard to the Equatorial calms or "doldrums" would seem to wariant an inference. It may, therefore, be advised generally that the meridian of $26^{\circ} \mathrm{W}$. is a good crossing, and that, if further Went, it is questionable whether any dävantago is gained.

In an able discussion of the logs of soveral clippers in the " Mercantile Matine

Megarine," the came conolumion is independently arrived at. "We have yet to loarn if the mont favourable cromaing be wostwoard of 25° W. for English vescels out-ward-bound to the East. The paseage by the easthoard of the Cape Verdes has boen utrongly recommended, as shown by the preceding extracts, and it is certainly worth attention that the best passage recorded in that article was made by a vessel (the Lady Rapfes), which ran down her monthing eastward of ti:e Cape Verdes."

Captain H. Toynbee, F.R.A.S., has also discussed the westerly crossing of the Line, as tried by him in his well-known ship, the Gloriana. \dagger This voyage was made in October, 1858 , and the Line was crossed in $38 \frac{1}{2}^{\circ} \mathrm{W}$.
"On the 2nd October, 1858 , the Gloriana was in lat. $17^{\circ} 43^{\prime} \mathrm{N}$., long. $26^{\circ} 29^{\prime} \mathrm{W}$. From this position, being West of the Cape Verde Islands, I endeavoured to make a true South course when the wind was fair, and preferred the tack which gave the most southing when it was foul.
"From the 2nd to the 7th we went on well, for on the latter date we were in lat. $7^{\circ} 29^{\prime}$ N., long. $27^{\circ} 52^{\prime}$ W., having been driven by the wind and about thirty-eight miles of current eighty-three miles further West. From the 7th to the 15th we had the 'doldrums." Until the tenth, when we were in lat. $6^{\circ} 25^{\prime}$ N., long $26^{\circ} 57^{\prime}$ W., the weather was ehiefly fine, with a mixture of Northerly and southerly swells; after that, heavy rain squalls, looking very threatening, but not sufficient wind to require the royals to be taken in, with a high southerly swell. During the whole time the wind was from East round by South to West, bat chielly South; the current was generally to the eastward from 11° to $5^{\circ} \mathrm{N}$.
" Oct. 15th.-Lat. $4^{\circ} 8^{\prime}$ N., long. $25^{\circ} 41^{\prime}$ W. $;$ current in the last 24 hours West, 16 miles ; wind S. by W., by compass; variation $17^{\circ} \mathrm{W}$. This was the point where I had to decide whether to steer to the eastward, making a liin: $n \cdots$ hing, until I considered my ship far enough to windward, or to the wesir.; aking about W.S. W., with the certainty of a westerly current. I chose to $\varepsilon \in i$ e westward, feeling sure that the wind would gradually draw to the S.E., wiereen I think that had we gone to the eastward we ehould have continued in the variables, if we did not run back into calms.
"Oct. 16th.-Lat. $3^{\circ} 16^{\prime}$ N., long. $27^{\circ} 22 \frac{1}{3}^{\circ}$ W.; course and distance, S. $62 \frac{1}{1}^{\circ}$ W. 114 miles; current in the last twenty-four hoors, N. 39°. E. 12 miles; variation, by aximuth compass, $17^{\circ} 3^{\prime} \mathrm{W}$., by steering compass, $16^{\circ} 9^{\prime} \mathrm{W}$. At 10 h . a.m. a large ship passed us steering to the eastward, and we lost sight of a barque which was in company, so I euppose that she also went off to the castward, The wind drew to the South by compass, so that we were able to make true S.W. $\frac{1}{}$ W. The weather during the last 24 hours looked unsettled, especially in the N.W., where there war lightning ; but even when we broke off to W. by N. for an hour I felt that by going on the port tack we were drawing into the S.E. trade.
"Oot. 17th.-Lat. $1^{\circ} 30^{\prime}$ N., long. $29^{\circ} 24^{\prime}$ W. ; by lnnar, 30° W. ; course and diatance, S. $481^{\circ} \mathrm{W} .162 \frac{1}{9}$ miles ; current, S. $77 \frac{1}{2}^{\circ} \mathrm{W} .13$ miles. The wind from S.by E. to S.S.E.; the sea amooth and weather very delightful.
"Oct. 18th.-Lat. $0^{\circ} 52^{\prime}$ S., long. $31^{\circ} 24^{\prime} \mathrm{W} .$, by lunars $32^{\circ} \mathrm{W} . ;$ oourse and distanoe, S. 41° W. 184 miles ; current, S. 44° W. 12 milen. The wind from S.S.E. to S.E. by S .
"Oct. 19th.-6h. a.x.i., lat. per meridian altitude of Sirius, $2^{\circ} 32^{\prime}$ S. ; noon, lat. $5^{\circ} 16^{\prime}$ S., long. $31^{\circ} 66^{\prime}$ W.; current, S. 13° W. 8 miles; wind S.S.E. I. E. 3^{\prime} bearing and distance of the Rocas, supposing them to be in lat. $3^{\circ} 65^{\prime} 8$, long. $33^{\circ} 44^{\prime} \mathrm{W}$., and taking the mean of the above longitude as my position at ncon, $\$.38^{\circ} \mathrm{W} .51$ miles. $3 \mathrm{~h} . \mathrm{p} . \mathrm{m} .-$ Lat., per meridian altitude of Venus, $3^{\circ} 33 / \mathrm{S}$. $3 \mathrm{~h} .20 \mathrm{~m} .$, p.m.-Long., per altitudes of the sun, using the London rates for the bent chronometer, $33^{\circ} 10 \mathbf{y}^{\prime} \mathrm{W}^{\prime}$. Hence, since noon we had made S. $36^{\circ} \mathrm{W} .25$ milen.

[^69]" "Mraughout the afternoon we steered about S. 35° W., and at 6h. p.m. we savi the reof about 12 miles off, extonding from nearly right ahead out 'on the weathor bow ; and at 6h. we képti away W.S.W., so an to pass it at the distance of about five milen.
"The sighting the Rocas was one of very many instances in my experience prov: ing the look-out man, either from want of practice or from feeling a vrant of intereat in what he was doing, unable to see an object almost staring him in the face. From $3 \mathrm{~h} .30 \mathrm{~m} .$, p.m., I ordered a regular look-out from fore-topsail-yard, and at $5 \mathrm{~h} . \mathrm{p} . \mathrm{m}$. felt so sure that the reef must be in sight that I determined to visit the topsail-yard mysolf; when on stepping into the rigging something strange caught my eye, which proved to be a beacon on the western part of the reef; yet from the topmail-yand the look-out man had seen nothing, and could hardly see it when I pointed it out. A similar case happened one evening on our way towards Torres Straits, when I sent an officer up to look round as the sun set, though I always kept a man on the fore-top-sail-yard. He quickly saw a long line of broken water right ahead, it being part of Lihou Shoal extending further to the eastward than it was laid down either in charts or books. I find that in moderately clear weather, when observations show that the land may be sighted, a good night-glass on the forecastle and a patent lead are firstrate safeguards; indeed, the three L's are all right enough, but much depends on the quality of these said L's."
"Now it remains to be decided how we should have fared if on the 15th we had stood to the eastward, making easting, with a little northing, until we thought ourselves far enough to windward. In our present case we certainly had to tack off America (though it is the firat time in my extreme westerly rontes that I have had to do so), yet in two days we beat 111 miles to the South and 27 to the East, and cleared the diffleulty. It would not be right, however, to tempt ships near reefs and land unless they gain by it; and merely by a comparison of my own voyages of other years at the same season I should condemn this route, for I never did worse from 10° N. to the equator than this year. Onoe at the very same date I passed between the Cape de Verdes and Africa, Then we were 13 days from $10^{\circ} \mathrm{N}$. to the Line, but were not troubled near South America and had a better S.E. trade. This time we were only 12 days, but lost a day near South America. In October, 1852, I passed $10^{\circ} \mathrm{N}$. about 2° further East within a day or two of our date, and was only $8 \frac{1}{8}$ days to the Equator, which we crossed in $20^{\circ} \mathrm{W}$., having been carried into $18^{\circ} \mathrm{W}$. by a strong S. W. monsoon, which turned into the S.E. trade without a calm. Still, this probably was an exception, and I should like and shall try to see the logs of some ships. which passed through the Doldrums with us.

September 25th, 1856, and October 15th, 1857, I crossed the Equator much in the same longitude as this year-that is, $31^{\circ} \mathrm{W} . ;$ in September passed 25 miles to the westward of Fernando Noronha, and in October atill nearer, and both voyages we weathered America with ease. Once in May I crossed the Equator between 28° and 29° W. and could not weather Amexica, but was much bothered off Cape St. Augustine.
" Again, from Cape St. Augustine to the Abrolhos, the ships which pass far West do not seem to do so well as those which go far to the eastward. For instance, as I am now writing on the 26th of October, we have done but $\mathrm{S} .14^{\circ} \mathrm{W} . ~ \$ 1 \frac{1}{\mathrm{f}}$ miles, and on the 25 th $\mathrm{S} .23^{\circ} \mathrm{W} .85$ miles. For all this, one feels inclined to blame the westerly route ; at any rate until it is proved that the ships which went to the eastward have done as bainy or worse than ourselves.
"The conclusion I am inclined to draw from all this is, that in October when once your ship is so near the Equator as to expect the S.E. trade, and the wind sets in from S. by W. by compase, go on the port tack with the yards sharp up, and keep well full; then the wind is almoat certain to turn into the B.E. trade, with beantiff weather. My experience would lead me to say that in October, when you are below 5° N., with a ateady S. by W. by compass wind, you have the commencement of the S.E. trade, and should stand boldly on on the port tack; but I am not yuite decided at to how ahip ought to steer after peesing to the weitward of the Cape de Verce, though I think as we have done this year ; that is, due South with a fair wind, and
the tack on which you make the most southing with a foul ; because the probability is, that yon will have a S.W. monsoon, which will drive you \cdots in the eastward. If there were not this probability I would have a ship in Occ. ver stees to get the S.E. trade, or rather the S. by W^{\prime}. wind, in about $2 v^{\circ} W$., for if she does not get into the latitude of Cape St. Roque quite so soon, I think we shall be in a better position by the time sine loses the S.E. trade."

In a subsequent discussion, when Captain Toynbee had procured the logs from other ships of similar class which left the Channel at the same time, the Gosport, which was also West of the Cape Verdes on the same day, bore to the S.E. crossing the Equator in $25^{\circ} \mathrm{W}$., and reaching $20^{\circ} \mathrm{S}$. a week before the Gloriana. The Alfred, whioh pursued a similar course to the Gloriana, crossing the Line in $321^{\circ}{ }^{\circ} \mathrm{W}$; and the Vernon and Octavia, which passed inside the Cape Verdes, crossed the Line in 25° and $26^{\circ} \mathrm{W}$.
"The first question raised is-Was the Gloriana right in steering due South on the 2nd when the wind was fair? The Gosforth's track says no, she ought to have steered S.S.E. until in 25° W., and then to have made a little easting with the southing whonever it was possible. But the tracks of the two ships (Vernon and Octavia) which passed East of the Cape de Verde Islands, say on no account go to the castward of $22^{\circ} \mathrm{W}$. This advice is only applicable when the wind is light and variable; of course, if a S.W. monsoon is experienced in these parts a south-easterly course must be followed until the wiud draws to the South.
"On looking at these tracks I suppose Maury's correspondent, Captain Windsor, would say that the captain of the Gosforth is 'one of those men who are kicked through the world in good luck to keep them out of harm's way;' or how could he have had a run of 184 miles between the 5th and 6th oi October, when ships to the right and left of him did but little more than half that distance in the same time? Not being a believer in luck myself, it seems to me that the little easting he made from the 2nd to the 9th placed him in a position by which he was enabled to keep off the coast of South America, and so avoid the light winds fom the 24th to the 26th which affected all the ships North of $20^{\circ} \mathrm{S}$. Here my second query is answered, for we find that the westerly crossing of the Line was not the cause of the light winds we experienced on the 25th and 26th; or, to be more explicit, the ships several degrees East of us suffereci from them to the same extent as ourselves.

The Alfred and Gloriana have given the extreme westerly route a fair trial. They started from $20^{\circ} \mathrm{N}$., differing one day in their dates, and on the 23 rd of Ontober, after passing Cape St. Roque, the Alfred was in the same position as the Gloriana had held on the 22 nd.
The extreme eastern route between the Cape de Verde Islands and Africa was fairly tried by the Vernon and Octavia. It is manifestly wrong for the early part of October, for they lost much on the ships which took the western route.
"Considering the positions of the four hindmost ships on the 28th of October, I am inclined to think that the Glorianc's is the best, for to get South of the calms and variables near the tropic of Capricorn is more important than to make easting, so much so that when there I choose the tack which gives the most southing. Hence the readers of my last paper on the subject will see that this research proves that we were better off than most of our neighbours, and no doubt the commanders of the other ships will examine this chart with great interest.
"It will be noticed that the Goaforth's traok ends on the 21 st, so that although, where it commenced, she was but a trifle more than half a day in advance of the Gloriana, she ended with an advance of seven days. Thus she gained on the Gloriana, 6f days; Alfred, 74 ; Octavia, $8 \frac{1}{2}$; Vernon, 91.
"The conclusion I draw from this is, that early in October netther the extreme eastern nor the extreme western route is good. Therefore, a ship should pass West of the Cape de Verde Islands; and then, when the wind will permit, haul ${ }^{\circ}$ T the S.E. when South of them, so as to be about $23^{\circ} \mathrm{W}$. when she is $5^{\circ} \mathrm{N}$., she shoulu then take the tack wh. in gives the caost southing.

diffore

 indrau on the gained and, tl safer t latitud or ver as to" T)
examp
partur
e probability 2e eastward. er to get the not get into tter position

5 from other spport, which crossing the The Alfred, $21^{\circ} \mathrm{W}$; and the Line in

South on the ght to have the southand Octavia) to the eastnd variable ; iterly course
in Windsor, are kieked ow could he ships to the same time? ng he made d to keep off to the 26th aswered, for ht winds we eral degrees
trial. They ntober, after tna had held
ca was fairly rly part of

October, I e calms and easting, so ng. Hence pes that we ders of the
at although, ance of the he Gloriana,
"Manry's " Sailing Direcions' sapport this opinion. Thp averages he deduces from the table in page 148 of the 2nd vol., dated March, 1859, plainly prove that the extreme western routs is a disadvantage in October. And, again, the Americar part of the table in page 369 shows that ships should not go East of the Cape de Verde Islands in October, though it is contradicted by the Dutch part of the same table, with more ships to take an average from. Still, most of the nine Dutch ships may have passed East of the Cape de Verdes much later in October than the Americans; at any rate sound reasol: seems to support the middle route, for if a chip works her way to the South in the longitude of the Cape de Verdes she is more likely to get a spirt of the S.W. monsoon, whieh sometimes blows at this seasn, and avoid the certain calms of a more easterly course, as also the danger of being detained a day or two near Cape St. Roque by the more westerly route.

> "From the end of Gctober to February I would pass East of the Cape de Verde Islands, and perhaps also in March and April. Early in Deeember we took this ronty, and were on the Equator on the 23rd day from England.
> "A few tracks similar to these for each menth in the year would soon decide the best route."

With these remarks we close this branch of our subject,-one of great importance to the mercantile interest,-and the application of the physical facts enumerated in our earlier pages.

We leave it to the mariner to decide between the able authorities we have quoted, as to the proper course to pursue, and express a hope, with Captain Toynbee, that we may have at an early day a sufficient number of facts to definitively decide the question as to the best crossing of the equator.

We are unwiling to omit those instructions which have appeared in uur former editions, and which have now for nearly a century directed almost all the European shipping; but, of course, what has preceded will supersede them where they differ. Still much is good to the present day, and may be followed advantageously.
MI. D'Aprés de Mannevillette, in his Directions for Navigating from the English Channel to the East Indies, says, "When you steer out of the channel, you ought to shape your course so as to pass Cape Finisterre at the distance of 25 or 30 leagues; this distance," he adds, "will be sufficient, in whatsoever season of the year your voyage may happen: you may, indeed, double that cape still nearer, if circumstances require; but, from itc latitude, you should always shape a oourse for the Island of Madeira.
"Though a sight of that istand is not indispensably necessary in this passage, it is proper, however, to gain a sight of that, or of the Island of Forto Santo, that you may be able to keep on your course aftem, sard with greater certainty, whether you pass berween the Conary Islands, or leave them to the castward, as may be judged most convenient."
"In the passage from the coasts of France to the Canarios, you may frequently find differences in your reckoning to the eastward, which arise most probably from the indraught of the currents toward the Strait of Gibraltar: some have made the land on the coast of Africa when they expeeted to have discovered T'enerife; others have gained sight of Allegranza, off the northern part of Lanzaroto, instead of 'Tenerife; and, though the errors in reckoning may not frequently be so considerable, yet it is safer to be ou your guard, when you judge, by your reckoning, that you are in the latituds of these islands, especially in the night-time, or when the want of moonlight, or very thick hazy woather, prevents you from discovering dangers at such a distance as to be able to escape them.
"The difforences to westward, though much more raro, are yet not without example; chicfly when the winds have hung contrary for some time after the departure from the ports of England or France.
". Slips are, however, now generally recommended to pass to the Frestward of the Canary and Cape Verde lslands: it having been found, that, in this route, steadier winds "ay be expected than those generally prevalent close to or among the islands. On the African coast, W.S.W. and S.W. winds are frequent. The track now generally adopted by ships having ohronometers, is that to the westward of all the islands.
"Should it be required to tonch at Senegal or Goree, the best course will be, to make the coast of Africa near Cape Blanco, lat. $20^{\circ} 55^{\prime}$; as there are soundings at 5 or 6 leagues off the coast, and no danger in making the land, either by day or night, provided the lead be kept frequently going: and thus you may steer up to the cape.
> "Though it may seem nutural enough not to suspect any errors of consequence in yrur reckoning in so abort a passage as from the Canaries to the Isles of Cape Verde, yet there are instances of such, as well to easting as to westing. It is with respect to errors in our westings, that I advise all vessels to keep 30 leagues to windward of ponavista, before they stand in to make the land; lest, in keeping a direct course for that island, they should pass between the Isle of St. Nicholas and the Isle of Sal; and, finding themselves to westward of Bonavista, when they reckoned themselves to be still to eestward of it, they should miss their refreshments at the Isle of St. Iago, an accident which has happened to several vessels.

"The making of these islands is often difficult, occasioned by the fogs which hang frequently uround them. For this rcason, those who come from the northward, ought to steer their vessels in this track with all possible precaution.
" The most convenient course for vessels, which continne their voyage from the Canaries, without touching at the Islands of Cape Verde or Goree, is to steer, after they lose sight of the Canaries, so as to pass about 45 leagues west of Cape Blanco, or near the meridian of 20°; from this position they will make good their course due South, as far as to 12° N., and afterward S.E. by S., till they meet with those variable winds which succeed to the trade-winds. By this they will keep the mid-channel between the islands and Cape Verde, and coast along the bank below that cape, at a sufficient distance, even though they should make an error in their reckening of 15 or 20 leagues to eastward."
But as, when the sun is near the northern tropic, the trade-wind his been often found to fail within sight of the Cape Verde Islands, it has been recommended to ships, at these times, to pass the islands to the westward, at the distance of about 10 leagues, in order to preserve a stcady wind, and prevent delay, by keeping clear of the light eddy winds, which then prevail near and among the islands. When to the southward of these isles steer to the S.E., so as to get between the meridians of 18° and 23° W., npon losing the N.E. trade-wind. Should the southerly winds then commence, advantage may be taken of the shifts to stand on the tack which will gain most to the southward, so as to cross the Equator between the longitudes above mentioned, if the wind will permit. Be cautious of making a long tack, either eastward or westward, with a dead southerly wind, in hope of having a better, unless the wind should veer, so as to produce much southing.

The S.E. trade-wind, at its northern limit. generally inclines far to the southward, particularly in July, August, and September, but frequently in other months. A ship meeting this trade, should not be kept too close to the wind, but keep clean full, in order to make good way to the S.W., and clear of the southern limits of the westerly current that generally prevails about the Equator.

It has been already shown, in the description of currents, that ships, passing the line too far to the westward, run tho risk of not being able to weather the coast of Brazil. But M. D'Apres has observed, that there is not one instance to prove that, by passing the Line to the eastivard of the limits above mentioned, ships meet with calms of a long duration, and currents setting with great rapidity toward the River Gaboon, as had before been generally imagined.
if. \boldsymbol{D} _́Aprés adids, "Vessels which sail from St. Iago should steer S.E. as far as the

12th d
steer 8
10 dog
His
vinds,
very fil
you po
most to
minate
OR
betwee
Line,
vinds
when t
If th
order t
are pre
Islands
In or
her to
be met
Beyc
$32^{\circ} \mathrm{N}$.
Shon pass th Englis

It is winds the cu happen Channe and wo current

TO AND FROM THE SENEGAL AND GAMBIA.

ward of the Jute, steadier 5 the islands. track now ard of all the se will be, to andings at 5 day or night, to the cape.
insequence in Cape Verde, ith respect to windward of 3ct course for Isle of Sal; hemselves to of St. Iago,
which hang northward,
lge from the o steer, after pe Blanco, or ir course due hose variable mid-channel tat cape, at a ning of 15 or

3 been often mmanded to of about 10 jing clear of When to the dians of 18° winds then ich will gain ; above menper eastward ess the wind
s southward, ths. A ship clean full, in the westerly
passing the the coast of prove that, s meet with d the River

12th degree of latitude: after that S.E: by S. Those which depart from Goree should steer S.S. W., if they desire to keep clear of the coast, till they reach the parallel of 10 degrees ; thence their course ahould be S.E. by S."
His words on crossing the Line are, "When the variable winds nucoeed the tradovinds, the best method of crossing the Line with speed is, to take advantage of the very first variable winds, for gaining tine ordinary track of the trade-winds no soon as you possibly can; and for this end, to keep indifferently to that tack which bears most to sonthward, without troubling yourself about orossing the line at any determinate point, lest you make your voyage longer than is necesmary.*
OI THE RETURN TOWABD FINGIAND, the Equator should be cromed between the meridians of 18° and 25°. When the sun is to the northward of the Line, the longitudes of 21° to 23° are to be preferved; bece se then light and variable vi inds extend far from the African coast, especially in July, August, and September, when the sun is returning from the northward.
If the southerly winds become light, a North, or N. by W. oourse may be kept, in order to reach the N.E. trade-wind as soon as possible; but, if variable light breezes are prevalent far to the northward, you should endeavour to pass the Cape Verde Islands at the distance of between 40 and 50 leagues.

In crossing the N.E. trade-wind, a ship's sails should be kept well filled, to enable her to gain speedily to the northward. In this tract the Sargasso or gulf-weeds will be met with in the Sargasso Sea, and which are sometimes found as high as $41^{\circ} \mathrm{N}$.

Beyond the northern limit of the trade-wind, ships generally cross the parallel of $32^{\circ} \mathrm{N}$. in from 39° to $42^{\circ} \mathrm{W}$.

Should the wind vere to the N.W. on approaching toward the Azores, you may pass through one of the channels of these islands, and thence pursue a course to the English Channel, according to circumstances.

It is not always advisable to pass to the eastward of these islands, because adverse winds often prevail from the northward between them and the coast of Portugal; and the currents are also generally unfavourable to this ronte; yet it has sometimes happened, that ships passing this way have, with S.W. and West winds, reached the Channel sooner than those which have proceeded to the westward. With these S.W: and westerly winds, you must be cautious in approaching the Channel, in case the current should prevail, which sometimes sets athwart it, as before described.

5.-ROUTES TO AND FROM THE SENEGAL AND GAMBIA. \dagger

Whatever may bo tho season of tho year, it is advisable to gain an offing of $\mathbf{2 5}$ leagues to the westward of Cape Finisterre; from hence it may be immaterial whether a course be shaped to the eastward or westward of Madeira. A communder desirous of touching at tho Canarics will adopt tho former, and will shape a course

[^70]+ Abridgod, chiefly, from the Baron Roussin.
for Tenerife, having nothing to apprehend on this course but the Salvages; the position of which has been well determined. In the Canarian Archipelago the winds are mostly from North to N.E. If the course to the westward of. Madeira be adopted, a vessel will make the westernmost of the Canaries only, and her place may be rectifiod by a sight of Palma or Ferro.

Bnt a sight of the coast of Africa is by no means necessary for vessels bound to the Senegal or Goree. What has been said of the eurrents and prevailing winds in this navigation, leaves no doubt that it is perfectly useless to make the land more than 15 or 20 leagues to the northward of the Senegal, when bound to the Bar-anchorage. This digression is the ntmost which should be made from the above course; and by means of the lead, and some few latitudes carefully observed, it might even be made a direct one. On leaving Tenerife, the course should be S.W. : $\frac{1}{4}$ S. [S. by W. $\frac{1}{2}$ W.] as far as the parallel of 21°, then S. by W. z^{2} W. [South] as far as 20°, and from thence S. by E. $\frac{1}{4}$ E. [S.E. by S.] without any further alteration.
The first cousse will carry a vessel more than 25 leagues from the nearest point on the African coast, and in a track where no danger hitherto has been found. Tha second will conduct her 26 leagues to the westward of the westernmost point of the Bank of Arguin. By the third she will make the coast in the neighbourhood of the Marigot or Lagnon of Mosquitos (lat. $16^{\circ} 35 \frac{1}{\frac{1}{\prime}}$), "om whence she may coast the shore until abreast the Senegal, in $15^{\circ} 55^{\prime} \mathrm{N}$.

If it be found necessary to make the land during the night, the lead, being the only means of correcting the estimated rua, should be used frequently and with great care. At about 10 leagues from the shore to the northward of the Senegal, a bottom of white sand will be found, with 70 fathoms. From ihence the depth gradually decreases toward the shore, and at 1 mile from it there are 7 or 8 fathoms. When in 15 fathoms of water, it is advisable to anchor until daylight, to avoid running past the bar, which has no distinguishing mark by night.

There is a source of error attached to the navigation of the African coast which must be carefully guarded against. It is the optical illusion caused by the great horizontal refraction, which renders any correct estimation of distance almost impossible. Numerous instances of it might be eited, which would hardly bo credited; therefore the moment the coast is seen, the lead only should be trusted, to determine the distance from it.
Track from Senegal to Goree.-The Almadies of Cape Verde (described hereafter) are 31 leagues S.W. by W. $\frac{1}{\$}$ W. [S. $40^{\circ} \mathrm{W}$.] from the roadstead of the Senegal, and the prevailing currents set nearly on that bearing; it is, therefore, the course to be steered from the Senegal to Cape Verde during the day. During the night steer a quarter of a point more westerly. From Cape Verde to Goree the course is direct. It is merely to coast the shore at the distance of 2 miles. From Cape Verde to Cape St. Mary, at the mouth of the Gambia, the direct course and distr.nee are S. by E. $\frac{1}{6}$ E. [S.E. by S.] $30 \frac{1}{2}$ leagues, in all which space soundings may be found.

Return to Europe.-The voyage from the Senegal to Europe presents no difflculty, and calls for no other precautions than those commonly used in long voyages on seas void of dangers. These precautions are, not to trifle with the wind, but rather to make a good run in a given time, than to endeavour to maike good the proposed courso. In all return voyages from places within the Tropies, the grand point is to leave the region of the trade-wind and get into the variables, and the currents setting to the castward, as soon as possible. As the winds generally blow from East to N.W. on the coast of Africa, from the month of December to the end of June, you should keep on the starboard tack until out of their influence. The course made good will be about N.W., and you will then be in the neighbourhood of the Azores. It is immaterial whether you pass to the northward or through the channels of these islands, but it has been remarked that the winds are strongest on the westward. It is seldom possible to pass to the enstward of them. Tho distance, no doubt, would be shortened; but this passage can be effected only by keeping close to the wind thus firi ; and experienee has proved that, by such procedure, little is to be gained.
ges; the posithe winds are be adopted, a y be rectificd
bound to the winds in this more than 15 ar-anchorage. arse ; and by ven be made by W. $\frac{1}{2} W$.] 0°, and from
rest point on foand. The ; point of tho arhood of the sast the shore
eing the only th great care. a bottom of gradually de8. When in running past
t which must at horizontal t Ampossible. ed ; therefore aine the dis-
scribed herethe Senegal, the course to te night stecr arse is direct. erde to Cape re S. by E. $\frac{1}{6}$
ents no diffiong voyages d, but rather the proposed d point is to rents setting fom East to of June, you se made good zores. It is hels of these estward. It bt, would be le wind thus ned.

6.-DESCRIPTIVE REMARKS AND SAILING DIRECTIONS FOR THE NAVIGATION TO AND OF WESTERN AFRICA.

WITH SOME ACCOUNT OF THE CURRENTS, SEASONS, ETC.; THE RESULT OF EIGHT Yealr actoal experience, in nhe command of four different vegsels, by Caftain thomas midalex, of liverpool, 1837.*
On the Pabsace from Enoland to the Weatern Coast of Africa, it may be well to make the Island of Madeira and sail to the westward of it if possible; for $3 y$ so doing the ship will be placed in the best position as to her future course. After passing Madeira, steer so as to leave Palma about 70 or 80 miles to the eastward (if nearer, tho ship is liable to be becalmed), and then steer a course to make the N.E. end of Bonavista.-Bonavista requires a good berth, as the currents about it are strong and uncertain, and dangers extend from the North and East sides to a great distance from the land.

In the winter, when strong westerly breezes, of long continuance, prevail to the northward, it may be impossible to make Madeira without mnch trouble and delay; in this case, endeavour to get a good observation for longitude, or a sight of the Salvages; and, should westerly Finds still continue, run boldly to the southward. On nearing the Canary Islands, you will find the wind either gradually decrease to a calm, or it will veer to the northward with heavy squalls. The squalls in this neighbourhood give little warning, but are frequenily exceedingly heavy and dangerons. Any ship may very safely run through the passage to the eastward of Palma, as a strong steady N.N.E. or N.E. breeze almost constantly blows throngh it; and by kseping mid-channel, there is littlo fear of being becalmed. When clear of the Canaries, a course may be shaped to make Bonavista, as above directed.

The passage between the Islands and Cape Virde is generally and very properly adopted by vessels trading to the Western Coast of Africa; for, by running to the westward of St. Antonio, they have again to make easting in that tract of sea which, lying contiguous to the southern limit of the N.E. trade wind, is so often disturbed by calms, squalls, thunder, lightning, and heavy rain.

The currents between the coasts of Great Britain and the Cape Verde Islands are now so well known, that it is almost superfluous to make any further remark upon them, excepting that their velocity is by no means exaggerated ; and the dangerous effect which they have upon vessels, between the Bay of Biscay and the Capes Noon and Bojador, on the African coast, canuot be too strongly impressed upon the minds of those who have charge of valuable lives and property.
Thosc passing Bonavista in the months of June, July, August, and September, should not be too anxious to make easting; for they will lose the trade wind soon after passing the parallel of the Island of St. Jago, and, after a short interval of calm, fall in with the S.W. wind and its usual accompaniments of heavy squalls and rain. On the farther progress the vessel makes to the southward and eastward, the $\mathbb{S} \mathbf{w}$ winds gencrally become variable to the westward, and the squalls not so frequent.

At this season of the ycar it is advisable to give St. Anne's Shoals a berth of 50 leagues to the eastward, as the sea sets in so heavily upon the coast, between theso shoals and Cape Palmas, that making southing when near the land, in these months, is attended with much difficulty.

From October, to April or May, the weather in this tract is generally fine, and the nights cool, beautifully serene and clear, with heavy dews; and in these months a more direct track may be pursued from Bonavista to the southward and eastward,

[^71]than the one above menticned. In the influence of the trades, the breeze is generally steady from N.N.E and N.E., and the sea smooth; occasionally, however, interrupted by tornadoes, which, in the neighbeurhood of Cape Verga and Sierra Leone, blow with terrible fury. Such is their violence, that it is frequently necessary to keep the ship directly before tisem, under a foretopmast staysail only.

Between the Cape Verde Islands and the coast, the currents in the above tracke are variable, bnt mostly found running to the southward, and seldom exceeding 1 mile in hour; generally from $\frac{7}{4}$ to $\frac{3}{4}$ of a mile, until hauling up for St. Anne's Shoals. At about 40 leagues to the westward of these, I have several times found them setting about E.S.E. by chart, fully $1 \frac{1}{2}$ miles in the hour.

The sea between the meridian of $20^{\circ} \mathrm{W}$. and the Bank of Soundings extending from the African Coast, is perhape the most luminous part of the Atlantic Ocean. In the very dark gloomy nights of the wet season, with a strong breeze of wind, and when not one solitary star is visible, nothing can exceed, no pen can describe, the awful grandeur and magnificence of the soene. The whole surface of the sea appears as one vast sheet of liquid fire; and the ship, sailing at the rate of 6 or 7 knots through the water, causes streaks of light to be emitted from the sea, that throw a strong yet sickly and appalling glare upon all the sails, creating an indescribable sensation in the mind, that is very far from being agreeable, as the vessel appears to be surrounded by breakors on every side.

Althongh I have several times noticed this luminous appearance in the same tract, I am led to remark more particularly upon it on account of a most awful night which I passed on the 24 th of August, 1834, in or about lat. $7^{\circ} 30^{\prime}$ N. and long. $17^{\circ} 50^{\prime} \mathrm{W}$., which left an impression upon the minds of all on board that I fancy will not be very soon effaced; for the vessel appeared to be sailing through a sea of liquid fire, whilst the heavy dark mass of clouds appeared to rest upon her mastheads, and not a single star was visible amid the horrid gloom. No bottom was found at 120 fathoms. Temperature of the air 82°, and of the water 79° (Fahrenheit).

Vessels in want of Kroumen should call at Grand Sestros.-From some years' experience I can confidently say, that they are the most willing and best disposed men upon the Krou Coast; and, if well used, are faithful t ineir employer in every diffculty he may have to contend with to leeward. Every vessel should take four or five, or more of them, in proportion to her size; for, in the Oil Rivers, if white men are exposed in the boats or canoes, landing or taking in casks, they very soon fall victims to the climate. The Kroumen prefer rice to any other diet, and a good supply can genern 11 y be procured at a cheap rate, except between January and June; but, considering the detention of lying-to, in order to procure it, the rice may be exported from England, for ships' use, at very nearly as cheap a rate. One of the Kroumen is of more real service in the Oil Rivers than two Europeans; they are generally well versed in the English language; and are contented with a dash or present when left at Fernando Po, after the vessel has completed hex lading.

On approaching the Krou coast it is usual to hoist the ensign and fire a gun, and the vessel will be soon surrounded by canoes. A small canoe may be purchased for the ship's use for a mere triffe, and will be found extremcly serviceable in the rivers.
The navigation between Cape Lahou and the land of Formosa presents no difficulty to the navigator; the currents in the route run to the eastward at $1,1 \frac{1}{2}$, and sometimes 2 knots or more, in the hour. If there be no inducement to call at Bereby, Drewin, or Cape Lahou, for ivory, it will be as well (and will certainly expedite the passage) to shape a course from Cape Palmas for Cape Three Points; and thon, giving that land a berth of 5 or 6 leagues, shape a course for the land of Formosa.

In steering across the Bight of Benin, the current will be generally found running about 1 mile an hour to the N.E.; and must be allowed for, by steering one-third of a point to the southward of the direct course.

A mere inspection of the chart will show that what is erroneously called Cape Formosa is, in fact, an elbow land rounding off gradually to the eastward; and
is generally interrupted Leone, blow to keep the ve tracks are ng 1 miie in Shoals. At hem setting
ending from an. In the d, and when e, the awful pears as one through the g yet sickly in the mind, rounded by wful night . and long. f fancy will 3h a sea of her masta was found heit).
e years' exsposed men every diffake four or white men y soon fall sood supply June; but, ee exported Kroumen is erally well t when left
fire a gun, ay be purviceable in
o difficulty , $1 \frac{1}{2}$, and to call at certainly ee Points; he land of ne-third of
alled Cape vard; and
regular soundings upon a muddy bottom extend for some considerable distance to the westward and southward of it. The land is here extremely low, and should not be approached in the night nearer than in 8 or 10 fathoms, unless by a veseel prepared to anchor.

After making the land, the oldest and most experienced traders to the Oil Rivers are frequently deceived as to the position of the vessels; for the best description of the rivers from Formose to Bonny is but vague and imperfect; and I therefore proceed to give such directions as I think, from my own experience, will be found aseful to vessels bound to the Bonny or New Calabar River.
The rivers between Terra Fomosa and Bonny have all shoal bars at the entrance, and generally appear from the offing to be narrow. They have no peculiar feature to distinguish them, other than their being open to such points of the compass as are expressed in the Sailing Direetions.
SEASONS.-The Seasons here appe.rs to have been imperfectly described. The rains generally commence in the latter end of May, or early in June, and gradually increase, with strong S.S.W. and S.W. breezes, during the months of July, August, and great part of September, towards the end of which month they as gradually terminate. In July and August heavy squalls frequently provail ; and in these months the wind very rarely shifts more than between S.S.W. and S.W., an I the rain is incessant from sunset to nearly ni vn next day, when it ceases for a fow hours, and again commences with more or less viulence in the evening. In October the weather becomes more settled, with light land winds, nnd occasionally showers of rain, which, however, yield to the moderate sea breeze that sets in about ten or eleven a.m. In November the tornadoes commence, and are at first violent, gradually decreasing in strength as the Harmattan or dry season commences, althongh they are occasionally prevalent from this month to May. In December, January, and Febraary, is the Harmattan season; and in these months the sea breezo sets in about noon, and blows with very moderate force from the W.S.W. and westward nntil sunset, when it dies away to a calm. During the night there is little or no wind, and the weather is extremely sultry and oppressive, and very heavy unwholesome dews. After daylight a light air springs up from the northward or N.N.E, which gradually increases to a moderate force, and continues until about eleven a.m., when it falls calm, and soon after is sucseeded by the light westerly breeze. The Harmattan, however, sometimes blows steadily and without internission from the N.E. quarter for several days together, especisilly about the new and full moon. It is at this season that the smokes prevail, and are exceedingly injurious to the European constitution. These smokes are so dense that it is impossible to see a cable's length from the ship for days together; and any vessels that may be in the offing, inward bound, have no resource but to anchor, and wait with patience for clearer weather. In March, April, and May, the weather is clear, with light land winds at daybreak, which gradually die away, are succeeded by the W.S.W. breeze about ten a.m.; and this breeze blows with moderate force during the remainder of the day and greater part of the night. In these months the atmosphere is serene and clear, particularly during the nights, which are very fine indeed. The palm oil season commences in the early part of March; the oil becomes plentiful in April, and continues to be so until September, when it declines; and from October to March it is, properly speaking, out of season, although small quantities of it may be procured in these months.

In the foregoing remarks as to the seasons and climate, I beg to be understood as speaking of the New Calabar and Bonny Rivers only, and now proceed to consider the best means of preserving the health of the crews of vessels trading there. Masters of vessels should be on their guard against shipping plethoric or lusty men to go to the Oil Rivers of Africa. Drunkards are still wors's subjects than these; for if a man undermines his constitution by intemperance in: England, he cannot repair it in Africa. I have too frequently remarked that human skill is of little avail in saving the life of a drunkard, when onoe attacked with the African fever. The fact is, a drunkard is predisposed to sickncss, and soon falls a victim to the climate. The plethoric or lusty man, if he has not tampered with his constitution, has a rather better chance ; but shouid he fortunateiy recover from the fever, he is often annoyed
with attacks of ague all the passage home, and does not recover his health until he arrives in England. Thin, raw-boned subjects are the best for the coast of Africa; and they should be selected from men who have made several voyages to the West Indies, as they are, in some degree, seasoned to a warm climate ; and those that have never made voyages to a tropical elimate should be decidedly rejected. To preserve the health of the oretw, the vessel should be housed over as soon as possible after her arrival in the river. Plenty of mats should be procured, and a good, substantial, tight house be at once made, to shelter the crew, and preserve the vessel from the weather. Every care should be taken to make the honse perfectly water-tight, as well for the comfort and health of the seamen, as for the advantage of working the palm oil in wet weather. An overstrained economy in the purchase of a few mats is highly reprehensible. The seamen will generally hang hammocks under the house; and, if well sheltered from the weather, will enjoy better health than they would by sleeping below in the steam emitted from the oul. In these rivers it is presumed that the Kroumen do all out-duty required in the boats, \&e. ; for a European should not be allowed to put his foot over the side, either for the purpose of visiting or going ashore, even on hip's duty (unless unavoidable), as it infallibly leads to dissension and drunkenness from the worst of spirits; and a drunken fit in Africa is the almost sure forerunner of sickness, and probably death.

All vessels should keep a sufficient quantity of English water on board for use in the country, as the Bonny and New Calabar water has an immense quantity of animalcule, is very unpleasant to the palate, and injurious to the health. Cocoa is an excellent and nutritious article of diet; and the crew should be well supplied with yams, which are the ouly vegetable, excepting corn and plaintains (the latter not plentiful), that can be procured in these rivers.

If the crew unavoidably get wet, they should immediately rub themselves thoroughly dry with coarse cloths, and put on dry clothes. The forecastle should be frequently cleaned out with a solution of chloride of lime, and the seamen's clothes and bedding kept well aired. Attending to these precautions will be found the best means of preserving health.

Here I may observe that fresh stock of all kinds is very scarce and very dear in these rivers, so that vessels bound to Bonny or New Calabar would do well by procuring their fresh stock and corn to windward, either on the Krou Coast, Frisco, Cape Lahou, the various settlements on the Gold Coast, or at a small village on the sea coast, near Cape St. Paul, called Dokko, or Occo. At these places stock of all kinds is abundant, and very cheap when obtained in barter.

Current.-I have almost omitted putting the mariner upon his guard against the effect of the strong easterly current that runs from Terra Formosa to Old Calabar. This current runs with greater or less velocity almost throughout the year, except in or about the Harmattan season, when it occasionally sets to the westward and W.S.W. Vessels that have advanced much to the eastward of Terra Formosa, and cannot see Foche Point before night, should anchor, in order to prevent the effect of the current; but in squally weather or the weat season it may be as well to work to windward, heaving-to occasionally during the night, according to circumstances; 9 or 10 fathoms is quite close enough to stand in-shore in the night; when in 6 fathoms the surf can be very distinctly heard.

When once to leeward on this coast, getting up to windward again is attended with much trouble and difficulty. I may here remark, that too much attention cannot be paid to the lead upon any part of the coast of Africa, as the current frequently sets directly in upon the land; and from careful observation, upon the windward coast, I can confidently assert that the thermometer is no guide whatever on approaching the land. In more than 100 experiments upon the surface water, I could never detect any sensible difference in the temperature when sailing toward the land from no bottom into 45 and 40, and thence close in-shore into 14 or 15 fathoms on the Krou Coast. In the dry season there is little difference hereabout in the temperature of the air and water; the former averaging 77° to 81° (in the shade), and the latter 74° or 75° of Fahrenheit.

Dir partic curren not in westw starbo derive is, at Gaboo be dep are mi very advan
Man and St found ward of Gre
salth until he st of Africa; to the West ose that have To preserve ible after her , substantial, ssel from the ater-tight, as working the a few mats is or the house; cey would by resumed that n should not ng or going to dissension is the almost
rd for use in ntity of aniCocoa is an upplied with te latter not themselves le should be nen's clothes und the best
very dear in well by prooast, Frisco, illage on the stock of all

1 against the ld Calabar. ar, except in and W.S.W. d cannot see the current; - windward, 10 fathoms the surf can
tended with n cannot be quently sets ard coast, I oaching the never detect nd from no n the Krou ature of the latter 74° or

Directions.-The Homeward Passage, through the Bight of Biafra, presents no particular feature to the attention of the navigator, if I may except the :strong N.E. currents that almost invariably prevail in it. All homeward bound vessels that do not intend calling at Fernando Po, should use every possible exertion to pass to the westward of the island, as a good board may be then made to the southward on the starboard tack. Except in the Harmattan or tornado seasons, no advantage can be derived by standing. close in-shore, as there are no land winds, and a near approach is, at any time, very dangerous, as the whole of the coast, from Camaroens to the Gaboon (except about Corisco), is generally bold-to, and the soundings in nowise to be depended on. On this part of the coast there is no trade' and the inhabitants are miserable naked savages. On getting to the southward of Prince's Island, the very excellent directions of Mr. Finlaison (given hereafter) may be followed with advantage.
Many navigators have remarked, that on standing to the westward between Prince's and St. Thomas's, even when making a trifle of northing, the N.E. current has been found to diminish in strength as the vessel makes westing. Even so far to the southward as 3° South there is seldom any easting in the wind before passing the meridian of Greenwich.

Vessels bound to the northward should not attempt crossing tho Equator to the eastward of $20^{\circ} \mathrm{W}$. (the meridian of $21 \frac{1}{2}^{\circ} \mathrm{W}$. is to be preferred), and should then make a North or N. by W. course, to get into the N.E. trade wind, which having once fairly gained, the homeward navigation : generall well understood. In this route, after leaving the Guinea current in the Bight of hiafra, the ship will gradually get into Equatorial current as she gets to the sonth:ward, and this current frequently runs with considerable velocity. On examinirgs my journals, I find that, by good lunar observations and an excellent chrorometer, I have, at various times, made the following differences to the westward iset reckoning, isis the run from St. Thomas's to longitude 20° West of Greenwicl, bfiween the parallels of $0^{\circ} 35^{\circ}$ North and 3° of South latitude. . In April, 1830, the brig Anne was set 237 miles to the westward and 78 miles to the northward of account in 20 days. In October and November, 1831, the barque Severn was set 240 miles to the westward, and 94 to the northward of account in 23 days. In October, 1833, the Freeland was set 246 miles to the westward, and 51 to the northward of account, in 20 days. In August, 1835, the same vessel was set 228 miles to the westward, and 43 to the northward in 19 days; and in Norember and December, 1836, the brig Caledonia was set 373 miles to the westward and 107 miles to the northward in 18 days. But it may be observed that, in the latten vessel, I never crossed the Equator, but was generally 8 or 10 miles to the northward of it, until I crossed the meridian of $12^{\circ} \mathrm{W}$. In the above runs I have occasionally, but rarely, found slight differences to the southward. When to the southward of the Equator, abreast of the Bight of Benin, I have always found a current running at least three-quarters of a mile an hour to the northward.

Directiong for Sailing from the Bighy of Biafra to Sierra Leone.

By the Late Mr. James Finlaison.

Ships bound from the Bight of Biafra to Sierra Leone, if from Calabar River, when the wind does not permit them to proceed by the N.W. of Fernando Po, may pass between that island and Camaroens River, when they will find a strong current setting to the southward, apparently out of the River del Rey. After they have advanced to the southward of Fernando Po, they must endeavour to make all the southing and westing they can ; passing either to the eastward or northward of Prince's Island, as winds will permit. On the East side of this island the current sets strongly to the southward, at the rate of $1 \frac{1}{\frac{1}{8}}$ knots; westward of Prince's Island the current sets strongly to the N.E. at the same rate.
Having arrived at the soüthward of Prince's Igland, if the ship will hie no higher 3 F
than W.N.W., tack immedjately, and try to cross the Line ; for, by so doing, you will keep out of the otrong N.E. current [the Guinea Current] that sets towards the Bights of Benin and Biafra. After you have crossed the Line, you will find that you are nearly ont of the easterly eurrent. In the parallel of 1° South you will find the current set to the westward, at the rate of 1 mile an hour. In the month of May or June, when the sun has a high declination, the trade wind is :air to the southward, and you will not gain the regular breese neares than in 8° South. This breeze commences from S. by W. As yon make westing, tiee wind will be found to haul more to the southward and eastward, and the current increases to the rate of $1 \frac{1}{2}$ knots in an hour, until you arrive as far to the westward as 15° West. On proceeding hence to Sierra Leone, come no further to the castward than 15° West, until you are as far to the northward as $8^{\circ} 30^{\prime} \mathrm{N}$. ; then you may steer boldly in for the Cape. You will atrike soundings in that parallel, in $14^{\circ} 40^{\circ} \mathrm{W}$.; and as you approach the Cape the soundings will be found very irregular, from 20 fathoms to 12 at a cast. You will then be 7 leagues from the Cape, and in the fair track of the river.
Having given these direetions to our prize-masters, they generally made the passage from Fernando Po or Bonny in five weeks; merchant vessels have frequently been three months by keeping in-shore.

By Commander W. B. Oliver, R.N.

Conceiving that a shorter passage from the Bights, or Prinee's Island to Sierra Leone, than that made by proceeding as recommended in the Book of Directions, to the southward of the Line, might be made by keeping to the northward, I determined to ascertain the fact; and though each time accompanied and retarded by a prize, made three unusually short passages, viz.-one from the River Bonny, anchoring at Princo's, and landing prisoners at St. Thomas, in 18 days; the other two in 13 days each from Prince's Island to Sierra Leone; and, on returning to England in Her Majesty's schoouer, uneccompanied by a prize. Thirty-nine days having been the shortest of three prizes I sent up under the old directions from Benin and the Gaboon. I issued different directions to prize-masters; and, although not acted on, in absenco from myself, I feel assureci they would have proved, as they did in my company, an improvement on the old one ; a copy of which Directions are as follows:-

Your first object will be to get to the southward, unless you can make a West course (true) without any northing; nor should you go to the port tack unless you can do so, or to avoid the land. Should the wind hang so much to the westward is to prevent making a good course on the port tack, pass to the eastward of Prince's or St. Thomas, or both, as you will sooner get ,ut of the strong easterly current, but do not approach the land within 20 faihoms, day or night, and get frequent casts of the lead.

When to the westward of St. Thomns, and on or near the Line, steer W. $\frac{1}{4}$ N., or W. by N., necording as your noon sights give you a northerly set or not, until in the longitudo of Cape Palmas, $7^{\circ} 45^{\prime} \mathrm{W}$.; when steer, in the rainy season (May to Septomber), N.W. by N. ; in the other months, N.W., until in 13° West, the longitude of the western limit of the St. Anne Shoals; you may then make a true North course, sounding overy 5 miles by night, or thick weather, nud every 10 miles by day, from $0^{\circ} \mathrm{N}$. to $8^{\circ} \mathrm{N}$. If you reach the latter without striking soundings, it will prove that you have passed to the westward of the Anne Shoals; when keep away E. by N., by compass, to $8^{\circ} 15^{\prime}$ N.; then steer E. by S. 1 S. (East, true), and you will make the high land of Sierra Leono ; if by night, anchor on reaching 12 fathoms.
These instruetions ean ouly be acted on in a genernl way, as of courso much depenils on winds and currents; but I wish them to have full weight with any officer detached i.1 a prize; and remember, the land about Sicira Leove should always bo made to the sonthward of the Cape.
ing, you will towards the ind that you will find the h of May or a southward, breeze comto haul more 14 knots in reding hence in are as far e. You will he Cape tho

You will
the passage uontly been
dd to Sierra irections, to I determined by a prize, anchoring at 0 in 13 days land in Her ing been the the Gaboon. , in absence company, an
hake a West K unless you westward is of Prince's current, but rent casts of
W. $\frac{1}{2}$., or until in tho May to Seplongitude of forth course, y day, from prove that E. by N., by ill mako the
te much demuy officer always be

- 7.-OF SHIPS BOUND TO AND FROM THE WEST INDIES, WITH INSTRUCTIONS FOR NAVIGATING THEREIN.

The oourses of these ships are regulated by the winds and currents which have been described in the preceding chapters. The consequence is a cirouitous track, requisite to be taken, not only to the West Indies, but to the aouthern parts of the United States. For, having passed Cape Finisterre, ds before described, the best oourse is then to the S.S.W., so as to gain the trade-winds quickly. The preceding observations on passing Madeira, \&c., may, therefore, in this instance, be useful, as well as in the former.
As the great object is to attain the N.E. trade, in order to ran down your westing with as little dolay as possible, the remarks upon the passage across the Equator willalmost apply equally to this voyage : the more especially those given by Capt. Maury as to a wosterly trank from the channol leading through steadier winds, and therefore more particularly ajplicable to the route across the Atlantio in the Trades, where there is no object in maintaining an easterly position to avoid being driven to leeward of the Bravilian coast.
In confirmation of this view, Captain Georae Cheveley, of Liverpool, remarks, that he would recommend to ships clearing the English Channel, if bound for the West Indies, to make the S.W. quadrant true, so as to pass nearly at an equal distance between Madeira and St. Mary's. Captain Cheveley adds, that, by pursuing this track, he has invariably held a steadier breeze, and got much quicker into the trades, than when he proceeded farther io the eastward, and si sudeavoured to make more southing. He is aware that the latter is the general practicc; of which ho entirely disapproves, so far as concerns a Wes' India passage.
Ships for Jamaica generaily pass to the southward of the Island Montserrat, sad thence proceed for the high rock culied Alta Vela, of the sonthern point of St. Domingo, whence they take a departure for the eastern end of Jamaica.* When homeward-bound, they pars either through the Windward Channol or the Strait of Florida, as the wind and other circumstances may prevail or dictate.

Between the months of October and March northerly winds prevail over the Mexican Sea aud the adjacert regions; and when northerly winds prevail in the Strait of Flurida, the Windward Channel must, of course, be preferred: but, at all other times, -at least, generally at other times,-the quickest and therofore most oligible passage is through the Channel of Yucatan, and thence, with the Florida Stream in your favour, through the Strait of Florida.

Although tho Windward Channel appears, by the chart, to be the shorter and readier passage, yet ships are frequently opposed here, both by wind and current; as will appear by the following statement, made by an ingenious officer already quoted: -" Atter the defeat of the French fleet, commanded by Count de Grasse, in April, 1782, and the British had arrived at Port Royal, in Jamaica, a squadron was dotached to gain the Windward Passage, run down tho Bahama Old Channel, and cruise to the eastward of the Havana, to prevent a Spanish squadron, in the harbour, from effecting a junotion with the French ships that had escaped into Cape Francois [Cape Haytion]. For six week did the English squadron beat against fresh ceabreezes and a lee current; and, during that time, never advanoed farther to the castward than off Morant Harbour, though the ships wero much strained by carrying a press of sail to attain the object; but, after struggling so long, wore compelled to return, baffled, into port. Now, though tho first object might have been to meet the Spanish squadron on it why to Cape François [Haytion], if it had sailed, yet, so soon as the effect of a lee current was ascertained, the object of gaining the Windward

[^72]Passage ought to have been immediately abandoned, when, by bearing away with a favourable current for some distance, and before' a fresh trade-wind, Cape Antonio might have been passed the second day, the squadron have been off the Dry Tortugas on the third, and, by beating along the Florida shore with a weather ourrent, when to the eastward of the meridian of Havana, it could have stretched over to Cuba in the night; and, in all probability, have gained the appointed station in six days, or even, perhaps, as soon as it could have gained Cape Maysi, if the easterly wind had been moderate, and no current to contend with." *

When the trade-wind blows strong, and in frequent squalls, during the summer months, between Jamaica and Hayti, and a short turbulent sea is found eastward of the former, then will those bound for Europe or the United States shorten the period of their voyage by bearing away for the West end of Cuba, and passing through the Strait of Florida. For the strait presents a more eligible navigation in these months than the Windward Channel. The sea-breeze will ensure a quick run to the Channel of Yucatan; and the current, perpetually setting eastward between Cuba and Florida, will, in a fow days, carry any vessel into the strait, where it will be nearly impossible to remain much above two days, in the strength of the stream, after being on the parallel of the Bemini Islands, even if there were not a breath of wind.

But as the North winds prevail in the Strait of Florida in October, and frequently during winter, when variable winds and strong land-breczes are not common on the coast of Jamaica, shipping will find this the most favourable period for gaining the Windward Channel. In January or February, if the wind offers a favourable opportunity for gaining the cast end of Cuba, this track should be taken; but, if the seabreeze be strong, the Strait of Florida should be preferred. \dagger
*" I think that this paragraph, unless qualified, is calculated to mislead; particularly in the words, 'when, by bearing away with a favourable current for some distance, and before a frosh trado-wind. Cape Antonio might have been passed on the second day.' Admitting the general experience of the writer of this passage, I think he states an extreme case. The distanco from Port Royal to Cape Antonio is 518 miles; which (divided by 48) equals more than 10 ? miles per hour. Generally, thero would be nothing extraordinary in this performance, but I much doubt if it be often accomplished in the loculity alluded to, at the time of the yoar supposed; vis., in the middle of May. Rodney arrived at Port Royal on the 29th of April ; it is probable that the squadron was refitted on the 5 th of May; nllow ten days more for its commander to convince himself of the impossibility of offecting the Windwavd Passage, and he would have bore up on the 15th; from the inferences I have collected on this head, it appears that the run to Cape Antonio is seldom made in May within a week. In that month of this year [1833] I was ordered from Montego Bay to New Providence: at the former place I consulted some of the most experiencod commanders of West Indiamen, whether the most eligible course would be that of Cape Maysi or Cape Antonio : the majority recommondod the lattor, und I more readily deferred to their advico, from its concurrence with that containod in the extract, the previous consideration of which had occupied my mind.
"May 18th, at six p.m., I sailed; the ship, being light, was in most favourable trim; calms, light winds, and moderate breezes, doseribe the intervening weather, and we did not pass the capo until tho 23xd, at two p.m., or in four days and twenty hours after loaving port. This solitary instanco, however, would not afford a sufficient basis whereon to fix a rule; in its support, therofore, I cite the Memoir, p. 228 [10th edition], wherein it appears that the Carshalion Park, in May, 1824 and 1826 rospectively, wae seven days in porfcrming the samo distance, although skilfully conductod.
" Finally, although the advice, containod in the extract abovo, is judicious in establishing the advantages of the Leeward Passage, I repoat, that the hopes of making it so apeodily as is represented will not ofton be roalized, for the papes last quoted also show, that neithor very favourable curronts, nor fresh trade-winds, will be oxperioncod upon that track at the season indicated; nevertheloss thero is the all-important distinction between the passagos of eertuinty and uncertainty."一Lieut. W. H. Brady, R.N.
\dagger In $\overline{\text { sailing }}$ for tine Windward Channel, get the const of Haytion board as soon as you can, as you may then find a windward curront, and, in the evening, the wind off-shoro.

Wh to blo July, fluctua than f season others and th variab
The Cuba,

At and $v e$ They entraa wind. should the w
way with a ape Antonio ry Tortugas rrent, when r to Cuba in six days, or y wind had the summer eastward of n the period through tho hese months the Channel and Florida, y impossiblo eing on the
d frequently mon on tho gaining the rable opporif the sea-
particularly distance, and d day.' Adan extreme vided by 48) aordinary in - alludod to, t Port Royal May; allow effecting the noes I have nade in May Bay to New mmanders of ydi or Cape their adviee, ion of which
urable trim ; and wo did fftor loaving reon to fix a n it appears perferming
in establisht so spoedily that neithor track at the tho passinges

When the sun has approached the Trople of Cancer, etrong westerly winds begin to blow along the western coast of Florida, and prevail during the months of June, July, and August, from the Bay of Apalaché, southward. These westerly winds cause fluctuations in the atmosphere, whioh prevail more about the western end of Caba than farther eastward; and near the Havanna they have little influence. At this season vessels from Jamaica have met a westerly wind in the Channel of Yueatan; others have experienced a fair breeze at some distance, after passing Cape Antonio; and the wind here will be found sometimes at N.W., West, and S.W.; veering about variably.
The wind in the eastern quarter sometimes fluctuates about the western encl of Caba, but not generally.

At this season the wind blows impetuonsly off Jamaica, and in frequent squalls; and vessels bound thence to Europe should universally prefer the Leeward Passage. They will probably pass through the Strait of Florida before they could gain the entrance of the Windward Channel, though straining, with every effort, against tho wind. The appearance of a favourable opportnnity tor passing through that channel should not be suffered to deceive ; for it may be no indication of the general state of the wind eastward.

FROM THE WEST INDIES to the English Cinannel, after having cleared the Strait of Florida or Wind ward Passages, vessels may passeither to thenorthward or southward of the Bermudas, giving the islands a good ofting, and attending to the preceding remarks on currents, \&e. (See page 282.) In summer, the track to the northward of these isles has been recommended, passing thence to the northward of the Azores. In winter, the track to the sonthward of the Bermudas is to be preferred; because, in this season, gales of north-westerly wind may be expected from the coasts of America; and, therefore, vessels should continue a little to the southward of lat. 30°, or in about lat. $29^{\circ} 40^{\prime}$, if wind permits, until certain of being to the eastward of the Bermudas; nor should they run to the northward of lat 35° or lat. 36°, until within a few degrees of the Azores. Thus will the heary gales be avoided, which frequently rage more to the northward.*
In shaping a course at any season, it should be remembered that the Great Cirele course from Cape Florida to the Lizard follows the outer edge of the Gulf Stream in its earlier course, and, passing abont midway between the Bermudas and Cape Hatteras, it bears away north-eastward over the tail of the Newfonndland Banks, and reaches the parallel of Scilly on a due easterly courso. The vertex of the Great Circle being in lat. 50° and longitude $13^{\circ} 48^{\prime}$ W., of courso its direction is nearly east and West for several degrees on either side of this point. The shortest distance between the Lizard and Cape Florida is $\mathbf{3 , 6 7 1}$ miles. It leaves the Strait of Florida on a nearly due N.E. course true (N. $45^{\circ} \mathbf{3 5}$ E.), and reajes the Channel on an E. $\frac{1}{8}$ S. true course.
During a great portion of the year it is probable that this course could be st followed to advantage. Of course, the consideration of meeting with eyclones wheh follow very nearly this Great Circle course toward the N.E. is important, and therefore during their season, July to October, as shown in (82) on page 217, a more eastorly route had better be pursued, that is, if the Florida Channel be taken ; but if, as is more probable, the windward passage is taken in this season, the Great Circle course thence will be the most advantageous.

But upon this subject Major Rennell has said, "Notwithstanding the advantages to be gained, in point of distance, by ships returning from the West Indies by the favouring ourrent of tho Gulf Stream, which may be perhaps reokoned equal to

[^73]soveral day's'ordinary sailing 3 , yet experfenced navigators are still of opinion that, on the whole, it does not present equal advantages with the southern route.
" It was, until laiter times, held as a maxim not to advance to the northward of the parallel of lat. 33°, in returning from the West Indies, because of the prevalence of storms northward of it. This wise rule of our ancestors has again been taken up, and His Majesty's ships, and of course convoys, will be, in future, directed to proceed by the South of Bermudas, and to oross its parallel at a few degrees to the castward of the isles, and thence to steer direct for Corvo.
"But, it may be observed, that a track which should cross the parallel of Bormudas' at a very few degrees to the eastward of it, and then lead directly toward Corvo, would cross a most critical portion of the space, in which not only the warm water of the Gulf Stream prevailed, but in which soveral gales have been actually experienced. Therefore, it would seem that the parallol of tho Bermudas should not be 'rossed at less than about lat 15° [say lat. 14°] to the eastward of the iqplands.
"But, it may be asked, Where is the necessity of going to Corvo or Flores at all; for by it ships are placed in a situation proverbially known as a place of storns; that is to say, on the West and N.W. of the Azores? Why not go betweon them and the gr ater Azores; or rather to the southward of them all, and thereby pass through a kizdlier climate at all times?
"Any calculation or comparisons of time in making the different passages would be nugatery; since the security of lives and property is che main object; but it even happens that ships, which have had all the advantage of the Gulf Stream, have been crippled, and made more delay than in the southern passage with adverse currents."

On the 17th of July, 1828, H.M.S. Bustard sailed frons New Providenco for England; winds from the southward, and rainy weather. Found a current seiting to the eastevard, at an average of nearly three-quarters of a mile per hour, to lon. 60°. Having passed to the southward of Bermudas, off the Western Islands, had thick hany weather, with small rain. Winds very variable. On the 11 th of August ran into Fayal Roads from the northward, and anchored in 20 fathoms, with tho West end of St. Georgo's Island E. by N. $\frac{1}{3}$ N., Castle of Sta. Cruz, situated near tho South part of the town of Orta, W.N.W., off-shore about a mile. Supplies may be obtained hero at a oheap rate, but the water is rather brackish. Found the longitudo of the anchorage, by chronometer, $28^{\circ} 41^{\prime} 30^{\prime \prime}$. The current runs strongly here, and between Pico and Fayal it seemed to set at the rate of nearly three miles in an hour.

Directions for Sailing to and prom the West Indies and Nortil America: translated from the "Derrotero de las Antillas," by Captain Livingeston.

These advices, or directions, are simple applieations of a principle derived from the general prevalence of the winds, as already described.
Were it not for the constant wind from the eastward, which reigns within the tropics, it soems likely that the maritime commeroe between the two homispheres would never have existed; for, by its means, not only are the voyages rendered very simple, which would otherwiso be interminable, but peoplo in the most distant regions communioato with facility, and thus the navigator who is bound to the westward has only to place himself within the limits of the general wind, in the certainty that, in this manner, he must effect his purpose in the shortost posaihle poriod. Such is the first rule, which ought always to be attended to for thi: دavigation.
Thn second rule is derived from the first ; it is, that any one, bound to the East from the West, ought to get out of the region of the trade winds into that of the variables or anti-trade.

Wo have here the two precepts which direet the operation of navigators in exten-
sive Penir the to sider but a

Ta
to g
in th
alwas
being
tweer
be it
Azor
for th
favou
Ho
to pr
navig
more
impor
will
rund
port,
Even
run i
time
after
ing m
shorte
tion n
The
Amer
in the
N.E.
passa
ones.
In
$28^{\circ} 3$
be at
he fly
Re
crossi
wind of sht it, if
nny will tudo V_{i} shoul ough Iago what from inter to st the f
inion that, on
hward of the sevalence of m taken up, d to proceed the eastward
of Bermudas ward Corvo, rm water of experienced. yorosed at
lores at all; storms ; that them and tho is through a
sages would but it even n , have been currents."
ce for Engeiting to the 60°. Hav1 thick haty ast ran into West end of South part btained hero the anchorotween Yico
v Nortir llas," by omispheres dered very ost distant o the weste cortainty iod. Such

East from evariables
in oxten-
sive woas; and, in attending to them, we shall observe, that every one bound from the Peninsula (Spain and Portugal) to the eastern coasts of America ought to get into the trade winde as soon as may be, holding in mind an advice, which may be considered as a precept, that is, never, in navigating extonsive seas, to keep closo-hauled, but always take care to sail with the wind ree; ir at. Seast to keep seven points from it.

Taking it as granted that the first cart of every one bound to America ought to be to get into the limits of the general wind, it is clear that, with scant winds, the tack in the third quadrant (S.W.) will be most advantageous, and ought to be followed alwaye when it can. All the endeavour ought to be to get into these winds, without being particular as to the means, and without keeping close to the wind to pass between the coast of Afriea and the Canaries; but taking the passage that suits bent, be it that between the Canaries and Madeira, or be it between Madeira and the Azores; and certainly either of these is preferablo to that to the Epest of the Canaries; for the proximity of the ooast of Africa deadens the wind, and, consequently, is unfavourable to the brevity of the navigation.

Having gained the general winds, the navigator must take precantions conducing to prevent any error of situation, in making his port of destination; for, if he who navigates by observations is exposed to be even 10 leagues in error, he who has no more than dead-reckoning to direct him may, probably, be six degrees wrong. It imports much to guard against this error; keeping it in view that, in proportion as it will be easy for any one, making a landfall to windward of his port of destination, to mun down to it; so will be the difficulty if he makes the landfall to leeward of his port, in beating up again in a sea wherein both the winds and currents are contrary. Even if bound to the coasts of the United States of America, it will be advisable to run into the limits of the trade winds, in order to get to the westward in as short a time as possiblu; and although this mode may appear long, on account of having again, after erossing, to augment the latitude, it will be sufficient to keep in view the following maxim, to eonvince any one of the contrary:-If in the one way the distance is shorter, in the other the velocity with which the ship proceeds toward her port of destination more than balances it.

There are, nevertheless, many oceasions on which a vessel may run across to the American coast without reducing her latitude, and these occasions may be frequent in the forty or fifty days which follow the two equinozes, as epochs during which the N.E. winds generally prevail ; therefere vessels which, at these times, make their passages, may at once follow their voyage in high parallels, without descending to low oncs.

In summer, as the region of the general or trade-winds extends to about lat. $28^{\circ} 30^{\prime} \mathrm{N}$., it follows that the round about is triffing ; and this ciroumstance ought to be attended to in the caleuletions which every captain of a ship ought to make before he fixes on the course he will pursue.

Recapitulating what we have said about the course which is most advisable for crossing to the United States, from the coasts of the Peninsula, it follows that, if the winds permit it, West is the preferable course; and, in case the winds will not allow of shaping that course, the most aajvisable track will be that which comes ncarest to it, if the voyage is made at the times above mentioned after the equinoxes ; but if at nny other time, a course in the third qcadrant [S.W.] should be preferred; for this will carry the vessel soonest into the gencral winds, with which the nece.."- longitude may be shortly gained.

Vesbels bound to Cuba during the "uiay scason, or seeson of the South winds, should pass to the northward of Porto Reos and Hayti: but, during the Norths, they ought to go to the southward of these islnads. The ports chiefly freyrusted are, St. Iago on the South, and Havana on the N.W. Tisend to the first, it ancessary, in whatever secson, to proceed directiy to it, that is, in che season of the IV.c.las, to steer from Cape Tiburon, to make some point on tho South of Cuba to wisd ward of the intended port, or even to windward of Guantanamo ; and, in the geasonis of the Southe, to stecr trom the Point of Mole St. Nicholas, almost Weat for the port, marking, in the first instance, various points on the coast of Cuba.

If bound to Havana, in the time of the Norths, you should pass to the southward of Cuba, although you will have to return the distance, between Cupe Antonio and Havanu ; because this inconvenience is not comparable to that which might be occasioned on the North side of the island by a hard North, which would not only expose a vessel to heavy risks, but might protract the voyage mueh longer than the course above described, because the fistance in the latter case may be worked up in a short time.

From St. Iago de Culu, as the coast in clean, a ressel for Europe may easily make her way by the Windwuri Fasiges, while all those which are bound from Havana will take the Strait of Fiorida. The risks is ciolatter emanated from bad charts and ignorance of the cumeats: "he asarts a." now rectified, and the current is known.

By the Strait of Florib: wo understand the space inluded between the meridian of the DIJ Tortugae and the parallel of Cape Canaveral, The simple inspection of the chact will show this to be a bed or course, which, like a river, conducts the water to the northward. This river, ur generel current, flows first to the E.N.E. as far as the western neridian of the Double Shot Kays, iy which Kays the stream is divided from E.N.E. $\left.{ }^{t}\right)$ N. by E., the direction which it pursues on the parallel of Cape Florida: thence to Cape Canavcrul in uns North, with something of an inclination to the East.

As it is undoutied that this general current is cansed by a superabundance of waters, which seek, by this drain, to regain their level in the open ocean, it follows that its rapidity will be greater or less, according to the said superabundance of waters: but, as a change cannot be momentary, on account of the great reservoir in which the water is contained, but progressive, and, of course, slow, we hold that, having once ascertained the velocity of the current, we may calculate it for three days or more, in udvance, without much error, if the wind remains in the same direction; for an alteration in the wind may affect the force of the current considerably, as already explained.
On the meridian of the Havana stripes of current are, at times, found setting to the E.S.E. and S.E. from the Tortagas Soundings.* Care should be taken not to confuse the southern differences, caused by this branch of the current, with those cansed by the eddy current near the Colorados; the one giving eastern departure, the other West. The distinction is very clear, and can admit of no doubt, because the eddy current is met only from the meridians of Cavanas and Bahia Honda to Cape Antonio, and not farther out from the coast than the parallel of 93°.

As the velocity of the current varies, it is requisite for every navigator to ascertain its strength as frequently as possible, while within the stream. Every one who erters this channel, having narked well either the lands of Cuba or the Florida Reef, so as accurately to establish this point of departure, ought to determine, in tis first day's work, the velocity of the ru- by the difference of latitude by account and observation. We say, during thi ar.s day's work, because the generality of common navigators make use of meridian alitudes of the sun alone to find the latitude; but it is very clear that altitudes of the planets snd fixed stars ought not to be neglected; not only because by this you cannot be in doubt of your real latitude, but also, because they may be more exact than latitudes deduced from meridional altitudes of the sun, when that luminary passes in the proximity of the zenith, and because these repeated oiservations, during the night, assure, as much as possible, the situation of the ship. This you may go on, with a clear idea of the operation of the curcent. ind tho vay that the ship is making. Haring ascertained the velocity of the curn" A, use can be nado of it to find the ship's d onture, and this knowledge will be "ust important when you fail in obtaining wations for latitude; because, in such a case, wanting a knowledge of the differe. latitude given by the current, you will be in went of everything; but in whe velocity of the current, with it and the course which it follows, you ma: se difference of latitude and departure which tise current

gi'res

\checkmark ith
sient

are eo

becau

curren
2.-

> ahip,
currer
being
risk in
Upon
hard
fail to
alway 0 man mid
anc
Great
necess you o throus
3.have n be mac ship is
4.throug Salt withov the bei 5.traord and in and vi places, it sho during From Florid milk.
6.-
entirel marke wreck
southward of Antonio and ight be occat only expose n the course up in a short r easily make from Havana 1 bad charts he current is
the meridian inspection of cts the water r.E. as far as am is divided allel of Cape inclination to
abundance of n, it follows ee of waters: in which the having once lays or more, tion; for an y, as already
ound setting ld be taken urrent, with eastern def no doubt, Bahia Honda 93°.
to ascertain ry one who llorida Reef, in bis first account and of common atitude; but e neglected: also, because of the sun, repeated oi, hhip. Thi: wo vay tout un be inado prtant whe: wanting a in want of urse which ise current
gi.es; and which, though it will not give the position of the ship with that precision \checkmark ith which it migh be obtained by latitude observed, will still approximate suffsiently to the truth to enable one to avoid danger, if prudence and seaman-like conduct are combined.

For thoec who have little experience in the art of navigation, we add-

'1.-That it is most convenient to direct your course in mid-channel ; not only becaose it is the farthest from danger, but because you will there have the strongest current, which is desirable.
2.-That, as you cannot ascertain, with all necessary certainty, the position of the ship, notwithstanding the rules given to diminish the errors occasioned by the currents, you ought, with the ntmost care, to shun the eastern coast o. Florida, as being very dangerous, the trado-wind blowing npon it; while there is not the least risk in running along the Salt Kay Bank, and the edge of the Great Bark of Bahama. Upon the latter, also, you meet with good anchorages, very fit to lie in during the hard northerly gales experienced between November and March, and which do not fail to cause many damages, and sometimes even force vessels to bear away, which is always dangerons, for the weather is always thick with such winds, and the worst case will be to run in one of them upon the coast of Cuba, when hoping to have made Havana or Matanzas. Hence, therefore, so soon as there is an appearance of a North, the best way is, if near the Salt Kay Bank, to anchor on it; and, if near the Great Bank, to approach the edge of it, in order to be able to anchor when it may be necessary; for although you may have a hard North, so long as yon ean lic-to in it, you ought to pursue your navigation, as the current will certainly carry the ship through the strait.
3.-It is very necessary to sight the Kays on the Salt Kay Bank, even though you have no fear of a North; and there may be occasions in which every exertion should be made to make them ; especially if, from want of observations, the situation of the ship is not well known.
4.--When, owing to calms or light winds, a vessel is in danger of being carried through the strait by the eurrent, she ought immediately to approach the edge of the Salt Kay Bank, or of the Great Bank, to descend from it to the coast of Cuba, without trying to beat down the lost ground; for, by doing this, she would only render the being carried through more certain.
5.-Should you involuntarily approach the coast of Florida, you should take extraordinary care to examine whether you have advanced out of the general current and into the eddy. That you may know this, ebserve, the eddy forms a remarkable and visible line between it and the general current, which line of division is, in many places, out of sight of land; that, in general, you have no soundings on it; and that it shows, not only by the change in the colour of the water, but that also in it, during the greatest calms, there is a kind of boiling or overflowing of the water. From this line of division the water gradually ehanges colour; so that, near the Florida Kays, it is of a beautiful sea-green, and at last it becomes almost as white as milk.
6.-When in the eddy you havo to make the correction of currents on courses entirely different from those in the stream. This is tho more necessary to be romarked, because, from ignorance of this circumstance, several havo been shipyrecked.
7.-When you enter the chaanel, or strait, from the Tortugas Soundings, with the iniontion of passing through, tuke care to become certain of the land of Cuba, or some part of the Reci of Flo ida, ivi order to have a good point of departure; for, although the latitudes and soundings on the Tortugas Bank are more than sufficient to ascertain the place of the ship, yet the variable set of the current toward the Havana may produce a sericus error, if not properly nttonded to. The mevidian of the Mavaina is, in a word, the best point of departure for ships bound to the north-castward.

On Proceeding to the Windwabd or Caribbee Iblands.

As to choosing the North or Sonth part of any of these isles for making your landfall, you ought to consider, first, which point is nearest to the port or road to which you are destined ; and, secondly, the season in which you go. In the dry season, it is to be remembered that the winds are generally from the north-eastward, and in the rainy season they are often from the south-eastward. Thus, in the dry season, it is best to make the North side, and, in the wet season, the South, but without losing sight of the first consideration.

There can be no mistake in recognising any of the Antillas; nor, in making St. Bartholomew's and St. Martin's alone, can there be any doubt on seeing at once the eminences or heights of various islands. That this may not mislead any one, they must remember the following instructions:-

When in the parallel of St. Bartholomew's, at less than 4 leagues off, if there be no fog or haze, the Islands of St. Eustatius, Saba, St. Christopher's, Nevis, and St. Martin's, appear plainly.

The mountain of St. Eustatius forms a kind of table, with nniform declivities to the East and West: the top is level; and at the East part of this plain a peak rises, which makes it very remarkable. To the West of the mountain secms to be a great strait, in consequence of the lands near it being under the horizon (or seeming drowned), and to $t^{`} e$ West of that there then appears, as it were, another long low island, the N.W. part of which is highest; but it is necessary not to be deceived, for all that land is part of the land of St. Eustatius. From this station Sabe appears to the N.W. g it is not so high as St. Eustatius, and apparently of less extent than the western part of St. Eustatius, which is seen insulated.

The N.W. part of St. Christopher's is also seen formed by great mountains, in appearance as elevated as St. Eustatius, with low land to the East; to the eastward of this low land Nevis will be seen apparently higher than all the others.

The lands of St. Martin's aro notably higher than those of St. Bartholomew's; and this island appears also when you are some leagues farther from it than from St. Bartholomew's.

When there are any clouds which hinder $\mathbb{E} t$. Martin's from being seen, there may be some hesitation in recognising St. Bartholomew's; and thus it is proper to notice that the latter, seen upon its own parallel, appears small, and with four peaks, trending North and South, and occupying almost its whole extent; and, if you are not more than 8 leagues from it, you will see, also, the appearance of an islet to the North, and another to the South, at a very short distance. As this island has neither trees, high morwiains, nor thickets, it is not subject to fogs; and it may therefore be seen oftener than St. Martin's, St. Christopher's, Nevis, St. Eustatius, and Saba ; it is therefore advisable to keep its appearance in mind.

At 8 leagues to the East of St. Bartho'omew's you may see Nevis, very high; from it to the West the strait called the Narrows, and then the lands of St. ChrisTOPHER's, appearing to rise out of the water, and which continue increasing in height to the weetward, so that the westernmost of two mountains, which are at the West part of it, is the highest. This mountain, which is higher than that called Mount Misery, has, to the West of it, a gentle declivity, terminating in low land; and it cannot be mistaken for any other. To the West of this you may also see the large strait toward ST. EustatiUs; but from this situation you will see only the high S.E. part of that island, or rather, its mountain; in consequence of which it appears like a very small island, while its mountain seems to be lower than Mount Nisery; but it is easily known by the table, which its top forms, by the uniform delivities to the East and West, and by the perk on the S.E. part of it. SABA seems, frim this situation, equal in size to the visible part of St. Eustatius; but it shows can an eminence without peaks, with declivities, and almost round.

If a small islet appears to the West of, and ve: y vear to St. Eustatius, that must not confuse you; for it is the N.W. extremity of thut island; and, on getiving zearer,
you w
St. Ch
nummi mistak at the East, high p

Wh
appear there the So also se the firt all the
Fin unless trifing tiniquo southe it wou which
you will perceive the land which connects it with the S.E. part. Mount Misery, on St. Christopher's, which has a very high and sharp peak, on the eastern part of its summit, seeme at a distance to be the summit of Mount Eustatius; bnt it cannot be mistaken for such, if you attend to its surface being more unequal than the table land at the top of St. Eustatius; and that there is another less elevated mountain to the East, and with gentle declivities, which show much land to the East and West of the high peak.

When you are 6 leagries to the East of St. Bartholomew's, its N.W. extremity appears insulated, and has the appearance of a pretty large island, on the top of which there are four small steps (like steps of stairs, Escalones), with a considerable strait to the South, between it and the principal island : in the middle of this strait you may also see a smaller islet: this is really one of the islets which surround the island; bat the first is only the N.W. point, to the North of which you will also see some ialets : all these are much ncarer St. Bartholomew's than St, Martin's.
Finally, in navigating from one of the Antillas to another, there is no difficulty, unless you have to get from leeward to windward; yet this will be reduced to a trinfing consideration if the passage be made by the straits to the northwerd of Martinique, in which the currents are weakest; but the same does not follow in the southerly straite, in which the waters set with more vivacity toward the West: and it would be impracticable by the Straits of Tobago, Granada, and St. Vincent, in which the waters commonly run at the rate of not less than 2 miles an hour.

Particular Insthuctions for the Navigation of the Windward Islands, \&e.

It has been remarked, by an experienced captain in the Royal Navy, that for those bound to Jamaica or to any of the ports in the northern range of islands (the Bahamas excepted), the safest land to m is the Island of Desirade, near Guadaloupe; for, if you should not see other l vai sefore dark, you may haul to the northward, into the latitude of Montserrat, hayiug nearly 60 miles to run on, during the night. Some commanders make St. Martin's or St. Bartholomew's, when bound to 'Tortola, St. Thomas's, St, Croix, and the islands to leeward; but in this case they should be aware of the dangerous Island of Barbuda, and also of Anguiic. for a small error in the latitude, perhaps, from want of an observation, or irreglw in the current, would place them in a very perilous situation, should they atte:apt to run on in the night.

Strangers should pass St. Martin's, when they mako it, on the North side, the passage between it and Anguilla being clear; St. Bartholomew's, Nevis, St. Christopher's, and Antigua, on the South side. Barbadoes should likewise be passed on the South side, in order to feteh into Carlisle Bay ; and Granada and St. Vincent's on the South side. No particular direct,o necessary for the other islands, as every seaman knows the danger of runmag to leeward or past the land;-a very serious occurrence for a dull sailing-vessel.

Vessels on making Barbados and the other Windvard Islands, when approaching from the northward, should be very careful not io cross the latitude of the low or northern islends during the night, although their reckoning may bo many degrees to the castward of the isles. The low islands on which so many versels have been lost, are Barbuda, Anguilla, Dog and Prickly Pear, Sombrero, Anegada, and its Horse-shoe Reef; of all these, tho first and last are the most dangerous. Before you see Anegada, in clear weather, Virgin-Gorda, and perhaps Tortola, will be seen very distinctly ; distance is often deceiving at sea, and this land, by those not well acquainted with it, has been frequently mistaken for the East end of Porto Rico; and, although directions have been given for avoiding this error, by observing that there is only
open moa to the eastward of Virgin-Gorda, and that to the eartward of Porto Rico lie meveral islands, yet it is necessary to observe that thewe islands, when the high land of Porto Rieo is first discovered, canno's be seen, so that, if you muke the land at the clowe of day, it is proper to be aware of this cirumstance. It may be elso remarked, that Angwilla and the Dog and Prickly Pear Isles cannot be soen u till some time after you make St. Martin's, which is high land, and lying to the southward of these low isles. Barbuda is not dangerous in the night-time only, but to strangens ulso in the day, having reefis under water all round, excepting at the extreme S.W. point.

On paseing to loosoard of the high islande which obstruct the course of the tradewind, denger arises from strong gusts coming from the mountains, which sometimes diamast a vessel. Be cautious to keep so far from such land as to be able to work your ship, ehould the wind suddenly shift and blow on the shore, which it often does during the day. When the wind is baftling, you will find it advantageous to keep your course along shore so long as you have stecrage-way, although all your sails may be nbuct. - it frequently happens that the wind comes round to its formpr quarter isilure you lowe your headway, and by this one ship may get into another current of air, which hrings her into a fresh brecze, while another, in company, by altering her courso to get her sails full, loses the opportunity of getting into the oreeze, and may be detained by calms and baffing winds great part of the day. Wo have often seen the after-sails filled, with the wind aft, while the headsails were flat aboek, with tho wind ahead, which continued so long that the sresail was hauled up to continuo the headway.

In navigating among the Windward Islands, every precaution must bo taken in allowing for the direction and strength of the curreuts. It has already been shown, in the preeeding section, that the general prevalence of them is to the westward, but with different velocitizs, disturbed at times by the lunar influence, and varied by the contour of the coast, \&e. An easterly current is seldom or never found out of sight of land, but N.W. and northerly, in the passages, may generally be found; und it has been remarked that. in some instances, when the current runs to leeward on one side it runs to एcudward on the otl! "; also, that it may sit to windward on both sides, while, at the same time, to leeward in the middle, and frequently the reverse.

The intelligent officer to whose book we are indebted for these observations, says, "In the daytime, attention to the progress you make in miting to windward, by the appearance or bearings of tho land, is the best rule you ciun have, first trying a thort tack in-shore, where, if you make little or no progress to windwayd, your best way is to stand across, and try the other sile of the channel; and, if thin do not answer, the mid-channel will most likely prove the best; for, although con cary to the general opinion, we have often found it so ; much, howover, dopends on the time of day. In the morning aud evening you should endeavour to be near the shore, the North side of the passage in preference; whore, if the wind be moderate, and the coast not much exposed to the gencral trade-wind, you are protty certain of having the wind two or three points more off the land. In like mannor, you should endeavour to be in the offing about one o'elock p.m., as the wind gencrally blows more on the shore at that time. We have also observed that the land and sea broezes prevail most where the land ou the const is low.
"Sher'd you be lound'to a plane to the eastward of you, and no land in the way, the hest incic to be upon is the one on which you will lio up nearest to \mathbf{E}. by N., that cing the point from which the trade-wind gencrally blows; whon it ohanges from
t point you may consider it a slant of wind, and take advantage of it accordinglydurtienlarly if it veer to the South during the day, or to the North by night; thus it sill be found to be advantageous to be on the port tack at night, und the starboard tack by day."
In squally weather the wind is so very variable, that it is seldom possible to take advantage of it in getting to windward.

To vindeard of the islands and to the North of Durbados, in moderate trade-
w by N . hour. of $P o i$ Wo ha point Lucia, passed they sorvati true sif
In t rally al the pas with g ? from A the coa the Sot nearly ance to that th

In or to beat as man. for Thob and, wi ceut's y you ma not alw \&c. T Anot the Gra

From of the Royal and son
From tack an way, if but if or St. 1 St. Eus and Pr

In st to win and th southw nerthw
Fron seen wl the isla if not, this las
The always Demer the wi
rto Rico lie - high land land at the o remarked, 1 some time uthward of o strangers treme S.W.
f the tradeh sometimes ble to work it often doen sous to keep ur sails may mer quarter y current of altoring her co, and may o often seen ek, with the to continuo
be taken in been shown, - westward, , and varied r found out ly be found; runs to leeit to windd frequentiy ations, says, vard, by the ying a chort best way is not answer, the general of day. In - North side st not much wind two or to be in the hore at that t where the
he way, the by N., that anges from cordinglyht ; thus it e starboard
ble to take
n us, the Equatorial current will be found generally to ret in a direction from N.W. by N. to N. by W. at the rate of from half a mile to three-quarters of a mile an hour. As you approach the islands, it becomes more irregular; near to the eastward of Point Salines, Martinique, it frequently sets strong to the North, and even N.E. We have also felt this set of the current near to Point Moulacique, the South point of St. Lucia, and have frequently seen vessels bound to Gros Islet Bay, St. Lucia, from Barbados only the night before, driven so far to the North as to have passed the Island of St. Luoia, and also a considerable part of Martinique, before they discovered their mistake ; and, being strangors, they had to wait until an obsorvation could be taken to asoertain the latitude, before they could find out their true situation.
In the passages lying nearly in a North and South direction, the current sets generally about N.N.W., until you are past the most northerly land on the eastern side of tho passage, when the western current, being no longer obstructed by the land, sots with great strength in a more westorly direction. This is the case in all the passages from Antigua to Hayti, and those on the South between Trinidad and Paria, and on the coast and Leeward Islands from Margarita to Buen-ayre, as the current inside to the South of these islands [in the dry season] sets about N.N.W. $\frac{1}{d}$ W., at the rate of uearly 2 miles an hour. Ships running to westward, inside, should make an allowance for it, and keep a good look out, for it must be borne in mind, as already shown, that the currents here are variable, according to the scason.

In order to touch at as many of the Windwourd Islands as possible, without having to bent to windward;-suppose your vessel to bo at Barbados, and you have to call at as many islands as you can, in as little time as possible-from Barbados you can steer for 'lobago, hence for St. Vincent's, which is as far to windward as you can fetch; and, with a northerly trade wind, you will not be able to do that. From St. Vincent's you may stecr to any of the Granadines, and so on to Granada; and at times you may fotch Trinidad, but this is not to be depended on. From Granada you cannot always fetch St. Kitt's, but in genoral, the Virgin Islands, St. Croix, St. Thomas's, \&c. The general course this way is to go to Tobago, and thence to Trinidad.

Another track is from Barbados (S.W. side) to St. Vincent's (South side), hence to the Granadines and Granada.

From Barbados to tho N.W. you may go to St. Lucia, passing round the N.E. point of the island to Gros Islet Bay and the Careenage; from this place you fetch Fort Royal Bay, Martinique, then St. Pierre, Roseau (Dominica), the Saintes, Basse-terre, and sometimes Point-a-Pitre, Guadaloupe.

From Basse-terre, Guadaloupe, you can seldom weather Montserrat, unless you tack and take advantage of the variable winds under Guadaloupe, which is the best way, if you are bound to Antigua, or to the northward between Antigua and Nevis; but if not, you may pass close to the West side of Montserrat, and so stecr for Nevis or St. Kitt's, or to the islands to the westward; or, you may pass on either side of St. Eustatius or Saba, if you can lie round without tacking, and so through the Dog and Prickly Pear or Sombrero passage to the northward.

In steering through these passages, or across them, it is recommonded to keep well to windward, as the wind will often head you as you approach the opposite side, and the currents are very strong; and it may be remarked that, in standing to the southward, you feel the force of the current more than when you are standing to the northward.

From these remarks, and a reference to the chart of the islands, it may be readily scen what other track can be accomplished. Thus, from Barbados to Antigua, and tho islands to the westward of it, you pass to the castward of Desirade if you can; if not, between that island and the East point of Guadaloupe; when you are clear of this last point, you have Antigua and all the islands to the westward in your route.

The intercourse between Barbados and Demarary is very uncertain, and you cannot always trust to fetch from one place to the other, even in fast-sailing vessels. From Demerary you can generally weather Tobago ; of course, it must always dopend on the wind nud curent ; therefore we speak in general terms only. Inded, we inave
sometimes seen southerly trui wind continue for a long time, and also northerly winds; and we have seen, oping io N.E. winds and lee currents, vessels from Cayenne not able to weather Barbados, and a vessel from Antigua a month in getting to Barbados, owing to southerly winds.

In working to windward through any of the passages in the night time, it is strongly recommended not to trust to the distance run; for, although yon may have an offing of 4 leagues, and you could lie up so as to make a long stretch, yet, before you have gone the distance of your offing, you will probably find it full time to tack from the shore. In the passages lying nearly East and West, the western current runs so swiftly, that, in standing to the southward on the port tack, and lying up S.E. by E., you will often find that you have made little or no easting. This has been the case with several vessels leaving the South shore of Antigua; they stood on, lying up S.E. by E., which course they expeoted to make good, and thought perhaps to weather Point Antigua on Guadalonpe, but the current deceived them, little or no easting had been made, and they ran ashore among the small kays off the Bay Mahaut, Guadaloupe, nearly due South from that part of Antigua which they had left in the previous evening.

When bound to windroard it is sometimes difficult to beat through the passages between the islands. Of these passages. the casiest are considered to be between St. Vincent's and Becquia, between Martinique and St. Lucia, and between Antigua and Guadaloupe. The wind, in general, blows a strong breeze, so that a vessel may carry double-reefed topsails, courses, top-gallant sails, jib, and driver. These are the most suitable sails for working the ship in the night, the weather in the passages being too generally squally. If more reefs are out, you will be linble to spring your masts and yards ; for, however fine the weather may appear, strong and sudden gusts may come on several times in an hour. Finally, too much sail is hazardous, as the squalls may head you until they blow past, when you come up to your old point; and in this way it is obvious you may ron a long way to leeward in carrying sail through a squall.

General Remarks on the Navioation of tie Caribbean Sea, from Leeward to Windward, by Lieut. Grervelink.

The best way to beat up in the Caribbean Sea is still an object of dispute among a great many European mariners ; there are some, and they form the greatest number, who always prefer the northern part ; others who choose to keep in the middle between 14° and 16° of latitude; and a few, to beat up off the southern coast, till they are able to make Antigua, and run out by the channel between that island and Guadaloupe.

The first of these methods, the one generally adopted, is evidently the best; as the South coasts of Hayti and Porto-Rico are tolerably clean, and afford smooth water when the wind is to the northward of East; but in the hurricane months, this part is rendered unfavourable, not only by these dangerous visitors, but also because the currents are then often very strong in the northern channels, whereas they have, at the same time, been observed to be very weak in those sonthward.

The second route depends, I imagine, more on vague reports of a ourrent setting between those parallels to the eastward; but this will, I trust, no longer be credited, at least, in the tract of sea here described. During the intervals, however, in which light winds are of some duration, the westerly current may be found very weak, as is undoubtedly, proved by our passage in April, 1837. (See the entry of that month, "Col. Nav.," vol. iii., p. 26.) Yet this is no reason why a constant weak current, or an easterly one, should be stated when found only occasionally in those parts where they have once been met with.

The third route, by which the hurricanes are generally avoided, has been treated with too much negleet, partly by its being impeded by the Leeward Islands, and
partly
of the 0 those m univers Comm the cone Guadalc when, o any atte of Barb tack, th daye to happy e getting currente After best to 1 may ons winds, 1 the ban the wor doubt by ing to a long s nearly a three or they wa

Asag principa depths place of the gene eastwari upon the

It is a change i 1834, in fectly bl

Mr. \mathbf{H} the Berr winter 0

From by S. co the sout

We le until fai the Nor very low

30 northerly from Cayin getting to
t is strongly ve an offing re you have ack from the ent runs so S.E. by E., een the case n , lying up ss to weather easting had aut, Guadathe previous
passages bebetween St. Antigua and el may carry are the most ssages being 3 your masts on gusts may s the squalls ; and in this through a

FROM
ute among a est number, 3 middle beast, till they and Guada-
best; as the nooth water , this part is use the curhave, at thie
rent setting be credited er, in which weak, as is that month, current, or parts where
peen treated Islands, and
partly by the unknown force and direction of currents, and wint of local exporience of the coast; but hereafter I doubt not but this track will b: aduped as the best in those months which threaten destruction in the northern pass gen. h.cause it is almost universally followed by the coasters and pilots.

Commanders bound from one of the interior parts of the Caribbean Sea, toward the coast of Guyana, generally prefer passing out by the channel of Antigua and Guadaloupe, which is one of the fittest for that purpose with northerly winds; but when, on the contrary, the wind is from the southward of East, I should not advise any attempt to pass that way, bat to proceed directly to the North, by the westward of Barbuda, prolonging the stretch well, in order to gain at once, with the other tack, the windward side of the islands. In July, 1836, we laboured for several days to get out of the first-mentioned passage ; and in August, 1835, we were happy enough to reach English harbour, though unable to effect our purpose of getting into the main sea, being harassed by south-easterly winds and strong westerly currents.

After having reached the Atlantic, when destined toward the coast of Guyana, it is best to keep your wind, if blowing from the northward of East; as, in that case, itmay enable you in one stretch to make the desired port; but, with unfavourable. winds, I think it advisable to run straight for the coast, and beat to windward along the bank of soundings. This is most probably attended with less loss of time than the working to the eastward in higher latitude, which may be proved beyond any doubt by comparing some of the many instances which have occurred of vessels falling to leeward of their port of destination, and trying to regain it by making a a long stretch to the northward; when, after fourteen days, they made the coast nearly at the same place: with those of others who effected it completely in only three or four days, in the space mentioned. I know many reports of this sort, but they want sufficient authenticity to be relied on.
As a general remark, it may be kept in mind that to get soundings ought to be the principal object of ships bound to this coast, as, with the present knowledge of depths hereabout, together with an observed latitude, it may show them their place of situation East or West of the intended place very near the truth, because the general tendency of the mud-bank is nearly N.W. and S.E.: and thus, to the eastward of a certain meridian, there will be found more water than to the westward, upon the same parallel.
It is absolutely erroneous to state, that the limit of soundings is marked by the change in the colour of the water; as more than once, and particularly in November, 1834, in 25 fathoms of water, to the N.E. off Marowyne River, the colour was perfectly blue and transparent, and at other times tinged of an ashy hue by tho mud.

Bermudas to the Windward Islands, \&c.

Mr. Henry Davy, in his description of the passage of H.M,S. Cornwallis, between the Bermudas and the West India lslands, with the return toward Halifax, in the winter of 1837 , states as follows:-
From Bermuda to Barbados, instead of steering direct, I would recommend a S.E. by S. course. The advantage of this will be apparent, should the trade wind be to the southward of East, and it is also a precaution against a leewardly current.
We left Bermuda on the 26th of November, 1837, and, pursuing the above conrse until fairly in the trade, anchored at Barbados on the 6th of December. Made the North end of the island at four a.m. at daylight, appearing in a long and very low point. While on the starboard bow Kitridge Point" made equally so, with
extensive breakers far out. We rounded the island at a distance of 2 miles, the coast preventing successive low points, encompassed with breakers, and came to anchor in Carlisle Bay.
The Cornoollis next pissed the Granadines, and the lofty summit of Granada became visible at noon of December 10th, as the heavy clonds rolled away to the westward. The ship then proceeded to the anchorage on the S.W. side of Granada. Here, in 15 fathoms, a tide set past the ship to the S.S.W. at the rate of 2 miles in the hour ; at midnight the ship tended, and the tide set through to the eastward, at the same rate. At eight a.m. of the following day it again made to the S.S.W., and by ten its rate was 8 miles. This tide renders the spot valuable as a temporary anchorage.

From the information of the harbour-master it appears that, at the springs, the tide here obtains a rate of 4 to 5 knots; that it is strong among the Granadines, at St. Vincent's, and to the southward of Granada toward Trinidad. He was also of opinion that throughout the range of the Caribbean Islands the tides were of more conse-

- quence than as hitherto considered; and it appears probable that many of the accounts whioh reach us respecting the currents in opposite directions, often in the same places, may be the effect of tides.

At sunset of the 11th of December, tho Cornwallis, full of troops, set sail for Halifax. Mr. Davy says, "A fine moonlight evening followed; tho ship gliding along the western coast, as we shaped a course for St. Kitt's, which I should always recommend to vessels intending to take the Anegada Channel. At sunset, Montserrat, Redonda, Nevis, St. Christopher's, St. Eustatius, and Saba, were in sight. At ten we passed between St. Eustatius and Saba, closiug Saba to within 2 miles. When its North point bore West 3 miles, steered N.N.W. for Dog Island and Hat Hay. At half-past three in the middle watch, we made the Dog Islands. At six a.m. Sombrero bore E.N.E., and at eight we were fairly clear of the West Indice, and steering away N.W. for Halifax, with the trade wind at E.N.E. No variation. Thermometer 80°; temperature of the surface water, 78°. From this to the parallel of Bermuda the temperature of the rater ehanged from 78° to 68°. Here, in 33° North latitude, we erchanged the flying fish for the stormy petrel.

The north-westerly winds have a greot aseendeney at this period, and prevail over every other quarter. I would, therefore, advise making tho most of the trade, and steering away N.N.W., continuing to make as much westing as will ensure fetching Halifax with the prevaling wind.

Steam Navigation between Tobago and Demerara.

We take the following from a beautifully illustrated work,* which gives numerous directions for the West Indies:-
"Between Tobago and Trinidud the eurrent sets strong towards the W.N.W. and W.S.W., almost always at the rate of 2 knots per hour, and not unfrequently 3 or 4 knots.
"Aftor elearing the channel, the stream will gencrally be found running nearly parallel with the line of eoast the whole distance to Demerara, though it sometimes fakes a more northerly direction, partieularly in the months of July, August, and September.
" In shaping a course, therefore, for Demerara, vessels should keep well to the eastward of the port, nut only to avoid the banks off the mouth of the Essequibo, but

[^74]because sequen the bea vessels as the 7 fatho
" Th chimnes from th Corobat terming
" DE deed, er drawing " In
\mathbf{N}
Steam
Porto E rock res on their length.
"Aft outside be doub their sta "San seen, m: exceedi
"Thi half-cab cables n near th ground
" The
across t
" I d
Rise an
" Fr
Viejo I Rico co will be which thence small N.W., "Th
bearing çais wí
"CA
les, the coast to anchor in of Granada away to the of Granads. of 2 miles. eastward, the S.S.W., temporary
ngs, the tide lines, at St. 30 of opinien more consethe accounts same places,
set sail for hip gliding ould alway nset, Montsight. At iles. When d Hat Hay. It six a.m. Indies, and 0 variation. the parallel ere, in 33°
prevail over trado, and tre fetching
numerous
N.W. and ntly 3 or 4
ng nearly sometimes rgust, and

0 the eastquibo, but
because the objeots to the eastward are more remarkable, which is of the utmiost consequence on a coast where its features bear one uniform appearance, without a hill; the bearing of which would point out a ship's position; and the land so low that vessels may be aground before it is visible. The lead will be found the best guide, as the soundings very gradually decrease, and there is no danger while navigating in 7 fathoms water.
"The most remarkable features of the coast eastward of George Town are the chimmoys of the boiling-houses, and a remarkable row of cabbage trees about 12 miles from the lighthouse. There is also a singular tree about 15 miles from the point of Corobana, called General Murray's Tree ; it is most conspieuous when seen at the termination of a point.
"Demerara.- This port should never be taken by a stranger withont a pilot; indeed, even those who are most intinuately acquainted with its localities, in vessels drawing more than 12 feet water, should always take this precaution.
"In a steam-vessel the navigation is most simple at proper times of the tide.

Naviaation to Jamaica via St. Juan, Porto Rico, Cape Haytien, and St. Jago de Cuba.

Steamers leaving St. Thomas's ta perform the Jamaica route, via the north side of Porto Rico and Hayti, should leave the small islet of Bergantin (whieh is a high rock resembling a ship when at a distance) on their left ; and Montaluan and Cabrito on their right, bearing in mind that a reef extends from Montalvan a good cable's length.
"After passing Culebra and Culebrito, I shonld recommend shaping a course to pass outside a rock on which the Barossa is said to have struck; for although it seems to be doubtful, yet masters of Porto Rico vessels have assured me it does exist. From their statements I am inclined to believe that it is considerably nearer the shoro.
"San Juan Harbour wili readily be distinguisbed by the Moro, which, when first seen, makes like an island having extensive fortification on its summit, rendering it exceedingly remarkable.
"This Moro Castle is on the east side of the entrance, and is stoep-to within a half-cable's length on its northern side. The position to lie-to for a pilot is about two cables north of the Moro, with the ship's head off-shore, taking great care not to drift near the low rorky island on the western side of the entrance, which has much foul ground arousid it; and the current generally setting strong in that direetion.
"Tho harbour is not difficult of access by day, but at times the sea breaks right across the entrance, which calls for the promptest uttention at the helm.
"I do not consider it safe at any time to enter this port at night in large shipm. Rise and fall of tide, 2 feet.
"From San Juan a course should be shaped so as to pass 6 or 7 miles from Cape Viejo Frangais (Hayti), making allowance for a carrent which seis towards the Porto Rico coast, when within the distance of ten miles from the shore. The first land that will be seen on this track (after losing sight of Porto Rioo) will be Capn Raphael, which is of moderate height, and is the termination of the high land; the coast thence to Capo Engano being exceedingly low. Raphuel may also be known by a small conical hill (Mt. Redonda), a short distance inland, which, on coming from the N.W., is seen near the termination of the point.
"The next cape to the N.W. is Cape Samana, which makes like an island on many bearings, particularly ítom the N.W. After passing Cupe Samana, Cupe Viejo Franças will be aeen, which slen makee like an island with Low pointa at eauh extremity.
"Cape Ieabslla is the next headland, which is very low, and, like Cape Viajo

Francais, also makes like an island. Between these two capes there is a remarkalle high hill, sloping down to the water's edge, with a flat summit, and a remarkable notch on its extremity when seen from the N.W. This land is Cape Casrouge.
"The Grange is the most remarkable object, and cannot be mistaken for any other part of the coast if attention be paid to the book of directions.
"Vessels may pass inside the Monte Christi Shoals : but as the channel is not well known, I have invariably gone outside, on the principle that a steamer's progress is so rapid through the water, that in a very short period of time after shoal water is deseried, the vessel is on shore. Although I have adopted this line of route, I havo on former occasions in H.M. ships passed inside, and am well aware that there is a good ehannel; but a large ehart of this portion of the coast should be in possession of the commander before he navigates his ship in doubtful water.
"Cape Haytien is a high cape, sloping duwn towards the East, and having a small rock, called Picolet, at its foot, presenting the appearance of a white patch when first seen from the eastward. The water is deep tolerably close to this rock, and it may be approached to the northward withont far.
"I shonld, however, recommend all vessels to go in at slow speed, with strict attention to the lead, as the late earthquake is likely to have changed the faco of nature in the bottom of the sea, as well as on the land.
"From Cape Haytien, the course should be shaped to pass between the Toirtugas and Hayti, in which channel there is always much less sea than outside, besides being a more direet eourse.

+ "St. Jago de Cuba.-This harbour cannot be taken at night, and never even during the day without a pilot, as it is exceedingly narrow, and the grentest ntteutlon is required at the, helm, owing to the sudden turnings in the channel.
"From St. Jago de Cuba to Morant Point, I would recommend a course to be shaped (during night-time) 15 miles to the West of the Formigas, as I have on more than one oceasion experienced a set in their vicinity of half a mile an hour to the N.E. This is by no means a usual occurrence, but, knowing the existence of devintions from the general set of the stream, it is ss well to be on the guarded side, urre especially as the saving in the distance is very trifing.
" Morart Point is very low, with a liyhthouse upon its extremity having an excellent revolving light, which may be seen 16 or 18 miles distant. From the Point to the Kreys of Port Royal it is only necessary to run down about two miles off shore, taking great care at night to avoid the low land about Cowbay Point, which is very deceiving.
"On returning by this route, the foregoing observations will be equally available. It is, however, perhaps as well to observe, that after leaving St. Jago de (iubut great advantage may be gained by kecping about two miles off shore, whero there is frequently a weatherly set, and invariably less current.
"In making Porto Rico from the westward the land is low, gradually rising to e high chain of hills; thenco trending East, it again falls, and then rises to another chain of mountains called Laquilloc, which terminate in low land at the eastern extremity of the island. St. Juan may be known by its situation between the above two ranges of mountains, and by having on its West side a number of remarkable hilloeks in the form of haycocks, which are frequently seen before the Moro shows itself; but the fortifications are most commonly the first objects deseried. I would also eaution vessels to be extremely guarded at night, in not mistaking the ehannel between Culebra and Porto Rico, which is exceedingly dangerous. The distance run by the ship after leaving St. Juan will of course be n good guide, but between August and October the currents are often so variable, that the most careful navigntor may be deceived in hazy weother, or at night, as there is under these eircumstances a great resex: blance between Culebra and St. Thomas's. The latter, however, if seen before sunset, may be distinguished by its being higher, and making in thres small peaks.
${ }^{\text {in }}$ From the mean of several observations I have found the current along the Parto

Rico od of the fore gr distrus
"Be oblique to the directic
" To runs st coast.
" Du
more u

Nav
" Le ting be the lat in the journal canes h
rare to
"Al
lat. 17°

steame

to, and
"Th on whi Island. quite el ndvise would, is to be
" Th these is perienc
" Fr Vuche, islands island, 6 or 61 night.
" Th
its extr
"'Th
tween become tance f
from th
$\checkmark \mathrm{Tl}$
level, a
remarkalle remarkable ouge. or any other

1 is not well progress is so ioal water is jute, I have at there is a n possession
ad having a patch when rock, and it
with strict the faco of
he Tortugas esides being
never even ntest atten-
course to be we on more hour to the ce of devinside, wisre
ving an exthe Point to of shore, rich is very
y available. (cubuz great re there is
rising to e to another eastern exthe above remarkuble foro shows 1. I would he chamel istance run it between 1 navigator mastances a er, if seen thres small

Rico coast and Hayti to the northward to be as follows, thongh the very unusual state. of the weather in the West Indies of late has rendered these very uncertain, and therefore great care should be taken in ascertaining the direction of the stream, always distrusting published accounts.
"Between $18^{\circ} 29^{\circ}$ North latitude and Porto Rico, the current generally sets obliquely on the shore towards the E.S.E. Between $18^{\circ} 29^{\prime}$ N. and $18^{\circ} 39^{\prime}$ N. it runs to the E.N.E. To the northward of this latitude the stream takes a more northerly direction, particularly in the vicinity of the banks of the Bahamas.
" To the distance of ten miles along the Hayti North Coast the current frequently runs strong towards the shore, but beyond that distance it takes the direction of the coast.
" During the hurricane months it should be remembered, that tho currents are more uncertain than at any other period.

Nayigation between Grenada and Jamaica, along tue South Side of Hayti to Jacmel.

" Leaving the island of Grenada, the current will almost invariably be found setting between W.S.W. and W.N.W., but more commonly in the former direction than the latter. It is generally strongest between December and April, and of least forco in the hurricane months ; indeed, betwees July and October, (on reference to former journals,) I find not infrequent 42 ts to the East and N.E., particularly when hurricanes have visited any part of the West Indizs ; but except in these months it is very rare to find the stream deviating from the W.S.W., W., or W.N.W.
"Alto Vela.-This little isiand lics about 16 miles S. $\frac{1}{4}$ E. from Beata Point, in lat. $17^{\circ} 28^{\prime} 40^{\prime \prime} \mathrm{N}$., and long. $71^{\circ} 39^{\prime} 30^{\prime \prime} \mathrm{W}$., and is directly in the fairway of the steamers coming from Grenada to Jucmel. It is high, barren, and quite bold closo to, and may be seen 25 or 31 miles distant, making in a peak.
"The course from this island (Alta Vela) to Jacmel is N.W. $\frac{1}{2}$ W., about 67 miles; on which line vessels will make the Frayles, which lie about 10 miles from Beata Island. They are a cluster of steep reddish-coloused rocks, and are said to be stecp duite close tc, though from the imperfect survey ef this part of the coast I would ndvise ships to give them a berth of a mile at least. For the above reason, also, I would not take the channel betwoen Alta Vela and Beata Island, as scarcely anything is to be gained by it.
"The current mosst commonly sets very streng to the westward in the vicinity of these islonda; but after passing the Frayles Rocks a strong S.E. set is frequently experienced, particularly during the night, when the trade does not blow home.
"From Jacmel to Jamaica, shape a course so as to pass 5 miles clear of the Isle of V iche, which is about 8 or nine miles in length, and makes like a group of small islands when first seen, particularly from the westward. The current between-this island, and along-shore to Juemel, generally sets to the westward, but when within 5 or 6 miles of the shore, an easterly sot is frequently experienced, particularly at might.
"The first headland after passing the Isle of Vache is called Abacon Point, low at its extrenity, then suddenly rising to a moderato height.
" 'the next cape to the westward is Cape Gravois, which is very low, the land between being of a molerate and equal height. From this eape to Tiburon the land brcomes very high. Tine cape itself ('liburon) is of moderate height, but a sloort distance from its extremity it suddenly rises to a high mountain, and when first made from the nea, appears to slope down to the water's edge.
 level, and covered with trees. In running past this island, shoal water will be seen
some distance from the shore. At night I would recommend running 10 or 12 miled to the eastward of the reckoning, when bound through the Mona Passage, as it is the turning puint, and being very low, ships would be in the reefs before seeing the land, except with clear nights."

Pabsages between Jamaica and Ydcatan, Chagre, Cartagena, Maracaybo, $\mathbf{3}$ c.

To the Bay of Honduras; by the late Mr. Johnson Capes, a Constant Trader.
Take your departure from the West end of Jamaica, and steer W.S.W. by compass, until you get into lat. $16^{\circ} 35^{\prime}$; then run on that parallel till yon make the Island of Bonacca, the latitude of which is $16^{\circ} 30^{\prime}$, long. $85^{\circ} 47^{\prime}$ West. (The northern and easternmost part of the island is here meant.) Bonacca is a bold high island, and may be made by night, if required; as I do not know of any danger that extends more than 1 or 2 miles off on the North side. Some navigators endeavour to make Swan Islands, but that cannot be of any advantage to them, and is the contrary; for, if you expect to be near then in the night, you get very anxious, as they are very low, and yon may run on them before you perceive your danger. I always give them a good berth, that is, keep to the southward; for the current about these islands is very deceiving and uncertain; but, for the most part, sets to the northward and westward. In one of my voyages to the bay, I was set 34 miles to the northward, and 64 miles to the westward, of account.

Bonacca ought to be made early in the day, so that jou may run down to the middle or West end of Ruatan by the evening, to be ready to take your departure for the Southern Four Kays, at six, seven, or eight o'clock, according to the breezo you heve.

If you take your departure from the middle of Ruatan, steerW.N.W. \ddagger W., making that course good, in order to avoid Glover's Reef to leeward, and on no account whatever run more than 45 miles from Ruatan before daylight; if you run more than that distance, you are in danger of running your vessel on the reef, where there is no possibility of saving her, for in a short time she will be a perfect wreek. At daylight make all sail possible, and if you do not see the kays, you will soon lift them. The principal kay is called Half-Moon Kay, owing to its having a sandy bay, in the shape of a half-moon; on this kay is the Liohthouse, elevated about 50 fect from the surface of the sea; its latitude is $17^{\circ} 12^{\prime}$ North, and longitude $87^{\circ} 32^{\prime}$ West. On this kay the pilots live; a set of useful, active, steady, sober men. These kays ought to be made as carly in the day as possible, in order to ensure you an anchorage before night.

It frequently happens that vessels, after leaving Ruatan, are becalmed during the night; and, in consequence, they will not make Half-Moon Kay before the afternoon. In this case, I would advise the master to brace sharp up, on a wind, and beat to windward all night, taeking every two hours; for, it is to be particularly noticed that the current sets strongly down on the Southern Four Kays Reef. Soveral vessels have been lost on this reef, owing to their lying-to; but by keeping the light in sight till morning, it will be sufficient to prevent accident by maintaining your position till you get a pilot, or till you have the day before you.

If it should happen that the pilots are all in Balize (which is very seldom the casc), you must make all sail possible. Keep a man at the mast-head, and you will soon discern a kay, called flat Kay; it is about the sise of a long-boat, with trees upon it. You may round the reef, within 2 or 3 cables' length, as there is no danger but what you may sec, for soundiugs extend but a short distance from the blue water. After you have rounded the elbow of the reef, steer West, and you will very soon lift the low land of 'Turneff'; at the South end of this marish in a little kay, called by the pilots Kay-Bukel, with several cocod-nut trees upon it. (Fornes!ly pilets rewided oia
this kea lead;
The lead an sand-b fathom fathom certain you m I an gave ta If it h I woul at any In the daylig

Eno sandy guishe channe Kay, which
Bore.
ceed ar
In 0
Mron
still re
On the round 1 you rou then ar

On as Mav their h at the is a ve ships.

The
Triang
On ap
Fro
steer 1
for Ca
From this I

The many the S journs Dir tween 'lal of 18 N.W. north curze
or 12 milet ie, as it is the θ seeing the

HENA,
tant I'rader. by compass, he Island ef orthern and island, and that extends our to make intrary ; for, ey are very rs give them se islands is rd and westard, and 64
lown to the r departure e breezo you
W., making count whatmore than there is no c. At dayn lift them. dy bay, in out 50 feet $7^{\circ} 32^{\prime}$ West. These kays anchorage
during the afternvon. and beat to ly noticed f. Soveral g the light ining your
this kay, and now frequeutly rendezvous here.) You may round this kay by your lead; and, if it be later than three p.m., you must anchor here for the night.

The anchorage is aboni $1 \frac{1}{\frac{1}{2}}$ miles from the kay, with its bearing E. by S.; but your lead and your eye is the best pilot for this anchorage. You anchor on a fine white sand-bank; the first soundings you will get are about 10 fathoms; run into 3 or 4 fathoms, clueing your sails up as fast as possible, and giving the vessel st least 40 fathoms of cable; for the sand is so, hard, that, with a short scope, you will certainly drift off the bank; then you have no bottom. If this should be the case, you must heave up immediately, and make sail again, to get on the bank.

I anchored here one fine night about eleven p.m., let go my anchor in 5 fathoms, gave the ship 30 fathoms of cable; she never looked at it, but drove off the bank. If it had not been a fine night, I should have been compelled to cut from my anchor. I would not recommend any commander to anchor on this ground with a chain cable; at any other part of the bay a chain is preferable. (This bank abounds with fish.) In the morning (if you have not by this time obtained a pilot), get under weigh at daylight, and steer for English Kay.

Enolisi Kay is situated on the South side of the channel, and is a small, low, sandy kay, with a few thatched houses on it, entirely shaded with treee. It is distinguished by a flagstaff 60 feet high, for signals, \&c. On the opposite side of the ehannel, that is, on the North side, there is another kay of the same size, called Goff"s Kay, that has some resemblance of a saddle; at about half a mile to the eastward of which is a little eandpatch, nearly even with the water, called by the pilots the Sand Bore. This is the place you must anchor at, for it is impossible for a stranger to proeced any further without a pilot.

In case the current or any other casualty should set you to the northward of HalfMoon Kay, and you fall in with the middle of the Southern Four Kays Reef, I would still recommend you to haul the ship to the northward, and go round the North end. On the North end of this reef is a kay, called by the pilots North Kay; after you round this kay, make all sail for Mauger Kay, the northernmost kay off 'Turneff; after you round Mauger Kay, steer S.S.W., and you will soon lift English and Goff's Kay; then anchor as before directed.

On Returning from the Bay, I would recommend your taking the pilot as far as Mauger Kay, as I have known many vessels run upon Turneff Recfs, owing to their having discharged the pilots at English Kay. Endeavour to leave Mauger Kay at the eloso of the day, so as to be the length of the Triangles by daylight. There is a very dangerous reef on the Weat side of the Triangles, that has pickel up many ships.

The current, in general, sets rapidly to the westward, by the South end of the Iriangles; a ship should, therefore, never attempt to pass to windward of this reef. On approaching the western edge of the Triangles, keep your lead going.

From the channel within Mauger Kay, if the wind is free, steer North; if not, steer N. by E. After you are to the northward of the Triangles, shape your course for Cape Antonio, according to the instructions given in the "Colombian Nuvigator." From the Triangles the current runs from 10 to 30 miles per day to the northward; this I have ascertained from the mean of twelve voyages.

The Precsding Directions were given by the late Capiain Cripes as the result of many years' experience; 'out it may be obeerved that they make no distinction for the Secuson of the Northe, or northerly winds. The following, therefore, from the journals of Capt. Dunsterville, M.N., will be the more acceptable.

Directions for Sailing from Jamaica to Balive, in the Season of the Norths, or between October and March:-
Iake your departure from Pedro Bluff or Suuth Negril, keeping near the parallel of $18^{\circ} \mathrm{N}$. until you have attained long. $87^{\circ} \mathrm{W}$. Shonld you then get the wind from N.W. or N.N.W., which winds blow very strong, you will fetch Mauger Kay, the northernmost kay of Turneff, on the starboard tack. Kcep well to windward, as the currenta in these beaiona set otrongly to the situthward.

Abstract

Should the commander prefer golng going in by Half-Moon Kay, whish is, to my astonishment, the route of many (because the lighthouse serves as a guide), let it be remembered that the prevailing winds will not, in this season, allow you to lay from Hat Kay Reef to Kay-Bokel; and it will also be a dead-beat from thence to English Kay; whereas, on the route prescribed, there is a fair wind direct to English Kay, in a course abont S.S.W. 6 leagues. The "Colombian Navigator," which is an invaluable worls for these seas, has been led into this error, directed you to make Bonacca in lat. $16^{\circ} 35^{\prime}$, and those islands which lie contiguous; but these, being surrounded by dangerous reefs, and not surveyed, must perplex the mariner, with a strong southerly current and constant gales from the northward to N.W., and there being no port into which he can enter with safety, except Port Royal, in Ruatan. The latter is a inost desirable place when you are in, but the entrance is particularly narrow and intricate between the reefs.

Half-Moon Kay, as already explained, is the S.E. kay of the Eastern Reef, nnd distinguished by a lighthouse on the East end. To the N.N.W. of this is Saddle Kay, about 3 miles distant, with à small clump of trees on it. W.S.W. of Half-Moon Kay .is Hat Kay, which, with trees thereon, resembles a coronet. To 3 miles S. by E. from this kay extends a dangerous reef, even with the water's edge. The course to clear this reef, from 2 miles South of Half-Moon Kay, is f.S.W. $\frac{8}{4}$ W. about 10 miles. From the reef to Kay-Bokel the course is West, or W. $\frac{1}{4}$ N., according to the wind, 7 leagues.

Kay-Bokel may be known by its cocoa-nut trees, and a fine sandy beach. Rounding it at about half a mile, do not approach nearor, as the ground to the southward is fonl. If you wish to anchor; bring the kay to bear from E. by S. to S.E. on a sandy bottom, with 10 to 4 fathoms. Give the ship plenty of chain; otherwise she may drag off the bank.

Should the wind blow strong from the East or N.E., between Kay.Bokel and English Kay, at the entrance of the channel to Balize, steer N.W. by W. 4 leagues. English Kay is sandy on the N.E. part, and is bushy to the water's edge on the South and S.W. sides. Goffs Kay, whieh is on the North side of the entrance, is much smaller, with a cocoa-nut tree on its centre, and is surrounded with a sandy beach. To the eastward of it, about half a mile, is the patch of sand called the Sand Bore; it is even with the surface, and, in rounding it, a great berth must be given. The anchorage is in 8 to 4 fathoms, Goffrs Kay bearing from N. by W. to N. by E., or the kays to the northward and Goffs Kay in one.

There is also anchorage under Turneff, as far to the northward from Kay-Bokel as to kring English Kay N.W. by W. in 4 fathoms.

On English Kay, in general, the pilots live who pilot vessels coming in from the northward.
Sailing Outward.-The course from English Kay to Mauger Kay is N.E. by N.; the distance between 6 and 7 leagues. This is the northernmost kay on Turneff; its latitude is $17^{\circ} 36^{\prime} 15^{\prime \prime}$, and longitude $87^{\circ} 47^{\prime}$. A reef extends from it N.N.W. more than 2 miles. During two cruises in the bay the latitude was conflrmed.

As the currents in this season run strongly to the southward, half a mile to three quarters of a mile in th a hour, should it blow strong from the northward, on leaving English Kay, run out by the Souther:3 Four Kays, as it is very dangerous to beat between Turneff and the main in a dark night. With N.N.W. winds, at this season, it is not unusual to pass out ie the seuthward and eastward of the Triangle.

The Directions for Vessels bound to the Eastern Coast of Yucatan, from April to September, as given by Captais Dunaterville, are as follow :-
Take your departure from Pedro Bluff, Jamaica, and pass nbout 2 or 3 leagues to the southward of the Swan Islands. These are two low hushy isles, which may be seen, in clear weather, 4 leagues off. Between them is a reef, over which the sea breaks heavily, and there is not space even for a boat to pass, from North to South, there being but one foot of water over the reef. On coasting along the North side, withiu a quarter of a mile, I found the const very cloar. About the weaterimust
island their e from t northe are saf setting ridian
At 2 n 13 fath

Fron the cur ward o the sor strong directe

In t may fir be four weathe

On a Yucata
" Fr setting in exte within North cast an full $1 \frac{1}{8}$ the wea end of rocky b on the ceeded
"At s.W.t

On Mauge to run the clo mornin

As t
it. Mo particu the ree

On
going.
keepin
Vess
house
vessel
" O
steere
that e
the no
and 10
Fro
ch is, to my le), let it be to lay from to English inglish Kay, ch is an inake Bonacea rrounded by ig southerly no port into or is a nost und intricate
n Recf, and Saddle Kay, -Moon Kay es S. by E. le course to ut 10 miles. oo the wind,
h. Roundouthward is on a sandy e may drag
-Bokel and - 4 leagues. a the South ce, is much beach. To Bore ; it is 3 anchorage he kays to
y-Bokel as n from the
.E. by N.; urneff; its N.W. more
e to three on leaving ss to beat his senson,

TAN, from
eagues to 1 may be h the sea to South, orth side, stemmust
island are spots of coral banks, but so clear to the shore as not to endanger a vessel : their extent, from East to West, is about 6 miles, the reef included, which extends from the West end about a mile and a half. There are two sandy coves on the northern side of the western island, and also on the southern side, where boats are safely landed. A current was, however, found on this and preceding days; setting to the N.N.W. about half a mile an hour. I found the latitude, by meridian altitude, $17^{\circ} 24^{\prime}$, and longitude of the East end, by chronometer, $83^{\circ} 48^{\prime} 50^{\prime \prime}$. At 2 miles from this point we had soundings on rocky bottom, with from 9 to 13 fathoms.
From the Shoan Islands keep in the parallel of Half-Moon Kay, or $17^{\circ} 12^{\prime}$ N., or, as the current sets to the N.N.W., and should it be hazy weather, do not go to the northward of $17^{\circ} 6^{\prime}$ by account, as it would be very dangerous to fall in with the centre of the southern Four Kays Reef at the close of the day. The breezes are generally strong from the eastward with a lee current. From Half-Moon Kay proceed as before directed.
In this season, if, on your return, you pass to the westward of the Triangles, you may find a current setting to the northward about 1 mile an hour; and it will be found that the winds often shift to the westward, with fresh breezes and rainy weather.

On a voyage of H.M.S. Bustard finm Jamaica to and from the eastern coast of Yucatan, in June and July, 1827, Mr. Dunsterville made the following remarks:-
"From the West end of the Pedro Shoals to the Swan Islands, found the current setting to the W.N.W. about 1 mile an hour. These isles are between 3 and 4 miles in extent from E.N.E. to W.S.W., and may be approached (particularly by day) within 2 miles, in any class of vessel. The Bustard passed about a mile off shore on tho North and South sides. On the S.W. point is a fine sand bay, where a vessel may cast anchor in from 10 to 7 fathoms; but, off the West end, a rocky bank extends full $1 \frac{1}{8}$ miles, with very irregular soundings, from 10 to 5,4 , and 7 fathoms. When the weather is clear, this bank is easily discovered by the eye. Latitude of the East end of the eastern isle, $17^{\circ} 24^{\prime}$; off this we had soundings in from 13 to 9 fathoms, rocky bottom, about $2 \frac{1}{8}$ miles, the East point N.W. $\frac{3}{4}$ W. No water could be found on the West isle, the swell being too heavy to admit our landing. Hence we proceeded toward Balize.
"At Balize the weather, during our stay, was heavy rains, with tornadoes from S.W. to N.W. These last for two or three hours, then subside into a calm."

On leaving Balize, the pilots are always ready to accompany vessels as far as Mauger Kay, and it is imprudent to discharge them sooner, as vessels have been known to run upon 'Turneff. Vessels from the Turneff Passage should leave Mauger Kay at the close of day, so as to reach the length of the Northern Triangle by daylight next morning if possible.

As the Triangle Reef is very dangerous, great caution is required in approaching it. Most vessels pass to the westword, as the current runs from 10 to 50 miles per day, particularly to the northward; and it gencrally sets rapidly to the westward, over the reef, and at the South end, on which there is a small sand-bore.

On approaching the southern and western part of the Triangle Reef keep your lead going. When well to the northward, make the best of your way for yonr destination, keeping a good lookout in order to avoid the Island Cosumel.

Vessels going out by the Southern Passaye, that is, by the Four Kays of the Lighthouse Reef, should never venture without a pilot. In this ease the pilot leaves the vessel at Half-Moon Kay, which is distinguished by the lighthouse.
"On passing the western side of the Triangle, upon returning from the bay, we steered N.N.E. and cleared the kays on the North part; and, having run 30 miles on that course, observed the latitude by the star Spica, $18^{\circ} 35^{\prime \prime} \mathrm{N}$. The current set to the northward about 1 mile an hour, and continued so till we arrived in lat. $22^{\circ} 5^{\prime}$, and long., by chronometer, $85^{\circ} 24^{\prime} \mathrm{W}$."

From the $\overline{\mathrm{N}} . \mathrm{E}$. end of the İile Cosumel, Cape Antonio, the western extremity of

Cuba, bears N.E. by compass [N. 52° E.] 125 miles. U'pon this course allowance must be made, in the southern parallels, for the general indranght into the Mexican Sea to the N.W., and afterward for the Stream, which has too frequently been found winding from off Cape Antonio to the E.S.E., as explained in the "Colombian Navigator, 'and the former part of the present work (200.), page 313.

Jamaica to Chagre and off Cartagena.

Copious Directions for proceeding from Jamaica to and upon the continental coast have been given in the "Colombian Navigator."-(See vol. iii. p. 191, \&rc.) To that information we now add the following, from the Journal of Captain Dunsterville, 1827.
"Sailed from Jamaica on the 18th of November: the weather fine, with light sontherly sea-breezes. In standing across to Cartagena we found the current had set 34 miles to the vestward in four days. On approaching land the weather was very hazy.
"We made the land of Galera Zamba [long. $75^{\circ} 25^{\prime}$ W.], which is low, and appears, at a distance, full of hummocks. To the northward of Point Canoas (more to the S.W.) the land is a little higher, and slopes gradually to the point, which is low, and should not be approached nearer than 2 miles.
"The hill called the Popa of Cartagena is very remarkable; it stands to the N.E. of the city, and has a convent on it. This is an excellent landmark; and to use the simile of other writers, is like the quoin of a gun. From seaward it makes like an island. The city from the ocean has a fins appearance.
"We anchored, in the Bustard, on the Playa Grande, in $5 \frac{1}{3}$ fathoms, fine black sand, with the convent of the Popa E.S.E. $\frac{1}{2}$ F., Point Cenoas N. by E., western extreme of Tierra Bomba S. $\frac{1}{3} \mathrm{~W}$. Latitude of the anchorage, $18^{\circ} 28^{\circ}$, off the town 11 miles, longitude, $75^{\circ} 34^{\prime}$. From herce to Chagre, light winds from E.N.E. to North : hazy weather.
"On approaching the land near Porto Bello [Velo] we experienced strong N.E. currents $1 \frac{1}{2}$ miles an hour, which continued until we arrived off Chagre. Therefore, at this season, keep well to the westward, if the winds are light; but if the strong N.N.E. winds have set in, which commence about this time, make the land well to the eastward, it not only affording a better landfall, but the currents then run more rapidly to the S.W.
"In the vicinity of Chagre the land prcaents nothing very remarkable by which it may be known, particularly if the weather be hazy, and the castle cannot be seen when it bears to the southward of S.E. by S. This castle is situate on an eminence commanding the village and river, and mounts about 20 guns.
"The Bustard anchored in $5 \frac{1}{2}$ fathoms, with the flagstaff of the castle S.E. $\frac{1}{9}$ E., Point Brujas N.E. $\frac{4}{4}$ N., off shore, three-quarters of a mile. To the southward of the point is a large white patch in the rock, with a fall of fine fresh water close to it.
" Supplies, water excepted, cannot be obtained here. Fowls werc a dollar a-piece, and scarce.
"In turning down the coast, from Brujas Point to Chagre, which is 1 lcague distant, the shore seems bold; but do not shut in the Point with the southern laud. The best anchorage for a large ship is with the Point N.E. abont 3 miles off. A strong current out of the river runs to the N.N.E., 2 miles an hour at the anchorage, therefore you cannot ride heavy at the anchor; but the vessel rolls heavily when strong
on the from 1 tremity lie ner Poir. siould has 5 at the North 520 ya the ent regular berth a of any rains,
"In winds p tremity when it the bay sionally nuts an 1 mile from Br Brujas

On sa
winds v
From A of Orube currents
Saw t Antares along th 3 miles, to took

To the the lani kays an two pied three lit When b steer fo: fathoms, Castle likewise lies the but in $t 1$ water.
Tha ${ }^{\circ}$ winila blow. We weighed and beat to the enetward for Porto de Nĩō or Nâay Duyj,
to the N.E. 1 to use the takes like an
s, fine black E., western off the town a E.N.E. to
strong N.E. re. Therc; but if the ke the land nts then run
by which it not be seen on eminence
e S.E. $\frac{1}{\frac{1}{2}}$ E., uthward of water close
lar a-piece,
gue distant, land. The

A strong rage, therehen strong Nany Duaj,
on the N.E. side of which, under Manzanillo Island, a vessel will be well sheltered from N.E. and N.N.E. winds. This bay is formed by Manzi Point, the N.W. extremity of the Island of Manzanillo, and on the West by Toro Point. These points lie nearly 3 miles from each other. On Manzi Point is a lighthouse.' Toro Pni-, has a very dangerous reef, extending nearly a mile to the N.E., which siould not be approached nearer than in 6 fathoms. Manzi Point is bold; it has 5 fathoms within half a cable's length, and under it is the best anchorage, at the present season of N.E. winds, in 4 or $4 \frac{1}{2}$ fathoms, with Manzi Point North or N. by E, about a quarter of a mile. From the point off shore are 520 yards of good ground, To the distance of a mile or a mile and a half from the entrance the shores are bold, with 3 fathoms close to the beach, and soundings regularly decreasing from 6 to 4 fathoms. You may; therefore, take an anchoring berth at pleasure, suited to the vessel's draught. This place does not produce supplies of any kind : even water is to be found only in a few stagnant pools, from heavy rains, and is very bad.
"In the season of the rains the best place to anchor in is on the W cstern side, as winds prevail from that quarter. There is a hut on Point Limon, in the S.W. extremity of the bay, and which is very high in comparison with the adjacent coast: when it bears S. by W. you will be to the eastward of Toro Reef, and may run into the bay. From this point there is a communication by a pathway to Chagre. Occasionally two or three soldiers are kept there for the suppression of smaggling. Cocoanuts are in great abundance; fish very scarce. The soundings on the coast, from 1 mile North of Point Toro, to the same distance off Point Brujas, are 73, 8, 8立, 9 , and from Brujas Point to Chagre, 10, 9, 7, 6t, 6, $5 \frac{1}{2}$, off shore about half a mile, keeping Brujas Point open, bearing N.E. or N.E. $\frac{1}{4}$ N.

Jamaica to the Bar of Maracaybo, April and May, 1827.

On sailing from Jamaice we had fresh easterly winds and squally weather, then winds variable round the compass.
From Alta Vela, in lat. $17^{\circ} 28^{\prime}$ N., 'ong. $71^{\circ} 40^{\prime}$, we took our departure for the Isle of Oruba: :n the eastern side of the Gulf of Maracaybo, allowing for the strong westerly corrents a at three-quarters of a mile an hour.
Saw the itonks, which are rather high rocks; and, by the altitude of the star Antares, wade the northern one to lie in lat. $12^{\circ} 28^{\prime}$. Hauled to the S.E., and ran along the western coast of Paraguana, sounding, when distant from the shore about 3 miles, from 12 to 8 fathoms, till we arrived at Punta de los Estanques, whence ha to took our departure for the Bar of Maracaybo, S.W. $\frac{1}{8}$ W.
To the eastward of the Bar of Maracaybo, about 8 leagues, are high mountains; the land westward of these is low, and continues so, with occasional breaks in, by kays and hillocks, which are at the entrance of the lagoon. Farther westward are two pieces of land, not particularly high, on the low S.E. termination of which are three little hillocks. This is tho Isla Todos, on which stands the Castle of San Carles. When bearing S.S.W. $\frac{1}{2}$ W. the hillecks are over the fort, which is white. Do not steer for the latter, but continue on about West, not going into less than 5 or $5 \frac{1}{2}$ fathoms, \mathbf{w}^{2} en you will open the runins of Fort Zapara to the southward, and the Castle of Bajo Seco to the westward, in lat. $10^{\circ} 59^{\prime}$, long. $71^{\circ} 49^{\prime}$. This fortress is, likewise, whith, and is situate on a small sandy kay. To the westiward of this lies the bar, having at this season a depth over it of only 11 feet, hard bottom; but in the rainy season, August, September, and October, there is, at least, 13 feet of water.
Th- sreezes here are very heary from the N.N.E. to N.E. by E. in the early part of tre. Jet at about 8 a.m. the wind is generally more moderate; and from 2 p.m.
to 2 am., in the following morning it blowe a purfect gale, with heary moa, which makee it dangerous to lie at anchor here.

The best anchorage off the bar is in 5 or $5 \frac{1}{4}$ fathoms, with the Castle of Bajo Seco South or S, by W.; off shore about 3 or 4 milee. The soundings on the South side of the gulf [bay P] are remular, decreasing gradually as you approach the shore. The current runs to the N when the moon rises; and it is high water, on the full and change, at $5^{\mathrm{h}} 15^{\mathrm{m}}$.

In beating to windward, endeavour to be near the north-western shore at about 1 p.m., in order to take advantage of the winds which draw to the N.N.E., so as to make a good lay to the eastward.

The communication with the city of Maracaybo is kept up by one of the ship's boats, hiring a pilot for the occasion, who, on making the general signal, will come out from Bajo Seco in a boat with latine sails, should the weather be moderate. If you have to communicate frequently with the city, or to cruise in the gulf, I should recommend beating up to the anohorage of Estanques, in the peninsula of Paraguana; but, in beating np, do not go to the eastward of Punta Gorda, the S.W. point of Paragnana.
The Anchorage at Estanques is very good for a vessel of the largest class, even within half a cable's length of the beach, and capable of containing twenty sail in safety. The best marks for assisting a stranger to find the anchorage is the Mountain (or Pan) of Santa Anna, which much resembles Vesuvins, and may be seen, in clear weather, 8 or 9 leagues, off. This mcuntain, when bearing E. $\frac{1}{8}$ N., leads to the anchorage. The place may also be known by being a long tongue of sand, with some huts on the extreme point, occupied by fishermen, who, in the seasstu, take immense quantities of fish by the seine. The Bustard anchored in $4 \frac{1}{8}$ fathoms, and veered to 25 fathoms on the N.E. anchor (from which quarter the prevailing winds come stronly), and 82 fathoms on the best bower to the S.W. Point Estanques, S. $\frac{1}{2}$ E., Point Salines, N.N.W. $\frac{1}{2}$ W., off shore 2 cables' length. No supplies can be obtained here. Rabbits may be shot, but can be purchased cheaply. The little-water that may be procured is muddy, and not fit to drink.
If you are bound to the eastward, when clear of the gulf (bay ?) stretch to the northward, as the currents run so strong between the Isle of Oruba and Cape St. Homan, that it is nearly impossible to beat through; but, should you go between the island and main, be cautious in standing by night to the S.E., as the coast from Cape Roman to Aricula (S.E. 19 miles) is very dangerous, and the currents thereon.

In stretching across, from Point Chicabacoa, on the West side of the mouth of the gulf, to Jamaica, we found a strong current, running due West, nearly 1 mile ap hour.

The Channels of Providence.

The Channels of Providence, between the Great and Little Banks of Bahama, are copiously described in the second volume of the "Colombian Navigator," as well as the winds and seasons of this portion of the West Indies. The lighthouses on Gun Kay and the Great Isaacs in the Florida Strait, together with those erected on the Florida Reefs by the United States Government, and the fine line of beacons along the face of the latter will be eminently useful in facilitating the navigation. We have been assured, by an intelligent navigator, that it is not unusual for twenty sail of vessels, of from 100 to 400 tons burthen, to pass the Great Stirrup Kay within musket-shot, and even within hail, in one day ; these, for the most part, proceeding the United States to Cuba and the Mexican Sea. They make the Hole in the Wall, now distinguished by its lighthoume, then the Stirrup: thence, if the weather appears threatening, they
pass across
pass through the N.W. shannel; otherwise they shape a course, pieking their way, across the Great Bahama Bank, to the southward of the Cat Kays, beyond the Guin Kay Lighthouse. Here they enter the Florida Strait, and pursie a southerly course, where the Gulf Stream is found, as described, to run with the less velocity to the northward. -(See farther, "Colombian Navigator," 1848, vol. ii. pp. 2233 to 226.)

Directions for Proceeding to Demerary, etc., from the N.E.

of the ship's lal, will come noderate. If gulf, I should Paraguaina ; S.W. point of
th class, even wenty sail in he Mountain seen, in clear leads to the d, with some rake immense and veered to winds come ques, S. $\frac{1}{8}$ E., a be obtained le-water that
tretch to the ba and Cape you go beS.E., as the the currents
he mouth of ly 1 mile an

[^75]

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

(716) B72-4903

- Strangers bouind to Demerary or Berblee (if not quite certain of their longitede) ahould avoid masking the land, and endeavour to gain the parallel of $6^{\circ} 30^{\prime} \mathrm{N}$., before going to the westward of long, 56°. The course then is W. $\frac{1}{2}$ S. by compass. To the vastward of the River Corentyn, in this parallel, you will have from 18 to 20 fathoms of water; dark sand, with broken shells and innd; when abreast of the Corentyn, you will have 12 fathoms, with clean brown sand. Steering the above course, you will gradually shallow your water to 7,6 , and 5 fathoms, soft mud, when you may be sure that you are approaching the Bar of Berbise.* If it be daylight, you will see the land, which is very low. If in the night, and you are bound to Berbice, I would advise the ship to be brought to auchor.

If bound to Demerary, the better way will be to stand to the northward by the wind until daylight, as there are several dangerous mud-fiats between Berbice and Demerary, some of which extend 6 or 7 miles off the land, and shift occasionally.
Winds.-During the day, throughout the greater part of the year, the prevailing winds on this coast are from the N.E. to N.E. by N. During the months of June, July, August, and September, the wind gonerally draws more to the eastward after sunset, and continues blowing light until about 9 o'clock in the morning; when it again backs to the N.E., and blows a fresh breeze.

Curamrss.-Within 15 miles of the coast the tide regularly ebbe and flowe six hours each way; the flood running westward, and ebb to the eastward. Withont this range the current [Equinoctial] runs constantly in the direetion of the coast, from 1 to 2 miles an hour. In sailing to the northward you will find the current, when about 60 miles from the coast, to ran abont N.W., and in this direction it continues to ran until you are to the northward of the islands.
"The velocity of the current between the coast of Guayana and the island is modifled by circumstancet, which I have never been able satisfactorily to account for, as I have often found it imperceptible, at other times very strong, and not in the least influenced by the mearons."

8.-OF SHIPS BOUND TO AND FROM THE NORTHERN PCRTS OF AMERICA.

In the introductory remarks to this section of the work, we have allnded to the principlem of great circle sailing, and have pointed out the advantages which it possesses, not soomuch in the shorter distance whioh it gives over the rhumb coarse, but in the scope it allows the navigator in the choice of a parallel on which he can make a good paseage, without materially increaming the actual distance to be aailed over.
In no case can this be better exemplified than in the courres over the northern parts of the Atlantio, between tho British Inles aud the northern American porta. We alluded to a care, not impracticable, of the courses between the Lizard and Cape St. John's, in Newfoundland, and ahowed that two courven might be taken, not more than 35 miles greater than the shortost distanoe, of exactly the same length, and yet be 330 miles apart in latitude in their greatent separation.

An imaginative course will well explain this for our present purpose:-From the Lizard to Sandy Hook, New York, the diatance and oourse by compase are $2,052.5$

[^76]efir longitedo) . 30^{\prime} N., before ıpass. To the to 20 fathoms Corentyn, you larse, you will u may be sure a will see the rbice, I would
hward by the 1 Berbice and asionally.
the prevailing the of June, astward after ing; when it
and flowe six Withont this rast, from 1 to t, when about tinuen to run
land is modiount for, as.I. in the least
miles S., $78^{\circ} 81^{\prime}$ W. But if a vewel leaving the Lizard were to commence miling $\mathrm{N} ., 73^{\circ} 24^{\prime} 40^{\prime \prime}$ W., and paseing abont 35 miles southward of Cape Clear, gradually bearing to the West, attaining a maximumn latituide of $51^{\circ} 56^{\prime} 30^{\prime \prime}$, long. $26^{\circ} 27^{\prime} 20^{\prime \prime}$ W. W and then, if it were powsible, approach New York on a S. $64^{\circ} 36^{\prime}$ ' W. courne, ahe would sail over 2,865 miles, or $87 \frac{1}{3}$ miles less than the compass course. This groat oirch course passes over Cape Bonavista and Ia Hupe Bay in Newfoundland; St. Annefe Bay in Breton Island; Picton and Cape St. Mary in New Brunswick ; near Boston; New London; and over Iong Island, in the United States.

A line, of the length of $2,952 \cdot 5$ milee, placed in a higher latitrde than the rhumb line, as shown in page 376, is just ae much above the great circle course in latitude es this is above that by compass. This corresponding arc from Now york leade cone viderably inland of the coust of the Eastern Statea, intersecting Chaleur Bay, Capa Bonaventura in Gaspé Bay, Anticosti, passes 45 miles N.W. of the Strait of BelloIsle, approaches within 180 miles of Cape Farewell, Greenland, attains a maximun latitude of $57^{\circ} 12^{\prime}$ N.; and intersecting the S.W. part of Ireland, at Kinsale, reaches the Lizard in a 8.E. direction. These two lines, of the rhamb and the corresponding arc, are upooards of 700 miles apart at the greatest deviation from each other.
With these considerations so manifest, we shall be better prepared to undierntand that a higher latitude than the usually received one cannot, of itself, be dimadvantageous; and the excellent observations of Captain Hare, presently given, will be more clearly evident.
By referring to the CLiart, it will be seen, that from the Land's End of England to St. John's Newfoundland, the true bearing is W. $4^{\circ} \mathrm{S}$.; and from the same point to Cape Sable, or the S.W. end of Nova Scotia, it is abont W. 9° 8. But the circumstances of navigation, in general, render a direct course more tedious and difficult than a circuitous route, and the best passages have been made by pursuing a high northeriy course.
It seems probable, from all that we have said on the winds and currents, that on prosecuting a north-westerly oourse, from the Bank of Channel Soundinga, the winds and currents, respectively, may counteract and balance each other; that, on further prosecution of the same course, the winds will be found less westerly, and therefore more favourable than in the more southerly parallels : and that, in advancing toward the mouth of Davis's Strait, the advantagen both of wind and current may be combined.

Caution misust be taken not to advance too near the eastern crast of Newfoundland, if bound to New Branswiok or the southern ports; nor to the eastern coast of Breton Island, as here the vessel may be swept round by the atrong westerly currents, whioh have been described on the preceding pages (347, to 352), and which, now nnderntood, instead of prodneing mischief, may prove highly advantageous in facilitating the ship's course.

Ths propriety of these arguments was conflrmed by experience, in more than forty passages made to and from New Brunswick, \&c., by Lient. Chas. Hare, of the Ruyal Navy, previous to the fall of 1824. Annexed is a coyy of that gentleman's communication.
"Shipe from Scotland, in the spring of the year, anil bound to New Brunswici, have always arrived sooner than those from the English Channel; which is attributed to their being more to the northwerd on leaving the land.
"Shipe from Liverpool generally arrive before thowe "which sail from the Englinh Channel; the cause being the same.
" In the Spring of the year, I would never go to the acuthward of lat. ${ }^{4} 48^{\circ}$ or 477°,

[^77]until I rewohed long. 37° or thoreabout; then edge to the nouthward as far cis lat. 439; in order to avoid the iceberga, keeping a: very strict lookont; this parallel (43°) I nhould endeavour to preserve, or nearly so, bnt nothing to the southward, until uf to Cape Sable, Nova Sootia; for it carries you to a safe and proper distance from Sable Inland, a place that cannot be too much dreaded. In this track you will be withont the northern edge of the Gulf Stream, and assinted by a south-westerly current from the Banks until pest that island.
"In the Fall of the year my track is far more to the northward than in the spring: On leaving the land ari late as the middle of Ootober, or thereabont, I genierally steer to the north-westward until I get as far North as 55°, and until I enter the longitade of 30°, then edge to the southward, to enter the banks in lat. 46°, shaping again a course to pase about 60 miles to the sonthward of Sable Island, as above... If bound to Halifax, and vory sure of my latitude, I might be tempted to pass to the northward of. Sable Island; but, at all events, it would be at great risk; and I should not, under any circumestences, recommend a stranger $\vdots 0$ attempt; as the weather is montly foggy, and the set of the currents unaccountable. The acundings on Banquerean are incorrectly laid down in every chart that I have yet seen; being, in fact, within an hour's sail of the N.E. bar of Sable Island; from which cause I once very narrowly escaped shipwreck. Numerous gannets are always hovering about this island, and are a very axcellent indication of your near approach to it, particularly on the South side.
"By crossing the banks thus far North, you will find the advantage as you approch the longitudes of Newfoundland and Nova Scotia ; the strong N.W. and North galem having then commenced, you will frequently be compelled to lie-to for two or Chree days; aud should then ensure sufficient drift, before you are blown into the etrong infinence of the Gulf Stream; which would be the case at a few dogrees to the eonthward, and inevitable in a S.S.E. direction, at an inconceivable rate. Lasi November (1824) the case occurred; the vessel being hove-to, under main-topsail and etorm-trysail to the weatward of the banks, in lat. 45°, and was, in four daya; swept into lat. 39t, consequently into the Gulf Stream, when the longitude became olso conaiderably affected, and I took the first opportunity of making a N.N.W. course, to get out of it as soos as possible.
-. «To prove the advantages of a northern track, late in the fall of the year, I may notice that I have, in one or two instances, read in the Amprican newspapers the accounts of very long passages experienced by ships whic i heary gales in the latitudes of 35° and 38°, when several vessels were disable i others suffered loss of sails; yet, on the same day, in lat. 54° I had moderate weuther from the N.N.E. with top-gallant studding-sails set; whioh strongly encouruges me to believe that the blowing weather, incident to approaching winter; commences southerly, and inclines northerly as the season advances, and not the reverse; an hypothesis gencrally formed by English ship-masters, but, in my opinion, certainly erroneous.

[^78]far is lat. $43^{\circ} ;$ narallel (430) I rd, until up to ace from Sabls ill be without current from

in the spring:

 generally steer the longitude aping again a ve. If bound to the northI should not, e weather is ings on Banbeing, in fact, se I once very $1 g$ about this t, partioularlyye as you apW. and North to for two or own into the ow degrees to o rate. Last in-topsail and days, swept became elso W. course, to
year, I may wspapers the gales in the suffered loss the N.N.E. lieve that the and inclines is gencrally
the parallela tural causem, I have in0 mentioned mariners of blow with o not under nore sudden oning. The ortance for or my own or it may be in the dulf.
given of

Strivm with a wind from that quarter; and it is to be remembered thit itia veloolty it wevelerated according to the strength of those winds; and its extent in breadth, atich fot degrees to the westward of the Arores, is many more degrees than is commonly supponed.
"Then obvervations, I hope, may be useful to my brother mariners enguged in these voyuges ; and permit me to say, that they are grounded on the experionce of more than forty times erossing the Atlantio in the Royal and the merchant service, and in the command of vessels in both; latterly in one of 400 tons burthen, the Waterloo, owned in St. John's, New Brunswiek; and, as the custom-books in Liverpool can teetify, lended four full cargoes in thirteen following months $;$ which, including the time required to discharge the same, then load ontward to St. John's, there discharge and lond home again; leaves but very little time for the ship to crose the Atlantic eight times in fourteen months, which, in fact, was done.
"Still further, in corroboration of my approved northern track, allow me to observe, that in the Gall of 1823, by keeping in a high latitude, the brig Ward, myself master, also owned in New Brunwick, performed a voyage out and home in seventytwo days. The scime remel, likewise, on the 3rd of October, 1824, left the English Channel, and arrived ugain in the Downs on the 3rd of January following.
"I must add, that a itrong, well-found, and well-manned vessel, alone can perform these voyages; for they thent be maintained with unremitting attention and perseverance.
"The necessity and propriety of the above remarks were particularly exemplified by the Ward, which, on her passing through the Downs, in 1824, lett shipe there which were bound to the westward, weather-bound, and found them there on her return, having becn driven back by adveise winds; while she, getting out of the Channel, performed with ease a prosperous voyage to St. John's, New Brunswick, and back; exactly in three months; acinted by ohronometer, thermometer, \&ce."

Although the vayage to and from North America, between the parallels of 60° and ' 40°, has always been attended with a degr' of peril from masses of ice which drift to the southward, daring the summer monthe, from tho polar regions, yet many an uniwary mariner makes his rin across the Atlantic withont any apprehension of meeting these floating dangeri, or without sufficiently exercising a proper discretion and vigilance to guard against coming in collision with them. Commanders of ships should, therefore, bear in mind the imperative necessity there is for using their utmost vigilance and attention when crossing the above-named parallels, especially between thie meridians of 30° and 60°. W., to guard against coming in contact with these formidable dangers of the ocean. Upon the subject of the ices which come down from the northern latitudes, mnch that is interesting and necessary to be known will be found in a former part of this book, pages 355 to 360 .

The New lork packet ships, when making their winter voyage from Liverpool, kept in high latitudes until nearing Newfoundland. This they did for the twofold object of avoiding the tempestuous weather so generally experienced to the sonthiward, and of obtaining fairer winds; and thus, by slipping within the mighty stream from the Flerida Channel, they evaded its retarding influence. The voyage by this route is shortened; and, although bad weather must be expected, it is not so volent as further South; besides which the eastern currents are avoided.-(See further on this subject "Colombian Navigator, vol. i., p. 219.)

GULF or ST. LAWRENCE, \&c.-Those bound to the Gulf of St. Lawrenge, after passing to the southward of the Virgin Rooks, on the Grand Bank, and the Island of St. Pierre, should keep a middle course betw sen Newfoundland and Breton Island; not forgetting what has been heretofore said on the winds and ourrents. Recollecting also, that the harbours on the coast, westward of Fortune Bay, are impeded with dangers; there are many rocks about the entrances, and most of the harbours are imperfectly known. The rocks are not to be seen in thick weather, and fogs very much prevail on the coast.

Commanders of vemele bound to the Gulf of St. Lawrence will do well to observe that, off the Eouth const of Newfoundland, between the meridians of 85° and 56°, and
the parallele of $46^{\circ} 20^{\prime}$ and $46^{\circ} 16^{\prime}$; is a doep gully in the see, eztending in a true N.N.E. and S.S.W. direotion, and meparating the Bank of St. Pierre from the Green Bank. The mothod adoptod by the Exronch vesselo bound to St. Piorre for making that ieland is as follows :-

From the longitude of 52° W., in lat. 45°, they steer a N.W. course by compass, which oarries them acrones the Green Bank, in 48 fathome of water; and when on the meridian of $65^{\circ} 10^{\prime}$, in about $45^{\circ} 35^{\prime}$ N., they suddenly deepen their water, from 45 to 90 fathoma. A furthor run on the same course of about 10 miles oarries them acrose thin gully, when they shonlen their water again to 35 and 30 fathoms; and, after a further run of " 23 miles, they ateer about N.N.E. directly for the island, and seldom or never mise it.-(Soe the Chart of Nowfoundland. \&o.)

Those who have lont their reckonings, on finding thin gully, which may be known by the water shoaling on the East and West sides of it, an experiment that is frequently made for ascertaining whether they are actually in it or not,-may aafely take it as a frosh departure. Commanders, not being aware of it, when they have found their wator deepen from the Green Bank to the westward, have imagined themcolves entering the Gulf of St. Lawrenoe ; and, by ateering a coursa too far to the northwoard, have been lost to the eastward of Cape Fiay, on the rooks of Newfoundland. The longth of the gully is about 60 miles, in a true N.N.E. and S.S.W. direction, and the middle of it is in lat. $45^{\circ} 50^{\prime}$, and long. $55^{\circ} 15^{\prime}$.-Communication of the French Commandant to Captain Sir Richard Grani, R.N., 1833.

The Litte Icland of St. Paul, which lies to the north-eastward of Cape North, now distinguished by its lighthouses, ia bold-to, steesp, and high, and, with a good look-out in the daytime, cannot be oonaidored as dangerous even in thick weather. The land of Breton Island is very high, and though fogs are about it frequently, it is seldom so much obwoured as pot to be seen in time. On entering the gulf, the Magdalen and Bird Ialande will be seen, as they lie in the direct course from Cape North to the River of St. Lawrenco.

There is, in olear weather, a safe passage betwoen the Bird Islands and the Magdalens; but, in thiok weather, it in advisable to keep either to the southward or northward of both, as the wind may permit.

In Pleasant Bay, on the S.E: side of the Magdalon Islands, there is olear and good anohorage, very near the shore ? and it is a very safe place for vessels to rido in, with a weaterly wind, and infinitely preferable to beating about in the Gulf with a foul wind. There is a safe passage into it between Amhernt Island and Entry Island.

As the weather to to the southward of these ialandn; between them and Prince Edward Ieland, in genorally much clearer than on the North, the passage that way is preferable, particularly after the early part of the year, when S.W. winds mowtly prevail.

Vossele bound to and from the River St. Lavorenoe now use the Strait of Belle Isle an a channel which gives the shorter and better route to Europe in the summer months. It should be remembered that the ices described in (284.), pages 356 to 300 , which float down the Labrador coast to the Great Banke have careftlly to be avoided during the meason of their frequency in February or March to July. Again, the shorter days in the higher latitudes, and the prevailing fogs which infest the Nowfoundland const have to be taken into acoount during the winter and late autumn months. Tho now lights erected on Belle Isle and Ataour Point, in the Strait of Belle Isle, will very much facilitate the navigation thus pointed out. With the caution thus indicated, this route offers many advantages. The Canadian mail steamers now follow it, although a recent accident from iee to one of them, in the month of May, 1801, will nct an in warning.*

[^79]ading in a true rom the Green or making that
co by compass, id when on the ter, from 45 to ies them acrose ; and, after a id, and seldom
may be known nt that is fro-$t,-m a y$ safely hen they have magined themtoo far to the Newfoundland. direction, and of the French
pe North, now Cgood look-out 1er. The land it is seldom so Magdalen and North to the
and the Mag. southward or

olear and good

 els to ride in, he Gulf with a 1 Entry Ieland. m and Prince passage that n S.W. winds t of Belle Isle ammer months. to 360 , which voidod during o shorter days undland coast his. The new Isle, will very aus indicated, ow follow it, ey, 1861, wille with, as it in Admiralty surNorth America de the line of oms.

9.-BETWEEN EUROPR AND NEW YORK, ETC.

There seems to be little hope that much can be added to our knowledge of this well beaten track, and that the paesages can be chortened by adopting any freelh route. Soon after Maury's Pilot Charts, an analyijs was made of them in order to find out the bent route by computation for each month in the year, of a track between New York and Europe.
It will be needless to dilate on these, or to give the copious tables that were drawn up to illustrate these routes. They are given on the illustrative diagram of the trackn aoross the Atlantio, and the lines there laid down will be suffioient to show their relative position. These tracke certainly weem to us to diverge, so much from any regularity of order in different months, not exhibiting any gradual change with the seasons, as might reasonably be expected, but have a general zig-zag course, at variance with the generally received laws of simplieity and order which natural phenomena, whioh govern these coursen, usually amsume. This want of an apparent - general law of ohange ia doubtless owing to the imperfection of the data upon which they are based. This has been before alluded to in (29.), on pages 186, 187, and by reference to that and the diagram it will be seen that the records of the direction of the winds are in themselves 80 imperfoct, that they will be quite sufficient to account for the anomalies in the computod best courses for the different months. Therefore the graphic illustration of them will here suffice.

But as these recommendations have been followed ont by a great number of vensels, chiefly the fine clippers and passenger ships between Liverpool and New York, their voyages have been discussed and tabulated by Captain Maury in his last edition, and the general mean result of the bent six pasnages in each month is given in the ensuing tables.
But this selection may not afford a just estimate of the ordinary voyage of a deeply laden ship less adapted for making a rapid passage. Still the route adopted by the clippers will manilestly be the best, in general, that can be taken by the heavier vessel. And therefore these tables will not be the less useful.

In the development of any new route, or change in an adopted system, much discussion must necossarily be involved, and many facts brought to bear upon the advantages to be derived. From this cause the volumes of Captain Maury have assumed such a bulk that for every-day use their value is in some degree impaired, and even in drawing up a summary of the result arrived at, it is necensary to be discursive, and extend the abstract to a considerable length, as will be seen in the preceding pages upon the best meridian for crossing the equator,
With this view the computed routes given by Captain Maury, with the probable amount of fair or head winds, galem and calms, and distances required to be sailed over in each section of the voyage are omitted. The tables of actual experience which follow, will, it is thought, be quite sufficient to give an idea of the subject. Only the mean resulta are given here, not the getails from which they are derived.

These two tables give the moen track and time cocupied by the best six of each of the passages discussed as proceeding from Europe to America, and from Amorica to Europe. The ports on the Europedn side are London; Liverpool, Havre, and a few from the Clyde, Hamburg, \&ee: The last column gives the total duration of the voyage, and the intermediate day columns the time ocoupled in sailing between the respoctive meridians 5° apart.

But these six best passages of course are considerably below the average length of the ordinary voyages, whieh may be briefly stated as follows :-

Europe to Amorica. -January, 19 to 87 daye ; mean of all, 40.1 days. February, 21 to 52 days ; mean, 32.5 days. March, 21 to 42 days; mean, 31.6 daya. April, 24 to 43 days; mean, $33 \cdot 7$ days. May, 1847 days; mean, $32 \cdot 0$ days. June, 29 to 54 daya; mean, 36.7 dayb. July, 31 to 45 days; mean, 36.8 daya. August, 22 to 42 days ; mean, $33 \cdot 1$ days. September, 28 to 40 days; mean, $29 \cdot 1$ days. October, 184 to 46 days; mean, $31 \cdot 0$ days. November, 28 to 53 dayis ; mean, $37 \cdot 2$ days. December, $27 \frac{1}{4}$ to 48 days; mean, $37 \cdot 6$ days.

Amerioa to Europe. -January, 17 to 28 days; mean, 21.0 dayb. February, 16 to 28 days; mean, 22.6 day. March, 16 to 27 daya; mean, 22 days. April, 15 to 28 days; mean, $22 \cdot 5$ days. May, 18 to 28 days ; mean, $23 \cdot 2$ days. June, 19 to 25 daya; mean, $22 \cdot 5$ days. July, 17 to 27 days; mean, $21 \cdot 5$ days. August, 21 to 28 days; mean, $24 \cdot 1$ days. September, 18 to 29 days; mean, $29 \cdot 1$ duys. Ootober, 16 to 27 days; mean, $21 \cdot 9$ dayi. November, 17 to 26 days; mean, $22 \cdot 0$ day. December, 15 to 28 days; mean, $21 \cdot 2$ days.

These figures will show with how much more certainty the eastern voyage is made with the anti-trade winds and easterly currents in its favour, than the average voyage with their adverse influences to retard and embarrass it.

These tables will suffice to show all that is necessary on this well-beaten track.

10:-STEAM TRACKS TO AND FROM AMERICA.

The daily increasing amount of collision, which has advanced much beyond the ratio of the use of steam, has led to many plans for averting it, but, apparently, without a corresponding effect in adopting them. The terrors of this danger in the open sea are manifest, and many sad examples aretoo well-known not to induce caution-one, that of the U.S. mail-steamer Arctic striking the French steamer Vesta near Cape Race in Oct. 1854, led our American friends to consider whether some means could not be employed to lessen the danger. Aocordingly, R. B. Forbes, Esq., of Boston, proposed one track for steamers going to, and another for those coming from America. This problem was worked out by Lieut. Maury, and we give here the result in his own words:-
"The shortest distance possible for a steamer between Liverpool and Sandy Hook is 3,009 miles; the average distance actually accomplished is 3,069 miles, and tho distance. by the middle of the lane coming is 3,038 . There is also another reconmendation in favour of this lane to the West, which is this: it lies along the northern edge of the Gulf Stream, where there is an eddy setting westward often at the rate of a knot an hour. On the average, I assume that the set of this eddy will amount to 12 miles a day for three days and a half, or say 40 miles. This makes the distanco by the lane coming practically about 2,998 miles; or, allowing 20 miles for detour, we shall have 3,018 miles, which will shorten the average time of the passage this way three or four hours, with less risk of collision, and less danger from Cape Race by the way.
" It may be urged against this lane that it cannot always be followed on account of the ice, and that, inasmuch as it crosses the Grand Banks, the steamers that ply in it
may n
mea a
and od
that a
pretty
as for
especi
York,
of no
if it w
"TI
thicke
near t
North
ascerta
ings a
known
out of greate to her latitud miles, tho No crossed shoals Virgin tion is
" It
steame force a for she the lan
"Yo
the lan
South
to get
Grand
on the
the lan might land;
from you cle proper possibl
" In the lar follow rule ge the me arc of from \mathbb{E} accoun From
t six of each from Amorica Havre, and a riation of: the between tho age length of \therefore Febraary, days. April, June, 29 to August, 22 to ys. October, -2 days. Do-
bruary, 16 to pril, 16 to 28 9 to 25 days; to 28 days; ber, 16 to 27 December, 15
yage is mado rerage voyage
an track.
ond the ratio ly, without a the open sea eaution-one, ta near Cape means could ., of Boston, om America. result in his

Sandy Hook les, and the other reconthe northern 1 at the rate will amount the distance 8 for detour, passage this Cape Race
a account of lat ply in it
may now and then run down a fishing vemel. The reply is that, as fir as the flahermon are concerned, they are now liable to be run down by the ateamery both going and coming. Whereas, with the lane, that liability in incident to the ateamers alone that are weatwardly bound, and the fishermen will have the advantage of knowing pretty nearly where the steemer will pass, and. which way the will be coming. And as for its being obstruoted by ice, so as to compel the nteamers, as it occasionaliy will, especially in May or June, to turn oat of it now and then, the Erie Canal, of Now York, is obstructed by ioe the whole of every winter; but that does not prove it to be of no value ; it only shows that it, like this lane, wonld be of more value to commerce if it were never obstructed by ice, or anything at all.
"The Grand Banks affiord a pretty good landmark, which can be used in tho thickest weather. Generally the water thermometer is found to fall as soon as you near these Banks; it is generally a good landmark for them. The castern edge runs North and South, and, therefore, affords an excellent correction for longitude, Having ascertained by the lead when the vessel first strikes this edge, then noting the soundings and the distance run before clearing the Grand Banks, the latitude will also be known with accuracy suffloient to enable the navigator to deoide whether he be in or ont of the lane, and if out, on which side. The lane crosses the Banks near their greatest width, 275 miles. If a steamer be crossing there in a fog, and in doubt as to her position, she can judge, by their breadth and the soundings, pretty nearly as to latitude. For instance, if the breadth of the Banks, when crossed, be less than 275 miles, but the soundings not less than 40 fathoms, the vessel has crossed the Bank to the North of the lane; but if she find herself in less than 30 fathoms, then she has crossed to the Sonth of it. Should she, however, find herself in water that suddenly shonls to less than 20 fathoms, and as suddenly deepens again, then she is noar the Virgin Rocks, or the Rock and Nine-fathom Bank to the East of them, and her ponition is immodiatoly known.
"It should be recollected, however, that these lanes are not channel-ways in which steamers must keep or be lost. Gales of wind, ice, and other things will now and then force a steamer out of them, and in such cases she will actually be where she is now, for she will then be in no more danger than she is now; only when she gets back into the lane she will be in lese.
"You will donbtless observe the advantageous position of the fork to Halifax, in the lane from Europe. As this lane approaches Newfoundland, it edges off to the South in such a manner as to render it impossible for a vessel so to miss her way as to get ashore. Suppose a steamer attempting this lane to be, when she nears the Grand Banks, 100 miles out in position (a most extravagant case), and that she be out on the Newfoundland side, she would, if behaving properly, be steering parallel with the lane, and if bound to New York, she would go clear of Cape Race. But she might be bound for Halifax, and by steering West too soon, might run upon the land; but recollect that the land to Halifax turns off on soundings, and a West course from where the lane from England strikes soundings on the Grand Banks will take you clear of everything. So withont the most gross neglect of the lead and all the proper precautions, which it is the duty of the shipmaster to take, it would seem impossible for him to run his steamer into danger here.
"In the longitude of the Grand Banks, the lane to Europe is 200 miles South of the lane to America. As a rule, this lane for the eastern bound steamers can be followed always, admitting that an exception now and then in practice will make tho rule general. It will be observed that this lane runs E. 15° S. from Sandy Hook to the meridian of 70°, where it takes a course E. 12° N., towards its junction with the arc of a great circle, South of the Grand Banks. Though the distance by this lane, from Sandy Hook to this junction, is a few miles longer than the direct line, yet on account of the Gulf Stream it is in time the shortest distance that a steamer can takc. From the Capes of Delaware it is obviously the shortest.
"I will close this report with a recapitulation as to distances and courses by each
lane, between New Youl, Halifax, and Philadelphita, on one sido, and Cape Clear and the Soilly Isken on tho other ; fint begging leave to say that, according to my computation, fomaded on such statintices an Ihave tonching the velocity of the Gul Stream, If two moumers bound for Cape Clear, and of exaotly equal speed, wore to start from Halifax, to ceo which should flrat get into the groat oircle part of the lane to Europe from New York, and if one were to go atraight for it by ateering East, and the other were bo follow the Busopean lane from Halliax as projected on the chart, thin one would reach the point of destination quite es moon an the other, the drift of tho Gulf Strmen componmating for the goeater distance.
" distance by lane to america.

From Scilly Inlem to	Halifax 2,381	Great 2,305
T	Capen of Dolaware...... 2,048	2,009
	Sandy Hook 2,882	2,840
From Cape Clear to	Halitax................. 2,102	2,170
7\%"	Capes of Dolaware 2,789	2,766
". $\mathrm{n}^{\text {.... }}$ "	Sandy Hook 2, 2 ,723	2,695
	Do by actual average	2,754

"This statement shows that by the lane to Ameriea the distance is actually shorter, both to Sandy Hook, and, we may infor also, to the Delaware, than tho average distance by present route; for the ronte getually pursued by the steamers now, both to Sandy Hook and tho Delaware, may be considered the same from Cape Clear or the Scilly Isles, as far Weat as long. 70°.
" DIBTANCE BY LANE TO EUROPE.

"Besides the detour from the great circle whioh a vensel from New York, Halifax, Boston, or Philadelphia would necessarily make by following the European lane to Cape Clear, it would require an additional detour of only 15 miles for vessels bound into the English Channel to use it also as far as Cape Clear. This lane, therefore, will, in consequence of the favourable currents of the Gulf Stream, put a vessel into Southampton' quite as soon as she could reach that port from New York or Philadelphia by the great circle ronte. Vessels from Halifax will have to make the grestest detour of any by adopting the lane to Europe; but for them it is less than 100 miles out of their way as they now go, and it will prolong their average passage eastwards, perhaps, two or three hours. I say perhaps, becanse I am not sure bat that the steamers from Halifax and New England are set back by the cold current 20 or 30 miles on the route now used for the eastern passage. The Gulf Stream, even from where they will join it by this lane, will set them forward, on an average, 40 or 50 miles at the least. It seems, therefore, that the attructions of this lane as it regards safety should more than outweigh the probable loss of an hour or two during the persage. When I speak of distances by the lanes, it should be recollected that the middle of the lano is moant, as per following table of courses and distances.

Cape Clear and to my compu-- Gul Stream, - to start from lane to Europe , and the other chart, thin one ift of the Gulf

Ireat Circlo. now, both to pe Clear or the

Cape Clear. uopean lane to vessels bound lane, therefore, ut a vessel into York or Philahee the greatest than 100 miles sage eastwards, o but that the rrent 20 or 30 eam, even from average, 40 or this lane as it or two during recollected that distances.
" lane to ayerioa.

Dourse Distance.
" lane to muropa.
" From Capes of Dolaware to lat. 39040', long. 700.0
Sandy Hook to lat. $39^{\circ} .40^{\circ}$, long. $70^{\circ} 0^{\circ} 0^{\circ}$.
lat. 89.40^{\prime}, long. $70^{\circ} .0^{\prime}$ to lat. $40^{\circ} .81^{\prime}$, long. $65^{\circ} 0^{\prime}$

"(b) Halifax to lat. $48^{\circ} .80^{\prime}$, long. 6000^{\prime}
${ }^{\prime}$ lat. $43^{\circ}: 30^{\prime}$, long. $60^{\circ} .0^{\prime}$ to lat. $42^{\circ} .30^{\prime}$, long. $55^{\circ} .0^{\circ}$

Course.	Distance.	
E. 10046' NT .		
E. 14.29 S.	192	
12.24 N.	237	
9.39	227	
e. 5	225	"
4.57	232	"
29.6	251	
27.28	241	"
24.4	226	"
20.18	212	"
16.21	206	"
12.48	199	"
9.17	192	"
E. 4.34 N.	189	"
E. 27.39 B .	151	
E. 20.78 .	168	"
15.17	${ }_{2}^{181}$	"
0.28	225	"

The cournem and diatances are for the " midadie" of the lance.
"Thus it appears that one lane will practically shorten the distance from Cape Clear to Sandy Hook and the Delaware by 30 miles, while the other prolongs the distance going to Europe 75 miles ; which prolonged dintance, when measured not by safety, but in time alone, the Grlf Stream, better weather, and diminished freqnency of fogs, will more than compensate for. In my judgment, these lanes, if properly followed, will make the average length of passage, as determined by the mean of all for the year, probably less each way, certainly not more than hour or two longer than it now is. Individual passages coming will, perhaps, not be made no quickly as they have been, but, on the average, trips will be shortened."
admiral FitzRoy has also devoted some attention to this subject, and it is our duty to allude to it here.
"Another qaestion appears to require notioe in these pages, because it is still a 'moot point' with many persons interested in navigating the Northern Atlantic. In a well-known publieation Maury particularly recommended 'Lanes for steamers.',
" If steamers could always steer direct courses, being full-powered, and not liable to be headed off in occasional heavy seas, such an arrangement might be advantagecus; but as it is otherwise, and as screw (auxiliary or mixed) ships sail while steaming,
they cannot conveniently keep to prewcribed 'lanes,' however desirable it might otherwise seem.
"However, as the traffic increases between Europe and America, some special arrangement may be required, even more urgently than now; in which case it might perhape be found practicable to consider an imaginary line, from latitude 50° and longitude 20° to the crossing of $45^{\circ} \mathrm{N}$. and $65^{\circ} \mathrm{W}$., the ' line of separation,' northward of which should go all vessels bound to the westward, and sonth of it all those heading to the eastward.
"A great safeguard would be legislative enactment against high speed daring fog, heary rain, or snow:-authorixing a majority of passengers to make objection ; to inspect, note, and sign the log, before disembarking; and, by a quorum, to give sabsequent evidence."-" Meteorological Papers," 1858.

