CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtaln the best original copy available for filming. Features of this copy which may be bibliographically unlque, which may alter any of the images In the reproduction, or which may slgnificantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleurColoured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Only edition available /
Seule édition disponibleTight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfllmé le meilleur exemplaire qu'll lul a été possible de se procurer. Les détails de cet exemplalre qul sont peut-être uniques du point de vue blbliographlque, qui peuvent modifier une image reproduite, ou qul peuvent exiger une modification dans la méthode normale de filmage sont indlqués cl-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées el/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou plquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print vanies /
Qualité inégale de l'impression

Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image. possible.

This item is filimed at the reduction retio checked below / Ce document est filmé eu taux de réduction indiqué ci-dessous.

The copy filmad hare hes been reproduced thanks to the generosity of:

National Library of Canada

The imeges eppearing here ore the bast quelity possible considering the condition end legibility of the original copy and in keeping with the filming contract specifications.

Original copias in printed paper covars ara fllmed beginning with the front covar and andling on tha last paga with e printed or illustrated impression, of the back covar whan appropriate. All other original copies are filmed baginning on the flrst paga with e printed or lllustreted impres. sion, end anding on tha last page with e printed or illustratad improssion.

The lesp recordad frama on aech microfiche shall contein the symbol \rightarrow (maening "CONTINUED"), or the symbol ∇ (meening "END"). whichever epplies.

Maps, pletas, charts, atc., mey ba filmad at differant raduction ratios. Those too lerge to be antiraly includad in one exposure are fllmad baginning in the upper laft hand cornar. laft to right and top to botzom, as many framas as required. The following diegrems illustrera the mathod:

L'axemplaire filmd fut reproduit grace ta génd́rosité de:

Bibliothèque nationale du Canada

Les imeges suivantes ont dto reproduires ovec le plus grend soin, compte tenu de le condition et da la netterd de l'exempleire filmb. ar sn cofirormite evec les conditions du contret de fllmege.

Les axamplalres originaux dont la couvartura an papiar est Imprimbe sont filmes an commencant par ia pramiar plat ar an rarminant soiz par la dernítre pege qui comporta una ampreine d'Impression ou d'llustretion, sois pe! !e second plet, selon it ces. Tous les eutras exemplairas originaux sont filmbs en commançent par le pramitra pege qul comporte une emprainte d'impression ou d'llustretion ot an zerminant par le dernitre pege qui comporta une telle empreinte.

Un des symboles suivents appereitre sur la dernitre imege de cheque microfiche. selon te ces: It symbole \rightarrow signifie "A SUIVRE". Is symbole ∇ signifie "FIN".

Les certes, plenchas, tablaaux. atc., peuvent ètra filmbs des taux de riduction differents. Lorsqua le document est trop grend pour éra raproduit an un saul clichd. il ass filmt a parsir de l'engle supdrieur geucha, da gaucha à droiza. ot de heut en bes, en prenent to nombra d'imeges ndeasseire. Les diegrammes suivents lllustrant la mbthode.

MHCROCOPY RESOLUTION TEST CMART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Ine
1653 East Main Street
Rochestar. New York 14609 USA
(716) 482-0300-Phane
(7. . 288-5989-Fax

THEORY OF MACHINES

INCLUDING

THE PRINCIPLES OF MECHANIS.I
AND
ELEMENTARY MECHANICS OF MACHINLR:

HY

ROBERT W. ANGUS, B. A. Sc.
MEMBER OF THE AMERICAN NOCIETY OF MECHANICAI ENGINEERS AND of THE GERMAN UNION OF ENGINEERS
PROFESGOR OF MECIANICAL ENGINEERING, TNIVERSITY OF TORONTO, TORONTO, CANADA

TJ17
A
1.1.2

Cohyrliali Cinaba wht2. By
Rohert W Ascis:

PREFACE

In the course of a number of years of experience in the practice and teaching of enginecring, the writer has had frequent oceasion to deal with the gereral theory of machine construction and to analyze the proportions of various parts. In many eases it is largely a question of designing the parts of sufficient strength, and the principles used in such work are of the greatest importance to the engineer and student.

The science of machine design generally does not deal with the principles on which the machine is constructed, nor does it attempt to determine the stresses acting on the various parts while performing their required functions: it rather assumes that these stresses are known and assists in the proper proportioning of the parts.

In the making of machines, however. it is necessary to know the ef"ect of changing the length and position of a link, for example, the effect of lengthening the connecting rod of a steam engine and of off-setting the eylinder. Again the effeet of changing the shapes of gear teeth and also the determination of the correct shape are matters of the greatest importance.

Then again, the turning effeet on the erank shaft due to the steam or gas pressure, the relative merits in this respeet of two and four cyele gas engines, of tandem and cross-compound steam engines, the turning moment required on the crank of a stone arusher to erush the stone. ete., a: e frequently neeessary in the design of the machine.

Other important problems are the design of governors, the determinat". . ?oper weight of fly-wheels to meet given conditions,
the spees
of the 1
Nor: uns in various machines, the effeet of the inertia "Trect of friction and the efficiency of machines. of machine design, al' : ough sometimes so treated, but form a separate study, and it is to such matters that the present treatise is deroted. These matters are not dealt with in an exhaustive manner, as the author feels that this would make the book too cumbersome, but the effort has been to make the treatise as suggestive as possible in the hope that the reader may work out his own problems with the help here given.

Some hesitation is felt about publishing this volume, partly because very much has already been written on the subject, and partly because the matter could not be dealt with as the author
would have liked. The work has been illustrated throughout by. numerous examples so chosen as to c:iplain difficult although not unusual practical eases, and as far as possible the effort has leen to put the material in readable form

Some little atterition has beell devoted to the virtual centre because of the importance of the idea upon which it is based, and beeause of its usefulness in certain eases, but construc:ions involving its use frequently beeome so complieated as to render the methol impractieable.

It is thought that the "phorograph" introduced in Chapter IV. is now publiehed for the first time, and the author has found the constructions involved so simple and compaet that he has used it almost exelusively. Very much of the remainder of the book is based upon a knowledge of the phorograph, and its use gives very simple methods for determining accelerations, kinetic energics of links, etc.

In the chapter on governors the author has consulted quite freely the very excellent book by M. Tolle "Die Regelung der Kraitmaschinen,"' whieh is a most comprehe: ive treatment of this very important part of machines. The eharacteristic eurve has been employed quite broadly in his treatise and the author's regret is that space prevents its wider use in the present volume. The same author's work has also been used in other parts of this book and has been aeknowledged.

The ehapter on efficieney follows the treatment of Rankine and of Kennedy. The latter author's book on "The Meehanies of Machinery: "was very often consulted, and certain parts of the book are based largely on Kennedy's volume.

In addition to the above authorities, the name of Prof. T. R. Rosebrugh, of the University of Toronto, should also be specially mentioned, acknowledgment of his wark in the diseovery of the phorograph having also been made in the body of the book.

Certain parts of the book were written under very great pressure. in order to meet the needs of the elasses in the University of Toronto, so that mistakes have probably erept in, but as much eare as possible has been taken to make the work aecurate and it is hoped that any errors oeeurring will not beof sueh a nature as to mislead the reader.

University of Toronto, R. W. A

Toronto, August 15. 1912.

CONTENTS

CHAPTER I.

THE NATURE OF THE MACHINE

General discussion-Definitic i (f the machine-Divisions of the suhject-Plane constrained motion-Turning and sliding motion-Mechanisms-Inversion of the chain. Page 9

CHAPTER II.

MOTION IN MACHINES

Plane motion-Data necessary to locate a body-Relative motion-Illustrations-The virtual centre-The permanent centreThe loration of the virtual eentre. Page 26

CHAPTER III.

VELOCITY DIAGRAMS

Kelative linear velocities of points in the same and in different links-Relative angular velocities-Graphical representation-Piston velocities-General diseussion of inethods
. Page 36

CHAPTER IV.