11.-ROUTES BETWEEN NORTHERN EUROPE AND THE UNITED STATES.

" Cet your offing and proceed as though you wero bound to Rio, nntil you get into the N.E. trades. Then steer West until you fall in with the track of homewardbound Rio traders, and then take that.
"Shipmasters, bound as above, should stady the trado-wind chart carefully, in order to ascertain the extreme northern parallel near which they may rely npon finding the N.E. trades. The limits of these for the month should then be marked on the chart for every day reference and use. Having reached the mean polar limits for the month, it will, as a rule, be wise to go 2° or 3° further South in order to be sure of a good time in 'running down the trades.'
"Heaving reached the parallel of 30°, between 20° and $25^{\circ} \mathrm{W}$., the beat course is still a little to the West of South, antil the parallel of $20^{\circ} \mathrm{N}$. be reached. Do not care to cuake more than 5° of westing between these two parallels. From $30^{\circ} \mathrm{N}$. to 20° N. by this ronte, the average time will be six days in fall and winter; five in spring and summer; thus putting you fairly within the trades in 18 days, on the average, from the Channel. It will be less from Lisbon, the ports of Spain, and Gibraltar.
"Now, suppose you enter the trades at a mean between the meridians of 25° and 30° near the parallel of 20°. ; you should then 'run them down' on that parallel to $60^{\circ} \mathrm{W}$. It will take two weeks to do this ; total, so far, from the Channel, 32 days. Arrived here, you are in the fair way of homeward-bonnd Indiamen and Rio traders; and from this point every navigator knows the way to his port. If it be on the Atlantic, South of the Chesapeake, 10 days, on the average, will put him into ittotal, 42 days from the chops of the Channel, and from Liverpool a day or two more, from Spain and Portugal a day or two less, to our Atlantic ports. By this route Savannah is brought nearer than Charleston; and Fernandina, made for the voyage from Europe, our nearest southern port. If, on the contrury, he be bound into the Gulf, it will take him 15 days, from the homeward-bound Rio track to put him into New Orloans or Mobilo-total to Gulf ports, 47 days. These times are for ordinary sailers. A smart ship, with a smart oaptain, will always make the run in less time.
"This is a mere general aketch of the average route. Clever navigators will know from the charts how to vary it acoording to the season, and smart ships will gain upon the time, especially in reaching and 'running down the trades.'
"The sketch supposes the ship to enter the trades near the intersection of the meridian of 20° with the parallel of $20^{\circ} \mathrm{N}$. There is no particular advantage in entering the trades either on that meridian or npoil that parallei, or of entering them ut all, if you happen to find good winds before you get te the trades.
"Thus, suppose a vessel to be off the Lizard, bound to Charleston, and that she

BETWEEN NORTHERN EUROPE AND THE UNITED STATES. 440
cable it might
, some special 1 case it might titude 50° and on,' northward those heading
ed during fog, objection; to n , to givo sub-

THE
il you get into of homeward-
: carefully, in ely upon findbe marked on olar limits for It to be sure of
best course is hed. Do not rom 30° N. to inter ; five in days, on the ff Spain, and
ns of 25° and at parallel to priel, 32 days. Rio traders; it be on the him into itor two more, I this route r the voyage and into the put him into for ordinary less time.
rs will know ill gain upon
ction of the dvantage in tering them
nd that she
have a 7 or 8 knot breeze that will enable her to lay up direct for port; why should she, as long as that wind lasts, run out of her way to find one that will not enable her to do any better P On the contrary, let her take advantage of it to make westing as fast as possible, and when it grows lighter or becomes adverse, as it will, then let her master stick her away South in search of a better wind.
" By doing this, the voyage, as I have sketched it, may be considerably shortened. The trade-wind chart will show the navigator exactly how far South he ought to go to look for the trades in each month. A reference to this, with the injunction to make the most of a good wind wherever he finds it, seems to be almost the only sailing directions that are required for the ports above named, especially in winter and spring.
"In the fall of 1856, Captain Macloon, of the Georgia, asked to have pointed ont to him a better route from Liverpool to Savannah, stating that he had tried three, and had had by them two passages of sixty days each, and one of fifty-four. The reply was, in substance :-
" ' You ask for a new way to come from Liverpool to Savannah, I' have often thought that if I were in that trade, considering the passage is a long and tedious one, I should try it on the trades; that is, when you come out of Liverpool, proceed as if you were going to cross the Line, for which you will find sailing directions at page 381 et seq . of this work. Ain to cross the parallel of $30^{\circ} \mathrm{N}$. in abont $25^{\circ} \mathrm{W}$., and then steer S.W. till you get weii into the trades, even if you have to go as far as the parallel of $20^{\circ} \mathrm{N}$. Now steer Wust till you get about the meridian of 60°, and then haul up for your port. If you have a smart ship, and will try this passage next November, you will make something like this run: From Liverpool to the parallel of $30^{\circ} \mathrm{N}$., fourteen days; thence into the trades, say $22^{\circ}-20^{\circ}$, five days; thence to the meridian of 60°, ten days; thence to Savannah, seven days; total, thirty-six days.
" " Within that time this passage can be made by this route; but as I suppose the Gcorgia is not a clipper, I will give you a week longer, or forty-three days; and if you do not make it in that time, I shall be disappointed.
" ' M. F. Maury.'
"From June to October, inclusive, there is not much choice of routes. On the one hand the N.E. trades are uncertain at that season of the year-the hurricane season; while to the North, calms are most prevalent, and gales less frequent. During these months, therefore, the best route is the straight course, for the Atlantio ports especially, taking advantage of the winds as they present themselves, for they are too unstable for one to go either to the North or South to look for them.
"At this season of the year the calm belt of Cancer is far North, and vessels that attempt to make westing between 28° and 34° will find the winds more baffling than they will either to the North or tho South of those parallels. I caution navigators to uvoid the belt between these parallels as much as possible; and when they have to cross it, I advise them to cross it nearly on a meridian. The trade-wind chart shows the position of this calm belt for eaeh month.
Transient vessels, bound into Philadelphia and New York, would find the southern route, in the winter months, the most desirable on account of the weather, but the passage by it would, at that the most favourable season for it, be prolonged about a week on the average. The mistake that has been generally made by vessels taking the southern route is in their not going far enough \$outh to get well into the trades. The trade-wind chart will lenvo no one in doubt upon that point, and no vessel attempting the southern route should think of steering North, whatever be her port, uftil she falls into the great track followed by the homeward-bound vessels from the other hemispherc. They cross $25^{\circ} \mathrm{N}$. in about $65^{\circ} \mathrm{W}$.
" Dull-sailing passenger-ships from the North of Europe would do well, especially 3 L
from December to March, inclusive, by taking the sonthern route, even though they be bound to New York. If they cannot gain time by this route, they will gain at least smooth water and pleasant weather until they reach the offings of our own coasts.
" In summer the great circle route is the best to all the Atlantic ports. Even for the Gulf ports and Cuba the route in the summer time should be decided upon according to the wind one meets with while gaining an offing from Europe, rather than by considerations growing out of any fancied preference as to winds by the way. If they be such as to foroe you to the South; make as much westing as you can before rrossing the parallel of 38°. Having crossed the*, parallel it is then advisable to go South in search of the N.E. trades to carry you into the Gelf.
"The reason why the North or Great Cirele route is recommended to vessels bound into any of the Atlantic ports during the summer and fall months, from May to October, inclusive;-the reason why no preference is given to the southern route over the Great Circle during that period, even for Gulf-bound vessels; and the season why such decided preference is given to the suuthern route, from December to March, may be gathered from a little reflection as to the course of the trade-winds and a careful consideration.
"From December to March gales of wind are most frequent along the northern route. These are mostly from the westward. This circumstance, therefore, is against the Great Circle route in the winter time. But from May to October the case is different. The gales along tho Great Circle are much less prevalent.
"On the other hand, the trade-winds being a flow of air from colder to warmer latitudes, the difference of temperature between the calms of Cancer, from which, and the calm belt of the Equator, into which, the trade-winds flow, is greater in the winter than in the summer time. Consequently the more rapid, constant, and steady is the winter flow.
"In the summer, however, the air in the calm belt of Cancer, though it be as fur North as 35°, ittains as bigh a temperature, especially on the continents of Africa and America, as it does in the belt of equatorial celms. Then why should not tho air flow towards those continental heated places as well as to the Equator? It does; and thus the trade-winds are frcquently broken up in the summer time, and therefore they cannot be relied on as in winter. There is another reason why the winter trades ahould be fresher, more steady, and constant than the summer trades, and it is this: In the winter time the calm belt of Cancer, out of which the trade-winds flow, is eome 500 or 600 miles nearer than it is in the summer time to the equatorial calm belt into which the trade-winds blow-the places of high and low barometer are then closer to each other-and no one engaged in the business of commerce need be told that the closer the places of demand and supply be together the more certain and steady will be the supply.
"And there is alw another reason why the southern route, even by the Gulf-bound ships, should te abandoned, and why the Great Circle route should be preferred in the summer time, which is this: From July to October the hurricane season rages in the Wert Indies, while frome June to October the gale charts show the Great Circle route to be the least stcimy.
"These remarks about the southern route, for vessels bound in winter as far North as the Chesapeake and New York, are latended especially for the passenger slips from Bremen, Hamburg, and other ports in the North of Europe, and they are earnestly commended to the attention of the masters of such ships."-Maury.

$$
\text { from } t
$$ rience Roque but lit averag thene It sho miles parall " T the di belt, s parall to bo per d accido gain reach 19 by thene seasos

12.-FI: *THE UNITED STATES TO THE EQUATOR.

ts. Even for 1 upon accordather than by the way. If you can before dvisable to go
vessels bound from May to ern route over 1e 1eason why o March, may and a carefuil
the northern fore, is against r the case is
ler to warmer om which, and greater in the nt, and steady
h it be as far ents of Afica hould not thio tor P It does; , and therefore winter trades and it is this: winds flow, is puntorial calm meter are then need be told - certain and
he Gulf-bound e preferred in season rages ow the Great

- as far North ger ships from are carnestly

In a previous section (pages 387-403) the passage from Europe to southern latitudes was discussed, and it was there shown that a more westerly crossing than has heretofore been usual has been attended with great advantage. To those pages we, therefore, refer the reader for the arguments which equally apply to the voyage from the western side of the Atlantic.
One of the great results of Captain Maury's inquiries has been the improvement of this ronte; and before such a mass of evidence had been collected, he recommended the Great Circle route to the longitude of 31° West on the Equaior, as has been alluded to on page 394. This route considered in connection with the direction of the winds and currents is that which would naturally be chosen, if the crossing in that longitude would be considered to be a safe one to guard against being drifted to leeward of Cape St. Roque. Later experience has shown this fear to be fallacious in a great measure, and that it seldom occurs that vessels get into difficulties here.
Captain Maury devotes 220 pages of closely printed matter to this question; but, as his results will answer our purpose as well, we will briofly select the prominent points elicited:-
" Off St. Roque, in Brazil, the tracks of all vessels bound out of the North Atlantic ocean into the southern hemisphere fall in with each other. This is the great passway between the North Atlantio and the other great oceans of the world. Here the tracks of vessels, both from Europe and America, come together, whether their destination be around either Cape Horn or the Cape of Good Hope. Passing the offinge of this great promontory of Brazil, the highway then forks. All vessels for India, China, or Australia, hugging the wind, turn off to the East ; those that are bound sround Cape Horn keep straight on ; while those that are bound to the La Plata, to Rio, or any of the South American ports, being restricted in their courses by the winds on one hand and the land on the other, make the best of their way South, and turn off to the right as they reach the proper parallel. For these last, no further sailing directions are required after passing St. Hoque. Their way is plain.
"The following time tablo, by the new route, the old and the middle, is derived from the logs of 1,160 voyages, and it therefore may be held to embody the experience of 1,160 navigators touching the best route hence to the 'fair-way of St. loque.' The meaning of this table is so plain that analysis and discussion can add but littlo to the force of its own silent story. This tablo shows, for each month, the average time from port to $30^{\circ} \mathrm{N}$. ; the place of crossing that parallel, and the time thence to the Equator, and the place of crossing it, also, by each of the three routes. It shows, also, the distance from $30^{\circ} \mathrm{N}$. to the Equator, and the average number of miles 'made good' daily for so much of each route as is incladed between these parallels.
"The daily distances give to the navigator practically the best iden possible as to the difference in tho winds by theso several routes as they cross the N.E. trado-wind belt, supposing that belt to lie-all tho year round between the Equator and tho parallel of $30^{\circ} \mathrm{N}$. Thus, in some months, as in October, for instance, there appears to bo practically no difference in the winds, the average rate of sailing being 87 milew por day by the old route, 88 by the new, and 90 by the middle; a differenco purely accidental, for the N.E. trades are, at this acason, pretty nearly broken up. The gain by the new route, for this month, is not in crossing the trade-wind belt, but in reaching it. It takes, from our Atlantic ports, 12.6 days to reach it by the new routo, 19 by the old, and 18 by the middle; and having crossed 30° N., the trade-winde thence to the Equator, at this season, are the same for all routes. Not so at other seasons.
"Time Table by the Different Routes.

11			LONG. of Crobsing-		dAYS FROX-		Distance from $30^{\circ} \mathrm{N}$. to Line.		
			$30^{\circ} \mathrm{N}$.	Line.	Port to $30^{\circ} \mathrm{N}$.	$30^{\circ} \mathrm{N}$. to Line.			
			Longitude.	Longitude.	Days.	Days.	Total	Averago	
December. Old route			$32^{\circ} 2 \mathrm{~W}$.	$25^{\circ} 5 \mathrm{~W}$.	18.9	20.4	1835		. $89{ }^{\circ}$
"	Middle		$36 \cdot 6$	29.1	12.5	$20 \cdot 5$	1860		90
"\#̈ry	New	"	$44^{\prime} 7$	31.5	$10 \cdot 8$	$15 \cdot 0$	1985	"	131
January	Old	"	$34 \cdot 3$	24.4	$17 \cdot 1$	$17 \cdot 4$	1885	"	108
"	Middle	"	$34 \cdot 5$	$28 \cdot 1$	$16 \cdot 2$	$14 \cdot 9$	1830	"	125
February	New	"	43°	30	$10 \cdot 9$	$14 \cdot 3$	1980	"	137
February	Old	"	29.5	22.6	$16 \cdot 6$	$23 \cdot 2$	1835	"	79
" -	Middle	\%	35^{\prime} I	25.6	$15 \cdot 7$	14.6	1870	"	128
March	New	"	42.5	$30 \cdot 2$	11.8	14.3	1940	"	135
March	Old	"	31.2	23.7	$18 \cdot 4$	$20 \cdot 9$	1860	"	89
"	Middle	"	33	28.2	$14 \cdot 2$	$17 \cdot 2$	1820	"	106
	New.	\%	42.5	29	11.5	$16 \cdot 3$	1970	"	121
April	Old	"	32.4	25.6	$17 \cdot 2$	18.1	1835.	"	101
"	Middle	"	$33^{\circ} 2$	$28 \cdot 1$	16.7	$17 \cdot 2$	1825	"	108
M8゙"	New	"	40.6	19.9	13.7	$15 \cdot 8$	1910	"	121
May .	Old	"	33	24	22.8	$19 \cdot 4$	1885	"	86
"	Middl	"	36.4	291	$19 \cdot 5$	$20 \cdot 2$	1855	"	92
Jnn"	Now	"	41.2	31	$12 \cdot 9$	18.5	1890	\%	114
June.	Old	"	$32 \cdot 7$	26.4	$21 \cdot 1$	23.6	1830	"	71
"	Middle	"	39.5	$28 \cdot 2$	$17 \cdot 6$	21.4	1820	"	90
July"	New	"	43.5	$30 \cdot 7$	$13 \cdot 8$	21.2	1845	"	92
July	Old	"	31.6	$24^{\prime 2}$	$24 \cdot 6$	$20 \cdot 3$	1850	"	91
"	Middle	"	$42 \cdot 1$	$27 \cdot 7$	$15 \cdot 1$	24.4	1990	"	82
Augüst. . .	New	"	45.2	$30 \cdot 5$	13	20.5	2000		97
August.......	Old	"	31.6	$25^{\circ} 3$	22	22	1830	2	83
"	Middle	"	41.4	$26 \cdot 7$	16	22.2	2000	"	90
September . . .	New	"	$45^{\prime \prime}$	$30 \cdot 4$	$14 \cdot 2$	24.4	2010	"	82
September . . .	Old	"	33.8	25^{2}	$19 \cdot 3$	23.0	1867	"	81
	Middle	"	$38 \cdot 8$	29	$18 \cdot 8$	$25 \cdot 6$	1880	"	73
	New	"	417	31.5	$15 \cdot 8$	16.4	1890	"	115
October	Old	"	$28 \cdot 9$	26.7	19	$20 \cdot 7$	1810	"	87
- "	Middle	"	33	29.5	16	20	1815	"	90
November	New	"	43	31.7	$12 \cdot 6$	21.9	1930	"	88
November	Old	"	32	25.8	$17 \cdot 7$	$18 \cdot 9$	1830	"	97
"	Middle	"	34.4	28.9	20.2	$19 \cdot 8$	1825	"	94
"	New	"	$42 \cdot 5$	30.7	11.8	$18 \cdot 7$	1940	"	104

"From $30^{\circ} \mathrm{N}$. to the line, the average distance sailed daily during the winter months is 92 miles by the old ronte against 134 by the new. To what is this difference owing? Are the ships that take the now route the faster? That can hardly be. They are better navigated I have no doubt, for, as a rule, the log-books show that. But still that is not sufficient to account for all this differenoe. In winter a ship that takes the new route from 30° to the line will go nearly as far, on the average, in one day as she could go in a day and a half by the old route. This is owing, in a great measure, to the fact that the new route lics through a region of the ocean where the breezes are brisk, and brisk breezes always help to make both officers and crew brisk: This great difference of time and speed is probably owing to this circumstance more than to any other."

13.-MONITIONS AND INSTRUCTIONS FUR VESSELS NAVIGATING ON the western side of the atlantic; by Mr. Redfield, of New York.

1. Between the latitudes of 32^{\prime} and 45° (the parallels of Georgia and Nova Scotia) a vessel bound to the eastivard, on being overtaken by a gale which commences blowing from any point to the eastward of S.E., or E.S.E., may avoid some portion of its violence, by putting her head to the northward, and when the has veered sufficiently in the same direction, may safely resume her course. But, by standing. to the sonthward, in like circumstances, she will probably fall into the heart of the storm.
2. Within the same region, a vessel, on being taken in.a gale from S.E., or points near thereto, will probably soon find itself in the heart of a storm; and, after its first fury is spent, may expect its recurrence from the opposite quarter. The most promising mode of mitigating the effect of its violence, and at thu same time shortening its duration, is to stand to the southward upon the wind, so long as may be necessary or possible; and if the movement succeeds, the wind will gradually head to the southward; and, if the wind does not veer, be prepared for a blast from the north-west.
3. With the wind at East or N.E., a vessel, by scudding a gale, shortens its duration. By scudding, on the contrary, before a south-wiesterly or westerly gale, you will thereby increase its duration.
4. A vessel, on pursuing her way to the westward or south-westward, meets the storms in their course, and thereby shortens the periods of their occurrence; and will encounter more gales in an equal number of days, than if stationary, or sailing in a contrary direction.
5. Vessels, on the other hand, while sailing to the eastward or north-eastward, or, in the course of the storms, will lengthen the periods between their recurrence, and consequently experience them less frequently than vessels sailing on a different course.
The difference of exposure, which results from these opposite courses, on the American coast, may, in most cases, be estimated as nearly 2 to 1.
6. The barometer, whether in the higher or lower latitudes, always sinks while under the first portion or moiety of the storm on every part of its track, excepting, perhaps, its extreme northern margin, and thus often affiords the earliest and surest indication of the approaching tempest. The mercury always rises again during the passage of the last portion of the gale, and commonly attains the maximum of its elevation on the entire departure of the atorm. The indications of the barometer ought not to be neglected, even should the fall of the mercury be unattended by any appearance of violence in the weather, as the other side of the gale will be pretty sure to take effect, and often in a manner so sudden and violent, as to more than compensate for its previous forbearanoe. The prognostics engraved on the scale are not
the winter is difference hardly be. show that. a ship that age, in one , in a great where the crew brisk. tance more to be regarded : the mere rising and falling of the mercury are the particulars to be attended to.
7. The vicissitudes of winds and weather which do not conform to the implied specifications, are more frequent in April, May, and June, than in other months. Easterly or southerly winds, under which the barometer rises, or maintains its elevation, aro not of a gyratory or stormy oharacter ; but such winds frequently terminate in the falling of the barometer, and the usual phenomena of an easterly form.

SECTION IV.

PARTICULAR DESCRIPTIONS OF THE COASTS AND ISIAANDS - OF THE NORTH ATLANTIC; WITH DIREOTIONS FOR SAILING AMONG THE ATLANTIC ISLES.

Abstract

The Brarinos and Coursss aro those by Compass, unless where othorwise exprossed : but those given thus [W.S.W.] signify the True: and the given diroction of Wind, Tido, and Current, is to be considered as the Taue.

1.-ENGLAND, IRELAND, FRANCE, SPAIN, AND PORTUGAL.

It would be beyond the limits and scope of the the present work to enter into the minute deseription and directions for the extensive line of coast of North-western Europe, which would be sufficient guide to the mariner, such details must bo sought for in the special Sailing Directions which aecompany each ehart, and where all necessary instructions are given.
This book being specially concerned with the general navigation and phenomena of the ocean, only those more prominent features sought for in an over sea voyage in the more fiequented coasts, or those which may not be given in any other of our publications are here alluded to.
THE RNGLISH CHANNEL is amply deseribed in our Sailing Directions for the same, and on pages 378 to 381 are given some useful remarks as to its gencral navigation, with which most sailors are now well acquainted. In passing from the Strait of Dover westward, the first place where shelter may be found on the English coast is Dungeness Bay. The lighthouses aro amply described in the lists in the preceding part of the volume.
Dungeness lies 20 miles W.S.W. 1 W. from the South Forcland, and 13 miles S.W. by W. : W. from Folkestone. Upon it stands an excellent lighthouse and buildings connected therewith, painted red. It shows a brilliant fixed light at 92 feet.
Dungeness forms a remarkable shinglo point, projecting in a S.S.E. direction 4 miles beyond the fair line of the coast, affording shelter in the East Bay from North round westerly to East, or for ninstecu points of the compass. If there is any southing of East in the wind there is no shelter in either bay.
The quantity of bottom in both bays is fine sand over clay and mud, and excellent holding ground throughout.
To the W. $\frac{1}{2}$ S., distant 31 miles from Dungeness lighthouse, lies the eastern end of a narrow ridge of sand, called Stephenson Shoal; it thence extends for nearly three quarters of a mile in the same direction, and carries a depth of from 10 to 23 feet water, with 4 or 5 fathoms around it. East Mill, nt Lydd, on with No. 4 Coast Guard Houses, bearing N.N.E. E., clears the Eastern end in 5 fathoms; Rye Church on with the New Church spire near Rye Harbour, N.N.W. $\frac{3}{4}$ W., elears the western end in 27 fect ; Fairlight Church and Mill in one, leads half a mile to the
southa mile

The ward a affords ward 8 best ar Church toward tide ru

Eas
upon P
best po
tery, a
The
track 0
names
Shoal,
only 10
signal
standin
edge of
Cliff.
ball, is
Horse
Royal
Scaf
at least
kept op
in a lin
of them
In t
much e
gerous.
12 feet
The by W.
each en
water C
light ve
is a red
neaps,
vessel
pits on
in 7 fat
which
Sandgo
Church
The
the sou
betwee:
depth,
to, and
the stri
it duris
vessel
shoalew
south-west; and the South Foreland and Dungeness Lights in one, three-quarters of a mile to the southward.
The West Road of Dungeness is that space between the first building to the westward of the lighthouse, and the Black coast guard buildings at Jewrys Gap. It affords good shelter against north-easterly winds with the wind as far to the southward as \mathbf{E}. by S., and is mueh frequented by vessels bound to the northward. The best anchorage, in about 6 fathoms, is with Romney Charch tower in one with Lydd Church, and Dungeness Lighthouse E. $\frac{1}{1}$ S. Sinaller vessels may run further in towards the beach, guarding always against a sudden shift of wind. The western tide rans easy, and affords a good slack for running or working in.

East Road affords good shelter to vessels of all classes in from 4 to 12 fathoms; npon pretty good holding ground with the wind between N. by E. and S.W. The best position for anehoring is, Lydd Church just open to the northward of No. 2 Battery, and the lighthouse bearing S.W. by W. $\frac{1}{4}$ W., in 7 fathoms water.

The Royal Sovereign Shoals are a number of rocky banks which lie directly in the track of vessels proceeding between Beachy Head and Dungeness. The principal names to them are, the Royal Sovereign, Horse of Willingdon, Elphick Tree, Ratten Shoal, Kinsman Nab, Long Shoal, and Southern Head. The Royal Sovereign has only 10 feet water on its shoalest part. It lies E.S.E. $\frac{1}{3}$ E. 6 7-10ths miles from the signal house on Beachy Head, and the marks for the shoalest part are, the first tower standing to the eastward of the Grand Redoubt at Eastbourne in one with the western edge of Willingdon chalk-pit, and Fairlight Mill just opening of Hastings Castlo Cliff. A nun buoy of large dimensions, painted blaek, and surmounted by a staff and ball, is moored half a cable's length to the southward of the 10 feet patcl. The Horse of Willingdon consists of stone and rock, and lies N.W. by W. 2 miles from the Royal Sovereign Buoy.

Scaford Cliff, kept in sight to tho southward of the pitch of Beachy Head, will lead at least 2 miles to the southward of the Royal Sovereign Shoals. Beachy Head light, kept open of the next eastern cliff, also leads outside all the shoals. Fairlight Mill, in a line with the N.W. part of the cliff eastward of Hastings, leads to the eastward of them.

In the Stratt of Dover are some shoals of coarse sand and shells whieh very much contract the navigation, of which the Varne and the Ridge are the most dangerous. Besides these there is the Bassurelle with 22 fect, and the Vergoyer with 12 feet, least water. Their position will be known by the chart.
The Varne, the northernmost shoal, is steep-to, and runs in a N.E. by E. and S.W. by W. direction, and is about $4 \frac{1}{2}$ miles in length between the depths of 7 fathoms at each end; its breadth varying from half to three quarters of a mile. The shoalest water on it is 9 feet at about a mile from its north-east end. At its west end is a light vessel showing a quick revolving red light, and at 5 miles N.E. by E. $\frac{1}{5}$ E. of it is a red beacon buoy. There are strong ripplings over this bank both at springs and neaps, and during tempestuous weather a heavy sea, which would endanger any vessel attempting to cross it. Folkestone Church seen between two conspicuous ehalkpits on the face of the distant hills, N.W. by N., clears the north-east end of the shoal in 7 fathoms, and leads a mile to the north-eastward of the shoal patch of 9 feet which bears S. by W. $\frac{1}{1}$ W., $8 \frac{1}{\frac{1}{2}}$ miles from Dover Castle; and the eastern terrase at Sandgate between the above chalk-pits N. $\frac{3}{4}$ W., or the square tower of Lympne Church on with Lympne Windmill, clears the south-west end.
The north-east end of the Ridge (ur le Colbart) in 7 fathoms lies about 2 miles to the south-eastward of the body of the Varne, having 16 to 20 fathoms in the ehannel between them; it then takes a S.W. $\frac{1}{4} \mathrm{~W}$. direction for about $8 \frac{1}{4}$ miles to the same depth, and is about three quarters of a mile broad. Like the former shoal, it is steepto, and composed of sand and broken shells, the shoal patehes lying in ridges acrocs the stream, which occasion strong eddies even at neap tides. There is much sea on it during a weather tide, and in bad weather it breaks upon the shoalest parts; no vessel should therefore at that time attempt to cross it undor any circumstanices. The - shoalest water of 6 feet lies about $2 \frac{1}{4}$ miles from the south west end, with the summilt
of Mount Conple a little open to the sonthward of Cape Grisnez; S.E. E., 134 miles. from Dungeness Lighthouse, and W.N.W. $\frac{1}{}$ W. $10 \frac{1}{4}$ miles from Cape Grisnez. Thè mark for the north-eastern extreme of the shoal, in 7 fathoms water, which bears N.W. $\frac{1}{4}$ N. $8 \frac{1}{2}$ miles from Cape Griznez, is, the high trees at the back of Hythe in one with the Swiss Terrace at Sandgate; and Mont Lambert (a very conspicaous hill near Boulogne, with a fort on it) in one with the dome of the now cathedral in the Upper Town of Boulogne, S.E. $\frac{1}{4}$ E., or Sandgate Swiss Terrace between the two chalk-pits, N. $\frac{1}{4}$ E. or the Revolving Light on Cape Grisnez bearing E. $\frac{1}{3}$ S., leads to the sonthward of the south-westerin extreme in 9 fathoms.

From Beachy Fead to the S.E. part, or Elbow, of the Owers (the light-vessel), the bearing and distance are W. by N. 12 leagues ; and to St. Catharine's Point, on the same bearing, the distance is 20 leagues. From Beachy Head to Selsea Bill the coast trends in a curve; but the direct bearing and distance are W.N.W.f $\frac{1}{4}$ W. $13 \frac{1}{4}$ leagues.

Seaford Road.-Between Shoreham and Beachy Head the depths very gradually decrease from the offing towards the land, and vessels may anchor all along the coast with off-shore winds in from 2 to 9 fathoms water; bnt the anohorage of most general resort is that in Seaford Road, which lies between the tide mill which stands to the eastward of Newhaven and the Mortella Tower near the beach at Seaford. The best anchorage in the road is between the tower and Blatchington Battery, with Beachy Head Lighthouse just shnt in by the cliffs, over a bottom of sand, shells, and mud. At this anchorage Beachy Head Cliffs will afford shelter with the wind as far southerly as E.S.E., and it is therefore superior to the western Bay of Dungeness. Seaford Head is often mistaken for Beachy Head by vessels coming np channel within 4 or 6 miles of the land; they may however be distinguished by there being a small building on the highest part of Beachy Head, whereas there is nothing on the former but a conspicuous large green pactch on the face of it.
At nine miles westward of Seaford Roads is the town of Brighton, the lights of which are conspicuous at night, and at 8 or 9 miles beyond this is Worthing, another watering place. The coast is generally very low.
At δ miles to the N.N.E. of Worthing is Chanctonberry ring, a large circular thick grove of trees 964 feet above the sea, and is frequently the first object seen on making the land. A reference to this object would often assist the mariner when all other objects are too low or indistinct to be observed.

At 13 miles beyond Worthing is Selsea Bill, off which runs the line of shoals marked at its S.E. point by the Owers Light-vessel, showing one light. These shoals are described in the Directions for the Channel.

The anchorage in Pagham Bay between the Owers and the coast is familiar to seamen nnder the name of the Park, which is well sheltered from the violence of W. and S.W., winds, but most unsafe with the wind anything to the eastward of south. The holding ground is excellent, being a stiff clay under a thin crust of gravel; but the anchorage cannot be recommended as a refuge for large vessels owing to the frequent and sudden shifts of wind, and the astonishing rapidity with which the sea gets up. The above observation is particularly applicable during the winter months, for a long dreary night in the Park is anything but a desirable situation to be placed in.
Small vessels may bring up with the Mixon Beacon bearing W.S.W., aud Pagham Watch Honse on with Chichester Spire, in about 3 fathoms at low water; but large vessels should anchor further out and more to the eastward, with the spire to the westward of Bow Hill, the Mixon Beacon bearing W. by N., and the Owers Lightvessel S. by W. $\frac{1}{8}$ W., both for geater depth of water and increased facility of getting away from the coast, in the event of being surprised by a shift of wind. The nearer the Mixon is approached, the stronger the tide runs.

SPITHEAD.-The limits of the best anchorage at Spithead are Southsea Castle N.E. to E. by N., and Gilkicker Point N.N.W. to N.W. A good berth for large ships is with Portsdown Windmill on the end of the trees on Portsmouth Lines N.E. $\frac{1}{1}$ N.t.
and K
from 1
berth open \mathbf{F} open 2 The with 4 require

In t chorag west 1 danger
"Stucu for them three r water, mall h
Reden
Port of Port miles. Point o with th or Sand fathoms ride safi
The Alban's has 2 w houses, one the the set
The 1 above t E. by N

SHA shingle, the Bil and the round, 1 On its 1 11 feet rippling by a lig
The direct 1 shore is the east total len onter es found 1 Durir stage, el cxtend.
cable's
E., 134 miles. Grisnez. Thè r , which bears C Hythe in one nspicnous hill thedral in the ween the two $-\frac{1}{2}$ S., leads to
light-vessel), ine's Point, on Selsea Bill the N.N.W., $\frac{1}{4}$ W.
ery gradually long the coist f most general stands to the rd. The best with Beachy olls, and mud. 3 far sontherly zess. Seaford el within 4 or a small buildhe former but
the lights of thing, another
circular thick en on making vhen all other
phoals marked ese shoals are
miliar to seaiolence of W. ard of south. © gravel ; but ng to the frevhich the sea inter months, fuation to be
and Pagham er ; but large spire to the Dwere Lightty of getting The nearer
and Kickergill Tower on the western end of Monkton Barracks N. by W. ${ }^{\text {s }}$ W. in from 10 to 12 fathoms water; but small frigates and vessels of light draught may. berth themselves nearer to the Spit sand, in abont 7 fathoms, care being taken not to open Kickergill Tower from the east end of the Barracks. Vensels moored should have open hawse to the southward.
The navigation of the Solent and the excellent anchorage of Southampton Water, with the entrance by the Needles Channel, will be found in our Directions. They require too much space to be described here.
In the southern part of Poole Bay the ground is clear, and there is an open anchorage in 6 or 7 fathoms water, over sand and gravel, with Studland Church bearing west $1 \frac{1}{2}$ miles. In the northern part of the bay, however, are several patches of dangerous rocks, with 6 and 7 fathoms between them.
Stualland Bay lies on the north side of Standfast Point, and affords good anchorage for small vessels during westerly winds; and if a south easterly gale should drive them from their anchors, the banks within are soft mud. The best anchorage is off three remarkable projections in the chalk cliff, called the Yards, in about 2 fathoms water, and near the following bearings :-the Agglestone (a large square rock on a small hill half a mile inland) open to the northward of the coast guard buildings on Red-end Point, W. by N. $\frac{2}{4}$ N., and Old Harry S.E. by S.
Portiand.-The Roads of Portland lie between Weymouth and the North end of Portland, which bears from the jetty of Weymonth S. by W: $\frac{1}{4}$. W., disiant $2 \frac{1}{2}$ miles. In these roads the ground is excellent, in from 6 to 7 fathoms, with the North Point of Portland bearing S. by W. Portland Castle S.W. abont $1 \frac{1}{4}$ miles distant, with the West Cliffe of Portland just open, and Bellefield Hall on with Weymonth or Sandsfoot Old Castle, N.N.W. $\frac{5}{3}$ W. There is also good ground in 12 and 13 fathoms, with the North Point of Portland S.S.W. $\frac{1}{4}$ W. In these roads you will ride safely with westerly and montherly winds.
The Bill, or southernmost point of Portland, lies W. by N. 5 leagues from St. Alban's Head, and about $3 \frac{1}{2}$ miles to the sonthward of the North point of the isle. It has a white obelisk on its extremity, and half a mile within it are two white lighthouses, which bear, when in one, N.N.W. $\frac{1}{}$ W., and are 1,509 feet apart. When in one they lead between the Shambles and the Bill, but allowance should be made for the set of the tide.
The lights of Portland are brilliant and fixed. Height of the high light, 194 feet above the sea, and seen at 4 leagues. The latter is visible frum W.N.W. seaward to E. by N .

SHAMBLES.-The eastern end of the Shambles, a dangerous shoal, of coarse shingle, sand, and shells, bears from St. Alban's Head W. $\frac{1}{1}$ N. $11 \frac{1}{2}$ miles, and from the Bill of Portland, E.S.E. 4 miles. The bank extends thence W. by N. 2 miles, and the West end lies with the Bill of Portland N.W. $\frac{1}{2}$ W. 21 miles. It is steep all round, having 14 fathoms close to it; but always shows itself by a break or ripple. On its East and West ends are from 6 to 7 fathoms; but, near the middle, are only 11 feet at low water. The shoal, in fine weather, is always distinguishable by the rippling. The tide rises over it about 10 feet perpendicular. Its outer end is marked by a light-vessel.
The breakeoater abuts on to the N.E. point of the island, and runs off shore in a direct line East, by compass, for 3,500 feet; but at the distance of 2,000 feet from the shore is an opening of 400 feet wide, between two circular heads of masonry. From the eastern end it cusres round to a true North direction for 5,600 feet, making the total length of the breakwater, when completed; 3,000 yards, or nearly $1 \neq$ miles. Its onter extremity will be in $\mathbf{8}$ or $\mathbf{9}$ fathoms water, and the depth of $\mathbf{4}$ fathoms will be

During the progress of the works, a red light is shown from the extremity of the stage, elevated 30 feet, visible 8 miles off. As the stone thrown over during the works extende beneath the water to some distance, veasele should not approach it within a cable's length. This refuge harbour affords shelter from nearly all winds.

TORBAY.-The entrance into the bay, formed by Hob's Noee and Berry Head, is 37 miles wide, and the ground within is generally clear and good. In sailing in, yon may, if necessary, keep close elther to Berry Head or the Orestone. To sail between the Orestone and Loadstone, keep nearly in mid-channel, taking care not to approach too near the West side of the Orestone, as the water is shoal for half a cable's length from the rock on that aide. To the S.W. by S., a little more than a cable's length from the Orestone, there is a susken rock, with only 6 or 8 feet over it at low water.

Ships may anchor in Torbay in 6, 7, 8, and 9 fathoms; the ground is strong clay, and remarkably good. The common marks for anchoring are, Berry Head South, 8. by E., or S.S.E., and Brixham Church on with the pier-head. The best ground is abont a mile a from Brixham pier-head, in 7 fathoms of water; but ships may ride, well sheltered, on the North side. A great swell is forced into the bay by easterly winds ; but, about 11 miles from Brixham pier-head, there is an underset to windward, by means of which ahips ride essier than in other parts of the bay. In general, the deeper that you anchor in the bey, the better will be the riding, being more out of the atream. From the milddle of the bay, in 7 fathoms, Berry Head bears S.S.E., and the Orestone E.N.E. Small vessels commonly lie aground at Brixham, on the South side, and at Torquay, on the North side, of the bay.

Dartmouth. - The entrance of Dartmouth Harbour lies nearly 2 leagues from Berry. Head, and about 7 miles to the N.E. of the Start Point. It is situated between two high lands, within which is an excellent harbour, sufficiently capacious to contain 308 sail of vessels, secure from all winds, in from 7 to 15 fathoms.

- The coast between Berry Head and the entrance of Dartmouth Harbour is rocky, but the rocks, some of which are above water, as represented on the charts, do not extend more than three-quarters of a mile off, but they require the utmost caution.

The entrance of the harbour is narrow, and the opening doee not readily unfold itself to vessels coming from the southward: the square steeple, however, of Stoke Fleming Church, which stands very conspicuously near a white honse upon the land to the south-westward of the harbour's mouth, as shown in the chart, will serve to mark ic position nearly, until, by a nearer approach, Kingswear Old Castle and St. Petrox Church become visible. St. Petrox Charch and Dartmouth Castle are on the western side of the entrance, within St. Petrox Point.

A fixed light, of a deep red colour, is shown from the tower of the castle on St: Petrox Point, at the height of 4 c feet above the level of high water, and visible when bearing between N.W. $\frac{1}{5}$ N. and N. by E. at the distance of 7 miles.

Shipe coming in from sea, if obliged to wait for an opportunity of entering, generally anchor without, in the part called the Ranae, within Blackstone and Froward Points, which has à depth of from 7 to 10 fathoms. Here they lie safely when the wind does not blow in; and when it does, it will lead into the harbour. From S.W. to E.S.E., the wind blows true in, and from N.W. to N.E. true ont : all other winds blow in flaws. Pilots are always ready, with boats for towing and a steam-tug whenever required: os signal may, therefore, be hoisted for one, when approaching the Range.

Fxclusive of the Mewstone, and other rocks above water, which lie on the eastern side of the Range, there are several sunken rocks, extending outward to the distance of 150 fathoms from the shore on the same side. For the ontermost of these rocks the mark is a house, with a balcony, on the North end of Custom-house Quay, bearing N.N.W., on with the easternmost cnd of Dartmouth Castle. This mark, will, therefore, lead clear of the rest. The Castle Ledge Buoy i_{L} black, and lies in $4 \frac{1}{\text { h fathoms, }}$ with St. Petrox Church in line with the centre of a grove of trees on the back land, N.N.W., and a conspicuous double pointed rock off Comb Point in line with the house on Sladton Rock, W. $\frac{1}{4}$ S. On the western side of the Range is the Homestone, a rock having only 5 feet over it at low water, which lies about 200 fathoms S.S.W. from a high and steop rock, called the Blackistone, lying near the western shore. The buoy on it is black and white, in circular stripss, and lies in 7 fathoms, with Kingswear Old Castle, ite breadth open of the Blackstone. Beach, N.E. I N.; and Stoke Fleming

Church Blackest Homea
The

Homest

been pl

> veyors.
less wa
The

Mowsto

in trees
the cast channel
The f East sic water, t

$$
\text { When } t
$$

> of tho
entranc
To or Mewsto mouth ledge.
bow, un Point. rua in a placed i bearing N. $\frac{1}{4}$ W.

To Rocks, Kingsw will cart passed t keep Da
Great in conse from the leave th winds b outters C
Start the hillo in heigh
There except t] of 2 cabl rock, wi lighthou Start Po when, b the west $A \mathrm{Lig}$ a stone 204 feet it comes कeather
erry Head, is ailing in, you , sail between re not to apoal for half a more than a 8 feet over it
s strong elay, Head Sonth, eest ground is ups may ride, y by easterly to windward, a general, the ore out of the s.S.S.E., and on the South
leagues from zated between ous to contain
bour is rocky; charts, do not ost caution.
readily unfold ever, of Stoke upon the land , will serve to astle and St. otle are on the
castle on St. vislble when
ptering, geneand Froward ely when the
From S.W. 1 other winds a steam-tug proaching the
n the eastern b the distance ese rocks the luay, bearing E, will, theren $4 \frac{1}{2}$ fathoms, he back land, ith the house Homestone, a homs S.S.W. a shore. The h Kingswear toke Fieming

Church, its length down the slope of Comb Point, W. by N. The eaddle of the: Blackstone bearing N.E. by N., and on with Kingowear Castle, is the mark for the; Homestone.
The Pin Roor, a very formidable danger, lies one-thind of a mile eastward of the Homestone. Although well known to the fishermen and pilote, it has only recently been placed on the Government charts, having escaped the vigilance of former surveyors. On the Pins Point a depth of 13 feet was found, and it may perhaps have less water.
The crose marks for the 13 feet are: the East Blacketone and mouth point of Mowstone in one, E. I S., and Dartmonth Castle flag-staff in one with a white house in trees on Yarrow Bank N. $\frac{7}{2}$ W.; the same house open of Battery Point cleare it to the castward, and shnt. in with St. Petrox Church, to the westward. There is a safe channel between the Pin and the Homestone.
The following mark is to bo observed as a thwart mark for the Sunken Rooks on the East side. To the eastward of Dartmouth is a red point, beneath which, near the water, the earth appears black, and there is a white stone in the red part above. When the white itone comes directly over the black part below, you will be abreast. of the rocks. The town quay, if it can be seen, kept on with the middle of the entrance of the harbour, will lead clear of them.

To sail in for Dartmouth from the eastroard, with a leading wind, from off the Mewstone steer for Comb Point, until you bring Kingswear Point on with Dartmouth Castle; thence, by steering with this mark on, you will clear the eastern ledge. When nearly abreast of the Blackstone, keep the castle open on the portbow, until the sonthernmost house in Kingswear is open of Dartmouth Castle Point. This mark leads clear of the rock called the Cheekstone, whence you may ruu in and anchor. A chequered black and white buoy, and marked "Cheekstone," is placed in $3 \frac{3}{4}$ fathoms water, about 25 or 30 fathoms S.E. of the rock." From it the bearing is, the southernmost house at Kingswear, touching the point under St. Petrox, N. $\frac{2}{2}$ W.

To sail in from the wostword, with a leading wind, give a good berth to the Comb's Rocks, which lie off the ehore on the West side; then steer to the eastward, until Kingswear Castle is open to the eastward of the Blackstone. This mark kept on will carry you clear of the Homestone. With Stoke Church shut in, yon will have. passed the Homestone, and may steer for the Blackstone. Having passed the latter, keep Dartmouth Castle on the port bow, and proceed as above,
Great inconvenience attends the ingress to, and egress from, Dartmonth Harbour, in consequence of the frequent and violent flaws of wind, which issue very suddenly from the high lands. Therefore no square-rigged vessel should attempt to enter or leave the harbour without a leading wind. Between S.W. by S. and S.E. by E. the winds blow truly in, and as truly out when between N.W. by N. and N.E. Even cutters cannot always succeed in getting to see with S.W. Winds.
Start Point may be well known from its rugged cock's-comb-like appearancei the hillocks on its ride within the lighthouse are tive in number, each about 200 feet in height. Peartree Head, within the point, rises to 386 feet.
There are no dangers in the vicinity of its projecting points to the south and S.W., except the Pear Tree, the Start, and Cherrick Roeks; the latter lies S. $\frac{3}{4}$ W. upwards of 2 cables' lengths from the point, and is just awash at low water springs. A sunken rock, with only 12 feet water over it, also lies at the same distance due east from tho lighthouse; to avoid it a vessel should not shut in the Village of Hall Sands with the Start Point, until the Pear Tree Rocks open out to the southward of the Start Rocks, when, by giving the latter a berth of about 2 cables' lengthe; she may proceed to the westward.
A Lighthouse hats been erected upon the Start at 140 yards its extreme point; it is a stone tower 94 feet high, exhibiting a powerful revolving light, at an elevation of 204 feet above high water, and showing a bright flash every minute to seaward, till it comes to the bearing of W.S.W., on which it is eclipsed, and may be seen in clenr weather at the distance of 19 miles.' A fixed light is also shown in the samo tower, int beare W. S. and S.W. by S., to guide vemele to Dartmonth and the ad.
To the anth-enutward of the Start liew a dangerons bank of pulverieed aholl and fine gravel, onlled tho Skerries.
To avoid the Skorries at night, a vessel should not approach them within 20 fathoms water; and in coming from the northward, if wishing to run to the westward of them, she should keep the fixed light on a S.W. $\frac{1}{2}$ S. bearing, and pass the Start at a distance of a quarter of a mile on î northern side, and half a mile on the mouthern. When Start Light been. N. W.; , whe will be to tho nouthward of the W. Whies.

The Eddyatone Iighthouse, with its fixed light, bears E. 1 S. 384 miles from the Lizard, and W.N.W. $\frac{7}{}$ W. 18 miles from Bolt Head, near Salcombe. It has been painted with a broad red stripe, which will distinguish it at once from the Bishop Rook Lighthouse.

From the Eddystone lighthouse, at the distance of $3 \frac{1}{4}$ miles, N.W. by N. by N., there is a bed of sunken rocks, called the Hand Deops, which lie nearly in the fairway of ships bound bound from the wentward for Plymouth Sound. On the shoalest part is a pointed rock (so far as can be judged by the lead), on the shoalent put if which are from 22 to 24 feet at low wator spring tides. The shoal has, conumualy, a ground awell on it ; and, with a S.W. gale and ebb tide, the sea here runs very high, so that a ship may depress (or send) 5 or 6 feet.

The best mark for clearing this dangerous shoal is furnished by the Breakwater lighthouse, in one with with Penlee Point, E. by N.; it leads a long mile to the northward of them, and a mile to the S.E. of them when in one with Mount Batten in Plymonth Sound, N.E. by E. $\frac{1}{2}$ E.

PLY The magnificent Breakwater is 5,000 feet long, at its West end is the lighthouse. showing a red light seaward, and bright northward of S.W. $\frac{1}{3}$ W. over the anchorage within. Below this red light is a leading bright light, visible only when between the bnoys marking the western eatrunce. A large bell is tolled in fogs or snow storms.

On the East end of the breakwater is a beacon, a granite obelisk, nurmounted by a staff and ball. 'This ball is so constructed that ten persons might find ahelter within it should they be cast away on the breakwater.

Besides these standing marks the Trinity Corporation have placed an obelisk, or beacon, on the Hoe, at the head of the Sound, which has since been heightened, and painted red and white in horizontal stripes.

The entrance of Plymouth Sound is distinguished on the eastern aide by.two remarkable large rocks, which lie upou the extremity of reefs that stretch from shore. If these rocks the southernmost is called the Mowstone: the northernmost, the Shagstone. The first lies nearly S.W. by S., half a mile from Wembury Point, or the S.E. point of the Sound, and has, just without it, a srame alled the Little Mevstone, from which a shoal stretcles to the W.S.W. neen'y 2 orthe' lengths.

The bearing and distance from the Great Mewstone in : ichad are N.W. by W. $\frac{1}{2}$ W. $4 \frac{1}{b}$ miles, and to Penlce Point N.W. by W. 31 miles. The entrance of Pl . month Sound lies between the two latter, and it may, from a distance, be readily known ; the land over Plynouth being high double land. On a near approach, Rame chush will appear open to the northward of Rame Head, and the square tower of Pen. will be seen atanding upon the highest part of the land over Penlee Point, whici. Firrde the more certain mark.
K.Ne: isikn, tir Kenny Rocks, appears like a black rock, lying N. by W. nearly 1 mile tive. th: Mewatones, and at about one-eighth of a mile from shore. At the distacee of a cuble's lengtir W.N.W. $\frac{1}{5}$ W. from the islet stands the Shagstone.
The Tinkea, and the Knap and Panther, are well known as tho principal shoals
in the which and its atone. woster Penleo to the Wiso a Ther Eastor hidden Tho 3 ? , and end x arting A re trming rud and from the mark 0 northo WE Pantho to Plym Ship stone, the 'Tri breakw the sou the non
The the wh E. $\frac{3}{2}$ E

Ther end of stays in therefo to avoi
To a
or N.E
which water Penlee Be car more t the das The vessels numer sion of this Cl with tl the Tir water.
In th
water,
nly when the nouth and the
rived shell and
em withia 20 the westward pass the Start mile on the thward of the
milen from the
It has been om the Bishop
by N. by N., ly in the fririn the ah coalent put if , comumunly, a mis vory high,
se Breakwater ng mile to the Mount Batten

South Britain, he lighthouse. the anchorage when between foge or snow
mounted by a ahelter within
an obelisk, or ightened, and
de by two roh from shore. hernmost, the bury Point, or led the Little lengths.
are N.W. by rance of Plye, be readily proach, Rame Lare tower of Penlee Point,
py W. nearly hore. At the gstone.
ncipal shoals
in the lower part of the Sound. Of theie, the outer one in the Tinker. This ahoal, which it a cable's longth broad, stretehes nearly one-quartor of a mile Eant and Went, and ite western extremity lies N.N.W. $\frac{1}{}$ W. more than $1 \frac{1}{2}$ milen from the Little Mewatone. It has on it from 10 feet to $3 f$ fathoms of water. The shoelest part of the wontern end, on whioh, without the dopth of 14 feet, there is a white buoy, lies with Penlee Point (the S.W. point of the Sound) on with a dark aquare apot in the valley to the northward of Rame Head, bearing W. by N. $\frac{z}{5}$ N., and the flagataff on Mount Wiso and the spire of St. John's chapel in one N, $\frac{1}{s}$.
There in aleo a white buoy on the eastern side of the Tinker, which marks the Eastern Channel. With the Boit Head open to the southward of the Mewstone, or hidden behind it, you will be well to tho southward of the Knap and the 'Tinker.
The Knap and Panther are extremities of one rocky ledge, upon which there are 3, 34, and 4 futhoms of water. This ledge is more than one-third of a mile in length, end patends in the direction of N.E. by E. $\frac{1}{4}$ E, and S.W. by W. $\frac{1}{2}$ W. Each end is intingris'led by a bluck buoy.
A reef extends S.S.E. $\frac{1}{2}$ E. nearly a quarter of a mile from Penlce Point, and Wrminates in a sinken rock of 12 foet of water, called tho Draystone. A checquered rcd and white buoy has been placed on it. It lies in $5 \frac{1}{2}$ fathoms, 2 cables' lengths from the point, with Tor House (whitewashed and conspicuous) on with high water mark of fedding Point, and the Breakwater beacon on with tho upper corner of the northernmost quarry at Bovisand.

WESTERN CHANNEL.-This ohannel, lying to the westward of the Knap and Panther, has sufficient depth for the largest ships ; and is now the principal channel to Plymouth Sound.

Ships coming in here, for the Sound, should, in the first instance, to clear the Draystone, as well as the Knap and Panther, bring Piymonth church spire in a line with the 'Irinity red and white beacon, on the Hoe. A better mark than this is, to bring breakwater lighthouse in a line with the whito tower on Mount Batten. To keep to the southward of it, you may keep the end of Bovisand Pier in a line with or open to the southward of the beacon on the East end of the breakwater.

The leading mark through the channel is, the breakwater lighthouse in line with the white tower on Mount Batten, at the entrance to the Catwater, bearing N.E. by E. $\frac{9}{2} \mathrm{E}$.

There is generally a good deal of sea running during the ebb tide, near the West end of the breakwater. Near the West end of the work a ship is very liable to miss stays in working out, by reason of a cross sea and an eddy tide. The ship shonld, therefore, be put about before she gets too near to the West end of the work, in order to avoid the risk of missing stays and dritting upon it.
To sail in during the night, bring the Eddystone light S.W., and steer N.E. by N. or N.E. by E., according to wind and tide, until you make out tho breakwater light, which should be brought to bear N.E. by E. Continne in this direction until the water shoalens to 9 or 10 fathoms, which will be abont three-quarters of a mile from Penlee Point; this side being the safest to run in by in the night, or in thick weather. Be careful to go no nearer to the point than in 9 fathoms, as this depth is but little more than hali a mile from the shore. With the point W.N.W., you will be above the danger, and may then steer for Cāwsand Bay, according to circumstances.
The EASTERN CHANNEL into Plymouth Sound should not be attempted by vessels of any considerable draught of water, unless with a free wind, because of the numerous rocks which are scattered in its vicinity, and the occasional send or depression of the sea there, with south-westerly and sonth-easterly winds. . The mark for this Channel is, to bring the Beacon on the eastern end of the Breakwater in one with the Beacon on the Hoe bearing N. by E. $\frac{s}{2}$ E. easterly, which will lead between the Tinker and the Shagstone, and nearly up to the Breakwater in 6, 4, and 5 fathoms water.
In the centre of the fair-way, however, are three rocky patches, of 24 and 18 feet water, at low-water springs, the caitoria extremities of which rainer encroach upon
this line of direction; two of these lie nearly half a mile to the southward of tho Breakwater, the third about one cable's length; all three are marked by black and white checkered buoys ; the Tinker by white buoys; and the shoal bank (which extends from the eastern shore and the Shagstone) by two red buoys. The above mark will lead in between these buoys, and is to be continued till Maker tower comes in one with the signal-staff on the Breakwater; then steer towards Staddon point, so as to bring the spire of Plymouth now church exactly in a line with the centre of Tor house; which will clear the latter shoal alluded to (the one of 18 feet). The Breakwater may be rounded for the anchorage at the diatance of 60 or 80 fathoms, leaving the Leek bed and Duke rock to the northward. At night the light on the west Barbican pier-head, open of Mount Batton, bearing N.N.E. $\frac{1}{\frac{1}{2}}$ E., loads through. There is no anchorage in this channel.

When running into or out of tho Sound in the daytime upon any of the beforementioned leading marks, boar in mind that, so long as the Bolt Head continues in sight to the southward of the Mowstone, you are withont or to the southward of all the shoals, and that the Bolt Head shut in with tho Mowstonc, ranges very closely upon the tails of both the Tinker and Knap.

FALMOUTH.-From Ramo Head to St. Anthony's Point tho bearing and distance is W. $\frac{1}{2}$ N. 32 miles. The harbour of Falmonth is one of the best in England. Its advantages arise partly from its peculiar situation, and partly from the influx of several rivers. The entranco is formed by the bold rooky coast of St. Anthony's Head on the East, on which is the rovolving light, and by the headland called Pendennis Point on the West. This latter is distinguished by Pendennis Cdistle, which stands ovor it, on the summit of a hill. From the Point of St. Anthony to that of Pendennis, the bearing is N.W. by W., distance exactly 1 mile.

Within St. Anthony's Head, on the East gide, are the castle and town of St. Mawes, which stand' on the North side of St. Mawes' Creek, or the entrance of tho River Penkule; and within Pendennis Castlo, to the N.W., stands the town of Falmouth.

In the entrance of the harbour, at the distance of one-third of a mile to the S.E. by E. $\frac{1}{2}$ E. of Pendennis Castle, and E. $\frac{1}{2}$ S. from Pendennis Point, is a rock called Ful. mouth or the Black Rock, which is uneovered, in spring tides, from $2 \frac{1}{2}$ hours ebb to $3 \frac{1}{\frac{1}{2}}$ hours flood. There is a beacon upon it, lately renowed, which sufficiently indicates its situation. Without this roek, at the distance of about a cable's length, S.E. by E. + E., is a rocky shoal of 16 foet of water, which lies with the garrison flagstaff on with tho rook porch. Betwoen this shoal and some rocka which lie off St. Anthony's Head, is the usual entrance into the harbour.

Without the entrance of the harbour is the Outer Anchorage, or what may be more properly called Falmouth Outer Road, from St. Anthony's Point toward the Manaclo Rocks, where there is good anchorage with the harbour's mouth open, equal in point of riding to Mevagizey Bay, superior to Cawsund Bay, and very little inferior to Torbay, with the wind from S.W. round to the westward, and northward to the N.E. paint of the compass.

The marks for the Old Wall, or Pinnacle Rock, which lies to the castward of this anchorage, are, a small whito bowling-green house, at Flushing (on the North side of the river, opposite Falmouth), bearing N. by W. \ddagger W., just over tho northermnost or inner part of Pendennis Land; and Nrilor Point, nearly North, halfway between St. Anthony's Pcint, and the extremity of the low rocks running off it. St. Mawes' Castle ia, at the same time, hid by St. Anthony's Point.

A ressel from thn westward bound to Falmouth by night should keop the Lizard lights in sight to the southward of tho Boast until St. Anthony light bears N.N.E., to clear the Manacles.

In the daytime the Beast should be kept open of Black Head; and when St. Anthony lighthouse bears N.N.E., keep it on that bearing till Killigannoon house is in one with Penarrow or Mylor Point, bearing N. \& E. easterly; which will lead in through the eaatern ehannel, and through the narrows between the white buoy on

Falmo ressel over th mouth Kever may ar
In h length and th nearer the wi port ta

Wes the Bl line. lead up beacon House this ch and alt be app TH: Blackh league two ligg about 8., 223 white.
This henee t propere house, $5^{\circ} 12^{\prime}$
ward of tho by black and K (which exe above mark wer comes in n point, so as centre of Tor The Breaknoms, leaving he west Bar1gh. There is
of the before1 cont'nucs in thward of all 3 very closely
ring and disin England. the influx of t. Anthony's d called PenJistle, which ny to that of
town of St. trance of the town of Fal-
o the S.E. by ek called Ful. hours cbb to ntly indicates gth, S.E. by n flagstaff on t. Anthouy's
may bo moro the Manacle pual in point e inferior to I to the N.E.
ward of this North sido of cherninost or botween St. St. Mawes'
p tho Lizard ears N.N.E.,

hen St. An.

houso is in Hin! lead in ite buoy on

Falmouth bank and the black buoy on St: Mawes Bank, into Carrick Road, where a vessel may anchor in from 12 to 18 fathome, or proceed on until Budoc Church comes over the rising ground of Trefusis Point, or the Summer House is in one with Falmouth Church bearing W. by S., which will lead through the Cross Road, till St. Keverne Church comes over Pendennis Point, bearing S.W.; with which mark she may ancior in St. Just Pool in from 12 to 15 fathoms, over a muddy bottom.
In hazy weather, a vessel should give St. Anthor:- Point a berth of 2 or 3 cables' lengths, and run in with the land of St. Mawes about a point on the starboard bow, and then steer for Penarrow Point. She should not approach the land of St. Mawes nearer than 2 cables' lengths, nor St. Mawes Bank within 9 or 8 fathoms. With the wind at East she will sail in free on the starboard tack, and at W.N.W. on the port tack.

Western Channel.-Vessels not drawing more than 18 fect may safely pass between the Black Rock and Pendennis Point, and at half tide there is water for shipe of the line. By taking the centre of the channel, and steering a N. by E. coarre, it will lead up between the black and white buoys ir the narrows; or when the Black Rook beacon and lighthouses are in one, steer for St. Mawes Castle until Killagannoon House comes on with Penarrow Point, bearing N. $\frac{1}{4}$ E., and proceed as before. In this channel a vessel will sail in free on the port tack, with the wind a N.W. by W.; and although the high land of Pendennis may cause it to baffe, there is no danger to be apprehended when she has shot within the Black Rock.
THE LIZARD.-The Lizard is a bold land, which lies δ miles W. by S. from Blackhead, and W. $\frac{1}{1}$ N. 12s leagues from the Eddystone. It may be seen 7 or 8 leagues off, in from 40 and 42 fathoms of water, and may be readily known by the two lighthouses which are erected upon it. These lighthouses, with fixed lights, about 222 fect above the level of high water, when in a line, bear W. $\frac{9}{2}$ N. and E. $\frac{1}{2}$ 8., 223 feet from each other, and may be seen 6 or 7 leagues off. The towers are white.
This headland is one of the most noted among English navigators, as it is from hence that ships take their departure from the English Channel; and it is also the properest place for a landfell, when homeward bound. The position of the high lighthonse, according to the grand trigonometrical survey, is lat. $49^{\circ} 67^{\prime} 34^{\prime \prime}$, and long. $5^{\circ} 12^{\prime} 4^{\prime \prime}$ W.
MOUNT'S BAY.-This apacious bay lies to the N.E. of the Lizard, and is particularly distinguished by the high island called St. Michael's Mount.
St. Micharl's Mount, which gives name to Mount's Bay, is a remarkable and picturesque isle, near the village of Marazion, 14 miles N.N.W. (by compass) from the Lizard Point, and 2 miles E.S.E. from Penzance pier. On its summit is a church and residence. At the bottom on the N.E. side is a small harbour. At low water there is a dry passage to the isle from the main land.

Upou its castern side, at about 4 miles from the Lizard, and at a small distance from shore, lies a remarkable cragged rock, called the Gull Rock: ships bound up Channel, if opposed by an easterly or S.E. wind, may run in on the North side of this rock, and here find shelter, near the shore, in 8 fathoms of water; but great care must be exercised in order to guard ngainst a sudden shift of wind.

On the West side of the Bay there is tolerable riding in Guavas Lake, near Newlyn with westerly and southerly winds; but near this place are two sunken roeks, called tho Lovelee (marked by a red buoy) and the Curn Base. The first, which has only 5 feet over it, lics about one-quarter of a mile from Penlea Point, with the church of St. Paul bearing N.W. by W. I W. The latter has 6 feet over it, and lies about onequarter of a mile North from the former, with St. Paul's Church on with a long hedge, appearing ond on, about halfway between Penlea Point and Newlyn, and hearing W. by N. Between these rocks, there is a depth of 10 fathoms.

In the winter season the anchorage in Guavar Lake ought not to be resorted to but as a preliminary to entering the pier of Penzance, or that of Mount St. Michael. In approaching the shore from the offing between the Lizard and Land's End, the depthis
of water will be gradually found to diminish, and the bottom is mostly of coarse sand, interspersed with whole and broken shells.
Near the shore, between Mount's Bay and the Land's End, there are several dangerous rocks. The first is the Rundlestone, a emall rock, about 4 yards long and 2 broad, the base of which is dry at low water, and covered before half flood. It has a fine conical stone beacon on it. From this beaeon the lighthouse on the Longships, hereafter noticed, bears N. 19° W. distant nearly 4 miles; the flagstaff on Point Tol-Pedan-Penwith N. 7° E. three-quarters of a mile ; with the point distant a quarter of a mile. The ground without the Rundlestone is clear, but there are rocks and foul ground to the eastward and northward of it ; therefore a passage within it cannot be recommended to strangers.

The Wolf Rock and Beacon ; the rock, which is barely covered at high water in neap tides, bears from the Land's End, or the westernmost point of land, S.W. $\frac{1}{2}$ W. 8 miles distant. Between the Rundlestone and this rock, there are from 20 to 36 fathoms of water. It is steep on all sides, and has within a cable's length of it from 30 to 40 fathoms all round.

The sea makes such a roaring on it, that the noise may, in moderate weather, be heard a great way off.

Longahipg.-About 3 miles N.N.W. $\frac{1}{\frac{1}{2}}$ W. from Tol-Pedan-Penwith, or the S.E. point of the Land's End, and 1 mile W.N.W. from the westernmost point, lie the high rocks ealled the Longships ; which extend in a North and South direc: :nn, about half a mile.

Upon the largest of these rocks stands the lighthouse, with fixed light, which was erected in the year 1795, and the lantern of which is lighted with Argand lumps and reflectors, so as to be clearly seen from Point Tol-Pedan-Penwith to Cape Cornwall. From the light, Point Tol-Pedan-Penwith bears S.S.E. $\frac{1}{4}$ distant $3 \pm$ miles ; Cape Cornwall N.E. $\frac{1}{2}$ E. 4 miles ; the Brissons N.E. $\frac{1}{4}$ N. $3 \frac{1}{t}$ miles ; the Rundlestone S.S.E. southerly, nearly 4 miles; the Wolf hock S.W. southerly, $7 \frac{3}{8}$ miles; and the lighthouse of St. Agnes, Seilly, West, northerly, 25 miles.

Ships atiling down the Enplish Channel, and bound round the Land's End, cannot make the light till it bears N.N.W. $\frac{1}{2}$ W., or open of Point Tol-Pendan-Penwith (on account of the high land which eovers it, from this point to Cape Cornwall); but having seen it, and brought it to bear N. $19^{\circ} \mathrm{W}$., will have the Rundlestone in the direction of the light ; and by bringing the light to hear N. by W., or North, may steer safely for the light, clear of the Rundlestone and all danger, and may give the light any convenient berth, as the westernmost rock of the Longships lies only about half a cable's length from the lighthouse.

Ships bound from the S.W. of the light to the northward must be careful to keep this light elear of a N.E. direetion, on account of the Wolf Rock ; but by keeping the light a point or two to the eastward or northward of this direction, till they have passed the Wolf, may with certainty avoid it; and the same observations will hold good if bound to the southward, for both these rocks.

Ships bound either northward or southoord, when they are to the northward of the light, ought to keep it a point or two to the southward of S.W. I S., in order to go to the westward of the Brissons, which are two high and bold rocks, or islets; but there is no safe passage between them and Cape Cornwall.
LAITD's ENDD.-The cape called the Land's End is so high as to be seen in elear weather 8 or 9 leagues off. When first seen at a distance it appears in two round hummocks, on the highent of which is a spire steeple; upon nearer approaeh, on the outermost point another spire will appear. By these objects the Land's End may be readily known; but at all times the Longships lighthouse will indicate its situation.

Cape Cornwall lies N.N.E. ${ }^{3}$ E. about 34 miles from the Land's End. In the bay between, called Whitesand Bay, which lies about a mile to the northward of the latiter, vesisels may \quad ide in from 10 to 20 fathoms, well sheltered from F.N.E. and easterly to S.S.E. winds ; but the danger arising from westerly winds makes it little
freque which
The water, tide, ot them a called who ac out for
the S. 1
group these is of-war,
The
on the was bui plastere light is leagues Grand longituc
The posed of to the S to the \mathbf{S} distant.
THE
English
light at
Being approac dangero mnch m Lightho
The $g 1$ as lookir land, and this reas endeavol It is also beat abo means of boat imm
In con distance may also some she mixed to
From the Long 6at league
The 8 at half ti the sea a from a
ly of coarse reral dangerand 2 broad, it has a fine gships, herePoint Tola quarter of ceks and frul it cannot be
igh water in S.W. $\frac{1}{4}$ W. om 20 to 36 h of it from
weather, be
vith, or the ost point, lie th divec:"on,
t, which was ad tumps and pe Cornwall. miles ; Cape estone S.S.E. nd the light-

End, cannot Penwith (on rnwall); but stone in the - North, may may give the ps only about
reful to keep by keeping ill they have ns will hold
frequented. The South side of the bay is formed by Peddenmeandue Point, from which the ground is foul and rocky to half a mile N.W.

The islands of Scilly consist of a great many mmally isles, islets, and rocks above water, surrounded by innumerable rocks and ledges, some of which appear at half tide, others at low water, and the greater part not at all. Many have 6, 5,4 feet on them at low water spring tides, The channels or passages into the harbours are called Sounds. They are dangerous, but well known to the fishermen of the islanás, who act as pilots. With an easterly wind, a number of pilot boats are on the lookout for versels from the westward.

ST. AGNES, which is also called the Lighthouse Island, lies nearly $1 \neq$ miles to the S.W. of St. Mary's. It is the southernmost of the Scilly Islands, exclusive of a group of large rocks, which cannot properly be called islands. To the wsstward of these is that called the Gilstone, where Sir Cloudesley Shovel, in the Association man-of-war, was lost in 1707. Shipwrecks have been too frequent about these islands.

The Lighthouse is the principal ornament and great support of the island. It stands on the most elevated ground, built with stone from the foundation to the lantern. It was built in 1680, and is 53 feet high. It is a commodious structure; and being plastered white, is a useful daymark to all ships coming from the southward.' The light is revolved every minute, and in clear weather it may be seen at more than 5 leagues off; the lantern being 138 feet above high water mark. According to the Grand Trigonometrical Survey the latitude of this lighthouse is $49^{\circ} 53^{\prime} 30^{\prime \prime}$; and its longitude from Greenwich, $6^{\circ} 20^{\prime} 40^{\prime \prime}$ W.est.
The S.W. DANGERS of Scilly are those called the Bishop and Clerks, composed of a high rock, called the Bishop, on which is a lighthouse, and of several ledgen to the South and East. The Bishop's Ridge, having a race upon it, lies nearly a mile to the South of the Bishop, with the lighthouse on St. Agnes bearing East, 4 miles distant.
THE BISHOP IICHTHOUSE is one of the most important atruetures in the English lighthouse system. It is a noble granite tower. It ohows a brilliant fixed light at 110 feet above high water.
Being placed to the S.W. of all the dangers around the Scilly Isles, it renders the approach to them much easier than heretofore; inasmuch as it was almost the only dangerous quarter from which to make them, and now the interior anchorages can be much more readily reached with confidence by the aid of it and the St. Agnes Lighthouse.
The great importance of the Scilly Islands arises from their advantageous situation, as looking equally into St. George's Channel, which divides Great Britain from Ireland, and into the English Channel, which separates England from France. From this reason many ehips, when the wind is favourable, in coming in from the S.W., endeavour to make the islands, in order to steer their course with greater certainty. It is also sometimes convenient for vessels to take shelter among them rather than beat about at sea in bad weather, and a strong gale at East will be frequently the means of bringing in numerous vessels. Upon firing a gun, and making a waft, a boat immediately puts off from the nearest island with pilots.
In coming from the southward you will descry Scilly, in clear weather, at the distance of 6 and 7 leagues, and have 60 fathoms, with grey sand, broken shells; you may also see the land from the southward, in 65 fathoms of water, stony ground with some shells; but at 7 leagues distance to the northward, you will have sand and oaze mixed together.
From the lighthouse of St. Agnen, the Lizard bears E.S.E., distant $14 \frac{1}{4}$ leagues; the Longships Lighthouse E. $\frac{1}{4}$ S., distant 8 leagues; and the Wolf Rock E.S.E. + E. 643 leagues.
The Seven Stones are a dangerous reef of rocks, which appear above water, some at half tide, and some at low water. They are a mile in extent from N.N.W. it s.S.E.; the eéu always breaks upon them; and; except in very bad weather, they may be seen from a considerable distance. The North side of this reef lies about 5 leaguen
W.N.W., wenterly, from the Longships Lighthouse, with Shipman Head, the North end of Bryer, bearing West, 10 miles distant, in a line with the N.W. point of St. Helen's, and opeu to the southward of Round Isle; and Newfoundland Point, the S.W. part of St. Mary's, S.W. by W. $\frac{1}{4}$ W. $9 \frac{1}{4}$ miles off, and just open of the S.W. part of Menawethan.

The Light-vessel showing two bright fixed lights, is moored in 40 fathoms of water, about 14 miles E. $\frac{1}{8}$ S. from the Pollard Rock ot the Seven Stones, and about the same distance E. by N., northerly, from the South Stone.

Vessels navigating between the Scilly Islands and the Land's End should endeavour to bring the light-vessel to bear to the weatward of South, when coming from the northward ; and those approaching the light-vessel from the southward, ahould keep her to the westward of North.

LUSDI ISLAND.-At about 10 miles N. $\frac{1}{}$ W. from Hartland Point, N.E. by E. $\frac{1}{1}$ E. 74 miles from Cape Cornwall, W.N.W. $\frac{1}{2}$ W. $16 \frac{1}{4}$ miles from Morte Point, and off the entrance of the Bristol Channel, lies the South end of the Isle of Lundy. This island is high, and extends N.N.E. and S.S.W. nearly 24 miles, while its mean breadth is only half a mile. The position assigned to the South end, by Captain Denham, is $51^{\circ} 10^{\prime} 7^{\prime \prime} \mathrm{N} ., 4^{\circ} 40^{\prime} 15^{\prime \prime} \mathrm{W}$.

The Roads of Lundy present important advantages to veasels outward boand from Bristol, in case of adverse winds : and they are equally useful to homeward bound vessels, in want of pilots or refreshments, and to such as may be unexpectedly driven into the mouth of the Channel by westerly gales.

The General Anchorage is to the northward of Rat Isle. This islet appears like a low green hummock, jutting up from a gradual desoent of the castle bluff, from which it is insulated a few yards only at high water. It lies at four-fifths of a mile East from the Shutter or S.W. Point, off which is'a detached Black Rock.

Moderate sized vessels may bring up in 10 fathoms, sand and mud, at half a mile off shore, with the North end of the island just closing with the rock called the Gannet Stone, and bearing N.E.; the farmhouae then topping overland, W. by S., and Rat Isle bearing S.S.W., half a mile : thus leaving a scope to clear the either end of Lundy, on a shift of wind. Large ships are, however, recommended to bring upa little farther out (in order to olear the island with the wind setting on), with the lighthouse in sight, bearing West, and dropping the anchor at a moment when the top of the lighthouse dips out of sight. This rule is equally observable by day and by night. Here you will have a depth of 10 fathoms, and mud, at aboat a mile off shore. Should the top of Lundy happen to be obscured by flying scud, the taking up a spot for anchorage must depend on the lead and the relative bearings of Rat Isle, S.W. by W., and the North end of Lundy N. by W.

To vessels outward bound, if overtaken by westerly gales, the roadstead affords a place of refuge. Here may be found, for ahips of every class, sufficient water, with good holding ground, convenient to the shore; and here may be obtained live atock, provisions, vegetables, and water.

Vessels under a doubtful reckoning may advance after once gaining a sight of this island, the approach to which may be known by the soundings and quality of bottom. At 16 miles without it, on the S.W., West, and N.W. ; thore are 40 fathoms with sandy bottom, shoaling thence to 26 fathoms, rocky bottom, at 6 miles South from the island; to 29 fathoms, gravel, at 6 miles to the S.W.; to 22 fathoms, fine sand, at 5 milen to the Weat; to 27 fathoms, with fine gravel, at the North; and to 24 fathoms, with broken shells, at σ miles to the East. Thirty-five fathoms, sandy bottom, is the deepest water between Lundy and Milford, and there is less within, or to the eastward of that line; so that the navigator may be assured of being without, or to the ceasward of that line ; so that the navigator may be assured of being without, or to the wrestward of the Bristol Channel, so long as he does not shoalen his water below 40 fathoms, allowing for a riee and fall in tide of 4 fathomn.

Vegbels Bound op tre Brietol Channri; or to the anchorage of Lundy, ahonld pasen to the eonthward of the island, all circumstancen boing most favourable,
as show prevale shores.
HA: from it sea bree S.W. 3 leagu or Gall bearing Hart at right resemb slopes a
Hart consider

THE safe roa Channe the sout will find is time but non

Vesso with a their lat height 0 West of at once leagues parallel at night that a
Shoul latitude that gre is there fathom or 13 le up slow from thi diseover

Capta
Atianti
view of prevails gradual boyond and ste Hartlan Bristol beyond $10^{8} 63$, bank of sudden, longitu crease.
d, the North - point of St. nd Point, the 1 of the S.W.
oms of wster, bout the same
uld endeavour ning from the l, whould keep
oint, N.E. by Morte Point, ole of Lundy. while its mean d, by Captain
atward bound to homeward unexpectedly
appears like a fff, from which f' a mile East
at half a mile led the Gannet y., and Rat either end of to bring upa on), with the nent when the vable by day d, at about s ying scud, the ve bearings of
stead affords s nt water, with ned live stock,
sight of this lity of bottom. fathoms with South from the s, fine sand, at to 24 fathoms, bottom, is the the eastward to the enas. hout, or to the ater below 40
se of Lundy, not favoursble
as shown in the general directions hereafter. Thick weather generally accompanios prevalent S.W. winde, and increases the danger of a too near approach to the Welsh shores.
HABTLAND POINT.-The land of Hartland Point is very high, and direetly from it, to the distance of abont one-third of a mile, is a ridge of rocks, on which the sea breaks very heavily. The mark to clear these rocks on the West is, Sharp's Nose, S.W. $\frac{1}{4}$ S., or kept well open. This Sharp's Nose is a high bluff land, nearly 3 leagues to the sonthward. The mark to clear the rocks on the North is, Gallendy or Gallantry Bower, to the West of Clovelly, with a tuft of trees on it, kept open, or bearing S.E.
Hartland Point may be readily known from the connecting clifis trending nearly at right angles to each other. It appears of a dark brown colour, and its summit resembles the ruins of a building, elevated 350 feet above the sea, toward which it slopes abruptly to the perpendicular cliffs.
Hartland Point forms the S.W. point of the Bristol Channel, which may also be considered to terminate at Milford Haven, on the opposite coast.
THE BRISTOL CHANNEL.-It has been justly remarked that there is not one safe roadstead between the Land's End of Cornwall and the Flat-Holm, in the Bristol Channel, with the wind to the westward of South; and not very good with a wind to the southward of S.E. by E.; for, although you may have the wind off shore, you will find a great swell; and, if the wind shifts, the sea is instantly up, before there is time for her to weigh. On the coast of Wales there are several good roadsteads, but none are easy of access to a stranger, Milford Haven excepted.

Vessels bound to the Bristol Channel, and approaching from the south-westward, with a wind from that direction, should endeavour, says Captain Denham, to make their landfall on the coast of Cornwall in the parallel of $50^{\circ} 30^{\prime}$, as well from the height of Trevose Head as from the regularity of the soundings. At 23 leagues true West of the Head, after running for some time in 60 fathoms, over mnd, the bottom at once changes to coarse hard ground, and thence shoalens so gradually that, at nine leagues off there are still 34 fathoms. The land may, indeed, be safely made on any parallel between Trevose Head and Hartland Point, but it should not be approached at night nearer than in 30 fathoms of water, unless it can be so plainly distinguished that a course can be at once shaped with certainly for Lundy Island.
Should the wind hang between West and N.W., it will be advisable to gain the latitude of $50^{\circ}, 0^{\prime}$, so as to run direct for Lundy Island. This course leads acroas that great mud basin which seems to be an elongation of the Irish Channel, and which is there about 15 leagues broad. The soundings at first slowly deepen from 50 to $\mathbf{6 0}$ fathoms, and then decrease to 46, where the bottom suddenly changes to sand, at 12 or 13 leagues from the island. From the edge of the sand the bank continues to slope up slowly and regularly, there being from 32 to 34 fathoms at six and seven miles from the island; but, unless concealed by fog, the island or the light will have been discovered long before reaching inat depth.

Captain Martin White, R.N., says:-"Vessels bound into the Severn from the Atlantic, should endeavour to preserve the parallel of Trovose Head, not only with a view of counteracting the north-westerly and northerly excess of tide (currents) which prevails in the Irish Channel, but because the soundings on approaching it decrease gradually, and bscause this promontory projects a considerable distance into the sea beyond the general direction of the Cornish coast. The land, also, being very high and steep, renders it the most eligible spot for a landfall between the Land's End and Hartland Peint, from whence a vessel may with confidence shape a course for the Bristol Channel. The erection of the lighthouse on Trevose Head also renders it beyond any doubt the best point to make. On this parallel, and in the longitnde of $10^{8} 53^{\prime}$, are 140 fathoms, firm dark-brown sand : this appears to be the edge of the bank of soundings in that latitude. From hence the transition to shoal water is very sudden, as 13 miles further eastward are only 94 fathoms. This depth is in the longitude of $10^{\circ} 32^{\prime}$ W., and as you proceed easterly the depths more gradually decrease. In longitude $\theta^{\circ} 44^{\prime}$ are 71 futhoms, very fine dark grey sand, of the con-
sistency of beaten pepper: seven leagues further castward are 71 and 69 fathoms also; the latter soundings are, however, oasy. Seven miles to the north-westward of the latter position, and six miles eastward of the former, are 59, 55, und 53 fathoms; this is the western extreme of the Nymph Bank, which is nearly midway between the English and Irish coasts. Four and eleven leagues southward of the former position lie the S.W. extremes of this bank in 60 and 64 fathoms. Proceeding easterly from your former position, you will retain nearly the same depths until you advance as far as the longitude of $8^{\circ} 26^{\prime}$, where you will find as little as 53 and even 45 fathoms, coarse, tenacious, light ground, consisting chiefly of mutilated shells and minute stony particles, and you will almost immediately afterwards drop into 65 and 69 fathoms, oazy ground. The former is the shoalest part of the Nymph, and is distant from Scilly 29 leagues, in the direction of N.W. $\frac{1}{2}$ N., 43 leagues from Trevose Head, N.W. by W. $\frac{1}{4}$ W., and 22 leagues, S. by E., from Cape Clear; to the eastward of the latter depth, the soundings shoalen pretty gradually towards the western coast of Cornwall, nine leagues from waich are 34 fathoms.

Should a vessel be forced into the entrance of the Bristol Channel, so that she cannot lay out again, the most prudent course is to proceed as directly as possible, for Milford Haven; but, should the weather be thick, and circumstances prevent this, she may proceed to Lundy Island, there anchor, or take a pilot for the harbour of Ilfracombe. By obstinately endeavouring to beat out of the Channel, many lives and much property have been sacrificed; it being next to impossible for a vessel to get to windward here, when opposed by the swell and indraught.

A vessel from the Longships, if bound into Bristol Channel, with the wind from the N.E. should stretch as far to the North as she can, and to the westward of the Rocks (the Man and his Man) off St. Agnes' Head, and then work up in the slack. With an casterly wind you may find a good stopping place, for a tide, on the western side of Trevose Head, sheltered by the Cow and Calf. In the great bight northward of this, between Tintagel Head and Hartland Point, the tide is quite slack, and a vessel may gain ground against the ebb.

With the wind to the South or S.E., and a commanding breeze, you may run between the Longships and the main, or haul close round the Longships within a cable's length, and keep the English shore on board: for so soon as you bring the Longships and Brissons nearly in a line you will gain the true Channel tide.

Spring tides, as already noticed, set very rapidly in the Bristol Channel. When the wind is to the S.S.E. in the Channel, the stream westward of Hartland Point is mostly found setting S.S.W.

Pilots for Bristol may be engaged at Lundy or Ilfracombe. Vessels bound to Bristol, or any port well up Channel, are recommended, in general, to keep near the English shore, though without going into any of the bays, after passing between Lundy Island and Hartland Point.

MILFORD HAVEN is generally considered as the most capacious, the most commodious, and the most secure harbour in the British Islands. It has no sort of danger in its entrance, which may not be avoided without a pilot; and ships may, with perfect safety, sail cither in or out (by taking the tide), cither by night or day. Those which come in, without anchor or cable, may run ashore, on soft oaze, and lie safely. Now that the South Wales Railway is completed to Milford Haven (285 statute miles from London), the capabilities of this flne harbour for stcam-vessel transit are beginning to be developed.

St. Ann's Head is a bold promontory, advanoing from a background of nearly table land, with a large black rock at its extremity, always appearing above water. Its lighthouses on the western side are whitewashed. This point lies N.E. $\frac{1}{8}$ N. 33 leagues from Cape Cornwall; N. $\frac{1}{6}$ W. 47 miles from Hartland Point ; and N. $\frac{1}{3}$ W. 34 miles from the North end of Lundy Island. The entrance is deep, and more than $1 \frac{1}{1}$ miles wide.

To enter the haven with a fair voind by night, at any time before half ebb, give St. Ann's Head a berth of one-quarter of a milc, in a depth of 12 or 11 fothoms, then steering so as to bring the lower light (which shows exclusively in the haven) to bear
W. $\frac{1}{2}$ S 8 and 7

In TE in the ld of the c small p_{4} only 18 exactly nearly placed 1 the flag fort on Davis's
Besid
Rock.
Both of
Anot from Rs shoal, of it, lies a Point, a these tw

The 0 haven. But be gerous. of water out, at there wi is to the in from

At th the grou chors, m the oute

The n Man-of ing for may anc the dist

SMA
western
vane. about ol directio

There mile fro

Passa good an disting Head, To ch the Smt when t
exceller -westward of 153 fathoms; way between f the former ding easterly you advance n 45 fathoms, minute stony 169 fathoms, distant from Head, N.W. of the latter of Cornwall,
at she cannot e, for Milford this, she may of Ifracombe. d much proto windward
rind from the of the Rocks k. With an estern side of ward of this, a vessel may

may run be-

 thin a cable's he Longshipsnnel. When land Point is
nd to Bristol, the English Lundy Island
us, the most has no sort of d ships may, hight or day. oaze, and lie Haven (285 steam-vesse!
nd of nearly above water. E. $\frac{1}{2}$ N. 33 and N. $\frac{1}{6}$. d more than
bb, give 8 st . athoms, then even) to bear
W. $\frac{1}{1}$ S., and afterward running E. + N. about $1 \frac{1}{2}$ miles, the depths will decrease to 8 and 7 fathoms, and you will be in the middle of the harbour.
In the Entrance to the Haven the first danger met with was only discovered in the latter part of 1851-a very singular circumstance, considering that the whole. of the coast was supposed to have been carefully and completely surveyed. It is a small patch, called the Levois Rock, $1 \frac{1}{2}$ cables' lengths from N.W. to S.E.; and having only 18 feet less water at its N.W. end, and 25 feet at its S.E. extremity. It lies exactly on the line of the two lighthouses at St. Ann's in one, or N. by W. $\frac{1}{2}$ W., and nearly a mile from them. A black buoy, marked "Mid-Channel Rock," has been placed near it. It lies in 6 fathoms, at about a cable's length W. by N. from it, with the flagstaff at St. Ann's just open West of the Low Lighthouse, N. by W. $\frac{7}{4}$ W.; the fort on the Stack Rock just touching the Bouth part of Thorn Island, E. $\frac{3}{4}$ N.; Mr. Davis's house, its apparent length on Dale Point, N. $\frac{3}{4}$ E.
Besides this rock, there is another, discovered at the same period, called the Sheep Rock. It is a small patch of $4 \frac{4}{4}$ fathoms, lying half a mile due West of Sheep Island. Both of these patches have deep water around them.
Another rock, called the Chapel Rock, lies at the distance of half a mile W.N.W. from Rat Island, and has 14 feet of water over it at low spring ebbs; and a rocky shoal, called the Harbour or Thorn Rock, now marked by a buoy, having 20 feet over it, lies at the distance of nearly half a mile N.W. by W. from Thorn or West Angle Point, and without the islet off that point called Thorn Island. The channel between these two last shoals and the western shore is nearly a mile in breadth.
The course in is N. by E. until you open Dale Road, in the N.W. corner of the haven. Here you may come-to, in 2 or 3 fathoms, so soon as Dale Town comes open. Bat be cautious of not mistaking a bay on the West side for Dale Road, as it is dangerous. In this road you may lie landlocked from all but easterly winds, in 2 fathoms of water, with Sheep Isle on with Dale or Castle Point. Large ships should lie further out, at the distance of about $1 \frac{1}{1}$ cables' lengths N.N.E. $\frac{1}{8}$ E. from Dale Point, where there will be found 4 fathoms of water. The best channel, and that commonly used, is to the southward of the Stack. Upon the south side, hereabout, is excellent ground, in from 8 to 13 fathoms, where ships may be landlocked from all winds.
At the distance of a mile S.S.E. from the Stack lies Angle or Nangle Bay, in which the ground is clear and good. In this place vessels, having lost their cables and anchors, may run aground on soft oaze: but should keep nearly in mid-channel between the outer points.
The most convenient and common anchorage for large ships is in Hubberston or Man-of-War Road, at the distance of 4 miles to the E.S.E. of Dale Point. In sailing for it, keep in mid-channel until the town of Milford bears N.E. by E., when you may anchor in 10 or 12 fathoms. On either side, stand no nearer to the shore than to the distance of $1 \frac{1}{4}$ cables in length.
SHALLS.-The Smalls consist of a cluster of low bare rocks, upon the largest and westernmost of which is a new lighthouse, a white tower, 141 feet high from base to vane. The light is brilliant and fixed, 125 feet above high water. The rocks are about one-fifth of a mile in extent, but very narrow, in a N.E. by N. and S.W. by S. dircetion, and are never entirely uncovered.
There are several detached rocks at the distance, more or less, of one-quarter of a mile from the main group, which must be carefully avoided.
Passage between the Smalls and Hats.-When the Hats are seen to break, this is a good and safe channel, although not more than $1 \frac{8}{4}$ miles wide. If the South Bishop, distinguished by its lighthouse, can be made out, this islet, just open of St. David's Head, will clear all.
To slear the Smalls, Hats, and Barrels, to the northward, care must be taken to give the Smalls a sufficient berth to clear the N.E. rock, the transit of which is passed when the lighthouse bears S.W. by if. When the land is distinguishable, an excellent clearing mark is, the N.E. end of Grassholm on with the S.W. end of

Shomer; this will lead at the distance of about three-quarters of a mile from the Hats, and $1 \frac{1}{4}$ miles from the Barrels.

To clisar the Smalls, Frate, and Barrele, to the southword, the Smalls ought not to be approached within 1 mile, on coming from the westward, until the lighthouse is brought to bear North, in order to avoid the S.W. Rock, as the soundings are extremely irregular, varying, at that distance, from 40 to 25 fathoms, generally gravel and broken ahells, so that no dependence can be placed on the lead. At night, the Smalls light must not be brought to the westward of N.W. I N., nor St. Ann's light to the southward of S.E. by E. $\frac{2}{3}$ E. 3 these bearings will give the Barrels a berth of about $1 \frac{1}{4}$ miles. Observe well that the moment St. Ann's light is unmasked to the sonthward of Skokham, a vessel is nearly in the line of direction of the shoals.

Vessels bound to Milford Haven, \&e., from the S.W. of Ireland, are recommended to make Grassholm, frequently the first land seen, by day, or the Smalla lighthouse by night. Should there be a long flood to run, it will be the best, particularly with the wind to the southward, to pass well South of the light, or to try and make St. Ann's light upon a bearing of E.S.E. $\frac{1}{\frac{1}{2}}$ E., passing outside Skokham: but on an ebb tide, opposite precautions may be taken; and having passed to the northward of the Smails, keep St. Ann's light open between the isles Skomer and Skokham, bearing about S.E. by S., which will lead betweeu them.

ST. GEORGE'S CEANNEL.-To give extended descriptions of this important navigation would swell this work far beyond its proper limits. On pp. 382-387are given some general instructions for sailing up and down this channel, which must suffice. One especial point requires every attention, and that is the set of the tides. In pages 254, 255, are given the general features of these currents, which, being neglected, have led to several deplorable accidents on the banks off the S.E. coast of Ireland. It is therefore most earnestly recommended to the sailor to pay every attention to this important subject. Some changes have been made in the lights on the East coast of Ireland whioh should also be carefully attended to.

On the Eastern side of the Channel the indraught on to Cardigan Bay is in some degree deprived of its danger by the establishment of the light-vessel described in the list, which will warn a ship from passing too far to the eastward, and thus getting embayed on this iron-bound shore and its dangerous shoals.

The Refuge Harbonr at Holyhead has now assumed an important position in the navigation, and will afford shelter from bad weather for a large portion of the compass.

SOUTH COAST OF IRELCAND.-As ships bound acress the Atlantic may be driven to seek shelter on the Irish coast, a few brief notices of the principal places on the Southern coast follow. Complete descriptions of the whole coasts of Irelaud are given in our Directories accompanying the Charts.

CARISSORE POINT liea N. by E. $\frac{1}{4}$ E. $41 \frac{1}{2}$ leagues from Cape Cornwall, and from the Smalls lighthouse, N. by W. $\frac{1}{4}$ W. 37 miles.

To the E.S.E. $\frac{+}{}$ E., at the distance of $6 \frac{1}{8}$ miles from Carnsore Point, is the remarkable rock called the Tuskar. Its bearing and distance from the Longships lighthouse, off the Land's End of England, are N. by E. $\frac{3}{4}$ E. $42 \frac{1}{4}$ lcagues; and from the Smsils lighthouse, N. $4^{\circ} \mathrm{W} .11$ leagues.

The TUSKAR LIGHTHOUSE shows a revolving light every two minutes, twice bright and once red alternately. The ringing of two bells denotes the proximity of the rock in foggy weather. The rock is about 15 feet above the sea at high water, and the elevation of the lighthouse 101 feet above the base. The bright lights may be seen at 5 , and the red light at 4 leagues off.

At half a mile due West of the lighthouse are some rocky heads, and at threefourthe of a mile S.W. of the light is the South Rock, of 9 fathoms ; to avoid these, be careful to keep sufficiently withont the rock on that side. And nearly midway between the Tuskar and main is the long narrow bank called the Bailies' Prong: the ripple on the South end of which bears from the Tuskar W. $\frac{1}{2}$ N., and from Carnsore Point E.S.E., about $2 \frac{1}{2}$ miles. The bank extends nearly 3 milo N N. by E. $\frac{1}{6}$ E.

Its al clear e lighthouse is soundings are enerally gravel At night, the St. Ann's light rrels a berth of masked to the e shoals.
nd, are recomor the Smalls the best, partit, or to try and Skokham: but d to the northmer and Skok-
this important o. 382-387 are iel, which must et of the tides. s, which, being e S.E. coast of ay every attenlights on the

Bay is in some lescribed in the ad thus getting
position in the portion of the
tlantic may be cipal places on of Irelaud are

Cornwall, and
is the remarkips lighthouse, rom the Smalls
two minutes, s denotes the bave the sea st 9. The bright
, and at threeto avoid these, early midway ailies' Prong: nd from CarnN. by E. $\frac{1}{5}$ E.

Its shoalest water is from $5 \frac{1}{\text { to }} 7$ fathoms, with 8 and 10 fathoms near gach end. To clear it on the East side, keep nearer to the Tuskar than to the main.
The SAI TEES LIGHTVESSEL, showing two lights, lies in 32 achoma, with the Great Saltee bearing N.E. $\frac{1}{4}$ E. abont $4 \frac{1}{4}$ miles distant ; the Hook lighthonse of Waterford Harbour, N.W. $\frac{1}{}$ W. $11 \frac{4}{4}$ miles; and the Toskar lighthouse, nearly East, $20 \frac{1}{2}$ milen. The Coningbeg Rock lies $1 \frac{1}{4}$ miles S.W. $\frac{1}{2}$ W. from Coningmore, and $2 \frac{1}{2}$ miles S.W. $\frac{1}{4}$ S. from the S.W. point of the Great Saltee Rock, and inside the lighthouse. It shows at half-ebb.
Waterford harbour, the Estuary of the Rivers Sutr and Barrow. From the Longahips lighthouse, off the Land's End of England, the Hook Point of Waterford bears N. by $\frac{2}{4}$ W. true, and N: $\frac{1}{t}$ E. by compass, nearly 43 leagues: from the North end of Landy Island, off the Bristol Channel, N.W. by W. true, and N.W. by N. by compass, dintant $33 \frac{1}{3}$ leagues: from St. Anne's lights, Milford Haven, W.N.W. $\frac{1}{4}$ W. true, and N.W. by compass, distant 23 leagues; and from the Smalls lighthouse, W.N.W. northerly, trae, and N.W. $\frac{1}{4}$ N. by compase, distant $17 \frac{1}{4}$ leagues.

Upon Hook Head, or the Hook Point, is a white tower, rebuilt in 1791, 110 feet high, which exhibits a brilliant fixed light, at 152 feet above the level of high water, and is seen from all points between E.N.E. seaward to N.N.E., 17 miles off.

The entrance of the harbour, between Hook Point on the eastern, and Red Head on the western side, is 24 miles wide. Three miles within these points, on the western side, is the remarkable promontory called Credan Head, the extremity of which bears N. by E. $3 \frac{1}{4}$ miles from Hook Point.

The pier at the little harbour of Dunmore, on the W. side of the entrance, affords a secure anchorage with westerly gales, as well as from the prodigious sea which rolls along the southern coast, but it is not calculated for an asylum harbour, from its space being very confined, and its want of depth, there being only one spot within the pierhead with more than 14 feet, and 9 to 12 being the ordinary depth at low water.
In coming in from sea for Waterford Harbour, yon will descry the remarkable inland mountain called the Slievnaman, which should be brought to bear N.E. $\frac{1}{2}$ N., as it will, with that bearing, lead in sight of Hook tower; whence you may round Hook Point, which should not be approached nearer than to the distance of 2 cables' lengths, as the tide sets round it very irregularly.

With the entrance open, the course to Duncannon fort will be N.E. by E., which will lead past Credan Head, at the distance of $1 \frac{1}{8}$ cables' lengths. In the night, the two lights will be seen on the fort of Duncannon, elevated one above the other, to direct vessels to that point. These kept open of Credan Head, and bearing N.E. $\frac{1}{2}$ N., lead directly up the harbour. You pass the fort at the distance of about 1 cable's length, keeping the lead going, and then steer N. $\frac{1}{2}$ E. for Ballyhack church. When the Perch beacon, near Passage, comes on with the tc u of that name, you may steer upward in miceriuannel to the anchorage above the town, in 5 and 6 fathoms of water.
Ballycottin Bay, on the North of the Bailycottin Isles, has been recommended as a place of safe resort in westerly winds. The only disadvantage of this anchorage is, that the wind setting in from S.E. to E. (which wind, however, very seldom blows) renders it necessary for vessels to put to sea as quickly as possible.
The prevailing winds on this coast are westerly throughout the year; therefore this anchorage is safe and convenient with the wind from S.W. to N.N.E. by the North.
Vessels taking shelter from a westerly gale, shonld anchor with the Government houses bearing S.S.W. to S.W., and the outer island S.E. to S.S.E., in about 3 fathoms, low water. The bottom is emooth and even, of fine sand and clay, perfectly clean, and the holding-ground good.

The outaide island, on which is the lighthonse, is high, with a bola, rocky coast, steep-to, with deep water, and no dangers; so that a vessel, in taking the bay from
the westward, may round the island close to, and find herself suddenly in smooth water.
CORK HARBOUR.-The entrance of this excellent harbour lies at the distance of 46 leagues N. by W. $\frac{1}{2} \mathrm{~W}$. [N.W. $\frac{1}{2}$ N.] from the Longships lighthouse off the Land's End of England; and from St. Anne's Point, Milford Haven, nearly 39 leagues N.W. by $W . \frac{1}{4} W$. [W. $\left.\frac{1}{4} N.\right]$ In coming up for this place from the southward, bring Knockmeldown Hill, N.E. by N., and ke p it thus until you see the Old Head of Kinsale, which is a remarkable bluff headland, with a lighthouse upon it. From this head the entrance of Cork Harbour bears E. it N. 5 leagues.

When off the harbour, Roche's tower, with its lighthouse, is remarkable from its standing on the point upon the eastern side. Without this point are two rocks called the Cow and Calf, otherwise the Stags, which will be avoided by attending to the following directions. Without the entrance, which is three-quarters of a mile broad, the ground is clean ; and, with a northerly wind, ships may lie here, in from 7 to 10 fathoms, awaiting the daylight, or a flood tide. With a leading wind, line-of-battle ships may enter at any time of the day, if proper attention be paid to the marks for the dengers.

The Lighthouse on Roche's Point shows a fixed light. It appears, from seaward, of a clear red colour, but is brilliant toward the harbour. The tower is white, 26 feet in height, and the light, which appears at 92 feet above the level of high water, may be seen at 14 miles off, from all points seaward betweea S.E. by E. and N. by E .

Roche's Point is bold : so also is Dog Nose, a high point half a league further in, on the same side. Upon the latter there is a remarkable white wall, lying on the face of the cliff, to the southward of the fort, and so conspicuous as to be seen from a considerable distance.
From the entrance of the harbour to the Narrows, in the upper part of it, and through them to the anchorage off Queenstown, the fairway is indicated by a double - series of buoys, white on the western side, and blacis on the eastern. Beside these there are two buoys on the Harbour Rock, and two ois the Turbot Rocks.

On entering the harbour of Cork, the channel eastward of the Harbour Rock and Turbot Rocks is generally preferred, and a vessel may, at any time, be worked in or out. On coming in, therefore, endeavour to pass between Roche's Point and the Harbour Rock, or between the Harbour Rock and Turbot Rocks. The first route may be easily effected by keeping Cuskinny house (already described) wholly shut in with the point at Dog Nose; this mark also leads to the eastward of the Turbot Rocks. The depths in the channel are 5,6 , and 7 fathoms.

Having arrived within or to the northward of the rocks, which will be when a round stone tower, on the heights near Ringaskiddy (westward of Spike Isle), appears four times its own breadth open to the northward of the lowest part of the decling land under Fort Camden, thence steer for the middle of Spike Island, keeping as nearly midway as possible between Forts Carlisle and Camden, until two remarkable houses, inland, to the northward of Cuskinny house, and eastward of the old barracks, appear, the northern house between Cuskinny house and the southern house, three-fourths nearer to the latter than the former.* This mark will lead up between the shoals towards Queenstown, and very close along the eastern bend of the spit, near the white Lower Spit buoy, though in not less than 4 fathoms at half tide.

Continue running upon the mark last given, until two white-washed marks in the upper and lower walls of the old fort or hospital appear in one. This mark will lead you round the buoy last mentioned ; and when Ballybrickan house comes nearly into

[^80]contact
sudden, npper the bea Spike I from 4

Larg
buoy or may ha

The
buoy of
the east
sure in
water a
ride any
Those
the firs and the directio The tide

KIIN
old He cape, an tower is
LIGH the rock S.S.W. light is nating a visible a On th Bay to t ward of macsher of the li
In ord keep Kn Youghal
The hs town, is
formed b Points ol Head.
with 7 ft Charles open to its own well wit you obta and it af within 0 however channel ous, and a free wi
There
nly in smooth
t the distance house off the en, nearly 39 om the southus until you with a lightvears E. $\frac{1}{3}$ N.
cable from its n rocks called tending to the a mile broad, from 7 to 10 , line-of-battle the marks for
ars, from sead wer is white, level of high E. by E. and
gue further in, og on the face a from a con.
art of it, and d by a double Beside these cs.
our Rock and worked in or - and the Harrst route may shut in with 'urbot Rocks.

11 be when a bike Isle), apt part of the Island, keepuntil two restward of the the southern E will lead up stern bend of homs at half
marks in the park will lead es nearly into

Both are of slated partly
contact with the S.W. angle of the buildings on Hanlbowline Island, you should haul suddenly to the westward, steering N:W. by W. toward a large storehouse on the upper quay at Queenstown, for about 2 cables' lengths, and then W.N.W., parallel to the beach at Queenstown, until Roche's light-tower shats in with the eastern end of Spike Island. The last mark is the best for anchoring, and where you will have from 4 to 9 fathoms of water.

Large vessels, particularly at low water, should pass to the eastward of the white buoy on the Bar Rock, and after rounding it, at the distance of a quarter of a cable, may haul suddenly round to the westward as above.

The Outer Route or anchorage of Cork Harbour, is between Fort Camden and the buoy of the spit. You proceed up to it with Queenstown church just shut in with the eastern angle of the new citadel on Spike Island, and may take a station at pleasure in from 12 to 7 fathoms. Merchant vessels may ride off Queenstown, in smoother water and less tide; they may also anchor farther up the harbour, off Passage, and ride anywhere between the first houses and Ronan's Point.

Those woorking into or out of Cork Harbour should be aware that the tide sets, in the first instance, into the bight formed between Dog Nose and Roche's Point, and thence obliquely across to Cross Haven, whence it is again warped into a N.E. direction, which produces corresponding counter tides and eddies along both shores. The tide of ebb has a directly opposite tendency.

KINSALE.-From Poor Head, which lies 4 miles eastward from Roche Point, the Old Head of Kinsale bears W. by S. 6 leagues. Two whitewashed towers are on the capt, and between them are the black ruins of Baron de Courcy's castle. The southern tower is round, the northern square; the southern was formerly the lighthouse.
LIGHTHOUSE.-A new lighthouse (60 feet high with two red belts) is erected on the rocky point at the soathern end of the Old Head of Kinsale, distant half a mile S.S.W. $\frac{1}{8}$ W. from the old lighthouse tower, the lighi for which is discontinued. The light is a bright fixed light, elevated 236 feet over the level of the high water, illuminating an arc from N.E. $\frac{1}{8}$ N., seaward, to W. by N., and in clear weather will be visible at the distance of 21 miles.
On the arc limited by a limited by a line across the entrance of Courtmacsherry Bay to the line of the P.orse Rock it is coloured red; further within the bay, northward of that line, it is of of the natural colour. Thus vessels, unless going to Courtmacsherry Harbour, shoald not psss into the bay within the limits of the red colour of the light.
In order to fall in with the Old Head, when approaching from the offing, bring and keep Knockmeldown Hill N.E. by E. This hill lies inland to the northward of Youghal.
The harbour of Kinsale, though narrow at the entrance and all the way up to the town, is very safe, and capable of receiving vessels of any size. The entrance is formed by Flangman and Prehaun Points on the eastern, and Money and Strookaun Points on the western side; and it lies about 5 miles N.E. from the pitch of the Old Head. After rounding the Breem Rock, lying under the eastern side of the Head, with 7 fathoms close to it, steer for the harbour's month, by keeping the whole of Charles Fort, an extensive castellated building at a mile within the harbour's mouth, open to the westward of Hangman Point, and minding not to bring that fort within its own apparent breadth of Money Point, on the port side; and having reached well within the former point, keep as near mid-channel as possible, and anchor until you obtain a pilot. The anchorage of Queenstown is the one generally resorted to, and it affords good shelter, even within the wind directly in. This place is a littlewithin or to the N.W. of Charles Fort, and about $1 \frac{1}{6}$ cables from shore. There is, howerer, water enough for the largest ships close up to the town of Kinsale, the channel to which lies close along the eastern shore ; but it is very narrow and circuitous, and requires the assistance of a pilot. The wind between S.S.W. and E.S.E. is a free wind in, and from W.N.W. to N.E. a fair one out.
There is a ber of coarse sand a little to the southward of Charles Fort, having 12 30
to 18 feet over it at low water of spring tides. When the body of Charies Fort beary E.S.E. E. you will be within or to the northward of it, and drop thence almost im. mediately into deep water.
The dangers of going into Kinsale Harbour are, Farmer Ledge on the port, and the Bulinan Rock on the starboard side. The Farmer lies close to the weatern shore, and is uncovered at three-quarters cbb. The Bulman lies above 2 cables' lengths to the southward of Hangman Point, and has only 3 feet over it at low water, and sometimes drien at very low tides. The marks for it are, the northern angle of a triangular fleld on with the penked top of Crow Head, and tho Small Sovereign Imland on with Froward Yoint. By keeping Charles Fort wholly open to the wostward of Hangman Point, you will pass considerably to the westward of the Bulman; and by not bringing that fort within its own apparent breadth of Money Point, you will avoid the Farmer.
During the night a light is kept on Charles Fort as a guide to vessels entering the harbour. It is bright and fixed, at 98 feet above the sea, open to the harbour, on a N.E. by N. bearing, and may be seen, in clear weather, 6 miles off. When ruaning for the harbour in a very dark night, some caution is, however, necessary, as this light and that on Old Head are the only guidance, and it will be prudent to keep an offing until daylight, or till a pilot can be obtained.

Cape Clear, the southernmost promontory of Ireland, upon an island of the same name, lies at the distance of $54 \frac{4}{5}$ leagues N.W. by W. W., true, and N.N.W. $\frac{3}{4}$ W. by oompass, from the Longships lighthouse, off the Land's End of Lingland; and at the distance of about $5 \frac{1}{1}$ miles eastward from the S.W. part of this island lies the entrance to the harbour of Baltimore.

A lighthouse was erected on the S.E. side of Clear Island, to the eastward of the cape, and was first lighted on the 1st of May, 1818, but it was superseded by the more important light on the Fastnet Rock, to the S.W.

THE FASTNET ROCK, a small, stecp, and conspicuous rock, lies nearly $5 \frac{1}{4}$ miles W. $\frac{1}{5}$ S. from Cape Clear. Between is a depth of from 12 to 35 fathoms, the least depth being near to the rock. Near Cape Clear there will be found from 24 to 27 and 30 futhoms.

The LIGHTHOUSE on the summit of the Fastnet superseded that on Cape Clear on January 1, 1854. It is 92 feet high, and has a broad red horizontal belt at midheight. The light is elevated 148 feet, is revolving, visible once in every 2 minutes to the distance of 18 miles: but is not entirely obscured within short distances.

Between Cape Clear and the River Shannon, the land, on advancing to the North, increases in height, and is very irregular and broken; but the southern part of the coast is seldom wholly free from fog and haze during the summer months, and is generally annoyed by powerful gales and a turbulent sea during the winter season.

Long Island Sound, whieh lies within Long Island, to the S.W. of Skull Har bour, is well sheltered, of easy access, and capable of recciving large ships, which may enter at either end of the island, and anchor anywhere, the ground being good. The only thing to be avoided is a spit of sand, whieh extonds northward from shore, at about half a mile within the East end of the island, and more than haltway over the chanuel.

In the anchorages the depth of water varies from 2 to 7 fathoms, and the ground is every where a soft oohesive mud. The chief passages are, one from the S.W. between Goat Isle and Turf Isle, or the Black Rock to the westward of it, called Man-of-War Sousd; one between Goat Isle and Long Island, and one between Long Island and Three Castle Island on the East. Either of these pasaages may be safely taken without a pilot, through water sufficient for a line-of-battle ship. When entering by the g.W. passage, you have merely to keep in mid-channel all the way through, as well as from thence to the anchorage.

Crookhaven is a small but important harbour, lying $8 \frac{1}{2}$ miles N.W. $\frac{1}{2}$ N. from Cape Clear. It is only 2 miles in extent, from East to West, by one-third of a niife in breadth. Its entrance lies between a rock called the Xlderman, on the

South harbou ground This is easterl adds, i risen,
A L entran The lan elevate pud) \mathbf{N} from th
Havi ruined northw West,
The man; t rock 8 So In proo Mount and Br the wes houses stands

A ves
ward of when th Sound. the Ald to south Bant modious it ; the rocks no Ships m side. T leagucs Head ar 2 cables from 10 howeve bours ni veniene
Bear the gro many render i
The I Bantry which i at $\overline{50} \mathrm{fe}$
The h at the V from th
anchor
les Fort bear cee almost im.

the port, and

 weatern shore, les' leugths to ter, and somefa triangular sland on with ard of Hang1 ; and by not ou will avoids entering the harbour, on a When running ssary, as this ent to keep an
d of the same N.N.W. $\frac{1}{4}$ W. yland; and at island lies the
atward of the rseded by the
tearly $5 \frac{1}{4}$ miles noms, the least n 24 to 27 and
on Cape Clear al belt at midy 2 minutes to ances.
to the North, rn part of the hs, and is geneseason.
of Skull Har ships, which d being good. d from shore, halfiway over
the ground is S.W. between 1 Man-of-War ng Island and y taken withtering by the ough, as well

South aide, and a peninsula called Rock Island, on the North. Although narrow, the harbour is well sheltered and commodious for vessela bound to the eastward, the ground is good, and the water, more than halfway up, suffloiently deep for large ohips. This is a very convenient place for vessels drawing 14 feet, during bad weather or easterly gales, againat which it affords the mort ample shelter; but Captain White adds, it in to be regretted that, in the last twenty yearn, the bottom has considerably risen, and the depth, in consequence, decreased about 2 feet.
A LIGHTHOUSE is erected on Rock Island Point, at the northern side of the entrance. The light was first shown on August 1st, 1843, and is a fixed white light. The lantern is open to ceaward, and to the haven, from E. by S. to W. by N., and is elevated 67 feet above the level of the sea. It bears from Cape Clear Island (S.W. end) N.N.W. \& W. 8 miles ; Alderman Rocks (outor point) N.W. \& N. $\frac{1}{2}$ mile, and from the Fastnet Rock N. $\frac{1}{}$ E. 6 miles, lat. $51^{\circ} 28^{\prime} 35^{\prime \prime}$ N., long. $9^{\circ}, 42^{\prime} 31^{\prime \prime}$ W.

Having fairly opened the harbour, run directly in, keeping in mid-channel. The ruined signal tower on Brow Head, three times lts own apparent breadth open to the northward of O'Driscoll's house, a remarkable white ono, entirely insulated, bearing West, will load to the northward of the Alderman Rock, and into the fairway.
The opening of Crookhaven cannot be made out until you are very near the Alderman ; to make it, therefore, steer in due North from the Fastnet Hock, keeping that roek South, as near as nay be, until Miven Peak comes in one with Alderman Heed. In proceeding thus, you cannot be deceived; because, at the same time, or nearly so, Mount Gabriel will appear in one with Leamcon signal tower and castle to the N.E., and Brow Head, with its signal tower, will appear to close in with Streek Head, to the westward. The harbour will now begin to unfold itself; the revenue officers houses on the northern shore will first be secn, aud, ultimately, Coghlan's tower, which stands as above explained.
A vessel cannot enter Crookhaven unless the wind is to the southward and eastward of S.S.W. by compass, or to the eastward and northward of N. by W.; but when the wind happens to be foul for Crookhaven, it will prove fair for Long Island Sound. You may anchor, with westerly and northerly winds, at a mile N.E. from the Alderman Rock, in very good ground, but great circumspection must be taken an to southerly winds.
Bantry Pay lies to the northward of Dunmanus Bay; it is large, safe, and commodious for ships of any size. The stream of tide is scarcely sensible in any part of it; the water is sufficiently deep, almost close to beth the shores; and there are no rocks nor shoals in the way, but such as may be easily avoided, even in the night. Ships may stop anywhere in the middle of the bay; or, in most parts, near to either side. The bay extends ncarly in the same direction as that of Dunmanus. It is 6 leagues in length, and from 2 to 3 miles broad. Its entrance, between Three Castle Head and Sheep Head, is $3 \frac{1}{2}$ miles wide. Off the latter point is a rock of 18 feet at 2 cables' lengths from its extremity. The depth of water throughout the bay varies from 10 to 31 fathoms, and the ground is of the most tenacious description. It is, however, much exposed to westerly winds; but even when these prevail, the harbours named Bearhaven, Bantry, and Glengariff, may be resorted to with great convenience, and even without a pilot.
Bearhaven is an excellent harbour, spacious, and well sheltered from all winds; the ground is everywhere good, and casy of access, in a country abounding with many necessary refreshments. Its proximity to the sea, and situation on the coast, render it an excellent rendezvous for a fleet.
The LIGHTHOUSE on Roancarrig Island will materially assist the navigation of Bantry Bay, and more particularly that of the eastern entrance to Bcarhaven, of which it stands. It is a white tower, with a red belt around it, showing a fixed light at $\dot{5} 5$ feet, which may be seen at 12 miles off.
The haven has two entrances; one at the East end of Bear Island, and the other at the West end. The western entrance is the most direct and convenient for ships from the westward or southward; but the other is the safest for strangers. You may anchor nnywhere of the North side of the island, in from 5 to 11 fathoms; but the
best place is off Ballynakilla ; and ships that wait for a wind only will find the West ond of the haven most convenient.

Valentia--Brea or Bray Head is the S.W. extremity of Valentia Island; the island thence extends 6 miles East, and forms the harbour of the same name, which is capable of receiving the largest ships. It affords excellent shelter against all winds that blow, with good holding ground in 36 and 42 feet at low water springs.
Those bound into this place to steer in for Doulus Head, giving the northern side of Valentia a berth of about a mile or more, until the remains of Cromwell's Fort, on which a light is established, bear S. by E., which will then be in one with the square tower of the church standing on a cliff of Valentia Island, considerably above the water's edge, and close to which stands the parsonage house, now in ruins. This mark leads to the entrance of the harbour. When passing Cromwell's Fort, keep one-third nearer thereto than to Beginnis, to avoid the reef projecting from the latter.

COAST of FRANCE,-In the upper part of the English Channel, the coast of France is a part to be avoided by a passing ship. Upon it all the power of the tide and wave which traverse the Channel from West to East seems to be expended. Its shores are the depository of all the matter washed and worn of from the shores to the westward, and the light drifting sand of which they are composed, choke up all its harbours, and bar access to any shelter when required for a ship in distress. All this is explained in our Channel Directory; and in pages 251-253 ante, there are some remarks upon the Tidal Streams, which are very peculiar here, and require very much attention.

Ambleteuse Road, between Boulogne and Cape Grisnez, affords some shelter from gales between N.N.E. and S.s.E. round by the East; but the sea is very heary, especially when strong winds oppose the current, and moreover the tidal streams are at times very strong, so that a ship may become tide-rode in a very ugly position. Boulogne is difficult to enter on account of the thwart current.

The Bay of the Seine is very dangerous. It is open to all winds from N.W. to N.E., and the tides are very strong, so that ships embayed here with those winds are in great danger. There is some shelter inside the banks, which extend N. and S. of Marcouf, but the tides are so strong that they alone will embarrass, and the formidable Race of Barfleur, which runs around the Cape Barfleur so turbulently, is much to be dreaded in N.E. gales.

CHERBOURG, with its majestio Digue, or breakwater, will afford shelter, and ample descriptions and directions are elsewhere given. The following are a fow extracts :-

Cherbourg Road is comprised in the space between the Pointe de Querquevillo and Pelée Island, lying E.S.E. and W.S.W., 3 miles distant from each other. Its southern limits are the shores of the two great bays, the Ste. Anne to the West, and that of Cherbourg to the East, divided by Pointe du Homet.

It is sheltered, on the North side, by an artificial breakwater, La Digue, built in θ and 7 fathoms water, 4,100 yards long. There is a green light on its West head; a fixed and flashing light on the central Fort, and a red light on the West head.

The principal anchorages for large vessels ore, the Great Road, and the western anchorage; for amaller vensels, those called the Little Road, and the anchoruge between the Pelee Island Bank and the eastern branch of the Digue.

The Bay of St. Anne does not offer many gocd spots for anchoring; the bottom is uneven, and the holding ground bad. And besides, vessels are in sreat danger if canght here by gales between N.E. and N.W., which send a bad sea into it.

The Great Road (Grande Ilade) is the man-of-war anchorage, and is limited on the North and N.E. by the Peice Island Bank; and extends to the Weat as far as to the North of the ohurch at Cherbourg. In the North part, the bottom is, in genend, of schistose rock in a state of decomposition, and tho holding is good, and there are some spots of bare and cutting rocks. The current of the flood begins half an hour
after 100 the mili
The Digue, i with 6 a running The curn and finis

The L from W tary por those vea shelter f prefer to blesome bottom 0
The ar seeking Bank, an nearly tit It is a sa feet. V

Westi at each e Chavagn

You light) on little dist
There must tak Bay, and to beat i moonligh
The flo gins 1 h . military
The \boldsymbol{P} wide as t high wat anchor in on to the coming n gusts, par
The E western s by buoys the Hotel it, on wit
The ca Island Ba least dept
The flo hour afte La Truite to 31 mile and on th
nd the West
Island ; the name, which against all ter springa. orthern side 2well's Fort, one with the erably above ruins. This Fort, keep om the latter.
the coast of er of the tide pended. Its shores to the ce up all its ess. All this aere are some require very
shelter from very heary, al streams sre gly position.
from N.W. to 1 those winds xtend N. and rrass, and the urbulently, is
d shelter, and ng are a few
erqueville and h other. Its the West, and
ue, built in θ West head; a t head.
d the western nchoruge be
the bottom is reat danger if o it.
is limited on st as far as to in, in genernl, and there are half an hour
after low water by the shore, and ends three-quarters of an hour after high water in the military port. Its greatest rate is 2 miles, and of the ebb $1 \frac{1}{\frac{1}{2}}$ miles an hour.

The Western Anchorage, lying to the South, and near to the Weat end of the Digue, is a fine bottom of sand and broken shells; four-fifths of a mile in extent, and with 6 and 7 fathoms water. It is bounded on the South by the rocky bottom which, running from the Great Road, extends to the S.W. of the West end of the Digue. The current of the flood begins then nearly an hour after low water by the shore, and finishes an hour after high water at the military port.
The Little Road is to the South of the Great Road, in the part which is sheltered from West winds, and the sea occasioned by them, by Fort du Homet and the military port. In this anchorage, which is of good holding ground, the pilots placed those vessels waiting for the tide to enter the commercial port, and also those seeking ahelter from bad weather, before the Digue was so far advanced; these latter now prefer to anchor nearer to the Digue. Strong winds from S.W. and S.E. are troublesome in this anchorage, as vessels are liable to drive and be carried on the rocky bottom of the Great Road, or even on to the Digue.
The anchorage to the South of the eastern part of the Digue, which is nsed by vessels seeking shelter, lies between the Digue and the northern slope of the Pelea Island Bank, and extends from the Central Fort, where it is a quarter of a mile wide, to nearly the West end of the Digue, at which part it is narrowed to $1 \frac{1}{4}$ cables in width. It is a sandy bottom, in some parts rather muddy, the depth varying from 26 to 32 feet. Vessels are here sheltered from N.W. to N.E. round by the North.

Western Entrance to Cherbourg Roads. Large men-of-war enter by the passes at each end of the Digue, the principal of which is the West, lying between it and the Chavagnae Shoal. The two limits of this are marked by buoys.

You will run precisely in mid-channel, by keeping the light-tower (with a red light) on the end of the eastern jetty of the Port du Commerce clear, but seen a very little distance West, that is, to the right of the high battery of the Fort du Homet.
There is no difficulty in entering with a leading wind, but large ships beating in must take care of the Chavagnac, then the rocky head in the opening of St. Anne's Bay, and, lastly, La Tenarde. It is considered that it would be imprudent to attempt to beat in at night through the West Passage with large ships, unless there is moonlight.
The flood tide sets here S.E. and E.S.E., 3 miles at its greatest strength, and begins $1 \mathrm{~h} .30^{\prime}$ after low water by the shore, and ends 1 h .20 after high water at the military port. The ebb current nearly the same, running to N.W. $\frac{1}{6}$ W.

The Passage between the Fort of Querqueville and the Chavagnac Shoal is nearly as wide as the former, but is not practicable for large vessels but between half tides of high water. As the bottom is uneven, and covered with rocks, it is dangerous to anchor in it. NG vessel should attempt it while it is calm, as you risk being carried on to the rocks at the bottom of St. Anne's Bay. There is no advantage either in coming near the shore of this bay, with the wind from land, as it frequently comes in gusts, particularly with those from S.W.
The Eastern Entrance is comprised between the East end of the Digue and the western slope of the Pelee Island Flat; the most dangerous points of it are marked by buoys. The mark for this passage was a stone pyramid on the quay in front of the Hotel de Ville, now replaced by a large wooden beacon on the rocks in front of it, on with the church tower of Octeville, bearing S.W. by W.
The castern passage is separated from the East part of the Great Road by the Pelee Island Bank, the breadth of which on the above bearing is 4 cablea' lengths; the least depth on it being 22 fect,
The flood current is first felt one hour after low water by the shore, and ends one hour after high water in the military port, and ruus E. by N. between the Digue and La Truite at the rûte of $2 \bar{j}$ miles; out a lititie to thr North this velocity is increased to 31 miles, and runs to the E.N.E. To the N.W. point of the Flat of Pelee Island, and on the northern slope of this plateau, the current of flood runs N.E. \ddagger E. at a
maximum rate of 4 miles an hour ; and the eddies and overfalls, occaaioned by the uneven bottom, form a violent and dangerous race. The ebb tide is more regular, and runs at a rathor less rate.

The eastern entrance, besides being very narrow, is inconvenient from the currenta orossing it obliquely. This renders it dangerous for sailing vessels in light winde, and impractieable for them in calms. But when there is sufficient wind there is no diffieulty or danger. It is easy for vessels coming from the Last; but care must be taken to bear carefully round to the West of the N.W. point of the Pelée Ialand Shoals, and not to run. on the mark for entering till you have doubled it. As you cannot always see the beacon at the esplanade of the Hotel de Ville at a sufficient distance, you ought then to approach the Pelée Island Bank, kceping Octeville church in one with that of Cherbourg. This will bring you in sight of it, or at least of the buoy onl the N.W. point of the rocks.

The great bay whieh is formed on the coast between Cape la Hague and the Brehat Islew, in which are the Channel Islands, is most dangerous to the stranger. Its furious tidal streams ; the countless rocks which cover and uncover to an enormous extent in the great range of tide, render it impossible in a few words to describe any of its navigation. Indeed, local and intimate knowledge alone can conduct a ship through any of its intricate passages.
ALDERNEY, or AURIGNY.-The eastern end of Aldcrney bears W.N.W. 8 miles from Cape la Hague. This island is about $3 \frac{1}{3}$ miles in length by a medial breadth of three-quarters of a mile.

The eoasts of Alderney are surrounded with rocks, which render the navigation diffieult and dangerous; more particularly as the tides set strongly and in various directions. The chief port, that of Braye, on the N. side of the sea; and on the western side of Port Longy is a signal post.

The REFUGE HARBOUR, which is constructing on the North side of the island, is a formidable and very important undertaking of the British government, under the superintendence of Mr. Jnmes Walker, C.E. It will consist of two piers, which will enclose Braye Roads, and have an opening to the northward, and will shelter a considerable area of every depth for shipping.

It is not safe to remain at anchor here in the winter season, on aecount of the run or ground swell, which often comes in very unexpectedly, and without any apparent warning; nor can a vessel, if surprised there with a northerly wind, easily beat out, both ebb and flood heaving her in bodily.

There is a rook in the middle of Braye Roads called the Half-tide Rock, which is especially dangerous to all vessels coming into the roads, being on a direct line in or out of the harbour. Part of the rock is only visible.at low water, spring tides.
THE CASKETS, AND LIGHTHOUSES, which lie N.W. by W., 62 miles from Braye Roads, are a cluster of great rocks, some above nod others under the water. On the largest, and nearly the westernmost, of these roeks stand throe lighthouses, triangularly placed, as shown on tho chart, and furnished with argand lamps and reflectors, at 113 feet above ligh water. The lights recolce, and altermately present a bright light in every direction. The eclipses succeed each other every fiften seconds. Upon a S.E. by E. beuring, these lights appear as two, which may be seen 5 or 6 leagues off. The N.E. and S.E. lights are in ome when bearing S.W. by W. Attached to the estallishment is an alarm bell, which, sounded in foggy or snowy weather, is loud and distinet, not unlike a chureh bell.
The Hanois or Hanoveanx, which lie off the westernmost purt of Guernsey, are an extensive group, the greater part of which is always above water. They extend outward to the distance of more than half a leagne, leaving no passage between. It is most prudent to give them a berth of about 3 miles on the port hand. Their dangerous character will be much lessened when the lighthouse is eompleted on them.

BAY OF BISCAY.-In former pages, when the best routes to the southward were connidered, the iddraught inte the Day of lisisay in espevintily mentioned as a tendoney to be avoided-see pages 270-2J2, 380, \&c. But as it muy sometimes huppen
that a few ren lightho by mea too muc
USH to Wes but of North s
Lian cellent. at 8 le $5^{\circ} 3^{\prime} 32$ island.
Dous Harbou way. no lead rocks w and dist there is Passe lies abo ebb. It Kidizie reef of village, western Lightho $1 \frac{1}{2}$ miles

A clur eastwarc ward.
Chêvre the bay and who toward t general clean gr
The b just shut of Doua Vieille.
In the Isle, on fixed lig lighted of 7 feet

ChauI it is clea miles to either at erected Maz, den Beo in a seen wha

The Il
vioned by the regular, and
the currente light winds, 1 there is no care must be Pelée Island 1 it. As you sufficient diseville church t least of the
gue and tho the stranger. an enormeus describe any nduct a ship
W.N.W. 8 by a medial nd in various ; and on the
side of the government, of two piers, rard, and will
nt of the run any apparent sily beat out,
ock, which is reet line in or tides.
2 miles from er the water. b lighthouses, nd lamps and ately present overy fifteen may be seen S.W. by W. bgy or sllowy
rascy, are an extend outween. It is
Their danon them.
thward were xid as a tenimes huppren
that a vessel may get embayed withont being able to weather its onter points, only a few remarks on its more available roadsteads will be given here. In the lister of lighthouses is given a description of these monitors which well mark its coasts, and by means of which a ship may avail herself of many anchorages, which it would occupy too much space to describe hero.

USHANT (Ouessant) is a stcep craggy island, about 4 miles in length from East to West, and 2 miles in breadth. On its S.W. side is a harbour, that of Lampoul, but of difflcult access. The rest of the island is surrounded with rocke, a part of the North side excepted, where there is anchorage.

Lighthouse.-On the N.E. part of Ushant is a light-tower, exhibiting an excellent fixed light, el vvated 265 feet above the level of the sea, which may be seen at 6 leagues off. The position of this lighthouse is latitude $48^{\circ} 28^{\prime} 31^{\prime \prime}$, longitude $8^{\circ} 3^{\prime} 32^{\prime \prime}$. It is proposed (1861) to erect another lighthouse on the S. extremity of the island.

Douarnenez Bay.-This capacious bay, which lies to the southward of Brest Harbour, will accommodate a large fleet, it being more than 6 miles in extent cach way. Its entrance is so wide, and its bottom altogether so clear and regular, that no leading mark is requirod; provided that a sufficient berth be given to soveral rocks which lie on the North side, as generally represented on the charts. The course and distance from the S.W. end of Ushant to the bay aro, S.S.E. $\frac{1}{\$}$ E. 10 leaques: there is nothing in the way that can take a ship up; only observing to avoid the Passe Vieille, off the Bee de Chévre, on the North side of the entrance. Thin rook lies about one-third over from the point, and uppears just above water at two-thirde ebb. It is stoep-to, having from 17 to 12 fathoms close to it. The marks for it are, Kidizient Mill, to the westward of St. Lawrence' Church, on with the middle of a reef of dry rocks which lie off the Point or Beo de Chévre, bearing E.N.E. $\frac{\text { E. }}{}$ a village, on with the N.W. cliff of the same point, bearing N.E.by E.; and the western Tas de Pois (or haystack), in one with the Toulinguet Rock off the Lighthouse Point. Its bearing and distance from the Bec do Chévre are, W. $\frac{1}{\text { S }}$ $1 \frac{1}{2}$ miles.
A clump of trees, with a small chapel in the midst, stands on the North side to the eastward of Point Cherre, having a windmill to the westward, and two to the eastward. With the windmill next to the eastward of these trees, just open of the Chérre Point, you will have passed the Basse Vieille, and may steer for what part of the bay you please, all being fair and clear, excepting what may be seen above water, and what may be near the shore. The best ground, however, is considered to be that toward the North side, being elear sand, with a depth of from 9 to 10 fathoms. The general depths over the bay are from 18 to 12 fathoms; and all, as before obwerved, is clean ground.
The best leading mark into the bay is the high mount of Locrenan (in the S.E.) just shut in to the southward of the Point Leide, a rock on the West of the little Bay of Douarnenez. Ihis will lead, in a fair course, olear to tho southward of the Banso Vieille.
In the middle of the bay, about two-thirds of a mile North of the town, is Tristan Isle, on which a lighthouse has been erected. It is 32 feet high, showing a bright fixed light, at an elevation of 114 feet above the sea, and visible 10 milen. It was lighted in 1857. This lighthouse, in one with Plouare steeple, is the mark for a shoal of 7 feet, which lies half a mile Norih of Tristan.

Chaussee, or Pont du Soin, or Saints' Bridge, requires but little description, as it is clearly exhibited on the Chart. This extensive chain of foul ground trendy θ miles to N.W. $\frac{1}{2}$ W. from the principal island, and is studded all over with rocks, either above or undor the water. The Liohthouse, with its excellent flawhing light, erected on the nerthern part of the island, in a line with the lighthouse on the Bec du Raz, denotes the general direction of the Chaussée, or Bridge. The fixed light on the Beo in a 250 foet abovo the nea, and, as well an the flashing light of the Sein, may be seen when 6 leagres off.
The Ilo de Sein lighthouse in 141 feet high; the light is fixed and varied by fiaches,
elevated 148 feet above the sea level; the flashes appear every four minutes, preceded and followed by short eclipses.

The lights on the Ile de Scin and the Bec du Raz lie $\left[S .86^{\circ} 50^{\prime} E\right.$., and $N .86^{\circ} \mathbf{0 6} 6^{\prime}$ W., true, or] S.E. by E. $\frac{1}{9}$ E., and N.W. by W. $\frac{1}{4}$ W., by compass. from each other, $5 \frac{1}{4}$ miles apart. This bearing, which is likewise the general direction of the whole chain of rocks called the Chaussée de Sein, passes about 4 cables' lengths to the southward of the N.W. extremity of the chain, which is 9 miles from the Sein light, and 14t miles from that on the Bec du Raz.
In approaching these rocks from the evestward, the first light seen will be the flashing light on the Ile de Sein ; and first light seen will be the flashing light on the mariner whether he is to the northward or southward of the line direction of the two lights. 1n clear weather, the Bec du Raz light will not not be seen till the vessel is within 4 or 5 miles of the western extremity of the chain of rocks.
BELLLE IUE.-This island, being high, and seen from a great distance, may afford good shelter in a westerly gale. Its N.W. end is in lat 47 $7^{\circ} 23^{\prime}$, and its South point in lat $47^{\circ} 16^{\prime}$. The N.W. end of the island is surrounded with rocks. In a line between the East end of this island and the Isle de Groix, lies the rocky bank called the Birvideaux, already described.
If a ship, with the wind at N.W. or W.N.W., keeps between the latitudes above mentioned, when running for the island, on approaching it, she may steer along the South side at the distance of 2 miles, to Point de l'Echelle, or Point des Canons, the S.E. extremity. From this point, haul up for Point de Kerdonis, the easternmost point, which is situate $2 \frac{1}{4}$ miles from the former. Under this point may be found anchorage, in from 15 to 8 fathoms, sheltered from N.W. and westerly winds. Should the wind here veer to S.W., a ship may run to the northward of the point, and anchor on the N.E. side of the island.

On the South side of the island there are many rooks near shore, both above and under water.
A tower on the plateau near the Cove of Coulfar, on the S.W. part of the isle, is distinguished by a brilliant revolving light of the first order, eclipsed once in a minute.
The Isle or Hedic, which lies about $7 \frac{1}{8}$ miles East from the East end of Belle Ile, has many rocks, with foul ground about them. The fixed light, near the eastern point of the isle, may be seen about 9 miles off. The Cardinals extend to the S.E. from Hædic, and the extremity bears E.S.E. $\frac{4}{4}$ E. 12 miles from the S.E. end of Belle Ile. Should a ship be driven to the eastward of Belle Ile, she must give the Cardinals a good berth, and may then haul up to the northward for anchorage.

In the Bay of Quiberon, after you have brought the Cardinals to bear S.S.W., S. by W., or South, there is good anchoring, with clear soft clay, and very even soundings, in from 10 to 12 fathoms.. With these bearings, you will be shut within somo foul ground, lying off the Cardinals, in an extent of 3 miles in length, with the Cardinals from W. by S. to S.W. by compass.
BASQUE ROADS lie within the Isles of Rei and Oleron. The northern point of Oléron has a lighthouse, called the Tour de Chassiron. The rocks which surround this end of Oléron, called the Antioche Rocke, extend 2 miles to the East of the lighthouse ; but within them those is anchorage. The Tour de Chussiron exhibits a fired light of the first order, elevated 164 feet above the sea, which may be distinguished at the distance of 6 leagues.

On sailing into the Roads, it is safest to keep over to the Isle of Re, until near the S.E. end of it; only taking eure to avoid the Lavardin, marked by a tower. Then steer for the West part of the Isle of Aix, a low fortifled island with some houses on it, which lies about half-way between Oleron and the main land. The roads extend from the Lavardin sheal to this iittle island, and have from 10 fathome close to the shonal, to 12 and 13 in the middle of the road; and from 6 to 9 fathoms at about if
miles to
West frc
The rally fro leagues i of Åix.

The \mathbf{F}
western It is a gr leagues who dete 18 feet according 2 or 3 n but ain: water.
A Ligl
The ro fishers un rocks, in
THE impede it particula care is re are descri
The T of the mo figure is \mathbf{r} height wa lantern w recent im
Its ligh each other by a flash the distan
By the former ch formerly \mathbf{r} are the P_{l} Southern $]$
PASSE Palais and lie, as abo respectivel about one when the Chart.

Here yo may be cor a league di Mecher Ro at low wat
Should c de Grave, is, RToyan called the
ss, preceded
N. $86^{\circ} 56^{\prime}$ each other, f the whole o the southn light, and
be the flashight on the n of the two the vessel is
e, may afford South point
In a line bank called
itudes above er along the Canons, the easternmost lay be found inds. Should t, and anchor
h above and
et of the isle, psed once in a
end of Belle hit, near the inals extend les from the Belle Ile, she orthward for
bear S.S.W., nd very even e shut within g th, with the
hern point of ch surround of the light. chibits a fired tinguishicd at
ntil near the ower. Then ne houses on roads extend 5 close to the at about $1 \mid$
miles to the North and N.W. of the Isle of Aix: There are 6 fathoms at half a league West from the island, and good ground.
The soundings in mid-channel, between the. Isles of Ré and Oléron, are generally from 12 to 15 fathoms, shoaling towards each side. This channel is nearly 2 leagues in breadth. The French Man-of-war Road is on the Sonth side of the Isle of Aix.
The Roche Bonne has been described as one of the most dangerous shoals on the western coast of France, particularly to vessels bound to Rochefort and to coasters. It is a great flat of rock situate between the parallels of $46^{\circ} 10^{\prime}$ and $45^{\circ} 15^{\prime}$, at 12 leagues westward from the lighthouse on Baleine Point. M. Beautems Beaupre, who determinea its position in 1824, describes the S.E. rock, on which there are only 18 feet at low water, in lat. $46^{\circ} .11^{\prime} 25^{\prime \prime}$, and long. $2^{\circ} 25^{\prime} 0^{\prime \prime}$. The plateau, or flat,
 2 or 3 miles. Not only on this flat is the swell of the sea to be apprehended, but ain: on several heads of rock, on which there may not be more than 10 feet at low water.
A Light-vessel is likely to be stationed in the neighbourhood of this shoal.
The rocky bottom, situate to the N.N.W. of the Roche Bonne, is known to the fishers under the name of Banche Verte, and is not dangerous. Westward of tho rocks, in all their extent, the bottom is of mud.

THE GIRONDE.-The entrance of this river, with the banks and rocks that impede its navigation, are so clearly exhibited on the general Chart of the Bay, and particular Chart of the Harbour, as to render a minnte description unnecessary. But care is requisite at all times, as the banks and channels shift very much. The lights are described in the list.
The TOUR DE CORDOUAN, or Lighthouse, standing nearly in the midway of the mouth of the river, is the most elegant structure of the kind in Europe, and it figure is represented on the Chart. This tower was completed in 1665 ; its original height was 169 French feet; but in 1727, the upper part being calcined, an iron lantern was erected, which increased its height to 175 feet; and its elevation, from recent improvements, is now given as 63 metres, or more than 206 feet.

Its light is revolving, and visible to the distance of 9 leagues. .The eclipses succeed each other once in a minute; but every great flash of light is immediately preceded by a flash less brilliant. In ordinary weather the eelipses does not appear total within the distance of 3 leagues.
By the recent surveys of the mouth of the Gironde, it has been found that all the former charts of it were grossly erroneous; and that, instead of five channels, as formerly represented, there are now only two which oan be used with safety. These are the Passe du Nord, or Passage by the North shore; and the Passe de Grave, or Southern Passage.
PASSE DU NORD.-The mark for the entrance by day is the Church of St. Palais and that of St. Pierre de Royan in one, bearing S.E. $\frac{1}{8}$ S. These churches lie, as above stated, on the North side of the river, and about 8 and $10 \frac{1}{8}$ miles respectively above Point de la Coubre: this direction will lead across the bar, and about one-third of a mile off Point de la Coubre, when off the latter point, and when the semaphore comes between the two beacons on the point, as given on the Chart.
Here you will have fairly entered, and should change the course to S.E. $\frac{1}{4}$ S., which may be continucd for $8 \frac{1}{2}$ miles, until the Church of St. Palais bears North, about half a lcague distant. From the last spot a S.S.E. course, $6 \frac{1}{2}$ miles, will bring ycu up to Mecher Road, where there is good ground of sand and mud, and from 8 to 10 fathoms at low water.

Should circumstances require it, you may run up and take shelter under the Point de Grave, which affords a safe retreat during westerly and S.W. winds. The mark is, Royan steeple and mills N.E. of N. At this place, between Verdon and the bank called the Taille Fer, coasting vessels are commonly sheltered in bad wenther.

By Night, the entrance to the Giroude by the Passe du Nord is facilitated by the light on the Point de la Coubre, and by a light on the tower of Terre Negre. This is a fixed lenticular light, of tho fourth order, elevated 118 feet, and visible 10 miles. The object of this light is to offer to navigators the means of avoiding the dangers of the dangers of the Barre a l'Anglaise.

It is not visible South of a line passing through the tower itself and that of St. Palais, bearing one from the other, or S.E. by E.

To make use of this light, the following directions are necessary :-Having arrived South of the Point de la Coubre, and tho small fixed light on that point having been brought to bear N.N.E. by compass, the route must be changed; and then steer towards the Cordouan light, until the moment the light on Terre Negre is first perceived: then steer towards it, keeping as near as possible in the line of its direction, which will be S.E. A S., until the Cordouan light bears S.S.W. ; after which, change the route for the third time, and bear S.E. $\frac{1}{4}$ S.

It is very essential to remark, that the light of Terre Negre, not being visiblo to the West of the Point de la Coubre, on the direetion for entering the Passe du Nord, will not be of any service until that point is doubled.

PASSE DE GRAVE.-This passage into the Gironde is 4 leagues to the southwurd of the Passo du Nord, and is $2 \frac{1}{\frac{3}{2}}$ leagues in length. The mark for the entrance is the beacon St. Nieolas on with the semaphore of the same, bearing E. $\frac{1}{1}$., and which from the entrance may be considered about 6 miles. This track is to be continued until the Tour du Chay and St. Pierre do Royan, on the North shore, come in a line, bearing E. by N. $\frac{5}{4}$ N. nearly; then steer on this course as near as possible, whieh will take over the tail of a small bank called Le Ruffat, having 9 feet in one part, which lies W.N.W. 2 miles from tho lighthouse on the Point de Grave; therefore bear a little to starboard before reaching this point. This last mark kept on will lead into the main stream of the river, and at the distance of nearly a mile from the Point de Grave. You hence haul round the point to the eastward, according to circumstances.

In going through the Channel de Grave, be cautious of advancing too near the shore, as the tide of flood sets strongly upon it; and never, if avoidable, attempt to anchor in it.

No large vessel should attempt to leave the river by this channel, unless with a rising tide and favourable wind.

Each of the channels is marked by buoys.
TIDES.--At the entrance of the Passe de Grave, with the Cordouan Tower bearing N.E., the tides set as follow :-First of the flood, North; one-third flood, N.E.; half ond two-thirds flood, E.N.E.-First ebb, S.E.; one-third ebb, South; half and two-thirds ebb, West. In the channel within, with Cordouan bearing N.N.W., the flood sets, generally, E.N.E., and the ebb, W.S.W. Between the great Bank of Cordouan and the Point de Grave the flood sets, generally, S.E.; the ebb from West to W.S.W.

Tho tides, both ebb and flood, set through the difforent channels with rapidity; and great eaution is therefore requisite on making the river. Should the landmarks be obscured by thick weather, or if night eomes on, it will be prudent to anchor in the first eonvenient spot.

BAYONNE.-The mouth of the Adour, or Harbour of Bayonne, lies between two sandy hnmmocks. The bar frequently changes; the sea without is very rough; there is no entrance but at high water, and then a pilot is required. On the full and change, the time of high water is at 4 h . Spring tides rise 12 feet; neaps, only 9 or 8 feet.
Torino, in his description of this harbour, says, that to enable a vessel drawing more than 14 feet to pass the bar, a concurrence of farourable circumstances muit exist; these are, n amonth sea, a fair wind, a spring tide, and no eurrent from the s:iver.

BIA are the The vil At 2 tinguis of whic The lig coral; The pri these
BILI
Luzuerc greater eastern
On C light,
The n fathom of Port rise abo it impos
If con wind, Galea; There is anchor 0 In summ being of On m be readi Should pointed and hig appears Luzuero
SANT tho Bay $43^{\prime} 30^{\prime} 1$ tinguish S.E., ha flat poin On th Mcnor, which \mathbf{v} The best length f more to
The ex portion ward, th pier.

With take the up in th
tated by the Vegre. 'Ihis ble 10 milcs. de dangers of that of St . ving arrived having been d then steer e is first perits direction, thich, change
ing visible to sse du Nord,
to the souththe entrance 5.E. $\frac{1}{4}$ S., and is to be conhore, come in ur as possible, ving 9 feet in nt de Grave; ist mark kept aearly a mile urd, according
too near the le, attempt to
unless with a

Tower beard flood, N.E. th ; half and N.N.W., the reat Bank of bb from West
rapidity; and landmarks be anchor in the
between two very rough; On the full ; neaps, only
cosel drawing nstances must rent from the

BIARITS, or BIABRITR.-At 3 miles S.W. from the mouth of the Adour are the little port and village of Binaics, or Binkbitz, a fashionable watering place. The village is nearly a mile from the sea.

At 2t miles S.W. from the mouth of the Adour is Cape St. Martin, now dis: tinguished by the lighthouse, which displays an excellont revolving light, the flashes of which suoceed each other every half minute, and may be seen nearly 7 leaguen off. The light is not entirely ooseured within the distance of 3 leagues.

COAST OF SPAIN.-Off the North coast of Spain, which is high, bold, and rocky, the depth of water, in general, is from 150 to 200 fathoms, foul ground and coral; but, in many places, thero is no ground at that depth, even near the shore. The principal harbours on this eoast are those of Bilbao and Santander; yet both of these are devious and shoal.
BILBAO.-Its entrance, which is 3 miles wide, is formed by the points, named Luwuero and Galca. On Galea is a lighthouse, showing a bright fixed light. The greater part of its coast ir lofty, steep, and rocky; but the bottom of the bay, on the eastorn side, is low and sain ly.
On Cape Machichaco, 10 milos to the eastward, is a lighthouse showing a fine fixed light, varied by a flash every 4 minutes.
The mouth of the River Bilbao is impeded by a shifting bar, having less than one fathom over it, at low water. Here are two piers or kays, within which is the town of Portugalete, and off which is the best anchorage in the harbour. Spring tides rise about 13 feet. In winter, a heavy sea sets into the bay, which, at times, readers it impossible for the pilots to go off.
If coming in, when the tide does not serve for taking the bar, with an unfavourable wind, you may come-to in the 1 y , midway between the outer points, Luzuero and Galea; bring the latter in a line with Cape Villano, in 16 fathoms, with sandy bottom. There is here suffieient room, in case a heavy on-shore wind should bring homo tho anchor or part the cable, to let go a eecond anchor, before the ship can get ashore. In summer, you may lie nearer to the land, in from 10 to 12 futhoms, all the bottom being of sand.
On making the bay from the westward, Point Gales, on the eastern side, may be readily known by its white colour. On it stands a lighthouse, with a fixed light. Should you pass Santona, the bay may be thence distinguished by three sharppointed mountains; of these the northernmost is that of Luzuero, the middle one and highest, tho hill of Serantes, on the West of the bay. The southern ono appears like an island. On steering for the first, you will, of course, make Point Luzuero.
SANTANDER.-Of this harbour a particular plan is given on the New Chart of the Bay of Biscay. Cape Mayor, on the western side of its entrance, lies in latitude $43^{\prime} 30^{\prime} 10^{\prime \prime}$, longitude $3^{\circ} 45^{\prime} 6^{\prime \prime}$. This cape is of moderate elevation, but steep, and distinguished by its lighthouse. Cape Menor, or Little Cape, hall a mile more to the S.E., has a battery on it. This is lower than Cape Mayor, and terminates in a low flat point, with a small reef of rock below it.
On the same side, at the distance of $13-10$ ths miles to the snuth-castward of Capo Mcnor, is Point Puerto. The land between forms tho sandy Bay of Sardinero, in which vessels anchor, when the wind and tide do not servo for going into the harbour. The best anchorage here is with the Capes Menor and Mayor in one ; and, at 3 cables' length from the former, you will find from 10 to 12 fathoms, bottom of sand; but more to the southward, it is all of rock or stone.
The extensive sands on the South side of the harbour frequently shift, and a great portion of them is dry, at low water. On the North side, from l'oiut Puerto eastward, the coast is rocky, and defended by soveral batterics. The town hus a smal. pier.
With the wind blowing fresh from the S.W. or N.W. quarters, it is impossible to take the haybour of Santander; bat vessels may, with fiovi tido, occasionaily brinf up in the Road of the Promontory, which is clean aud roomy, and there wait for a
wind. With an ebb tide, it will be better to come to in the outer bay, off the beach of Sardinero, as already described.
An islet, named Mouro, which is high and steep, lies in the entrance, at half a mile N.E. from Puerto Point; on it a bright light is established; close to its eastern side is a larger rock, and there is a shoal at a cable's length to the N.W. of it ; otherwise there is deep water around it, and the channels on each side are clear and good.
Although Santander has been considered as the best harbour on the North coast of Spain, eastward of Cape Ortegal, there is little doubt that it is now filling up, and that the channel and even the anchorage now used may, in a few years, become impracticable.

On Cape Penas is a revolving light, visible every two minutes; on Capse Busto (long. $6^{\circ}{ }^{\circ} 9^{\prime}$) is a bright fixed light with a red flash every two minutes; on the Orrio de Tapia, near Ribadeo, is another fixed and flashing light; and on Cape Estaca is a revolving light. These lights will indicate the chief points of the coast.

CAPE ORTEGAL, Cape Prior, with the other headlands in the vicinity, are high and steep. The ground without generally rocky and foul. At the frot of Cape Ortegal are nine or ten sharp-pointed rocks above water, with 15 or 16 fathoms close to them; and there is a rocky shoal at half a mile N. by E. [N. by W.] from the cape. A watch-tower on the highest land, at $1 \frac{3}{8}$ miles from the cape to the southward, is a good mark for distinguishing it from seaward. Hence to Cedeira the land is steep and rugged, but to the northward of Cape Prior it falls into saidy bays. At different distances from shore are many scattered rocks, on which the sea breaks in a swell.
Both the stream of tide and current of the sea set in toward the land of this coast; so that the utmost attention is requisite, in order to avoid being embayed with light winds. With a good steady breeze, large ships may, however, pass safely within 2 miles of Cape Ortegal.
FERRBOL.-From Cape Prior to the Harbour of Ferrol the land is highly mountainous, with large rocks above water along-shore. The bay, forming the entrance of Ferrol Harbour, is only a mile wide; and the channel from it into the harbour but 2 cables' length in its narrowest part. There is, nevertheless, sufficient depth in midchannel for large ships at all times of the tide, viz., 8 to 10 and 12 fathoms. Whea within, you keep over to the North side, where you may haul up, and anchor in from 4 to 6 fathoms, sheltered from all winds.

CORUNA, \&C.- The North part of the Peninsula of Coruña is distinguisined by the remarkable lighthouse called the Tower of Hercules, constructed with three sides, and exhibiting a fixed light with flash every 3 minutes. On the coast, without the elevation on which the lighthouse stands, there is a bank of rocks extending N.W. to a considerabie distance; but, from the meridian of the lighthouse a ship may range alcng the coast into the harbour, to the S.E. and South, and find anchorage with the town bearing S.W. in 14 and 15 fathoms. A fixed light is also shown from St. Antonio Castle.
genteral remarks on coming in with the Coast about Ferrol and Coruna; from the Spanish of Torino.-"During the night, ships should never advance too near the land; for not only does, at times, a powerful current set in for the lund from the N.W., but the streams of flood and ebb often draw vessels out of their conputed situation, especially in winter, or in thick foggy weather, which is frequent here. In the daytime, the sandy beach at the bottom of the hills may often be seen, when the latter are obscured in mist and haze. Ships from the westward, which cannot take the harbours in the day, should not advance to the eastward of the meridian of Cape St. Adrian, or about Cisargas Isle ($8^{\circ} 44^{\prime}$), where they should stand off and on according to the state of the wind; for lying-to may be dangerous.
" During south-westerly winds, the currents set with great strength between Cisargas 1sle and Cape Ortegal; and vessels have often been carried thus to leeward of the harbour of Ferrol, where there is no place of shelter or safety. With northcasterly winds a ship should run within 2 miles of Cape Prier, and thence stecr for

Cape Pr_{r}
Bay of
In the diate p o will be a
It ma Capes P the fine

From rocl:s ab pendicul colour, half N. breaks.

CAPE Villano, distance two cabl brcaks w

The N milcs to one-third on it, and Cape Tor casterly bottom, b taken not

CAPE rcadily ki low beach on the ne it, which
PORT1 nences fal pilots. S a good c attempted him on th tion of m danger in from the circumsta in the mic the river, any way, the wind from the river.
CAPE minutes, Vincent. anchor, fis
" off tl ous rocks, eastern side t; otherwise good.
North coast w filling up, ears, become

Cape Busto on the Orrio pe Estaca is ity, are high foot of Cape Cathoms close V.] from the o the south eira the land ly bays. At breaks in a
of this coast; with light fely within 2
nighly moune entrance of arbour but 2 epth in midoms. When chor in from
nguisted by h three sides, without the ling N.W. to - may range Age with the on from St .

Ferrol and hould never ent set in for essels out of er, which is Is may often e westward, ward of the hould sitand rous.
th between to leeward Nith northfee steer for

Cape Priorino, in order, if the wind be not very strong, to gain the anchorage in the Bay of Carino; or to stand away, if it be so, for Coruña.
In the neighbourhood of Cisargas Isle and Cape Prior, as well as off the intermediate points, it is necessary, in hazy weather, to sound frequently; for the soundings will be a monition before the roari", of the sea on the shore can be heard."
It may be observed that since these remarks were written, the principal poirts, as Capes Prior, Priorino, Cisargas Isles, Cape Finisterre, \&o., have all been marked by the fine lighthouses described in the tables in the earlier part of this work.
From CAPE ST. ADRIAN, the high land continues to the Bay of Camarinas, with rools above and under water. Cape Villano is of rock, not very high, but perpendicular toward the sea. Within it, at a short distance, is a sharp peak, of a red colour, which, at a distance, appears like a tower. At the distance of a cable and a half N.N.W. from the cape is the Rock of Bufardo, steep-to, and over which the sea breaks.

CAPE TORIANA, which is 3 leagucs to the S.W. by W. [S.W. by S.[from Cape Villano, makes a sharp and stcep projection into the sea; it is not very high. At a distance it is not always distinguishable from the high land at the back of it. At two cables' length West from the point of the cape is a small sunken rock, which breaks with a little swell.
The Nave of Finistrerre, a high mountain so named, stands at the distance of $5 \frac{8}{3}$ miles to the S.S.W. [South] from Cape Toriana. Its summit is flat; and, at about one-third of its height from the sea there appears to be a short point with hummocks on it, and having at its base a small but high island. In the bay formed between Cape Toriana and the Nave of Finisterre, vessels may safely anchor during northcasterly and easterly winds, off a fresh-water rivulet, in from 6 to 8 fathoms, sandy bottom, but not in deeper water, as there the bottom is roeky. Care must also be taken not to advance too near the North shore, as it also is foul.
CAPE FINISTERRE is only half a league South of the Navé. It may be rcadily known from the sea; because there is a bight between it and the Navé, with low beaeh, and the land behind less elcvated. As there are no other points like these on the neighbouring coast, they cannot easily be mistaken. There is a lighthouse on it, which shows a bright revolving light et $\frac{1}{\frac{1}{8}}$ minute intervals.
PORTUGAL.-ThE COAST of PORTUGAL is varisgated with roeky prom:nences falling away into low sandy bays. Its harbours universally require the aid of pilots. Such are Viana, Oporto, Avciro, and even Lisbon. The latter has, however; a good channel with 6 fathoms over the bar at low water, yet it should it be attempted by a stranger, lest the winds fall calm, and the strength of the current set him on the banks. Here the powerful operation of the tides has caused the destruction of many slips. Off the city the ebb runs down at the raie of 7 knots, and the danger in entering is when a strong ebb is running down, opposed to a strong wind from the sea, which makes a complete break, sometimes all over the bar. Under these circumstances a vessel is almost unmanageabie, and the tide may sheer her about; but in the middle of the Great or South Channel, the tide sets directly through. To enter the river, during the ebb, would require a brisk gale and all sails set, in order to make any way, or even to stem the current; and it is to be observed, that within the river the wind comes very irregularly through the valleys on sach side, unless it proceeds from the West or S.W. It is, however, tolerably steady when in the direction of the river.

CAPE ST. VINCENT.-A light is shown from the convent, revolving every two minutes, at 221.feet. "Soundings extend to a considerable distance from Cape St. Vincent. To the southward of the cape fishing-boats may frequently be seen at anchor, flshing about 8 miles off shore.
" Off the cape, to the westward, the surf, by beating on the nrecipitous and cavcrnous roeks, may sometimes be heard to a surprising distance."-A. L.

LAGOS.*-According to the latest astronomical observations, Lagos is in lat. $37^{\circ} 8^{\prime} 40^{\prime \prime}$ N., long. $8^{\circ} 37^{\circ} 45^{\prime \prime}$ W., which differs a few seconds from the position generally adopted; but, from a number of coincidences, I should prefer this in a final determination. This place, and Villa Nueva, in time of war with Spain, are of the utmost value and import, more particularly if there is a blockade of Cadiz, as ships are dispatched there to water; on which occasion it is necessary to observe the following instructions:-At half-flood the boats can get near enough to land the casks, and may be taken off as late as quarter-ebb. The tide ebbs and flows in Lagos River at two o'clock, full and change ; it rises about $13 \frac{1}{2}$ feet in the spring, and θ in the neapa. The bar is just covered at low water. It has 14 feet on it at high water sping tides, and 10 feet at the neaps. In fine weather, about 180 tons of water may be raited off in 24 hours. Refreshments, such as poultry, pigs, fruit, rabbits, pigeons, vegetables, \&e., are to be procured reasonably.
VILLA NUEVA.-In Villa Nueva River, wnter may be got in transports, at about 150 butts in 24 hours; which must be rafted 3 or 4 miles down the river with the ebb tide, as the water is too shoal for ships to go nearer the fountain where it is procured. There is a depth of 16 or 18 feet of water on the bar; but, in my opinion, it is only a summer watering-place; as the Portuguese told me, that in winter the bar is seldom passable for ships, as the breakers are very dangerous, and the swell a long way outside it. At the lower water-place a butt may be filled in 8 minutes, and in 7 at the upper. A great quantity of salt is shipped at Villa Nueva.
SAN LUCAR, or the PORT OF SEVILLE.-A vessel bound for San Lacar, or Seville, should, after sighting land, bring the town of San Lucar just open of the point on which stands the ruin of the Fort of Espirito Santo, when a large stone building (not whitewashed) will be seen; it is the easternmost in the town of San Lucar, and cannot be mistaken, as all the others are whitewashed; bring this in a line over the North edge of the Point Espirito Santo, and run boldly in in that direetion, until a large square white building is seen at Bonanza, just clear or touching the low sandy point to the northward, covered with trees, called Point Seville; then run with this last mark on, keeping the square building in sight, and pass Point Seville at $1 \frac{1}{6}$ cables' length; then run over to Bonanza, and anchor in 5 or 7 fathoms before the square building or pier. The square building of Bonanza is close to the river, and about $1 \frac{1}{4}$ miles from San Lucar.
By night Espirito Santo, Bonanza, Chipiona, and Malandar Point are distinguished by lights as shown in the table.

The water breaks on Picacho till half-flood; when there is any sea on, leave it on the port side.
It is best to wait till flood tide to run in with; we had 22 feet water at quarter ebb, and beat out, opening and shutting the square building at Bonanza with Point Seville. The South side of the entrance of the river is bordered by low black rocks, covered at quarter-flood. Weather permitting, a pilot may always be obtained, but they only put off when a ship is bonnd to the port.
It is recommended that no ship taking the bar of San Lucar should attempt it on the cbb tide, especially if they have any suspicion that there are freshes in the river, because, with a broken sea and strong tide, a vessel may sheer on shore before she could recover. herself. \dagger

TRAFALGAR.-Cape Trafalgar, by the ancients called the Promontory of Juno, is about 15 or 16 miles to the eastward of Cadiz, and 23 or 24 miles to the southward of it; its appearance is flat, and distinguished by a white building, but a lighthouse is in course of construction on it. Those unacquainted with the navigation between

[^81]this and the S.W difficult ${ }^{\text {s }}$ S.S.W., in from this bigh Regla, o larming on board entrance ings, in you sup see land the drift gut; wh the influ the lead extreme port tack soothwa make af you will ahip is 0 along th
The or [N.W.] fathoms with 8 when out
A mor is a fixed the last g flat, and East cort To the \mathbf{E}
It is to W.N.W. the Briti mated at

Before attention ought to
"In c various n posed, of sons be c sanatory port for people of
gos is in lat. position genein a final doin, are of the Jadiz, as ships rve the followthe casks, and agos River at 9 in the neaps. r sp: ing tides, y be raited of ns, vegetables,
ports, at about r with the ebb it is procured. on, it is only a bar is seldom long way outnd in 7 at the

San Lacar, or st open of the a large stone town of San ring this in a in that direcur or touching Seville; then nd pass Point 5 or 7 fathoms s close to the
distinguished
n, leave it on
ter at quarter za with Point w black rocks, obtained, but
attempt it on s in the river, bre before she
atory of Juno, he southward a lighthouse ation between
een communi-
. Wharton, of
this and Cape St. Mary, generally labour under great dread of a gale of wind from the S.W., and, from want of knowing how these gales come on, frequently get into difficulties. The S.W. gales generally commence with the wind at S. by W. or ©S.S.W., and continue blowing on these points flve or six hours, althongh the sea sets in from the westward; and it is too common for persons, unaccustomed to navigate in this bight to have their minds impressed with the danger of the shoals lying off Point Regla, commonly called the shoals of San Lucar, and falsely represented as very larming. Under this apprehension they are induced to haul their starboard tacks on board, and push for the Strait of Gibraltar; whereas the real danger lies at the entrance of this strait, and consists of dangerous reeis of rocks, with nncertain soundings, in no wise to be depended on. Between Cape Trafalgar and Tarifa (and when you suppose yourself round them, and the straits upen), in thick water, not able to see land on either side, you will feel yourself in a very awkward situation to find out the drift of the ship, or ascertain whether you are in a fair way to push through the gut; which you will be compelled to, do should the gale continue, and you are within the influence of the stream; for you can (as before observed) gain no information by the lead of the reef of rocks which lie W. by N. of the Island of Tarifa, and are extremely dangerous. On the other hand, by standing to the westward, with the port tacks on board, at the commencement of a S.W. gale, when the wind is from the sonthward, for instance, at S.W. by S., and you make four points leeway, you will make a fetch to the westward of A yamonte; or even with a N.W. course made good, you will weather the Bar of Huelba, and the lead will inform you the distance the ship is off the land, 15 fathoms being the very shoalest part you should stand into along the North shore.
The onter shoal of San Lucar is not at a greater distance than 21 miles N.N.W. [N.W.] from Point Regla ; the ground, outside the shoal, is even and hard, with 10 fathoms of water close to it; about half a mile to the northward of it there is a spot with 8 fathoms. No allowance is made for a S.E. current, which alway prevails when out U : soundings, and even in 60 fathoms.
A more particular description of the land between Cape St. Mary (on which there is a fixed light) and Cadiz may be found in the Sailing Directory. Cape Trafalgar, the last great promontory of this coast, may be known by its remarkable figure, being flat, and terminating with two sharp corners or angles. A round tower stands on the East corner; to the eastward of the flat, the land is very uneven and mountainous. To the East of the flat land are high sandy cliffs, but none to the westward.
It is to be noted that the northern side of the recfs called the Cabewos, lies $5 \frac{1}{4}$ miles W.N.W. [West] from the light-tower of Tarifa. This appcars to be the spot on which the British frigate Thisbe touched, in August, 1804; the depth over which was estimated at 14 feet.

2.-THE COASTS OF AFRICA, FROM TANGIER TO CAPE MESURADO.

Before proceeding with the description of the coast of Maroceo, we will direct the attention to the following notice, issued by the British Consul, and which notice ought to be borne in mind by all frequenting these coasts :-
"In consequence of several boats' crews having landed lately, from shipping of various nations, on the open coast of Marocco, or West Barbary, in search, it is supposed, of water or other provisions, the Moorish authorities are desirous that all persons be cautioned that it is not only against the law of this land, and against the saaatory regulations, to land on any part of this coast, in places where there is not a port for their reception, but that, in consequence of the strict injunctions given to the people of this country by their governmont to prevent any persons whatever setting
foot on land, or approaching near to it on the open coast, the lives of those who infringe the laws in such respect are exposed to danger.
"The undersigned feels it, thercfore, his duty to give all the publicity he can to this notioe, for warning all commanders and masters of vessels, and especially those navigating under the flags either of the United Kingdom of Great Britain and Ireland, or of the Kingdom of Hanover, or of the Hanseatic Republics of Lubeck, Bremen, and Hamburg, not to venture, upon any account, to land, or to allow any porson under their caro or orders, to land or approach within musket-shot of the coast of Marocco or West Barbary, excepting within the harbours of any of the well-known ports of this country.
"E. W. Drummond Hay,
"Tangier, Sept. 15, 1843."
" Mer Britannic Majesty's Consul-General, fe.
TATGIISR. -This place is of importance to the navigator, both in peace and war, on account of the refreshments to be procured, which are almost the only traffic the Moors have. The principal articles are cattle, sheep, pigs, poultry, eggs, fruit, and vegetables, of which a limited quantity is allowed to be purchased by each ship.

The bay affords convenient anchorage for vessels of all sizes opposite to the town, in from 8 to 10 fathoms, sand; but it is to be observed that, on the eastern side, there is a rocky ledge, bearing E.S.E. from Tangier Point, and S.W. by W. $\frac{9}{4}$ W. from Cape Malabat. This cape, in a line with Europa Point, Gibraltar, leads clear of the shoat; and the anchorage, therefore, lies with Gibraltar open of the cape. Ships moor to the N.W. and S.E., with the longest cable to the N.W., \&c."

Tangier is doscribed by Captain Washington as situate on a deep acclivity, rising at once from the beach, and presenting its eastern and not unpleasing aspect to a bay about three miles wide. It is surrounded by mouldering walls, round and square towers every 60 paces, and three strong gates. Its defences toward the sea are two batteries, one above the other, on the Soath side of the sea-gate. Directly in front of the landing-place, high on the wall, are about twelve guns ; to the North, in a circular battery commanding the bay, about twenty guns of all calibres, mounted on clumsy Moorish carriages, which would not stand fire for ten minutes; crowning all, to the North, is an old and extensive castle, L'Kassbah, and the residence of the governor. On the land side, ruined walls and a ditch are the only defences. The gates are shut at sunset, and a watch is kept by night.

All persons who visit this place should pay implicit obedience to the advico of the consul, as to the conduct to be observed during their intercourse with the natives.

In rounding Cape Malabat, some years since, at the distance of more than threequarters of a mile from the shore, the Excellent, of 74 guns, touched upon a rock previously unknown; at which time, from the starboard chains, were found $5 \frac{1}{3}$ fathoms, and 6 from the port. Cape Malabat then bore S. by E. $\frac{1}{2}$ E., and the ship floated off in less than a minute. This rock is known in the name of the Almirante, and described as having over its shoalest part 3 fathoms of water. There is also a sunken rock at nearly the same distance from Tangier Point, discovercd by the Pacifico schooner, in 1818, and which lies with the inner coost of Tangier S. by W. [S. by E.]

In all the extent between Cape Spartel and Cape Cantin (lat. $32^{\circ} 32^{\prime}$), as shown \perp the chart, there are regular soundings toward the shore. In this track there are no harbours of consequence ; those which exist beiver nearly choked up with sand. On sailing along, the inland mountains may be seen at a great distance, covered with snow, even in April and May.

* It is to be observed that the proper anchorage is in the centre of the bay. On the West of this anchorage is, or lately was, a large old mooring chain, supposed to have been laid down in the reign of Charles II., King of England, and found to extend nearly in an East and West direction, and in a line on the North side of the town of Tangier ; its West end being nearly a mile from the nearest shoro. Tangier Point is altogether surrounded by foul ground to a considerabla distance.

Arou is a ran of 2 mi sble dct there is winds.

The f of Cape Arlett, Mr. T.

From fortified good an 10 to 15 flat, san
The 1 8 or 10 water, a 1st. town of n line, S regular
2nd.N.; cen of the to
At th landing numero seamen, hopes of were de The Mo prisoner down of party of their ro were rc gier. scrious 150 yar beach-li S. $\frac{1}{8} \mathrm{~W}$.

[^82]those who in licity he can to specially those ritain and Ireics of Lubeck, or to allow any hot of the coast he well-knowa

Ay,
General, \&c.
peace and war, inly traffic tho ggs, fruit, and ach ship.
:e to the town, tern side, there V. A W. from Is clear of the cape. Ships
cclivity, rising sspect to a bay ad and square le sea are two thly in front of h , in a circular ted on clums ng all, to the the governor. gates are shut
advice of the re natives.
re than threed upon a rock rere found $5 \frac{1}{2}$ and the ship e Almivante, here is also a vered by the gier S. by W.
, as shown there are no th sand. On covered with
bay. On the to have been 1 nearly in an Kier ; its West ${ }^{r} \mathrm{r}$ surrounded

CAPE SPAR'TEL, the N.W. point of the state of Maroceo, is situate in lat. 35 $47^{\prime} 40^{\prime \prime}$, and lon. $5^{\circ} 56^{\prime} \mathrm{W}$. The cape, at a distance, appears like an island, and is so high as to be seen, in clear weather, at the distance of 14 or 15 leagues. The outer point, when secn from a short distance westward, appears uneven, with eminences on it like hummocks, and the high lands resemble the awning of a galley. The ground about the cape is quite clear, with the exception of some high rocks, steep-to.
Around the West side, and at about one-third of the vhole height from the summit, is a range of well-defined basaltic columns, appearing like a cayonet. At the distunce of 2 miles from shore are 98 fathoms, the bankimmediately dro , ping to an unfathomable depth. To the southward of the cape the bank extends much farther off, and there is excellent anchorage on a bottom of mud and sand, and shelter from easterly winds.

The following descriptions of the coast between the parallels of 36° and 28° (those of Cape Spartel and Cape Juba), we owe principally to the Survey of Lieutenants W. Arlett, in the XEtna, and H. Kellett, in the Raven, 1835-36; and to the notices of Mr. T. J. Evans, of H.M.S. Dido, 1837-38.*
From Cape Spartel the direction of the coast is S.W. 20 miles to Arzilla, a small fortified town situate close to the shore, between which and Cape Spartel there is good anchorage all along with an casterly wind. The depths of water are regular, 10 to 15 fathoms, over a sandy bottom, at 1 or 2 miles off shore. The coast-line is a flat, sandy, and shingly beach, rising to a fine grazing country in the interior.
The Roadstead of Jeremia, the usual anchorage near Cape Spartel, extends from it 8 or 10 miles to the S.W. The Dido anchored in the following positions in smooth water, and well sheltcred from a strong levanter, or easterly wind.
1st.-In 15 fathoms, sand and small shells, Cape Spartel bearing N.E. $\frac{1}{2}$ N.; the town of Arzilla, S. by W. $\frac{8}{4}$ W.; extremity of land to the right, two points nearly in a line, S.W. by S. Distance to the ncarest shore about $1 \frac{1}{2}$ miles; soundings very regular to a depth of 5 fathoms, at 2 cables' length from shore.
2nd.-In 13 fathoms, coral rock, gravel, and sand, Cape Spartel bearing N.E. $\frac{3}{4}$ N.; centre of the town of Arzilla, S. $\frac{1}{4}$ E. ; two bold and prominent points to the S.W. of the town, nearly in a line S.S.W. $\frac{1}{2}$ W.
At the village of Almadronis, nearly midway between Cape Spartel and Arzilla, landing can be effected. A boat of the Dido, sounding in this vicinity, landed, and numerous herds of cattle were seen grazing in the city; but on two officers and two seamen, part of the boat's crew, walking not more than 100 yards from the beach, in hopes of procuring stock, they were immediately seized by a party of Moors; three were detained and conveyed into the country, the fourth having effected his escape. The Moors were armed, and were savage in their behaviour until they had made their prisoners. The ship, then lying at her first anchorage, was soon under way, and ran down off Arzilla, demanding from the governor the officer and men detained. A party of Moorish horsemen were now sent to scour the country, who found them on their road to Tangier, under a guard : on this they were escorted back to Arzilla, but were refused to be delivered up until permission was granted by the governor of Tangier. The delays were so protracted that the ship anchored off the town, to make a serious demonstration, in $4 \frac{1}{2}$ fathoms of water, at about 600 yards from the shore, and 150 yards outside a reef of rocks awash, which deseribe a semicircle without the beach-line, affording good shelter under its lee, with the principal fortress bearing S. $\frac{1}{2} \mathrm{~W}$.

[^83]- "The fortifications, which apparently are fast crumbling to decay, cover the whole sea-face of the town, on which we observed mounted about twenty guns, of various calibres: in our position not more than thirteen guns bore on us; and if we had anchored about half a cable further North, not more than ten could have been used with effect. However, the garrison being deficient in ammunition, and defenceless in other points, the ship resumed her former anchorage, having gradual soundings, in all directions, from the reef of rocks to a depth of 15 fathoms.
" The next day we weceived our people by permission of the authorities of Tangier, and started from their inhospitable shore. It is here necessary to state, that, while prisuners, they had been well treated.
" To account for the foregoing proceedings, it appears, by a treaty, that trading is forbidden at any port on the Moorish coast in which there is not a British consul, or his agent. At Arzilla there is a Spanish Jew in the latter capacity, who behaved uncommonly woll on this occasion. Now, as we landed only 5 miles from an authorized port, it appears that they carried this artiele of the treaty to its fullest extent. In fact, it is generally attended with fatal consequences for a Frank, in an unauthorized port, on $9 n y$ preience, whether from distress or a want of knowledge of their customs. An instance of barbarous murder committed on an Englishman who (in ignorance) had landed for the amusement of collecting shells on the sea-beach, and actually in sight of the ship, occurred a few years back, not 3 miles from where our party were seized; and it may be considered fortunate that this affair ended without loss of life. As a proof of the general ignorance of this custom, we had on board at the time of the above incident five merchant captains, who had been in the habit of trading to the S.W. ports of Marocco, and who knew not that landing was against the laws; and it is to be regretted that our consuls in Marocco should not have given more general information on so serious a point."*

Four or five miles to the N.E. of Arzilla is the Wed el Ayasha, a small river, barred across the entrance, but reported to flow sufficiently strong for a good supply of water; and the distance to roll the casks, the bbat being anchored clear of the surf, not above 50 yards. The preceding description shows how far caution may be required.
Twelve miles inland from Arzilla is the Jibel Habib, a range of moantains very conspicuous from the sea, the lofticst of which is 3,170 feet above the sea. Jibel Hasan, another peak in this range, moro to the northward, is 2,270 feet high. Just to the North of the town of Arzilla is a castle in ruins; and date trees, which overtop the walls, are growing in the court. On the wall fronting the sea, which is strengthened by three towers, twenty guns are mounted. Under the southern angle of the wall is a well whitewashed tomb. The country around is well wooded, and a quaatity laid out in gardens. The population is supposed to exceed $600 . \dagger$

From Arzilla the coast trends to S.W. W., and at the distance of 4 miles the coast hills rise to the height of 734 feet; at 5 miles further is the IIaffa el Beida, a remarkable white eliff, in the slinpe of a wedge, which rises to 308 feet above the sea, and presents the same form in all directions. It may be distinguished when 6 leagues off; but the beat mark for the coast is the Peak of Fas, an insulated mountain, resembling a sugar-loaf, which stands S. liy E. \& E. [S.E. 2° S.] from off the entrance of El Araiche, next described.

EL ARAICHE, a picturesque ruin, is situate on the deep southern point of the liver

* See the Notice issued by H. B. M. Consul, given on page 488.
+ In the latitude of Arzilla the bank extends 12 miles from the lnnd. Here is a mackarel fishery, on which twenty or thirty Spanish and Portuguese feluccas aro employed. The method of taking the fish is by three hook fantened together: the fitherman thrown a handful of ealt or sand into the water, to which the fish rise, and are immediately jigged with great desterity. They nre cleaned and malted on the spot.

Al Kha Al Kha the poof state. trade is abundan shore, ve

The b S.S.E. very par over it, decpens the river the road: tant con entrance

Betive but not water, at depth de from sho advance for some the West

The sit the chief stream 8 a El Araicl fathoms, coast bet most part miles, the everywhe shore, an Ships, in being dri the coast change 0

The P_{1} Mamora,

From The coast known, t clivity, y on the S except in navigubl to the tol from the of it. S fathoms, and some well as a s.E. by

Mehed
ver the whole os, of various ? we had oneen used with eless in other dings, in all
es of Tangier, e, that, while
hat trading is tish consul, or who behaved iles from an y to its fullest Frank, in an knowledge of glishman who the sea-beach, from where 3 affair ended m , we had on ad been in the t landing was co should not

1 river, barred ;ood supply of ar of the surf, ution may be

ountains very

 he sca. Jibel et high. Just which overtop hh is strengthangle of the and a quaa.f 4 miles the a el Beida, ceat above the ished when 6 ulated moun| from off the
tof the River
is a mackarel ployed. The faini throws a fiately jigged

Al Khos, which here meanders through a rich and fertile valley. Al Khos signifies the bow; El Araiche, the pleasure garden; but the people are barbarous, and the country is in an uncaltivated atate. The population of El Araiche is abcut 2,000; and a little trade is carried on between this town and Gibraltar. Supplies are sbundant, and there is a fine spring of water on the northern shore, very convenient for shipping.

The best anchorage is with the town between the South and S.S.E. The mouth of the river, which appears very broad, is really very narrow at low water, and has then only 5 and 6 feet water over it, but there is a rise and fall of 9 to 12 feet. Inside the water deepens 24 feet. A "pap," or rising point, on the North side of the river, is 204 feet high above the sea. The best anchorage in the roads for vessels intending to enter the river, is with the distaut conical mountain, Fas, appearing in the centre of the eutrance, 1 mile from the point, in 12 fathoms, sand.

Between Arzilla and El Araiche the ground is tolerably clean, but not very good, being coarse gravel, with 25 and 30 fathoms of water, at from 1 to 3 miles from shore. Before El Araiche the depth decreases, and there are only 4 fathoms at 2 cables' Iength from shore. In sailing along this coast, care must be taken not to advance too near, unless it should be with a strong easterly wind; for sometimes, in calm weather, there is here a heavy swell from the West or N.W., which would render it difflenlt to get off shore.

The site of Old Mamora, known by several whitewashed tombs, the chief of which is that of Muley Bu Selham, at the outlet of a stream said to flow from a small lake, 20 miles to the southward of El Araiche. At 2 cables' length from the bar is a depth of 5 fathoms, gradually increasing to 34 at 2 miles from shore. The coast between EL Araiche and this spot is straight, and for the most part about 300 feet in height; reddish cliffs for the first 10 miles, then sand-hills partly covered with brushwood. There are everywhere from 20 to 25 fathoms of water, at half a league from shore, and you may anchor off the eoast hence to Slaa or Salce. Ships, in fact, must sometinies anchor here, during a calm, to avoid being drifted by the currents, which set to the southward, along the coast; and the velocity of which, especially at the full and change of the moon, is frequently from 1 to 2 miles an hour.

The Peak of Fas, above mentioned, serves as a mark for Old Mamora, from which it bears nearly true East.

From this place the coast extends 10 leagues S.S.W. to Muhedia. The coast is very clear, a little higher than the former, and readily known, being of white sand as far as about the middle of its declivity, while the upper part appears like cliffs. The River Sebou, on the South bank of which the town is situate, is impassable, execpt in boats, or on rufts, at some distanes from the sea, although naviguble near the ocean. The town extends from the sea-shore to the top of the highest land, so that you may readily distinguish, from the offing, the walls of an old castle, situate in the upper pait of it. Ships may anchor, at half a league from shore, in 12 or 14 fathoms, sandy ground; but, when the wind blows from the offing, and sometimes in fair weather, the swell is here very great, as well as along the const. The bext anchorage is with the tewn from B.EI. by E. to S.E. by S.

Meheclia was formerly a place of some consequence, and is noted

for the ruins of fountains, arehes, \&e. The town now contains only 300 to 400 inhabitants, chiefly fishermen, who subsist by the sale of shebbel, an exaellent fish, much like salmon, which is caught here in great abundance.

In the summer, the wind generally prevails from N. by E. to N.E. along the coast. During winter, there is a blustering S.W. and S.S.W. wind; and, in this season, when it begins to chop about to the South or S.E., shipping must get off, for then it commonly shifts to the S.W. and W.S.W., with foul weather. When it changes to W.N.W. or N.W., the weather is likely to be olear.

Between Mehedia and Slat or Salee, the coast is rather low, with double land; very even, with a white sandy straud, therefore readily known. At about half-way the strand rises, and thence, southward, the shore consists of black and steep rugged rocks, with small hills.
sLaA and RABAT.-The towis of Slas and Rabat are divided by the river called the Bu Regreb. In this river, between the two towns, some sloops of war, belonging to the Moorish sovereign, were formerly laid up for the winter. But Mr. Jackson has said that, going thence to Mogodor, a few years since, the vessol in which he was, of about 150 tons burden, struck three times on the bar: and, as the sand continues to accumulate, it is likely that, in unother century, there will be a separation from the ocean at ebb tide*

Slas, or Salese, says Coptain Washington, once the terror of the seas, so renowned for its rovers, whose daring exploits reached even to our coasts ; whose city and port were a constant scene of riot, and bustle, and activity ; now ruined, still, and lifelces. The present town, built on a sandy point, extending to the sea, forming the northcastern bank of the river, is ubout half a mile in length by a quarter in breadth, surrounded by walls 30 feet high, and square towers every 50 paces. Its defences, a battery of twenty guns, facing the sea, a round fort at the entrance of tho river, and a gun or two on the gates. The mosques, arches, and fountains in the eity, show traces of beautiful sculpture, and of great antiquity. Streets narrow, and houses nombre, like all Moorish towns. Population about 10,000 , of which 500 may be Jews, with apparently little or no occupation.

The river, called $B u$ Regreb, is here about 500 yards broad, when full. The bar, ahout one-eighth of a mile from the entrance, extends almost across in a W.S.W. direction, with 3 or 4 feet on it at low water, leaving a channel at each end; the Moors use the enstern. Rise of tide, $\mathbf{0}$ or 10 feet. From the anchorage off-shore the water shoalens very gradually till elose to the bar, where it suddenly drops from 7 to 2 fathoms. Here is almost invarinbly a heavy surf.

Rabat, on the S.W. side of the river, is 50 or 60 feet above its level, on bunks of crumbling sandstone. It is crowned by a vencrable and lattlemented Kasbah, or citadel. A curtain of 600 yards, facing the sea, flanked by two eircular batterics of twelve guns each, about as many more in the Kasshuh, and a small battery overlooking the river nt the S.W. end of the town, form its sea defences. The town is threequarters of a mile long by one-third in breadth, and walled orchards of about 200 neres reach along the banks of the river.

The old Kassbah was built in the twelfth century, and some subterraneons magnzines in it, remarkable for their strength, being bomb-proof, are still preserved; there are, also, the remains of a small battery, which defended the entrance of the river. At a short distance South of the castle, on an elevated situation, is a square fort, the walls of which are about 2 miles in circuit, and strengthened by square towers; they encloso the eastle, the town of Rahat, and a large space of ground, where stand a palnce, and the mausoleum of the Shnreef, or Emperor Sidi, or Seedy Mohammed.

A remurkuble old tower at Rabat, enlled the Tower of Beni Missan, is the best sen-mark for this place. It is built of hewn stone, is 180 feet in height, 35 or 36

[^84]feet brom wall, on
The of excellen
The to
IIasaan, river, an as it mu street of very att orchards though : The Jew leum of

The I entrance Vessels 1 clusive; nouthern age in th kecping in the ro labat m
$\mathrm{T} \cdot \mathrm{M}$
Vis.
\mathbf{w}^{\prime} 6 ...n'm

FIDA harbour, during w exceptior in securit peninsule

The vil square, o merchunt auts-M
Betwe from shol the land, suddenly many mi inland fe 200 to 30 from 4 to the beach

[^85]300 to 400 xcellent fish,
ng the coast. this season, f, for then it t changes to
olo land, very half-way the steep rugged
by the river loops of war, er. But Mr. ssel in which i, as the sand en scparation
, so renowned city and port , and lifetess. ng the northbreadth, surto defences, a the river, and he city, show r, and houses may be Jews,

1l. The bar, in a W.S.W. ach end; the off-shore the ops from 7 to
, on banks of I Kasbah, or hr batteries of ery overlook. own is three. of about 200
neous magarerved; there of the river. uare fort, the towers; they vhere stand a ohammed.
, is the best ht, 35 or 36
feet broad.* At a small distance to the northward of it are the ruins of an ancient wall, on whieh were formerly a battery and castle.
The country in the neighbourhood is planted with vines, oranges, and cotton, of an excellent quality. There are docks for ship-building, both at Salee and Rabat.
The tower before mentioned is described by. Captain Washington as that of Sina. Hassan, and is the most conspicuous object, standing 220 feet above the level of the river, and the first by which this coast would be recognised in approaching from sea; as it must be visible from the deek of a frigate 6 or 7 leagyes:' He adds, the main strect of the town, which runs parallel to the river, contains the principal shops; not very attractive; the markets abundantly supplied with vegetables and fruit; orange orchards, vineyards, and cotton plantations, are extensive; the fruits excellent; though grown on a light, sandy soil. Moorish population, about 18,000; Jow, 3,000. The Jewesses the prettiest in the empire. There are ten mosques, besides the mausoleum of the sultan before mentioned, and that of the Moorish hero Al Mransor.

The Road of Slat is dangerous for shipping, and the accumulation of sand at the entrance wil seareely permit a versel of 100 tons to enter the river without danger, Vesscls may lio in safety out of the river, near Rabat, from April to September inclusive; but they are not sceure in the rest of the year, the wind blowing from tho wouthern quarter, and often obliging them to quit their moorings. The best anchorage in this season is between the Mosque of habat nd the Old Tower of Hassan, keeping the former to the northward. As a great number of anchors have been lost in the road, much attention must be paid to the cables. The position of Slaa and liabat may be seen in the Table, page 33.
V. Mansoria, shown on the Chart, is a square of 150 paces, enelosing an Arab vii]: The tower of the mosque, 80 feet high, stands 180 feet above the sea, from \mathbf{w}^{2}. : is less than a mile distant. From the deek of a frigate it may be visible at 6 dubus. The coast here is irou-bound and roeky.
FIDALLAH, or Frdala, a peninsula, frequently mistaken for an island, forms a harbour, having a depth of δ or 0 fathoms, which affords shelter to small vessels during westerly winds. A roudstead here is supposed to be the only one, with tho exception of Agadeer, in the parallel of $30^{\circ} 27^{\prime}$, wherein ships on the coast may rido in security during winter. This is owing to a projection of the lind, South of the peninsula above mentioned.
The village of Fidallah, situate at three-quarters of a mile from the sea, is a walled square, of about 200 paces, enelosing a respectable mosque, the ruins of Luropean merchunts' housea, and an Arab encampment. It may, perhaps, contain 300 inhabit-ants-Moors, Arabs, and Jows.
lletween Rabat and Point Pidallah there is no danger beyond a quarter of a mile from shore; the Bank of Soundings extends to the distance of 20 or 22 miles from the laud, increasing south-westward. From 160 fathoms, mud, the water shealens suddenly to 00 or 80 fathoms, between which depths and 60 fathoms it continues for many miles, sand and mud, decreasing to 30 fathoms at 3 miles from shore. The inland features vary slightly; two lines of barren and gently undulating hille, from 200 to 300 feet in height, extend nearly parallel to the coast; the more distant aro from 4 to 6 miles from the sen, the nearer not more than a mile, sloping gradually to the beach, which is generally sandy, with oceasional patches of rook.
DAR EL BEIDA (sometimes ealled Casa Bianca, having the same meaning.)At 4 leagues W. by S. from Fidallah is Dar el Beila, or Anafa, \dagger a mall walled town

[^86]on the beach, within a point projecting half a mile N.N.E., true, and forming a cove, three-quarters of a mile deep, and well sheltered from westerly winds. 'This town, qs well as Fidallah, wes built for the exportation of corn. The towers of 1 ree mosques are conspicuous, and one is of superior height. Around the town are mary palm trees and gardens; water is abundant. Inhabitants, aboui 700, including Jews, among whom is a British consular agent.

> This place is easily knopn by its towers, one of which seems almost as high es Hassen's Tower at Salee. The coast betweer is low, and bordered with small islets, all ve ? near the land.

Thcre is a reef rocks at one-third of a mile off the town, and the landing-place is behind them. Some other perts of the bottom are likewise rocky, and in winter the anchorage is unsafe, owing to the current, \&c. From the cape, rocks extend to the distance of nearly half a mile, and farther off is a rocky bank of 6 fathoms. At 20 miles to t^{2} a West is a depth of 150 fathoms, dark sand, decreasing rapidly toward the land to 45 fathoms at 12 miles from shore, and then gradually to the beach.
AZAMOR.-On a sand-hill at about 13 leagues to the south-westward of Dar el Beida is the small town of A camor, situate on the South side of the mouth of a river callea by Mr. Jackson the Morbega, and by Captain Washington Wad-oom-er-begh.* Its walls, crumbling to ruin, are tenanted by storks. Ihe place is dull and lifeless; streets narrow and dirty; but provisions, fish; vegetables, and fruit, abundant and good. The population about 1,000, including Jews. These carry on a considerable trade in wool, which is shipped from Mazagan. The inhabitants of the country around, who are of superior stature, are chiefly pastoral, possessing large flocks of aheep and goats, and mostly live in tents. Wood is scarce and dear.

The bar of the river is dry at low water. The entrance is dangerous, and the shore flat, having not above 8 or 10 fathoms of water for 1 or 1㐭 leagues from shore, and foul rocky ground, so that it is not safe to anchor hereabout.

MAZAGAN.-From Azamrr to the remains of the town of Mazagan, on the S.W., the distance is 10 miles. This place is on a low rocky point, projecting to the North, which forms the western limit of a sandy cove, of about $1 \frac{1}{2}$ miles, and affording a good roadstend for small yessels. It is defended by several redoubts, enjoys a little commerce, excellent water, and good supplies. A large proportion of the buildings are used as storehouses for wool, of which great quantities are hence exported. There is a tank, admirably constracted, which will contain several thousand tons of water. A lofty building, 140 feet high, now in ruins, appears to have been a lighihouse. There is anchorage off the coast, at a league from the shore, in 15 fathous, sandy ρ^{r} und; but at the West point of Mazagan is a. ledge of rocks, which stretch to the is E. [N.N.E.] about a league into the sea, and are uncovered at low water. A di agerous patch of rocks, because tho sea only breaks on them at low water in bad weather lies 720 fathoms W.N.W. from the old light-tower. The best anchorage is to bring the two flagstaffs on the Sardinian consul's house in one, and anchor in δ fathoms water; by doing so, you come upon a patch of blue elay, the rest of the hay being all rocky bottom without exception (June, 1839). The shore hence, toward Cape Blanco North, is everywhere rocky and dangerous, to a considerable distance from It ; and ships that stop here muct anchor at 2 leagucs off, in 35 or 36 fathoms of water, oozy ground; the swell is almost always very great, and the current is very strong. From Mazagan to Cape Blanco the cistance is 4 leagues. The shore between is merely a ridge of sand-hills. About midway are the ruins of Tett, or Tid, an ancient town, and a conspicuous tower, 128 feet high and 148 feet above the sea, which may therefore be seen from a great distance. Two large tombs, kept whitewashed, stand on either side of it.
The coast horoabout should not be approached nearer than $1 \frac{1}{\ddagger}$ miles, as seattered rocks lie off the shore, and the bottom is very uneven. The beach, in some places
:andy, i s. the cape

CAF: headlan the lines sudden! In a big sufficien

At 22
graduall
A dar of Duks the cape elevation where it these, on and Tet?

CAPE rises pre it; on i sounding

From

North th It trend having o and fath direction
From S.S.W. [Between ing Nor aboundir Asfee, n Saffl one is a tinued \mathbf{w} southern bight wi ancient 1 tolerably mountai into the South or

Saff defende feet abo the tow interior bring it

Durir anchora to west
orming a cove,
This town, wers of iree own are mang teluding Jews,
st as high as 1 small islets,
ding-place is in winter the extend to the homs. At 20 pidly toward e beach.
rd of Dar el uth of a river oom-er-begh.* and lifeless ; bundant and considerable f the country rge floeks of
and the shore om shore, and
on the S.W., to the North, affording a joys a little he buildings ce exported. isand tons of been a lighi15 fathous, vhich streteh low water. ow water in st anchorage unchor in 6 of the hay nce, toward ble distance 3 fathoms of rent is very ore between or Tid, an ove the sell, kept white-
-andy, is generally lined with craggy rocks. A line of barren hills, 200 feet high, e. 6 the cape in a lüv and dark but abrupt and rocky cliff.
OAFE BLANCO NORTH.-This is in lat. $33^{\circ} 8^{\prime}$, a little to the sonthward of the headlund last mentioned. It is 170 feet high, appears to be of white sandstone, and the lines of strata, white and red, rising parallel to the horizon for some distance, suddenly drop at nearly a right angle to the water, and the cliff appears like a wall. In a bight on the S.W., which is formed by tbe cape, is a good anchoring place, of sufficient extent for several ships.
At 22 niles westward of Cape Blaneo are soundings of 150 fathoms, fino sand, gradually detreasing to 28 fathoms at 4 miles from the shore.
A dark and rather projecting cliff, formerly represented as an islet, under the name of Dukisal, stands at about 4 miles southward from Cape Blaneo ; and, at 6 miles from the cape, hills rise gradually from the beach te the height of 465 feet, the greatest elevation on the western shore of Maroceo. Hereabout nre the ruins of Woladia, where it seems there was once a harbour. At 4 and 7 miles to the southward of these, on the edge of the cliff, are those of two other small towns, supposed to be Eder and Teturia.
CAPE CANTIT, or Ras al Hudik, ${ }^{*}$ in lat. $32^{\circ} 32 \frac{1}{2}$, is a steep headland, which rises precipitously to 211 fect above the sea, and has a ledge of roeks projecting from it; on its summit is a small sepulchre. At 16 miles westward from the cape are soundings of 100 fathoms, fine sand; this depth gradually deereases eastward.

From the preceding deseription it will appear, that between Cape Blanco and Cape North the coast is much higher than the coast between Cape Blanco and El Araiche.
 having only some small islets very near the land. At 2 leagues off the depths are 40 and fathoms, oozy, ground. The currents are very stronff, and generally run in the direction of the coast, S.W. by S.
From Cape Cantin to the North point of Asfee on Saffi Bay the coast trends S.S.W. [nearly South] 4 leagues, and is much higher than the coast already described. Between these points, at the distance of a league from shore, is a rocky lank, extending North and South, true, having over it from 30 to 40 fathoms, and, at times, abounding with fish. From the Joith point of the bay (which is foul) to the town of Asfee, or Saff, the distance to the S.S.E. is $2 \frac{1}{2}$ leagues.
Saff.-The North cape of the Bay of Saffi forms two heidlands; on the southern one is a tomb or sanctuary. The coast between Cape Cantin and the bay is one continued white eliff, with a sandy beach at its base; the oliff, rising gradually to its southern projection, is there 530 feet in height, and here the bay ocmmences. In the bight within is a ravine, the bed of a winter torrent; and on the slope stands tho ancient town of Saffi, in lat. $32^{\circ} 18^{\prime}$ or $32^{\circ} 10^{\prime}$, between two 'hills, which render it intolerably hot; and, in wiater, very disagreeable, as the waters from tho neighbouring mountains, occasioned by the rains, discharge themselves through the main street into the sea. The road is safe in summer ; but, in winter, when the wind is from South or S.W., vessels are frequently obliged to make off to sea.
Saff is a considerable town, surrounded by a wall 31 feet high, with a ditch, and defended by twenty-four heavy guns next the sea. The tower of cne mosque is 200 feet above the surfice. Fresh water is scarce, and proeured from wells south ward of the town. The country in the immediate vicinity appears sandy and barre"; but the interior abounds in corn, and two falls of rain in a year are suid to be sufficient to bring it to maturity.

During the summer months, or from Mareh to October, the bay affords as good anchorage, and smoother water, than any other on the coast, but is entirely expoted. to westerly winds; the bottom is of sand and mud, and there is gencrally a depth of

[^87]about 15 fathoms at a mile from shore. Vessels may anchor at a league from the town, in 20 or 22 fathoms of water, gray and oozy sand. To anchor in the road, the North point, on which stands a low tower, nust be brought a little to the northward of N.N.E. Or, further in the bay, the same point may be brought North (by compass) a little easterly, when the northernmost of two northern points will appear about a ship's length open, without the southernmost; and the high castle of the town S.E. by E. or S.E.; the depths 16 to 18 fathoms, fine grey sanf. There is also anchorage within, in 15 fathoms, with the North Point N.N.W. or N. by W. ; but these are the summer roads: in the winter, you must anchor further from the land, in 20 or 22 fathoms, as already shown. You may boldly run in to the summer roads by night, with the castle bearing E. by S. or East.
If bound to Saff, from the northward, shape such a course as will lead sufficiently to the westward of Cape Camin, in order to avoid the rocks about that cape. You may easily know on which side of Saffi you are standing, as the land to the northward of the bay is high and uneven, and that to the southward of it is a plain, even land.
From the South point of Saffi Bay, which is very low, to the mouth of the Wad Tansift, or River of Marocco, the coast trends S.S.W. $\frac{3}{4}$ W. [S. $\frac{3}{4}$ W.] 16 miles, and presfuts, generally, a line of sand-hills, from 150 to 200 feet high, which, in some places, terminate in low cliffs, and in others slope to the beach. Inland is a ridge of sandy looking hills, covered with brushwood, the highest 650 feet above the sea. There is a large tank on shore, nearly midway between Saffi and the Tansift, and on the southern bank of the river is an old castellated building, square and roofless, $\mathbf{v}_{\text {i }}$ hich was built for the use of travellers. The Bar of the Tansitt, although a considerable river, is in summer entirely dry at low water.
MOGODOR - From the Tansift the coast extends in the direction of S.W. by W. $\frac{1}{} \mathrm{~W}$. $\left[S .40^{\circ} \mathrm{W}.\right]$ to a low sandy point, forming a cove to the north ward of it, with rocks within half a mile from the beach. The coast, which from the Tansift is barren and uncultivated, and from 200 to 300 feet in height, here assumes features of fertiity. The lofty Jibel Hadid or Iron Mountains, extending more than 20 miles, is a mass of high land, which here rises to the height of 2,350 feet ; another, nearer the sea, with a conspicuous tomb on its summit, rises to $\mathbf{2 , 1 0 0}$ feet.

A sandy beach continues from the reef point nearly S.W. [S. $\left.21^{\circ} \mathrm{W}.\right] 12$ miles, to Mogodor; the inland prospect is here bounded by the Botof sand-hills, which extend parallel to the beaeh, at the distance of a mile.

SUERRAH or SuIra, otherwise Mogodor, is the only port on this coast which maintains a regular commercial intercourse with Europe. Its population has been computed ut 9,500 persons. The town is built on a low flat desert of accumulating sand, which separates it from the cultivated country, and is defended from the encroachment of the sea by rocks, which extend from the northern to the southern gate; though, at spring tides, it is almost surrounded by water. There are two towns, or rather a citadel and an outer town. Those Jews who are not foreign merchants are obliged to reside in the latter, which is walled in, and protected by batteries aud cannon, as well as the citadel.

The wind being high all the summer, with little intermission, nothing grows here in sufficient quantity to supply the inhabitants; all kinds of fruits and vegetables are, therefore, brought from gardens 4 to 12 miles distant; and the cattle and poultry are also brought from the other side of the sandy hills, where the country, although interspersed with Harushe, or stony spots, is capable of producing every necessary of life. The insulated situation of the tewn, and other circumstances, deprive the inhojitants of all resource, excepting that of comnerce, so that every individual of the place is supported directly or indirectly by it. In this respect, it differs from every other port of the coast.

An island, which lies to the S.W. of the town, forms the harbour. This isiand is about $1 \frac{1}{6}$ miles in circumference; and between it and the main land, on the South, is the anchorage. There are here, i. some parts, only 12 feet at low water: therefore, large ships do not enter the port, but anchor at sbout $1 \frac{1}{\frac{1}{2}}$ niles westward
of the SI
the sea.
On ap which ay trasting the Jibed becomes water. water im a bottom
Mogod all of sto seldom p generally Liali by
Lieuten Jews, sep Citadel. that clase certain es
The pr feathers, and not v an aquedu large tanl for vessels islet with all winds. and game
The po $21^{\circ} 30^{\prime} \& 9$ the roof of
The roa the summ westerly reports wl found in
The No ledge of \mathbf{r} high abov island, yo 5 fathoms the groun
South 1 the main main land and you here, on t scarcely \mathbf{p}
From or Cape S terminatin

[^88]om the town, ad, the North northward of (by compass) pear about a e town S.E. so anchorage these are the d , in 20 or 22 ads by night,
d sufficieutly at that cape. e land to the it is a plain,
of the Wad 16 miles, and hich, in some d is a ridge of bove the sea. ansift, and on and roofless, though a con-
f S.W. by W. rd of it, with nsift is barrea es of fertility. s , is a mass of the sea, with
] 12 miles, to which extend
coast which ion has been accumulating from the enouthern gate; wo towns, or nerchants are batteries and
g grows here nd vegetables e and poultry try, although nccessary of ive the inha. idual of the s from every

This island is a the South, low water! les westward
of the Skaila, or long battery, which extends along the West side of the town toward the sea.

On approaching the land in the parallel of Mogodor, the first renarkable feature which appears, is the craggy summit of Mount Atlas, covered with snow, and contrasting with the dark ridge of hills between it and the coast. To the northward, the Jibel Hadid appears insulated, and, as you draw nearer, a long patch of sand becomes visible; and finally, the white towers of Mogodor rise, as it were, from the water. Soundings, in 100 fathoms, may be found at 23 miles from shore,-when the water immediately becomes dir loured; the souadings decrease very gradually, over a bottom of sand.
Mogodor has a beautiful appearance at a distance from the sea; the houses being all of stone, and white. The streets are, nevertheless, narrow and dull. A wincer seldom passes but some ships are d-iven ashore by the S.W. Winds; and this happens generally between the 8th of December and the 18th of January, the reason called Liali by the Arabs, and the only period dangerous for shipping in the bay.
Lieutenant Arlett says, that, of the inhabitants of Mogodor, in 1835, 4,000 were Jews, separated by a wall from the quarter of the Moors, whose portion is called the Citadel. All laborious work is performed by Jews, and domestic servants are all of that class. Much of the trade is also monopolized by the same people; for, owing to certain exemptious from duty, they are enabled to undersell European traders.
The principal exports are wool, gum, wax, hides, skins, almonds, honey, ostrich feathers, and gold-dust. Imports,-iron, hardwares, and cotton goods. Duties fixed and not very heavy. The want of water has been diminished, by the construction of an aqueduct, which conveys the stream from ths river, $1 \frac{1}{\frac{1}{2}}$ miles distant, to several large tanks in different parts of the town. One of these is excecdingly convenient for vessels watering, being close to a jetty, inside a fortified bridge, which connects an islet with the main ; here boats may fill, toward high water, perfoctly sheltered from all winds. The market is excellent; provisions of all sorts, including fish, poultry, and game, are abundant and cheap; as are, also, fruit and vegetables.
The position of the British consul's house, as given by Lieutenant Arlett, is $21^{\circ} 30^{\prime}{ }^{\prime} 9^{\prime \prime} \mathrm{N}$., and $9^{\circ} 46^{\prime} 0^{\prime \prime} \mathrm{W}$. Captain Boteler makes the longitude $9^{\circ} 44^{\prime}$. From the roof of this house, the highest snowy peak of Atlas is seen, bearing S. $45^{\circ} \mathrm{E}$.*
The roadstead: during the trinter, can scarcely be considered tenable; and even in the summer, the strong N.E. winds which prevail cause a very disagreeable sea. A westerly winil throws a very heavy swell into the harbour; but, notwithstanding reports which prevail to the contrary, it is not generally unsafe for vessels properly found in cables and anchors.
The North Passage into the Harbour is between the town and island. A great ledge of rocks extends from the main, among which those next to the island stand high above water. In coming from the northward, if you would sail in behind the island, you must run between it and those rocks, close by them, where you will have 5 fathoms of water. The best anchorage is under the island, in $2 \frac{1}{8}$ fathoms, as there the ground is good.
South Passage.-A small reef extends from the South end of the island, towa:d the main land; and, on the South side of the passage, a bank extends from the main land to a considerable distance. In sailing outward, run along by the latter, and you will soon be in 4, and thence to 10, fathoms of water. The tide flows here, on the full and change, at 4^{h}, and rises from 10 to 12 feet. Tho current is scarcely perceptible.
From Mocodor southward.--At $8 \frac{1}{2}$ miles S.W. from Mogodor lies Ras Tagrifelt, or Cupe Sem, a low sandy point, sloping gradually from the height of 490 feet, and terminating in a reef of rocks which extend, on all sides, to the distance of rather

[^89]more than two-thirds of a mile. The coast between this and Mogodor is a continuous line of bare sand-hills, 70 feet high, and sloping to the beach. In the background are the Botof eand-hills, covered with a dark evergreen. Under the cape is said to be a rocky bank, stretching 2 leagues off, and upon which, at a league from shore, has been found 13 fathoms; at 2 leagues, 20 fathoms, rocky ground; at 3 or 4 leagues, 35 and 40 fathoms, oosy sand. Hereabout the current sets violently to the southward.

CAPE TEFELNEH.-Cape Tefelneh, at $18 \frac{1}{9}$ miles S.S.W. from Cape Sem, rises to the height of 780 feet, and terminates in a point from which a ledge of rocks extends half a mile, with deep water close to them. There is anchoring ground under it, on the South, affording shelter from East and N.E. winds, in 10 fathoms, sand. At 8 miles to the northward of Cape Tefelneh is Kuleihat, a small villago on the side of a wooded hill. A little stream, Tidsi, falls into the sea at its foot, through a picturesque ravine: between these, high cliffs, apparently of sandstone, face the sea.

CAPE GHIR, or Geer (properly Ras Aferni), is situate, according to Lieutenant Arlett, in lat. $30^{\circ} 37^{\prime} 30^{\prime \prime}$, and long. $9^{\circ} 52^{\prime} 30^{\prime}$, und projects boldly into the sea at $2 j$ miles to the southward from Cape 'i felneh. Tho intermediate back land rises to the height of 2,895 feet above the sea: the country appears wooded, and 1 imerous villages and tombs may be seen. On approashing Cape Ghir from the wesiward, it presents a bold bluff slope on each side, the highest part 1,235 feet above the sea. The depths of water gradually diminish, and soundings are found at 26 miles off. The coast between Cape Tefelneh and Cape Ghir is a sandy beach. Cape Ghir is very remarkable, and may be seen when 4 leagues off. To the northward of the care, about 4 miles within land, stands a round hummock, which is a mark for the cape, and the land further to the northward is still higher; but on approaching the cape no land will be seen to the southward of it. From the North side of the cape, a reef extends to some distance out to sea, and should not be approached nearer than in 20 futhoms of water.

AGADIER, or Santa Cruz.-The Town of Agadier, or Santa Cruz, stands it 6 leagues south-eastward of Cape. Ghir, at the bottom of the bay of the same noale. This is the last port of Maroceo on the Atlantic Occan. The town, which stands on the summit of a mountain, is strong by nature, and its walls are defended by batteries; but the principal battery is at a short distance from the two town, down the mountain, and was originally intended to protect a fine spring of fresh water, close to the sea. This battery also commands the approach to the town, both from the North and South, and the shipping in the bay. The ruins of the town, called by the Portuguese Fonte, remain at the foot of the mountain; and the arms of that nation are yet to be seen in a building erected over the spring.

The bay is considered as the best road for vessels on the coast of Marocco, being large and well sheltered. It abounds in fish, inmense quantities of which are caught by the inhabitants of the town. Owing to the jealousy of its government, Agadier has ceased to be a place of trade; yet it was formerly the centre of a very extensive commerce, whither the Arabs, and the poople of Soudan, resorted to purchase merchandise, for the markets of the interior of Africa ; and caravans were constantly passing to and from Timbuctoo.

From the northward high barren hills slope to tho beach, which is rocky, to the distance of 5 miles N.W. of Agadier, where a streamlet, the Wad Tamarect, flowing through a green valley, discharges itself into the sea. The high land, extending from Cape Ghir to Agadier, usually called the Heights of Idautenau, is the western extremity of the main chain of the Atlas, which ranges hence in an E.N.E. direction, and rises at 9 miles eastward of Agadier, to the height of 4,408 feet, and a remarkablo conical hill, 3,980 feet.
At 6 or 7 miles to the N.W. of Agadier, above a point stretching into the bay, is a good anchoring place, with from 20 to 12 fathoms. In sailing from the eape to the good, be sure to run along by the land of the cape till you are before the castle, beeatiee northerly winds are very prevalent here; and should you keop too far from shore,
lor is a continuous the background the cape is said to league from shore, round; at 3 or 4 the violently to the
a Cape Sem, rises a ledge of rocks anchoring ground ads, in 10 fathoms, at, a small villago the sea at its foot, y of sandstone, face
ling to Lieutenaut nto the sea at 2 j k land rises to the ed, and 1 imerous 1 the wesiward, it cet above the sea. $t 26$ miles off. The Cape Ghir is very ward of the care, ark for the cape, roaching the cape of the cape, a reef ed nearer than in
ta Cruz, stands it f the same na ale. , which stands on nded by batteries; , down the mounvater, close to the rom the North and by the Portuguese ation are yet to be
of Maroceo, being which are caught cernment, Agadier f a very extensive to purchase mers were constantly
h is rocky, to the Tamarect, flowing hd, extending from s the western ex. E.N.E. direction, and a remarkable
into the bay, is a m the expe to the the castle, becatise far from shore,
you may be forced to fetch it up again with difficulty. If coming in by night, approacis no nearer than in 12 or 14 fathoms.
To anchor in the Road of Agadier, enter the bay so far that the castle may bear N.N.E., and the storehouses E.N.E. Here you will be to the southward of a rocky ledge, lying off the town, in 7 or 8 fathoms of water. The best riding is with Cape Ghir bearing North, in 6 or 7 fathoms. Care must be taken to have your anchors ready; your small bower is always to be laid out before the landwind, and the others to seaward; the sheet-anchor must also be in readiness, and brought out to the S.W. against a storm, which is soon perceived by the rising and swelling of the sea. It is likewise necessary to keep the foresail, to the yard, thac you may defend yourself the better, should you happen to be driven from your anchors.
On the Coast of SUse, southward of Agadier, there is no port frequented by shipping; but Mr. Jackson has emphatically stated, that "there is a track of coast which holds out great epcouragetaent to commercial enterprise, and sccure establishments night be effectei upon it, which would amply remunerate the enterprising speculator. The peor,le of Suse are, also, well disposed towards Europeans, particularly the English; and the communication and short distance between this place and the provinces, or districts, where most of the valuable products of Barbary are raised, render it peculiarly adapted to trade." From Agadier southward, the authority of Marocco lessens, and the Wedinoons prond'y boast their independence.
Although we may suppose that the features of the coast are properly delineated in the Admiralty survey, yet we have not that detail of the land which would indentify the local knowledge of the inhabitants. All the places along the coast have some names which are not given in the survey. Thus we are not able to follow the tracks of those who have travelled along the coast by our charts.
Immediately to the southward of Agadier a very low and flat country commences, and extends tience 29 miles. At 5 miles to the southward of Agadier is the mouth of the Suse, a fine river, rising at the base of the Atlas; but the bar is dry at low water, and can never be passed by vessels drawing more than 4 or 5 feet.* From the Suse the coast southward continues sandy. The Wad Messa, about 30 miles from the Suse, has, likewise, a bar dry at low water, but may havo 4 or 5 feet over it at high water, spring tides. At a short distancé within this, on the North side, is a village; and near the beach, on the South, a castellated building.

At a few miles to the northward of the Messa are the wells called Tomie, or the Seven Wells, off which is an open roadstead. On this parallel, about $30^{\circ} 0^{\prime}$, is a depth of 86 fathoms, dark sand, at 16 miles from shore; and 45 fathoms, sand and mud, at 5 miles from the same, decreasing thence gradually to the beach.

Cape Aguluth of the charts is only a slight rounding of the coast, in lat. $29^{\circ} 49^{\prime}$, long. $9^{\circ} 48^{\prime} \cdot \dagger$ From the Messa southward the beach still continues sandy, but verdant hills, approaching the sea, break off into cliffs, apparently of sandstone, about 100 feet in height. In the interior is a ridge of high mountains, at 50 or 60 miles from the coast. The interval between appu.., like a wooded and well-cultivated country, with many houses and farm buildings. Immediately to the southward of th. cape is a little sandy bay, and a valley crossed by a hill on which stands the village of Aguluh. A small stream runs down the valley. The slopes of the hills were waving with corn, nearly ripe, in May, 1835.
At half a day's journcy (by land) south of the Messa is a small town, called by Mr. Elton, Seed Bom Noire, where there is a small harbour. At this place a Spanish vessel took in a cargo of wheat and beeswax about 1835. She laid off the place for

[^90]several days before she was communicated with, and a plan was formed by the Moors for seizing her, but she was saved by private information.
At 12 miles to the southward of Aguluh, the features of the country change; the hills become barren and abrupt, and form in su cesssive ridges, gradually increasing in height till they join the line of distant muantains, which rise to the height of nearly 4,000 feet, and appear to be the S.W. extremity of an off-set of the Atlas. More to the southward the appearance of the inland country continues the same, but the coast changes to dark red cliffs, broken into coves, on the beaches of which boats may be scen; and there are many villages, but inhabited by people of perfidious character.

In lat. $29^{\circ} 22^{\prime}$ is a remarkable white cliff, supposed to be of limestone, and described by Lieutenant Arlett as follows :-Its strata are extremely curved and irregular, and it forms a good mark for the coast: behind it, and standing alone, is a conical shaped mountain, rising to the height of 3,906 feet. In this latitude, at 25 miles from shore, are soundings in 105 fathoms, broken shells: outside of this the bank drops very suddenly. On standing in-shore the soundings decrease rapidly to 69 fathoms. At 5 miles from shore are 28 fathoms, coarse sand; the depth thence decreases very gradually to the beach. From the cliff above described the country assumes a more rugged and barren appearance; the hills steep, with deep and narrow ravines; the const, alternate hills and sandy bays, with prominences rocky and rugged.

In $29^{\circ} 10^{\prime} \mathrm{N}$. is a cove, marked on the charts Reguala or Gueder. A rocky prominence on each side projects to a short distance; the sides are steep and barren; these are separated by a deep and narrow ravine, down which a slender stream finds its way to the sea. In this cove the water is deep, and bottom clean to the beach; a landing may generally be effected in it, but it affords no shelter.

In lat. $29^{\circ} 3^{\prime}$ the mountainous country terminates, and a sandy desert commences. There is also a break in the coast, which seems to be the dry bed of a river, and is called by the Canarians Rio de Playa Blanca, or White Beach River. At 4 miles to the southward of this the coast is of bold sandstone cliffs, with sand-downs in the interior devoid of herbage, and thus it continues to Cape Noon, in lat. $28^{\prime \prime} 45^{\prime} 45^{\prime \prime}$, , shown in page 38.

Cape Noon presents a cliff of sandstone 170 feet above the sea; but, owing to the cliffs, to some distance on each side, being of the same hoight, and the country inland a flat desert, it is difficult to make out the exact projection till very near it. The cape is steep-to, and clear of danger.

Here the depth gradually increases outward; and at the distance of 4 miles from shore the depths are from 30 to 54 fathoms, bottom of reddish sand; at 12 miles, 57 fathoms, dark sand; and at 30 miles, 98 fathoms, coarse red sand; the water then deepens very suddenly. For a long distance, both to the northward and southward of the cape, as well as to seaward, the water is very much discoloured. It has a red tinge, and is so thick that the track of a ship is visible for a length of time.* At 4 miles to the south-westward of Cape Noon is the River Shleema (the Akassa of the charts); and at 31 miles more, in the same direction, is the Akassa, in lat. $28^{\circ}{ }^{\circ} 9^{\prime}$. (This must be the Inoon of the Chevalier de Borda, given in page 33.) Each river has a bar, but both appear to have deep water inside, and the banks of both are verdant and fringed with shrubs.

The Shleema, when well open, may be recognised hy two remarkable hills, which will then appear in the centre of the gap: they are conical ; and on one of them, 325 feet high, are some ruins, said to be those of a fortress. The coast between Cape Noon and the Shleema affords secure anchorage, with moderate depth of water, from the month of March to October.

WEDINOON, or Noon, is a kind of intermediate depot for merchandise on its way to Soudan, and for the produce of Soudan going to Mogodor. Gums and was

[^91] desert.
are prod selling t proporty a constar of Marod The od stone clit above th On appr 050 fcet

The \mathbf{F} of Cape are equa possess b the inhal not only occasions on both

Porto continue the Ports begins, o there is t the Narr inside, at is barely 580 feet

Captai thus dese
" It ha was estin mile; al with dee it was su with the east. H fine-look to survey shore, it or chops, western from sea back, onl top flat f flat mou a remart the harb entrance can hind

Nothi
For man
*To work by p. 297.
by the Moors change ; the lly increasing the height of of the Atlas. the same, but f which boats of perfidions and described rregular, and onical shaped as from shore, k drops very fathoms. At ecreases very sumes a more ravines; the d.
rocky promijarren ; these eam finds its the beach; a

: commences.

 river, and is At 4 miles to downs in the $28^{\prime} 45^{\prime} 45^{\prime \prime}, \ldots$owing to the untry inland it. The cape

4 miles from 12 miles, 57 water then d sonthward It has a red ime.* At 4 kassa of the lat. $28^{\circ} 19^{\prime}$.
Each river of both are
hills, which of them, $32{ }^{\circ}$ tween Cape water, from
ndise on its ns and was
are produeed hore in abundance ; The people sometimes trade to Mogodor, bat prefer selling thcir merchandise on the spot, being unwilling to trust their persons and property within the territory of Marocco. With Timbuctoo, however, they oarry on a constant and advantageous trade, and many are rich. They also supply the Moors of Maroceo with convoys to Timbuctoo.*
The coast line between the Shleema and Akassa (or Inoon) is a continued sandstone cliff. A table-land, about 900 feet high, at 3 miles from the shore, shows just above the cliffs, near which there is a regular depth of 20 fathoms, with good ground. On approaching, the table-land appears to break into detached hills, one of which, 950 feet high, and more insulated than the others, serves to identify the river.
The Fishery earried on by the people of the Canaries commences near the parallel of Cape Noon, the fishermen seldom venturing to the northward, although fish arc equally abundant, from their dread of the Moors, who, on that part of the coast, possess boats. From the cape to the Bank of Arguin (an extent of 200 leagues) the inhabitants of the desert have not a single boat. The fishermen frequently land, not only to procure water, but to barter their fish for wood and orchilia; on these occasions great precautions are taken, as atrocities have frequently been perpetrated on both sides.

Porto Cansado.-From the River Akassa (Inoon of Borda P) :ide coast and country continue as described above. The cliffs are above 120 feet in height to lat. $28^{\circ} 7^{\prime}$, or the Porto Cansado of the charts. Here the cliffis terminats, and a low sandy beach begins, continuing in a S.W. direction 18 miles, to lat. $28^{\circ} 2^{\prime}$, long. $12^{\circ} 14^{\prime}$, whero there is the entrance of the Porto Cansado of the Portuguese, which is described in the Narrative of Judah Paddock. The entrance of this harbnur is narrow, widening inside, and forming a sort of lagoon. The sea breaks heavily across, and, at times, it is barely possible that boats may enter. Its only distinguishing mark is a table hill, 580 feet high above the sca.
Captain Judah Paddock, who was wrecked near here in the Oswego in April, 1800), thus describes it:-
" It has 9 or 10 feet within a cable's length of the shore. The distance across it was estimated at about 3 miles; the two outer points are broad, closing to within 1 mile; a ledge of rocks on each point leaving a fair ent rance of half a nile in breadth, with deep water. Against those ledges the sea brcke violently, but in the harbour it was smooth; from the windward side of the harbour a ship might lie very well, with the wind as it then was, which blew strong four points on shore, or at northeast. Had our situation been less deplorable, I should have been led to examine this fine-looking harbour more particularly. Should any national vessels ever undertake to survey this coast, they will, beyond doubt, visit it. From our judgment, being on shore, it would appear from the offing a nearly straight shore, as the two outer points, or chops, of the harbour would, except being near it, seem nearly to close on the western side of the harbour. Where we stood to look at it, the bank was high, and from sea-board would, in my opinion, appear like a high round knoll; the mountain back, only a few miles distant, would appear black, at least of a dark colour, and the top flat for several miles each way, running E.N.E. and W.S.W. On this nearly flat mountain, supposed to be nearly 400 feet in height, above the level of the sea, is a remarkable bed of salt, about a mile in diameter. Hundreds of ships can ride in the harbour in safety, defended from all winds except the north-west; and, as the entrance is so much narrower than the body of the harbour, no sea through that gut can hinder ships very much, the ground being perfeetly clear."
Nothing can be conceived more dismal than the appearance of the shore hereabo"ct. For many miles not a dark spot is to be seen to break the monotonous appearance of

[^92]the sand; the fine particles of which, mingling with the haze occasioned by the heary surf, render the coast very indistinct.
From Porto Cansado the coast trends westward to Cape Juby, in $12^{\circ} 55^{\prime}$ W. At a short distance to the westward of Porto Cansado, a cliff, from 90 to 100 feet in height, again commences, and continues for 17 miles. The cliff is of dark sandstone, and the bottom, being also of dark sand, gives a green appearance to the water. A' flat desert extends inland as far as the eye can reach. There is no beach, the sea breaking against the cliffs, on which it appears to be encroaching. Where the cliffis terminate, the land becomes broken into sand-hills partly covered with bushes, and the coast trends in a true direction S. $80^{\circ} \mathrm{W}$. to Cape Juby, 15 or 16 miles.

Cape Juby is a low sandy point; near its extremity is a hummock, covered with bushes, appearing like an islet. Rocks extend from the cape to one-third of a mile. Here the coast changes abruptly to S.W. (true), and forms some coves, off the points of which are scattered rocks. From Cape Noon to Cape Juby the bank of soundings extends to an equal distance, and the depth increases very gradually to the shore.

Cujirents along Shore, between Cape Spartel and Cape Bojador.

During five months (from March to August), the time occupied by the AEtna and Raven, in the survey of the coast, a distance of 750 miles, no day passed in which the former was not at least twelve hours at anchor, usually at the distance of from 4 to 5 miles from shore, and in positions well adapted for making observations on the currents, which were constantly attended to. Independently of this, the Raven was repeatedly sent to the distance of 20 and 30 miles from land; particularly when fixed and conspicuous objects afforded opportunities for ascertaining her exact position; by comparing which with that which should have been given by the course steered, the rate and direction of the current could be aseertained to a considerable degree of exactness.
From Cape Spartel, along the coast, to Arzilla, and also to the distance of 7 or 8 miles from the shore, a regalar tide was experienced, running parallel to the const; but its strength was rather greater to the northward than to the southward. In this distance, at 15 miles from land, no tide or current was perceptible.
From Arzilla, southerly, a tide was still experienced, gradually diminishing in strength till its direction could not be ascertained. From the parallel of $34^{\circ} 30^{\circ} \mathrm{N}$. to the distance of 20 miles in the offing, a steady southerly set was first experienced. This current, in the offing, continues invariably to follow the direction of the land; its velocity increasing or diminishing from the rate of four-tenths to 1 mile an hour, according to the strength or duration of the north-easterly winds.

From Mogodor to Cape Bojador, except in particular instances, the current continues invariably to run in the direction of the coast. Its greatest strength is usually at the distance of from 3 to 6 miles from the land, gradually decreasing on receding from it. Its average rate between 311° to $28^{\circ} \mathrm{N}$. is from one-half to three-quarters of a mile in the hour. At Cape Juby, probably from its stream being in some measure confined by the projecting cape, and perhaps by the Canary Islands (distant 58 miles), it increases its rate to $1 \frac{1}{6}$ miles, but diminishes off Cape Bojador to 1 mile. It did not appear that this current was influenced by any particular wind, but near the shore a tide was generally perceived." (See remarks on the currents on pages 278-283.)

Shipwrecks.-The various tribes of Arabs, frequenting the coast of the desert, have already been alluded to, as well as the danger of falling into their power. Their practice has been, when a ship is stranded, and the crew compelled to surrender, to take everything portable from the vessel in boats; and then, if the sea do not dash it in pieces, they set fire to it, that it may not serve as a warning to other ships which may be so unfortunate as to follow the same course.

Mr. J saved on who had anchor, the capte to trade low wate and set
of the bably ne duced, se afterwar and all p It has greater crews for the rema lost, or of the a bring th
In fort the crew drift to Althoug that the did not While, t still rem countera

One of account on Oct. the coast dered.
being th Dupuis,

The st of his co also bee of the \bar{N} Captain effect of consequ warning
The a Bank, be attri observe shipwre mand of portion Senegal the new
The ensued
boats or
enough the shore.

Bojador.

the $A E t n a$ and assed in which nee of from 4 vations on the he Raven was ly when fixed xaet position; course steered, able degree of
ance of 7 or 8 to the eoast; vard. In this
iminishing in of $34^{\circ} 30^{\circ} \mathrm{N}$. - experienced. of the land; nile an hour,
current congth is usually on receding hree-quarters some measure ant 58 miles), - It did not the shore a 8-283.)

Mr. Jaekson has eommunicated a stratagem by which a ship was, many years ago, saved on this coast. The vessel was stranded, and one of the crew being a Spaniard, who had been used to fish there from the Canaries, advised the captain to let go an anchor, as if the vessel were riding, aud in safety. Some Arabs coming on board, the eaptain told them to bring their gums and other produce, for that they were come to trade with them, and were going away again in a few days. As it happened to be low water, the vessel, on the return of the tide, floated; they then weighed anchor, and set sail, to the great disappointment of the people on shore.
Of the vessels wrecked, from time to time, on the coast of the desert, many are probably never heard of; and, if any of the erew survive their hardships, they are indueed, seeing no prospect of emancipation, to become Mohammedans, and nothing is afterwards known or heard of them ; the vessel is supposed to have foundered at sea, and all passes into oblivion.
It has been stated that there were about thirty vessels of different nations, the greater part English, lost on this coast between 1790 and 1806, part of whose crews found their way to Maroceo, and gave some aecount of their catastrophe; of the remainder, a number were subsequently ransomed; but the majority were either lost, or dispersed in various parts of the desert, after a lapse of time, in consequence of the consul's making no offers suffieiently advantageous to induee the Arabs to bring them to Mogador.

In former editions we gave extended accounts of the shipwreeks and sufferngs of the erews of several vessels. These oeeurred many years ago, before the uns"speeted drift to the S.E., which has been dilated on in pages 277-281, was resognised. Although the climate and eharaeter of the people remain unaltered, yet it is believed that the wreeks are but few compared with former years, as in those times the losses did not oeeur from stress of weather, but through errors in reekc in. \mathcal{F} and judgment. While, therefore, the silent and imperceptible influenee of this fa 121 di ift, if unheeded, still remains as powerful as ever, it behoves the sailor to be always on his guard to counteract it, and all caution is most earnestly impressed on his attention.

One of the interesting results of these terrible shipwreeks and sufferings was the account given by Robert Adams of the wreek of the Charles on the coast in question on Oct. 11, 1810. The erew were instantly seized by the Moors, who were fishing cn the coast, and were treated with the utmost barbarity, and many of them were murdered. Adams was sold, and, after many painful wanderings, he visited Timbuetoo, being the first European who had done so, and was ultimately ransomed by Mr. Jos. Dupuis, the British consul at Mogador.

The sufferings of John Riley, who commanded the American brig Commerce, and of his companions, who were wreeked near Cape Boiador, in September, 1815, have also been related as a warning. They were also the vietims of the brutal treatment of the Moors, but were ultimately ransomed by Mr. Willshire. The narrative of Captain Judah Paddock of the loss of the Oswego, tirr agh ignoranee of the coast and effect of the currents, and the usual sad tales of the captivity of the erew and the consequent sufferings till relieved by the British consul, have also been given as warnings.
The affeeting narrative of the loss of La Meduse, French frigate, on the Arguin Bank, to the southward of Cape Blanco, on the 2nd July, 1816; which may probably be attributed to a similar cause-the direetion of the currents. It has been justly observed, that the annals of naval distress do not offer a more terrible instanee of shipwreck. La Meduse sailed, 17 th June, 1816, from the Isle d'Aix, under the command of M. de Chaumareys, havihg on board 240 persons; of whieh the greater portion eonsisted of soldiers intended to garrison those forts at the mouth of the Senegal, whieh had been restored by the treaty of peace; they were accompanied by the newly-appointed govenor of that place.

The ship ran aground on the bank, in the parallel $19^{\circ} 36^{\prime}$. A great consternation ensued; and, after many angry deliberations, it was resolved, as they had only six boats on board, to break up the vessel, and with its material construct a raft large enough to place the solidiers on it, who were then to be towed ashore.

On the Sth of July, the embarkation from the wreek took place, in the greatest confusion. One hundred and forty-seven persons (ineluding the captain and surgeon) were conflded to the raft. The precipitation with which it was built prevented its being fitted with railings.

By the boats, however, the raft was inhumanly abandoned; it was thus left to its fate amidst all the horrors of famine. In an element which already covered one half of thoir bodies, the greater part of those upon it at once yielded to despair.

The recital describes the melancholy events of the twelve days; during which time, a principal portion of sustenance was derived from the bodies of decensed com, anies! At this period, only fifteen men remained, and these were happily discovered and taken off, on the 17ih of July, by the Argus, French brig, which restored them to their country.

Another case was relatod by Captain Grover, in the "Geographical Journal," vol. xvi., 1846, page 162. In this the brig Cutrier anchored near the Island of Arguin, and part of tho crow were tempted to land, when they were immediately made prisoners with great violenco and cruelty, and kept sc for eleven months.

Other instances of ships lost upon this coast might be given; but those selected will be sufficient for our purpose.

CAPE BOIADOR To CAPE BLANCO.-Tho tropical regions of the African coast between Cape Boiador and Cape Blanco, present to contemplation the Salara, considered as the most ex'cusive desert on the globe. This desert consists of inadhesive sands, which are driven about by the winds, and chicfly by those from N.E., by which they aro disturbed and carried to an astonishing distance.

This question of the red dust, which fulls in the open air, is moro amply diseused herenfter. The few remarks which follow will suffice here.

- Of the merehant-fleet from St. Helena, under convoy, in November, 1813, most of the ships had their sails covered with red sand, and they must have bee.. irom 400 to 500 miles from shore, in about 27° nd $28^{\circ} \mathrm{N}$., after a succession of easterly winds. "I once," says Mr. Luccock, " saw the siails and deck of a vessel covered with it, when 400 miles from the coast, and have heard of the same phenomenon being remarked at a far greater d-stance. This moving expanse of sand was, probably, at some anterior period, a large inland shallow sea, conmmunicating with the Mediterranean by the Syrtes [Gulf of Sydra], \&e.

A similar phenomenon occurred to the brig Parssboro', on her voyago from Barbadoes to lBelfast, and when she was upwards of 900 miles from the main land of Africa. The wind, it will be observed, had been at East, and was interrupted by ore of those gales which will be noticed hereafter, in our deseription of the Azores. In lat. $30^{\circ} 50^{\prime}$ N., lon. $32^{\circ} 40^{\prime}$, Cape do Verdo Islands bearing S.E., distant 590 miles, the appearance of a heavy squall rising in the S.E. direction. Half-past six p.m., lightning, thunder, and the squall appronching nearer. At thirty minutes past six p.m., the sun about 15° above the western horizon, became overeast with peculine looking clouds, and every appenrance of an approaching storm. I consequently shortened sail, although the barometer did not indicate anything serious. At eight p.m., the wind became very varisible, from N.E. to S.W., every ten or fifteen minutes niternately, for two hours. There was a fill of rain when the heaviest osthe squall was on the zenith. It midnight it had all passed to the S.W., and the wind resumed its formor place, East. At daylight, the decks, rigging, spars, and point uork were covered with mult: and as the sun dfied it, it had the appearance of a very fine red mould, with no sand in it.

CAPE BOIADOR is represented by the Chevalier de Borda, in lat: $\mathbf{2 6}^{\circ} \mathbf{1 2 \jmath ^ { \prime }}$, but the late surveys exhibit in $26^{\circ} 7^{\prime}$ only. 'The eape has some rocks about it, hut on its South side is a buy affording anchorage in 4 or 6 fathoms, and ships may nachor further out in from 15 to 20 fathoms, within a league of the shore, on a bottom of sand, broken shells, \&e.

The Baron Roussin anys, that the conet to the nō̃thward of Cape Boindor is similar to that of the desert to which it beiongs. It is arid and sandy, the only signs of rege-
tation there. base can soil is e of this been lev in a gen differsnt of a mor this soil general, crust, no during t stantly e fall to th resemble they soon Cape Ver N. , and 1 presents western diately fo which ha being abo Cape Boid of the cap sand and water; an to all the
It is po At the dis
From C very rema or Great its vicinit
All the particular summit. colour.
The dep beach, bot $1 f$ miles f shells. TT foot of the The summ arid; all i colour of beach.
From t
$\left[S .6^{\circ} W\right.$ forms a w On all thi places, wl a short di here cover is even an flat downi an exeeed
the greatest and surgeon) prevented its us left to its ered one half air.
5 which time, d companics! iscovered and tored them to
cal Journal," id of Arguin, ly mado pri-
selected will
the African 2 the Salara, sists of inadfrom N.E.,
ply discussed
1813, most of . îrom 400 to sterly wind. cred with it, on being reprobably, at the Mediter.
e from Barmain lund of apted by ore Azores. In po miles, the p.m., lightant six p.m., line looking ly slortencd ht p.m., the inutes altere squall was resumed its work were ery fine red
$6^{\circ} 12 \xi^{\prime}$, but , but on its may anchor . bottom of
r is similar ns of rege-
tation being a few small tufts of dried brambles, scattered promiscuously here and there. It presents no other variety than some flat downs of a tabular form, whose base can scareely be seen at the distance of 3 miles from the beach. The nature of its soil is exclusively siliceous, being sand without any mixture whatever. The surface of this immonse plain is so completely horizontal, that it actually appears to have been levelled. In some places on the coast it terminates in a steep cliff, and in others in a gentle deseent toward the sea. These cliffs aro streaked with horizontal beds of differsnt shades, approaching to white; the lower ones being generally thiuner, and of a more reddish cast than the upper. To the northward of the parallel of $23^{\prime} \mathrm{N}$., this soil is overspread with a crust of black earth, which, from its being nearly general, may be taken as its covering, and is of a tolerablo thickness. This species of crust, no doubt, derives its consistency from the great humidity which it contracts during the rainy reason, and the extrome heat to which it is again suddenly and constantly exposed. By the repeated shocks of the sea, huge masses of this black crust fall to the bottom of the cliffs, and relieve the sameness of the shore. They first resemble rocks on which the sea breaks, but their corners are soon worn away, and they soon present but a heap of sand. On the whole extent of the coust, as far as Cape Verde, there is not a singlo piece of granite. Cape Boiador, which lies in 26 $\mathbf{7}^{\circ}$ N., and $14^{\circ} 30^{\prime} 34^{\prime \prime}$ W., is not very remarkable. When seen from the northward, it presents a strand of red sand, having a gradual descent toward the sea: and its western extremity, which is very low, forms a small bay with the eliff which immediately follows. The position here given is that of the easternmost point of the cliff, which has been sclected as the most remarkable one in the neighbourhcod; its height being about 70 fect. The depth along the coast, 3 or 4 miles to the inrtisward of Cape Boiador, varies from 12 to 20 fathoms, increasing gradually toward the perallel of the cape. The nature of the bottom throughout is of sand and broken shells, or of sand and gravel. At the distance of 3 leagues to the seaward tiere are 25 fatioms of water; and the sandy bottom becomes more general : a circumstance which is common to all the African coast.
It is possible to anchor in the small bay of Cape Boiador, but the bottom is foul. At the distance of half a mile from the shore there aro 13 or 14 fathoms of water.
From Cape Boiador the coast trends. S.W. $\frac{1}{5}$ S. [S. 20° W.] about 22 leagues, to a very remarkable eliff, about 300 feet high. The sliff scems to be the Penha Grandé, or Great Rock of the charts. As its height considerably exceeds that of any spot in its vicinity, it may serve as a good land-mark.
All the coast thus fai presents, alternately, cliffs and sandy beaches; but more particularly the former. It is from 150 to 200 feet in height; being flat at its summit. The land in the interior, on whica brushwood is very scarce, is of a darkish colour.
The depth of water on this part of tho coast is considerable. At 2 miles from the beach, bottom cannot be found ct 22 fathoms. On the parallel of $25^{\circ} 50^{\prime} \mathrm{N}$., and at $1 \frac{1}{2}$ miles from the shore, bottom may be had in 15 or 20 fathome, gravel and broken shells. 'The depth again increases; and under the Penha Grandé, at a mile from the foot of the cliff, there are 26 fathoms, hard bottom, with gravel and broken shells. The summit of the Penha Grandé is in $25^{\circ} 7^{\prime} 6^{\prime \prime} \mathrm{N}$., and $14^{\circ} 50^{\circ} 53^{\prime \prime} \mathrm{W}$.; it is flat and arid ; all its deelivities are preeipices from broken earth, which has fallen down, the colour of which is gray. The whole of the coast is perfectly clean, even to the beach.
From the Penha Grande, after a slight indentation, the coast trends S.S.W. $\frac{1}{4}$ W. [S. $\left.6^{\circ} W.\right] 8$ leagues, and includes a slender bay, now called Garnet Bay. It then forms a well-defined elbow, and trends nearly S.W. by W. $\frac{2}{2}$ W. [S.W.] 29 leagues. On all this extent, it presents one continued cliff, with the exception of two or three places, where it slopes to the sea; the eliff being about 150 feet high. Frequently, at a short distance from the water's edge, between the cliff and the sandy rocks which here cover the beach, there is a chain of white sandy downs. The sumpuit of the cliff is even and horizontal ; it follows nearly a right line, interrupted only by some smal! Hat downa, ecarreely perceptible. The whole of the beach is continually washed by an exceedlagly heavy surf, and there in no sign of vegetation on the whole const.

Clarnet Bay, which in the Angra dos Ruvivos of the Portagmene, abounds with cod, bream, hake, and various kind of other finh. Two leagues to the sonthward of it are seven small table-hille, called the seven Capes, whioh constitute an excelleat land-mark.

From the elbow formed by the coast, on the South side of Garnet Bay, to the south. westrard, the depth diminishes a little; from 16 fathoms it gradually lessens to 11 fathoms, and continues nearly the same in a space of six miles. We shall now have arrived at the parallel of $24^{\circ} \mathrm{N}$., and immediately abreast of an interruption in the cliff, at a beach of white sand, abont a league in extent. Beyond this sand, which does not reach far into the interior, is a body of still water, having the appearance of a lake or river, with a sandy islet in the middle of it. This is the upper part of an Inlet named Rio do Ouro, or Gold River.

Continuing a south-wenterly course, along a neck of sand, which separates the river from the ocean, and which in alternstely intersporned with elift, after running 10 leagues from where it was first observed, we arrive at its entrance. In this run, at the distance of 1 to 3 miles from the ohore, the soundings vary from 18 to 8 fathoms with a hard bottom, and shells. On approaching the river, white sand will be found.
RIO OURO, of GOLD RIVER.-The entrance of this inlet is in $25^{\circ} 36^{\prime}$ N., and $15^{\circ} 68 y^{\prime}$ W. Its breadth, taken from the outer cliff on the Went bank, to the eliff on the bend of the coast forming the East bank, is 7 $7 \frac{1}{3}$ miles ; but a very low sandy point stretches to the southward, from the West bank, in such a manner as to leave only a free channel of a mile in width at the atmost.
Neither to the northward, nor at the entrance of this channel, does any island exist, although the old charts mark several; but, at 20 miles to the N.E. of the northeru point of the entrance, and on the meridian of the islet in the interior before mentioned, there is a cliffy mound of sand, which, being insulated on a low sandy fat might have been mistaken for an islet. This, however, forms a part of the bank with which it is connected at its sonthern point.
No particular current was observed off the Rio Ouro, which consequently does away with the supposition of a river emptying itself by this opening. At the distance of about 3 miles seaward from the mouth of the inlet, the bottom is of eand and shells, with a depth varying from 9 to $10 \frac{1}{8}$ fathons. In the middle of its entrance is a circular breaker, 1 mile in diameter, on which there appears to be very little water. The northern point is wholly surrounded by breakers, but they are only a continuation of the surf which is found on the whole coast. Tho adjoining sea is well stocked with flich.
From the southern point of the River Ouro, the coast trends nearly S.W. [S.S.W.] The clif continues to a distance of 5 leagues, when white sandy downs ancceed of which the snmmits are mostly flat. At 1 league northward [N.N.W.] from the extremity of the cliffes, and at 3 milos from the coast, there is a bank, having only 32 feet of water ; its direction is parallel to that of the coast, and it is about 2 miles in length. Thirteen fathoms have been found on the edge of this bank; to the northward of it the bottom is sand and shella; to the southward, flie sand; and on the bank itmolf, broken ahelle.

AXGRA DE CINTRA, OR CINTRA BAY.-At the distance of 3 leagues fom the southern extremity of the Fisherman's Cliffs, or the Cliffis of the Rio Ouro, amongst a number of even downa, there is one comewhat elevated above the rest, oxtending parallel to the ooust. From being flattoned at its cammit, and having ith sonthern extremity peaked, it becomen remarkable. It in altuacted at a short distanco from the beach, at the head of a small bay, named Angra do Cintru. This bayiu theltered, on the North, by a very low, mandy point, which, detaching itself from the coast, runs parallel to it, and a reof projecta from its southern extremity, which may be considered as a continmation of it. The break in the coant, between the northen and sonthern reeft, whinh forms the oponing of this bay, may be about 6 milet; bath on doubling the northern reof, the bay il found to extend wbout 4 mileen inide of the mands point which protecta it.

The d only $4 \frac{1}{2}$ number It is to b of the be blowing All the is freque catch an tained bs place of

It doee and the 1 entrance fathoms, breaks o ward, wh creek att bitation who are derers an mentione the Sene which $f o$. municatio
In the the botto ing silice the botto down int

The D_{c} The mag 1817, wa
Anchos the bottc holding.
From lesgues; white san four or fil ground, a are called only.
8T. O1 which pri formed bs sea break high, hav fortificati 2) miles i 107' N., 8t. Cypri

- The
uncecoman
bounds with uthward of it an excelieat
to the south. lessens to 11 hall now have aption in the mand, which appearance of per part of an
rates the river running 10 nis run, at the to 8 fathome sand will be
$15^{\circ} 36^{\prime} \mathrm{N}$. , and to the eliff on w eandy point o leave only a
y island exist, the northera r before menow sandy flat, the bank with
equently does At the dis. is of sand and its entrance is y little water. Iy a continua. 3 well stocked
W. [S.S.T.] ns ancceed of W.] from the aving only 32 out 2 miles in to the north; and on the
leagues from he Rio Ouro, bove the reat, nd having ito short distance

This bay is tselif from the y, which may the morthen 6 milen ; buth inside of the

The depth of water in this bey is not great; at the distance of a mile incide it is only $4 f$ fathoms, mandy bottom ; but the stillness which prevails in it attracts a great number of fish, and it forms a harbour for the night to the fishing-vensels of this ocont. It is to be observed, that besides the reefin atretehing from the North and South points of the bay, there is also a rock near the middle of the entrance, which breaky in blowing weather.

All the coast from the Bay of Cintra to the Rio Ouro is well stocked with flish, and is frequented by eighteen or twenty mall vessels from the Canary Islands, whioh catch and salt fish for the consumption of those islands. Fresh water may be obtained by digging at the foot of the high down, or sand-hill, above mentioned, an a place of observation.
It does not appear safe to attempt the channel into Cintra Bay, between the point and the northern reef, as the breakers seem to be connected between them; bui the entrance to the southward of this danger is quite safe. The least depth found was 6 fathoms, in the middle of the entrance. During the time of the rollers, an the nen breaks over this in 6 fathoms, vessels should pass either to the northward or southward, where they will find from 9 to 10 fathoms. The fishermen who frequent this oreek attract some few Arabs, or Moors, to the spot, who seem to have no fixed has bitation there, nor on any other part of the coast. These belong to the fourth tribe, who are aispersed in the desert, and called the "Tribe of Thieves," complete wanderers and vagabonds. It is composed of the discontented of the three tribes alrcady mentioned in page 503, and which are scattered along the coast from Cape Boiador to the Senegal; they subsist exclusively on dried fish, and the plander from wreoky, which formerly were so frequent here. No advantage can be derived from any communication with tuese poor and miserable barbarians.
In the Bay of Cintra, at 2 miles from the beach, are from 9 to 16 fathoms of water; the bottom of sand, sand and gravel, sand and shells, sand and mud, generally covering siliceous or flinty rock, of the same nature as the neighbouring coast. Toward the bottom of the bay the mud becomes thicker; and here the anchor would sink down into a bed of greenish clay, which is excellent holding ground.
The Dovon of Cintra, according to M. Roussin, is in $23^{\circ} 5^{\prime} 25^{\prime \prime} \mathrm{N}$., and $16^{\circ} 10^{\prime} \mathrm{W}$. The magnetic variation on the same parallel, at 2 miles from the shore, in February, 1817 , was $19^{\circ} 33^{\prime}$ W.
Anchorage may be found along the coast from Cintra Bay to the Rio Ouro: bnt the bottom, from being composed of siliceous rocke, muat be unfavourable for holding.
From Cintra Bay the coast trends S.S.W. $\frac{3}{4}$ W. [S. 10° W.] to a distanse of 7 leagues; the shore is low, but it gradually rises, and becomes a continued down is white sand. At 3 leagues to the southward of this bay, in the interior, may be sechi four or five emall insulated sandy downs, which are rather higher than the adjacent ground, and, with the lower one, may serve as a mark for this coast. These heights are called the Dotons of Cintra, and they can be seen at the distance of 4 or 5 leaguen only.
BT. CYPRIAT BAY.-Having run $6 \frac{1}{}$ loaguen along a moderately high coant, which presents alteruately cliffis and sandy beaches, we arrive at an inlet, or bay, formed by rather a deep bend of the beaoh. The bottom of this bay in low, and the rea breaks violently on it. The eantern point of the bay is formed by a oliff, 150 foet high, having a oircular form toward the sea, with a flat top, and much resembling a fortification. The wentern vide is aleo formed by a steep oliff, which, after extendiug $2 f$ miles in the westrard, turns abruptly to the S. W., and forms Capo Barbas, in 22° $19 f^{\prime} \mathrm{N}$., and $16^{\circ} 39^{\prime} \mathrm{W}$. 'I he bay formed by the cape is that which bears the name of or. Cyprian. ${ }^{\text {- }}$

[^93]\because The Bay of Sci. Cyprian, being open from N.E. to W.N.W. (true), is unsheltered from the prevailing wind on the coast. In consequence of this there is generally a heavy sea in it; and the anchorage, although on a bottom of sand and mud, in 10 to 20 fathoms, offers very little security, and should be resorted to only in cases of necessity. The abundance of fish in this bay frequently attracts the fishermen from the Canaries, who, seduced by the hope of being quickly laden, and the appearance of a moderate breeze, anchor too near the bottom of it. In this situation, if the wind freshens up, being equally incapable of beating out with their crazy vessels, or with their ground-tackle of riding oat the heavy sea which sets in, they are sure to drive and be thrown up on the beach, where their crews frequently lose their property and lives; or, which is not less deplorable, are robbed and detained in slavery by the Arabs. Here the magnetic variation was observed to be $19^{\circ} 28^{\prime}$ W., in March, 1817.

From Cape Barbas the coast trends nearly W.S.W. [S.W.] 3 leagues. It is formed almost by one uninterrupted cliff, about 80 feet high, at the foot of which the sea breaks violently. At 1 mile from the beach there are from 9 to 12 fathoms; and at 2 miles, as much as 17 fathoms; with a bottom of muddy sand, or sand and broken shells. The coast then declines into white sandy downs, studded here and there with cliffs. At about 3 leagues from this it forms rather a remárkable little bay, with a shore of white sand. The moith of this bay is barred, at about 3 miles from its bottom, by a flat of banks and roefs, on which there is very little water. These recfs serve as a foundation for an islet, called that of Pedra da Gall, and another small islet, which M. Roussin hes named Virginia. These islets are merely rocks, of a nature similar to that of the coast. The first, which is rather higher on the northern than on the southern side, is about half a mile in circumference. The latter, or southern one, is three times that size, and has some sandy patches. 1t is also 3,000 fathoms from the coast, and about a league S. by W. (true) of Pedra da Gall. They ure connected together by a chain of flats, which stretches 400 fathoms to the S.W., and 1,000 fathoms to the N.E. of Pedra da Gall. At 1 mile westward from thess islets may be found 18 fathoms of water, with muddy sand. The depth increases to the southward, and the bottom becomes harder.

From Pedra da Gall to Cape Blanco the distance is $29 \frac{1}{2}$ lcagues. The coast in this extent is nearly straight, and moderately high; its true direction is S. $15^{\circ} W$., and it presents only a few indertations of a trifling depth. It is one continued down, the whiteness of which becomes more vivid on approaching to the southward. In some places it presents peaked cliffs, in others there is a gentle descent toward the sea, and the whole is devoid of vegetation.
CAPE CORVOEIRO--Having, says M. Roussin, in our way from the northward, reached the parallel of $21^{\circ} 50^{\prime}$ N., after passing a sandy beach of about 2 leagues in extent, with few indentations, we find ourselves abreast of a moderately high cliff, whose irregular summit forms a striking contrast with the uniform smoothness of the adjoining coast. This cliff is 5 miles in length N.E. and S.W. [N.N.E. and S.S.W.], after which the downs again commence, having previonsly formed a small bay to the southward of the cliff. The most salient point of the cliff is Cape Corvoziro; but it is not well defned, and is only remarkable from the breaks in the breach where it is situated. The strength of the current here is the same as on the whole coast, about nine-tenths of a mile per hour; but further out to sea it loses half that velocity. Between the islets and the coast, at the distance of half a mile from the latter, the lepth is frim 6 to 9 fathoms, with a bottom of sand, sand and shells, or sand and rocks. At the distance of a mile from the coast it varies from 10 to 20 fathoms, with mud and sand. The muddy bottom prevails to the southward of Cape Corvoiero, and all this coast is perfectly safo. At 25 leagues to the northward of Cape Blanco we discovered, from the masthead, that the beach, along which we were running, was formed by a tongue of sand from 2 to 3 miles in breadth, beyoud which we observed water. This is now called Greyhound Bay, and is situated to the castward of cape Blanco. From Cape Corvoeiro the coast is formed of white and red sandy downs, assuming various shapes, alicernately terminating at the water's edge in broken cliffer and low sandy beaches, on which there is a heavy surf.
CAPT PIANCO, in $20^{\circ} 47^{\prime} N$. and $17^{\circ} 4 j^{\prime} W$, is the eouthernmosi face of̈ a whito
ciliff, abo its base bottom o Through resemble Cape Cor varying fathoms, will be s
The po jecting and abor and ther springs. class.
In a ra currents the great rate only lowest tic $0^{h} 15^{\prime}$."

All thi beach eas pounds' about. frequent a little to Arabs, wl the magn
In 1830 severai ob long. 7° and neigh Society" the Canal vessels, sc where the Captain I their usuo pounds ea schooners their bur mullet of voyagers.
The sur eminences show us t

- " 7h which the gren+nat ri ward of th ebb the sal miles chor into Greyl South; an greaiost in
unsheltered generally a ud, in 10 to ases of neces ien from the earance of a if the wind ssels, or with sure to drive property and avery by the March, 1817.
agues. It is of which the athoms; and d and broken Id there with bay, with a niles from its These recfis another smsll y rocks, of a the northern The latter, or is also 3,000 Gall. They t to the S.W., rd from thess increases to
coast in this $5^{\circ} W$., and it ed down, the rd. In some 1 the sea, and
n the northbout 2 leagues ly high cliff, thness of the ind S.S.W.], lll bay to the EIRO; but it where it is coast, about hat velocity. e latter, the or sand and athoms, with prvoiero, and - Blanco we unning, was we observed eastward of 1 red sandy se in broken
c of a waito
ejliff, about 150 feet high. It ricus vertically from a gentle slope whioh extends from its base to the sea. With a point 4 miles to the northward, it forms a bay, at the bottom of which is a beach of white sand, interspersed with masses of the cliff. Through one of these masses the sea has purforated a hole, which, in shape, much resembles an areh. The anchorage in the bay, as well as on the whole roast is om Cape Corvoeiro, is good; a bottom of muddy sand prevails throughout, wi h a depth varying from 19 to 12 fathoms. At 1 mile to the southward there are 9 and 12 fathoms, and large vessels may anchor at this distance to the eastward, where they will be sheltered from the prevailing N.N.E. and N.W, winds. .
The portion of coast terminated by Cape Blanco is a long promontory, which, projecting from the main, forms with it a bay of nearly 8 leagues from North to South, and about 6 broad. The bottom in this bay is generally composed of soft mud, and there is a depth of water varying from 40 to 17 feet, reduced to the lowest springs. On the western side there is excellent anchorage for vessels of a middling class.
In a radius of 8 nr 10 miles round Cape Blanco, and in Greyhound Bay, the currents are subjected to regular tides. The flood sets E.N.E., and the ebb W.S.W., the greatest velocity of cither being from 1 to 2 miles per hour; but it attains this rate only when the wind blows with it. The greatest rise above the level of the lowest tide is 10 feet, and it is high water, on the second day after full and change, at $0^{\circ} 15^{\prime}$."
All this coast abounds with good fish, as cod, bruam, soles, \&c. On the little beach eastward of Cape Blanco, a single haul of the seine has produced a thousand pounds' weight. The best kind of turtle, namely, the green kind, also abounds herc-: about. According to the information obtained from the Canarian fishermen, who frequent the coast, a small quantity of drinkable water may be obtained by digging a little to the northward of Cape Blanco. This spot is occasionally visited by some Arabs, who possess a few muskets, and against whom it is necessary to guard. Here the magnetic variation, in March, 1817 , was $18^{\circ} 0^{\prime} \mathrm{W}$.
In 1830, Captain (now Sir) Edvourd Belcher, in H.M.S. SEtna, by the mean of severai observations, assigned to the extremity of Cape Blanco lat. $20^{\circ} 46^{\prime} 26^{\prime} \mathrm{N}$,, long. $17^{\circ} 4^{\prime} 10^{\prime \prime} \mathrm{W}$. This gentleman has given a geological description of the cape snd neighbouring country, which is inserted in the "Journal of the Royal Geographic Society" (vol. ii. pp. 299-303), and in which he particularly notices the practice of the Canarian fishers, in the vicinity of Greyhound Bay; the anchorago of these vessels, schooners, with their boats, is in a bay about 3 miles. North from the cape, where they are quite sheltered from N.N.W. to S.S.E. Those of the fishermen whon Captain Belcher met with were courteous and communicative, and they stated that their usual fishing-ground is in 25 fathoms, where they take fish of from 8 to 60 pounds each, and that their average daily work is about 3 cwt . in the boats. The schooners have polacca foremosts; and, when fishing; they fall all the sails in one; their burden is from 100 to 150 tons. The fish taken by tho AEtna were porgy, mullet of several kinds, rack-cod, and red-snappers, probably called bream by former voyagers. Mussels and uther shell-fish are very abundant at low water.
The summit of the Blanco peninsula is composed of lines of sand hills and rocky eminences, just what one would expect to find if the sea were to quit its position, and show us the beds over which it fiow:. In every position, where a bush or rocky islet

[^94]is prominent, there, on its southern side, you will surely find its sand hill -a proof of the prevalent winds, sis well as an arimirable model of the formation of shoals, \&o., whecer water, and pointing out raost perfectlp the "steep-to" approachem to banke, "any which rapid streams 1: ourrents flow, with their concomitant shallow tail, formed by jeud water or eddiek.

With the exception of these newly-formed and forming sand-hills, the whole surthee is curered, in a nost extraordinary manner, with shelis, of all diunenelons, and of the epecies generally tonnd in the bay. These are lowis, ard some are more than 60 feet above the level of the sea !*
The Spaniauds affirn that there is no rainy season bore hof stror nochsrivend mortheeasterly wirds the whole year. In June and daly they wire North, xi.N.E., and N.E. Highest temererature oil air in the elhade, 75° : of the water, 76°.
BANK of ARGUIF; \&c. The Bonk of Argnin conumences at 4 lengues to the southward of Cape Blanco. It is a greit shelf of about 30 leagues in length, and reaches to the southward of Cape Mirk. The North point of it is in lat. $20^{\circ} 33^{\prime \prime} 12^{\prime \prime}$ N., long. $10^{\circ} 56^{\prime} 30^{\prime \prime} \mathrm{W}$. The coast between this point and Cape Blaneo ir replece with shoals. The most considerable one is that of the Zayadere, at $15-1014$ niles to the southward of the cape. Therc are only 20 feet of water oin this ghoal, and it occh. siunally breaks. Another lies W. $\frac{9}{2}$ N. [W. by S.] 3 miles from tho que; asid a thind st 8 uilice S.S.E. $\frac{1}{1}$ E. [S.E.] of it; on which, like the firse, 20 feet of water have Leers trad. The chanuel, leeding to the anchorage, castward of Cape Blanco, lies to the werthrame of these rionls.

The Burra ary irguin is a flat of sand, constantly increasing, of the same nature as the coant. The budy of it is hard, and covered with broken shells. Its outer edge, Which has bson trace trom numerous soundings, has been fixed at the depth of 8 hithoms, as no vessel can run within this limit withont risk; and, at a very short distance to the eastward of this boundary, there are less than 4 fathoms. No partreular part on the edge of this bank has been eoen quite dry; but close to the brcakers, which occur in maily places, there are not noore than 10 feet of water; and the shallows between them do not appear to have more.

Between the North point of the bank and its weatern extremity, situated in $20^{\prime \prime} 6^{\prime} 20^{\prime} \mathrm{N}$., and $17^{\circ} 7^{\circ} 30^{\prime \prime}$ W., on advancing from seaward, the soundinge progressively decrease. At 10 leagues to the westward, from 40 fathoms they decrease to 8, with a very gentle ascent; but to the southward of this parallel the bottom becomes more uneven; snd from the point where the Medusa was lont (see page 503), in lat. $19^{\circ} 53^{\prime} 42^{\prime \prime}$, long. $17^{\circ} 0^{\prime} 35^{\prime \prime}$, a great irregularity takes place.

From the westernmost extremity, the edge of the bank trends S.S.E. [S.E. $\frac{1}{4}$ S.] and extends as far as Cape Mirik. The nature of the ground about the Bank of Arguin has a very remarkable characteristic, which may prove of great serviee to navigators. From the depth of 8 fathoms, which has been assioned as the limits of this bar.'., to that of 25 , to soaward, including an extent of n - -han 5 leagues, the lead invariably brings up a mixture of sand and broken shells; and, in proportion to the proximity of the bank, the latter prevail. Beyond the depth of 25 fethoms, as far as that of 45 and 50 , at 8 or 10 leagues to seaward, the bottom is entirely of white sand. Hence it is evident, that by soundings, and a rough observation for latitude, the distance from the Bank of Arguin may always be known. Shonld lem than 25 fathoms be found, with a bottom of sand and broken shells, you will be lem

[^95]than 510 ings, you have mo To the n the south takes a d on a win (whicha ing is so
CURR earrents of Arguif season, neldom. of the I frigate, i miles, an fore, hav
Cape South, be rounded large ve magnetic $18^{\circ} 49^{\prime}$
Tanit then far presenta apersed v coast, son the rest. of the thi of water unknown the Nort $18^{\circ} 3^{\prime} 48^{\prime \prime}$

Angel [S. by ${ }^{\circ}$ terminati the beacl very low of which useful la most, wh the soutb The latte from the southwas bove 518

Age $?$ uached xule, all 3 miles f

[^96]n-a proof of f shoala, \&o, ies to banks, w tail, formed
he whole sarations, and of more than 60
nowh ${ }^{2}$, y and orth, an.N.E. 78°.
engues to the length, and $20^{\circ} 33^{\prime} 12^{\prime \prime} \mathrm{N}$. replete with niles to tha , and it ocen; asda a third f water have lanco, lies to
ume nature a ts outer edge, e depth of 8 a very short ms. No parclose to the f water; and
, situated in undings prothey decrease e bottom bepe page 503),
[S.E. $\frac{1}{3}$ S.] the Bank of at service to the limits of leagues, the proportion to frthoms, as untirely of ervation for Should lem will be lew
of the brig a bay to the ileen from the d there is a ppears to bo depth of 9 , and oniz: : The wall iov.
than 5 leaguen frem its edges and an proportion as sheile predomisate in the soundings, you will be nearer to it, and should avoid getting to the eastward. 8 kould you have more than 25 fathomis, with, fine sand, you will be - more than 5 leagrees from it. To the northward of the parallc 1 of $20^{\circ} \mathrm{N}$., this may be particularly depended on; to the southward of that limit, it is subjeet to some exceptions; bnt as the bank then takes a direction S.S.E. [S.F. $\frac{1}{3}$ S.], it becomes no longer dangerous, if a ship is kept on s wind in 20 to 25 fatiums, and sounis frequent.y. Henceforth we may conclude (which all mariners must be convinced of), that a strict attention to incessant soundling is so indispensable as to need no further recommendation.
CURRENTS.-It has been already shown, in page 282, that the prevailing currents set from North to South along the whole coast. Along the edge of the Bank of Arguin, as far as its western extremity, this direction is constant ; and in the rainy season, should any deviation be experienced, it may be relied on to happen very neldom. One proof of this may be adduced. On the 13th of July, when the wreck of the Modusa was found by the brig Argus, after thirteen days' absence from the frigate, it was abreast of Portandik, at 15 leagues from the shore, a distance of 90 miles, and nearly on the meridian of the place where she was lost. It must, therefore, have driven at the rate of 7 miles per day along the coast.
Cape Kirik is that point of the coast which terminates the Bay of Arguin on the South, being a very low sandy point, on which there is a small down.* It is surrounded by the southern part of the Bank of Arguin, and cannot be approached by large vessels, on the West, within 3 leagues, and on the S.W. within 2. The magnetio variation, at the southern anchorage, in April, 1817, was found to be $18^{\circ} 49^{\prime} \mathrm{W}$.
Tanit Bay.- The coast from Cape Mirik tends S.S.E. $\frac{1}{4}$ E. [S.E.] 10 leagues, it then forms a complete elbow, gradually trending S. st W. [S. by \boldsymbol{R}.] It is low, and presents a continued chain of emall regular downs, composed of white sand, and interspersed with small bushes. To the northward of the bay, formed by the bend of the eoast, some downs may be observed which are rather higher and more insulated than the rest. A few huts are seen near the beach, and in the dry season numerous parties of the thieving tribe assemble here to catch fish and dry their stock. Two large piecea of water may be seen between the high downs: but whether these be fresh or salt in unknown. The latter seems most probable. This bay bears the name of Tanit, and the North point of the down, at the bottom of it, as observed by Baron Roussin, is in $19^{\circ} 3^{\prime} 48^{\prime \prime}$ N., and $16^{\circ} 12^{\prime} 20^{\prime \prime}$ W.

Angel Hillocks.-From Tanit Bay the general direction of the coast is South [S. by E. $\frac{\bar{c}}{3} . E$.] in an extent of 12 leagues. At the distance of 4 leagues from the termination of this bearing are some downs, which are rather higher than the rest of the beach, azd with some bushes ou their surface. The beach itself is formed by a very low flat of quick-sand. These downs are tho Angel Hillocks, composed of sand, of which the summit is from 15 to 20 fathoms above the sea, and they constitute a useful land-mark. They are divided into two groups: the summit of the northernmost, which is much omaller than the other, is atudded with tufts of bruahwood; while the southern, which is formed of eight or nine hummocks, in nearly dentitute of it: The letter, which is the higkest, etands in $18^{\circ} 29^{\prime} 30^{\prime \prime} \mathrm{N}$. , and $16^{\circ} 2^{\circ} \mathrm{W}$. The const, from theee hillocks, griadually declines in height, and more so as it approaches to the sonthwerd, when it scom salls into a uniform line of sand, with oceasionally a bush bow swo thers, nearcesy above the level of the mea.
Agesl Bank.-No mart of this coast, nonthward from Cape Mirik, should be apPuached within 8 milee, nor to a less depth than $6 f$ fathoms. By attending to this rule, all dangeis will be avoided, and, amongst othere, a shoal which extends outward, 3 miles from the coasts, abreast of the northant part of taci Argel Hillocka, from whioh

[^97]it derives its name. On this bank there are regular soundings on a bottom of sand, with sand and broken shells, affording anchorage in case of necessity. On receding from the beach, the depth increases ; and, at the same distance from it, is greater than to the northward of the hillocks.

PORTANDIC.-At 4 leagues to the southward of the Angel Hillocks, on rather an elevated part of the coast, and a little within the beach, are two palms trees, without branches, standing close together. "The northernmost is the smaller of the two, and they are the only palms to be seen on the coast between this and Cape Boiador. They stand in lat. $18^{\circ} 18^{\prime} 54^{\prime \prime} \cdot N$. . long. $16^{\circ} 2^{\prime} 12^{\prime \prime}$ W., and Portandic is supposed to have existed at about 1 mile to the southward of this spot. Not a vestige now romains sufficient even to indicate to strangers the spot on which this little establishment once stood. But since the survey it has been ceded to France, and a fort is mentioned, From the two palm trees, the coast trends nearly S.S.W. [South], then to S.W. [S.S.W.] It is straight and low, interspersed with small bushes, and presents a continued sameness. In an extent of 35 leagues there are only two downs of red sand, covered with brushwood, and discernible only at about 2 miles from the beach. One is in lat. $17^{\circ} 25^{\prime} \mathrm{N}$., the other in $16^{\circ} 55^{\prime} \mathrm{N}$. From the mast-head some sheets of water at the foot or these downs may be seen. At 2 leagues to the sonthward of the latter, the interior of the country becomes a little clothed with brushwood, and occasionally presents some level plains, but the coast remains uniformly barren.

GUM TRADE.-The Dutch have the credit of being the first who introduced the Gum Arabic, commonly called Gum Senegal, into Europe, in the early part of the 17th century, when they carried on the fishery in the Bay of Arguin. The French merchants of Bordeaux and Nantes first brought it, however, into general repute, and decided its purity and superiority to the gums of the East. From 1760 to 1779, Fngland possessed the Se egal, and the trade for the gum; and by the Treaty of Versailles, 1763, reser7ed to herself the exclusive postession of this commerce, which she protected and maintained. The English demolished the forts and cstablishments at Portandic and Arguin, which had been formed in 1724 by the old India Company of France, in order to bring the whole of the gum of the African forests into the River Senegal. In 1779, the French obtained re-possession of the Senegal; but, by the Treaty of 1783, it was agreed that the English should have the liberty of sarrying on the gum trade from the mouth of the River St. John (3 leagues north-eastward of Cape Mirik). to the Bay and Port of Portandic, inclusively; provided that they should not form any permanent settlement, of what nature soever, in the River St_{1} John, or the Bay of Portandic. The treaty is still in force, as no alteration of it was made by the Treaty of 1814; which merely stipulated the ençagement of the English government to restore to France, in full right and sovercignty, the possession of Senegal and Goree. The transfer took place in 1816, when the English withdrew to their other settlements on the coast; leaving the gum trade entirely in the hands of the merchants of Senegal, although they possessed an indisputable right to the trade from the Bay of Arguin to the Bay and Port of Portandic.

At the commencement of the year 1821, the British merchants of the Gambia obtained the support and assistance of the local government, in the attempt to renew the gum trade at Portandic, and revive that friendship and good will which formerly subsisted between them and the Moors in Senegal. Commodore Sir George Collier was solicited to order a vessel of war for the protection of the trade, and to convey presents to the chiefs of the Trazzarh or Tarassa Moors; and; for this purpose his Majesty's gun-brig Snapper, commanded by Lieutenant T. Evans, was selected, and proceeded on his important service. The trade afterwards revived, and was going on with the Moors in 1834, when it was unjustly interrupted by the government of Senegal. The particulars of this interruption, were given in evidence before the House of Commons in 1842, by G. C. Redman, Esq." But these matters have been

[^98]adjusied their fact
PORT at the ter of Inguia This in $t h$ covered w soundinge mud, and southward
The Ma Louis, in swollen th by boats; as the ent rated from nearly bar of sand, parallel to appearano Wood Isla ward of th
Griel 1 higher tha leagues, w is not more Isle, the st tween the place to the
A vessel 9 to 14 fath
SENEG ment of St white buil the flag of westein bs this island, it, that the
A little ? hill, stands negroes en; checks the St. Louis is the bar of may be tal from 2 to 4
The mou ward. Th northern \mathbf{p} and vessels from the sh

[^99] rights to tr inclusively, on tho N Nor
tom of cand On receding greater than
ks, on rather trees, with-- of the two, ape Boiador. supposed to now remaing shment once 3 mentioned en to S.W. 1 presents a owns of red es from the t-head some Igues to the clothed with as uniformly
troduced the part of the The French repute, and 60 to 1779 , - Treaty of nerce, which ;ablishments tia Company sts into the gal ; but, by of aarrying -eastward of 2 that they - River st. on of it was the English ossession of withdrew to he hands of ot the trade

Gambia obt to renew ih formerly rge Collier to convey purpose his lected, and as going on ernment of before the have been
adjusied by the cession of the territory to the French, we taking as an equivalent their factory of Albreda on the Gambia.*

PORTANDIC то THE RIVER SENEGAL.-On the parallel of $16^{\circ} 35^{\circ} 24^{\prime \prime}$, and at the termination of the 35 leagues of coast already described, we arrive at the hits of Inguiayher, or the apot called by the French the Marigot or Lagoon of Mosquitos. This in the rainy season forms a mouth of the River Senegal, the banks of which are covered with mangroves. At the distance of 2 or 3 miles from the beach regular soundings may be found, in from 7 to 13 fathoms, fine sand, occasionally mixed with mud, and affording safe anchorage between this and the palms of Portandic. To the southward the depth gradually increases.
The Marigot of Mosquitos is about 12 leagues to the northwand of the Isle St. Louis, in the Senegal; and it communicates with the see only when the rains have swollen the river. It then covers the bank at its entrance, which may be passed over by boats; but they must be prepared against the surf which is common to it, as well as the entrance of the Senegal. To the southward of this Marigot, the river is separated from the ocean by a straight tongue of sand, formed by small white downs, nearly bare, and gradually becoming iswer toward the extremity. Within this tongue of sand, the stream of the Senegal washes a number of small islands which lie parallel to the coast, and on which a covering of thick bushes gives the country some appearance of fertility: They are known by the name of the Antelope Islunds, Ariel Wood Island, and Thiong Islands. The last is at a very short distance to the northward of the Isle of St. Louis.
Griel Wood Island is distinguished by its bushes, among which are some trees higher than the rest, presenting a remarkable contrast to the barren desert of 200 leagues, which precedes it. Its distance from the Isle of St. Louis, in a straight line, is not more than $5 \frac{1}{4}$ leagues. Both to the northward and southward of Griel Wood Isle, the atream of the river may be distinctly seen from the mast-head, running between the isle and the beach; and it is the surest mark for discovering the landingplace to the northward of the bar.
A vessel may run along the coast, at the distance of 2 miles from the beach, in from .9 to 14 fathoms, over an excellent bottom of thick green mud.
SENEGAI.-On continuing your route to the aouthward, the French, wish liah-- ment of St. Louis, in the Senegal, will soon be seen. This place is remarkable for its white buildings, and a very high palm tree, which atands conspicuously close before the flag of the fort. The latter is in lat. $16^{\circ} 0^{\prime} 48^{\prime \prime}$ N., and long. $16^{\circ} 31^{\prime} 1^{\prime \prime} \mathrm{W}$. The western bank of the Senegal is so narrow and low, abreast of the northern part of this island, that the town appears to stand on the aea-shore; and it is only on nearing it, that the channel which separates them can be seen.
A little Moorish town, called Guet n'dar or Gattandar, consisting of huts on a sand hill, stands upon the strand, opposite the town of St. Louis. It was built by the negroes engaged to open the communication in canoes with veasels arriving, and checks the sands, which are constantly in motion. On the S.W. part of the Island of St. Lonis is a down, on which cannon are placed. From Gattandar, !'. :itance of the bar of the Senegal is only 2 leagues. The anchorage off the mow wi" the river may be taken in 7 to 14 fathoms, according to circumstancen. The depth extends from 2 to 4 miles from the bar.
The mouth of the Senegal presents nothing remarkable when seen from the northward. The breakers which prevail on the whole coast as far as Point Barbary, the northern point of the entrance, prevent those on the bar from being distinguished; and vessefs may run pas without seeing them, if they keep at too great a distance from the shore. From Gattandar you may run at the distance of a mile from the

[^100]beach without danger ; which will enable you to observe the smallest alteration in the coast. A small post in the centre of the river, abreast of the Engitian Lislet, where there is a signal-post, and a guard-house on Babague Y_{s} land, at a ahort distance to the eastward of the bar, will then be passed in succession. This guard-house is a remarkable small square house, near which there is a spond signal-staff; and a vemel may anchor when this guard-house bears E. $\frac{2}{2}$ S. [E. by N.]. As the winds generally blow from the northward, in consequence of the facility for communication with the ahore, it a wish te to anchor rather to the northward than to the sonthward of the ber.

The Bar cy Senegat is not stationary. The western bank of the river, from the Isle of St. Louis, is so low that high tides completely cover it, and, at times, force open a new channel. Its northern point in 1817 was in lat. $15^{\circ} 55^{\prime} 18^{\prime \prime} \mathrm{N}$., and long. $16^{\circ} 30^{\prime}$ W., and it increases gradually the southward. Here the magnetic variation, in 1817 , was $17^{\circ} 22^{\prime}$ W. It is now $19^{\circ} 0^{\prime} \mathrm{W}$.
As the nature of the entrance in sc ra - 'e, it is manifest that no safe directions can be given. Prior to 1857 idere were two eistrances, that near the Pointe aux Chameaux, which led through a long channel diminishing in depth, and that of the Barre de Gandiolle, opposite the coast of that name. The Banks to the North were shifting and extending much to the southward, so that they formed a considerable clbow, which obliged vessels to steer N.W. or W.N.W., to clear the southern hanks. At the end of 1857 it was anrounced that the entrance by the INinte sux Chameaux was entirely closed, and that the obstructing banks extended at least s miles cff, so that vessels working up for the anchorage should be well on their guard.
The Bar of Gandiolle was then hetter than ever, and had constantly a depth of 12 or 14 feet, and within it from 15 to 16 feet. Vessels should anchor before this bar in 7 fathoms, and will be in the beat position with the flagstaff bearing N.E. by compass.
The dungers attending the bar of the Senegal are well knc, in to be of no tritinn nature. In the rainy season, and even in March, when the iver, increased by the rains, discharges a greater body of water into the sea, the bar is frequently impra. ticable even by decked boats. The waves, caused by the impetuosity of the river water meeting with that of the ocean, are very considerable, and succeed each other so rapidly thet it is impossible to find a smooth. It is not uncommon, in these cases, to see breakers at the distance of a mile from the bar, and in 8 fathoms of water. From the month of April to the end of September the bar may generally be crossed by decked boats, and sometimes even by canoes; but it is advisable that they should be steered by natives.
Vessels drawing 10 feet of water cannot cross the bar. Those of a moderate size only shouid, therefnce, be employed in the commercial navigation of these parts; otherwise the loading and unloading, when necessary to employ lighters, becomes very expensive. Inside the mouth the depth is from 6 to 8 fathoms; snd, with the assistance of the tide and a pilot, a vessel may very easily beat up to the Islo of St . Louis.

CURRENTS.-I has already been said, that the general and almost constant direction of the current is along the const from North io South, as far as the mouth of the Senegal. Abreast of this opesing, and in a space of several miles to seaward, the river tides affect the genera unitormity of this current. The flood and ebb tides are alternately felt at the bar anchorage; they have no settled direction, but may be considered as setting abo. W. and S.E.; and are frequently so strong as to make the vessels tend at the schorage, or at least to lay with their broadsides to the wind, in the strongest breeza. This anchorage is rendered very inconvenient by the short sea which is always upon it.
The preceding deseriptions are chiefly those of the Baron Roissin. The following, from our former edition, may also be acceptable.
From Santa Cruz, Tenerife, to the River Senegal, the true and safe course is S.S.W.
to lat. 1 by the sbove-m $16^{\circ} 15^{\prime}$, remarke If sta into sou shown t $1 \frac{1}{5}$ miles The b tember, quently united in may per immedia nected; first the

Durin incessan time bet two assa degree o of the w longer ax

On pa able pro its righ 4 arranged some stos roofs.

The w to the isl nearer a than the withstan is brac lei

WINI of the during t come fro once pas the road is over.

SENE chorage point of length 3 chord, b leagues,
The as that higher, sandy d may be that no verdure,
alteration in on solet, where ort distance to ard-house is a il-staff; and a As the winds ommunication to the south-
river, from the at times, force N., and long. retic variation,
safe directions te Pointe aux nd that of the te North were a considerable the southern by the ivinte ended at least well on their

a depth of 12

 before this bar ring N.E. byof notrifing, creased by the acntly impta y of the river eed each other in these cases, ofater. From be crossed by hey should be
f a moderate tion of these ploy lighters, athoms; and, up to the Isle
nost constant as the mouth es to seaward, and ebb tides tion, but may strong as to adsides to the enient by the

The following,
rrse is S.S.W.
to lat. $18^{\circ} \mathbf{3 0}$, before a ship hauls to the eastward. This is in order to avoid being eet by the current too far to the eastward, or on the banks of Arguin, \&c. From the above-mentioned latitude haul to the south-eastward, so as to make the land in about $16^{\circ} 15^{\prime}, \mathrm{n}^{\top}$.en you will probably see the trees already noticed, which are the most remarkabie on this coast.
If standing in for the land by night, heave a cast of the lead every hour, as you fall into soundings all at once, 50 fathoms close to the edge of the bank, at the distance shown the chart, or about 8 leagues from shore, and thence shoaling to 8 fathoms at $1 \frac{1}{1}$ miles from it.
The bar of the Senegal is most easily passed in the months of July, August, September, and October; but it is very rarely quite calm. On the contrary, the sea frequently breaks against it violently. The waves, which strike against it, are always united in threes, or leashes. For example, when the sea is but alightly agitated, one may. perceive tbree waves, perfectly distinct, approach and break against the bar, immediately ofter each other; and these three waves appear to be, as it were, connected; for there is often a considerable interval of time between the attack of the first thres waves and the approach of the sucoeeding trio.
During the prevalence of rough weather, this series of assault by united waves iacessantly prevails; but then these attacks follow each other so rapidly that the time between them is no longer perceptible. The sailors call the interval between the two assaults, when tolerably long, a set-off, because then the bar experiences a slight degree of reat, during which time it may often be passed; but frequently the violence of the waves in so great, and squalls succeed each other so rapidly, that there is no longer any interval between them; and, consequently no set-off.
On passing by sea within cannon-shot of the Isle of Senegal, it affords a very agreeable prospeet. Fort St. Louis forms the principal object in this perspective. To its right and left extend the two parts of the town, the streets of which are well arranged; and, in general, composed of thatehed cottages or huts, interspersed with some stone huuses, covered, according to the custom of this part of Africa, with flat roofs.
The woods which line the East bank of the river appear, at this distance, to belong to the isle, and give it a cheerful and rural aspect ; but this allusion disappears on a nearer approach; for no place can be more arid, parched, or deprived of vegetation, than the Isle of St. Louis, the soil of which is nothing but a fine shifting sand. Notwithatanding this, the population amounts to about 5,000 persons. The water of the is bra. kish and un wholesome.

WINDS.-The winds are not at all dangerous in the navigation of the coasts of the Senegal. They blow nearly along the coast from the N.E. and N.W. during the greater part of the year; and as, in the rainy season, the squalls always come from the S.E., and the winds which suoceed them are very weal, when they. once pass the S.W. quarter, getting, under way is alwaye easy. Those vessels in the road which cannot depend on their ground-tackle, may retur.l to it when the squall is over.
SENEGAL TO CAPE VERDE.-If a straight line were drawn from the anchorage at the bar of the Senegal to the outer rocks of the Almadies, on the western point of Cape Verde, its direction would be nearly S.W. by W. [S. $40^{\circ} \mathrm{W}$.] and its length 31 leagues. The are described by the intervening coast, and subtended by this chord, bends so little, that it would not exceed the whole length by more than 4 leagues, and its greatest depth would be 13 miles.
The coast, as far as 2 or 3 leagues to the southward of the Senegal, is just as low as that to the northward, and resembles it very much; it afterward becomes rather higher, but is uniform in gencral appearance. It is composed of a chain of white sandy downs, scattered over with brushwood, amongst which a small cluster of trees may be distinguished. It generally presents two well-defined plans. The frst is that next to the sea, formed of white sandy downs, on which there appears some verdure. The secend, which is considerably higher than the first, commences at about

2 miles in the interior, and is formed by downs of a greyisl whour, which are covered with bushes.

In running for the Senegal, from the southward, the month of the river is more easily distinguished than when approaching from the northward, from its appearing more open. At the distance of 8 leagues from the mouth, and on the parallel of $15^{\circ} 26^{\prime}$ N., a large red sandy down may be observed, entirely bare, which, to those ignorant of their latitude, may serve to indicate their distanee to the southward of the bar. From this down, southward, the coast presents nothing remarkable as far as the Little Paps, of which the northern is in latitude $14^{\circ} 56^{\prime} 24^{\prime \prime}$ N., and longitude $17^{\circ} 4^{\prime} 30^{\prime \prime}$ W.
The Little Paps are the two highest downs between the Senegal and the Pape of Cape Verde. They are situated on the beach, and are easily known by a slight un: dulation of their summit, and three or four other small hills adjoining them to the southward. They are visible at the distance of 4 or 5 leagucs. The Bay of Yof commences from this point.

The Little Paps bear E.N.E. 各 E. [N. 59°. E.] from those on Cape Verde, at the distance of 9 leagues. When running this distance, in fine, clcar weather, both are frequently seen at once: The latter may be seen at the distance of 7 or 8 leagues. From about 8 leagues to the eastward of Cape Verde, the coast rises very much, and becomes more wooded. The country about the cape is covered with trees, amongst which there are several of remarkable height. All this coast may be approached within a very short distance. Within 2 miles to the northward of the village of Yof, situated near an islet of that name, there are $\overline{5 J}$ fathoms of water on a bottom of mud and sand.

CAPE FERDE is the westernmost point of Africa; it is the extremity of a peninsula formed on the North by the Bay of Yof, and on the South by the bay in which the Isle of Goree is situated, and is composed of moderately high land. To the westward, as far as the two paps of. Cape Verde, as aforesaid, it becomes higher, and on the southern side of these two paps, the coast next the sea becomes nearly perpendicular. This point is usually taken for Cape Verde; it is not the westernmost part ef the peninsula, but it is the highest. Its lat. is $14^{\circ} 44^{\prime} 30^{\prime \prime}$, and long. $17^{\circ} 32^{\prime} 0^{\prime \prime}$. Cape Verde, as seen from the northward, terminates in very low land, on which are some unconnected hillotks, which, at a distance, may be taken for islets. The extreme point extends 1,000 fathoms still further East, in a flat of blackish rocks, awash with the water's edge, and which, in two or three places, rise from 8 to 10 feet abovethe level of the sea. This rocky flat is called the Almadies, and the point which joins it, Almadia Point.

The sea on the Almadies breaks incessantly. Amongst the rocks are some smooth spots appearing like channels fit for boats. The flat may be coasted at the distance of a mile, there being, on the West, 35 fathoms of water; the bottom is of broken shells. Hence to the northward, in an extent of 3 miles, the depth increases to 80 fathoms, bottom of mud and sand. To the S.E. the depth is not so much ; in running along these breakers and the coast, to a distance of 2 miles in that direction, which will extend to the meridian of the paps, the depth varies from 25 to 39 fathoms, the bottom, sand and shells, or sand and rock. The depth then continues to decrease to the E,S.E. The highest and westernmost rock of the Almadies, which appears from a distance in the shape of a die, is in lat. $14^{\circ} 44^{\prime} 29^{\prime \prime}$, and long. $17^{\circ} 33^{\prime} 29^{\prime \prime}$, as shown in the Table, p. 34.

CURRENTS.-The prevailing currents between the Senegal and Cape Verde follow the direction of the coast, in the same manner as those to the northward; and the idea of a current setting violently into the Bay of Yof, as formerly represented, is altogether false. The sea on this part of the coast is not particularly heary nor dangerous; the smallest coasters of the Senegal and Goree expose themselves to it with impunity every day.

Southward from the Senegal as far as the parallel of $15^{\circ} 20^{\prime}$, including an extent of more than 12 leagues, at 2 or 3 miles from the coast, the bottom is excellent, being of pure mud, with a depth varying fiom 12 to 30 fathoms. From this parallel, to tho
southwa of the L muddy b anchor a only in t quarter, well four

CAPE trends S . covered rocks. with bea
At 2,0 distance which th the crevi reddish o shape of is nearly creek, w principal from 4 to

The sp but it sho dies to th islands in
Cape brushwoo of 8 fath to the bee is opened of Goree. lies the I upproach
GORE hands of French ir any of o Jaloff na much im defences.

Goree to S. $\frac{1}{2} \mathrm{Y}$ duction, Islands a part, wh round m is very l building

*The

 which do Verde th \dagger Dr.southward, doubtless the depth increasés,considerably. At 2 leagues to the westward of the Little Paps, for instance, there are from 64 to 70 fathoms of water. The maddy bottom continues here, and is so soft that the lead sinks deep into it, and the anchor alone would hold any vessel obliged to come to in consequence of calm. It is: only in these cases that anchoring becomes necessary; if there is wind from either quarter, the formation of the coast will always allow a favourable board to any vessel weil found and well managed.

CAPE VERDE to GOREE.-From Almadia Point to Cape Manoel the coast trends S.S.E. $\frac{1}{2}$ E. [S.E.] in a distance of about 3 leagues. In this extent it is high, covered with trees, and generally terainates at the sea-side in basaltic cliffs or sandy rocks. In some places only the cliff slopes toward the interior, and forms small bays with beaches of white sand.
At 2,000 fathoms N.W. by W. $\frac{1}{}$ W. [W. by N.] off Cape Manoel aind at half that distance from the coast, there is a group of rocky islets, called the Maydalen Isles, of which there are two principal ones. They are perfectly barren ; even the largest, in the crevices of which were formerly some baobabs," is nothing but a bare rock of a reddish colour mixed with busalt, and perfectly destitute of any vegetation. The shape of this islet is that of a crescent open to the westward, and its greatest extent is nearly North and South. On the North side it has a gap, forming a very small creek, which affords a landing. The other rocks are to the south-eastward of the principal islet, separated by a space of 1,000 fathoms, in which there is a depth of from 4 to 6 fathoms. The sea breuks with violence on all these rocks.

The space between the Magdalen Islands and the main seems to offer a safe channel; but it should not be attempted by a stranger. In coasting the shore from tho Almadies to the Magdalen Islands, the soundings vary from 34 to 19 fathoms. These islands may be approached on the southern side within 100 fathoms.
Cape Manoel is high, formed of columns of basalt, and covered with very thick brushwood; at the distance of a pistol-shot from it, to the southward, there is a depth of 8 fathoms; and at 100 fathoms to the north-westward of its extreme point, close to the beach; is a small insulated rock. In doubling Cape Manoel, the extensive bay is opened, which is formed by this cape and Capa Naze, which may be called the Bay of Goree. At the distance of 2,100 fathoms from Cape Manoel, E. $\frac{8}{4}$ N. [N. 65° E.] lies the Island Goree; and a vessel intending to anchor must steer for it, and may approach on the South side within two musket shots.
GOREE.-BAY of GOREE.-The Island of Goree with the Senegal fell into the hands of the British in 1809. By the treaty of Paris they were restored to the French in 1816. As far as regards climate, they ure more favourably situated than any of our settlements on the coast. The adjoining country is inhabited by the Jaloff nation. It is the seat of a flourishing trade. The French Government attach much importance to its maintenance, and have expended large sums on its military defences. \dagger

Goree Isle is merely a rock, about 400 fathoms in its greatest length, from N . $\frac{1}{\frac{1}{8} \mathrm{E} .}$ to S. $\frac{1}{2}$ W. [N. by W. to S. by E.], and 167 fathoms in breath. It is a volcanic production, composed of basalt and sand, of the same description as the Magdalen Islands and Cape Manoel, from which it seems to have been separated. The southern part, which is about 500 feet above the level of the sea, is the highest, and like a round mountain, may be seen at the distance of 5 or 6 leagues. The rest of the island is very low, and the North point is distinguished only by its batteries and private buildings: A fixed light is shown from the fort. The landing-place is on the N.E.

[^101]side of the island, between the point and the back of the mountain, to the southward, is a small sandy bey.*

Goree contributes nothing toward either the subsistence or comfort of its inhabitants. Its two springs, situated at the foot of a rock, on its southern part, hardly suffice for the consumption of two families, and the inhabitants are therefore obliged to get their supplies of water, wood, and all kinds of food, from the main.

The roadstead is to the N.E. of the island. This roadstead, which is sheltered from all winds from S.S.W. to E.N.E. (by the North), is perfectly safe during eight months of the year; that is, from the 1st of November to the 1st of July; but during the rainy season, the squalls from the S.E. are dangerous. The best anchorage for large vessels, in either season, is at the distance of 800 fathoms from the landing-ing-place, with Cape Manoel bearing W.S.W. $\frac{1}{4}$ W. [S. $52^{\circ} \mathrm{W}$.], a sail's breadth ppen of the North point of the island. At this spot there is a bottom of thick clayish mud, with a depth of $12 \frac{2}{3}$ fathoms, and it is convenient to weigh from, with the wind from any quarter.

To fetch the anchorage from Cape Verde, in the fine season, when the winds are from N.E. to N.W., it is necessary to run close by Cape Manoel and the South point of Goree; keeping by the wind on the port tack, and sounding until in 8 or 10 fathoms. When within a mile of the land, tack and beat up to the anchorage.

The above position assigned for the anchorage of this island possesses one very great advantage in the tornado season; which ik, that i? the ground-tackle cannot be depended on, a vessel may run before the squall and even be sheitered for a short time. For this purpose it will be necessary to veer to the end of the cable before the squall comes on, as its violence may not allow of a vessel being managed with the expertness requisite on such an occasion. She should then steer so as to round the North point of the island at a convenient distance, and when to the westward of this point, whatever may be the violence of the squall (which is always from the S.E.), the island will afford sufficient shelter to enable her to keep on the port tack until abreast of the South point. Having reached thus far, she will be in a favourable position for doubling Cape Manoel, as by bringing it to bear W. $\frac{3}{4} \mathbf{S}$. $\left[S .65^{\circ} \mathrm{W}.\right]$ she may then steer nearly four points free. All the channel between Goree and the Peninsula of Cape Verde is perfectly safe, having in it from 5 to 13 fathoms of water, and the shores may be approaehed within the distance of 200 fathoms. A veseel intending to remain any time at the anchorage should moor N.E. and S.W., as the two cables will then bear an equal strain in the heqviest of the squalls. Magnetic variation, in June, $1817,17^{\circ} 30^{\prime}$ W.; 1861, $18^{\circ} 10^{\circ} \mathrm{W}$.

The Watering-place at Goree, and the Resources which this Anchorage offers.-The watering-place of Goree, used by vessels which frequent this island, is about 3,000 fathoms N.N.W. of the anchorage. It consists of several pits dug in the sand on the sea-side, near a marsh, and close to a negro village called Han. The water is neither agreeable nor wholesome, and should not be drunk until it has been filtered, acidulated, or cleansed by red hot shot being put into it. The cove in which it is situate is exceedingly well stocked with fish, and hauling the arine will be attended with suceess, by any number of vessels touching here. Fire-wood is purchased from the negroes of Dacar, a little more to the West, at the rate of about twenty shilling the cord. Bailast may be procured at the foot of the point of that name. Small bullocks may be purchased from the neighbouring coast, for six or eight dollars each.
The whole coast, from Cape Manoel to Cape Nazc, which forms Goree Bay, may be run along nt the diotance of 2 milcs. One bank only lies at 800 fathoms E.S.E. $\$$ F [E. $3^{\circ} \mathbf{N}^{\prime}$] from Cape Belair, \dagger having soundings which vary from 16 feet to 12

[^102]fathoms,
Cape Na
From in the in but a wh joins the
Yof. 7h trees as f in height 7 or 8 lea several n most cons follow th frequente ing. Th -(Rouss

There see, whic W.N.W.

South and
In the the lead; In the sea you may About from the far as P [S.S,E. $\frac{1}{6}$ coast, and 1) fathom ground is

To the .covered w the count

Portul quent this southwart higher thi

The Ro lie close t near Port
Joal, Yoal, sta with only not much tween Jot is 3 miles

Colonel Bur Sin,

[^103]the south-
its inhabitpart, hardly fore obliged
is sheltered luring eight y ; but dort anchorage the landing iil's breadth thick clayish ith the wind
ce winds are South point 1 in 8 or 10 orage.
les one very ackle cannot Ifor a short le before the ed with the o round the ward of this n the S.E. rt tack until a favourable $65^{\circ} W$.] she ree and the pms of water, 8. A veseel .W., as the - Magnetic
offers.-The about 3,000 the sand on he water is cen filtered, which it is be attended chased from out twenty that name. six or eight

Bay, may be E.S.E. $\frac{1}{2}$
feet to 12
fathoms, with a bottom of muddy sand, or sand and shells, as far as the parallel of Cape Naze.
From the Bay of Han, northward of Goree, the coast rises a little at some miles in the interior, but it is exceedingly. low at the sea-side, where it presents nothing but a white sandy strand. We again pereeive the little downs, the chain of which joins the paps of Cape Verde, and which we ran along in going round the Bay of Yof. These downs rise progressively to the south-eastward, and are covered with trees as far as Cape Naze. The Naze Cape is terminated by eliffs of about 200 fathoms in height, the woody summit of which may bo seen, in fine weather, at a distance of 7 or 8 leagues. In rumning along the coast toward Cape Naze, we pass successively several negro villages of the kingdoms of Cayo and Baol, belonging to Damel. The most considerable of these villages is Rufisk, on the eastern side of Goree Bay; then follow the anchorages of Barnier, Red Cape, Yongop, \&c., all of whieh points are frequented by coasters from Goree, who trade for stock; they offer nothing interesting. The highest part of Cape Naze is in lat. $14^{\circ} 31^{\prime} 30^{\prime \prime} \mathrm{N}$., and long. $17^{\circ} \mathbf{7}^{\prime} 25^{\prime \prime} \mathrm{W}$. -(Roussin.)

There are some rocks, westward of Rufisk, stretching about a gun-shot into the sea, which may be avoided by keeping half a mile from the shore. To the West and W.N.W. of Cape Naze is good anchorage, in 4 or 5 fathoms, fine sand; but to the South and S.W. of the cape the bottom, generally, is not good.
In the night time, you must proceed in 17 fathoms, having sometimes recourse to the lead; the land, even in the night, will direet you sufficiently to avoid the rocks. In the season of the tornadoes the road of Rufisk is not good; but in the summer, you may safely lie there in 6 or 7 fathoms, elose to the shore, if agreeable.
About $3 \frac{1}{2}$ miles S.E. of the Red Cape lies Cape Naze, with a small bay ketween; from the latter the coast extends to the S.E. $\frac{3}{\frac{1}{2}}$ S. [S.E. $\frac{1}{\frac{1}{2}}$ E.] about $4 \frac{1}{3}$ leaguss, as far as Portudal, formerly a French factory; and then 5 leagues S. by E. ${ }^{2}$ E. [S.S.E. $\frac{1}{}$ E.] to Cape Serene: between this cape and Portudal, 2 leagues off the coast, and parallel to it, lies Amboroo Bank, on the South tail of which you find only $1 \frac{1}{8}$ fathoms. Ships that come from the westward must be eautious of this shoal ; the ground is very hard upon it, and close to it is a depth of 5 fathoms.
To the S.E. of Cape Naze the land deelines in height, and the downs are partially covered with bushes. The point near a little river, the Soman, is thus covered, and the country hereabout appears to he elothed with trees.
Portudal consists of a number of huts on the shoro. The coasters of Goree friquent this place. All the coast in the viciuity abounds in trees; and at 2 miles to the southward of the village is a small wood, very remarkable from its trees being much higher than the rest, and which, therefore serve as a mark for the coast.*
The Road of Portudal is far from being goon, and is fit for small vessels only; they lie close to the shore, athwart of the little houses between the cliffts. All the coast near Portudal is bordered with rocks, and nust not be approached too near.
Joal.-Three leagues S. by E. $\frac{1}{4}$ F. [E.S.E. $\frac{1}{3}$ E.] from Cape Serene lies Joal or Yosk, standing on the Nerth bank of a river of the same name, from which a shoal, with only $2 \frac{1}{2}$ fathoms of water upon it, projects into the sea. The Road of Joal is not much better than those we have just mentioned; the entrance of the river, between Joal Point and the point to the South of it, which they called Palmarin Point, is 3 miles broad, with a depth of 3 fathoms of water in mid-channel.

Colonel L. S. O'Connor, C.B., governor of the Gambia, paid a visit to the King of Bur Sin, at his sea-port of Joal, in January, 18j0. His object was to enter into a

[^104]treaty for the protection of vessels and persons wreckeă on these shores, which wan carried out, and therefore some appeal may be made hereafter to that treaty should misfortune render it necessary.

From Palmarin Point to the northernmost of the Birds' Islands the coast extends S. by E. [S.S.E. $\frac{1}{5}$ E.] 8 leagues; and, from the mouth of the Salum River, which lies 4 leagues south-eastward of the point, to the Birds' Islands, the shore is bordered with a sand, named the Red Bank, that stretches 4 miles into the sea, and close to which are 4 fathoms of water. The Birds' Islands, four in number, and very small, lie on this bank.

The Salum River is navigable for 90 miles, and vessels of 250 to 300 tons can always ascend it easily to Khaolah; the last and principal trading port, and to which the tide extends. The bottom throughout is of soft mud, and therefore may be gronnded on without danger. All the people at Goree are intimate with the iver, and can act as pilots. The only difficulty is the bar, which, like that of the Senegal, is liable to shift, and is extending to the South. The Sandy point of Sangomar has thus extended a mile since 1828, the period of the survey. The bar is only sbout 50 yards broad, and on it are from 8 to 9 feet water, perhaps less at spring tides. In taking the bar you must be able to bear freely to the N.E. by eompass, which may be readily done with the sea breeze (N.N.W.) in the afternoon. The best time is, therefore, the twe or three days following the first and last quarter of the moon : it is high water then at from 4 to $6 \mathrm{p} . \mathrm{m}$., and you can make sail for the bar at 2 or 3 o'clock the moment the breeze sets in and is well established, but not if it is too fresh, for then the breakers are too strong. *

From Paluarin Point to the pitch of Cape St. Mary the distance is 11 leagues, South. [S. by E. $\frac{1}{3}$ E.] The entrance of the Gambia lies between the pitch of that cape and the low islets called the Birds' Isles.

In sailing off the coast between Cape Verde and the Gambia, shipping must proceed with caution, as the Amboroo Bank, the shoals of Joal, and the banks in tle vicinage of the River Salum, are dangerous, being very shoal.

RIVER GAMBIA.-Fetween the parallels of $13^{\circ} 30^{\prime}$ and $13^{\circ} 40^{\prime}$, in an extent of 10 miles, is the estuary or mouth of the great River GambIA: it is bounded on the South side by a point named Cape St. Mary, the situation of which is lat. $13^{\circ} 30^{\prime} 12^{\prime \prime}$, lon. $16^{\circ} 41^{\prime} 24^{\prime \prime}$. On a point 6 miles S.E. 'y E. [E.S.E. $\frac{3}{3}$ E.] from this is the British, settlement and town of Bathuret.

The Gambiat is one of the principal colonies of the British on the coast of Africa, and the advantages of this noble river for earrying on trade with the natives in the interior were well known upwards of 240 years ago, for a company was formed in England for that purpose in 1618. From the time of the first voyager, Thompson, at that period, up to that of Mungo Park in 1795 , it was considered that the Gambia and Senegal were branches of the Niger. Several expeditions were sent out, and the British Factory was placed on the small Island of St. James, about 17 miles from St. Mary's. Besides this settlement in 1724, the African Company had another factory at Joar, about 100 miles distant from St. James's Island. In 1688 the latter fort was captured by the French, and there is now scurcely a vestige of it remaining.

In 1816 a new settlement was formed at the Island of St. Mary's, which was formed on the faith of a treaty for the exclusive trade with the Gambia with the French. The Island of SA. Mary's was purchased from the king of Combo; and on the opposite bank, a large tract of country, extending one mile inland, and about 36 miles long, was purchased from the King of Barra. It is to the castward of Barra Point,

- Lieut. Bourdon, of the Alecton, 1. French nevy, 1857.
+ We have taken this general description from tho Report of the Government Commissioner, Dr. Madden. The eorrectness of that report was much disputed by many competent authorities, as will be seen throughout tho evidence before the house, but we have omitient thôe portions which have been particularly specifled. See Report on the Weatem Coast of Africn, Appendix, No. 8, p. 177, Part I1., \&o.
and is of There is opposite
In the more val chase ; it
M'CAR about 17 miles. to it for schooner. which st Mary's, Senegal i on the G

The I Barra Po stationed

The pr mission-h amounts

The ish Creek ; th The total strangers
Bathur town, wit of the me ass to the situation and is abc Albrid from Jilli founded c trade in \mathbf{t} for Portal
Of the point of v any of ou peint whe its presen the libera pendencic which ev resources. the world

But it private \mathbf{w} be obtain stowage,

Cape with an a
es, which win treaty should
coast extends River, which re is bordered and close to dd very small,

300 tons can and to which fore may be rith the iver, the Senegal, sangomar has is only about ng tides. In which may be ime is, theren : it is high 2 or 3 o'clock too fresh, for
is 11 leagues, pitch of that
must proceed the vicinuge
an extent of unded on the t. $13^{\prime} 30^{\prime} 122^{\prime \prime}$, is the British.
ust of Africa, taves in the 1s formed in hompson, at the Gambia out, and the iles from St . ther factory tter fort was ng.
was formed the French. on the oppoout 36 miles Barra Point,
ont Commis. nany compe. but we bave the Western
and is of little advantage except as giving us command of the mouth of the river. There is no British establishment on this truct except Fort Bullen, immediately opposite to Bathurst, and a small house, the residence of a missionary.
In the vicinity of Cape St. Mary's, 7 or 8 miles to the southward of Bathurst, is a more valuable territory acquired by Lientenant-Governor Huntley, in 1840, by purchase ; it is called Baccow, and has some barracks for the African corps.
M'Cartiy's Island is another British settlement, up the river, at the distance of about 175 miles from St. Mary's, though this distance is usually called 300 or 250 miles. The island is about $5 \frac{1}{3}$ miles long and 1 broad, and the river is navigable up to it for vessels of large tonnage; beyond it the trade is carried on in small schooners ; the breadth of the river here is about 200 yards. The falls of Barraconda, which stop' the npward navigation of the Gambia, are about 300 miles above St . Mary's, and from this to Fort St. Joseph, or Gallam, the French settlement on the Senegal is about 150 miles, or five days' journey on foot. 'Where are several islands on the Gambia, between M'Carthy's Isiand and the mouth.
The Island of St. Mary's is situated on the South bank of the river, opposite to Barra Point, where a battery has been erected, and where a few black troops are stationed ; the breadth of the river is about 2 miles.
The prineipal buildings on M•Carthy's Island consist of the barracks, the Wesleyan mission-house, school, and chapel, and three other stone houses; the population amounts to 1,200 , or 800 males and 400 females.
The island is separated from the main land by a very narrow creck, called Oyster Creek; the length of the island is about 4 miles, and the extreme breadth 1 nile. The total population of St. Mary's is 3,514 souls, including 81 rliens and resident strangers; of the fixed population, 42 are whites and 3,291 coloured people.
Bathurst is situated in the Island of St. Mary's ; it is a small, prosperous-looking town, with several excellent stone houses, especially on the wharf where the houses of the merehants are situated. Dr. Madden's report has given riso to much discussion as to the eligibility of the site ef this town, but it would appear that there is no other situation which offers suporior advantages. Jillifree is on the North side of the river, and is about half a mile from Fort James.
Albrida, or Albradar, a fort which belonged to the French, is about half a mile from Jillifree; their possession of this place was eonsidered not to be on any wellfounded claim, and was also a very serious inconvenience and injury to the British trade in the river :* but, as shown in the now on page 513, it has been exchanged for Portandik.
Of the Gamia, Captain Deicher says :-" The Ganbia, considered in a mercantile point of view, unit, as regards supplies, appears to offier more decided advantages than any of our p^{2} sscasions on the coast of Africa ; and may, indsed, be said to be the only point where anyhing approaching to trade can be satisfactorily pursued. Even in its present state it is by far the most healthy part of the cuast; and, had a portion of the liberality of govern nent to Sierra Leone been extended to Buthurst and its dependencies, I feel satisfied that, long ere this, it would have aequired that character which eventually, with infinite labour, it will establish for itself from ity own resources." The constitutions of the residents appear to be as sound as in any part of the world, and the strongest has been here thirty years without visiting Europe."
But it is to bo regretted that, at Bathurst, the only fresh water to be had is from private wells; but, by close work in the dry season, as much as five tons a day may be obtained. Wood may be had at the bench, well dried, in convenient lengths for stowage, at a dollar and a half, or six shillings sterling, per cord.
Cape St. Mary is readily known by its making like a plain; low by the moa-side, with an acclivity toward the interior. It has sone trees and one house upon it.

[^105]The narrowest part of the mouth of the Gambia is between the town of Bathurst and Barra Point, to the N.E., the distance between being only $2 \frac{1}{4}$ miles.

From Bathurst Point, the Banyan or St. Mary's Shoal, a dangerous rocky shelf, extends 5 miles N . by $\mathrm{W} . \frac{1}{4} \mathrm{~W}$. [N.N.W. $\frac{\frac{3}{2}}{} W_{\text {. }}$] It is even with the water, on the ebb. At a mile to the N.E. of this is a bank called the Middle Ground ; and, at threequarters of a mile northward of the latter, is a smaller one, the African Knoll. There are from 4 to 6 fathoms of water between these banks; but the best way in is to pass to the northward of the whole, keeping over toward the Red Bank and the bank extending from the Barra or eastern shore, according to the following directions.
"It is strictly to be recommended that vessels, bound to the Gambia, should get into the latitude of $13^{\circ} 40^{\prime}$, or 4 or 5 miles to the southward of it : then, making a due East course, keeping their lead geing, until in 5 fathoms, when you may anchor, and engage a pilot. But, should you be desirous of proceeding up, you may follow the sounding depths of the chart; remembering that on the southern side of the channel the ground is hard; but on the North and East sides the lead sticks in, the bottom being of soft mud. The anchorage is off the town of Bathurst, with any part of it bearing about West, three quarters to half a mile off; the depth being 16, 14, and 12 , fathoms. Small vessels may lie closer in, where there are 8 and 7 fathoms. The ground is good; the tides strong : but it is, altogether, a fine harbour."-Lieut. G. L. Harries, R.N.

The direct course, from 5 fathoms off Bird Island Shoal, to within the African Knoll, off the edge of the Red Bank, is S.E. [S.E. by E. $\frac{1}{2}$ E.] 5 miles, where there is, in the main channel, 6 and 7 fathoms. From the last spot to the anchorage off Bathurst, the course and distance, in a fair working channel, is $\mathrm{S} . \frac{1}{4} \mathrm{~W}$. [S. by E. $\frac{1}{4}$ E. 77 miles.

When advancing to the Gambia, from the northward, you ought not to approch the river nearer than in 7 or 6 fathoms, before Cape St. Mary comes in sight. It may be advisable for a stranger not to proceed farther than in 5 fathoms without a pilot, unless the vessel draws less than 12 feet of water. Those leaving Goree, when bound to the Gambia, may steer about S. by E., keeping their lead constantly going, and appronching the coast no nearer than in 7 fathoms. When near the entrance of the Gambia, the ground will generally be found an oozy sand; but, near the cape, sometimes sand and sometimes red shells will be found. The ebb in the river runs very strongly, nearly eight hours, but the flood is not so strong. Spring tides are very rapid.

Having approached within one mile of Barra Point, from which a small spit stretches off to about a quarter of a mile, keep over for mid-channel between that point and Bariyan or Bathurst Point. You liave 8, 9, 10, and 12 fathoms between the two points, and good anchorage in 9 fathoms of water, muddy ground, with Barra Point bearing N.E. by N., aud Panyan Point N.W.
The tide of flood sets to Barra Point, and the ebb directly on the Middle; be therefore very cautious during calms on an ebb tide.*

From Barra Point to Dog Island Point, on the same side of the river, the bearing and distance are South $\left[S\right.$. by $\left.\boldsymbol{E} . \frac{1}{2} \boldsymbol{E}.\right] 8$ miles. The coast between forms a deep and sloual bay, and the flats extend from it into the middle of the river. From Dog Island Point and Reef the coast takes a sudden turn to the S.E. and E.S.E., and it trends from Dog Island Point to Lemaine or Lemon Point, S.E. ${ }_{2}$ E. $\left[\right.$ E.S.E $\underset{\frac{1}{4}}{ }$ E.] 2 leagues. On this shore, at half a league more eastward, is the French former settlement at Albreda, and at half a mile further is the English one named Jiliffree. One mile south-eastward from Jillifree, on an islet in the river, is Fort James.

To go up to James Fort, which is 17 miles above Bathurst, you steer in mid-channel

[^106]2 leagu offing fir maine \mathbf{F} E. [Eas]

In or approac side, wh in 6 fath from it. it, the g
After abreast able dist
Under 190 mile ants, Me all the w tide, in t James F easterly Moota P chanuel, its depth
From to Jukur 42 miles treaty w small sp ante, pag

CAPE const strc Tomgui 1 culled th
Upon to the so leagues and, abol glasses. off the sl

The co
low, witl continue
In sail will find northwe sand. near whi shore, in
The I southwa navigate depth of pilotage
The 1 distance principa
n of Bathurst
s rocky shelf, water, on the and, at threeKnoll. There y in is to pass and the bank irections.
ia, should get making a due may anchor, u may follow a side of the sticks in, the with any part being 16, 14, d 7 fathoms. our."-Lieut.
n the African 1, where there anchorage off V. [S. by E.
t to approcech in sight. It ms without a - Goree, whea tantly going, e entrance of acar the cape, the river runs ing tides are
spit stretches hat point and reen the two Barra Point
le; be there-
, the bearing a a deep and
${ }^{1}$ Dog Island nd it trends :.] 2 leagues. ettlement at One mile mid-channel it terminated is fired. On ajproaching

2 leagues, with the town of Bathurst N. $\frac{1}{4}$ W. [N.N.W. $\frac{1}{4}$ W.] This leads to a fair offing from Dog Island Point. The course henee, in the fairway, to abreast of Lemaine Point, is S.E. $\frac{1}{8}$ E. [E.S.E.] $6 \frac{1}{8}$ miles; and thence to Fort James, E.S.E. $\frac{1}{8}$ E. E. [East] $3 \frac{1}{\frac{1}{2}}$ miles,

In order to avoid the shelf which extends from the Banyan or western shore, approach no nearer to that shore, in turning, than in 5 fathoms; nor near the Barra side, when above Dog Island Point, than in 4 fathoms; but if near that point, then in 6 fathoms. Lemaine Point should have a berth of a mile, as some shoals stretch from it. You may haul in and anchor before Albreda in 4 fathoms, half a mile from it, the ground shoaling gradually to within a cable's length of the shore.
After giving Lemaine Point a berth, do not haul for the Barra shore till you aro abreast of Albreda, for the flat continues to the eastward of that point to a considerable distance.
Under Admiralty orders, in 1826, the River Gambia, to the distance of more than 190 miles, from its entrance, was surveyed by Captain Richard Owen, with his assistants, Messers. Tudor and Mercer. This valuable survey exhibits the depths of water all-tho way up to Pisanea, where there remain the ruins of a factory, and where the tide, in the dry season, rises 3 feet. It appears from the survey that, at 3 miles above James Fort, this noble river is nearly $2 \frac{1}{5}$ miles in breadth. Here it takes a northeasterly direction, and thus extends for 10 miles, to a point on the South shore called Moota Point, and a creek, Jukarda, on the North. The depths of this reach, in midchannel, are $5 \frac{1}{2}, 4 \frac{1}{2}, 4 \frac{1}{4}$, to 5,6 , and 7 , fathoms. Pursuing thence an easterly course, its depths alternately shoalen and increase to a great distance.
From Boonyadoo Creek, or the Fourth River, which faces the mouth of the Gambia, to Jukurda Creek, above mentioned, is a line of coast, 1 mile (nautic) in breadth, and 42 miles in length, the sovereignty of which was ceded to His Britunnic Majesty, by treaty with the king and chiefs of Barra, signed at Jillifrec, 15th of June, 1826. A small spot (400 yards by 300) occupied by the French, at Albreda, excepted. (See ante, page 512.)

CAPE ST. MARY to CAPE ROXO.- Trom Cape St. Mary (the true eape) the coast stretches 11 miles W.S.W. to the Bald Cupe, where St. Anne's Bank, with the Tomgui Rocks, extend about a league into the sea, and include three sandy islets, culled the Byjols.
Upon the coast of Cape St. Mary the ground varies all along, but it becomes whiter to the southward: when past the cape you find a reddish sand, which, at 2 or 3 leagues more to the South, changes into a gray, then into a whitish, sandy bottom; and, about Cape Roxo, it becomes such fine sand as that which is put in the timo glasses. These varieties of ground extend from 25 fathoms in the offing to 5 fathoms off the shore.

The coast betvean the Bald Cape and Cape Roxo, in a distance of 20 leagues, is very low, with a sandy beach, and covered with trees. The middle part is one low and continued forest, with elusters of large high trees, at a distance resembling islands.

In sailing between the two capes, by keeping in 5 or 6 fathoms along shore, you will find that depth down to the entrance of the Rier Casamanza, 4 leagues to the northwerd of Caple Roxo; there you have only 4 fathoms, and the ground mostly red sand. About 2 leagues southward from that entranee, and abreast of a cliffy point. near which you may anchor, the ground is so clammy, nbout a musket-shot from the shore, in 2 fathoms of water, that the lead is brought up with difficulty.

The RIVER CASAmANZA, or Casamance, is situate about 16 leagues to tho southward of Bald Cape. If a bar did not obstruct this entrauce, the river might be navigated by frigaien; but it can be gained only by a very narrow channel, having a depth of 2 fathoms, but it cinn be entered with ease by a steamer under proper pilotage.

The Portuguesc, entabliwhed ou the fertile banke of this river, have nseended to the distance of many leagues from its mouth; they hare several establishments on it, the principal of which are ealled Zinghieor, 45 miies up the river, and Mekiin Kireonde.

They have carried on an advantayeous trade, especielly in ivory, rough hides, aromatic seeds, and dyeing woods, with the Feloop and other negroes, who inhabit the banks of the river.

There is a Freneh estahlishment, Carabane, 5 miles from the month of the Casamanza, on the northern point. Toward this there are two passages, divided by the bar, which extends outward, to the West, nearly 4 miles. Tho deepest channel is on the South side of this bank, and has $3 \frac{1}{9}, 6,4$, increasing to 8 , fathoms off the point. The river upwerd, which has a serpentine form, has been surveyed by Captain Boteler; and from his survey it appears that there is another French settlement, the factory of Berrin, at 10 leagues up the river on the South side, and 3 leagues below Zinghicor, which is on tho same side. The soundings in mid-ciannel, from the entrance to the latter plaee, vary from 8 to $4,6,3 \frac{1}{2}, 5,6,3 \frac{1}{2}, 8$, and 5 fathoms. Tho French recently placed another establishment at Sejeu, having purchased the land of the natives, and they are apparently endeavouring to increase, as much as possible, their commerce in shis part of the world.*

CAPE ROXO (lat. $12^{\circ} 21^{\prime}$) is improperly called a cape, it being an obtuse point of low land, from which the eonst takes an E.S.E. direction to the River Cacheo, or Rio San Domingo, tho navigation to which is impeded by extensive shoals called the Cacheo Banks and Falulo Breakers. The point or eape, when bearing E.S.E. or East, presents a down of white sand, of moderate heirht, covered with brambles. On one side of the points formed by the coast to the northward are a number of tufts, of a remarkably red colour, and it is supposed that, from these tufts, the name of Roxo (Red) has been imparted to the headland, although they are distant from it about $2 \frac{1}{8}$ miles.
M. Roussin says that on all the appronehes to Cape Roxo the soundings are regular, but the depth inconsiderable. From the River Casamanza, to the distance of 2 or 3 miles from shore, there is a depth of only 6 to 4 fathoms. At 10 niles to seaward are 8 and 7 fathoms; and at a short distance to the S.S.W. the first bank of the Bissagos is met with.

Cacheo, on the South bank of the river of that name, has been the chicf Portuguese establishment between Cape St. Mary and Cape Verga, and was, formerly, very considerable. They earry on the same kind of trade here as at Casamanza. The country is singularly fertile and well peopled.

The mouth of Cucheo River is about $6 \frac{1}{3}$ leagues to the south-castward of Caye Roxo, and the entrance is between two recfs. In proceeding for it, give Capo Roxos berth of about 5 miles. Steer S.S.E. on soundings of from 4 to 5 and 6 fnthoms, on a sandy bottom. Go close to the castward of Cachoo Bank, which has $2 \frac{1}{2}$ fathoms of water on it. Continue S.S.E. until you see breakers abcad, and run struight for them, until you are in 5 fathoms of water. You will sce a single treo bearing East, then steer E. by S., leaving a reef, which extends out about 4 miles from that tree, on zour port hand. This reef, although it is said to have 2 fathoms on it at low water, breaks at half tide. Close in to the beach, at the tree, there is a passage of $2 \downarrow$ fathoms, which is fit for sinall eraft only. Continue your course E. by S., when you will be apparently 4 miles from the land on your port hand, and will come to a shoal called the Mud Bar, on which there is a depth of only 18 feet at ordinary high water, but is only soft mud, and about 2 cables' lengths in breardth. You may then see a elump of palm trees (ten or twelve in number), bearing E.N.E. ; and when these paim trees bear N.E. by E., you will he over the bar, and Fill have from 5 to 5,7 , 8 , and 9 fathoms up to Cacheo Fort, by keeping in the middle of the river; and, when abreast of the Fort, which belongs to the Portaguese, anchor in the middle of the river in 9 fathoms.
BISSAGOS and BIJOOGA ISLANDS.-We have now arrived at the Arehipelago of Bissagos and the Bijooga Islands.
This arehipelago is an extensive assemblage of islands and shoals between the
parallels of of the int of the inh present ag
The prin sides many
The arol Channel channels w Captain W navigation adère, was long. $16^{\circ} 1$ to the east
Jeba Cb of this cha first of the low. But Cape Roxo nid very us like three i common to and mixed seen, in cle [E.S.E.], tinguish the
The islan generally o with lava, all well wo pearanee, in Portuguese to the clear: fertile as th negroes, kn
On the R of Poriugal consist chie and buildin, quantitics,
The extre From this \mathbf{e} 23 leagucs, from 12 to and isluuls, than unkno
On the $2 i$ N.W. end o Captain S. C over the ree was, after to earried 3 fat but the nati to come on 1
of the Casarided by the hannel is on ff the point. by Captain tlement, the agues below 1, from the homs. The the land of as possible,
obtuse point C Cacheo, or Is called the g E.S.E. or h brambles. Ber of tufts, the name of tant from it
s are regular, ce of 2 or 3 seaward are the Bissagos
chief Portrmerly, very nanza. The
rard of Cape Cape Roxoa 16 fathoms, s $2 \frac{1}{2}$ fathoms struight for caring East, m that tree, on it at low bassage of $2 \dagger$ S., when you he to a shoal dinary high ou may then d when these pm 5 to 5 , 7 , river; and he middle of

Archipelago

between the
parallels of $10^{\circ} 42^{\prime}$ and $11^{\circ} 40^{\prime} \mathrm{N}$., and between the meridians of $15^{\circ} 30^{\prime}$ and $17^{\circ} \mathrm{W}$. of the interior navigation among the isles little is known, and the hostile disposition of the inhabitants renders it probable that no complete survey of it, at least in the present age, can be made.
The principal isles that constitute the archipelago are said to be 16 in number, besides many islets, all surrounded by shoals, as shown on the chart.*
The archipelago is bounded on the North by the Jeba Channel, or Great Channel of Bissao; and on the East by the Chiannel of Rio Grande. These channels were parti lly surveyed by the officers under Captain Koussin, in 1818, and Captain W. F. Owe.i, in 1826; and to their surveys we owe our knowledge of the navigation presently to be explained. The southern breaker, called that of the Bayadere, was discovered in 1818, and is represented by M. Roussin in lat. $10^{\circ} 42^{\prime} 56^{\prime \prime}$, long. $16^{\circ} 17^{\prime}$, and the mouth of the Eastern or Rio Grande Channel is 7 leagues more to the castward.
Jeba Channel, or Channel of Bissao.-The main land, forming the North side of this channel, is intersected by sevenal rivers, which divide it into islands. The first of these is Cacheo, then follow Jatt, Bassi, and Bissao, of all which the land is low. But there is, near the S.W. end of Jatt, at 13 leagues S.S.E. [S.E. $\frac{1}{4}$ S.] from Cape Roxo (lat. $11^{\circ} 50^{\prime}$) a small but conspicuous isle, named Cayo, which is bold-to, and very useful us a sailing-mark. This isle, when on an easterly bearing, appears like three isles, but, on nearing, will be found to be connected with a flat, which is common to all, though intersected, at high water, by shallow lakes. Its soil is sandy, and mixed with flinty rock. The beautiful trees with which it is covered may be seen, in clear weather, at 4 or 5 leagues off. At 6 leagues more to the eastward [E.S.E.], off the S.E. end of Jatt, are several islets, called the Ancoras, which distinguish the western side of a river, bearing the same name.
The islands, generally, which border the Jeba channel, are not high. The beach is generally of white sand, interspersed with black and red rocks, which, being covered with lava, are, doubtless, with the whole archipelago, of a volcanic origin. They are all well wooded to the sea-side; and the height of the trees, with their vigorous appearance, indicate that the soil must be fertile. The island Bissao, on which the P'ortuguese are established, is not so thickly wooded as the others; but this is owing to the clearance they were obliged to make for their safety, as the isle is equally fertile as the rest. The large isles of the archipelago are inhabited by a race of negmes, known in the country by the name of Papels.
On the Rio Grande, the Portugueso have several establishments. The settlements of Portugal, on the coast, do not extend beyond Cape Verga. The objects of trade consist chiefly in elephants' teeth, wax, hard soap, rough hides of every kind, dyeing and building wood, indigo, cotton, drugs, resin, and resinous gums, gold in small quantitics, orchilla. \&e.
The extremity, or N.W. part of the Bissagos Shoals, is composed of hard sand. From this extremity, the bank and isles extend to the southward and south-eastward, 23 leagues, to ward tho Eastern Channel of the Rio Grande; and the flat, which is from 12 to 6 leagues in breadth, is interspersed with banks above and under water, and islunds, either dry, or drowned and marshy, the detail of which is little better than unknown.
On the 25th of Deeember, 1789, the sloop Endeavour, of Liverpool, struck on the N.W. end of the shoal, to the westward of the island named Carasche, in lat. $11^{\circ} 38^{\prime}$. Captuin S. Gamble, who was a passenger in the sloop, says, in his journal, that she got over the reef, but, not being able to find a passage through the shoals and islands, was, after twenty ciays' search, obliged to return the same way she went in, and earried 3 fathoms os' water over the bank. All the islands they saw were inhabited, but the natives did not appear to have any canoes. and the few which they persuaded to cone on board, in hopes of finding a pilot among them, became seasick. When the

[^107]vessel strucl, Carasche bore E.S.E. abont 4 leagues; and when she was near the northernmost point of that island, the isle or kay, called Isle Cayo, on the North side of the Frith, bore N.N.E.

The North edge of the Shoals of Ri: Grande, adds Captain Gamble, is in lat. $11^{\circ} 40^{\prime}$; and we led round them in $11^{\circ} 43$; carrying from 11 to 15 fathoms. The tide of ebb runs very'strongly over the flats to the S.W.; and, within the heary breakers, the ebb runs W. by S., and the flood E. by N. The tide, at full and change, rises 12 feet.
The PASSAGES to and from Bissao. - Cape Roxo has already been described. Should you fall in with this point in the evening, come to an anchor, bringing it to bear North, as then you will be well laid, in order to proceed further.

The outer part of the Breakers of Falulo bears S. by E. [S.S.E. $\frac{1}{2}$ E.] $17 \frac{1}{2}$ miles from Cape Roxo, and lies to the sout':-westward of the River Cacheo. The breukers are divided into two groups, and extend in a true E.S.E. and W.N.W. direction 3 miles. They are very steep-to, and close to them are from 6 to 3 fathoms. A m rehant-vessel may advance within sight of them, and thence proceed toward the Isle Cayo; but the best way of proceeding to the Jeba or Bissao Channel is as follows:-

From a point at 2 leagues to the westward of Cape Roxo, proceed S.W. by W. $\frac{1}{2}$ W. [S.W.] 12 miles; then haul up on the port tack, as at this distance the depth increases. The next course will be S. $\frac{1}{\text { a }} \mathbf{W}$. [S. by E.] for 25 miles, which will bring you to the parallel of $11^{\circ} 47^{\prime}$, where a depth of nearly 50 feet, with a muddy bottom, will be found.*

You now enter the Channel of the Jeba, and will find that a run of 12 leagues, E.S.E. $\frac{1}{8}$ E. $[$ East $]$ will lead to the South point of the Islet Cayo, the trees of which, as we have shown, may be seen at a considerable distance. All the space to the northward of this traek is replete with banks, which extend to the main shore; but those of Falulo are the only ones that break ineessantly.

Proceering thus, the depths will be found always regular, from 7 to 8 fathoms, and the bottom constantly of mud. It must be observed, that when entering the Great $C_{\text {annel, }}$ the northern banks should be approached in preference to the routhern. As the former descend by a gentle deelivity, they always warn a vessel when she is out of the channel, by each cast of the lead giving a gradual decrease oi depth. The southern banks, on the contrary, are extremely steep; close to a depth of 40 feet thero will be found one of $\mathbf{2 5}$, on a bottom very unfit for anehoring.

In order to be assured that you are keeping the channel, keep constantly sounding, and observe, that in all the channels which separate the banks to tho N.W. of the Bijoogas, the bottom is almost exelusively soft mud without any mixture. At cach cast, therefore, when the lead sinks into the ground, you may be certain that you are following the proper channel, and the middle of it may be found, by the lead sinking deeper, and being less easily extricated. If the bottom becomes hard, it is a certain proof that you are near some bank, and if the vessel has much way on her, she must alter course directly for that side on which the bottom is softer.

A vessel seeking or running for the anchorage off the Islet Cayo need not mind passing close to it. This part is perfectly safe to the beach, at half a mile from which there is a depth of 8 fathoms, on a soft muddy bottom.

The Great Channel, on the meridian of the Islet Cayo, is about 4 leagues in breadth; but this space is divided into three channels, by means of two banks, on which there is very little water. Of these banks the northernmost is the Bank of Cayo, having a depth of only 10 feet on it, and lying 4 miles to the southward of the

[^108]islet of th to West is bank, in
At the which br it extends between is the No Bank of but the d

On adv eastwaard S.E. $\frac{1}{4}$ S. from the northern which ext between t passed sud by the Is lying to t point of t the southe at low wa
To the above this called $A r$ latter lies mark for E. $\frac{1}{4}$ N. [1 of Bissao, water. 'I which is \mathbf{n} avoided b than 26 great exte course.

At $3 \frac{1}{2} \mathrm{n}$ Bissao, w with safet of this p King's Is with on Martin, t it_{i} is a sm deep wat

When steer dire part is ex From her 8 fathom: Bissao sh varies fro sounding In Ma encounte having h of 3 mile
was near the the North side
ble, is in lat. ms. The tide in the heary e, at full and
ady been deo an anchor, seed further.
E.] $17 \frac{1}{8}$ miles The breukers T. direction 3 fathoms. A d toward the Yhannel is as
S.W. by W. $\frac{1}{2}$ ce the depth ich will bring uddy bottom,
f 12 leagues, eees of which, space to the n shore ; but
fathoms, and ng the Great outhern. As en she is out depth. The 40 fect thers

lly sounding,

 N.W. of the re. At cach that you are lead sinking is a certain er, she mustd not mind from which
leagues in o banks, on he Bunk of vard of the
S.W. from oozo; then don Cacheo
islet of that name. It is rather narrow from North to South, but its length from East to West is about 5 miles. The best of the three channels is to the northward of this bank, in which there are from 7 to 9 fathoms.
At the distance of 2 miles southw . a from the Cayo Bank is the Bank of Carasche, which breaks continually, and a part of which is dry at low water. Like the first, it extends true East ar: West, and its length is also about 5 miles. The least depth between the two is 9 iefoms. At 4 miles to the scuthward of the Bank of Carasche is the North point of the island of the same name, which forms part of the South Banik of the Great Channel. Theré is a channel between the bank and the island, but the depth is irregular, and the bottom is bad.
On advancing for the Portuguese establishment at Bissao, and having arrived to the eastwaard of the two banks before mentioned, you may safely proceed 5 leagues S.E. $\frac{1}{4}$ S. $\left[\mathcal{S} .60^{\circ} \mathrm{E}.\right]$, and will thus coast the Island of Jatt to its S.E. point, which; from the trees upon it, appears to be the highest part of the whole coast on the northern side of the channel. The course thence is E.S.E. [E. $\left.5^{\circ} \mathrm{S}.\right] 6$ leaguss, in which extent the Ancoras, situated to the S.E. end of the Island of Jatt, the channel between that island and Isle Bassi, and the southern part of the last island, will be passed successively to the northward: on the South you will cross a large bay formed by the Islands Carasche and Corbelle, will pass the Parroquet Island [Papakawa], lying to the eastward of the latter, and finally arrive on the meridian of the western point of the Island of Bissao, at about 3 miles from it. From the Parroquet Isles, the southern side of this channel is formed by a bank, several parts of which are dry at low water.
To the southward of the town of Bissao is an islet, called Bonn; and at 2 miles above this is another, called King's Isle. On the South side of the river is another called Arcas, which is 7 miles from Bonn, and nearly on the same meridian. The latter lies on the eastern side of the channel to Rio Grande, and is the distinguishing mark for that channel. From the S.W. end of the Isle Bissao the course to Bonn is E. $\frac{1}{\frac{1}{2}} \mathrm{~N} .\left[\boldsymbol{E} \cdot 20^{\circ} \mathrm{N}.\right]$ This course runs parallel to, and within 2 miles of, the Island of Bissao, and passes over several patches, on which there are only 26 feet at low water. These patches are to the northward of the eastern channel, the mouth of which is near the Island of Arcas, which is seen at the same time. They may be avoided by altering the course occasionally; but as the depth on them is not less than 26 feet, and does not experience any considerable rise, as they are of no great extent, a vessel may pass over them F thout any fear, and may shape a direct course.
At $3 \frac{1}{\frac{1}{2}}$ miles W. ${ }_{\frac{1}{2}}$ S. [W.S. W.] of Bonn, is che Point and Grove of St. Martin of Bissoo, where the coast forms a slight elbow. This point is not to be approached with safety, nearer than $1 \frac{1}{2}$ miles by a large vessel. At 3 miles S.S.W. [S. 5° W.] of this point, and in a continuation of the line from Bonn to the highest point of King's Island, lies one of the knolls above spoken of. It is the easternmost to be met with on the course above stated. To the eastward of the meridian of Point St. Martin, the depth increases toward Isle Bonn. This knoll, with 26 feet of water on it is a small bank of not more than 100 fathoms extent in every direction, having deep water to the northward and southward of it.
When a vessel is within 3 miles S.S.W. $\frac{1}{2}$ W. [S. by W.] from Bonn, she should steer direct for it, so as to pass within 200 fathoms to the eastward o. the island. This part is extremely steep, having, at the above distance from it, a depth of 8 fathoms. From hence she should run between King's Island and the Fort, and anchor in 6 to 8 fathoms, on a soft muddy bottom. Havin ${ }_{b}$ loubled the Isle Bonn, the coast of Bissao should be approached nearer than King's Island, as the depth is greater, and varies from 6 to 7 fathoms. It would be superfluous to mention the necessity of sounding constantly in this internal navigation.
In March (1856) Captain Canal, of the French ship Agly, proceeding to Bissao encountered a most powerful southerly nurrent. He had allowed for $1 \frac{1}{\frac{3}{2}}$ knots, but having become entangled to the. Somth Criash he found that he had set at the rate of 3 miles per hour.-(See page 28:.

He had grounded on a shoal, and was:
compelled to cast overboard 40 tons of ballast to lighten the ship, and afte: 5 days he contrived to pass safely through the Archipelago to the North and East, and arrived at Bissao. He sent a boat out to sound, and by that and the colour of the water he managed to aryive without casualty. Bissao, he says, offers but few resources for fresh provisicus.

Bissao.-The road of Bissao lies in the principel stream of the River Jeba, tetween the eastern side of the Island of Bissao and the small island opposite, called King's Island. This roadstead is perfectly safe in all weathers. It is so completely sheltered, that the sea is always smooth; and the bottom is of such a nature that with good ground-tnekle a vessel may ride there in any season. It is advisable to moor N.E. and S.W., as the tides set in this direction : and in the rainy scason, as the squalls come from the S.E., the anchors, being thus placed, will bear an equal strain.

The Portuguese Fort stands at 100 fathoms from the beach, and is a square redoubt, flanked at the four angles by a bastion. The wall of the ditch, which on each face is about 100 paces in length, may be about 30 feet in height. The magnetic variation observed in April, 1818, at the anchorage, was $17^{\circ} 30^{\prime} \mathrm{W}$. (It is, in 1861, about $19^{\circ} 20^{\prime}$ W.)

The watering place at Bissao is on the bach, at about 300 paces to the southward of the Fort. It consists of severai pits, dug about 4 feet deep in the sand, and msy afford sufficient water to fill thirty casks in 24 hours. This water before being filtered, coming from sand and rock, is not agreeable to the taste, although it has the reputation of being wholesome, and of keeping well; nevertheless it should not be drank without being previously acidulated, or purified by red-hot shot. It may be cither brought on board in boats, or rafted off at high water.

Independent of wood and water, excellent bullocks, of about one hundred weight, at the rate of from twenty to twenty-five dollars each, have been had at Bissao; also goats, pigs, and poultry. There is also rice, maize, and yams, and some fruit, such as bananes. lemons, and oranges. These articles are exchanged for gunpowder, brandy, ion, elothing, and dollars, by applying to the governor.

Gove, nse OConnor says:-" Bissao, declining when I visited it last in April, 1855, has tima tirn greatly deteriorated in trade and appearance. The old buildings, totaliy neglected, are sinking into ruins, the troops without barracks living in miserable mud hats, the port occupied by only a few colonial and coasting vessels, the market scantily supplied with the commonest necessaries of life, are indubitable evidences that the power and prestige of lortugal are rapidly on the wane in this part of the world."

The waters which surround the Bissagos are far from being supplied with fish, and it is erroneously affirmed, in some works on Africa, that amongst these islands cargoes of salt fish may be procured. Mud prevails too much in the bottom; and the few fish which are found are not even considered as wholesome. No dependence can be placed on this resource, between the Gambia and the Isles de Los.

Dr. Mudden says, "Bissao is the great stronghold of the Portuguese slave trade. The island of this group, on which the Portuguese Fort and factory are established, is situate at the mouth of the River Jeba, about 100 miles South of the Gambia."

Winds in the Great Channcl of the Bissagos.-The winds here follow nearly the direction of the land, and vary their course according to that of the channel. In the Great Channel they vary from West to North; at the anchorage of Bissao they are generally from S.W., except in the morning, when they are from the northward. In the rainy season, which commences here in the beginning of June, and continues about five months, they blow from the S.E. with the tornadoes, as on the whole coast, and then, passing round by South, return to the northward. Whatever may be the sirection of the wind, a vessel, with the assistance of the tides, may always find her way into or out of the Great Chanuel, and the working is extremely easy with the assistance of the new Chart, which should accompany these Directions. The remark, respecting the northern bank being approached in preference to the southern, should
be atten the sout not app it with of this which 1 with th intends
Anch Great the exo depth i parts of alteratic
TID Roxo ar longer tides, w fectly 80 bours, direction in its co ward. water m is abuut entranoe parallel
From the dired the leng exceeds the chan
On tl Bissao t never m hour, an chorage
CHA:
Channe Island A of the I Hog Isl Bulama then int mences $11^{\circ} 3^{\prime} \mathrm{N}$
The in exten are situe latter 1 the Isla island.
To en this cha part of water.
forms
afte: 5 days he ast, and arrived of the water he w resources for

- River Jeba, opposite, called s so completely h a nature that is advisable to rainy scason, 1 bear an equal
d is a square ne ditch, which 1 height. 'The ${ }^{\circ} 30^{\prime} \mathrm{W}$. (It is,
e southward of sand, and may being filtered, as the reputaI not be drauk may be cither
mdred weight, t Bissao ; allso me fruit, such or gunpowder,
in April, 1855, old buildings, ving in misegg vessels, the e indubitable waue in this
with fish, and islands carom; and the peridence can
slave trade. , established, Gambia."
v nearly the nel. In the ssao they are thward. In nd continues whole coust, may be the ays find her sy with the The remark, iern, should
be attended to here ; the islands to the northward being perfectly safe, whilst those to the southward are surrounded by very steep and hard banks. Large vessels should not approach nearer to the Isle Corbelle than 3 miles, nor to the line which connects it with Isle Carasche. All the space which lies between the island, to the southward of this line, is filled with banks, having little water on them, and the greater part of which lie in the channel. If it should fall calm, and it be wished to let a vessel drift with the tide, she must not be abandoned to it until she has opened the channel she intends entering.
Anchorage in the Jeba or Great Channcl.-A vessel may anchor anywhere in the Great Channel, the bottom being of soft mud and excellent holding-ground, with the exception of one place at $2 \frac{1}{g}$ milos to ${ }^{+1}$ s south 1 d of the Isle Jatt. Here the depth is from 20 to 22 fathoms, e coarse gravel. In all other parts of the chamel the depth vuric 11 to fathoms, without any sudden alteration.
TIDES.-The usual prevailing cu Roxo are found to be completely chang longer one only direction ; and, in all ch
he ast to the northward of Cape longer one only direction; and, in all of the Bissagos, are suspended by tides, which are more or less regular. Tho , Je Jeba or Great Channel are perfectly so. Westward of the Isle Cayo the flood sets S.E. and the ebb N.W., cach six bours, or nearly so, with the exception that the current gradually assumes these directions, requiring nearly an hour, from the change, before it is completely settled in its course. The flood generally sets to the northward, and the ebb to the southward. The greatest difference which has been observed between the high and low water marlz, $i=8$ feet; and at the equinoctial full moon the rate of the flood and ebb is about 1 2-5th miles an hour; at other times it never exceeds 1 mile. At the eatrance of the Great Channel, which is 6 leagues to the westward, and on the parallel of the Island of Cayo, it is high water, at full and change, at $9{ }^{\mathrm{h}} 15^{\prime}$.

From the meridian of Cayo, and as far as that of the Isle Bonn, the stream follows the direction of the channel; and here the tides are regular. It is not known that the length of the ebb exceeds that of the flood. The greatest rate of cither never exceeds $2 \frac{1}{2}$ miles per hour, in spring tides, and the rise is found to be 8 feet, as outside the channel.

On the meridian of Cayo it is high water, at full and change, at 11^{h}. Before Bissao the rates of the highest tides never excceds $2 \cdot 6$ miles per hour, and the rise is never more than 14 feet. In common tides the rate is never.more than 2 miles per hour, and the mean rise is $7 \frac{1}{0}$ feet. It is high water, at full and change, at the anchorage of Bissao, at $12^{\mathrm{h}} 30^{\circ}$.

CHANNEL of the BOLOLA, or RIO GRANDE.-The eastern channel, or Channel of the Rio Grande, branches into the Jeba Ghannel to the westward of the Island Arcas. The western bank is formed by a flat, which extends to the eastwari of the Parroquet Islands and Isle Galinha, the banks which conncet these with the Hog Islands and by Kanyabac Island. The eastern bank comprises the Isle Areas; Bulama, or Boolam Island, and the banks which connect these two islands. It' is then intersected by the mouth of the Bolola or Rio Grande, after which it again commences at Bossessamé, and forms a chain of reefs as far as the Island Yomber, in $11^{\circ} 3^{\prime} \mathrm{N}$., and $15^{\circ} 40^{\prime} \mathrm{W}$.
The channel is then divided into two branches by a bank, which is about 4 leagues in extent from North to South, and on which, amongst several islets and breakers, are situated Isle Cavalho and Honey Island. Seven miles to the southward of the latter lies Pullam Island. The western or main branch has, on-its western side, the Island of Orango, and a long chain of reefs, which extend S.S.W. from that island.

To enter from the northward.-The first difficulty whioh presents itself, on entering this channel from the northward, is when passing the Isle Arcas. From the S.W. part of the island a bar stretches out, on which there is a depth of only 19 feet at low water. It is terminated, at the distance of 4 miles, by a rocky bank, which also forms a part of the bar. Aithough the depth may be a little more at the distance of

image evaluation TEST TARGET (MT-3)

Photographic Sciences Corporation

a mile from this bank, a large vessel should not venture near it without previously considering well the time of tide. If she be obliged to anchor, the best ground will be found near the meridian of Arcas, on the North.
The mark fo. running through this Channel, from a position bearing W. $\frac{1}{} \mathrm{~B}$, [W.S.W.] from the Isle of Arcas, is to steer so as to keep the western point of the Island Bulama constantly bearing South [$N .17^{\prime}$ E.], until within two miles of the shore of this island. From hence, if it be intended to go to the southward, a vessel should ateer for the middle of the strait formed by the island and Galinha; but should a vessel be bound to the northward, she should steer N. by E. $\frac{1}{\frac{1}{2}}$ E. [North] from the above bearing of Arcas, until she has passed the parallel in which it lies.

BULAMA, or BooLAM.-The western end of this iale may be approached within a mile. This island, which is well wooded and of moderate height, has several well sheltered roadsteads, which afford safe anchorage. One of these, on the S.W. side of the island, has a depth in it of from 22 to 24 fathoms, with a bottom of soft mud. The configuration of the land is such, that the strength of the current, being carried more to the sonthward, is almost imperceptible at this anchorage; and although the tide rises from 12 to 15 feet, the sea is generally amooth and the landing easy. At this roadstead fresh water may be procured from two places.
Bulama is generally considered as very fertile. Its situation at the entrance of the Rio Grande, which may be navigated to a considerable distance, the facility of its approaches from the westward and southward, and the safety of its anchorages, render it one of the most important islands hereabout. It is situated in the same estuary at Bissao, and about 30 miles to the southward of it. It is claimed both by British and Portuguese, and by the former, in right of a treaty for its purchase entered into with the natives by Captain Beaver. The Portuguese claimed a prior possession to that of Captain Beaver's* purchaso, which, they say, was made from a chief who had no right to sell the island.

The island, however, on account of its insalubrity, was abandoned for many years by both; till one of the slnve dealers of the Havannah, a Senor Gaetano Nozzalini, obtained a Royal Portuguese Charter for settling on this island; and, in 1820, he established himself there. During ten years the island was in the hands of Nozzslini, it was frequented by slave dealers. But, in December, 1838, Lieutenant Kellett, of H.M.B. Brisk, visited the island, attacked and destroyed the factory, and carried away 119 slaves, and subsequently carried away another batch of slaves, which the owner asserted were his domestics, notwithstanding the fetters with which they had been manacled were found amidst the ruins of the barracoon.
In 1840, Lieutenant Hiil, of the Saracen, had an interview with the governor of Bissao, on the subject of the occupation of Bulama by the Portuguese, and threatening to expel by toroe any Portuguese subjects he might find on the island. The governor of Bissao repaired to the Cape Verde Islands to complain to the Portuguese Governor-general of the threatened dispossession of the Portuguese. In 1842, it was formally occupied by Lieut. Lapidge, in H.M.S. Pantaloon; in 1843, the Portuguese governor landed some soldiers and hauled down our flag. But since the suppression of the slave trade it has been of little use to any one. The old barracoons, \& k., of the slaves still exist, and in 1855 a Portuguese Jew held them for Kittam's widow, he being one of the last of the slave dealers.

From the western paint of Bulama the course is.S. by E. ${ }^{\frac{1}{2}}$ E. [S. 36° E.], the distance $3 \frac{1}{4}$ leagues. This courses erosses the mouth of the Rio Grande, which separates Bulama from Bosecsaamé or Bessessema, continues along the banks to tho S.E. of Galinha, at the distance of a mile, the greater part of which are dry at half-tide, and extenda to about 1% miles from the banks on the western part of Bossessamé. The

[^109]sound bottod

Port 2

 depth. Island other. islet ofKan is of a present from th very fe The and all Barel ing to
From $\left.W_{\cdot}\right] 1$ extens course
Fror the sov to a di distanc island, the mo S.W. and ou The joining [W. $b_{]}$
nat previously ot ground will
ring. W. $\frac{1}{2}$. 0 point of the \rightarrow miles of the ward, a vessel ta; but should rth] from the
oached within 8 several well S.W. side of of soft mud. being carried although the ng easy. At
ntrance of the facility of its s anchorages, d in the same imed both by r its purchase aimed a prior made from a
r many years no Nozzalini, d , in 1820 , be ds of Nozzaenant Kellett, , and carried es, which the hich they had nd threatenisland. The - Portuguese a 1842, it was e Portuguese suppression of de., of the h's widow, he
E.], the disnich scparates to tho S.E. of half-tide, and essamé. The
pect has leea ad its colonies
soundings on this track are very irregular, and vary from 35 to 8 fathoms, with a bottom, generally, of sand and gravel.
"On the right-hand bank, called Bessessema, are two settlements : one cultivated by a Frenchman, M. Henrique Orteau; the other a small location belonging to a vagrant English subject named Lawrence.
"The bank and grounds at Bessassema are cleared to a considerable distance; of a rich allovial soil, they produce corn, kus, rice, ground-nuts, sugar-cane, yams, potatoes, vegetables, tropical and European fruits, flowers in abundance.
"M. Henrique Ortean employs about 300 natives; has a well-built open town; the huts, very lofty, with thick mnd walls, and broad piazzas, are admirably calcalated for the climate. He represented the place as healthy, and that even in the rainy season fovers seldom or never previled."-Governor O'Connor, 1857.