${ }^{m}$ HE MOTION DIAGRAM

Second method of determining velocities-The phorographFundamental principles-Various examples-Steam engine-Whitworth quick-return motion-Stephenson link motion-Velocity of valve

Page 43

CHAPTER V.

TOOTHED GEARING

Desirable conditions for gearing-Comparison with belting, ete.-Cyeloidal teeth-Involute tef ${ }^{\mathrm{h}} \mathrm{h}$-Iriternai gears-RacksDefinitions and proportions of parts of :eeth—Helical gears. . Page 61

CHAPTER VI.

BEVEL AND SPIRAL GI:ARIN(;

Various types of such gearing-Bevel gearing fo intersecting shafts-Gears for non-parallel shafts not intersecting-line contact. hyereholoidal gears-Point contact, spiral gears. Page 75

CHAPTER VH.

TRAINS OF GEARING

Velocity ratio-Reverted trains-Common systems with fixed axles- Epievelic trains, moving axles -Screw-entting lathe-Design of tranns of gearing-Examples: Weston triph x block, drill, ete.

Page 92

CHAPTER VII.

CAMS

Purpose of cams-Cam for stamp mill-Speeial can-Cam for operating shear-General problem, velocity-time curve being assumed.

Page 10.5

CHAPTER IX.

FORCES ACTING IN MACHINES

Classification of forces acting on machines-Solution by virtual centres-Examples: erank effort, cte.-Solution by phorographShear, steam engine, stone erusher, governor. Page 114

CHAPTER X.

CRANK EFFORT AND TURNING MGV' 'T DIAGRAMS

Considerations affeeting fly-wheel weights, ete.-Steam engineCrank effort from piston pressures-Piston pressures from indicator diagrams-Cumparison of tandem and eross-eompound enginesInternal combustion engines

- HAPTIER NI.

TIIE EFFICIENCY OF MACHINES

The objects of the machine- Meaning of efficiency-Discussion on friction-Friction in sliding pairs-Friction in turning pairsEfficience of eomplete machines-Examples-Effect of friction in howernors Iage 1.34

CHAPTER XII.

GOVERNORS

The function of the governor-Methods of control-Fly-ball governors-Spring governors-Sensitiveness, powerfulness-Isoch-ronism-The characteristic curve-Design of fly-ball governorShaft governors-Effect of distm ition of weights. Page 155

CHAPTER XIII.

SPEED FLUCTUATIONS IN MACHINERY

General Discussion-Kinetic energy of machines-Application tr engines-Sperd fluctuations and their determination in given cases-Numerical example. Poge 183

CHaPTER XIV.

THE PROPER WEIGHT OF FLI WHEII.S

 of speed-Dimensions to suit any give. ondition: Yunerical illustrations. Page 199

CHAPTER XV

ACCELERATIONS IN MACHINERY

Determination of acceleration of any part of a machine-Force necessary to produce acceleration-Stresses in link due to accelera-tion-Turning moment necessary-Examples. Page 212

CHAPTER I.

THE NATURE OF THE MACHINE

In discussing any subject it is very important to know its distinguishing characteristics and also the features which it has in common with other and in many cases more fundamental matters. In the case of the machine this is particularly necessary, for the problems connected with the mechanics of machinery do not differ in many ways from those of the mechanics of free bodies, the same laws applying to both, and yet the machine has certain laws peculiar to itself which we must examine and classify. Further, machinery is now in such common use that it is well worthy of special consideration.

In order to clear our ideas let us first of all examine some of the well-known machines and see what their properties are. Take one of the most common, the reciprocating steam engine, which is known to consist essentially of the following parts:-(a) The frame or part which is fixed to some stationary or rigid object such as a foundation, or the frame work of a ship. This part carries the crank shaft bearing, the cylinder and steam chest and the crosshead guides, and as these are frequently cast in one piece we may treat the whole as the one part called the frame. (b) The piston, piston rod and crosshead which may from the point of view of mechanics be treated as the second part, which we may briefly call the piston. This part moves relatively to the frame, all points in it having a pure motion of translation or sliding; it contains the wrist pin to which the third part about to be mentioned is connected.