When at 2 miles to the westivard of Bossessame or Bessabsema, a vessel may run for Kanyabac Island, steering South 3 leagues. The depth in this cuurse varies from 7 to 20 fathoms, red sand and shells. To the westward of this track are the four little islands called the Hog Isles, and in the country, Rouban, Banak, Chieeya, and Corett. The latter, which is the northernmost, is the most remarkable, being covered with large trees.
KANABAC.-All the eastern side of Kanabac or Kanyabac is perfectly safe, and may be approached to within a mile, in from 6 to 10 fathoms. The S.E. point, which the inhabitants call Barel, is about 60 feet high, very bold, and formed in peaks. On rounding this point to the westward there is a small cove, called by the inhabitants Port Manel. It has a very good bottom for anchoring, but at low water a very small depth. 'This part of the Eastern Channel is formed by the S.E. coast of Kanyabao Island on one side, and a continued chain of banks, on which the sea breaks, on the other. The latter connect Bossessamé and Yomber Istands, and have on them an islet of white sand.
Kanayabac Island, one of the most considerable of those which form this channel, is of a moderate elevation, and rather higher on the southern than northern end. It presents alternately a sandy, volcanic, and ferruginous soil. If we may judge from the numerous population, and the quantity of cattle on it, this island must be very fertile.
The large trees, called in the country Pullam Trees, with palm trees, and vegetables and all kinds, are very plentiful on it.* The Port of Manel, lying between Point Barel and an islet called Pomp, seems to be the chief resort of all the canoes belonging to the inhabitants of the southern part of the island.
From Point Barel, near the middle of Kanyabac, the course is S.W. $\frac{s}{4}$ S. [S. 30° W.] 13 miles. This will take a vessel within 2 miles of the western side of a very exteusive bank which lies to the northward of the Isle Cavalho. The depth on this course is from 10 to 21 fathoms, the bottom of sand and shells.
From 2 miles West of the banks to the northward of Isle Cavalho the direction of the southern parts of the Channel is S.W. $\frac{1}{7} \mathrm{~S}$. $\left[\mathrm{S} .30^{\circ} \mathrm{W}.\right] \quad$ This bearing, extended to a distance of 13 miles, will pass the eastern shore of Orango Island, at a proper distance, and also breakers which stretch more than 2 leagues off to the S.W. of this island, and to the parallel of Pullam Island, at 3 leagues from it. Orango Island is the most considerable of the Bissagos. From hence, any course between S.S.I. aud S.W. by W. [S.E. IS. and S.W. $\frac{1}{\perp}$.], will lead a vesel perfectly clear of all danger, and out to seu.
The eastern part of Orango is not very high, and is of the same nature as the adjoining islands. The most conspicuous point, when bearing N.W. by W. $\frac{1}{\frac{1}{2} \text { W. }}$ [W. by N.] is a well-defined cape, much higher than the adjaecent land, and remark-

[^110]able from several spots of yellow sand, which form a striking contrast to the brown appearance of the coast. This cape, forming the S.E. point of the island, is called Cape Cameleon, or Yellow Cape. At 4t miles to the East of it is a spot nearly dry at low water; but the depths between are from 5 to 11 fathoms.

Pullam Island, which derives its name from that given by the natives to the large trees (Bombax, or silk cotton), with which it is covered, has not above a mile of extent in any one direction, and is very little above the level of the sea. Its shores are rocky, and rendered very difficnlt for landing, by the constant surf which breaks on them. It is impossible for large vessels to approach this island ; from S.W. to E.S.E it is bounded by flats, which extend to a distance of 4 miles from it, several parts of which are dry, or breaking.

On the 21st of April, 1821, H.M. ship Leven arrived off Bijooga Islands, and anchored between Yomber and Orango. Upon the latter many natives and herds of cattle were seen. On the following day the Leven grounded upon the shoal, at halfa mile from the East shore of the Isle Bavack, between Canyabao and Orango, where ahe lay in a perilous situation until the next tide, when she happily got off. On anchoring, many canoes came off with natives, bringing varions artioles to exchange for tobecoo: but they had been reported as ferocions, dishonest, and treacherous; and they were found to be so.

The banks of the river have the appearance of being thickly inhabited, but the huts with which they are apparently studded are, upon a nearer inspection, discovered to be ant-hills, whioh are built in exactly the same form, and of the same height.

On the isiand Galinhas (Hen's Isle) the tracks of elephants and hippopotami were soen; and the largest sized boa-constrictor is also frequently seen in this island. Tho natives have great respect for these reptiles, and imagine that whoever destroys them will die himself. This island resembles Bulama in every respect, having fine savannahs and chundance of water; both are surrounded by an extensive flat, which renders landing exceedingly difficult at any other period than high tide.

The idea we had been led to form of these islands was extremely erroneous; as instead of being "low and marshy, with scarcely a channel for boats between their muddy ehores," we found them a clustor of the most beautiful, fertile, and inviting islands, with moderately inigh and bold shores, separated by deep water, and containing many fine harbours; most of them being inhabited, and each village having its indopendent ruler. According ' customs of these people, every vessel stranded upon their chores is forfeited tr chicfs or people, in consequence of which they considered that they had a just waim to the Leven, when she lay grounded near Bawack.

It in a practice of those islands to rear their ponltry and stock on the small islets, some abounding only in fowls. The natives of Kanyabac breed cattle on Yomber, and horses on Honey Island, which the people of Bisseo called Yalka-valayo, being a corraption from the Portuguese liha-Cavalho. Galina appears also, by its name, to have been used for raising poultry; and many of the islets do not contain twenty acren of ground, yet are well wooded and fertile, with some stock on most of them.

WInds, \&e., in the Eastern Channel.-The widds in the Eastern Channel are generally light during the fine season, particularly in the night or morning. They cot in gradually in the afternoon, and blow almost always from S.S.W. round br West to N.N.W., but they remain a very short time at any intermediate point, and soon follow the direotion of the land, which, as well as we could determine, trends nearly N. by E. and S. by W. Easterly winds aro limited entirely to the raing stacon.
The tides are as regular in the Eastern as in the Jeba or Great Channel. The length of the ebb is equal to that of the flood; the former sets to the northward, tho latter to the southward, but the different points of the channel, and the irregularities of the bottom, affect those directions. The mean rise of the tide is from 12 to 15 feet. The atrength of the stream varics according to the breadth and depth of the channel, being greater where it is confined than in the wider parts; it is consequently moro considerable in the Strait of Bulama, and the Honey Island Channel, than in any
other P much s and chs 33' W.

RIO

Nunvz, bat imp fathom entranc Betw fectly k tance fir [S.E. $\frac{1}{4}$ islet in to the Captain difficult the egg but the angles t
Near long. 15 and by the Ale to the point of this spo 10 leag
The ${ }^{2}$ are so m
In the Nunez; siderabl thirty on many pe

Sand $_{3}$
$19^{\prime \prime} \mathrm{W}$.
depositi
water, a
extensiv
Vesse
the sout tuic.
regular
there is
hand, a
on the I
all chan
For a habited
less, if \mathbf{r}

[^111]to the brown and, is called nearly dry at

Is to the large mile of extent Its ahores are ieh breaks on I.W. to E.S.E veral parts of
lands, and an. and herds of hoal, at half a lango, where ; off. On anexchange for cherous; and
t, but the huts discovered to height.
popotami were sisland. The destroys them ng fine savanat, which ren-
erroneous; as between their e, and inviting r, and containage having its essel atranded fo which they rounded near
e small islets, e on Yomber, alayo, being a its name, to ontain twenty at of them.
Channel are rning. They W. round by ate point, and rmine, trends to the raing
hannel. The orthward, the irregularities 12 to 15 feet. the channel, quently mon than in any
other part. Nevertheless, it seldom exceeds $2 \frac{1}{2}$ miles per hour, but is frequently an much as 2. At 2 miles to the westward of Pullam Island it is high water, at full and change, at $10^{\prime} 15^{\prime}$. The magnotic variation, in May, 1818, was found to be 17° $33^{\prime} \mathrm{W}$. Now it is $18^{\circ} 40^{\prime} \mathrm{W}$.

RIO 2UUNEZ. -The Rrver Kakoondee or Kaxundy, commonly called the Rio Nunkz, or River of Nuna Tristao, is a very considerable river, broad at its entrance, bnt impeded by several shoals, among which the least water in the channel is 3 fathoma. It has been celebrated as a place of trade for ivory. The situation of the entrance, as showa in the Table, is $10^{\circ} 36^{\prime} \mathrm{N}$., and $14^{\circ} 42^{\prime} \mathrm{W}$. †
Between the months of the Rio Grande and the Rio Nunez ihe coast ie very imperfectly known, but it appears to be, in general, shoal and dangerous to a great dirtance from shore. On the edge of the bank, in lat. $10^{\circ} 37^{\prime}$, and at 25 miles S.E. I S. [S.E. 雱 E.] from Pullam Island, is a rocky bank, called the Alcatraz, with a rooky islet in its centre. It is surrounded with breakers, and the reefs extend from it both to the N.W. and S.W. At 6 miles to the westward is a depth of 20 fathoms: Captain Belcher has described the Islet Alcatraz, the landing to which was not at all difficult, but the whole summit of the rock was covered with boobice (pelicanus sulu), the eggs of which were procured. Alcatraz may be approached on the S.E. side but the reefs stretch from it 5 miles S.W., true, and above 3 miles in width, at right angles to this bearing. Lat. $10^{\circ} 38^{\prime}$, long. $15^{\circ} 20 \frac{1^{\prime}}{}{ }^{\prime}$.
Nearly in the route between the Alcatraz and the Rio Nunez, in lat. $10^{\circ} 30^{\prime}$, and long. 15° 11', is a much more dangerous reef, surveyed, in 1826, by Captain Owen, and by him named the Conflict Reef. Its western cdge is 14 miles to the S.E. fromthe Alcatraz, and its breadth each way is from 3 to 4 miles. Two other rocky oanke, to the southward of it, are comprehended within a distance of 8 milet; the Sonth point of the latter is in $12^{\circ} 20^{\circ}$, and has near it a depth of 11 to 16 fathoms. From this spot the mouth of the Rio Nunez bears about E.N.E. $\frac{1}{1}$ E. [N.E. by E.] 10 leagues.
The descendants of the Portuguese, who still exist on the banks of the Rio Nunez, are so mixed with the negroes, that they have been described as negroea themselves.
In the old charts of this coast no island is laid down at the mouth of the River Nunez; and we first learned, from the information of Captain Livingston, that a considerable island, where Woodvillo formerly gave a shoal, had arisen within the last thirty or forty years. It is called Sandy Island, is now covered with trées, and hai many palms upon it.
Sandy Itland, according to Captain Belcher, is in lat. $10^{\circ} 36^{\prime} 37^{\prime \prime}$ N., long., $14^{\circ} 42^{\prime}$ $19^{\prime \prime} \mathrm{W}$. Fifty years ago it was a mere sand-bank, even at low water; subsequent deposition, however, has not only formed it into an island, at least 6 feet above high water, and bearing large trees, with a fair surface soil, but has also added a very extensive rauge of shoal on its northern, western, and soath-western sides.

Vessels bound to the Nunez should make the land in $10^{\circ} 31^{\prime} \mathrm{N}$.; or if coming from the southward, should, at least, not advance into less than 7 fathoms till in that latitude. They will then approach the river, steering E. $\frac{1}{\$}$ S. $\left[N .70^{\circ} E.\right]$ through regular soundings; and it is neeessary to remember chiefly, that, with a flood tide, there is a dangerous rocky flat on the starboard beam going in, while, on the other hand, a vessel may play with the edge of the breakers on the point of Sandy Island on the point side. The constant warning also, "Keep in mud," which is familiar in all channels along this coast, should be here eapecially kept in mind.*

For a vessel to refit, no place can be bettor adopted than Sandy Island. It is uninhabited; and a vessel may be moored within 100 yards of low water-mark, or even less, if required, but should be prepared to haul off in case of a tornado. Small vessels

[^112]may be grounded, or hauled up, for repair or examination; a space sufficient for the encampment of a crew, even of a line-of-battle ship, is free from trees; and atores may be conveniently landed. Immense quantities of drift-wood lie piled on the S.W. side; and plenty of live timber grows on the island, of which the palm yields an excellent cabbage for the use of the sick or convalescent. * Fresh water, alone, in scarce and ill tasted; and a great annoyance arises from the clouds of fine sand which are incessantly in motion over the island. The temperature, when the Extna was there, did not exceed 105° in the tent; which was, however, oppressive, from the necessity of keeping it pretty well closed, to prevent the sand from imbedding tho instruments. A breeze generally prevailed throughout the day, except between nine and noon. The western side is by far the most cool and pleasant, but not so convenient for communicating with the ship.

The river is very serpentine in its form, and the trees on either side impede the wind in its true course. Still, however, a pleasant, and after noon, even a fresh, breeve generally favours vessels bound up, and affords favourablo slants in many of the reaches down. The general depth may be stated at $2 f$ to 3 fathoms at low water, with a rise and fall of about 12 feet; and, although the lead generally gives mud, the anchor frequently hooks a rook, and good and long buoy ropes are especially necessary, which should be got on board the instant the tide slacks, in order to be in readiness to trip the anehor instantly, if found to be foul. The change of the tide is very rapid, and much inconvenience will bo felt if completed before breaking ground.

The three principal settlements, Walkeria, Cassasez, and Rebucko, or Debucko, are -all near each other, cnd from 70 to 80 miles up. We had formed great expectations of the supplies which could be procured at these settlements, but were much disappointed. Bullocks and sheep could be procured with some difficulty; fowls were very scarce; and vegetables could not be got at all. These native towns are never prepared to meet a sudden increase of demand for food.

Below Walkeria not a single habitation was observed on the Nunez, though the cultivition of its banks might be profitably pursued. The want of fresh water prevents the natives settling here.

Above Cassasez, which is 2 miles above Walkeria, the river is much interrupted by rocks of close-grained basalt, several of them presenting a perfect columinar formation.

The range of the thermometer, while the AEtna's boats were in the River, March and April, was at six a.m. from 75° to 84°; at noon from 84° to 94°; and nine p.m. from 81° to 83°. The dews were slight; but at other seasons are said to be very heary, accompanied by a fog, lasting frequently till noon.

The following Observations on the Kakundy or Rio Nunez are from a copious and valuable communication by Cuptain Livingston, who visited the river in the year 1829.

To enter the Nunez, bring Sandy Island, above mentioned, to bear N.E., or perhaps a little (but very little) to the northward of that bearing, and steer in right for the island, which is bold-to on the South side. The shoals generally break, and extend about 5 or 6 miles to the S.W. by W., or thereabout, from Sandy Island.

Giving Fendy Island a small berth, steer about N.Es, for Big Island, which, in clear weather, may be seen after passing Sandy Island. Keep elose to Big Island, as a rocky spit extends two-thirds or more, over from the Tulabunch (Talabooncho?') or western shore. It is scaroely prudent for a stranger to run much abovo Big Island, but rather to send a boat up the river for a pilot, and one may generally be engaged at Walkeria, or a little higher up; or one may sometimes be had from a coasting vessel.

[^113]nufficient for the rees; and stores led on the S.W. palm yields an water, alone, is fine sand whioh the AEtna was ssive, from the imbedding the at between nine but not so con-
npede the wind a fresh, breeze n many of the 8 at low water, gives mud, the specially necesto be in readithe tide is very g ground.
or Debucko, are at expectations e much disapowls were very are never pre-
ez, though the of fresh water
h interrupted feet columnur

River, March and nine p.n. pe very heary,

2 are from d the river in
E., or perhaps right for the k, and extend
nd, which, in Big Island, (alabooncho?') h above Big generally be o had from a
oest anti-scor--E. \mathbf{B}.

On going ap the Nunez in a boat, be oautious not to mintake any of the creoke on the western side for the main river:
In case of necessity, fresh water may always be obtained by digging a fow feet doep at the root of any palm tree.
In going up the river Captain Livingston grounded about three-quarters of a mile or a mile te the northward of Sandy Island. The vessel lay for two tides on fine rand, without receiving any damage.
When at anehor, on coming down the river, in 7 fathoms, about a quarter of a mile off ahore, the centre of Sandy Island bore N. by W., and the extremity of the breakers on the long spit of wand, which extends 5 or 6 miles from the West end of the island, W. by S.
The situation of Talabunch (Talabooncho) village may be known by some remarkable large trees, which may, in certain situations, be seen from sea, before Sandy Island can be described. I have heard it remarked, that wherever you see a large clump of majestic pullam trees (the cotton tree of the West Indies) you are sure to find a negro village; and wherever you meet with a palm tree, you may be sure of finding fresh water, by digging a fow feet deep, however arid the soil may appear.
No person ought to land at Talabunch unless in company with cight or ten others; well armed, and on their guard; but on the opposite or eastern side, Talabunchana, the negroes, though of the same tribe, are remarkably civil and honest.
The Barrier of the River (as it has been translated to me from the Soozee language) is, I think, about half-way up the river between Big Island and Walkeria. Ridges of rocks, almost like walls, and which appeared to me, when in 4 boat at low water, like walls of lava, extend about two-thirds across the river inom the port or western shore; and at about a mile or a mile and a half above that, it is said that roeks, even worse, spit out from the starboard or eastern shore; but these were not seen in passing, when covered with the tide. There are other dangers in the river, but ncine of magnitude until after passing Walkeria and some houses about 2 miles above it, at Cassashe. These places are both on the eastern or starboard shore. Between them and the village Rebucko is a very dangerous spot; but vessels drawing 10 feet may proceed to the latter near high water.
Both banks of the Nunez are generally muddy; mangroves grow into the very water, and some of the finest tree or mangrove oysters adhere to their tranks and branches.
In the rainy season tornadocs are frequent and violent; but, with caution, vessele may have sufficient time to prepare for them. I observed none here to begin with small clouds or a small cloud, but all with heary thunder elouds.
Vessels going to the Nunez ought to be well supplied with provisions, and not to depend on what can be obtained there, as a great scarcity frequently prevails. There are many cat-fish in the river, and above Rebucko some other kinds of fish. There are pike, similar to those of Britain, but with seales much larger.

The time of high water, on full and change days, at Walkeria, is $10^{\mathrm{h}} 17^{\prime}$ a.m. Rise, from $16 \frac{1}{\frac{1}{2}}$ to 18 feet or more. Depth, at low water, 15 feet: bottom of fine mud. Latitude of the wharf at Walkeria, by two meridian altitudes of Jupiter, agreeing to one second, $10^{\circ} 54^{\prime} 22^{\prime \prime}$; long., by 52 sets of lunars East and $W^{\prime \prime}$ est, mean, $14^{\circ} 18^{\prime} 55^{\prime \prime}$ plus $3^{\prime \prime}$ for distance of place of observation equal $14^{\circ} 18^{\prime} 58^{\prime \prime}$. The tide at Walkeria runs strongly, and while I was there flowed five hours and ebbed seren; but during floods in the river (which sometimes rise considerably) it ebbs or runs down longer.

Walkeria was named from Waker, a slave factor, who realized a large fortune and died here. This place is composed thatched huts, mostly supported on stakes, though some have mud walls, and there are two of two stories each. The population may be from 600 to 600 ; all Mandingo Mohammedans, excepting the slaves. Buoy Mode, the chief, who speake a little English, said he had five wives, but he wanted to get
mome more! His arms bore many gris-gris or oharms (they called them gregories), and eves his horse's neek was loaded with no smail number of them.

BIVER COMPOONEE.-Captain (Sir Edw.) Belcher, in the prosecution of his survey, made out three mouths to the Rio Nunez, and 10 miles N.W. of the northernmost, much to westward of where land was expected, saw a cluster of islands, which gradually showed their close approximation to the main, and were ascertained to form the North and West boundaries of the entrance to a river or' inlet, larger at its mouth than the Nunez; and, at 12 miles within the distance to which he aurveyed it, deeper, swifter, and promising as large or larger branches. Where Captain Belcher stopped, it came from the East, and showed several extensive arms leading to the North and West. The entrance by which he ascended has two large channels, equally navigable, but its mouth is so studded with shoals, that until better known, few vesels will probably venture into it; the natives North of the Nunez having also the general reputation of being dangerous. The western entrance is equally fair and navigable to the sea. The northern alone is very shoal, and probably passable for canoes only: several of these were seen at a distance, and one country schooner; from which, and the numerous fires at night, it seems likely that the banks are well inhabited, and have some traffio.

Upon a renewal of the survey in 1832, it was found that small vessels only could navigate this river without great risk, there being a chain of reefs, whioh nearly bars the passage ; butp above this barrier, the channel is sufficiently deep for larger vessels, and has few dangers."

- The COAST from the RIO NUNEZ to the ISLES de LOS, \&c. - From the Rio Nunes to Sierra Leone, in an extent of about 55 leagues, the coast is in general low; in most parts swampy, and intersected with creeks, which, connecting the adjoining rivess, form an excellent navigation; but at unequal distances, from 6 to 20 miles, in a right line from the sea, the land rises gradually; and beyond that distance, in many places, towers into lofty mountains, which, atter a tornado, when the air is pure, may be seen 10 or 12 leagues off.

A small isle, called Young Gonsalez, ies about 5 miles to the eastward from the regular entrance of the Rio Nunez. It is the southernmost of three, having channels communicating with the Nunez; about 5 miles true East from it is the mouth of the River Cappatches. From Young Gonzalez a long and dangerous flat of rocky ledges, gravel and sand, extends S.W. (by compass) nearly 6 miles. At low water, a patch, three-quarters of a mile in length, has over it only 6 feet of water. Its composition is a coarse red sandstone, or conglomerate, like lava, till broken. The Coppatches is a trading river, but shallow, and frequented only by boats, or vessels not drawing more than 4 feet of water.

CAPE VERGA, in lat. $10^{\circ} 19^{\prime}$, is the termination of some moderately elevated land, and not a mangrove island, as commonly described. A long and dangerous spit extends from it N.W. 61 miles. In the deep bay within this no vessel can enter which draws more than 4 or 5 feet of water. This place is S. 21° E., true, from the month of the River Coppatches.

The coast hence southward appears to be a great series of islands, some forming, others breaking up, so that in twenty years the aspect probably will be materially changed. The high mountains of Cape Verga, which stand about 3 leagues inland, to the north-eastward of the cape, serve as a mark for it, and may be seen at the dirtance of 15 leagues. Thus, bearing East [E.N.E. $\frac{1}{\text {, E.], are they equaily useful to }}$ ships bound to the Rio Nunez, which, with this beafing, will clear the banks lying without the river at 5 or more leagues to the south-westward.

Of the mountains within Cape Verga, two, in particular, are the most conspicuous,

[^114]sind the These 2 N.E. to BIO [S.E.] of the on its B to be in of mud with m
The southe and dar
The I which ward. and on called t trees,

To sa Paps, vou will in 7 or which t river for probsbi
If be fathoms bring th the sout
If ${ }^{\circ}$ trees, to Sonth si you her river he 3, 4, 7,
The more in theless, entranc

A mm of the creased of 3 fat Veses cometin there. extend
ately elevated langerous spit pssel can enter true, from the
ome forming, be materially agues inland, een at the dir lly useful to banks lying
conspicuous,
the Compoonee. which see the is of buffaloes,
and the highent, according to M. Kousion, is In lat. $10^{\circ} 18^{\prime} 52^{\prime \prime}$, long. $142^{2} 21^{\prime} 90^{\prime \prime}$. Thewe mountains have no particular peak, but form nearly one maes, extending from N.E. to S.W.; and are about 600 fathoms in height.

RIO POSGO. - The entrance of the Rio Pongo is about 24 miles S.S.E. 1 E. [S.E.] from Cape Verga. The river is well known as a place of trade on thit part of the const, and its consequence hias been increased by cettlements of elave-traders on its several branches, To the country are several entrances, or : inlets, but all seem to be included under one general name, Pongo or Pongas; each is impeded by a bar of mud or sand; and the coasts, to the head of the several rivers, are entirely covered with mangrovee.
The first of the Pongas, or entrances to the Rio Pongo, is abont 10 miles to the south-eastward from Cape Verga. This is called the Cossencey Bar, having a shallow and dangerous entrance, though within are 4 and 5 fathoms of water.
The best channel in, for a stranger, is over that called Risoing Bar, or the MOD BAR, which lies in lat. $10^{\circ} 2^{\prime}$, and extends more than 2 miles out from the river to the weatward. "On the North side of it are only 6 feet, on the South side from 6 to 9 feet, and on the middle 12 feet at low water. From this bar, two hills ap the country, called the Paps, bear E.N.E. \boldsymbol{y} and serve an the mark for the river. A grove of palm trees, on the North side, is also a distinguishing mark.
To sail over the Mud Bar, get the river open, and steer in N.E. by E., keeping the Paps, which are moderately high, a cable's length open of the North point, by which you will carry 4 fathoms in depth at high water, or 2 fathoms at low weter. Anchor in 7 or 8 fathoms, in the middle of the river, abreast the palm trees on the port hand, which trees appear to extend about 2 miles in length. Then send your boat up the river for a pilot, or fire a gun twice or thrice, at intervals of about an hour; and in all probability a pilot will come off to you.
If bound to this place in the night, approach no nearer than to the depth of 4 fathoms until daylight. If beating in, stand no further to the northward than to bring the two hilis in the middle between the two points of the river ; then stand to the sonthward to 2 and $2 \frac{1}{8}$ fathoms, and proceed as shown hereafter.
If going in, with a fair wind, bring the North point of the river, with its palma trees, to bear N.E., and run in with it bearing N.E. by E. On entering, keep on the . South side, within the bar, as the flood-tide sets on the northern breakers. Should you here have a quarter-less-two, you need not fear, as the bottom is all of mud. The river hence lies East and West, about 8 miles, and its depths, id mid-chaninel, arp 3, 4, 7, 6, and 5 fathoms.
The Sand Bar is 5 miles to the southw yd of the Mnd Bar, and its entrance in more intricate; therefore not to be attempted without a good pilot. This is, nevertheless, the Mouth of the Rio Pongo, properly so called. In the beet channel, at the entrance, the depth is 12 feet at low water, and within it are 4 and 5 fathoms.
A small sand-bank having showed just above water, at high tide, to the northward of the Saind Bar, and mangroves having taken root on it, the bank consequently increased, and the natives have planted palm trees on it. There is said to be a passage of 3 fathoms.

Veasele bound to the Pongas sometimes make the high. land of Cape Verga, and sometimes go to the Isles de Los for a pilot, although one is not always to be found there. Some run in by their latitude, taking care to sound frequently, as sounding! extend ont $1 \frac{1}{2}^{\circ}$ to the westward.
The time of high water here, on the full and change, is 9^{h}. The rise, about 10 feet.

Sand Bar of the Rio Pongo N.N.E. it E.-A-Barkia Hill ; remarkable table-land.

In May, 1842, Captain Nourse, H.M.S. Irio, destroyed a alave-irade factory in the Iio Pongae the buincoi of which was oarried on by Mm. Lightborn, but the slavee were removed during the preparations for the attack, with the exception of eloven, which were liberated. In deatroying the factory several barrelin of powder exploded, wounding several, and killing ono man belonging to the Iris.
From the Mud Bar of Rio Ponao to Drmbia Hiver, a place of nome trade, and more to the south-eastward, the distance is 8 leagucs. Two leagues to the eouthward of the lattor is Samgaree River, whence the land juts out to the S.S.W., trwe, 6 or 7 miles to Tuinda Pcint; boyond whioh, to the enstward, is the high voleanic land named Kount Shuos ; and westward are the Ilhas dos Idolos, or Iole do Loa, at 2 f miles from the point.

LJount ©isea, properly so named, but which in the oharts appeart ander the name of Sangaree, has a regular conioul peak, excepting that, on its southern aide, at halfway up, there is a large protuberance. This insulated mountain, in lat. $8^{\circ} 34^{\prime}$, is a 'ocrtain mark for the Islen de Los during the rainy season. In the dry season the atmouphere is always so hasy, that the cosst of the continent is seldom seen, even near these inlands.

At about 4 leagues to the northward of Mount Suzos is another monntait, called the Fronch Mountain, to whicii M. Roussin assigns the latitudo of $9^{\circ} 45^{\prime} 50^{\prime \prime}$, and long. $18^{\circ} 26^{\prime} 10^{\prime \prime}$.

On the 24th of May, 1826, Cay,tain Owen, when in lat. $10^{\circ} 2^{\prime} N$. , saw the Sangaree mountains ; one formed a suguar-loaf, between 4,000 and 5,000 feet in height. Having been twolve days in this neighbourhood, on a previous occasion, it may seem etrange that it was not then observed; but it was during the dry season, whon there in always suoh a haze over the land, particularly in the day, that the view is always much limited; but in the rainy season every shower olears the atunosphere, and the most distant objeets may be discerned.

WINDS, \&\&.-In March, 1831, H.M.S. LEtra, after passing Cape Verga, lost the land-breeme, which had previously blown with'oxtreme regularity from about 10 p.m. till morning, and been calculated on, with certainty, in moving the ship along-shore. The winds also became much affected by changes in the tides and time of the moon; as, for example, if it were low watcr at noon, there was seldom wind enough to more the ship till the first quarter flood, and thon the tide was too strong to weigh. The weather also became more hazy, so as to prevent the use of the sea horizon; and for the three days preceding fall and change, thin was so much the case, as incotveniently to shorten the bases of triangulation.

ILRAS DOS IDOLOS, or ISLES DE LOS.-Thesc iales, which have already been mentioned, lie between the parallels of $9^{\circ} 25^{\prime}$ and $9^{\circ} 42^{\prime}$ N., and between meridians $18^{\circ} 46^{\prime}$ and $18^{\circ} 52^{\prime}$ W. They are six in number, but only three are inhabited, the rest being tittle better than rocks. Those which are inhabited are extremely pleasant, and, in general, healthy. The easternmost island, on whieh the English factory was established, lies nearly North and South, with a high wood-crowned hill at each end, which, when seen from sea, appears like two islands. It is $4 \frac{1}{2}$ miles in length. The road is on the eastern side; and, daring the dry season, is very safe; but, in the tornado and rainy season, there is no security, unless in the goodness of anchors and cables.

Tamara, or Footabar, the largest and westernmost of these islands, is nearly semicircular, rising on both siden from the see by a gentle ascent, to a moderate height, and is covered with good timber trees. It is 5 miles in length, and the summit of its northern part is 465 fect above the sea. That of Factory Inland is 470 feet.

In a description of the Idolos, or Delos Isles, by the Baron Roussin, the admial says, the isles worthy of description are, Tamara, the Isle Idolos, or Factory Island, and Crawford Island, by the French called Isle Francoise. Tumba, on the East, is so connected to the continent by beds of sand, mostly dry, that it can hardly be considerce as an island.

Tamara, the lergest and westernmost island, may be seen in fair weather at the
distand wooder in, in as ages ar You ward beyond Areth wester
Near hugshe

At t
Cural
tion, at bo caut

Tho of whi ing to channe

The coloure of the cil and which

The occupy guage

The
The the 8th tinue, and sea continu tornado set in, 0 tember, about C and W force fr deluge imagin Enrope Capt Los rar ternino and tor The in ahov COA Point corcred canoes

- fuctory in the , but the slaven tion of elevent, wder expioded,

ome trade, and

 the sonthward W., trwe, B or 7 voleanio land - do Los, at $2 f$under the name n aide, at hall. lat. $8^{\circ} 34^{\prime}$, is a lry season the om seen, even
onntain, celled $0^{\circ} 45^{\prime} 50^{\prime \prime}$, and
w the Sangaree height. Hav, it may seem in, when there view is always sphere, and the

Verga, lost the 1 about 10 p.m. ip along-shore. 3 of the moon; nough to more o weigh. The prizon ; and for inconveniently
have already a between meare inhabited, are extremely h the English d-crowned bill is $4 \frac{1}{4}$ miles in , is very safe he goodness of
s nearly semi. derate height, summit of its feet.
, the adminal actory Island, n the East, is hardly be con-
veather at the
distance of 7 or 8 loagues. Ou approaching, it appeari like a range of hills, thickly wooded; ite clevation in m sderate, and the northern part higher thas the South. It in, in ahapo, like a oressent, with its conoevity to the S.E., forming weveral Ane anchorages and depths of 6 to 8 fathoms, at low water.
You may enter the roadsteads on the eastern side of Tamara cither from the northward or southward, only giving the consts a berth of three-quarters of a milo, beyond which distance both the North and South pointa are quite clear. A reef, the Arethusa, surrounds the North point to the distance of a quarter of a mile. The westorn side is bold-to, and may be approached safoly. Variation, $18^{\circ} \mathrm{W}$.*
Near the prinoipal anchorage within Tamara is a apring of fresh water, where 80 hyyshoads may be obtained in 24 hours.

At the distance of $1 \frac{1}{1}$ miles 8.S.E. from the South end of Tamara is an inlet named Cural Lsle, leaving a passage between of 9 and 8 fathoms; but, in the same direotion, at a quarter of a mile from Coral Isle, is a small but dangerous reef, which must bo cautiously avoidod.
The oentral island of tho group is Rooma, or Crawford Island, the western summit of which is $\mathbf{3 0 0}$ foet in height. From this island to the N.E. are ehoal flats, extending to the distance of 2 miles, toward the North end of Factory Island, leaving a channel between of only two-thirds of a mile.
The leles de Los are of volcanic origin, being formed chiefly of hard blue and ironcoloured lava, with occasional masses of porphyritic hornstone of different elevations. Of the vegetable productions, the most remarkable are the pulins, which furnish palm oil sud wine, and the silk cotton tree. The natives also spoak of a troe, the bark of which is an excellent bitter, but it was not seen.
The natives belong to the tribe named Baccas or Barkas [qucry Bagoi P], who also occupy other islands along the coast. A great similarity exists between their language and that of the tribes inhabiting the banks of the Nunez.
The rainy season here commences in April, and ends in Decembor.
The seasons have here been described as follow:-To begin with January. About the 8th or 10th of this month the Harmattan, or cold strong easterly winds, continue, with some atrength, for about a week or ten days; after which, the land-wind and sea-breeze take place till about the middle of February, when the wind becomem continual and N.W. or N.N.W., till the last full change of the moon in March. The tornadocs generally begin and prevail, more or less, till May or June; thon the rains set in, and are almost continual all July and August; they begin to abate in September, and go off in October, giving place to the tornadoes, which continue till ajout Christmas. Daring the rainy seasons the winds are mostly between Bouth and Wost, or in the S.W. quarter; and the tornadoes always blow with prodigious force fromt the E.S.E. or thereabout, acoompanied with thunder, lightning, and a deluge of rain. When a tornado has happened in the night, it is impossible to imagine the clear state of the atmosphere next morning; we have nothing like it in Europe.
Captain Belcher saye, that the ralny season between the Gambia and the Isles do Low ranges, in its commencement, between the 1st of April and the 1st of June; and terminates from the 1 st to 31 st of Decembe. Off the Conflict Reef and Bijoogas, ruins and tornadoes were experienced on the 12th, 14th, and 1 thth May, 1831.
The flood, at the Isles de Los, sets to the North. Tho tide rises and flows as shawn in shown in the 'Iable, page 268.
COAST between the Isles ds Los and the Pongo.- (Captain Beleher.)-Tumbo Point is abont 2 miles distant from Faotory Island : and is a long rocky flat, partly covered at high water, and divided from the main by a narrow channel, navigable for canoes at high water, but nearly dry at low, where the natives afflrm that they can

[^115]walk curom, though the depth of mud makes thin improbable. From this the main cland rises gradually, and partakes muoh of the features of the Isles de Los, without, however, being quite no denuded or bare as the summit of Tamara. The whole interior is mountainous; the highest peak of which we could obtain a measurement being .2,010 feet above the sea. This mountain is called Kakulimah. Further on, the Sangaree or Soomba Ridge commences, and forms the entrance of the Sangaree or Debrika River. The highest point of which, Tikitee-chin, or, as pronounced, Tikit-chin, is 1,705 feet above the sea. Its western point is called Alligator's Point, and off this the mud extends above a mile, dry at low water.
The whole of this bay is one series of flats and reefs; and no vessel drawing above 6 feet should venture within a line drawn from Tumbo to Alligator Point. Vessels drawing 15 feet should not, when working np along this shore, do more, than open Crawford Island; and, to ensure good room, shopld even tack when the East end of I amara opens the South end of Factory Island. Within these bearings the soundings are very regular, and noyhere less than 5 fathoms.

The entrance of the Sangaree River has 2 fathoms in it; but there is little inducement to ascend it, there not being the slightest trace of trade along its shores, nor any supplies to be procured from them, excepting wood. The water is scarce and bed. The Xtina's boat ascended 65 miles.

More to the North there is a small isle in the centre of a river called the Dembia, but which is, in fact, a mouth of the Sangaree. From this isle, Alligator Point bears S.E., true, $5 \frac{1}{3}$ miles. The river will admit very small vessels ; but the greatest depth cis only 1 fathom at low water, where the sea curled.

The shores hence are thickly clothed with mangroves, and extend about 16 miles to the first acknowledged month of the Pongo, called Taboury or Old Pongo, which is bordered to a mile out by dangerous breakers.

Directions for Sailing fhom Cape Roxo to the Isles le Los.

By the Baron Roussin.

The description of the Bissagos, already given (page 525), points out the course to be steered in order to double their S.W. extremity. A vessel starting from a point at 41 leagues to the westward of Cape Roxo, which will be a little without the medium of $17^{\circ} 0^{\prime} 0^{\prime \prime} \mathbf{W}$., to the parallel of $10^{\circ} 40^{\prime} \mathrm{N}$., will be outside of all the dangers. From hence a course of S.E. $\frac{1}{+}$ E. [S. $68^{\circ} \mathrm{E}$.] and distance 68 leagues; will lead her to the Weat point of Tamara Island. On this course the soundings will never be under 8 fathoms, until near the shore of the island; and those on the first course will be considerably more.
From the parallel of Cape Roxo to that of the western breaker, $11^{\circ} 31^{\prime} 32^{\prime \prime}$ N., at a distance of more than 4 leagues to the westward of the meridian of $17^{\circ} 0^{\prime}$, the depth will increase progressively from 8 to 28 fathoms, and the bottom be entirely of mud, This remark may be depended on to show that a vessel is not far to the southward of the parallel of the Jeba or Great Channel; she cannot at the utmost be more than 10 miles from the positions already given. From this point, as far as the parallel of $10^{\circ} \mathbf{4 0 ^ { \prime }} \mathrm{N}$., the bottom is nearly free from mud, and on passing to the southward of the parallel of $11^{\circ} 20^{\prime}$, very slight tracew of it memain, but are succeeded by a bottom of fine white sand, sand and gravel, sand and broken shells, with a depth varying from 12 to 50 fathoms. A vessel, having left Roxo, and arrived in lat. 10 40^{\prime}, may thence ateer a direct course for the Isles des Los.

The S.W. edge of the Bissagos follows a gentle curve from the western breaker as far as the southern one, that of La Bayadere. The bottom, in this part, presents a singular peculiarity. Amongst the fine white sand, sand and broken shells, sand and
this the main Los, without, whole interior urement being on, the Sanree or Debriza Tikit-chin, is t, and of this

Irawing above 'oint. Vessels re than open 10 East end of the soundings
s little inducehores, nor any arce and bad.
d the Dembia, or Point bears greatest depth
bout 16 miles Pongo, which

Les.
the course to rom a point at at the medium ngers. From ad her to the ver be under course will be
$1^{\prime} 32^{\prime \prime}$ N., at a ' 0 ', the depth irely of mad. to the south. most be more as far as the passing to the are succeeded with a depth in lat. $10^{\circ} 40^{\prime}$,
n breaker as rt , presents a ells, sand and
gravel, of which it is most frequently compowed, a greenish-coloured sand is comer times found. The depth decreases very gradually from 60 to 9 fathoms, from S.W. to N.E.
:The remainder of the course to the Isles de Los passes over deep sonndings, as much as 50 fathoms, at the point of departure, and the least depth is 12 fathoms. No pres cise rule can be given as to the changes in the depth along this trick, nor as to the various nature of the bottom. It is known only that the groundj; in the space passed. over by this course, seems to be furrowed with channels, which, commencing from the southern extremity of the Eastern Channel of Bissagos, diverge toward different points between S. W. and S.S.E., true. The farrowa above mentioned appear to have been cansed by the regular tides in the mouth of the Rio Grande, and prove, beyond a doubt, that the outlet of the same channel is partly caused by that river. With respect to the nature of the bottom, M. Roussin sayg that he remarked the total absence of mud. The bottom is of fine sand, in some places misixed with broken shells, small pieces of brittle rock, and gravel, which appeared to be only a covering to beds of a whitish volcanic sandstone, into which the lance penetrated but 3 or 4 inches, and did not hold. A muddy bottom is not found until about 10 leagues to the westward of the Isles de Los, and then only in small quantity, till within a very short distance to the N.W. of those islands.
Tides.-In proportion to the distance from the mouth of the Jeba or Great Channel of Bissagos, either to the northward or southward, the tides lose their regalarity: This interruption in the tides is evident in going to the southward, as, at a few miles Sonth of the parallel of the western breaker, $11^{\circ} 31^{\prime} 32^{\prime \prime}$ N., they are no longer perceptible, even on the edge of the Bissagos.
No decided course of the current was ascertained to exist, but it is generally allowed that the waters have a greater inclination to flow to the southward than to the northward; and it may be presumed that it follows the direction of the winds on the western edge of the Archipclago, but it is seldom found to be considerable.

Coast betwren Isles de Los and Sierra Leone.*-The portion of coast between the Isles de Los and Sierra Leone comprises an extent of 66 miles, and contains several rivers, islands, and banks, besides various inconsiderable creeks.
Between the IsLes DE Los and the sharp low point of Tumbo there is a safe channel, through which, by Captain Owen's charts, ohips may carry 3 fathoms of water, and whioh may be, at times, highly convenient to use, or even to run through the group yet, without some good reason for so doing, it will alwaye be advisable to go outside the islands, where certainly no dangers are to be met with.
\therefore In approaching this part of the coast it may be remarked, that though the 3 fathoms' boundary, in some places, extends to a considerable distance, yet the soundings are so regular as to give ample warming. A tumbling sea, at times, may prevail in a strong breeze, yet, as no gales but the Tornadoss, which are of short duration and off shore, are known upon this coast, a commander need never be alarmed; for there is always good anchorage under foot, and no long swell current to force the vessel into danger.
From Tumbo Point to Matacong Island the bearing and distance are S.E. by S. 23 miles. Tumbo Point is the S.W. extremity of an island bearing the same name, and separated by a very narrow high water channel from the main land. To the sonthward of this point the land falls back to the north-eastward about 7 miles, forming an extensive but shallow bay, at the bottom of which is an inconsiderable stream; salled Tannaney River, accessible to canoes only.
In the extensive bay between the Isles de Los and Matacong Isle no detached dangers exist. The coast is safe to approach, the soundings being gradual, and

[^116]always affording good anchorage; and it is, in all parts, accessible to large ships to the distance of 6 miles, which generally may be considered sufficiently near to distinguish the land, and often to recognise the mouths of the rivers.

Mahneah Biver, abont 12 miles E.S.E. from Tumbo Point, is, at low water, scarcely accessible to the smallest coasting vessels, but the rise of tide exceeds 2 fathoms. The entrance is about 0 miles south-eastward from that of Tanuaney, but the water between is very shallow; and a mud bank, which extends south-westward from the West point of the entrance, is uncovered at lew water, more than 2 miles from that point. A similar mud benk lines the East side also, leaving the ohannel between above a mile wide, but carrying only from 4 to 8 feet at low water.

To enter this river it is necessary only to bring the western point of the ontrances while at the distance of 5 .miles from it, bear N.E. by E. $\frac{1}{8}$ E., and then steer toward it.in that direction, until you get close to the S. W. mud bank, when you may proceed along by the edge of that bank, in a convenient depth, eocording to oircumstances. Within the river the depths at low water are from 6 to 1 C feet only.
The water discharged from this river must very great, as the ebb tide runs out with great rapidity.
River Morebiah.-The mouth of this river is about 18 miles S.E. by E. 1 E. from the Isles de Los, and about 7 miles nertherly from Matacong Island; and, though its breadth within the points nowhere excceds half a half a mile, yet it is far superior to the Mahneah, last described. Its entrance is narrow, and forms an clbow at the commencemeut, which, to render perfeetly safe, would require two buoys, because the coast is destitute of good objects to serve as marks.

In approaching the coast abreast of the river, with its opening bearing E.N.E. $\frac{1}{}$ E., distant abont 9 miles, and Matacong Island 8.E. by E. $\frac{1}{2}$ E., you will have 6 fathoms of water or black mud; from this situation the depth will decrease gradually, on a bottom of the same kind, to $3 \frac{1}{8}$ fathonss at the entrance of the ehannel. With the rounding of the land between the rivers Mahneah and Morebiah bearing N.N.E., the East point of the entrance E. $\frac{3}{2}$ N., and the middle of Matacong Island S.S.E. $\frac{3}{4}$ E., you will have that depth.- From this position stecr N.N.E. until the East point of the river bears E. 1 S., and then stand in toward this point, or about East; but remembering, that both flood and ebb set partially over the extensive shoals that form the S.E. side of the channel : some of these, however, being dry at low water, and nearly so at high water, their steep boundary is nearly diseernible. In the elbow of the channel the least depth is 1 fathoms at low spring ebbs: this depth, however however, continues but a ghort way; and, from the time of altering your course to the eastward, or steering straight in, you will seldom have so little an 2 fathoms. Beyond the East point the depth varies from 4 to 6 or 7 fathoms, and for the extent of 7 miles up the river it appeared to be clear of all danger.

About 4 miles above the East point of this river, and on the same side a remarkable round masb of granite rock rises abruptly, about 40 feet from the water's edge; it is about 400 yards in circumference: others may be seen inland; and the natives assert, that neveral are ncattered about as far as the Sangareo Mountains, which, they say, are also of granite.
It is high water, on full and change dayn, at $7^{\mathbf{h}} 40^{\prime}$, and apring tides rise 11 feet.
The contrast which this coast presents to the eye, in different states of the atmosphore, has been already noticed in pages 206, 206, and 638.

Iatacong Ialand.-The beauty of this island consiats of the luxuriance of the trece, the verdure of those spots which have boen cleared away, and the gentle rise, which renders it a conspicuous oontrast to tho low swampy traet opposito. It is more than a mile long, and having been purohaeed from the natives by Mr. Gabadon, a merchant of Sierra Leone, is now ostablished for rearing cattle. The island appears to be of lava, yot on its summit there are two large pieces of granite; but there is renson to believe that they have been artificially placed there.
Mataceng is surrounded by mud banks and rocks in all directions, so that no vessel of any burden can lie at anchor within 2 miles of it. The channel, which divides it
from t water,
can med runnin
From where the Rr which abcve it will at the low wa than h or in 4 bring until collect howeve very from the of the river.

THE the tim and the make t
For of wate toward 3 fatho Island elsewh E. by land to by the and da bank is langsan anchor. at low one-thi point e channe tho fact
large ships to dy near to dis-
at low water, tide exceeds 2 Tanuaney, but south-westward e than 2 miles ig the channel water.
f the ontrance, n steer toward ou may proceed circumstances.

e runs out with

E. by E. 1 E. d; and, though is far superior u elbow at the $y s$, because the
g E.N.E. \dagger E., have 6 fathoms radually, on a cl. With the ng N.N.E., the Id S.S.E. $\frac{y}{z}$ E. East point of East; but recoals that form pw water, and n the clbow of lepth, however rr course to the Coms, Beyond extent of 7
ide a remarkwater's edge! nd the natives f, which, they
ise 11 feet. of the atmon.
uriance of the e gentlo rise, e. It in more r. Gabadon, a sland appears but there in
hat no veses jich divides it
from the main, is nearly threequarters of a mile broad, but its mnddy bottom, at low water, is left dry.
From Matacong Island to Sallahtooik Ponnt, a distance of $14 \frac{1}{2}$ miles S. $\frac{9}{2}$ E., the gencral features of the coast are the same as those already described, but the monntains are too distant to be distinctly seen; here and there a cotton tree, with smooth trunk and spreading foliage, rises above the surrounding thickets, and serves to identify the locality of the ooast to those who are acquainted with it; bnt a stranger can make the mouth of the river which he intends to enter by his latitude only, or by running the coast down from some known point."
From Matacong Island the coast trends to the eastward a little more than 3 miles, where it turns abruptly to the northward, and forms the West point of the mouth of the River Forecarrear: the interval being fronted with sand and mud banks, which extend more than 3 miles to the southward. The entrance of this river is abcve 2 miles wide, and the least depth is 1 fathom at low spring ebbs. To sail in, it will be necessary to pass close to the banks which project from the West point, but, at the same time, to be cautious in approaching them, as they are steep-to, and dry at low water. The outer sand will be apparent, even in fine weather, at any other time then high water, and if seen, it may be safely skirted in 2 fathoms near low water, or in 4 at high water; and that you may not get in at the back of this sand, do not bring the highest part of Matacong Island to the westward of N. by W. 1 W, until the Wost point of the river bears N.E. $\frac{1}{4}$ E. You may then eafely enter, rocollecting, as a guide, that you should always keep the western side aboard, off which, however, you will have to edge occasionally to a void the banks; yet this river is of very little consequence, as a ridge of rocks nearly crosses it at a short distance from its mouth. The ebb tide is extremely rapid, and the overfalls in the vicinity of the rocks are dangerous to those who do not possess a local knowledge of the river.

THE RIVER MELLACOREE which is or was of considerable importance in the timber trade, has better objects for marks than any of those already described, and the facilities of its navigation are greater, yet bunys are indispensably requisite to make this secure.

For entering the Mellacoree, observe that, at 8 miles off shore, there are six fathoms of water; and, with the river's mouth bearing E. by N., it will be fairly open. Stecr toward it, in that direction, until the soundings huve decreased gradually to about 3 fathome at low spring ebbs, with the following bearings: East Point of Yellaboi Islend S. by E.; Sallahtook Point, distinguishable by the trees being higher than elsewhere, bearing S.E. $\frac{1}{2}$ S.; Bentee Point, \dagger known by a remarkable large tree, E. by N.; the outer pornt of Tannah River, E.N.E. \mathcal{A} E. ; and the rounding of the land to the northward of the river, N.E. I N.; you will then be at the spot indieated by the outer anchor in the plan, and in the fair way. The Middle Ground is steep and dangerous, but the soundings on the southern side are gradual, though the mud bank is very wide; borrow, thereforo, rather on that side until nearly as far as Bellangsang Point, when you must haul over to the mouth of Tannah River, and there anchor. Highor up, there are some patches of rocks in the middlo of the river, but at low water they are seen, as well as the deep water channel between them, which is one-third of a milo in breadth, with a depth of 7 to 9 fathoms. By keeping the East point of the River Tannah, bearing N.W.by W. $\frac{1}{2}$ W., you may pass through this channel in safety; and, there being no further danger, you may ascend the river to the factories established below Devil's Island, on the South shore; the gencral depth

[^117]varies from 5 to 9 fathoms. Here it is high water on full and change days, at 7h. as spring tides rise 11 feet.

Besides the channel on the South side of the, Middle Ground, for which dircctions have been given, there is also an inferior one to the northward; to enter which, when 5 or 6 miles off shore, bring the West point of Tannah River to bear E. ${ }^{\frac{1}{4} \text { S., and by }}$ by carefully using the lead, you may proceed in with safety; for, although at its termination it takes a slight turn round the N.E. corner of the Middle Ground, yet this is generally so well indicated that you can scarcely be deceived.

The Tannaf River, which falls into the Mellacoree, is almo navigable, though mach smaller, and the tides are not so strong as in the main stream.

On account of the soft nature of the bottom, vessels may ground in several places in the vicinity of the Mellacoree River, without being injured; but a patch of foul ground, which surrounds the long reef of Sallatook Point, must be carefully avoided.

From Sallaftook Point the coast trends S.S.E. 7 miles, to a small river, on the western point of which is situated Sangahtook Factory; and about $1 \frac{1}{3}$ miles to the westward of this point is Yellaboi Island, surrounded by mud banks that are dry at low water.

Yollabol is a low awampy island, nearly two miles in length, and covered with trees, which, toward its western extremity, give it the appearance of an abrupt cliff, casy to be recognised; abreast the S.E. extremity of the river there is another small river called Inglis Pahboyeah.*
Corteemo Island.-Four miles S.E. from Yellaboi we come to a much larger island, with extensive mud banks on the north-westward, but with a deep channel between it and the main ; it is called Cirteemo, and lies in the mouth of the Rivern Scarcies. These rivers are known on the coasts by the names of Great and Little Scarcies ; the former is navigable for large ships, but the other is adapted to very small vessels only, and requires very careful pilotage.

Great Scarcies.-The channel into the Great Scarcies River is the best on this part of the coast ; for, although the banks are steep, yet it is bread and deep, and a of the line, by taking a proper time of the tide, might moor off the inner point of Yellaboi Island.

Tb sail into this anchorage, bring tho West end or highest part of Yellaboi Island to bear E.N.E. and steer toward it in that direction, until you decrease the depth to b or 4 fathoms, which will happen suddenly. Now change the course, and keeplng in 4 to 5 fathoms, steer direct for Inglis Pahboyeah River, bearing E. f N. \dagger taking care to keep it well open of the inner point of Yellaboi Island, until the West point of that island bears N. by E. $\frac{7}{\text { E }}$., when you must haul directly in toward it, and skirting along the steep mud bank which borders the South side of the island, steer for its S.E. point, close to which. you may anchor in $4 f$ fathoms. In reaching this anchorage, the least depth you will have to pass over will be 2\rangle fathoms at low spring ebbe; and this occurs only after hauling in for the island, and running along the edge of the mud bank.

A timber-ship, lying at this place, could eanily have her cargo rafted down to her, excepting during the rains, when, as afflrmed, the strong winds occasion so heavy a sea, as to make it unsafe to lie there with her raft ports open. With little difficultr, however, she might proceed to Kakongkah Island, though the channel is narrow and crooked, and would perhaps require buoys to point it out. \ddagger It would be scarcely

[^118]possible the plar dary lin go wron will aris and spr:
For

SIER:
page, th cape, wi same na
The of shoal ba on the S into lof Sierra I From th for ahip:
The n bank, ca channel
Vessel ings in l Ame ; a to make Then ma mountai the weat more the had. Tl from the

In sta stantly eastward standing then sud river, an

The de which e2 leaving bring th to bear: be had.
A roel
$\left.W_{1}\right]$ breakers
lays, at 7 ', in
Lich directions or which, when 3. $\frac{8}{7}$ S., and by ugh at its terround, yet this
gable, though
several places at a patch of t be carefully
river, on the $1 \frac{1}{1}$ miles to the sat are dry at
covered with an abrupt cliff, another small
a much larger deep channcl of the Rivery eat and Little apted to very
best on this 1 deep, and a nner point of
ellaboi Island e the depth to , and keeplng - $\frac{1}{2}$. \dagger taking he West point coward it, and e island, steer reaching this at low spring ing along the
down to her, on so heavy a ttle difficultr, is narrow and 1 be scarcely
ole, p. 35 , is in in lat. $8^{\circ} 57^{\prime} 6^{\prime \prime}$,
of Corteemo
a factory noar
possible to give intelligible marks for this winding channel, but it is so apparent in the plan, that by using the boat ahead, and never passing over the 3 fathoms boundary line described therein, except in crossing the three short flats, you can scarcely go wrong ; the bottom, however, is so soft, and the water so smooth, that no damage will arise from touching. It is high water here, on full and change days, at $\mathbf{7}^{\mathrm{h}} \mathbf{1 0}^{\mathbf{\prime}}$, and spring tides rise 11 feet.
For Captain Botelor's General Remarks on the Coasts and Seasons, ste page 206.

SIERRA LEONE, etc.-From Yellaboi Island, mentioned in the preceding page, the Cape of Sierra Leone bears S. by W. $\frac{1}{2}$ W. [South] 25 miles. This cape, with the coast eastward, forms the South side of the great river, bearing the same name.

The coast northward of the mouth of the river is low and level, bordered with a shoal bank 3 miles in breadth, and which has upon it several dangerous rocks; but on the South side the land rises into hills, which, forming one upon the other, tower into lofty mountains, crowned with perpetual verdure. These are, properly, the Sierra Leone, or Lion Mountains, which have given name to the river aud country. From the foot of the hills, points of land, projecting into the sea, form excellent bays for shipping and craft, and convenient places for hauling the seine.
The mouth of the river, which is 2 leagues wide, is obstructed by an extensive bank, called the Middle Ground, but on the South side of this is a safe and deep channel for vessels of any burden. The latitude of the cape is $8^{\circ} 30^{\prime} \mathrm{N}$.

Vessels bound from Cape Verde to Sierra Leone are recommended to gain soundings in lat. $9^{\circ} 15^{\prime} \mathrm{N}$. on the grand bank which extends from the Bissagos to Cape St Anne; and having gained bottom in 50 fathoms, gray sand, on the edge of the bank. to make a true S.E. by S . course, keeping in soundings until in lat. $8^{\circ} 20^{\prime}$ or $8^{\circ} 30^{\prime}$. Then make an East course good, and you will make the land of Sierra Leone, the mountains of which may be seen in clear weather 14 leagues off: but as, on this coast, the weather is generally hazy, it is seldom seen farther off than 6, and frequently not more than 4 or 3 , leagues; although, at the same time, a good observation may be had. This is occasioned by the constant vapours, caused by the sun, which ascend from the mountains covered with thick woods.

Appearance of Cape Sierra Leone, bearing S.E. by E., distant about 5 leagues.
In standing in for soundings, and approaching Sierra Leone, keep the lead oonstantly going, as the current sets in various directions, but generally tending to tho eastward. It is requisite to be very attentive to this particular. Should you bo standing in, in the night, in lat. $8^{\circ} 30^{\prime}$, and shoalen your water from 20 to 18,13 , and then suddenly to 8 and 7 fathoms, yon will be at the distance of 3 leagues from the river, and should immediately anchor and remain till daylight.
The danger on standing in for the cape is, the Middle Ground, hereafter described, which extends 7 miles from the eastern shore, and nearly to the meridian of the cape, leaving an entrance only 2 miles broad. Having made the land of Sierra Leone, bring the cape, which may be easily known by a small negro town atanding upou it, to bear S.E. by S. ; then steer directly for it. At this place pilots for the river may be had.
A rock, called the Curpenter, lies at the distance of nearly a mile W. $\frac{1}{4} \mathrm{~N} .[$ F.S. W. FW.] from the N.W. extremity of the cape. This rock always shows itself by the breakers over it, and at half-tide may be distinetly seen. 'The flood-stram ecte
directly through between the cape and the rock. You may advance within half a mile of the rock; but those beating down the river, with the sea breese, and a strong ebb tide, must be careful and give it a good berth, as the ebb tide sets strongly between the rock and the cape. From the capc, a ledge of rocks extends in a direct line toward the Carpenter.
The LIGHTHOUSE on Cape Sierra Leone was completed in 1849, and ahows a brilliant fixed light. It stands on the extremity of the cape, and is 69 feet from the base to the top of the lighthouse. It bears from Carpenter Rock E. $\frac{1}{2}$ S. by compass, and from the western edge of the middle ground, S.W. $\frac{1}{3}$ S. Veasels, therefore, coming from the westward shoutd be careful not to bring the light to bear more to the eastward than E.S.E. $\frac{1}{8}$ E., and coming from the sonthward not to alter the course until the light is on that bearing; and coming from the northward, should not bring the light more to the westward than S.S.W. $\frac{1}{2}$ W., until King Ton's Point comes in ono with the centre barrack, S.S.E. $\frac{1}{7}$ E. to avoid the middle ground.
Bearing of the Carpenter Rock, W. $13^{\circ} \mathbf{7}^{\prime} \mathrm{S}$.
Within the cape the general trend of the coast is nearly true East 6 miles, but it is broken by soveral inlets, which are culled Bays. Of these, the first within the cape is a small cove, of pleasant appearance, called Cape Bay ; the next is Pirates' Bay, so named from being the place where the pirates formerly used to careen and refit their vessels; the third is Whiteman's Bay; the fourth, St. George's or Freetown Bay, whereon stands Freetown, protected on the hill-side by a fort, and above the fort, on the summit of the hill, are the new barracks. On the East of Freetown is Susan's Bay, and at a mile eastward of the last is Thompson's Bay, bounded on the East by Farran Point. (For the position of Freetown, see the Note on page 39.)
Freetown.*-The general aspect of the country in the immediate vicinity of this colony, and the external appearance of Freetown, give a stranger, on arrival, an idea of salubrity and prosperity, which subsequent experience may not altogethor realize, or, at least, reconcilo with the result of further observation.
Its more striking features are the largeness of the acale on which the publio buildings are constructed; the wideness of the streets, and the regularity of their lines; the number of stone houses, and the excellence of the roads; the abundance in the markets, the multitude of well-dressed negroes in these places, the variety of stalls and shops in their own quarter, well supplied with British goods; the cleanliness and the comfortableness of their small abodes, the size and structure of the principal church, and the numerous chapels and schools in the town and suburbs ; and last, though not least, the admirable order that seemed to prevail amongst the negro population, without any apparent exercise of magisterial severity, or rigour of political restraint, to repress or control the people.
From ten o'clock in the morning till five in the evening a white man is seldom seen abroad; at the latter hour, the race course and the promenade on the battery are frequented by equestrians and pedestrians; and, perhaps, no circumstance that strikes the attention of a stranger, makes so strong an impression on his mind as the general expression he observes of languor and debility in the looks of every individual be meets of European birth (with perhaps two or three exoeptions) in the colony. The young and old, the acclimated even as they are deemed, who have had their season. ing, either in one fever, or the periodical return of that malady, and have survived these attacks, show plainly enough the baneful influence of the climate, which leayes the features without vivacity, the frame without vigour, and the whole constitution apparently deficient in vitality.

The settlement at Sicrra Leone was formed in 1787; and the new colony occupied a tract of about 20 miles square, and was peopled, in part, by negroes from America; and was increased by various additions from the West Indies.
In 1791, the tract of land that was ceded by the native chieff, in 1787, to the British sovereign, was made over to the Sierra Leone Company; and, in 1700, Governor Ma-
caulay the wee this wa peninsu of the t of the report; colony
The the rive from 6 bears N Bullom large st times, small v
The and cov whence between the Kin shoals. ${ }^{\circ}$ isles, tha chart.
Ships approac than 6 until he off, he w elose to Carpent a quarte Cape Ba In all th turtle.
Havir the rive The gen ward, ai

To an point of quarter eastwar fill your shown a
In sai regular the way
Farr
hauy wi

- Th
the opp linekilo âtising the colo
e within half a ze, and a strong de seta strongly tends in a direet

1849, and shows 1 is 69 feet from lock E. $\frac{1}{2}$ S. by Vessels, there. ;ht to bear more not to alter the vard, should not ing Ton's Point ground.
miles, but it is within the cape Pirates' Bay, so and refit their Freetown Bay, I above the fort, town is Susan's on the East by
vicinity of this arrival, an idea ogether realize,
he publis build. of their lines; undance in the ety of stalls and nliness and the incipal church, ast, though not gro population, itical restraint,
is seldom seen the battery are noe that strikes as the general y individual he 9 colony. The d their seasonhave survived , which leaves le constitution
olony occupied from America
, to the British Governor Ma-
caulay enlarged the limits by an additional quantity of land towards the seàside on the western boundary, nbtained from a native chief called King Tom; possession of this was finally gaised in 1801. At this period the colony did not extend beyond the peninsula, which is about 18 miles long and 12 broad. In 1824, a new sovereignty of the territory was purchased of the chief of the North Bulloms, on the North alde of the Sierra Leone River. We have derived this statement from Dr. Madden's report; but in Colonel Doherty's remarks upon it, he states, that the limits of the colony are strictly confined to the peninsula.
The Middle Ground, already mentioned, forms the North side of the channel into the river, which is half a league in breadth. The general depths in the channel are from 6 to 10 and 12 fathoms. From the cape the extremity of the Middle Ground bears N.E. $\frac{1}{4}$ N. [N.N.E.] 2 miles, and the bank extends thence eastward to the Bullom shore. The ground is, in general, composed of hard sand; and, in some parts, large stones. It dries, in several places, at about the middie of half ebb; and, at all times, the sea breaks over it. On its eastern part there is a channel, but it is fit for small vessels only.
The Bullom shore, which forms the North side of the entrance of the river, is level and covered with wood. On this shore, in lat. $8^{\circ} 40^{\prime}$, is an islet, called Leopard Isle; whence the coast roands to the south-eastward, nearly 12 miles, to Tagrin Point, and between are eight negro towns, of which the fourth, from the northward, is that of the King of Bullom. The edge of this coast is low, swampy, and bordered with shoals.* In the river, eastward of Tagrin Point, is Tasso Istand and several smaller isles, the formation of which can be understood only by reference to the particular chart.
Ships from the northward, when bonnd to Sierra Leone, should be careful how they approach the capc. They must keep their lead going, and not approach any nearet than 6 fathoms, until thoy see the high land. No one should stand in for the cape uutil he gets that high land to bear E.S.E. \ddagger E. [East], and, when he is 6 leagues off, he will see the cape making in a small low point, with a ridge of cocoa-nut trees close to tho water's edge; and when within 3 leagues of the cape he may observe the, Carpenter Rock, with the sea constantly breaking over it. You pass the cape within, a quarter of a mile, in 9 or 10 fathoms. You will now open the first cove, called: Cape Bay, and thence pass Pirates' and the other inlets which have been described. In all these bays excellent fish may be caught with the seine, and sometimes green. turtle.
Having passed the cape as above, your course will be S.E. by E. $\frac{1}{}$ E. [E. 号S.] up the river; this leads clear along shore to Freetown, which is $3 \frac{3}{z}$ miles from the cape. The general depths will be 12 to 18,13 , and 14 fathoms. In working to the northward, advance no nearer to the Middle Ground than in 7 fathoms.
To anchor off Freetown, bring the fort (Fort Thornton) to bear S. by W.; the East point of the bay, S.E. $\frac{1}{2}$ E; King Tom's or the West Point, W. by N., off shore a quarter of a mile, 15 or 16 fathoms, with mud. Moor with the best bower to the castward. The watering-place here is very convenient, and the water excellent. You fill your casks in the boat, with a hose, which leads from a cascade. A green light is. shown at the landing place by night.
In sailing up beyond Freetown to Furran Point, or further castward, you will find regular soundings, 14 to 16 and 17 fathoms. You may make free with the shore all: the way up, as it is very bold.
Farran Point is remarkable. It is elevated, and has a house on its summit. In hazy weather, several vessels, on coming in, have mistaken this point for Cape Sierra

[^119]Leone, although it is nearly 2 leagues eastward from the cape, and have thus touched on the Middle Ground. But Farran Point serves as a good mark for the mid-channel, between the Middle Ground and Carpenter, when kept well open to the North of the cape, and bearing S:E. by E. $\frac{\ddagger}{\ddagger}$.
Vessels coming in more from the northward will clear the West end of the Middle Ground in $3 \frac{1}{6}$ fathoms, with King Tom's Point (West of Freetown) on with the central barrack, bearing S.S.E. $\frac{3}{6}$ E. [S.E. $\frac{1}{3}$ E.]

The tide at Freetown flows, on the full and change days, at $7^{\mathrm{h}} \mathbf{5 0}$, and rises $\mathbf{1 2 p}$ feet.

During the rainy season the tide is very regular and strong, running 6 and 7 knots an hour, and the cbb sets rapidly on the Middle Ground. In the dry months it commonly flows on shore at $7^{\mathrm{h}} 3 \mathrm{C}^{\prime}$, with seven and a half hours' ebb, and four and a half flood. In this season the ebb runs 21 miles an hour, the flood only $2 .{ }^{*}$

SIERRA LEONE to CAPE ST. ANNE, \&e.-From the Cape of Sierra Leone the coast, at the foot of the mountains, forms a slender sandy bay, bordered with trees, which extends more than 3 miles to the south ward of the cape, where it terminates in a rocky point. At three-quarters further is another point, more conspicuons and projecting, named the False Cape. The last bears from Cape Sierra Leone S. by W. $\frac{1}{\frac{1}{2}} \mathbf{W}$. $\left[S . \frac{1}{4} E\right.$.] distance 4 miles.

From False Cape to York, or the Sisters' River, \dagger the coast trends irregularly S .
 7 miles.

At Cape Chilling the hills of Sierra Leone terminate, after having made a high double land, which is seen a great way off; the mountain near the South is of a prodigious height. its summit being perpetually covered with elouds, and can be perceived at the distance of 14 or 15 leagnes. The cape itself is low, and covered with trees; and, at 4 or 5 leagues off, appears like a small island.

One of the boats, employed in the survey under Captain Owen, was driven on rocks extending from Cape Chilling, and was totally destroyed, the people, with great difficulty, being saved. Upon this cape is Kent Town, a village of liberated Africans and disbanded negro soldiers; but, as no sure market exists for their industry, they raise little from the soil except for their own use. This village is delightfully situate on the side of a hill, with a large house for the superintendent.-Captain Owen, 1826.
BANANAS.-Off Cape Chilling, and separated by a space of 2 milee in breadth, like the Banana Isies. The outer or S.W. end of these isles is 7 miles S.W. by W. $\frac{1}{4}$ W. [S.W. $\frac{1}{2}$ S.] from the cape. The greater part of their coast is foul and rocky.

The Bananas very much resemble the Isles de Los, but the land is more elevated. They are extremely fertile, and have plenty of water, but no running streams. Wild cattle are abundant upon the greater isle. It is a remarkable fact, that pigs are the only domestic animals that cannot be propagated here; as there appears to be some herb, of which they ure inordinately fond, but which is fatal to their existence.

A few years ago H.M. ship Tartar anchored off Cape Chilling and to the northward of the Bananas, with the N.E. point of the isles S.S.E. $\frac{1}{2}$ E., and the western part S.S.W. Between the ship and islands the water deepened to $8, \theta$, and 7 fathoms; but within a cable's length of the shore, between the westernmost island and the next, there was found a depth of only 2 fathoms. The westernmost islet was then inhabited by only one Frenchman, Jean Baptisto Major, and his four slaves.

[^120]The miles. Ther the best with th bays, w best is which i
Mr. called S tions of and fror from th figure o
Yaw The coe miles br with th
Off Rocks, Bay and
Tide of that to the S trary. noxes it Plainta Bashaw tides.

SHE
liver, i
headlan
Point T
From
$12 \frac{1}{2}$ mil
it wind by a m only by
The 3 leagu On this tree cal league which All the bank.
Bas to the islets, sideral also ex on alm and ca
ve thus touched he mid-channel, 10 North of the
lof the Middle 1) on with the
${ }^{\prime}$, and rises 12
3 and 7 knots months it comfour and a half
of Sierra Leone
bordered with. e, where it tert , more conspiSierra Leone
irregularly S . W. [S. by E.]
made a high th is of a prod can be per1 covered with
triven on rocks le, with great rated Africans industry, they htfully situate in Owen, 1826 .
ee in breadth, es S.W. by W. 1 and rocky.
more elevated. treams. Wild t pigs are the rs to be some kistence.
to the northd the western nd 7 fathoms; land and the let was then ves.

S.S.W.

The Bananas appeared as above, from the Tartar's anchorage, at the distance of 4 miles.
There is anchorage as well to the southward as to the northward of these isles, but the best is said to be in 5 fathoms, about 2 miles from shore, on clear clayey ground,
 bays, which may be seen from the anchoring-place, and where you may land; but the best is at the S.W. end. Wood and water are obtainable here. The watering-place, which is olose to the beach, has a very good run of water.
Mr. Woodville has said, "It is very evident that the whole chain of mountains called Sierra Leone, as well as the Isles Bananas and the Isles de Los, aro the productions of volcanoes, if we are to judge from the great quantity of lava found there, and from the small pieces of it taken up by the lead, in sounding, at certain distances from the land, opposite to these islands, and nowhere else; also from the conical figure of many of the hills, and from the ferruginous soil in the country."
Yawry Bay.-At 6 leagues S.S.E. [S.E. $\frac{1}{8}$ S.] from Cape Chilling is Point Tassa. The coast between forms Yawry Bay, the shore of which is bordered with a shoal 4 miles broad, having on it many oyster beds. Great part of the bank is uncovered with the ebb, and has oaly 4 feet over it at high water.
Off Tassa Point is a group of islets and rocks, called the Plaintain Isles and Bengal Rockis, whieh extend from the point 5 miles westward, on the flat between Yawry Bay and Sherboro Inlet.
Tides.-The tides divide off the False Point of Sierra Leone. To the northward of that point the flood runs to the northward; to the southward of that point it sets to the South. Hence at the Bavanas the flood is from the N.W., and the ebb contrary. Here the tide flows, on the full and change days, at $8^{\text {h }} 15^{\prime}$. During the equinoxes it rises 9 or 10 feet perpendicular; other spring tides 8 or 9 feet. At the Plaintain Isles it rises about a foot and a half more than at the Bananas; but, at the Bashaw or Turtle Isles, more to the southward, the rise is 6 or 7 feet, common spring tides.
SHERBORO INLET.-The Inlet or Sound of Sherboro, commonly called Sherbro River, is between the island of that name and the main land. The westernmost headland of the island is Cape St. Anne, in lat. $7^{\circ} 34^{\prime}$, and nearly on the meridian of Point Tassa, which lies in lat. $7^{\circ} 55 \frac{1}{y^{\prime}}$.
From Point Tasso the const, forming the North side of Sherboro Inlet, trends $12 \frac{1}{2}$ miles S.S.E. $\frac{1}{\frac{1}{2} \text { E. [S.E. } \frac{1}{4} \text { E.] to the mouth of a river, the Yallucka, and thence }{ }^{2} \text {, }{ }^{2} \text {. }}$ it winds to the south-eastward, 6 leagues further, to the Bayroo River. It is bordered by a mud bank, off which are several shoals, the positions of whieh can be understood only by reference to the particular chart.
The South shore of Sherboro Inlet is the North shore of Sherboro Island, which is 3 leagues in extent, from Cape St. Anne on the West, to Jamaica Poiyt on the East. On this shore, at $12 \frac{1}{2}$ miles east ward from Cape St. Anne, is the spot and remarkable tree called Little Poov Grande, and $3 t$ miles more to the East is Pow Grande. At a league and a half eastward of the Pow Grande, on the shore, is Jenkins' Village, off which is the general roadstead for large vessels, having 5,6 , and 7 fathoms of water. All the shore between this and Cape St. Anne is bordered with an extensive mud bank.
Bashaw or Turtle Islands.-On a great flat, which extends more than 4 leagues to the N.W. from the western end of Sherboro Island, is a group of eight or nine islets, called the Bashav or Turtle I_{s} les, which are evidently the remains of a considerable tract of land now submerged by the sea. The bank on which they exist also exhibits innumerable ridges, knolls, blind channels, and pools; hut is navigable on almost every part by large boate at high water, and at low water by light boats and canoes.

Directions for Sherboro Inlet have been given as follow:-From off the West end of the Rananas, steer toward the Bengal Rooke S.S.E. $\frac{3}{4}$ E. [S.E. $\frac{1}{7}$ E.] 14 miles, and so as to give them a berth of about a league; having rounded these rooks,
stcer S.E. 2 S. [S.E. by ES.] 5 leagues, taking care to avoid the hard sand bank on the Last, which is steep-to. In running on, you may shoalen your water to 4 fathoms, on the flat of Yallucka River, upon the eastern side, and thence continue the same oourse, 4 leagues further, to the southern bank, making due allowance for tide, whether ebb or flood. The last course will lead to $1 \frac{1}{\frac{1}{2}}$ miles from shore, in about 4 fathoms of water, and without the edge of the bank. You may now run ny along shore, for 2 leagues, to Jenkins, taking care to avoid tho edge of the Middle Ground on the North, which here leaves a channel of only half a mile between it and the shorc.
BANK and SHOALS of ST. ANNE, \&c.-The Bank of St. Anne, which has not yet been thoroughly surveyed nor defined, may probably extend from the parallel of 8° to $7^{\circ} 311^{\prime}$ N., and from long. $13^{\circ} 6^{\prime}$ to $13^{\circ} 32^{\circ}$. 'The northern limit, as shown in the Table, p. 35, is $7^{\circ} 56^{\prime}$; this is the limit to which the bank has been actually surreyed; so likewise the western limit is given in $13^{\circ} 29^{\prime}$, where there are 10 and 12 fathoms of water; but 13 fathoms have been found at 7 leagues more to the westward, upon the general bank of soundings extending from shore; and there is a spot of 8 and 9 fathoms in about $7^{\circ} 56^{\prime} \mathrm{N}$. and $13^{\circ} 48^{\prime} \mathrm{W}$.*
Upon tho Bank of St. Anne are a number of small and dangerous insulated shoals, scparated by channels of $6,7,8$, and 10 fathoms. The bank itself is divided from that of the Turtle Isles by a narrow swashway, having 5, 6, and 7 fathoms.

But it appears that a vessel bound from Sierra Leone to the Windward Coast will clcar every danger by proceeding over the great bank S.W. W. [S.W. by S.] 12 leagues to the parallel of $8^{\circ} \mathrm{N}$. ; and thence, on the meridian of $13^{\circ} 40^{\prime}$ to lat. $7^{\circ} 30^{\circ}$,
 or Bar of Sherboro River, at the S.E. extremity of Sherboro Island.

Captain Mfidgley recommends that "in the wet season vessels should give the St. Anne shoals a large berth to the eastward, as the current, as. well as the sea, runs with great velocity into the bight of Cape Monnt, and vessels which may unfortunately happen to fall in with the land to the northward of Sinou, in the wet season, will find considerablo difficulty in working to the southward. \dagger
When Lieutenant Badgley, with other officers and two boats, in 1826, proceeded from Great Turtle Island, in order to survey the southern part of Sherboro Inlet, they found a good channel, with about 6 fathoms, but the atmosphere was so thick that the object was totally defeated. The colonial squadron was then at anchor at the Shelar, where was formerly the establishment of the infamous James Tucker; but which, the country having beon ecded to the English, by the old King of Sherboro, had been deserted, and he had removed to the River Kittam, about 26 miles from the sea. From the old establishment the French and Spaniards had been in the habit of slipping annually about 20,000 slaves, collected from the three great rivers, Bagroo, Dellit or Jong, and Kittam ; but as, by tho occasion of this torritory, the British authority extended from Sierra Leone to the River Galinhas, the slave trade was rooted out from the Sherboro, the most extensive mart upon the Grain Coast. \ddagger
'The Boom Kittam River runs in a parallel direction with the shore, at a distance from it of 1 or 2 miles. The strip of land between, called General Turner's Peninsula, is 8 leagues in length. and it is terminated by tne Forks, in long. $12^{\circ} 8 y^{\prime}$ W. At $6!$ leagues further to the S.E. is the River Galinhus or Gallinas.
GALLINAS-The bar of this river* is only passable for large boats or small

[^121]cosstin During at the the wh

The beobab 6 leagu river, up by Manna rocks. little R 10 to 1

Fron trees. ings, fr Tartar beariny further
CAF
high hi on cac beach seen 4 when coast t
To f accoun when than t
To 1 point betwe 7 , and 10 fat sea. and h In one er that ;
and bank on the er to 4 fathoms, ntinue the same : for tide, wheabout 4 fathome along shore, for Ground on the d the shore.
nNe, which has from the parallel ait, as shown in sen actually surc are 10 and 12 ore to the west. there is a spot
nsulated shoals, is divided from toms.
ward Const will S.W. by S.] 12 0^{\prime} to lat. $7^{\circ} 30^{\prime}$, to the Shebar,
d give the St. the sea, runs may unfortuthe wet season,

rroceeded from

 ioro Inlet, they thick that the at the Shebar, r; but which, boro, had been from the sea. habit of shipBagroo, Deun tish authority as rooted outat a distance rner's Penin$2^{\circ} 81^{\prime}$ W. At
oats or small

Coast," Jon., arracoon (be. they ascended
r, Deeember,
cossting craft, and in very dangerous during the rains, when it is frequently impasmable. During the dry season it may be generally passed with safety, oxcepting ocoasionally at the full and change of the moon, which has a very marked effect upon the surf on tho whole of this coast.
After passing the bar, the river opens out into a spacious sheet of water, about 3 miles across in every direction, which is studded with islands lately occupied by the elave dealers, and affording very favourable situations for trading factories.
From hence the river runs, in three branches, to the north-westward, to the northward, and to the N.E. The first, during the rainy season, joins the Boom Kittam River, thus affording a direct inland water communication with Sierra Leone; but, in the dry scason, about 8 miles, is too shallow for canoes to pass. Thes next branch runs past the town of Ghindamar (where the king resides), 9 milcs from the sea, and is navigable about 5 leagues for largo canocs. The third branch runs close inside the sea-beach to the S.E., about 4 milea, and then turns suddenly to the N.E. at a place called Soolimane; from hence it is navigable for large canoes about 7 miles. This branch forms the S.E. boundary of the Gallinas territory. To the N.W. it terminates at a place called Casi, on the banks of the first branch, known by two conspicuous round trees, which form the principal landmarks in this quarter. These limits comprise abont 12 miles of sea-coast.
The coast here is very low and remarkably uniform, and for this reason three large baobab trees near the mouth of the Gullinas are an excellent landmarly. At about 6 leagues south-eastward from the mouth of the Gallinas is that of another omall river, the Manna, off which you may anchor in 9 or 8 fathoms: this mouth is shut up by the beach, on which there is always a great surf. It is sometimes called RocManna, from the unusual circumstance of the shore being covered with blocks of black rocks. At 8 miles further eastward, passing several villages or factories, you find the little River Sugury, beyond which is the bight formed by Cape Mount, having from 10 to 14 fathoms of water, with a bottom of black mud.
From the River Gallinas to Cape Mount the coast is very low, and covered with trees. It has a fine sandy beach all the way. At 5 or 6 miles off are regular soundings, from 15 to 18 fathoms, mud and cand, until you arrive at Cape Mount. H.M.s. Tartar, Sir George Collier, anchored in 15 futhoms, muddy bottom, Cape Mount bearing S. by E., and a remarkable large clump of trees North. Merchantmen anchor further in, at 9 and 10 fathoms.
CAPE MOUNT, which may be seen at 9 or 10 lengues off, is a promontory of high hills, projecting into the sea, the highest peak being 1,066 feet above the sea ; on each side the land is low, rather highest on the North side, with a flat sandy beach to the eastward. The Cape itself is distinguished by cliffs, which may be seen 4 leagues off. It is very remarkable, especially in coming from the westward, when it first makes like an island, and contrasts greatly with the low and uniform coast to the West of i it.
To fall in with Cape Mount, you ought to keep in the latitude of $6^{\circ} \mathbf{4 0}$, having, on account of the current which sets toward the shore, frequent recourse to the lead, when you think yourself near the land. In the night you may not approach nearer than to 26 fathoms, unless well acquainted.
To the westward of the Cape lies the Road, into which you may run, until the point of the Cape bears South and ©. by E. There, in the summer season, that is, between October and May, when the weather is generally fair, is anchorage in $\mathbf{9 , 8}$, 7, and 6 fathoms, sandy ground; but it is more common to lic in 15, 14, 13, 12, and 10 fathoms, because the tornadoes and southerly winds sometimes make a very hollow sea. The watering place is near a large tree in front of the outer point of the cape; and here, in the fine season, you may take in water with great facility.
In coming ashoxo with your boat, you must bring a hawser with you, and fasten one end of it to the land, the other boing dropped with the anchor to seaward, so that you may prevent the breakers by it; for you run directly against the flat
beach below the town, without any shelter of banks or cliffs ; in the morning, you may easily get ashore with smooth water. .

To the northward of Cape Mount there is a river of the same name, which has been celebrated for its trade. There is 7 feet water on the bar at low water, and 13 at high water; the current runs very strongly out, and the best time for crossing the narrow bar is at half flood. Between the Cape and the entrance of the River there is good riding in the Bay, during fine weather, in from 15 to 6 fathoms; but from 14 to 12 fathoms should be preferred in the rainy season, and even there it is hazardous, unless provided with the best ground tackle; for southerly and 8.W. winds, in that season, set into the Bight with a tremendous sea and heavy gusts, which raise a violent surf on the shore, that may be heard at a great distance.

Those approaching from the westward by night, without a previous sight of land, must take the precaution of sounding in time, in order to avoid the danger arising from the velocity of the current. As there are 15 fathoms close in-shore, you should not advance hy dark nearer than in 20 or 25 fathoms. The same precaution should be taken during the Harmattan, when the sun is obscured by haze for days together, and the current varies.

CAPE MESURADO lies about 14 leagues S.E. by S. [S.E. by E.] from Cape Mount. Hence its latitude is $6^{\circ} 19^{\prime} \mathrm{N}$., in longitude $10^{\circ} 49^{\prime}$. Between the two Capes the coast is very low, with a white sandy beach, above which the land is covered with trees of varying colourg: About 3 leagues to the northward of the capo is the River of St. Paul, navigable for boats only; but ships may lie off it at pleasure, in from 16 to 6 fathoms, good ground. The depth of 10 fathoms is nearly two miles from shore.

Cape Mesurado, though not so high as Cape Mount, is an elevated promontory, almost perpendicular on the North side, but with a gradual declivity toward the sea on the South. There are regular soundinge, of 20 to 15 fathoms, muddy bottom, at 8 miles off-shore, along which the current sets strongly. At 2 or 3 miles offshore, with the Cape S.E. by S., is a depth of 15 to 10 fathoms, muddy bottom, and a common anchorage. With the Cape bearing N.E., the land appears like an island, with trees rising out of the water to the North; and at 7 leagues off it appears in its insular form, the land on each side being very low.

The lighthouse, a red tower 40 feet high, ehows a fixed light, at an elevation of 240 fret, and consequently ought to be visible at 15 miles off.

MONROVIA, the capital of Liberia, contains about 300 houses, and $2,000 \mathrm{in}$ habitants, and is built on a depression of the ridge which sweeps inland from the Cape.

From its fine situation it is-evidently salubrious, and is far preferable to Sierra Leone. It' is the outlet of the products of the St. Paul to the North, to whica it is connected by Siockton Creek. The settlements of Caldwell, \&o., on the St. Paul, showed every indication of comfort and prosperity ; far more so than in Monrovia. Coffee, apparently, will be the great staple of this part of the country.

The Description of the Coast of Guinea, from the River Gallinas eastward, with directions for the same, is given in the Sailing Directory for the Ethiopic or Southern Atlantic Ocean, Fifth Edition, p. 375, \&c.
e morning, you
ame, which has low water, and ime for crossing ee of the River to 6 fathoms; and even there southerly and sea and heary ard at a great

3 sight of land, danger arising ore, you should ecaution should days together,
E.] from Cape tween the two ch the land is ard of the cape fit at pleasure, arly two miles
d promontors, oward the sea muddy bottom, or 3 miles off: ly bottom, and tike an island, appears in its
n elevation of
and $2,000 \mathrm{in}$ land from the
able to Sierra , to whicn it the St. Paul, in Monrovia.

THE ISLANDS OF THE NORTH ATLANTIC OCEAN.

3.-THE AZORES, OR WESTERN ISLANDS.

THE AKORES, or Western Islands, are nine in number, and named Santa Maria or St. Mary's, St. Miguel or St. Michael's, Terceira or Tercera, St. Jorge or St. George's, Graciosa, Fayal, Pico, Flores, and Corvo. The land is, in general, high ; the coasts steep and rocky.
These islands are said to have been discovered about the middle of the fifteenth century by Joshua Vandenberg, of Bruges, in Flanders, who, in a voyage to Lisbon, was driven to them by stress of weather. At Lisbon, he boasted of his discovery ; on which the Portuguese, in that spirit of enterprise so strongly manifested by them at this period, set sail and took possession of them, calling them Acores, or Isles of Hawks, from the many hawks and falcons fonnd amongst them. It appears that they were entirely destitute of inhabitants, and of every animal excepting birds. The latter were numerous and of various species.
Antonio Gonzalo says, that the great Don Henry, Prince of Portugal, considered these isles as so considerable an acquisition, that he went in person to take possession, in 1449. This was forty-three years before Colombo landed in America. And, it has been affirmed, that the Flemish merchants, on the part of their countrymen, sent a colony thither, many of whose descendants continue in Fayal to this day. Hence the islcs have been also called Flamingos, or Flemish Islands.
The capital of the Azores is Angra, in Terceira, the residence of the civil governor but the general residence or the bishop is in the Island of St. Michael.
The olimate is delightfal ; the air generally clear and serene ; the soil co prolific, that both European and tropical plants arrive at the greatest perfection: the face of the earth is, however, so diversified, as in some places to exhibit, within a mall extent, volcanio hills and productions, gardens of aromatic plants, pastures, vineyards, orangeries, \&c. The greatest inconvenience of these isles is, their having been subject to eruptions and earthquakes; and, in some parts, where the coants are low, the sea has, at times, overflowed the land, and occasioned considerable mischief. Yet, in the cultivated parts, the lava, once a atream of fire, is planted with oranges, lemona, and vines; and the land, formed from the decomposition of volcanic subatances, is sown with Indian corn, small beans, and wheat. The islands still abound in waste lands, fit for the cultivation of hemp, the vine, \&c.
Being generally mountainous, they may be descried from a considerable distance; particularly the peak on the Isle of Pico, notioed hereafter, which may be seen more than 20 leagues off.
It cannot be doubted that this archipelago must be considered an an immenve ridge, on which oraters are thrown up $e 0$ as to form islands. The Island of St. Mary, the only one not situated in the general direction of the others, is not volcanio; no part of its surface appears to have suffered from heat or erruption, subsequent to its formation. The Island of Pico is elongated from S.E. to N.W. in the same manner as all the other islands, St. George, St. Michael, and Terceira; and Florem and Corvo lie exactly in the same direction. Fayal appears to be nothing more than a part of Pico, for the general direction of these islands and their shores perfectly corsepponds; and St. Michael's and Texeeira appear to be connected by an intermediate
range of volcanio formations，as will be subsequently scen．Few places offer such variety of volcanic phenomena as St．Michael＇s ；and the history of the eruptions and earthquakes on and near it give ample proof of the violence of the subterraneous forcew over which it lies．In the desoriptions of the separate islands will be found notice of the principal volcanio phenomena that have been recorded．The readea is directed，for a more complete description of the volcanoes，\＆c．，of the Azore， to an article in the＂Nantical Magazinc＂for 1841，page 752，consisting of extracta from the＂Philosopical Transactions，＂and＂Von Buch＇s Descripcion Phisique＂of these islands．
The popnlation of the Archipelago from the census of 1857 amounte to 241,646 ．
WINDS AT THE Azores．－In the former part of this work，in the section treating on the subject，we have given descriptions of the general phrgomeas of the wind and hurricaner of the Atlantic，and the laws by which they＂pyan to be governed，a deduced from the nomerous and carefnl observations that to te becn made at variou times．In connexion with that system of aerial currents，and rheir perturbations，me have reserved the consideration of that part of the subinct which is connected with the Azores，and their vicinity．It will not be nevessary to rucapitulate any of the principles or statements which have heen before given，but must refer the reader to that division of the subject，as detailed in page $2 i d$ ，and following．
－The following Table shows the mean duration in days of the winds from each quarter，from the results of 10 years＇observations made by Thomas Carew Hunt， Esq．，between Jan．1，1840，and Deo．31， 1849 ＊：

自	告	宽	势	丧	密	$\begin{aligned} & \text { 官 } \\ & \hline \end{aligned}$	咅	$\begin{aligned} & \text { 蓡 } \\ & \text { 曷 } \end{aligned}$		$\begin{gathered} \dot{4} \\ .{ }_{0}^{2} \\ \dot{8} \end{gathered}$					
N．	1.32	1.12	1.18	$1 \cdot 27$	1.62	16	1	$0 \cdot 14$	$1 \cdot 40$	$2 \cdot 15$	2.78	3．52	$7 \cdot 29$	11.07	
N．E．	$7 \cdot 64$	$6 \cdot 18$	6.73	$8 \cdot 80$	10.9	$10 \cdot 1$	$13 \cdot 7$	$16 \cdot 1$	11.6	$10 \cdot 8$	6．84	7.71	60.04	48.0	11504
E．	1.07	0.63	$0 \cdot 66$	1.80	128	$0 \cdot 76$	117	0.30	$1 \cdot 20$	$0 \cdot 62$	0.59	1.72	6.51	$5 \cdot 19$	1170
S，E	$4 \cdot 46$	$3 \cdot 90$	8.03	$2 \cdot 44$	2.44	$3 \cdot 13$	$2 \cdot 73$	4.71	$4 \cdot 94$	$4 \cdot 45$	$3 \cdot 74$	$3 \cdot 60$	20.98	$23 \cdot 17$	44.16
S．．．．：	288	0.95	$2 \cdot 25$	0.79	0.95	$0 \cdot 67$	$0 \cdot 11$	0.08	$0 \cdot 12$	$1 \cdot 51$	1.54	$2 \cdot 0$	$2 \cdot 72$	$11 \cdot 13$	13：35
B．W．	6.46	$6 \cdot 60$	9.01	4.08	$3 \cdot 78$	$4 \cdot 43$	$4 \cdot 63$	$2 \cdot 89$	$8 \cdot 44$	$4 \cdot 13$	6.94	6．32	23.20	$38 \cdot 46$	$61 \% 6$
w	1.16	1.17	1.58	1.51	$2 \cdot 38$	1.61	2.09	1.73	1.01	1.35	1.39	1.52	10.23	8.17	18：40
N．W．．	$5 \cdot 86$	7.04	6.44				32	4.73	6.63	19	$6 \cdot 03$	6 ¢5	39.52	37．11	76.63
Calm	$0 \cdot 19$	0.58	$0 \cdot 12$					$1 \cdot 29$	0.74	$0 \cdot 65$	10	$0 \cdot$	3.51	1.70	$5 \cdot 21$
Surf on －shore	$1 \cdot 13$	$7 \cdot 0$	6．4．		1.15		0.03	$0 \cdot 20$	$2 \cdot 07$	4.42	6.42	7.38	6.65	38．85	45.50

Similar hurricanes to those described in the section devoted to the subject seem to bo prevalent at the Azores，and in some measure to be governed by the same laws． This it．will be very important for the mariner to know，and therefore the following

[^122]observatic interestin ＂Ther after cros of which Atlantic．
＂The and a cha scent gene for every the centre handredth
＂The d centre bri newed，an ing to tho a zone of 60 miles d distance f hundredth miles of r
＂In ard the vice－a winds，bet occurred tical Magd
From th rately obse sions whic general di with the C may every rise of wa checked in of atmosp． identify th work of \mathbf{C} Stream to their diam cane of Oc is about 5 diameter，

With rc the use wl the Azore probable Stream， n the wind would acc
－In th wind remo the air；un
＋The Aug．19tł Dec．1st， 1 March 6th
laces offer such the eruptions and he subterraneous nds will be found ded. The reader \Rightarrow of the Azorea isting of extracts cion Phisique" of
its to 241,646 .
e section treating saa of the wind 0 be governed, as inade at various perturbations, we s connected with tulate any of the ier the reader to
winds from each as Carew Hunh

	宊
11.07	18.36
46.0	11504
$5 \cdot 19$	11%
$23 \cdot 17$	$44 \cdot 15$
$11 \cdot 13$	13*35
$38 \cdot 46$	$61^{\prime \prime} 66$
8-17	18.40
$37 \cdot 11$	$76 \cdot 63$
$1 \cdot 70$	$5 \cdot 21$
38.85	45.60

subject seem to y the same laws. pre the following
observations, by T. C. Hunt, Eeq., the British connul at St. Michael's, will be very interesting: -
"The regularity with which gales anter these meas in the north-west quarter, and, after crossing them, disappear at the mouth-eant, is, a circumntance the knowlodge. of which may be highly serviceable to the commanders of ships sailing acrows tife. Atlantic.
"The centre of a gale, in its approach, always effects a descent on the barometor, and a change in the fall of rain. In ite actual passage over the instrument, the doscent generally reaches 28.50 , from which a rise of one-tenth appears to take place for every 10 miles' removal of the centre; so that the number of miles' distance from the centre of an approaching gale might, perhaps, be indicated by the number of handredths shown by the barometer over the extreme of $\mathbf{2 8 . 5 0}$.
"The difference in the fall of rain* has also its regularity, the approach of the centre bringing a temporary increase, and then a cessation of the rain, which is renewed, and, in a reversed order, diminished on the removal of the centre. A cording to the observations made at this office, there appears to be in every gale of wind a zone of rain about 120 miles in breadth, heaviest on the inner edge, whioh is about 60 miles distant from the centre; that the fall of rain decreases in propo ion to the distance from this line; and that the fall on the inner edge, being abc twelvehundredth of an inch per hour, the decrease is about one-hundredth for every 10 miles of removal.
"In order to follow out the views of Colonel (Sir W.) Reid, the British consul and the vice-consuls at the Azores kept regular drily tables of the direction and fo e of winds, bctween May, 1840, and Nov., 1841 ; and the courses of twenty galen wich occurred were compiled from them, and the details of them are given in the Vautical Magazine,' as before quoted."
From the particulars of these twenty gales, of which the courses have been accurately observed during the years 1840-41, \dagger there apppears to be some general co clusions which may be deduced. The first circumstance developed by the inquiry is the general direction of storms passing across the Azores. The coincidence of this cuiss with the Great Atlantic Current, which is a continuation of the Gulf Stream, which may every day be traced to the neighbourhood of the Azores, and which the suddan rise of water in those islands (where, having been hastened by a gale, it is suddewn checked in any locality by the operation of the wind, accompanied by a diminutien of atmospheric pressure) proves to be sensibly carried beyond them, goes very far identify the Azorean streains with the tropical gales and hurricanes traced in the abie work of Colonel Reid, from the South American coast, along the course of the Gulf Stream to Cape Hatteras, in North.America. There is a further resemblance in their their diameters. In the ehart which Colonel Reid has composed of the great hurricane of October the 10th, 1780, the diameter given to it, in the latitude of the Azores, is about 550 miles. Of the Azorean gales under consideration, four were about this diameter, eleven of about or under 650, and five under 900 .
With respect to navigators, for whose benefft these inquiries are chiefly intended, the use which may be made of this knowledge of the courses, taken by storms across the Azores, is in the direction of vessels which may be reached by them. It seems probable that if a ship were eaught by a violent gale in the current of the Gulf Stream, near the Azores, her best course would be to steer, so far as the veering of the wind would allow, due North or South; that if she stecred to the eastward, she would accompany the galo, and be overtaken by the greater violence of its centre,

[^123]and that by iteering to the West she would sooner meet the centre,por run into a new gale.

Whatever may be the cause of the occasional deflection of the Azorean storms, whether it arises from collision with another storm, or from atmospheric gravitation (the radiation of heat from the islands being always very great), the uniform effect appears to be a diminution of their progressive vilocity, and frequently an increase of their rotatory force.

But an far as these effects can be foreseen, from a knowledge of the deflection (prosuming it always to be accompanied by a slower progression), it is worthy of observation, that the deflection never appears to take a turn to the northward, bat always to the South. If this be true, the safest course for a ship in these gales is to the North, unless there are very cogent reasons for a departure from this presumed rule.

GT. TICEARE'S.-The Island of St. Michael consists of a number of mountains, hill, and declivities, which are evidently the production of volcanic eruptions. The mountains and hills clearly indicate, by their conical figure, and tie cavity at their summits, their being the production of fire, and bear unequivocal marks of the effects of this destructive agent, in an accumulation of lava, scorive, and volcanio sand.

Externally, the volcanoes appear extinguished, but they are supposed still to burn internally and invisibly. Of this, Caldeiras, or fountains of boiling water, in the Valley of Furnas and other parts, are evident symptoms. There have existed three principal craters, whose vertices now form three great lakes, situate toward the centre and the northern and southern portions of the island. From those craters vast mountains have been thrown up; and, in proportion as these ceased to vomit forth matter, partial eruptions burst out, and formed the lateral hills and deciivities, which extend themselves in every direction from the mountains surrounding the lakes. The cessation of fire from the different craters has been attributed to water, which appears to have gained access to each, and suddenly extinguished the effervescenco of its mineral contents; and the fire now seems confined to stations, where it operates only in boiling the water with various degrees of activity and force.

The island, at longth, seems to be of such a structure and confirmation, that the waters pass freely throughout its volcanic caverns, and are casily forced out without shaking or disturbing the earth. Of these extinguished craters, that (the Sette Cidades in the N.W. part of the island is the largest, and is about $3 \frac{1}{5}$ miles long by 2 miles broad. The interior is occupied by two lakes, and the ridge bounding it is nearly of equal height throughout, except where it rises into peaks, and on the N.W. presents a gap between two hills, 1,620 and 1,770 .feet high. The sccond crater is about 3,060 feet high, and is called the Agoa de Pao; it is in the middle of the island, and situated in a large mass of pumice stones. Agoa das Furnas is the third crater, 995 feet high, and in it are the hot-water springs, but it is not so high as that of Alagoa Grande. From Agoa das Furnas the mountains of pumicestone continue higher, forming a continual range as far as the Pico de Vara, the highest of which is 3,560 feet above the sea, and is the only sumnit on the island where sulow is found.

After Gonzalo Velho Cabral had succeeded in cstablishing a colony in the Island of St. Mary, discovered in 1431, he landed on the N.W. const of St. Michael, in 1444, and the extensive plains he saw appeared to him to be so capable of being highly cultivated that he returned immediately to St. Mary to make preparations for colouizing his newly-diseovered country. But when he went there the following year, with everything necessary for the establishment of his colony, what was his surprise whell, in the place of the plains, he found an enormous mountain, which had been clevated on them, with an immense crater. This mountain is called the Alagoa de los Sette Cidades, on which are the two lakes Lagou Grande and Lago Azul, as mentioned before. After the elevation of this great mountain, the island remained tranquil until 1522, when an eruption overturned the two hills Sorical and Rubeal, and entirely destroyed the town of Villa Francn, and 4,000 inhabitants also lost their lives. in 1563, an eruption occurred of the Pico Sapadeiro, and a large current of lava ran
into the Villa Fr as descr mense q some ve In Nove Ponta d West, a the tow tober 5, Fayal d not now also felt valley o fall ocer brina ls at the \mathbf{F} down se here w given in

The follows the yea from th island. ashes, a roasted, Thus a Sabrina sea, whi were dis volume close in learned, three do the capi cliff tov so soon cano as ing up, several the crat 40 fath face of
r mun into a new
Azorean storms, eric gravitation uniform effect I an increase of
deflection (preworthy of obnorthward, but n these gales is a this presumed
of of mountains, ruptions. The cavity at their ks of the effects nic sand.
ed still to burn ; water, in the e existed three ward the centre se craters vast to vomit forth ciivities, which the lakes. The , which appears vescence of its operates only
ation, that the ed out without that (tho Sette miles long by bounding it is id on tho N.W. cond crater is le of thoisland, 8 is tho third s not so high f pumice-stone the highest of where suow is
the Island of bhael, in 1444, ng highly culfor coloniziug ng year, with surprise whell, been clevated oa do los Sette as mentioned tined tranquil fienl, and en. st their lives. t of lava ran
into the sea on the North side. In 1591, seven shocks of earthquakes occurred, and Villa Franca was again destroyded. In 1638, the island to the West was found as as described elsowhere. In 1652, some hills near Ponta del Gada threw up an immense quantity of stones and cinders, spreading destruction around. In 1691, after: some very violent earthquakes, several small islets appeared not far from the coast. In November, 1707, a torrent, attributed to the breaking of a waterspout, fell on Ponta del Gada, and caused great damage. In 1719, a new island appeared in the West, also mentioned hereafter. In 1720, a succession of violent earthquakes injured the towns and villages, and shook down great rocks from the cliffs, \&c. In 1744, October 5, another fall of water occurred, washing down the valleys of Povoagao and Fayal de Leira, carrying a way great parts of two villages. The cause of these.floods, not now unknown, is still unexplained. The great Lisbon earthquake in 1754 was also felt here, but there was no eruption. In 1806, a mass of rock slipped from the valley of the Furnas, leaving a chasm 100 yards in diameter; and in 1811 a similar fall occurred close to the same place. The eruptions of August 11, 1810, and of Sabrina 1sland, June 13, 1811, are described below. In 1838, another landslip occurred at the Furnas. In 1839, December 5, a rise of the sea, like that in 1755, washed down several houses, \&e., on the South coast. The last carthquake which was felt here was that which devastated Tereeira, in June, 1841, of which a description is given in the notice of that island.
The circumstances attending the formation of Sabrina Island are described as follows : the island had proviously been apparently quiescent.* In the early part of the year 1811, a most awful and tremendous explosion of smoke and flames issued from the sea at the distance of half a league from the shore at the western end of the: island. From the depth of about 40 fathoms, in the ocean, issued smoke, fire, cinders, ashes, and stones of an immense size. Innumerable quantities of fish, some nearly roasted, and others as if broiled, floated on the surface of the sea toward the shore. Thus a dangerous shoal gradually formed. \dagger On the 10th of June, the crew of the Sabrina, British sloop of war, obser ved two columns of white smoke arising from the sea, which they supposed to arise from an engagement, and made sail toward it, but were disappointed by the wind's dying away. The smoke continued to aseend, with volumes of flame, and they then conciuded it was a voleano. Next day they were close in with the land of St. Michael, and found the volcano still raging. They learned, on the island, that smoke was first observed on the 13th of June; two or three days previous to which there had been felt repeated shocks of carthquake in the capital of St. Michael, which threw down several cottages and portions of the cliff toward the N.W., so that destruction was feared on the island; but these ceased so soon as the volcano broke out. On the 18th, the Sabrina went so near to the volcano as she could with safety, and found it still raging with unabated violence, throwing up, from under the water, large stones, cinders, ashes, \&o., accompanicd with several severe concussions. About noon on the same day they observed the mouth of the crate. just showing itself above the surface of the sea, where there were formerly 40 fathoms of water. At three p.m., same day, it was about 30 fect abovo the surface of the water, and about a furlong in length. On the 19th they were within 5

[^124]or 6 miles of the volcano, and found it about 50 feet in height, and two-thirds of a mile in length, still raging as before, and throwing up large quantities of stones, some of whioh fell a mile distant from the volcano. The smoke drew up several waterspouts, which, spreading in the air, fell in heavy rain, accompanied with vast quantities of fine black sass, that completely covered the Sabrina's decks, at the distance of 3 or 4 miles. On the 30th they proceeded on a cruise, leaving the volcano about 150 feet high, and atill raging as formerly, and continuing to increase in size. On the 4th of July they again visited it, and found that a complete island was formed, and perfeetly quiet. The captain and several officers landed upon it, and found it very steep, and its height from 200 to 300 feet. It was with difficulty they were able to reach the top.

On the 17th of Jnne, Captain Tillard, of the Sabrina, accompanied by Mr. Reid, the British consul, with two other gentlemen, proceeded overland to the cliff nearest to the volcano; and which was between 300 and 400 feet above the level of the sea, The first appearance it presented was that of an immense body of smoke revoiving in the water almost horizontally, in varied involutions; when suddenly would shoot up a column of the blackest cinders, ashes, and stones, in form like a spire, and rising to windward at an angle of from 10° to 20° from a perpendicular line. This was rapidly succeeded by a second, third, and fourth, each having great velocity, and overtopping the preceding one till they had attained an altitude as much above the level of thio eye on the cliff as the sea was below it. These bursts were accompanied by explosions of the most vivid lightning, with a noise like tis continual firing of cannon and musketry intermixed; and, as the cloud of smoke 1 ed off to leeward, it drew up the waterspouts, above mentioned, which formed a beautiful and striking addition to the seen.
Subsequently the islet fell by degrees into the sea; and, in the middle of October, no part was left abovo water ; but a dangerous shoal remained in the place which it had occupied. In February, 1812, smoke was discovered still issuing out of the sea near the spot." In Junc, 1841, Captain Vidal, in H.M.S. Styx, anchored in 16 fathoms, on the site of Sabrina Island, and found that the least water thereon was 15 fathoms.

St. Micinel's contains one city, five principal towns, fifty-four parishes, and about, in 1840, 30,098 males and 41,711 females, total 80,809 , living in 19,726 houses. The coast is very bold, and may be approached without fear in almost every part, the N.W. side excepted. Its military strength consists of 300 or 400 troops, with a militia of several thousand peasantry, whose arms are the pikes with which thoy drive their cattle. The principal fortification is the castle of St. Bras, which is close to the sea, and the western end of the city of Ponta del Gada. It is mounted with 24 pieces of canon, but few of which are capable of scrvice. A league to tho castward are two small threo-gun forts, insufflcient from decay and neglect. The island, notwithstanding, has many strong local holds; and several of the hills and piasees, if judiciously fortified, would be impregnable.
The landed rental is estimated (1851) at $£ 160,000$ a year: it oxports 38,000 quarters of corn, one-half to Ireland, valued at $£ 60,000$; and 100,000 London size boxes of oranges to England (with the exception of about four cargoes sent to the United States), valued at $£ 40,000$. In 1801 the value of the fruit exported was $£ 10,000$, and in 1850 at about 05,000 . In 1852 the orange erop is expected to amount to 150,000 boxes; value, $\mathbf{£ 6 0 , 0 0 0}$. The number of vessels calling to trade annually is 250 British, 150 Portuguese, and 10 foreigners.
The City of Ponta del Gada is tho ehief seat of commerce, and contains 20,000 inhabitants. This town appears exceedingly pleasant from the offlag. There is a mole for the protection of small vessels, but those of greater burden compelled

- About 15 leagues to the wentward, a voloano, which hav appeared in 1638, broke out from the sea in 1719, and disappeared in 1723. A dopth of 80 fisthoms was afterwards found on the spot which it had occupied. But see the description of Terceira for this voleanic shoal.
to ride render the sq numbe use it ; loading least, i gales. the cas The affords North in dep Franc vessels
Sт. rocks N.W. a mile preval in hea ward, land a
On very u like m The in by ap adorne corn-f afford with d

Th groun S.s.E
produ
of the
two-thirds of a of stones, some neveral waterith vast quapti; the distance of leano about 150 ze. On the 4 th rmed, and perdit very steep, e able to reach

1 by Mr. Reid, he cliff nearest vel of the sea. ce revolving in rould shoot up \Rightarrow, and rising to is was rapidly id overtopping he level of the nied by exploof canion and d, it drew up ng addition to
le. of Oetober, place which it ut of the sea achored in 16 hereon was 15
parishes, and ing in 19,726 a almost every or 400 troops, 8 with which Bras, which is t is mounted league to the veglect. Tho the hills and

38,000 quaron size boxes 0 tho United $£ 10,000$, and at to 150,000
ually is 250
and contains ting. 'There n compelled
to ride in an open roadstead. By deepening and enlarging the harbour, it might be rendered capable of receiving vessels of a considerable draught; and, by excavating the square of St. Francis, and cutting a canal between it and the mole, a large number of vessels might be accommodated. As it is, vessels of burden cannot safety use it ; for they would risk the danger of slipping their cables, while loading or unloading, and, perhaps, not be able to recover their station for several weeks; or, at least, not dare to attempt its recovery during the prevalence of strong southerly gales. It has been said in former years that a light was shown here, but it was not the case, and it is now stated that a light is proposed for South Clara fort.
The roadstead and harbour of Ponta del Gada are, however, the best that the island affords. The place next consequence is that called Ribeira Grande, one the North side of the island; but here is no anchorage; and, having no harbour, it is dependent for its commercial supplies on the towns on the South side, Villa Franca, which is on the latter, has a very inferior anchorage, and that for small vessels only.
St. Michael, bold all round, may be approached without fear, as there are no rocks or dangers more than a furlong from the shore, excepting some rocks at the N.W. end, and the volcanic shoal, already described. The former extend about half a mile from the Bay of Mosteiros, near the north-wentern point. The winds most prevalent, from October to April, are from S.W. to N.W., which frequently come in heavy squalls, particularly from the northward. In approaching from the eastward, Ponta de Galera, the sonthernmost point, should have a good offing, as the high land above it ofton occasions a calm, and there are some rocks off the point.
On approaching the N.W. end of the island from the westward, the appearance is very unpromising, as it presents barren mountains of stupendous bulk, with a coast like many ramified pillars of basalt, exhibiting, at top, a few trees of stinted growth. The impression made by a scene of rough and craggy cliffs is, however, soon dissipated by a pleasing contrust on the southern coast, as this presents a beautiful acclivity, adorned by luzuriant vegetation. Open pastures, bounded by woods, vineyards, and corn-fields, interspersed with orange and lemon trees, everywhero meet the eye, and afford a landscape, extensive and various, that will always, in clear weather, be seen with delight.*

Outline of the land over Ponta dol Gada.
The ROAD of PONTA DEL GADA, off the principal city, has good holdingground, on which ships may ride safely, excepting during gales. from W.N.W. to S.S.E. Should a vessel be forced to quit the anchorage in winter, by a southerly

[^125]gale, it will be best to round the western end of the island, and await a ahift of wind from the N.W., which commonly succeeds a S.W. wind. Thus may the roadstead be easily regained; but, by running to the south-eastward, it may be ten days, or more, before you can beat back to the road. In beating up, keep close in shore, only avoid. ing some rocks, which lie near Ponta de Galera. Fresh water is easily procured in the craft of the island.
In 1846, it was announced that the following signals had been established and shown from a flagstaff at the custom-house quay:-1. A red flag--vessels at anchor should immediately weigh, on account of the weater. 2. A white flag-vessels in sight may safely make for the anchorage. 3. A red flag with white border-vessels must not send their boats on shore, landing being dangerous.

It was also stated, that four buoys had been laid down in the anchorage, which would considerably reduce the risk of vessels leaving their anchors and chains behind them when they leave the roads.

Those coming in on the northern side of the island, must be cautious of not getting embayed near Ribeira Grande, as there is no good anchorage on that side in case of a shift of wind.

The ROAD of VILLA FRANCA is sheltered by the Porto do Ilheo, a remark. able volcanic rock, haring a circular basin in its centre, with an entrance to it on the N.E., fronting the town of Villa Franca. The entrance of this basin has 7 feet of water, and is just broad enough to admit a small vessel. The basin is about 100 fathoms in breadth, and has had a depth of from 8 to 18 feet; the bottom of sand and small stones. This place is resorted to by small vessels for the purpose of careening, \&o. It affords shelter from gales between West aad South; but, as a part of the S.E. aide is low, the wind from that direction throws a heavy swell into into it, and renders it dangerous; and vessels caught with this wind must be scnttled, as the only way to save them. Not more than four vessels can lie with safety on the outside, in winter, under shelter of the rock on the N.E., where there are 4 and 5 fathoms of water. The ground near the town is foul and dangerous; but it is stated, that a ship may lie in 8 or 9 fathoms, between the town and islet, by fastening a hawser on shore.*

The Porto do Itheo is a great natural curiosity ; it having been originally a volcano of great height, whose apex has fallen into the caverns beneath, and forms the basin. Its appearance is extremely rugged and irregular. On its South aide is a remarkable defached rock, distinguished by the name of the Pyramid. \dagger

Of Villa Franca, Tofiño says:-"It is situated on a beach, which forms buta very small bight. The channel between the islet (Ilheo) and coast is of the width of 3 cables' length, or thereabout, and is its principal anchorage; it has 10 and 11 fathoms of water, sandy bottom, and ressels moor North and South, with a hawser on shore, on the islet; but the latter, owing to its diminutive size, does not shelter a vessel from the wind sea, between E.S.E. by South, to S.S.W. The town is capacious ; and water, with all kinds of provisions, may be had here."

The breakers seen to the N.E. of St. Michael's will be found described in the next section.

[^126]Don raria, jects frot of a leag heavy se serves fo st its su the other

Norti Bretanhs at the bo Maffa, w Withir Bretauh The V provision sea is ver
PORT North sic stated th depths, a there, I with the these ass "The between tions tow fectly sma depth var itself, the to disemb first, the snd, secor
The N [S. by E but it is between very rem
The di haze whi in explai Midgley N.E. by and fine and alth of the la The abov of the is could not over it so in sight, nearer to good sigl

[^127]a shift of wind he roadstead be 1 days, or more, ore, only avoid. ily procured in
established and essels at anchor flag-vessels in border-vessels

chorage, which

 ors and chainss of not getting side in case ofa

Theo, a remark. nee to it on the has 7 feet of a is about 100 om of sand and of careeniog, a part of the into into it, and led, as the only the outside, in ad 5 fathoms of s stated, that a ag a hawser on
inally a volcano orms the basin. is a remarkable
ch forms buta f the width of and 11 fathoms wser on shore, helter a vessel capacious ; and
ed in the next
urths of a mile leanic, but hat
, вayn:-" The onglomerate of side it seems There are cultionly potatoes a 3 to 4 feet in

Don Vincente Tofino, in his description of St. Michael's, states that Point Ferraria, the westernmost point of the island, is high and sloped, but a low point projcots from it into the sea, so as to form a rocky ridge to the S.W. At the distance of a league from land this ridge has over it from 7 to 10 fathoms of water, and a heavy sea rises over it, very high." The little harbour of Mostrinos, to the N.E., serves for boats only. Of the islets here, the largest is high, sloped, and smooth at its summit, with an aperture, through which the sea passes-from one side to the other.
North Side of the Island.-Between the Ponta dos Mosteiros and Ponta da Bretanha the land of the coast is high and rocky, and it forms the Bay of Joam Bom; at the bottom of which appears a very sharp-pointed mountain, called the Pico de Maffa, which serves as a very useful mark for ascertaining the coast.

Within the Ponta da Bretanha, and extending eastward, is the long village of Bretanha. The country here is highly cultivated, and pasture land.
The Villa da Ribeira Grande, already noticed, is rich, stored with all kinds of provisions, and abounds-with good water, but landing is practicable only when the sea is very smooth.
PORT CAPELLAS.-The following description of this small harbour on the North side of St. Michael's is by Mr. Hunt, the British consul :-" Persons having stated that the bottom of the North side of St. Michael is foul in the anchoring depths, and that no vessel would be likely to recover her anchor if she brought up there, I thought it may duty to take the earliest opportunity of proceeding thither, with the agent for Lloyd's at this port, for the purpose of ascertaining the truth of these assertions.
"The result of our survey was, that at about half a milo distant from the shore, between Ribeira Grande and Capellas, there is a line, which, with occasional projections towards the land, separates the foul and stony bottom of the coast from a perfectly amooth and firm bed of fine sand, sloping to seaward; that, along this line, the depth varies from 25 to 35 fathoms; and that, from the rugged nature of the coast itself, the small port of Capellas is the only part at which it would be safe for boats to disembark." In a small plan, also by Mr. Hunt, the marks for anchoring are, first, the outer point of the port on with the Morro of Rio Grande, bearing E. by S.; and, second, Point St. Antomio on with Point Minho.
The N.E. Point of the island is Ponta da Ribeira; at $1 \frac{3}{4}$ miles to the S. by W. [S. by E.] from this is the Ponia del Arnel, having a small port of the same name, but it is unsheltered, and the bottom rocky. The two points are of equal height, but between them is a slender bay, with sloped rocky land, in the middle of which is a very remarkable glen, wherein is a small river.
The distant view of St. Michael's is sometimes deceiving, in consequence of the haze which frequently covers the land; and the following observations will be useful in explaining any uncertainty which may be felt in making this island. Captain Midgley says:-"On the 26th of September, 1840, at daylight, I hauled up on a N.E. by E. course, by compass, to make St. Michael's, with a moderate S.S.E. breeze and fine clear weather. At noon saw the West end of the island bearing N.E. $\frac{1}{\ddagger}$ E., and although the weather was apparently clear in every other part, a small portion of the land could only be seen, the remainder being covered with clouds and haze. The above bearing and observed latitude placed the ship 31 miles from the West end of the island. At three p.m. saw the eastern extremity of the land distinctly, but could not make out the land in the contre of the island; indeed, the haze which hung over it so completely deceived me for some time, that I considered rwo islands were in sight, and that I must have made some mistake in my observations; but, on drawing nearer to the land, as the sun approached the horizon, the fog dispersed, and I had a good sight of the centre of the island also. After sunset, the evening was fine, with

[^128]corene clear weather. At eight p.m. the light of Ponta Ferrarla was seen at 10 miles off-but such a light! had it not been marked on the Chart, I could not have bu lieved it reffected from a lighthouse established for the direction of shipping-the light wws really miserable : and, as it was not shown until long after every trace of daylight had disappeared (for the weather was quite clear, and a careful look-out kept for it); the light which was seen might have been reasonably aupposed to be that of some fisherman or passing vessel. (It has since been stated that no lights are exhibited.)
"On December 31st, 1841, I intended to pass to the southward of St. Michael', but a scant wind obliged me to bear np for the West end of that island, on passing which it had again the appearance of two separate islands, with well-defined extremities to each, the land in the centre being covered with fog and haze. When seen from the northward, on the following day, it had gain the same appearance, that of two separate and apparently well-defined islands."

ISL空 OF SI. MARY.-The preceding description of the appearances of St. Michael's will apply generally to St. Mary's, and the other islands. The town is on the South side, toward the West, on a bny, in which there is an islet; and between this island and the land is the anchorage, with a depth of 6 and 5 fathoms. For the position of the town and the chief points of the isle, see the Table.*

St. Mary's has a town and three villages, with about 4,500 inhabitants. Its chiel productions are wheat and barley, of the firat quality, with wine and cattle; but only sufficient for its own consumption. It has water in abundance, but of wood little, and a scanty proportion of fruic and vegetables.
"The Island of St. Mary is abont 7 miles in its greatest, and 5 miles in its smallest, diameter. It has nearly in the centre the double-peaked mouniain of Pico Alto, 1,889 feet in height, which falls on the East and West sides to a shelving base of about a mile in breadth, and 850 feet above the sea. To the North and South it throws ont a range of undulating heights, which terminate at the sea in lofty mural oliffis of moje than 200 feet elevation. The East aide of this range is covered with hills, diminishing in altitude as they recede from the centre, and intersected by numerous gorges of increasing width and depth, the channels by which the heavy rains of winter reach their points of discharge. The Went side is a slightly inclining and undulating plain, also out by ravines, terminating in cliffs more than 100 feet high. The aspect of St. Mary's is therefore on all sides perfeetly bold; the central peak distinct ${ }_{i}$ the subordinate range high and of varied outline; and the coast abrupt, precipitom and based by the uasual accompaniment of fallen massen.
" In its geology, St. Mary's ts not like the other islands, where the surface of recent volcanic matter conceals whatever may have been their original constitution, or the progress of their growth. It is of trap formation, and contains in its beds of marine shells proofis of its elevation from the sea, but there are some points of similarity in its structure to that of St. Michael's ; this is also the case with respect to Madeim, and atill more to Sicily." \dagger
"On the 31st of Decembel, 1841," says Captain Midgloy," at sunrise, with very olear weather, I made 'St. Mary's,' bearing E.N.E. by compass, distant 45 miles, at whioh time the land appeared from the deck to be like two small well-defined pape, rising out of the water olose together; but on a nearer approach on the same bearing it appeared like a saddie land, which appearance it retained until the summits of some of the lower hills became visible."

[^129]seen at 10 miles could not hare ishipping-the or every trace of careful look-out supposed to be hat no lights are
of St. Michael', land, on passing well-defined ex nd liaze. When ome appearance,
cearances of St. The town is on et; and betweea thoms. For the
itants. Its chief and cattle; but ce, but of wood
s in its smallest, in of Pico Alto, shelving base of th and South it ea in lofty mural is covered with rsected by numeeo heavy rains of nclining and nn0 feet high. The al peak distinct; ept, precipitom,
surface of recent stitution, or the w beds of marine of similarity in pect to Madeim,
rise, with very int 45 miles, at ell-defined papes he same bearing ummits of some
the proximity of with hot water, a peacock's tuil
ff the Royal Geo.

Ponta Do Castalio, the S.E. point, in high, and has a break, whioh forms a peak, in the shape of a tentry-box. A rewel may anchor with this point 8.W. by S. [S. by W.], and close to it in 10 fathoms, bottom of sand.
On the Easteran Coast, at $2 \frac{1}{2}$ milem N.N.E. [N. 2° W.] from Pta de Castello, in the Ponta dos Codros, which is likewise high; between these is a emall point, of which is a low rock, at 3 or 4 cablen length from the coaot, callod Mrutha Roch, but betweon it and the coast is a clear passage of 12 fathoms, in mid-channel, at halfflood.

At N. by W. [N.W. by N. $14 \frac{4}{4}$ miles from Pta dos Cedros is Ponta dos Matos : between is the Pta. de la Ferteira, with the Islet and Port of San Lourenzo. The point is is high and remarkable, when near the coast : the islet is likewise high, and, on the eastern side of it, has a cave, into which the sea enters, and where a boat may be sheltered.
The Port of San Lourenzo is formed by the Islet and Ponta dos Matow, which are a full mile distant from each other. The bottom is sandy, and between the points is a depth of 10 fathoms, increasing gradually outward, but the depth of anchorage should not be less than twenty fithoms. Water may be readily obtained here by making hollows, or small pits, in the sand on the beach, where the least excavation produces water of the best quality. There are several houses and a church close to the beach.
The Ponta das Lagoinhas is the N.E. point of the island. The Islet Lagoinhas, which lies off this point, is high, and sloped like a mitre; and, on being seen, in sn East or West direction, exhibits a small level point,' extending a little way into the sea. A rock, lying between the islet and land, obstruets the passage to large vessels.
The Nortr Sidz of the island affords neither shelter nor anchorage; the whole of the western side is low and uniform.
The Port and Town are sitnated, as already noticed, on the 8 . W. side of the island. The bottom here is sandy, and in some parts rocky, with from 10 to 4 fathoms of wster. The rooky part is on the western side, and the eastern is the clearest. The Ponta da Marbao is the easternmost part of the bay, and this, with the next peint to the eastward, Malbusca, form a larger bay, divided into two parts by a black point, Pedrera. The coast hither, from Point Marbao, is the most regular, and is called Figueral; on the top of it is a remarkable rugged mountain, but it is not so high as those on the North side of the island. Ponta de Malbusca is high, and stands at a distance of two miles to the westward of Ponta de Castello, the S.E. point of the island.
Theroad of St. Mary is open, and exposed to sonthern gales. On this account it is resorted to, in summer, by small vessels only. In order to be ready for a start, it is proper to anchor to the S.E. of Marbao Point, opposite Figueral, already described. The best, anchorage, known to the pilots, is about a mile from the coast, in a line with Malbusca Point, and with the castle at the S.W. part of the town of St. Mary entirely open of Marbao Point. Here is a depth of 36 fathoms, bottom of sand; but, at a short distance eastward, the gronnd is foul. Hence it is that Port San Lourenzo, on the N.E. side, is considered as the best anchorage about the island. At either place refreshments may be obtained, as at the other islands, with the addition of partridges, which abound here.
THE FORITIGAS BAIK ATD ROCKS lie N.E., true, from the N.E., and ncarest, point of Santa Maria, 19, miles distant." It is formed bv a submarine

[^130]mountain of very irregular elevation; and which, traced to the depth of 200 fathoms, was found to extend $6 \frac{1}{2}$ milem N.W. to S.E., by about 3 miles in greatest breadth.
Near its western margin there is a narrow cluster of black rocks, known as the Formigas, (or $A n t s$), which are about 800 yards in length by 150 in extreme breadth; their reitotive direction being N. 25° E. and S. 25° W., or North and South, true. The eonthernmost of them, for about 350 yards, forms rather a closely connected mase, Having a small bey on the West. The northern ones are more separated from ench other, and all are of comparatively little elevation, but the profile exhibits a few hummocke. 'I hat on the southern extremity, which is 27 feet above low-water springs, and is in lat. $37^{\circ} 16^{\prime} 14^{\prime \prime}$ N., long. $27^{\circ} 47^{\prime} 6^{\prime \prime}$ W. Variation, August 17 th and 18 th, 1843, $25^{\circ} 17^{\prime} \mathrm{W}$.
The most elevated rock of the group, named Hormigon, by Tofiño, is 35 feet in height, and stands on the eastern side, about 200 yards from the northernmost rock, and somewhat more isolated than the others, and having an inclination to the south. ward.

With smooth water there is no difficulty in landing, particularly on the southern rocks; but in strong winds or a high swell the sea rolls over them all, leaving a blank naked surface entirely devoid of vegetation. At 130 yarde South of the sonthern Formiga is another small rocky shoal patch, visible at low water, the channel between having 5 to 15 fathoms. Again, 600 yards Sonth of the South . Formiga is another small rocky patch, having $4 \frac{1}{\frac{1}{2}}$ fathoms on it at low water. It is steep-to on all sides bnt the North, where it is connected with the rest by irregular depths of 8 to 14 fathoms.

On the Notth the Formigas may be approached within a few yards, but a narrow ridge runs out 400 yards with varying depths, but no danger. It has 18 fathoms on its outer enld, and immediately drops on to 30 and 50 fathoms. On the East and West the Formigas are quite clear, with deep water close up to them; on the West the bank exterids half a mile, but all very deep water.*

Tofiño thus describes them:-"The Fonmigas are some rocks which navigators have considered as extremely dangerous, imagining a great part of the space hereabout to be strewed with sunken rocks, and therefore to be avoided; but, having examined these dangers, it is proved that the whole of them are visible, concentrated, and clear, and that vessels of any burden may steer for them, in order to pass on the North and South side, as may be most convenient."

Other rocks also exist, as shown in the next paragraph, at the distance from them of ahout $3 \frac{1}{2}$ miles to the north-eastward. We derive our knowledge of the latter through the favour of Captain Livingston.

Dollabarats' Shoal.-To the S.S.E. of the Formiga there is a danger, which was shown on a chart of the Atlantic Ocean, 1766, but afterward omitted in other charts, from want of positive information as to its existence. This shoal was seen by P. Dollabarats, commander of the ship La Marie de Seboure, in 1788, on his 1 iturn from Martinique to Bayonue. On the 7th of March, at 3 p.m., when about to double the Formigas, at the distance of three-quarters of a league, Le descried a breaker to the S.E. of his ship, which appeared to extend a league true North and South. He observed; that it lies S.E. $5^{\circ} . S$. (true), at the distance of $1 \frac{1}{2}$ leagues from the Formigas.
sextante perfectly confirmed the true bearing obtained with the theodolite, I was unwilling to think Tofino could be in error. I therefore landed again the next afternoon a littlelater, to have a lower altitude, and that second day's result was Punta Castello S. $29^{\circ} 2^{\prime}$ W., and Pieo Alto S. $40^{\circ} 36^{\prime}$ W.; Tofno or his people are therefore in orror." This correction will place the danger about 3^{\prime} of longtitude to the eastward of its assumed position, and in the aame latitude.

- Account of the Formigas Bank, by Captain Alox. Vidul, R.N., Journal of tho Royal Geographical Society; vol: xix., 1848, p. 160 .

A ne atruck 0 April, 18 water in saved by Capta writes:anxious we fell i we saw from the migas an

In cons zette; the Min been dis Formiga Capta "Dollab is in lat. boats. water. springs marked bright 8 extends varying The Dol weather

Tolld Portsmo by some rocks, nc show oc thinks, to West. in sight,

The b seen sin Mr . Fer by comi

Capte states t served f bore. W There a
Notw not fou set the first ins miles is reachin quent t obtaine danger Aitkin coverir
depth of 200 ile in greatest
known as the streme breadth; outh, true. The connected mase, rated from enoh bite a fow hum. -water springs, 17th and 18 th,
is 35 feet in thernmost rock, on to the south.
n the southern leaving a blank of the sonthern hannel between niga is snother to on all sides pths of 8 to 14 .
, but a narrow 18 fathoms on on the East and ; on the West
aich navigators tho space hereut, having ex, concentrated, to pass on the
nee from them ge of the latter
ger, which was in other charts, as seen by P. , on his isturn bout to double d a breaker to th and South. gues from the

I was unwilling on a little later, 29${ }^{\circ} 2^{\prime}$ W., and correction will ion, and in the
al of tho Royal

A new and very leautiful brig, the Zillah, Maitin; of Dundee, bound to Hayti, atruck on a sunken rocis "off the Formigas," 10 o'clock in the night of the Oth of April, 1832, and was abandoned at 3 .p.m. o. © next day, having then 7 feet of water in the hold. About midnight ghe was seen to go down. Crow picked up and saved by the Morley, of London.
Captain J. D. Markland, of H.M.S. Briton, in a letter dated 20th February, 1832, writes:-"I hove-to fori the night between St. Michael's and St. Mary's, being anxious to see the Formigas Rocks; and soon after daylight, with a thick morning, we fell in with a very dangerous shoal breaking heavily, and as the fog cleared away we saw the Formigas. When the rocks and the shoal were in one, the shoal bore from the rocks S.S.E. about 3 miles. This must be the Dollabarate' Shoal. The Formigas are properly placed."
In confirmation of this statement, the following appeared in the shipping Gazette :-Notice to Mariners.-Lisbon, Dec. 6th, 1843. A notice has been issued by the Minister of Marine, to the effect that a shoal, with 11䨐 feet of water on it, has been discovered about 4 miles to the south-eastward of the "Formigas," or Great Formiga Rock, in the vicinity of the Azore Islands.
Captain Vidal has set the question at rest, and has accurately fixed its position. $"$ Dollabarats' Shoal bears (S. $44^{\circ} E$.), true, from the Formigas, distant $3 \frac{1}{3}$ miles, and is in lat. $37^{\circ} 13^{\prime \prime} 30^{\prime \prime} \mathrm{N}$. We anchored close to it, ana scoured the ground with our boats. It is a fearful danger : the least depth we found on it was 11 feet at low water. "It consists of two or three rocky heads or knolls, which at low-water springs have only 11 feet of water on them. At that time of tide their position is marked by several large white patches, which may be distinctly seen, especially so in bright sunny weather. The shoal is near the southern edge of a rocky ridge, which extends from it N. $15 \frac{1}{\circ}^{\circ}$ E. $1 \mathbf{6 - 1 0 t h}$ miles. The soundings over it are most irregular, varying from 14 to 50 fathoms at its edges, but there are no actual dangers on it. The Dollabarats' Shoal is a very insidious danger in smooth water, but in stormy weather the sea breaks over it with great violence."
Tollocer Reefs.-Iu 1808 Captain. William. Tulloch, of the brig Equator, of Portsmouth, New Hampshire, on a voyage from Madeira to St. Miehaels, was alarmed by some of his erew seeing breakers. He counted distinctly twenty-one heads of rocks, none of which appeared to have much water over them, and two of the rocks show occasionally above water in the wash of the sea. Their extent, the captain thinks, did not exceed half a mile from North to South, and was still less from East to West. They bore E.NiE. by compass from the highest rock of the Formigas, then in sight, distant about 10 miles, and appeared very black below water.
The breakers on the Tulloch Rocks have been stated to have been several times seen since 1808; among others, by the Ayrshire, bound from the Clydo to Demerara. Mr. Ferguson, the mate of that ship, gives their situation as about nine miles E.N.E., by compass, from the Formigas.
Captain J. Henderson, commanding the ship Fortescue, from Mauritius to London, states that he saw the Tulloch Cocks on the 17 th of April, 1829 . Breakers were observed for half a mile East and West. The Greater Formiga and breakers in one bore. W.S.W. (by compass), the former about 4 leagues; and the latter 2 miles distant. There appeared to be several heads near the surface of the water.
Notwithstanding all that has been asserted as to the existence of this reef, it was, not found by Captain Wilkes, U.S.N., in 1838 ; and Captain Vidal, R.N., in order to set the question of its existence in some better light, sought minutely for it. In the first instance, the steamer was started E.N.E. from the Formigas, and carried out 14t miles in that direction, sounding, at frequent intervals, with 200 fathoms, without reaching the bottom. She returned, traversing across this bearing. On three subsequent trials, with all caution and look-out, no signs of shoal water or soundings were obtained. "We must express our opinion," says Captain Vidal, "upon this reputed danger, as formerly upon the apparently well-uuthenticated statements relative to the Aitkin Rook. It looks very like a whale, but, seeing the difficulty there is in discovering small rocks beneath the surface of the ocean, we by no means presume to :
ameert that Tulloch Reef does not exist, but we entertain a very decided oplaion that it will not be found in the position which has been assigned to it." It is again noticed hervafter, among the ahoals of this part of the ocean.

Volcanoes between Terceira and St. Michaer's.-It is stated that, in 1719, a volcano appeared at 15 leagues to the westward (query, north-west) of St. Michael', and disappeared in 1723, and was supposed to cocupy the situation of that which had appeared in 1638. It is also stated, that in 1720 an island appeared at the S. W. ex: treme of St. Michasl's, ahont a mite from shore; this, perhaps, is connected with the other statement, but is not very circumstantial. Bnt we have the following accounts of this occurrence:-Mona. Ségur Dupreyon has found some documents relating to it in the French colonial archives; the frrst states that at the end of 1720, a volcano broke out at 28 leagues off St. Michael's, towards 'Terceira, which formed two shoalh. A second statement affirms, that it ejected large quantities of pumice. A plan was also forwarded to France of the new islanded, though it could not be approached, in consequence of the jets of bniling water which were thrown upwards of 120 feet high. The consul announced that, on July the 7th, 1722, this new island had sunk down, and conld only be distinguished by breakers.*

In the "Philosophical Transactions" is a much more complete account of this volcano. It is dated May 12th, 1722. In that communication, it is described as lying 17 leagues S.E. from Terceira. "The fire broke out on November 20th, 1720, in the night, and the prodigious noise it made sansed an earthquake, which shattered down many houses in the town of Angra and places adjacent, to the great terror of the inhabitants." The governor went to the island a month afterwards. "In the afternoon, we made an island all fire and smoke; we continued our couise till the ashes fell on our deck like hail or snow all night. We bore from it, the smoke and fire roared like thunder or great guns." "Prodigious quantities of pumice-stone, and half-broiled fish, were fonnd floating on the sea for many leagues round the island, and abundance of sea birds hovering about it." "This island is almost round, and supposed to bo about 2 leagues in diameter. By good observation, it is $38^{\circ} 20^{\prime}$; its long. $26^{\circ} 33^{\prime} . \dagger$

More recently a dangerous shoal has also been reported to exist between Saint Michael's and Terceira, fen at the latter end of 1848. These notices were transmitted by H.M. consul, ':3. C. Hunt, Esq., to Lloyd's. In substance they are as follow:-Benjamin Pratt, oi the William, on December 31, 1848, saw breakers, mast high, evidently caused by a shoal, and not by a floating mass. The observations then taken place it in lat. $38^{\circ} 16^{\prime} \mathrm{N}$., and long. $\mathrm{D}^{\circ} 41^{\circ} \mathrm{W}$. The next is the declaration of Victorino Falcao, of the Tres Amigos:-On•December 31, 1848, saw a shoal where the sea broke the height of a ship, at intervals of about ten minntes. By calculation it is in lat. $38^{\circ} 18^{\prime} \mathrm{N}$., and long. $28^{\circ} 50^{\prime} \mathrm{W}$. The third is the declaration of George Perkins, of the Plymouth:-On December 25, 1848, I saw the sea breaking heavy at the distance of $2 \frac{1}{2}$ or 3 miles to N.N.W. A heavy sea was running, and the water broke 60 feet high in different places, at intervals of abont ten minutes, as if on an extended shoal, having several heads. It was certainly not a floating obstruction; I consider it a narrow reef, about a mile in length, running from N.N.E. to S.S.W., about 40 miles W.N.W. IW. (by compass P) from the N.W. point of St. Michael's.

In Mr. Hunt's observations on the earthquake of 1841, presently alluded to, he says:-"It is by no mean" a great stretch of hypothesis to suppose that the late earthquake has, like some former on:3s, been accompanied by the ejection of submarine volcanic matter, which may have been thrown up within a short distance of the surface : so that, in fact, in that part of the sea where there was previously 200 fathoms of water, there may at this moment exist a most dangerous shoal.
"As in navigation the extreme of safety should alwaya be chosen, the commanders

- Comptes Rendus de l'Academie Frangaise, 1838, p. 302.
+ "Part of a Letter from T. Forster, Esq., F.R.S., to Mr. Machin, Sec. R.S." Phil. Trane., 1722. To this description are attached several views of the island, which were taken at the time.
of vene pared Anot is in the tract of noon, an land, th the ship sudden vioinity 8 knots,
" I im
was too
that it i
This submari Memoir give pre torius fo volcano. Mr. Hur
But n or eleva from 18 danger, ing the
TER as at $\$$ Cancrie for cartl and cold countrie island, Azores. sides th about 3 good qu The the isla western extendi Serreta eastern DES most fe coveres part fr favour assista much :
The which

[^131]led opinion that is again noticed
od that, in 1719, of St. Michael', that which had at the S. W. ex: rected with the owing accounts nts relating to 1720, a volcano ned two shosl. 3. A plan was approached, in ds of 120 feet tand had sunk

reconnt of this

 scribed as lying h, 1720, in the shattered down t terror of the " In the aftertill the ashes moke and fire ice-stone, and nd the island, ist round, and ia $38^{\circ} 20^{\prime}$; itsbetween Saint were transthey are as breakers, mast ervations then declaration of 8 shoal where By calculation on of George king heavy at and the water s , as if on an obstruction; E. to S.S.W., - Michael's. Haded to, he that the late in of subma. stance of the eviously 200 1. commanders
R.S." Phil. which were
of vessels approaching Terceira would do well to keep a good i wheont, anc prepared for indications of shoal water, at from 15 to 20 miles to the castward or it. ${ }^{\text {pr }}$
Another announcement is, no doubt, connected with the same volcanic centre. It is in the "Nantical Magazine," July, 1843, p. 482, entitled "Malabar Bank." Extract of a letter from Capt. Sartorius: " In lat. $38^{\circ} 57^{\prime}$ from the observations at noon, and long. $26^{\circ} 6^{\prime}$ by chronometer, and from supposed most correct bearing of the land, the north-east end of Terceira, taken at $8 \mathrm{a} . \mathrm{m} .$, given lat. $38^{\circ} 57^{\prime}$, long. $20^{\circ} 56^{\circ}$, the ship grazeu over, apparently, a shoal of about her own length. There was no sudden ehock, no appearance of discoloured water, or any other indication of the vioinity of rocks or shoals; and at the time the motion was felt the ship was going 8 knots, wind aft, and studding-sails set.
"I immediately shortened sail, and sounded with 180 fathoms; no bottom. There was too much swell to risk a bont for examination. My own individual opinion is, that it is as likely to have been the shock of an earthquake as passing over a shoal."
This spot will be about 30 miles to the north-east of the reported situation of the nubmarine volcano above described, and if the reader will turn to the Ethiopic Memoir, 1844, p. 80, he will find that a sabmarine shock and gronnding on a shoal give precisely the samesensation in a ship. That this was a shock that Captain Sartorius felt, there can be but very little doubt, and it is most probable from the same volcano. We must, therefore, recommend to the seaman's notice the cantions of ' Mr. Hunt, as given above.
But notwithstanding all this evidence, there has been no indication of any shoal or elevation found in a search all over this channel, as no bottom has been found with from 180 to 200 fathoms of line. This, however, only proves that there is no present danger, but it is quite possible that the volcanic action hidden here is capable of raising the bottom to the elevation above described.
TERCBIRA.-This island is fertile, pleasant, and healthy; the lava districts here, as at St. Michael's, produce excellent vines, although not equal to those of the Cancries and Madeira. The land yields large crops of wheat and other grain, pasture for cartle, and a prodigious quantity of lemons, oranges, and all those frrits of hot and cold climates which are propagated to the greatest advantage in temperate countries. The capital, as already noticed, is Angra, on the south side of the island, having a harbour, defended by a fortress, in which resides the governor of the Azores. Angra is distinguished by several handsome churches, convents, \&cc. Beoides this, there is another town, Praya, and fifteen villages, all of which contain about 30,000 inhabitants. In the bay of Angra, and around the island; fish, of a good quality, is abundant.
The coasts of Terceira are high, and so surrounded with craggy rocks, as to render the island almost impregnable. The interior is, in general, moderately high, but the western side is higher than the eastern, and is distinguished by a rugged monntain, extending nearly East and West, and of which the western extremity, Pico do la Serreta, is the most elevated. This peak may be known by a great break on the eastern side, at a short distance.
DESCRIPTIONS, \&e.-The part of the islind* in which Praya is situated, is the most fertile of the whole; on which account it was the part selected by the first discoverers for their residence, and its population was entirely agricultural. It is the part from which levies were principally made ta resist the landing of an expedition in favour of Don Miguel, in August, 1829; when a small military force, with their assistance, and the possession of the strong forts on the Bay of Praya, beat off the much superior force of Don Miguel.

The town of Praya had, in the year 1614, been totally destroyed by an earthquake, which considerably injured the town of Angra, and was severely felt in the Island of

[^132]St. Michael. Since that time it had escaped injury, although menaced by many eevere shooks of earthquakes.
On the 12th of June, 1841, at 4 p.m., a violent shock of earthquake was felt at Praya, extending with diminished violence to the westward. At $5^{h} 25^{\prime}$, a second and more violent one was felt ; the trembling continued throughout the 13th, and on the 14th an undulation destroyed all the buildings which had been weakened by the former shocks. The inhabitants of Praya then retreated to the fields for safety. During the 14th the motions were slight ; but on the 15th, at 3 a.m., a violent trembling and horizontal undulation commenced, and continued, with intervals of about ten minntes, until $3^{\mathrm{h}} 30^{\prime}$ a.m., when a strong vibratory and distinctly visible rocking motion of the surface threw down the entire town of Praya, and injured many other parts of the island. The ground remained comparatively quiet until $2^{\text {n }} 40^{\prime}$ a.m. of the 16th, when another violent shock did further damage. After this no further damage was done, but the island did not become perfectly quiescent until the 26th of Jane.

It was observed, with respect to the whole progress of these phenomena, that the motion was greatest at Praya, where a rent has been left in the ground of about an English mile in length, from the edge of the water stretching westward; and that overy convulsion was preceded by a loud subterraneous noise, resembling thunder, so exactly varying in intensity according to the severity of the succeeding shocks of earthquake, that the first became the harbinger and gauge of the other.
The number of houses destroyed was estimated at 800, besides other considerable damage, amounting to the value of $£ 180,000$.
The less severe shocks did not extend beyond the Island of Terceira, others were experienced of apparently equal force at St. George and Graciosa, and only that which destroyed Praya was felt (but not severely) at the capitals of Pico and St. Michael's. At Fayal, and at the eastern end of St: Michael's, no motion was per ceived.
It is therefore probable that the origin of this earthquake was a submarine volcanic eruption, and that its position or centre was about 17 miles due East from the eastern end of Terceira.* This has been practically confirmed by the accounts of the volcanic shoals before described.

Angra lies on the South side of Terceira; it is the capital of the island. At the town provisions are cheap, and in plenty. The bay may be readily known by means of a remarkable forked hill, near the sea, on the West side, named Monte Brasil, \dagger snd by two steep little islets, called the Cabras, or Goats, which lie about 4 miles to the eastward of the mount. About 2 miles to the south-eastward of these islets is another, called Los Frayles, with breakers near it.
In approaching from the S.W., Sonth, or S.E., steer directly for Monte Brasil. Should the wind be adverse, when approaching the land, tack boldly without the bay, as there is a sufficient depth over it, and up to the shore.
But beware of a calm, as the currents are very strong and variahle. If you have not a leading wind, when sailing up toward the mount, avoid too near an approach to the coast, between it and the westernmost part of the island; as it would in a calm be attended with the utmost danger; the coast being iron-bound, a ship driven on it would be in a most perilcus situation.
The Bay of Anara is open to all winds from S.S.W. by the South to the East. The swell from the S.W., in particular, which sets round Mount Brasil, on the western side of the bay, is tremendous. The ground at the entrance is foul, and

[^133]+ See the particular plan of the Road of Angra, on the Chart.
shipg al side of Vesse the wing mencem appeara Bhelter.
Porto as the le form of the N.E towers 8 24 fatho anchor n land at t which'th
The abridged
The 1 of pillars the Nort defence northwar
Fort S. bay, is d Mérch bastian, bay bein nneafe w sharp roc fsthoms instant t] westwar
On the by a wal vessels a when the

The bo them sup ont, as t
The 'I eminenc Angra: 4 miles part of t seen froì for row-l ship may rocks ne

The \boldsymbol{I} peaks.

- Iti side of spot to
naced by many
ke was felt at b^{\prime}, a second and 3th, and on the rakened by the elds for safety. a violent trem. ith intervals of istinctly visible ya, and injured ly quiet until ge. After thin quiescent until
mena, that the nd of about an vard; and that ng thunder, so ling shocks of er considerable
a, others were and only that f Pico and St. otion was per-
narine volcanic rom the eastern of the volcaric
sland. At the own by means fe Brasil, \dagger and 4 miles to the these islets is

Monte Brasil. without the

If you have In approach to uld in a calm b driven on it

1 to the East. Brasil, on the e is foul, and

ne various de-

 distances; byshiphahould af way moor to the northward of Fart St. Antohio, which is on the We't side of the bey.
Vessels may nafoly remain in the roed in June, July, Auguit, and Sepiomber, when the winde are light, and prevail from between West and N.W. But, on the commencement of winter, the winds from the offing rage so violently, that, npon the least appearanioe of bid weather, it is requisite to put off to sea, the const affording no shelter.
Porto Praya, or PRAYA BAY, on the eastern side of Terceira, hae been described an the largest and safeat bay in the Azores. "This bay," saya M. Fleurieu, "has the form of a creacent; the point toward the North has, at ite extremity, a amali islet to the N.E. To lie in the best place, this inlet rust shat in with the point, and the fwo towers seen on the bottom of the bay must bu brought together; you will then be in 24 fathoms, sandy ground, the town bearing N.N.W. and North. You may also anchor nearer to the shore, in 20 and 16 fathoms. The boalt must not attempt to land at the bottom of the bay towaird the S.W., on acoount of a sand-bank, upon which'they would ground; but they will find a good landing-place near the caistle:"
The following is a more particular detail of the Coasts of Terceida; abridged from Tofiño.
The Mount of Brasil, near Angra, is moderately high, and has two emall columns, of pillars, at the top; which serve as look-ont places. The hill desoends gently toward the North, and at its base; on that side, is the Citadel or: Fort of St. Jwan, the ohief defence of the island, and partioularly of the elty of Angra, whioh stands to the northward and N.E. of it. From the citadel, a line of wall and: batterion extend to Fort S. Antonio, on the East wide of Mount Branil; the opposite; or .N.E. side of the bay, is defended by Furt S. Sebastian.
Merchant vessels regularly anchor in the line of the forts 8. Antonio pnd S. Sebastian, or rather further in, mooring with the four anchors." This is nocessary, the bay being open to the sea from S.S.W. by South to Eisit, and therefore extremely unsafe when winds from those quarters may be expected, the coast being mostly of sharp rocks. Large ships anchor to the eastward of Monnt Brasil, in from 30 to 40 fathoms of water, sandy bottom, and they must be ready to get under way in the instant that the wind appears to be coming on from the south-eastward or southwestward.
On the western side of the castle of S. Sebastian is a little beach, olightly sheltered by a wall of the castle. It is oalled Puerto de Pipas, and is the spo wherein fishingvessels are secured, by grounding them on the sand. It may serve as ilanding-place when the wind will not allow you to land at the mole.*
The boats of the island come ont so soon as any vessel is soen to anohor, and by them supplies may easily be obtained, even while keeping under way, tacting in and out, as they will bring vater, wood, and all kinds of provisions.
The Ponte de' las: Continendos is the S.E. point of the island.: It presents an eminence, having three peaks on its summit. At about halfway between this and Angra are the Cabras or Goats, already noticed, which lie S.E. by E. [E. by S.] 4 miles from the summit of Mount Brasil, and two-thirds of a mile from the nearest part of the coast. Of the two islets, the eastern is the largeet and highest: when geen from the East or West', if appears like a weige. Betvreen the islets is a channel for row-boats, "with frow 8 to 10 fathotins of water : between them and the coast a ship may pess, as there are 9,12 , and 13 fathoms of warer, with mandy bottom, and rocks near ohore only.
The Frayles; or Friar's Isle, before mentioned, is a low islet, having two pyramidal peaks. A shoal extends from the S.E. side of it, about a cable's length, over which

[^134]the sea breaks. Several cliffs on the irlet give it the appearance, at a distance, of several isles. A ship may pass, with all safety, in the channel between this and the Cabras, the depths being from 60 to 75 fathoms, gravelly bottom, and clear ground.

The eastern coasts of Terceira is generally broken, rocky, and dangerous. The easternmost point is that named Malmerandx, which is high and oblique, with a large shoal near to it, which shows itself at low we ter. To the sonth-westward of this point is the town of Praya, defended by batteries. The bay on which this town is situate is of great depth, with good holding-ground, and a fleet may anchor here, sheltered from the South, by the West, rouud to the North, but entirely exposed to the easth ward: the safest anchorage, therefore, is with Point Malmeranda in a line with the northern islet, Cameiros, and the highest tower or steeple of the town, which is the northernmost, open to the West. Here is a depth of 25 fathoms, with sandy bottom; and, as at Angra, supplies may be obtained from the boats of the place.

Remarks on Terceira, by Captain Livingston, 1822.-"At about 61 or 7 miles North of Angra, in a valley near the summit of the mountains, a great deal of steam issues from crevices of the earth, or rather clay, which clay, I am informed by a scientific gentleman here, is actually lava, decomposed by the action of sulphuric aeid. Some of the clay looks, when cut by a knife, much like Castile soap: it is of various hues, and the natives of Terceira use it as paint. There are small quantitice of sulphur formed around some of the apertures. The steam which rises is very hot: wo cooked some eggs by laying them among the clay, at mere cracks whence steam issued. My thermometer ranged only to 152° of Fahrenheit's scale. I exposed it to the steam at the first aperture I reached, but the mercury rose so rapidly, that, from fear hursting the tube, I was obliged to withdraw it, I think, about three or four seconds. Persons visitiug Angra, who have any curiosity in their composition, should see this furnaso or souffiere. The access to it is by no means very difficult, though, if you ask any of the Portuguese, they will describe it as accessible only at some periods of the year. One may ride to within loss than half a mile of i. Ponies, or asses, and guides, may readily be hired.
"Some vessels, mistaking Praya for Angra, have stupidly run in there; but the Goats and Mount Brasil are sufficient to show the most entire stranger the difference: I annex a skctoh of the former.

The Goat Rocks, as sketched at nine a.m., 25th January, 1822, when about 2 miles distant, the weather being hazy, and the tops of the mountains of Tercciru covered with dense masses of clouds. Point at the left bearing N. by E. by compase and that at the right hand N.E. $\frac{1}{\frac{1}{N}}$. also by compass.
"Bloody fiax is very frequent both among strangers and natives, and is often fatal. A Scottish surgeon there told me, it was the worst discase he met in the island."
"Vegetables are excellent and cheap. Poultry and eggn good and roasonable;

- It doserves to be known, that the size of a hazel-nut of Castile soap, scraped fine and dissolved in about three wine-glasses of boiling water, to which add half a wine-glase of good spirits, and a fow lumpe of white sugar, scarcely evor fails of curing bloody fux. Two or three dosea may be required. I have tried it oni myouti and others with groat success.
$-\boldsymbol{A}$. L.
beef an island
The 1 rocky a
PICO tain wh very ste would t sea, ace English clear we clouds, in a line

The p quently the mou times so state, an

Pico lnges. wheat a wine is brandy, excellen other til solid anc
The S
Ilha; a on the S between which m [W. by more ele stranger Catalina former, means o another Catalina

On th and islet to the di

Of t
Magdale
the islan
at a distance, of een this and the clear ground. langerous. The ue, with a large ard of this point town is situate here, sheltered osed to the easta line with the n, which is the sandy bottom;

63 or 7 miles tt deal of steam informed by a on of sulphuric e soap: it is of small quantities ses is very hot: s whence steam I exposed it to idly, that, from three or four ir composition, s very difficult, cessible only at e of it. Ponies,
there; but the the difference:
 when about 2 ins of Terceira E. by compess,

1 is often fatal. e island.*

Id reasonable;
craped fine and a wine-glaes of pody flux. Two groat success.
beef and mutton tolerable, the formor aiout threepence per pound. Some of the island wine is tolerably good.
The Norith Coast of Terceira should not be approached by a stranger, as it is rocky and dangerous. The western coast is also inaccessible.
PICO.-This island derives its name from the remarkable peak or volcanic mountain which stands upon it. The summit of this mountain, whose sides are neither very steep nor uncven, is terminated by a small sugar-loaf, so very regular, that one would think it had been made by art. The height of the peak, above the level of the sea, according to the geometrical operation of the Frepch astronomers, is about 1,172 English fathoms ; by the survey of Capt. Vidal it is 7,613 feet : and, consequently, in clear weather, it can be seen 24 or 25 leagues off; but it is frequently so obscured by clonds, as not to be seen at any distance. When the sonthernmost point of Fayal is in a line with the peak, E. by \mathbb{S}., this mount appears r s shown before.
The peak has been described as filled with dark volcanie caverns, which have frequently emittod smoko, flames, and ashes, to a considerable distance. At the foot of the mountain, toward the East, is a spring of fresh water, generally cold, but sometimes so heated with tho subterrancous fire, as to rush forth in torrents, in a hoiling state, and sending forth a stream of sulphureous vapours, vitrified stones, \&e.

Pico, when the Peak (A) bears E.S.E. by compass-(B) E. by S.
Pico contains about 22,000 inhabitants, who occupy three towns and eleven villages.' The soil being stony, little grain is produced, and the greater part of the wheat and maize, for consumption, is imported from the neighbouring islands. Tho wine is the staple commodity, and is reputed the best in the Azores. This, with brandy, is exported in considerable quantities. The cattle are variuus, numerous, and excellent ; fruit is abundant, and equally fine. Besides these, they have cedar and other timber, including a beautiful kind of yew, called Teixo, which is remarkably solid and fine.
The S.E. point of the island, which is rather low nnd sloping, is named Ponta de la Itha; a ridge extends from it to the eastward, 1 eable's length. The next projection, on the South coast, is Pta. de Calheta, or Nesquin, distant 5 miles, W. 1 S., true ; between are the little harbours Muelle de Manana and Nesquin, fit only for coasters, which may ground on the sand, the bottom being generally rocky. At N.W. by W. [W. by N.] ${ }^{\frac{t}{t}}$ miles from the Pta. do Caleta is the Pta. de Arrife, which is rather more elevated: the coast between continues rocky, and is not to be approached by strangers. Eight miles N.W. by W. [W. by N.] from Pta. de Arrife, is that of Santa Catalina; the const between forms a slender bay, in which, at $2 \frac{1}{2}$ miles from tho former, are the town and lagoon of Lagens; the lattor communicates with the sea by means of a bar, over which the coasters pass at high water. The fishermen havo another place of shelter, in Puerto Pruima, which is on tho N.E. of the point Sta. Catalina.
On the S.W. and West sides of the island is nothing remarkable, but its rocky coast snd islets. From the P'ta. de los Baxios, on the N.W. side, breakers extend outward, to the distance of nearly a lengue, during a gale.
Off the most prominenc part of tine western coant are the littio Port and Isle of Ln Magdalena. From the town, which stands here, the greater part of the produee of the island, for expertation, is shipped off for Fayal in small row-bonts. The islets
are surrounded by rocks ; but very near the latter the depths are 6,7 , and 8 fathoms, rocky ground,

The North eoast, from Pta. de los Baxios to the East end of the island, is altogether rugged, and may be considered as inaccessible.

FAYAL.-This island has been celebrated for its excellent pastures, fish, wood, \&c. The air is always mild and pure; the cold of winter nover felt, and the heat of summer always tempered by refreshing winds. Its inhabitants are computed at about '17,000. The inland produces wheat and maire, suffcient for itself and a part of Pico. The cattle reared here are not sufficient for the consumption of the island, and supplies are, therefore, sent from the neighbouring Island of St. George, which produces a great number. The aunual produce of wine is also scanty; for that which is exported here is mostly from Pico.

Fayal, whon tho point (A) bears N.E. by E. $\frac{1}{1}$ E. by compass, and (B) E. by S.
The chief town is Horta, on the S.E. side;" and there are, besides, nine villages on the island. The name Fayal is understood to be derived from Faya, the beech tree, with which, and other wood, the island abounds.

In the journal of Mr. Keilor, an intelligent master of the Royal Navy, it is stated that those who run for Fayal should not depend on the peak of the next island as a guide, because it is sometimes covered for five or six days successively.

Mr. Keilor adds, Fayal has a good bay, opposite to Pico, which is formed by an isthmus, extending to the S.E., and a poiut about if miles to the north-eastward. Water, in general, is bad and scarce.
The S.E. point of Fayal is a monnt, with a hermitage on its summit, dedicated to Our Lady of Guia. (N.S. de la Guia.) The North sido of this is connected by a neck of land to a mmaller mount, of a blnck colour, Cuimado, at the foot of which the town of Horta commences. Near the mount, on the West, is a saudy cove, Port Pim, where, in fine weather, some small vessels load and discharge their cargoes, but it is quite open to the S.W.
The northern point of the Bay of Horta is named Espalamaca : its bearing and distance from that of La Guia are N.E: $\frac{1}{}$ E. [N.N.E. $;$ E.] $1 \frac{1}{4}$ miles nearly. At the bottom of the bay is a beach of black sand, which commences near Point Espalamaca; and terminates at Monnt Caimado; Within it is the town, facing the sea. In the latter are two very remarkable buildings, nearly alike: one of these is clowe to the sea-side, and was formerly called the Company's College; the othor is in tho moot westerly part of the city, upon an eminence, and near tho Carmelite Convent. Theso objects in a line bear nearly N.N.W. [N. $42^{\circ} \mathrm{W}$.]

Nearly in mid-channel, between Fayal and Pico, is a rocky shoal, the Chapman Rode, of 3$\}$ fathoms ; it is about 20 fathoms in extent from N.E. to S.W. [N.N.E. to S.S.W.] and 10 broad. The marks for it are the Company's College and Carmelite Convent, above mentioned, in one; Point de Espalamanca, N. by.E. [N. by W.] $21-10$ miles; and the hermitage of Guia, N.W. $\frac{1}{2}$ N. [N.W. by \boldsymbol{y}^{2} W.] 1 6-1 milch. See, further, the particular Plan in the large Chart.
The regular anchorage of Fayal is in the bay opponite to the town of Horta. It in the bewt anohorage in the Azoren, on every account, excepting that it is open to the

* See the particular plan of the channel between Fingal and Pice, on the Churt. Fou a furincr deccription of these islunds, see hereafter.
winds fro winter. should, method is sbout $1 \frac{1}{4}$ to the ris the south may deper
In the two build sandy bot
To Sar 2s the w regular p agreesble wind fron marks for
If, on a the eastw Pico, with out the bo ceeding t the moun
South nearly W likewise h and villag
The PO_{0} round mor pears like
At the [S.S.E.] admits fis
The P_{0} high snd [E.S.E.] a milo; from this rocky, wi bay; the alope of a of Fayal.

At nin maca, on front, hav little ind st Port N nouthwar

[^135]and 8 fathoms,
d, is altogether
res, fish, wood, und the heat of puted at abont a part of Pico. land, and supvhich produce that which is
S. by S.
s , nine villages aya, the beech
tvy, it is stated next island as
formed by an orth-eastward.
t dedicated to connected by t of which the ndy cove, Port ir cargoes, but
tts bearing and early. At the Point Espalaacing the sea. hese is clow to is in tho moot nvent. These
the Chapman T. N.N.E. to and Carmelite 2. [N. by W.]

1-6-1 milco.
of Horta. It is open to the

Churt. Poi
winds from North to N.E., and from S.E.to S.W., and these winds are frequent in winter. That from S.E. is very destructive, it blowing right in. Those who anchor should, therefore, always be prepared for a start, on a shift of wind. The safest method is to let go the anchor in 35 or 40 fathoms, where the bottom is of sand, at about $1 \frac{1}{2}$ miles from the town, which will be with the Point of Joao Diaz a little open to the right of Point Espalamaca, and the Company's College in the town a little to the southward of the Carmelite Cenvent, already described. From this spot a ship. may depart with any wind.

In the summer season and favourable weather, the general anchorage is. with the two buildings in the town as above described, but nearer to the town, in 25 fathoms, sandy bottom; small vessels proceed furtherin, to 20 or 15 fathoms:*
To Sail in for the Road, if from the northward, no further direction is requisite, as the way is perfectly clear. If coming in from the S.W., with a free wind, the regular pa seage is between the mid-channel shoal and Mount de Guia; or if more agreeable, between the same shore and Pico, according to circumstances. With the wind from the West or N.W., take especial care to avoid the shoal, by observing the marks for it, above described.
If, on approaching the road from the S.W., the wind should be dying away from the eastward, and you intend to tack, so as to gain the anchorage, keep over toward Pico, within the distance of a mile or a mile and a half; because at a little further out the bottom is rocky, and you cannot anchor, in case of necessity; besiden, by proceeding thus, you will be free from variable eddy winds and calms, which are caused the mountains; and tho coast is, sufficiently clear.
Southern Coast of Fayal.-'The Point af Santa Gatulina, whioh is 3 miles nearly W.N.W. [W. $\boldsymbol{1}_{4}^{1}$ N.] from Guia Point, is of low and black rooky land, and it likewise has a hermitage; between these points is the gove of Futeira, with its beach and village. Near it are several islets.
The Point Castelo Bianco is the S.W. point of Fayal. It appears like a little. round mountain of moderate height, sloped on every side, so that at a distance it apyears like an island. The coast hereabout is rocky, and affords no anchorage.
At the West end of Fayal are the two islets named Capelinos, lying in a South [S.S.E.] direction. Betwcen them and the coast is a channel, which in fine weather admits fishing boats.
The Point of Jorge Lourenzo is the northern point of Fayal. Its upper part is high and sloping. From this point to the N.E. point Riveirina, the coast trends S.E. [E.S.E.] Point Riveirina is high and sloped, and forms a round front of about half a milo; at the foot of it is a low point, with three islets. . S.W. by 8. [S. by W.] from this point, nt 2 3-10th miles, is that of Joao Diaz, which is low, black, and rocky, with rocks at its extremity. Between the points the coast forms a slender bay i the land is high and oblique, and it presents, near the middle, a remaricable slope of a red colour, which may be seen from the mid-channel shoal, called the Shoal of Fayal.

At nine-tenths of a mile to the southward from Point Joas Dias is that of Espalamaca, on the North side of Horta Bay. It is high and sloping, with a umall round front, having a vigia, or look-out, on its summit. Between these points the coast is a: little indented, and has a beach, with a church at the bottom of it. Trading vessels: at Port Magdalena, on the opposite side, when assailed by violent winds from the: wouthward, frequently bear up, and find good shelter here.

[^136]8T: GFORGE.-This island lies at the distance of 10 miles from Pico, and is separated from Graciosa by a channel 20 miles broad. It is a long, narrow island, about 29 miles long, and a little more than 3 in its average breadth. On its South coast ii the little town called Villa das Velas, or Vellas, with a port where small vessels may lie sheltered from all winds.
This island, when Tofino described it, contained more than 11,000 persons, in three towns and seven villages. He says that it produces much wine of a good quality, which it exports to Terceira and America. The island has been famous for its cattle, with which it supplied other islands, and its cheese is said to be fine. The produce of wheat and maize is equal only to the consumption of a part of the inhabitants, as the lower class substitute the root of the yam. Wond and fresh water are abundant.

On the 1st of May, 1808, a dreadful volcano, seen from Fayal, burst out about the centre of this island, in the midst of fertile pastures, abont 3 leagnes S.F. of Vellas, On the 3rd a crater was formed. In two days it had thrown out cinders, or small pumice-stones, which a strong N.E. wind had propelled southerly; and which, independent of the mass accumulated around the crater, had covered the earth from 1 to 4 feet in depth, half a league in width, and 3 leagues in length $;$ then, passing the channel, had done some injury to the eastern end of Pico. The fire of this large crater had nearly subsided on the 3rd of May ; but, in the preceding evening, another small erater had opened, 1 league to the northward of the large one, and ouly 2 leagues from Vellas. In a short time the island, heretofore rich in cattle, corn, and wine, was nearly ruined; and a scene of greater desolation and distress had seldom been witnessed in any country.
The Channels among the Azores are in general clear and deep, and may be narigated at all times: that, however, between St. George and Pieo, should not be attempted, unless in settled weather, or with a steady breeze, for a sudden calm may prove fatal; as a strong current runs through the channel, according to the state of the tide.
The Ponta del Topo is the easternmost point of St. George's Island. This point lies W. $\frac{3}{4}$ N. [W.S. W. $\frac{3}{2}$ W.] 27 miles from the summit of Mount Brasil, in Terceina, It is of moderate height, with rocks around it, and near its eastern part is a low islet, likewise surrounded by rocks.
From Pta. del Topo to Pta. del Norte Grand, the North coast presents nothing nemarkable. There are several breaks on it, but it is mostly low and regular. Hence to the West end of the island, Pta. de Rosales, it is more rugged and barren. Off the point last mentioned are several islets, of which two very high pyramidal ones are remarkable; one of these is at the foot of the point, and the other half a mile to the S.W. of it. To the W. by S., true; of Point Rosales, the pilots say that there is a rocky shoal of 7 fathoms. The sea may break over it in a storm."

From Pta. de Rosales to the Morro Grande (Great Hill), near the Port of Vellas, the coast trends S.E. by S. [S.E. by E.] The Morro is high, of a blackish colour, and has a vigia, or look-out, on its summit. To the N.W. of the Morro, and on its skirt is an indent of the coast, wherein several vessels have been lost, by mistaking it for the Port of Vellas, the bottom being all rocky, and a vessel, once in, cannot leave it without a change of wind.

Puerto de las Vellas.-At $1 \frac{1}{2}$ miles S.E. by E. [E. by S.] from the outer point of the Morro Grande is Pta. la Caimaida, rather low, with a small castle. Between the two points in the Bay or Port of Vellas, sheltered from winds from N.W., by the N. to S.E.

In the bottom of the bay, on the shore, is the town of Velas or Vellas, the chief town of the island, and on the S.E. side of this is a small mole, having 3 fathomi within it, but with rocky bottom. The regular anchorage is to the South [S.S.L.] of the mole, in 9 fathoms, fine black sand. Vessois moor with two anchors to the N.W. and S.E. This is a place of little consideration.

From Peint Calmadt, on the eaistern side of Post Veilias, the coact by tho sea con-
to the F Four les rises, wi whence

GRA corn, fru with'a 8,000 in the islar duced is vegetab sume. I The chie

Ponta these po South si islets ab length but betw anchorag
Betwe 14° E.] mences, are N. $\frac{1}{6}$ the town

At 3 m is very cables di gular tha Point N
The be point, in is off the Josef Fe load and from Sou Cruz are
On the The coas to the to on the hi North sic
The P of a very From th [S. 10° There is sleping, 1378 feet northwar
At S.I tinues low and rocky, but the land within rises to a good hoight. Thus it continnes
ico, and is sepa ow island, about ts Sonth coast is nall vessels may
rersons, in three a good quality, jus for its cattle, The produce of habitants, as the e abundant.
st out about the S.F. of Vellas cinders, or small nd which, inde earth from 1 to ren, passing the re of this large ovening, another ne, and ouly 2 cattle, corn, and ess had seldom
nd may be nari. ould not be atdden calm may to the state of
nd. This point sil, in Terceira. st is a low isset,
nts nothing reggular. Hence barren. Off the midal ones are If a mile to the that there is a

Port of Vellas, blackish colour, orro, and on its py mistaking it n, cannot leare
he outer point stlo. Between a N.W., by the
llas, the chief ring 3 fathoms th ${ }^{6}$ [S.S.L. :] of rs to the N.W.
to the Pta. de los Monteros, the S.E. point of the island, which is high and sloped. Four leagues from the Bay of Vellas is the Point de Caleta, whence a high mountain rises, with a gentle acclivity, and close to it, on the East, is a town of the same name, whence mach wood is exported to the neighbouring islands.
GRACIOSA-Graciosa is said to take its name from its beanty and fertility in corn, fruit, pasture, and cattle; supplying Terceira and several of the other islands with a great part of its produce. It is the most fertile of all the Azores, and has about 8,000 inhabitants, distributed in two towns and two villages. The greatest extent of the island is only $8 \frac{1}{2}$ mites, but in this extent the quantity of barley which is produced is almost incredible, together with wheat, maize, wine, all kinds of fruit and vegetables. Of sheep, hogs, and fowls, the inhabitants have more than they can consume. The only scarce article is wood, for this is obtained from St. George's and Pico. The chief town is Santa Cruz, on the N.E. side.
Ponta Blanca is the S.W. point, and Carapacho the S.E. The mountains over these points appear at a great distance like islands, particularly on approaching the South side from the S.W. Point Carapacho is low toward the sea, and has several islets about it ; but at a little distance inland it is high and craggy. At two cables' length S.E. [E.S.E.] from the point is the Islet Abajo, with others in its vicinity; but between it and the point the largest ship may pass, should it be necessary, to the anchorage of Praya, on the eastern coast.
Between the Point Carapacho and the Ponta dos Fanaes, $1 \frac{1}{\frac{1}{2}}$ miles N.E. $\frac{s}{2}$ N. [N. 14° E.] the coast is almost uniform and clear. At the last, the Bay of Praya commences, the North side of which is Pta. Negra; the bearing and distance between are N. $\frac{1}{\frac{1}{2}} \mathrm{E}$. [$N .15^{\circ} \mathrm{W}$.] $1 \frac{1}{\frac{1}{2}}$ miles. Pta. Negra is low and rneky, and near it stands the town of Praya.
An islet, called the Isle of Praya, lies at half a mile East [E.N.I.] from Point Negra; it is low on the West side, but rather higher on the East, and there is a passage between it and the point. At the distance of a cable and a half to the southward of the islet is the anchorage.
At 3 miles North [N.N.W.] from Point Negra is the Point of Josef Ferrer, which is very low, being even with the water, and having a dangerous shoal, at about 2 cablea distance to the Tast [E.N.E.] The coast between these points is rather regular than otherwise, with a few. little bights; of those bights, the first is close to Point Negra.
The best anchorage about the island is with the Islet Abajo, lying near the S.E. point, in a line with the westernmost part of Praya Isle, or rather a little open; this is off the southern extremity of a great slope of land, extending toward the Point of Josef Ferrer. The depths are from 30 to 40 fathoms, sandy bottom. Here vessels load and unload, and are ready to be off with any winds; but they lie aheltered only from South by the West, nearly to North. All the grods from the town oi Santa Crus are brought to this anchorage to be shipped, as they have no other.
On the West of the Point of Josef Ferrer are the bay and town of Santa Cruz. The coast is low, and the land rocky, with seattered fragments of rock about it. Close to the town, on the S.W. side, are three amall hills near each other, and a ohurch is on the highest part of every one of them. These, therefore, are good marks for the North side of the island.
The Ponta do Pico Negro is the North point of the island; it is high, oblique, and of a very black colour. The coast hence to the S.W. continues high and rocky. From the Pta. do Fbzzo de Porco, the western poimt, half a mile S.W. by S. [$\left.\$.10^{\circ} \mathrm{W}.\right]$, is the Point of Jorge Gomez, low and rocky, with a church near it. There is landing herc. At 34 miles from that point is Point Blanca, very high and sloping, within which, at a short distance, is the highest mountain on the island, 1378 feet high. The coast between is of high rock. On the summit of Pta. Frayle, northward of Point Blanca, is a atone that resembles a man.
At S.F. $\frac{1}{4}$ S. [S.E. by E. $\frac{3}{4}$ E.] $2 \frac{1}{\frac{1}{8} \text { milen from Point Blanca is the low and rooky }}$

Point of Folgo; the coast between forms a bay, and the village of Folgo is at the bottom of it.

FLORES.-This island contains about 7,000 inhabitants. It has two towns, both on the eastern side, Sta. Cruz and Lagens, and four villages. The chief productions are yams; wheat of eivellent quality cattle, sheep, and hogs. The exports are wheat cloths, baocn, with the weed or moss called orchilla, used foria dye, as already noticed. The latter is found clinging to the rooke and declivities, and is not obtainable without great trouble and danger.

The island is very monntainous, but much more so towards the Sonth than the North. The Fort of the town of Santa Cruz is in lat. $38^{\circ} 27^{\prime}$, and long. $31^{\circ} 8^{\prime} 37^{\prime}$; and to the West of it, in the interior of the island, is a rernarkable peak, the Morro Grande; 3,687 feet high. The land is well cultivated, and has abundance of water, falling down, in numerous cascades, from the heights.*

Ponta del Gada, the North Point of Flores, is of noderate heighi, smooth on its summit, not very projecting ; but at its base is a cluster of islets, extending outward a quarter of a mile ; the ground around them is clear.

Ponta Ruiva, the N.E. point of Flores, is high, sloped, rugged, and obtuse. At the foot of it is an islet, called the Pan de Azucar, or Sugar-loaf: a fishing-boat may pass between. In the bay to the westward of Pt. Ruiva there is anchorage in 25 fathnms, sandy ground, sheltered from winds from S.E. by the South to W.S.W. It is frequently resorted to for water, or by vessels that are compelled by the wind to quit the eastern side of the island.

The Point of Santa Cruz is $2 \frac{8}{8}$ miles S. $\frac{8}{4}$ E. [S.S.E. $\frac{1}{2}$ E.] from Point Ruiva. It is low and rocky, with several rocks about it. In the interval is the Islet of Alvaro Rodriguez, very near to the coast; and to the S.E. [E.S.E.] of this is anchorage, in 30 fathoms, sandy bottom; sheltered from the West and S.W. At true Sonth; threequarters of a mile from the point, is the castle of Santa Croz, which is very near to the town, the principal port of the island.

At $1 \frac{1}{2}$ miles southward from the castle of Santa Crus is Ponta Cabeira, low and roeky land, which risee with a gentle acclivity to the distance of a mile. Between these points the coast forms a bay, with a beach and a small river at the bottom of it This bay is the best anchoring place abont the island, and is sheltered from all points between N.N.E. by the West to S.W. The proper depths are in from 35 to 40 fathoms, sandy ground. This is the nearest anchorage to Santa Cruz, and therefore the most frequented.

At $1 \frac{1}{1}$ miles S.W. $\frac{1}{t}$ W. [S.S.W. $\frac{z}{z}$ W.] from Point Cabeira is that of Lomba, which is high and oblique; between these points the coast forms a bay, with a beach and small river at the end of it. A vessel may anchor in this bay, in 25 fathoms, sandy bottom, but it is not so well sheltered as that to the northward, being open to easterly and southerly winds.
From the Point of Lagens, which is 4 miles to the south-westward of Point Lomm, a ridge of rocks extends to the distance of a cable and a half to the S.S.E. At $2 \ddagger$
 its size is about that of two ships, and appears, when near to it, like a large flagstone. Between it and the coast is a great depth of wator, and the same about it.
In the little bay, on the North side of Lagens Point, is the town of Lagens, having a large ohurch, which is a useful mark for this part of the coast. A vessel may anchor very well in this with a wind between North by the West to S.W. by W. in 25 fathoms, sandy ground. This anchorage is much frequented, because a vessel can here get under way more easily than at Santa Cruz, having better room for working out.

[^137]From at 2 litt The Poin Point, is farther, high, anc

The P mineral the Point There are

The P coast bet high, slop the South in 20 or 2

The Pt
Bredos.
water, sal Shoal Poi

Fanae which is n black colo ground, in from a cas withou ${ }^{4}$ a mile N. cient for a
The foll Skylark:At dayl boat for \mathbf{w} These sto boats to la
"The b of the be mile from day, by en N.E. Wi surf, and t by a very the Island clear passe about a passage.
Refres of water piga, vege ship were may be ap recommen the North this land the island. was prove Flores ma
It is im

Folgo is at the
wo towns, both ief productions iorts are wheat already noticed ainable without

South than the ong. $31^{\circ} 8^{\prime} 37^{\prime} ;$ reak, the Morro dance of water,
height, smooth olets, extending
ind obtuse. At shing-boat may nchorage in 25 : W.S.W. It is he wind to quit
oint Ruiva. It Islet of Alvaro - anchorage, in we South, three is very near to
abeira, low and mile. Between he bottom of it from all pointo from 35 to 40 , and therefore

L Lomba, which tha beach and in 25 fathomes being open to

of Point Loma,

 S.S.E. At 2 ff $4 \frac{1}{5}$ fathoms large flagstone. it.AGENS, having
A vessel may S.W. by W. ecause a ressel etter room for
tance of a mila r out it in tho

From Lagens Point westward, the coast rises in height to the Point de Roca Alta, at a little distance from which, toward the North, is the highest part of the island: The Point of Lope Bas, which is nearly a mile W.N.W. $\frac{2}{4}$ W. [$W_{:} \frac{1}{8}$ S.] from Lagens Point, is low by the sea, but within, high and sloping. That of Roca is $1 \frac{1}{\frac{1}{2}}$ miles farther, is obtuse, very high, sloping, and black. The coast here is nearly straight, high, and rugged.
The Ponta de los Tlheos Aqua Caliente, which is low and rocky, is so called from a mineral spring which exists here, and of which the water is hot. Between this and the Point Roca Alta is a bay, with anchoring ground in 25 fathoms, sandy bottom. There are several islets at the foot of the former point.

The Pta. de Catarinas, with its islets, lie $1 \frac{1}{3}$ miles more to the northward. The coast between is wholly rocky. At $1 \frac{1}{4}$ miles further to the N.N.E. is Pta. dos Bredos, high, sloping land of a whitish colour, with islets at its base. One of the latter, on the South side of the point, resembles a colnmn. The coast between affords anchorage, in 20 or 25 fathoms, sandy ground.
The Pta. del Baxio, which is very low, is $2 \frac{3}{4}$ miles to the northward of Pta. dos Bredos. The coast between is, rocky, bat you may anchor off it in 32 fathoms of water, sandy ground, and sheltered from N.N.E., East and South. Close to Bixio or Shoal Point is a very remarkable church, that of S. Pedro, or St. Peter.
Fanars.-At $2 \frac{1}{4}$ miles N.N.E. $\frac{1}{4}$ E. [N. 6° E.] from Baxio Point is that of Fanaes, which is not very high by the sea, but it forms abruptly like a mountain, and is of a black colour. The bay in the interval is that of San Pedro, which has anchoring ground, in 25 or 30 fathoms, bottom of sand; and here water may be readily obtained from a cascade that falls from the mountains, by means of a hose, so as to fill the casks withou taking them out of the boat. The Islet Monchique lies at rather more than a mile N.W. $\frac{1}{4}$ W. [W.N. W. $\frac{1}{\frac{1}{2}} \mathrm{~W}$.] from Point Fanaes. The depth between is sufficient for any ship.
The following observations upon this place are by Mr. E. May, Master of H.M.S. Skylark:-
At daylight, bore up for the Bay of Fanaes; at $5^{\mathrm{h}} 10^{\prime}$, shortened sail and sent a boat for water. The beach consists of large stones, none smaller than a man's head: These stones extend from the beach 2 or 3 boats' length, making it dangerous for boats to land.
"The best landing-place is a passage between a point of rocks that lies to the South of the beach. From thence you may procure water, from a fountain, about half a mile from the beach, employing small casks, and at the rate of three to five tons per day, by employing natives, if the weather is fine, and the wind between S.S.E. and N.E. With any other wind, particularly if blowing hard, there would be too much surf, and the passage too narrow, in such weather, to enter. This place may be known by a very high, steep mountain, a little to the left of the landing-place, from whence the Island Monchique bears N.W. $1 \frac{1}{2}$ miles. Between the island and the shore is a clear passage for any ship; but she should borrow towards the rock, as a reef projects about a cable's length from thence, although there are no hidden dangers in the passage.

Refreshments.--"At this place, by the assistance of shore-boats, about four tons of water were obtained in ten hours. The place abounds in poultry, bullocks, sheep, pigs, vegetables, of all kinds, and eggs, all very cheap. Those who came off to the ship were well-dresser, clean, healthy people. The shore of the island is bold, and may be approached to the distance of a quarter of a mile. Leaving Fanaes, I would recommend vessels to run due West for 2 or 3 miles, to get clear of the high land to the North of the landing-place, by which thoy would avoid being becalmed under this land when the wind is from N.E. to S.E., and would be enabled to run clear of the island. Corvo has also a bold shore, and can be seen off deck 55 miles distant, as was proved by us the day after leaving the island, both by log and observation. Flores may be seen still further off, as it is higher than Corvo."

It is important to know that such useful refreshments can be so readily procured.

A tedions homeward passage may make this place of the greatest beneft. This has been confirmied by Captain Henry Toynbee in 1859. Captain Toynbee says:-"Twice have I hove-to for a few hours off Sta. Cruz and taken in as many bullocks, pigg, sheep, fowls, \&o., as were required for a few days fresh mess for the invalid troops on board my ship." In Jaly, 1859, the Fitzjames put in here in a distressed condition at Captain Toynbee's recommendation, and was received with every kindness by $\mathrm{Mr}_{\text {r }}$, MrKay and his family. The captain procured all he required. Bullooks, £4,; potatoes, 3s. the bushel ; eggs, $\overline{13} \frac{1}{2}$. a dozen; fowls, 12s. a dozen. This knowledge may be the saving of much misery to a homeward bound ship after a protracted voyage.

Ponta Albernas is the N.W. point of Flopes. It is moderatcly high, sloped, and of a red colour. Between it and Point Fanaes is the islet of Maria Gadella, which is high and round. W. $\frac{8}{3}$ N. [W. by S.] from this islet is anchorage, in 30 or 40 fathoms, sandy ground. From the point eastward to Pta. del Gada, ulready described, the coast is entirely rocky.
The bank of soundings is nearly of the snme form as the island, except that to the North, it extends further off than elsewhere. From the depth of 200 fathoms which is met with 5 miles off on the meridian of Ponta del Gada, the soundings diminish gradually up to the point, near which the depth is 22 fathoms. The same may be said of all the coasts, only that the narrower the bank, the more more rapid the descent.

To the E. the mean breadth of the bank is 2 miles; at this distance the depths are above 100 fathoms ; at the outer edge on this side the bottom is uniformly sand, or coral and sand, sometimes to the northward sand and shells. To the south on the parallel of Pta. Lagens the bank is not more than a mile and two-thirds in breadth, but its edge trends a W. by S. direction, so that at Pta. Ilheos it is nearly 4 miles broad. The bottom is sand as far as this. On the west coast the medium breaith is about $2 \frac{2}{2}$ miles. The quality of the bottom on this margin is sand, but sometimes rock, or sand and coral. Excepting the two shoals, Escolar with 27 feet water off the south side, and the Penra de Laranjeira with 11 fathoms at $1 \frac{1}{2}$ miles $S .16^{\circ} W$, true, from the S.W. point, there is no danger on the surronnding bank. Bat here and there are rocky patches, which it is best to avoid in anchoring. A general remark on the anchorage of Flores is, that a position should be taken at more than a mile from the land, as nearcr than that a rocky bottom is more frequently met with.

Reported Reefs.-Between Fayal and Flores, and off the latter, it is stated that some rocks exist. They were announced by M. M. Ferreira, of the Brazilian brig Constante. The first showed above water, at low water, in lat. $37^{\circ} 56^{\prime} 20^{\prime \prime} \mathrm{N}$., long. $33^{\circ} 4^{\prime} 8^{\prime \prime}$ W., and has been named Constante Reef. The second, Ferreira's 'Reuf, is nearer the islands, and in lat. $38^{\circ} 26^{\prime} 44^{\prime \prime}$, long. $30^{\circ} 25^{\prime} 10^{\prime \prime}$; the sea broke on this. Nearly on the same reported position as the frst reef, another announce ment, under the name of the Rhoon Rocks, was issued, in the "Nautical Magazine," July, 1844. 'This was an extensive group of rocks, some of them more than 16 fet above water; lut. $38^{\circ} 32^{\prime}$, long. $33^{\circ} 16^{\circ}$ Again, a rock, called the Atila Rock, ws announced in 1857 to lie in $36^{\circ} 31^{\prime}$ N., and $32^{\circ} 24^{\prime}$ E., or 200 miles W.S.W. of Fayal, aud a singular warm mist and boiling sea was passed through on Nov. 15th, '1857, by the Rstremadura in $39^{\circ} 57^{\prime} \mathrm{N}$., and $25^{\circ} 50^{\prime} \mathrm{W}$. All these reports seem to to indicate a series of dangers which are very perplexing to deal with, for after repeated searches, they have not been again met with. But the notice of them here will attract attention and induce caution. These reefs are noticed hereafter, in the Descriptions of the Shoals, \&c., of the Atlantic.

CORVO is the northernmost of the Azores, and is formed by a single volcanic mountain, $3 \frac{1}{7}$ miles long, North and South, and 21 East and West, or $9 \frac{2}{4}$ miles in oirevit. The extinct crater of this mouutain is called the Caldeira, and oecupies all the N.W. part of it, and is $3 \frac{1}{4}$ miles in circumference. The highest part of the ridgg surrounding the Caldeira is on the S.W. side, and is 2,548 feet in height. The East and Weet margins are lower, in some places not exceeding 1,434 feet. Its bottom in jecupied by two small lagoons, the surface of which is 1,273 feet above the sea, and

1,275 beld indeed th oapped w of Augue
The 10 to the ori habitatiou side of th 173 thatel separated the chural kept well there is a in 1843 w contented $27^{\circ} 30^{\prime} \mathrm{W}$, 8 inches.

Ponta the villag de Casa b the distan which the mile N.N. mile ; and from the 1 ward of t block of y ing north and thenc tance. T cliffs, fron land rises feet, wher de Norte sible from northwari paked lav extreme 0 alge of th North of sea breaks point in 1
The ne S. $14^{\circ} W$ shrubs an cliffs, and rock, nam S. 27° E., cliffy poin eliffs, and to the m the coast ridges of sea rolls 0 to be.
The biai edge. Λ

1efit. This has says :-" Twice - bulloeks, pigs, invalid troops ressed condition indness by Mr . Bullocks, £4.; This knowledge er a protracted
igh, sloped, and Gadella, which ege, in 30 or 40 ready described,
cept that to the fathoms which ndings diminish he same may be more rapid the
the depths are iformly sand, or le south on the rds in breadth, nearly 4 miles dium breaith is , but sometimes 7 feet water of niles $S .16^{\circ} W$, ank. Bat here ng. A general taken at more nore frequently
it is stated that Brazilian brig $37^{\circ} 56^{\prime} 20^{\prime \prime} \mathrm{N}$. cond, Ferreira' ; the sea broke other announce ical Magazine," ore than 16 feet Atila Rock, was les W.S.W. of on Nov. 15th, reports seem to with, for aftet notice of them ed hercafter, in
single volcaric , or $9 \frac{1}{4}$ miles in and occupies all art of the ridge ight. The East

Its bottom is ve the ses, and

1,275 below the highest peak. The bottom is cultivated and used for pasturage, as, indeed the greater part of the island is. The summit, even in summer, is so frequently aapped with clouds, that rills of water were running down the mountain in the month: of Auguet.
The ower land of the S.W. end of the island has all the appearance of being added to the original portion by an eruption of lava, and is diligently cultivated. The only habitations on the island are comprised in the village of Corvo, standing on the East, nide of the South point, on a,xising ground close to the coast, and containing 160 or, 173 thatched stone houses. They are dirty, and have an uncomfortable appearance separated from each other by filthy lanes. At the South end of the village stande. the church, a small stone building with a square tower and short spire, which, being kept well whitewashed, is a good seamark. About 250 yards S.W. by W. from it there is a little rocky hill, surmounted by an antique horizontal mill. The population in 1843 was 784 persons; 383 malesp 401 femules. They are poor, primitive, and contented. The church is in lat. $39^{\circ} 40^{\prime} 9^{\prime \prime}$ N., long. $31^{\circ} 7^{\prime} 16^{\prime \prime} \mathrm{W}$. ; variation, in $1842^{\prime \prime}$ $27^{\circ} 30^{\prime} \mathrm{W}$. It is high water, tull and change, at $12^{2} 25^{\prime}$, and the rise of tide 3 feet 6 inches.
Ponta de Pesqueirooalto is the South end of the island. On its eastern side, facing the village, is a small stony beach, where a few fishing-boats are hauled up. Ponta do Casa bears $N .52^{\circ}$ E. 1 s miles from it. It is a sharp, well-defined point; and at the distance of 60 or 70 yards from it there is a rock just visible above water. on which the sea at times breaks violently, and there is a similar rock a quarter of a mile N.N.E. of it. Ponta de l^{\prime} 'Este is the next point, and is N. 16° E., distant 1 mile ; and the next is Ponta de N.E., a bold bluff, 760 feet high, $1 \frac{1}{2}$ miles $N .16^{\circ} \mathrm{W}$: from the last. The cliffs increase in altitude as you proceed northerly; and to seat ward of the Ponta de N.E., bearing $N . \quad \overline{0} 1^{\circ}$ E., one-third of a mile off, is a small block of rock, steep-to on all sides, with 3 or 4 feet over it at low water. Proceeding north-westward, the next point is Joao de Moira, N. $57^{\circ} \mathrm{W}$. two-thirds of a mile, and thence to the North extremes, Ponta cle Norte, N. $79^{\circ} \mathrm{W}$., about the same distance. The coast between these two points presents a series of high inaccessiblo cliffs, fronted, as before, by a narrow belt of stones. From the top of the cliffs the land rises with great abruptness to the margin of the Caldeira, a height of $\mathbf{2 , 2 0 0}$ feet, where the horizontal distance from the sea docs not exceod 2,500 feet. Ponta de Norte is a high roek, 368 feet high, jutting out 150 yards from the coast, inaocesssible from the sea, and, when seen from East or West, shows an overhanging face to nurthward. About West from this, one-third of a mile, is a small elevated islet of naked lava, and S. 47° W. one-fifth of a mile from this, is Ponta de Turrais, the N.W. extreme of the islund. It is very remurkable; it runs direetly down from the North elge of the crater into the sea, a sharp, serrated ringe of dark lava. At 300 yards North of it, with Ponta de Norte bearing East, the is a sunken rock, on which the sea breaks violently. In rounding the island it will be advisable not to near this point in less than 20 fathoms.
The next extreme point, South of Ponta Turrais, is Ponta d'Oueste, bearint S. $14^{\circ} \mathrm{W} .1$ miles, the coast between being partly a steep declivity, covered with shrubs and wild vegetation. To the southward of this the coast consists of lofty cliffs, and at nearly three-quarters of a mile South of it is a small, low, detached rock, named Ilheo de Muther, 50 yards off the beach. From this the coast runs S. $27^{\circ} E$., a mile to the Sugar-loaf Rock, a mass of lava standing at the base of a bold cliffy point. Hence to the southward the coast consists of a ragged outline of steep cliffs, and then a low coast of very broken outline, fronted by innumerable rocks, to the meridian of the old horizontal mill previously mentioned.. This portion of the coast is fronted by innumerable roeks, projecting from the shore in narrow ridges of broken lava to an average distance of 200 yards. In strong winds the sea rolls over them in enormous breakers, but the danger is not so wide as they appear to be.
The bank surrounding the islẫu is generally steep, and very abrapt on ites outer edge. Λt Pouta de Cusa it is 1 mile from the point. At Ponta de Norte, $1 \frac{1}{2}$ miles;
or a quarter of a mile, 12 fathoms; half a mile, 30 fathoms; three-quarters of a mile, 40 fathoms; 1 mile, 40 fathoms. Along the N.W. side the bank is comparatively shallow and rocky, to the extent of half a mile from the land, where there are 15 fathoms, and the edge of the bank is 1 miles off. Off the South point it does not reach to 1 mile off.

A short distance to seaward of the rocks in front of the cliffs near the village, and with the church bearing $\mathrm{N} .31^{\circ} \mathrm{W}$., three-tenths of a mile distant, lie three patches of sunken rocks, on which are 3 and 4 fathoms water. They are steep-to. There are no dangerous rocks before the stony beth in front of the village, but the surf which usually plays upon it makes the cove to the westward of the mill a preferable landing-place.

The best anchorages at Corvo (mentioned by Tofiño) are on the westward side, between the paralloly of the Iiheo de Mulher and the Sugar-loaf Rock; 30 to 35 fathoms, fine brown sand, about 1 mile off shore; and on the eastern side, in 25 to 30 fathoms, sandy bottom, about half a mile due East of Ponta de Casa. Captain Vidal cannot advise the adoption of these anchorages, nor of any others the island may afford, except as a matter of neeessity.

It has no fuel to spare, no facility for watering, nor, indeed, anything to offer which cannot be most abundantly and conveniently obtained at Flores; whilst from its siza and form it affords little shelter from wind or sea.

The flood tide sets upon the island N. 30° E., and the ebb in the opposite direction, at an ordinary velocity, in springs, of $1 \frac{1}{\frac{1}{c}}$ miles per hour. When this is opposed by a gale it occasions a very high, confused sea, as it sweeps over the rocky, uneven bottom at the North and South points.-Captain A. T. E. Vidal, R.N.
The bank of soundings around Corvo is nearly of a circular form, and $3 x t e n d s$ with some regularity on the East side to the distance of 1 mile and a third; on the West side, a mile and two-thirds; the same to the North. It is narrowest to the South near Point Pesquiero Alto, where it is only two-thirds of a mile.

Tc the eastward it is generally of sand, sometimes with coral, and rocky patches. To the West the prevalent bottom is also sand, with some gravel and rocks. A vessel should not anchor till she is assured beforehand of the quality of the ground and depth of the water, which increases regularly from the shore to 50 or 60 fathoms, and then suddenly falls to above 200 fathoms.
It is high water on full and change days at Flores and Corvo at $12^{\mathrm{h}} 20^{\prime}$, and the rise and fall is about $3 \frac{1}{6}$ feet. The tidal hour and range is nearly the same, or a quarter of an hour later at the other inlands.
Flores and Corvo form a separate group from the rest, and the channel, 120 miles broad, has no known danger, and therefore is probably the best to use in passing through the archipelago. The current sometimes sets to the N.E. through this channel with varying strength according to the wind. But, as a general rule, the continuation of the drift from the Gulf Stream bears to the S.E. and S., rarely to the S.S.W. This is more usual to the North of the islands.

PORT
Isle of \mathbf{P} upon the able, and or three v little isles

It is sai of Africa, consequen populatior S.W. Ite of soundi numerous North coa The centro coasts rise tiful whit several sa formation exceeding the bay 0 house on i lat. $33^{\circ} 3$
The Pic summit aI mediately former be
The isl bay and t ducing w banks aro
The lar though tl change, anchor in low extre point of 1 miles fro gravel an the Soutl in summe caught ir navigatio
-quarters of a \mathbf{k} is comparavhere there are oint it does not
the village, and three patches rep-to. There illage, but the of the mill
rtward side, be ock ; 30 to 35 ide, in 25 to 30 Captain Vidal the island may

3 to offer which st from its size
osite direction, is opposed by a , uneven bottom

1d extends with ; on the West t to the South
rocky patches ocks. A vessel he ground and 60 fathoms, and
h 20 , and the the same, or a
anel, 120 miles use in passing
through this neral rule, the ., raxely to the

4.-THE ISLANDS OF MADEIRA AND PORTO SANTO.

PORTO SANTO, etc.-Ships are recommended to make, in tha first instance, the Isle of Porto Santo, and thence proceed for the Road of Funchal, on the track shown upon the particular plan given in the Chart. The land of Porto Santo is very remarkable, and may be seen, in fine weather, 15 or 20 leagues off. It first appears in two or three very high hummocks, by which it is distinguished from Madeira, and the little isles named the Desertas.

Porto Santo (a) bearing South, 14 miles, as taken by Captain J. W. Monteath.
It is said that it was discovered by two Spaniards in a voyage to explore the coast of Africa, but being driven off in a storm, they here found shelter, and named it, in consequence, Porto Santo. At present it is a depesdency of Madeira, and in 1838 its population amounted to 1,618 persons. It is $\mathbf{6 4 - 1 0 t h s}$ miles in length from N.E. to S.W. Its mean breadth is $2 \frac{1}{2}$ miles, and its circuit 17 miles. The surrounding bank of soundings is more considerable than has been supposed. •'The N.E. part consists of numerous rocky pointed mountains, some ncarly 1,700 feet in height, and all its North coast is generally high inaccessible cliffs, with detached rocks at their bases. The central part is much lower than the extremities, but on the North and N.W.: coasts rises to 700 feet; from whence it slopes to the South, and terminates in a beautiful white sandy beach, which forms its entire S.E. shore. On this central part are several sandfields, covered with what appear co be fossil heath-stems, probably coral formation. The S.W. end of the island is also roeky and elevated, some of the hills exceeding 900 feet in height. The town, Villa Baleira, is situated near the centis of the bay on the S.E. side, about 300 yards from the beach. The church and courthouse on it are conspicuous; and a little to the West of them is a small battery, in lat. $33^{\circ} 3^{\prime} 30^{\prime \prime}$ N., long. $16^{\circ} 20^{\prime} 14^{\prime \prime} \mathrm{W}$.; variation in $1843,24^{\circ} 30^{\prime} \mathrm{W}$.
The Pico de Castello, 1,447 feet high, is N. $4^{12^{\circ}}$ E. from the church; and on its summit are the ruins of several water tanks and stone buildings. The two peaks immediately to the East, called Fachio and Guadaya, are the highest in the island, the former bcing 1,660 feet high.
The island is chiefly used for pasture, cultivation extending along the shore of the bsy and the low land. The island suffers grievously for the want of water, but producing wine, grain, and vegetables; also plenty of live stock and poultry. The banks around abound with fish.
The landing at Porto Santo is usually made upon the beach in front of the town, though there are no artificial facilities for so doing. It is high water at full and change, at $12^{\mathrm{h}} 50^{\circ}$; the rise of the tide is 7 feet. Generally, vessels should not anchor in the bay within the line joining the South exireme of Ilheo Baixo and the low extreme of Ponta de Incao, bearing S. 491° W., aud N. $49 \frac{1}{3}^{\circ}$ E., and the South point of llheo de Cima N. 73° E., 2 miles distant. In this position, which is 13 -10ths miles from the landing-place, there will be 17 fathoms water, over a bottom of small gravel and broken shells. The edge of the baik is rather less than half a mile to thi South of it; the depth of water increasing rapidly. During the settled weather in summer vessels may anchor nearer the shore, but care should be taken not to be caught in the bay. In the prosent condition of the isiand it is of little service to the narigation, as Madeira itseli' offers superior advantages.

Ponta de Ineao, the S.E. point, is composed of high rocky cliffs. Off it lies the Ilheo de Cina, a table-topped island, 360 feet high. There is a boat passage inside it Off it is a good fishing station. Ponta dos Irades, a bold point, steep-to, is 1 mile N. by E. from Ponta de Incao, and between them is the small sandy bay of Ponta dos Frades. Popta Branca, the N,E. point of the island, is composed of three bluffis, the northern one of which forms a fine a fine, bold promontory, the peak of which is 1,390 feet high. These rocky islets, steep-to, with navigable channels between, lie off the Ponta Bronca. The outer, or N.E. Rock, is 330 feet high; the rocky bank, on which they stand, has a patch of 10 fathoms at $2 \frac{f}{s}$ miles N. 32° W. from the N.E. rock.

Off the S.W. point is Theo de Ferro, 380 feet above the sea, almost inaccessible, and having a narrow but safe channel inside it. Baixo Island, off the South point Ponta de Calheta, is $1 \frac{1}{2}$ miles in length, and is only visited for its limestone quanries, a singular feature. They are national property.

Off the N.W. coast of Porto Santo the bank of soundings extend for 8 miles, with a general depth of from 25 to 35 fathoms, fine white sand. Near its N.E. margin is the Falcon Rock, the position of which was first ascertained by the officers of H.M,S. Falcon, Eieutenant J. Bowen, in January, 1802. It is a neere knoll, on which there are $4 \frac{1}{4}$ fathoms at low water. It is said to break at times. When on the rock the highest.land of the N.E. rack bears S. 60° E. $6 \frac{1}{2}$ miles ; of Ilheo de Fonte, S. $13^{\circ} 10^{\prime}$ E. 4 6-10ths miles; and of Ilheo de Ferro, S. $5^{\circ} 30^{\prime}$ W. 8 4-10ths miles. Vessels coming from the N.E., with a fair wind, may pass it, keeping the Ilheo de Fonte off the middle of the North eoast) in line with the high land at the S.W. end of Porto Santo. At nine-tenths of a nile N. 37° W. from Faicon Rock is a shoal patch of 11 fathoms, named the Styx Bank.

Porto Santo (a) N. by E. 12 miles ; taken by Captain Monteath.
DESERTAS.-To the S.E. of Madeira, the Descrtas, a line of narrow rocky islctey extend nearly in a North and South direction by compass, the North extremity of which bears S. $34^{\circ} 8^{\prime}$ E. 10 miles distant from its East point. Between them in this space is a bank of soundings of from 45 to 75 fathoms, about 2 miles broad, on which, in settled weather, fishing-boats frequently anchor. This bank continues quite round the Desertas.

Chao, the northernmost, is nine-tenths of a milo in length, and one-quarter of a mile in width at its North end. It is tabled land ; the highest point to the North is 336 feet, and is surrounded by high rocky cliffs. Off the bold bluff at the North extreme is a remarkable detached rock, called by the Portuguese the Furrilhao, but known to navigators as the Sail Rock. It lies due North of the point, 100 yards distant, and is 160 feet high. At 300 jards N. $65^{\circ} \mathrm{W}$. from it is a breaking rock, and a narrow ridge of irregular soundings extends frrm it N. $30^{\circ} \mathrm{W}$. nine-tenths of a mile. The surface of Chao is composed of light soal, with rocks and stones, covered with long coarse grass, and a few aromatic herbs. Near its centre is a pond of turbid water. The highest land is near the North point, and is 336 feet in height.
The Deeerta Grande is the largest and most elevated of the three islands. It is6 s_{s} miles in length by 1 brazd at the widest part. From Ponta de Pedregal, on the West side, to its South extrenne; it consists of a continous chain of rocky heights, the highest peak of which, 1,010 feet, lies $11-10$ th miles E.S.E. of the point. The width of the passage between Chao and the North point of Deserta Grande is but little more than 300 yards between the rocks, and this is further cinntracted by breaking rock in the centre, so that it is only practicable for voats in fine weather. Ponta de Pedregal is 2 miles from the North end. It is a detached rock, with high land towering above it to more than 1,200 feet in height. Between this point and the neat to it to the Norith is the hitice cove of Casinetheira, where there is a boat

Off it lies the passage inside it eep-to, is 1 mile dy bay of Ponta d of three bluffis, e peak of which annels between, aigh; the rocky $32^{\circ} \mathrm{W}$. fiom the
ost inaccessible, the South point cestone quarrie,
for 8 miles, with N.E. margin is ficers of $\mathbf{H} \mathbf{M}, \mathrm{S}$. on which there on the rock the onte, S. $13^{\circ} 10^{\circ}$ miles. Vessels eo de Fonte (off V. end of Porto shoal patch of
ow rocky islets, th extremity of n them in this road, on whieh, ues quite round
re-quarter of a o the North is the North exFurrillhao, but int, 100 yards breaking rock, nine-tenths n stones, covered pond of turbid ight.
ands. It is $6 \frac{1}{2}$ al, on the West heights, the te point. The Grande is but ntracted by fine weather, rkk, with high this point and erere is a boat

The ba 11 miles Martira
The is and on th casual vis
There 1 strong br variable, whirled i
The tid lood N. TADI involved and Anno bhores of unknown departing about 134 in the pr found ove discovery S.W. by Canarics. celled, of Madei (5,076 fer tains, the To the W for 21 mi

Janding-place, marked br a detached rcok. Ponta do Boqueirao the South point, it 44 miles S. 30° E. from Pedregal, with a rock olone to tt, but the point is atoep-to and clear. The East coast is a rugged, broken, irregular line of cliffs. Northward of Point Pedregal the island is differently formed to what it in monthward, connisting here of two riages, with a ravine between them. At the head of this valley or ravine, at the loot of a green hill near the centry of the island, about East of Pta. Pedregal, is a mall house, and near it two ponds or reservoirs of turbid water; ond a few yards down the valley is a delicious spring, though yielding bnt a limited supply.
The Bugio, or South Deserta, is about $4 \frac{1}{4}$ miles in length. Itm greatest broadth in not half a mile. The passage to the North of it is two-thirds of a mile in width, and is perfectly clear; depth 19 to 20 fathoms, and 7 fathoms within 30 yards of either.point. Both shores are rocky cliffis, of less altitude than the Deserta Grande, surmounted by a very sharp servated rocky ridge of hills, which runs the whole length of the island. There is a gap in this ridge, near the centre of it, which at a distance gives it the appearance of two islands. The highest peak on the North part is 1,349 feet, and on the southern part, 1,070 feet, in height. Pontu d'Agalha, the south extreme, has a few rocks, quite close to it, but δ fathoms at 130 yards off. It is in lat. $32^{\circ} 23^{\prime} 15^{\prime \prime}$ N., and long. $16^{\circ} 27^{\prime} 37^{\prime \prime} \mathrm{W}$.
The bank of soundings round these singular islands is tolerably regular, extending $1 \ddagger$ miles from the East gide, and 2 miles on the West side; and in a narrow ridge to Marteira as before mentioned.
The islands have no permanent inhabitants. They are frequented for orchilla'; and on the centre one some cattle and sheep are pastured, and attended by a few casual visitors.
There is much danger to vessels passing close under the lee of these islands with otrong breezes, in the violence of the gusts from the high land, which are most variable, both in direction and strength. It is no uncommon thing to see the water whirled into the air, and then precipitated on the vessel's masts and decks.
The tide sets by these islands at springs at the rate of $1 \frac{1}{f}$ to 2 miles per hour. The liood $N .31^{\circ} E$., and the ebb $S .31^{\circ} \mathrm{W}$., and its rise is 7 feet.
YADETRA.-The date and manner of the discovery of this beantifal island are involved in come obscurity. The most probable is the romantio tale of Robert Machim and Anna D'Arfet, two lovers, who, flecing from the wrath of the lady's friends to the shores of France, were driven by a storm far away to eea, and at length met with this unknown and uninhabited island. Here they landed, and both died, the crew again departing. There are some variations in this story, both in date and particulars, but about 1344 is mentioned as the time. There is great probability of its acouracy; and in the present little church of Machico is said to be preserved a portion of the cross found over their graves, on their re-diseovery between 1417 and 1419. This latter discovery arose from the cirumstance ef a dark cloud being constantly seen in tho S.W. by the settlers at Porto Santo, who had gone from Spain to the conquest of the Canaries. They sailed towards it, and on June 1, 1849, they discovered the point now celled, after their vessel, Cape San Lorenzo.
Madeira is of volcanic origin, though the only sign of a crater is upon San Antonio (5,078 feet), near Kachico, at the East end of the island. It is a collection of mountains, the highest of which, the Pico Ruivo, is near its contre, and is 6,058 feet high.* To the West of it the ridge of the Lomba Grande, nearly of equpl elevation, extends for $2 \frac{1}{f}$ miles, and forms the North edge of the stupendous ravine of the Curral, one of

[^138]the wonders of Madeira. The western side of this is formed by 2 ridge of which the rocky summit of the Pico Grande is 5,391 feet hiph. South i Fiu:-n is a ridge of peaks of nearly equal elevation, amongst which 1.0 three ren urkable peaks of the Torrinhas are 5,980 feet high. South of these, three-quarters of a mile, is Pico Sidrao, and half a mile further S.E. is 1 'ico Arriero, 5,893 feet high. These may be considered to form the axis of the island, from which the mountains generally slope gradually to the South coast, and on the North, with few exceptions, they drop precipitously on to the bold bigh coast.
The cultivation is confined to the coast, or to the bottoms of some of the valleys, and ocelipies altogether a very small proportion of the surface. Vines form the chief feature; for the corn grown annually scarcely supplies a two months' consumption to the inhabitants.

In the island may be found almost every European and tropical luxury. The myrtle, the geranium, the rose, and the violet, may be seen on every side. The geranium, in particular, is so common, that the honey of the bees is strongly impregnated with its odour.

Cajiain Wilkes, in command of the U.S. Exploring Expedition, arrived at this island September 16, 1338, on his outward voyage; from his fine work we extract the following :-
"The first appearanee of Madeira did not come up to the idea we had formed of its beauties, from the glowing deseriptions of travellers. It exhibited nothing to tha distant view but a bare and broken roek, of huge dimensions, which, though grand and imposing, is peculiarly dark and gloomy, and it was not until we made the land that we could discover the green patehes which are roorywhere scattered over its dark red so: 1 , even to the tops of the highest peaks.
"The mountain verdure was afterwards diseovered to be owing to groves of heath and broom, which grow to an extraordinary height, aspiring to the stature of forest trees. In addition to these groves, the terraced acelivities, covered with a luxuriant tropical vegetation, ehange, on a closer approach, its distant barren aspect into one of extreme beauty and fertility.
"The shores of the island are mostly lofty cliffs, oecasionally faeing the water with a perpendieular frunt, one or two thousand feet in height. The eliffs are interrupted by a few small bays, where a richly cultivated valley approaches the water betweea abrupt precipiees, or surrounded by an amphitheatre of rugged hills. These narrow bays are the sites of the villages of Madeira.
"Off the eastern cane of the island many isolated rocks were seen separated from the land, with bold abrupt sides, and broken outlines. The eharacter of these rocks is remarkable: they stand quite detached from the adjoining eliffs, and some of them rise to a great height in a slender form, with extremely rugged surfaees, and breken edges. Through some, the waters have worn arehed ways of large dimensions, which afford a passage to the breaking surf, and would seem to threaten, ere long, their destrnction.
"Similar needle-form rocks are seen off the Northern Deserta, an island lying some miles East of Madeira. One of them is often mistaken for a ship under sail, to which, when first seen, it has a considerable resemblance. It stands like a slender, broken column, several feet in height, on a base searcely larger than its summit."

At Madeira is a wind called the Leste, whieh, as its name implies, comes from the East, although all East winds are by no means Lestes. It appears to be of the same kind as the Harmattan of Western Afriea, and is of a hot, close, drying nature, partioularly oppressive to some constitutions, which it affeets by languor, head-ache, and a parching of the skin and lips. What is remarkable, the residents are those whom it most disorders in this way. Visitors, in general, suffer nueh less; and the invalids are never so well as while it lasts. A peeuliar elearness and cloudlessness in the atmosphere are among the invariab's indications of Leste, and the weather uring its continuance is most delightful; the sky of a deep blue, so stainless that one might fancy it had : aver been shilied by a cloud: with a tranajarency in the atmosphere, whieh, like the ciriot of moisture, seems to bring out fresh hues from every object.

At tim weather and balm in flower, almost in The eli whom as an Engli mate, wh Water, copious; are never the inhab the whole water-cou food of al
The to the outlet cabins and the valley

The ex miles, and in 1843 , flood runs
Fora mmall une feet high, gerous roc fifths of a one lies S some with rounded.

St. ¿OU clifts is a r reality an the action
*The n follows:690. 74; J The year in . ture or hite
"In fino meep and 1 honses, as looking shc
"Seume the suddon abrupt and as the heig mountain. place; and an incorre arcurately "Closing shoree, inti cye has be mating die
ige of which the on is a ridgo of ble peaks of the e, is Pico Sidrao, zse may be cons generally slope tions, they drop
e of the valleya, es form the chief consumption to
al luyury. The y side. The getrongly impreg-
arrived at this vork we extract
lad formed of its nothing to the h, though grand e made the land attered over its
groves of heath stature of forest with a luxuriant aspect into one
the water with are interrupted water between
These narrow
separated from of these rock d some of them ces, and breken nensions, which ere long, their
and lying some under snil, to like a slender, s summit."
comes from the be of the same ng nature, par-head-ache, and - those whom nd the invalids cssness in the her iuring its hat one might ie atmosphero, ery object.

At times, but not frequently, the Leste is accompanied by a strong wind but the weather is' still delightfully warm and pleasant. The nights, too, are delicious ; soft; and balmy; and; with the moon walking in summer brightness, and the orange trees in flower, the air is loaded with perfume. With the departure of the Leste, rain almost invariably follows.
The climate, generally, is delicious, and strikes with poculiar charm to a stranger, whom a short sail has transferred to it from the very midst of the gloom and chill of an English December. Indeed, the great natural distinction of Madeira is the climate, which, perhaps, taken altogether, is the finest in the world.*
Water, of excellent quality, is abunuant. Springs are found everywhere, and copious; even the streams at the bottom of the ravines, fed by the mountain mists, are never dry in the hottest season ; and the height from which they descend enables the inhabitants to divert the course of the water at any elevation or in any direction; the whole caltivated region, therefore, is irrigated on all sides by theso levadas; or water-courses. On the coast, fish is abundant, and forms an important article in the food of all classes.
The towns and villages are invariably situated on the sea-coast; and commonly at the outlet of a ravine; but where the bottom is fertile, and the surface permits, the cabins and quintas, or country seats, are often scattered up a considerable extent of the valley.
The extreme longth of the island is 31 7-10ths miles, its greatest breadth 12 miles, and the circuit along the line of coast 79 miles. The magnetic variation in 1843 was $24^{\circ} 45^{\prime}$ W. High water, full and change, $12^{\text {h }} 48^{\prime}$; rise 7 feet: the flood runs $N .30^{\circ} E$. at $1 \frac{1}{8}$ miles per hour on springs.
Fora is the first land neared on approaching Madeira from the eastward. It is a swall uneven islet, steep-to, and with rocky cliffs. A peak near its North end, 352 feet high, is in lat. $32^{\circ} 3^{\prime} 14^{\prime \prime}$, loag. $16^{\circ} 39^{\prime} 30^{\circ}$ W. Off its S. E. side are some dangerous rocky patchcs, surrounded by deep water. The outer one lics S. 43° E. twofifths of a mile from the peak, and is a small rock, with 4 fathoms on it; the inner one lics $\mathrm{S} .34^{\circ}$ E. three-tenths of a mile from the peak, and has several rocks, some with 15, end others with only 4i, feet on them. They should be cautiously rounded.
St. dourenzo Point is formed by a rocky bluff, of small elevation; abovo the clifis is a narrow ridge of hills, the highest being 348 feet above the sea. It is in reality an island, for at high water it is quite separated from Ponta Furada, and by the action of the sea may become permanently so.

[^139]4 F

Ponta Furada is a bold, basaltic point, surmounted by a hill 550 feet high, and throunh it is a fine lofty areh, made by the waves. Half a mile West of it is Ponta de $p_{\text {tudade, }}$ crowned by a rocky. hill, surmounted by a small but very conspicyous white ohapel. North of this, quite across the narrow neck which forms the East extreme of Madeira, occur those curious fields of fossils, similar to those described at Porto Santo. Caniçal. Print and village are $1 \frac{1}{b}$ miles. W. by S. of this, the coast being lower. To the S.W. yf it the cliffs are bold and high, as far as Machico Bay, $1 \frac{8}{4}$ miles S.W. of Caniçal.

Machioo Bay is a most yomantic spot, celobrated in tradition as the place where the first discoverer, Robert Machim, landed with Anna D'Arfet. The village church is supposed to cover their graves. The village has a considerable number of fishingboats. Between Machico and Ponta Queimada the distance is half a mile, and thence to Ponta de Santa Catarina 1 1-6th miles; off the latter is a steep rock, but the whole coast is bold, and no outlying dangers. Ponta Guindante is the next projection; hetween them there is a bay, at the North end of which is the valley of Santa Crus: Close around Guindante, to the S.W., is the village of Porto Novo, in a small shingle bay, where a considerable ribeira has its outlet.

Atalaya Puint is nine-tenths of a mile S. $40^{\circ} \mathrm{W}$. of Pta. Guindante, and has a singular small pointed peak on the cliff, close to it. From this Ponta Oliveira bears S. $51^{\circ} W .1$ mile; it is a clean rocky point; steep-to, upon which you can land, and the ascent from it is easy.

Cabo Garajao, the Brazen Head, the East point of the Bay of Funchal, is 1 mile S. 75° W. from Ponta Oliveira. It is a bold rocky headland, jutting out at right angles to the line of coast. It is formed by perpendicular cliffs of reddish-yellow tuff, and above them is a narrow hilly ridge of land, crowned with a rocky knob or knoll, 420 feet above the sea, on which is a telegraph. This knoll particularly distinguishes the head when seen from the westward. The cape is steep-to.

THE BAY OF FUNCHAL is bounded to the East by the Brazen Head, and on the West by Ponta da Cruz, bearing from it S. $87^{\circ} 40^{\prime} W$., distant 49 -10ths miles. The coast to the West of Cape Garajao is a series of rocky cliffis and small stony points to Santiago Fort, which is exactly midway between the two extremes of the bay. It is also at the East end of the town of Funchal.
FUNCHAL, the capital of Madeira, was named thus by Goncalves Zarco, on July 3rd, 1419, when first landed on, from the quantities of fennel growing here.
"Funchal," says Captain Wilkes, "has a very pleasing appearance from the sea, and its situation, in a kind of. amphitheatre formed by the mountains, adds to its beauty. The contrast of the white buildings and villas with the green mountains forms a picture, which is mush heightened by the bold quadrangular Loo Rock, with its embattled summit, commanding the harbour in the foreground.
"The streets of the town are very narrow, without side-walks, and, to our view, like nlleys; but their narrowness produces no inconvenience. They are well payed, and wheel carriagee are unknown. The only vehicle, if so it may be called, is a sledg of some 6 feet in length, about 20 inches wide, and only 6 or 8 inches high, on which ure transported the pipes of wine. Two strips of hard wood are fustened together for runners.

The town of Funchal stretches along the margin of the bay for nearly a mile. The cathedral is a fine building: before its western door is a parvis or open space, and beyond that the Terreiro da Se, a very pleasant promenade, under four or five parallel rows of trees, and enclosed by a wall, a few foet in height.

The church of Nuesa Senhora do Monte is the neatest in the islend. It is seated on a terrace just half-way up the mountain, and commands one of the most enchanting views in the world.

The Corral or Curral of Madeira, a few miles north-westward from Funchal, is one of the grandest scenes in the world. Admiral W. F. Owen says, that the Curral means simply a sheepfold, and is an immense valley, completely sumziunded by hilla, whose sides are literally perpendieular, in no part being less than 1,000 feet high.

Round a plantatic oves the rolling is
Althor rugged distance amars sitter ap ships in is in the passing or W.i.
When fort on it the town anehor, it will be is requisi you may put to se have a \mathbf{k} with the to S.W. be shiftec
The ge Castle, a the eastw With t Stecple With the fathoms. it has a rock, and In cast with the Loo, will castward
When in time, anchorin in case o required
Those coming i way, for months Should leeward smocth;

0 foet high, and st of it is Ponta ery conspicyous forms the East ose described at f this, the coast as Machico Bay,
the place where e village church nber of fishingmile, and thence c, but the whole lext projection; of Santa Cru:. a small shingle
ante, and has a a Oliveira bears 1 can land, and
nehal, is 1 mile ng out at right ish-yellow tufa, knob or knoll, ly distinguishes
azen Head, and istant 4 9-10ths cliffs and small two extremes of

Zarco, on July here.
from the sea, ins, adds to its reen mountains plar Loo Rock,
d, to our view, ree well paved, be called, is a inches high, on d are fustened
nearly a mile. or open space, er four or five

It is seated on ost enchanting

Funchal, is one Lat the Curral tinded by hillo, 000 feet high.

Round a part of these cliffis is a narrow road, leading to the garden housee and country plantations, cut out of the ruck, abont 10 or 12 feet wide. On riding along the road oves the Curral, it seems like an unfathomable abyss, flled only by clouds and vapours solling in a constant motion over each other.
Although Maderira is so elevated, excepting the eastern end, which is a low, rugged point, yet it is often so entirely olouded over, as not to be visible at the distance of 5 leagues. Hut, when abreast of Porto Santo, the island commonly $a^{-\prime-}$ ars as one gree'c mountain, with its summit hidden in the clouds. Shortly atter appear the Lesertas. Having passed those islands, you will soon perceive the ships in the Road of Funchal ; and, from their riding, it will be seen how the wind is in the road, as it is common to have a strong breeze from the N.E. or East, on passing the Descrtas, when, at the same time, the wind in the rad is from the S.W. or W.'..W.
When sailing in toward Funchal Road, a largo rock, named the Loo Rock, with a fort on it, will be seen on the West side of the road, a little to the westward of the town. With this rock N. by E., when in 38 or 36 fathoms, let go the port anchor, with two cables on it; for, slould there be a fresl breeze from the eastward, it will be scarcely possible to bring up, until the splico is veered a good way out. It is requisite to ride in the road with a whole cable, and with a splice so situated, that you may be able to cut near it, should circumstances unfortunately compel you to put to sea, without weighing anchor. While riding, keep a slip-buoy on the cable, have a kedge-anchor and a nine-ich hawser to the westward, to keep the ship steady, with the hawser on the starboard bow, as the wind generally veers from the eastward to S.W. and West. When the land-wind makes a cross, the end of the hawer may be shifted.
The general anchorage is from 30 to 35 fathoms, with the citadel (called the Peuk Castle, a brown square fort on a hill over the N.W. part of the town) a little open to the eastward of the Loo Rock; the latter at the distance of half a mile.
With the Loo Rock and citadel in one, bearing nearly N.N.E. $\frac{1}{2}$ E., and Funcha! Steeple N.E. $\frac{1}{4}$ N., the anchorage appears equally good, in 35 fathoms, stiff ground. With the same marks, with the Loo about a nile off, there is good ground in 45 fathoms. To the westward, the ground changes to sand and rock, and to the eastward It has a sudden declivity from 50 to 55 fathoms, stiff clay ground, to 100 fathons, rock, and then no ground.
In case of a S.W. gale, which may be frequently expected in winter, tho situation with the Loo and citadel in one, or the citadel just open to the westward of the Loo, will be found must convenient. On the contrary, the citadel, well open to the castward of the Loo is the best situation when a south-easter may be expected.
When coming into the road, with a brisk wind, sail should be reduced and secured in time, to prevent having too much way through the water, at the moment of anchoring; and ships should be brought up with their heads to seaward; for thus, in case of auy accident in bringing up, sails may be had off shore, or otherwise, as required.
Those riding in Funchal Roada should be very active when they observe a swell coming in from the S.W.; at this moment, no time is to be lost in getting under way, for the swell inuicates that a gale is certainly ecming on ; particularly so in tho moinths of Decenber and January, generally the cominencement of the rainy season. Should it come on to blow very hard from the westward, the best mode is to run to leoward of Desertas, whore shelter from the wind may be found, and water perfectly wmocth; thus you avoid the risk of losing sails, by heaving to windward."*

[^140]The beat woay for shipe, however large and numerons, when bound into Funchal Rood from the eastward, with the wind northeeasterly, is through the paseagi betwcen the Desertas and Madeira. The northeaater will carry them to the offpg of the Brazen Head, the East point of the Bay of Funchal. In the night, a single ship may keep over toward that bluff point, and, with her boats towing ahead, When becalmed, luff up into the stream of the land-wind, and by that means fetch the anchorage. Ships must show a light at their ensign-staff in the night, to prevent being fired at from the forts at Loo Castle. In the day they should keep further distant from the land than in the night, to avoid being becalmed under it, and to gain the stream of the sea-breeze. If, from over cantion, or other reasons, they fall 2 or 3 leegios to the leeward of the road, they should then ke.3p plying up in the stream of the valley, until they gain the vein of the sea-breeze. In working in with a land-breeze, it is best to make short tacks, opposite the valley ; as here both the land and sea-breeses are most regular.

Small vessels, from North America and the Western Islands, come in, generally, round the West end of the island, but are frequently becalmed a considerable time under the high land there. From this season ships, on leaving Funchal, should make sail with the land-wind, and stand directly off from the road; ships boind to the southrird, by taking a contrary method, having continued several days becalmed under the western part of the island.

In the winter months eddy-winds and squalls, proceeding, from the high land, are frequent and sovere, and the ships are often forced to put to sea from the rood. Several westerly and S.W. gales, with rain, then frequently prevail, and prevent ngaining it for some time. At these periods, Madeira and the Desertas are often obscured in fog. The squalls have been found so sudden and violent near the Desertas and about the S.E. end of.Madeira, as nearly to overset the ships in the vicinity; and many have been driven by them far to the eastward.

It has been said, that a southerly wind never blows hard quite home to Funchal; that the south-westers and south-easters are never expected, except in January, February, and the beginning of March; and that large ships almost always ride them out; but Captain Horsburgh has stated, that "these southerly gales sometimes blow quite home to Funchal, even in November and December: and, when they are apprehended, it is common for ships of every description to put to sea. These S.W. or S.E. gales are, in general, preceded by a swell in the road, often accompanied by gloomy weather, drizzling rain, and a very unsettled breeze from the land, veering backward and forward very suddenly. Under such indications, ships generally proceed to sea;" for, should it blow strong from the sonthward, it wonld bo almost impossible to clear the shore, the anchorage being so close to the land. A few years ago, several vessels were driven from the anchorage, and completely wrecked on shore.
From the Pontinha to Ponta da Cruz the distance is $1 \frac{1}{}$ miles; the coast between has a broken outline of rocky cliffs, points, and bays. The bay to the. West of the Pontinha is half a mile across, and its shores are composed of steep eliffs, with a high bold bluff at its West extreme. Along the base is a beach of sand extending as far as the watercourse. The whole of the bay is comparatively shallow, and appears to offer the best position in Madeira for any artificial harbour works

Admiral FitzRoy says:-"The roadstead of Funchal is well known to be unsafo in S.W. gales ; and there can be no doubt that the most prudent plan is to koop at sea whilo they last ; but I have been told by old traders to Madeira, that ships sometimes remain at anchor, about half a mile from the Loo Rock, and ride out S. W. gales without difficulty ; the undertow being so considerable, that their cables are little strained." -Vol. ii. p. 46.
Those statements require some modification. On October 15, 1842, Madeira was visited by one of the most dreadful storms that had vicurred since the flood of 1803, which swept 400 persons in the sea. On the 26th it blew a tremendous hurricane from the South, which, with the terrific sen, drove four out of the six vessels at anchor on shore, with total destruction, and neuily ail the crews wre lost.
d into Fanchal 3h the passage rem to the offing night, a single - towing ahead, hat means fetch ight, to prevent dd keep further mider it, and to reasons, they lying up in the working in with as here both the
e in, generally, nsiderable time cal, should make sound to the 1 days becalmed

- high land, are from the road. and prevent n is are often obar the Desertas he vicinity; and
ne to Funchal; in Jannary, Fe ways ride them sometimes blow they are appreThese S.W. or accompanied by e land, veering generally probe almost im.
A few years ly wrecked on
coast between he. West of the ffs, with a high ktending as far and appcars to
unsafe in S.W. sea whilc they main at anchor, lity ; tho under6.
sira was visited of 1803, which cane from the chor on shore,

Thy Gorgwho, a detached augar-loaf formed rocked, lien off a pretty little bay; half a mile Weost of this. Four-tenths of a mile North of this rock is Monte da Cruz, 882 feet high, with a telegraph on its suramit, and hence there is a succession of rocky. diffs for another half mile to Ponta da Cruz, at the S.W. extremity of whioh there is a semi-deteched peinted rock with a small iron cross on the top of it. This rook is the South extremity of Madeira, and is in lat. $32^{\circ} 17^{\prime} 18^{\prime \prime} \mathrm{N}$, long. $16^{\circ} 57^{\circ}$ $11^{\prime} \mathrm{W}$.
Immediately to the West of Ponta da Cruz is the little bay of Praya Formosa, formed by a shingle beach; and at 11 miles from it is the mouth of the Socorridos River, a mountain stream, perhaps the largest in Madeira, which drains the celebrated valley of tho Curral. At the West side of the mouth of this is a small bold rocky pait, round which are the village and little boat harbour of Camera de Lobos. The West side of this is a narrow wavy line of black lava, running out South at 270 yards. The little town is old and poor enough, but the sides of the mountains aronnd are covered with quintas and vineyards, and are said to form one of the finest wine districts of the islarid.
CAPE GIRAD, a magnificent headland, is $3 \frac{1}{3}$ miles West of Ponta da Cruz. It is the cerminetion of a ridge of mountains lying westward of the valley of the Jardim da Serra. The cape is nearly perpendiculer for 1,600 feet above the sea, which nearly washes its base; and upon the high land which covers it is a grove of pine trees, 2,il9 feet above the sea. The hills continue rising until they reach the head of the valley, at an elevation of 4,535 leet.
At 2 miles from Cape Girao is the Ilhoo de Lapa, a conical shaped rock, in front of the village of Campanaris: The coast to the Last has a continuous line of stony beach; towards the West this characteristio alternates with clean. black rocky. points.
Ponta do Sol is $5 \frac{1}{\frac{1}{2}}$ miles W.N.W. of Cape Girao. It is a bluff rocky cliff, with some fragments of rock lying close in front of it; the largest of these is pointed, and has a small wooden cross on it. The Ponta do Sol in a westerly gale and stormy Feether apyeare surrounded with the colours of the rainbow, arising doubtless from the spray of the surf; hence, probably, its name has been derived. The village of Ponta do Sol is up the ravine to the West of the point; its church may be seen through the narrow gorge. Westward of this the coast is a long wavy line of narrow stony beaches, above which are sliffs of small elevation, mach broken by ravines and land-slips ; one remarkablo piece of cliff stands $I_{4}^{\frac{1}{4}}$ miles. West of Ponta do Sol. Thre-fourths of a mile beyond this is the village of Magdalena, at the outlot of a ribeira; 2 miles beyoud Magdalena is another ribeira; the space between is called the Areo da Calhetc:. At 5 miles from Ponta do Sol is the town of Calheta, but little can be seen of it through the very narrow ravine. At a quarter of a mile West of it; above the cliffs, on a ridge of land, is a conspicuous long building like a monastery. Ponta Galera is seven-tenths of a mile from Calheta; it is a natural jetty of flat rucks of black basalt, 100 yards long.
Ponta Jardim is $1 \frac{1}{f}$ miles N.W. by W. of Ponta Galera; it appears to be a landslip; upon the top o. are a small village and a chapel. The soundings off this part of the coast are regular, over dark sand, and extend off $1 \frac{1}{f}$ miles, with 30 fathoms 1 mile off. Paul do Mar, a village on the corst, is 1 mile from Ponta Jardim. There is a waterfall here, and a great land-slip. The land is cuitivated in terraced vineyards. A grove of pines above Paul do Mar is 2,C30 feet (or one-thizd of a mile) above the sea, while its horizontal distanve from it does not exceed half a mile. Ihis will give on idea of the bold character of the scenery.
The beach of shingle and large stones extends 1 7-10ch miles to Point Fajao drovelha. Here it is broken through by a little spur of black lava; the cliffis become more elevated, and above them the land rises with a steep ascent to the highest peaks of the western mountains, 4,270 feet.
Ponta Parga is the western extremity of Madeira, and is 23 miles W.N.W. of Punta Fajae dopelha. The bold rueky clifis of the point are 935 feet high, and the smooth topped hill to the Liast is 1,380 feet. On the heights, 1 mile Latat of the
point, there is a charch. Some rooke and large stones lie meattered around the baso of Ponta Parga, and a rocky ridge of 11 to 20 fathoms runs off it 11 miles, and occasions a heary sea in westerly winds. Ponta Parga is in lat. $82^{\circ} 48^{\prime} 6^{4}$ N., long. 17 $16^{\prime} 38^{\prime \prime}$. W.
The bank of soundings extends 51 miles West of Fajao d'Ovelha Point; ti the N. W. of Ponta Parga its breadth is 24 miles. It is flat, with 40 to 46 fathoms, light brown or a dark gray sand, and occasionally rock. From these depths it drops very suddenly to 200 fathomg.

Ponta Tristao is the next point, N.E. of Ponta Pargo, bearing N.E. 5 miles. The coast between it is a wavy line of coarse stony beaoh, with high rocky cliffs rising abruptly from it. Above the cliffs the land rises steeply to the ridge of mountains above 4,000 feet high, and 2 milles from the shore. Ponta Tristao, the North point of Madeira, is a high, bold bluff, 1,070 feet high, off the foot of which are a few ounken rocks extending $\mathbf{I} 30$ yards, but clear beyond. On the heights, 1 mile to the South, is the parish church of Magdalena, 1,700 feet above the sea. At. nine-tenths of a mile $N .60^{\circ} E$. from the point, and about half a mile from the adjacent beach, is a vingular cluster of flat rocks, ilew feet above the sea, called the Rochas de Rabagal. With any sea, the surf rolls over them, but they are ateep-to, and a deep channel inside them.

Ponta Moniz is $1 \frac{1}{1}$ miles from Ponta Tristao, and is formed by a mass of lava running out N.E. about 470 yards beyond the general line of coast, and looks as if it had flowed over and beyond the cliffs into the sea. The shores of the point have a very irregular and broken outline. On either side of it are detached rocks, and right oft the bluff are four others in a straight line. On the Esst side of the point is a small fort with a round tower; and 140 yards S.W. of the outer islet off the point is another rooky point and another round tower, at which is the best landing as a jetty. The town of Moniz is on the higher part of the point; the chapel being one third of a mile from the landing-place. The whole point is cultivated with vines.: In front of the point, at the distance of 120 yards, is an islet of the same name, composed of yellow tufa resting on black lava. Ite shores are precik: wus, and it is the resort of seafowl ; it has no channel inside it. The little bay, locally called Porto Moniz, is in fact a rocky bank, varying in depth from 2 to 40 fathoms.

One mile S. 42° E. from Ponta Moniz are a group of rocks called the Janellas, lying near the outlet of that ribeira. They are five in number the largest 133 feet in height. At $2 \frac{1}{s}$ miles $S .52^{\circ} E$. from the outer Janella is the point and village of Siecal. The point is a comparatively low rocky projecting piece of land, with a great variety of feature. The town stands on the top of the point, a short distance from the cliffi, and surrounded by vineyards. The best landing is on the largest rock at the East extremity of the point, which is on this account connected with the shoreby a wooden bridge.

San Vincentre is $3 \frac{1}{4}$ miles from Ponta Siegal. The outlet of the ribeira is marked by an isolated sugar-loaf rock, standing a few yards within the beach. This rock las been excavated and converted into a chapel. Ponta Delgada is $3 \frac{1}{4}$ miles from Sen Vincente, the coast between lying generally similar to that West of the latter, a piece of low land at the foot of the mountains, with houses and cultivated enclosures. Ponta del Gada is a comparatively low point, composed of rocky cliffs, with a tower upon the top of it. The houses, which are numerous, and many of them pleasing and respectable, are scattered thickly among the richly oultivated vines ana orchards, with a very pleasing effect. The church, large and handsome, is close to the sea. Closc round the point, on its East side, is a small bay, with a little bit of fine shingle in it, which offers the best landing.

Ponta do Arco, a bold black point, is 12 2-5th miles East of Ponta del Gada. Neariy midway are a few large detached rocks, the largest called Rocha de Boa Ventura. A group of low rocks lie off 230 yards to the W.N.W. of it, and abreast of it are two ribeiras, the larger named Entroza. Nearly three-quarters of a mile inland from Ponta do Arco is a conspicuous sharp, wooded penk, 2,746 feet high, the summit of the Arco de San Jorge, which proved a valuable station in the survey from its unmistakable peouliarity of feature.

Ponta bold, roc the island breaks, li the 8.E. ing is al from San of large fourth of the see fin are amon a quarten miles fror at low wa

- Ponta Anns; at feet high, at its bas with a po
Ponta pendicula the point Illeo de mile S.E. up the ba able eleva dAguia,
Ponta Ponta de four detac of the poi ahingle be beyond a rises abov was close
Ponta Two rock high, den extends fi feet high, ing rock. fantastic yards fro about six feet abov and a he mile and rocks off
The ba except P Ponta da to 80 fat
We ha given by the " Na
around the bato miles, and occs$3^{\prime} 6^{\prime \prime}$ N., long. 1^{7}

Tha Point ; th the 46 fathoms, light the it drops very
.E. 5 miles. The y oliffs rising abmountains above eth point of Maare a few sunken ile to the South, tenths of a mile ach, is a vingular tas de Rabayal. deep channel in-
nass of lava ran. looks as if it had noint have a veri ks, and right of point is a small off the point is nding as a jetty. ng one third of a es. In front of composed of yelhe resort of sea. Moniz, is in fact

- Janellas, lying gest 133 feet in it and village of nd, with a great rt distance from largest rock at ith the shoreby
beira is marked
This rock has miles from San e latter, a piece ted encloaures. , with a tower mpleasing and orchards, with the sea. Close re shingle in it,
onta del Gada. a de Boa Vendabreast of it a mile inland sh, the summit ey from its un-

Ponta do 8 San Jorge is in lat. $32^{\circ} 39^{\prime} 44^{\prime \prime}$ N., long. $16^{\circ} 54^{\prime} 47^{\prime \prime}$ W. It is a high, bold, rocky bluff, nearly 700 feet above the sea, and may be called the N.E. point of the island. A mall low rock just seen above water, on which the sea commonly breaks, lies E. $\frac{1}{4}$ S. three-tenths of a mile from Ponta San Jorge. The next point to the S.E. is Santa Anna, bearing S. 59° E., distant $11-10$ th miles. On the same bear-, ing is a large isolated rock, Theo do San Jorge, 134 feet in height, one-third of a mile from Santa Anna Point. The point is formed by a gradually rounding narrow beach of large stones and coarse shingle, from which the land rises very abruptly. One-' fourth of a mile from the sea it attains an elevation of 1,100 feet. The country abovo the sea face is well wooded and extremely beantiful; and the quintas spread over it are amongst the most favourite summer retreats of this island. A detached rock lies a guarter of a mile S.E. of the point, and is about 12 or 14 feet high. At $11-6$ th miles from this point, and 400 yards off shore, is a small isolated rock, which uncovers at low water.
Ponta Cortada, a remarkable point, is $19-10$ th miles S. 52° E. from Ponta de StaAnna; at six-tenths of a mile to the N.W. of it there is a singular sharp peak, 1,730 feet high, standing close to the edge of the cliff overlooking a large high wass of rock at its base, called the Rocha do Navio. Porta Cortada has a very sharp ter mination, with a peak above the cliff, and deep water close up to it.
Ponta de Fayal, the next point, is cor.aparatively low and narrow, and has a perpendicular rocky cliff extending from its outer extreme along its N.W. side Outside the point, bearing $N .40^{\circ} E$. one-third of a mile off, is a black basaltic rock, called the Iheo de Fayal, with a sugar-loaf rock in its centre, 74 feet high. A quarter of a mile S.E. of the point there is a sharp bold rocky spar. The small town of Fayal lies up the bay between them. The cliffs from which tbis spar projects rise to a considerable elevation, and form the sea face of a singular flat-topped mountain, named Penha d'Aguia, or Eagles' Rock, whose summit is 1,915 feet high.
Ponta da Cruz is the outer extreme of a small peninsula, 1 6-10th milea S.E. of Ponta de Fayal. It is surrounded by low rocky cliffs, and in front of it there are four detached rocks, the outer one of which is 500 yards off the Point. To the S.E. of the point is a bay; three-quarters of a mile across, called Porto da Cruz. It has a ahingle beach at its head, and here is also the little town of Santa Cruz. The coast beyond consists of bold socky cliffts, of no great elevation at the aea, but the land rises above them precipitous! y . The last habitation seen on this part of the island was close to the coast, half a mile beyond Ponta da Cruz.
Ponta de San Antonio is $19-10$ th miles to the E.S.E., and is a bold rocky point. Two rocks lie close at the foot of it, and half a mile inland is a mountain, 2,510 feet. high, densely covered with trees. A dreary iron-bound coast, without i habitants, estends for $5 \frac{1}{2}$ miles to Ponta do Castello, the cliffs of which are of reddish tufa, 634 feet high, bold and perpendicular. At the foot of the bluff, 100 jards off, is a breaking rock. The shore throughout is broken into innumerable small coves and bold fantastic points, with a great variety of detached rocks, but in no case beyond 250 yards from the shose. A mile and three-fourths from Ponta de San Antonio, and about six-tenths of a mile inland, is a high green woody peak, named Castanhas, 2,058 feet above the sica. The land East of it has a steep descent to Canical. Three miles and a half to the East is Ponta Bode, a bluff, with a bay on each side of it. One mile and a half further is Ponta Rosto, with a group of rocks off it. There are other rocks off this point which need not here be particularized.
The bank of sounding extends further off this part of the coast than any other, except Ponta Pargo, and the depths over it are tolerably regular, except in front of Ponta da Cruz. Its breadth hereabout is from 21 to $3 \mathrm{mil} / \mathrm{s}$, and the depth from 20 to 80 fathoms, the bottom generally of dark gray sand, ind occasionally with coral.
We have extracted many of these particulars from the excellent and detailed account given by Admiral Alexander T. E. Vidal, R.N., the Admiralty surveyor, as given in the "Nautical Magazine" for 1848.

5.-THE CANARIES, OR OANARY ISLANDS.

This group of islands was supposed to be known to the ancients under the name of the Fortunate Islands. An expedition to conquer it was undertaken in 1334, by Louis de la Corda, a Castilian prince, but it was repulsed by the bravery of the original inhabitants, the Guanches. It was left until the year 1402, when Jean de Béthencourt, a baron of Normandy, took possession of. Fortaventura and Lanzarote, for John, King of Castile. By the treaty of peace between Ferdinand, King of Castile, and Alphonso; King of Portuggal, it was agreed that these islands should belong to Spain, in lien of the settlements on the continent of Africa, ceded to Portugal.*

The land of the Canary Islands is generally high, being variegated by volcanio. mountains, among which that called the Pic, or Peak, of Tenerife, is supereminent. The inequality of height is, however, so great as to produce differences in the tempe: rature of the di rent islands. For eight months in the year the summits, excepting those of Lanzarote and Fortaventura, are covered with snow; yet in the valleys, and on the shores, the cold is seldom so great as to render fires necessary. A great proportion of the surface of the islands is covered with lava," calcined stones; and ashes, formerly emitted by volcanoes, the remains of which are still visible in all the islands; and some of them, among which is the Peak of Tenerife, are not yet entirely extingnished. The number of inhabitants, according to the census of May, 185i, was 134,046. The productions, exports, and imports, may be found correctly described in most geographic works. The first discoverers found neither corn nor wine; though, at present, there is plenty of both.: Variation of the compass, 201_{1}° to 21° West.

Vessels may pass between the Canarics, and through their principal channels; as there is no known danger but what may be plainly discerned; excepting a sunken rock, laid down in some charts, in the southern part of the channel, between Tenerife in the Grand Canary, about 8 leagues E.S.E. of the South point of Tenerif, and 4 leagues westward of the centre of Canary, but which is not shown in the survey of Admiral Vidal, and another off the E. point of Tenerife.

In sailing from Funchal to Tenerife keep well to the westward, steering S. by W. 3.W. [nearly South] in order to avoid the Salvages, which are very dangerous in the uight.
If prevented from weathering the Salvages or the Piton (described hereafter) by prevalent westerly and S.W. winds, common in the months of January and February, when a heavy swell may set the ship much to leeward, you may safely bear up and run to leeward of the Great Salvage; only observing that, if the swell be very heavy you must cautiously avoid three shoal spots, lying to the northward and eastward of that isle. Of these, the northern one is abont three-quarters of a mile to the northward [N.N.W.] of the isle; the inner one on the N.E., 250 fathoms from it ; and the outer, in the same direetion, 11-10th miles. Two others, with 3 and $3 \frac{1}{8}$ fathoms, lie at about half a mile from the eastern shore.
The SALVAGES consist of an island, named Ihha Grande, or the Great Salrage, a larger islet named Great Piton, and a smaller one called the Little Piton, together with numerous rocks. The Great saluage lies in lat. $30^{\circ} 8^{\prime}$, long. $15^{\circ} 35^{\prime}$. It is of very irregular shape, and has a number of rocks about it within the distance of s mile. It is much intersected, and has several deep inlets, the most accessible of which

[^141]is on the fowl mak show, bu
The G Itha Grat s.W. by from the the same and surro of tho lit
It has Needle R like a sail seen 5 or point of t of the Gr
LANZ
great dist many exti precepitou and termi two consid from 200 all tho N . the except but convel On the the middle rocky islot southern 0 all the ves mounting town of A houses are population
The gre opposite c this island islands.
The hig sbove the summit. grapes aro scorix. \dagger scarcity of - Soe " a visit by stance it is produce, a: off some is treasure \mathbf{w} snug little murdered whose tale

+ The 1
the name of the 1334, by Lonis of the original de Béthencourt, rote, for John, of Castile, and elong to Spain, al.
ted by volcaaio sinpereminent. s in the tempemits, excepting the valleys, and
A great proones; and ashes; sible in all the not yet entirely' of May, 185i, d correctly deither corn nor ompass, $20 \xi^{\circ}$ to
l channels; as oting a sunken between Teneint of Teneriie, shown in the
ring S. by W.
ibed hereafter) January and you may safely t, if the swell to the north. three-quarters the N.E., 250
Two others,
Great Salrage, Piton, together ${ }^{\circ} 55^{\prime}$. It is of distance of a ssible of which
nit by the frrst 3 was the first conceived the ney. were welat Cortes found hau his gonts, dt.
is on the East side. It is covered with bushes, amongst which the thousands of seafowl make their nests. It is surrounded on all sides with dangers, most of which show, but many require all caution in approaching.
The Great Piton lies at the distance of $8 \frac{1}{\frac{1}{2}}$ miles W.S.W. $\frac{3}{2}$ W. [S.W. by W.] from 1 Ilha Grande. This isle is $2 \frac{3}{4}$ miles long, N.E. $\frac{3}{4}$ E. and S.W. $\frac{3}{4}$ W. [N.E. by N. and S.W. by S.] and has a hill or peak near its centre. The Little Piton lies at a mile from tho western side of the former, and is three-quarters of a mile long, nearly in the same direction ; both are comparatively narrow. These isles are seated upon, and surrounded by, one dangerous rocky bank, which extends from the western side of the little isle half a league to the westward.
It has been said of the Great Piton, that, in some respects, it resembles the largest Needle Rock at the West end of the Isle of Wight; and, at a great cistance, looks like a sail. Its southern part appears green, its northern part barren. It may bo seca 5 or 6 leagues off. The Little Piton is very flat, and is connected to the South point of the greater one by a continued ledge of rocks. The whole of the eastern side of the Great Piton is rocky and dangerous.*
LANZAROTE is above 3,000 feet high, and its mountains may be discerned at a great distance. On approaching, it appears black, rocky, and barren, and it has many extinct volcanoes. From its northern extremity, in lat. 29° 14', a barrier of precipitous cliffs rise to the height of $1,5 \mathrm{mof}$ feet, extend in a S.W. dirertion 7 miles, and terminate in a sandy plain, where, is 1825, a volcanic eruption took place, and two considerable hills were thrown up, which wera burn in 1835; a stream of lava, from 200 to 300 yards broad, found its way to the sea in the bay. The shore aloug all the N.W. side to the S.W. extremity of the island is high and precipitous, with the exception of a cove, called Januvia or Ianubio, once a havbour for small vessels, but converted into Ω salt-water lake by an cr uption in the year 1765 .
On the eastern side of the island the shore is much lower than the western; near the middle of it is the Port of Naos, a small but secure harbour, formed by several rocky islets, and having two entrances, the northern with a depth of 12, and the southern of $17 \frac{1}{2}$ feet at low water, with a tidal rise of 9 fect. During winter, nearly all the vessels of the island resort to this place. Two bomb-proof forts, the one mounting 11, and the other 12, heavy guns, defend the respective entrances. The town of Arecife is situate immediately to the southward of the port; many of its bouses are large, and the strects are capacious; inhabitants about 2,500 . Tho entire population of the island is estimated at 17,000 .
The greater part of the inhabitants of Arecife are engaged in the fishery on the opposite coast of Africa, which gives employment to between 400 and 500 men from this island alone, about 250 from Fuertaventura, and proportionably from the other islands.
The highest land in Imazarote is Montana Blanca, above 2,000 feet in height above the sea, situate neariy in the centre of the island, and cultivated to the summit. The wine of this island is very superior to that of the other islands; the grapes aro superior in flavour ; the soil selected for their cultivatiou is decomposed scorix. \dagger Camels are used in Lanzarote as beasts of burden, on account of the scarcity of water.

[^142]Puerto de Nacos.-Any vessel, not drawing more than 18 feet, may enter this port at high water, spring tides, and lie secure from all winds and weather : although, in sailing along the coast, the shipping appears as if at anchor in en open rond, the harhour being formed by a ridge of roeks, not perceivable at any distance, as noost of them are under water; these break off the swell oi the sea, so that the inside is as smooth as a mill-pond. As there is no other cenvenient place in the Canarics fir cleaning or repairing large vessels, it is much fisquented for that purpose by the shipping trading to the islands.

On the West side of Arecife lies another port ca'led Puerito de Cavalios. This is also an excellent harbour, formed, like Puerto de Naos, by a ridge of rocks; butits entrance is shallow, there being no more than 12 feet of water in it, wilh spriug tides. A square castle, built of stone, stands upon a small island between the two harbours, and so defends them both; this island is joined to the land by a bridge, under which boats go from one port to the other, or from Puerto de Cavallos to Puerto de Naus.

At the North end of Lanzarote is a spacious channel, called El. Hio, which is the strait dividing this island from the uninhabited one, called Graciosu. A ship of any burden may pass through this strait; for, if she keeps in the midway, between the two islands, she will have 6 or 7 fathoms of water all along.

The Rio is, in general, rather more than a mile wide, and forms the only safe harbour in the Canaries for large ships; but the extreme difficulty of communication with Lanzarote presents an insuperable obstucle to its being resorted to as a harbour for trade. Here basaltic cliff's rise almost perpendicularly to the height of 1,000 fect, and can be climbed only by a narrow path which winds along the face of the precipice; halfway up the cliff is the only spring of fresh water in tho island, but ren. dered useless from its situation, except to a few goatherds. From the bottom of the cliff to the shore of Lanzarote is about two numet-shots distance. The ground in the spaco is low; and here was a salina, or salt work. The fishermen of Lanzarote have constructed a small stone pier, where boats can land under scme shelter; and on the Graciosa side there is a smull buy where landing can ulways be cffected. There are no resources here, nor any iuhabitants. Some indifferent water may be got by digging in the sand at sone distance from tho sea. Fish is abuadant :and grod.-Lieut. du Murais, French Marine, 1857.
On the N.E. extremity of Lanzarote are two remarkable rocks, composer of Jlack vitrified matter, but in shape resembling the "Needles," at the western extremity of the Isle of Wight.
If a smooth place to lie in, while the trade-wind blows, be required, uship coming into this harbour from the enstward must run a good way in, and donble a shallow point, which lies on the starboard hand, taking care to give it a good berth; and this is easily done by approaching no nearer than in 4 fithoms ; when past it, culge toward Graciosa, and anchor in any convenient depth; for it shoalens gradually toward the shore, cluse to which there ure 2 fathoms.
This is a commodions place in the summer senson for carcening lurge ships; they may come here and unlopd all her stores, \&.e., on the Isle of Graciosa, and heel and serib. Or, if two vessels chance to come together, the ono muy heave down by the other; in doing which, they need not fiur uny opposition from the inhabitants, for there is neither castlo nor habitaiivii near this spot.
The water, however, is not so smoot'h here as at Puerto de Naos, especially if the trade-wind happens to blow hard from the Hast, whieh sends in a swell thut yukesit troublesome, if not impossible, to careen a ship properly. But the wind here does not often blow from that quarter, those winds which mostly prevail being from North and N.N.E. In mooring here, great care must be taken to thave a good anchor, with a large scope of cable toward Lanzarote; for in Eant and S.E. winds heavy gusts or nfun!lt como from the high iand of tiat isle. In the winter the wind sometinaes shifts to the S.W. then it is necessery to weigh, and run back to the eastwad, round
the shallo there anc
The I lava and feet abov acrios ; it 700 feet i employed
The onl panes, slaut the entra above, and
Gracio length an of water.
Near C msembline bave been
Eight n the crayg islets in
FOER
Ianzarote island ns than the 0 feet abeve It has t Cabras cor indifitrent
Lieuten extreme b of these is sume nam Bethencou Olira is a of pure wi tower; th \therefore pave the other ground is if from 17
The int extinet vo 2,160 feet mea, thenc miniting, From the the verdu fig, on th
From t

> - purti
nur Churt
et, may enter this cather : although, an open rond, the stance, as most of at the inside is as the Canaries fus rpose by the ship-

Cavallos. This of rocks; butits a it, with spung between the try and by a bridge, Cavalles to Puetto
tio, which is the A ship of auy ay, between the
ns the only safe f comnumication d to as a harbour oht of 1,5000 feet, face of the pm o island, but renhe bottom of the The ground in en of Lauzarote shelter ; and on effected. There miny be got by lant "and good.-
mposed of 'lack eris extremity of
d, n ship coming loable a shallow berth; and this t it, cige toward wally toward the
rge ships ; they a, and heel and re down by the inlubitants, for
speceially if the ll that inakesit nd here does not frow North and anchor, with a heavy guts or vind sometions cast wand, round
the shallow point before mentioned, until the ship be sheltered from that wind, and there anelior."
The Isle Allegranza, the northernmost of the Canary Islands, is composed of lava and cinders, the remains of an extinet voleano. It rises to the height of 939 feet above the sea. The edge of the crater is well defined, and two-thirds of a mile aeross; its bottom is cultivated for barilla. The western cliffs are precipitous, and 700 feet in height. About 40 persons were resident on the island in 1835, primcipally employed in colleeting orchilla.
The only landing-place is on the South side, where a eavern extends about 500 paces, slanting from the sea, and terminates in a little sandy bay, open above. At the entrance, the rocks form a natural jetty. The village is situate immediately above, and abreast is the only anchorage, half a mile from shore.
Graciosa, forming the North side of the Rio of Lanzarote, is about 5 miles in length and 2 in breadth; and, as may be inferred from its appearance, it is destitute of water. Allegranza is 7 miles to the northward of it.
Near Clura is a dangerous roek, 3 or 4 fathons high, and covered with scoriee, resembling coke. In the old charts it is called the In,iterno or Hell Roek, and may have been higher. It is now called the West Ruck, or Ruca de Ouest.
Eight miles to the eastward of Graciosa stands the Ryca del Este, or the East IRoek, the craggy sumanit of an extinct volcano. Many ship $\$$ have been wrecked upon these islets in the uight, being misled by errors in their reekoning and by the eurrents.
FUERTAVENTURA, or FORTAVENTURA. - This island is divided from Lanzarote by the ehannel named Canal de Bocayna, which is 6 miles in breadth : the island ns shown by chart, is singularly formed und varieguted; it is less mountainous than the other islands, yet both the horthern ara southern extremities rise to 2,500 feet abeve the sea.
It has two ports of trade; Cabras on the East, nond Tirrojalegio on the S.E. ; but Cabras contains little more thaii 1,000 inhabitauts. The nnetorage at the latter is iadifferent, and at the landing-place, a beach of shingles, still worse.
Lieutenant Arlctt says that, although the general feature of Fuertaventura is extreme barrenness, stilt there are many spots of great fertility ; the most conspieuous of these is the valley of Oliva, toward the North end, where there is a village of the same name, the residence of the lientenant-governor, a deseendant of the Baron Bethencourt, who possesses a very considerable portion of the island. The valley of Olira is about : 5 miles long, and gencrally from 2 to 3 wide. The only two streans of pure water in the island have their rise in the mountain of the Atalaya, or watehtower; they are husbanded with great care, and irrigate the whole of the valley.
A. paved road across tho island, from Cabras to Betaneuria, is the only one existing; the other ways being mere tracks following the direction of the vulley, where the ground is less encumbered with stones, and softer to the canel's feet. The population is from 17,000 to 18,000 seattered in small villages over every part of the island.
The interior formation of Fuertaventura is as follows: to the North is a group of extinet volcanoes; some of them, as Monte Mudo, on the N.E., rise to the height of 2,160 feet ; and they branch to the southward of Port Cabras, East and West to tho sea, thence following the direction of the eoast on eneh side for about 30 miles; again uniting, they encirele an extensive and arid plain and several detached villages. lrom the summit of the hills, the course of some briekish strenms may be traced by the verdure they impart. There are also date pulms, the only trees, excepting the fig, on the island.
From the southern point of junction of the mountains, one of whieh, Chilegua, on

[^143]the western const, reaches the height of 2,160 feet, n narrow sandy isthmus, about 5 miles long and 2t broad, projects, connecting it with the southern extremity of the island, a peninsula, occupiod by the Monte Jandia, a mountain which presents the most remarknble features; from the N.W., its precipitous face is seen to rise to the height of 2,820 feet; and spurs, or buttresses, diverge from its centre to the N.E., East, and S.E., by any of which it may be ascended to a frightful ridge on the summit.

On the South side of the eustern entrance of the Bocaynn, very near the N.E. shore of Fuertaventura, lies the little island of Lobos, or Scal's Isle, which is about $1 \frac{1}{2}$ leagues in circumference, uninhabited, and destitute of water. Near this isle is a good road for shipping; the mark for which is, to bring the East point of Labos to bear nearly N.E. by N., and anchor halfway between it and Fuertaventura, or rather nearest to the latter. Although this road seems to be open and exposed, yet it is yery safe with the trade-wind, for the water is smooth, and the ground everywhere clean, being a fine sandy bottom. Directly ashore from the road, on Fucrtaventura, is a well of good water, of easy access.

Through the broad channel, La Bocayna, ships sail very safely, as it is deep in the middle, and shoalens gradually toward Lanzarote, near to which are 5 fathoms of water; but very near or close to Lobos, the ground is foul and rocky. In this passage vessels of any burden may find room enough to ply to windward, and there is no necessity of approaching too near to Lobos.

When a vessel comes from the eastward, with the trade-wind, and is passing through the Bocayno, to the westward, so soon as sho brings a high hill on Lanzarote directly to windward of her, she will be becalmed, and soon have the wind at S.W. Should this happen, make short tacks until yon obtain the trade again, or a constant northerly wind, the first puff of which will come from West or W.N.W. . so soon as this is perceived, you must not stand to the northward, otherwise you will immediately lose it again; but must steer toward Lobos; for the nearer you approach this isle the more will you have the wind; so that, before you are two-thirds over, you will meet with a steady wind at North, or N.N.E.

When there is a great westerly swell hereabout, the sea breaks horribly on the rocks at the N.W. chad of Lobos. Captain Glas affirns, that he has seen breakers there nearly 60 feet hirg ; of which, were one to strike the strongest ship, she would be staved to pieces in a moment. "When I first saw," says Captain Gless, "those mighty breakers, our ship had just passed through the chauncl, between Fuertaventuin and Lobos; we had a fine brisk trade-wind at N.N.E.; and although thero were no less than 10 fathoms of water, when we came into the westerly swell, yet wo trembled lest the waves should have broken, and thought ourselves happy when we got out of soundings. We heard the noise of these breakers, like distant thunder, ufter we were past them 6 or 7 leagues."

Point Jandia, or Handia, the south-western extremity of Fuertaventura, is a low rocky point, placed by the Chevalier de Bordn in lat. $28^{\circ} 4^{\prime}$ long. $14^{\circ} 31^{\prime}$, and by Lieutenant Arlett in $28^{\circ} 3^{\prime}$, and $14^{\circ} 32^{\prime}$. Λ rock lies at half a mile from it to the S.W.
CANARIA or GRAND CANARY.-The 1sleta, or N.E. point of this island, lies 10 lengues N.W. by W. $\frac{1}{6}$ W. [W.by N.] from Point Handia, the S.W. end of Fuertnventura; and, in elear weather, either of these islands may be seen from the other. The eentre of Canaria is exceedingly ligh, and full of lofty mountuins, which tower so far above the clouds as to stop the current of the N.E. wind that generally prevails here; so that when this wind blows hard on the North side of the mountains, it is either quite calm on the other side, or a gentle breeze blows upon it from the S.W. 'This island is the gramary of the Canarian Archipelago, and has, in some districts, two whent harvents in the yenr-one in Februury, the other in June.

On the cumferen sandy, a each side of the se ledge of weather.
On the $L u z$, and entranco with all common The la generally Thence, capital o anchor, i out that
The ne the East from the

Las \mathbf{P} cathedra all the pr to great gives it a another 1 stands od houises so populatio Cavar crerywh the land, the distal a wester!
${ }^{\circ} \mathrm{El} \mathrm{Cu}$ Arlett to centre of
TENE N.W. $\frac{1}{3}$ western the centi bitants,
The B
of any in
Onco
a grcat

- The

2f leagu
bronks 0

+ The
Bocaynn
of shent
"l'he
sthmus, nbout 5 xtremity of the ich presents the n to riso to the atre to the N.E., ul ridge on the
r the N.E. shore ich is nbout 1 ar this isle is a int of Labos to ntura, or rather ed, yet it is very erywhere clean, rtaventura, is a
t is deep in the re 5 fathoms of r. In this pasand there is no
and is passing hill on Lanza cve the wind at ido again, or a or W.N.W. \mathbb{S}_{0} r wise you will you approach wo-thirds over,
corribly on the seen breakers ship, she would Gless, " thoso en Fuertavenugh there were swell, yct we appy when wo istant thunder,
aventura, is a $14^{\circ} 31^{\prime}$, nad by ile from it to
his island, lies end of Fuerta. om the other. b, which tower crinly previlis ountains, it is om the S.W.' rome districts,

On the N.F. end of Canaria is the peninsula called the Isleta, 2 or 3 leagues in cireumference; the isthmus, by which it is connected with the main island, is low and sandy, about 2 miles long, and a quarter of a mile broad at the narrowest part. On each side of this isthmus is a bay, which, being exposed on the N.W. side to the swell of the sen, is, therefore, an unft road for shipping ; but small barks get in between a ledge of rocks and the shore, and lie there smooth and secure from all winds and weather. Here tho natives repair their small vessels.
On the other side of the isthmus is a spacious sandy bay, colled by some P uerta de Lua, and by others Puerta de las Isletas, from somo steep rocks, or islets, at tho entrance of the bay, toward tho N.E. This is a good road for shipping of any burden, with all winds, except from S.E., to which it is exposed; but that wind, which is not common here, soldom blows so hard as to endanger a ship.
The landing-place is in the very bight, or bottom, of the bay, where the water is generally so smooth, that a boat may lie broadside to the shore, without danger. Thence, along shore, about a league to the southward, is the eity of Palasa, the capital of the island. Shipping, that disehargo their cargoes at Palmas, generally anchor, in good weather, within half a mile of the town, for the quicker despatch; jut that place is not a good roud.
The next port of any consequence in Canaria is Gando, situated in the middle of the East side of the island. It is a good place for shipping with all winds, except from the southward; and there good water, with other refreshments, may be had. \dagger
Las Palmas is a large handsome town, containing 18,000 inhabitants: it has a cathedral, hospital, and college. It is well supplicd with water, having fountains in all the principal streets ; and its market, likewise, is well supplied. The city appears to great advantage from the sea, the streets rising regulariy above each other, which gives it a very commanding aspect. It extends at least a mile in length. There is another large town, with a lofty chureh, about 4 or 5 miles to the southward, which stands considerably higher and more inland than Palmas. From the number of houses seen, while sailing along the island, it has the nppearance of a considerable population, and of being well cultivated. A fixed light is shown from the mole.
Canary affords more anchorages than any of the other islands: the bank almost everywhere extending further. During summer there is here a constant N.E. wind; the land, obstructing its course, causes the calms which prevail off the S.W. shore to the distance of 8 or 9 miles, when the aerial currents again unite. Within this space a westerly eurrent ruus close in-shore, which is advantageous to the consters.
El Cumbre, or the summit of the highest peak of Canary, has been stated by Lieut. Arlett to be 0,648 fect above the level of the sea: the muntain Sancillo, near the centre of tho island, which has a large wooden cross on it pusumit, 6,070 feet.
TENERIFE or TENERIFFE--Point Naga, the N. 2 . end of Tenerife, benrs N.W. $\frac{3}{3}$ N. [N.W. by W.] $15 \frac{1}{\frac{1}{3}}$ leagues from tho N.E. point of Canaria; but, from the western part of Canaria to tho neurest part of Tenerife, the distance is 10 leagues. In the centre of the islaud is the famous peak, called, by the ancient and present inhabitants, the Peak uf Teyde.
The Bay, or Roadstead, of Santa Cruz, on the N.E. const, is the most frequented of any in the Canaries.
On coming toward the island, in clear weather, the penk may be clearly discerned at a great distance ;* it flist appears like a thin blue vajour or smoke, very little darker

[^144]than the sky; at a further cistance the shade disappears, and is not distinguishable from the azure of the firmament. Before you lose sight of this towering mountain, it seems at a considerable height above the horizon, although, by its distance, and the sperical figure of the earth, all the rest of the island, the upper part of which is exceedingly high, is suuk beneath the horizon. But, in general, in sailing toward Tenerife, when the trade-wind blows, the island appears as a baziness of the sky, or as a cloud, till within the distance of 5 or 6 leagues, and then the headiands show like land, and are first conspicuous.

Tenerife presents to the curious eye the most singular object, perhaps, in the northern hemisphere. The island appears, on sailing along the coast, from North to Sonth, to have onee been a complete cinder ; and presents to view a great deal of the brokenness and irregularity of half-consumed coke. The resemblance, however, contrary to expectation, becomes less perfect as we approach the peak, the greai. chimney of the fiery caldrons boiting beneath. The island is of a triangular form, its North and South sides being about 4.5 miles long, and its West end about 24 miles. Some very interesting particulars of it, with photographic views, are given by Professor C. Piazzi Smyth's account of his astronomical visit in $1856 . \dagger$

In Baron Iumboldt's aseent of the peak, it is stated, that the volcano has not been accive at the summit for thousands of years, its cruptions having been from the sides; the depth of the crater being only about 120 feet. The peak forms a pyramidal mass, having a circumference at the base of more than $67, i 05$ fathoms, and a height of 12,176 feet, or rather more than 2 geographic miles. 'Iwo-thirds of the mass are covered with vegetation, the remaining part being stcrile, and occupying about 10 square leagues of surface. The cone is very small in proportion to the size of the mountain, it having a height of only 537 feet. The lower part of the island is com: posed of basalt and other igneous rocks of ancient formation, and is separated from the more tecent lavas and the products of the present volcano by strata of tufa, purzolana, and clay.

Captain Beechy, in his narrative of the voyage of the Blossom, observes :-"As I purposed touching at Santa Cruz, we immediately hauled up for the land, and it was a fortunate circumstance that we did so; for so strong a current set to the southward -during the night, that, had we trusted to our reckoning, the port would have been passed, and there would have been much difficulty in regaining it. I mention the circumstance, with a view of bringing into notice the great soctherly set that usually
for, though the Chimborazo (in South America) soare to the height of 22,000, and tho Himalayare Dewalgiri)in Asia) to the astonishing height of 27,000 , whle Tenerife is but 12,176, yet the latter, by its arising directly from the level of the sen, is, seen \cdot more conspicuously, and stands at a more magnificent olevation. The view from the summit, which it requires a whole day to ascend, is unspeakably grand. On the top of this vast pyramid of basalt is a crater, 40 yards deep, from which vapour continually uscends, and spocimens of finely crystallized sulphur are gathered round its lips. Froms this summit, when the sky is unobscured, the whole island is seen like a model. Pising around it, at a distance, are scen the Canaries, glittering on the horizon, thoir ponks and pinnacles coloured by every change of dny. At favourable times, Mrdoira and the African coant are visible." Captain Alexamier, 1837.

Baron Humbeldt anye :-"Il may be admitted in general that the Penk of Tenorife is seldom seen at a great distance in the warm and dry months of July and August ; and that, on the contrary, it is eoen at very extraordinary distances in the monthe of January and February, whon the sky is alightly coverod, and immodintely after a heary rain, or a few hours before it falls."

+ " Tonerife, on astronomer's experiment, or specialties of a resider _o uivove tho clonds, by C. Piazul Smyth, F.R.S., 1858 ." Professor Rnyth and a party of scientiflo m.en went in Robert Stephenson's yacht, Titania, to Tenorite, in June and July, 1856, and carried the inatrunente up to the flanks of the penk to Guajara, 9,003 feet above the seu, on the South side, and Alte Vista, near the edge of the erater, at $\mathbf{1 0 , 7 0 2}$ feet above the sen. The rosults of these obwervations were very remarkable, and the expestation was fulfilled that the atronomical objects would lie neon with mnea' grenter ciearness and brilliancy when the lower strata of cloud und vapour was pased.
distinguishable rering mountain, listance, and the of which is ex19 toward Tenethe sky, or as a llands show like
perhaps, in the from North to reat deal of the e, however, cone grea; chimney orm, its North 4 miles. Some by l'rofessor C .

10 has not been from the sides; yramidal mass, and a height ot of the mass are pying about 10 he size of the island is com: separated from ta of tufa, puz-
rres :-"As I nnd, and it was the southward uld have been ention the ciret that usually
and the Himaθ is but 12,176, conspicuously, lich it requires nid of basalt is mens of finoly te sky is unob. e, aro scon the ory change of tain Alexander,
of Tenorifo is rust ; and that, January and ain, or a few
the clouds, by o m.en went in carried the inon the South The results of lat the astroan the lower

ROADSTEAD. OF SANTA-CRUZ.

Tenerife.
 Longitude 1t." $1 .:$. W :

Point Nag less than Punta $16^{\circ} 6^{\prime} \mathbf{W}$.
To the 1 Anagas, conical ro dark colov
A dang thongh it December miles Easi La Manch breaks oce

Santa are the hif S.E. side shipping 1 the northv from the s Particular northward otherwise have no gi anchors an Here ve 'although
S.E. ; hou so hard as with grea shelter.* :
A red lamp will prolonged. of 4 miles. out of the
The foll 1842, by λ

* "The by W.; an ting in, altl
"In $17 \frac{1}{9}$
with the $g a$ watering, a
"The jet the only lat jetty, in fro building, li
"Tide rik H.M.S. Tar "The Chan mele had av of tide, and
attends the passage of ships from Cape Finisterre southward. From this cape to Yoint Naga, our error in that direction, or more correctly $S .33^{\circ} W$. (true), was nót less than 90 miles."
Punta de Anaga, the eastern point of Tenerife, is in lat. $28^{\circ} 28^{\prime} 33^{\prime \prime}$ N., and long. $16^{\circ} 6^{\prime} \mathrm{W}$. It is proposed to eistablish a light near it.
To the northward of the N.E. point of Tenerife is a chain of black rocks called the Anagas, which are stecp-to, but dangerous. To the South of the N.E. point is a high conical rock close to the shore, called the Mancha Blancha, though it is usually of a dark colour.
A dangerous sunken rock lies off the East point, which is omitted in the last surrey, though it appears in the older charts. It was seen by the mail steamer Clospatra, in December, 1859. It is known to the pilots as the Bajo de la Mancha, and bears $1 \frac{1}{\frac{1}{2}}$ miles East, true, from Anaga Point, and E. by S. from the rock described above, as La Mancha Blanca. It has 18 fcet at low water, and 21 feet at high water. It only breaks oceasionally.
Santa Crus,-At a short distance from Point Anaga, the East point of Tenerife, are the high perpendicular rocks above described; and 4 or 5 leagues thence, on tho S.E. side of the ieland, is the bay or roadstcad of Santa Cruz. The best road for shipping here is between the middle of the town and a fort, or castle, about a mile to the northward of it. In all that space ships anchor, from a cable's length distance from the shore, in 6, 7, and 8 fathoris of water, to half a mile, in 25 or 30 fathoms. Particular care must be taken, in going in, not to bring any part of the town to the northward of West, lest calms should be occasioned by the high land under the peak; otherwise you will be in danger of driving upon the shore; and, when ashore, will have no grocnd on the opposite side of the ship, with 200 fathons of line, so that anchors and cables are of no use.
Here vessels, if moored with good cables and anchors, may lie securely in all winds, although the bay is exposed and open is those which blow to the N.E., East, and S.E. ; however, it is not above once in the space of four or five years that they blow so hard as to cause any considerable damage. surf frequently beats on shore, with great violence, for several days togethe : ind the picr is ill-contrived for shelter.*
A red light was placed on the extreme end of thv Mole, on July 1st, 1857. The lamp will be kept lighted from dusk until dawn, and moved forward as the mole $:$. prolonged. The light is 20 feet above high water mark, and is visible at the disianc of 4 miles. In steering from the South, the light ought to be ktpt in sight, the coasi out of the range of the iight being dangerous.
The following directions for the anchorage at Santa Cruz were issued in August, 1842, by Mr. Richard Bartlett, the British consul at that place.

[^145]"While running for the anchorage keep both leads going, and bring up to the northward of the Mole Head; or, bring the clock front of the square church with a cupola to bear W.N.W., and anchor with this mark on, or to the nort ward of it.
"Ships may anchor when in less than 30 fathoms. Give a large scope of chain cable. When the northernmost fort (Fort Paso Alto) bears N.N.E., the depth of water will be about 25 fathoms on the lines pointed out. The shore may be neared without risk, the water being decp, and no dangers that are not apparent. Tho anchorage to the South of the lines indicated is reserved for vessels in quarantine." The foregoing will be sufficient; but another good anchoring mark is, not to bring the Mole Head anything North of W.N.W. Variation, $22^{\circ} 41^{\circ}$. West.
Lieutenant Church, of H.M.S. Atna, makes the following observations on tho anchorage of Santa Cruz :-" Whilst surveying the Canary Islands in the Atna, wo had, of course, considerable experionce of Santa Cruz, and had no reason to consider it an ,h..." inchorage. During the very many times that the AEtna wrs there, in uniy one instunce did we experience a gale from the south-eastward. Most of the shipping slipped at the commencement, and got into the offing; but we remained at our anchors, and rode it out well. Although a heavy soa tumbled int, there was much less strain on the cables than might have been expected, arising, as it appeared to us, from an offset, which, together with there being a great uphill drag for the anchor, diminishes the chance of driving.
"The church tower with the cupola (San Franciseo) open a little to the right of the Mole Head, is considered the usual anchorage, and vessels congregats here to be near the landing-place. But, in a man-of-war, I would (especially if chere are many vessels here) anchor considerably to the north-eastward or windward of this resort, the bank of soundings being wider, and so avoid having merchant ships in the hawser; indeed, I see no reason why shins should not anchor nearly as far North as the Paso Alto Battery, the most northern battery, in case the roads are crowded with shipping.
"I have noticed that ships, cuning from the north-eastward to Santa-Cruz, run down at too great a distance from the land, and do ... haul in till they get nearly abreast of the towin. They get a cast or two of the ic i with no bottom, and immediately they get into soundings, the anchor is let go in a hurry, the bank being narrow, and the ship's head in-shore, there being little tin " for consideration.
"Instead of this method of proceeding, I think it would be advisable, on making the N.E. end of Tenerife, Punta de Anaga, to haul in upon th bank of scandings immediately on passing l'unta de Antiquerra, as from this polt to Santa Cruz the bank extends as far out from the land as at the town, and the anchorage is just as good and as safe anywhere when abreast of the Barrancos. I would get into the depth nearly that I wished to anchor in, and then run down with the light wind parallel to the shore. Besides having time to anchor leisurely, there is the advantage of being enabled to let go the anchor under foot, wherever you may be.
"Should it fall calm while the ship is outside soundings, she may be taken away to leewo ${ }^{\text {d }}$ by the souitherly sct, which once caused us twenty-four hours' tronble to get back again. From experience, we latterly adopted the system I have mentioned."

Commender T. L. Barnard, in H.M.S. st. Vixen, says:-" With the wind on shore I shouir cecommend a steamer to steer boldly under the sterns of the vessels at anchor r 'the Molehead, and bring the head to wind with the Molehead on with th; Church rer, ill from 25 to 30 fathoms."
The water is easily procured when the surf is not great on the beach. It is sent aiongside in butts. Λ good supply of wine may also be readily had.
The aspect of Santa Cruz is gloony, and the heat is commonly execssive. On a narrow and sandy beach, houses of dazzling whiteness, with flat roofs, are stuck against a wall of black perpendicular rocks, stripped of vegetation. A fine mole, built of freestone, and the public walk, planted with poplars, are the only oljects which break the sameness of the landscape.
Orotava.-The next best port to that of Santa Cruz is the port of Oroturu, on the
northert Anaga. the wine in the su winter, surprised bappen ; gling roc It is com that caus
The an S.W.; a

Orotav by fields a very gr appear in beach is
PALT
the Islan higher th run towas

The chi which as of the isle fall in a within a ceive the land behi a mile of monly rid good anct ground is dienlar he ever so sto

When t of wind a in such a Santa Cr the winte and prer together.
Santa Canary, the heigh near the the town,
supplies 1

* The useful to their boat to inform are, that and the to
ring up to the e church with a \therefore ward of it.
scope of chain E., the depth of may be neared apparent. Tho in quarantine." is, not to bring
rvations on tho n the Atna, we ison to consider a wes there, in

Most of the we remained at there was mueh appeared to us, for the anchor,
to the right of gregat here to lly if there are ndward of this ant ships in tho as far Nerth as e crowded with
ianta-Cruz, run they get nearly m , and immethe bank being eration.
ble, on making ank of scandto Santa Crus c anchorage is would get into the light wind the advantage
taken away to trouble to get mentioncd."
wind on shore ssels at anchor th th. Church
h. It is sent
cssive. On a ofs, are stuck ne mole, built objects which
rotuce, on the
northern side of the island, and which lies about $8 \frac{1}{}$ leagues to the westward of Point Anaga. Here the riches and fertility of the island are chiefly to be found, for here the wine is mostly made, and shipped when the weather allows. It is a good harbour in the summer season, or from the beginning of May to the end of October; but in winter, ships are often obliged to slip their cables, and put to sca, lest they should be surprised by a N.W. wind, which throws in a heavy sea: luckily, these winds rarely happen ; and, in general, give warning, so that a vessel has time to get away. Stragpling rocks project about 2 ships' length from shore, on which the sea breaks furionsly. It is commonly calm in the road, but there is almost always a long northerly awell, that causes ships to roll very much.
The anchorage is in 50 fathoms, about $1 \frac{1}{4}$ miles from shore, with the peak bearing S.W.; and it is proper to continue a pilot on board whilst lying here.

Orotava stands upon a gentle slope at the foot of the mountain, and is aurrounded by fields of corn, gardens, and vineyards. The culture of the soil is here promoted to a very great degree, particularly in some patches so elevated and so secluded as to appear inaccessible to the husbandman. But the plain is very forbidding; and the beach is composed of raked, pointed, and cinereous, or scorched rocks.
PALMA.-From Point Teno, the western end of Tenerife, to the nearest part of the Island of Palma, the distance is about 15 leagues. The summit of this island is higher than the general level of Tenerife, its peak excepted; hence some navigator: run toward it with great confidence in the night.

The chief port is that of Santa Crruz, on the East side of the island. The mark by which a stranger may find it is the following:-When he approaches the East side of the island, Palma will appear shaped exactly like a saddle. Let him steer so as to fall in a little to windward of the lowest place, or middle of the saddle, till he comen within a mile of the land; then, running along shore to the southward, he will perceive the town close by the sea shore, and the shipping lying in the road; but, as the land behind the town is high and steep, one cannot discern the shipping till within a mile of them. The road is within a musket-shot of the shore, where vessels commonly ride in 15 or 20 fathoms of water, and are exposed to easterly winds; yet, with good anctors and cables, they may remain with great safety in all winds; for the ground is clean and good, and the great elevation of the island, with the perpendicular height of the land facing the road, repels the wind that blows apon it, though ever so strong.
When there is a great N.E. wind at sea, it comes rolling into the bay, but the want of.wind and the deepness of the water deprive it of strength and power; so that ships, in such a case, ride here with a slack cable. These circumstances render the road of Santa Cruz, in Palma, more secure than any of those of Canaria or Tenerife; but, in the winter, the rolling swell which comes into the bay, breaks high npon the beach, and prevents boats from going off, or landing, for the space of three or four days together.
Santa Cruz de la Palma is a large town, but not so good as that of Palmas, in Canary, or the towns of Tenerife In coming to it from the offing, a church on one of the heights and some windmills are the first objects seen. It has several forts, and near the mole is a castle, or battery, mounted with a few cannon. In the middle of the town, near the great church, is a fountain, filled by a rivulet, which plentifully supplies the inhabitants with good water.*

[^146]Taxacorta or Tassacorta, the port next in consideration to that of Banta Crux, is on the S.W. part of the island ; it is expored to westerly winds, and little frequented by any vessels, excepting boats.
In all the island there is no town of any note, excepting Santa Cruz; but many villages, the chief of which are St. Andres, and Tassacorta. In the north-eastern part, inland, is a remarkable high mountain, called La Caldera, or the Caldron, being hollow, like the Peak of Tenerife.

GOMIMRA is divided from Tenerife by a perfectly safe channel 15 miles wide. The island is very rugged and uneven, the middle being a plateau, above which the mountain Alta Garaone rises to 4,440 feet. The shores are everywhere rugged, and nearly perpendioular to the sea. A few rocks lle off it, and there are some small sandy beaches, at one of which, on the East side, is the principal town.

- The Port of Gomera lies S.W., about 17 miles from Point Teno, of Tenerifc. Sr. Sebastian, the principal town, is situated close by the sea shore, in the bottom of a bay, on the eastern side, where shipping lie land-locked from all winds, except the S.E. Here you may anchor at a convenient distance from the shore, in from 15 to 7 fathoms; but as the land-wind frequently blows hard, it is necessary for a ship to moor with a large scope of cable, otherwise she will be in dangers of being blown out of the bay. The sea here is generally so smooth, that boats may land on the beach without danger. On the North side of the bay is a cove, where ships of any burden may haul close to the shore, which is a high perpendicular cliff, and there heave down, clean, or repair. When boats cannot land on the beach, on account of the surf, they put ashore on this cove, from whenoe there is a pathway along the cliff to the town.

The town has plenty of good water, which is drawn from wells in every part of it; and in the winter, a large rivulet from the mountains empties itself into the port. On the South side of the mouth of this rivulet stands an old round tower; and on the top of its perpendicular cliff, on the North side of the cove, is a chapel and a battery, with a few pieces of cannon.

Care must be taken in passing round the East end of Gomera, as a sunken rook, the Bermeja Shoal, lies 100 yards off shore at a mile northward of the North point of the bay.
To the best of my remembrance, says Captain Glas, the land that forms the North point of the bay is the most southerly point of land, on the East side of Gomera, that can be seen from Point Teno, on Tenerife. That land, when one is to the northward of it, at about a league distant, bears a great resenblance to Rame Head, near Plymouth Sound. In going into the bay, it is necessary to stand close in with this point, for the land-wind is commonly too scanty for a ship to fetch the proper anchor-ing-place; from that reason, it is better to come in with the sea-breeze, which generally begins to blow here about noon.
The best place for a ship to lie in here is, where a full view may be had slong through the main street of the town, and at about the distance of a cable's length from the beach: it is necessary to moor as soon as possible, because of eddy wind that sometimes blow in the bey.
FEARRO, or HIERRO. -This island, the westernmost of the Canaries, has neither road nor harbour worthy of particular description. The land rises steeply from the sea, and is craggy on all sides for about a league, so as to render the ascent very difflcult. Its summit is an uneven plateau, the highest points of which are $4,580 \mathrm{and}$ 4,990 feet above the sea. At the northern part of the island the sides of these mountains are nearly perpendicular eliffs, commencing at Point Salmone, and extending round to the N.W. point, Pta. de la Dehesa, and are called Risco de Taretai. The only roadsteads are at Naos, at the south end, where there are no inhabitants nor shelter ; and at Puerto del Hierro, on the East side. The latter is only a slight inlet, with a vanuiy beach between two rocky points, off the northernmost of which is a
detachoo of the is It prod gowers, poor, anc

If a sh (which, i over to t Naga; t to weath Morro Ja the East easy to b difficulty the may

From
Naos, in quainted are very 1
It is co to have trade-win when this the shore the curre Point Ter blows exc Teno unt bear awe cannot w stirring 0
In rour against.
The C by a hea this coast

It has mountain

Panta Crue, is little frequented

Yruz ; but many ne north-eastern - Caldron, being
miles wide. The which the mounsged, and nearly II sandy beaches,
f Tenerif. ST. the bottom of a inds, except the e, in from 15 to ary for a ship to of being blown nay land on the ere ships of any : cliff, and there h, on account of thway along the
in every part of itself into the Id round tower; e, is a chapel and
ts a sunken rock, e North point of
forms the North sido of Gomera, is to the northame Head, near lose in with this e proper anchorwhich generally
y be had along a cable's length e of eddy wind
ries, has neither teeply from the scent very diffih are 4,580 and of these monn, and extending e Taretai. The inhabitants nor y à alight inlet, t of which is a
detached islet, which has a shoal running off for one-third of a mis. In the interior of the island at the North end is Valverde, the ehief town, surrounded by high peake. It prodnces, however, many trees and shrubs, with better grase, herbage, and fowers, than any of the other islands, so that bees, and honey abound. The wine is poor, and there are only three fountains or springs of water on the ialand.

DIRECTIONS FOR BAILING AMONG THE CANARY ISLANDS, BY CAPTAIN GLAS.

If a ship, lying at Palma, wants to go Lanzarote, and will not wait for a fair wind (which, indeed, seldom blows there, especially in tho summer season), let her stand over to the N.W. side of T'enerife, and beat up along shore until she weathers Point Naga; thence, with the wind that genorally prevails in these parts, she will be able to weather Canaria, and fetch the Point of Jandia, of Fuertaventura, or perhapa Morro Jable, the southern point, whence it is easy to beat up to Pozonegro, along the East side of the island, because the sea there is always smooth. It is not quite so easy to beat up from Pozonegro to the Isle of Lobos; yet it may be done without difficulty, when the weather is moderate ; if the wind should happen to blow hard; the may stop in the Bay of Las Playas, until it proves more favourable.
From the Igle of Lobos, she will find no difficulty in beating up to Porto de Naos, in Lanzarote. It is not advisable, for those who are not perfectly well acquainted with that harbour, to attempt to conduot a ship in, because the entrances are very narrow.
It is common for ships that come loaded from Europe to Santa Cruz, Tenerife, \&ec., to have part of their cargoes to unload at Port Orotava: these ships, when the trade-wind blows hard, will sometimes find it impracticable to weather Point Naga; when this is the case, bear away to the leeward point of the island, and keep near the shore, where, if you do not meet with a southerly wind, you will be carried by the current, in the apace of twenty-four hours, from the S.W. point of the island to Point Teno, whence you may easily beat up to Porto Orotava; for, when the wind blowa excesaively strong at Point Naga, it is moderate weather all the way from Point Teno until within 2 or 3 leagues of Point Naga. But I would not advise a ship to bear away as above directed, usless when the trade-wind blows so fresh that she cannot weather Point Naga; because, in moderate weather, there is little or no wind stirring on the coast between Teno and Port Orotava.
In rounding Point Naga or Anaga, the sunken rock alluded to should be guarded against.
The Coast of Aprica, East of the Canaries, is level, and is rendered inaccessible by a hcavy surf, which breaks on it continually. The Canarians, in the sea between this coast and the islands, employ a number of vessels to fish for bream and cod.

OF THE CALMS OF THE CANARY ISLANDS.
 (By the bame.)

It has been already noticed, in the description of the Island of Canaria, that its mountains tower so far above the clouda, as to stop the current of the N.E. wisd that
generally blows here; so that, when this wind blows hard on the North side of the mountains, it is either quite calm on the other side, or a gentle breeze blows upon it from the S.W. These calms and eddy-winds, occasioned by the height of the mountains above the atmosphere, extend 20 or 25 leagues beyond them to the S.W. There are calms beyond, or to leeward of, some of the rest of the islands, as well as Canaria; for those of Tenerife extend 15 leagues over the ocean, the calms of Gomera 10, and those of Palma 30. "I have," says Captain Glas, "been frequently in all the calms of the islands, excepting those of Palma; and, from my experience of them, I may venture to say, that it is extremely dangerous for small vessels, or open boats, to venture within them when the wind blows hard without. It is true, indeed, the wind raises the waves of the sea to a mountainous height: yet those waves follow each other in regular succession; for, were they to fall confusedly one against another, no ship would be able to sail on the ocean. But, in a storm, the wind driving the sea before it, each wave gives place to the one which follows; whereas, in the calms in the Canary Islands, the sea, not moving forward in the same direction with the sea without, but being, as it were, stagnant, or at rest, resists the waves that fall in upon it from without; and this resistance canses them to break just in the same manner as the billows break upon the sea-shore, but with less violence, on account of the different nature of the resistance. This breaking of the waves in only on the very verge of, or just entering into the calms; for within them the water is mooth and pleasant.
"I Ipon first coming into the calms, the waves may be seen foaming and boiling like a pot, and breaking in all directions. When a vessel comes amongst them, she is shaken and beaten by the waves, on all sides, in such a manner, that one would imagine that she could not withstand their force; however, this confusion does not last long. The best way to manage a ship entering the calm is immediately to haul up the courses, and diligently attend the braces, to catch every puff of wind that offers, in order to impel the ship into them as soon as possible. The crew must not think it strange to be obliged to brace abont the yards every two or three minutes, according as the wind veers and hauls; but, after a ship is once fairly into the calms, whe will either find a dead calm and smooth water, or a pleasant and constant breeze at South or S.W. according as the wind blows without, to which this eddy-wind, as it may be called, always blows in an opposite direction."

The CA coast of A in the sery Maio, or t Lncia; St the most 0 The popuil of commer San Vince
We hav be made in are frequen vicinity m proced to
IHIA meridian o low and sa has alinost
Sal deri into a beau bear no tre
On appr corrents ar leagues off which the the summit
The best three small eastern sid reef stretcl bays on thi the bench.
Great ca it being so and approo lies betwee
The S.E near it in 1 side of the into the ba bringing th

- Mr. Fi
will cortain adds, that i half a mile
+ Firesto Point. At pond, 150 f 45 feet belo
\& Heark
lend, oithei
ought to ru
rth side of the blows upon it ht of the moun. he S.W. There vell as Canaria; Gomera 10, and in all the calms of them, I may - open boats, to ndeed, the wind ves follow each inst another, no driving the sea in the calms in ection with the waves that fall eak just in the ess violence, on waves in only m the water is
ng and boiling amongst them, inner, that one this confusion calm is imme. atch every puff possible. The severy two or ip is once fairly a pleasant and to which this

7.-THE CAPE VERDE ISLANDS.

The CAPE VERDE ISLANDS derive their name from the nearest point of the cast of Africa, and were discovered, it is said, in 1450 by Antonio Noli, a Genoese, in the service of Portugal. They consist of the Ilha de Sal, or Salt Island; Boavista; Maio, or the Isle of May ; St. Iago ; Fuego, or Fogo; Brava; San Nicolao; Sta. Lueia; St. Vicente, and San Antonio; besides several small islets. Of these isles, the most considerable is St. Iago, the chief town of which is the seat of government. The population was estimated at 80,393 persons in 1851. Salt is the principal article of commerce. The first port in the archipelago is Porto Grande on the North side of San Vincente. For the positions of the chief points, see pages 44, 45.
We have already shown (pages 391-394) the usual courses and allowances to be made in sailing to these islands; and have there noticed the fogs by which thoy are frequently-surrounded. The estimated limits of the N.E. trade-winds in the vicinity may be seen in pages 186 and 188. Thus much premised, we immediately proceed to the description of the isles.*
ILHA de SAL.-The Isle of Sal lies between lat. $16^{\circ} 34^{\prime}$ and $16^{\circ} 51^{\prime}$, and on the meridian of $23^{\circ} \mathrm{W}$. The northern part of the isle is mountainous; the southern very low and sandy. Both the eastern und western sides are irregular; and the former has almost continued reef, along shore, from North to South.
Sal derives its name from the salt ponds upon it, wherein the water crystallizes into a beautiful salt, the chief production of the isle, as the land is so barren as to bear no trees nor verdure, excepting a few inconsiderable shrubs.
On approaching the island from the North, it will be found in general that the currents are very irregular, You may, on approaching, see the high land at 14 leagues off; sometimes at a greater distance. The land makes in three hillocks, of whieh the northernmost is the highest. This is the Peak of Martinez, in the N.E., the summit of which is 1,340 feet above the level of the sea.
The best roadsteads of Sal ure on the western side of the island; but there are three small bays on the eastern side, and one on the South. The middle bay on the eastern side, where a ship may lie, is appareatly sheltered from the N.E. by a sandy reef stretching out to the eastward, and here sait may be obtained. \dagger The other bays on this side are open to the N.E. trade-wind, which makes a very heavy sea on the bench.
Great caution is required on approaching the South end of the island in the night, it being so low as harily to be seer 10 miles off in the doy. Keep your lead going, and approach no nearer than in 30 fathoms, unless bound into the South Bay, which lies between the S.E. and South points of the islund. \ddagger
The S.E. point of Sal is cuiled Wreck Point, H.M. sloop Erne having been wrecked near it in 1818 ; this is sarrounded by a recf. From South Point, forming the West side of the bay, a dangerous sandy spit extends about 1 mile into the sea, If coming into the bay between these points, after rounding. Wreck Point in 8 or 9 fathoms, bringing that point to bear E. by S. and the opposite point W . I N., and anchor in 9

[^147]fathoms, sandy bottom. Here you will be sheltered from the N.E. trade, and lie in perfect safety:

At 5 miles to the West, from the North Point of Sal, is Manuel or the N.W. Point, Nearly true South, $8 \frac{1}{2}$ miles from the latter, is a little islet, called Bird Isle, near a promontory, Lion's Head, which is 620 feet high. At a league to the northward of Bird Isle is a small bay, called Palmyra Bay, and immediately to the south-eastward of the Lion's Head is Mordeira Bay, which is one of the best in the Cape Verde Islands.

Morderira Bay is in a semicircular shape, 1 league in extent between its outer points, Lion's Head and Turtle Point. It is a safe anchorage during the N.E. breezes. Captain Bartholomew says, that it hes plenty of fish and turtle, but has no watering-place; nor could water be procured by sinking casks in the sand.
H.M. ships Leven and Barracouta anchored in this bay in 1822, and caught a great many most delicious fish; yet the place produess little else but salt and orchila; a few goats contrive to pick up a scanty sulsistence, but eagles abound.

The principal mark for anchoring in Mordeira Bay is Bird Island just shut in with the foot of Lion's Head, at $1 \frac{1}{4}$ miles from the Bluff land ; there are several foul spots; therefore, the ground should be examined before the anchor be dropped.

From Turtle Point, the South point of Mordeira Bay, to the South point of Sal, the
 half a mile from shore, which is sandy; but be careful, if you anchor, that the gronnd is clear. In rounding the South point, with the spit extending from it, approach no nearer than in 10 or 8 fathoms, as the latter is steep.

The latitude of the Lion's Head, according to the Admiralty survey, is $16^{\circ} 41^{\prime}$; long. $23^{\circ} 0^{\prime} 15^{\prime \prime}$. Variation, observed on shore, $15^{\circ} 20^{\prime} \mathrm{W}$. ; it is now $18^{\circ} 20^{\prime}$. High water, $7^{\text {h }} 15^{6}$; rise, 5 feet.

Between Sal and Bonavista there is generally a strong current.
BONAVISTA.-The Island of Bonavista, properly Boavista, has been so culled from the beautiful appearance it made to the first discoverers, in the year 1450. The face of it is variegated; partly low, partly rocky and mountainous; formerly fertile, now more barren. Salt is the principal article of trade, which the inhabitauts readily exchange for old clotaes, biscuits, meal, and raw silk. The principal place is Evolish Road, on the N.W.

The eastern side of Bonavista is partly environed by a reef; and on the N.E. are the reefs on which the Hartwell, East Indiaman, was lost, in 1787 ; and oin which the Resolution, Captain Cook, was nearly driven by a southerly current. Hrily a league nearly from the West end is a coral reef, on which the sea breaks; and at times the current sets on it very rapidly.

From the South end of Sal, the N.W. point of Bonavista lies true South, or S. by W. $\frac{1}{}$ W. by oompass, distant 7 leagues; and, from the same end of Sal, to clear the N.E. reefs, the course, by compass, is S.E. by S. 11 leagues, in order to allow for the current that sets to the S.W. on Bonavista; be sure to make this course, and it will bring you to the eastward of these reefs, the eastermnost part of which lies in lat. $16^{\circ}{ }^{\circ} 0^{\prime}$.

Bonavista is of an irregular shape, but nearly octagonal, and each way 3 leagues in extent. Its eastern side is low, but the interior is mountainous, and a ridge of high land from N.W. to S.E. divides the island into two unequal parts. Of this inland ohain, Mount Juan Fernandez is the northern part, and the southern is called the South Mountain. Two miles from the N.E. end are two conical hills, Mounts Ochel, or Ochello, and Broyal; at the N.W. end is the Peak Reshee, and in the S.W. is the Pu:form Iivl, with an elevation within it called the Man Mountain. English Road, on which the town is situate, forms a bay of 5 miles in extent from N.E. to 8.W., and its northern part is protected by an islet, called by the English Small Fslamd. The South point of this bay is Coral Point; and off this point, which is foul, at the atistañé of haif a lengue, in a coral reef.

Off the Dutch, B bips, in 0 reefs; but fathnms cl channela maite or t channel is fathoms; it, and sev Dutch Ka
Braithuc mard, bet 8 fothoms. best water 24 miles.
The No water. high moun In sailin sonthward to borrow
Bonett reported to Bonavista, and " Bra report we which repr seumen," a by his rese deline or B
These in ron, as sho to the S.W tracks of t fised to th
Notwith been consi and Madel April 18th a subseque clasion is was lost. mas ċeclar (Times, Au and that i beloaging March, 18 Nevicastle and the fa the ahort the westw towards tl no imperal

[^148]rade, and lie in
the $N . W$. Point.
Sird Isle, near a he northward of a south-eastward the Cape Verde
tween its outer luring the N.E. urtle, but has no sand.
d caught a great and orchilla ; a
ust shut in with veral foul spots; ed.
point of Sal, the homs over it, at nchor, that the ending from it,
rvey, is $16^{\circ} 41^{\prime}$; $18^{\circ} 20^{\prime}$. High
been so culled rear 1450. The formerly fertile, aabitants readily place is Exo-
n the N.E. are id or which the Hali a league nd at times the
outh, or S. by al, to clear the er to allow for course, and it which lies in
way 3 leagues and a ridge of parts. Of this thern is called
hills, Mounts nd in the S.W. tain. English from N.E. to English Small oint, which is

Off the N.E. coast, as already shown, are the Hartwell Reefs, and three kays, called Dutch, Braithwaite, and North Kays. Between these is sufficient depth of water for ships, in case of necessity, and proper depths for anchorage, under the lee of the reefs; but many rocks are here scattered, with only 12 ar 13 feet over them, and 4 fathnms close along them, on which, with a wind, the sea breaks very high. Of the channels between these reefs, the best lies between a ledge to the E.S.E. of Braithwaite or the Middle Kay, which is always visible, and Dutch or the South Kay. This chanael is three-quarters of a mile broad, and has regular soundings, from 15 to 5 fathoms; having been tried by H,M. sloop Bulldog, which often sailed in and out of it, and several times anchored under Braithwaite Kay, with that kay N.E. by E., Dutch Kay S. $\frac{1}{8}$ W.
Braithwaite Kay is about 2 miles from the shore. The passage to the north-westmard, between this and North Kay, is half a mile broad, and its least water is 7 and 8 fathoms. The passage between Dutch Kay and Bonavista is narrow, but in the best water are 7 fathoms. Dutch Kay bears from Braithwaite Kay S. $\frac{1}{8}$ W. [S. by E.] $2!$ miles.
The North Kay is connected to the shore by a reef, having over it only 5 feet of water. When this kay is in a line with the summit of Mount Ochel, or the N.E. high mountain in Bonavista, it bears about W.S.W. $\frac{1}{3}$ W.
In sailing out to the south-westward, with the wind easterly, stand well to the southward, taking advantage of the current here setting easterly, and take care not to borrow too near the back of the reefs.
Bonetta Rock (P).-A ship, the Madeline, bound to New South Wales, was reported to have struck and been wrecked on a ree ${ }^{\text {e, at abont } 8 \text { leagues E.N.E. from }}$ Bonavista, in April, 1835, as shown in the "Nautical Magazine," February, 1837, and "Brazilian Navigator," 1838. Some smart but justifiable remarks upon this report were afterwards given in the "Nautical" (December, 1839), the writer of which represents the case as a matter "very nicely cooked up for the edification of seumen," and the benefit of a certain "market." He adds, that Captain Vidal has, by his researches in the Atna, satisfactorily proved that no such danger as the Madeline or Bonetta Reefs have any existence.
These imaginary dangers were also sought for by the American exploring squadron, as shown herenfter, and the result scems to be, that the Madeline was impelled to the S.W. by the current, and wrecked on the Hartucell Reef of Bonavista. The tracks of the Etna and Raven, in search of the two reefs, are shown in a chart prefised to the "Nautical Magazine" of December, 1839, above mentioned.
Notrithstanding all the investigations that had been made, and which might have been considered as having set the question at rest, of non-existence of the Bonetta and Madeline Refs, a uotice wiss given, that the British ship Charlotte was wreeked, April 18th, 1841 , on a reef 23 niles N.E. by E. from the N.E. end of Bonavista. In a subsequent discussion on the Charlotte's log, in the "Nautical Magazine," the conclusion is again arrived at, that it was a portion of the Hartwell Reef on which she was lost. In July, in the following year, the Phocnix stcamer struck on a rock, which was declared to he the Sunbeam Shoal, and the same on which the Charlotte was lost (Times, August 2nd, 1842); but this also was found, from her log, to be inconsistent ; and that it must have been the Hartwell Reef. After that, the iron ship Guide, beloaging to the East India Company, was wreeked on the Hartwell Reef (7th March, 1843), and weut to pieces ; and on September 20th, 1844, the brig Nine, from Ner.enstle, outwards, was totally lost on the sem? place. The long list of wrecks, and the fact of so many vessels being to the westivard of their reckonings, and that in the ahort run from Madeira or the Cauaries, will give great weight to the fact of the westward tendency of the currents, which, as has been stated before, tend directly towards this formidable danger, and therefore will call for all the vigilanee and care $t 0$ imperatively necessary for the safety of slips passing this place.*

[^149]In another part of this Work we give an announcement made in 1845 of the ditcovery of a shoal by the brig Emily of London, very nearly in the position of the presumed Bonetta Kock, or $16^{\circ} 59^{\prime}$ N., and $21^{\circ} 30^{\prime}$ W., which position was not passed within 17 or 18 miles by Captain Vidal, in his search for it in 1839 ; but the question has been definitively settled by Lieut. Lee, U.S.N., on the cruise of the Dolphin, as he found a depth of 1,580 fathoms on the spot, and great depths close up to the islands, as shown hereafter.

The Brazen Hill and Point (otherwise Brazen Head), in lat. $16^{\circ} 2^{\prime}$, on the S.E. coast, is the first high land to the southward of East Sand Head, which is the easternmost point of Bonavista. The Head is remarkable, being very bluff and perpendioular on each side. The beach is sandy. Point Urrateo, or the South Point, which is nearly 3 leagues more to the south-westward, is low and foul, and an islet, of the same description, lies at three-quarters of a mile to tho eastward. To the westward of the point is anchorage, in what is called Portuguese Road, with the Platform Fill bearing about N.N.W. and nearer in-shore, in from 13 and 14 to 8 and 6 fathoms. In the latter depths, the landing-place will bear N.E. by N. more than a mile distant. \dagger

North and West Coists.--From the North Kay, off Mount Ochel, already described, the coast is foul to Broyal Point, on the North coast; and there are several reefs between the latter and the N.W. end of the island, which is called the North Point and Reef. Small Island, which forms the N.W. side of English Road, is 4 miles hence to the S.S.W. [S. by W. $\frac{1}{4}$ W.]

Enolish Road is a safe anchorage during the summer months, while you have the N.E. breezes, but there are three reefs in it, as shown on the new charts. Vessels generally haul close round Small Island, in 6 and 7 fathoms, and pass within the first reef (of 10 feet) in order to avoid the necessity of making a tack to get to the anchorage. The best mark for the latter is, the town open with the N.E. end of Small Island, and tho highest part of that isle about N.E. by E. The Ten-feet Recf generally shows itself; but when this is not the case, a stranger will do well to stand outside, rounding it at about $1 \frac{1}{\frac{1}{2}}$ or 2 miles from Small Island, approaching it no nearer than in 6 fathoms, and, after once opening the town, taking care not to shut it in again.

The new town is on the middle of the bay, and the second reef (New Town Reef) lies to the westward of it, at a short distance from the beach. The Inner Reef liea, in like manner, half a league more to the northward. The Ten-feet Reef is about 100 fathoms in length, and extends nearly East and West, at rather more than a quarter of a mile from Small Island.

Mr. Keilor has said-" We experienced, in a calm, a very large sea, breaking in every part of the bay, and were, at the same time, riding with a very short scope of cable, by reason of a strong current setting out of the bay, against the sea : this current runs so high as to frequently break on the deck."

In the rainy scason, which is during the months of July, August, and Septenber, the Island of Bonavista is subject to light airs and changeable winds, with hears swells in the bay and roadsteads.

The tide flows, in Finglish Road, at 7 o'clock, on full and change days, and the sat sises 5 feet. Ohserve that there is no fresh water for shipping at Bonavista. Ther is water, but not plenty of it, near the Portuguese lload.

Leton Rock, or Joun Leton's Rock, a daugerous reef, lies, as shown in the Tuble, p. 45. This shoal has heretoforo been variously represented, and dascribed as just even with the surface of the sea, which breaks upon it with great violence. The bottom about it is rocky, and swarms with fish. Its extent from North tu South it about a mile.

[^150]From
$\left[\right.$ N. 26°
Ileaguen
The lat bound fle among th Alexande Melville Lady Bua obervati above wa which a s on it in fi
This da iags, exte westward the reef, a Lord Mel fathoms. to 40 fath ward of th less than gare $15^{\circ} 4$ of the Isl and $23^{\circ} 13$
ISLE 0 part is lev show as h called Eng of this isle the island. a few vege

From th distant 15 most towar is very difft like two isl Southward over which
At half reef, the G be cautious
In Engli very indiffc shore to th westward, sand and there is no a iship shou steep. At h according t N ., and 23°

8T. IAG

windward the reef, be point, they they make

845 of the dirposition of the was not passed out the question the Dolphin, as close up to the
' 2 ', on the S.E. ich is the eastluff and perpen. th Point, which 1 an islet, of the io the westward e Platform Hill d 6 fathoms. In mile distant. \dagger hel, already dethere are several called the North Road, is 4 miles
ile you have the charts. Vessels within the first et to the anchorE. end of Small 1 -feet Recf gene do well to stand hing it no neare? not to shut it in

Tew Town Reef) Inner Reef lies, Reef is about 100 e than a quarter
sea, breaking in ry short scepe of he sea: this cur
and Septenber, inds, with heary
lays, and the sed navista. There
s shown in tie and described 4 t violence. The orth tu South is
orm Hill a god -n breaking on it

From the centre of the reef, the North point of Bonavista bears N.E. $\frac{1}{6}$ N. [N. 26° E.] 91 leagues, and the South point of the same E. by N. [N. 64° E.] 7 leagues.
The lamentable wreck of the Lady Burgess, East India ship, one of the ontwardbound fleet of 1806, was caused by striking on the Leton Rock. This ship struck among the breakers on the rock, at 2 in the morning of the 19th of April, 1806. The Alexander, Sovereign, Lord Nelson, and other ships, narrowly escaped. The Lord Melville struck three times, and slipped off the rock into 25 fathoms, at the time the Lady Burgess was standing directly among the breakers. It appeared, from the observations subsequently made, that the Leton Reef is composed of coral; no part abore water. Captain Swinton, of the Lady Burgess, conjectured that the extent on which a ship would strike is not above a cable's length, and that there are no breakers on it in fine weather. To the northward, it appeared to be steep-to.
This danger appears to be on the central part of an extensive bank of coral soundings, exterding 4 or 5 miles to the southward, and considerably to the castward and westward. Some ships had soundings of 25 to 50 fathoms to the West and S.W. of the reef, at from 2 to 5 miles from the breakers. Immediately after striking, the Lord Melvilie had 25 fathoms, its head being to the eastward; shortly after, 30 fathoms. This ship hove-to, with her head easterly, until daylight, and had from 30 to 40 fathoms, all coral soundings. Others had soundings 10 or 12 miles to the southward of the reef, generally coral, sometimes intermixed with sand and shells, and not less than 20 fathoms. The mean of the observations and chronometers of the fleet gare $15^{\circ} 49^{\prime} \mathrm{N}$. , and $23^{\circ} 14^{\prime}$ W., as the situation of the reef, which is on the meridian of the Isle of Mayo: its situation, according to the Admiralty survey, is $15^{\circ} 48^{\prime} \mathrm{N}$., and $23^{\circ} 13^{\prime} \mathrm{W}$.
ISLE OF MAYO:-This island is raised considerably above the sea, but a great part is level, excepting three inland mountains of considerable height; but theso show as hummocks, and are not conspicuous. On the S.W. side is a sandy bay, called EngLish Road, within which is the town and extensive salt-pans. The soil of this isle is generally dry and unproductive, and there is but one spring of water in the island. The coast is, however, plentifully stocked with fish, which supply, with a few vegetable productions, subsistence to the poor inhabitants.
From the S.W. end of Bonavista to the Island of Mayo, the course is S.W. by S., distant 15 leagues; Maio is about 4 leagues in length trom North to South, xising most toward the middle. On approaching the island from the S.E., the appearance is very different; you may descry, in the North part, two hummocks, which appear. like two islands ; but, when nearer, the land is perceived by which they are connected. Soathward of these is a meuntain (Monte Maio), with very low ground to the South, over which two hillocks are seen.
At half a league from the middle of the North side of the island is a dangerous reef, the Galhao, extending N.N.E. and S.S.W. three-quarters of a mile, which must be cautiously avoided.
In English Road, ships may anchor in 7 or 8 fathoms of water. The landing is very indifferent, no good water to be had, and the place is quite defenceless. The shore to the eastward of and abreast the town is steep, bluff, and rocky; but, to the westward, a low white sandy beoch extends to a rounding point, from which a apit of sand and coral stretches outward, at a short distance from the extremity of which there is no ground at 45 fathoms. The spit may be rounded in about 16 fathoms, and a ship should not anchor further out than in that depth, the edge of the bank being steep. At half a mile West from the town, there is anchorage in 12 fathoms, latitude, secording to particular plan, $15^{\circ} 16^{\prime} 10^{\prime \prime}$, long. $29^{\circ} 15^{\prime}$. By general chart, $15^{\circ} 7^{\prime} 30^{\prime \prime}$ N ., and $23^{\circ} 17^{\prime} \mathrm{W}$.
8T, IAGO.-Ships running from Bonavista to St. Iago, and being obliged to ply to windward during the night, must be cautious how they approach Maio, on account of the reef, before mentioned, off the North pcint of that island; having doubled that point, they may steer S. W, to make the lame of $S t$. Iago, and thentee southward unii they make the Road of Praya, the common place of anchorage.

The land of St. Lago is very high, the peak of San Antonio, the highest point of the ridge, being 4,720 feet, and the eastern coast is bordered with rocks, lying verf near the land; along which you may sail very safely, at the distance of 2 miles. The S.E. part, which is in reality the East point, appears as a long low point, when yon are to the northward or southward of it ; and, from this point, S.W. by S., true, about 6 miles, lits the East point of Porto Praya. Between the two, and near the former, lies a bay, which so much resembles that of Port Praya, that many vessels, deceived by the likeness, have run the hazard of being lost in this dangerous place; at the buttom of it are several cocoa-nut trees, and a few houses. The land betwe n this and the point of Port Praya is mostly perpendicular, appearing, in some placis, like the Berry Head, in Torbay; and though the fort of Port Prara, which stands on a small cliff, is a mark by which the true bay may be distinguished from the false one, yet the surest mark is, that the North or East point of the false bay is surreunded with breakers; whereas the point of Port Praya is high, steep, and free from shoals: you must haul closo round the point, and keep within a cable's length of the shore to go to the anchoring-place. It may, also, be noticed that there is a look-out on the cliff, at half a league to the northward of the entrance of Port Praya.

POR'I PRAYA is a fine bay, which lies between two points, bearing from each other W. by S. and E. bij N., true, about $1 \frac{1}{2}$ miles. As you sail round the East point, you will soon open the forts at the bottom of the bay, to the westward of which, ia a valley, are several cocon-nut trees and several houses.
The winds, except in the tornado season, are generally in the N.E. quarter, and frequently blow fresh and squally ; there are, also, frequent puffs from over the high land; therefore, as you haul into the bay, it is necessary to have the top-gallant sails furled, and to trike one reef or more in the topsails. The cliffs, from the East part of the fort, are those above described: you may easily sail within a cable's length of the East land, where you will have 7 or 8 fathoms of water, and, in many places, see the ground at that depth.

On the western side of the bay lies a small black island, called the Isle of Quaik, or Frenchman's Island; it is almost even to the top, but rugged at each end, and some rocks lie off each end to about half a cable's length: there is also a rocky ledge off the North end, where the water is, in general, shallow ; you will not have more than 3 fathoms of water between this and the fort; inside, or to the westward of the island, it is navigable for boats only.

Commander Dunsterville says;-"This island, bearing W.N.W. $\frac{1}{3}$ W. 8 leagues, nppears very high. Mount St. Antonio, rising out of its centre, is of a conical form, and terminates in a peak, which peak, bearing N.N.W. (by compass) leads to Port Praya Road; and, as you advance westward, you will see the East end, which is rery low. As a further guide, you will see an opening, several miles north-eastward of the harbour, on Signal-post Hill, which gradually slopes to the westward; also, Red Hill which is on the port side of the bay, N. by W.
"The town is situate on an eminence rather high, and perfectly white, the houses being visible from S. by E. to S.W. by W.
" In sailing into the bay, keep well to the eastward, as the ground to the westward is foul. Anchor in 'rom 10 to 7 fathoms, with the Red Hill W. by N., outer eastern entrance E.S.E. Latitude of the canchorage, $14^{\circ} 53^{\prime} 10^{\prime \prime}$.
"A heavy swell sets into the bay and the prevailing winds are from N.E. to Easto On the 22nd of October the weather was sultry, with heavy rains. Fruit, cattle, and water may be obtained here. The two iatter not very good. 'The watering-place is at the brek of the town, and at some distance from the beach. Small easks are the most convenient in foul weather; but, otherwise, you raft the casks off from the ship to the bench.
"Quail Island, though centrically situated, is too near the main land to nssist any one in finding the anchorage. Do not approach it, on any point, nearer than half a mile, as the vicinity ia rocky, and some rocks do not appear above the surface Saluted the governor with thirteen guns, which wese returned with an equal number, and every offleer was treated with respect."-Oct. $182 \overline{5}$.

Captain "After ro miles, cal always kn edge, a hi be mistak tioned, a 1 behind wl markable on the We mark is th in gencral of high cle
It seldor trust to th during the castward, there are 0 Hoon, with The N.E. generally water be h through th
A spirite beach at th good state diffeulty a to the wel The Vindic the azichor batmen, w the hogghet
For sailis Bicudus) to quchorage. on the west
The best three-quart opposite Q_{1} churing nee casily getti apon the p theer clear the bay, fro the lsle of 0:tober, ge
H.M. shi nearly in a of eoral. point of the was in grei
"The Be leeward of current as are frequen with a grer "uivens."
ighest point of eks, lying very f 2 miles. The oint, when you y S., true, about near the former, vessels, deceived 1s place; at the Id betwe -n this one placis, like ich stands on a n the false onc, y is surrounded ree from shoals: of the shore to look-out on the
uring from each 1 the East point, ard of whieh, in
.E. quarter, and n over the high top-gallant sails the East part of e's length of the y places, see the

Isle of Quaik, hi end, and some ky ledge off the ave more than 3 rd of the island,

W. 8 leagues,

 a conieal form,) leads to Port d, which is very rth-eastward of vard; also, Redhite, the houses
oo the westward outer eastern
n N.E. to East
Fruit, cattle, watering-place Il casks are the from the ship

I to assist any er than half a e the surface equal namber,

Captain Grant, in the relation of his voyage to New South Wales, has stated that, "After rounding the E. point of St. Iago, there is a small bay to the East, about 4 miles, called by the inhabitants after St. Francis. This bay," he says, "may be always known by its having, at the back of it, and nearly close down to the water's edge, a high flat-topped table-lond, standing between two monntains, which cannot be mistaken. Port Praya has, at the bottom of it, besides the houses already mentioned, a long, low valley, running inlaid to a considerable extent, the mountains. behind which are shary and peaked. Near the landing-place there are two remarkable forts on the East side, which you must open before you come to anchor, and on the West side is Quail's Island, which is readily seen as you enter. But the surest mark is that, from the S.E. end of the Island of St. Iago, the shore is low and rocky ia general, until you reach the Bay of St. Francis; thence to Port Praya the shore is of high clayey cliffs, which round into the harbour, forming the East side of it.
It seldom rains here, but a dry haze is very prevalent. This is a remarkable contrust to the climate of Senegal, in the same parallel, when there is always some rain during the winter season. In Deeember and January the wind is frequently far to the castward, veering at times to the northward in the same season. In settled weather there are often regular land and sea breezes in the bay; the sea breeze setting in near noon, with a great surf on the shore, and ending at 4 or 5 o'elock in the afternoon. The N.E. wind sets in toward evening, and continues during the night. As there is generally some surf on the beach, boats should lie at their grapnels; and the casks of water be hoisted into them, after being filled at the well, and rolled down and floated through the surf.
A spirited individual, however, at considerable expense, conducted the water to the beach at this place, so that it can be filled with great facility, and be obtained in a good state for ships' use. Formerly it was, as above mentioned, a service of much difficulty and toil to water a vessel at Port Praya, as the casks had to be rolled up to the well, not the cleanest in the world, and the water to be baled up in buckets. The Vindictive, of fifty guns, in April, 1842, obtained sixty tons, and she was only in the aichorage twenty-four hours. Merehant vessels are supplied, by rafting, by the batmen, who charge 3 d . for a large cask. The cost of the water is about 320 reis the hogshead.
For sailing into Port Praya Bay, you may borrow on the eastern point (Ponta das Bicudus) to 7 or 8 fathoms of water, und thence proceed, north-westward, to the anchorage. It is to be noticed that the ground is foul in different parts, particularly ua the western side.
The best anchorage is, to bring the flagstaff on the fort N.W. by N. [N.W.] about thre-quarters of a mile, the body of Quail's Island West, and the point of the bay opposite Quail's Island E. by S., in 7 and 8 fathoms. Many comunanders prefer anchoring nearer the N.E. side of the bay than the Isle of Quails, for the sake of mare easily getting under sail, without running the risk of being carried by the currents. upon the points of rocks to leeward, befure the vessel has gained fresh way enough to steer elear of them ; and it has been observed, that vessels may anchor anywhere in the bay, from 9 to 11 fathoms, good bottom, but nearer to the eastern shore than to the Isle of Quails, as the wind, except in the months of August, September, and 0:tober, generally blows from the N, E.
H.M. ship Tartar, Sir George Collier, anchored with the best bower in 11 fathoms nearly in uline with, or a little within, the two other points, ground of sand and bits of eoral. Qunil Island then bore N.W., the flagstaff of the fort N.N.W., and East. point of the bay E. $\frac{1}{2}$ S. A salute of thirteen guns was returned. Stock of all kinds was in great plenty.
"The Bay of Praya being under the South end of St. Iago, should you be to the leeward of it, you will flid it difficult in bcating to windward against so strong a current as there is here. In the months of July, August, and September, the rains arefrequent, and the southerly winds which then prevail cause a great sea in the bay, with a grent surf ons shore. The inhabitants in these months are suhipet to dangerous. finers."

The sandy cove, on the East side of the bay, is an excellent place to harl the seine in ; as is also the head of the bay. The principal fish are the mullet, gray and red, nock-fish. snappers, cavalla, and a variety of small fish.

I he governor-general of the Cape Verde Islands resided formerly at St. Iago, an episcopal city, and the capital of the island; but foreign ships having totally abandorted the road of St. Iago, which is very bad, and of difficult access, to come to kct of. Praya, tha governor now resides at this bay during the dry season.

To those bound from Praya Bay to Bonavista, Mr. Keilor recommends that they should endeavour to sail in the evening, as the current will be favourable. He adds, do not stand too far over toward the African shore, nor work between Mayo and St. Lago, and you will find the ship get to the eastward very fast.

A visitor, in 1852, complains of the want of olearness in the directions for Porto Praya, as he says there is some confusion in the names of the S.E. and East points. The East point is that to the North of St. Francis Bay, and the S.E. point is that on the East side of Porto Praya. The peaks which are sometimes pointed out as good marks are so frequently ob tired by haze as to be of little service. He thercfore saggests the following brief directions as sufficient:-After making the island of St. Iago (ontward bound), steer to the S.W. till the Sonth extreme of the road bears W. by N., when the Sonth point will be distinctly in view, having Red Hill behind upon the same bearing; haul up then to the westward, end pass the point about $\frac{3}{4}$ of a mile off; Quail Island (having a very black appearance) will then be seen to the N.W.; steer up for the North end of it till you fairly open the bay; then luff up to about N.N.W., and anchor midway between Quail Island and the eastern shore of the bay, in 7 fathoms, leaving Red Hill just open to the northward of the island.

' Remarks on St. Iaco, etc., by Captain J. W. Monteath, 1824.

November 20, 1824, at $4^{41} 20^{\prime}$ p.m., Mount Ochel, on the N.E. cnd of Bonavists, was indistinctly seen through the haze (which generally prevail among these islands) bearing N. 80° W. From this position we shaped our course so as to pass well to the castward of the Island Mayo, in case there should be any westerly current.

The wind during the night continus?' fresh, and steady from the N.E., the vesse making a S.S.W. $\frac{3}{4} \mathrm{~W}$. course (by compass), at the average rate of 6 miles an hour. At four a.m., estimating ourselves (by the distance run) to be in the latitude of the Sonth point of Mayo, we hauled by the wind on the port tack, under casy sail; at daybreak, bore up, under all sail, on a W. $\frac{1}{\frac{1}{2}}$ N. course. Notwithstanding our vicinity to the island, the haze prevented our seeing it until with five leagues of it; the high hill on the centre then bearing W.N.W., and the North point N.W. by compass; the course until eleven was W. by S. $\frac{\pi}{4}$ S., true, distance 14 miles; at the same time, English Road bore N. by W. $\frac{9}{4}$ W., true, distant 4 miles.

From the coloured appearance of the water (dirty green) this morning, it is mp opinion that an extensive bank lies ai least 20 miles to the eastward of Mayo, and had I observed it previous to making sail, I would have sounded it, in order to ascertain the depth of water on it ; but, being anzious to get into Port Praya as carly as possible, I did not heave-to for that purpose.*

In running from Mayo toward St. Iago, I would advise vessels to steer directly for the most sontherly point of the latter island; this will carry you about 4 miles clear of the S.E. point, which is low and rocky ; between it and St. Francis's Bay area number of black patches of rocks, a considerable way inland, and which, at that dir tance, have the appearance of low bushy trecs.

The Bay of St. Francis may easily be dlstinguished from that of Port Praya, from the West point of the former being high, while that of the latter, Cape Tubaron, is very low and rocky; it has also a fort with a flagstaff, which is distinctly seta

[^151]vefore you harbour.
The b ${ }^{-}$growing el and the oth pery good
Novembe
Bay, in 5 f ing E.S.E. Point Tuba sary to mer Point Tuba is very roch
The tow streets, ext N.W. quart pablic buile There are t mand the \mathbf{r}
The land mad to the the hill by situated in ing-place.
H.M.S. remarks on
"The wir (December 1 nient ; but bay secure, great streng which have nexeced the nessed the s incredulous limits of th
"Strong breeze is fre reff in her warning.

> "The vie risitor. A in the valley the harbour outline ; aun idea of the
"Fruit w mammee ap fis, and, oce

> "From A galo is usual dark bank o the gale. \& and put to Septen were at
haul the seine , gray and red,
t St. Iago, an totally aban. o come to
ends that they ble. He adds, a Mayo and St.
tions for Porto d East points. oint is that on red out as good He therefore e island of St. 3 road bears W. ill behind upon bout $\frac{3}{4}$ of a mile to the N.W.; luff up to about core of the bay, d.

H, 1824.
d of Bonavist, g these islands) pass well to the rent.
N.E., the vessel miles an hour. latitude of the nder casy sail; ithstanding our leagues of it;
t N.W. by com-
s ; at the same
prning, it is m d of Mayo, and order to ascer aya as carly
eer directly for t 4 miles clear ncis's Bay are ich, at that dis
prt Praya, firm
Cape Tubaron, distinctly 5 eta
ce demonotrated
11,120 , and 707

Defore you open the Bay of Praya; this, of itself, is a sufficient mark for the harbour.
The bro in St. Francis's Bay is sandy, and has a great number of palm trees. growing close to it ; there were only two houses in the bay,-the one on the wostern, and the other on the eastern, side. The flat, as mentioned by Captain Grant is also a very good mark for this bay.
November 21, at three p.m., we rounded the East point of, and anchored in, Praya Bay, in 5 fathoms of water, black mud and sand, the eastern point of the bay bearing E.S.E. ; fort at the town N.N.W., in a line with a high peaked mountain, and Point Tubaron in a line with the South end of Quail Island, S.W. by S. It is necessary to mention that, in anchoring, you should endeavour to shut in (or nearly so) Point Tubaron with the South end of Quail Island, as outside of this line the ground is very rocky, and you may have difficulty in purchasing your anchor.
The town of Praya stands on a hill at the bottom of the bay, and consists of three streets, extending in an East and West direction. The Plaza, or square, is in the N.W. quarter of the town, and contains the custom-house, barracks, jail, and other public buildings. The magazine and church stand on the western side of the fort. There are two other forts on the heights on the eastern side of the bay, which command the road.
The landing-place for goods is on the N.W. part of the bay, from which there is a mad to the town ; this road is, however, very steep, and all the goods are carried up the hill by negroes, which incurs a considerable expense to the owners. The well is situated in a valley at the back of the town, and is nearly half a mile from the land-ing-place.
H.M.S. Beagle visited Port Praya, in January, 1832, and Captain FitzRoy's remarks on this place, as then conditioned, are as follow :-
"The wind being always from tho North or East durin ${ }_{b}$ this season of the year (December to June), a ship can moor as close to the weather shore as may be coffeenieat; but during July, August, September, and October, no vessel should deem the bay secure, or anchor near the shore, because southerly gales sometimes blow with great strength, and the rollers, or heavy sea sent in by them, are dangerous to ships which have bad ground tackle, or are lying near the land. As I have myself experienced the force of these gales, in the vicinity of the Cape Verde Islands, and witnessed the sea :es ed by them, I can confidently waried those who are inclined to be ineredulous abo a gale of wind being found in 15° of North latitude, beyond the limits of the hurrciane regions.
"Strong gusts come over the land into the bay during the fine season, when the breeze is fresh; therefore, a ship entering, with intent to anchor, ought to have a reef in her topsails, and be ready to elew up the top-gallant sails at a moment's warning.
" The vicinity of Port Praya offers little that is agreeable to the eye of an ordinary risitor. A desulate and hilly country, sun-burnt and stony, with but fex trees, even in the valleys, and those only the withering spectre-like trunks of old palnis, surround the harbour. 'The distant and higher parts of the island, however, present'a striking outline; and no person, who has visited the Port of Praya only, can form the slightest idea of the beauty of the interior country.
"Fruit was abundant ; there were oranges, grapes, plaintains, bananas, sour-sops, mammee apples, -ives, quinces, sapodillas, papaw apples, pines, citrons, medlars, fis, and, occasionally, apples.
"From August to October is the rainy and sickly season. In September, a S.W. galo is usually experienced; but from five to ten hours before its commencement, a dark bank of olouds is seen in the southern horizon, whioh is a sure forerunner of the galo. Should a vessel be at anchor in the port at such a time, she ought to weigh and put to until the storn has ceased, and the swell subsided. In the month of Septen'...eding our visit, an American merehant brig and a Portuguese slaver were at ... int loat liayia. A bank of clouds was seen during the day in the
S.W., and the American went to sea; but tue slaver remained at anchor. A storm arose at night, drove the slave-vessel ashore, and dasaed her to pieces in less than half an hour, yet did the American no damage whatever, and the next day she anchored again in the port.
. " Except during the vainy season, the wind is always north-easterly, and then the sky is clear and the swa rery powerful; but a dry hoze hangs over the island in a peculiar manner, and a quantity of fine dust, quite an impalpable powder, frequently settles on every exposed surface, even on the sails and rigging of a vessel, when passing near the islands."
The town of Santiago, or Ribeira Grande, commonly called La Cidade, stands at the bottom of a ravine at 6 miles te the West of Praya. Vessels of any size can anchor before it in the fine season. The best place is said to be with the fort flagstaff in one with the episcopal palace. From hence to the S.W. point of St. Iago there is no auchorage; between this and the North point of the island, Ponta Buyhuda, there are Ribeira Barca and Ribeira Prata. These two beaches are 6 miles apart, and between them is a projecting point, near which are some houses. Water may be got at these anchoring places in the fine season. Tarrafal Bay on the same coast is about is abeut 6 miles North of Ribcira Prata. It is large and, according to the people of the place, safe at all seasons. There are no houses except a custom house post, but provisions and water are breught down frem the interior.

Point Bighuda is very high and abrupt, and is 3 miles North of Tarrafal Bay. The eastern side of St. Iago is dangerous from the calms produced by the high lands, which reflect the N.E. winds, and by the currents and bad sea which are found on it. The only place worth mentioning is the little harbour of Santiago, which will scarcely hold 4 vessels of 100 tons. It lies about the middle of the coast, and may be known by some clumps of cocoa-nut trees and a small church to the S.

FOGO, or Fuego.-This island, much higher than any other of the Cape Verde Islands, is only a continued mountain, rising into a peak of 9,700 feet in height, which has been in activity in recent times. This island has, nevertheless, about 7,500 inhabitants, whom the eruptions of the volcano have forced sometimes to quit the island. The ground is clear within a mile of the shore, on the N.W., West, and South parts; but, on the S.E., East, and N.E. parts, it is rocky. At about 4 miles from the North end of Fogo lies a rock, with 12 or 14 feet of water on it, over which the sea breaks when it blows hard, but not else, and the bettom is clean all round it,*

The town is that of Ncssa Senhora da Luz, on the western side. The roadstead is open, and the anchoring ground off the town very close in, being only holf a mile from the shore. In 25 fathoms, rocky bottom, the northern extremity bears $\mathrm{N} .20^{\circ} \mathrm{E}$. [N. 4° W.[; the southern extremity, S. 68° E. ; the nerthern flagstaff, N. 35° E. ; the southern, $N .21^{\circ}$ E.

No other soundings are to be obtained near either Foge or Brava, with a line of 130 fathoms, at three-quarters of a mile from shore.
The marks, says Mr. Keilor, when a brig was at anchor off the town, in 10 fathoms of water, were, the town bearing E. by N., a quarter of a mile ; the mount, E.N.E.; the South end of Brava, S.E. by S. The bay is open, with foul ground, and a bad landing for boats. Corn, fruit, and cattle may be purchased at Fogo, but water is scarce.

BRAVA.-Brava is very high, and might be seen at a great distance, were it not constantly covered by a dense atmosphere. Its climate is tempcrate and healthy, and for this reason the Goverior of the islands sometimes resides here. The winds here prevail at N.E. or East, mest part of the year, excepting in July, August, and September. The channel between Fogo and Brava is 9 leagues in breadth. Five miles to the N.N.E. of Brava are the Rombos, or Romes, two small rocky isles, ncarly

[^152]connecte has a pea Brava he boats, ex
Althow pyramids It produo Accordin the best c if yout ha side for wind bl the bay,
ST. N equalls, \&
There a leagues; the middl From E ing is W. to the set form poin On the black sand called, by bay, shut then lie in landing fo for, as the fowed. wind hlow
At abou Jorge, or This bay There is t depth, or by S. from so that, sb being very The mark of a mile
Terraf may anch E., and th $\ddagger W$.$] , an$
The cus to the We and 35 fat ground, a
There i of the sea ground, t gully, out thing of 0 flaws, you idide very
chor. A storm ces in less than next day the
y, and then the the island in a xder, frequently ssel, when pass-
idade, stands at ff any size can he fort flagstaff t. Iago there is Biyhuda, there npart, and be ter may be got ne coast is about to the people of honse post, but

Tarraful Bay. the high lands, are found on it. ch will scarcely may be known
the Cape Verde feet in height, ess, about 7,500 les to quit the W., West, and t about 4 miles ter on it, over m is clean all

The roadstead ly holf a mile bears N. $20^{\circ} \mathrm{E}$. N. 30° E. ; the
with a live of
in 10 fathoms ount, E.N.E.; hd, and a bad but water is
, were it not and healthr, The winds August, and cadth. Fire isles, nearly
tionable.
connected by smaller rocka, forming a crescent. The westernmost isle is lofty, and has a peak on it. Between these islets and the North end of Brava ia a clear passage. Brava has, heretofore, had plenty of corn, live stock, and fruit; but bad landing for boats, except in the harbour on the N.E.
Although Brava is very high, its mountains rising one above the other, like pyramids, yet, being so near the Isle of Fogo, it seems, in comparison, to be but low: It produces plenty of salt, and abounds most with saltpetre of any of the islands. According to Cap tain Roberts, it has several bays, or roada, where a ship may anchor, the best of which, cnlled Furna, or the Oven, lies toward the N.E. end of the island; if you haul in near the rock, which is a very good quay, having water enough by the side for fir 'n man war, you will lie land-locked from all wintin. ror does any wind bl wive from the S. by E. to the S.W., which scitits: sea into the bay, an in ery well deserve the name of a harbour.
ST. NI $\quad 1$ ind is high, and the coasts, therefore, subyint to heary equalls, \&
There are tw able mountains which may be seen from a distance of 15 leagues; one in ape of a sugar-loat, called the Peak of Trade, which is near the middle of the island; the other, Monto Gordu, near the West end.
From English Road, in Bonavista, to the East point of St. Nicolas, the true bearing is W.N.W., and the distance 22 leagnes ; the course must be regulated according to the set of the sea. The East end of the island may be known by its being a platform point, having a pyramidal rock, which appears like a sail, at a short distance.
On the South side, at $1 \frac{1}{2}$ leagues from this end of the island, is a bay, having a black sandy beach and a pond of fresh water, supplied from the mountains, and hence called, by the English, Freshwater Bay, properly Preguizo Bay. To anchor in this bay, shut all the land to the eastward within the East point of the bay ; you will then lie in 7 fathoms of water, within half a mile from the shore. There is good landing for the boats, with plenty of good water in fine weather, and at neap tides; for, as the tides rise here 5 or 6 feet on the new and full moon, the pond is then overfowed. At this time you are subject to heavy squalls; and, notwithstanding the mind blows off shore, the sea is very high close to the beach.
At about 4 leagues to the westward, from the middle of Freshwater Bay, lies San Jorge, or St. George's Bay, where a ship can get refreshments; but there is no water. This bay is known by a sugar-loaf mount, and a flagstaff on the hill above the bay. There is tolerably good anchoring in 7 fathoms, close to the shore; but, without that depth, or in 9 or 10 fathoms, the ground is rocky. There is a shelf stretching S.E. hy S. from the N.E. point of the bay, on which less water is found than within it; so that, should your anchor start, which will happen if you are not careful; the bank being very steep, and the squalls very sudden, it may hook this shelf and be lost, The marks to anchor are, the cove, or landing-place for boats, N.W., distant a quarter of a mile ; Sugar-loaf Mount N.E. by E., and the flagstaff N.W. by N.
Terrafal Bay.-On the S.W. side of St. Nicolas is Terrafal Bay, where you may anchor in frons 20 to 10 fathoms, with the coast to the southward bearing S.by E., and the Islands Raza and Branco in a line bearing N.W. by W. $\frac{1}{3}$ W. [W.N.W. $\left.\frac{1}{2} W.\right]$, and the landing-place E. $\frac{1}{2}$ N. a quarter of a mile.
The custom-house is situate on the S.E. angle or corner of this bay. From this to the West point of St. Nicolas there is a bank of soundings, with from 40 to 20 and 35 fathoms at half a mile from shore. In the last depth is anchorage, in sandy ground, at a mile S. by W: from the West point, but sheltered only from the N.E.
There is, in Terrafal Bay, a high bluff rocky point, nearly a quarter of a mile short of the sea-side; in which place it is low, stony, gravelly, and in some places, shingly ground, the shore being a pebbly beach. On each side of this point is a very deep gully, out of which come violent flaws or gusts of wind ; and, therefore, when anything of a hard gale blowe, it is very difficult to turn up into this bay. To avoid these faws, you much anchor right against the point, between the gullies, where you may nide very easy under its lee, in from 16 to 3 fathoms.

Withini thiis bay the depths are 12, 13, and 14 athome, cott grouind; and then they shoalen gradually to the shore, to the depths of 4 to 6 fathoms, whore you have again and to the pebbly beach.

By digging a well, almost anywhere on the low land, you may water here, unless the rainy season has failed; but there is always water in the valley, about half a mile from the sea, whence the natives will bring it cown on assee for a triffo. From thij sbad you may see, in clear weather, all the leeward islands; but, if it be in the least havy, the Isle Raca is not discernible.

The only anchorages are on the South side of the island. The northern coast is not trequented.
MANA, BRANCO, ATD SIA. LUCTA.-These islands lie between those of St. Nicolas and St. Vincent, as shown on the charts. Rugged and mountainous, they partake of the general eharacter of the other islands. Raza lies true West 8 miles from the West point of St. Nicolas, and appears in the old charts ander the name of Chaom or Dog's 1sle. It is nearly 2 miles long, from East to West, and 14 broad. The land-ing-place is under the N.W. point, facing the West. This island is low and uninhabited. The edge of its coast is steep and rocky, and landing is diffcult when there is any wind. Between it and Branco, at about one-third from Raza, is a coral reef, extending S.S.W. and N.N.E., and having on its shallow part 6 fathoms of weter, bnt deepening gradually on the Weat to 15, and on the East to 18 and 20 fathoms. The rea continually breaks over the reef, owing to a atrong tide, or current, sefting through between the isles.
BRANCO, the Redonda of the old charts, is a league to the N.W. of Raza, and much higher. In the passage between are soundings of 6 to 18 in . the middle, and deoreasing near Branco to 7 fathoms. The latter is a narrow island, $2 \frac{1}{}$ miles long from S.E. to N.W. A spit of sand atretches from its S.E. ond, on which the rolleri or break are violont, and its shore is altogether rocky.

Praya Branca, on the N.W. side of the island, has a small village of about thirty utone-built houses, thatched with reeds. The scenery here, being on the side of a stupendous mountain, is picturesque and magnificent; a small stream of water supplies the village; bananas and papayas are planted on the borders of the brook; cassade and vines on the banks of the valley. The bread is made from maise, or Indian corn, and from farina, or flour of cassida. The natives are, in general, poot, but very courteous.

Monit Gordo is in the central part of the island, toward the West. It summit is 4,200 feet sbove the level of the sea. The mountain in composed entirely of volcanic matter, very fragile and porous, and does not form a peak like many of the smaller ones on the ioland. It is well olothed with vegetation, even to the summit. The Enyphorbium balsamifera flourishes to about 3,700 feet above the level of the sea. The prospect hence is very extensive, calm, and beautiful.-Mr. Forbes; Caplain Oveen, vol. i., p. 27.

S'I. LUCIA lies at the distance of 31 miles to the northward of Branco, and the Bank of Soundings extends to this island. Tho bank here forms a regular fiat of 10 to 13 fathomi. The South coast trends nearly East and Weat 4 miles, and in the middle of it is a good landing-place. A steep bank, half a mile broad, stretchee from it, having on its edge 2 to 4 fathoms. In the bay formed by the S.W. coast are the ruins of a village, at three-quarteri of a mile from the Sonth point. To the wentward of thin is a little inlet, named Loon. The N.W. purt of St. Lucia into high mountaine.

[^153]SAN VICESTIE, or St. Vincent's.-The Isiand of St. Vincent in separated by a
channel, 4 miles broad, from that of St. Lucia, and by one of 7 miles from that of \$tt. Antonio.' This island is 11 miles long, from East to West, and about 6 broad. It hus two chains of mountains, the N.E. and S.W., which from a contral valley that terminates in the bay called Porto Grande, upon the N.W. side of the inland. The N.E. coast forms two bays, separated by a low peninsula, of 2 miles on either side, and thin coast has boen described an altogether dangerous.
The general appect of it is mountainous, with sharp peaks ; the coast is rocky, and rises abruptly, but the tide, ebbing, leaves a sandy beach. No doubt can be untertained that the general character of the island is volcanic ; the interior is formed by ranges of hills of different heighte. The surface of the country is undulating, and, in the interior and loftier parts, has a tendency to table-lands.
With regard to the physical divisions of the island, it is divided by a valley running from West to East; in the southern division, one range of mountains proceeds fromWeat to East; another from North to South, but both connected by a hill. The northern part of the island concists of mountain chains, lying N.E. and S.W., rid N.W. and S.E.

The water rons from the clevated parts to the sea coast, and loses itself in the mand, but the quantity of it is not capable to form, in the dry seacon, a river; the principal valley is divided by a hill, which connected the northern and couthern: division. The watercourse, running West, takes its rise 520 feat above the level of the sea ; the bed is gravel, covered with mud, united by chalk: The coast forms a great number of little baye, in general capable of containing vessels; the chief port is named Porto Grande, situated on the West side of the island, and is a good anchorage for about 300 vessels, water and provirioni cannot easily be procured; the former defect might be remedied. The wind blows generally from the N.E.; in the rainy mason the S.E. wind prevails, which commencen in the month of July, and ends on the 18th of October. During the lant yearis the rains have been regular in point of time, but sometimes not in quantity.

Porro Grande in the largest and best bay in the Cape Verde Islands: it is capable of holding 300 sail of large ships, well sheltered under the high lands, and has a Ane appearance. Captains Vidal and Mudge, who surveyed this place in 1820, say of it, that it now forms a good and safe anchorage, where you may strip and refit your ship, as it is sheltered both from wind and sea. The wind gencrally blows from the N.E. over a part of the land, and seaward it is protected by the Island of St. Antonio.
Wood is plentiful, and sufficient water may be obtained from the well, on the cutern shore, for daily consumption. After a reft here, a complete supply of the litter may be found in the Bay of Terrafal, St. Antonio, which is 8 leagues to the rentward, and reckoned the best watering-place among the Cape Verde Idlands. Cattle may be had at Porto Grande, but they are not very good. The church of Leopoldina and custom-house are situate in the bottom of the bay on the Fast, and a cignal-poat may be reen, ereoted apon a hill, at a short distance from the anohorage, which given notice of whatever may be pasaing or approaching the island."

[^154]Porto Grande in well adapted for refitting in, as well as acclimatising the crews of veseels going to the African station. There is no endemic disease there, as at St. Iago; the climate resembles that of Ascension, without being so hot; and though there is acarcely any vegetation on the island during the greater part of the year, yet a mufficient quantity of live stock, vegetables, \&o., for several veasels, can be always obtained there, and at the neighbouring island, San Antonio. It is deficient of water, as before stated, except for daily consumption.

The variation in June, 1841, was $17^{\circ} 17^{\prime}$ W.; dip, $49^{\circ} 10^{\prime}$. It is now about $15^{\circ} \frac{2}{2} \mathrm{~W}$.
Withont the entrance of the bay, at nearly three-quarters of a mile from its N.W. point, is a remarkable steep islet, called Bird Iote, which, at a distance, appean round like a sugar-loaf. Mr. Finlaison mays, "You may run on either side of it, and will ind regular soundinge thence to the shore; depths from 30 to $10,8,6,4$, and 2 fathoms, to the beach. The ground in good in most parts of the bay, and you mey anchor any where in 7 or 6 fathoms of water, sandy bottom, with coral branches. The water is very clear, so that you may pick ont a olear apot for the anchor.
"Ships ohould moor with a kedge, as a very strong carrent commonly sets to the N.E. between Bird Island and the shore: and, as the N.E. wind is variable, at night it is impomible to keep a clear anchor, without this precaution; for the wind, at times, comes in strong gusts from off the land."*
Mr. Finlaison adds, "In running between St. Antonio and St. Vincent we sounded in 42 fathoms, bits of coral mired with sand and small stones. Within half a mile of Bird Island we had 42 fathoms.
"Having proceeded about 8 miles to the sonthward of St. Vincent's, 40 fathoms of water wert found; and, on approaching Still Bay, at the S.W. side of the island, found regular soundinge, ooze and sand, to 20 fathoms, nearly in the centre of that bay. We anchored in this depth, with the Weat point of the bay W. by N., and its Elast point E.S.E.: the distance between the two points is $2 \frac{1}{4}$ miles; regalar. soundings from the ship to the shore, and very good landing on the beach. The ground is perfectly clear of rocks, but the bay is open to the S.W. Water is also to be got by digging for."
Captain Bartholomew describes the bay on the S.W. side as the Bay of S. Pedro, having a fine sandy beach, and he says that vessels may anchor in 10 fathoms, nar the middle of the bay, or rather more to the westward. The anchorace is good in the dry season, and the irhabitants say there is plenty of wond and water. The American whalers frequent this place.

Oa the eastern side of the island is another anchorage, the Praya da Gatta, with a sandy beach, near which vessels may anehor in 6 fathome; the bottom is clear, bat a nee sets directly in when the wind is either N.E. or S.E., the Island of Sta. Lacia sheltering between these points. This bay and coast are without wood, water, and inhabitants.
ST. ANTONIO.-This island, as already shown, lies at the distance of 8 miles to the N.W. of St. Vinoent, and it appears, altogether, like an assemblage of high mountains, particularly to the West. It is 22 miles in length, from East to West, and about 11 in breadth, and its highest peak is estimated at 7,100 feet above the level of the rea.
and although the whole bay is nearly land-locked, yet the surf is very high all round, exoept in one spot near the town. We therefore embarked only a tun and a half of bad water, and caught a fow fish."-Cuptain W. F. Owon, vol. i. p. 28.