The connecting rod or third part (c) has a somewhat peculiar motion, one end of it being bored to receive the wrist pin. and therefore having a motion of translation or a reciprocating motion, the other end being bored to fit the crank pin which rotates in a circle. Thus this rod swings about the wrist pin similarly to a pendulum but also moves in the general direction of its length at the same time. (d) The fourth part consists of the crank and crank shaft, the latter rotating in the crank shaft bearing on the frame and carrying the crank pin, the axis of which is parallel with that of the shaft, and which describes a circle about the axis of the latter. Since the connecting rod is attached to the crank pin and also to the wrist pin the stroke of the piston will be proportional
to, and it is generally equal to, the diameter of the erank pin circle. The flywheel is attached to the erank shaft. (e) The remaining parts consist of the valve gear and governor, and in this preliminary discussion will not be dealt with, their consideration being taken up later.

Take a sceond well-known machine, a lathe, which consists of the frame, the live spindle which rotates in bearings in the frame. the earriage which slides along the frame and contains a tool post having a cross motion, the change and back gears, the lead serew, belts, ete., all of which have certain definite duties to perform.

These two machines are typical of a very large number and from them we may develop the definition of the machine. Each of these machines contains more than one part, and if we think of any other machine we will see that it contains at least two parts, thus a crowbar is not a machine, neither is a shaft nor a pulley, if they were it would be diffieult to conceive of anything which were not a machine. The so called "simple machines"-the lever, the wheel and axle, and the wedge-give confusion along this line because the eomplete machine is not inferred from the name; thus the bar of iron cannot be ealled a lever, it only serves such a purpose when along with it is a fulerum, the wheel and axle only acts as a machine when it is mounted in a frame with proper bearings, and so with the wedge. So that we say a machine consists of a combination of parts.

Again these parts must offer some resistance to change of shape to be of any value in this connection. Usually the parts of a machine are rigid, but we very frequently find belts and ropes used, and it is well known that these are only of value when they are in tension because only when they are used in this way do they offer resistance tochange of shape. Noone ever puts a belt in a machine in a place where it is in compression. Springs are often used as in valve gears and governors, but they offer resistance wherever used. Thus the parts of a rachine must be resistant.

Now under the preceding limitations a ship or any other structure could readily be included, and yet we do not eall them machines, in fact, we would not call anything a machine in which the parts were ineapable of motion with regard to one another. In the engine, if the frame is stationary, all the other parts are capable of moving, and when the machine is serving its true purpose they do move; in a bieycle, for example, the wheels, chain, pedals, ete., all move relatively to one another, and in all machines the parts must have
relative motion. It is to be borne in mind that all the parts do not necessarily move, and as a matter of fact there are very few machines in which one part, which we shall refer to briefly as the frame, is not stationary, but all parts must move relatively to one another. If we stand on the frame of an engine the motion of the connecting rod is quite evident if it is slow enough, and if on the other hand we stood on the connecting rod of a very slow moving engine the frame would appear to us to move, that is, the frame has a motion relative to the connecting rod, and vice versa.

Now as to the nature of the motion, and it is this that especially distinguishes the machine. When a body moves in space its direction, sense and velocity depend entirely upon the forces acting on it for the time being, the path of a cannon-ball depends upon the foree of the wind, the attraction of gravity, etc., and it is impossible to make two cannon balls travel over the same path, because the forces acting continually vary; a thrown ball may go in an approximately straight line until struek by the batter when its course suddenly changes, so also with a ship, ete., i.e., in general, the path of a body in space varies with the external forces acting upon it. In the ease of the machine, however, the inatter is entirely different, for the path of each part is predetermined by the designer, and he arranges the whole machine so that each part shall aet in conjunction with the others to produce in each a perfectly defined path.