- In working between St. Antonio and St. Vincent, to Porto Grande, you may stand to a mile off St. Antonio, and as near as you please to St. Vincent, as the ourrent generally rets strongly through to the N.E.- R. Koilor.
Mr. Finlaison saya that ahips hound through this channel should koep over toward the latter, as no danger whatever is to be approhended on that side.
ag the crewis of , as at St. Iago; hough there is the year, yet a can be alwhys ficient of water,
is now about
- from its N.W. istance, appears er side of it, and 10, 8, 6,4 , and y, and you may I' branches. The or.
only sets to the ariable, at night or the wind, st
cent we sounded in half a mile of
t 's, 40 fathoms of e of the island, e centre of that N. by N., and its ; regalar sound-
The ground is also to be got by

Bay of S. Pedro, 10 fathoms, near Ee is good in the :. The American

Pa Gatta, with : n is clear, but a d of Sta. Lucis vood, water, and
ce of 8 miles to e of high moun. st to West, and bove the level of
high all round, in and a half of
on may stand to urrent generally
over toward the

Of the two highest monntains in the West, the Sugar Loaf is the most elevated, and both are commonly oovered with elouds. According to the Admiralty survey; the Sugar Loaf stands in $17^{\circ} 4^{\prime} \mathrm{N}$., and $25^{\circ} 201^{\prime} \mathrm{W}$. The island is very woody, but has plenty of goats, fraits, and salts; it produces wine, cotton, indigo, \&c. There is a village, santa Cruz, on its.S.E. vide, bnt the ground is not fit for anohorage.
Terrafal Bay, which is only half a league to the northward of the S.W. ond of the island, has been already noticed (p. 616) as the best watering-place in the Cape Verde Islands, and other refreshments may be here purchaised. The edge of the bank, with 40 fathoms, is about one-third of a mile from shore. At a cable's length within are 50 fathoms, and it then shoalens in ward to 20,8 , and 4 fathoms; the latter near the beach. Latitude of the landing and watering-place, $16^{\circ} 57^{\prime}$ long. $26^{\circ} 24^{\prime} 48^{\prime \prime}$. Variation, in $1820,16^{\circ} \mathrm{W}$.
"This watering-place of Terrafal Bay is one of the most convenient for the purpose amongst the Cape Verde Islands. The bay is spacious and has a black sandy bottom. Vessels anchor at 20 fathoms, at three-quarters of a cable's length from the shore, sheltered from the N.E. and Sonth winds and see: and when the wind comen to the westward of South or North there is always, from the extreme high land, a calm in the bay, the wind never blowing heme, but only occasioning a swell to set in.
"From the high mountains over the bay a small stream descends, which is never dry; on the first level apot a large pond has been formed as a reservoir to recoive the stream, with a sluice to conduct it to the sands between the flat and the beach, which is a gradual dencent; the flat may be about $\mathbf{6 0}$ or 70 feet above the level of the sea, and is generally moist and cool. In the vicinity of the pool is a fine plantation of bananas, papayas, \&c., and in the lower sandy grounds a cotton plantation, with some trees of the asclepias procera. Just above the beach is a well; and when the water in let off from the pool, all the soil between it and the well must be saturated before any can arrive at the latter.
After passing St. Antonio, as above, Captain Monteath, between the parallels of 3 and 2 degrees North, found the current to set S.E. by E. in the twenty-four hours; but, between 4° and 14° S., the ship was set, by the Equatorial Current, 80 miles westerly in five days.
Captain. Monteath adds, "On approaching St. Antonio, which is very high, and may be discerned in clear weather at a great distance, it appears black, rocky, and barren ; consisting of immense rocks or mountains, heaped on each other, and rising far above the clouds, which, in general, cover a great portion of their summits. On the N.E. part of the island the mountains are divided by deep ravines and gullies, which have every appearance of deep water having passed down them: on ronnding the N.E. point you will perceive to the S.W. large white patches from near the shore until about halfway up the mountains; at this distance they are not unlike ripe fields of corn; but, on nearing them, they are found to consist only of large white rocks, like pumioe, and are entirely gestitute of verdure ; the mountains toward the centre of the island are composed of rocks of stratified basalt, in thick and perpendicular columns, to their very summits ; it also rises more gently, for a considerable elevation, than either the N. En or N.W. ends, but without verdurg, excepting a few tufta of brushwood near the shore, and patches of brown heathr with which this island is generally covered. Prom the N.E. point, until rounding the point of Sta. Cruz, the only habitations I could discern were two or three miserable looking huts built apon the ahore, about a mile distant from each other.
"The S.W, point is pretty well covered with brushwood, but I saw no signs of cultivation, nor inhabitants. The channel betweeh this island and St. Vincent's in quite clear of danger 1 , and within a short diatance of the shore on each side (except off the point of Sta. Ciuz, where the breakers run out about a mile) is bold-fo, and I should spprehend that a vemeol might work through this passage with little risk, cither by day or night."

8.-BERMUDAS OR SOMERS' ISLANDS.

The first discoverer of these islands was Juan Bermudez, a native of Galicia, in Epain, whose name they still retain, about the beginning of the 16th century.

In 1609 , Sir Cleorge Somerr, an Englishman, was drove thither by the violence of the wind, and nome of his men returning to England so much commended these islanda, then called Somers' Islands, from Sir George Somers, that in the year 1612, a wociety of English gentlemen and merchanta, having obtained a grant from King Jamen the First, sent over 60 men to begin a colony, under the direction of Richard . More, who built eight forte, and several places.

The group of islands and the surronnding reef are of an oval form, the longest diamoter Ifing N.E. by E. and S.W. by W. 25 miles, and the breadth 10 to 12 nantic miles. The islands themselves are on the S.E. side of the reef, and are shaped in the most irregular manner imaginable; they extend about 15 miles in leugth in the goneral direciion of the reef given above. The breadth is very various, the greatent about $1 \&$ miles. The chief island is Bermuda, containing the town of Hamilton, St. Georgeo, with its town of the same name, Somerset Island, and Ireland Island, on which is the dockyard; these are the principal: besides these are St. David's, Longbird, Paget's, Smith's, Cooper's, Nonsuch, Castle, and many inferior islands and rocks.

The climate, being moist, is favourable to vegetation at all scasons, except during the droughts of summer, and the storms of winter.

Hurricanes and tempests are very frequent, as is to be expected from the proximity of the isles to the variable limit of the Trade and other prevailing winds. Few autumns pads 'without hurricanes of more or less violence.

The Bermuda Squalls are sudden and violent tenpests, occurring particularly in the winteer season.

As the day oloses, the whole horizon becomes obscured by dark and heavy clods, and the thunder and lightning, which precedes the first squall, give notice of its approach. After the commencement, the wind, gradually shifting, blows in tremendous gusts at intervals of every 20 or 30 minutes, a dead calm intervening; snd the sea, rising in confused and breaking waves, renders the situation of a vessel, particularly a small one, very dangerous.

The conduet pursued by seamen, and which appears to be the most advisable under such circumstances, is to furl the ship's sails, and endeavour to get before the wind; by which means she may ultimately run clear of these local squalls into a steady breeze. It is an observation made by seamen who are familiar with the Bermndas Iflands, that the various winds which blow meet there, and contend for superiority; and the inhabitants themselves remark, that the currents about their rooks are as variable as the winds, and as numerous as their islets.
The LIGHTHOUSE.-The most useful mark to mariners is the new iron ligatnoves on Gibbe' Hill, on the Sonth side of the island. This will very materially sdd to the security of vessels approaching by night. The official dencription and directions are as follow :-
A lighthouse has been erected on the southern part of Bermuda, in lat. 32° $14^{\prime} 4^{\prime \prime}$ N., and long. $64^{\circ} 51^{\prime} 36^{\prime}$ West of Greenwich. A revolving light, visible overy minute, was exhibited on the 1st of May, 1846, and will be continued every night from sunset to sunrise.
It is elevatod 362 feet above the level of the sea; and in clear weather may be seen from the deck of a frigate 7 or 8 leagues. It is higher than the adjoining land, and in day-time will appear like a sail. The light is intercepted between N. $43^{\circ} 24$ E., true, or N.E. $\frac{1}{2}$ E. by compass, and N. $47^{\circ} 34^{\prime}$ E., or N.E. E. mag. nearly, by the hills at St. George's; and also, between N. $49^{\circ} 7^{\prime}$ E., true, N.E. by E. mag. and N. $57^{\circ} 35^{\prime}$ E., or N.E. by E. 1 E. by compass, by the hills on the South side of the ialand. (These bearinge differ 10° from those given in the public Notice.)
e of Galicia, in centary.
the violence of mmended there the year 1612, a rant from King tion of Richard
orm, the longest 10 to 12 nautic re shaped in the agth in the geus, the greatent f Hamilton, St. eland Island, on . David's, Lougior islands and
a, except during
m the proximity g winds. Few

5 particularly in
d heavy clonds, ve notice of its , blows in tretervening ; and f a vessel, par-
advisable under efore the wind; into a steady the Bermndas or superiority; ir rocks are as
v iron Ligitmaterially add tion and direc.
an, in lat. 32° , visible every d every night
r may be seen ing land, and $N .43^{\circ} 24 E .$, early, by, the E. mag. sud th side of the

Bermuda is always approached with more safety from the sonthward; and in running for it at night, or in thick weather, care should be taken not to get to the northward of lat. $32^{\circ} 8^{\prime}$ before seeing the light or the land.
In coming. from the S.E. the light should not be brought to the southward of W. by S., or approached rearer than 6 or 7 miles during the night. Coming from the westward, it should not be approached nearer than 10 or 12 miles, until it bears to the northward of N.E. by E. With the light between N.E: and West, the coast is free from danger, and may be safely approached within 3 miles. Any vessel getting sight of the Light from the northward had better haul off immediately, as the reefs extend all round from the S.W. to the North and N.E. from 15 to 16 miles.
The light will show a bright flash, continuing for 6 or 8 seconds, and repeated once in every minute.
The situation of the lighthouse has been objected to by some, inasmach as it is not visibie at the chief entrance at St. George's. The light appears of an are of a few degrees in the direction of Mills' Breaker ; but, of course, a vessel will not depend upon making the light within the bearings given above.
There are four Signal Stations on the islands. One on Fort George, at St. George's; central at Mount Langton, near the governor's house, near Hamilton; another on Gibbs' Hill, near the lighthouse; and another at the dockyard, on Ireland Island. By means of theme, signals are transmitted from one part of the island to another, and vessels requiring pilots, \&o., will be telegraphed to that effect.
THE RBETF,-This singular tract, extending 25 miles in length, N.E. by E. and S.W. by W., with a breadth of 10 or 12 miles, forms at once an effectual barnier against the fury of the Atlantio storms, and, with the exception of the few narrow and intricate entrances, an impenetrable line of reefs and breakers, over which no vessel san pass.
It in composed of whitish limestones and sandstones, in many parts as if composed entirely of minutely pounded shells, and calcareous clay, resembling pipe-clay. Upon this, coralline structures grow in
 innamerable patches, and in every variety. It is to this circumstance that the great danger in navigating within the reef consists.

The water on the reef is remarkably clear, so that even small objects are readily distinguishable at considerable depths. A dollar may be discerned at 16 or 18 feet; and the appearance of the bottom, in many parts, and in clear weather, is very beautiful, from the varied growth and structure of the coralline productions. To this oircumstanice of the tranippeiency of the water the pilots owe their talent of conducting veseels through the maves of the reef. Taking an elevated position in the ship, up the shronds, in the top, or on the forecastle, and by the appearance of the bottom, they cirect the course of the vessel. Brown or discoloured patches indicate coral and reefe. And it must be insisted on, that only the practised eye of the Bermudian pilote can be depended on for conducting a ship safely. The pilots are regulated by a legislative enactment passed during Colonel Reid's government, in 1843.

The onter border of the reef is shallower than the centre, many parts having less than a fathom over them, and the others varying from 3 to 4 fathoms. Within this external and rocky barrier, which is about a mile in breadth, the coral and rocks raise their heads in countless numbers ; the intervals having a depth of 5 to 10 fathoms. There are some large tracts clear from shoals, as that to the N. and W. of Murray Anchorage; these have a nearly uniform depth of 7,8 , or 9 fathoms.

Round the Weat, N.W., and North sides, it is a continned and very dangerous ledge of rocks, beginning at the Long Bar, the South part of which lies 6 miles W.S.W. from Gibbs' Hill : trending then N.E., it is called the Chub Heads, which, off Wreok Hill, lies 9 miles from the shore : the ledge hence rounds to E.N.E., snd joins the North Rock, which is always above water, and lies N.N.W. 12 miles from Catherine Point. From the North Rook the reef rounds East and E.S.E., and ends in Mills' Breaker, which dries at low water, and lies at N.E. 6 miles from Catherine Point, and N.N.E. from St. David's Head. On the sonth-eastern side of the island the reef boudering the group does not extend more than a quarter of a mile off shore; the outer edge is one continued line of breakers, many of which are dry at low water. Within the external and narrow border of rocks, on this face, the water increases considerably in depth nearly to the shore. At the S.W. corner of the reef, and onits outer edge, is a spot that always breaks, called the South-west Breaker. It lies 1 miles off shore, and is nearly South, true, from Wreck Hill. Round the onter edge of the ledge is a margin of soundings, of from 1 to 2 miles broad, having from 9 to 14 fathoms on it; there are, likewise, soundings for 2 miles fiom the shore round the N.E., East, and S.E. sides of the island; bat, as the water here is doeper, it would bo prudent for those who suspect themselves near the longitudo of Bermudas in tho night, or in thick weather, while between the latitudes of 32° and $32^{\circ} 40^{\prime}$, to keep a lead constantly going, being assured that, at 14 fathoms, they will strike the ground in time to avoid danger. The lead might be incased with tallow, for the greater certainty of striking the ground; this precaution would prevent many of the wrecks that constantly happen here.
The CHANNELS through the outer edge of the reef, commoncing at St. George's at the eastern extremity, are the Narrows, or channel into Murray Anchorage, sometimes called Hurd's Channel. This is regularly boyed, and may be considered as the principal entrance to the interior of the reef.
South of this is the channel over the Bar to_St. George's Harbour, hereafter described.
There is another channel running East and West to St. George's, called the Boiler Channel, passing North of, and close to, Jenkin's Boiler Shoal, with a depth of 12 to 18 feet.
Still further South is an entrance sometimes used by small vessels running under St. David's Head, but has not more than 9 feet at low water. This? leads in a N.W. direction.

Proceeding northward, the next channel is Milld'. Breaker Channel, the'entranoe to which is half a mile North of the Mills' Breaker. Its direction inwards is S.W. towards the Narrows, and is only used by Bermudian veessels in and out.

Continning in the same direction, the north-eastern face of the reef presents an im-
jects are readily at 16 or 18 feet; ter, is very beallns. To this cirnt of conducting n in the ship, up of the bottom, adicate coral and Bermudian pilota dated by a legis
sarts having less 28. Within this 1 and rocks raise $\overline{5}$ to 10 fathoms. d W. of Murray
very dangerous ich lies 6 miles ch Heads, which; s to E.N.E., and N. 12 miles from E.S.E., and ends from Catherine le of the island a mile off shore; ry at low water. water increases ereef, and on its aker. It lies 1 the onter edge ving from 9 to shore round the per, it would bo Bormudas in tho $2^{\circ} 40^{\prime}$, to keep a ike the ground for the greater y of the wrecks
at St. George's achorage, somensidered as the
, hereafter de-
led the Boiler depth of 12 to
running under ads in a N.W.
he-entrance to ards is S.W.
esents an im-
penetrable and continuous reef, often breaking, until we come to the North Rock Chamnele, having a coutherly direction.
There are two channels by the North Rock: that on the eastern side of the rock is called the N:E., and the western, the North-west Channel. They are known only to a few of the pilota, and from that cause bat seldom used, although it is said that the north eastern Channel in one of the best through the edge of the reef. The northceastern Channel in narrow and intricate at its entrance; the general depth is 6,7 , and 8 fathome, but in one spot but 5. At 31 miles in the direct line from the entrance, toward Murray Anchorage, there lies a oluster of rocks, which render a cirenit to the westward advisable. The mark for clearing the Went end of these, the Three Hill Shoals, is Painter'e Hill, over a hill on the western side of the Ferry at St. George's Island, bearing S.S.E. There is also a channel ihrough the shoals, which is more direct; the mark for which is Painter's Hill in the Hollow or Saddle of Two Hills (hence their name), at the West end of St. George's Island, bearing S. $\frac{1}{\frac{1}{2} \text { E. As soon }}$ as the shoals are cleared in either case, which will be when 31 miles from the shore, you can bear round to the S.E. to Mnrraw Anchorage, this part of the reef being clear.
The next is the Blue Cut, on the western side of the reef, but can be used only by small vessels. It is exceedingly narrow and intricate, and has only 8 feet water in places. Its direction is to the East of Sonth.
The Chub Cut is the next channel southward; this is also narrow and dangerous. It leads southerly to Wreck Hill, or firat sontherly and then easterly to Ireland Island.
Hog Fish Cut liec at the south-western angle of the islands. For hnlf a mile in a north-easterly direction it lies through numerous rocky shoals, and then turns to the N.W. It leals to Ireland Ieland and to Ellis Harbour.

The Hog Fish Cut, which has recently been examined with a view to its improvement, is the most convenient at the West end of the islands, particularly in the winter season, when the winds prevail at N.W., and the danger of being at sea and about the islands is the greatest.
The Hog Fish Cut, thongh not far from the land, is an entrance from the ocean, through the outer barrier of rocks. Before arriving at the Cut, there are the Bream Shoals to be carefully avoided. The course through what are called the Chops of the Catis nearly at a right angle; the turn is very sudden and sharp, and the greatest nicety must be observed by the pilots in navigating it. The course in from the ocean to Hog Fish Cut is N.E., and from the Cut to the Kitvhen Shoals N.W.; and the jessage is so narrow that it does not afford sufficient space for vessels to tack in, and when a passage through them shall be attempted, it must be withont a change of tack. These difficnlties are felt more especially in the winter season, when the winds are generally unfavourable for passing the Kitchen Shoals. To remedy this evil, the committee appointed for the purpose (August, 1846) recommonded the removal of the centre Kitchen Shoal, of coral (8 feet on it at high water), by the same means now employed at St. George's Harbour, when a' passage sufficiently capacious would be opened, and vessels now often compelled to remain at sea, or make the circuit of the island in search of shelter, would find an easy and ready access to port.
The various channels here mentioned, having different directions, are available according to the wind; that which is fair for one being the reverse for others; but they must not be attempted without a pilot, who will immediately come off from St. David's Head, upon a signal being given to that effeet; and a vessel in the offing requiring a pilot, it is telegraphed from one part of the island to the other by the chain of signals established thereon. They will be best understood by referring to the Chart of these Islands.*

[^155]The sonth－eastern face of the reef forms nearly a continuous line of breakers，about 2 cable日＇length from the shore，and has no entrance or shelter till we come to Casthe Harbour，the entrance to which，past the King＇s Castle，in in a N．W．Hirection．There is no other opening through the reef between this and the channel under／St．David＂n Head，before described．
The SOUTH－WESTERN BANKS．－There is a rocky fishing bank lying from S．S．W．to S．W．from Gibbs＇Hill（or S．W：part of Bermudas），from 3 to 5 leagued distant，and having 22 to 40 fathoms．These banks were surveyed in 1829 by the officers of H．M．oloop Columbine，according to whom the northern extremity of the Inwer Bank hies in $82^{\circ} 6^{\prime} \mathrm{N}$ ．，and $64^{\circ} 53^{\prime} \mathrm{W}$ ．；the S ．W．in $32^{\circ} \mathrm{N}$ ．and $65^{\circ} \mathrm{W}$ ．The least water found was 29 fathoms，corally and rocky bottom．On the edges are 40 fathoms．To the S．W．of this bank is another，called the Outer Bank，the N．E．end of which was in lat． $31^{\circ} 50 j^{\prime}$ ，long． $65^{\circ} 2 \frac{y}{j}^{\prime}$ ；the S．W．end in $31^{\circ} 57^{\prime}$ ，and $65^{\circ} 5^{\circ}$ ．The least water found on this bank was from 38 to 47 fathoms，rocks and coral．From this Outer Bank the land is not visible．

THE ISLATDS．－IRELAND ISLAND is the north－westernmost of the groap． The flagstaff，which is the highest point of the fortification，and stands above the break－water，is in lat． $32^{\circ} 10^{\prime} 30^{\prime \prime}$ ，and long． $64^{\circ} 51^{\prime} 40^{\prime \prime} \mathrm{W}$ ．It is one of the four tele－ graphic signal stations established on the island．The site of the Royal Dockyard and Naval Establishment is on the North extremity of the island，from the rest of which it is separated by a deep dry ditch．

Ireland Island is about one mile in length and perhape a quarter broad，and is nearly all occupied by the buildings required for the officers，artisans，and for store－ houses．The hospital is situated on the highest part of the island，and is very large and commodious．The officers＇residences are built in the English style，and are very comfortable．The most important work is the breakwater，similar to that at Ply－ mouth．Several hundred convicts are employed on it．The dockyard is kept in fine order．

Between Ireland and Somerset Islands there are several smaller ones，the chief of which is Boaz＇s Island，but there is no passage whatever between them．
SOMERSET ISLAND is the next in order．Its western point is Daniel＇s Head， off which is a small island．

Ellis or Elies Harbour lies between its sonthern extremity and Wreck Hill．This nmall harbour may be reached from the Hog Fish Cut，from Ireland Point，or by the Chub Cut．Between Somerset Island and the N．W．side of the reef the gronnd is all． rocky，so that the channels to the harbours are very circuitous，and no directions can be given for them．

GREAT BEREIUDA ISLAND．－This，the chief of the group，is about 12 or 13 miles in length．About the centre of it is the town of Hamiluton，standing on the North aide of the harbour，an inlet of the island；it is a free port，and the seat of the legislature．North of the town，which consists principally of one street $1 \frac{1}{4}$ miles． long，parallel with the shore in an East and West direction，and abont midway between the ferry at the West end of the island，and the dockyard，is one of the houses appropriated to the governor for the time being；it is scarcely seen from the water；but near it is a hill called Monnt Langton，on which is a flagstaff，by means of which communication is kept up between St．George，Somerset，and the dock yard．A few miles beyond this is the residence of the admiral，King＇s Hill or Clarence Lodge． Between this and Ireland Island is Grasay Bay，the anchoring place of men－of－war．

From Spanish Point to Ireland Island a ledge of rocks divides the Great Sound from Grassy Bay．There are two passages through this；one called the Stag Channel，near Sober Island，the North entrance；and one nearer to Spanish Point． Through these is the channel to Hamilton Harbour．There is also another line of reefs running between the North point of Somernet Island and the chain of islets
breakers, about come to Castle direotion. There der St. David’
sank lying fiom 3 to 5 leagues in 1829 by this xtremity of the d 66° W. The le edges are 40 k, the N.E. end and $65^{\circ} 5^{\circ}$. The ad coral. From

It of the group. stands above the of the four teleRoyal Dockyard from the rest of
r broad, and is , and for storend is very large re, and are very to that at Ply. cyard is kept in
les, the chief of m.

Daniel's Head,
eck Hill. This Point, or by the he gronnd is all. directions can
about 12 or 13 standing on the and the seat of street $1 \frac{1}{4}$ miles. abont midway d, is one of the seen from the eff, by means of e dookyard. A
Plarence Lodge. men-of-war.

Great Sound llled the Stag Spanish Point. tother line of chain of islets

Sonth of Hamilton Harbour ; this reef has also to be paseed to enter the Great Sound Sonth of which is Port Royal Bay, which has a depthacrosis it for boats only.
The eastern end of Bermuda Island is occupied by the Little, or, as it is more, commonly called, Harringtion Souind, a shoet of water only commanicating with the sea by a narrow chaniel, called the Sound's Month, over which is a bridge at Flatts Village. Through this passage the tide ebbe and flows with great velocity; but does not pass in sufflcient quantity to sensibly affect the level of the water within.
The sonthern shore of Bermuda is the boldest among the islands, and vessels may come in some places within half gun-shot of the shore.
East of Mount Langton is Brackish Point, near which is "The Wells," a government establishment for supplying water to the navy, should there be no water at the naval tanks on St. George's Island.*
(The following description of the coasts is principally by Lieutenant John Evains, (a) H.N.; commencing with the West.)

The westernmost projecting headland is Wreck Hill ; it stands insulated on its base, is cone-shaped, and very dark coloured. When seen from the S.W. it appears flattened at its summit, but from the South as peaked; it is the land looked for, and first seen, when epproaching the isles from the West.

GIBBS' HILL. The next particular guide is Gibbs's Hill, which is the highest and most conspicuous eminence observable near the S.W. part of the coast; it is a smooth mount, entirely clear of trees, with the lighthouse previously described and a telegraphic posi on its summit. To the westward, and contiguous to it, is a table-land, crowned with a grove of dark tall cedars.
Between Gibbs' Hill and Castle Island, to the E.N.E., there are several sandy mounts, having the appearance of white cliffs, and at moonlight may be mistaken for brcakers. These are very remarkable, and are called the "Sand Hills." One of these is much more conspicuous than the others, being of greater extent, and without any verdure upon the summit. 'At 2 miles East of the great sandhill is Castle. Harbour, in the entrance to which are several islets and rocks: 'on the largest of these is an old castlo, which gives name to the harbour. These islets are remarkable for the colour of the eliffis and the dark verdure of the turf which covers
 them.
The coast here prosents a very picturesque appearance of land and water; the tele-

[^156]graphic hill over St. George's is a pleasing object in the perspective. This may be termed the S.E. face of the islands, and is considered as in the best parallel to make them in from the eastward.
In the winter, with the wind from the N.E. there is a strong set of the water to the S.W. on the South side, and it is very tedious and unpleasant to turn to windward, the wind blowing in heavy squalls at intervals. I have, however, known South and S.W. Winds to prevail during mpst part of the winter months.

CASTLE HARBOUR.-In Castle Harbour there is good anchorage; but it is not used by men-of-war. A frigate, many years ago; was wrecked in her endeavour to get ont.

The southern channel to the harbour is narrow and intricate ; the mark to lead across the outer edge of the reef is Minnor's Hill, on the North wide of St. George's. 1sland, midway between Castle Island and Southampton Island. As soon as this is crossed, bear to the eastward and steer close to the eastern side of Castle Island, which is steep-to, and then pass between the banks which border the channel for about ont-third of a mile North of Castle Island; then bear rqund to the eastward, and anchor in $5 \frac{1}{2}$ fathoms, one-quarter of a mile North of Nonsuch Island.

In working up from the S.W. end to Castle Harbour ships may stand within a mile of the shore; and small craft until the bottom is seen. There are some amall reefs and ledges along the line of shore, but they are very near the beach.

St. David's Head is next seen, in the form of a round bluff, covered with foliage, and, when the land is opened to the northward, a large cave will appear to view beneath the head. A reef extends from this bluff, abont half a mile off shore; the sea generally breaks over it.

Vessels waiting for pilots may run in to the N.E. of the bluff, and heave to with their heads off thore; the bottom is hereabouts visible, but no danger need be apprehended on that account.

The pilots are the most expert I ever met with. A good look-ont is kept by the artillerymen stationed at the telegraphic hill, and delay seldom takes place.

Beyond St. David's Head the land trends to the N.W. St. George's Harbour (the best among the islands) is formed by several islands, and a curve in the larger island of the same name ; its entrance lies between Fort Paget and a small kay to the eastward; the harbour is land-locked, well sheltered from the stormy West and N.W. winds, with a good depth of water over a bottom of atiff pipe-clay. The vioinity to the open spa alone gives it a decided superiority to the anchorage at Grassy Bay, if there were nothing else to recommend it.

ST. GEORGE'S ISLAND is "the military station of the colony, and formerly the seat of government; is about 3 miles long, and at no part exceeding half a mile broad; it lies at the entrance of the only channel for ships of burden. The harbour of St. George, when once entered, is said to be one of the finest in the world, snd capable of containing the whole British navy. It is completely land-locked. The entrance to the harbour is narrow, and is proteoted by Cunningham Fort. After passing this entrance, the town presents one of the most beautiful landscapes the eye ever rested upon:"

The Roadstend, from whence ships proceed to St. George's Harbour, is called the Five Fathom or Outer Hole ; within this is the Inner Hole, having a fairway buoy, chequered black and white, marking the entrance to the Narrows or Channel to Murray Auchorage, as well as being in the proper direction for crossing the bar. This buoy bears N. by W. from the rock under St. David's Head.

The Five Fathom or Outer Hole, where ships wait with winds not fair for going to Murray Anchorage, has from 5 to 10 fathoms. The mark for anchoring is the Cherrystone or: Sugarloaf Hill (at the head of Mullet Bay) open of the old battery on the point of St. George's Island, bearing East by compass; St. Catherine's Point about W.N.W., and the rocks off Cooper's Island open to St. David's Head, S. $\frac{1}{2}$ W. ; but in letting go your anichor look out for a clear spot.

From the chequered buoy before mentioned, the passage over the bar to St.

George's Harbour bears S. by E. $\frac{2}{2}$ E.; the bar marks are," n : tone pillar and a whitd stake in a line, bearing about \mathcal{S}. 201 W. by compass (1851);" they lie on the slope on tho North side of St. David's Island. Carry on this courve until Smith's Fort on an island, which forms the Sonth side of the entrance, bears $\mathbb{S} . W$. by W. $\frac{1}{3}$ W. and then steer for it, and when nenrly up to it, bear round between it and the point, when the town will open on the starboard bow ; whence you may proceed to the anchorage, keeping the N.W. shore on board. Ithe passage over the bar is between two poles on the North side, and two on the South side. Four other poles mark the channel S.W. of this.

The depth on the bar is 16 to 18 fect; within it, and in the channel, 4 and 5 fathome.
" At the entrance to, or on the bar of, St. George's Harbour, there lay a rock exactly in mid-channel, which was a great impediment to vessels entering. The reefs at the outer bar, half a mile from shore, are of a different nature to those in the narrowest part, which consists of a conglomerate of broken shells and sand, cemented by a limestone; it is here all of recent coralline formation. . The greatest part are hemispherical masses, called here brain-stones (meandrina labyrinthica), in the cavitien between which the diver places a canister of powder (usually $50 l \mathrm{bs}$.), which is fired by the galvanio battery. The greatest labour is in removing the fragments This is done partly by the diver descending and slinging the broken rock, and partly by nippers used from boats. These operations are superintended by Lieut.-Col. Barry, Commanding R.E." - Gov. Reid's Report, Bermuda, March 16th, 1846.

High water, full and change, at St. George's, VIII鱼. Common tides rise to about 4 feet, bnt springs, or in gales of wind, they frequently rise 6 or 7 . The floods in the offing set to the N.E., and cbbs to the S.W., but near the shore they runin various directions.
"St. Catherine's Bluff is the northeastern extremity of St. George's Island and of the isles in general. There is a fort upon it, and a battery for point blank ghot. Beyond this head, to the westward, is Murray Anchorage, one of the most unpleasant places in the world to ride in during the winter season. I have been for several weeks riding out a N.W. gale
 in a frigate here, pitching bows under; and the Driter, slonp of war, is anid to
have carried away her bowsprit, in consequenco of its getting under the cable, when she was in the act of plunging during a gale here. The North Rock, at about 8 miles in the ofting, appears from this anchorage through a telescope liko a ship's boat, with three lug sails; there is a passage of egress for large ships through the reefa near the rock; but it cannot be attempted withont a fixed leading wind; boats are then placed on either side of the channel to guide the pilot."-Lieutenunt Evans.
MURRAY ANCHORAGE " lios on the S.W. side of Catherine Point, extending from Tobaceo Bay to the Ferry, between St. George's and the Great Bermudas; whence, after going through a passage to the west ward, there is secure anchorage from abreast of Brackish Pond, across the entry of the Great Sound, as far as Iroland. Tho common entry into Murray Anchorago is through an intricate and narrow passage round Jatherine Point, called the Narrows; for the particulars of which see tho Chart, as no description can be given here that will be of any use to a stranger. The geound in the entry, as well as all over the anchorage, consists of stone, of the soft dripstone kind, ground as fine as flowr, mixed with a shelly substance, and a ehalky olay ; it is very heavy; thercfore the anchors do not sink deep in it, and they loosen imunediately when a-peak; but it is rarely that ships drive in it. I nave, in the Resolution, a 74 -gun slip, rode many heavy gales in this anchorage, but nover started an anchor; although, in Hampton Road, Virginia, which hus remarkably tough ground, the anehor has often come home. Ships bound for Murray Anchorago will generally get a pilot off Castle Harbour, or they may rum as far as St. David's Head. When to the censtward of St. Duvid's Head stand no further to the northward than to bring the Ifead N.E., or you will see a whito sandy bay to the sonthward of the Head, between it and Castle Harbour. In standing to the northward, eare nust be taken to sliut no part of this bay in behind St. David's Hend. The West land of Bermudas will be shut in behind the land, over this bay, beforo this murk comes on. In the night, when waiting here for a pilot, the best precaution is the lead; for, if care lo taken, and the ship is not ruming too fast through the water, you will be sure of striking ground in time to avoid danger."-Mr. Murdo Downic. 1803.

St. Goorge's Island and Signal Station, from Mwrray Anchorage.
The naval tanks lie abreast of Murray Anchorage, just nowe a small cove (Tubures Bay), wherein is the landing-place. There is not a spring in the isles, and ducks aro abundant. I had to remurk at Nico (in Italy), where the earth is saturated with springs, that there was not a duck to be seen.

From the anchoruge of Grusey, Buy, shipo, wimes they imppencd to be favoured with a iending wiud, sre geicrally one dry working np to Murray Anchorage, a distance
to see
St. 1
new 0 wher board clear
ceable, when t ahout 8 miles a ship's boat, through the eading wind; "-Lieutenant
int, extending at Bermudas; ure anchorage as far as Iroate and narrow 3 of which sce to a stranger. stone, of the stauce, and a 1 it, and they t. I hate, in ge, but never is remarkably ray Anchorage as St. David's to the northto the southhe northward, Hend. The y, before this precnution is t through the -Mr. Murrlo
ove (Tobureso nd ducks are urated with
voured with , a divtance hey can get
to sea round St. Cathorine's Bluff, and through the intricate ehannel which leads to St. David's Head. Even with a fair wind to or from Iroland Island (on which the new dockyard is situated) ships are liablo to strike upon the heads of rocks everywhere scattered about ; this happened to a ship I was in, with a most expert pilot on board; the weather being cloudy, the rocky spots did not show themselves sufficiently clear to be altogether avoided.-Lieutenant Evans.

Directions for makind the Bermudas, by Mr. Murdo Downie, 1803.

Vessels in hazy weather, or in the night, must be very enutious in appron, hing, lest tho winds or currents should set them on the reefs, or into some incestricabte channel. Be particularly cautious in coming from the S.W., as upon the rocks off this end of the island, from S.W. to W.N.W., many ships have been lost. No stranger shonld attempt any of the anchorares without a pilot, many of whom are always on tho louk-out, and put to sea when a vessel heaves in sight. Their boats may he rondily known, being of a peculiar construction and rig of a light draught of whic: forward, with a long heel or deep sternpost; rigged with one mast and bowsprit, carrying a triangular mainsail, a foresail, and jib, und, occasionally, a gaff topsail and square-sail.
The prevailing winds with fine weather in theso sens being from between the South and West, vessels from the West Indies and Ancrica gencrally make these islands by ruming in their latitude from tho westward. The best latitude for that purpose is $32^{\circ} \mathrm{s}^{\prime}$, always having regard to a small probable current in the direction the wind blows; stecring Enst, you will first see the hund a little on the port bow, being two suall sand-hills, close together, having a white houso on the top of one, and cedar wood on the other (these are called Gibbs' Hills, now distinguished by the lighthouse before mentioned); as you near the laud, you will see Wreek Hill further to the northward, appearing peaked, and joined by low land to that first seen; steer to bring Gibbs' Hill to bear E.N.E., and, when within 8 miles of the land, tako care it is not to the eastward of that berring, beceuse of the roeks called the Long Bar. Then steer so us to pass within 2 miles of the S.IF. land; nud, when Wreek Hifl shuts in behind the South land, you are clear of the S.W. breaker, and may steer along the S.E. side of the island, at a mile distant from the shore, until abreast of St. David's Head, there being nothing to hurt a ship but what is in sight.

In running for Bermudas from the eastourd, the best parallel is between latitudes $32^{\prime} 10^{\prime}$ and $32^{\circ} 20^{\prime}$; in which a ship may run boldly, as there are no rocks at any distance from the land.

When runuing down a parallel for Bermudas, with a largo wind, and not making the land toward night. but expecting to be near it, no vessel in this situation ought to lic-to, but should rather turn to windward, under an easy sail, until daylight, because of a probable current, as before mentioned, which has deceived many by bringing them unexpectedly among the rocks. The land not being high (Gibbs' Hill, on which is the lighthouse, is the highest land in the islands), it cannot be seen at any great distanee from a small vessel ; add to this, the thick have that frequently prevails here, particularly in fine weather, renders making the land somewhat diffeult, and at times precarious, unless the latitudo be aceurately aseertnined; for instances have happened of vessels missing the islands, and after a fruitless search sterring for the Americun coast in order to take a fresh depurture for running down the latitude again.

Instructions for Sailing to Bermudas Islands, by Admiral Murrap.

Within the Gulf Stream steer well to the southward, perhnps as much as S.S.E., until you get within 3 or 4 miles of tho latitude of Cape Hatteras; and then steer S.E. by E. until you get into the latitule of $32^{\circ} 5^{\prime}$: Thus you will avoid crossing the Gulf strenn where it is very broud, and its direction far to the onstward, and pass it where it uffects your latitnde more than your louritule; nud, of conrse, be of less collseynence to ihe ship's reckoning; and, by steering thence so fir to the southward
as S.E. by B., you will fall into the letix. of the Bermudas at 4 or 5 degrees of longitude to the westward.

You shoula by no means run for these islands unless sure of your latitude; and always make them from the S.W., if possible, looking out in time for the land, as, owing to the set of the Gulf Stream, and the general tendency of the currents to the eastward, ships from the coast of America will almost always be far ahcad of their reokoning.

Having ascertained your latitude, and being well to the westward, get into the parallel of $32^{\circ} 5^{\prime}$, and ateer due East ; this course will bring you to the islands, passing about 4 miles olear of the South end of Chub Heads, a very dangerous shoal, lying across the West end, abont 8 miles from the land, with not more than 12 feet on it at low water; as well as the S.W. breakers, which lie about $1 \frac{1}{5}$ miles S.S.W. from the southernmost land, being the shoalest part of a ledge of roeks of considerable length, lying parallel with the shore. Should the wind in the night incline to the northward, keep in $32^{\circ} 7^{\prime} \mathrm{N}$.; but if to the southward, in $32^{\circ} 2^{\prime}$.
The soundings do not extend more than $1 \frac{1}{3}$ miles from the shore on the South side; therefore, you have only a strict look-out to depend on for safety; and as for the East, West, and North sides, the breakers lie from 3 to 4 and 5 leagucs off. You must avoid, by all means, running in the night, without having a good observation the preceding day, and being pretty sure of your longitude. Follow these directions, and will first make Wreok Hill (which is high land on the western extreme of the islands), and the land trending from it to the S.E. Having passed the S.W. breakers, the land lies about E.N.F. and W.S.W., having danger no more than half a mile off, and that generally visible; you may run safely along shore at a mile, until you pass Castle Harbour, which is easily known by the castle on an island on the starboard hand. You thould bring-to off the eastern point of this harbour, and wait for a pilot, who will soon come off, and carry you into St. George's Harbour. But should you be pressed for time, or the pilot not come off, you may haul round by the breakers, after having passed the islands which form the South part of Castle Harbour, into St. George's Hoad, bringing on the following marke :-

A high island, next to the N.E. part of the small ones off Castle Harbour, has, at its eastorn extremity, a bluff rocky point, called St. David's Head, having breakers off it about half a milo; the northernmost land in sight, after you haul round St. Uavid's Head, is called St. Catherine's Point; bring this point to bear W.N.W., and St. David's Hcad S. $\frac{1}{2}$ W., and you will be in as good a berth as any in tho road, with 7 or 8 fathoms of water; but in every part of these roads you must be guided by the eye where to drop your anchor clear of foul ground, which is everywhere casily seen, owing to the elearness of the water and the whitencss of the sand where the anchorage is safe.

In case you have been driven to the eastward of the islands (a situation, however, which you are to avoid with the utmost care), you may run for them in lat. $32^{\circ} 14^{\prime}$ N., which will bring you to them 5 or 6 miles to the southward of St. David's Head, for which you may haul up upon making the land; but you are not to run till you are far enough to the S.W. to follow the directions before given for coming from the westward, ahould you mako sail for Bermudas from any part of the Gulf Stream, or without it.
I recommend you to mako great allowaneo for your being to the eastward of your reckoning, and try to fall into tho parallel of latitude above mentioned, in longitude 70° or $71^{8} \mathrm{~W}$.
High water at St. Goorge's, full and change, $8 \pm$ hours. Spring tides rise about 6 feet; common, 4 fect. Tho tides are various, both in height and time, at different parts of the islands. The Bermudas bear from Cape Henry S. $65^{\circ} 35^{\prime}$ E., distant 210 lenguer.

Naviaation to the Bermudas. (Lieut. Evang.)
" On the 12th of April, 1811, having loft the frigate, 1 took charge of a prize
schoon On the might then p upaco and 63 that tiv were, b being must b
seas to thunde storm a of the lying-tc anchor

Rem

In Ju mudas, heavy r re

The \bar{Z} detached seen, be at $1 \frac{1}{1}$ to Durin to S.W., tides abo When nignal-pc

To lay W.N.W. and S.W every 00 water on out all Septemb the last chorage $1 \ddagger$ miles.
The R vailing f
Wind from the off Irelat Highwa
Going starboar buoy: ar to N.N. Cutharin one-quar goverino passing
legrees of lon-
our latitude; for the land, the currents to far ahcad of
get into the islands, passagerous shoal, than 12 feet miles S.S.W. of considerght incline to
e South side; and as for the gues off. You od observation tese directions, xtreme of the S.W. breakers, calf a mile off, until you pass the starboard nd wait for a

But should round by the of Castle Har-
rbour, has, at ving breakers paul round St . W.N.W., and the road, with guided by the where easily id whore the
on, however, n lat. $32^{\circ}{ }^{14}$ David's Head, run till you ing from the If Stroum, or
vard of your in longitude
rise ahout 6 at different distant 210
schooner for Bermudas, and anchored at St. George's on the 6th of May following. On the 4th, at noon, in lat. $31^{\circ} 44^{\prime}$, longitude by account $62^{\circ} 10^{\prime}$, considering that we might be set to the West by current, I determined to get into the parallel of 32°, and then put the veasel's head to the enstward until daylight. By midnight we had run up a course N. $79^{\circ} 45^{\prime}$ W. 43 miles; which gave our situation, by aceonnt, $31^{\circ} 52^{\prime}$ N., and $63^{\circ} 3^{\prime}$ W. I left directions with the mid of the watch to tuck at $12^{\text {b }} .30^{\prime} ;$ and at that time the sand-hills were seen N.N.W. 9 or 10 miles; which enowed that we were, by account, $1 \frac{1}{5}^{\circ}$ to the Fast of the true longitude; the southern part of the land being in $64^{\circ} 33^{\prime}$. I have no doubt we wereset to the West by eurrent, but something must be admitted for erroneous allowances, as we had often contrary gales and heavy seas to contend with. In d dark and dismal night, with very severe lightning and thunder (the schooner full of ganpowder), I recollect, whilst the wind was blowing a storm at North, that it shifted in a second to South, and nearly set us down ; the gaff of the reefed foremail having caught between the ratlines of the rigging. We were lying-to on the starboard tack. I was, therefore, most happy when we dropped anchor in the anug harbour of St. George."

Remarks on the Bermudas, and Pabsages to and fro, by Commander Dunsterville, 1830-31.

In July, 1830, from the Maternillo Bank, on the N.W. of the Bahamas, to the Bermudas, the winds prevailed from the S.E. to S.W. Light breezes and cloudy, with heavy rain at times. Found no current.

The Bermudas, from the S.W., at 5 leagues distant, appear as an assemblage of detached high islets, on the South part of which the signal-post on Gibbs' Hill is neen, being erected on the highest Jand in the islands. Hence we ran along shore, at $1 \frac{1}{1}$ to 2 miles off.
During our stay at these islands the winds prevailed for seven weeks from S.S.E. to S.W., which is invariably the case here during the summer months. Rise of spring tides about 3 feet 6 inches. High water at $\boldsymbol{6}^{\mathrm{h}}$.
When a signal for a pilot is made from ships in the offing, it is telegraphed by the nignal-posts throughout the island.

To lay through the Narrows, near St. George's, it is requisito to steer from N.W. to W.N.W., and from St. Catherine's Point (the N.W. point of St. George) S.W. Wy \&. and S.W., till Ireland Island bears about W. by N., whence haul to that course. In every course avoid all brown or dark patches, which are corally rocks, with little water on them. In the channel are from 6 to 7 fathoms. The buoys invariably point out all the rocky heads, which in some parts are numerous. In the lattor end of September fine North and N.E. winds : the thermometer at 74 ${ }^{\circ}$, which had been fos the last two monthe from 80° to 84°. The Ranger anchored at Murray Anchorage in 10 fathoms, chalky bottom. St. Catherine's Point, E. \ddagger N. about $1 \frac{1}{2}$ miles.
The Ranger sailed for Bermudas from Jamaica on the 5th of October. Winds prevailing from the N.N.E. Fresh breezes and fine weather.
Winds light from the eastward until we arrived at Bermuda, when it blew atrongly from the southward and westward for a fortnight. On the 11th of April anchored of Ireland Island. Vertical rise of spring ides here about 5 feet; neaps, 2 or 3 feet. Highwator at $8{ }^{\text {h }}$.
Going through the Narrows at Bermuda.-In going in, the white buoys lie on the starboard side; the black on the port: of course; in going out, vice versa. Fairway buoys are cheguered, one at each entrance. The courses through are from W.N.W. to N.N.W. W. 'The beat anchorage at Murray Anchorage is in $0 \frac{1}{2}$ fathoms, off' St. Cutharine's Point, with the East signal-staff in St. George's S. by E. $\frac{1}{}$ E., off shoro one-quarter of a mile. Between St. Catharine's Point nad Mount Langton (the govertior's house) keep the shore well on bourd; sny one-quarter of a mile or less, passing in-shore of the buoys: but, when going through the Narrows, off the admi-
miral's house, going betwixt the buoys. In clear weather the dangers show themselves.
With these remarks on the islands by Mr. Dunsterville, the following, since made may be included :-
"Tha land, generally, of these islands is low; yet there are many parts, as Gibbs' Hill, Mount Langton, the North part of St. George's and St. David's, that may be seen in clear weather 5 leagues off. The isles, as shown hereafter, are surrounded by most dangerous reefs, the S.E. side excepted, which may be approached within a mile, until abreast of the N.E. point, called St.-David's Head. Off this Head pilots are readily obtained by displaying the usual signal. The government pilots may be known by a narrow blue burgee, with a broad arrow in white therein.
There is anchorage withont the Narroos, on a spot called Five Fathom Hole, with St. Catharine's Point about W.N.W., and St. David's Head S. $\frac{1}{3}$ W. ; but, in letting go the anchor, look out for a clear spot.
In proceeding for the Narrows, the first bnoy seen, which is chequered, is the leading buoy for the fairway. In the Narrows are 6 and 7 fathoms of water; here you leave the white buoys on the starboard, and the black on the port side.
If you intend anchoring in Murray Anchorage, bring St. Catharine's Point to bear East ; the signal staff at St. George's, S. by E. $\frac{1}{\frac{1}{2} \text { E., in } 9 \frac{1}{2} \text { fathoms, chalk bottom, at a }{ }^{2} \text { a }{ }^{2} \text {. }}$ quarter of a mile off shore, From this anchorage to Ireland Island, where the men-of-war lie, is abcut S.W. by S. to abreast of Mount Lnngton, the governor's country residence, keeping the shore abcut one-quarter of a milo distant, and going with a leading wind in-shore of the buoys, which are placed on shoal corally spots. When Ireland bears about W. by N., you then haul for the island, passing betwixt two corally spots, nearly abreast the Admiral's honse, which are both buoyed. In clear weather all the reefs are readily discerned, and may be avoided with a common degree of care. From Murray Anchorage to Ireland you have, in the channel, 7 and 6 fathoms.
During the summer months, from April to Scptember, the winds prevail from S.S.E. to S.W. Thermometer, 80° to 84°. About the latter end of September the northerly winds set in, when the thermometer falls to 70° and 74°; quite a bracer for the constitution. The rise of tides at springs is about 5 feet, neaps 2 or 3 feet. High water at Ireland, full and ehange, at eight o'elock. The tide at the narrows scts from 1 to 2 miles in the hour.
The height of Gibbs' Hill signal station is about 200 feet: of Wreck Hill about 150. On the S.E. side is a large space of sand, ealled Sand Hills, which is very remarkable. The North Rock is about 16 feet high, 20 feet long, and 6 feet wide: here the currents are strong and very variable, but mostly to the eastward in the offing.

A hranch pilot has 38. per day, with allowanee of provision, and one dollar per foot for any government ship.

Directions for Salling near tie Bermudas, on comina from tie Westward.

"On coming from the westward, the S.W. points of the land ought to benr E.N.E. before you come within 4 leagues of the land, when you may steer directly for it, without danger. The breakers, on the South side, always show themselves; so that \mathfrak{a} ship may safely approach within gun-shot from the S.W. end to the S.E., and, when getting to the eastward of the castle, round into St. George's. Do not go further to the northward than to keep Cooper's Island open within St. David's Head, till you take a pilot; nnd the subseriber engages no ship will ever strike, if this be attended to."--Thomas Lean, 1808.
show them-
g, since made
arts, as Gibbs' , that may be urrounded by hed within a s Head pilots pilots mily be
om Hole, with jut, in letting
ed, is the leadter; here you

Point to bear Ik bottom, at a phere the menornor's country going with a spots. When 3 betwixt two yed. In clear sommon degree nnel, 7 and 6
prevail from September the te a bracer for 3 feet. High narrows sets
eck Hill about which is very d 6 fect wide: stward in the
dollar per foot

ROM TIEE
b bear F.N.E. ircetly for $i t$, lives; so that E., and, when go further to fead, till you be attended

On the Winds and Navigation of the Bermudas, by fits Eicellennoy Colonel (Sir W.) Reid, Governor of Bermuda.

The first half of a revolving gale is a fair wind from Bermnda to New York, because in it the wind blows from the East ; but the last half is a fair wind from New York to Bermuda.

During the winter season most of the gales which pass along the coast of North America are revolving gales. Vessels from Bermuda bound to New York should put to sea when the N.W. wind, which is the conclusion of a passing gale, is becoming moderate, and the barometer is rising to its usual level. The probability is, more, particularly in the winter season, that, after a short calm, the nest suecceding wihd will be easterly, the first part of a fresh revolving wind coming ip from the S.W. quarter.

A ship at Bermuda, bound to New York or the Chesapeake, might sail whilst the wind is still West, and blowing hard, providing the barometer indicate that this West wind is owing to a revolving gale, which will veer to the northward. Bnt as the usual track which gales follow in this hemisphere is northerly, or northeasterly, such a ship should be steered to the sonthward. "As the wind at Wost veers towards N. W. and N., the vessel would come up, and at last make a course to the westward, ready to take advantage of the East wind at the setting in of the next revolving gale.

A vessel at New York, and bound to Bermuda at the time when a revolving wind is passing along the. North American coast, should not wait in port for the westerly wind, but sail as soon as the first portion of the gale has passed by, and the N.E. wind is veering towards the North; provided it should not blow too hard. For the North wind will veer to the westward, and become every hour fairer for the voyage to Bermuda.
A great number of gales pass along the coasts of North America, following nearly similar tracks, and in the winter season make the voyage between Bermuda and Halifax very boisterous. These gales, by revolving as extended whirlwinds, give a northerly wind along the shore of the American oontinent, and a southerly wind on the whirlwinds' opposite side far out in the Atlantic. In sailing from Halifax to Bermuda it is desirable for this reason to keep to the westward, as affording a better chance of having a wind blowing at North, instead of one at South; as well as because the current of the Gulf Stream sets vessels to the eastward.

When vessels from Barbadoes, or its neighbouring West India Islands, sail to Bermuda on a direct course, they sometimes fall to the eastward of it, and find it very difficult to make Bermuda when westerly winds prevail.
They shonld therefore take advantage of the trade-wind to make the 68° or 70° of Weat longitude, before they leave the 25° of latitude.

On a ship leaving. England for Bermuda, instead of steoring a direct course for the deatined port, or following the usual practice of seeking for the trade-winds, it may be found a better course, on the setting of an easterly wind, to steer West, and if this wind should veer by the South towards the West, to continue on the port-tack, nntil, by changing, the ship could lie in its course. If the wind should continue to veer to North, and, as it does sometimes, even to the eastivard of North, a ship upon the starboard tack might be allowed to come up with her head to the wostward of her direot

[^157]course. On both tacks she would have sailed on curved lines, the object of which would be to carry her to the westward against the prevailing wind and currents. There is reason for believing that many of the revolving winds of the winter season originate within the tropies; and that ships seeking for the steady trade-winds, even further South than the tropic, at that period of the year, will frequently be disappointed. How near to the equator the revolving winds originate in the winter season, is an important point not yet anfficiently observed. The quickest voyage from England to Bermada, therefore, may perhaps be made by, sailing on a course composed of many curved lines, which cannot be previously laid down, but which must be determined by the winds met with on the voyuge. This principle of taking advantage of changes of revolving winds, by sailing on curved lines, is applicable to high latitudes on both hemispheres, when ships are sailiug westerly.-Government House, Bermuda, 21 st March, 1846.

9.-ROCKALL, OR ROKOL.

This is a large and high rock, of a conical or sugar-loaf shape, the summit, or upper part of which is perfectly white, from an im-

Rokol, 2 miles distant, as taken by Mr. Harvey. mense quantity of bird's dung, with which it is covered. The rock had been seen many times, but its true situation was unknown till the year 1810, when it was ascertained by Mr. T. Harvey, master, and the other officers of the Endymion frigate, commanded by the Hon. T. B. Capel. In Captain Vidal's survey of the western banks it is represented in $57^{\circ} 36^{\prime} \mathrm{N}$., and $13^{\circ} 41^{\prime} \mathrm{W}$. There appears to be dangers both to the N.E. and to the S.W. of the rock.
N.E. Dangers.- With the rock bearing N. by W., broken water appeared to the N.E. of it ; and, on approaching nearer, a rock, on which the water broke, appeared just at the water's edge. When due South of Rokol, the breakers were in a line with the eastern part of it. The sunken rock bears N. $73^{\circ} \mathrm{E}$. from it, at least $1 \frac{s}{4}$ mile distant. This rook may be named the Helen Rock, as it is probably that on which the vessel was wreeked as recorded below, nnless there exists another rock further off in the same direction.

On the N.E. rock just mentioned, until then unknown, and lying about 2 leagues, or less, E.N.E. $\frac{1}{5}$. (by compass) from Rokol, the brigantine Helen, of and from Dundee, atruck fatally, on the 19 th of April, 1824. This veseel, commanded by Mr . Thomas Erskine, was bound to Quebec and Montreal, with a general cargo, and after she had struck, the crew and passengers continued at the pumps for 13 hours; but, being overcome with fatigue, were at length compelled to abandon the vessel. The crew, at that period twelve in number, embarked in two boats, with one passenger, and soon after they had left the vessel she sunk, when sixteen passengers perished, of whom seven were women, and six ehildrem The crew were picked up at sea by the bark Flora, Captain Baker, and mafely landed on the Isle of Tiree, one of the Hebriden.

It appears, from Captain Erskine's narrative, that he estimated Rokol to lie in $13^{\circ} 40 \mathrm{~W}$. That the vessel struck twice on a clump of rocks, apparently not much bigger than a ship's length, and on which the sea broke occasionally. No other breakers were in sight at the time. Rokol at this time bore, by eompass, W.S.W. th., he thinks about 6 miles distant ; but, as the weather was hazy, probably something less.
object of which d and currents. e winter season ly trade-winds, ll frequently be te in the winter nickest voyage ing on a course own, but which nciple of taking is applicable to y.-Government
pe, the summit, e, from an imh it is covered. - its true situaon it was ascerother offieers of [on. T. B. Capel. nks it is repree appears to be of the rock.
[. by W., broken on approaching ppeared just at 1a line with the $1 \frac{3}{4}$ mile distant. rhich the vesel ther off in the
about 2 leagues, en, of and from manded by Mr . eral cargo, and for 13 hours; ndon the vessel. s , with one pasreen passengers were picked up le of Tiree, one

Rokol to lie in ently not much lly. No other mpass, W.S.W. probably some-

Extract from the log-book of the Emperor Alexander, of Aberdeen, L. M•Kinnon, master.-April 8th, 1832, saw Rockall [Hokol] bearing W.N.W., distant 4 leagues; and Long Reef, breaking oceasionally, bearing from the ship N.W: by W. $\frac{1}{}$ W. (by compass), distant 8 miles, and about 4 milea from Rockall. At intervals the sea did not break on the reef, but it broke frequently very heavily; and with long rolling white seas, like breach upon a bai, for about 6 or 7 ship's lengthy.. The sea broke in no other place at that time within sight.-" Nautical Mayaziue," December, 1833; p. 697.

Breakers werc again seen, in 1844, by Mr. R. Bartlett, of the Guide. The following particulars appeared in the Shipping Gazette :- "On 15th April, 1844, at 4 a.m., sighted Rockall, bearing N.W., ship lying N.W. by W., strong gales from the S.W. by W., clear weather ; was desirous to keep my reach to the N.W.; inot being able to weather Rockall, bore away to round the North end: had my mate aloft and mysielf on deck to look for breakers; suddenly 1 found the vessel between tho outer rock and the main one, at least 8 miles distant; with difficulty I cleared, by hauling the ship suddenly on the starbonrd tack, being not more than one sea from the broken water; breaks occasionally. They are bad to discern aloft, but their locality may be seen much more readily off deek by the colour of the water. The morning being elear, I was able to obtaiu the bearing and distance pretty correctly." This reported clump of hidden rooks, about 80 or 90 feet in length, and 30 feet in brendth, the main rock on Rockall, bearing from the outer one, W. by N., by compass, distance 8 miles, may perhaps have the same origin as the previous account. Captain Vidal has minutely surveyed the whole of that part, and no shoal or roek was diseovered by them, but the above accounts are certainly circumstantial and deserving of attention.
S.W. Dangers.-There is another reef or line of reefs extending to the south-eastward, which does not appear to have been completely examined, for we have had repeated notiees of its having been observed, as may be seen by the following remarks on Rokol, which were communicated to the public by Mr. Richard Peacock, as early as 1809 :-" This rock appears almost like a ship at a distance, and is steep close-to on the North side. I have passed at the distance of about 50 fathoms; but, to the southward, or nearly S.E. by F. from the rock, there lies a long reef of rocks for about 3 miles. On this reef, with gales of wind, the sea breaks very heavily.

Captain Osborn, of Workington, told me that, on his passage from Quebee, in 1806, it was with the utmost difficulty he escaped getting amongst the breakers. Captaia Magee, of Greenock, also informed me, that he had seen the sea break to the distance of nearly 3 miles in a S.E. direetion from the rock.
An intelligent person has also related that he had, about two years before the disaster occurred to the Helen to the N.E. in 1824, fallen in with the breakers to the S.E. of Rokol, which appeared to extend outward 3 or 4 miles, in elumps, at some distance from each other.
Still more recently (June, 1860), the Admiralty gave notice that a breaker, lying E.S.E., from 5 to 10 milces from Rockall had been observed, and that it had appeared in a chart made by H.M.S. Leonidas in 1802, perhaps from the information of the officers of the Endymion above given.
The Rokol Bank has been surveyed by Captain Vidal, R.N. The edge of the bank of souudings, comprehending less depth than 100 fathoms, is 20 miles to the northward, and 35 miles to the southward of the rock; and the least depth expressed, which is on the S.W. of the roek, is 64 fathoms. The whole extent of soundinga from N.E. to S.W., within the depth of 200 fathoms, is 55 leagues.

The groatest breadth, which is on the parallel of $57^{\circ} 30^{\prime}$, is 18 leagues. The North end of the bank, with 163 fathoms of water, is in lat. $08^{\circ} 18^{\prime}$, long. $13^{\circ} 40^{\prime}$; and the S.W. end, with 180 futhoms, is in lat. $56^{\circ} 3^{\prime}$, long. $15^{\circ} 59^{\prime}$.

10.-SABLE ISLAND, OFF NOVA SCOTIA.

In a former page, 351, there are some remarks on this singular and dangerous island, lying in the otrength of the Gulf Stream, and apparently formod by conflicting currents.

The island is formed of two nearly parallel ridges of sand, shaped like a bow, concave to the northward, and meeting in a point at either end. Its whole length, followiug the eurve, and including the dry parts of the bars, is 22 miles, or E. $\frac{1}{8}$ S. $20 I$ miles, in a direct line acrom the curve; its greatest breadth is exactly one mile. In some parts it is wholly or partially covered with grass, in others secoped ont by the winds into crater-shaped hollows, or thrown up into sand-hills, not exceeding the height of 75 feet above high water. Between these ridges a loug pond, nomed Sultwater lake, said to be gradually filling with blown sand, but still in some parts 12 feet deep, extends from tho west end to the distance of 11 miles; and a low valley continues from it $6 \frac{1}{2}$ miles more to the north-east of the ishund. The entrances to this pond have been for some timo closed, the sea flowing in over the low sandy beach on the south side, and at the west end only in high tides and heavy gales.
Freah water is to be had almost everywhere, by digging down a fow feet into the sand.

The West Flagstaff, which points out tho position of the prineipal establishment, stands on a sand-hil 40 feet figh ; and with its Crow's Nest, or look-out, 100 feet above the sea, is a conspicuous object on the north side of the island, and was distant (in 1852) 4,215 fathoms from the west end of the grassy sand-hills.

The East Fhagitaff, 40 feet high, is also a conspicuous object, stauding on a sandhill on the north side of the island, and distant, at the same date, 2,280 fathoms from the north-east end of the grasey sand-hills.
The Mfiddle Flagotaff was further inland, and was about to be removed to a more advaitageous position on the south side of the island. Besides the buildings at these flagstaffis, there was an unoccupied house on the north side, distant $3 \frac{1}{4}$ cables from the west end of the grasey sandy-hills.
Sable Island and its submerged bars form a orescent concave towards the north, and extend over more than 50 miles of sea. Vessels should be careful not to be caught within this crescent in a strong gale from the northward, when the acceleruted ebb-tide, setting directly towards and over the bars, would render her situation extremely dangerous. Both tho bars are extremely' steep on the north side, the East bur expccially so, having 30 fathoms water close to it. To the southward, on the contraiy; the water deepens gradually out for so many miles as to render it difficult to account for the greater number of, shipwrecks having occirred on that side of the ioland and its bars, excepting by a neglect of the lead.

In approaching the anchorage off Sable island from the northward at night, or in thick weather, the lead should be kept constantly going, and after passing the Middle Ground, distant about 25 miles to thie northward of the island, great caution should be used, and the vessel should bo certain of her position; for the east end of the island and the East bar are very stecp on that side.

The Middle Ground, and the ridge of sand reported to continue from it to the west and enith, till it joins the West bar, require to be surveyed, before more precise directions can be safely given.
Veisels seldom anolior off the south side of the island, because of the prevailing heavy awell from the southward; but they may safely approach by the lead on that side, taking care not to become becalmed in the heavy owell, and in the strong and uncertain tides and currents near the bars.

The landing is in general impracticable on the south side, excepting after of long
contir wind when

Comn
San Pe 4 or 5 of shar distance seen, to the dist it was P
The 1 and to and the of the c in the h

The Americ at two 1 vessel b out, we rocks, B from E_{1}
to be fil
continuance of northerly winds; and on the north side boats cau land only in southerly winds and fine weather; but there are surf boats at the establishment, whieh can land when ordinary boats would swamp instantly.
The positions of the various points are given in the table on pp. 61, C2.

11.-PEÑEDO DE ST. PEDRO, OR ST. PAUL'S ISLETS.

A cluster of five steep, eraggy rocks, without verdare, covered with birds' dung, and having no place for anchoring, or convenient for landing. Thiey are about a quarter of a mile in extent cach way, and the highest part is about 100 feet above the sea. With a line of 100 fathome, no bottom was found within 2 miles of the islets: The appearance annexed has been communicuted by the intelligent master of a merchant ship.

The rocks change muterially in their appearance, accórding to their bearing. The Tellicherry, East Indiaman, passed in sight in 1802, and found that the appearance, between N. $30^{\circ} \mathrm{W}$. and N. $37^{\circ} \mathrm{W} ., 6$ or 7 miles distant, was that of a heap of rugged rocks, with low gaps between some of them. The noithernmost, a small pyramidal rock, rather lower than the rest.

Peredo de St. Podro, West, as taken by Captain Monteath.
Commodure Brou, of the French frigate Hermione, in 1825, describes Peñedo de San Pedro as a taile in extent; in a N.E. and S.W. direction; ;een in fine wenther 4 or 5 leagues off; when bearing N.W. appearing in the form of three pinndeles of sharp naked rocks of a remarkable shape. The S.W. pinnacle separated a short distance from the others. The latter appears safe to approach, and no breakers wert seen, to indicate sunken rocks. The Hermione sailed rotind on the eastern side as the distance of 5 miles; did not try for sotindings, bit from the colour of the water it was presumed that bottom would not be found.
The Equatorial current set the ship to the westward at the mean rate of 18 miloe, and to the North 6 miles, in the twenty-for hours, between the parallel of $\mathbf{8}^{\circ} \mathbf{N}$. and the equator, and the medidians of 28° and $30^{\circ} \mathrm{W}$. At the islets the direction of the current changed, and set more to the northward, att three-quarters of a mile in the hour.
The best deseription of this isle is that of Captain Amasa Delano, who, in the American ship Perseverance, from Boston toward Cape Horn, 23rd December, 1799, st two p.m. saw three small islands bearing W. hy S., 2 or 3 leagues distant. The vessel bore away, and at three p.m. was abreast of them; Hoisted the small boat out, went on shore, and found them to be nothing more than a claster of eraggy rocks, about one-fourth of a mile in extent from North to South, and nearly as mueh from East to West. No sort of vegetation existed upon them. The recks were fouiu to be five in number, but only two of any considerable magnitude. Their greatent
exteut was from N.N.E. to S.S.W. The two largest nearly conneet with each other, and form a kind of harbour, or place of shelter for a boat, on the N.W. side. Here they managed to land, but obtained nothing except a number of boobies. On shore the aspect was most dreary, the' sea roaring and surging on all sides. Two smaller rocks were lying off to the S.S.W. of the large ones, and one very small to the N.E. When on the highest part, which was at least 100 feet above the surface of the sea, no dangers could be seen but what showed themselves above water; nor could any be discovered from the ship. Plenty of fish were eaught in the harbour or basin. At six p.m. returned on board. Sharks were numerous about the ship, but in attempting to take them a number of hooks and lines were lost, and several pairs of graines broken. On sounding within 2 miles of the islet, no ground could be found with a line of 200 fathoms.

Captain Delano states that the islets may be seen at the distance of 4 leagues, and always make like three sail when first seen. They are very dangerous if fallen in with by night. The current near them set N.W. by N., true, 1 mile an hour. Tho parts above the reach of the surf are covered with birds' dung. The birds were hatching their young at the time. Tho month of November would be the season for procuring eggs at this place, as thoy may be obtained at that time in abundance; but being the eggs of oceanic birds, they are rather fishy than sweet. We have seen a different latitude assigned to the rocks, but consider it is incorrect.*

Admiral Fitz Roy, from his observations, places the summit of the Peñedo in lat. $0^{\circ} 65^{\prime} 30^{\prime \prime}$, long. $29^{\circ} 22^{\prime}$. The variation here, on the 16th of February, 1832, was $91^{\circ} \mathrm{W}$. Temperature of the air and water, 82°. Wind, S.E. The rocks were seen on the horizon at sunset of the 15th. They appeared extremely small at about 8 miles distant. At daylight next morning two boats were sent to land upon and examine them, while the Beagle sailed round, sounding and taking angles. Good observations were made during the day, as the sky was elear and the water smooth.
The multitude of birds which eovercd the rocks was astonishing, and they suffered themselves to be kicked about and killed with sticks; at the same time, those on the wing even darkened the sky. While one party were scrambling over the rock, a determined struggle was going on in the water between the boats crews and sharks. Numbera of fine fish, like the gronpars (or garopas) of the Lermuda Islands, bit eagerly at baited hooks put overboard by the men ; but so soon as a fish was caught, a rush of voracious sharks was made at him, and notwithstanding blows of oars and boathooks, the ravenous monsters could not be deterred from seizing and taking away more than half the fish that were hooked.
At short intervals the men beat the water with their oars all round the boats, in order to drive away the sharks; and, for a few minutes afterward, the groupars swarmed about the baited hooks, and were caught as fast as the lines could be hauled up,-then another rush of sharks drove them away; those just caught were snatched off the hooks; and again the men were obliged to beat the water. When the boats returned, they were deeply laden with birds and fish, both weleome to those who had been living on salted provisions.
"From the highest point of the rocks, whieh is 64 feet above the sea, no discoloured water, nor any breaking of the sea could be discerned, apart from the place itself; and from the soundings taken in the boats, as well as on board the ship, I conclude that it is unconnected with any shoal, being merely the summit of a steep-sided mountain rising from the bottom of the occan. A slight current was setting to the westward, not amounting to a mile an hour."-(Vol. ii. p. 56.)

[^158]Al Ocea navig lower positis omba empt the er

Th tigue burg or fro the e It April

The and is $1 \frac{1}{4} \mathrm{mi}$ with the So is fort striki small. two lo guano 1851.$)$ miles coral miles

The to 4 fe tance. wreck a long
The by No log. and E the le from b The in Ma $3^{\circ} 51^{\prime}$ longitı

Liev hut on 14 or Lee pl mark
rith each other, t. side. Here ies. On shore Two smaller 11 to the N.E. ace of the sea, or could any bo or basin. At t in attempting airs of graines found with a

4 leagucs, and us if fallen in an hour. The The birds were the season for bundance ; but Te have seen a

Peñedo in lat. uary, 1832, was ocks were seen all at about 8 land upon and angles. Good water smooth.
id they suffered ae, those on the ver the rock, a ws and sharks. da Islands, bit sh was eaught, vs of oars and dd taking away
d the boats, in , the groupars ould be hauled were snatched Then the boats those who had
no discoloured , place itself; ip, I conclude p-sided moungg to the west-

12.-THE ROCAS; ETC.

Although this dangerous spot is not strictly within the North Atlantic Ocean, yet it has of late assumed a much greater importance in respect to navigation, since the western route across the equator has been advocated and followed. It is also the more necessary to allude to it hiere, as a singular error in its position has been perpetuated till the present time, and which must have led to much, embarrassment, and probably loss and danger. Yet the apathy of the seaman is exemplified in this, that among the thousands who must have passed it, and suspected the error, not one should have thought it worth while to question the accuracy.

The group was examined, and their position accurately ascertained, by M. Lartigue, under the Baron Roussin, in 1825. Yet from an erroneous estimate in Horsburgh's directory, the first edition, in 1809, they are placed in longitude $33^{\circ} 31^{\prime}$ W., or from fifteen to eighteen miles too far East. This error has been continued in all the editions of Horsburgh down to the last in 1855, and has doubtless misled many.
It was first pointed out by Lieut. Lee, U.S.N., who visited it in the Dolphin, in April, 1852. He gives the following description of them.
The centre of this low and dangerous reef is in lat. $3^{\circ} 51^{\prime} 27^{\prime \prime}$ A., long. $33^{\circ} 48^{\prime} 57^{\prime \prime}$ and is 84 miles due West of the peak of Fernando Noronha. The reef extends about $1 \frac{1}{4}$ miles in latitude, and nearly $1 \frac{1}{4}$ miles in longitude, and is covered at high water, with the exception of Grass and Sand Island on the West, and the scattered rocks on the South and East sides. These objects are from 10 to 15 feet above the reef, which is formed of coral, generally level, though with many holes in it. In case of a vessel striking on the weather side of it (S.E.), the chance of saving life would be but small. When about 10 miles off, the breakers were first seen from aloft. Then the two low islands and the black rock soon appear. Sea birds abound, but there is no guano owing to the rains. The eggs of the gulls were plentiful and good (March, 1851.) There is no wood, nor fresh water. There is bad anehorage from one to two miles northwest of Sand Island, is from 15 to 18 fathoms coral bottom. We found coral bottom at 15 fathoms 6 miles East of the reef, but no bottom at 30 fathoms $2 \frac{1}{3}$ miles N.N.E., nor at 70 fathoms 4 miles S.E. of it.
The tide rises about 5 feet. The lagoon, in whioh we saw many turtle, has from 1 to 4 feet water at low tide, and shows white from the mast head at 4 or 5 miles distance. The anchors and cable on the S.W. part of the recf, and the remains of a wrecked vessel on the N.E. side of Grass Island, appear to have been on the reef for a long time. A lighthouse on the reef would be very useful to vessels.

- The current in the vicinity of this reef sets from between S.E. by East, and East by North, at the rate of from 8 -10ths to $1 \frac{1}{2}$ miles per hour, as found by the patent log. The surface curreut found by trials on 4 different days, sets from between S.E. and East by North, from 9-10ths to 1 4-10th miles per hour. At the anchorage under the lee of Sandy Island, the tide ran from 2-10ths to 8-10ths kuot per hour, setting from between S.S.E. and East by North toward the northward and westward.*

They were again partially surveyed by Lieut. J. E. Parish, in H.M.S. Sharpshooter, in March, 1850. He gives the position of the centre of the South Sand Island as $3^{\circ} 51^{\prime} 25^{\prime \prime}$ S., long. $33^{\circ} 46^{\prime} 23^{\prime \prime}$ W., or about 2 miles further East. Captain Lartigues' longitude agrees with that of Lieutenant Lee, and should therefore be preferred.

Lieut. Lee saw the remains of many wrecks on various parts of the banks, and a hut on the western edge; numerons cotton bales lie scattered about. A bank carrying. 14 or 15 fathoms affords anchorage as far as 5 miles to the N.E: of the banks. Lieut. Lee planted some cocoa nut trees on the eastern sand bank, which would afford a useful mark if they grow.

[^159]Frrian do Noronia and the adjacent coast of Brazil* are demcribed in our directory for the South Atlantic Ocean.
Lieut. Lee, UIS.N. brig Dolphin, says:-We were three days (March 29-31, 1852) within from 20 to 30 miles north of the flats, of \mathbf{S}. Roque, of Cape 'Toiro, when the N.E. and S.E. trade mem to meet and form a region of calm and rains, with an oppresaive atmosphere resembling that of the equatorial calms. Outside of this re. Rion our track shows that the S.E. trades, though light gonerally prevailed between the locas and the main to within a degree of Point Tairo, and that when we were a degree and a half North of thic Cape, and in the parallel of the Rocas, the light variable winds, leaving the S.L. quadrant, came ont to the eastward, soon got northing on them, and turnedinto gentle N.E. trades in $2^{\circ} \mathbf{S}$. The direction of the winds around thin Cape, outside the influence of the land-breeze, and also outside of the belt of calms and rains, appars to be modified by the form of the Continent. They come from the sonthward pud unstward npon the eastern shore, which bends to the northward; whilst arounc ive elbre of the Cape they draw more easterly (interrupted at this season, when the smn is ucar the eqninox and going North, by small squalls of wind and rain from all around the compass), and on the northern coast, which trends to the westward, they come from the N.E.

Twe curront between the Rocas and the main sets generally from the southward and enstward, from 1 to $1 t$ kuots, until near the flats, where we experienced indications of a couuter current or tide. Learned at Para that their coasting vessels were generally 4 weeks going from there to Pernambuco. It is more from the failing of the wind there than from the current, that it is so difficult to double Cape. San Roque.

13.-THE COASTS AND ISLANDS OF AMERICA, IN GENERAL.

For a complete and correct description of the Coasts of Newfoundland, of the Gulf and Kiver of St. Lawrence, the Coast of Nova Scotia, \&c., to Cape Cod, the reader is referred to the "British American Navigator," published by the Proprietor of the present Work. The navigation thence to the southward, including the whole of the Weat Indies and Mexican Sea, is described in "The Culombian Navigator."

The American navigation, in general, requires details so minute, and explanations so copions, as to render it impracticable to do justice to the subject in an abridgement. It will, therefore, not be attempted. A few remarks on the principal ports only will be added.

In the preceding pages the various phenomena which control the passages across the Atlantic are recited, and with those remarks are many concerning the proper mode of approaching any port. In connection, therefore, with what follows, these previous directions maj be incorporated.

The foll wiag descriptions only of the chief points of interest, and of the prineipal sorts, are therefore added :-

The List of Lighthouses and the Table of Positions, in the earlier part of this Work, may be consulted in connexion with them.

The NEWFOUNDLAKD BANKS, which have been, in their fisheries, the source of all the opulence in the island, are vast submarine elevations, of various

[^160]depta fatho sand, the B deeps la Ba aboun ceival freigh no sel cate
The hetwe down weath are fr fathon guisho the see decrea

On malima 30 lear seen d vicinit
In at avoid t that ca which
The 1 its bro fathoms
The irregult yards 5 to $6 \frac{1}{3}$ of the betwee also a v

It is Ryder, in lat. Virgin $1 \frac{1}{5}$ mile fish on. Shir of 46°, they ar to stee as 47° :

ST.
The en about 1 cipitou the mi opens

1 in our diree.
29-31, 1852) iro, when the rains, with an de of this reailed between en we were a ocas, the light n got northing of the winds side of the belt t. They come to the northinterrupted at all squalls of which trends

he southward

 ienced indicag vessels were the failing of ble Cape. San
HENERAL:

d, of the Gulf the reader is prietor of the 5 whole of the or."
explanations abridgement. orts only will
ssages across y the proper follows, these he priucipal f this Work, sheries, the 3, of various
ie, (Verhanortant point,
depths and vely unequal figares. The depths on the Great Bank vary from 15 to 80 fathoms. The quality of the bottom varies considerably, but it generally consists of sand, or sand mixed with shells and gravel, rarely with stones. The eastern face of the Bank is a clear sand, white or whitish, and often sparkling. In the gullies and deeps which separate the banks, and more particularly in the Whale Deep or Trou de la Baleine, the bottom is found to consist of mud or oaze with a fetid smell, and abounds with different sorts of fish; but more particularly with cod, which is incon-: ceivably numerous; for, although from 200 to 400 vessels have been annually freighted with this article of commerce for nearly two centuries, there appears to be no sensible decrease of the former plenty. A great swell and thick fog usually indicate the place of the bank.
There are, generally, in the spring, within 125 or 130 leagues of the land, and between the Outer and Grand Banks, numerous ice-bergs, or ice-islands, that float down with the current from the north-westward, and which, during the foggy weather, are very dangerous: eve in the months of June, July, and August, there are frequently a number of them : some of which may be seen agroand, in 40 or 50 fathoms of water. In thick weather, the place of these may commonly be distunguished by the ice-blink, a b htness of the sky above them; or by the breaking of the sea against them, which a also lie heard at a considerable distance; or by the decrease of the temperature of the water, as shown on page 359.
On approaching the banks, there wil generally be found a number of sea-fowls, as malimaulks, roaches, and divers. The last-mentioned are seldom found at more than 30 leagues from the banks; but m "mauks, and several other kinds, are frequently scen during the whole passage though not so numerously elsewhere as in the vicinity of the banks.
In approaching toward Cape Ree (the S.E. point of Newfoundland), be careful to avoid the Virgin Rocks, a dangerous reef, lying 29 leagues S.E. $\frac{3}{4}$ E. [E. by S.] from that cape. In gales of wind a hev ry sea breaks over them ; and a strong current, which sets about them, often increas the danger.
The bank in which the shoal is situated, extends E. by N. and W. by S. $4 \frac{1}{4}$ miles; its broadest part is about $2 \frac{a}{s}$ miles. The soundings are regular from 28 to 30 fathoms, until they decpen suddenly on the outer edge to 39 and 43.
The rocks themselves are in $46^{\circ} 26^{\prime} 30^{\prime \prime} \dot{\mathrm{N}}$., and $50^{\circ} 51^{\prime} 30^{\prime \prime} \mathrm{W}$. They extend in an irregular chain, S.W. by W. and N.E. by E. 800 yards, varying from 200 to 300 yards in breadth. The least depth of water is on a white rock, in $4 \frac{1}{\text { f fathoms, with }}$ 5 to $6 \frac{1}{2}$ fathoms all round it; the bottom distinctly visible. Toward the extremities of the shoal are several detached rocks from 7 to 9 fathoms, with deep water between, and with a current setting over whem W.S.W. one mile an hour ; and with also a very confused heavy swell.
It is said that "A shoal with only 21 feet water apon it, was discovered by Jesse Ryder, master of the fishing schooner Bethel, on the Grand Bank of Newfoundland, in lat. $46^{\circ} 30^{\prime}$, a rock of about 100 or 200 fect surfuce; about 50 miles Last of the Virgin Rocks. Shoal bears from the Nine Fathom Bank S. by W. by compass about $1 \frac{1}{2}$ mile : discovered it aceidentally while searching for the Nine Fathom Bank, to fish on. I afterwards saw the Virgin Rocks."
Saips bound to St. John's are, therefore, recommended to keep on the parallel of 46°, or a degree and a half to the southward of the parallel of that port, and until they approach the outer edge of the Great Bank; and, when they obtain soundings, to steer directly to the north-westward for Cape Spear, the position of which is given as $47^{\circ} 31^{\prime} \mathrm{N}$. and $50^{\circ} 36 \frac{1^{\prime}}{}{ }^{\circ} \mathrm{W}$.; but see also pages $436-440$.
ST. JOHN'S, the principal harbour of Newfoundland, is an excellent one. The entrance is through the "Narrows," a strait running in a N.W. by W. direction about half a mile long, and 220 yards across in the narrowest part, with rocky precipitous heights of 500 feet on each side. There are from 9 to 12 fathoms of water in the middle of the channel, with tolerably good anchorage ground. The harbour then opens by a tirn at right angles, and runs in a S.W. direction for a mile and a.
quarter, and in front of the City of St. John appears climbing up a hill, from Fort William to Fort Towsend. The ridge of the hills on the S.E. side of the harbour is 750 feet, and on the opposite side of the Narrows is a continuation of the same ridge, called Signal Hill, 510 feet high, on which is the citadel, to which place all vessels are telegraphed from Cape Spear on their first appearance off that place. On Fort Amherst on the South Head, at the entrance of the Narrows, is a brilliant fixed light. At two- ihirds the distance from the entrance to the harbour itself, is a rock, on the north side, called the Chain Rock, which, with P'ancake Island on the opposite shore, 2 contract the entrance at this part; and between them a chain can be stretched when required, to prevent the entrance of any hostile fleet. In addition to this, the fortiflcations before mentioned, other batteries which command the entrance, and the Crow's Nest, a small battery perched on the top of prramidal mount on the North of the entrance of the harbour, render the place perfectly secure against any sudden attack.

The entrance, as above stated, lies N.W. by W., and within will be found to narrow ; as, in the inner part, there is a rock on each side, but above watcr. Hcre the breadth of the channe! is only 95 fathoms, and the depth 9 . When past these rocks you may run on boldly, without any fear of danger, only avoiding a rock on the south side, called Prosser's Rock, on which there are only 9 feet of water.

About 20 fathoms to the southward of the China Rock, which is always above water, is the Roby or Salisbuy Rock, on which the U.S. steam-frigate Niagura struck after landing the electric cable in Trinity Bay. It is about to be or is deepened. The same with the Merlin Rock inside the entrance, which hus becu blasted to 27 feet least water.

Within the harbour you may anchor in any depth from 4 to 10 fathoms, landlocked from all winds, as the harbour within the Narrows lies W.S.W. It is, however, to be noticed, that there is no possibility of sailing in, unless with the wind from S.W. by S. to East. The wind from S.W. to N.E. by N., blows out of the Narrows. Here ships must then anchor, and warp in, for which purpose there are rings in the rocks on both sides.
"The entrance of St. John's Harbour is readily known by the block-lhouse on Sig. nal-hill on the North Head, and Amherst Fort (from which is shown a fixed light) on the South Head. There is a sunken rock, called the Vestal, 50 fathoms without South Head, with only 25 feet of water on it. This rock is about 10 fathoms long and 7 broad; the marks for it are, Fort William (which stands within the harbour on the north side) open of South Head, bearing N. $39^{\circ} \mathrm{W}$. ; and the outer Wash-ball Rock open with Cuckold's Head, bearing N. 47° E. The Wash-ball Rocks join the North Head; they are all above water and steep-to, therefore not dangerous. .The coarse in the Narrows is N.W. by distance 370 fathoms, to Chain Rock on the North, and the Pancake on the South, side. Both these rocks are above water, und steep-to. Sixty-five fathoms within the Pancake Rock, on the South shore, lies the Little Pancake, a rocky shoal, dry at low water; and 80 fathoms within the latter lies like a sunken rock, called Prosser's Rock, running off 30 fathoms from a rock above water, in form of a saddle, with 18 feet of water in the hollow, and only 5 feet on the outside. It is steep-to, with 5 futhoms close to it. After you have passed Prosser's Rock, you may stand to either shore, as they are clear and steep-to. You may anchor in what water you please, from 8 to 4 fathoms, muddy botton.
"The tide of St. John's sometimes rises 7 or 8 feet; it is not regular, but greatly influenced by the wind."-Mr. Owen.
Note.-"At half a milo S.E. $\frac{1}{4}$ S. from Fort Amherst is the centre of a narrow bank, having 14 fathoms over it, and which breaks in rough weather. It extends nearly a quarter of a mile N.E. and S.W. and has on it, near each end, a depth of 20 fathoms.
"It is high water in the harbour, on the full mend change, at $7 \mathrm{~h} .30^{\text {mon }}$. Spring tides rise 5 , neaps $3 \frac{1}{2}$ feet."
Be very cautious, if unacquainted with the coast, that you mistake not the place

Joh sufe St. staff thes Spee

CAPE RACE AND NOVA SCOTIA.

iill, from Fort he harbour is he same ridge, lace all vessels ace. On Fort nt fixed light. rock, on the spposite shore, tretched when this, the fortiance, and the 1 the North of ist any sudden

11 be found to water. Hire hen past these ding a rock on water.
always above igate Niagura it to be or is hich has been
fathoms, land. It is, howthe wind from f the Narrows. re rings in the
-house on Siga fixed light) thoms without 0 fathoms long the harbour on ter Wash-ball kocks join the ngerous. .'The on the North, , and steep-to. ies the Little latter lies like a rock abore 5 feet on the assed Prosser's pu may anchor
ar, but greatly
of a narrow
It extends
a depth of 20
Spring tides
not the place arbour of St .

John's, as it shows an opening like a good harbour, but is fit only for boats, and not safe even for these at low water. Fort Amherst, which stands on the South head of St. John's, appears white, and it shows a brilliant fixed light by night, and the flagstaffis on the hill, over the North head, will point to the harbour of St. John's: besides these, the course from CapeSpear is N.N.W., and the distance about 4 miles. . Cape Spear is indicated by a revolving light.

CAPE RACE LIGHTHOUSE is 40 fect high, and is striped red and white vertically. The light is a brilliant fixed light at 180 feet, visible 17 miles off. It is visible to seaward from N.E. by E. round rithward to west. It stands close to the site of the old beacon, which has been cut 'r. n.
The land about Cape Race is comparatively low, and bare of wood, with a steep cliff of about $\mathbf{0 0}$ feet in height.
The lighthouse on Cape Race has and will doubtloss prevent many wrecks, and remove the uncertainty of reckoning so often felt in approaching this land. It is, therefore, an important and safe landfall.
Cape Pine, with its inon lighthouse and revolving light, stands as is shown in the table in lat. $46^{\circ} 37^{\prime}$, long. $53^{\prime \prime} 32^{\prime}$, and at a short distance westward of it is the famous (in former times) St. Shot's Bay, alluded to in the account of tho wrecks in (271.) page 350.

The currents hereabout are described on pages 347-351; the winds, on pages 212, 213; and the tides, pages 249, 257.
A general description of the Passages and Sailing Directions towards Newfoundland, and past its South coust into the Gulf of St. Lawrence, are given on pages 437-440.
Full and complete directions for approaching the South-east coast of Nova Scotia, including Breton island, cannot well be given until the extensive banks which lie off it shall have been surveyed.
'The aspeet and nature of the different parts of the coast eastward of Halifax have bcen stated in the preceding chapters; but the distinctive features are often not ensily perceived in the usual weather, and at the distance which the outlying dangers render it prudent for a vessel, uncertain of her position, to be kept from the shore. The lighthouses, however, on Cranberry and White Head Islands the beacon on Wedge Island, and the lighthouse on Beaver Island, afford great additional assistanco to a stranger in ascertaining his position, when first making the land; as would also a lighthouse if placed on Egg Island. Vessels approaehing Sambro Island lighthouse in a fog, and firing a gun, will be auswered from the island, where a heavy gun, and a party of artillery are stationed for the purpose.
In the present imperfect state of our knowledge of the banks which lie off this coast, of the depth and nature of the soundings on them and between them and the shore, no further directions can be safely given to vessels approaching the land during a dark night, or in a thick fog, than not to go into a less depth thun 40 fathoms, at the same time bearing in mind that there is that depth at a less distanco than 3 miles from some of the most formidable of the dangers between Cape Cunso and Halifax, us for instance the Jedore ledges; whilst 50 fathoms is near enough to the Sumbro ledges, which have more than 40 fathoms water at distances of half a mile and one mile to the East and South of them respectively.
The principal banks lying off the south-east coast of Nova Scotia are the Banquereau and Sable Island Janks, whioh are each about 150 milas in length, and extend to an equal distance from the coast; but it has not yot beon aseertained whether these may nct be united, and form a single bank of doul's that extent, in a direetion nearly parallel to the coast. Our knowledge of the exient, shupe, and position of the mmaller banks nehrer the const, including the Canso Bank, and of the mature of the gutioitings on and between them, is equally uncertain and incomplete.

Sable Island und its lankis have been deseribed on page 636.

HALIFAX HABBOUR, one of the finest in the world, affords space and depth of water sufficient for any number of the largest ships with safety; and although the dangers off its entrance are such as to render great caution necessary, especially in the fogs which usually accompany all winds from the sea, it is yet easier of access and egress than any other large harbour on the coast. It is $5 \frac{1}{\frac{1}{2}}$ miles wide at its estrance, from Chebucto head on the south-west to Devil Island on the north-east, and it continues inland 15 miles, in a northerly direction, to the head of Bedford basin. The city of Halifax, the capital of Nova Scotia, containing in 1853 about 25,000 inhabitants, stands on the declivity of a peninsula on the western side of the harbour, and 9 miles within its entrance. The citadel, immediately in recr of the city, is elevated 227 feet above the sea at high water, and with its flagstaff forms a leading mark easily recognised from a vessel off the entrance of the harbour.
Ligirs.-Two lighthouses stand on the castern side of the entrance of Halifax harbour, one on the south-west point of Devil Island, at the eastern point of the entrance, and the other, named Sherbrook tower, on the Wcst extremity of Maugher beach, at $4 \frac{1}{3}$ miles within the entrance.
The lighthouse on Devil Island is octagonal, built of wood, aud painted brown with a white belt. It exhibits at 45 feet above high water a fixed $r e d$ light, visible in eleur weather from a distance of about 8 miles,

Sherbrook tower, on the west end of Maugher beach, is 48 feet high, circulur, and painted white with red roof. It exlibits at an elevation of 58 feet above high water a fixed onhir, light, visible in olear weather at 12 miles. It bears from the Thrumeup buoy N. wy W. $2 \frac{1}{3}$ miles.
luots ure stationed on Devil Island, and several families reside there.
DIRECTIONS.--'The coast in the "icinity of Halifax is of moderate height, tho hills near the shore being seldom 200 feet above the sea. To the eastward of the harbour, as far as Jedore, almost all the headlunds present eliffls of reddish sand, clay, and boulders to the wasting action of the waves; whilst to the westward, as fur as Mars head, grouite rocks nemly white predominate. Hence the remark, that, "in standing in for the laffd, you may know on which side of Hulifux harbour you are, by a remarkable difference that exists in the colom of the shores, which, if red, denotes that you are to the eastward, and if white, to the westward of the entrance."

The bank off Sambro Island, terminating in a point, and at the depth of 30 fathons, 5 miles South of the Sambro ledges, offers considerable assistance to vessels approaching Halifax from the westward in the thick fogs which so frequently prevail, From the eastward the approach is rendered comparatively easy, by the absence of outlying dangers after passing Shut-in Island, and by the soundings deepening out with tolerable regularity to 30 fathoms, at distances varying from 4 to 6 miles from tho shore, until within 2 miles of Chobucto and White Heads, where the depth exceeds 30 fathoms, until within one-third of a mile from the shore. Attention to these soundings, combined with the guns fired from Sumbro lighthouse island, may enuble steamers at times to enter the harbour notwithstanding the fog, but it is seldom prudent for a large sailing vessel to attenupt it under such eircuustances.

From the Westward at Night.-In approaching Halifux hurbour from the westward at night, shape a course to pass not leess than 3 miles to the southwurd of the Sambro Island light, steering E.N.E., and in not less than 30 fathoms water, until the light bears North; when, if not more than 6 miles from it, the vessel will have arrived at the southern prolongation of the Sambro Bank. Having erossed the bank into deep water, haul up N.N.E., until the light on Maugher beach opens out East of Chebucto head, bearing N. by E., when steer for it, or so as to pass within a mile or leas from Chebucto head, which is quite bold. Having done so, keep the light bearing hetween North and N. by N. as the vessel runs cowards it, and all the dungers will be avoided excepting the Neverfuil shoul, on which there is not less than 4 fathoms.
Having arrived abreast the Thrumeap, or brought Devil Island light in line with its South extremity bearing LE.S.E., alter course to N. by W., or as may be necessary, to avoid the Lighthotse bank ; üd as soon as the light on Maugher beach bears Eiast,
θ and depth of although the especially in of access and tits entrance, t, and it eond basin. The 5,000 inhabitarbour, and 9 Y , is olevated leading mark
ee of Halifax point of the y of Maugher
ed brown with visible in cluar , circulur, aud we high water the Thrumcup re. te height, the stward of the lish sand, clay, ard, as far ax ark, that, "in rbour you ure, ich, if red, deto entrance."
of 30 fathoms, ssels approachrevail, From ence of outlyning out with niles from the depth exceeds ation to these i, may enuble is seldom pru-
oin the westthward of the A water, until sel will hure wed the buik Is out Enst of hin a mile or e light hearthe durgers less than $4!$

- line with its neceesary, to a bears Cest,
steer N. by E. for Ive's Point (or N.N.E., if necessary, to avoid the Middle ground, ou which, however, there are not less than $4 \frac{1}{4}$ fathoms), until the light bears S. by E. ; then a N. by W. course, keeping the light astern, will lead between the Pleasant shor 1 and Reed rock white buoys on the one side, and Ive's knoll red buoy on the other into the harbour. Having passed Ive's knoll, the vessel may proceed in on either s: de of George Island, or may anchor in the stream of Macnab Island until daylight, according to circumstances. The light on Maugher beach disappearing behind Ive's point, will show the vessel's distance from George Island, as she runs in to the eastward of that island, which is the wider and preferable channel in a dark night.

Within George Island there is nothing in the way, excepting the Dockyard shoal, and the shallow water off Dartmouth.

By Day.-Approaching from the westward in the daytime, passing Sambro lighthouse island at the distance of 3 or 4 miles, and when Sandwieh point opens out East of Chebucto head, stand in N. by E. or N.N.E., according to the wind, until the citadel flagstaff opens East of Sandwich point, bcaring N. $\frac{1}{2}$ W. Keep the eitadel Hugstaff only just open, running towards it, and it will lead between the Lichfield and Neverfuil shoals, und up to Mars rock whito buoy, which leave to the westward. Having passed Sandwieh point, from whioh the shallow water does not extend beyond a eable's length, steer towards George lsland, keeping Chebueto head only just in sight East of Sandwieh point until the vessel has passed close to the westward of the Middle ground; then open out the head more, so as to leave the Pleasant shoal and Reed rock white buoys to the westward, in running towards George Island: or, if it bo preferred, the steeple at Dartnouth in one with the castern side of George Islind, bearing North, will lead tothe eastward of the Middlo ground. Either of the marky just given will lead clear up to George Island, on cither side of which the vessel may pass into the harbour, leaving the Belleisle and Leopard buoys to the westward, if she passes between them and the island, and choosing her anchorage off the wharves of the eity, or off the dockyard, where the Cominissioner's buoy will point out the Dockyard shoal.

From the Eustward by Niyht.-Approaching from the custward by night, and being to the westward of the Jedore ledges, run along the land in a depth not less than 30 fathoms, until th- fixed white light on Sambro Island is seen; then, if it be intended to pass to the southward of the Roek Head and Portuguese shoal, steer for Chebucto head (remembering that, to clear tho Rock head, tho light on Sambro Island must be kept wide open to the south-east of White head, bearing nothing to the southward of S.W. by W.; and the fixed red light on Devil Island nothing to the eastward of N.E. by N.), until the light on Mangher beach bears North; when steer for it, keeping it bearing between North and N. by E., and proceeding as already directed.
By Duy steer for Chebucto head us:til the citadel flagstaff is only just open East of Sundwich point, bearing N. $\frac{1}{}$ W.: then steer for it, and proceed as before.Admiral Buytiehl.
If the wind should mako it advisable to enter between the Rock Head and Thrum Cif, Shoula, and having passed Shut-in Island, steer W. $\frac{1}{3}$ S. from f to 1 milo South of the red light on Devil Island, until Maugher Beach light bears N., then steer for it until abreast tho 'Thrum Cap; then alter courss to N. by W., or as may be necessary; By day, pass the same way, keeping Graham Head well open South of Devil Island until deorge Islund opens out West of Maugher Beaeli lighthouse, then steer for it N. f W. until abreast of the Thrum Cap, then edge away westward. .

From IIalifax, westicard, to Margaret Bay, the country appears, from the offing, very rocky and broken ; the shore is steep-to, and bounded with white roeky cliffs. The high lands of Aspotogon, on the eastern side of Mahone Bay, aro most remarikable; the summit is very conspicuous; it is 483 feet high, and may be seen at the distanec of 7 or 8 leagnes. Proceeding westward from Mahone Bay, the recke which nurron!sted the nhore nre biack, with some banks of red eurth. Cupe le Mare is an abrupt eliff, 107 feet high above the sea; it is bald on the top, with a red bank under
it, facing the south-westward. Between this Cape and Port Metway there are some hummocks within land, about which the country appears low and level from the sea; and on the shore, white rocks and stony beaches, with several low bald points; hence to Shelbarne Harbour the land is woody. About the entrance of Port Latour, and within land, are several barren spots, which, from the offing, are casily discerned; thence, to Cape Sable, the land appears level and low, and on the shore are some cliffs of exceedingly white sand, particularly in the entrance of Port Latour, and on Cape Sable, where they are very conspicuous from sea.

Baccaro Point, which is the western point of Port Latour, with its revoluing light, is useful by night in indicating the vicinity of the dangerous Brazil hock, presently noticed.

From Sambro' lighthouse to Cape Sable extremity, the bearing and distance are W. by S. 素 S. 112 miles.

Cape Sable is the eliff of a sandy islet, distinct from the former; it is white, broken, evidently diminishing, and may be seen at the distance of 5 leagues. From this islet ledges extend ontward, both to the East and West ; the eastern ledge, called the Horse-shoe, extends $2 \frac{1}{2}$ miles S.E. by S.; the western, or Cape Ledge, extend; three miles to the S.W. The tide, both ebb and flood, sets directly across theso ledges, the flood westward. The ebb, setting with rapidity to the N.E., causes a strong break to a considerable distance from shore. This coast should not be approached without a commanding breeze and clear weather. Here the tide runs at the rate of three, and sometimes four, knots; and when the wind blows fresh, a rippling extends from the breakers southerly to the distance of nearly three leagues, and shifts its direction with the tide ; with the flood it is more westerly, and inclines to the eastward with the ebb. This ripple may be dangerous to pass through in a gale, as it has all the appearance of high breakers, although there is no less than 8 , 10, 12, and 20, fathoms of water, rocky ground. At the Cape, the tide, on full and change, flows at $8^{\text {h., }}$, and rises 9 feet.
Brasil Rock is a flat rock, covering an area of about ten yards, and having 8 fect over it, at low water, in calm weather; within a hundred yards from its base are from 6 to 8 fathoms of water. To the southward, at about a mile from the rock, the depths are from 30 to 55 fathoms; but toward the shore the soundings are regular, 15 and 19 to 20 and 24 fathoms, sandy bottom. The tide, by running strongly over the shoal ground, causes a great ripple, an ${ }^{2}$ makes the rock appear larger than it really is. From Cape Negro the bearing and distance to the rock are S.S.W., true, or or S.W. $\frac{1}{2}$ S. by compass, 10 miles ; from the rock, Cape Sable bears W. by N. \ddagger N., true, or N.W. by W. by compass, $8 \frac{1}{1}$ miles, and from Cape Baccaro lighthouse it bears \boldsymbol{N}. $\frac{1}{2} W$., true, or N. by E., magnetic, 5 miles. Its given position is, latitude $43^{\prime} 21^{\prime}$ $30^{\prime \prime}$, longitude $65^{\circ} 27^{\prime}$.

Seal Island.- The southernmost point bears from Cape Sable nearly W.N.W. W. 16 miles. The lighthouse stands half a mile from tise South end, showing a fixed light at 98 feet.

At about two miles S.S.W. from the lighthouse on Seal Island lies the Blonde, a rock uncovered at low water, on which the frigate of that name was lost in 1777. Close around it are from 7 to 10 fathoms. Within a mile westward from the Blonde are heavy and dangerous overfalls, which present an alarming aspect. At $4 \frac{1}{\frac{1}{2}}$ miles north from these is a bed of shoal ground, of 16 fect, causing a violent ripple.

Off the Weat side of Seal Island is the rocky ialet called the Devil's Limb, which may at all times be seen.
The navigation of the Bay of Fundy, with its furious tides, requires extraordinary caution, and any space we could afford here would be of little service in explaining its nature.
The Coast or Maine, also, is so intricate, its inlets so numerous, and fronted by almost innumerable rocks and islets, that a leng thened description would only suffite to explain its character. Tine outiying rocks of Mount Deseri and Mutinicus, marked
there are some 1 from the sea; 1 points ; hence rt Latbur, and sily discerned; shore are some Latour, and on
th its revolcing B Brazil lock,
id distance are
er ; it is white, eagues. From ra ledge, ealled Ledge, extends tly neross theso N.E., causes a should not be the tide runs at ws fresh, a ripthree leagues, ly, and inclines sthrough in a no less than 8, de, on full and

1 having 8 feet om its base are pm the rock, the are regular, 15 rongly over the than it really S.S.W., true, or V. by N. + N., thouse it bears latitude $43^{\prime} 21^{\prime}$
arly W.N.W. howing a fixed
the Blonde, a lost in 1777. om the Blonde At $4 \frac{\text { t miles }}{}$ ripple.
Limb, which
extraordinary in explaining
d fronted by d only suffice nicus, markel
by lighthouses, will well show the outer limit of this labyrinth, and further descrip: tion will be found in the "Colombian Navigator," vol. 1.
BOSTON.-From Seal Island lighthouse to the entrance of Boston Harbour, the direction and distance are W. $\frac{1}{4}$ S. 220 miles, but it should be remembered that the dangerous rock on Cashe's Ledge is just to the northward of this course.
The lighthouses of Cape Anne, and those on the Cape Cod peninsula, described in the list, are the most prominent points in approaching Boston.
From about a learue off Cape Cod, the course to the granite lighthouse on the onter
 Boston lighthouse N.W. $\frac{1}{2}$ W. 5 miles. The lighthouse, which is 82 high, stands on a small island at the north side of the entrance of the channel. Those making the Light, and unable to obtain a pilot, may bring it to bear W.N.W., and run boldy for it, until within a cable's length, then steer W. by S. until in 5 fathoms, where there is safe anchorage.
When you make the light with a fair wind, bring it to bear W. by N. or W.N.W., then steer for it until you are within two cables' length distance. Come no nearer to it, but run in until it bears N. by E.
With adverse weather, and you cannot get a pilot from the lighthouse, after bringing it to bear N. by E. as above, you may run W. by S. two miles, until the light on the N.E. end of Long Island bears N.W. by N. Then steer N.W. about one mile, or until the outer lighthouse is hid by George's Island, where you may anchor in safety, in Nantasket Road, and in from 5 to 7 fathoms.

If the wind be contrary, you may stand to the southward till you bring the outer light to bear W.N.W., and to the northward till it bears W.S.W., until you come 3 miles of it ; then you must not stand to the northward any further than to bring the light to bear W. by N., nor to the southward than till it bears W.N.W.; you may safely anchor in the bay, if the wind be off the shore.

From off Capo Anne to Boston lighthouse on Great Brewster Island, your course is S.W., and the distance nearly 8 leagues. The Lighthouses at Cape Anne stand on Thatcher's Island. To go clear without Thatcher's Island Ledge, you must keep about 3 miles distant from the lighthouse. In thick westher a gun will be fired from the lighthouse, to answer any signal which may then be made.
When you proceed from Capo Cod to Boston Bay, with a flood-tide, you should steer about one point to the northward of the course already described, because the fluid sets into Barnstaple Bay. This precaution is the more necessary when the wind is northerly. Similar care is requisite in stecring from Boston Bay to Cape Cod.
Until you advance to within two leagnes of Boston Lighthouse, you shoalen your water from 35 to 19 fathoms. The soundings are irregular. On the Cape Anne shore the bottom is rocky; but, towards Cape Cod, it is of fine sand.
On the days of the full and change of the moon, it is high water off Boston Lighthouse at ten o'clock. It flows off the town till a quarter of an hour after eleven. The spring-tides rise 16 feet perpendicularly; neap-tides, 12 feet.
To Sail in during tie night, or turn within the Liohthouse Anchor-AGE.-Coming from sea in the night, bring the lighthouse to bear West, and steer for it obscrving to incline your course southerly as you approach, in order to give a berth of two cables' length to tho Lighthouse Island. When you are nbreast of tho light, shape your course West, until it bears from N.N.E. to N.E. Here, if not acquainted with the harbour, you may anchor till daylight. With the wind betweon the S.W. and N.W. quarters, a ship may, in great safety, turn up within the Lighthouse anchorage, taking care not to stand further southward than to bring the lightto bear W.S.W., nor further northward than N.N.W.
Boston Harbour.-Of the entrance of the harbour is a small shoal, called the Cod Bunki, which lies E. by S. ncarly thrice miles from the lighthouse, and in the
fairway of the harbour, with Point Alderton and the north sides of the two islands within it nearly in a line, W. $\frac{1}{2}$ S., and the S.W. ends of the two outer islands on the north side, in a line, bearing N.W. $\frac{1}{4}$ W.
On the Sonth, or port side of the entrance, are Harding's Rocks, a cluster steep-to, and which lie at the distance of $2 \frac{1}{4}$ miles S.E. from the lighthouse. At low water the largest rock shows itself about twenty feet long and four feet high. It is surrounded by smaller blind rocks, extending about 140 fathoms' on all sides. The marks for the largest are the S.W. point of the Lighthouse Island and western point of Great Brewstor Island in one, and Nahant Rock, nearly N. by E. a small ship's length open with the S.W. end of the rocks called the Graves. A white boy is now laid on the N.E. side of the Harding's, which is, on entering, to be left on the port hand.

Alderton Shoal extends in a northern direction from the bluff head of Point Alderton, on the South side, and about one-third over. There is a red buoy on the outer part of this shoal, which bears from the white buoy of the Hardings N.W. by W. $\frac{1}{6}$ W. one mile and a half.

The Egg Rocks are a cluster, above water, on the North side, at the distance of half a mile E. by N. from the lighthouse on Brewster Island.
The Beacon on the S.W. end of the Spit of Great Brewster Island stands at the distance of a mile and a quarter W. $\frac{3}{4} \mathrm{~S}$. from the lighthouse. It marks the entrance of the Narzows*, which lie between Lovell's Island on the East, and George's Island, with Gallop and Nick's Mate Island. on the West. On the north side of the Narrows is a red beacon light.
The Centurion, a rock of eleven feet at low water, lies at nearly half a mile S , : W. from the bacon, and is left, on entering the Narrows, on the West or port side. It lies with the S.E. points of Great Brewster and outward Brewster Isles in a line, and one-third of Nick's Mate Island shut in with the east side of Gcorge's Island.
From the S.E. side of George's Island a rocky bank extends to the distance of more than a quarter of a mile, and has on its extremity a black buoy. The entrance of the Narrows lies between this buoy and the Beacon Point.

On Nick's Mate Island, at the other end of the Narrows, upon the western side, is a baacon, or monument ; and upon the northern part Long Island, nearly a mile to the westward of Nick's Mate Island, is a lighthouse.
On coming inward, direet from the East, for Boston Harbour, the proper parallel, if it can be kept, is $42^{\circ} 20^{\prime} \mathrm{N}$. The Cod Bank, already described, lies in $42^{\circ} 19^{\prime} 40^{\prime \prime}$. If a ship should happen to fall to the southward of the harbour, care must be taken to avoid the Cohasset Rocks, which lie at some distance from the land, five miles to the south-eastward of Point Alderton. On the outer one, ealled Minot's Leelge, as the lighthouse on it as above deseribed. From this lighthouse the course to Boston Harbour is N.W., distance two leagues. In running thus, you will pass the white buoy on Harding's Rocks, and may thence haul up to the westward, passing between the Lighthouse Ifiand and the red buoy on Alderton Shoal.
From the middle of the Lighthouse Channel steer W. by N. one mile, to the beacon on the Spit, to which you may approash within one quarter of a cable's length, leaving it on the starboard hand, while the Centurion Rock and black buoy on the shoal ground of George's Island are left on the port. Having thus entered the Narrows, the Course up to Gallop Island Point is N.W. by N. three quarters of a mile; and thence through, by Nick's Mate, N.N.W. half a mile. The heacon on Niek's Mate may be left on the port hand, at the distance of a cable's length.

[^161]
by

Isla

fath
Mid

Mid
han
most
mile

NANTUCKET SHOALS.

two islands islands on the
uster steep-to, At low water h. It is sur11 sides. The western point a small ship's ite boy is now ft on the port

Point AlderI on the outer J.W. by W. $\frac{1}{6}$
the distance of
unds at the disthe entrance of teorge's Island, of the Narrows
lf a mile S, $\frac{s}{8}$ t or port side. wster Isles in ide of Gcorge's
listance of more entrance of the
vestern side, is ly a mile to the
oper parallel, if $42^{\circ} 19^{\prime} 40^{\prime \prime}$. If st be taken to miles to the
Ledge, as the arse to Boston pass the white ssing betweell
to the beacon cable's length, lack buoy on is entered the quarters of a
The beacon on ngth.
hearly in midoss has picked ghthouso N.E. puse.

From Nick's Mate, the course for Castle Island, through the main channel is W. by N. three miles. In running thus you will first leave a white spar buoy on the Lower Middle Ground upon the starboard hand, which buoy is a mile below Castle Island.* You will next see a white broy upon the Castle Rocks; which lies in 2 fathoms, on the port.

When abreast of the castle, steer N.N.W. one quarter of a mile, to clear the Upper Middle Ground, which has a black buoy on it, in 2 fathoms, to be left on the port hand. Should this buoy happen to be taken up, run N.N.W. until the two northernmost steeples in Boston are a handspike's length open; a course then N.W. by W. 2 miles, will bring you up to the town.

Broad Sound is the northern entrance of Boston Harbour, but is not a proper channel for large vessels. Without its entrance are the Graves, a cluster of rocks appearing white, and which lie in latitude $42^{\circ} 22^{\prime} 30^{\prime \prime}$: these may be left on the port hand, at the distance of two cables' length. Bring them to bear S.E., and run on S.W. by W. This course, for four miles, leads up to the lighthouse on the north point of Long Island, described above.

Nantucket Shoals.-These very dangerous shoals, lying immediately in the line of traffic of the coasting trade of the Inited States, have been but very little known till within a very few years; and then their limits were first more exactly defined at the expense of a private individual, Mr. E. M. Blunt, of New York. These "Goodwin Sands" of the United States now, however, appear tolerably well examined, though still some doubt has been expressed as to whether their entire extent has been ascertained, by the United States Coast Survey, chiefly by Lieutenant Charles II. Davis, United States Navy. The danger of these formidable shoals is much reduced by the new lighthouse on Sankaty Head, completed in 1849. This tower is 70 feet high, painted in three horizontal rings, and shows a dioptric fiashing light every $1 t$, $1 \frac{1}{5}$, and 3 minutes, at an elevation of 150 feet, consequently visible from Davis South Shoal.

The Old South Shoal has from 6 to 18 feet water on it, and is $2 \frac{1}{8}$ miles in exteut. From its centre Sankaty Head bears N. $22^{\circ} \mathrm{W}$., true, or N. by W. $\frac{1}{4} \mathrm{~W}$. by compass ; distant $12 \frac{1}{3}$ miles.
From the middle of the New, or Davis' South Shoal, discovered in 1848 (8 to 18 feet, $1 \frac{1}{6}$ miles in extent), the middle of the Old South Shoals bears $N .4^{\circ} E$., trus, or N. by E., mag., distant $6^{\frac{3}{6}}$ miles. No part of Nuntucket Island is visible from it in the clearest weather, but the Sankaty light may be seen.
The Light-vessel which lies nearly 2 miles to the south of Davis' South Shoal marks the limit of dangers in this direction. She lies in 14 fathome, in latitude $40^{\circ} 58^{\prime} 30^{\prime \prime}$ N., long. $69^{\circ} 52^{\prime} 30^{\prime \prime} \mathrm{W}$. The shoal soundings, however, do not cease here for a spit with 8 to 10 fathoms extends for about 7 miles further South.
Within the Old North Shoal there are very many dangerous patches ${ }_{\text {i }}$ which can be best deseribed in the chart, but to the eastward of Nantucket Island, in October, 1849, six shoals, of small extent, but not the less dangerous, having from 9 to 14 feet, were diseovered and placed by Lieutenant-Comm. M'Blair to the northward of these. They lie generally about East, true, from the Great Point light of Nantucket Island, at distances varying from 01 to $11 \frac{1}{4}$ miles off. They are sharp, abrupt ridges of fine white sand, which are readily discovered by the rip of the tides at all times; except at slack water, nut by daylight the exhibit the usual discoloration.

[^162]To the sonthward of M•Blair Shoals, a line of breakers and shoal patches, called the Great Rip, extends to lat. $41^{\circ} 2^{\prime}$. To the East of the southernmost of these patches, with 9 feet water, a buoy-boat is moored. At $2 \frac{1}{2}$ miles East of this is another long shoah, Davis' Bank, diseovered in 1848, on whiel there are only $3 \frac{3}{2}, 4$, and 5 fathoms for 5 miles. Beyond this the depths are 15 to 20 fathoms till we reach the outermost shoal known at present, the Fishing Rip, a line of shoal paches, with 4 to 9 fathoras on it, between 41° and $41^{\circ} 10^{\prime}$.
It would seem as if this labyrinth of shoals would scarcely ever bo known, for in 1860 the Asia diseovered a line a line of 10 fathom patches 15 miles S.S.E. of the tail of the Fishing Rip, where the water was supposed to be deep.

The main body of the flood tide runs to the eastward, the ebb to the westward. The currents always run across the line of directions of the shoals, and are much more rapid daring their passage. This makes a near approach particularly dangerous on the side toward which the tidal current is setting.

The current is never still. During what is called slack-water, the velocity is rarely less than half, sometimes more than 1 mile. A careful attention to eurrents is important in this vicinity.

It is high-water, full and change, at $\mathrm{XII}^{\mathrm{h}} 4^{\mathrm{m}}$, mean rise and fall 3 feet 2 inches.
From the Nantucket Lightship to Montauk Point Lighthouse, at the East point of Long Island, the bearing and distance are W. by N. 91 miles. From Montauk Poiut, the South coast of Long Island trends W. by S. $\frac{1}{2}$ S. for 32 miles, to Shinnecock Bay, in the rear of which is a high lighthouse, 150 feet high, showing a fixed light. From hence to the Fire Island inlet, at which there is another high lighthouse, with revolving light,' is W. by S. $\frac{1}{4}$ S. 34 miles, and from hence to Sandy Hook is W. $\frac{3}{4}$ S. 37 miles.

NEW YORK.-The lighthouses and light-vessel which indicate the entranee to New York Harbour, are described in the table. The chart of the approaches is the best guide, both for the depth and quality of bottom, and Lieutenant Maury has founded an elaborate description on its indications which cannot be quoted here. The water shoalens gradually towards Long Island, but is deepest at the East end, where 20 fathoms is found at 9 miles off, while at its west end this depth is only to be got at 25 niles off. This circumstance is a good guide. There is another singular feature .which may mislead if not known. There are about seven deep holes lying in a southeast direction from Sandy Hook, which have from 10 to 15 fathoms more water than immediately aronnd them ; but the outermost is in lat. $39^{\circ} 37^{\prime}$ N., long. $72^{\circ} 25^{\prime}$, and has 145 fathoms, nearly 100 fathoms more than surrounds it, and 15 milcs within the 100 fathom line. The others are known as the $38,37,37,32,21$, and 23 fathom holes. This range of holes, with the light-boat at one end, and the 38 fathom hole at the other, is 55 niles long and 14 miles broad at the outcr end, and 2 miles at the inner end. This will, by eareful attentiin, afford a good guide.

When Block Island bears N., distant 4 or 5 leagues, you cannot see any land to the northward or eastward; but as you approach the island, you see Mcatauk Point to the westward, making a low point to the eastward, on which is a lighthoase. In sailing W.S.W., you will make no remarkable land on Long Island, from the eastward of said island to the westward, its broken land appearing at a distance like islands; but may discover Fire Island light-house, which shows a revolving light. From Fire Island light, a shoal extends south three-fourths of a mile, on which the flood tide sets very strong. It is not safe to approach the shore nearer than 2 miles when the light bears to the E. of \mathbf{N}. To the eastward of the light the shore is bold. When Fire Island light bears N.. in 10 fathoms water, you may steer W. by S., which will carry you up with Sandy Hook light. The quality of the bottom is variour, viz., yellow, red, brown, blue, and grey sand, within short distances. About South from Fire Island, 33 miles distant, and 40 miles S.E. by E. from the Highlands, lies a bank, extending from N.E. by E. to S. W. by W., having on it from 10 to 14 fathoms, pebbles. Within this, a short distance, you will get 20 fathoms, when it shoals into
nathoms, grey sand, which depth you will carry till you get into what is called the \%. d Hole, where are from 20 to 36 fathoms water, marl or green ooze, and sometimes pebbles, the deepest part of which bears East from the northernmost part of the Woodland, 10 miles ; and S.E. $\frac{1}{2}$ S., 15 miles from Sandy Hook light. From the Mud Hole to the bar of Sandy Hook the water shoals gradually, as laid down on the chart.
You will have 20 or 22 fathoms water out of sight of the land, sandy bottom in some, and clay in other places. Before you come in sight of Sandy Hook lighthouse, you see the Highlands of Neversink, with its lighthouses, whicu lie W.S.W. from Sandy Hook, and is the most remarkable land on that shore.
If you fall in to the southward, and make Cape May, on which is a lighthouse exhibiting a flashing light, it would be prudent to keep about thrce leagues off, to avoid Hercford Bar, which lies from 4 to 6 leagues from the cape to the northward, and 8 miles from the inlet of that name. This inlet is frequented by the Delaware pilots, having no other harbour to the northward until they reach Egg Harbour. After passing Hereford Bar, you may steer N.E. when in 10 fathoms water, taking eure that the flood tide, which sets very strong into the inlet, does not draw you too close ; this course continued will carry you up with Egg Harbour; you will then have fine white and black sand, intermixed with small broken shells; by continuing the same course, you will deepen your water, and so continue till you draw near Barucgat Inlet. [In running along the shore, do not steer to the northward of N.E., if in 10 fathoms water or less, as you will be apt to get on Absecom Shouls, or Egg Harbour Bar.] On the South side of Barnegat Inlet, a lighthouse, showing a revolviing light, is erected, off which you will get bright coarse yellow gravel. The shoal off Barnegat does not extend beyond two miles from the beach, and is steep-to ; you may turn this shoal in 6 fathoms water, within pistol shot of the outer breaker. It would always be prudent to keep in 9 or 10 fathoms water during tho uight, and not steer to the north of north-east, unless certais of being to tho north of the shoal.
The soundings are so much to be depended on, that the moment you lose the above soundings you are past the shoal, when you will have fine black and white sund, and very hard bottom; you may then haul in for the land N. by E., which course will bring you along shore in from 10 to 17 fathoms water, but if the wind and weather permit, I would recommend hauling in N.N.W., which will bring you in with the southernmost part of the Woodlauids, which is very remarkable, having no other such land in the distance from Cape May up to. the Highlands, and can be distinguished by its being very near the beach, and extending to Loug Branch.
In passing from Barnegat to Sandy Hook, when to the southiward of the lights on the Highlands, you must not open the northern light (which is a fixed light) to the westward of the southeru light (which shows a revolving light), as that will bring you too near the Jersey shore.
As a number of vessels have been lost, bound into New York, from heaving to with their head on shore, we cannot too strongly urge on tho siipmasters the necessity, if he is in doubt of his position, of heaving to with the head off shore.
Directions for proceeding onwards into New York Bay must be left for more extended works and to the assistance of pilots.
SANDY HOOK to the DELAWARE.--To the valley at the foot of the Highlands of Navesink succeeds a tract of low table land, and southward of this is a cousiderable and remarkuble tract of Woodland, which terminates at 6 leugues S . by W . from the Navesink lighthouses ; next follows an extensive lagoon, named Barnegat Sound, which is fronted by a narrow strip of low land. The coast from the Highlands of Navesink to the elbow of an island, called Barnegat Long Beach, trends nearly S. by W. true 38 miles, and the soundings regularly decrease toward shore from 12 to 7 and 5 fathoms.
In the jarallel of $39^{\circ} 48^{\prime}$ is the Inlet of Barnegat, or the entrance of Barncrat Sound. On the South side of it is a red und white lighthouse, 160 feet high, with a
revolving light. A shoal bar extends outward from this place to the distance of two milee, and the bottom is an admixture of mud, shells, and gravel. The onter edge of thie shoal is steep-to, and you may pass it in 6 fathoms within a short distance from the outer breaker; but, during night, keep at least in 9 or 13 fathoms. The soundinge more to the northward in these depths are fine white sand, with very hard bottom.
Barnegat may be readily kuown in the day, even when the breakers are not seen, as there is a long grove of wood, back in the country, apparently 3 or 4 miles long, directly within the Inlet, and commonly called the Little Swomp. With the North end of this land directly abreast, you will be to the northward of Barnegat.

Between the elbow of Barnegat Long Beach and Cape May, at the month of the Helnware, the coast forms a gentle concavity, but its general trend is nearly S.W. S. and the distance 18 leagues. The land is, generally, low and-broken, forming several islets and inlets. The soundings are regular, commonly 8 to 10 fathoms at 2 leagues from shore; but there is a sand bar at every inlet, several of which extend off to a considerable distance.

LITTLE EGG HARBOUR, in the parallel of $39^{\circ} 28^{\prime}$, long. $74^{\circ} 19^{\prime}$, is a small harbour formed by low isles or beaches on the east, and by salt marshes on the west. It is known as the port of Tuckerton. To a stranger this harbour cannot be recommended, unless as a retreat in case of emergency, several shoals about the entrance being dangerous; yet it has frequently served as a place of shelter in the winter, when violent N.W. winds have prevented vessels from entering the Delaware or New York Harbour.
Absecum Inlet, at the distance of six miles S.W. from Little Egg Harbour, is another harbbur which affords shelter to vessels of easy dranght. A lofty to Ner, 150 feet high, on the sonth side of the inlet, shows a bright fixed light.

The shoal water extends at least 2 miles eff ehore at Absecnm Inlet and at $2 \frac{1}{2}$ miles E.S.E. of the lighthouse is a 3 fathom shoal.

In sailing between New York and the capes, if the wind should be in the northwest quarter, with which, in general, is clear w sather, keep no further off than to 10 fathoms; the nearer in-shore the stronger the current, which sets about one mile in an hour. The tide of flood runs W. by S., and the ebb E. by N., but you will have no tide till further off than in 8 or 9 fathoms.

If you are turning, with the wind to the westward, stand off no further than to 18 or 210 fathoms of water. You may venture to atand in-shore into 6 fathoms, until you advance towards Hereford Creek, or about two leagues to the northward of Cape May.

The greatest danger to a ship cruising hereabout is the shoal called the Five Fathom, or Cape May Bank, and lying at the distance of 4 to 5 leagues East to E.S.E. from Cape May. Much of the danger is averted by the Lightvessel, showing fixed lights, which is moored in 12 fathoms outside of it.
DELAWARE BAY.-CAPE MAY and CAPE HENLOPEN, the two extremities of the estuary called the Delaware River, bear from each other S.W. by 8. and N.E. by N., 10 miles distant. Each is distinguished by lights at night. A great tract of Overfalls and broken ground, southward of Cape May, is two leagues in extent; the depthe over them are from 5 to 15 feet. These shoals form the two channels into the river, of which the chief, between the shoals and Cape Henlopen, is nearly 5 miles in breadth.

CAPE MAY Lighthouse is on the extreme S.W. point of the cape. At present it shows a fixed and flashing light, but a new tower intended, of 150 feet high, will show a revolving light, and bears N.E. by N. about 11 miles from Cape Henlopen light.

CAPE HENLOPEN Lighthouse is of an octagonal form, handsomely built of
stone, lanter off, if At near t range
ance of two uter edge of istance from The sound1 very hard
ure not seen, miles long, th the North at.
nouth of the early S.W. cen, forming fathoms at 2 rhich extend
a small harthe west. It ot be recom; the entrance winter, when or New York
igg Harbour, A lofty to wer,
ad at $2 \frac{1}{2}$ miles
in the northoff than to 10 it one mile in you will have
her than to 18 ms, uutil you ward of Cape

Five Fathom, E.S.E. from fixed lights,
the two exther S.W. by at night. A 3 two leagues form the two Henlopen, is

At present it et high, will pe Henlopen
rely built of
stone, 72 feet high, an 1 its foundu is 118 feet above the level of the sea. The lantern is between 7 a $d 8$ fcet square; the light is fixed, and may be seen at 20 miles: off, if the weather be clear.
At the distance of three-quarters of a mile from the Cape Henlopen high light, and near the sea, is a fixed beacon light, of small power, 35 feet high. The two lights in range is the leading mark for carrying vessels into the Roads, within the cape.
To Enter the Channel by Cape Henlopen.-The coulso in the fairway between Cape May and the light-vessel, which has been described, is S.W. until the lightrionse on Cape Henlopen bears West. Then steer for it in the latter direction, and within two miles from it you will have 14 or 15 fathoms of water; having passed it, you may steer W.N.W. until you bring it to bear E.S.E., when you may anchor in Oldkiln Road, in 3 or 4 fathoms.

The Beacon Ligit on Cape Henlopen, already noticed, exhibits a brilliant light that can be seen at six leagues off. It stands on the extreme north end of the cape, very near the beach, and bears N. $\frac{3}{4}$ W. three-quarters of a mile from the high light. Vessels running in for Oldkiln Roads, may, when the beacon light and lighthouse are in one, approach the former within a cable's length, then steer W.N.W. until the high light bears S.E. and anchor in 4 fathoms, good holding ground.

The estuary of the Delaware for 70 miles from the sea, has no safe natural harbour, and to remedy this defect the General Government of the United States have constructed a nagnificent breakwoter within Cape Henlopen, forming a safe artificial harbour. On the N.W. end of the breakwater there is a lighthouse, showing a fixed light, with a flash every $\frac{3}{4}$ of a minute.

- In approaching from sea, and going in by the south passage, give the bencon-light on the pitch of the cape a berth of from 4 to 500 yards, and when you bring the west end of the breakwater to bear N.W., steer for it, and anchor in a line between it and the government house on the beach, as close to the works as you can with safety ; the light on the west end bearing about N. or N. by W. There is no difficulty, with common attention, in running into the anchorage to the south of the breakwater, even in a gale of wind, cither between the two works, or by the passage, to the S.E. of both.

Vessels bound from the Delaware to the Chesapeake shonld, in order to avoid the Hen and Chicken, \&C., which run to the S.W. of Cape Henlopen, steer ont with the lighthouse of Cape Henlopen E. by S., to the distance of ten miles, (the beacon light in range with the light on the breakwater will lead you on the edge of the Hen and Chicken). They may thence, with an off-shore wind, pursue a S. by W. course for 13 leagues, which will clear the Gull Banks on the west. Thence S.S.W. $\frac{1}{4}$ W., 20 leagues, leads to the parallel of the light on Smith's Island; and the same course con-: tinued, eight leagues further, brings you in sight of the light on Cape Henry, presently described, and bearing W.N.W. In order to avoid the tail of the Mizdale Ground, you run in with the light in that direction, and round the point into Lynhuren Bay, or proceed upward, as hereafter directed.
In proceeding along these coasts, during easterly winds, great caution is requisite; as with such winds the weather is generally hazy, and the coast obscured. The current will generally be found setting to the S.S.W., in the direction of the shore. The drift of several current bottles have demonstrated this.

On the courses above prescribed, the soundings will be found to vary from 11 to 15 and 16 fathoms, until approaching Cape Charles, where from 9 to 8 fathoms may be found. At ten miles E.S.E. from Cape Henry, are from 10 to 12 fathoms, which depths continue in a W.N.W. direction to the Cape.

The Coast of Delavoare, south of Cape Henlopen, is ncarly a straight line running due South, true, for 11 miles, to Indian River Inlet, and 10 miles further to the boundary between Delaware and Maryland. It is very low, broken into long narrow islands, with offl-lying shoals to the distance of 1 to $1 \frac{1}{2}$ miles.
Fenwick isiand Lighthouse, which stands on the state boundary, in lat. 38 $\mathbf{2 7}^{\circ}$ shows a bright fixed light, with a flash every two minutês, from White Brick tower.

South of the parallel of 38°, the shores appear in numerons islets, drowned land, and inlets, into which craft only can be admitted; and it so continues to Cape Charles, at the mouth of the Chesapeake. There appear, in all this extent, no other distinguishing marks whieh can be useful to a stranger, until we arrive in latitude $37^{\circ} 13^{\prime}$, where a revolving light marks the north end of Smith's Island, as will be presently noticed.

Matomkin and Machi-Pongo are very dangerous harbours in a gale of wind; but you may ride along shore with the wind from N.W: to S.W. When the wind blows hard at N.E. or E.N.E., and you are in sight of Chincoteague Shoals, your only chance for safety is to stand to the southward, for you cannot clear the land to the northward.

The coast of Maryland, south of this as far as Chincoteaguo Inlet, in lat. $37^{\circ} 54^{\prime}$, is still a low, straight coast, cuirving towards the west, and off it are some dangerous shoals; whose character and position have been ascertained by the U. S. coost Survey in 1852.

Fenvoick's Island Shoul.-The centre of this shoal is in $38^{\circ} 27^{\prime} 30^{\prime \prime}$ N. latitude, and in $74^{\circ} 56^{\prime} 09^{\prime} \mathrm{W}$. longitude. It is about 2 miles long, running from S.W. to N.E. The least water on it is 15 feet. It biars (S.E. by S.) distant 11 miles from Indian River Inlet, and E. $\frac{1}{8}$ N. from Fenwick's Island Lighthouse. On the seaward side; the soundings change suddenly from 10 to $2 \frac{1}{2}$ fathoms, and there are 10 fathoms about 2 miles West of this shoal which appears to be extending on the West side and towards the North.

Isle of Wight Shoal, on which there are but 3 fathoms water, lies 4 miles S. $\frac{1}{\frac{1}{8} \mathrm{E} .}$ from the centre of Fenwick's Island Shoal. It is nearly $6 \frac{1}{\frac{1}{9}}$ miles East of the beach, and bears East from Isle of Wight woods. There are 10 fathoms water within a mile. on either side of this shoal.

Midway between these two shoals there is a spot with $3 \frac{1}{8}$ fathoms water on it.
At 9 and 11 miles Sonth of the lighthouse, are two shoals, Little and Great Gull Bunks, with 12 and 18 feet water over them, lying 2 and 5 miles off shore. South of the latter 10 miles, and 8 miles off shore, is a small patch of 21 feet. At 30 miles southward of Fenwick's lighthouse is Winter Quarter Shoal.

Winter Quarter Shoal is $1 \frac{1}{2}$ miles long and one-third of a mile wide, running in a direction E. by N. $\frac{2}{4}$ N. and W. by S. $\frac{1}{4}$ S. (E.N.E. and W.S.W.) with not over $3 \frac{1}{4}$ fathoms water upon it.

The least water is 12 feet in several places, at low tide. On the seaward side the soundings change suddenly from 2 to 4 , and then to 2 fathoms. It is 64 miles distant from the nearest land, with 10 fathoms water between it and the shore.

In clear weather the laniurn of Assateague Lighthouse is just visible from it. The centre of the shoal bears from Assateague light E. by N. $\frac{1}{8}$ N. (E. by N. $\frac{3}{4}$ N.) distant $11 \frac{1}{\frac{1}{2}}$ miles.

This is a highly dangerous shoal, as the soundings change suddenly, and it lies directly in the track of vessels. The sea breaks upon it in heavy weather.

Black Fish Banks form a long narrow bank or ridge, running in a direction N.E. $\frac{1}{\frac{1}{2}}$ E. and S.W. $\frac{1}{3}$ W. (N.E. $\frac{1}{4}$ E. and S.W. $\frac{1}{4}$ W.) $4 \frac{3}{3}$ miles long, with an average width of one-quarter of a mile, and distant from $4 \frac{1}{2}$ to 6 miles from the shore, with from $3 \frac{1}{4}$ to 5 fathoms water upon it. The north end bears E. by S. (E. $\frac{3}{4}$ S.) distant $7 \frac{1}{4}$ miles, and its south end S.E. $\frac{1}{8}$ S. (S.E. $\frac{1}{4}$ S.) distant $5 \frac{3}{4} \frac{1}{4}$ miles from Assateague Lighthouse.

Chincoteague Shoals are the outer shoals off Assateague Lighthouse, and bearing from it from S. $\frac{1}{4}$ W. (South) to S.E. by E. (E.S.E.) comprising six points of the compass and at a distance from it of from $3 \frac{3}{4}$ to $4 \frac{1}{4}$ miles. They have from 9 to 17 feet water upon them.

Assateague Lighthouse stands on an elevation about one mile distant from the beach. It is a fixed light and at night in clear weather can be seen at a distance of about 15 miles.
ned land, and pe Charles, at r disting uish$37^{\circ} 13^{\prime}$, where ently noticed. wind ; but you ad blows hard aly chance for north ward.
in lat. $37^{\circ} 54^{\prime}$, ome dangerous coast Survey
latitude, and s.W. to N.E. es from Indian scaward side; fathoms about West side and
miles S. $\frac{1}{\frac{1}{3}}$ E. of the beach, r within a mile.

ater on it.

and Great Gull shore. South 1 feet. At 30
e, running in a a not over $3 \frac{1}{4}$
e seaward side ms. It is $6 \frac{1}{4}$ en it and the

Within a semicircle of this distance the light being the centre, the bottom is very uneven and broken. The general divection of the current is to the southward and westward.
THE CHESAPEAKE, one of the finest estuaries on the globe, heing 160 miles in extent from North to South, is the recipient of many important rivers, which fall into it on all sides, but especially on the north and west. At its head is the Susquohanna, which pervades Pennsylvania; on the N.W. the Patapsco, falling from Baltimore; at a degree further sonth is the Patuxent ; then the Potomac, which passes the federal city of WAsmington; the Rappahanock, running downward from Fredericsburg; York River, on which are situated York Town and Gloucester; James River, on which stands the town of Richmend; and, in the south, Elizabeth River, the harbours of Norfolk, \&a.
Its entrance lies between Cape Charles on the North and Cape Henry on the South, being about 10 miles in width, but owing, as it appears, to the southward drift, the northern side of the entrance, like the Delaware, is embarrassed by shoals.

Cape Charles Lighthouse, which at present stands on the N.E. end of Smith Island, or above 4 miles eastward of Cape Charles itself, marks the no 'thern side. It shews a revolving light, but a new tower, 150 feet high is building-(see Table).
Cape Henry Lighthouse marks the southern entrance, and shows in fixed light.
Ships falling in with the land to the northward of the entrance, should not stand inwards to a less depth than 7 fathoms, until they come into the latitude of Smith's Island and Cape Charles, whence they may stand with safety into 5 fathoms. In coming along shore from the southward, 7 fathoms will be a proper depth to keep in, until up with Cape Menry ; whence, falling into 8 or 9 fathoms, with a stiff or sticky bottom, you will be in the channel-way.

When you come in towards the land, to the southward of Cape Henry, you will have deeper water than when you are in the latitude thereof; as 21 fathrms, reddish sand, and pretty large: 9 leagues off it there are 35 and 40 fathoms, fine grey sand.
The land is low and sandy ; you cannot see it above 7 leagues off. Cape Henry is low, but bluff, with a few trees to the sea side, at a little distance from the water: it moderately steep-to, excepting that a small shoal stretches about two cables' length from the shore east of the lighthouse, and there is nothing to hinder a ship from passing into Lynnhaven Bay, where there is soft ground, and from 4 to 6 fathoms of water. The bank called the Niddle Ground is about 4 miles from the Cape.
When coming in from sea, in the latitude of Cape Henry, $36^{\circ} 56$, you will meet with soundings, as above described. You may readily ascertain when in soundings by the muddy colour of the water. In clear weather, the land of Cape Henry may be seen from the depth of 10 or 11 fathoms, regular soundings, which extend 5 or 6 leagues to the southward of the Cape: more to the northward, the soundings are irregular and coarser, as above described.
. In coming in for the Chesapeake, you may advance to Cape Henry, but cantiously avoiding the Middle Groand, which occupies so large a portion of the entrance, and which may be still increasing. With a northerly wind you may approach this bank to the depth of 5 fathoms. To the southward of it you find 12 and 13 fathoms, as well as in the channel between it and Cape Henry. This channel has a depth of 8 fathoms close to the Cape.
With a fair wind, you may run in with the lighthonse bearing W. by N.; and, with a turning wind, you may stand to the southward until it bears N.W. by N., and to the northward until it bears West.
If requisite, you may run in with the lighthouse bearing West, as this course will lead to the channel-way, in from 7 to 10 fathoms, sticky bottom, as before mentioned. It is then proper to take soundings towards the southern fhore; and, in order to this,
steer West, until you have advanced to a short distance from the lighthouse; then, rounding the point, you may haul into Lynn Haven Roads, and drop an anchor as most convenient, in from 7 to 4 fathoms.

From Cape Henry, in latitude $36^{\circ} 55^{\prime}$, to Cape Hattreras, in $35^{\circ} 14^{\prime}$, the coast forms a concavity in the greater part of its length, to the latitude of $35^{\circ} 40^{\prime}$, trending nearly S.S.E.; and the rest inclines a little to the westward of south to the extremity of the cape, now represented in longitude $75^{\circ} 30^{\prime} \mathrm{W}$. It is all low, and bordered with narrow islea, at the back of which are Curvituck Sound, Albemarle Sound, Pamlico Sound, \&c.

The Wimble Shoals lie between the latitudes of $35^{\circ} 30^{\prime}$, and $35^{\circ} 34^{\prime}$. They extend two leagues out from the shore, but there is a passage between them and the land. The sea always breaks over them in a gale.

To the southward of the Wimble Shoals, there is a large muscle-bank, intermixed with cockles and small pebbles, having $5,4 \frac{1}{5}$, and 4 fathoms of water : it outcr ledge is about 4 miles from land, and there is a depth of 9 fathoms between it and the shore.

Cape Hatteras, although not conspicuous for its elevation, being only a low sandy spit, gradually extending to the sonthward, is very remarkable as being a turning point in the coast of the United States. The shores on either side are purely diluvial, formed and extended by the action of the currents which drift past them. Lying upon the line of junction between the two wind and current systems, where the East and West tendencies divide, we here meet with the first evidence of the conflict between them in the singular line of shoals which project at right angles to the line of coast; an evidence of the conflict between the Gulf Stream and the southerly current coming from high northern letitudea.*
THE LIGKTHOUSE on Cape Hatteras now stands 2 miles North of the point it was built to indicate. It shows a revolving light at 150 feet. Near tho extremity of the point a fixed beacon light is shown, which bears S. $\frac{1}{2}$ W. from the high light.
THE HATTERAS SHOALS are most dangerous. The outer shoals, $3 \neq$ miles in extent, have from 9 to 15 feet water. Between them and the Diamond Shoals is a 6 fathom channel 2 d miles wide. These shoals have 12 feet least water. A spit runs off for If miles S.S.E. of the beacon light.

Cape Hatteras Light bears N. 37° W., distant about $8 \frac{1}{4}$ nautioal miles from the south-eastern edge of the 9 feet or Outer Shoals.
To clear the Outer Shoals, in approaching them from the northward and eastward, bring the lighthouse to bear West in 12 to 10 fathons water, when run South keeping in not less than 10 fathoms water, until the lighthouse bears N.W. I N., when eny course South of West may be steered with safety.
In coming from the southward and westward keep in not less than 10 fathoms water, until the lighthonse bears N.W., when any course eastward of North may be steered. The beacon light and the high light in one clears all to westward.

In bad weather, and especially at night, do not approach the Outer Shoals nearer than 15 fathoms water from the northward and eastward, and 12 to 11 fathoms from the southward and westward.

It is necessary to watch the bearings of the lighthouse, and keep the lead going in beating around or between the shoals. In approaching the shoals at night or in bad weather, if the lights have not been scen before night, it will not be prudent to ran in for it.

As 10 or 11 fathoms water may be found to the westward of the shoals, in going outside of them from the mouthward and westward do not approach the land to the southward of the Cape nearer than $8 \frac{1}{8}$ to 10 miles.

[^163]Betweerr Cape Hatteras and Cape Lookout, the next projecting point, a long sweep of narrow banks which separate the ocean from Pamlico Sound, extend in a curvo for 64 miles.
The narrow beachy isles which form the coast hotween the two capes, form an inlet into Pamlico Sound, named Ocracoke Inlet; the shoal bar of which (extending two miles seaward) is 9 leagues S.W. by W. $\frac{1}{8}$ W. from the lighthonse on Cape Hatteras, and 13 leagues N.E. $\frac{3}{4}$ E. from Cape Lookout. On the eastern side of the inlet. is a lighthouse, exhibiting a fixed light, which bears from the middlo of the Bar, in 13 feet water, N. $\frac{1}{8}$ E. $3 \frac{1}{4}$ miles, whence the course in is N.W. by N. $\frac{1}{8}$ N.
The soundings all along, between the shoals extending from the two capes, are regular, gradually diminishing from 14 and 15 fathoms to 5 , and 6 fathoms near shore, all sandy ground.
CAPE L JKOUT is marked by a red tower 96 feet high, showing a fixed light. It stands $2 \frac{1}{8}$ riles N.N.E. of the point of the cape.
The light may be seen from the outer end of Cape Lookout Shoals; hut vessels passing are recommended rather to trust to the lend than to making the light.
From Cape Lookout the shoals extend, nearly in a S.S.E. direction, to the distance of 3 leagues from the lighthouse. ${ }^{-}$The broken ground extends to latitude $34^{\circ} 28^{\prime}$; in this parallel are 10 fathoms of water, and thence to the edge of the Gulf-Stream the soundings gradually increase to 25 fathoms. From Cape Hatteras lighthouse the outer part of Cape Lookout Shoals bears S.W. \ddagger W. $22 \frac{1}{8}$ leagues; and from the outer part of Cape Hatteras Shoals S.W. by W. at the same distance.
From the lighthouse the coast trends to the northward of West, but the low spit stretches out, as above said, for $2 \frac{1}{3}$ miles to the S.S.E. of this direction.
Beaurort Harbour is about $8 \frac{1}{2}$ miles W.N. from the South spit of Cape Lookout, and affords shelter from all winds, and is easy of access, carrying 17 feet over the bar at low-water. It can be entered with all winds except between N. and West. On the N.W. side is Fort Macon, on making which, the breakers will be seen, and with tho flagstaff of the Fort bearing N.W. I W., or by night the two lights, on the
 buoy, passing close to it, and bear northwards when rounding Shackleford Point on the starboard hand.

CAPE FEAR is the south-western extremity of another of those long beaches which characterise this portion of the American const. Its extremity bears S.W. by W. $\frac{1}{4}$ W. from the spit of Cape Lookout, distant 84 miles, but the shore receden 18 miles from the direct line.
The low sandy point known by the name of Cape Pear, is the S.E. extremity of a marshy island called Smith's Island, which forms the two entrances of Cape. Fear River and the port of Wilmington. Near Bald Head, the western extremity of this island, is a lighthouse, upon the eastern side of the southern inlet; and there is another upon the north side of the New Inlet, at three leagues north from the extremity of the cape.
The Frying Pan Shoals, a very remarkable line of reefs, runs in S.S.E. direction from Cape Fear. They are not more than a mile in breadth, and at their outer end there is a light-vessel showing two lights.
In passing Frying Pan Shoals, which extend to nearly 20 miles fron Bald Head Lighthonse, sailing vessels of heavy draft should keep in from 15 to 18 fathoms, especially in threatening weather, and under no circumstances run inte less than 10 fathoms. Steamers in good weather may cross the outer end of the ahoals in 10 fathoms. The light-vessel marks their outer end, as above said.
To clear these ahoals, vessels from the eastward approarhing Capo Fear River should bring Bald Head light to bear S. by W., and then steer N.N.W. for the mouth of the river; or bound to the eastwurd from Cape Fear River, should steer S. Gy E. to the distonce of 15 mites from the bar in 8 and 10 fathoms water, when an East course will pass over the outer end of the shonl in from 7 to 10 fathous.

Vensels drawing not more than from 9 to 10 feet, can cross the shoal at the distance of 4 miles from the point of Cape Fear, steering from E. to E.N.E. or W. to W.S.W.

Vessels drawing $10 \frac{1}{6}$ to 11 feet can cross the shoal at the distance of $5 \frac{1}{8}$ to 8 miles from the point of the Cape, steering N.E. to E.N.E. or S.W. to W.S.W.

There is a channel of not less than 13 feet running N.E. by E. and S.W. by W. 11 miles S. by E. $\frac{3}{4}$ E. from Bald Head lighthouse. Thirteen miles S.S.E. from Bald Head lighthouse there is a shoal with 7 feet water on it ; and to the eastward of it $14 \frac{1}{\frac{1}{2}}$ miles S.S.E. E. from Bald Head lighthouse, a shoal having 10 feet water on it. The sea breaks on these shoals in moderate weather. Between them is a channel about three quarters of a mile wide, with not less than $3 \frac{3}{3}$ fathoms.

These channels over the shoals should not be attempted by strangers in vessels drawing more 7 feet.

There are two shoal spots with 16 to 18 feet water on them pearing S.S.E. 1 E. to S.E. by S. distant 16 to $17 \frac{1}{2}$ miles from Bald Head lighthouse.

From Cape Fear the coast again forms a sweep of curved beach, called the Long Bay, and at $81 \frac{1}{5}$ miles S.W. W. from its extremity is Cape Roman, or Romain, lighthouse.

CAPE ROMAN is very improperly so called, it being a very Jow land, without either tree or bush, and appears, at a distance, like a sand left dry by the tide. To the W.S.W., about two miles from this cape, on the isle called the Great Racoon Kay, there is a lighthouse, 150 feet high, which exhibits a bright revo'ving light every minute, visible 23 miles off. The tower is painted in horizon stripes, alternately red and white. With the light bearing from N.W. by N. to N.E. Gy N. there is good anchorage on the flats, in 3 fathoms, to the east of the mouth of the inlet called Bull's Bay:

Cape Roman Shoals extend for $5 \frac{1}{4}$ miles E.S.E from the lighthouso, or $3 \frac{1}{4}$ from the South Spit of the Cape Island. A striped nun buoy was moored near there on the edge in December, 1855.

Vessels of heavy draught should not approach Cape Roman within eight fathoms water, there being a five fathom bank outside of the shoals.

Vessels of light draught coming from the southward, and intending to run inside the shoals, will, when in $4 t$ fathoins water, bring Cape Roman lighthouse and the old mill in range, the South point of Cape Island bearing N. by E. (N. $0^{\circ} 15^{\prime}$ E), then steer N.E. (N. 43° E.), passing directly through the slue.

These shoals are of a dangerous character, lying directly in the track of coastern, 6 miles distant from the lighthouse; they are about one mile in extent, and have but 6 feet wnter upon them, and shoal very rapidly from 6 fathoms to 3 feet. With molerate winds from N.E. or West, the sea does not breuk upon then, but with winds from S.W. around by South to the East, they are shown by the breakern on the seaward side.
Inside the shoals there is a good 15 feet channel nearly 2 miles in width.
A 6 feet ohannel extends from the south-west, leading to the harbour inside the Cape.
There is good anchorage during northerly winds S.W. of the lighthonse, with not less than 3 fathoms water.

A IIghthouse, which marks the entrance of Charleston harbour, bears S.W. IW. 35 miles from that of Cape Roman. The land between is alluvial, and forms numerous low islands - an extension of the famous Sea Islands-the principal of which are named Bull's, Capers, Devies, Long, and Sullivan's Inlands. Flats extend from all thewe isles, along which the soundings are regular. Bull's Island appeara very bluff with red sand-hille, and a spit from the outer end of it extends eastward, about of miles.

A apit called the Rattlesnake alno extends to the distance of Ave milon E. by s. from Sullivan's Island, which forme the North side of the entrance to Charlenton, and
you w lightee Whe be on of Sull clears fathom

clannnel

 and the (near F chunnel.'The I South e which al the bar

On tb shows a
lion Roa
Main
in 6 fath
the Char
passing t
Havin
Moultrie
Beacon, s up the ch open to t
When the two 1
The shi like perm ohanges in

Directic bian Navi and iii. pagee 411 informatic
the distance to W.S.W. to 8 miles T. by W. 11 from Bald tward of it water on it. s a channel rs in vessels
.S.E. $\frac{1}{1}$ E. to
ed the Long or Romain, and, without he tide. To Racoon Kay, light every Iternately red there is good e inlet called

3t from the there on the
eight fathoms
to run inside ree and the old E), then ateer
k of coasten, and have but 6
With molet with wind era on the seel.
dth.
our inside the
nose, with not
rs S.W. I W.
forma nume10 of which are tend from all ars very blufif ard, about 01
nilen E. by s . tharleston, and
you will be on the edge of it in $5 \frac{1}{2}$ fathoms. Its onter extreme is marked by the lighteessel in 6 fathoms, and showing two lights.

When Charleston churches are seen to the northward of Sullivan's Island, you will be on the cdge of the Rattlesnake; and when the churches are open to the southward of Sullivan's laland, you are clear of that shoal, or Fort Moultrie bearing W. $\frac{1}{2}$ N. clears them to the southward. You should approach no nearer to this bank than in 5 fathoms of water.

CHARLESTON HARBOUR.-The entrance of Charleston Harbour is distinguished by its lighthouse, situato in latitude $32^{\circ} 44^{\prime}$, on a low sandy point of Morris's or Lighthouse Island. The lantern is 123 feet above the sea, and exhibits a revolving light, which may be seen 8 or 9 leaguee off.
St. Michael's Church, at Charleston, is now, also, an excellent mark, it having been painted with pure white, and may be seen, in clear weather, 20 miles off.
The entrance to Charleston is between Sullivan and Morris Island. The main ship channel runs northward past Morris Island, at a mile distant, in a North direction, and the bar i. 6 miles South of the West end of Sullivans's Island. At this part (near Fort Moultrie) there are two beacons, onc bearing N. $\frac{3}{2}$ W. leading ap the channel.
The Lioirtiouse on the Sonth end of Morris Island is nearly half a mile from ite South extreme, and shows a bright fixed light; at 300 yards S.E. of it is a bencon, which also shows a fixed light. These in line are'a mark for the bell buoy outside the bar 4 miles distant.
On the flat to the North of Morris Island is the now famous Fort Sumter, which shows a bright fixed light, and here the main channel bears to the N.W. into RebeL lion Road.
Main Ship Channel.-In approaching Charleston Bar for main ship channel keep in 6 fathome water till up with the Bell Boat and the light bears nearly N.W. open the Charleston beacon 5° to the northward of Charleston light, and follow this range, passing to port of the three bar buoys,
Having passed the inner buoy, the North or further channel beacon by Fort Moultrie being open about its width to the weatward of the South or near Channel Beacon, steer North until the two Channel Beacons are in range. This range leads up the channel on a course of N. $\frac{a}{2}$ W. (N. $6^{\circ} \mathrm{W}$), keeping Haddrell's Beacon a little open to the eastward of the range.
When Fort Sumter bears W. $\frac{1}{6}$ N. and Charlestou light is open midway between the two Morris Beacons, steer N.W. by W. (N. $\left.54^{\circ} \mathrm{W} \cdot\right)^{\circ} 1 \frac{1}{2}$ miles to Rebellion Roadr.
The ahifting character of the sands which compose Charles Bar prevents anything like permanence in the channels, which are subject to frequent and very considerable changes in depth and location, particularly after a south-easterly gale.

Directions for the ports of the United Staten South of this are given in the Colomr bian Navigator, vol. 1., and for the Islands and Coasts of the West Indiem in rols. fi. and iii. Instructions for the navigation of the West Indies generally are given in pagen 411-436. To these the reador is reforred for further and more completo information.

SECTION V.

AOCOUNT OF . THE ROCKS, SHOALS, AND VIGIAS," IN THE ATLANTIC; AND OF THE AUTHORITIES ON WHICH THEY HAVE BEEN INSE: TED IN THE OHAR'.

The present section is in many respeets the most unsatisfactory portion of our work. To deal with the conflicting and imperfect necounts which so often arise of the discovery of new shoals and dangers is most perplexing. But of late these doubts have been dispelled in very many instances by the direet test of the deep sounding machine, and the testimony thus afforded as to the non-existence (at least, in the assigned position) of many of the formidablo reefs described, in perfect good faith, has led many to doubt the antlenticity of the whole range of reported rocks. And this disbelicf is unquestiounbly a growing one, but the suljeet cannot be dismissed until a satisfactory and systematic examimation of the whole bed of the ocean, now so readily done, is made.
In a subsequent section the subject of deep sea soundings will be discussed. Its great importance in relation to the present topic, of doubtful roeks and shoals is manifest, as it is almost the only test which is conclusive, and those trials which bear directly upon each shoal will be specially alluded to in this part of our work.
But while we may dismiss those dangers which have been absolutcly disproved, we may also have some doubts on the correctness of some of the soundings which have been cited to show that great depths exist in their neighbourhood. In the earlier experiments which were made with small line, quite incapable of bringing back the fead, it is evident that at times the indicatiou of them having reached the bottom by the line ceasing to run, is not altogether satisfactory.
The chief expedition which has been undertaken to disprove these numerous dangers in the Nortn Atlantie, is that sent out by the United States Government ia 1851-2, in the brig Dolphin, Licutenant Commander Lee, whose labours will be quoted hereafter.
It is grntifyiug to us to find that a former edition of this work, the Atlantic Memoir, of 1845, was made the basis of these experiments, and we give with pleasure the disproof of many of the shoals and rocks which had been announced in this work, shown to have been given from erroneous information, or imperfect observation.
But until a perfect and systematic survey of the depth of the sea is made, we cannot pronounce absolutely that it is free from isolated dangers. The enumeration of them, therefore, will be continued for the present, not with the idea of inducing too much caution, but as a reference to show that they have not been overlooked.
An isolated rock is a very diffloult matter to deteet; and oven the most laborious

[^164]surveys
Thus th posed pinnael hour ; a A manof Bray making unknow the surv culty o pinnacle in a cho
The a cvidentl
"It is whales pose of Corvo, gulls, a rock, but whale of after hav sea in th appeared
As a m here add, the sight fect repo were cau hatchet Burgund probably 1822, Ca wine, tha $34^{\circ} 51^{\prime}$, lo
We ha may be m passage \mathbf{t} noon, the appeared two parts could be It proved came up botton up rugged. ar I looked o board the
A simil Suciety. ding sails The captai Spaniards, floating ob the olert ; ing it ns a whom the
surveys have failed sometimes to detect such. More examples might be cited of this. Thus the dangerous rock in the entrance of Milford Haven occupies what was supposed to be deep water, till accident made it known. A similar very dangerous pinnacle, the Pin Rock, is of recent discovery in the entrance of Dartmouth Harbour ; another the Lee Rock, lies off the South end of Lundy Island, in the anchorage. A man-of-war has lately been very nearly wrecked on an unknown rock in the centre of Braye Roads, Alderney, where our Government are expending enormous sume in making shelter. The ship in which the Prince of Wales visited Canada etruck on an unknown rock outtide a buoy in the St. Lawrence. Another rock was overlooked in the survey of Tencrife, at its East end. All these, and many others, show the diff: culty of pronouncing absolutely, on the non-existence of an isolated shoal, if a pinnacle of rock may not be seen vith very close scarch, and pass quite unnoticed in a channel way.
The accounts frequently given are very vague and ambiguous, and in some cases cvidently refer to floating objects.
"It is, norcover, possible that navigators, at a certain distance, may have mistaken whales for shoals. M. de Chabert, in his voyage to America, in 1741, for the purpose of making astronomical observations, being at the distance of 70 leagues from Corvo, one of the Azores, descricd a dusky body, over which hovered a number of gulls, a bird seldom seen at such a distance from land; at first he imagined it to be a rock, but on coming near, in order to obscrve it, he found it to be the carcase of a whale of monstrous bulk. Besides, some of those vigias may have ceased to exist, after having appeared for some time ; as, for instance, the island which rose out of the sea in the year 1720, to the westward of St. Michaels, of the Azores, and which disappeared again cis the 17 th of November, 1723."
As a monition agrainst too hastily forming conclusions from mere aprearances, we here add, that nu old friend of ours, in crossing the Atlantic, was once alarmed by the sight of breakers at no great distance. Instead of coming lome with an imperfect report, he very properly sent out a boat to examine them, and found that they were caused by a floating hody, thickly covered with harnacles, \&c., to which a hatchet was applied, and soon disclosed a cask of wine, which proved to be excellent Burgundy. It had, no doubt, been flonting many years, and during the time had probably been the prolific parent of a number of rigias, \&e. On the 4th of August, 1822, Captain Hamlin, in the brig Revovery, likewise picked up a hogshead of claret wine, that had been a long time in the water, and worm-eaten neaply through, lat. $34^{\circ} 51^{\prime}$, long. $24^{\circ} 51^{\prime}$.
We have shown in another work how easily an animated as well as a lifeless being mny be mistaken for a rock. In 1818, the Northampton, Captain Telbbut, on her passage to India, had passed the meridian of the Cape. On the 1st of August, at noon, the ship was in lat. $40^{\circ} 45^{\prime}$ S., and long. $24^{\circ} 32^{\prime}$ E. On the next day an object appeared right ahead, like a boat ; on nearing it looked like the wreck of a vessel, two parts being above vater, at two ships' lengths from the lee-bow. The barnuoles could be distinguished by the naked eye; but, when abeam, the creature went down. It proved to be a thrasher. Captain Tebbut says, "Being forward at the time we came up with the animal, the two parts above water seemed to me like a wreck, bottom upward. When I first saw the barnacles, the part covered with them looked rugged. and I was flrmly of opinion that it was a rock above water; 80 much so, that I looked over the lee-bow to see that we were clear of it, ordering the man to starboard the helm."
A similar instance has been recorded in the Journal af the Royal Geographic Suciety. "A frigate was one day running into the Rio de la Plata; with her studding sails set, when the look-out man at the mast-head reported breakers on the bow: The captain, believing that such a danger could not have escaped the notice of the Spaniards, and having, also, a tolerable chart of the river, suspeeted it must be momo floating object, and ordered the ship to bo stecred directly for it. The offlecrs were on the olert ; glasses were frequently directed to the spot, and all concurred in representing it as a rock a little above water. Anxious looks were thirected to the captain, whom they now considered as unucecssarily runuing into danger; but that ufficer
kopt carefully watching his approach, and, as the studding-sail boom was just over it, the eetaceous monster (for such it was) hastily made off; and, rising again to blow, finally disappeared. It was observed to have an excrescence on its back, eovered with shell-tish. The sea broke gently on its weather side, and appeared becalmed to leeward; and so perfectly did it resemble a rock, that, had the vessel passed at a distance without disturbing it, there cau be little doubt but it would now have had a place upon the list of vigias.
"It is to be observed, in this case, that there was only a little ripple about the body, but no breakers; and this circumstance had not escaped the intelligent eye of the commander."

The dead carcase ot a whale may even approach nearer in appearance to a permanent danger than a living one. 'Captain Vidal, in H.M.S. Styx, while passing from Terceira to St. Michael's, on Juiy 20th, 1844, the mast-head man reported the appearance of breakers on the starboard bow; the Wiud was West, and thero was a little swell. "With our glasses we saw what appeared to be a small sand-bank, such as forms the crowns of some of the coral banks in ti\%sastern ocean, and there appeared particularly on its southern margin, to be a few breakers. Finding the vessel could not fetch it, I sent the master in the gig to ascertain what it really was ; and it proved to be the carcase of a whale, from which much of the blubber had been taken, but some, only partially severed, lay floating by the side, and, by the undulation of the waves, presenting the appearance of breakers. Now, I have no hesitation in stating, that this object so much resembled a sand-bank, or, it might be, a tiderock at low water, that had I left it unexamined I-should certainly have reported the probability of its being either one or the other, and, in to doing, I ahould have added another vigia to those which disfigure the charte of the North Atlantic Ocean."

Captain Wilkes, of the United States Expedition, gives the following instance:-
"The 3 th of September, 1838, being near the reported shoal of St. Anne, I determined to pass over its position.
"On the 6th, we passed over it; the sea was smooth, the horizon clear, and the day beautiful. At eight, a.m., the look-out cried out, ' Rocks, or a wreck, on the atarboard bow! which at once created an excitement on board. We stood for it. It had, at first, every appearance of a rock, then that of a wreck with the masts gone. It proved, however, to be a large tree of cotton-wood, 120 feet in length, and 14 feet in circumference, at the height of 5 feet from the roots. It had been a long time in the water, was full of barnacles, and much eaten by the teredo navalis., Great quantities of fish were about it, consisting of dolphing, sharks, \&c. We did not, however, succeed in taking any. In rough weather it might easily have been mistaken for a rock, particularly if passed in twilight, or at night. There is little duubt in my mind that many of the numerous vigias that appcar in our charts have as little foundation. No current was experienced hereabouts, and I am led to the conclusion, that a sort of eddy or still water is here found, wherein most of the wood carried by the Gulf Stream becomes deposited for a time. On the 8th, we were in long. $34^{8} 8^{\prime} \mathrm{W}$., lat. $37^{\circ} 17^{\prime}$ N."

In every event, hawever, it is always the safcr course, in matters of this nature, to err rather by marking too many than too few; especially when we make known, as we have done, the authority that we rely on for the existence of each. Every one, of course, is free to act according to his own judgment.

But on all future announcements of the discovery of rocks or shoals, it is absolutely necessary that they should te verifled by the test of the sounding lead. Withoat this they will not be considered as authentic.

The reported shoals, the existence of which have been apparently disproved, are marked hereafter in italics, and have the signs (P) attached.

They are here recited to show upon what grounds they are disclaimed. In future -ditions they will be omitted.
just over it, an to blow, covered with tmed to leeed at a dishave had a
out the body, t eye of the
to a permapassing from 1 the appearwas a little ank, such as ere appeared vessel could was ; and it er had been the undulano hesitation t be, a tideave reported ag, I should orth Atlantic
instauce :inne, I deter-
lear, and the wreck, on the e stood for it. e maste gone. and 14 feet long time ia Great quannot, however, nistaken for a t in my mind e foundation. that a sort of by the Gulf $4^{8} 8^{\prime} \mathrm{W}$., lat.
is nature, to e known, as
Every one,
is absolutely Without this
isproved, are

1.-TO THE NORTHWARD OF LAATITUDE 50° DEGREES.

NUN ROCK, off Cape Wratir, in lat. $58^{\circ} 52 z^{\prime}$, long. $4^{\circ} 56^{\prime} \mathrm{W}$.

This rock, with the adjacent bank, was surveyed, under an Admiralty order, by Captain Ramare, in the Cherokee sloop of war, i817. It is a very dangerous isolated shoal, bearing N.E. by N. mag. or N. 5°.E, true, from Cape Wrath, the N.W. part of Scotland, 15 miles distant. It is of small extent, not half a mile in diameter, with deep water all around it , and with $3 \frac{1}{4}$, or, as some say, not more than $2 \frac{1}{\frac{1}{2}}$ fathoms over it. It has been seen to break very high at half tide.

Lion's Bank, in lat. $56^{\circ} 40^{\prime}$, long. $17^{\circ} 45^{\prime}$.

This bank was sounded by Lieutenant Richard Pickersgill, in the brig Lion, in 1776. Dr. Forster, in his "History of Voyages made in the North," says, "On' the 20th of June, with 320 and 290 fathoms, Pickersgill found a sandy bottom, in $56^{\circ} 38^{\circ}$ N., and $17^{\circ} 44^{\prime}$ W., which induced him to call that spot Lion's Bank; and partieularly so, as he found there what is usually seen on all banks at sea, a vast quantity of sea-fowl, such as gulls, dumdivers, \&e. Soon after this, he could no longer get any soundings, nor were there any more fowls to be seen. This bank is said to have been sounded on a few jears ago, by Captain Richmond, of Greenock. It is a continuation of the Rockall Bank, which has been shown by the Survey to extend thus far.

NORTH SHOAL, West of Orkney, lat. $59^{\circ} 13^{\prime} 23^{\prime \prime}$, long. $3^{\circ} 34^{\prime} \mathrm{W}$.
One of the most dangerous shoals around the British Isles, as it is singularly isolated. It has but 7 feet least water, is not larger than half the size of a boat, and with 30 to 40 fathoms around it. It bears from Noup Head, Westra, W. $\frac{1}{5}$ N. 17 miles; Brough of Birsa N.N.W. 9 miles ; the Old Man of Hoy, N. by E. $\frac{1}{4}$ E. $2 \frac{1}{4}$ miles.

ditkin's Rock, to the West of the N.W. of Ireland. (9)

The original notice relative to this imaginary danger, was published at Whitehaven, 12th of September, 1740. On the 16 th of July, at seven o'clock at night, in a passage from Virginia, on board the Friendship, of Ayr, John Aitkin, master, coming in at the N.W. channel of Ireland, saw a rock under water, about 4 feet, distant 40 or 50 yards; all hands being on deck saw it plainly. SLi, posed to lie in the latitude of $65^{\circ} 18^{\prime} \mathrm{N}$. , and longitude, from the meridian of London, $11^{\circ} 14^{\prime} \mathrm{W}$. From Tory Island, West, distant 64 miles.
A second adyertisement, relative to this rock, was published by Mr. F. Cumming, of New York, in the year 1793. "On Thursday, August 9th, 1792, ship Nestor, of Greenock, from New York, bound to Greenock, being in latitude, per observation, of $55^{\circ} 19^{\prime} \mathrm{N}$., and longitude, per account, of $9^{\circ} 53^{\prime} \mathrm{W}$. of Greenwich. The ship's company perceived a rock about 4 feet below the surface of the water, not 5 fathoms from the wenther-heam of the ship, in the form of a horseshoe, with one side longer than the other. The Rev. Mr. Stewart, then a passenger in the Nestor, saw the rock plainly, with the tangle growing on it.

We have other accounts of this rock, and of these, one states its position at $55^{\circ} 15^{\prime}$ N., and $10^{\circ} 40^{\prime} \mathrm{W}$. ; a part appearing at 3 feet out of the water, with sounding of 30 to 40 feet a short distance; at 30 fathoms off, no soundings with a line of 150 fathoms. In or aliout the year 1804, Captain Clarke, since of the Harmony, of Ayr, believes that he saw the rock very distinetiy; by his run, it appeared to lie 20 leagues nearly true West from Tory Island. The tangle appeared about 1 foot below the surface, at about dead low water, and the ship rubbed alongside the rock.

In the True Rriton, J. Keid, commander, Wednesday, the 27th of September, 1826, when steering E.S.E., a man at the mast-head called out that there werib breakers ciose to our port bow. A rock appeared a little above the water, nearly flat, about 90 feet
long, and 40 broad; saw no breakers, excepting round the rock; and could distinctly see the sea working over the rock.

Iver M•Iver, a rigger in Greenock, stated'(in 1820) that many years before, while he was seaman on board a vessel, they fell in with Aitkin's Rock in fine weather. 'The captain caused the boat to be got out, and M'Iver was on ${ }^{\circ}$ che men in the boat. He said the rock was not much under water, had seaweed on it, and was about the size of a'ship's launch.

Several other accounts of this rock have been given, as seen from different vessel ${ }_{3}$; and in consequence of all, the Chamber of Commerce of Glasgow addressed a letter to the Admiralty in 1821, stating that no less than six vessels were missing from that port, and solieiting their loidships fo cause an examination of the danger. The application was renewed in 1826 and 1827. In consequence H.M.S. Gamnet was on this service in 1824, the Harrier and Badger in 1827, and the Pylades and Dispatch in 1829 ; but the rock was not diseovered.

Again, in 1830, the Onyx and Leveret, two gun-brigs, commanded by Lieutenants Dawson and Worth, and directed by Captain A. T. E. Vidal, were engaged on this service. "They put to sea on the 6th of Jume, when the moon was at the full; and, commeneing their examination at Tory Island, proceeded nearly along its parallel of latitude to the westward of all the given positions of the roek. The two vessels weie always in companny, and the general practice was to sail on parallel lines, distant from each other from 1 mile to $1 \frac{1}{2}$ miles by day, and elosing at night to half a mile, or as mach less as the state of the weather rendered neeessary. During the few hours of darkness experienced at that season of the year, the vessels were hove-to, that no part of the suspected ground might be passed unseen, and the leads were kept going, both day and night, from the depth of 150 to 200 fathoms. Their distances fron each other were determined every hour by the angle of elevation subtended by their respective masts, at the heads of which balls had been placed to facilitate the measurement. Their mutual bearings were taken at the same time; and men were kept constantly at the mast-heads during the day, and a vigilant look-nut preserved through the night.
" This system of crossing and re-erossing over every part of the suspected ground was persevered in until the 31st of August; when, having visited every position assigned to this danger, and indeed the whole space comprelended by them, without seeing any roek, or discovering any detached bank, which eould indieate its having existed, the seareh was relinquished, and the vessels returned to England."

To those, hereafter, who may have to make similar rescarehes, it may be impoitant to know that Captain Beaufort (Hydrographer to the Admiralty), in his instructions, had recommended that the vessels should sweep for the rock by laying out a large scope of hawsers between them, and drifting with it over the suspeeted ground. To effeet this, he saggested two methods--the one, when the two vessels should be on the same taek, the leading brig keeping a little off the wind, with her main-topsail oceasionally lifting ; the hawsers fast to her quarter, with a spring to them from her weather-bow; the sternmost brig lying-to, with her main-topsail to the mast, the hawsers from her weather-bow, and a spring to them from her weather-quarter. The other method Captain Beaufort proposed was, drifting on epposite tacks, the hawsers fastened to their sterns, with springs to them from the wenther-bow of cach vessel.

An additional number of hawsers were accordingly provided for the purpose; and, upon the principles destibed, a line of them, amounting to more than 700 fathoms, was laid out, and a large portion of the suspected ground subjected to this mode of examination. To prevent the central part of this long seope from descending to too great a depth, and to relieve the vessels and hawsers as much as possible from the strain required to keep so much heavy rope in proper tension, the hawsers near the middle of the line were buoyed at intervals with empty water-casks.

During the month of June many of the mast-head men and others were momentavily deceived by the blowing of whales, which at that time were numerous; and in August a small black objeet, a little above the surface of the sen, wus productive of
similla
tion, P feet ot ductio of the to sho suppos
M. long. 1 It has doubted that the year 17 really a he could was abo which it 1905 fat

This the Dnt Captain in 1818 place.

These Ré. The \&c., p. 48

In the a rock, de was said \dagger
But, on
laga towa
10 a.m. tl
28th, at
lead bring in the sam had only t the land.
ance of 1
coloured;
"At no
"We ha
$7^{\circ} 24^{\prime}$ to 8° as a rough fathoms, m
"The C
somewhere
ld distiuctly efore, while eather. The he boat. He it the size of rent vessels; :ssed a letter ng from tbat er. The apnnet was on nd Dispatch

Lientenants raged on this he full; and, ts parallel of o vessels weie lines, distant talf a mile, or ae few hours ve-to, that no e kept going, listances from nded by their 3 the measureion were kept out preserved
pected ground very positiou them, without te its having d."
be important s instructions, g out a large ground. To should be on main-topsail em from her he mast, the ther-quarter. te tacks, the -bow of each
urpose ; and, 700 futhons, this mode of ending to too ble from the ers near the
ere momentrous; and in roductive of
similar hope and disappointment. It was first seen from the Leveret, and on examination, proved to be the trunk of a very large tree, with its roots projecting two or three feet out of the water. They were covered with weeds, barnacles, and other marine productions; corresponded very minutely with one of the descriptions of the rock.-Journal of the Royal Geographical Society, vol. I, pp. 51 to 58. We have thus quoted largely to show that great troubles are given from imperfect accounts of dangers like this supposéd Aitkin's Rock.

Brazil Rock, in lat, $51^{\circ} 10^{\prime}$, long. 16°. (${ }^{(P)}$

M. Bellin, in his Memoir of 1742 , states that this rock is marked in lat. 51°, and long. $19^{\circ} 30^{\prime}$ from Paris, according to Brouage, hydrographer, and Laisne, a pilot. It has beer variously represented in different charts, although its existence has been doubted. Mesers. Verdun and Borda have added to their remarks upon this rock, that they do not believe it to exist. It was, however, said to have been seen in the year 1791, by the company and master of an English merchant ship, stating that it is really a high rock, or islet, apparently bold-to, and to which he passed so near, that he could have oast a biscuit on shore. The longitude, according to his computation, was about $16^{\circ} \mathrm{W}$. It is highly improbable that a rock of this class should exist, which improbability is increased by the deep soundings got by Lieutenant Berryman, 1905 fathoms, about 160 miles to the N.N.W. of it.

Kramer's Bank, in about $60^{\circ} 57^{\prime}$ N., and $16^{\circ} 40^{\prime}$ W. (?)
This bank appeared in M. Bellin's Chart of 1751; and was probably copied from the Dutch charts of the Greenland seas. It is said to have been discovered by Captain Alof Kramer. Captain John Ross sought for this bank, but unsuccessfully; in 1818. He could find no soundings in 130 fathoms, anywhere on or near the place.

BETWEEN LATITUDES 40° AND $50^{\circ} \mathrm{N}$.

Rocee Bonne and the Banche Verte in the Bay of Biscay.

These are two reefs, lying within a short distance of each other, East of the Isle of Ré. Their position will be found already noticed, in the description of the coasts, \&c., p. 481.

The Chapelle Rock, in lat. $47^{\circ} 43^{\prime}$, long. $8^{\circ} \mathbf{4}^{\prime} \mathbf{3 0} 0^{\prime \prime}$ W.

In the Analysis of the French Chart of the Atlantic, of 1786, it was remarked that a rock, den' unated La Chapelle, on the chart of 1766 , in lat. $47^{\circ} 24^{\prime}$, and long. $7^{\circ} 12^{\prime}$, was said to luve been in 1764.
But, on the 27th of September, 1822, the slonp Favorite was returning from Malaga toward Liverpool, at daylight, the water appeared green, as if on soundings at 10 a.m. the water seemed greener, also at noon, in lat. $47^{\circ} 26^{\prime} 1^{\prime \prime}$, long. $7^{\circ} 41^{\prime}$.
28th, at 8 p.m., sounded, and got rocky bottom in 65 fathoms, the arming of the lead bringing up a bit of shell and thee small black specks. At $8^{\mathrm{g}} 21^{\prime}$, again sounded, in the same depth of water, 65 fathoms, and rocky bottom; but this time thie arming had only two small specks, and a very minute one; made sail, and kept away to clear the land. As midnight, sounded; no bottom at 80 fathoms. At six a.m., no appearance of land; hauled up: the daylight increasing, perceive the water is less discoloured; and by noon the water is quite blue again.
"At noon, latitude, $47^{\circ} 49^{\prime} 38^{\prime \prime} ; 47^{\circ} 49^{\prime} 49^{\prime \prime}$. Longitude, $9^{\circ} 15^{\prime} 59^{\prime \prime}$.
"We have really passed over a bank, which may extend, in longitude, from about $7^{\circ} 24^{\prime}$ to $8^{\circ} 29^{\prime}$ W. of Greenwich. I am aware, however, that this can be considered as a rough guess only. At all events the latitude, in which we got soundings in 65 fathoms, may fairly and surely be taken at about $47^{\circ} 37^{\prime} 12^{\prime \prime}$.
"The Chapelle Bank, as we may call it, will at•any rate be found in lat. $47^{\prime} 37^{\prime}$, somewhere between the meridians of $7^{\circ} 24^{\prime}$ and $8^{\circ} 29$.

The French surveyors have since said that the Chapelle Rock, which is traced on several old charts, has long been the object of our ineffectual researches. We have found only, in the situation assigned to this rock, an insulated bottom of small extent, having over not less than 80 fathoms, and on which the sea may break in rough weather, but have little reason for believing that a danger exists hcreabout.
Notwithstanding this uncertainty, we have another statement of a different character, -a rock awash: 9th of August, 1842 :-" At $1^{\text {h }} 30^{\prime}$ p.m. breakers seen close to the vessel, and a sunken rock observed distinctly and repeatedly above water, in the hollow of the sea, whioh clashed together and broke much. Supposed the jock might be about 4 feet below the usnal sea level: its circunifercace appeared to be about 40 feet ; it was of a sandy colour, like freestone, and no weed appeared on it. Latitude, $47^{\circ} 43^{\prime}$ N., long. $8^{\circ} 4^{4} 30^{\prime \prime}$ W.-James Tasker, master of the Grace Darling." We must lcave the reader to form his own opinion on this. The last communication is, perhaps, worse than worthless ; there was no sounding.

Devit's Rocks, in lat. $46^{\circ} 35^{\prime}$, long. $13^{\circ} 7^{\prime}$. (?)
We have here a most mischievous announcement, which has only lately been disproved by Capt. Pullen, as depths exceeding 1,500 and 1,800 fathoms exist near the positions named. The following are the announcements of this bugbear :-
M. Bellin, in his Memoir, of 1742, noticed, that in lat. $46^{\circ} 55^{\prime}$, about 110 leagues W.S.W, of Ushant, there is a rock, even with the surface of the water, discovered by Capt. Brignon, of the Constance, of St. Malo, in 1737. The Devil's Rocks, in lat. 46° 35^{\prime}, and long. $13^{\circ} 10^{\prime}$, according to M. Delise, might be the same danger. 'They were particularly observed in 1764, by Capt. Thomas, of Havre de Grace, from whose communication to M. L'Abbe Diquemare, we find that, on the 23rd of May, 1764, Capt. Thomas bbserved, at noon, the lat. $46^{\circ} 24^{\prime}$. The rock was sesn, at a short distance, 3 feet above water, of a gisy colour, covered with moss, and about 40 feet in diamegter, in lat. $46^{\circ} 24^{\prime}$, longitude about $13^{\circ} 10^{\prime}$.
Again :-" The Brothock, of Arbroath, Capt. William Peter, 13th of Navember [1818], at noon obsérved a rock about 10 feet from the starboard quarter, about 2 feet under the surface of the water, in lat. $46^{\circ} 35^{\prime}$ N., and the longitude, by mean of two well-regulated chronometers, $13^{\circ} 7^{\prime} \mathrm{W}$. The sea reooiled around it, and broke on the top. Its cin cumference appeared to be about 40 feet.
'This rock was said to have been afterwards seen by Captain Scott, of the cutter Voast ; and again, on 25th of April, 1829, by Captain Henderson, of the Fortescue. The appearance, according to the latter, was that of a rock, of a brown colour, about 12 feet long, nearly as much in breadth, and about 2 feet above water. The latitude $46^{\circ} 33^{\prime}$, and longitude $13^{\circ} 2^{\prime} \mathrm{W}$. Captain Scott was of opinion that there are more heads of rocks than one ; that which he saw was like the point of a sugar-loaf.
It was supposed to be seen, in 1829, by Captain Swainsoa, in the Fortitude, of Dublin, and described as in lat. $46^{\circ} 35^{\prime}$, long. $13^{\circ} 8^{\circ}$. They wers subsequently sought for and seen by a commander, who has said, that the water was seen breaking upon them very high; and as it receded the rocks were discernible.

Lieutenant Sprigg, commanding H.M.S. Brisk, says:-"On the 6th of August, 1842; we were distant from the Devi's Rock, at noon, 35 miles, and, doubting its existence, I shaped a course directly for it. At seven p.m., my attention was suddenly attraoted by a change in the colour of the water under the ship's counter, which had been of a blackish green ; the change to whitish green was more vivid, extending in a N.N.W. and S.S.E. direction for $1 \frac{1}{4}$ miles, its greatest width close to our wake, about three-quarters of a mile, having very irregular and indented sides, in bold outline with the dark water surrounding it. A heavy swell from N.W. seemed smoothcr over the patch, without any visible break ; but that it was a shoal no doubt exists on my mind, or on many that saw it. Our dead reckoning places the spot in lat. 46° $12^{\prime} \mathrm{N} .$, long. $15^{\circ} 3^{\prime} 30^{\prime \prime} \mathrm{W}$."
On passing this way in the Friends, 17 th of August, 1820, Captain Livingston saya :-"At about $2^{h}{ }^{2} 0^{\prime}$ p.m., supposed to be certainly to the southward of the Devi's Rocks, and looking over the lee-quarter, I saw what, at first sight, uppeared to
be a \dot{a} emer 4 inc attem saw b curl a the $b r$ sea br gerou

We ha It must b
The ch
22^{\prime} W.;

* In th moonlight posed to b a seaman, ston's com
is traced on
We have mall extent, ak in rough ut.
ifferent chaseen close to vater, in the e rock might be about 40 .t. Latitude, arliny." We nunication is,
tely been disxist near the
t 110 leagues discovered by cks, in lat. 46°

They were ?, from whose of May, 1764, at a short disout 40 feet in
of Navember er, about 2 feet y mean of tre d broke on the
, of the cutter the Fortescue. a colour, about The latitude there are more ar-loaf.
e Fortitude, of uently sought breaking upon
th of August, i, doubting its was suddenly er, which had extending in a r wake, abont I bold outine med smoother oubt exists on ot in lat. 46°
in Livingston hward of the t, uppeared to
be a bottle, about 30 fathons to loeward. The sea immediately covered it, and on its omerging again, it seemed like the back fin of a shark, in the wash of the sea, about 4 inches above water, and of a triangular form. A few moments afterwards, as I was attempting to point out the place I had seen it in to the mate, he remarked that he saw breakers off the boom-end; and, on paying attention to it, I plainly saw a light curl and break of the water for fully half a mile; but as the water. was yery smooth, the break was not great, though still plain enough, while no part of the surrounding sea broke. The result was an impression, that we had passed a large and very dangerous shool, situated in about $46^{\circ} 9^{\prime} 30^{\prime \prime} \mathrm{N}$. , and $12^{\circ} 50^{\prime} \mathrm{W} . " *$
Here are ten announcements of this supposed rock, but not a single sounding.
Capt. W. J. S. Pullen, in H.M.S. Cyclops, sounded with 1,500 fathoms, no bottom, in $46^{\circ} 42^{\prime}$ N., long. $13^{\circ} 5^{\prime}$ W.; and again in $46^{\circ} 12^{\prime}$, long., $13^{\circ} 3^{\prime}$ W., with 2,220 . fathoms; but, from the unfavorable weather, it was considered that only 1,800 fathoms was the vertical depth without bottom.

This is negative evidence, but we have positive proof in the sounding obtained by Commander Dayman, of H.M.S, Gorgon, in Oct. 1858, when he got a good cast of 2,350 fathoms in $47^{\circ} 6^{\prime} \mathbf{N} ., 125^{\circ} 7^{\prime}$ W.: and again, by Lieut. Berryman, in the Dol-phin, who got bottom with 2,190 fathoms, 60 miles to the South.

These settle the question of the Devil Rock.

Smith Rock, lat. $49^{\circ} 36^{\prime}$ N., long. $18^{\circ} 17^{\prime}$ W. (?)

The barque Port Wallace, J. W. Smith commander, June 27, 1856, states that he saw a small rock, 6 or 8 feet undcr water, and another with more water near it, lat. $49^{\circ} 36^{\prime} 38^{\prime \prime}$, long. $16^{\circ} 17^{\prime} 15^{\circ} \dagger^{\dagger}$ This is impossible, both from its position, and from the fact of the U.S. ship Dolphin finding 2,700 fath:oms, at 55 miles to the West of $i t$.

Esmeralda Rock, lat. $45^{\circ} 13^{\prime}$ N., long. $16^{\circ} 48^{\prime}$ W.

The barque Esmeralda passed a supposed roek, lat. 45° 13', long. $16^{\circ} 48^{\prime}$, by imperfect D. R. It was thought to be 4 feet out of water by Captain Henderson, who was a passenger. \ddagger But Commander Dayman, in the Gorgon, in 1858, fonnd 2,250 fathoms at 45 miles N.N.E. of it, and 2,100 fathoms at 35 miles.

Dfina Rock, off Cape Finisterre, lat. $44^{\circ} 45^{\prime}$ N. long. $9^{\circ} 40^{\prime}$ W. (?)

This announcement we received from Capt. Grote, of the Russian Imp. Navy, when in cominand of the Dvina, the vessel which was hardly chased by our men-of-war in the Pacific during the last Russian war.
" On Jan. 14-26, 1853, the foretop look-out deseried breakers right ahead, and we discovered it to be a rock, It is on a level with the water. Our observations gave us lat. $44^{\circ} 43^{\prime} 6^{\prime \prime}$, and long. $9^{\circ} 37^{\prime} 23^{\prime \prime} \mathrm{W}$. The sea was perfectly white with foam for about 200 fathoms." Capt. Bessarabski made it to be in lat. $44^{\circ} 48^{\prime}$, long. $9^{\circ} 43^{\prime}$.
We have nothing to disprove the existence of this, but the position is remarkable. It must be left for future test.
The charts of Van Keulen, of the last century, showed a rock in $44^{\circ} 43^{\prime} \mathrm{N}$., a.id 11° 22^{\prime} W. ; but it has long been omitted as not authentic.

[^165]Lean Shoal, $45^{\circ} 32^{\prime}$ N., long. $11^{\circ} 57$ W. (P)
" July 4, 1854, 8 p.m., perceived a shoal rock with heavy breakors right ahead; appeared to extend about an inch to the north-eastward."-Capt. Lean, schooner Mary.-Shipping Gazette.

The remarks on the Devil Rock and the Dvina Rock, in this quarter, are also applicable to this.

Mayda (9) 1705.—Clark's Rook ($\left.{ }^{(}\right)$1842, lat. $45^{\circ} 40^{\prime}$ long. $10^{\circ}{ }^{\circ} 7^{\prime}$ W. (P)
Mayda (?)-This vigia appears, on the French chart of 1766, in lat. $46^{\circ} 48^{\prime}$, and long. $19^{\circ} 50^{\prime}$. The latitude, according to Bellin, is uncertain, and its longitude more 8). A report, made to the Admiralty of Bordcaux by Pierre Nau, in October, 1705, states it to be a little white island. There is a note concerning it in the French Depot, but it disagrees with the report of Pierre. Nau. Captain Baden, in the ship Marte, when returning from Martinique, April 10th, 1738, discovered Mayda, which, according to his observation, he found in lat. $46^{\circ} 10^{\prime}$. He remarked five heads of rocks, und a breaker of 6 or 7 feet high on the danger.

This is the original information on this spot. But it was revived by the following: -" On board the bark Hartley, W. B. Bradford, master, bound from Sierra Leone to Plymouth, passed, on Friday, 26th August, 1842, at half-past 5 o'clock, p.m., in lat. $45^{\circ} 40^{\prime}$, long. $19^{\circ} 17^{\prime} \mathrm{W}$., at the distance of three-fourths of a mile from the ship, a double-headed rock, which, during the fall of the sca, was uncovered to the height of 6 or 8 feet. The sea broke over it with a gentle spray, and during the rising and falling of the water it was observed to be of a dirty white colour, interspersed with dark coloured patches. Robert Clark, Senior Assistant-Surgeon to the Colony of Sierra Leone."-Nautical Magazine, 1842, p. 852.

This might, possibly, have been the carcase of a whale, but here is, another :"When going out to the West Indies, in 1840, in lat. $46^{\circ} 36^{\prime}$ N., long. $19^{\circ} 30^{\prime}$ W., I saw a rock within 100 yards, of a conical shape; it appeared about 4 feet out of water, in the trough of the sea. I should think it would be under water in a smooth sea.D. England.

The general depth of the ocean hereabout, above 2,000 fathoms, throws every doubt upon these statements, ansupported by soundings.

The Five Heads, in lat. $44^{\circ} 15^{\prime}$, long. $19^{\circ} 25^{\prime}($? $)$.

Under this denomination the French churt of 1766 has a rocky shoal some part above water, in lat. $44^{\circ} 10^{\prime}$, and long. $19^{\circ} 25^{\prime}$. It is marked some minntes more to the North on the charts of M. Van Keulen. No account of it is, howover, given either by him or Bellin; nor, although sought after, has any account of it yet been found. Capt. Dayman found 2,375 fathoms near the spot.

Chaderton Reef, lat. $44^{\circ} \mathbf{5 6}$ ' N., long. $23^{\circ} 51^{\prime}$ West. (P)

"On my passage from Caldera to Liverpool, April 20th, 1858, passed a reef of roek covered with watcr. Owing to the strong breeze blowing at the time, I was unable tc make further observation." T. H. Chaderton, commanding the barque Saiveen.

At 30 miles ${ }^{\circ}$.SE. of this, the Dolphin found the depth of 1,500 fathoms.

$$
\text { Laidman Rock, lat. } 46^{\circ} 0^{\prime} \text { N., } 26^{\circ} 0^{\prime} \text { W. (?) }
$$

Probablv a volcanic shock.
Isle Verte, (${ }^{(}$) or Green Rock, (?) $44^{\circ} 52^{\prime}$ N., and lon. $26^{\circ} 25^{\prime}$ W. (?)
This imaginary rock, the Green Island of the old charts, has been omitted in others, on the authority of Messrs. Verdun and Borda, who have said, "On M. Bellin's chart of 1766 , in lat. $44^{\circ} 52^{\prime}$, and long. $26^{\circ} 35^{\prime}$, is an imaginary island, named the Isle Verte, or Green Island. In the memoir of 1742 wo find nothing concerning this island, but that the 'lsle Verte is marked according to Le Boccage.' It appears on the English chart of Jeffery's, in lat, $44^{\circ} 45^{\prime}$, and long. $26^{\circ} 10^{\prime}$, and is supported by no better authority.

Capt Coomb actuall out in green h larger t was hig high ab should, But ad

This Greeve, seen by D. Sicke thing of and 1,85

This sh as follow to Liverp dirty gra upon a sh water ap tho eye a
"The v it, which of Greenv sun's meri chronomet when off $]$ a few min the vessel.
"In app tucket, an scen apon ing about,
"At the elcar weat the vessel on board.

"I since being on sh

 lence of ligThe late
have arisen
"Ship In on her sta N.W. Wi showed sev it was scen cone. At by chronon found."

Captain Tulloch, of New Hampshire, stated that an acquaintance of his, Captain Coombs, of the ship Pallas, of Bath, in Maine, keeping a look-out for Green Island, actually saw it, being a very fine day, and the water remarkably smooth. He went out in his boat, examined it, and found it to be a large rook or stone, covered with green herbage, or moss, some of which he pulled off. The rock did not seem much larger than a vessel with the bottom up, and it was very smooth around. The summit was higher than a vessel's bottom would appear out of the water, being about 20 fest high above the sea. Captain Coombs remarked that if it had zut been so high, he should, when he first saw it, have supposed it to be a vessel which had been upset. But a depth of 1,500 fathoms has been found near the spot.

Greeve's Ledge, in lat, $44^{\circ} 15^{\prime}$, long. $25^{\circ} 5^{\prime}$. (?)

This is stated to have been seen by the Dutch ship Anna Catharine, Captain J. Grecve, July 7, 1745, and to be nearly level with the sea. It is said to have been seen by Captain Currie, of the brig Diana, of Port Glasgow, 1811.. Captain H. T. D. Sickens, of the Dutch Marine, sailed over the spot in 1846, without seeing anything of it, with a good look-out. It lies midway between two soundings of 1,500 and 1,850 fathoms.

Midgley Shoal. in lat. $44^{\circ} 9^{\prime} 30^{\prime}$, long. $22^{\circ} 57^{\prime} 45^{\prime \prime}$.
This shoal was discovered by Captain Thomas Midgley, in 1838, who describes it as follows:-"On the 14th of June, 1838, at $2^{\text {h }} 40^{\prime}$ p.m., on my passage from Africa to Liverpool, I suddenly fell in with a large patch or belt of discoloured water, of a dirty gray appearance, much resembling river water, and rippling very much, as if upon a shoal bank. No rock nor danger could be seen from the mast-head, but tho water appeared very much discoloured for more than half a mile in breadth, as far as the eye could reach, in a direction N.W. and S.E. by compass.
"The vessel passed at a quarter to half a mile from the S.E. point or extremity of it, which lies in lat. $44^{\circ} 9^{\prime} 30^{\prime \prime}$ N., long., by an excellent chronometer, $22^{\circ} 57^{\prime} 45^{\prime \prime} \mathrm{W}$. of Greenwich, and by account from Flores, $23^{\circ} 5^{\prime} \mathbf{W}$.; the latitude deduced from the sun's meridian altitude, taken on the same day, with two excellent sextants, and the chronometer ascertained to be correct off Flores four days previously, and subsequently when off Holyhead in St. George's Channel. The altitudes for the time were taken a few minutes after passing the danger, and when it was still within 1 mile from the vessel.
" In appearance this water very much reminded me of the shoal ground near Nantucket, and those on George's Bank; had it been caused by ice, some would have been seen upon the surface; if k_{j} fish, there would have doubtless been many birds hovering about, which was not the case.
"At the time I saw this danger, I was running with a favourable breeze and clear weather, and the contrast between the deep blue colour of the watc:", in which the vessel was sailing, and that of the danger I allude to, was noticed by cvery. one on board.
"I sincerely regret my inability of closely examining the shoal, owing to my crew being on short allowanoe of provisions and water, in consequence of a long prevalence of light and adverse winds."
The late Captain Midgley was a man of perfect veracity, but the appearanoe might have arisen from other causes. At present we have nothing ts contradiot it.

$$
\text { Woodall's Rock, near lat. } 43^{\circ} 20^{\prime}, \text { long. } 25^{\circ} 10^{\prime} \text {. (P). }
$$

"Ship Indemnity, from Demerara to England, 1829, at 30^{\prime} p.m., discovered a rock on her starboard beam, distant about three ships' length; a heavy swell from the: N.W. With each succeeding swell the rock was entirely covered, but at intervals it showed several feet abeve water, and perfectly perpendicular. From the mast-head it was scen to a great depth below the water, and appeared to be in the shape of aconc. At the preceding noon the latitude, by obscrvation, was $43^{\circ} 20^{\prime} \mathrm{N}$., longitnde, by chronometer, $25^{\circ} 10^{\circ} \mathrm{W}$. At 28 miles N.N.W. 1,850 fathoms have been found."

Amplimont Rocks, in lat. $42^{\circ} 51^{\prime}$, long. 24°.

In M. Bellin's Memoir of 1742, a danger is mentioned in lat. 42' 30^{\prime}, long. $24^{\circ} 5^{\prime}$, which was seen in 1735 by M. Guichardi, commander of the ship Dauphin, of Nantes. It has two points of rocks separated, and 30 feet above water. He ascertained the height within a league of the danger, which appears to be the same as that called Ia Basse d'Amplimont, stated to be nearly in the same latitude and longitnde. We have given it the position originally assigned by the Memoir. Some Eaglishman has called it by the name of Edmund Knowles'e Rock, by whom it is supposed to have been seen.
These rocks, appearing like the two masts of a brig, and nearly in the position assigned, were seen by Captain Mills, in the brig Tamer, early in 1820.
"On the 13th of May, 1842, I sailed from Paimbouf for Quebec, with the wind at N.E. We had a fine run to long. $19^{\circ} 44^{\prime} \mathrm{W}$. On the 23 rd of May (at noon, in lat. $42^{\circ} 31^{\prime}$ N., by two good observations, and long. $24^{\circ} 3^{\prime}$ W.), at $7^{\mathrm{h}} 20^{\circ}$ p.m., I passed a rocg within two ships' length. When I first saw it, it was a little before the larboard beam, and appeared like a ship's anehor buoy. When it enme upon the quarter, I saw the sea-weed quite plain upon it, as did also the watch on deck. Another part of the rock we saw under water, about 8 or 10 feet from the rock we saw above water; at intervals it was covered and uncovered. We had not much swell on at the time, fine pleasant weather. At the time of passing the roek the ship was in lat $42^{\circ} 51^{\prime}$ N., long. $24^{\circ} 15^{\prime} \mathrm{W}$. The rock was seen a considerable tine after we passed it. Wind at the time W.N.W. Ship's head, North, going 3 and $3 \frac{1}{2}$ knots por hour."-Captain Thomas Alderson, of the Morning Star.
It was also said to be seen by Captain L. W: Duff; of the Esporance, on his voyage from Valparaiso to Swansea, on Nov. 19th, 1846. He was looking out for the Amplimont Hocks, searcely expecting to meet with them, when he was startled by a large and dangerous rock, with two pointed summits in the hollow of the sea, not ten yards off on the larboard beam. He could see no more of it after passing, nor the sea breaking on it, which it would do in bad weather. He had the day before passed Corvo, and found his chronometer accurate, and also the same on making lundy Island. His position of it is lat. $42^{\circ} 56^{\prime}$ N., long. $24^{\circ} 30^{\prime}$ W. We have given the mean of this and that by Captain Alderson as the position.
We have no direct evidence to contradict this, and therefore it must be left for future decision. In all the cases cited there was no attempt at verification.

Henderson or Chaucer Bavic, lat. $42^{\circ} 45^{\prime}$ N., long. $29^{\circ} 0^{\prime}$ W. (P)

The ship Chaucer, Captain Robert Henderson, from the Mauritius to Glasgow, states that:-
"On October 28th, 1850, at noon, wo were in lat 42° s:' N., long. $28^{\circ} 45^{\prime} \mathrm{W}$., steering N.W. by W. (true), with light variable winds from the eastward, and fine clear weather. Having previously observed that the water had ehanged colour about 10 a.m., and sinee that there was a sensible ripple, at 2 p.m. I sounded, and found hard bottom at 48 fathoms ; the distance run since noon about 6 miles.
"At 4 p.m., having steered the same course, in lat. $42^{\circ} 40^{\prime}$ N., long. $29^{\circ} 4^{\prime}$, sounded and found 50 fathoms, and at 6 p.m., having rin about 6 miles, found 70 fathoms, rocky bottom.
"From observing the ehange of colour and ripple at the surface of tho water, at 10 a.m., and having sailed from that time up to 6 p.m. nearly N.W., the bank may probably extend considerably to the S.E. of the position where I took my first sounding at 2 p.m."-Shipping Gazetto, November 10th, 1850.

This appears quite eircumstantial, but yet 1210 fathoms was found, by U.S.S' Dolphin, at its S.E. extremity.

The Three Chimneys, in lat. $47^{\circ} 64^{\prime}$, long. $20^{\circ} 40^{\prime}$. (P)

This vigia is said to have been soen on the 10th July, 1820, by Ca, itain do (las

Fernel of it, with r

Thus 1824, a actuall about t
Capte distano on July highest over th around
This ${ }^{1}$ position

This
further

These
seen by dangers of the A

Captai mouth, to when bou other 3, f signed th
Anothe brig Hop At 11 a.m rocks wo Harrison
These detection not so dee the North

In the c him in 17 Spanish sh
"Captai Indies to cable's len, ship's qua rolled over long. $36^{\circ} 4$
This stat have proba

A shonl becen seen \mathbf{i}

Fernel, who approached within 2 leagues of it, and who remained two hours in sight of it, and appears to be one which a M. de Merry has mentioned. The charts vary with regard to its position.

Thus much we have stated in our former editions ; but Mr. Heron, of Greenock, in 1824, adds, "I am informed by the master of a merchant-vessel, that the Chimneys actually exist; for a whole watch, as well as himself, saw them. They were seen about twilight, and three heads were distinguished."

Captain Roallons, in tha brig Eagle, says that he passed a rock above water, at the distance of about 4 miles, on the outward passage from Hamburgh to Newfoundland, on July 29th, 1842, "in $47^{\circ} 37^{\prime} 22^{\prime \prime}$, long. $28^{\circ} 51^{\circ}$; it formed three distinct points; the highest to the westward appeared to be about 80 feet high, the sea breaking violently over the lower part, near the eastern extremity, but no appearance of shoal water around it."

This must have been ice. A depth of 1900 fathoms has been found in the first-named: position by the Dolphin.

Mariner Rock, 46° N., $29^{\circ} 35^{\prime}$ W. (?)

This rock, said to have been seen in 1831, by Mr. Swinton, is also placed 25 miles further Wast; bnt it lies between two soundings of 1760 fathnms.

Gough's Rocks, or Harrison's, in lat. $40^{\circ} 28^{\prime}$, loug. $30^{\circ} 0^{\prime}$. (${ }^{(P)}$
These rocks appeared in the chart of M. Rochette, 1778, with the words, "Rocks seen by Captains Gough and Birch." Vankeulen and Bellin have indicated several dangers in the vicinity to the N.E., but their existence has been denied by the pilots of the Azores.
Captain Livingston says :-"Captain Beauford, of the brig Concord, of North Yarmouth, told me at Malaga, in 1820, that he twice saw Gough and Birch's Rocks, when bound from Newfoundland to Lisbon; that one of them is about 12, and the other 3 , feet ajove water; and that they lie nearly in the longitude oxiginally assigned them in the charts, but 5^{\prime} more to the northward."
Another report states, that Gough's Rocks were seen by Captain Harrison, in the brig Hope, from the Sierra Leone to Cork. 17 th April, 1830, lat. $40^{\circ} 16^{\prime}$, long. 33°. At 11 a.m. two rook appeared close under the lee-quarter. In smooth water these rocks would be even with the water's edge, and in the hollow of the sea Captain Harrison could distinctly see six or eight down in the water.
These statements are vague, and it is improbable that they should have escaped detection by the pilots and others frequenting the Azores. The bottom, however, is not so deep here as elsewhere, for 830 fathoms fathoms only wes found 20 miles to the North of Gough's position.

Beazley Shoal, in about lat. $40^{\circ} 40^{\prime}$ N., long. $36^{\circ} 47^{\prime}$ W. ($\left.{ }^{(}\right)$)
In the chart of the \&tlantic Ocean, drawn up by M. Rochette, and published by him in 1778, there is a shoal of 5 futhoms, stated to have been seen in 1769 by a Spanish ship in lat. $40^{\circ} 26^{\prime}$, long. $36^{\circ} 5^{\prime}$.
"Captain E. W. Beazley, then commanding the bark Castries, from the West Indies to Loudon, on Sunday, June 20th, 1841, at $6^{\mathrm{h}} 20^{\prime}$ p.m., passed a shoal half a cable's length to the northward of the ship; it appeared about the size of a largo ship's quarter-dock, with the sea-weed almost awash with the water's edge; the sea rolled over it, but did not break. The latitude and longitude places it in lat. $40^{\circ} 45^{\prime} \mathbf{N}$., long. $36^{\circ} 47^{\prime}$ W."
This statement, which certainly does not appear to be lightly made, but it seems to have probably been a floating wreck.

Spanish Shoal, 1769. (P) Wahlstein Breakers, 1857. (?)

A shonl was insoribed vaguely in the oid eharts in " $\because^{\prime \prime} 26^{\prime}$, long. $30^{\circ} 5^{\prime}$, as having been seen in 1769 by a Spanish ship.-" Λ tlantio Mc a n s" 1812, p. 131.

Captain O. J. Wahlstoin, commanding the Rumaian barque Runebery, on September 6th, 1857, was in $40^{\circ} 20^{\prime}$, long. $36^{\circ} 13^{\prime}$, passed through a very rough soc, which in n moment commenoed breaking over the vessel, and continuod for 20 minutes. The water almo changed oolour for the same period, with all appearances of shoul water:"Nautical Magazine," po. 665.

There is at present nothing to contradiot this statement.
Jaquet Island, in lat. $46^{\circ} 65^{\prime}$, long. $30^{\circ} 30^{\circ}$. (?)
Stated to have been ween again in 1789, but disbelieved.
A lottor from Jorsey, 3rd of April, 1838, states that Jaquet Isle, in about $40^{\circ} 5 \delta^{\prime} N$. long. $32^{\circ} 20^{\circ}$ W., was seen by the brig Sea-flower, of Jerney, at 5 a.m., on the 20 th of April, 1830 : the weather fine and clear ; but no bottom was found at 100 fathoms. The inle appeared to be half a milo in length, and about 300 feet, or 100 yuris, high above the surface of the mea. This must have been an ieeberg, although Mr. Lo Gros, mate of the Sea-fower, declares that it was not. The depth hereabout is 2,000 fathoms.

Beaufort Bank, lat. $42^{\circ} 37^{\prime}$, long. $41^{\circ} 45^{\prime}$.

Lieutenant A. Sainthill, R.N., commander of the ship Beayfort, on returning from Jamaioa, August 3, 1832, when in lat. $42^{\circ} 37^{\prime}$, long. $41^{\circ} 45^{\prime}$, observed the water to be discoloured; in consequence of whioh he twice triod for soundingn, and found rocky ground at the dopth of 100 fathoms. But Commander Dayman found no hottom with 3,000 fathoms up and down in $42^{\circ} 07^{\prime} \mathrm{N}$. and $41^{\circ} 28^{\prime} \mathrm{W}$., about 32 miles off in Septomber, 1858.

Notwithstanding that Cuz \mathbf{r} Dayman's sounding of $\mathbf{3 , 0 0 0}$ fathoms so near Lieutenant Sainthill's positic । gree of longitude), would ap ropeated his atatoment :-"I ean only tell you that I am perfectly convinced that wo touched bottom, which Captain Dayman would call an excellent up and down cant. The arming of the lead showed sharp rooky bottom of fine blueish ashos, and my opinion is that we were over a submarine volcano in a state of oruption.-("Nuut. Mag." 1851, 209.)

We munt leave these two statements to be reconcilod by future investigations.

$$
\text { Druid's Reef, in lat. } 41^{\circ} 19^{\prime} \text {, long. } 41^{\circ} 25 .(P)
$$

On the 12th of April, 1831, Captain Treadwell, in the Druid, of London, paseed this reef on his starboard hand, at uot more than 30 yards distant. The reef had the appearauce of from 7 to 10 uugar-loaf heads, and its length, from E.N.E. to W.S.W. was estimated at 10 to 14 feet. It was about 3 feet above water.
A reef was heretofore insorted from the Spanish ehart, as seen in 1803, lat. $41^{\circ} 24^{\prime}$, long. $41^{\circ} 20^{\prime}$; but we are not aequainted with the authority under which it has been there introdueod. It may posaibly be a rock, said to be neen by Lesmaires, a pillot, in 1683, who reported that it appeared at the height of a moop above the water. Bellin assigned to this danger lat. $42^{\circ} 0^{\prime}$, long. $41^{\circ} 10^{\circ}$. The Spanish ehart also exhihitn mother vigia, said to have heen seen in 1798, lat. $43^{\prime} 30^{\prime}$, long. $37^{\circ} 35^{\prime}$. All these were more likely to be of ice only.

Hervagault's Breakers, in lat. $41^{\circ} 2^{\prime}$, long. $40^{\circ} 23^{\prime}$. (P)
They were inserted originally upon the authority of M. Hervagnult, commander of Le Conquarant, of Nantes, 20th of June, 1723, who described them as. composed of two parts, between which he was foreed to par." The sea between was very clenr, and broke heavily upon the dangers.

Again, on the 12th of May, 1827, Captain Maxwoll, of the ship IIome, on hin passage from Liverpool to New York, fell in with three sunken rocks, with a tremendous see breaking on them, apparently from 4 to 6 feet under the surface, in lat $41^{\circ} 2^{\prime}$ North, long. $49^{\circ} 23^{\prime}$ Weet, and about 30 feet in circumference; the lnst of them tniled of to the north-pateravid with a long ledge. It was again said to have been scin on

June apped by 0 and 2 Th obwer other
' Th
These Race; in mets abon
The ex municate brig Indi the 23 rd with the having ru immedint from S.E. Aner givi milen, I and obser

[^166]September whioh in n uten. The al water:n the 20th on fathoms. yardis, high ugh Mr. Io rout is 2,000
arning from water to bo found rocky no bottoms milen off in
omn bo near o half a drSainthill han seed that we d down cant. hos, and my pl.-(" Naut.
sations.
ndon, paraned reef had the t. to W.S.W.
lat. $41^{\circ} 24^{\prime}$, it has been es, a pilot,iu ter. Bellint llwo exhibits All these
mmauder of empowed of very cleur,
ome, oil his han tremellin lut $41^{\circ} 2^{\prime}$ them tuild cen scta on

June 20, 1855, by N. T. Marquand, master of the schooner Mentor, of Jersey, and appeared to be azout 3 foet above water, when it was passed about i mile ot. Good oberrvitions made it in lat. $40^{\circ} 27^{\prime}$, long. $49^{\circ} 56^{\prime} \mathrm{W}$. In 1816 it wat mid to bs seen by Captain Lourp, of the brig Aloxander Savage, who placen it in lat. $41^{\circ} 6^{\prime} \mathbf{2} 3^{\prime \prime}, \mathrm{N}^{\prime}$., and long., by dead reckoning, $40^{\circ} 57^{\prime}$.
The ponition is almont oonclusive against its existence, but Captain Maxtell'g obmervation demonatrate that it was ice that he saw, as is probably the case 'rith thio othors.

Daraith's Rocks, in lat. $40^{\circ} 50^{\prime}$, long. $64^{\circ} 53^{\prime}$. (P)

M. Bellin, in his Memoir, of 1742, has said that this danger was seen on the 28nd of Auyust, 1700 , by M. Daraith, who approaohed within. $1 \frac{1}{2}$ leaguen of it, then siled round it, in order to obsorve it well, and took an altitude within sight of it. The rock in dencrithed as extending $1 /$ leagues, being three-quarters of a league broad. This was manifestly ics. Its existence is disproved by Lieut. Berryman Anding $\mathbf{2 , 7 1 0}$ fathoms on the spot.

Watson's Rock; lat. $40^{\circ} 18^{\prime}$, long. $53^{\circ} 40^{\prime}$. (?)
Captain T. A. Wataon, of the IIarbingor, writes :--" April 28th, 1824, at eight a.m., moderate weather, a man saw something ahead; the helm was immediately ordered a-weather to clear it ; being only 15 or 20 fathoms to leeward of it, which enabled me to distinetly make it out to be a rock, just even with the water. It was coverod with weed, aimilar to that on half-tide rocks; it was of a light green, with some branches of a red colour. It was at times, on the top of a sea, invisible; but in ihe hollow of a sea, several feet uncovered. I observed the sea to break on is twice, cnusing a upray, as any pinnacle-like substance, with deep water around it, might be expected to do. The Yoad was hove as noon as it could be got forward, but there was no bottom at 90 fathoms perpendicular. From an excellent observation at noon I conaider it to lie in lat. $40^{\circ} 18^{\prime}$ N., long., by dead reckoning, $53^{\circ} 40^{\circ} \mathrm{W}$. The water for several miles around it was dark, as if on soundings."

It in very improbable that this can exist in the fairway between Europe and America without having been frequently seen."
 long. $50^{\circ} \Delta 5^{\prime} 20^{\prime \prime}$.
These rocke form a dangerous reef, lying about 30 leagues E. by S., true, from Cape Race ; in gales of wind a heary sea breaks over them, aud a strong current, which meta about them, often increasea the danger.
The exintence of the Virgin Rocks having been quentioned, it is proper to communicate the following extract of a letter, addressed by Arthur Kemp, master of the brig Indiana, of Dartmouth, to the publisher of the Newfoundland Gazette :-"On the 23 rd of October, 1823, at noon, 1 left Cape Broyle, after a strong gale from S.E.E, with tho wind at W.N.W., steering S.E. by S. The following morning, at eight a.m., having run 84 milen, I was alarmed with the ce'y of 'Breakers a-head !' and almost immediately saw them to such an alarming exteat as obliged me to alter the course from S.E. by S. to E. by N., it not being possible to clear them on the other tack. Aner giving the breakere a good berth, and leaving them to the southward, distant 4 miles, I hove the main-topsail to the mast, and lay by from ten o'clock till noon, and observed in lat $46^{\circ} 35$, long. $50^{\circ} 51^{\prime}$; the extent of breakers appeared to be

[^167]about 2 miles, and we $2=$ mure tremendously alarming than I have ever experienced during the 23 vears that. Wa\%íhiefly in this trade; commanded a vessel."

The reef thai since been i urveyed by Mr. Rose, master of H.M.S. Tyne, who, with Captain Bishop, of H.M. orig Manly, has ascertained its situation. The following are the particulars:-

The bank on which the shoal is situated extends E. by N . and W. by S. $4 \frac{1}{4}$ miles; its broadest part is about $2 \frac{1}{4}$ miles. The soundings are regular firm 28 to 30 fathoms, until they deepen suddenly on the outer edge to 39 and 43.
The rocks themselves are in $46^{\circ} 26^{\prime} 30^{\prime \prime} \mathrm{N}$., and $50^{\circ} 55^{\prime} \cdot 20^{\prime \prime} \mathrm{W}$. They extend in an irregular chain S.W. by W. and N.E. by E. 800 yards, varyiog from 200 to 300 yards in breadth. The least depth of water is on a white rock, in $4 \frac{1}{\frac{1}{2}}$ fathoms, with 5 to $6 \frac{1}{8}$ fathoms all round it; the bottom distinctly visible. Toward the extremities of the shoal are several detached rocks of frum 7 to 9 fathoms, with deep water between, and with a current setting over them W.S.W. 1 mile an hour ; and with also a very confused heavy awell.

The vessels were anchored upon the rocks for the space of two days, during which the weather was extremely pleasant, and every way favourable for taking the most accurate observations. The surrounding bank has been noted as a good fishery. Variation, $20^{\circ} 30^{\prime} \mathrm{W}$.
Shoai: on the Bank of Newfoundland, East oi the Virgin Rocks, lat 46? 30'.
A shoal, with only 21 feet water on it, was discovered by Jesse Ryder, master of the fishing schoorrer Bethel (belonging to Province Town, Massachusetts), on the Grand Bank of Nowfoundland. In lat. $46^{\circ} 30^{\prime}$, having observed on the shoal, saw it distinctly, it being a rock of about 100 or 203 feet surface; supposed it to be about ' 50 miles East of the Virgin Rocks. Shoal bears from Nine-fathom Bank S. by W., by compass, about $1 \frac{1}{4}$ miles; discovered it accidentally while searching for the Ninefathom Bank to fish on. Was certain it was not any part of the Virgins, for I afferwards saw them, and, from my experience of the different flishing grounds, know this shoal to exist.

CASHE'S LEDGE, in lat. $42^{\circ} 56^{\prime}$ N., long. $68^{\circ} 51^{\prime} 30^{\prime \prime}$ W.
"This is a dangerous reef, about half a mile in extent each way. Its sourdings aro very irregular, having from 10 to 4 fathoms in the len wh of a boat. There are 17 fathoms within a cable's length of it, deepening a short distance to 90 fathoms, on the western side. On approaching the shoal you may find 60 to 35 fathoms ${ }_{f}$ brown sand, with black stones and broken shells; then 30 fathoms, where it becomes rocky. The currents on the ledge are exceedingly rapid and devious. On the shoalest part there are said to be only 12 feet at low water. By observations made, on four successivo daye, by the master of H.M. sloop Beaver, the latitude is $43^{\circ} 1^{\prime} 0^{\prime \prime}$. The longitude has been deduced from that of Cupe Anne es from $69^{\circ} 8^{\prime}$ to $69^{\circ} 12^{\prime}$. "

Such is the statement, ezactly as it appeared in this Work since the year 1815, respecting this dangerous rock. Yet by a recent examination by the United Stateg' coast survey, by Passed Midshipman Ammen, it is recomnended to be called Ammen's Rock. As we seo not the slightest reason for such change, notwithstanding the difficulty and perseverance shown in its exploration, the original name certainly must remain.

The latitude of the rock, deduced from the two days' observations, June 5th and 6th, 1849 , is $42^{\circ} 56^{\prime} ;$ the longitude $68^{\circ} 51 \frac{1}{\prime}^{\prime}$ W. The least water on this rock is 28 foet; a less depth has been reported by the fishermen, but they sound with their Ashing lines, perhaps not accurately marked, and with a lead insufficient to press down or pass through the thick kelp that covers the rock. The extent, hnving less than 10 fathoms, is about half a mile in a N.W. by W. and S.E. by E. direction, and very narrow. It is surrounded by deep water at a short distance, particularly on the S.E. side, where the depth inoreasos suddenly to 60 fathoms.

, Bhoal Ghounds on Groroz's Bank.

'These ellonls were formerly doscribed under the reapective iumines of Brown's Binh
and the of the Hull, b the " \mathbf{O} properl 34 ' N. which 15 to 35
But the U.S.
It app N., and the dept The two and 67° feet $\mathrm{cf} \mathbf{w}$ any part whole len
Some
miles S .1

These trade of t yeurs; an individual States nov has been e
They ho tending th these form pleted in 1 shows a di 8. of Dav them on p

Tho com yock projec September conld have highway of Great Live brought do of this is gi becalmed in was surpris was suppose to be a very with show's announced

Iand of 1 24., long. 24 yigia hafin Negres Rock 30 fathoms,
rtend in an 0300 yards with 5 to $6 \frac{1}{2}$ ities of the or between, aloo a very
uring which ag the most ood fishery.
lat 46: 30'. er, master of etts), on the shoal, saw it to be about nk S. by W., for the Nineis, for I afterds, know this
scurdings aro There are 17 thoms, on the brown sand, rocky. The est part thero our successivo The longitude
he year 1815 United States' hled A mmen's ding the diffiertainly must

June 5th and his roek is 26 od with their cient to preses , hruing less directiou, end cularly on the
and the Malubar Shoal, by neither of which numes are they now recognised. A copy of the report of an actual survey of them, made under the orders of Commodore Isaac Hull, by Mr. Felch, of the U.S. navy, and Mr. Edmund Blant, jun., is contained in the "Colombian Navigator," vol. i. p. 56. From this ruport it appears that there are, properly, fonr shoals on the bank, the whole of them inoluded betw. 34^{\prime} N. and $41^{\circ} 53^{\prime} 30^{\prime \prime} \mathrm{N}$. , and long.tudes $67^{\circ} 18^{\prime} \mathrm{W}$., and $67^{\circ} 59^{\prime} \mathrm{W}$. The largent, which is toward ine S.W., is also the most dangerous. Between the shoals are from 15 to 35 fathoms of water.
But these shoals have been accurately surveyed by Lieutenant Charles Wikes; of the U.S. navy, und the officers under his direction.
It appeais by this survey that the general direction of the shoal ground is \mathbf{N}, \mathbf{W}. by N., and S.E. by S., and it extends 13 miles in length, and from 1 to 2 miles in width; the depth of water within this space being 10 fathoms and less, but very irregular. The two shoulest places are between $41^{\circ} 40^{\circ} 13^{\prime \prime}$ and $41^{\circ} 40^{\prime} 33^{\prime \prime}$ N., and $67^{\circ} 44^{\prime} 10^{\prime \prime}$ and $67^{\circ} 40^{\prime} 30^{\prime \prime} \mathrm{W}$., and are knolls of hard sand, having upon them, at low tide, 15 feet of water. With the exception of these two places, the shoal may be crossed in any part by an ordinury sized vessel without danger. There is a rip usually the whole length of the shoal, and, at times, heavy breakers in the shoalest places.
Some other shoal patches of 5 fathoms lie at 28 miles to the S.W. by S., and 44. miles S.W. by W. of the shoalest spot, and are called the Little George Bunk.

NANTUCKET SHOALS, extending from Nantucket Island.

These very dangerous shoals, lying immediately in the line of traffic of the onasting. trade of the United States, bave been bat very little known till within a very fev; years; and then their limits were more exactly defined at the expense of a privsie individual, Mr. E. M. Blunt, of New York. These "Goodwin Sands" of the Uniced States now, however, appear to be tolerably well examined, though still some doubt has been expressed as to whether their entire extent has been ascertained.
They have heen surveyed by Lieutenant Charles H. Davis, U.S. navy, superintending the hydrographic purts of this portion of the coast survey. The danger of these formidable ghoals are reduced by the new lighthouse on Sankaty Head, comt pleted in 1849. This towor is 70 feet high, painted in three horizontal rings, and shows a dioptrie flashing light ; and also by the Light-vessel, which lies 2 miles to the S. of Davis' South Shoal, showing two fixed lights. Some particulars are given of then on page 649.

America Rock, lat. $40^{\circ} 20^{\prime}$ N., long. $63^{\circ} 50^{\prime} \mathrm{W} .(P)$
The commander of the bark America, of Baltimore, thought he had discovered a rock projecting from 25 to 30 feet above water, and about 301 fcet in circumference, September 1, 1846: lat. $40^{\circ} 20^{\prime}$, long. $63^{\circ} 50^{\prime}$. It is very improbable indeed that this could have been a rock; it looks more like a wreck, from the fact of its being in the highway of shipping, and its locality having been crossed at least four times by the Great Liverpool steamer alone, in 1838-39. It may have been a large tree, perhape brought down by the Mississippi, and launched into the Mexican Gulf. An example of this is given by Captain G. P. Lock, of the Marthu Shalla, of Liverpool, who, being becalmed in the ueighbourhood of Munn's Reef (or lat. $39^{\circ} 45^{\prime}$ N., long. $64^{\circ} 10^{\circ}$ W.), was surprised to hear the announcement of a boat's approach; but, on referring, it was supposed to be Munn's Reef. A boat was got out to survey, when it was found to be a very large tree, roots upward, and 40 feet in circumference, and surrounded with ahotis of finh. Had it not been so closely examined, it would have been again announced as Muin's Reef.

IMAGINARY SHOALS.

Land of Bus, to the S. of Iceland, in lat. 58°, long. $30^{\circ} \mathrm{W}$. Vigia" of 1746, lat. 85°
 vigia hali a degree northward. Burenethy's Rock, 1726, lat. 45 50°, 'ung. 35° I 5°.: Vegres Rocks, 1724, lat. $48^{\circ} 7^{\prime}$, long. $21^{\circ} \mathrm{W}$.

BETWEEN THE LATITUDES OF 30 AND 40 DEGREES.

Dedilald Rock; off Cape St. Vincent, in about $36^{\circ} 30^{\prime}$ N., and $y^{\circ} \cdot 16^{\prime}$ W.

The old charts of the Atlantic indicated a danger at the distance of 12 or 15 leagues to the S.W. of Cape. St. Vincent. This danger was omitted in the French chart of 1786, and subsequently in other charts, from the supposition that, if it really existed, it must have received some modern confirmation. . But it seems, from information communicated by Captain Taylor, of the bri, -aurel, of Whit'sy, that, in about 1813, the Dadahis, transport, struck on this rock, and received so rauch damage as rendered it necessary for her to put into Lisbon for repairs. Captain Taylor was in the fleet when the Dredalus struck.

Added to this, the brig Briton, Captain Stokes, was lost, 'n consequence of striking upon the rock, in December, 1821. After she struck she swung off, and then immediately tried for soundings, but got none. On finding the vessel striking, the people took to the boat, and were picked up by another vessel. Captain Stokes had not seen Cape St. Vincent, but supposed it, at the time, to bear N.N.E. $\frac{1}{2}$ E. 28 or 30 miles. This information has been communicated by Captain Livingston, who says, "This information was given to me in Malaga, in September, 1822, by Captain T. Tankersly, of the schooner Lord Mulyrave, of Londou. Captain Tankersly added, that he had met with another master (name forgotten), who said he had observed the sea-weed on this rock ; got out of his boat, and held on by some of the weed. He supposed the rock to be about 50 yards in circumference."

The preceding information is from Captain Livingston, who also says, "I was some years since informed by an old man of colour, a native of Goa, who was steward of a vessel I then commanded, that, while he was cabin-steward to Sir Edvyard Pellew, while captain of H.M.S. Indefatigable, she struck on a rock off Cape Finisterre. This, I understand, has been denied, and it appears truly; for I have now information on which I can rely, from a very respectable naval officer, whose name I do not consider myselfat liberty to mention, that the Indefatigable, when commanded by Sir Edward Pellew, actually struek on the rock, or a roek, off Cape St. Vincent, and received some damage. I had no doubt, before, that she had struek somewhere, as I had perfect confidence in my old steward's veracity : the error wes in memory only."-(Letter, 28th Ootober, 1822.)
. The existence of this rock was affirmed on the 6th of March, 1839, by Mr. John Aves, commander of the schooner Tan:ivy, of Plymouth. At $9^{\mathrm{h}} 30^{\prime}$ p.m., this vessel, on her voyage from Zante, passed close to the eastward of it ; it was not seen till close aboard, and not avoided without difficulty. There was a swell from tho N.W. breaking over it, and a sheet of foam, about 20 to 25 fathoms in circumference. The Tanticy stood in N.N.E. on the starboaid tack, till 7 next morning, then tacked to the southward, passing the cape at the distance of about 2 miles. The roek was thus estimated to lie considerably to the castward of its position, as shown by chart, and to bear abont S.S.W., true, 37 or 40 miles from the cape.
We must leave this for the present. It is a blot on the charts. Its existenca ought to have been set at, rest many years sinee.

Cleveland Roef, off Cape Grir. (?)

This reef, or bank, said to have been discovered iy Captain Clevelana, R.N., in 1795 , in Int. $30^{\circ} 45^{\prime}$, at about. 9 leagues from the coasi, was diligently sought for by the Atna and Raven, on survey, in 183j, without success; and it has been accordingly erased from the charts.

FALCON R()CKS, to the Northward of Porto Santo.

The situation of these rocks has been already given in the description of the Mudeiras, p. 682. They had previously been vaguely and erromeously described as a bank, on which Francis Doublet, of Honfleur, grounded, to the N.E. of Porto Santo; and as a ledge on which a Dutch ship was lost. It is most probrole that it is the same shoal as the Eight Stones, next described,

The above w Kenny, rock, bu
The re they do them, an petition describes

Captai Batavia t in the aft deck witl calling or diately o avoid the deck to e Pronk sa some of The capta good obse found the
The fo Magazine
The si Besides t there is a

[^168]
of striking

 then imme, the people had not secu or 30 miles. says," "This \therefore Tankersly, that he had sea-weed on supposed the"I was some steward of a cpard Yellew, sterre. This, formation on not consider Sir Edward received some I had perfect Y."-(Letter,
by Mr. John , this vessel, not seen till m the N.W. erence. The en tacked to ook was thus iy chart, and

The Eight Stonee, to the Northward of M.deira. (?)
A very extensive and dangerous reef, according to M. D'Apres, was supposed to have been discovered by a Captain Vobonne, of London, in 1732, and snbsequently seen by a vessel going to the Wast Indies. Eight rocks were raid to be seen, even with the surface of the water, and situate between $34^{\circ} 30^{\prime}$ and $34^{\circ} 45^{\prime} \mathrm{N}$., near the meridian of $16^{\circ} .40^{\circ} \mathrm{W}$. This object, therefore, for more than a century past, was alarming the navigator; but sufficient evidence has been given to prove its noncxistenoe in the deep sonnding of 2,288 fathoms gained in the U.S. ship. Dolphin.
The routes of the following ships and vessels of the British navy are also conclusive :-On the E. and N.E. of the assumed position, we find, in 1828, the Southampton and Chanticleer: in 1829, the Blossom; in 1832, the Beagle; in 1833, the SEtna and Raven: mo , to the West, beyond the meridian of $16{ }^{\circ}$, in 1325, tho Martin; and in 1828, the Emulous: beyond these, westward, the Raven and Sulphur, in 1836; and the Blossom, in 1825, which passed from the northward directly over the spot. In 1831, the Atina likewise passed over it, and pursued her course thence toward Porto Nanto. The Xtitna again, in 1836, more to the West, sounded near the meridian of 17°, but found no bottom at 200 fathoms. The saue ship, in 1833, passed in an East and West direction directly over the supposed centre of the shoal, but found ne bottom at 70 fathoms.

Mossman Rock, lat. $43^{\prime} 41^{\prime}$ N., leng. $28^{\circ} 51^{\prime}$ W.

The harbour master of Hartlepool announced the discovery of a rock a few feet above water, by his brother, Captain Robert Mossman, in command of the Edward Kenny, April 22 nd, 1854, in the above position. It was confidently believed to be a rock, but no means are stated to have been tried to test it.
The repeated announcements of rocks in this ncighbourhood, as is shown, although they do not hardl in any case appear to be seen again in the positions claimed for them, and the evidence of the deep soundings is against several of them, yet this rcpetition of discovery leads to the inference that some such rock as Mr. Mossman describes, may lurk hidden here, and has given rise to these reports.

Pronk Rocks, West of the Azores, lat. $38^{\circ} 32^{\prime}$ N., long. $33^{\circ} 16^{\prime}$ W. (?)

Captain A. Pronk, of the Dutch bark, D_{e} Hoop, reported, that on his passage from Batavia to Rotterdam, in the North Atlantic Ocean, near the Azores, April 6th, 1844, in the afternoon, sailing with a strong breeze and fine weather, being on their quarterdeck with his officers, they were much alarmed hy some of his people in the foretop calling out that they saw a large rock close by on the lee-bow. The captain immediately ordered the helm to be put down, and the vessel luffed up 3 or 4 points to avoid the danger; with astonishment they saw several rocks, plainly visible from deck to every nan on board. They passed them within a cable's length, and Captain Pronk says that it was an extensive group of rocks, wilh several puints above water, some of them more than 16 feet in height, against which the sca broke furiously. 'The captain places this danger in $38^{\circ} 32^{\prime} \mathrm{N}$. , and $33^{\circ} 16^{\prime}$ West of Greenwich, by very good observations and ohronometer; the next day they saw the Western Islands, and found the longitude by ohronometer very exact.
The foregoing was comriunicated from the Dutch newspapers to the Nautical Magazine by Cajptain F. Fohkena, of the Dutch ship Roon and Pendrecht.
The site was sailed over in 1845 by Captain Siekens, of the Dutch Marine. Besides the circamstance of the asserted discovery not having since been verified, there is a positive evilence of the depth of 1,500 fathoms at 25 miles N, W. of it.

> Constante Reef, lat. $37^{\circ} 56^{\prime} 20^{\prime}$, long. $33^{\prime} 44^{\prime \prime} 8^{\prime \prime}$; and Ferreira Reef; lat. $38^{\circ} 26^{\prime} 44^{\prime \prime}$, long. $30^{\circ} 25^{\prime} 10^{\prime \prime} \mathrm{W}$.

The official notice of these two reefs we find in the Nautical Magazine, December, 1840, p. 881, as follows :-
"I, Manoel Mariann Ferreira, pilot, while navigeting from Paraiba to iision, on board the Braziiian brig Constante, as master and chief pilot thereof, and being to
the westward of the Azores, near the parallel, and not very distant from the meridian of the reported Martyrs or Azores reef; at 10 a.m., on the 26th of August, 1840, sailing in a northerly direction, with light winds from the E.S.E., saw breakers to windward, at the distance of 1 or 2 miles. Shortly after it fell calm, and my vessel remained in the same position for six hours, add in sight of the said breakers, so that I got the boats out to keep her head away, and tow her out of danger. At noon; it being then high water at that place, the surf had nearly disappeared; at 2 p.m. it again became perceptible, and at $6 \mathrm{p} . \mathrm{m}$. a group of rocks was olearly visible above the water. By the latitude I had observed at noon, and the longitude given by a good chronometer, and the rock being about $1 \frac{1}{2}$ miles distant from me, I compute their situation to be in lat. $37^{\circ} 56^{\prime} 20^{\prime \prime} \mathcal{N}$., long. $33^{\circ} 4^{\prime} 8^{\prime \prime}$ West of Greenwich.
"As the wind freshened, at $6 \mathrm{p} . \mathrm{m}$., I made sail again; and having arrived in three days in sight of the Islaud of Flores, I found that my chronometer was perfectly correct.
"The wind being East I tacked to the southroard, and on the 31st of August I passed near another sunken rock, which is marked in the chart as having been seen by Captain Robson, to the northward of Fayal. At 8 a.m. I saw some rocks abovo water, over which the sea broke, and which I passed to leeward, at the distance of 1 to 2 miles. ' $\quad \mathrm{H}$ observation and the chrononeter I calculate this second danger to bo situated in la ${ }^{\prime} .38^{\circ} 26^{\prime} 44^{\prime \prime}$, long. $30^{\circ} 25^{\prime} 10^{\circ} \mathrm{W}$. of Greenwich, all which I certify without doubt.-Lisbon; 6 th Nctober, 1840."
The first of these reefs has been nauned the Constante Reef, and the second, Ferreira. Roef; they have becn previously yoticed, together with the Pronk Rocks (Rhoon Rocks, in the Nautical Magazine), on p. 417.
The shoal off Flores, mentioned above, was originally copied from Van Keulen into Bellin's chart of 1742. Its position has varied from time to time. It cannot be authentic. By some it is called Martyrs Shoal, by the Portuguese Vigia dos Azores ("Atlantic Memoir," 1825, p. 252.)
Near to the asserted position of the Constante Reef, Captain J. Keyzer, of the Dutch ship Bato, on May sth, 1845, saw a white patch about 100 fect in diameter. The sea smooth at the time. Lat. $37^{\circ} 42$. long. $32^{\circ} 57^{\prime}$.

We leave these asserted shoals for future investigation.
Against their authenticity we have the authority of Captain T. D. Sickens, of the Dutch Marine, who passed over the spot with a good look out from the rigging, without seeing anything, and then steered N.W. by N. over Constante Reef, \&eo., with the same result.

Again a volcanic shock: was felt, March 13, 1853, lat. $38^{\circ} 9^{\circ}$ N., long. $31^{\circ} 55^{\prime *}$ Near to this, however, the sea is 2,000 fathoms deep.

At all events much circumspection is necessary in sailing through these parts.

$$
\text { Atila. Rock, lat. } 36^{\circ} 31^{\prime} \text { N., loug. } 32^{\prime} 34^{\prime} \text { W. (P) }
$$

A very vague announcement was issued by the Hydrographic Office of $\mathrm{Madriz}_{\text {a }}$, in 1857, of a sunken rock of uncertain depth, seen by the Captain of the Spanish brigantine Atila, in lat. $36^{\circ} 31^{\prime} \mathrm{N}$., long. $32^{\circ} 24^{\circ} \mathrm{W}$., but with no further particulars; this would be some 200 miles T.S.S.W. of Fayal, but it seems very doubtful.

Hilton Rocks, West of the Azores, lat. $39^{\circ} 18^{\prime}$, long. $35^{\circ} 50^{\prime}$.
" Bark Secret, Mr. Robeit Hilton, master, from Valparaiso toward Liverpool, May

[^169]he meridian gnst, 1840, breakers to dmy vessel ars, so that At noon, it at 2 p.m. it le abonve the by a good mpute their

red in three

 as perfectlyof August I seen seen by rocks abovo istance of 1 langer to be certify with-
ond, Ferreira. ocks (Rhoon

Keulen into t cannot be ia dos Azores
eyzer, of the in diameter.
cliens, of the gging, withco., with the
$\cdot 55^{\circ}$ Near
parts.

Madris, ia the Spanish particulars ; t.
crpool, May
a hereabout, th, 1857, W: tw abaft the ist or warm dd of boil, or hen the mist

12th, 1845. While observing a meridian altitude breakers were reported; they were of no great extunt, but Mr. H. plainly saw some objects in the hollows of the waves, which he felt perfectly certain were heads of rocks. The swell was not very heary, and he thinks, in smooth water, they would be nearly on a level with the surface of the sea. The breakers were about $1 \frac{1}{2}$ or 2 miles S . W., by compass, from the vessel, and at the time she was running $7 \frac{1}{2}$ or 8 knots, with steering sails set, so that there was not much time for very particular remarks.
"The latitude stated, $39^{\circ} 18^{\prime} \mathrm{N}$., long. $35^{\circ} 50^{\prime} \mathrm{W}$.; was from meridian observation, and the longitute from the mean of these observations ; viz., their own chronometers, -the chronometer of a ship in company, and a lunar taken by Mr. H. himself, the same afternoon."-Communicated to the Nautical Magazine by Captain A. Livingston, August, 1845.

This reported shoal lies to the N.W. of the Pronk Rocks, but the positions ascertained would, perhaps, be conclusive against their identity. It is mnch to be regretted that in this and many similar cases some little trouble is not taken to place these matters beyond doubt and uncertainty; they remain, perhaps for many years, without being confirmed, and thus only "disfignre" the charts, and are a soirce of anxiety and annoyance to the navigator.

Jean Hamon's Rock, in lat. $36^{\circ} 54^{\prime}$, long. $19^{\circ} 49^{\prime}(?)$

The existence of this distance rests solely on the authority of Jean Hamon, commander of the Tros Amic, of Bordeaux. On the 8th of January, 1733, according to M. Bellin, he approached it within three-quarters of a league, and carefully. observed it. (Very doubtful.)

Keus, or Europa Rock, lat. $38^{\circ} 15^{\prime}$ N., long. $22^{\circ} 14^{\prime}$ W.

Captain D. Keus, of the Dutch ship Europa, stated, in a letter t) H. E., the Minister of Marine, that on the morning of December 10th, 1853, he saw a "black mass," to the S.W. by W., steering N.E. by compass ; at day break he saw that it.was a rock or reef, and passed it about 2 miles distant. Its height was about 15 or 20 feet, and it was about 200 ells in length. Captain Keus places this rock in lat. $38^{\circ} 15^{\prime} \mathrm{N}$., long. $22^{\circ} 14^{\prime}$ W.*

Whate Rock, in about lat. $38^{\circ} 46^{\prime}$, long. $25^{\circ}(P)$

M. Fleurieu exhibited this rock on his chart of the Azores, at about 29 leagues from St. Michael's, upon the report of a pilot, whom he knew at Angra, in Terceira. Its existence has, however, been disputed. Some breakers, which were very high, were seen by Mr. R. Gradun, commander of the ship Harmony, of London, on the 8th of January, 1800; their latitude by observation being $38^{\circ} 46^{\prime}$, and longiture, by account, $24^{\circ} \mathbf{4 7}^{\prime}$. The situation assigned by Mr. Gradun being very near that stated by M. Fleurieu.
Mr. Reid, late British consul-general at the Azores, believed it really to exist; several masters of vessels, who have been blown to sea from St. Miohael's, having told him that they have actually seen it, and that in form it much resembles a whale. The rock has been diligently sought for, under an order of the British Admiralty, but without success; and it now seems clear that it cannot lie in the situation assigned by Mr. Gradun; and their existence is most improbable.

Tulloch Reef, in about $37^{\circ} 27^{\prime}$ N., and $24^{\circ} 45^{\prime}$ W. (?)
This reef was eaid to have been seen in 1808, by Captain William Tulloch, of the brig Equator, of Portsmouth, New Hampshire, on a voyage from Madeira to St. Michael's, as already shown and described in page 565.

It may be remarked that Captain Tulloch observed, from their black cindery appeuranoe, that the rocks had risen from volcanio impulse; but as shown previously they cannot now be found.

St. Mart'e Banx to the 8.W. of the Island of St. Mary, in about $35^{\circ} 53^{\prime}$ N., and $27^{\circ} 19^{\prime} \mathrm{W}$.

"On our passage, in 1819, from Havana to Barcelona, we passed over white water, enparently a shoal, to the sonthward and westward of St. Mary's. The captain would not allow the vessel to heave-to in order to sound; but I have no doubt in my mind of its being a very extensive bank of sourdings; and I have little doubt that I have ascertained its position, tolerably accurate, from lunars, prior and subsequent. I thould not be surprised if it turned out that the bank we passed over was, connected with the Kutusoff Bank, marked, in the last edition of Admiral Espinosa's chart, as having been been in 1816, and which lies to the S.W. of the one we passed over, at the distance of about a degree. We were some hours crossing the bank.
"The bank lies in lat. $35^{\circ} 53^{\prime} \mathrm{N}$., as calculated by account between the observations of the noon before and noon following; long. $27^{\circ} 19^{\prime}$ West. I have heard a French gentleman, a lieutenant.de vaissean, mention what I suppose to be the same, at the table d'hote, at St. Michael's, in October, 1818." A Livingston. This is all we still know.

Josyna Rock, in lat. $31^{\circ} 40^{\prime}$, and long. $23^{\circ} 45^{\prime}(P)$
On this danger, it has been stated that the Josyna, of Flushing, was lost in August, 1697. The latitude observed, and the distance 110 leagues from Madeira. In the Spaniach coart it is said to have been seen in the year 1805 ; in lat. $31^{\circ} 40^{\prime}$, long. 23° 45', as above.
"John M. Gilchrist, master of the brig Jewess, of Liverpool, reports that on his passage from Bahia, on the 1st of January, 1848, at about half an hour after noon, in lat. mer. alt. of the sun that day, $23^{\circ} \mathrm{N}$. (sic), by $24^{\circ} 28^{\prime} 30^{\prime \prime} \mathrm{W}$., by forenoon and afternoon sights! for a chronometer, which on making Medeira, and arrival at Gibraltar proved correct, saw at about a quarter of a mile distant, bearing S.E. by 8. by compass, something which at first appeared to be a fish sporting in the water, but apon taking the glass and looking at it, appeared like a flat rock just awash with the water. As the Josyna Rock, by some considered doubtful, is supposed to be aituated somewhere thereabouts, this notice may serve to put mariners on th bir guard."
We copy the foregoing from the "Nantical Magazine," March, 1848, page 160, as posted at the Liverpool Underwriters' Rooms. The latitude is there stated to be 23°, but the reference to the Josyna Rock leads. us to the assumption that it is an error for $32^{\circ} \mathrm{N}$. The account seems very vague, but it is right to mention it, and we leave it in great donbt, for future determination.

Falconer Rock, off Fayal, lat. $38^{\circ} 40^{\prime}$ N., long. $29^{\circ} 8^{\prime}$ W. (P)

The bark Johanna, Captain W. Falconer, on July 13th, 1847, passed what was supposed to be a rock, of which the men were perfectly sure. The bearings place the spot in about lat. $38^{\circ} 40^{\prime}$ N., long. $29^{\circ} 8^{\prime}$ W., or about 12 miles N.W. of the end of Fayal.
The account in in the " Nautical Magazine," November, 1847, page 589, it is vague, and it may have been some floating object, still its nature was confidently stated, but it is very doubtful.

Candler's Rock, in abont $39^{\circ} 47^{\prime}$ N., and $34^{\circ} 29^{\prime}$ W. (?)
This rook, to the westward of Flores, said to have been seen, a few years ago; by Captain Candler, of the Betsy, of Boston, who thought it to be 100 feet in height, is believed to have been an iceberg only, and therefore expunged from the charts.

Chantereav's Shoal, in lat. $38^{\circ} 27^{\prime}$, and long. $38^{\circ} 0^{\prime}$.
This shoal, described as a white rock, was said to have been seen by Captain Chantereau, of the ship I^{\prime} Auguste, in lat. $38^{\circ} 24^{\prime}$, long. $41^{\circ} 33^{\prime}$, in coming from Martinique, 6th September, 1721, when the sea broke on it very much. It was again announced by Lieutenant Edm. Scott, commanding the Princess Elizabeth packict, 24th of April, $18 \mathbf{8}$:-" On the 24th of 1828 , at three p.m., the water round the ship very green,
and w
board to the then b it. In half a
" Im was re dently had, at $39^{\circ} 49^{\prime}$
A000 Antilla vigia, Perez, $37^{\circ} 57^{\prime}$ the (E os after.
Here
proximi in its fá $2,675 \mathrm{fa}$

This s marked same lati and also in longit and $41^{\circ} 2$
This de passage f 14th of M going $7 \frac{1}{3}$ passed ov about a confirmed much dee existence miles to tl

The Coi being in ${ }^{6}$ brown ap across. I more than seen. The was seen f
We hav reprehensi weather, a easily mad must be s regions.
hite water, The captain nbt in my nbt that I ssequent. I connected 's chart, as ed over, at
bservations rd a French ame, at the all we still
t in August, ira. In the J', long. 23°
that on his : after noon, forenoon and d arrival at ring S.E. by rting in the lat rock just btful, is supmariners on
page 160, as ed to be 23^{3}, an error for we leave it
d what was gs place the for the ond
, it is vague, stated, but
ars ago; by a height, is harts.
btain ChanMartinique, announced th of April, very green,
and with every appearance of being in sonndings ; and, on looking before the starboard beam, saw under water, at the distance of 2 cables, what evidently appeared, to the master and myself, to be a white sand-bonk or rock, which the water did not then break on, but it appeared so very plain that there couid not be much water on it. In extent it was àbout 1 or $1 \frac{1}{\mathbf{t}}$ cables E. by N. and W. by S., true, and about half a cable in breadth.
" Immediately on observing the shoal, I ordered the lead and line up; but, ere it was ready, the colour of the water had changed to a deep sea-blue, when it was evidently useless to sound; at that time we were abont a mile from the white spot; we had, at the time, a good breeze, but very little swell of the sea. _Lat. $39^{\circ} 14^{\prime}$, long. $39^{\circ} 49^{\prime} \mathrm{W}$.

Accorling to a notice inserted in the late official copies of the Derrotero de las Antillas often quoted in this work, and dated Madrid, July 4th, 1846, a shoal, or vigia, was discovered at three p.m., May 21st, 1846, in fine weather, by I. Gabriel Perez, captain of the Spanish merchant ship Leontina, in lat. $38^{\circ} 27^{\prime}$ N., long. $37^{\circ} 57^{\prime} 10^{\prime} \mathrm{W}$. of Greenwich, according to observations made shortly before seeing the (Escollo) rock, and confirmed by ?hronometer in making Graciosa (Azores) soon after.
Here we have three annonicements of dangers of similar character in close proximity. If it exists, they are probably the same. We have no further evidence in its favour or to contradict it. But at 74 miles eastward of it, the Dolphin found 2,670 fathoms.

Breton's Rock, about lat. $39^{\circ} 40^{\prime}$, long. $41^{\circ} 35^{\prime}$. (P)
This shoal, according to M. Bellin, was seen by Breton, a pilot of Rochelle, who marked it merely as a rock. Laisné, another pilot, has also placed it in nearly the same latitude and longitude. It is also sounded on by Roland, a pilot of Tremblade, and also seen by Jean Desmaries ; there being scarcely $10{ }^{\prime}$ difference in latitude, and in longitude not more than 1°. The situation originally assigned was $39^{\circ} 45^{\prime} \mathrm{N}$., and $41^{\circ} 2 \overline{5}^{\prime} \mathrm{W}$.
This danger was again said to have been seen in 1816 by the ship Tiger, on her passage from Barbadoes to Liverpool. The letter of a passenger states that, "On the 14th of March, at ten a.m., a smart breeze from the S.W., with studding-sails set; going $7 \frac{1}{2}$ knots an hour, steering E. by N^{\prime}, true, in lat. $39^{\circ} 40^{\prime}$; long. $41^{\circ} 40^{\prime}$, we passed over a very agitated rumbling sea. "Under our starboard bow, in appearance about a circle of a mile, was a small field of dark-brown rockweed, apparently a confirmed fixture; entangled with thu weed were two pieces of spar, seemingly very much decayed." A little tronble would have settled this at the time. Its nonexistence is determined by the deep sounding last mentioned, of 2675 fathoms, 20 miles to the East of it.

Columbine Shoal, lat. $35^{\circ} 25^{\prime}$ N., long. $49^{\circ} 1^{\prime}$ W. (?)

The Columbine, Robertson, from Aux Cayes, on April 2nd (1844?), at three p.m., being in lat. $35^{\circ} 25^{\prime}$ N., long. $49^{\circ} 1^{\prime}$ W., saw discoloured water to windward; it had a brown appearance, extending above 100 feet in a S.S.E. direction, and abont 30 feet across. It had all the appearance of a rock under water; the vessel was then little more than her length North of it, steering E.N.E. Some other brown patches were seen. The sea did not break over these places. The discoloured water last mentioned was seen for nearly a mile.-Shipping Gazette, May, 1844.
We have here an int,tance of carelessness which is often to be deplored, and highly reprehensible. The ommander of the Columbine, with every circumstance of wind, weather, and sea in his favour, did not attempt to decide, by a single sounding, most easily made, whether this was a real danger, or merely discoloured water, which must be supposed to abound in this centre basin of the Atlantic in the calm regions.

Westenenk Shoal, $31^{\circ} 48^{\prime} \mathrm{N} ., 40^{\circ} 26^{\prime} \mathrm{w}$.
Captan J. W. Westenenk, on board the Dutch ship Alida Maria en Adè̀le, 11th
of Auguast, 1854, about 11 o'clock in the forenoon, sailing with a light E.N.E. breeze, breakers were seen at half a mile distance. The noon observation gave the latitude as 31 r 8^{\prime} N., and the longitude, Weat of Greenwich by two ohronometers, was $40^{\circ} 28^{\prime} 30^{\prime \prime}$:" We give this as related, but have nothing to contradiet it at present.

Anna Rock; lat. $39^{\circ} 30^{\prime}$ N., long. $50^{\circ} 30^{\prime} \mathrm{W} .(\rho)$
Extract from the log. of the Sicilian brig Anna, Marco Carmelich, master:"Tuesday, June 8th, 1841 , p.m., ship sailing with all sails set. At three p.m., observed a shoal to the South, distant about 2 miles, appearing to the eye like a ship with three masts of equal height, and inclining towards the South, and about 50 feet high, surrounded by shoals, level with the water.' Latitude, calculated from that observed at noon, $39^{\circ} 32^{\prime} \mathrm{N} .$, long $50^{\circ} 50^{\prime} \mathrm{W}$."

Evidently an iceberg.
Munn's Reef, in about 39° N., $64^{\circ} 20^{\prime}$ W. (P)
This shoal was seen by the brig Joseph Hume, of which Mr. Alexander Munn was mate, 22nd of August, 1827, on her passage homeward to Liverpool. "The vessel passed close to it; they saw the white sand above the water, and sounding where the vessel then was, found 20 fathoms sandy bottom, a quarter of a mile off: then bore up, and sailed westward of $i t$, in deep water."

This information was communicated by Mr. Munn, through the medium of Captain James Porter, of the bark Science, of Greenock.

In the passage of H.M.S. Thunder from Bermuda to Halifax, in 1835, the ship hove-to for the night, in order to search for this shoal, but it was not found. The Sapphire frigate had passed over the spot at noon of the day before, but likwise unsuccessfully. In a former page is an account of a large tree having been found by Captain G. P. Lock, near this position.

Field's Vigia, lat. $37^{\circ} 31^{\prime}$, long. by account, $66^{\circ} 0^{\prime}$. (P)

An account of this vigia was published in the year '1833, but we are strongly inclined to think that it might be only a collection of weed, \&c., in one of the southern eddies of the Gulf Stream, where, in abundance, it is frequently found: This was Mr. Purdy's remark, but Captain Field's negligence gave great trouble to disprove his opinion.

The U.S.S. Dolphin had a good sounding of 500 fathoms on the spot, another of 1,175 fathoms at 10 miles S.E. of it, and many other unsuccessful soundings in its neighbourhood, where they were for 4 days.

$$
\text { Anfitrite Shoal, in lat. } 35^{\circ} 50^{\prime} \text { N., long. } 66^{\circ} 4^{\prime} \mathrm{W} .(P)
$$

An official notice from the Spanish Hydrographic Direction states that the syanish merchant ship Anfitrite, in her passage from the Havana to Cadiz, in May 10-12th, 1846, discovered a patch of broken water, about a cable's length in extent from N.E. to S.W., which they placed in lat. $35^{\circ} 50^{\prime} \mathrm{N}$., and long., by observation, $59^{\circ} 46^{\prime} 38^{\prime \prime}$ West of Cadiz, or $66^{\circ} 4^{\prime} 11^{\prime \prime}$ West of Greenwich. As in the pseceding case this unfounded assertion gave work for 5 days to the U.S.S Dolphin, when. 1,000 fathoms, no bottom was found on the spot.

Potomac's Soundings, lat. $38^{\circ} 10^{\prime}$, long. 67॰ 26^{\prime}. ((P)

On the southern side of the Gulf Stream, in the situation given above, soundings at 90 fathoms were found by Captain Smith, in the ship Potomac, of Alexandria, U.S., June, 1838. The U.S.S. Dolphin found 400 fathoms, no bottom, on the spot, and 300 to 430 fathoms, no bottom, for 50 miles around it, Oct. 18, 1851. Lieut. Berryman also had a doubtful sounding of 4,290 fathoms-at 40 miles to the W.S.W.

For the B " abou which them; taken some ro existen

Subse seen by $33^{\circ} 45^{\prime} \mathrm{T}$

The r
"On my passed it being Dyet, m
The U
vin 800 assigned Bermuds

Ashtor
Slép at the wh ship tows the distan 100 yard rock in t of weed at 80 fath
" Orion from Live Trinidad rock falle ceived, Mi It had the distance o it.—Breme

This dan addressed t
On the 3 yards to th $78^{\circ} 27^{\prime} 30^{\prime \prime}$ branched ol floating obj
The Steen charts of la

[^170]
BETWEEN LATITUDES 30° AND $40^{\circ} \mathrm{N}$.

E. breeze, ie latitude eters, was t present. 1d abont 50 lated from
ve, soundings f Alexandria, on the spot, 1851. Lieut. the W.S.W.

False Bermudas and Dyot Rockis, to the Eastward of the Eermodas. (P)

Former chiarts of the Atlantic exhibited rocks at about 100 leagues to the Bet of the Bermudas, upon the authority, it is probable, of Bellin, who has stated, that " about 100 leagues to the East of Bermudas there is a little shelf of brittle rocks, which has been seen by one Louis Duhal, in a corsair, or privateer, that sailed around them ; and as this shelf is nearly on the parallel of the Bermudas, many have mistaken it for the rocks about those islands." M. Bellin has observed that there are: some rocks on this shelf whose tops are above the water; but that many doubt their existence.
Subsequent inquiry as to these vigias showed that rocks, supposed to have been seen by the late Captain Bell, or the Francis Freeland packet, were placed in about $33^{\circ} 45^{\circ} \mathrm{N}$., and $55^{\circ} 25^{\prime} \mathrm{W}$.

The report of these rocks was afterwards revived by the following statement :"On my passage from St. Kitt's to London, and when off Bermuda, May 17th, we passed within 30 or 40 feet of two sunken rocks, having 6 or 8 feet water over them,: it being very smooth at the time, in lat. $32^{\circ} 46^{\prime} \mathrm{N}$. at noen, long. $60^{\circ} 6^{\prime} \mathrm{W}$."-Robert Dyet, master of the bark Catherine Green, of London.

The U.S.S. Dolphin spent 7 days in the unsuccessful search for this rock; sounded vinh 800 facioms, no bottom, 12 miles East, and with 550 fathoms over the spot assigned to she Dyet Rocks, and no bottom with 800 fathoms in that of the False. Bermudㅇ.

Ashton Rock and Orion Rock, between the Bermudas and Cape Hattreas. (P)

Sli.p William Ashton, Captain H. B. Guy, 22nd May, 1824 :-" At 11 ${ }^{\text {h }}$ 50', the man at the wheel saw something on the starboard bow, distant about 1 mile. Hauled the ship toward it, when we discovered it to be a rock; passed to the westward of it, at the distance of about 2 cables' lengths. The base of the rock appeared to be about. 100 yards in circumference, on which the sea broke. In the centre was a point of rock in the form of a sugar-loaf, about 8 feet above the water, with a quantity of weed about it. [Something like a whale 9. Passed the lead forward; no ground at 80 fathoms. Latitude $33^{\circ} 48^{\prime} 50^{\prime \prime}$, long. $71^{\circ} 41^{\prime} 20^{\prime \prime}$.
"Orion Rock, no eoundings.-We have received the following communication from Liverpool. The master of the Orion, belonging to our port, Luytjas, from Trinidad de Cuba, arrived in the Weser, has furnished the following particulars of a rock fallen in with :-On my voyage from Trinidad de Cuba for Bremen we perceived, May 5th, lat. $34^{\prime} 51^{\prime}$ N., long. $72^{\circ} 28^{\prime}$ W., a rock 2 feet above the water. It had the appearance of a water cask of two or three hogsheads. We were at a distance of only 20 feet from the rock, when we, fortunately in time, discovered it.-Bremen, July 17th."-" Nautical Magazine," August, 1845. Very unlike a rock !,

$$
\text { Huntly's Rock, lat } 30^{\circ} 49^{\prime} \text { long. } 78^{\circ} 27^{\prime} \text {. (}{ }^{(\rho)}
$$

This danger (if \bar{a} danger) was first made known by the following communication, addressed to Lloyd's, by Captain C. Huntly, in 1834 :-
On the 30th of November, 1833, at 9 a.m., saw a coral rock. We were about 60, yards to the southward of it. I find that this rock lies in lies in lat. $30^{\circ} 49^{\prime} 15^{\prime \prime}$, long.: $78^{\circ} 27^{\prime} 30^{\prime}$ West. It was about 8 feet above the water, and in the fall of the sea it branched out to the N.N.W. about 30 feet in distance. This must have been some: floating object.

- The Steen-ground to the westward of Madeira, very vaguely represented in the charts of last century, 60 or 35 leagucs to the West of Madeira.

BETWEEN THE LATITUDES OF 20° AND 30°.

Gombaud'e Rock, in lat. $23^{\circ} 15^{\prime}$, long. $32^{\circ} 25^{\prime}$. (?)

According to M. Fleurien, this danger was first seen in 1764, having been discovered by G rmjaud, the commander of a merchant-vessel of Hochelle. Upon this authority it was continned, but it was annihilated by a sounding of $\mathbf{2 , 2 0 0}$ fathoms on the spot by the U.S.S. Dolphin.

Overfalls, or Heavy Ripples, in lat. $24^{\circ} 11^{\prime}$, long. $61^{\circ} 4^{\prime}$. No Shoal.

On Saturday, the 7th of February, 1819, at ten a.m., the schooner Brilliant, Capt. Tulloch, on her passage from Gibraltar to Havana, passed through very heavy overfalls, extending N.N.E. $\frac{1}{\frac{1}{2}}$ E. and S.S.W. $\frac{1}{2}$ W., triue, as far as the eye could reach, with much sea-weed (fucus natans) in it. . The breadth of the overfalls did not exceed half a mile. Latitude abcut $24^{\circ} 11^{\prime}$, longitude $61^{\circ} 43^{\prime} 57^{\prime \prime} \mathrm{W}$. The preceding information was commanicated by our friend Captain Livingston, who adds:-"We saw no danger." Bottom was satisfactorily obtained with 3,450 fathoms in the U.S.S. Dolphin on the spot, indicated by Capt. Livingston.

Gandaria Rocks, lat. $25^{\circ} 30^{\prime}$, long. $37^{\circ} 45^{\prime}$. (?)

The following notice of these rocks appeared in the Gaceta de Madrid, May 28th, 1842 :-"On Monday, April 18th, Captain Gandaria, of the Spanish merchant ship Dolores Ugarte, 107 days from Guayaquil, saw from the deck of that vessel a group of rocks about a cable's length in extent, and in the middle of them a large one, high and insulated, on which the sea broke violently. The latitude $25^{\circ} 29^{\circ} 55^{\prime \prime \prime}$, longitude $37^{\circ} 18^{\prime}$. But Lieut. Lee found bottom with 1,720 fathoms on the spot.

Mouranc's Bank, in lat. $24^{\circ} 34^{\prime}$, long. $65^{\circ}{ }^{10}{ }^{\prime}$. (?)
This danger was discovered by Mourand, commander of the Prince de Nizarre, of Nantes, on the 6th of April, 1773. He described it to be a "bank of red sand, many parts of which are out of water, like detaohed islands, over which the sea breaks; it appeared to extend about a quarter of a league from North to South."'
The U.S.S. Dolphin got bottom with 3,560 fathoms near the position of the reef, and no bottom was found with 1,000 fathoms on the spot.

Deep Soundings S.E. of Bermuda. (\%)

Tis New Bedford Mercury relates an account of some soundings which were supposed to be obtained in the ship Chaucer, in April. 1850, but which were fallacious, as follows:-" Here, in lat. $27^{{ }^{8}} 10^{\prime}$ N., long. $62^{\circ} 45^{\prime}$ W., on the 20th of April, 1850, the nearest land being Bermudas, bearing N.W. by N., aind distant 345 miles, water blue, with much gulf-weed, weather calm, no current, the boat was lowered; let run the lead, and got bottom in 744 fathoms. April 15th, lat. $27^{\circ} 31^{\prime}$ N., long. $60^{\circ} 3^{\prime} \mathrm{W}$., Bermudas N.W. by N., 300 miles, sounded and got bottom in 366 fathoms. April. 29 th, lat. $29^{\circ} 20^{\prime}$ N., long. $64^{\circ} 11^{\prime}$ W., Bermudas N. by W. 160 miles, sounded and got bottom in 620 fathoms.

The time occupied in running out the line varied from twenty to thirty minutes. The line was constructed thus: first 100 fathoms, five parts of shoe thread; second, four parte; third, three parts ; fourth, two parts ; remainder singlo. The lead weighed about five pounds; the whole wound upon a light reel, and held by hand. In this process of obtaining soundiugs the lead is not to be hauled up."-Daily News, Aug. 28, 1850.
-There is no doubt but that the imperfect means deceived the commander as to finding bottom ; for Captain Lee, U.S.S. Dolphin, got a good sounding of 3,828 fathome, tho deepest obtained in the cruise a degree to the South of that reported of 366 fathoms, and no bottom with 1,000 fathioms near that of 620 fathoms, and 3,080 fathoms have been got near that of $\mathbf{7 4 4}$ fathoms.
M. bank, was los script, deposit he was to the n entitled Seine, it placed a than to 35 miles

The C that he I known o fathoms, 1849, p. and that these vie reef, mar 1847, p. Joshua on a spot sand and part of complete

This ba S. Hood I $80^{\circ} 12^{\prime}$; b black sand 24,25 , and when uo b account, 8 1 mile an lougitude nicated by has placed

VIGIA

This shoo passage frot lated coral, weed was p latitude wa to be cireur the spot wit

Guigou's Bank, in lat. $20^{\circ} 50^{\prime}$, long. $66^{\circ} 45^{\prime}$. (P)

M. Bellin, in the Memoir of his Chart, of 1742, describes this to be a "rocky bank, about 45 leagues to the northward of Porto Rico, upon which a Dutch vessel was lost in 1701, and that it had also been seen by a French versel." Another manuscript, in the Depot de la Marine, confirmed this acconnt. It also appears, from the deposition of Christopher Whipple, commander of the Anna, of Rhode Island, that he was wrecked on the 27th of November, 1733, upon a shelf, from 30 to 40 leaguea to the northward of Porto Rico. In the Marine Depot of Paris there is a manuscript entitled, "Plan of the Shelf which was discovered by Captain Michael Guigou, of Seine, in Prevence, in the ship La Concorde, February, 1688." On that plan it is placed at 45 leagues to the northward of Porto Rico, somewhat nearer to the western than to the eastern end. But a sounding by Lieut. Berryman of 2,960 fathoms at 35 miles N.N.E. of it, destroys its authenticity.

Courier Rock, off Matanilla Reef, lat. $27^{\circ} 51^{\prime}$ N., long. 78 31^{\prime} W. (${ }^{(}$)

The Courier, of Greenock; drawing 15 feet, William Thompson, commander, statos that he rounded the Matanilla Heef at 2^{h} p.m., and, at $6^{\mathrm{h}} 2 \sigma^{\mathrm{h}}$ p.m., struck on an unknown coral reef, on January 22nd, 1849, and on tacking found 31, 4, 51, 7, and 10 fathoms, and no bottom at 16 fathoms. In some remarks on it (Nautical Magazine; 1849, p. 214), it is argued that the courses would not bring the ship to the position, and that the eddy of the Gulf Stream would also tend to vitiate the reckoning. With these views it is then contended that a 2 fathoms coral spot, at the N.W. end of the reef, marked on the chart, is the real danger. In the Nautical Magazine, August, 1847, p. 421, there is a statement from Captain J. Watkin, commanding the ship Joshua Waddington, of Liverpool, that on May 13, 1847, he discovered and touched on a spot not larger than three or four times the size of the ship, with 3 fathoms, and and dar, which was stirred up by the ship. It was supposed to be a detached part of the Matanilla Shoal. The survey of the Matanilla Bank at this part is too complete to allow of the supposition of these shoals having been omitted.

Inglefield Bank, in lat. $29^{\circ} 42^{\prime}$ N., long. $80^{\circ} 17^{\prime} \mathrm{W} . \mathrm{P}$

This bank, lying about 66 miles East of St. Augustin, was discovered by Captain S. Hood Inglefeld, on the 28 th of May, 1810 , lat. $29^{\circ} 42^{\prime}$ N., long., by account, $80^{\circ} 12^{\prime} ;$ by chronometer, $80^{\circ} 17^{\prime}$; and by lunars, $80^{\circ} 18^{\prime}$. Sounded in 25 fathoms, black sand; hence, steering N. by W. $\frac{1}{2}$ W., course made good, had regular soundings, 24,25 , and 27 fathoms, speckled sand and broken shells, until 6 p.in. on the 27 th , when no bottom could be found. Noon, on the 27th, latitude $30^{\circ} 5^{\prime \prime} \mathrm{N}$., longifude, by account, $80^{\prime \prime} 25^{\prime}$ W., by chronometer, $80^{\prime \prime} 25^{\prime}$. On the 26 th, the current set W.N.W. 1 mile an hour ; at four p.m. on 27th, no current. On the 28th, in latitude 31" 5^{\prime}, longitude by chronometer, $79^{\circ} 46^{\prime}$. Current ran N.N.E. $1 \frac{1}{4}$ miles an hour.-Commiunicated by Lieutenant John Evane, R.N. It is probable that an erroneous reckoning has placed this too far off shore.

vigias between the equator and the parallel OF 20 DEGREES.

Hannalis Coral Shoal, lat. $10^{\circ} 7^{\prime}$, long. 27°. 32^{\prime}. (?)

This shoal was reported by Captain Thomas Fanning, of the brig Hanruh, on the passage from Rio Janeiro to Trieste, June 25, 1824. Sounded in 15 fathoma, granulated coral, on the S.W. part, but supposed it much shoaler on the N.E. points, as the weed was plainly t_{0} be seen from the mast-head on the surface of the water. Its latitude was found to be $10^{\circ} 7^{\prime} \mathrm{N}$., and longitudo about $27^{\circ} 32^{\circ} \mathrm{W}$. This would appear to be circumstantial, but Captain Pullen, in M.M.S. Cyatijit, could get no botioni on the djot witil 2,000 futhoms in Dec., 1857.

Maria Rock, Madeline Reef, Warley's Shoal, French Shoal, Bouvet's Bank, etc.. (')

We have the grateful task of introducing extracts from a letter addressed to the Secretary of the United States' Navy, by Lieutenant Charles Wilkes, commanding the South Sea surveying and exploring expedition, and dated on board the sloop V incennes, at Rio Janeiro, November 27, 1838.
It will be presently seen that the squadron effected the examination of the supposed position of ten or eleven shoals or dangers, the detailed accounts of which were Cormerly given in this werk, their assigned positions in the charts, and the nonexistence of which has apparently been proved.

The shoals enumerated in the ensuing paragraphs have been expunged from the oharts for many years. It will be, therefore, unnecessary to repeat the particulars of their alleged discovery. They will be found in the editions of this work published before 1840.

They were unsuccessfully songht for by the United States' Exploring Expedition under Lieut. Commander Chas. Wilkes, and an account of the search was sent to the U.S. Government under date Nov. 27, 1838.
"The first reported shoal laid down on our route upon the charts was the Maria Rock, in lat. $19^{\circ} 45^{\prime}$ N., long. $20^{\circ} 50^{\prime}$ W., which we stood for, and hove-to near the position. Nothing, however, was discovered, and no bottom could be found with 300 fathoms of line.
"The next position examined was Bom Felix Shoal,* said to be within 30 miles of the Maria Rock; this we searched for in the same manner, but wore equally unsuccessful. . We then stood for the place assignei to the Bonetta Shoal, to the eastward of Bonavista, said to be in lat. $16^{\circ} 32^{\prime}$ N., long. $20^{\circ} 37^{\prime} \mathrm{W}$. We, in like manner, hunted for this, and after exploring the locality of its position on the chart, I steercd on the course of its reported bearing, E. by N. from Bonavista, until nearly up with the Hartwell Reef, lying in sight of Bonavista, which has, without doubt, been taken for, and reported as, the shoal called Bonetta.
"From Port Praya we steered for Patty's Overfalls, as laid down in the chart, in lat. $11^{\circ} \mathrm{N}$., long. $24^{\circ} 30^{\prime} \mathrm{W}$, , and had a good opportunity of examining their locality. A few rips were observed within a degree of the situation assignod them, but littleor no current was found; and I fecl confident in asserting that. no danger exists in this vicinity. Warley's Shoal, said to be in lat. $5^{\circ} 4^{\prime}$ N., long. $21^{\circ} 25^{\prime} \mathbf{W}^{\circ}$., was also carefully examined, but no shoal, or appearunce of shoal water, or any danger, discovered.
"Our next examination was of a French Shoal, said to be (as laid down) in lat. $4^{\circ} 5^{\prime} N$., long. $20^{\circ} 34^{\prime} \mathrm{W}$. This was also examined, and no danger or appearance of shoal discovered. From this point I proceeded East to 13° of West longitude, and over the position assigned to the shoal by the French hydrographers; then stood for the Triton's Bank, said to be in lat. $0^{\circ} 32^{\prime} \mathrm{S}$., long. $17^{\circ} 46^{\prime} \mathrm{W}$. We did not, however, find it in our progress, or any bottom or indication of soundings; no discoloration of water was visible, or chango of temperature, although the line extended 30 miles East and West of its reported position; after which we again stood to the North, and ran over a vigia as laid down on the charts, but none such was found in existence.
"Our next examinntion was for Boucet's Sandy Igland, which was, in like manner, carefully searched after in and around its position, but our search was equally unsucceseful.
"Finally, search was made in and about lat. $2^{\circ} 43^{\prime}$ S., and long. $20^{\circ} 35^{\prime} \mathrm{W}$.; extending to the N.N.W. of this point a distance of 30 miles hereabout having been assigned as the situation of the submarine voleano reported by Admiral Krusenstern, which, it was supposed, might havo left a shoul. This locality was twice run over

[^171]in diffe none su " Lie October looking To th that giv Frenc 8 sound Triton Bouve Kruse of the p
To the lat. 140 d Rock, lat

The me and shoal charts. an oblong cables an longitude
This is question
The Do at modera fathoms al 80 miles Nicolas ; and 1,875

Still fur 1,220 fath Maya; an
Between

In the threatened classed am have been place, but
It has be Mary, from breakors, di first seen th in a crescen 8 strong bro in heaving had no bott 14' W.'-C
They are but the earl The reader
etc.. (9) ressed to ommandthe sloop hich were the nou-
from the ticulars of published

Expedition sent to the
the Maria to near the d with 300

30 miles of cally unsuche eastward ike manner, t, I steered urly up with , been taken
he chart, is heir locality. but littleor vists in this as also care, discoverce. id down) in appearance ngitude, and en stood for ot, however, coloration of ed 30 miles the North, ad in exist-
ike manncr, nally unsuc-

35' W. ן exhaving been rusenstern, se run over
oms batween $21^{\circ} 40^{\prime} \mathrm{W}$., 8.
in different directions, and carefully examined, with the squadron in open order, but none such was found in existenco.
" Lieutenant Hudson, of the Peacock, having separated from me on the 16 th of October, proceeded on a different course in search of the same shoals which we were looking for, but was unsuccessful in finding any."

To the evidence thus afforded by Captain Wilke3's careful search we can now add that given by the deep sonndings gained by Lieutenant Lee in the Dolphin :-

French Shoal-bottom obtained with 2,670 fathinms on the spot, which appears by 8 soundings to be the general depth hereabout.
Triton's Bank-2,840 fathoms, bottom obtained at $\&$ miles West of the position.
Bouvet's Island-no bottom at 1,500 fathoms.
Krusenstern's Volcano-bottom obtrined with $\mathbf{3 , 4 5 0}$ fathoms at a few miles N.W. of the position.
To the imaginary shoals above mentioned, we may doubtless add Dubreuil's Vigia, lat. $14^{\circ} 50^{\prime}$, long. $20^{\circ} 40^{\prime}$; Vigia de 5 Palmas, lat. $12^{\circ} 0^{\prime}$, long. $27^{\circ} 20^{\prime} ;$ Longchamps Rock, lat. $0^{\circ} 47^{\circ}$, long. 30°; and the Maalstrom, in about $16^{\circ} \mathrm{N}$. , and $37^{\circ} \mathrm{W}$.

$$
\text { Emily Rock, lat. } 16^{\circ} 59^{\prime} \text { N., long. } 21^{\circ} 30^{\prime} \text { W. (P) }
$$

The master of the brig Emily, of London, reports that they had discovered a rock and shoal in lat. $16^{\circ} 59^{\prime} \mathrm{N}$., long. $21^{\circ} 30^{\prime} \mathrm{W}$., of which no mention is made in modern charts. The rock is about two fect above the level of the sea, about 12 yards long, of an oblong form, and of a gray colour. The shoal extended from the rock about two cables and a half in length and one in breadth, running due East. The latitude and longitude were obtained by good ebservations at noon."
This is a revival of the old tale of the Emily-Rock, but Lieutenant Lee has set the question at rest (see page 607.)
The Dolphin passed over the position under favourable circumstances, and sounded at moderate depths without bottom over the spet; but he got boitom with 1,580 fathoms at 8 milea due West of it. Besides this, they got bottom at 1,970 fathoms at 60 miles North of San Antonio; 1,675 fathoms the same distance North of St. Nicolas ; 1,370 fathoms 40 miles North of Sal; 1,612 fathoms N.N.W. of Sal; 1,944 and 1,875 fathoms at 40 miles S.E. of the alleged position of the Emily Shoal.

Still further South and to the West of the Cape Verdes, bottom was obtained at 1,220 fathoms at 80 miles E. by N. of Mayo; 1,380 fathoms at 40 miles East of Mays ; and a depth ef 1,120 fathoms within 6 miles of Maio.
Between St. Iagro anc Fogo, no bottom was 1 arhed with $\mathbf{9 0 0}$ fathoms.

Pryce Shoal, Casar Breakers, lat. $3^{\circ} 7 \quad$ 'ug. $24^{\circ}{ }^{\circ} 14^{\prime}$ W. (?)

In the early editions of this Work this danger was included among those which threateued the navigator; but from its not having been scen of late, it has been classed among the imaginary shoals. It is stated on the chart of M. de la Rochette to have been seen, in 1730°, in lat. $2^{\circ} \mathrm{N}$., long. $22^{\circ} 18^{\prime}$; and on this authority it held its place, but was considered as very doubtful.
It has been again revived, by a not very clear acconnt of it, as follows:-" The brig Mary, from Afriea to Liverpool, on tho night of the 4th of July, 1846, at 7h p.m., saw breakors, distanee a quarter of a mile, strong current setting towards them: when first seen they bore by compass N.W. by N., and seemed to be a long ledge of 100 ks in a crescent shape; at 3^{h} a.m., the following morning, saw the S.E. end of the reet; a strong breeze coming on prevented us making any further examination; the man, in heaving the lead, struck it upon a hard rock (no depth nor situation stated), but had no bottom the second cast. Their position, when seen, was lat. $3^{\circ} 7^{\prime}$ N., long. 24° 14' W.'"-Charles Pryce, supercargo.
They are also 145 miles from the previously assigned position of the C.mar Rreakeris, but the early dates of the farst annotineement wili ailow great variation in position. The reader must form his own opinion ais to their authority.

On the 15th of October, 1819. the brig Richard, of Ulverston, Captain Blaesdale, atruck on a coral reef, in about $0^{\circ} 56^{\prime}$ or $0^{\circ} 57^{\prime}$ long., by account, beyond $41^{\circ} \mathrm{W}$. In fine moderate weather, the ship going at the rate of 3 knots, at $6^{\mathrm{h}} \mathrm{p} . \mathrm{m}$. grounded, and remained fast about ten minutes. The water was smooth, and no breakers seen. Upon sounding, a few minutes after, no bottom could be found at 150 fathoms: The vessel drew 11 feet of water, and in 1 hour there wers 18 inches of water in the well. On a subsequent survey at Pera three holes were found, each abont the size of a man's hat, and nearly through the vesse!'s bottom, and several large pieces of white coral, as large as a man's hand, wero found sticking in different parts. This account appears to be very oircumstantial, and the reef has maintained its place on the chart.
But the U.S. ship Dolyhin obtained a satisfactory sounding, in which bottom was got with 2,980 fathoms in its position, besides two others with no bottom with 1,000 and 2,000 fathoms in its vicinity. This decides the question.

The India Shoal, West of Cape Verde Islands (?)

This shoal is laid down from the chart of M. Rochette, 1777, 70 leagues W. by N., true, from St. Iago. It is more than doubtful.

Tregarthen Ruck, $14^{\circ} 29^{\prime}$ N., long. $26^{\circ} 30 \mathrm{~W}$. (P)
Captain James Trugarthen, of the barque Miandarin, of Scilly, left Liverpool in April, 1856, for San Francisco:-" We made Sant' Antonio on the 18th May, 1856, and found the chronometer not many miles out. We passed along close by a rock yesterday, not marked in the chart. It is in lat. $14^{\circ} 29^{\prime} \mathrm{N}$. , long. $26^{\circ} 30^{\prime} \mathrm{W}$.; was fonr feet high and eight feet long, quite round on the top, and steep on all sides. We saw it yesterday at half-past nine in the morning. We had good sights for the chronometer at that time, and good observation at noon. We passed it within thirty yards.

We mark this as doubtful, as there was no attempt at verifying the discovery by sounding or otherwise.

Baxo das Gargas, lat. $12^{\circ} 30^{\prime}$ N., long. $29^{\circ} 2^{\prime}$ W. (?)
Upon the authority of an old Dutch chart by Vankenlen, " which is but one shade better than no authority at all," a bank was imserted at 107 leagues W.S.W., true, from Brava, or in lat. $13^{\circ} 0^{\prime}$ N., long. $29^{\circ} 60^{\prime}$ W.
"On January 17th and 18th, 1848, on board H.M.F.M. brig Villa Flor, Lieutenant Commandant P.V.C. Lov:reiro e Pinho, on her way from Loanda to Lisbon, saw breakers, and a shoal in $12^{\circ} 30^{\circ}$ N., long. $28^{\circ} 56^{\prime}$. She afterwards sailed over the position first assigned to Garcas shoal, without seeing it."
Aylen, or Porgas Bank, between the Cape Verde Islands and the African coast.
In the early charts of the Atlantio this bank has always been shown, as extending 50 leagues in length N. and S., with a breadth of 5 leagues. Nothing more than this appeared to be known of it except the statement that it was all deep water, and not dangerous to shipping.-(Oriental Navigator, p. 27.) It was unsuccessfully sought for by the Leven in 1819. In some later charts it has been omitted for want of some confirmation, but this seems to be revived by a cast of the lutis taken in the Birkenhead steamer, in her voyage to Ascension, under the command of Mr. J. B. awlen, R.N., on November 11th, 1850.

The position, carefully deduced from chronometer and observation, is $17^{\circ} 0^{\prime} \mathrm{N}$., long. $20^{\circ} 3^{\prime} 15^{\prime \prime}$. W, and the denth 86 fathoms. The bottom appeared to consist of pieces of shells and sand, armall particles of coral. Mr. Aylen says, that "I did not like hewing the ship to, to take another cast, particularly as I considered myself on the edge of the bank only, and that at noon, when on its centre, I would again try, whioh I did without success, with 90 fathoms of line.-Nautical Magazine, 18 j̣i, p. 155.

Besides this sounding hereabout, another of 164 fathoms was obtained, in 1810 , by

Captai $21^{\circ} 40^{\prime}$.

Brea for the mile N long. 38 lat. 11° 20 feet which

Lieute about 22 of such currentwaters s to the ea

This st Longuev the Span danger (h of the fac it, withou more or l also a me East of M sand; and Joachim ever, this the Spanis
But the renders it and found fathoms in
M. do \mathbf{H} minica, an constantly this place,

This is d to Jamaica,

This vigi M. Galissio had previo: Rainbow, seen in 182
lt is disp Dolphin.

Mart
A shoal w mentioned 1
Matinin, of t

BETWEEN THE EQUATOR AND 20°.

Captain Freminuille, to the N.W. of this cast of Mr. Aylen, in lat. $18^{\circ} 35^{\prime}$, and long. $21^{\circ} 40^{\prime}$.

$$
\text { Texeiro's Shoal, in lat. } 12^{\circ} 0^{\prime} \text {, long. } 38^{\circ} .28^{\prime} \text {. (?) }
$$

Breal ars seen by Don Angel Texeiro, Captain in the Spanish navy, April 16, 1810, for the : merican ship Topaçio, bound for Boston. They appeared to extend about a mile North to South, and 2 cables' length from East to West; latitude, $12^{\circ} 0^{\prime}{ }^{\prime}$ N., long. $33^{\circ} 28^{\prime}$. Again, Captain Edgar Warkeman, of the Adelaide, January 11th, 1856; lat. $11^{\circ} 21^{\prime}$, long. $33^{\circ} 33^{\prime}$ W., saw breakers ahead: tacked ship, the stern being within 20 feet of the reef: on nearing it again saw three discolcured patches to leeward, which looked like shoal water.
Lieutenant Maury, who records this (vol. ii., 1859, p. 1C2), caused the tracks of about 22 vessels which had passed near this to be examined; but there was no notice of such a reef in these journals. It is therefore presumed, that it was one of those current-rips so singular and frequent in this latitude, probably at the junction of waters setting in oppcite directions, as Captain Wakeman states that the drift was to the eastward. (See page 283, etc., ante.)

Galleon's Bank, in lat. $15^{\circ} 56^{\prime}$, long. $49^{\circ} 40^{\prime}$. (!)

This supposed bank, or reef of rocks, was discovered on the 23rd of July, 1730, by Lungueville, the pilot of the San Fernando, commanded by M. de Navaro, Admiral of the Spanish galleons, By the detail into which Longueville enters concerning this danger (his journal being in the Depot de la Marine at Paris), there can be no doubt of the fact. It appears that the San Fernando apparently struck on and passed over it, without receiving any damage. Other ships in the same fleet also struck, with more or less violence, but without actual injury. In the Depot de la Marine there is also a memorandum of the existence of a bank in 15° North latitude, and 288 leugues East of Martinique, upon which there is said to be 40 fathoms of water, bottom of fine sand; and over which Joachim Voette is said to have passed and sounded. Who this Joachim Voette was is not mentioned, nor when he ascertained its position. If, however, this last-mentioned bank really exists, it may ve the same as that over which the Spauish galleons passed.

But the careful examination by Lieutenant Lee, in the Dolphin, of the locality, renders it highly improbable that any danger exists. He was four days in its vicinity and found no bottom with 550 fathoms in Longueville's position, nor with 250 fathoms in Voette's position, besides other soundings.
M. de Humboldt has noticed, that there exiets in the parallel of the island Dominica, and very near the 5 thth degree of longitude, a space wherein the water seema constantly milky, although the sea is ver'y deep : and he asks, "May there not be, in this place, some sunken volcanic islet?"

$$
\text { Betsy's Rock, in lat. } 18^{\circ} 7^{\prime} \text {, long. } 50^{\circ} 0^{\prime} \text {. (P) }
$$

This is described as a flat rock, eeen by the brig Betsy, on her passage from Greenock to Jamaica, 17th of September, 1808.

Galisionière's Rock, $12^{\circ} 20^{\prime}$ N., and $54^{\circ} 49^{\prime}$ W. (${ }^{(P)}$

This vigin was exhibited, on the ohart of :' Pochette, as a rock, mentioned by M. Galissioniere, and some other navigators. not, nearly in the scime situation, had previopely ieen called the Isle of Fonseca. it is said to iatave been seen by the Rainbow, newar. We have been vaguely informed, that the rock was again seen in 1822.
It is disproved by the sounding of $2,5 \%$: thatims obtained by laver uant Lee in the Dolphin.

Martin's Reef, eastward of Guadalc une (P), in $10^{\circ} 42^{\prime} \mathrm{N}$., ans $58^{\circ} 53^{\prime} \mathrm{W}$.
A shoal was inerted hereabout on the chart of Bellin, 1742 , who says that it is mentioned by many navigators. "It was sgrin seen iti Juiy, i8i6, by Captain Martin, of the ship John Manniug. The shoal seemed to conkist of yollow sand, with
sea-weed upon it; to be about half a mile in length from Eac c to West, and a quarter of a mile in breadth from North to South."

This reef was again announced by the ship Cucilia, of Glasgow. 19th July, 1823, by which the position assigned was, $16^{\circ} 44^{\prime} \mathrm{N}$. , and 58^{\prime} of $1^{\circ} \mathrm{W}$. To the sommander of the alip it appeared to he about $1 \frac{1}{2}$ or 2 miles long, nnd only about 30 feet wide: the westeri prit, shaped like the bulb of a thermometer, seemed dangerous.

Lastly, Capkain Newbold, of the brig Transic, on her pasaage from Halifax to St. Viocunt, in: Firmary, 1842, disoovered a shoal to wind ward of the Island of Antigua, is. Jat $i 0^{\circ} 49^{\prime} \mathrm{N}$, lonf. $69^{\circ} 6^{\prime}$. He examined it as carefully as circumstances would per"ait, and cit, wribes it to be about 200 feet long, and 80 feet wide, with 3 fathoms water in the cuntre, and much shallower on the edges.

Lieutenant Lee, U.S.N., examined this locality:-He says, "he mounded along its parallel from $68^{\circ} 3 \dot{o}^{\prime}$ to $60^{\circ} 15^{\prime}$, with a clear radius of vision, and examined the neighbourhood of $\begin{aligned} & \text { rin } \\ & \text { mean position assumed by Laurie, within two miles of which Mr. }\end{aligned}$ Rensian, souiding from a boat, found no bottom at 3,200 fathoms' depth. At the position where the Transic located this reef in 1842, we did not find bottom with 1,800 fathomes."

Delaware Shoal, eastward of Trinidad.

Captain Ross, in the brigantiue Delaware, from Charleston, on the 16th September, 1839, at noon, in lat. $10^{5} 38^{\prime}$, struek soundings in 37 fathoms, shells and sandy bottom. At 3 p.m., steering South, passed over a rocky bank, having 5, 7, and 10) fathoms, and bottom plainly seen; inferred from the distanee run that the latitude of the shallow part of the bank must lie in $10^{\circ} 37^{\prime}$ N., longitude, by chronometer, $60^{\circ} 3^{\prime}$ W. At a quarter past 3 p.m. had 70 fathoms of water.

$$
\text { St. Esprit Reef, in lat. } 14^{\circ} 37^{\prime} \text {, long. } 68^{\circ} 59^{\prime}(P)
$$

"On the 4th of July, 1817, the French ship. St. Esprit, in lat. $14^{\circ} 37^{\prime}$, long. $58^{\circ} 56^{\prime}$, 35 leagues distant from Martinique, fell in with a chain of rocks, about 8 feet under water, extending about 500 fathoms from North to South, and boing about 100 fathoms broad, and were plainly seen on the bottom from the vessel."

In the earlier editions of this work there are notices of Capt. Pierre Renault of the Automne seeing a danger hereabout in 1723, and of Capt. Laborde passing over a supposed sand-bank 80 or 90 leagues from the island. (See Edition 1825, p. 258.)

It was announced, in the year 1833, that H.M.S. North Star, on the 11th of February, while on her way from Antigua to Demerary, under the command of Lord William Paget, struck soundings in 7 fathoms, near the position assigned to the Esprit Reef; and, in consequence of this, Vlce-Admiral Sir George Cockburn, commander-in-chief on the station, directed the ships of his squadron to search for the danger: ${ }^{4}$ ose were the Ariadne, Stpinire, Vestal, Forte, and Victor, in January, 1834, and - Jatea, in 1826; but, after a vigilant search, neither reef nor shoal have been found. (See Nautical Magazine, November, 1834.) Aguin, on the 11th of October, 1833 , H.M.S. Dippatch, Captain Janiells, passed over or near the place where the North Star struck soundings ; the lead was kept going for six hours, without any indication of shoal water. If it exists, it is therefore clear that the true situation of the danger has not been ascertained.

Clowes' Reey, to the northward of Poato :'rcc, lat. $10^{\circ}{ }^{\circ} 17$ ', long. $65^{\circ} 501^{\prime}$.
An American schooner, in 181\%, strucis or a inck to the northward of Porto Rico, in between 19° and 20° North. Bis was thougi : to oe the same danger on which, some time after, the brig \boldsymbol{R} cuit, Captain Baxter, siruck and remained several hours. The reef, which has been variously represented on the charts. was eeen by Centain Clowes, in the ship Caledonia, on tho 24th of April, 1825; and Captain Clowes assigi.: for ita situation lat. $19^{\circ} 17^{\prime}$, and long. $65^{\circ} 50 \frac{1}{2}$. It is obout a quarter of a mile in extent from Eust to West, with a very little water on it. A quantity of sea-weed was seen at each enư, which appicared to be drifting to the S.W. The ship was within a mile of the reef.

Further proof of the existence of this must be left lor future invastigation.
ha
lea
are
ign
the
star
the
mad

In space
and
now
indeo
have
here.
It
actly cable be lool far to
To follow
Cap lat. 16 Rio, h fella be ind about the air

The lat. 0°
masts a
At t
lat. $0^{\circ} 2$ pany), ship tre
The Peñedo commen The sea which 1

[^172]
VOLCANIC REGION.

 ed the neighf which Mr. pth. At the bottom withth September, ths and saudy ly 5, 7, and 10 the latitude of nometer, $60^{\circ} 3^{\prime}$
", long. $58^{\circ} 56^{\prime}$, ut 8 feet under ing about 100

Renault of the passing over a 325, p. 258.)
11th of Februmand of Lord -d to the Eaprit n , commanderor the danger: ary, 1834, and wo been found. October, 1833, here the North any indieation of the danger

. $65^{\circ} 50 \frac{1}{2}^{\prime}$.

of Porto Rico, nger on which, several hours. en by Contain C!owes assig:: cr of a mile in f sea-weed was was within a
tition.

We have thus concluded the catalogue of dangers and presumed dangers which have been stated to exist to the embarrassment of navightion, and which have for so many years "disfifured our charts." As will be seen, the direct test of the sounding lead has caused tho disappearanoe of most of them ; and, as was at frrst stated, they are ouly retained in this edition to show the reasons upon which they may be ignored.

At the same time it is well to mention now, as will be also done presently, that these deep sea soundings are not altogether satisfactory; indeed, in very many instances they are more than probably erroneous. But they at least demonstrate that the occan is very deep in their locality, and until a more satisfactory examination be made, they must suffice to removo thest eportod dangers.

VOLCANIC REGION.

In the neighbourhood of the Equator, and between longitudes 18° and $23^{\circ} \mathrm{W}$., is a space which has been very fertile in former years in the production of supposed roeks and sand-banks. The nature of this space is now better understood, and we have now only the frequent announcements of voleanic shocks having been felt. They are indeed very numerous, and in our Memoir for the South Atlantic, pages 84-88, we have given a series of these occurrences. They need not, therefore, be repeated here.
It is now well known that the effects of an earthquake or tremora at sea has exactly the same effect on vessels as if they had rubbed over a reef of rocks, or the heapy cable had suddenly run out. We have many instances of this, and such effects may be looked for in crossing the Equator within these limits. It may perhaps extend as far to the West as the voleanic islets of Peñedo de San Pedıo.
To the list given before, as above stated, wo may had, by way of example here, the following:-
Captain Ballaird, of the ship Rambler, from Calcutta, on October 30th, 1850, in lat. $16^{\circ} 30^{\prime}$ N., long. $54^{\circ} 30^{\prime} \mathrm{W}$., and Captain Potter, of the bark Millwood, last from Rio, half an hour later on the same day, when in lat. $23^{\circ} 30^{\prime} \mathrm{N}$., long. $58^{\circ} \mathrm{W}$., each felt a voleanio shock. These vessels were about 520 miles apart. Supposing them to be in direct line, in which the earthquake was travelling, its rate will appear to be about 1 mile in b seconds, which is only a little slower than sound travels through the air.
The Russian ship Dallas, W. Wikander commander, March 20, 1861, at 7 p.m., lat. $0^{\circ} 27^{\prime}$ N., long. $20^{\circ} 30^{\prime}$ W., the shlp apparently went over the ground; the ship's masts and yarde were shaken. Found afterwards that the false keel had gone.

At the same moment nnother ship, the Melbourne, of Dundee, C. Cowie master, in lat. $0^{\circ} 20^{\prime}$ N., long. $20^{\circ} 35^{\prime}$ W. (that is $8 \frac{f}{f}$ miles distant from the Russian ship in company), was startled by hearing a loud rumbling noise, and at the same time felt the thip tremble from stem to stern, which lasted four or five minutes.
The ship Florence Veghtingale, January 25th, 1859, having the St. Paul Rock, or Pceñedo de San Pedro, bearing N.W. by N. 10 miles, experienced a severe shock. It commenced with a rumbling noise like distant thunder, and lasted about forty seconds. The sea had been short and irregular, but was succeeded by a heavy swell from N.E., which lasted for several days.
Captain Whitmore, of the Sea Serpent. December 29th, 1858, struck, as he suppowed, out a corial reef, in iat. $0^{\circ} 20^{\circ}$ N., long. $28^{\circ} 30^{\prime} \mathrm{W}^{\circ}$., in consequence of which he

DISCOLOURED WATER.

put into Rio. He sounded immediately, and found no bottom, but found afterwards his false keel and copper injured.

The Russian sloop of war Pussodnik atruck, as was supposed; on the same shoal, abont 24 hours before the Sea Serpent, but this proves the nature of the occurrence.

The Prince, of Scilly, James Thomas commander, 11th December, 1853, in lat. 0° 64^{\prime} N., long. $26^{\circ} 50^{\prime}$ W., smooth water, suddenly felt a grinding tremour go through the vessel, as if dragging over something rough and yielding. It continued for about a ship's length, but did not stop her way through the water. The ship did not strike.

The barque Eleanor, Captain G. A. Findlay, March 26th, 1861, 10 a.m., felt a shock as if something very heavy was being rolled about the decks, or as if the ship had gone over some rough ground; it made the vessel tremble only for a few seconds. A rumbling noise heard liko distant heavy thuuder. Weathar remarkably fine; lat. $0^{\circ} 44^{\prime}$ N., long. $21^{\circ} 19^{\prime} \mathrm{W}$. Great quantities of fish and sharks around the ship.

These instances with the others will afford ample evidence of the general nature and locality of these volcanic shocks.

We have limited the instances here to this particular area on the Equator; but there appears to be either an extension of this action far to the northward, or else there is a separate area, for volcanic shocks have been felt as far North as $23^{\circ} 30^{\prime} \mathrm{N}$., and long. $58^{\circ} 0^{\prime} \mathbf{W}$. ; and from the almost continuous line of discoloured and pecuiiar water that extends from the Equator to this position, as will be presently stated, we are led to infer that there is a line of volcanic action trending parallel to the range of the Antilles.

The depth, however, is very great, and there is not now any reason for supposing that any shoal exists. Lieutenant Lee and others have found depths exceeding 2,000 fathoms over most of the region in question ; and this is another wonderful evidence of the force of these shocks which can be transmitted through a stratum of water 12,000 feet and upwards in thickness.

DISCOLOURED WATER.

At 3 r.m. on the 15 th of July, 1792, Don Cosme de Churruca, then on his passage to the West Indies, discovered a boiling and breaking of the sea, so very extraordinary, that it appeared to be breakers; but they found no bottom at 150 fathoms. This phenomenon, which appeared to be in consequence of a current setting against the wind, accounts for the differences between the observations and dead reckoning.
On the 16 th, at 10 a.m., they were in lat. $13^{\circ} 56^{i}$, long. $54^{\circ} 7^{\prime}$ West of Greenwich; and observed that the colour of the water changed, looking like muddy river water, or as if they were on a bank. They were 128 leagues to the eastward of the middle of St. Lucia, and 150 to the N.E. of the mouth of Orinoco. They continued their course without alteration; sounded at night and found no bottom at 120 fathoms. The captain, Churruca, says that the our is always the same in that part of the orean, always appearing as if on that in that latude and longitude, and that it never varies the position of its lim is ; and, in addition to his own remarks, he had assured himself of the fact by information collected from various sources ; and that, aleo, the English salling directions for the year 1782, entitled the Complete Pilot for the Leevard Ishends, in the account of Barbadoes, mentions that this phenomenon is
found there an
The \mathbf{p}
"In t will find out ther island."
"In al
brown ar Sailing whether tainty.
"On o afternoon same man was hove boat, sou The latitu by chron 2,800 fath
Off the track of o'clock, in coloured morning ; its shade miles an h blue wave time, sav lamented our course lead, as it with horrib hammocks.
While in ing the mel lunar distar were clear for several no bottom a
That we 1 stances ; yet Barbe?
what
my humble
which the M

[^173]found at the distance of 10 or 80 leagues to the eastward of that island, and that there are no soundings, though the water seems as if there were.*
The passage above quoted, from the old Book of Directions, is as follows :-
"In the latitude of Barbadoes, about 70 or 80 leagues to the eastward, you will find the water discoloured and prodigiously thick, as if there were soundings but there are none, and you may depend on being at the distance aforesaid from the island." \dagger
"In alluding to Mr. Luccock's remark about the patches of water which exhibit a brown and diety appearance, and also to the note from Captain Kotzebue in the New Sailing Directory for the Ethiopic, page 42, I should question, with all deference, whether the depth of water in such places was tried to a sufficient degree of certainty.
"On our passage from the West Indies to Earope in July, 1837, at about four in the afternoon of the 7th, a streak was observed on the surface of the sea, exactly in the same manner as Captain K. describes, and at the moment we passed over it the lead was hove in a very proper manner without finding bottom; but, having lowered the boat, soundings were found to exist, although in more than 30 fathoms of water. 'I'he latitude computed from observations taken at noon, was $21^{\circ} 12^{\prime} \mathrm{N}$., and long. by chronometer, $58^{\circ} 42^{\circ}$ W.-A. H. Bisschop Greevelink." (Lieutenant Lee found 2,800 fathoms here.)

Off the Coast of Guyana, in the morning of the 17th of September, 1835, on the track of the Echo from Antigua toward Surinam, there appeared at about seven o'clock, in every direction upon the surface of the ocean, several large spots of discoloured water, more or less thickly mingled as it secmed with mud. It was a fine morning ; the sun rose in all its splendour, and not a single cloud was there to throw its shade upon the water, which was uncommonly smooth, although the ship ran 6 miles an hour; besides the water in some of the spots were so thick as to make the blue waves curl against their edges. Having, says M. Greevelink, the watch at the time, cave warning of this strange occurrence to our captain (the late and muchlamented W. H. van Voss), who came on deck and ordcred me to keep-not to alter our course, is which we passed through of those spots, yet we did not heave tho lead, as it veas ine first day in which we gained a breeze after fourteen days atruggling with horrible calm and rainy weather, end two-thirds of our crew confined to their hammocks.
While in the midst of these spots I observed ti: \therefore titude by the moon, then passing the meridian $11^{\circ} 47^{\prime}$, and the longitude by chiv teters, and at the same time by lunar distances, three excellent sets, $53^{\circ} 47^{\prime}$. In acout three-quarters of an hour we were clear of them, and the sea resumed its former clearness. The current, equatorial, for several days remained northerly, yet was not very strong. (Lieutenant Lee found no bottom at $\mathbf{2 , 7 8 0}$ fathoms.)
That we had not been in soundings we felt nearly convinced by existing circyostances; yet how came this muddy water here? The common discoloured water of Barbey is was not, as the latter is a large extent of water of a different but somewhat 1 ...ici hue than that of the ocean; at least, so far as we have seen it. As for my humble opinion, I seek for a cause of this appearnnce only in the irce with which the Marañon rushes downward, but without sufficient power to strengthen the
Greenwich; iver water, the midetle inued their 20 fathoms. part of the e, and that ks, he had ; and that, te Pilot for omenon is

[^174]Equatorial current. This may scem contradictory, but I think it may be found reconcileable in the manner following :-
This river impetuously pours forth ats waters in a mass over a bod of some declivity, which steepens more and more towards its issue till it becomes a precipice, so as to form a cataract, whereby a part of its strcam may dive beneath the stratun of undulations of the ocean. and afterward rise to the surface by its lesser specific gravity; where, driven still further off by the northerly curront, it may easily remain for some days in the above-mentioned manner, especially in those months wherein continual calms prevail, and the water is rarely disturbed by the wind. (This may be the case, but it may also be attributed to a volcanic origin as stated above.)

The commander of H. (Netherlands) M. brig Koeriev, informed Captain Stort that in the month of May, 1854 , when between lats. 16° and $17^{\prime} \mathrm{N}$., and in $\overline{5} 4^{\circ} \mathrm{W}$. longitude, he sailed for a whole day in dark coloured water. This was particularly remarked, inasmuch as similarly coloured sea is met with in about lat. 10^{\prime} and more easterly. Purdy, in his "Atlantic Mumoir," mentions that in lat. 16^{4} N., white coloured water has been observed.*
With this knowledge and the announcements before given of the Betsy's Rock, Gulissionièra's Rock, Martin's Reef, St. Esprit Reef, and the singular phenomeua related by Churruca, Greevelink, and Nockells, it may be inferred that a large extent of ocean, runnug parallel with the range of the Windward Islands, covers either a range of submarine volcanoes, or that fac bed is in a state of action from the same causo.
Lieutenant Lee, in the U.S. brig Dolphin, also met with discoloured water in lat. $12^{\circ} 22^{\prime}$ N., long. 54° to 55° W., but found no bottom at the East end of this, with 1,000 fathoms, and a depth of 2,070 fathoms at its West End.
He again came into discoloured water in lat. $14^{\circ} 10^{\prime}$ to $14^{\circ} 50^{\prime} \mathrm{N}$., long. $5^{\circ} 30^{\prime}$ to $55^{\circ} 0^{\prime}$.

Captain Nocks "s, in the ship Brightnan, of London, 5 th of May, 1830 , observing that the sea appeared of a dirty dark green, in lat. 41°, long. $39^{\circ} 19^{\prime}$, by chronometcr, tried for sounding hut found no bottom at 240 fathoms.

Captain Nockells, in two previous voyages, found the wator in the same place very much discoloured, whic:: he supposed might originate from the melting of the ico in the northern latitudes.

A remarkable change in the colour of the sea was observed by M. Dupetit Thouars, ou board the French frigate In T'enus, in lat. $21^{\circ} 50^{\prime}$, long. $19^{\circ} 34^{\prime} \mathrm{W}$., in the same spot which Fraisier had already ointed oat. The officers thought it was a bank, but no bottom was found with 550 fathoms. \dagger

DEPTH OF THE ATLANTIO OCEAN, AND DEEP-SEA SOUNDINGS.

It was formerly considered that the lower bed of ocean-water was, from the pressure and weight of the incumbent masses, so dense as to be rather of the nature of solid matter than the natural fluid. However, a few facts will serve to dispel such a notion. The descent of the deep-sea lead is quite as rapid at a depth when the upper weight must be enormous, as at less distance from the surface, and no tendency to obstruct its downward passage can be observed at the greatost depth yet attained, ex-

[^175]cept th frequen the ide be for a
It is square creased nor the to the b square i ened abc enormou into a of their very slig
The le to the b will offer as succese or 3,000 the resist
Among that recor midway t obtained t Captain 1,300 fath thought th sounding affect navi cannot be ments. T in the " N

- On Juiy muda :-N fathoms; 1
On Augu and Newfo The whole for nearly below the
On the fathoms in attached of fathoms, w Mooncy.
But the g Walsh, in t 3,700 fathon was suppose fathoms, at sounding; t whatever al character ; f down and r e, so as to un of unic gravity ; remain for serein conis may be
${ }_{1}$ Stort that ${ }^{\circ}$ W. longiicularly re0^{\prime} and inore N., white
etsy's Rock, phenomena large extent covers either oun the same
vater in lat. of this, with
ng. $54^{\prime \prime} 30^{\prime}$ to
35, observing chronometer,
ne place very of the ico in
petit Thouars, in the same is a bank, but
om the preshe nature of dispel such a en the upper teudency to attained, ex-
cept that which is due to the friction of the soundingline. Again, the whale fishers. frequently find their prey to descend perpendicularly to snch an enormous depth, that the idea of an impenetrable density, or even of any considerable increase of it, cannot be for a moment entertained.

It is true that the pressare increases with the depth, to the amount of 15 lbs., upon square inch for every 34 feet in depth ; bnt the density is not thereby sensibly increased owing to the incompressibility of water; so that neither the buoyant force, nor the resistance to the motion of any body, are sensibly increased from the surface to the bottom. At the depth of 3,000 fathoms, for instance, the pressure upon a square inch is nearly 8,000 lbs., but the column of water of 18,000 feet is only shortened about 160 feet; the density is then but slightly increased; but the effect of this enormous pressure upon compressible bodies, as air, wood, \&c., is to condense them into a smaller bulk, by which they may be rendered heavier than voater, and will sink of their own weight. A piece of wood cannot float at the bottom of the sea, but a very slight extraneous force will bring it to the surface.

The lead, if allowed to descend alone, will fall with a uniform and rapid velocity to the bottom; but if a line be attached to the lead, a few hundred feet of the line will offer a resistance to the motion nearly equal to the whole weight of the lead, and as successive lengths are drawn into the water, this resistance is increased, till at 2,000 or 3,000 fathoms depth, the weight will be almost entirely suspended in the sea by the resistance of the water along the sides of the line.*
Among the earliest experiments, perhaps the first, of these deep-sea soundings is that recorded by Captain Edward Sabine, who, on November 13th, 1822, when about midway the Caymans and Cape Antonio, in the Caribbean Sea, sunk a cylinder and obtained the temperature at a depth exceeding 1,000 fathoms. This was followed by Captain Wauchope, in H.M.S. Eurydice, who gained water from a depth of about 1,300 fathoins. After that, Captain (afterward Adnuiral Sir Francis) Beaufort. thought that he attained a depth nearly the same in the Strait of Gibraltar; but his sounding is shown to be fallacious. Although the results can scarcely be said to affect navigation, still in a work like the present so interesting a feature of its subject cannot be overlooked. We shall give here the details of some of those great experiments. The first was made by Captain Barnett, of H.M.S. Thunder, and is related in the "Nautical Magazine" for 1849.
On July 10th, 1848 , lat. $25^{\circ} 55^{\prime}$ N., long. $66^{\circ} 0^{\prime}$ W., between St. Thomas and Bermuda :-No current, sounded with $2 \dot{0} 0 \mathrm{lb}$. of pig ballast ; the line broke at about 3,250 fathoms; run out in $1^{\text {h }} 11^{\prime} 34^{\prime \prime}$.
On August 3rd, 1848 , lat. $41^{\circ} 19^{\prime}$, long. $44^{\circ} 16^{\prime}$ W., between the Western Islands and Newfoundland Bank, same weight as before, current N.W. by W., 2 knots an hour. The whole line, 3,700 fathoms, run out in $1^{\mathrm{h}} 15^{\prime} 27^{\prime \prime}$, and held the boat with the reel for nearly half' an hour against the current, when the line broke about 300 fathoms below the surface.
On the same day tried a line of iron vire, varying in size from Nos. 1 to $5,4,000$ fothoms in length, wound on a small reel, the smallest part first, with a weight attaclied of 61 lb ., but a hand lead would have been better. It broke at 2,000 fathoms, which run out in $20^{\prime} 53^{\prime \prime}$. This experiment was suggested by Lieutenant Mooney.
But the greatest length of wire line sent down is that effected by Lieutenant J. C. Walsh, in the U.S. sehooner Taney, on November 15th, 1849, to a depth of more than 3,700 fathoms $(32,200$ feet, or more than 6 statute miles), without finding bottom, as was supposed, in lat. $31^{\circ} 69^{\prime} \mathrm{N}$., long. $58^{\circ} 43^{\prime} \mathrm{W}$. The wire broke at this length, 5,700 fathoms, at the reel, and was lost. It preserved the exact plumb line throughout the sounding ; there was a steady, uniform increase of weight and tension; no eheck whatever any instant of its descent. This expcriment, however, is of a negative character; for it is evident, says Professor Trowbridge, that the wire would be carried down and run out by its own weight.

[^176]One of the earliest specimens of bottom obtained at great depths was by Comm. C. H. Davis, U.S.N., in October, 1845, when greenish mud was brought up in the Stellwagen cup from a depth of 1350 fathoms in the Gulf Stream.
The Hydrographic Bureau of the United States, following np the investigations thus commenced, instructed Captain Platt, in the U.S. sloop of war Albany, to continue these experiments; and accordingly, between December, 1850, and April, 1851, besides numerous trials in the Atlantio, qnoted below, she carried a line of soundings across the Gulf of Mexico.
The possibility of obtaining a knowledge of the great depth of the ocean being established, the Government of the United States first commenced utilising this knowledge, on a more extended scale, by the expedition of the brig Dolphin, in her wellknown cruise, under the command of Lieutenant-Commanding Lee, U.S.N. The result of this voyage was the disproof of many of those shoals and dangers which had long held a place on our charts to the continual annoyance and embarrassment of navigation. These have been recited in the previous pages. This cruise of the Dolphin was confined to the North Atlantic, except a portion in South latitude about Fernando Noronha, and the Rocas. The Dolphin was again sent out under the command of Lieutenant O. H. Berryman with the same object.
The soundings taken in the Dolphin, most of which will be given presently, were taken with the thin sounding line, seven-hundredths of an inch in diameter, and one or two 32 lbs. shot. It has been questioned, and it certainly seems with reason, whether the evidence upon which the deeper soundings rest is quite valid, as has been before alluded to.
There are two methods of estimating the true depth obtained, the one by the rate of descent of the line, which has been carefully estimated now from the numerous experiments made, but whichich estimate of course is liable to the vitiating influence of under-currents, and also by the indications of a sounding machine such as Massey's, or another proposed by Professor Trowbridge; but hitherto these instruments have manifestly failed at great depths from some cause, either the helices not acting readily under the pressure, or the friction on the wheel-work. Errors therefore of 500 fathoms may escape detection, and therefore a series of deep soundings, apparently of similar depths, as will be seen in the ensuing tables, may pass over submarine mountains as high as Snowdon or Ben Lomond without detection.

In sounding with a line of seven-hundredths of an inch in diameter, the velocities of the descent diminish, with one 32 lb . shot, from 8.83 feet per second at 50 fathoms, to 2.84 feet at 1,000 , and 2.09 feet at 2,000 fathoms; and with two 32 lb . shot. from 12.5 feet per second at 50 fathoms, to 3.48 feet at 1,000 , or 2.99 feet at 2,000 fathoms.

Another very important consideration is-what effect would under currents have on the line in passing through it? From the remarkable trials made by Lieutenant Walsh, cited on pp. 365, 366, when in several instances unsuspected and deep-seated currents were found, and in one instance at a velocity of $1 \frac{1}{4}$ knots, and in others of $1 \frac{1}{2}, 1 \frac{1}{4}$, and 1 knot, and these, too, moving in quite contrary directions to that otherwise ascertained, it must be considerable. It is possible, nay, probable, also, that in the vast depths penetrated in these soundings, more than one such submarine and opposing current would have to be crossed.

Now it is certain that a current must act upon the bight of the sounding line after the weight has passed through it, and it may operate in swerving the weight itself from its perpendicular descent at great depiths. Therefore it would be difficult to state what the exsect depth was that the sounding weight would reach, and it is fanniliar to all, that a very great strain is required to get a towing line straight agaia if the bight of the line gets into the water. Thercfore it would seem that such submarine currents have the effect in causing the irregularities in the times required to sink a certain quantity of line.

Again, the force exerted by a current against the bight of the sounding line will have the effect of taking the twine off the reel at nearly double its own velocity. So that supposing the ship stationary at the surface, and the shot at the bottom, such submarine streams as those recorded by Lieutenant Walsh would take off the lins
nearly it in caused
Fro is cer uncert descen

To o
posed,
The been ta Ameria by Lien 1856. ing Val by a m the line

The sa Jas. Day were obt as hereto and in a in small 338, (245
there repla
The fai route, $\mathbf{C o}$ October, 1 land, gain estimating
Another dog started and obtain land and I

The sou 118 lbs., th tained, a m and a self brought up open so lon canized ind brought up engineer, as the Bulldog
The souns bat lying oo after, which prove useful
by Comm. up in the
estigations $n y$, to conpril, 1851, soundings
ean being this known her wellThe result 1 had long of navigaDolphin was t Fernando ommand of

sently, were

 ter, and one with reason, as has beenby the rate e numerous ing influence as Massey's, uments have cting readily f 500 fathoms ly of similar mountains as
the velocities $t 50$ fathoms, b. shot. from 000 fathoms. urrents have y Lieutenant decp-seated in others of b that otheralso, that in bmarine and
ng line after veight itself difficult to ch, and it is raight again at such subrequired to ing line will elocity. So bottom, such off the lins
nearly as fast as the shot wowid sink it, and it would be nearly as difficult to hanl it in as it would be to raise the shot itself from a great depth, with all the friction caused by the length of the twine.

From these considerations it must be supposed that the depths stated, even when it is certain that the bottom has been reached, are in excess, and this, too, in an uncertain degree, unless any judgment can be formed from the irregalarity of ita descent.

To obviate these sources of error or doubt, a line of fine sewing silk hes been proposed, but we have not heard of any trial with this.
The most important, and most probably the most accurate soundinge that have yet been taken, are those which originated in the question of connecting Europe with America by the Submarine Electric Telegraph. The first of theee series was obtained by Lientenant-Commanding O. H. Berryman, in the U.S. Steamer Ardtic, in August, 1856. The line of deep-sea soundings, 24 in number, being on the great circle joining Valentia, Ireland, with St. John's, Newfoundland. The depths were estimated by a machine, Massey's Sounding Machine, and a similar one by M. Lecointre, and the line was wound in by a small engine on the deck.
The same ground was" gone over with the same object, by Lientenant-Commanding Jas. Dayman, R.N., in H.M.S. Cylcops, in June and July, 1857, and 34 soindinys were obtoined, the depths being estimated by the length of line and by the machine as hereto ore. The sinker employed was self-detaching upon tonching the bottom, and in a quill attached to the support, bottom was brought up in alnost every instance in small quantities. The nature of this bottom is alluded to previously in pp: 337, 338, (245.) and (246.), and the very interesting features it first brought to light are there ielated.

The failure of the Atlantic Cable having suggested the necessity of a miorter sea route, Commander Dayman was despatched in H.M.S. Gorgon, in September and October, 1858, and obtained soundings between Newfoundland, the Azores, and England, gaining mnch experience as to the best methods of sounding, and and also of estimating the depths,
Another project for the telegraph cable having arisen, in July, 1860, H.M.S Builldog started under the command of Captain Sir Leopold M'Clintock, of Arctic celebrity, and obtained the depths between the Feroe Islands and. Iceiand, and thence to Greenland and Labrador, with most satisfactory resnlts.

The soundings were first obtained generally by cud-line, with an irop sinker of 118 lbs., the line and sinker being lost at each sounding. The depth being thas obtained, a machine for bringing up the bottom was ne:it sent down by i stronger line, and a self-detaching tubular weight or sinker of 100 los. The apparatua, which brought up specimens of the bottom, was a double scoop, 5 inches in diameter, kept open so long as the weight is dependent on it, but forcibly closes by means of a vulcanized india-rubber band the moment it is detanhed by touching the bottom. This brought up specimens in large quantities. It was contrived by Mr. Steil, the assistant engineer, and, with some modifications proposed after their return, has been called the Bulldog Machine.
The soundings obtained in these expeditions, although of the greatest-importance, but lying out of the beaten track of navigation, are not inserted in the tables heresfter, which give most of those hitherto recorded to the South of lat: 50°. They will prove useful should it be supposed that rocks or shoals are seen in their neighbourhood.

SOUNDINGS.

BETWEEN LATITUDES 40° AND $50^{\circ} \mathrm{N}$.

Lat. N.	Long. W.	Deptri. Fathoms.	Lat. N. ${ }_{\text {- }}$	Lovc. W. -	Depth. Fathoms.
4712	10.	2625 a	455^{8}	2935	190 d
4642	135	- 1500 b	4959	1735	2700.
4612	133	1800	49.57	1316	1580 ..
4024	2525	1200 -	$4^{47} 3^{8}$	9	18100.
414.	2431	2000	4632	1242	2190 ..
4150	2340	1900	445	1329	2500
4216	2232	1885	427	1529	2.500 ..
4317	2120	1800	4020	1748	26500
445	20 -	2100	4210	424	18.50 ..
4434	1847	2374	4653	3746	2000 ..
4.511	1726	2100	4816	3522	2100 ..
4553	167	2300	4553	3134	1900 ..
4633	1439	2405 ..	4310	4656	2760
476	1257	2350 ..	4234	4319	2725.
4748	1112	2275 .	427	4128	- 3000 .
4648	2142	2465 -	4010	$35{ }^{2}$	2775 .
4442	2435	1500 ..	4034	5830	27.50 d
4443	2435	1370 ..	417	5437	2710 ..
4347	2424	1850 ..	41.43	5131	3130.
4.57	268	1500 ..	$42^{\circ} 22$	50.	1050 ..
4626	2655	1400 ..	419	4340	1975 ..
4513	273^{8}	1320 ..	4050	6444	2200 ..
4244	2820	1210 ..	4112	6238	2200 ..
4049	29.	1080 . ${ }^{\text {c }}$	4140	5923	2600 ..
4048	30.3	830 ..	4140	56	
4035	3156	1230 .	4036	5418	3450 ..
4240	3111	1080 ..	417	4923	4580 ..
44.52	3038	$1560 \ldots$	4340	425.5	2700 .
4615	304	1760 ..	4441	4016	1800 ..

BETWEEN LATITUDES 30° AND $40^{\circ} \mathrm{N}$.

338	1610	- 2950 d	3940	3334	1025
3418	164.5	2298 ..	3912	3232	1075 ..
3659	1958	2500 ..	3854	312	925.
3649	1954	2750 ..	$3^{88} 33$	2933	$860 .$.
3049	2725	- 1100 ..	$3^{88} 23$	2850	409 ..
30.49	2725	- 2200 ..	3851	2827	703.
3914	191	2820	3917	2746	808.
3423	3057	2160	3941	2637	1425.
3146	223	2350 .	3854	3330	1800 d
3750	32 27	2000	3117	33.8	2400 ..
36%	2720	- 4000	3936	416	2675 -
356	2650	- 4000	3335	$3^{88} 32$	1800 f

[^177]BETWEEN LATITUDES 30° AND 40° N.-(Continuod.)

Lat. N.	Loxa. W.	Derptig. Fathome.	Lat. N.	Lona. W.	Deptr. Fathoms.
3616	4652	- 50709	3246	5956	- 800
3411	4321	2800 \%	3210	599	- 300
3815	4533	$2000{ }^{\circ}$	31.7	5322	- 800
3850	4349	1600 P	3838	74 6631	- $162{ }^{3} \boldsymbol{k}$
3116	4328	2080 d	3334	- 613^{88}	- 1950
-32 1	4421	2200	$30 \cdot 5$	$5^{8} 52$	- 1000
3229	$47{ }^{2}$	- 1950 ..	3724	6852	2920 d
3255	4758	- 6600 ..	383	6714	- 4920 ..
333	4836	3550	3643	74 -	- 1500
3247	50.0	3250 \#	3633	730	- 1900 ..
3350	5234	2600 -	376	68.	2000 ..
326	4447	6500 P..	3813	6232	3700 ..
31.1	4431	2300	3939	7030	- 1000 d
357	${ }^{25} 43$	1040 \%	3038	7010	- 600 j
3728	5622 65	6000ph	333	7214	- 345 ..
3726 35	6548 6556	- 1700 g .	$\begin{array}{ll}34 & 2 \\ 36\end{array}$	$\begin{array}{rrr}73 \\ 73 & 59\end{array}$	- 1480 ..

BETWEEN LATITUDES 20° AND $30^{\circ} \mathrm{N}$.

2912	2250	2810 d	$\begin{array}{ll}18 \\ 21 & 36\end{array}$	49 518 51	$\begin{aligned} & 2370 \\ & 2300 \end{aligned}$
2358	2420	2700 ..	22.27	53 is	2390 ..
216	243^{8}	2825 .	2145	5546	2800 ..
100	2730	2000 l	129	5517	24350
416	2142	2700 ..	20 51	5826	2800 d
220	284	1080 ..	20. 2	612	2810 ..
275	2121	1700 d	2119	6627	2960 ..
273	3048	2580 .. ${ }^{\text {b }}$	2342	6737	2940 .-
20.2	31.6	2560 ..	2926	5642	1480 ..
2148	3236	7020 P...	2820	5944	2900 ..
20.29	3418	2850 .	284	6144	3080 ..
3643	3839	- $800 j$	28.3	6417	2518.
2530	3744	1720 .	2649	6654	2710 ..
2530	3742	- 1560	2814	6924	2950 -
254	3613	- 1000	2012	5939	- $1200 j$
2343	3239	- 2180	2239	5926	- $800 \ldots$
2341	3239	- 22200	231	5926	- 358.
2315	3224	- 2200 ..	3336	5925	- $600 \ldots$
2119	3810	4700 m	2437	5949	- $534 .$.
2855	4121	- 1880 d	2511	60.	- $620 \ldots$
	3549	2270	2545	607	- 556.
216	429	2370	2632	607	3825 ..
236	440	1760	2411	6144	3450 ..
2118	46:4	1870	2427	6255	- 460 ..

Deptr. Fathons.

190 d 2700 . 1580 .. 1800 .. 2190 .. 2500. 2500 . 2650 18.50 . 2000 .. 2100 1900 2700 2725 - 3000 2775 2750 d 2710 3130 . 10.50 $19: 5$. 2200 2200 . 2600 2505. 3450 . 4580
2700 1800 ..

19260
 1075 ..
 025 ..
 460 ..
 409 ..
 706 ..
 800…
 1426 .
 1500 d
 2400 ..
 2675 .

- No Bottom.

d Soundings takon by Lioutennat O. H. Berryman, U.S. brig Dolphioh

g	$"$
h	$"$
i	$"$
j	$"$
i	$"$
m	$"$
n	$"$

" in TI.S.S. St. Lowis.
U.S.S. Plymouth. John Adams.
by Lieut Lee in U.B. brig Dolphin. Capt. Pintt. U.S. Abbany,
Captuin Pullen, in H.M.S. Cyclope.
in U.S.N. Portnmouth.
U.S.S. Steamer Saranne.

BETWEEN LATITUDES 20° AND $30^{\circ} \mathrm{N}$.-(Continued.):

Lat. in.	Long. W.	Defth. Fатномя.	Lat. N.	Lona. W.	DEPTH. Fathoия.
24.28	${ }_{2} 6330$	- $1000{ }^{j}$	2710	7659	
24.34	6532	- 1000 ..	2710	756	1806 ..
2437	6512	- 3560 ..	2631	7410	1590 ..
25.14	6657	- 2350	2628	7350	1778.
2633	6733	- 1000	2530	727	4100 ..
2721	68.	- 1000	2448	70.22	1893 ..
2856	694	- 1000 .	2448	6939	3600 ?
2719	7718	690%	2.240	69.	2762

BETWEET THE EQUATOR AND 20° N.

[^178]$\mathrm{AN} \mathbf{A C}$

Many considera appeared Ehrenber Infusoria fallen; a considera end of thit striking o

The ph Cape Verd fallen is n $10^{\circ} \mathrm{N}$. to ${ }^{2}$ between 4 distance o according namruon h dust has se coast of \mathbf{A} leng. $35^{\circ} 24$ and therefo of the Sene
On the 1 St. Jago, sos wind-vane a air, as the ol previously I from the coa only 1 mile the wind wa phere was that the asti collected on it does not e1 gray bead.
In 1838, f Spey, was sa lat. $21^{\circ} 10^{\prime} \mathrm{N}$ quantities of comununicati day (or the 7 on the suece coloured part larger, and m at lenst 330 : Aporules of cr

[^179]
AN ACCOUNT OF THE FINE DUST WHICH OFTEN FALLS ON VESSELS IN THE ATLANTIC OCEAN.

By Charles Darwin, Esq., F.R.S., F.S.S.

Many scattered accounts have appeared concerning the dust which has fallen in considerable quantities on vessels on the African side of the Atlantic Ocean. It has appeared to me desirable to collect these accounts, more especially since Professor Ehrenberg's remarkable discovery that the dust consists, in consideiable part, of Infusoria and Phytolitharia. I have found fifteen distinct statements of dust having fallen; and several of these refer to a period of more than one day, and some to a considerably longer time. Other less distinct aeconnts have also appeared. At the end of this paper I will give the particular cases, and will here only refer to the more striking ones and make a few general remarks.
The phenomenon has been most frequently observed in the neighbourhood of the Cape Verde Archipelago. The most southern point at which dust is recorded to have fallen is noticed by Captain Hayward,* on whose vessel it fell whilst sailing from lat. $10^{\circ} \mathrm{N}$. to $2^{\circ} 56^{\prime} \mathrm{N}$. ; the distance from the nearest of the Cape Verde lslands being hetween 450 and 850 miles. Respecting the northern limit, the water for a great distance on both sides of Cape Noon (in lat. $38^{\circ} 45^{\prime}$) is discoloured, owing in part, according to Lieutenant Arlett, \dagger to the quantitics of falling dust. Hence the phenomrnon has been observed over a space of at least 1,600 miles of latitude. This dust has several times fallen on vessels when between 300 and 600 miles from the coast of Aftrica: it fell, in May, 1840, on the Princess Louise \ddagger (in lat. $14^{\circ} 21^{\prime} \mathrm{N}$., leng. $35^{\circ} 24^{\prime}$ W.), when 1,030 miles from Cape Verde, the neareet point of the continent, and therefore half-way between Cayenne in South America and the dry country North of the Senegal in Africa.-
On the 10th of January, 1833, when the Beagle was 10 miles off the N.W. end of St. Jago, some very fine dust was found ndhering to the under side of the hurizontal wind-vane at the mast-head; it appeured to have been filtered by the gauze from the air, as the ship lay inclined to the wind. The wind had been for twenty-four hours previously E.N.E., and hence, from the position of the ship, the dust probably came from the coast of Africa. The atmosphere was so hazy, that the visible horizon was only 1 mile distant. During our stay of three weeks at St. Jago, (to February 8th) the wind was N.E., as is always the case during this time of the year; the atmosphere was often hazy, and very fine dust was almost comstantly falling, so that that the astronomical instruments were roughened, and a little injured. The dust eollected on the Beagle was excessively fine-grained, and of a reddish-brown colour; it does not effervesce with acids; it easily fuses under the blow-pipe into a black or gray bead.
In 1838, from the 7th to the 10th of Mareh, whilst Lientenant James, in H.M.S. Spey, was sailing, at the distance of from 330 to 380 miles from the cuntinent, between lat. $21^{\circ} 10^{\prime}$ N., long. $22^{\circ} 14^{\prime}$ W., and lat. $17^{\circ} 43^{\prime} \mathrm{N}$. , long. $25^{\circ} 64^{\prime} \mathrm{W}$. , considerable quantities of dust fell in his vessel, four puckets of which, together with a written compunication, I owe to the kindness of Mr. Lyell. The dust which fell on the first day (or the 7th) was preceded by a thick haze, and it is conarser than that whieh fell on the succeeding days; it contains numerous irregular, transparent, variouslycoloured particles of stone about the $1-1000$ th of an inch square, with some few a littlo larger, and much fine matter. 'The fact of purticles of this nize having been brought at lenst 330 uiles from the land, is interesting, as benring on the distribution of the mporules of cryptogamic planta and the ovules of Infusoria. The dust which fell on
the three succeeding days resembles in appearance and in its action under the blowpipe, that collected by myself off St. Jago, and is so excessively fine, tiat Lientenant James was obliged to collect it with a sponge moistened with fresh water. As the wind continued nearly in the same direction during the four above-mentioned days, and the distance from the land was only a little increased after the first day, it would appear probable that the coarser dust was raised by a ìquall with which the breezes on this coast mo often begin blowing.

With respect to the direction of the wind during the falls of dust, in every instance where recorded, it has been between N.E. and S.E.; generally between N.E. and E. In the case, however, given by the Rev. W. Clarke, ${ }^{*}$ a hary wind which had blown for some time from E. and S.E. first fell calm, and was succeeded for a few hours by a S.W. wind, and then returned strongly to the East; during this whole time dust fell. With reepest to the time of year, the falls have always occurred in the months of January, February, March, and April; but in the case of the Princess Lovise in 1840, as late as on the 9th of May. In the one year of 1839, it has chanced that dust has been recorded as having fallen in the Atlantic (as may be seen in the references) on the 14th and 15th of January, and on the 2nd, 4th, 9th, 10th, 11th, 12th, and 13th of February. I may add, that Baron Roussin, \dagger during his survey of the north-western African coast, found, that whilst the wind keeps parallel to the shore, the haze and dust extend seaward only a short distance; but when, during the above four specified months, the harmattan blows from the N.E. and E.N.E., accompanied by tornadoes, the dust is blown far out, and is raised on high, so that stars and all other objects within 30° of the horizon are hidden.

Another account is given by Mr. George Peacock, as having occurred on board H.M.S. Winchester, in February, 1829 :-"Shortly after leaving Tenerife, when in abont lat. $25^{\circ} 30^{\prime}$ N., and some 250 miles from the coast of the Great Desert of Sahara, the weather becamo very hazy and sultry, and one morning, at daylight, the lays of the lower rigging were observed to be filled fine, reddish-brown dust, and the deeks, whilst being washed, were in as muddy a state as the pavement of a strect after a shower. This hazy unpleasant weather continued all day, and quite obscured the horizon; rendering it difficult to observe even the crest of the waves beyond a few cables' length, and the sun appeared as viewed through the red shade glass of a sextant. Towards evening it grew worse, the wind became light, and the haze was almost as dense as a London November fog, the air full of fine red dust, which made it difficult und unpleasant to breathe. So thick was it, that a young mau having fallen overboard, the boats which were lowered in search of him could neither find him nor scarcely find the ship for some time afterwards, and this though guns were fired."
From the several recorded accounts, \ddagger it appears that the quantity of dust which falls on vessels in the open Atlantio is considerable, and that the atmosphere is often rendered quite hazy; but nearer to the African coast the quantity is still more considerable. Vessels have several times run on shoro owing to the haziness of the air; and Horsburgh, § recommends all vessels, for this reason, to avoid the passage between the Cape Verde Archipelago and the main land. Roussin, also, during his survey, was thus much impeded. Lieutenant Arlett found the water so discoloured,\| that the track left by his ship was visible for a long time; and ho attributes this, in part, to the fine sand blown from the deserts, " with which everything on board soon becomes perfectly caked."वा

[^180]
Profe myself;

 no less silicious. tissues o myself Professo the pack James, E.N.E. all old $\mathbf{k v}_{1}$ fresh wat tilaria gh any of tl hence it after hav distributi are peculi many fort cially of these fact sidering t directly fr seen to $\mathbf{c o}$ dust and h the Atlant when the dust and falls in th absence of South Ame circumstan over so im apparently tion; and t chief part[^181]
DUSI IN THE ATLANTIC.

the blowieutenant \therefore As the oned days, , it would he breezes
ry instance
E. and E. had blown whours by time dust the months is Louise in d that dust references) h, and 13th rth-western he haze and our specified y tornadoes, ther objects
ed on board ife, when ia of of Sahara, t, the lays of nd the decks, street after s obscured the cyoud a few le glass of a the haze was dust, which young man f him could rds, and this
f dust which hero is often ill more conss of the sir; sage between s survey, was d,\| that the 3, in part, to soon becomes

Professor Ehrenberg* has examined the dust collected by Lientenant James and myself; and he finds that it is in considerable part composed of Infusoria, including no less than sixty-seven different forms. These consist of thirty-two species of silicious-shielded Pclygastrica; of thirty-four forms of Phytolitharia, or the silicious tissues of plants ; and of one Polythalamia. The little packet of dust collected by soyself would not have filled a quarter of a ieaspoon, yet it contrins seventeen forms. Professor Ehrenberg remaxiks, that as thirty-seven species are common to several of the packets, the dust collected by myself, and on four successive days by Lientenant James, mast certainly have come from the same quarter; yet mine was brought by an E.N.E. wind, and Lientenant James's by a S.E. and E.S.S. wind. The lnfusoria are all old known species, excepting one allied to a Hungarian fossil ; and they are of fresh water origin, with the exception of two (Grammatophorix oceanica and Textilaria globulosa), which are certainly marine. Professor Ehrenberg could not detect any of the soft parts of the Infusoria, as if they had been quickly dried ap, and hence it would appear that they must have been caught up by the wind some time after having been dead. The greater number of the species are of wide or mundane distribution; four species are common to Senegambia and South America, ond two are peculiar to the latter country; moreover, it is a very singular fact, that out of the many forms known to Professor Ehrenberg as characteristic of Africa, and more especially of the Sahara and Senegambian regions, none were fourd in the dust. From these facts one might at first doubt whether the dust esme from Africa; bat, considering that it has invariably fallen with the wind between N.E. and S.E., that is, directly from the coast of Africa; that the first commencement of the have has been seen to come on with these winds; that coarser particles have first fallem; that the dust and hazy atmosphere are more common near the African coast than further in the Atlantic ; and lastly, that the months during which it falls soincide with those when the harmattan blows from the continent, and when it is known that clouds of dust and sand are raised by it, I think there can be no doubt that the aust which falls in the Atlantic does come from Africa. How to explain the enigma of the absence of characteristic African forme and of the presence of two species from South America, I will not pretend to conjecture. Finally, I may remark, that the circumstance of such quantities of dust being periodically blown, year after year, over so immense an area in the Atlantic Ocean, is interesting, as showing by how apparently inefficient a cause a widely-extended deposit may be in process of formation; and this deposit, it appears from the ressarches of Professor Effrenberg, will in chief part consist of fresh water Polygastrica and Phytolitharia.

- Thesa microscopic organised bodies have been described in the "Monatsberichten der Berlih Akad. der Wissens, Mai, 1844; u. 27 Februar, 1845." In the latter paper a full list of the names is given; the column marked St. Jago includes those selected by myself.

APPENDIX;

HINTS AND REMARKS ON GENE 'AL NAUTICAL SUBJEOTS.

1.-REMARKS ON THE USE OF THE CHRONOMETERS, ETC.

1. General Rules aiven by Captain Rich. Owen, R.N.

1. The time for receiving chronometers on board; previous to sailing, will differ a little according to circumstances; but it is strongly recommended that they should be received on board at least a week previous to sailing, in order that a rate may be obtained for them, in the position and place they are constantly to remain, as it may be taken for an absolute maxim in general practice, that the rate of a chronometer obtained on shore will not be the same when removed to the vessel. There may be a few exceptions to this general rule, but it must still hold good as a practical maxim.
2. The first thing to be attendec to, after the timekeepers are on board, and in their proper place, is to be regalar in the time, and careful in the manner, of winding them up. Our practice on board the Leven was to wind up at noon, and never pipe to dinner until they were reported to be wound up and compared. Some method of this kind may always be adopted in men-of-war, and it would be advisable in merchant vessels to devise some plan by which the winding up of the chronometers should not depend upon the memory of any single person, the want of which must, in many instances, have caused the watch to ruc down; which will, at all times, alter its rate, and, not unfrequently, injure the chronometer. Our eight-day watches we wound up on Sunday, which will always be better remembered than any other day in the week. In winding up the small chronometers in watch cases, the left hand should rest against the body of the person winding it up, to prevent his giving it a rotatory motion by turning the watch on the key instead of the key in the watch. This practice is very common, and very bad. In winding up chronometers, the turos of the key should always be counted, and the last turns made gently and carefully, until it is felt to butt. It has sometimes happened to persons over careful, that they have let their chronometers run down, by having calculated the number of turns, and never winding close up, from fear of injury to the chain or works, by which they have always lost a little of the chain each day, and, after two or three months, the chronometer is found to stop just at the time it should be wound up.
3. Of all the methods used by seafuring men to ascertain the rates and errors of their chronometers, that by equal altitudes of the sun in an artificial horizon is much to be preferred, both on account of its simplicity and the very great degrec of correctuess attainable by it, and being likewise free from the effects of iustrumental crror, or wrong latitude. The observations may be made at any time, with a sextant, when the sun's altitude falls between 20° and 60°, provided it be not too near noon, as under two hours, or at least one hour and a half, the sun's motion, in high latitudes, being then very slow.
4. The method of rating ehmonometers by lurar observations obtained at sea has been by some much insisted on, but we are fully satisfied that they can never be made use of, for that purpose, in general practicc. Lunar observations are of great use for detecting a gross error in the longitude by chronomster, from any sudden change of rate or defect in the watch, \&c.; but it must be evident that, where this is discovered, it would be unsafe to trust to such a chronometer for the remainder of the voyage. We would not be understood to discourage or depreciste the lunar methnd of cobtaining the longitute, an we are fuliy nware of its great utility, particularly in
long vo
rating t
" Fre
Ened m speaking compens perature
" It of different found be
"The from the change of
"I hav sawdnst, cots not o
"When ning on th hair, or an better that
"The B box; each wide shelv each box, box and wa shelyes, on down, and manner, ne running ou was often \mathbf{p} magnifying
" All the compare or were never finally lande
5. -The of chronomet F. Fallows,
" Let a tro blished in a true time: darken the notice being instant of tin intervals. Tt the lamp can mame be repe

[^182]long voyages; but we would strongly dissuade persons from using such means for rating their chronometers.*

3.-Remarks extracted from those of Captain FitzRoy, R.N.

"Frequently employing chronometers in boats and very small vessels has strengthened my conviction, that temperature is the chief, if not the only, cause, generally speaking, of marked changes of rate: and the balances of few watches are so well compensated as to be proof against a long continuance of higher or lower temperature.
" It often happens that the air in port, or near the land, is at a temperature very different from that over the open sea in the vicinity. Hence the difference sometimes found between harbonr and sea rates.
"The changes so frequently noticed to take place in rates of chronometers moved from the shore to the ship, and the reverse, are well known to be caused partly by change of temperature, and partly by change of situation.
"I have never found chronometers go better than when the boxes were bedded in sawdust, and the watches moving freely in well-oiled gimbals. Suspending them in cots not only alters their rate, but makes them go less regularly.
"When fixed to a solid substance, they feel the vibrations caused by people running on the decks, by shocks, and hy chain cables running out. A cushion, wool, hair, or any such substance, is preferable to a solid bed; but I can think of nothing better than plain dry sawdust.
"The Beagle's chronometers were suspended in gimbals, as usual, within a wooden box ; each was placed in sawdust, divided and retained by partitions, upon one of two wide shelves. The sawdust was about 3 inches thick below, as well as at the sides of cach box, and formed a bed for it which rose rather above the centre of gravity of the box and watch ; so that they could not be displaced unless the ship were upset. The shelves, on which the sawdust and boxes were thus secured, were between decks, low down, and as near the vessel's centre of motion as could be contrived. Placed in this manner, neither the running of men upon deck, nor firing gung (forward), nor the running out of chain cables, caused the slightest vibration in the chronometers, as was often proved by scattering powder upon their glasses, and watching it with a magnifying glass, while the vessel herself was vibrating to some jar or shock.
"All the watches were in one small cabin, into which $10 \times$ rson entered, except to compare or wind them, and in which nothing else was kt , tt . The greater number were never moved from their first places, after being secured there in 1831, until finally landed at Greenwich in 1836."-Captain، FitzRoy's Appendix, pp. 325, 326.
5.-THe following rast method of comparing the time indicated by any number of chronometers, with the GIVEN time at a certain station, was published by the Rev. F. Fallows, astronomer at the Cape of Good Hope, in 1824:-
"Let a transit instrument, or even a sextant with an artificial horizon, be established in a conspicuous situation on shore, where a clock esn always be regulated to true time : then provide a powerful Argand's lamp, with a shutter, so as to be able to darken the lamp instantaneously: a few minutes before a certain hour in the evening, notice being previously given to the ships, let the lamp be lighted, and at the proper instant of time let it be darkened: this may be repested several times at short known intervals. Then the errors of every chronometer on board of all the ships, from which the lamp can be seen, are immediately found. After a eertain number of dnys let the same be repeated, when the daily ship rates will be given, since they are only the

- "Essay on the Management and Uso of Chronometere," by Richard Owen, Commander R.N. Preftred to the voiumo of Latitndes and Longitudes of the Pointa of Afrien, de., hy Captain W. F. Owen, 4to., 1827.
differences of these errors divided by the number of days elapsed between the two sets of observations. It is evident that, for greater truth, these observations may be repeated at pleasure. No objection can be made fron the chronor ier's being generally below deck, as one person might have his eye upon it, and avother immediately above him, on the upper deck, might give a stamp with his foot the instant the lamp is darkened." But the superior method is by to vime-ball lately established in various places.
6.-Sir J. Herschel gives the following very simple and efficient means of ascertaining the sate of a chronometer or clock, a most important desideratum, where apparatus is wanting, and which is availableat any time or place on shore:-"An observer peed only station himself to the North of some well defined vertical object, as the angle of a building, and, placing his eye exactly at a certain fixed point (such ae a small hole in a plate of metal, nailed to some immoveable support), notice the successive disappearances of any star behind the building by a watch. When he observes the smn, he must shade his eye with a dark-coloured or smoked glass, and notice when its western and eastern edges successively come up to the wall, from which, by taking half the interval, he will ascertain (what he cannot directly observe) the moment of disappearance of its centre. This is an excellent practical method of ascertaining the rate of a clock or watch, being exceedingly accurate if a few precautions are attended to ; the chief of which is, to take care, that that part of the edge, behind which the star (e bright one, not a planet) disappears, shall be quite smooth; as, otherwise, variable refraction may transfer the point of disappearance from a protrberance to a notch, and thus vary the moment of observation unduly; this is easily secured, by nailing up a smooth-edged,board."-Astronomy, p. 74. It nced scarcely be remarked, that the interval between the two appearances of a star is a sidereal day, or $\mathbf{2 3}^{\text {n }} 56^{\prime} \mathbf{4 . 0 0 ^ { \prime \prime }}$; with the equation, for solar time, every sailor is acquainted.

II.-ON THE ARTIFICIAL HORIZON.

It is of the ntmost importance to the sailor that he should at all times be enabled, by astrcaomical observations, to verify his position, and avoid all uncertainty as to his locality or course, which he must inevitably labour under if he has $4<$ depend for any lengthened period entirely on his dead-reckoning. Now it must ve oceurred to the experience of every one that such observations may have been had, perhaps at very oritical times, but for one impediment,-that of the horizon being obscured by fog or haze. It is true, that the common reflecting horizon of mercury, or other substitute, will obviate this on shore; but even this frequently fails in low latitudes from the fact of the great angle, formed by the height of the sun being beyond the limits of tho instrument. A substitute for the natural horizon is proposed in an instrument, that can be attached to the sextant, the invention of Commander A. B. Becher, R.N., which may be used at all times on shore or at sea, provided the motion be not too violent, and the observer have sufficient experience in its use.

In the eonstruction of this appendago to the sextant, it was assumed that the line of the sea horizon forms a horizontal diameter to the field of the telescope, at right angles to the plane of the instrument. Aecordingly, a place was assumed for this line, so as to appear, when seen through the telescope, to be in the middle of the field of view, beyond the horizon glass. A point was next assumed beyond it. Srom which a pendulum was suspended, carrying an arm, at the extremity of which at a small slip of metal, which we will call the horizon vane. The upper edge of this vane, when made to eoincide with the horizon line on the glass, and seen to do so through the telescope, completes the horizon for observation. In the middle of the upper edge of this horizon vane a small aperture is made, as, when the axis of the telescope is directed below the horizon, the vane would, but for this, entirely conceal the horizon line, by rising above it. These parts are arranged in a tube to r iffixed, when r^{2} quired, to the sextant, the axis of the tube of tho horizon anding exactly with that of the telescope of the sextant.

[^183]the two s may be ing genemediately the lamp lizhed in

3 of ascertere appan observer ect, as the (surh as a e the sucsen he oband notice which, by bserve) the method of few precauf the edge, ite smooth; from a prohis is easily zed scarcely is a sidereal puainted.
a be enable', tainty as to : depend for cve occurred a, そerhaps at obscured by r other subtitudes from nd the limits instrument, echcr, R.N.,
be not too
that the line pe, at right ned for this of the field from which a se a small f this vane, po through e apper cdge telescope is the horizon ed, when r ling exactly

III.-ON THE PROPER METHOD OF LAYING DOWN A SHIP'S TRACK ON SEA-CHARIS; WI'HH SOME REMARKS ON THE IMPORTANCE OF TIMEKEEPERS IN : NAVIGATION. BY CAPTAIN BASIL HALL, R.N., F.R.S.

There is no point in practical navigation of more importance than the allowence for the direction and velocity of currents; and, although the introduction of chronometers and lunar observations has led to much more accurate methods of making this estimate, yet there is uuquestionably still much obscurity belonging to this branch of the subject.

The mode proposed in this notice is quite as easy in practice as that in most general use. It is so obvious that I cannot help being sure that it must have occurred to many practical navigators ; but as I have never met with it in any treatise on navigation, and have never seen a single chart in which the tracks were so laid down, I trust this notice will not be superfluous.
The common method is as follows:-The ship's place of each day, as estimated from the \log-board, is noted on the chart; and also the place, as deduced from chrrnometers and lunar observations. The first is called the place by dead-reckoning, the other the true place. The line joining the true places at noon is called the true track; and that joining the others is called the track or course by dead reckoning. As it happens invariably that these two tracks separate very early in the voyage, and never afterward come together unless by accident, it is obvious that, upno inspecting the chart, no information will be afforded as to the point where the current began, or where it ceased, or what was its set or its velocity; all that we see is two tracks wandering apart from one another, and it alwuys requires some calculation and measurement to come to anything like an estimate of the true effect of the current.
The method which it is proposed to substitute is this:-Let the true place be laid down each day as before, either at noon, or, which is better, at the precise moments of observation for the longitude. Let a fresh departure be taken from eves y such true place, so noted in the chart: and whenever a true place is marked on the chart, let the place by dead reckoning at that moment, estimated by log-board from the last true place, be also noted down. From each true place let two lines be drawn, one to the next true place, and the other to the dead reckoning place at the same moment.
It will follow from this, that the true course of the ship will be one continued unbroken line, but the dead reckoning course will be a series of terminated lines running off from the successive true places. The advantages of this method are these: in the first place, it will be evident that, as long as there is no current, the true and dead reckoning places will coincide, and there will be but one line on the chart; but the instant that a current begins to act, the true and dead reckoning jlacea will be different, and consequently the lines will separate; and wheuever the current ceases, there will again be but onc line. These distinctions catch the attention at once; but the plan has this further great advantege, that the line joining the dead reckoning place and the true place, at any given hour, will express correctly the direction and the set of the current, in the interval between the moment under consideration and the instant of the last preceding observation.*
It is useful, in practice, to have the line expressing the true course distinguished in some way from those marking the dead reckoning courses; one may be a strong black

line, the others dotted lines, or when a chart is much covered with tracks, it is uscful to use differently coloured lines.

It is sometimes satisfactory to join the dead reckoning places and the true places by arrows, and then rub out the whole of the tracks; so that all which is essential, as far as currents are concerned, is contained; while all that is not, and which might tend to confuse, is removed.

When one or more days elapse without an observation, the dead reekoning track may be carried on till an observation be obtained; and then the dead reckuaing pir and the true place at that instant being noted, a knowledge of the strength and direction of the current during the interval is at one afforded.

IV.--BRIEF MODE OF EXPRESSING THE POINTS OF

THE Spanish navigators, in describing courses, \&c., commonly made use of the expression, "Rhombs of the first, second, third, and fourth quadrant ;" or winds of the same. The first quadrant, in this expression, is that contained between North and East; the second, from East to South; the third, from South to West; and the fourth, from West to North.
The respective quadrants may be represented algebraically by the letters A, B, C, D, as in the annexed figure; and, in keeping a journal, the points of the compass, or courses and bearings, may be expressed briefly, by adopt-
 ing these letters as the representatives of the four quadrants: thus N.W. by W. $\frac{3}{4}$ W., or five points and three-quarters from the North toward the West, will bo conciscly expressed by D 5 㝵; N.E. will be A 4 ; S.E. by E., B 5 ; ond S.W. by S., C 3; \&c.

So, likewise, by reckoning in degrees of the quadrant, N. 50^{\prime} E. will be A 50°; and in allowing for magnetic variation, say $24^{\circ} \mathbf{W}$.; this added will be $\mathbf{A} 74^{3}$, the compass bearing, \&c. Should a true bearing be N. 76° E., adding 24°, the variation, will give 100° : deduct 90°; and this gives E. 10° S., or S. 80° E., or B 86°, the bearing by compass.

But that the figures for points may never be mistaken for degrees, it may, perhaps, be besi to express the latter in the usual manner, as $\mathbf{N} .50^{\circ} \mathrm{E}$.

VARIA'IION of the COMPASS by projection.

The readiest way of understanding this sabject is to project every azimuth and amplitude when it is taken. If this be done properly, no confusion will remain, after a few observations. An example will best illustrate this.

Say,-latitude $0^{\circ} 38^{\prime} \mathrm{N} . ;$ declination, $21^{\circ} \mathbf{3 2} 2^{\prime} \mathrm{N}_{\mathrm{c}}$; magnetic azimuth, E. $81^{\circ} 20^{\prime} \mathrm{N}$. ; true azimuth, E. $68^{\circ} 24^{\prime} \mathrm{N}$. In the first place, assume a point ${ }^{4}$, which call the observer's eye; and another 0, which call the snn : join these two, and from the eye, as the angular point, lay off the magnetic azimuth $=$ $81^{?} 20^{\circ}$; then, from the same line, 4 and 0 , and from the eye 4 , lay off the true azimuth $68^{\circ} 24^{\prime}$, the d :fforence of these two angles is the variation, $12^{\circ} 56^{\prime}$.