Thus, in the steam engine, the piston moves in a straight line back and forth without turning at all, the crank pin describes a true cirele, each point on it remaining in a definite plane, normal to the axis of the crank shaft, during the rotation, and again the motion of the conneeting rod, although not so simple, is yet perfectly well known. The same is true in a lathe, the carriage for instance slides along the frame, the spindle has no longitudinal motion, but only rotation, and the gears are not free to slide along their axles. These motions are fixed by the designer and the parts are arranged so as to constrain them absolutely, irrespective of the external forees aeting; if one presses on the side of the erosshead its motion is unehanged, and if he produces sufficient pressure to change the motion he breaks the machine and makes it useless. The carriage of the lathe ean only move along the frame whether the tool which it earries is idle or subjeeted to considerable force due to the cutting of metal, should the carriage be pushed aside so that it does not slide on the frame. the lathe would be stopped and no work done with it till it was agair
properly adjusted, and so we might multiply the illustrations almost indefinitely.

This is then a distinet feature of the machine, that the relative motions of all parts are completely fixed and do not depend in any way upon the action of external forces. Or perhaps it is better to say that whatever external forces are applied, the paths of the parts are unaltered.

There remains one other matter relative to the machine, and that is its purpose. Machines are always designed for the special purpose of doing work. In a steam engine energy is supplied to the cylinder by the steam from the boiler, the object of the engine is to convert this energy into some useful form of work, such as driving a dynamo or pumping water. We deliver power to the spindle of a lathe through a belt, and the lathe in turn uses this energy in doing work on a bar by cutting a thread. We deliver energy to the crank on a windlass, and in turn, this energy is taken up by the work done in lifting a block of stone. Every machine is thus designed for the expres purpose of doing zeork.

We may now sum $\mathfrak{u p}$ all these points in the form of a definition:A machine consists of resistant parts, which have a definitely known motion relatively to each other, and are so arranged that a given form of energy at our disposal may be made to do any desired form of work.

Many machines approach a great state of perfection, as for example the cases quoted of the steam engine and the lathe, where all parts are carefully made and the motions are all as close to those desired as one could make them. But there are many others which, although commonly and correctly classed as machines, do not come strictly under the definition. Take the case of the block and tackle which will be assumed as attached to the ceiling and lifting a weight. In the ideal case the pulling chain would always remain in a given position and the weight should travel straight up in a vertical line. and in so far as this takes place the machine may be considered as serving its purpose, but if the weight swings, then moiion is lost and the machine departs from the ideal conditions. Such imperfections are not uncommon in the cases of machines e.g., the rotor of an electrical motor may move endwise and thus deviate from ite desired path under certain conditions, and there are many such cases occurring in machinery. We can only say that such uncertainty of motion must be avoided so far as it is possible. and the
more such uncertainty is removed, the more nearly perfeet is the machine, and the more nearly does it comply with the conditions for which it was designed, and the more perfectly will it do its work.

DIVISIONS OF THE: ST'BJEC'I

We may divide our study of the machine into four part. (1) A study of the motions occurring in the machine without regard to the acting forecs, this may be called the kinematics of machinery. (2) A study of the external forces aeting on different parts of a machine, treating it as a structure which is not moving, or is moving uniformly and balancing forces by the ord ary methods of statics, the problems are those of static equilibrium. (3) A study of the forces due to the weights and shapes of the parts as well as to t external forces. (4) A study of the proper sizes and shapes to be given to the parts to provide for them sufficient strength to carry out the motions which the designer intended, and to be able to resist the applied forces. This is called machine design and is of sufficient importance and magninitude to demand an entirely separate treatment so that it will not be dealt with here.

We may begin on the first division of the subject, and shall discuss the methods adopted for obtaining definite forms of motion in machines. If we study the steam engine, which we have already diseussed at some lengh, we notice that in any moving part the path of any point always lies in one plane. e.g., the path of a point on the crank pin lies on a plane normal to the crank shaft, as does also the path of any point on the connecting rod, and a!so the path of any point on the crosshead. Since this is the case the parts of a steamengine mentioned are said to have plane motion, by this statement we simply mean that the path of any point on any part described always lies in one and the same plane. In a completed steam engine with slide valve, all parts have plane motion but the governor balls, in a lathe all parts have plane motion usual.y, the same is true of in electric motor, in fret, the rast majority of the motions with which we have to deal in machines are plane motions.