The difference, C B, thus ehows the error in dead-reckoning, which may be the effect of current.
From B, the ship's strue place on the second day, the ship's true place on the fourth day may havo changed to \mathbf{D}; while E ropresents hor place by dead rockoning on the third, and F on the fourth day, \&e.-Enitor.

Conce of its hit quent cla Europe, the know Chinese missionar which po same auth antiguiiy
It has discovery But it is Columbus on magne doubted by served by
Magneti electricity become evi be here sta duction of By the pro produce ele By the elec netic needle ism. From an effect, to of electricit South, pole

There is in practice, duce a state that is with in that of a, meridian an tained in its most marke this cause, w caused enorn scientific det expressly tre

Terrestria dip, and the volved in son been framed needle. Am principle are Sabine, Capt From their la of magnetie in some meas
Now the m magnetic cur flexions of th

Inces by ential, as ch might

A 50°; and 4^{3}, the comciation, will bearing by
y, perhaps,
th and am-

V.-ON MAGNETISM AND THE COMPASS.

Concerning the history of the magnetic needle, we have many and vague notices of its high antiquity. It is mentioned by Homer and Aristotle and by many subsoquent classical writers; the first account we have of this is, that it was known, in Europe, at the time of the crusades, in about A.D. 1150, and it is very probable that the knowledge was derived from the Arabians, during those expeditions. But the Chinese were acquainted with it many years before this. We are told by the Jesuit missionary, Du Halde, that the Chinese Emperor, Hoang-ti, possessed an instrument which pointed to the South, so $w^{-1} y$ as the year 2,634 B.c., or 4,479 years ago; the same author gives subsequent ncter of the compass in China, proving its very great antiguiiy among that people.
It has usually been considered then Coambus, in his voyage from Portugal, on the discovery of America, first observed the variation of the needle from the true North, But it is not improbable that the variation was discovered nearly 200 year- before Columbus made this change known, as it is mentioned in one of the earliest treatisoss on magnetism by Peter Adsiger, in 1269: the authenticity of this, however, it doubted by some. The wonderful property of the dip of the needle was first observed by our countryman Robert Norman, a maker of compasses, in 1576.
Magnetism is a principle which is evidently allied to, if ${ }^{\circ}$ it is not identical with; electricity and galvanism. For, in the causing any or either of these principles to become evident to our senses, we produce, at the same time, the others; and it may be here stated, that five apparently dissimilar effects are inevitably caused in the production of either : these are-light, heat, chemical action, electricity, and magnetism. By the production of light we cause heat and chemical affinity, and these will also produce electricity, and will cause the magnetic needle to swerve from the meridian. By the electric flaid we produce light, heat, and the other phenomena; and the magnetic needle is a measurer, by its deflections, of the most minute portions of galvanism. From the magnet, a spark can be produced, absolutely similar, in appearance an effect, to that of electricity and galvanism. There is n positive and negative state of electricity and galvanism; and there is a positive and negative, or North and South, pole to the magnet, and these attract or repel each other.

There is one phenomenon connected with these sciences of very great importance in practice, and that is, that of induction; a substance electrified positicely will induce a state of negative electricity, or will cause a body to be negatively clectrificd, that is within its influence; the North pole of a magnet will induce an opposite pole in that of another piece of iron, in certain positions with respect to the magnetic meridian and itself. Thus, the iron employed in the construction of a ship, or contained in its cargo, may all become, by induction, temporary magnets, and have a most marked and important effect upon the compass by which it is steered; and it is this cause, which is too frequently overlooked-that of the local deviation-which has caused enormous errors in reckoning, and consequently the loss of many vessels. As scicntific details is out of our province, we must refer the reader to those works more expressly treating on the subject.
Terrestrial Magnetism.-The magnetism of the earth, by which the direction, the dip, and the intensity of the force of the magnetic needle is controlled, is still inrolved in some obscurity, and no perfectly satisfactory system or theory has hitherto been framed to account for the multifarious c.anges and phenomena of the compass needle. Among the mure modern inquirers into the source of this most wonderful principle are Profesen:- Hansteen, Mr. Bain, Mr. Barlow, Mr. Christie, Sir Edward Sabine, Captain Johnston, Mr. Archibald Smith, Mr. Evans, R.N., and many others. From their labours we have arrived at a tolerably correct notion of the general effects of magnetio phenomena; and from these the laws by which they are governed have, in some measure, been deduced.
Now the most reasonable supposition is, that the earth itself is a magnet or that magnetic currents exist on its surface in certain directions, causing the various deflexions of the needle; whether this magnetism is inthiced from the sun, or other

Photographic
Sciences
Corporation

source, or whether the earth is in a positive and permanently magnetio state, does not affect the present quention. From certain changes in the compass, perhaps it might be inferred, that the magnetism is induced by teupperature (hent) fiom the sun; or that thu ferrugtnous portions, whioh enter so largely into the componition of the -arth, have reoeived an inductive magnetism from the same source.

In 1683 Dr. Edmuad Halley published a theory of magnetiam, in which occurs the following idens :-that the earth's magnetism was cauned by four pilos or points of attraction, two of them near each pole of the equstor; and that, in those partu of the world which lie zearly adjacent to any one of those magnetio polen, the needle is governed thereby, the nearest pole being alwaye predominaut over that more remote. This view of the earth's magnetism has been supported by the results of the labours of Professor Hansteen, one of the chief promoters of the science. From his most valuable work (Maynetismus der. Erde, Christiania, 1817), his viowe may be learned. Having collected all the observations of valus that had been made on the varintion of the needle, he proved that there were four points of convergence among the lines of variation; vis., a weaker and a stronger point, in the vicinity of each pole of the globe. This, combined with the result of sir D. Brewster's inquiriea, will certainly lead to the viow of the connexion between the heat of the earth and its magnetism. Professor Hanateen considers that the strongest poles, N.S., lie almost diametrically opposite tweach other, and the same is true of the weaker poles n.s. Theme four poles hé found to havo a regular motion oblignely; the two northern ones N.m., from Weat to East, and the two southern ones. E.s. from East to Weat. The following ho found to be their periods of revolution, and their positions in 1830 :-

Time of revolution round
11 Lon. from Greenwich.
Pole N. $69^{\circ} 30^{\prime}$ N. Pole S. $68^{\circ} 40^{\prime} \mathrm{s}$. Pole n. $85^{\circ} 6^{\prime} \mathrm{N}$. Pole s. $78^{\wedge} 29^{\prime}$ S.
$87^{\circ} 19^{\prime}$ W. $131^{\circ}{ }^{4} 7^{\prime} \mathrm{E}$. $141^{\circ} 17^{\prime} \mathrm{E}$. $137^{\circ} 45^{\prime} \mathbf{W}$.
each pole of the earth.
1,740 years.
$4,609=$
$860=$
$1,804=$

From calonlations based upon subsequent observations he slightly varied these positions and periods; but he hau shown, very clearly, that the changen in the variation and dip of the neeale, in both hemiupheres, may be well explained by their motion.

These four magnetic poles, or points on the carth's marface, over which the dippingnoedle would stand vertical, are eeparated by a magnetic equator, which is not ooineident with the earthe's equator, but is an irregular circle, which crossen it in three poiate, according to M. Duperrey, or in four pointa, according to M. Biot and Profewsor Hansteen ; on this circle, of oourie, the dipping-needle itande horisontal.

Respecting the North Atlantic Oeean, we may here state, that the magnetie crosees the terrentrial equator in about long. $20^{\circ} \mathrm{E}$. (in the Bight of Biafra), and proceeda renterly acrosu the Atiantic, to the coant of Brasil, which it touchen in lat. $16^{\circ} \mathrm{s}$. The line of equal dip, at 70°, runs from the Bristol Channel, eurving S.W. and W., to about Charleston. U.S.; between theme linen, the lines of equal dip (or Iooclinal lines) form regular divisions.

The mariner's compase, as generally uned, exhibits the direotion of the magnetic meridian only; but, in treating of the magnetic needle, three points are to be inquired into 1 these are, the variation, or doclination; the dip, or inclination; and the intonsity of the magaetic forte, and to the elueidation of thewe the philowophers in all quarters of the globe are at prevent wagaged.

The Doelination, or Variation.- With this branch of the nabject every mallor ir perfectly fumillar, and ony comment on its actual otato is therefore unoowary. But this variation in not constant. There are revaral elements of ohange in this part of the magnotic force, for it undergoen reoular, mnnual, mennual, diarnal, and also irregalar changes. The socular changes in a progremive alteration, observed in tho direotion the magnetio needle during a series of years. Thus, in 1576, Robert Norman found
the com
North;
thon it
The n
Mr. Cau 11'17"; are the The d -"The a manal which ir rapidly returni chout 10 changes
The in out any traced al

As the attached the chart The D to obsert is render magnetio heing at the varial diminiahi London, 1 is a very the sailor cate, and, tively nee magnetic very imp magnetio tencity of or $\$^{\prime}$ ', and

The foll tions that We have Trans.,' 1 Piace.

Montreal Halifex
Worcenter Cumbridg Spring fiel Provideno Hartford Now Havi New York Waohingt
tate, does not naph it might the sun; or sition of the
which oecurs os or points of e parts of the the needle is more remote. of the labours iom his most ay be learned. be variation of gig the lines of each pole of inquiries, will he earth and oles, N.S., lie 9 weaker poles itwo northern East to Wert. x positions in
n round earth. ars.

- varied these os in the variasined by their
h the dipping. h is not coinglpes it in three Biot and Proprisontal.
agnetic cromes and proceeds in lat. $16^{\circ} \mathrm{S}$. W. and W., to Isoclinal lineo)
the magnetio are to be intion; and the onophers in all
y mailor ie por ary. But this is part of the aliso irregalar tho direotion Norman found

Ghe compres at London to point $11{ }^{\circ} 15^{\circ}$ Bast of Northy in 1858, it pointed true North; it was on the increase to 1810, when it was $24^{\circ} 41^{\prime}$ Wost of North; and since then it has been retrograding, and in December, 1860 , it was $21^{\circ} 11^{\prime} 30^{\prime \prime}$.

The monsual change in according to the senson of the year. It was first noticed by. Mr. Canton, abont the year 1756. It amounted, in January, to $7^{\prime} 8^{\prime \prime} ;$ in Maroh, $11^{\prime} 17^{\prime \prime}$; in Jone, $15^{\prime} 21^{\prime \prime}$; in September, $11^{\prime} 43^{\prime \prime}$; and in December, 6^{\prime}. $58^{\prime \prime}$. These are the diarnal changen, which vary in amount in different parts of the year.

The diurnal change is thus given from the recent observations of Profesion Lloyd: -m The mean daily curve of the changes of declination, for the entire yeur; exhibits a email easterly movement of the Noith end of the magnet during the monning hours, which reaches its maximum about $7^{7 h}$ a.m. After that hour the North end moves rapidly wentward, and it reaches its extreme westerly position at $1^{1 /} 10^{\prime} \mathrm{p} . \mathrm{m}$. It then returns to the enstward, but less rapidly, the easterly doviation becoming a maximum about 10^{h} p.m. ; the mean daily range equals $9 \cdot 3^{\prime}$." These amall daily and monthly changes are unimportant in a meanan's practice.

The irregular changes, or magnetic storms, as thoy have been termed, occur without any previous notice, and are of very great extent; some of them have been traced almost throughout the globe. At times this deviation amounts to 2°.

As the ascertained variation of the compass in various parts of the Atlantic are attached to Tables of Positions in the former part of this work, and are also given on the chart facing page 373.

The Dip, or Inclination. - The aip of the needle, am we have already had occanion to observe, is the angle which a well-balanced needle forms with the horizon, after it is rendered magnetic, and when it has the power of free motion in the plane of the megnetic meridian. As before stated, this angle varien in different perts of the globe, heing at mero on the magnetic equator, and 90^{6} on the magnetio poles. The dip, like the variation, undergoes a continual change, increaning in some parts of the world and diminiahing in others. Thus, at Paris, in 1761 , it was 75°; in 1829, only $67^{\circ} 41^{\prime}$. At London, in 1576, it was $71^{\circ} 60^{\prime}$; in 1837, it was $69^{\circ} 20^{\prime}$; in 1861, it is $68^{\circ} 25^{\prime}$. The dip in a very important element in magnetio consideration, and is too much overlooked by the anilor. The instruments for ite measurement, however, are expenaive and delicate, and require great nicety in their management; for these reasons, it is comparatively negieoted; but as it is in come degree a measurement of the intensity of the magnetic force, and also greatly modifies the directive powet of the companc, it is very important to the mariner. When the ncedle is perpendicular, as it is over the magnetio pole, of ocarwe its directive force vanishes, although at that time the intencity of the magnetiomi is greatest. The diurnal change in the dip amounte to \mathcal{J}^{\prime} or 4^{\prime}, and is aleo abont 16^{\prime} greater in oummer than in winter.
The following table gives the result of soms of the more recent and careful observations that have been made for ascertaining tho dip in various parts of the Atlantic. We have extracted it from one by Major (now Sir Edward) Sabine, in the "Phil. Tranu., 1840, p. 135 :-

$\mathrm{y}_{0}^{1 I}$			
Caragoa 38 39*	Tarhtman 1838	London 88 28	3urv. 1859
Carnccias ... 3716	Home 1836	Terceira 68	Fitaroy . 1838
8t. J. do		River Tagus . . 6039	Lamont : . 1858
ragua9. 9443	Barnett . . 1839	Paris 6734	Arago 1835
Demerara 3357	Home. . . . 1837	Tenerife 6747	Wickham 1837
Chagree 3230	Home 1834	Port Praya. . 4546	FituRoy.. 1838
Parr $\ldots . \ldots$	Home. . . . 1835	Egga, on	
6942	Sabine $\quad \therefore 1847$	Niger 1351	Allen 1833
Brhis, Brail.: 5,1	Sulivan. . 1839	Fernando Po.. 048	Allen 1833
Rio Janeiro . 10 Of	Sulivan .. 183	Ilha das Rolas $744 \uparrow$	Allen 1833

The Intonsity. -The intensity of the magnetism of the earth varies also with time and plece. It is the power of the earth to bring an oscillating needle to a etate of rest ; and it is in proportion to the squaree of the number of vibrations per second. The lines of equal intensity would, at first, seem to coincide with those of equal dip, but, in consequence of the donble magrietic polar axem, they differ in their relation, though they etill form regular and aymmetrical curves. As the magnetio latitude incmensed, to does the intensity, but not the directive force; for, when a needle is on the magnetio equator, it naturally preserves its horizontality, and, consequently, the whole of its magnetism is employed in directing the needle towards the poles. But, in high magnetic latitudon, where the dip is great, the means employed to keep it painaliel with the horison of course reduce very considerably its power of keeping in a North and South direction; and in the circumpolar regions the ordinary compass becomes so slaggish as to pe of but little value to stear by.

Faving thus very briefly sketched the general phenomena of terrestrial magnetism, the reader will understand the general principles laid down by Dr. Halley ond Profeseor Hansteen, that in the northern homisphere the two points of convergence of the magnetic variation or declination by revilving around the pole of the earth, will canse a local change in the variation of all places lying in North magnetic latitude, and which, in tine case of London, has amounted to $35 \frac{1}{\circ}^{\circ}$ in 455 years. The dip, on the other hand, has ohanged but little, or 21° in 260 years; this is obvious, because the two magnetic - cees, while they change their terrestrial longitude in a considerable degree, do affect the dip in places."
ry mach in letitude, and, consequently, will not greatly
The points then interesting to the navigator are, first, the influence of the earth's magnettom upon his compasses, and the inflence the ship and her iron has upon it in neutralising or modifying the first ; the second, viz., the local deviation, is a subject which has become magnified into vast and vital importance since the intwoduction of wo much iroit into the fabric of wooden ships, and the daily increasing number of iron ahipa.

The North Atlantic Ocean has this peculiarity, in a magnetic sense, that it has over nearly all its area but one kind of magnetism-westerly declination (or variation) and northerly inclination (or dip). The magnetic equator pasmes, as before said, obliquely acrom the terrestrial equator from Africa to Brasil, the line of no dip being to the Sonth of this. The line of no variatiou will be seen by the ohart.

Now, as will be seen presently, as the force of the ship's magnetism diminishes, so does that of the earth increase in its influence on the compass, so that a ship's corrected compaes doen not hold the mame relative position with respect to both with the same correction into a different magnetio latituide. Thus a vessel with a large original error in England, will find that error reduced perhaps to one half on reaching the equator ; and if sailing northwards a very different relation will be found.

Thin is expecially to be noticed on sailing into the Gulf of St. Lawrence, or anywhere in a N.W. direetion towards America. Frequently a ship may be standing
on one up to N betwreen rapid an many em The 1 meridian atmosphe This is descriptic directed, that he Cook in 4 vessels, a But th includes but little partioular
This im Airy's ex clusions w "Mercant obscire ' p his well-k ruary and The atte Meeting of tion of the and 1856, their able others in 1 Smith as f "Whate the steerin ship should of iron and of every vc compaseses not compet
The mor between a " Instructic 1848, as a a 1854.

Dr. Scom and Distrib
(1.) As must not on subjocted to of hammerí of construct magnetiom.
(2.) Effec

- Introdu Emith, Ebrl.,
on 1833
en 1833
lso with time to a state of is per second. of equal dip, their relation, tic latitude insedle is on the requently, the e poles. But, ed to keep it of keeping in inary compass
rivial magnetr. Halley ond of convergence - of the earth, magnetic lati5 years. The this is obvious, longitude in a vill not greatly
of the earth's has upon it in on, is a subject ntrioduction of umber of iron
se, that it has tion (or variatas before said, f no dip being
diminishes, so hip's corrected with the same large original
reaching the hd.
rence, or anyy be standing
on ene course to the southward of West acrose the Atlantic, and then suddenly bearr up to N.W.; and then passing rapidly towards the magnetic pole, the relation betiveen the earth'e magnetism and that of the ahip upon her compaes undergoee a rapid and important change, which, unattended to, has donbtless been the caveo of many embarrasaments and accidents.
The Local Deviation of the Compass is its variation from the magnetic meridian, which may be caused, as already noticei, from a peculiar atate of tho atmosphere, Anrora Borealis, lightning, or the local attraction of the ship, iron, \&o. This is a subject of inquiry, which was frat explained by Captain Fhindori, in the description of his surveys of the Australian coast. To this sabjeot his attention wadirected, not only by some anomalous differences which he found in the compassen that he used, but by others recorded by Mr. Walea, who had accompanied Captain Cook in the capacity of astronomer, and his dedactions, referring as they do to wooden yessels, are atill held to be correct:'
But the problem of the local deviation in tron ahipe is a widely different one, and includes a large range of phenomena and considerations which have hitherto, been but little understood, and even now may not be established on a frm basis in all its particulars.
This important discussion upon the magnetism of iron shipe began by Profemor Airy's experiments recorded in the Philosophical Transactions for 1839. His condusions were somewhat opposed by Dr. Scoresby in 1854, which was replied to in the "Mercantile Marine Magacine," in 1854 and 1855. To" further inventigate the stint obscure principles involved ic this very important topic, Dr. Scoresby indertobk his well-known voyage to Australia and back in the Royal. Charter, between Tebruary and August, 1856.
The attention of the shipping interest to this qusstion was strongly called, at the Meeting of the British Association at Liverpool in 1854, and the result was the formation of the Liverpool Compass Committee, who reported to the Government in $\mathbf{1 8 5 5}$, and 1856, and the valuable series of observations they had.collected were discoussed by their able seoretary, Mr. Rundell, and by Mr. Archibald Smith, Mr. Towson, and others in 1857. One important conclusion since arrived at is stated by Mr. Archibald Smith as follows :-
"Whatever difference of opinion may be entertained as to applying corrections to the steering compasses of iron ships, it can hardly admit of question that every iron ship should have at least one compass removed as much as possible from the influence of iron and not corrected by magnets, and should be swung at the beginning and end of every voyage of any length, and the deviation of the oncorrected and corrected compasses (if any) observed, No man is competent to command an iron ship who is not competent to make these observations."*
The more refined calculations which can be entered into for determining the relation between a ship and her compass are given in a pamphlet by Archibald Smith, Eiq, "Instructions for the computation of a Table of the Deviations of a Ship's Compass,", 1848, as a supplement to the "Practical Rules for ascertaining the Devistionn, \&e."" 1854.

Dr. Scoresby gives the following summary of leading deductions on the Character and Distribution and liability to change of the Magnetism of Iron Shipe :-
(1.) As to the sources of the intonse magnetion of iron shipe.-Shipm built of iron must not onily be atrongly magnetic, because of the vast body of this metal which is sabjocted to the action of terrestrial induction, but by reason of the elaborate system of hammering, as well as from the bending of the plats and bars during the progrens of construction, there must be an extremely high development of the quality of rubutioe magnetiom.
(2.) Effeet of the position of a ship when building.-Esech iron ship must have a

- Introduction to Dr. Scoreshy's "Journal of a Voyago to Australia," by Archibald Bmith, Esrı., M.A., p. 48.
mootal imilividumith of the mingnetio distribution, idepending recontially on the posithon the meel mad thend whilst building, tuch distribution having, in each individual ane, a polar arde videquatovial qianeiconiformable to thowe of the ebarth at the place where the ihip is built.
(3.) Magnetio lines of the inductive and retontive magnetion the same. Whilst the

 catitinution.
(4) Inabity of oribinal mapnetic divtribuction to change.-The driginal distribution of ahe mignetime or cating of the magnetio linee, must be liable to change, after the Láunching, under any violent mbehanical action on thie ship, when lyinig with het head in a new direction, or sailing in remote regions of the globe, having very afferent airictions of the tarth's turgnetic force.
(5.) Sympaithy of tho oompase with a ship's magnetic changes.-All changes in a ahip's magnetio condition must tena to produce disturbance in the action of compasess on or abont the deck. And the effect must be, in however minute or insensible quantity in motne particortar casten, to ohange the amount of the origirial deciations.*
The praponition, No. 4, ebove recited, was fortified ty the example of the lons of the Trybur, 5 new iron ahip abont 2,000 tons, whose steering ammpess had originally a maximum deviation of 60°, whioh was corrected by a magnet. She wiet with sovere weather after leaving Liverpool going down channel, and if; as Dr. Scoresby supposed, the effect was to "uhake out," the magnetism of building, and give a new magnetism, this would ledve the corrected magnets to produce a deviation which therew her'on'the Irish Coast.
It was "this argument on the "retentive" condition of the magnetimm of the ship indmoed lyy her building that led to the controveriy between Dr. Scoresty and Prohamor Aitys and canced the former undertaking, at his adyanced yeana, the voyage to Apertalia from the effects of which he may be araid to have fallen a martyr to mience.

Dr. Seoresby, in him Letter to the Underwriters of Aseociation of Liverpool, in 1864, drawn up the following propositions, in addition to those he laid down in his later work of the "Voyage of the Rioynal Charter."-

2 tredimplos.

3. That the original magnotism and compan deviation are apocially liable to change in now ahipa, when meeting with heavy weather on their firstigoing to sea.
4. That a ohange of course, after long ateering in one direetion, is liable to produce a change in the sompass.
5. That ailfuived compasven are :specially liable to change in the direotion of overbompenmatiot, and may dangenomaly mialend the navigator.
6. That a stroke of the sea may produce a sudden ahange in the compass.
7. That metole of lightning may ohange a ship's magnetism and compass deviation.
8. That a hot stin shining partially on an iron ship wh sht change her magnetism.
9. That permanent marnets applied for the adjustment of compens deviations mush, with rare exceptions, tend to aggravate the error in ahips going far into another heminphere.
10. That a compases aloft affords an easy, practioal, and if duly elevated and propared for, an effectual remedy for the ohips dinturbing influence.*.
[^184]The and itor to apeats sailing, of 20° to $3^{\circ} 22^{\prime}$ on been rat the eomp change hip. T

In 184 science ar E. J. Joh was dove But the otated, un present ${ }^{2}$ hich own to the inv to the Hy 1860, we

On the steam mac shipe can 1 trayeous o to embarrs
The inve woft iron in of inquiry

1. That
N.E. and
2. That direction
3. That I of jears, in
4. That position, ∞
ס. That amount ari of all sizen.
The opin built ship, launching, hastily equi this subject
1 have al the exampl compase dil natare of t doubt that, of irpn ship within limi suffoly of the
on the posich individual at the place

Whilist the magnetic conconsormable etentive mag. direction and

1 distribution inge, after the with het head very affierent
changes in a n of compreses or insensible deciations:
of the lows of had originally ot with severe Scoresby supnd give a new viation which
of the ship resiby and Prothe voyage to a martyr to

Liverpool, in d down in his
vially Jiable to going to sea.
ble to produce
eotion of over-
pass.
and compass

magnetiom.

eviations must,
F into another
vated and pro-
. $67,68$.

The experience gainal by the vayage of the Rayal Charter ahowed thet the blaws and strecina that she has exparieuged in her voyage ont to Anotralia dimininhed or, to to speak, ahook out tho inequalitice in her pompesees, which were observeit befare hife sailing, to such an extent that the standard compass, which had originally a daviation of 20° to the port side when the shin's head was north, had this devistion reduced to ' $3^{\circ} 22^{\prime}$ on her return to Liverpool; while the Eteering compans, which originally' had been rather over correoted, having ai error of. $1^{\circ} 43^{P}$ returned with it $22^{\circ} 20^{\circ 1} ;$ whit
 ohange was one which had evidently taken place in the netentive magnetism of the ship. This change shows the complete failurem in such a voyage by ficed magnets.

In 1848 when the Compass Department of the Admitralty mene eatoblinked, the science and the instruments were in an equally bad condition. The labourt of Oapt E. J. Johnson, R.N., F.R.S., however, soon pat a now face on the matter, and much was dowe in his timo towarde doveloping the application of the principlem, enumeinted. But the vast increase of iron shipping has caused greater requiremente, an has boen otated, and the milor is very largely indebted to Mro. Fred. J, Evapes, Run., the present superintendant, who hao prodnced an excallent serien of variation charts (rome Which oar diagram on p. 373, has been taken); and aloo ham doveted much talenh to the inventiretion of the problam of the magnetism in iron shiph From his Report to the Hydrographer on the Deviation in the Iron Shipe of the Royal Nav7, Aprí 18 , 1800, we extract the following:-
On the nature of the magnetipm in tron-builf shipo. The magnetic inftuence of team machinery having been reviewred, the nature of the magnetimm of iron-buik ahips can be entered on Iree, to a certain extent; of conditions arising from thii ex. traneous source of compane exror, and those examples airly oliminated where it tends to embarran the discuision.
The inventigetian of the disturbance arixing from the horizontal induction of the woft iron in the slup, or the the juefficient D, offers several novel and suggeative points of inquiry: the chief charectaristics qre,-

1. That it has invariably a positioe sign, causing an easterly deviation in the N.K. and S.W. qusdrants, and a westerly deviation in the S.E. and N.W. quadranta
2. That its amount does not appear to depend on the size or mass of the vewel, or direction when kailding; or on the iron beapps.
3. That a gradual decrease in amount has occurred, when examinod prer a number of years, in nearly evary veemel that has been reviewed.
4. That tho value remains unchangod in aige and amount, ob changon of geographis position, conffrming theoretical deductiona
5. That a value for this coefficient, not exceeding 4°, and ranging between that amount and 2°, may be assumed to represent the average or normal amount in vessels of all siven.
The opinion has been long entertained, that the original magnetism of an iron built ship, or that acguired in the process of building, undergoes a rapid change after launching, and that from thris cause accidents have occurred to recentily launched and hastily equipped veseels. The reeords of ahips of the loyal Navy do not illustrate this subject.
I have allinded to the importance of the conclusions to be derived from a reviow of the examples and eaces given in this report; for although varying oonditions of compase dioturbance exint, and the inference is irrevictible that they avise from the natare of the iron employed in the construction of the hull of the ship, there is no doubt that, by attention to a few leading principles in the bwilding and equipment of iron shipe, the langer and uncertain sources of error may be modified and reduced within limite both of fuctuation and amount, that will not serioull compromise the safety of the ahip in the hapdis of an ordinarily prudent seaman.

The points of prectical import to which I would invite attontion are:-
1it. The beat direction, with reference to the magnetic meridian, for the keet and hend of an iron uhip to be placed for building, to ensure the least compase disturbance.
Thd. The best poation and arrangement for a compass, to ensure small doviations, and parmanency on changes of geograpic poition.
3id. The changes to which the compans is liable from various causes when the foregoing conditions are fulfilled.

1. On the best Direction for Building an Iron Ship.

In those built head N.E., Eant, Weest, and N.W., strong south polarity (or an attructive force on the north end of the compass needle) obtains on one side of the ship adjoining the compass as peually pleoed between the middle section and the stern; the resulting dieturbance is not leasened as the compaes is moved in a fore-and-aft line within theve limiti:
In vemely built head S.E. and S.W., north polarity obtaing under the same conditionis.
In vemels built head North or South, the conditions arise, that in the former the attraction is toward the stern (the topvides in their action being reutral to a compass in the middle line of the deck), and diminiahes in force as the compass is moved townrds the bow. In the latter the law is reverised, and small compaise deviations are obtained as the stern is approeched.
In an iron sailing, ship, built head to South, there will be an attraction of the north point of the compass to the head, and if built head to North, a like attraction to the ahip'g stern; and so far there would seem to be no advantage in one direction over the other. But in the first case the topsides near the compass have weak magnetism; in the second case they are strongly maghetio: the first position seems therefore preferable.
In an iron steam-ship, built head to the South, the attraction due to machinery is added to that of the hull, whereas in one built head to the North; the attractive forces of hull and machinery are, in the northern hemisphere; antagonistic, and a position of small, or no "semieircular" deviation for the compass may generally be obtained. To iron steam-vessels engaged on the home or foreign trades in the northern hemisphere, this direction of build is therefore to be preferred.

2. On the Position and Arrangemente of the Compass.

The position of compass, whether standard or steenng, must depend, as will have been observed from the foregoing conclusions, on the direction of the 'ship's build; that is, in those built head North the compass must be as far removed from the stern as circumstances will permit; in those built South, placed as near to the stern as convenient, without approaching so close to the rudder-hoad or iron taffrail as to canse the ship's general magnetism to be overpowered by the magnetio influence of those masses.
In shipe built East or West there is little ohoice of position, except to avoid, as a general rule, proximity to vertical masses of iron ; in vensels built with their heads on the intercardinal points, a porition approximating to the bow or stern respectively, where the action from the topsides (to be determined experimentally) is at a minimum, in to be preferred.
Ample elevation above the deck, and to be strictly confined to the middle line of the ship, are the primary conditions of position for every compass in an iron ship, and no compass, whether steering or standard, should be nearer the iron deck beams than 4 feet: for the steering compass this arrangement could be:met by the use of a vertical card for the helmsman.
The standard compass, which as a rule I should recommend to be invariebly uncompensated, requires an elevation of at least 5 or 6 feet from the deok, and to be fittod on a separate and permanent pillar or stand: it is by this superior' elovation

that th

 correopoAs ev
the hall fastepin of, e inh shpuld the holl

Acom side, winc dominan Bxper in nome an amoun ships bui mast- th deviation compass, in the lat tear on ta to their e

$$
\text { 3. } 0
$$

Errors error due review in pass-error as the shi
The for and they compase d tion; and exaggerat to raise th of the chic
With h
for the keet lenst compass
all deviations,
when the fore-
ity (or an atle of the ship and the stern; a fore-and-aft

ader the same

the former the al to a compass npass is moved deviations are
on of the north ttraction to the direction over ak magnetism; rems therefore

0 machinery is attractive forces and a position lly be obtained. n the northern
hd, as will have ne 'ship's build; hoved from the ear to the stern on taffrail as to tic inflaence of
ot to avoid, as a their heads on n respectively, at a minimum,
middle line of a iron ahip, and rek beams than y the use of a
invariebly uneok, and to be erior elevation
that the etriong magnetic power of the iron bewms and adjolning toprides are correapondingly leswened.

As every piece of iron not composing a part of, and hammered in the fabrication of the hull,-such as the rudier, funnel, boilers and machingrystanke, cooking galloys, fastenings of deck houses, \&o., - are all of a magnetic oharacter differing from the hull of, a ghip, their proxinity should be avoided, and, so far as pomible, the compane shpuld be placed so thit they may act as correctors of the general mignetirm of the hill.

A compess placed out of the middle line of the deck is affected by the nearest topside, und its deviations must necessarily be much increased if that topside has the dominant polarity, as in the shipy built teast or Went.

Experience has proved that the practical value of mast or elevated compresees has in iome cases been overrated; they, are, in fact, affected by the ship's magnetionn to an amount depending on their elevation and the direction of the ship's build: thon in ships built North or South, but especially the latter-cthe compass being on the mizen mast the deviations will be large comparatively. In ships built East or Weat the deviations will be comparatively emall, from the topside, which woild affect a deok compass, being more directly under the mast-compase; they may therefore be unefal in the latter cases, and valueleas in a, ahip built head to the Sonth. The wear and tcar on the pivots and agate caps of mast-compasses, from the increased motion due to their elovation, require constant attention when they are employed.

3. On various Sources of Error affecting a Compass placed under favourable conditions.

Errors arising from changes of geographic position, as also incidental causes of error due to anomalous rather than ganeral conditions, have been brought under review in the general progress of this heport. There is, however, one source of com-pass-error-that arising from the heeling of the ship-which has not been alluded to, sis the ship in all the points hercto reviewed is assumed to be on an even keel.
The few experiments made in ships of the Royal navy will be found in Table I., and they tend to prove, as also does the test of experience, that when the original compass deviations are small, the errors from heeling are generally small in proportion; and conversely, that exaggerated errors from heeling are the consequence of exaggerated errors while on an even keel. Ample elevation from the deck, in order to raise the compass above the level cic the topsides and adjacent deck beams, is one of the chief conditions for reducing this wource of error.
With head built North, on heeling, the north ond of compass needle will be attracted to the weather or nearest side from its south polarity.
"
3
"
the north end of needle will have but little error from the balanced conditions of north and south polarity of topsides.
" the north end of needle will be repelled to the lee side by the north polarity of nearest or weather topside.
the north end of needle will have but little error, as at S.E.
the north end of needle will be attracted to the weather or nearest side.

Theve laws enty hold good an long aen the topaiden in the immediato vieinity of the conpeses rctain their dominant polarity due to their original direction of build in Great Britain: if in south magnetic fatitudes a change of polarity takes place, the conditions of healing comeerpond to such change.
Themarimum disturbance on heeling in all these vessels is when their heade are (by disturbed compass) magnetic North or. South, and this disturbance. vanishes when the heed is East or Weest. This law of disturbance may be thus explained: when the vesseris hend is north or sonth on an even keel (by disturbed compass), the neede lies parallel to the topsides by their combined action, which neutralizes each other; on hoeling, the nearest topaide exercisen ith then dominant polarity at right angles to the direction of the needle, and hence the maximum error. With the ship's head ent or west, whether on an even keel ar heeling, either pole of the compen-needle points directly to the topsides, and is consequently unaffected except in a vertical plane.

As the amount of disturbance on heeling varies nnder the varions conditlons of direction of build, height of compass, and breadth of ship or distance of topsides, added to the prevailing permenent or inductive magnetic condition of the latter and the deck beams, each ship naust have an individuad character, to be determined only by experiment or observation at sea. There are, however, strong grounds for inferring that by a judicious position of the compass, so as to ensure amall errors while on an even keel, the errom ariaing from the ship's heel will be so proportionally reduced as not practically to affect the navigation of the ship in the hands of a prudent seaman.

vi.-LIGHitning rods and conductors.

Abstract

"To protect a ship effectually from dazige by lightning, it is essentiat that the conductor be as continuous and as direct as possible, from the highest point to the sea; that it be permanently fixed in the masts. throughout their whole extent, so as to admit of the motion of one portion of the mast upon another; and that, in case of the removal of any part of the mast, together with the conductor attached to it, either from accident or design, the remaining poxtion should still be perfect, and equal to the transmission of an electrical discharge into the sea. To fulal these conditions, pieces of sheet copper, from one-sixteenth to one-eighth of an inch thick, varying from $1 \frac{1}{4}$ to 6 inches in breadth, and being abont two feet long, according to the size of the masts, are inserted into the masts in two lamineo, one over the other, the butts or joints of the one being covered by the central portions of the other. The lamins are riveted together at the butts, so as to form a long, elastic, and continuous line. The whole conductor is inserted under the edges of a neat groove, ploughed longitudinally in the aft side of the different masts, and secured in its position by wrought copper nails, so as to present a fair surface. This metallic line then passes downward from the copper spindle at the mast-head, along the aft sides of the royal mast and topgallant mast of large vessels, and is connected in its course with the copper about the gheave holes. A copper lining in the aft side of the cap, through which the topmast wides, now takes up the connection, and continues it over the cap to the aft side of the topmast, and so on, as before, to the step of the mast; here it moets a thick wide copper lining, torned round the cap, under the heel of the mast, and resting on a similar layer of copper, which is fixed to the keelson; this last is connected with some of the keelson bolts, and with three perpendicular bolts of coppor, of 2 inches diameter, which are driven into the main keel upon three transverse or horizontal bolts, brought into immediate contact with the copper expanded over the bottom. The lamine of copper are turned over the respective maut-heads, and are secured

* "Roduction and Discussion of the Deviations of the Compase;" by Fred. J. Evans, Esq., R.N. Philos. Trans. 1860, part ii., pp. 334-358.
cinity of the yild in Great ee, the condi-
eir heads are anishes when : : when tho to needlo lies ch other; on hht angles to ip's head ent needle points zal plane. conditions of e. of topsides, the latter and termined only ands for inferrrors while on mally rednced of a prudent
rential that the oint to the sea; nt, no as to adin casse of the d to it, either and equal to ese conditions, thick, varying ig to the size her, the butts

The laminw uous line. The Fongitudinally rought coppor pwoward from mast and toppper about the if the topmast he aft mide of is a thick wide d resting on a onnected with r , of 2 inches 9 or horizontal f the bottom. d are secured
red. J. Evans,
whout an hoch or move down on the oppowite gide; the eap; which corremponds, is prepared in a eotmowhint nimilar way, the copper being continued from the lining in the att part of the teund hole, over the cap, into the fore part of the square one, where it is turned down and wecured as before, so that, when the cap is in its place, the contact is completa. In thin way we have, under all circumstances, a continuous metallic line from the highent points to the sea, which will transmit the electrio matter directly through the keel, and emit it into that non-conducting fluid, where it becomee perfectly neutralized and harmlems."-Sir William Snow Harris, F.R.S.

VII.-MARINE THERMOMETER.

Captain Livingaton says:-"In my thermometric experiments I had several thermometers broken, and I have heard objections made to the experiments, that, in the manner they were made, the thermometer was not immersed far enough to enter into water sufficiently uninfluenced by the heat of the solar rays; but it will be seen, by comparing the day and night observations, that this is a futile objection. However, to avoid it, to secure my thermometers from being broken, and to enable me to have a column of water round the thermometer, sufficient to retain its original temperature till such time as the degree indicated by the thermometer scale could be read of, keeping at the same time the bulb of the thermometer immersed in the water, I prevailed on an ingenious mechanic to to attempt the structure of such a case nis I wanted, in which he has mont happily succeeded.".

The person here allaited to is Mr. Robcrit Jamieson, of Glasgow, who was honoured with the large silver medal of the \$ociety for the Encouragement of Arts.

Description.-The first figure, hereto annexed, represents the case, a tube of copper, which enclowes a thermometer: the second figure represents a thermometer, so enclosed. The length of the whole tube, including the lid, is about, 18 inches, and its external diameter 2 inches. The lid, which has a check to fit the tube, is about 2 inches deep, and has a conical or puppet valve in it, whrich rives upward. At the lower end of the tube is another valve of the same description, which alco rises apward; and these two valves permit the water to pass freely through the tabe while it descends in the water; but so soon as it stops, the valves shut, and the water 'admitted, at the greatent dopth to which the machine is punk, remains in the tube, around the thermometer.

- Fig. I. is a baok view of the case ready for une.. In Fig: II., a a represents a ring, or collar, on which the thermometor-plate rents, to keep it clear of the lower valve: $b \delta$; the upper valve and valve-tube cover: c a bridge on which the neck, rod, or journal, of the valve works, through a hole in a awell in the centre of the bridge: d d, lower part of the journal, with a sorew-head, which keeps it from rising through the hole in the bridge: e e, ends of the journals.

VIII.-CLASSIFICATION OF THE CLOUDS, AS DEFINED IN THE NOMENCLATURE OF THE CELEBRATED METEOROLOGIST, MR. LUKE HOWARD.

Our naturalists on shore very frequently refer to the appearance of the sky accordmg to the distinctions which have lately been established; but which, as yet, are very imperfectly understood by the generality of mariners, although sometimes introduced into the journals of the more informed. We have, beyond expectation, exceeded our intended limits in the present volume, but we cannot resist the wish to make this portion of knowledge generally understood by those who traverse the ocean. and who may, at least, be amused dqily by comparing the atmosphere with the following ex-planation:-

- The primary distinction in the classification are,-1. The Cirrus, or Curl Cloun, generally the most elevated of all the clouds, and the first light cloud that forms in the sky after fine clear weather. It is very light and delicate in its appearance, in constant motion, generally curling or waving, fike feathers or extended flbres. 2. The Stratus, or Fall Cloud, is an extended sheet cloud, sometimes small, shapeless, 'and undefined, like a creeping mist; and at other times covering a large portion of the earth; but it does not wet leaves or other substances. 3. The Nimbus, or Rain Cloud, an horizontal, heavy looking, and shapeless cloud, from which rain is falling. Whatever shape a clond may have retained previous to rain falling from it; at the moment of its change from vapour to water it softens in appearance, and becomes a Nimbus, 4. The Cumulus, or Stack Cloid, which increases from below in dense convex and conical heaps, and is the grand prognostic and accompaniment of fair weather.
The Cirrus is often seen after a continuance of fine light weather, as a fine whitish line of cloud, stretched across the sky at a great height, the ends seeming lost in the horizon. This is often the first indication of a change to wet weather: to this line of Cirrus others are added laterally, and at times clonds of the same sort seem to proceed from the sides of the line, and are sent off in an oblique or transverse direction, so that the whole may have the appearance of net-work.

At other times the lines of Cirrus become denser, descend lower in the atmosphere, and by uniting or conjoining with others below produce rain. The line alluded to above is called the Linear Cirrus, and the transverse lines produce the Reticulated or Curl Cloud.
The Comoid, or Hairy Cirrus, commonly called Mare's Tail, is the proper Cirrus; it resembles, in appearance, a long lock of white hair, or a bunch of wool pulled out into fine pointed ends. The appearance of Cirrus in the atmosphere often indicates ,wind and rain ; and when the fine tails havo a constant direction toward any one point of the compass, it has been frequently observed that the gale has spring up from that quarter to which they previously pointed.

The evenin its form that, as cloud, mains and rem The 1 name fr and the
The C in fine small elo gatherin grow in rises, the cloud is 1 subsides fragment which it rise, incre hemisphe for three light whe
The se distinction stratus.
The C roundish reaching, perature, observed nubecuie This kind by some as of this clor a light flee latter are numerable
The Cirr the stormy proximity. small detacl ment.
When th in oummer; In the aumn beantiful ap camulus sul modification

The Cirre lightly inc their exterio with a sinki snow.
The Cirro-
esents a ring, lower valve: neek, rod, or the bridge: ising through

D IN THE OGIST, MR.
he sky accordus yet, are very mes introduced 1, exceeded our to make this ocean. and who following ex-
or Curl Cloud, that forms in - appeárance, in ded fibres. 2. mall, shapeless, arge portion of mbus, or Rain rain is falling. m it; at the moand becomes a below in dense zniment of fair

3 a fine whitish ling lost in the : to this line of seem to proerse direction,
he atmosphere, ine alluded to Reticulated or
proper Cirrus; ool palled out often indicates ward any onc spring up from

The Stratus comprehends fogs and all those oreoping mints which in summer eveninge fill the valleys, but dimppear in the mornings. The beit time for obverving its formation is on a ine evening, after a hot summer's day; we shall then observe that, as the Cumuli of the day decrease, a White mist forns near the ground ; this clond, as the Cumuli evaporate, by degries arrives at its density. In autumn. it romains longer in the morning. In winter it often puts on a still dencer appearanoe, and remaing during the day; and even for many days succemively.

The Nimbus always precedes a fall of enow, rain, or hail; and has received its name from a notion of the ancienta, who distinguished between the. Imber, or ahower, and the Nimbus, or olotid, from which the rain comes.

The Cumulus (plural, Cumuli). The progressive formation of the Camulas is seen in fine settled weather. If we then observe the sky soon after sunrise, we thall see small elouds here and there in the atmosphere, which appear to be the result of small gatherings, or concentrated parts of the evening mist, which, rising in the morning, grow into small masses of cloud, and the atmosphere becomes clear. As the sun rises, these elouds become larger, by adjacent oues coalescing, and at length a large cloud is formed, assusning a cumulated irregular hemispherical shape; this usually subsides in the evening as it formed in the morning, breaking into small massee, then fragments, and evaporating; when it is succeded by the Stratus, to the formation of which it may have contributed. In fine weather these elouds form soon after sunrise, increase during the day, and subside with more regularity, and have a more hemispherical form, than in changeable weather. When well-formed Cumuli prevail for three or four days, the weather is settled. These Cumuli reflect a strong silvery light when opposed to the sun, like Alpine mountains covered with snow.
The Secondary distinction of Clouds partakes, in a mixed degree, of the preceding distinctions; hence we have the Cirro-cumulus, the Cirro-stratus, and the Cumulastratus.
The Cirro-cumulus (cirrus and cumulus) is an assemblage of nubecula, or simall roundish elouds, either detached from, or in contact with, each other, and frequently reaching, to appearance, into the azure sky, commonly attended by an increased temperature, and found to accord with a rising barometer. The most striking feature is observed in summer, before or about the time of thnnder-storms. The component nubecule are then very dense, round in form, and in closer apposition than usual. This kind of cloud is so commonly a forerunner of storms, that it has been assumed by some as a tempestuous prognostio. In rainy and variable weather another variety of this clond appears, contrasted very strikingly with that above mentioned, being of a light fleeoy texture, without any regular form in its nubecule. Sometimes the latter are so small as scarcely to be discermible, but the sky seems speckled-with innumerable little white transparent spots.
The Cirro-cumulus of fair summer weather is of a medium nature, not so dense as the stormy variety, nor so light as the variable one. Its nubeculo vary in size and proximity. In ine dry weather, with light gales of North and easterly winda, mall detachments rapidly form and subside again, generally in an horizoutal arrangement.
When the Cirro-cumulus prevails, we may anticipate an increase of temperature in summer; and in winter the breaking up of a frost, or warmer and wet weather. In the summer time, extensive beds of this cloud, viewed by moonlight, have a very beantiful appearance, which has heen comparad to a flock of sheep at reat. The Cirro. comulus subsides either slowly, as if by evaporation, or changes into some other. modifioation.
The Cirro-stratus (eirrus and stratus) or Wane Cloud, is composed of horizontal or olightly inclined masses of small clonds, attenuated toward a part or the whole of their exterior, bent downward or undulated, separate or in groups, and generally with a sinking barometer, indicating a decrease in temperature, with wind and rain or mow.
The Cirro-stratus is characterized by great horizontal extent in proportion to ver-

CLASSIFICATION OF THE CLOUDS.

tical breadth; so that when any other cloud begins to aspume that form, it generaily ends in Cirro-stratis. The Cirrus more commonly becomes a Cirro-stratus than any other clond; the Cirro-cumulus next; and then the Cumulus. The Cirro-strates, once formed, sometine resumes the modification from which it priginated, but more fic quently it gradually evaporatee of conjoins with some other modifloation. It seldom remains lons in one form, but seems to be constantly declining, and hence the term of Wane Coud. It is sometimes oomposed of wayy bars or streaks, connected in tho centre and confused, but the streaks more defined at the edges: this is common in variable weather in smimer. The Maokeral Sly, as it is termed, is a variety of this; anothar vapiety consists os ine long and plain streak, thick in the middle, and wasting away at its edges; and a third, consisting of small rowa of little clouds, curved in a peculiar manner, and a sure indication of stormy we,ther; this is more or less regufarly formed, and the irregular formation is often produced when a large Cumulus passes under a long line of Cirrc-stratus, and is also a sign of stormy weather.

The last variety of Cirro-stratus is a large shallow veil of clond, which extensively overspreads the sky, particularly in the evening and during the night, and through which the sun and moon appear dimly. It is in this cloud that those peouliar refractions of light; of the sun and moon, callod haloes, mook sune, \&c. usnally appear, and which is a tolerably certain prognoatic of rain or snow. There are minor varieties, which may frequently be obeerved.

The Cirro-stratus usually terminates in forming an intimate union with some other cloud, to produce rain ; but, at times, it evaporates or changes into some other modification.

The Cumulo-stratus designates the Cirro-stratus blended with tho Cumulus, and either sppearing intermixed with the heaps of the latter, or super-adding a wido structure to ita base. The Cumulo-stratus is most frequent during a mean or changeable state of the barometer, when the wind blows from the West, with occasioual deviations from the North and South.

This clond mey be alwayw regarded as a preliminary to the production of rain; and it frequently forms in the following manner:-the Cumulus, which, in common; passes aloug in the ourrent of the wind, seems retarded in its progress, increases its density, spreads out laterally, and at length overhangs the base, in dark and irregulnr protuberanopes. The change to the Cumulo-stratus often takes place at once in all the Comuli which are near to each other; and their bases uniting, the superstructure rises up with mountain-like or rocky summitt. The change from Cumulus to Cumulostratus is often preceded by Cirro-stratus.
Cumulo-strata vary in appearance; those in which hail showers and thunderstorma form look extremely black before the change to rain, and have a menacing agpect, as they are seen coming slowly up with the wind. The Cumulo-stratus sometimes evaporates or changes again into cumulus; but, in general, it ends in the Nimbus and fall of rain or mow: sometimes only one part forms a Nimbus, the other remaining a Cumulo-straius.

General Remari on the Nimbus.-Any of the modiffeatione above deseribed may increase so mnoh as to obpoure the eky, without ending in rain; before which the peculiar obareoteriotic of the rain-cloud may always be dintinguished. In order to get a clear iden of its formation, you may observe a dintant ahower in profle, from its formation to ith fall in rain. You may then observe the Cumulua first arrested, then the Cirro-atratus or Cirrus may appear to alight on its top; the change to Cumuloatratus then goes on rapidly, and this cloud, inoreasing in density, assumes that black and threatening appearance known as an indication of rain : presently this blackness is changed to a gray obscurity, and this in the criterion of the actual formation of water, which now begine to lall, and constitutes the oloud a Nimbus, while a Cirriform crown of fibres extonds from the upper part of the clouds, and amall Cumuli

title of 0 and if C

As con a desicript are indés
"sats frequently But somet highly oh is flrot see interval b the wind other time or is dispe a general wind, the wind prous showers of local oause
"The D issues from observer; and succes
" The W or within, 1 generally b the weathe proach, it is white brok wind.
"Squalı when obstry tion is situo
"When thereby; an ships which
Captain which a vo accompanie up the surfe By squalls c other parts consulting a of the sea it
"Dark ol them, accom a heavy squ

[^185]it geperally tus thrin any stratce, once ut more fi 1. It seldom e the term of lected in tho common in riety of this; , and wasting curved in a or less reguurge Cumulus ther.
hextensively , and through culipr reftracy appear, and uor varieties,
th some other ce other modi-

Cumulus, and adding a wide an or changerith occasioual

0 of rain; sud , in common; s , increases its and irregular pnee in all the uperstructure us to Cumulo-
and thundero a menacing stratus somein the Nimbus, the other
lesoribed may ore which the a order to git file, from its arrested, then o to Cumuloes that black his blacknees formation of hile a Cirrimall Cumuli resumes its
title of Cumulo-stratus, and thence probably changes into a different Hodification; and if Cumalo-strati appear again, triey indicatio a retura' of rain:

As conneeted with this subjeot, the indiotaions of a change of wedther; tre ariex a deicription of SquarLs, from the work of the distinguished navigatior to whom we are indebted for the leading paragraphs of the present meition.
"SQtJALLS are generally of thaes kinden, that galled the Amonsp sQuall in frequently experienced, and ustually rises from the horison in the form of an arch; but sometimes it cesumee the appearanice of a dente dark chonds pirticuidily when highly oharged with rain, or eleotricic miatter. Frotr the time that the arch or clould in first ceen above the horizon, itis motion is cometimes very quilict to the senith, the interval being scarcely aufflient to allow a whitp to! redrice thie nocessary mil befors the wind reaches her, which happens when the cloud has approaclied the zenith: At other times the motion of the cloud is very slow, and not unfrequently it disappearn, or is dispersed, the impulse of the wind being not thea sufflient to reach a ship. As a general rule, it may be observed, that if there be rain in thewe squalls pruceding the wind, tise latter will probably follow the rain in sudden severe gusts; whereas, if the wind prevedes the rain, the squalls are seldom so furious, and terminate in moderate showers of rain. The general rule, however, is often interrupted by the operation of local causes.
"The Descernding Sadall is not so easily discerned as the former, because it issues from clouds whioh are formed in the lower parts of the atmosphere, near the observer; and when clouds are thus formed, they generally produce showers of rain, and successive squalls of wind.*
"The White Squall is not often experienced; but it sometimes happens near to, or within, the tropies, particularly in the vieinity of mountainous land. This squall generally blows very violently for a short time; and, as it is liable to happen when the weather is clear, without any appearance in the atmosphere to indicate its approach, it is oonsequently very dangerous. The oniy mark that accompanies it is the white broken water on the surface of the sea; which is torn ap by the force of the wind.
"Squalls, and also storms, are sometimes progreasive, at other times regressive, when obstructed by an opposite wind; or, according as the point of greatest rarefaction is situated.
"When a equall is opposed by an opposite wind, its motion is greatly retardod thereby ; and a ship sometimes, in this case, outruns the squall, and overtakes other ships which are within the limits of the opposito wind."

Captain FitzRoy says:-"Undoubtedly the worst wind, next to a hnrricane' which a vessel oan encounter, is a violent 'White Squall', so called because it is accompanied by no cloud or peouliar appearance in the sky, cand beosuse of its tearing up the surface of the sea, and sweeping it along so as to make a white sheet of foam. By squalls of this description, frequent in the West Indies, and occasionally felt in other parts of the world, no notice will be given much above the horizon; but, by consulting a good barometer or simpiesometer, and frequently watching the surfuce of the sea itself, even a white squall may be guarded against in sufficient time.
"Dark clouds, hard mixed with soft, and inky fragments in rapid motion beneath them, acoompaniod, perhaps, by lightning and distant thunder, are the forerunnerm of a heavy squall. Soft shapeless clouds, in which it is impossible to point out a definite

- In the Mexican Sea heavy and very sudden deacending squalle come up at atmon from very smail ciouds. These are scarcely folt until the cloud is almont right over the ship's masts.-A. L.
edge, usually bring rain, but not wind; and, generally speaking, the more distin ay defined the edges of the cloude are, the more wind they foretell. A little attention to these simple observations, no familiar to persons who have been some time at sea, may save young officers unnecessary anxiety in one case, and prompt them to shorten sail at a proper time in the other,"-("Voyage of the Beagle," vol. ii. p. 49.)
"Captain Reviben Bunker, an old and experienced seaman of Nantucket, has related that he has often, and monetimes for several dayis together, rode out a heavy gale at sea by furling all his mili, pointing his yards forward, and veering out from the bows a stream cable, with a mmall anchor and a spar lashed to it : thus riding, as at anchor, head to wind. He considered this mode much safer than scudding or lying: to ; and in this situation, he maid, his vemel meldom shipped any water.
" Mr: Owen, formerly master-attendant at Jamaica, recommended to schooners and other simall vemels, when running before the wind in a gale, with a heavy sea following, to tow a hawser from the attern ; as he had found, from experience, that it divided the waves, and prevented their breaking on board."-Liout. Evans. "Revision of Geographic Terms," p. 134.

Absco, 77 Absecum 1 Adour Riv Aferni, Ra Africa, Co TH

Aprican,

 Current, Defined (153)from Ma locity a 158) Tem birection Const ; Mount, ing Dire Finlaison vations b nell; (16 perimentr Remarks o

Spartel ar 502

514

Aitkens Roc
Aix Isle, 48 Agglentone Aguluh Cap Albreda, 621 Alcatras Isl Alderton $\mathbf{S h}$ Allegranza 1 Alderson Ro Almadia Poi Almadronis Alta Vela, 8 Agadier, $49 E$ Ambleteuse America Rod Amherst Pos Amplimont 1 Amsterdam, Anegada, 87 Ancoras Inle Anfitrite She Angel Hillor Angle Bay, Angra de Ci
redietis y de attention time at sea, n to shorten 19.)
atucket; has out a heary ing out from ns riding, as ing or lying:
chooners and y sea followzat it divided - Revision of

1 N D EX.

AbaCo, 77
A bsecum Inlet, 632
Adour River, 482
Aferni, Ras, 498
Africa, Coast of, 487
——, Tides of, 258
Aprican, or Guinea Current, 283-288; (161) Jefined; (152) Extent; (153) (154) Examples from Maury ; (156) Velocity and Direction; (156)Temperature; (157) Directions off .Guinea Coast ; (158) Near Cape Mount, \&c. (169) Sailing Directions by Mr. Finlaison ; (160) Observations by. Major Rennell; (160) Bottle Experiments.
Kemarks on the African Current, 407
\qquad between Cape
Spartel and C. Boiador, 502
off C. Verde, 616 off the Senegal, 614
Aitkens Rock (P), 663
Aix Isle, 480
Aggleatone Rock, 467
Aguluh Cape, 499
Albreda, 521
Alcatras Islet, 523
Alderton Shoal, 648
Allegranza 1ale, 695
Aldermon Rock, 670
Almadia Point, 516
Almadroniz Village, 489
Alta Vela, 87
Agadier, 498
Ambleteuse Road, 476
Amorica Rook (P), 675
Amherst Port, 648
Amplimont Rock, 670
Amsterdam, pooition of,124
Anegada, 87
Ancoras Isleta, 525
Anfitrite Shoal (P), 682
Angel Hillocks, 611
Angle Bay, 469
ingra de Cintra, 506

Angra de Terceira, 653, 568
Anna Rock (P), 682
Anne, Cape, 647
Anticosti, 53, 69
Antioche Roolcs, 480.
Anti-trades, or 'Passage Winds, 208-214. (64) Definition; (65) Estimates; (66) Predominance; (67) Liverpool Observations; (68) Motion, Seasons and Directions; (69) (70) Interferences ; (71) (72) Winds in the Engtish Channel ; (73) Winds in the open ocean; (74) Wenterly predominance; (75) Winds in North America.
Antonio Cape, 82
Arctic or Labrador Current, 344 - 352: (262) Deflnition; (263) Extent; (264) Around C. Farewell; (265) Up Davis Itrait, \&0. 3 (266) down the Coast of Labrador; (267) Drifting ice; (268) Remarks by Lient. J. S. Park; (269) Arguments by Mr. Redfleld; (270) Velocity; (271) Past Newfoundland; (272) Into Gulf of St. Lawrence ; (273) Around Sable Island; (274) Along the Coast of the United Staten: (275)Intermingling cold veins ard cold wall.
Arcas Isle, 527
Arethinsa Reef, 839
Arguin Bank, 610
Arthiflial Horizon, 706
Arxilla, 489, 602
Asfee, or Saff, 495
Ashton Rook (P), 683
Assateague Light, 654
Atalaya Point, 687
Atila look (?), 878
Atlantic Ocean limits, 1

Aves I., 91
Aylen, or Porgas Bk., 688
Azamor, 494
Azores, The, 653
—— Position, 41
Baccaro Point, 646
Bagroo River, 349
Bahamas, Tides, 258
Bald Head, 657
Baleine Point, 481
Ballycottin Bay; 471
Ballynakille, 478
Baltimore, 474
Bananas, 648
Banshe Verte, 665
Banquereau, 643
Bantry Bay, 475
Barbados, 91
Barbas, Cape, 508
Barel Point, 531
Barfleur, Cape, 476
Barencthy's Rook, 675
Barnogat, Inlet of, 651
Barnstaple Bay, 647
Bashaw, or Turtle In., 649
Basque Roads, 480
Bamse Vieille, 479
Bathurst, 521
Baxo Nuevo, 84
Baxio de Gargan (P), 688
Bay of Bincay, 478
Bayadere Shoal, 510, 525
Bayoune, 482
Betchy Head, 463
Bearhaven Harbour, 475
Beaufort Harbour, 657
Beaufort Bank, 672
Beacley Shoal (P), 671
Bec de Chévre, 479
Bec du Rax, 477
Beginnis, 476
Belle Ile, 480
Bermeja Shoal, 602
Bermudas, or Somerw Iv., . 74, 620
Bermudas, Winde at, 207
Berrin, 624
Bencursema, 531
Betay' Rock (P), 689
Biarits, or Biarrits, 483
Bjocg Iniande $\overline{2} 24$
Bilbao Harbour, 483

Bird Isle, 618
Bir videaux, 480
Biscay, hay of, 478
Bishop Lighthouse, 403
Bisseo, 528
Bissao Channel, 535
Bissagos, 524
Black Fish Banks, 654
Blacketone, The, 458
Black Rnek, 474
Blaesdale Reef (P), 688
Blanco; Cape, 508 , North, C., 495
Block Island, 650
Rloody Flux, Reanedy for, 671
Blue Cut, 623
Bocayna, Canal de, 505
Boaz 1eland, 624
Boiador Oape, $504,5$.
Boiler Channel, 622
Bolola Channel; 629
Bom Felix Shoal (?). 686
Bonavista 606
Bonetta Shoal (P), 607, 686
Bonn Islet, 527
Boolam, or Bulama, 530
Boom Kittam River, 560
Boston, 70, 647
Bossemsame, 531
Botof Sand Hille, 490
Bottles, Current, sor Carrents.
Boulogne, 476
Bouvets Bank ($($), 686, 68\%
Braithewaite Ray, 607
Branco Isle, 616
Brava I., 614.
Braye Roads, 478
Hrazen Head, 686

- Hill, 608

Braxil Rock (P), 645, 605
Brea, or Bray Head, 476
Bream Shoals, 625
Breem Rock, 473
Brehat Isles, 478
Brest Harbour, 479
Breton Rook (P), 681
Breton Island, 048
Bristol Chaunel, 467 TYdes at,
263 .
Brighton, 456
Broad Sound, 640
Brow Head, 475 :
Brown's Bank, 674
Brussels, 24.
Bufardo Rook, 485
Bugio, or S. Deserta, 689
Bulama, ō̃ Boclam, sin

Bullom Shore, 547
Bull's Bay, 658
Bulman Rock, 474
Bu Regreb, Wady, 492
Busto Cape, 484
Bus, Land of, 675
Cabizzos, The, 487
Cabras, 595
Cabras, or Goat's Ids., 560
Cacheo, 523
Cadiz, 32
Cæsar' Breakere (P); 687
Caimado: Point, 574
Caldeiras, The, 556
Calms and Winds, Canary Islands, 603
Calms of Cancer, 206
Cambridge Observatory, 70
Camden, Fort, 478
Canary Islands, 692
Canarna, or Grand Canary, 596
Cancer, Calms of, 206
Candler's Rock (P), 680
Cansado, Porto, 601
Canso Banks, 643
Cantin Cape, 488-495
Cape Breton I., 67
Capellas Port, 561
Cape Verde, 516
Capt Verde Islands, 605
Carabane, 594
Caramehe Ieland, 525
Bank, 527
Cardinale, 480
Carino Bay, 485
Carnsore Point, 470.
Carpenter Rock, 645.
Cashe's Ledge, 647; 674
Oama Biazea, or Dar El
Beida, 493
Caskets, The, 478
Castle Harbour, 624

- Island, 626, 649

Catharine Point, 622
Caycos, 78
Cayo Bank, 526

- Isle, 526
- Romano, 88

Cazamanza River, 523
Centurion Rock; 648
Chaderton Reef (P), 668
Chain Rook, 642
Channel Ielands, 478
Chantereau's Shoul, 680
Chao I., 502.
Chapelle Rock, 665
Chatiol Pook, 400

Cape Charles, 655
Charleston, 71, 659
Charles Fort, 473
Cape, 654
Charlotte town, 60
Chassiron Tour, 480
Chaucer Bank (P), 670
Chaussée de Sein, 478, 480
Chavagiac Ehoul, 477
Chebncto Heed, 644
Cherbonrg, 476
Chesappeake, The, 655
Chilling Cape; 640
Chincoteagtue Shósl, 654
Christiansted, 88
Chronombteras, Remarks on', 704
Chnb Fieads; 622
Cintra Bay, 500
Cisargadis Iole, 484
Clarks Rock (P), 668
Clear Cape, 474
Cleveland Reef, 676
Clovelly, 467
Clowee Reef, 690
Coast Line, Longth of, 5,6
Cohasset Rockis, 648
Colbart or Ridge, 455
Columbine Shoal (P), 681
Compasty; on the, 708
Compooniee River, 530
Constanite Reef, 677
Cooper's Island, 632
Coppetches River, 634
Cordouan Town; 4日1-
Cork Harbour, 472
Cape Cornwall, 464
Corral, or Curral, 589
Corteemino Island, 544
Coruña, 494
Corvo, 578
Corvoeiro, Cape, 508
Coubres Point de le, 481
Courier Rock (P), 685
Cour tmacisherry Bay, 478
Crawford Island; 530 .
Cromwell's Fort, 476
Crookhaven, 474
Cross Haven, 470
Crow Head, 474
Crow's Net, 018
Cuba, 81
Curriti, The; 586
Combentic, 260.
(127) General Romarky (128) Betlimation: of (129) Authoritiew ${ }^{(1300)}$ Allowiance for Ibadreckoning: (131) Drift of Bothiew ; (ỉ2) ถ̂ur
face
Depth
Specif
Water the 0 peratui tions;
tion

1. Ren
2. S.E
mope
Africa
Curre
Sea.
Currer
India
Gulp S
tic or 1
RENT, ed
Currente
ON, by
Park,
Major
Submari
Lient.
365 ; by 367; Re Mandere
the Eas
in the
the Atla
marle b
Wilkes,
by Capt.
Cyclones, m
Dedalus 1
Dangers of Darack': m_{1} Dar El Beid Dartmouth, Davis Bank Davis' Sout Dead-reckor Deep-sea So See Depth
Delaware B Delaware 81 Delaware, 6 Diptiof tit 694
Conditiono
695 ; E ments, 69
the Dolp the Aretio Cyclopt, 61 dog, 697. Bounding
and $\hat{0} 0^{\circ}$

0, 855
71, 659 t, 473 e, 654 wn, 80 our, 480 ak ($($ P), 670 -Sein, 479, 480 Shoal,477 end, 044 478 The, 655 pe; 640 tue Shoubl, 654 ed, 88 ters, Remaiks
w; 622
, 506
de, 484
${ }^{2}(\rho), 608$
keef, 676
87
off 690
Longth of, 5,6
Cooks; 648
Ridge, 455
Bhoal (p), 681
on the, 708 e River, 596
Reof, 677
cland, 632
5 River; 634
Town; 481-
pour, 472
wall, 464
Curral, 680
toland, 644
Cape, 508
int de les, 481
pek (P), 685
herry Bay, 478 Island; 589
Fort, 476 a, 474
n, 470
1,474
f, 048

0, 586

200\%
eral - Romarky statmation of ${ }^{\text {of }}$ thoritien ; (130) oe for lloadgI (131) Drift Tin ; (is2) our
face Curpenta; (138) Depth of Currents and Specific Gravity of Sea Water; (134) Depth of the Ocpan: (135) Temperature; (136) Definitions ; (137). Enumeration of Currents, 1. Rennrli's Curbent. 2. S.E. Drift to Europe and Aprica. 3. African or Guinea Current. 4. Sargasso Sea. 6. Equatorial Current. 6. West India Currents, 7. Gulf Stream. 8. Arctic or Labrador Curbent, which see.
Curbents Obeervations ON, by Liput. Jno. S. Park, R.N., 360; by Major Rennell, 364; Submarine Currents by Lieut. Walgh, U.S.N., 365 ; by Capt. Irminger, 367; Remarks by Capt. Mandermon, 467; On the Easterly Currents in the North Perts of the Atlantic, 367; Remarka by Capt. Chas. Wilkes, U.S.N., 369; by Capt. Leighton, 371 Cyclones, nee Hurricanes

Dedalus Rock, 678
Dangers of Scilly, 465
Darack's Rocks, 673
Dar El Beida, or Anafa, 493
Dartmouth, 458
Davis Bank, 650
Davis' Sonth Shoal, 649
Dead-reckoning: 707, 708
Deep-see Soundinga, 661
See Depth of the Atlentio
Delaware Bay, 652
Delaware Shoal, 690
Delaware, 651
Depth of the Atrantic, 604
Condition of Deep Water, 695 ; Early Experiments, 695; Cruise of the Dolohin, 696; of the Aretic, 627; the Cyclops, 697 ; the Bull. dog, 697. Table of Soundinge between 40° and $\mathbf{6} 0^{\circ} \mathrm{N} ., 698$; be-
tween 30° and 40°, 698 ; between 20° and 30°, 699; Equator to $20^{\circ}, 700$
Desertas, 43, 582
Deserta Grande, 582
Desirade, 90
Devil's Rook (?), 687
Devil Island, 644
Digue of Cherbourg, 476
Discoloured Water, 692-4
Dogs Isle, 616
Dog Nose, 472
Doldruma, see Equatorial Calms
Dolle:hriat's Shoal, 564
Douarnenez Bay, 479
Double-headed Shot K., 82
Doulus Head, 476
Douro River, 32
Draystone, The, 461
Druid's Reef (P), 672
Dublin, Position of, 16
Duksal Ialot, 495
Dungeness, 454
Dunmanus Bay, 475
Dust in the Atlantie, 701, 703
Dvina Rook (P), 667
Dyet Rocks (P), 683
EddybtonkLighthoube, 400
Edinburgh Position, 13
Egg Rooks, 648
Eight Stones (P) 677
El Alraiche, 400
El Cumbre Peak, 597
El Mansoria, 495
Emily Rock (?), 687
Engliwh Channel, 454
251
English Road, 608
Entroza, 590
Equatorial Currents, 294-302
(174) Name and Definition ; (176) Mean Rate; (176) Examples; (177) tratimate of Mean Velooity: (178) Drift of Bottlees and List of them from Captain Becher; (179) Other Examples of Bottle Drifts ; (180) Division between North and South; (181) the South Equatorial Current; (182) Direetion ;
(183) At the Antillas; 184) Hemarke by 8 Sir R. Schomburgk; (185) Exceptions ; Rollers or Heavy Ground Swell.
Equatorial Calms and Winds, 198-200
(45) Definition of the Doldrume; (48) Romarks and Table of Extent; (47) Cloud-ring; (48) The Rains

Esmeralda Rook, 667
Espalamaca Point, 373
Espirito Santo Point, 486
Establishment of the Port, 242
See Tidea
Estaca Cape, 484
Europe Point, 488
———Rook (P), 679
Falcon Rook, 682
Falconer Rock (?), 680
Falcon Rooks, 676.
Falmouth, 462
False Bermudas (P), 683
Farewell, Cape, 50
Fanaes, 577
Farran Point, 547
Fastnet Rock, 474
Fas, Peak of, 491
Fayal, 572
Fear, Cape, 657
Fenwick Island Shoal, 654
Fernan do Noronha, 640
Ferraria Point, 561
Ferro, or Hierro, 602
Ferrol Harbour, 484
Fedallah, or Fedala, 493
Field's Vigia (P), 682
Finisterre, Cape, 485
Finisterre, Nave of, 485
Firestone Hill, 805
Fire Island, 658
Fisherman's Clifth, 606
Fishing Rip, 650
Five Heads (P), 668
Flores, 678
Florida Tiden, 258
Fogo, or Fuego, 614
Footabar, or Tamara, 638
Formigas, Bank and Rocks, 583
Forecarreah River, 643
Fortaventure, 595
France, Coast of, 476
Frayles, The, 569
Freetown, óqu
Freela, Cape, 82

Freminvillé Bank, 688
French Shoal (P), 686, 687
Frenchman's Island, 610
Freshwater Bay, 615
Froward Point, 474
Frying-pan 8hoals, 657
Fuego Island, 614
Fuertaventura, 595
Funchal, 43, 587
Fundy, Bay of, Tiden, 257
Garriel, Mount, 475
Galea Point, 483
Galhao Reef, 609
Galissionières Rock (P), 689

- Galleon's Bank (P), 689

Gallinas River, 550
Gallop Island Point, 648
Gambia River, 520
Gandaria Rocks (?), 684
Gandiolle, 514
Garajao, Cabo, 587
Garnet Bay, 505
Gattandar, 513
Geer, Cape, 38
George Island, 645
George's Bank, 674
Ghir, or Geer, Cape, 498
Gibbs Hill, 625
Gibraltar, 407
Gilohrist Rock (?), 680
Girao, Cape, 589
Gironde River, 481
Glengariff Harbour, 475
Goat Rocks, 571
Gold River, 506
Gomband's Rock (P), 684
Gomera, 602
Goree Isle, 39, 517
Gorgulho Rook, 689
Gough's Rocks (P), 671
Goulfar Cove, 480
Graoiosa, 675
$\rightarrow, 595$
Grand Cayman, 83
Grand Canary, 686
Gras Inland, 639
Gramy Bay, 624, 628
Great Bermuda Island, 624
Great Piton, The, 693
Great Racoon Kay, 658
Great Rip, 650
Great Scarcien River, 644
Green Rock, 668
Greenland, 61
Greeve's Ledge (P), 669
Grenada, 91.
Greyhound Bay: 808

Griel Wood Island, 613
Grisiez Cape, 476
Groix, Isle de, 430
Ground Swell, 301
Guadaloupe, 90
Guavas Lake, 463
Guigon's Bank (?), 685
Gull Banks, 653
Guinea Current, see African Current
Gulf Stream, The, 316 -344: (208) General Remarks; (209) History; (210) Causes; (211) Various Opinions; (212) Character; (213) Characteristics; 214 Extent; (215) Left-hand Margin; (216) to (220) Depthin Gulf of Florida; (228) Depth off Charleston, \&e: ; (222) Depth off Cape Hatteras; (223) Breadth; (224)Velocity; (225) Seasons; (226) Deep Sea Temperatures; (227) Changeable Velo: cities; (228) Observations by Sir Ed. Sabine, Capt. Monteath, Capt. J. S. Park; (229) Temperature; (230) Colonel William's Surface Thermometrical Indications; (231) Temperatures in Seasons; (232-3) Difference in Temperature; (234) A Series of Warm and ColdWater Streams; (235) Submarine Temperatures; (236) "Cold Wall ${ }^{\prime \prime}$ (237) Counter Currents; (238) Along the Florida Recfs; (239) Remarks on it; (240) On the Cuban Shore; (241) N. and N.E. of the Bahamas; (242) Roofshaped, and Eddiem on the Edges ; (243) Physical Geography of the Gulf Stream; (244) Character of the Bottom; (246) Animal Lifefound; (246) Similarity of Deep Sea Temperatures; (247) The Stream South of the Newfoundland Bainks; (248) Its Northern Edge: (249) Extent to

Gulf Atreay:-
Northward; (250) Irregular Temperatures (251) Character of the Great Banks (252) North-easterly Drift to Europe ; (253) Drift on the Enropean Coists; (254) Dr. Stark's ObserYations; (255) Evidenco in High Latitudes; (256-7) Captain Irminger's Observations; (258) Drift on Feroe's, Iceland, \&z.; (259) Gencral Summary; (260) 1rift of Bottles, and Table; (261) Concluding Remarks.

Hadid, Jebel, 496
Halifax, 63, 644
Han, Bay of, 619
Handia, or Jandia, 596
Hangman Point, 479
Hannah's Coral Shoal (?), 685
Hanois, or Fanovcaux Rocks, 478
Harding's Rocks, 648
Harmattan, 'The, 203-See
Winds on African Coast
Harrington Sound, 625
Harrison Rock (P), 671
Hartland Point, 467
Hartwell Reef, 606
Hats, The, 469
Hatteras, Cape, 656
Haulbowline Island, 473
Havana, 82
Henderson, or Chaucer Bank, 67
Henlopen Cape, 652
Henry Light, Cape 655
Hervagaults Breakers (?), 672
Hierro, or Ferro, 602
Hoedio Isle, 480
Hog Fish Cut, 623
Holland, Positions of, 24
Homestone, The, 458
Homet Pointe, 476
Honey Island, 529
Hook Polnt, 471
Horse of Willingdon, 455
Horse Latituden, 208
Horse-shoe, 646
Hubberston Road, 469
Huntley's Rook (?), 683
Hund's Chainitl, 0 es

Hurrió
(76) Dis merated tions; Storms ; Reid's " regularit sons; (8 Indicatio tions Ne Prognoeta ment of Rule;
tenant
(Stormy
Card; (8
(90) N.E
(91) S.E

93 S.W
94) N.W
(95) Capte Remarks ; ples give (97) Hurri
(98) Trinid
(99) Barh
cane; (10)
of 1830 ;
United st
(102) At N
(108) On

Humicanes
ICES, 352: (${ }^{7}$ (277) Form bergs; (${ }^{\prime}$ mions formed; (28 land; (28 (282) Deser berge ; (28: ficld's View amples of Ic Lower Latil The same, Redfield;
Shipe on th
haps Sir J lin's ; (287)
Lieutenant
tions and
A Warning Ile de Sein, 46 llha de Sal, 60 llhas doe Idolo lnagua, 78 India Shoal (P Indian River 1 Inglis Pahboy
${ }^{2} 44$ mperatures acter of the whks ; (252) rly Dritt to 453) Drift ou rean Coasts; tark's Obser65) Evidenco Latitudes; ptain Irminvations; (208) Færoe's, Ice(259) Gencral (260) Drift and Table; clading Re-

kL, 496

644
, 519
Tandia, 696
oint, 479 ral Shoal (?),

Hanoveaux ocks, 648
The, 203-See African Coast Sound, 625 cls (P), 671 int, 467 ef, 606
pe, 656
Island, 473
or Chaucer
pe, 852
, Cape 655
Breakers (?),
rro, 602
480
t, 623
tions of, 24
The, 458
0, 476
. 1529
41
lingdon, 455
Hes, 206
46
Road, 469
ck (P), 683
El, 222

Hurdiodines, 214-234: (76) Discussions Enumerated; (77) Definitions; (78). Law of Storms ; (79) Sir W. Reid's "Rule;" (81) Irregularities; (82) Seasons; (83) Barometer Indications ;(84)Precautions Necessary; (85) Prognostics; (86) Movement of C-cclone; (87) Rule; (88) Lieutenant J. Evans' (Stormy Jack's) Storm Card; (89) Use of it; (90) N.E. Quadrant;
(91) S.E. Quadrant;
(93) S.W. Quadrant;
(94) N.W. Quadrant;
(95) Captain Leighton's

Remarks; (96) Examples given on Chart;
(97) Hurricanes of 1780;
(98) Trinidad Hurricane;
(99) Barbados Hurricane; (100) Hurricane of 1830; (101) On the United States Coast; (102) At New York, \&o., (103) On Making use of Hurricanes.

Icks, 352: (276) Remarks; (277) Formation of Icebergs; (278) Dimensions ; (279) How formed; (280) In Greenland; (281) Seasons; (282) Description of Icebergs ; (283) Mr. Redfield's Views; (284) Examples of Ice-drifts into
Lower Latitudes; (285)
The same, from Mr. Redfield; (286) The Shipe on the Ice, perhaps Sir John Frank-
lin's; (287) Remarks by
Lieutenant Evans; Cautions and Indication; A Warning
lle de Sein, 469
lliha de Sal, 605
thas doe Idolos, 538
lnagua, 78
India Shoal (P), 688
Indian River Inlet, 653 Inglis Pahboyeulh Kiver, 341

Inglefield Bank (${ }^{(P)} 685$
Inner Hole, 626
Ireland,. South Coast of, 470
Iseacs, The, 78
Isle Cavalho, 529

- Tristan, 4.79
- Verte (P), 668
- of Wight Shoal, 654

Ives Point, 644
Jagua, 83
Jamaica, 83
Jandia, or Handia, 596
Janellas Rocks, 590
Jaquet Island (P), 672
Jean Hamon's Rock (?), B79
Jeba, or Great Channel, 529
Jeremia Road, 489
Jibel Habib 490
Jibel Hadid, orIron MJuntains, 406
Joal, or Yoal, 519
John Leton's Rock, 608
Josyna Rock (P), 680
Juby, Cape, 502
Julianeshaab, 51
Kakoonder, or Kakundy River, 533
Kakundee River, 533
Kanabac, 531
Kanayabac Island, 631
Kenny Islet, ${ }^{4} 60$
Keus, or Europa Rock (?), 679
Khaolah, 620
Kickergill Tower, 457
King's Isle, 527
Kinsale, 473
Kitty Vitty, or Quidi Vidi, 642
Kitchen Shoals, 623
Knap and Panther, 46
Knockmeldown Hill, 473
K rusenstern's Volcano, 687
Kramer's Bank (P), 665
Labrador, 63, 69
Labrador Current, see Arctic Current
La Cidale, 614
Lagens, 576
Lagos, 486
La Hague, Cape, 478
Lampoul Harbour, 470
Land's End, 464
Lanzarote, ó03

Las Palmas, 697
La Tenarde, 477
Lavardin, 480
Law of Storms, see Hurricanes
Lean Shoal, 668
Leiden Obserratory, 24
Le Have Cape, 645
Leon Islet, 616
Leopoldina, 817
Le Ruffiat, 482
Leton Rock, 608
Lewis Rock, 469
Liberia, 552
Lion's Bank; 663
Little Paps, 516
Lighthouses, Description of, 97 ; Lighthouses and Light-vessels, 97; Catoptric, or Reflector System, ${ }^{88 ;}$ Dioptric, or Lenticular System, 99; Holophotal System, 102.

Lighthouses, Table of:
Explanation, 104
Africa, W. Coast, 175
Alabama, 168
Antillas, 172-3
Atlantic Islands, 176
Bahama Islands, 171
Belgium, 134
Biscay, Bay of, 140, 144
Breton Island, 149
Bristol Channel, 109
Carribbee Iolands, 172, 173
Chesapeake Bay, 182164
Connecticut, 158-160
Cuba, 171-2
Delaware Bay, 161
Denmark, 130
Elbe River, 130
England, E. Coast, 105, 113, 115
, S. Coast, 107
W. Coast, 109
-112
Florida, 106-7
France, N. Coast, 135
-139
W. Coast, 140
-143
Georgia, 166
Guernsey, Jersey, \&c., 138
Guayana, 173
Guif of inexien, 174
Hanover, 131

Lrohthousya, Table of:
Hebriden, 119
Ireland, 122-125
Jamaica, 172
Long Imland Sound, 158, 160
Lonimiana, 168-9
Maine, 153-155
Man, Isle of, 112
Marocco, 146
Maryland, 162
Massachugetts, 155-1.177
Mexico, 174
Mississippi, 168
Netherlands, 131, 133
New Brunswick, N.Cet. 149
S. Coast, 154

Newfoundland, 147
New Hampahire, 155
New Jeraey, 160, 161
New York, 160
North Carolina, 164
Norway, $120-128$
Nova Sootia, N. Coast, 149
S. Coast, 150, 152
Orkney Islands, 118
Portugal, 145-6
Prince Edward I Iland, 149
Rhode Island, 158
Scotland, E. Copast, 116 -118.
-121
W. Coest, 119

Shetland Isles, 118-19
Sorth Carolina, 165
Spain, N. Coast, 143
-W. Coast, 145-6
St. Lewrence, Gulf of, 147

River, 148
Texas, 169, 170
Thames River, 105
Tierra Firme, 174
United Staten, 153
Vineyard Sound, 167
Virginia, 161
Walen, 110
WentIndia Iolands, 172, 173
White Sea, 26
Lighthouse IMland 463
Lisbon, 32
Little George Bank, 674
Lisard, The, 463
Los, Inles de, 538
Lomba Grande, 583

Long Bar, 622
Longships, 404
Lop Rock, 587
Lookout Cape, 657
Lundy Island, 466
Luzuero Point, 483
Lynhaven Bay, 653
M'CARTHY's Islapd, 521
Machichaco Cape, 483
Machi Pongo, 654
Macon, Fort, 657
Madeira Islands, 581
Madeline Reef (P), 607,686
Magdalen Islands, 53, 69
MAGNETISM AND the Compass, 709
Terrestrial Magnetism, 709; Declination, 710 : Dip, 611; Integaity, \&O., 712
Magnl ic Variation, 378-5
(224-6) General Remarks ; (297,8) Isogonic Lines; (299, 300) Annual Change and Table. See Variation of the Compass
Mahedia, 491
Mahpeah River, 543
Malabar Shoal, 675
Malabat Cape, 488
Malmeranda Point, 570
Mangel, C., 517
Man-of Wer Sound, 474
Manvers, Port, 61
Marcouf, 478
Margaret Bay, 645
Maria Rock (ρ), 686
Marigot of Mosquitos, 513
Mariner Rock (P), 671
Marooco, 38, 487
Martinique, 91
Martin's Reef (P), 689
Martines Peak, 605
Martyrs' Shoal (P), 678
Maryland Coast, 654
Matacong Island, 541, 2
Matanilla' Bank, 77
Martinicus Rock, 646
Matomkin, 654
May Cape, 651
May Cape Bank, 652
Mayda (P), 668
Mayor Cape, 483
Maya Ieland, 609
Maysi, C., 82
Mazagan. 494
Mellacoree River, 543

Menor, Cape, 483
Mprlin Rock, 642
Mesurado Cape, 652
Metwny Port, 646
Mewstone, The, 458
Midgley Shoal, 669
Milord Hayen, 460
Milli Brenker, 822
Minora Hill, 626
Minots Ladge, 641
Mirik Cape, 510,511
Misen Peak, 475
Mogador, 496
Money Point, 473
Monte Gordo, 616
Monte Maio, 609
Monrovia, 652
Montreal, 60
Montauk Point, 650
Monte Gordo, 615
Mosaman Rock, 677
Mount, Cape, 651
Mount Desert Rock, 258, 646
Mount Langton, 624, 631
Mount's Bay, 463
Mount Suzos, 638
Mourand's Bank ($?$), 684
Mouro Islet, 484
Mordeira Bey, 606
Morebiah River, 542
Mosteiros, 561
Mud Bar, 524
Mud Hole, 650-6
Munn's Reef (P), 682
Murray Anchorage, 627
Narant Rook, 648
Nangle Bay, 469
Nantasket Road, 647
Nantucket Bhoals, 675, 048
Nassau, 78
Negrea Rocka, 675
Newfoundland Banks, 640
Tides of

257

New Orleans, 72
New York, 70
Niger River, 40
Nick's Mate Ioland, 648
Noon, 500
Norman Cape, 52
North Sea, Tides of, 255
North Shoal, 669
North Rook, Bermuley 622
Norway, Ponitions on, 20
Nova Sootie, 63

Nuevitas,
Nun Rool
Nuna Tris
Ochrl,
Oracoke I
Old Head;
Old Kiln
Old Mamo
Old South
Old Wall,
Oleron, Is
Orango Is]
Orion Rocl
Orkneys, P
Orotava, 00
Orrio de To
Ortegal Ca
Outer Hole
Overfalls, 6
0 wers, The
Pagham B.
Palmal; 601
Palmarin P
Pamlico Sou
Paris Obser
Park, The,
Parroquet If
Pabsage
Anti-Trad
Passageg-
General Re
(301) Grea
ing (302
(308) Hemi

Applicatio
ing Descri
Vessels ai
(306) Trac
by the Wi Sailing \bar{I}
To and from
Chadnnel, 37
Outward
Table of 7
don, \$79';
380, 381 :
To and fro
George's Ch 387
Liverpool t 382 ; by Channel,
South' Ch South of Liverpooi, To and from hidiess, 387.

483 642 e, 552 646
e, 458
4, 669
$\mathrm{m}, 460$
r, 622
626
e, 641
in, 511
475
; 473
, 616
609
int, 650
0, 618
cek, 677
e, 551
ort Rock, 258,
ton, 624, 631
7, 463
w, 538
Bank ($(\mathrm{P}$), 684
; 484
ey, 606
jiven, 542
361
24
850-8
of (p), 882
chorage, 627
OOK, 948
7, 469
Road, 647
Shoals, 675,
Tides of, 258
kg_{6}, 675
and Banks, 640
$[$ T. Tides of
88, 72
70
r, 40
O'Island, 648
pe, 52
Tides of, 256 A1, 68
0ik, Bermuden
ositions on, 20 b, 63

Nuevitas, 83
Nun Rock, 603
Nuna Tristao R., 683
OCHEL, Mount, 612
Oracoke Inlet, 637.
Old Head; 473
Old Kiln Road, 653
Old Mamora, 491
Old South Sboal, 649
Old Wall, The, 462
Oleron, Isle, 480
Orango Island, 531
Orion Rock (P), 683
Orkneys, Position, 13
Orotava, 600
Orrio de Tapia, 484
Ortegal Cape, 484
Outer Hole, 626
Overfalls, 684
0 wers, The, 456
Paghay Bat, 466
Palmd; 601
Palmarin Point, 620
Pamlico Sound; 657
Paris Obiervatory; 27
Park, The, 456
Parroquet Islaid, 627
Passage Winds, 800 Anti-Trades

Passages-

General Remarks on; 375 (301) Great Circle Sailing; (302) Examples; (303) Remarks on; (304) Application of Foregoing Desoriptions ; (305) Vessels under Steam; (306) Tracks Governed by the Wind Systems Sailing Díroctions.
To and from the English Channel, 378-81
Outward Voyage, 878 ; Table of Winitisat London, 879 ; Homeward, 380, 391
To and from the $8 t$. George's Channel, 382387
Liverpool to Holyhiead, 382; by the North Channel, 383 ; by the South Channel, 384; South of Ireland to Liverpoof, 385
To and from the East lidies, 387.

Suiling Directions-

Acroos the Equator, 387-404

1. Leaving the Channel, 389
2. Passage to Madeira, 390
3. West or East of Cape Verdes, 391
Table of Passages, 392
4. Crossing the Equator 394
Dutch Crostings and Tables, 395
Lizard to the Line, Maury's, 398
Maury's Crossing, 397-401
D'Apres Instructions, 402
Return toward England, 403
Toward England from the Equator, 403
Canary Islands, 603
To and from the Senegal and Gambia, 404-410
From Africa Homewards, 409
Cape Rozo to Isles' de Los, 340, 1
Biafra to Sierra Leone, 409
Ditto, by Capt. Oliver
Weat Indies - To and from, 411
Toward Jamaica, \&c., 411
West Indies to Rnglish Channel, 413
Ditto and North Americe from the "Derrotero," 414
Strait of Floyida, 416, 7
To the Caribbee or Wind watd Is., 419^{\prime}
Caribbean Seat, 422
Bermudas to Windward Is., 423
Bermudas, 629, 33, 423
Stoam Navigation between Tobago and Demerara, 424; to Jamaica, Nan Juan, Cape Haytion, and St. Iago, 426
Between Grenada and Jamaica, 427
Between Jamnica and

Sailing Directions-
Yucatan, Chiagres, Caxtagena, \&o., 428
To the Bay of Hondura, 428
To Eastern Coast of Yucatan, byl Oapt: Dunsterville, 430
Jamaica to Chagres and Cartagena, 438
Jampiok to Maracaibo, 439
The Channels of Providence, 434
To Demerary, 435
To and from the Northern Ports of America, 436二 440
Great Circle Courses, 437 ; Capt. Charles Hare's Instructions, 437; to thie Guif of St. Lawrence, 439; by the Strait of Belleisle, 440
Between Europe and New
York, 441-444
General Remarke, 441 ; Tables of Crossings and Time from England to Now York, from Maury 442, 443; Times, 444
Steam Tracks (or Lanes)
to and from America, 444 -448
Maury's Remarke, 444 445 ; Distances, 446; Directions of the Lanes, Tables; 447; Adm. FitzRoy's Remarks, 447
Between Northern Europe and the United States, 448-450
From the United States to the Equator, 451, 452 Maury's Remarks on the Old and New Routes, 451; Time Table of the Different Routes, 452
Monitions and Instructions for the Western Side of the Atlantic by Mr. Redfield, 458

Passe de Grave, 481
Patty's Overfalls (P), 686
Peak of Trade, 616
Pedra da Gall, 508
Pelee Island, 476 -
Pcñas Culre, 454

INDEX:

Pıñedo de St. Pedro, 637
Penha Grande, 505
Penzanoe, 463
Pernambrico, 640
Picacho Reef, 486
Pio0, 571
Pico Raivo, 583
Pin Rock, The, 459
Pine, Cape, 643
Plymonth Position, 10 Sound, 466
Ponta Albernas, 578
da Arco, 590

- del Baxio, 577
——Bighuda, 614
Blanca, 575
Cabeira, 576
do Castillo, 563
——. de Caterinas, 57.
- de las Continendos, 569
- Cortada, 691
- da Crus, 691
- de Fayal, 391
- Furada, 686
- Delgada, 590
del Gada, 558 de los Ilheos Agua
Caliente, 577
de Incao, 582
- Jardim, 689
- das Lagoinhas, 683
- Moniz, 590

Negra, 378 de Pesquero - alto,
579
Ruiva, 576 de SanAntonio,591
de San Jorge, 591
del Topo, 514
Tristao, 590
Turrais, 579
Parga, 689
Pont du Sein, 479
Poole Bay, 457
Porgas Bank, 688
Portandik, 39, 512, 5 I3
Portland, 457

- Rock, 83

Porto Cansado, 501

- Grande, 617
do Ilheo, 560
Praya, or Praya Bay, 569

Praya, 45

- Rico, ground sea,302
- Santo, 581

Port Praya, 610

- Royal Bay, 625
- Spain, 82

Portudal, 519
Portugal, Coast of, 485
Portugalete, 483
Positions, Tables of,-
Africa, N.W. Coast, 33
African Islands, 37
Azores, 40, 41
Bahama Is., 74
Barbadoes, \&c., 89
Bay of Biscay, 28
Belgium, 24
Bermude Is., 73
Canary Isles, 42
Cape Verde Islen, 44
Caribbee Inlee, 89
Colombia, 93
Cuba, 79
Denmark, 21
England, E. \& S.Csts., 7 W. Coast, 9

Froroo Isles, 46
France, 25
Gambia River, 34
Greenland, 47
Guayana, 92
Guinea Coast, 36
Gulf of St. Lawrence, 53
Hayti, or St. Domingo, 84, 5
Hanover, 22
Holland, 22, 23
Honduras, 95
Iceland, 46
Jamaica, 81
Labrador, 41
Leeward Is., 90
Liberia, 35
Madeira, 42
Man, Isle of, 10
Mexico, 98
Mosquitia, 94
New Brunswick, 62
Newfoundland, 47-50
Norway, 17
Nove Scotia, 61
Orkney, \&o., 11
Passage Islands, 76
Porto Rico, 85
Portugal, 30
St. Domingo, 84, 85
St. Lawrence, Gulf and River, 53
Scotland, 11-13
Shetland Is., 12
Spain, 28
Sweden, 19
Trinidad, 89
United States, 64-60
Venczuela, 03
Virgin Is., 86

Wales, 9
West Indies, 75
Yrcatan, 95
Potomac's Bank (P), 682
Pow Grande, 549
Praya Bay, 669
Preguizo Bay, 615
Praya Branca, 616

- da Gatta, 618
——I Isle of, 575
Prehann Point, 473
Prince Edward Itland, 86
Prior Cape, 484
Priorino Cape, 485
Pronk Rocks (P), 677
Pryce Shoal (P), 687
Puerto de Cavallos, 594
- Naos, 594

Pipas, 569
Point, 483
de las Vcllas, 574
Pullam Island, 532.
Punta de Anaga, 500
Quails, Isle of, 610
Quebeo, 59
Queenstown, 473
Querqueville, 476
Quiberon Bay, 480
Quidi Vidi, 642
Quorra River, 40
Rabat, 492
Race Cape, 641
Rame Head, 462
Ramigean's Vigia, 675
Rains, see Equatorial Calms
Ras al Hudik, 495
-Tagrifelt, 487
Rat Isle, 468
Rattlesnake Shoals, 658
Raza Isle, 616
Re, Ile de, 480
Rebellion Roads, 658
Red Hill, 610
Reefs, between Fayal and Flores, 578
Regla Point, 487
Reguala, or Gueder, 500
Rennelis's Current, 26 272: (138) (141) Cha racter, definition, spd exampleas (142) Drif of bottles; (143) Daily rates estimated.
Revolving Storms, *ec Hurricanes.
Rhoon Rocks, 677
Ribeira Barca, 614

Ribeira C_{a}
lidge, Th
Rio, The 0

- Mrana
- Nane
- Ouro,

Rong Po
Roallon'a
Roancarris
Rocas Inles
Koche Bon
Roche's Po
Rockall, or
Rock Head
Rollers, or
301
Roman, or
Rombos, or 614
Ronan's Poi
Rooma I., 5
Roxo, Cape,
Royal Soven
Ruivo, Pico,
Rundlestone
Ryder Shoal
Sable Islam
$\overline{\text { Sabrina Cape }}$ 557
Saff, or Aspe
Sailing Dil
Pamagren.
Saintm Bridg
St. Adrian 8

- Agnes Id
- Anne's Bi
- Anne, Ba 650
- Ann's He
- Antonio,
- Catharine
- Christoph
- Cyprian

607

- Croix, 88
- David's H
- Esprit Re
- Francis B
- George's
$\square 1$
- George Is
- Iugo, 609
- John's, 6

Ribeira Grande, 559, 614
pid Plata, 614
lidge, The, 455
Rio, The Channel, 694
—— Grande, 529

- Nanez, 533
- Ouro, 506
- Pongio, 537

Roallon's Rook, 671
Roancarrig Inland, 475
Rocas Islen, 639
Roche Bonne, 665, 481
Roohe's Point, 472
Rockall, or Rokol, 633
Rock Head, 843
Rollers, or Ground Swoll, 301
Roman, or Romain, C., 658
Rombos, or Romes Isles, 814
Ronan's Point, 473
Rooma I., 539
Roxo, Cape; 524
Royal Sovereign Shoal,455
Ruivo, Pico, 683
Rundlestone, The, 464
Ryder Shoal, 674
Sable Ibland, 62, 636
————Banks, 643
———Cape, 646
Sabrina Island Volcano, 567
Saff, or Asfee, 495
Sailing Diazotions, ece Paseages.
Saints Bridge, 479
St. Adrian Cape, 484

- Agnes Id., 465
- Anne's Bay, 476
- Anne, Bank \&\& Shoals, 650
- Ann's Head, 468
- Antonio, 45

Cin Island, 618

- Catharine's Bluff, 627
- Christopher, 90
- Cyprian Bay and Cape, 507
- Croix, 88
- David's Head, 622
- Esprit Reef, 690
- Francis Bay, 611
- George's Channel, 470 lides, 254
Island, 626
Bay, 615
- George Island, 574
- Iugo, 609
- John's, 641

St. John River, 512

- John's, Newfoundland, 52
- Lawrence, Gulf of, 58
- Lawrence River, 54
of, 257
- Lourenzo Point, 585
- Mary's Island, 621
- Martin's Cape, 483
- Martin's Point, 527
- Mary's Bank, 680
- Mary, Cape, 621
- Mary's Cape, 521
- Mary, Isle of, 562
- Michael's, 41 556
- Mount, 463
- Nicolas Island, 615
- Panl's Islets, or Peñedo de St. Pedro, 637
- Paul's Island, 68
- Petrox Point, 458
- Thomas, 87
- Vincent's Island, 616
- Vincent, Cape, 485

Sal, 605
Salee, or Slaa, 482
Sallahtook Point, 543
Saltees Lightvessel, 471
Salum River, 520
Salvages, The, 43, 692
Salween Rock (P), 668
Sambro Ioland, 644
Sand Island, 639
Sand Hills, 625
Sandwich Bay, 51
Sandy Hook, 651
Sangaree River, 540
Sankaty Head, 649
Santander Harbour, 483
Santander, 483
San Antonio, 610

- Juan, 87
-Lorenzo, 563
- Forge, 615
- Lucar, 486
S. Pedro, Bay of, 618

San Roque Cape, 640

- Vincente, 690

Santa Cruz, 498

Stu. Lucia, 616
Suntiago, 619

Sto. Domingo, 87
Saraabso Sea, 288-294:
(162) Area (163) Limits Defined; (164), Major Rennell's Remarics; (165-8) Explanation of its Charactor; (167-8) Sargaseo Weed; (169, 170-1) Remarks on it; (172) The Weed seen on the African Coast
Scilly Isles, 10,465
Sea Islands, 658
Seaford Road, 456
Seal Island, 64
Seasons on African Coast, 406
Selsea Bill, $45 B$
Seed Bom Noire, 499
Seipal, 690
Seine, Bay of the, 476
Sem, Cape, 497
Senegal, 513
Senegal Piver, 613
Serranilla Bank, 84
Sette Cidades Mount. 556
Seven Capes, 506
Seven Stones, The, 465
Seville, 486
Seville Point, 486
Shambles, The, 457
Sheep Head, 475
Sherboro Inlet, 549
Shinnecock Bay, 40
Shleema River, 500
Sierra Leone, 39, 545
Signal-post Hill, 610
Silver Kay Bank, 79
Skerries, The, 460
Skull Harbour, 474
Slaa, or Salee, 492
Smalls, The, 469
Smith's Island, 657, 654
Smith Rock (?), 667
Sombrero, 90
Southampton, Tides at, 253
S.E. Dhift Currents to Europe and Africa, 273 -283: (144) General Set; (146) Estimate of Velocity ; (146) Bottles Enumerated, and Current along Portugal; (147) Examples from Maury, and Jackson ; (148-150) Remarks by Fleurieu,Major Rennell, and the Baron Roussin.
B.W. Breaker, Bermudag, 022
Spain, Coast of, 483 Ponitions of, 31
Spanish Point 624
Spanimh Bhoal (P), 671
Spartel Cape, 38, 488
Spear Cape, 041
Spile Idtand, 479
Spithend, 458
Stag Chaniel, 024
Standfist Point, 457
Start Point, 459
Steen Ground (P), 683
Stephenson Shoal, 464
Still Bay, 618
Storme, wo Hurricangs
Strait of Dover, 455
Strookaun Point, 473
Studland Bay; 407
Styx Bank, 584
Suerrall, or Suere, or Mogodor, 498
Sugar-loaf Meuntain, 618
Sumter Fort, 659
Suse, Coast of, 409
Tamara, 638
Tangier Point, 487
Tanit Bay, 511
Tannah Rivet, 544
Tamajalejo, 695
Tarifa, 487
Tarrafbi Bay, 614
Tassa Point, 649
Tassacorta, or Taxacorta, 602
Tasso Point, 649
Tefelneh Cape, 498
Tenerifo, 44, 697
Terceira, 567
Terrafal Bay, 615
Tett, or Tid, 494
Texeines Shoal (P), 689
Thames, Tides of, 251
Three Hill Shoals, 623
Three Castle Island, 474
Three Chimneys (P), 670
Thrum Cap Shoals, 645
Tydes, 239-269
(109) General Theory of; (110) Action of the Moon; (111) Action of the Sun; (112) Equinoxes ; (113) (114) Lnbbock and Whewell's Observations ; (115-17) The Tidal Wave; (118) Establishment of the I'ort, and Corrected Ess-

Tides-
tablishment; (119125) Various Particulars and Obecrvations ; (126) On the Tide Table
Tids Tabers, 246-251
Africa, 238, 9
Atlantic Is., 248
Cape Breton I., 249
England, E. Coust, 240
——, S. Coust, 245
W. Coast, 245

France, N. Coast, 247
\longrightarrow W. Coast, 248
Fundy, Bay of, 250
Gulf of Mexioo, 251
Ireland, 247
Labrador, 240
New Brunswick, iss., 249
Newifundland, 249
North Sca, E. Coant of, 247
Norway, 247
Orkney Ist, 246
Portugal, 248
Prince Edward Is., 249
St. Lawrence, Gulf and
River of, 249
Scotland, 246
Shetland, 246
Spain and Portugal, 241 Thames and South Coast, 245
United States, 250
Wales, 245
West Indies, 251
Tinker, The, 460
Tobacco Bay, 628
Tobago, 91
Toiro, Cape, 640
Torbay, 458
Toriana Cape, 485
Torrinhas, 684
Tornadoes, 205
Sos ITarricanes
Tmish tret Rock, a 7 a
Tuct Ohassiron, 100
ur ue Cordotian, 481
Tower of Hercules, 484
Townsend Fort, 642
Trade Wind, The, 184
(21) D'efinition ; (22) Statistics ; (23) N.E. Trade Wind Direction and Duration : (24) Extent; (25) Northern Limit; (26) Variation in Limits; (27) Southern Edge, with Table; (28) Direction ; (29) Diagrams

Thads Wmb-

described, (80) Analysis of the Direction in Dif. forent Latitudes $;$ (31) Inferences; (32) Seasons; (33) Summary of the Winds by Captain Maury
Trafalgar, Cape, 486
Tregarthein Rook (7), 688
Trinidad, 82
Triton'E Paik (P), 686, 7
Trondiscns, Position of, 20
'urorical Winids and Calms 406-206
(68) Definition (59) Cause; (60) Position; (61) Range; (62) Reason; (63) At the Bermudas
Tabaron Cape, 612
Talloch Reef $(P) ;$. 685, 679
Turbot Rocks, 472
Turtle, or Bashaw Islands, 549
Tuskar Rock, 470
Typhoons, see Hurricanes
United States Survey, 69
Ushant Island, 479
Valentia; 16, 476
Variation of the Compass, see Magnetism
Variation:
Africa, West Coast, 40
Azores, 41
Bahamas, \&c., 79
Canada, 60
Cape Verde Is., 46
Caribbean Sea, 96
Caribbee Is., 92
Cuba, 84
England, 11
France, 28
Greenland, 53
Gulf of St. Lawrence, 60
Gulf of Mexico, 73
Iceland, 52
Ireland, 16
Jamaica, 84
Madeira, 44
Newfoundland, 13
North Sea, 25
Norway and Sweden, 21
Nove Scotia, \&e., 64
St. Domingo, 88
Spain and Portugal, 32
United States, 72
Virgin Is., \&ze., 92
West Indies, 96

Varne,
Verde,
Verga,
Vigia do
villa Ba
Villa Fr
Villa Nu
Villano,
Virgin 1
Virgin \mathbf{R}
Virginia
Volcanic
Volcanoe 666

Wad Mes
Wad-oom
Wad Tan
Wahlsteí 671 ,
Walkeria
Warley's
Waahingt
Waterfor
Waterspo
Watson's.
Wedinoon
Westenen
Wentern 553
Weat In
302-41
(186-8)
Colomb Equato this Ant the Co by Liex link; Current maica ; West \mathbf{P} ribbean Drift of 196) N. \&ce. ; 1 the Cari (189) TI

N-

(30) Analysis rection in Dis atitudes ; (31) ; (32) Sea3) Summary of Is by Captain

Cape, 480
Ruok (P), 688
ifk (P), 686, 7
Position of, 20 inds and Calms
finition : (69) (60) Position; ge; (02) Rea) At the Ber-
ape, 612
ef $(P), 665,678$
kss; 472
3ashaw Islands,
ok; 470
, see Hurricanes
tes Survey, 69
and, 479
6, 476
of the Compass; netism
est Coast, 40
\&c., 79
0
ie Is., 46
Sea, 96
Is., 92
11
, 63
. Lawrence, 60
exico, 73
8
8
34
4
lani
, 25
ad Sweden, 21 ia, \&ec., 64
go, 88
Portugal, 32
tes, 72
\&c., 92
es, 96
duras and Guatemala ; (200) South of Cape Antonio ; (201) Sonth side of Cuba; (202) Channel of Yucatan ; (204) Gulf of Mexico; (206) Rem marks by Maury; (207) North of the Yucatan Channel
Whale Rock (P), 679
Whitesand Bay, 464
Wimble Shoals, The, 656
Winds in Generax,175-184-
(1.) General Remarks;
(2) Circulation of the Atmosphere ; (3) Halley's and Hadley's Theories; (4) Wind System's ; (5) Anti-trades ; (6-8) Equatorial Calms or Doldrums ; (9) Aqueous Vapour: (10) Height of the Atmosphere; (11) Winds of Each Hemisphere $(12,13)$ Force of the Wind at Sea and Land, Beanfort and Glaisher's Notation of; (15) Actual Force and Velocity, with Table; (16) Land and Sea Breezes ; (17) Dove's Law of Gyration (18, 19) Area of the Wind Zones ; (20) Cyclonic Area

See Trade Wind and Anti-trade Wind, Equatorial Calms, Tropical Calms, \&c.
Winde on the Aprican Coast, 200:
(48) Influence of the Land; (49) Dampier's Description; (50) Easterly Current caused by them; (51) Sontherly

Monsoons; (52) Winds and Seacons, by Captain Midgley; (57) the Harmattan
Winds on the-
Atlantic Isles, 189
Azores, Table of, \&c., 553
Bahama Islands, 192
Bermudas, 207, 633
Bissagos, Islen, 528
Bulama, 632
Cuba, 193
English Channol, 210
Guayana, 193
Jamaica, 191
Leste, at Madeira, 884
Liverpool, 2 9, 210
Los, Tsles d. 539
Mexican Sc 193, 194, 196
Mosquitia, 193
The Northe, 194
Nove Scotia, 213
Sable Island,
Seasons in the of Mexico, 196
Senegal, 515
St. Lawrence, Gul' and River, of, 212
South Carolina, 214
Tinited States, South
Coast, 196
Went Indies, 180
Yucatan, 193
Winter Quarter Shoal, $\mathbf{W} 5$
Woladia, 195
Wolf Rock, The, 464
Woodall's Rock (?), 669
Wricks on the Coast of Africa, 501-2
Wreck Hill, 622, 625
Yallucka River, 349
Yawry Bay, 549
Yellaboi Island, 544
Yoal, or Joal, 519
Youghal, 473
Young Gongaloz Isle, 336
Zinghicor, 523.

[^0]: * "The Colombian Nuvigator," Editions of 1839.
 + Tho numerous wrecks that formorly occnrred on the rocks and islands of Soilly, from: ignorance of the tides and currents, are notorious. Add $\hat{\text { o }}$, these the wrecks, still more numerous, which have occurred on'the coasts of Spain, Portugal, and Africa; upon which side of the ocean the currents have uniformly produced more mischief than on the opposite coasts. Among these were the British frigate Apollo, and about forty ships under her convoy, on the coasts of Portugal, as described hereafter, p. 275 ; of the vessel with M. de Brisson, in 1787, on the coast upon which, in 1810, the American ship Charles was wrecked, as noticed and described in a sueceeding page; of the Montesuma, of the Eliza and Olymphe, both in 1827; of the brig Commerce; of the Oswego; and of the Medusa; and about thirty other vessels lost on the Afriean coast, of which, according to the respectable authority of Mr. Jackson, qbout seventeen were English, and five American; twenty-six others wrecked on the Bar of Senegal, at difforent times, according to M. Golbery.

 Muyy ships, also, have been lost by the currouts, \&c., on Allegrauza, Graciosa, and Eanta Clara, of the Canaries ; the Hartucll, Fast Indiammi, on the reefs of Bonavista, the Cyizhin, Georye, Cbra, \&e., on the South shore of Burbadoos; ind, by similar causes, several others, on the Rocas, te., off the Brasilian coast. Many ure recorded as being wrecked

[^1]: ates' fiurvey sro is

[^2]:

[^3]: - Philonophical Transactiona, xri. 163.

[^4]: - Sir Join Hersohel gives the following note in his work, upon the origin of storms, which, as it in most feasiblo, we give here; it must be observed, that it was written before the viems and observations of Reid, Redfeld, and othern, had been published. We ahall advert to it hereaftor.
 "It seems worth inquiry, whether hurreanes in tropical climates may not arise from portions of the upper currents prematurely divertod downwards before their relative velocity has been sufficiently reducod by friotion on, and gradually mixing with, the lower atrata; and so dashing upon the earth with that tremendous volocity, which given them their doatructive charnctor, and of which hardly any rational account has yot been given. Thoir oourse, generally spealing, is in opposition to the regular trade wind, as it ought to be, in conformity with this ides - (Young's Leetures, i. 704.) Bat it by no moans follows, that this must alway be the onse. In general, a rapid tranafor, cither way, in latitude, of nny mass of air which local or tomporary canses might carry above tho immodiato reach of the friction of tho earth's curfaco, would give a fearful exaggeration to its velocity. Wherever such a mass would strike the earth, a hurricano might arise; and should two such masses encountor in mid-air, a tornado of any degree of intensity on record might easily rosult from their combinntion."-Aatronomy, p. 132. The more recent views of Sir John Herwchol will be found in their place herenfter.

[^5]: - Sen further on these subjecta, Maury's "Physical Geography of the Sea, 1860," pp. 140, 176. Sir John F. W. Hersohel, Enoy. Brit. 1859, xvili. 677. Captain Baail Hall, "Fragments of Voyages and Travela," 2nd serios, 1. 162.
 + Mr. Hoplinu: "The atmospheric ohanges that produce Rain and Wind:" also soe Journal R. Geog. Soo. 1850, pp. 168, et soq. See also D. Vnughan, U.S., in Brit. Aerociation Ropert, 1800, p. 41.

[^6]: - Seo "Abatracta of Metoorological Obeorvations by the Royal Engineera, 1853, 4," by Sir Henry Jamen, R.E., F.R.S.
 \dagger The dry lend, as far as it is known, is eatimated to.0coupy 49,806,000 equare statute miles. If this is increased to 51 millions for the unknown polar regions, it will allow 146 millions of square milen to be covered by the ocean.- Sor J. Iforsohol.

[^7]: - When speaking of the wind veering with the sun, of course the shifting of the oyclonio winds in the northern hemisphere is not included.
 + "Winds of the Northern Hemisphere;", by Profeseror Coffin, A.M. Pennaylvania, U.S. "Smithsonian Contributions to Knowledge," vcl. Vi. 1854.
 \ddagger Soe Report, Brit: Aceo, 1845. See also Profosoor Mitchell in American Journal of Science and Arta, vol. xix. p. 254. A great amount of information will be found on the

[^8]: - It is generally argued, that less barometric pressure indicates increased force of wind, and not the reverse, as is here argued; but from the following note it will be soen that these pressures are more nearly alike than is stated above.
 + Au this table is founded on the assumption that the Equator is the division between the two wind syatems, instead of the parallels of 5° to $9^{n} N_{1}$, as is really the case, it cannot be taken as a fair comparison of their relative duration. If the parallel of $5^{\circ} \mathrm{N}$. be taken as a divition, the mean barometrio pressure in the N.E. Trades is 30.057 in., and in the E.E. Trades $29,034 \mathrm{in}$., making the latter the least. If the winds recorded between 0° and 50 N. be addod to the S.E. Tradee, it will give a mean duration of 239 daym, and make the N.E. Traden 250 days.

[^9]: - Cuba, Jamaica, Hayti, and Porto-Rico.

[^10]: The winds on the S. coast of Cube, when the Trade is not blowing steadily, have a remarkable rotary motion following the course of the sun, according to Dave' Law of Gyration (17). Thus, in the evening, the wind comes off the land about North; by daylight it will be N.E. ; at 8 a.m. E.N.E. ; at noon E.S.E.; at 2 p.m. South ; at 4 p.m. S.W.; in which quarter it generally dies away into a calm until the land-wind comes off again. By a knowlodge of this a vessel may creep fast to windward during the culm montro of yay, Juñe, and August, and frequently at other seasons. The Trade is found to bo unsteady, espocially in the night.

[^11]: * From the late Lieut. John Evans (a), R.N. (a gentleman to whom we were indebted for many valuable onmmunications), we received the following description of a North in the Mexican Soa, which occurred in Maroh, 1828 :-
 "We had observed, during our run over the Catoche Bank, a very extraordinary white hazy-like appearance, very distinct from the common fog, haze, or mist; this.was seen principally in the ncrthern quarter, and attracted much notice; the air, at the same time; 'breathing gently at South,' and the sympiesometer falling unusually low, gave us strong indications of an approaching North. On the 15th there appeared on the sky only a few small cumuli and dark strati; in the morning the air was very light from the South, and was so warm, or rather hot and oppressive, that, like the sirocco, it affected the breathing of some of us. At ton a.m. it changed to the N.E. with fine weather, the wind gradually freekening: at sunset the cumuli ohanged into dark nimbus, of a deep purple, edged with a bronze colour: from these clouds proceeded squalls with rain, the wind veering from N.E. to N.N.W., after which it cleared up, the clonds all dispersed, and at eight p.m. a fresh North came on, with a rapidly rising sea (which a short timo before had been perfectly calm and smooth). The sympiesometor fell to 29.80 , which was lower than it had ever done before. It blew a gale all night, with a heavy sea; no clouds; the stars bright and large. The same white hazylike appoarance took place before the North set in. Eurly in the morning of the 18th the wind died āway suadenly, almost to a calm; and at cight a.m. became. a moderate breeze."

[^12]: * "Sailing Directions, 1858," vol. i. p. 40.

 I :" Thysicai Geography of tho Son, 1860," p; 358.
 \ddagger "Zoil, Wind en Ntroomkaarton T'oogelicht," door Dr. P. van Galen. Rotterdam, 1850.

[^13]: - The tables are given in Admiral FitzRoy's First Number of " Meteorological PapersBoard of Trade," 1867.
 \dagger On page 180 (12.), the question of force, as encountered by ships in motion, is alluded to as not giving a correct estimate, as it ought to be the real amount without the effect of the ship's driving before it. The land observations also are modified by the above-mentioned influence. A plan has been proposed by Professor Piazzi Smith, in conjunction with Capt. H. Toynbee, to have the wind recorded from the mast-head, as the only part of a ship not affected by the addion from har sails: the direotion and force to be communiented electrically to the cabin and there recorded. See "Report, Brit. Association, 1855," p. 45.

[^14]: - "Roport, British Association, 1856," p. 137, \&o. ; and also "Report of the Direction and Atrength of the Wind at the Liverpool Observatory, 1852-1867." It is from theso sources that the above facts and figures are dorived.

[^15]: - Upon comparing this direction of W. to S. with the Liverpool observations, as given in the diagrams, ce., on p. 200, the disturblig action of the land will be evidont.

[^16]: - "My attention was first directed to the subject from my having beon employed at Barbadoes in re-establishing the Government buildings blown down in the hurricane of 1831 ; when, from the violence of the wind, 1,477 persons lost thoir lives in the short space of sevan hours. I was induced to sentrch everywhore for pecourts of provious storms, in the hope of learning something of their causes and mode of action."-Reid, "Law of Storms," p. 1. This work is illustratod with ton large charts, besides other engravinge.

[^17]: - "An Attempt io Develop the Law of Storms," 3xd edition, 1850; p. 699 ; and "Tho Frogress, dec., of the Law of Storms and of Variable Winds," 1849, p. 26.

[^18]: " "An Attempt to Develop the Law of Storms;" 3rd edition, 1850; p. 509; and "The Progress, \&c., of the Law of Storms and of Variable Winds," 1849, p. 25.

[^19]: * When the iine of progrossion is to the W.N.W. (a direction whioh some of the most southern atorms have pursuel), it would be wrong to send with tho wind nt N. L.; but w'en nt N.N.E., it would be proper to do so.

[^20]: * Colonol Reid, "Law of Storms," pp. 276-278, and Chart ix. The colond, as in other cases, adds copious detuils, which plainly show where the hurricune did not onerate, either: to the Enst or to tie West.
 \dagger The track of this hurricune is shown on the Chart commencing betweon No. i. aud ii.

[^21]: *See "Edinburgh Phil. Journul," vol. vi. p. 97.

[^22]: * EEsay wwarde a lirst Approximation to n Map of Cotidal Lines;' Philosophical Transactions of the lioyal Society, 1833, p. 147.

[^23]: * "Phil. Trane." 1882, p. 154.
 \ddagger "Phil. Trans.", (Whewell), 1836, p. 292.
 (" Phil. Trans.," 1831, p. 163.

[^24]: - From the Roport of the U. A. Conet Survay, the timen of H!gh Water heing the Cor= rected and not the Vulgar Fistahlishment.

[^25]: * Yrum the heport of the U. S. Cone survey, the timee of High Water being Corrected and not the Vulgar Listub'ikhment.

[^26]:

[^27]: ${ }^{*} \mathrm{Ca}$
 fuliy 50
 stow, 1 l
 feot, int

[^28]: * Capt. And. Livingston, of Liverpool, a geatloman to whom we have beon much indebted for mauy valuable and useful communications, has informed us that ho netually moasured filliy 50 feetrise of water, in November, 1813, at King's Rond, in a spring tile. At Chepntew, ubove, on the opmeste ente, the vititul rive of a spring tide is not ucommouly 60 feot, und even 72 feet.

[^29]: * The entrances ot Liverpool and of Morecambe Bay (Pilo Liphthonke, Fleetwood) are, as before stated, 16 minutes earlier in their times of high water than those given for Liverpool in the tide tables.

[^30]: - From the name of this gentleman, the current is now generally denominated Rennell's Currrart.

 The currents of the ocean appear to have attracted the attention of Major Rennell at an early period, and they continued to nccupy the attention until the last ebb of his honourable life. The results have appeared before the world in five large charts, with a descriptive volume, dedicated to his late Majesty, William the Fourth, under the editorship of Mr. Jno. Purdy, the original author of this volume.
 The Major's firs ${ }^{\omega}$ Chart and Remarks on the Agulhns or Sonth African Current appeared in the year 1778, and the important tract on the Scilly or 'thwart Channel Current, in the year 1793. In the mean time, and subsequently, some cursory remarks on the same subject were introduced in the "Illustration of the Geography of Herodotus," the Philosophical Journals, \&c. In or about the year 1810, on th suggoation of a friend (Mr. Purdy), who expressed a wish to see all his writings on this subject combined and republished, he commenced his Current Charts of the Atlantic Ocean, and collected from the jonrnals of his numerous friends a gleaning of information which, at length, from repeated accumulations; presentec a most beautiful and singular instance of successful perseverance, on a subject never before attempted upon a plan so comprehensive. To an ordinary mind such a topio would have been regarded aFdull, uninviting, and impracticable ; by the author it was appre-ciated according to its importance and usefulness to mankind, and he iroated it accordingly. He had long lamented the general ignorance prevalent on this sub, and which had, from time to time, produced so much loss of life and treasure, especially miviation to his native country. It is trua that, in later times, practice and experienoe have tuught the mariner, in many cases, how to shape his course to the best advantage; but still he was deficient in theory, and knew not the rationalh, the why and wherefore, of the courses which he adopted, and the variations which might be most ad vantageously made in his outward or homeward passages, according to the fluctuations of season and circumstances. Such knowledge is now, in a great measure, supplied.
 Among the names of the contributors to the work on the currente, that of General Rwward Sabine is conspiououa; and were any apology required for the undertaking, his words might be quoted with propriety. In the year 1826, this gentleman published his Aceownt of Experiments to determine the Figure of the Earth by meame of a Pondulum vibrating Seoonds in. different Latitudes, as vell as on various Subjects of Philosophical. Enquiry; and in that. volume he has given his teetimonial of tho necessity of the "Investigations in the following terms.
 "On a general review of the currents particularized on the Pheasant's progress (in 1822) in' her voyage, commencing at Sierra Leone and terminating at Now York, it was found that she was indebted to their aid, on the balance of the whole account, and in the direction of, her coume from port to port, not less than sixtoen hundred goographio milos, tho whole distanoe being nine thousand; affording a very atriking exemplification of the importance of a correct: knowledge of the currents of the ocean to persons engaged in its navigation : and consequently of the value of the information in the acquisition and arrangement of which Major Rennell has pussed the lattor years of his moat useful life.".

[^31]: * Nor, admitting an equal rate, in both places, could it well be. For the current enters the Buy of Biscay, in an East direction, but goes off from it N. W.; so that, if a ship was carried 50 miles to the N.W. from Ushant, she would only have made about 85 westing; but, in the other case, sho would be carried the whole of eastward, toward the Bay and Cape Finisterre.

[^32]: * From a view of the Chart of Soundings betwoen Spain and Ireland, ono might bo led to suppose that the deep water and steop shoro along the North Const of Spuin had been partly occasioned by the water driven in from the Atlantio, in wosterly storms, along that connt; and which had gradually worn away the matter there, and depositod it on the bunk which oxtonds from Buyonne to the westwurd of Irel!nd. For the benk semins to expmiti, as it goes northward, in like manner as the current; and the wator is shaliowor than might lee oxpectod, in propurtion to tho depthe firthor in.

[^33]: * A light-vossel lately placod hore, it is hopod, will avort this mischiof.

[^34]: - Estimating the set of the current by Captain Beaher's bottio-chart mentioned on page 260, we get the following :-Bottle No. 7 (drift 500 miled), $8 \cdot 2$ milee per day; No. 8 , the carcase of a dead whale, (220 miles), 8 milen; No. 9 (800 miles), 12 miles; No. 18 (250 miles) $4 \cdot 1$ milee; No. 18 (1,000 miles), 8 miles ; No. 186 (650 miles), 6.6 miles per day, giving an average of neariy 6 miles per day.
 + The sume ship, on the 10 th of July, was on Channel soundinge, the latitude by mario dian altitude of the sun, $488^{\circ} 83^{\prime} ;$ the longitude, by chronometer and lunar, $9^{\circ} 44^{\prime}$ and 8080^{\prime}, respectively. "Kept the olfi if. I S. and generally Fant till 11.11 p.m., when, hy the mốa't meridian aititude, it was found that the latitude was 40n 11'. We had gone, during

[^35]: - The effect of a current setting to the south-eastward, and the necessity of a competent knowledge of currents in general, cannot any way be more forcibly shown than by noticing the melancholy catastrophe of his Majesty's ship Apollo, Oaptain J. W. T. Dixon, and the merchant ships under fier convoy, on the 2nd of April, 1804. The Apollo, with sixty-nine shipe for the Weat Indies, mailed from the Cove of Cork on the 26th of March. With a fair wind, blowing atrong, they steered about W.S.W. until the 31et, when the wind changed more to the westward. At noon, on the lot of April. latitude observed $40^{\circ} 61^{\prime}$ N., longitude, by accownt, $12^{\circ} 29^{\prime}$. At eiyht p.m. the wind shifted to S. W., and increased to a gale, with a heavy sea. The convoy stood to the B.S.E., and, at half-past three next morning, etruck on the coast of Portugal, in about $40^{\circ} 22^{\prime}$ N., 3 leagues to the northward of Cape Mondego. Captain Diron, and abont sixty men of the Apollo, perished in their endeavours to reach thr shore; the other part of the orew remained two days clinging to a fixed part of the wreck, without nourishment. About forty sail of merchantmen were wreaked about the same time; some sank with all their orews, and most of them lost several men. This lamentable event has been attributed to want of chronometric observations, and the consequent ignorance of the set of the current, which must certainly have been very strong.
 "The immodiate cause of the loss of so many of the Apollo's convoy appears to have been the blind confidence with which the commanders followed their commodore; either keoping no rockoning themselven, or believing his more acourate than their own. Severul ships were saved by leaving the convoy, and it is sald that the commander of a Clyde ship warned the commodore of his dangor in time to have avoided it. ${ }^{3 \prime}-$ -. \bar{L}.

[^36]: Scott and many othern owed thoir doliverance from alavery.-En.

[^37]: *See Pacife Direetury, by A. G. Findlay, Purt II., p. 1243-1247.

[^38]: - In the last edition of the Derrotero de las Antillas tho following remarks are said to have been found among the papers of the decoased Admiral Don Josef Varela. "At Prince's Island, and in its visinity, the waters generally run to the North, which circumstance ought to bo kopt in mind in making the Islund and steering for the anchorage. Thore are also currents to the South, but they are not so strong, or of so long duration. The pilots of the placo sny that the currents dopend on the phases of tho moon, but we found that they wore irregular." From this we may infer that there is some irregularity in the outsot or revoiving current ; for which, consequēntily, evory precauion shouidi be thken.

[^39]: - The term Monsoon, or rather Mousoon, among the native mariners in the Indian Ocean, is suid to moun nothing more than season; that is, the vicissitudes or changes of season.
 By a partial monaoon is meant a periodical wind, or stream of air, which does not extend all the way across tho sca, as on the coats of Brazil, Afrien, \&e.

[^40]: *Rennell's " Investigation," p. 72.

[^41]: - A great quantity of cork shavings are washed annually ashore on the N. side of Anegnda; they are drifted by the Equatorial Curront from the coasts of Epain and Portugal.

[^42]: - The American exploring squadron, which left Madeira on the 25th of Soptember, 1838, efter passing the parallel of the Canary Islands, experienced a north-oasterly current of about half a mile an hour, where a current in a south-westerly direction is generally sapposed to prevail; this continued until they reached the latitude of Bonavista. Captain Wilkes says:-"We hove-to and tried the current morning and evening, always found the same result." The current log used, was two kegs, with a distance-line of 5 fathoms between them, the lower one being just loaded sufficiently to sink the air-tight one under the surface of the water, with the usual log-line attaehed to the centre of the distance-line, precluding the possibility of its being a surface current: besidos which, the dead-reckoning of the ship, and our observations, gave the same result.

 On the 29th of Septomber the equadron passed into coloured water, quito as grven in appearance as that of 6) fathoms in depth on soundings. On entering it, the temperature decreased 11°, and rose 2° on leaving it. The vessela continued in it until the 2nd of October, having then run a distance of 450 milos. They repeatedly sounded with from 100 to 300 fithoms of line, but no bottom what found. -"Athonmum." 21st of September, 1859. This diecoloured water is frequently mentioned by other navigators.

[^43]: "In ifarch, i8330, the same vessei, from Curacao to La Guayra with very strong

[^44]: * The remark is as follows. The Baron, on approaching the Testigos, 14th July, 1789, says-" During a calm, the current drew us on rapidly toward the West. Its velocity was 3 miles an hour, and increased as we approached tho meridian of the Testigos, a heap of röcke, which riô up anid the watore."

[^45]: * See the "Colombian Navigator," vol. iii.. p. 231.

[^46]: - On the leeward side of the Virgin Isles devious currents are found, frequently to the south-eantward. The anme have been observed on the weetern side of St. Christopherion, \&o. ; but see, hereafter, the Particular Directions for Nsvigating among the windward Islands.

[^47]: - In the experiments made by the United Statos' Coast Survey the temporature wns gained from all depths, from the surfaco down to 600 fathoms. At great depths a peculiar thermometer was used, constructed for the purpose, whoso prinoiplo of action deper 3 the differing expansior of two motals. It is a spiral coil, composed of two strips of siiver and platinum soldered togothor, which, from their unequal contraction and expansion by the effiects of temperature, act on an indox, whioh registers the extrome tempornture asceritained, and was fonnd to answer exceedingly woll.

[^48]: - Frofencor A. D. Bache, Report U. S. Cw wive, 1853, pp. 48-9.

[^49]: * See Dr. Lorimer, April 21, 1769, "Trans. Amer. Phil. Soo., Philadelphia," vol. i., n. 250.
 \dagger Silliman's Amorican Journal, March, 1889, vol. xxvii., pp. 207-214.

[^50]:

[^51]: - Comtos Rondus : Acadomie des Seionces, April, 1860, p. 828.

[^52]: - Soe the Obwerveliens of Dr. Bcorosby (261), page 338.
 + Soe Transaotions of British Association, Liverpool, 1854; Seetion E.

[^53]: * See Findlay or the Course of Sir John Franklin's Expedition, "Journal Royal Creographical Shcinty." xxvi., 18E6, p. 33.

[^54]: *"Graah says in his Narrative (p. 23, English translation):-'In the mouth of Davis Strait I found the temperature of the surface of the ocean from 4° to $3^{\circ} \cdot 1 \mathrm{R}$ (41° to 39° Fahrenheit), though we were in the proximity of the icg. From this I concluded that a current from the South predominated here, because I never before in the vicinity of ice had found the temperature of the water exceeding $1^{\circ} \cdot 8 \mathrm{R}$. (36° Fnhrenheit), and this conclusion was confirmed when, coming to the northward of the ice, I found the temperature of the water $1^{\circ} 1 \mathrm{lplus}$ R. ($34^{\circ} \cdot 5$ Fahrenheit).'"

 + "Besides the evidence affordod by the ice-drifts and the temperature of the wrater, as cited by the author, conclusive proof of a northerly set is found in the driftwood which has been so frequently met with aronnd Cape Farewell and off the W. coast of Greenland. A few examples will suffice. A plank of mahogany was drifted to Disco, and formed into a table for the Danish governor at Holsteinborg ('Quarterly Review,' No. xxxvi.). Admiral Löwenörn picked up a worm-eaten mahogany log off the S.E. coast of Greeniand. These in all probability were transported from the S.W. by the Gulf Stream. Captain Sir Edward Parry, in his second voyarge, September 24th, 1823 , pieked up a piece of yellow pine quite sound, in lat. $60^{\circ} 30^{\prime}$, long. $61^{\circ} 30^{\prime} \mathrm{W}$.; and on his third voyage sev?n pieces of driftwood wers found in the vicinity of Cape Farewell. Again, Captain Sir John Ross found muck driftwood around Cape Furewell; and Captain Sir George Back saw in lat. ${ }^{56^{\circ}} 50^{\prime}$, long. $36^{\circ} 30^{\prime}$, a tree with the roots and bark on. "These instances might be multiplied, but their charactor indicatos a southern origin.-Ed."

[^55]: * "She had now entered that peculiar tongue of cold water, very often encountered and spoken of which extends far the southward of the ordinary range of the Arctic Current. It has been alluded to on (250 .) page 340."
 \dagger " It may probably be accounted for by the effect of the banks in raising the cooler water of the Arctic Current nearer to the surface, and thus sending southwards a stronger current of colder water than is found to the eastward or westward of it."
 \ddagger "Another example of this northerly set, see (256.) page 341, which demonstrates how uncertain the currents are hereabout, is given by Lieutenant Evans, in describing his run hcross the Atlantic, from Newfoundland, in June, 1828, says, 'We experienced a current setting to the northward, sometimes as much as 2) miles in the twenty-four hours; this circumstance, so contrary to the gencrally received opinion of a pormanent current from

[^56]: the North, may be accounted for from the circumstance of the winds being principally from the South and B.W. A long continuance of southerly winds would have the effect of turning the fluent waters of the Florida Stream, east of the banks, to the northward and eastward, sufficient to produce the superficial current we experienced, and to check the general flow of the waters from the northward. We met no ice of any description, nor any indication of itsvicinity, unless when crossing the tail of the bank; the constant southerly wind, of course will easily account for our not seeing any of these formidable dangers; but it is remarkable (and the instance is a proof of our imperfect knowledge of the theory of winds), that an American brig, making a similar run at the same time, but being about a degree or two farther North than our parallel, had to contend with strong northerly gales and to encounter numerous icebergs.'

[^57]: - Dr

[^58]: - Dr. Rink "On the Origin of Icebergn," \&o., Journal Royal Geographical Society, vol. xxiii., 1858, p. 143, ot seq.
 + It ia a wall-known fact that all the ice formed from now npon the aurface of land, where the heat of summer is incapable of melting and preventing its gradual increase, has a teudenoy to extend and move downward, as water would do, according to the same laws, in case rain instead of esuow had fallen upon the surface. Those mascos of snow accumulated in high regions of mountain ohains, even in the hottest parts of the globe, gather in the valleya, whioh thus form the nntural drainage for the highlands, and being congealed into a oompact body of ice, move slowly down into lower and warmer regions, till the inoreasing heat, by thawing them, sets a limit to their further spread. These maseen of compaet ioe gpreading down through the valleys or clefts, and constantiy furnished farther supplies by the snow accumulated in the surrounding highlands, are, in Europe, neen on the largest noale upon the Alpn, where they are known under the name of "Gleteker," or glaciers.

[^59]: - Traneparent ioe, free from interior spaces or bubbles, is one of the purent subetances in mature, and itin not poesible to detect the prewence of the minntent portion of air, or any mebatance that may have been held in solution by the water from which it in formed. The atrongeot poicons, or colonring matter of any description, are most effiectaally cepariated from water by the procose of freening it. This must, of course, only be understood to refor to those massen which are quite clear and traneparent, or the spaces or vacancies loft in tho ice will naturally contain portions of the adventitiona matter. Ice, therefore, in one of the hest souroes from which a supply of freek and wholesome water can be obtainsd, and if these hollowe be washed in fresh water, ice water will be found preferable to, and purar than, any othor.

[^60]: - See Journal of the Royal Geographioal Society, vol. xxi., pp. 26-35, "On the Pro"bable Course pursued by Sir John Franklin's Expedition," by A. G. Findlay.. Notwithstanding that this great mystery has been partially cleared up by the expeditions of Dr. Ree mind Sir L. M'Clintock, yet no vestige of the ships themselves have been seen by Europeans. That portion, as well as others, is still involvod in mystery ; and the opinion is atill tenable, and maintuinod by many, that these derelict ships were the Erobos and Torror.

[^61]: - On the 18th of June, 1839, an iceberg was seen, supposed to be abont a mile in length, and from 50 to 70 feet high, in lat. $40^{\circ} 50^{\circ}$ N., and long. $48^{\circ} 39^{\prime} \mathrm{W}$.
 + On board the Carshalton Park, on her passage from Jamaica to London, 1826. They are repeated here, from our former editions, as they afford a good example of the application of the preceding description.

[^62]: - Oaptain Whits has argued, at ocnsiderable length; against attributing the origin of the Gulf Stream to the Minainippi. But it would ceem to us to be decided in rery few wordr. The turbid and frow waterm of the river, its volume, and itn fluctuations, are all incompatible with the facts of the Gulf Stream. Again: urguing from analogy, in what part of the world do we find a rivor presorving an indopendent current acmes en ecoer, srud whth can
 cant whon compared with thin.-Eip.

[^63]: - This was the opinion of Dr. Halley, which has been controverted by those who suppose that the effect may be accounted for by the motion of an under current, setting outwns. . The food tide, on either side of the strait, does certainly set outward, but the ebb sets inward with the general current. The easterly indraught appeare to commence at about 100 leagnee weat from the month of the atrait. - Soes, upon thit snhject, cur "Eitisis Directory for the Mediterranean Sea."

[^64]: * It is alluded to directly in a work by Pedro Nunez, in 1537; again, by Pedro de Medina, in 1545; but his system was erroneous, and was corrected by Martine Cortea (or Curtis), whose work, "The Arte of Navigation," wa, soon after, in 1661, translated out of the Spanish into English, by Riohard Eden, and was long the text book of British seamen. Numerous other works, in which it is correctly and distinctly deacribed, afterwards appeared, as one by Michael Coignet, of Antwerp, in 1581 ; an excellent work by Roderiok Zamarano, in 1585, \&o. That by this time it was thoroughly recognised is evident by John Davis, published in August, 1694, called "The Seaman's Secrets; wherein is Taught the Three Kinds of Sayling-Horizontall, Paradoxall, and Sayling upon a Great Circoo." It is also described in Richard Polter'e "Pathway to Perfect Sayling," about the same time. Aftor this it is fourd in mout of the old worke on navigation.

[^65]: * General Notes on the Approaches to the Channels and for Navigating the British Channel, by Captain Richard Leighton.

[^66]: - Couomil Inatrictionat and Admonitions for Vōaobla bound from Livorpool and othor Western Ports to tho Atiantic Ocean, and for Returning from the Ocoan to the same ; by Captain Thomas Midgley, of Liverpool, 1830.

[^67]: 1. From the Lizard or the Tuakar, steer W.S.W. to gain ain oning, to longitade 10° or $12^{\circ} \mathrm{W}$.
 2. From thence steer so as to pass to westward of Madeir.
[^68]: It appears that the passages east are uniformly longer for the Dutch，except in Devember，June，and October；and that for the American they give the shorter averages for January，February，March，and April；for August and November．But the averages for these are derived from an insufficient number of ри末ぁぁges，ouly two or three，fourteen in aill，for each month．

[^69]: *" On the Passage from England to the Line :" " Mercantile Marine Mageaine," Sopt., 1856, pp. 328-347.

[^70]: "Capt. Maury says:-" No sailing directions oan be given for theso calm belts, excopt such as are contained in these emphatic words:-" Makz the best op your way achoss them without meoard to lonoituds." To which may be added, that nearer to North and. South the oourse is the better, as it crosses their diruetion at right anglos.

[^71]: * In these Remarks, sec., by the late Captain Midgley, as in the other parts of this volume, the courses and beuringe are by compoes, unlese where otherwise exprosed; and every bearing or direction of the current is intended for the true.

[^72]: - Tho Americañ, who have been much in the habit of going to the West Indion with timber, to., remark, that whon the flying-fish fly in swarms, and are uncommonly snull, it is a certwin indication of boing noar the Weat India Islands.-And. Licingaton.

[^73]: - As the most destructive hurricanes on record, in this part of the Atlantic, havn occurred in the vicinity or on the borders of the Guif Stream, this is an important reason for ships from the woit lndioe, bound to Europo, not to nivanco too far to tho northward. Bee, further, "Voyage from the Wost Indios to the Azores," attuched to the description of those islands hereafter.

[^74]: - "Practical Observations on tho West Indin Navigation," by a Commander of ono of the Royal Mail Steara Panㄲ tr. London, 1844.

[^75]: *This discoloured water appears to be in the Stream of the Equatorial Current; ns may likewise be that which is met with at 80 or 100 leagitios ta the Eabt of Barbadoub. - Eiv.

[^76]: - Since the 6th of February, 1840, a light-vessel has been atationed off Berblce near the eastern point of the entrance. It exhibits a single bright light, from sunset to sunrise, and by day a black ball at the mast-hoed. The light-veseel of Demerary is similar, and lies 10 milon N.N.E. E. Efrom' the entraniee. It may bo prudent not to depend too much on. woing thowe vosule whon puasing.-Ed.

[^77]: - Many ancoeeding pasaages made by Oaptain Hare, aince 1824, have concurred to prove the propriety of theee directions, which have been highiy approved by the American captains of home shipm, no well as by British masters. This gentleman had asosood the Atinatic for the ninety-eighth timo, in the yoar 1839, and the ome hundrod and olovonth, in 1846.

[^78]: "I am farther of opiniop that the influence of the Gulf Stream, in the parallels from lat. 36° to 42°, whether from the warmness of the water or other natural causen, has a strong tendency to attract the wind from a western direction; as I have inyariably found the wind more alterative in the northern letitudes before mentioned than the sonthern ones; and it unquestionably must be allowed by all mariners of any observation, that gales experienced in the Gulf Stream or its vicinity blow with much greater violenoe than they do in that part of the Northern Atlantic not under Its influence ; besides, the squalls from the southward or S . W. are much more sudden and heary, and near the banks they are attended with dangerous lightning. The thermometer (an instrument eavily understood) in of the greatest importance for ascertaining your approach to it; and, if bound to the West, I would, for my own part, endeavour to a void its effects as cautiously as I would a lee-shore; for it may be depended om , that no ship, however well she may sail, will effect weating in the Gulf
 ... See the remarky upon the Gales of the Apores, in the description herinafter given of those islands.

[^79]: - When within the gulf the northern ahore should not be made too froe with, as it is posesible that some outlying rooks may have escapod the vigilance of the Admiralty surveyors. The Grange Rook, off Concoacho Bay, in an example. The 8.S. North Americh diecovered it by striking on it in September, 1858. It is it milen outside the line of dangere, noar a spot whero the Admiralty chart ihowed no bottom at 47 fathems.

[^80]: *These houses are called Upper Harbour View and Lower Harbour View. Both are of a whitish colour, and roofed with blue slate. The upper one is also weather slated partly down ite front.

[^81]: * The descriptions of Lagos, Villa Nueva, Trafalgar, and Tangier have been communicated by Captain W. H. Smyth, R.N., K.S.F., \&c.
 \dagger Theso Directions for San Lucar hnve been communicatod by Captain J. Wharton, of the Romp, June, 1845, bofore the lights were established.

[^82]: *Th vol. vi., ngurse, i (Nee No

[^83]: *The Irst of these was given in the "Jcurnal of the Royal Geographical Society,", vol. vi., 1836 ; and the second in the "Nautical Magazine" of June, 1839. We have, of rourse, incorporated such other information as would render the description complete.(See Notes on the Table of Positions, page 38.)

[^84]: * Sce Juckson's description of Murocco, \&ec.

[^85]: * A pa Nowfoum + Dar bierren (I nud on lin fliffectiy. attended

[^86]: - A particular description of this tower, \&e., is given by M. Cassini, in hin voyage to Nowfoundland nnd Saleo, 1768.
 \dagger Dar el Beida, i.e., white house. A vessel, the Rose, from Clibraltar, chartered for Casa bliturea (Italian, "white houso "), not finding the name on his ehart, made for Cape Blanco, nuid on lamling, tho captain and part of the crow woro made prisoners, and liberatod with Atficuity. The notico irom our consul-general, given on page 488 , ought to bo vory strictly nttendod to.

[^87]: * Ras al Hudik-Cape of Palm Groves.

[^88]: - Siee C Geographis

[^89]: - See Oaptain Washington's note upon this partioular, in the "Journal of the Royal Grographical Socioty," vol. vi. p. 291.

[^90]: * Mr. W. J. Elton, Vice Consul at Mogodor, says that the depth in the mouth of the Suse and of the Messa (Massa) is 12 feet at high, and 2 feet at low, water.
 + Where the Messa bas commonly been representeu. The latter, we presume, is in Iat. $29^{\circ} 66^{\prime}$, or thereatout.-Fid.

[^91]: *This discoloration is attributed, chiefly, to tho vast quantities of sand blown from the

[^92]: * To those who wish for further information on this subject, we recommend the valuable work by Mr. Jackson, alroady quoted. Sōe, also, "Journal of the Royai Geog. Soc., voi. vi. p. 297.

[^93]: - The Diny of Triouination of M. Foussin. Dut we convider a change in the name quite wanceewary, and, theroficre, improper.

[^94]: - "The tides anvect Capo Blanco are irregular; and much influonced by the 1 innt near which they rua. High water, at full and change, may be looked for about noou; the gren+nat rise, under every advantage of springs and winds, does not exceed 6 feet. Southward of the parallel of the cape the indraught has a volocity of $2 \cdot 6$ miles, and the offset us: ebb the same. Eastward of the meridian of the cape the tide bends northorly, and at 3 miles chord its velocity appears from S.W. to N.E., about 1 1 , following the circular course into Greyhound Bay. North of tho parallol of the cape the obb sets North, and flood South; and, elose inshrro, the tide is considorably weaker than at 3 milos, where ith greaiesi iniluonce may be expectod."-Cuptain Belhher.

[^95]: - On page 604 we have alluded to the captivity of a vericis of the orew of the brig Courior, in 1844, on the Iclamd of Argwin. This island 1 i : is the mouth of a bey to the S.E. of Cupe Blanco. According to Oaptain Grover's ar. . t is abont 8 milen from the mein land, between which and the inland the water is sha" To the seaward there is a depth of from 5 to: fathoms oloee to the shorv. O. sin, the evidenco appears to bo conelueive. It is © of a whitioh rock, coverer wis ifting sands to the depth of 8
 smill cmuntio mhrub, bat it hus axcollont wator, thous milly appearanoe. The wellh are diffeult to And, but ere important. The

[^96]: - Cap

[^97]:

[^98]: * Parliamontary Report, West Coast of Africa, Part I., pi. 176, 177, 183.

[^99]: - By a

[^100]: * By a convention, signed March 7th, 1857, the Queen of England relinquisher hor rights to trade between the mouth of the River St. John to the Bay and Port of Portandio inclusively, and in return the French Emperor cedes the Factory, or Comptoif, of Áibreda, on tho North Bank of the Gambin, with all rightm belonging thereto.

[^101]: - The baobab (or Adansonia) is a species of very large tree, of a fine green colour, but which does not keep its verdure all the year round. From the trees of this sort on Cape, Verde that cape derived its name.
 + Dr. Madden, Parliamentary Report, 1842. Part I., p. 206, and Part II., p. E06.

[^102]: - Mr. Finlaison has said that shipa salling from the Capo Vorde Islauds, and bound to Goreo, will atriko soundinge in 60 fathoms, fine annd, at 80 milen off.-Ev.
 ${ }_{\mathrm{T}}$ This in, we presume, tho Cap* Bermard of tho former ch $:$, , lying to the northward of Guree.-Kis.

[^103]: - A mor Roxo, by 1828. To in 1826 ar Captain observatic

[^104]: - A more particular detail of this coast, and of all the shore between Cape Naze and Cape Roxo, by M. Ls Predour (extracted from the Amnales Maritimes), was published at Paris in 1828. To the description is annexed a copions tuble of the positions of places, as deterinined in 1826 and 1827 , on boand the ftigate $\bar{L} \bar{n}$ Fíhre nnd goeiet' $\bar{L} a$ Dorade, under the orders of Captain Massiert do C'lervai', which may be advantageously compared with more receut observations.

[^105]: *Parliamentary Report, 1842, vol. xi., Part I.: "Eividsace of F. W. Finden, Fiar.," p. 478.

[^106]: - At the Gambia, in the season of the Harmattan, the rainy season has just terminated on the 9 th of December. Upon this occasion the colours are hoistod and a gun is fired. On a second visit in May and June, 1831, the end of the dry sengen, symptoma of approaching shina, with munils.-Capiain Beleher.

[^107]: *For the positions, see the 'Table, page 34.

[^108]: - Vessels coming from the northward, after making Capo Roxo, may steer S.W. from thit cape, in 8 fathoms, all along, until they catch from 10 to 12 fathoms, green ooze; then steer S.E. by E., taking care not to get into less than 6 fathoms on the port hand on Cacheo Bank, \&ic. - Mír. Swann, a pilot.

[^109]: - See life of Oapt. Philip Beaver, R.N., by Admiral Smyth. Much respect has been puid to his memory by those who knew him. Soe also a notice of thin place and its colonies by Governor O'Connor, in the Proo. Roy. Geog. Bociety, 1856, p. 18.

[^110]: - Captain Bulcher has noticed that the Pullam treo is the bombax or ailk-cotton trecs, and has no refereuce to the palm. Pullam Island, which will be presently described, as deriving its name from the " large trees with which it is covered," can hardly boast half a dozen raims, which hide their diminished heads beside the more majestic rullam trees.

[^111]: - Cap
 sontheca the sout river arr

[^112]: * Captain Livingoton asys:-"In making the Nunez it is advisable to make it from the southward; but beware of the very dangerous Sandkinoal Rocks, extending 6 or 7 miles to the southward of Bencer or the Fast Point. The reefs and banks at the entrance of the river are certainly increasiag, and genernlly break, even in moderate wenther.

[^113]: - This cabbage makes a delicious piokle. and is considered one of the finest anti-scorbutics in the world, doubly valuable when other vegetables are not to be had. $-E$. \boldsymbol{B}.

[^114]: - On prosecuting the examination it wus found that this river is named the Compoonec. Captain Belcher has given a pleasing doscription of its course upward; for which see the Geographical Journsi, vol. ii.pp. 287-8. In the upper part many indications of buffalose, hippopotami, deer, lions, panthers, monkeys, \&c., were meen.

[^115]: - Survey by Lieutenant Jamea Badyley, of H.M. uhip Leven, 1827.

[^116]: is a Description and Directions by Captain Botelor, of H.M.S. Heola, 1829, (a)

[^117]: - In the Table of Positions, the position of Matacong, is given, according to Captain Owen, \&o., in lat. $8^{\circ} 14^{\prime}$, lon. $13^{\circ} 25^{\circ} 30^{\prime \prime}$; but Oaptain Boteler (1829) gives the house on the North side of the same island in lat. $9^{\circ} 16^{\prime} 10^{\prime \prime}$, and lon. $13^{\circ} 26^{\prime} 20^{\prime \prime}$; and henco, by survey;

 + This point is on the Sonth side of the river, and immodintely oppoeite to another point, on which there are two very large trees.

[^118]: * Yellaboi, or Yellaboa, acoording to Captain Owen, as shown in the Table, p. 36 , is in Iat. $8^{\circ} 85^{\prime} 42^{\prime \prime}$. long. $83^{\circ} 17^{\prime} 45^{\prime \prime}$. Onptain Boteler gives its Weat end as in lat. $8^{\circ} 57^{\prime \prime} 5^{\prime \prime}$, long. $13^{\circ} 18^{\prime} 25^{\prime \prime}$. Variation, $18^{\circ} 4^{\prime}$ W., 1829.
 + Inglia Pahboycah River, the entrance is nearly a league to the North of Corteemo Islnnd.
 its wontern extremity.

[^119]: - This swampy coast has been thought, hy some, to be the origin of the unhoalthiness of the epposite shoro of the river, and Froetown. It has been proposed, by some one, to erect linokilns on this const, in order that their fumes might counteract the noxiousmianmata arising from the shores and mangroves! It need scarcely to be said, that the iusalubrity of: the colony does not arise entirely from mich a cause.

[^120]: - Directinns for sailing from the Bight of Biafrn to Sierra Leone have been given in treatiny on the Currents, page 286.
 \dagger Otherwī̄e Agaitoopant, or River of the Twin Sisters.

[^121]: * "Journal of the Tartar," by the late Mr. Finlaison.
 + "Nautical Magazine."-Captain Midgley, "On a voyage to the Gold Const," Jon., 1843, p. 27.
 \ddagger On Christmas-lay, 1852, Capt. Philips, in the Polyphemus, destroyod a barracoon (belonging to Crispo), at Babbah, 17 milea E. of Kittam ; and in Junuary, 1853, they ascended the Kittam for 50 miles to Damma.
 - Description by Captain the Hon. J. Denmen, R.N., H.M. sloop Wanderer, December, 1840. Parlinmentary Report, Appendix, pip. 400, 46 i .

[^122]: ＊Report of the British Association，1850，page 135.

[^123]: - In the Azores a southorly wind crentes great humidity in the atmosphore ; a northerly wind removes it. Under the former influence, there is frequently two per cent. of water in the air; under the latter, less than one.
 + The commencement of these galos was on the following days. viz.:-1840, June 4th, Aug. 19th, Oot. 3rd, Oct. 7 th, Oct. 9th, Nov. 2nd, Ncv. 11 th, Nov. 14th, Nov. 28th, Dec. 1st, Dec. 6th, Dec. 11th, Dec. 15th, Dec. 27th; 18941,Jan. 11 th, Feb. 3rd, Feb.'11th, March 6th, Mareh 1pth, Sept. 8th, and Sopt. 18th.

[^124]: - The approximation to an cruption has, however, at times appearred to have been very close. On the 11 th of August, 1813, at the hour of ten p.m., slight shocks of un ourtiquako were folt, which continued, at intervals of a few minutes, for four hours. Betwoen two and throe o'clock next morning, a drendful rocking was experienced throughout the whole island ; several houses. unable to resist its violence, were thrown down, and many others wore grantly damaged; and such persons as sought safety in tho open air wero dashod to tho ground. On the eastorn side of the island an oriflee was discovored, rosombling the crater of a voleano, and out of which flames occusionally burst forth; but they do not uppear to havo been acoompunied by any ojection of vocanio matter.
 - The flames wore first seen in the night of the 1st of February, but invisible indications of its operations had been felt in shocks on the ielund from the middle of the precoding
 Ginotes, at about $1 \&$ miles from the nearest shore. The brig Swift, with all her crew, were lost on this spot, before the existenco of the shoal was known.

[^125]: - An oxcellent and detailed account of St. Michael'e, ita geolonicol formation, ita natural produotions and general particulars, is given by H.M. consul, Mr. Hunt, in the "Journal of tho Royal Geogrnphical Soclety, vol. x7., 1846, p. 268, at weq.

[^126]: - There is a rock and reef (the Lobeira Rook) lying S.W. by S., three-fourths of a mile off Pcint Albufeira (which is $4 \frac{1}{2}$ miles East of Villa Franca). It is not voleanic, but hat always beon known. It is not on the early charts.
 t In a lotter to the editor, dated 28th of Msy, 1828, Oaptain Livingston says:-"The Itheo seems to be filling up with sand. The most of the rook is a kind of conglomerate of lava, in detached pieces, sand, debris, and pumice-stone, and on the East side it seemt gradually wearing a way. The highost part appoars about 80 foet high. There are cultivated terracos on it, with cane-reeds, planted for sholter, and they grow not only potatoes and maize on it, but there are even . fow poor vinos, and some fine heath 3 to 4 foet in height.
 "The singiular voleanio Patak off Cumarinias, on the West end of the island, was the last setive volcuno in St. Michael's.'

[^127]: - Thor
 the N.W

[^128]: *There is a similar ridge, with inlets on it, extending about a lengue from Point Mutogos, the N.W. point of the island : it has from 2 to 6 and 7 fathoms over it.

[^129]: - Immense quantities of molluscm, or wea-worms, are certain slgns of the proximity of St. Mary's. Some of them are of a white colour, or of arrow-root mixed with hot water, and are about 18 inches long, with orange spots on them, like the eyes of a peacock's tail -A. Livingston.
 \dagger Prom a deecription of Et. Mery's in Mir. consul C. Hunt, in Journal of the Royai Geo. graphical Bociety, vol. xv., 4846, p. 200, et seq.

[^130]: - Captain A. T. E. Vidal, who has surveyed these islands, says, with respect to Tofino's representations of the Formigas:-"It is with rogret and vexation I have to state that I find Tofino considerably in error in that celebrated hydrographer's work relative to this locality. The true bearings of Punto Castello, as agcertained by Captain Vidal, ilifior fum those of Tofino $4^{\circ} 34^{\prime}$ more westerly, and Pico Alto $6^{\circ} 18^{\prime}$ more westerly. This difference in bearing is on a distance of 22 miles. Although my observations on board the vessel with

[^131]: *T
 from a
 "Nau

[^132]: - The following account of the island, and the great earthquake of 1841, we have taken from a communication, by Mir. T. U. Hunt, the British consul at Sit. Michael's, to the "Nautical Magazine," September, 1841, pp. 631-633.

[^133]: * This proposition has been ingeniously argued out by Mr. Hunt, from the various degrees of intensity that the shooks were felt in the different bearings and distances; by arranging these together, it fixes the centre of the action as above.

[^134]: - It is sometimes much easier to lend on the rocks under the cliff, on the Mount Brasil
 spot to attempt landing at. $-\boldsymbol{A}$. \mathcal{L}.

[^135]: - Mr. vouvela pio from the the telogr tion they

[^136]: - Mr. Wm. Lano, agent to Lloyd's, in November, 1832, gave notice that, for the use of ressels puesing through the channel betwoen Fayal and Pioo, or those requiring assistanoe from the uhore, he had erectod a tlagataff behind the Onetle of St. Crum, Payal, aiud provided the ielograph flugn of Captuin Marryat, so as to enable them to communicate any information they wish to be roportod, or to nequiro imnodiate rasistanes in caso of distruss.

[^137]: - The anchoring ground about the island is generally at beyond the distance of a mile from land. Within that distinee the ground in rockly, and much furioer out it is tho same.

[^138]: - The distance to whioh the mountains of Madeirn ought to be seen from a voseel'n deck is about 90 miles; but, of course, at this low elevation it would require a vory clear atmonphere. Sir Andrew Lang sayn, that on leaving Madeira for the Weat Indies, December
 from the anohorage at Funohal, bearing N. 40° E., at 2% h, p.m.; lout aght of it soon afterwards, from the thickening atmosphere.-Neut. Mag., 1841, p. 261.

[^139]: - The mean temperature, from ooservations during oighteen years, has been given as follows:-Junuary, 64. 18 ; Feb. 64°. 3; March, $65^{\circ} .8$; April, $65^{\circ} .5$; May, 65'. 53 ; June, $69^{\circ} .74$; July, $73^{\circ} .45$; Alng. 75 ${ }^{\circ}$. 2 ; Sept. $75^{\circ} .76$; Oct. $72^{\circ} .5$; Nov. $69^{\circ} .8$; Dec. 65°. The year in, therefore, one summer, with comparatively little nitcration, either of temperature or hne.
 "In fino weather,-and it is fine at Madeira nine months in the year,--the view of this ateep and lofty island, covored with bright verdure, and enlivened by numerous scattered honses, as white ns snow, is very striking to a stranger who arrivos from the low and tame-: looking sheres of the Sonth coast of England.
 "Seumen are often deceived, when about to anchor in Funchal Roads, in consequence of the suddon transition which they have probably made from a low shelving coast to an abrupt and high mountain side; for the bottom of ine anchorage slopes away as sud levily as the heights ovorlooking it, and the anchor must, indeed, be let go upon the side of a. mountain. Hel co ships selilom go close enough, unless guided by a person who knows the placo ; and many a ehain cable ran out to the clinch, when chains were first used, owing to an incorrect estimate of the vessel's distnace from shoro, and not taking time to sound accurately.
 "Closing the land quiekly, after paesing some time at sea-approaching high oliffs or hilly ahoree, nfter being, for n time, necustomnd to low conete-or nearing a fnt shore, aftor tha cye has been nsed to precipices and mountaine-almost ulways is a canse of error in estlmating distanco, howover oxporienecd n ssaman may be."-Captain FitzRoy, vol. ii., p. 16:

[^140]: - Som of the old inhabitants affirm that there is no danger in attempting to ride out a gale from the southward, as it rarely continues long. It is said that no vessels with good ground tackle cave over beon lost hy pureuing thie methed, apd that many, in nttomining to get nway at the commencement of the galo, have been driven on shore.-" Vorage of the Chinticleer, vol. i. p. 10.

[^141]: - Allgoknnza (the northorn isle) is synonymous with joyous, a name given it by the first conquerors of the islands, Jean de Bethoncourt, and Gadife de Salle. This was the first point on whieh they landed. After remaining several days at Graeiosa, they conceived the project of taking possession of the neighbouring isle of Lanzarote, where they were welcomed by Guardarfia, sovereign of the Gaunches with the same hospitality that Cortes found in the palace of Montezuma. The shepherd king, who had no other riches than his goats, bocame the vietim of soward treachery, like the sovereign of Mexico!-Hismboldt.

[^142]: *Soe "Nautical Magazine," October, 1851, pp. 509-517. The occasion and result of a visit by Roar-Admiral Hercules Robinson in 1813 is there amusingly relatod. In substance it is, that, in 1804, the crew of a South Amcrican Spanish ship, bound to Cadiz with produce, and about two millions of dollars in chests, rose upou and murdered the captain; off some islands corresponding exactly in description and site with the Salvages. The trassure was carried on shore, and buried in the white sand above high-water mark in a anug little bay on the South side of the island, and ovcr it was buried also the body of the murdered captain. This tale was told to an English sailor by one of the two survivors, whoso tale lod to tho unsuccessful search by the Iromethcus. Still the tale apponrs crevilible.
 \dagger The proceding deseription of Lanzarote is chiclly that of Lieutenat iriott, 1835.

[^143]: - Particular phans of this stratit, and of the harbours of Nhos and Cavallow, are given in nur Chart of the Azores, i c.

[^144]: - The pilots of Tonerifo assort that a rock, with only 12 foet of water ovor it, lies W.N.W $2 f$ leagues from Point Alden, the western point of tho Grand Canary, and that the sea broaks on it in rough weather. Its precise situation appears to bo unknown.
 + They say, in the Canaries, that tho pank, in very clear wonther, is soen from La loeayna, or the chamel betweon the 1sles of Lanzaroto and Fuertavonturu, nt the distance of manet se towniem.
 "Ihe Peak of Tenerifo is probably the most striking momment of nuture in the world;

[^145]: * "The Bay of Santa Cauz is mucin: \quad a all winds botweon E.N.E. and S.W. by W.; and, as the easterly winds are very pievalent, there is generally a greut swell setting in, although it seldom blows hard from that quartor of the compass.
 "In 17형 fathoms, fine sand and blue clay, direcfly off the jatty, with the end thereof on with the gateway loading into the town, bearing about N.W., is a couvenient berth for watering, and good ground.
 "The jetty is built on a curve, to breal off the swell, for the convenience of boats, being the only lauding-place, where all goods are landed and shipped. Ships generally lie off the jetty, in from 17 to 35 fathoms, good holding-ground. The best mark is the high square building, like a lighthouse, just over, and in one with, the mole or jotty hoad.
 "Tide rises about 4 feet; sets round the bay. H. W. $4 \mathrm{~h} 30^{\prime}$ (P)"-Mr. William Wood, H.M.S. Tartar, 18"3.
 "The Chamber of Commerce at Santa Cruz notified July 12 th, 1850; that the worke of the mcle had sufficiently advanced to permit the embarkatiou of coals, at all hours, independent of tide, and that coals were abundantly provided.

[^146]: * The following notice, which appeared in the Shipping Gazette, in March, 1840, will be useful to vessels touching at Palma:-"Several English vessels having lately sent aehore their boats at Tassacorte, without receiving the succour they required, I beg, through yon, to inform the shipping interest in general, that the ordens from the Sppanion Government are; that no communication be h6ld, or refreshments given, at any other place, except this aud the town of Senta Cruz, on the N.E. side of Palma.:"-Canarics, Junuary. 10th, 1840:"

[^147]: *Mr. Finlaison has said that, "In leaving Tenorife for tho Cape Vorde Islands, you will certainly have the wind from E. by S. to N. E. as yout approath the islands."' He also adds, that in the passage a current was generally found setting from S.S.W. at the rate of balf a milo an hour, which is contrary to the current on the Afrioan coast. -(See page 280.)
 \dagger Firestone Hill.-A promontory, on the oastorn coast, stands at 2 loagues fron the North. Point. At the back of this is the Galt-pond Hill, a nalural curiosity, as upon this is the salt pond, 180 feet nbove the level of the sea. The surface of the pond, in a circular form, is 45 feet below the top of the hili.
 : Hearkening fer the noise of the surf will often give ample warning in npproaching latid, fither during a iop or by night, and ought to be attended to, if heard; but no one ought to run rashly, masing certain of hearing it.-A. L.

[^148]: - SAee :

 1842, p. $4!$

[^149]: - Toe :" Ñauricai Magazine, Augunt, 1841, p. 56 ; December, 18:1, p. 816 ; January, 1842, p. 45 ; Saptember, 1842, p. 64 . ; Noromber, 1842, p. 763 ; and July, 1843, p. 492.

[^150]: - Mr. Finlaison eays, that it is repuisito to give the polnt under l'latform Hill a gond berth, ais there is a reof extending from it. In the day you may see the sen hrpaking on it The mountain E.N.E. cleare the draget.

[^151]: -The soundinge obtained by Lieut. Lee in the U.S. brig Dolphin, have since demonstrated that the water is very deep here, 1.386 fathoms eitstward of Maio, and 1,120 , and 707 fathoms close to the island. Sec hereafter.

[^152]: * Not inserted in the Admiralty Survey ; its oxistence is, therofore, questionable.

[^153]: Captain Barthoiomew deworibes St. Lucia as of moderate height, with a bay on the 8. W., where amsll venseis may anchor, being sheltered from all points but South and 8.E. The bench is sandy; the anchorage, emall pebblee and sand. In the middle of the bay is an islet, namer Leom; with the ruine of a village on it, and frequented by fishormen only. There are many turtle here, and much orchilla is gathered, with come cotton, in a wild atate.

[^154]: - March 30, 1822.-"On the Leven's arrival in Porto Grande, we sent on ahore to a few honces calbed a town, at the bottom of the bay, to inform the governor who we were, and what were our wishen. We could find only one miserable Portuguese, the fest being all negroes ; but most of them appeared to be free. The whole population did not exceed 100, without any plantations nenr their housen, as the soil is 80 very dry and sterile; but, on the widen of the mountains, in parts where there is water, they are suid to have zome good gafdens. Indigo grows everywhere wild, and with it they dye their coarse olothe which they manufuoture from ootton, and which, if ever planted by them, appeure to be left entirely to nature'c oultivation and care.
 "We pltched a tent upon tho beach; cleaned a well in the ravine, whioh, during the miny senmon, fis a whter-courne ; then landed the women send a patry it wath. During our utay the sea breeze overy day blow furionaly over the hille to the N.E. of our unchoragu;

[^155]: - A New Chart of the Bermudas or Somers' Islands, with Plans of the Narrows and Murray Anchorage, and St. George's Harbour, \&o., by A. G. Findlay, F.R.G.S., published by Mr. Laurie, accompanied by a description of the Islands.

[^156]: - Large fleets could not, as yot, find'sufficient wator at Bormuda.-Coeernor Rein, i8ió.

[^157]: - "On the Winds as influencing the Tracks sailed by Bermuda Veneele; and orit tho Advantage which mary bo darived from sailing on curved Coursos, when meeting with proogrenive revolving Winds, by Governor Reid, of Bermwia (Author of the 'law of Storma')." -Edin. Now Phil. Journal, July, 1846; p. 192.

[^158]: *The late Captain Henry Forster gave the position as $0^{\circ} 58^{\prime}$ N., and $29^{\circ} 16^{\prime} 40^{\prime \prime} \mathrm{W}$.

[^159]: * Cruise of the U.S. brig Dolphin, p. 82.

[^160]: * It is said that a reef or some rocks lie 3_{4}^{8} miles E.N.E. of Cape San Roque, (Verhandelingen, \&c., 1860, p. 551). We have no further informatiou on this important point, which, if correct, will require all caution in passing the cupe.

[^161]: * In 1850 a singular discovery of a dangerous aunken rock was made noarly in midchannel of the Narrows. It has from $15 \frac{4}{4}$ to 17 feet at low water, and doulitloss has picked up many vossels. Falen Spit beacon boars E. $\frac{1}{2}$ N. from it : The Narrows Lighthouso N.E. $\frac{1}{4}$ N.; und Nick's Mate boacon N.W. $\frac{1}{2}$ Wis and are ens with Boston Lighthouso.

[^162]: - The American Const Pilot also says, The Lower Middle Ground, which lies on the north side of the channel, a little ahove Spectacle Island, and whioh is in part dry at low water, has on its eastern part a red bung, and en the wostorin point a biack buoy, in two fathoms; to be left on the port hand.

[^163]: - Sી

[^164]: - Viein is a Spanish word, literally signifying Watch, or Look-out. It is gonorally, in the charts, attached to spots supposed to be dangerous, and which should, therefore, bo epproneched with caution.

[^165]: *In the "United Service Journal," October, 1834, p. 199, is a lively description of a moonlight night at sea, during a gale, which concludes with that of a dreadful reef, supposed to be the Devil's Rocks. The communication is more in the style of a novelist than of a seaman, and there is not a word on the situation of the reef.- See, further, Capt. Livingston's comriunication upon this subject, "Nautical Magavine," December, 1834, p. 737.
 \dagger Naut. Mag., April, 1857, p. 221.
 \ddagger Ibi?., Dec., 1857, p. 67ö.

[^166]: - Maroc obworved a mante of er by thoals November, progreas ; chart as a

[^167]: - Maroc Unrmelioh, commanding the Sicilian brig Anma, at three p.m., June 8th, 1841, obwerved a ahoal to the South, distance about 2 miles, appearing like a ship with throe manta of equal height, and inclining toward the South, and about 50 feet high, surrcunderl by ahomle level with the water; lat. $30^{\circ} 32^{\prime}$ N., loug. $60^{\circ} 50^{\prime}$ W.-(" Nautical Magazise," November, 1841, p. 781.). This is manifestly an iochorg, yom into pinnacies in ite southern progreses ; hat jerhnpe it is noceasary to notíce it here, as it has bealc placed on a rocent chart as a permunent danger.

[^168]: The off 1840, p. 8
 " $1, \mathrm{Ma}$
 beard the

[^169]: * The repeeted accounts which have been givon of earthquake phenomena heroabout, ought to induce caution. Their range appears to be wide, for on November 25tll, 1857, W: Cook, of the Estremadura, bound for Fayal, when in lat. $39^{\circ} 57^{\circ}$, long. $25^{\circ} 50^{\circ}$, shw abaft the beam what was though to be a squall, but which turned out to be a kind of mist or warm steam, which lasted half an hour; wind N.F. Tho waves thon changed to a kind of boil, or topping sea; as if surged up from beneath, but it roturnod to its former stute, when the mist was passed. (Lloyd's List, Jun, 11, 1858).

[^170]: * Verhanderlingen en Berigten, \&c., Amsterdam, 1854, p. 511.

[^171]: - But it is stated that M. Fréminville, 1810, obtuinod a sounding of 164 fathoms betwoen the assigned position of Bom Fellx and the Cape Verdes, or lat. $18^{\circ} 35^{\prime}$, long. $21^{\circ} 40^{\prime} \mathrm{W}$.,

[^172]: Capta

[^173]: It seoms vhere Captair making as a f Lee, in the 1 101, 102.
 \dagger In 1813, discoloured : t ward here; wl charged by the

[^174]: - It seoms that the appearance of soundings described above occurs in the same place चhere Captain Tulloch told me a bank existed, which some Americans were in the habit of making as a fresh point of departure when bound to Surinam, \&c.-A. L. But Lieutenant Lee, in the Dolphin, found depths of 2,500 fathoms. See cruise of the Dolphin, pages 101, 102.
 + In 1813, at the distance of 197 miles to the eastward of Barbadoes, we found the water discoloured : the thermometer rese here 1°. The current [Equatorial] inclines to the northward here; which, as well as the discoloured water, may be attributed to the stream discharged by the great River Oxinoco, o̊e -Lieutenant Evans.

[^175]: - Verhand. en Berigten, Amsterdam, 1854, p. 385.
 † Voyage de la Venus, vol. iii, p. 446.

[^176]: * Prufessor Trowbriage in Silliman's Journal, vol. xxvi., 1858, p. 391.

[^177]: - No Bottom.
 a Soundinge taken by Communiler Dayman, in H.M.S. Cyclope.
 b " " Cuptnin lullen, in H.M.s. Gyelopa, 1858.
 " Coinmander Dayman, in H.XI.E. Gorgon, 1858.
 " Lieutemunt O. II. Berryıuan, U.S. brig Dolphin.
 taken in U.N.S Jamentorm.
 " U.S.S. Susqueinnna.

[^178]: - No Bottom.
 d Soundings takeu by Lieutenant O. H. Berryman, U.S. brig Dolphin. j ", "by Lieut Lee in U.S. brig Dolphin.
 " Capt. Platt, U.S. Albmet.

[^179]: Nuntisu!

 + Vilinhug

[^180]: - Proceedings of the Geol. Soc., vol. iv. p. 146.
 † Naut. Mag. 1838, p. 824.
 \ddagger Naut. Mag., 1837, p. 291 ; Edinburgh Philosophical Journal, vol. vii. p. 402; Howard Malcolm's Travels, vol. ii. p. 200.
 \$ Horsburgh's East Indian Directory, p. 11.
 || In Tuckoy's Narrative of the Cougo Expedition, p. 10.
 - Nautical Magazine, 1847, p. 364.

[^181]: - Theso Berlih Akad of the name

[^182]: - "Essay
 mander R.N.
 de., by Cuptai

[^183]: * Exampl on the first d a fresh depar next true pla. noted as B . reckoning, be as at 0 .
 From the be drawn, as

[^184]: - "Journal of a Voyage for Miagnetioal Reaenroh," 1850, pp. 71, 72
 t "The Compane in Iron Shipe, Ac.," by Rev. W.Bcorenby, D.D., pp. 67, 68.

[^185]: - In the very email ci masts. - A. 1