There are, however, eases where different motions occur, for example, we find that there are parts of maehines where a point always remains at a fixed distance from another fixed point, or where the motion is such that any peint will always lie on the surface of a sphere of which the fixed point is the centre, as in the universal
and ball and socket joints. Such motion is ealled spheric motion and is not nearly so common as the plane motion.

A third class of motions occur where a body has a motion of rotation about an axis and alsc a motion of translation along the axis at the same time, the motion of translation bearing a fixed ratio to the motion of rotation. Sich motion is called helicul or screw motion and occurs quite frequently.

In the ordinary monkey wrench the movable jaw has a plane motion relative to the part held in the hand, the plane notion being one of translation or sliding, all points on the screw have plane motion relative to the part held, the motion being one of rotation about the axis of the screw, and the screw has a helical motion relative to the movable jaw, and vice versa.

PLANE CONSTRAINED MOTION

It has been neticed already that plane motion is frequently constrained by causing a body to rotate about a given axis or by causing the body to move along a straight line in a motion of translation, the first form of motion may be called turning motion, the latter form sliding motion.

Turning motion.-This may be constrained in many ways but Fig. 1 shows one meihod consisting of a shaft in a fixed bearing, this shaft carrying a pulley as shown in the upper figure, while the lower figure shows a thrust bearing for the propeller shaft of a boat. In figure (a) there is simply a straight shaft S with pulley P, passing through a bearing B, and if the construction weie left in this form it would permit plane turning motion in the pulley and shaft, but would not constrain it, as the shaft might move axially through B. If, however, two collars C are secured to the shaft by screws as shown, then these collars effectually prevent the axial motion and we get only pure turning. On the propeller shaft the collars C are forged right on the shaft and here a number are put on on aceount of the great force tending to push the shaft axially. Thus in both cases the turning motion is necessitated by the two bodies, the shaft with its collars and the bearing, and these together are called a lurning pair for obvious reasons, the pair consisting of two elements.

It is evident that this turning pair can be arranged in various forms as shown in Fig. : one form being preferred to another in
eertair cases. The form (c) is uscd for railroad cars, the bearing here only eoming in contact with the shaft for a small part of the circumference of the latter, the two being held in contact purely kceause of the conneetion to the car which rests on top of B, the collars C are here of slightly different form. At (d) we have a vertical bearing which, in a somewhat bether form is often used in turbines, but here again we would only get the turning motior. provided the weight were on tine vertical shaft and pressed it into B. In this ease there is only one part corresponding to the collar C, which is the part $c^{\bullet} B$ below the shaft.

In he eases (a) and (b), turning motion will take place by construction, and is said to be secured by chain closure, which will be

Fig. I
referred to later, while in the cases (c) and' (d) the motion is only constrained so long as the external forces act in such a way as to press the two elcments of the pair together, plane motion being secured by force closure. In cascs, such as those described, wherc force closure is permissible it forms the cheaper construction as a gencral rule.

Sliding motion.-The sliding pair also consists of two elements, and if a section of these clennents is taken normal to the direetion of sliding the elements 1 . ast be non-circular. As in the previous case the sliding pair in practice has very many forms, a fow of which
are shown in Fig. 2, (a), (b) and (c) being the forms in very common use for the crossheads of steam engines, (c) being rather eheaper in general than the others. At (d) is shown a form which may be used where there is very little tendency to turning, consisting of a shaft with a long keyway cut in it while the other element has a parallel key, or "feather." fastened to it, so that the uuter clement may slide along the shaft but eannot rotate upon it. The student will see very many forms of this pair and should study them carefully.

In the automobile engine and in all the smaller gas and fasoline engines. the sliding pair is circular, because the crosshead is omitted and the connecting rod is directly attached to the piston, the latter

Fig. 2
being of course, circular and not constraining sliding motion. In this case the sliding motion alone is obtaincd because of the connceting rod, which on account of the pairing at its two ends will not permit the piston to rotate. The real sliding pair, of course, consists of the cylinder and piston, both of which are circular.

In the case of sliding pairs also we may have chain closure where constraint is due to the construction as in the cases illustrated in Fig. 2 at (a), (b), (c), (d), in these cases the motion being one of sliding irrespective of the directions of the acting forces, or we may have force closure as shown at Fig. 3, which represents a planer table, the weight of which alone keeps it in place. Occasional!.
through an accident the planer table may be pushed out of place by a pressure on the side, but of course, the planer is not again used until the table is replaced fer the reason that the design is such that the table is only to have plane motion, a condition possible only if the table rests in the grooves in the frame.

The two principal forms of planc constrained motion are thus turning and sliding, these motions being controlled by turning and sliding pairs respectively, and each pair consisting of two elements. Where contact between the two elements of a pair is over a surface the pair is called a lower pair, and where the contact is only along a line or at a point, the pair is called a higher pair. To illustrate this we may take the ordinary bearing as a very common example of lower pairing, whercas a roller bearing has line contact and a ball bearing point contact and are examples of higher pairing,

Fig. 3 these illustrations are so familiar as to require no drawings. The contact between spur gear teeth is along a line and therefore an example of higher pairing.

In general, the lower paits last longer than the higher, because of the greater surface exposed for wear, but the conditions of the problem settle the type of pairing. Thus lower pairing is used on

Fig. 4
the main shafts of large engines and turbines, but for automobiles and bieveles the roller and ball bearings are common.

HACHINES, HECHANISMS, ETC.
Returning now to the stcarn engine, Fig. 4, described at the beginning, its formation may be studied. We will omit the valve gear and governor at present and discuss the remaining parts consisting of the crank, crank shaft and fly-wheel, the connecting rod, the piston
piston rod and crosshead, and finally the frame and cylinder .Taking the connecting rod it is seen to contain two turning clements, one at either end, and that the real function of the metal in the rof is to keep these two elements at al fixed distance apart. The crank and crank shaft a contains two turning elements, one of which is paired with one of the elements on the connecting roll b, and forms the crank pin, and the other is paired with a corresponding element on the frame d, forming the main bearing It is true that the main bearing may be made in two parts, loth of which are made on the frame, as in centre crank engines, or one of which may be placed as an outboard bearing, but it will andily be understood that this divi-

lig. 5

Fig. 6
sion of the bearing is only a matter of practieal convenience, for it is quite conecivable that the bearing might be made in one pic e. and if this piece were long enough it would serve the purpose perfectly. Thus the crank consists essentially of two turning elements properly. connected.

Again the frame d contains the outer element of a turning pair, of which the inner element is the crank shaft, and it also contains a sliding element which is usually again divided into two parts for the purpose of convenience in construction, the parts being the crosshead guides and the eylinder. But the two parts are not absolutely
essential, for in the single-acting gasoline engine the guides are omitted and the sliding element is entirely in the eyelinder, and there may even be double acting machines without the erosshead guides, althouph they are unusual. Of course, the shape of the element depends tuon the purpose to which it is put, thus in the ease referred to it is round.

Then there is finally the crosshead c, with the turning element, pairing with the conneeting rod and the sliding element pairing with the sliding element on the frame. The sliding element is ustally in two parts to suit those of the frame, but it may be only in one if so desi ed and conditions permit of it (see Fig. 2).

Thus the steam engine consists of four parts, each pa:t containing two clements of a pair, in some cases the elements being for sliding. and in others for turning.

Again, on examining the small gasoline engine illustrated in Fig. 5 , it will be seen that the same method is adopted here as in the stearn engine, but the crosshead, piston and piston rod are all combined is: the single piston c. Further in the Scotch yoke, Fig. 6, a scheme in common use for pumps of small sizes as used on fire engines at times and for other purposes, we have the crank a with two turning elcments, the piston and crosshead c with two sliding elements, and the block b. and the frame d, each with one turning element and one sliding element.

The same will be found true in all machines having plane motion, each part containing at least two elements, each of which is paired with corresponding elements on the adjacent parts. For convenience we shall eall each of these parts of the machine a link, and the series of links so connected as to give a complete machine is called a kincmatic chain. or simply a chain. It must be very carefully borne in mind the . if a kine matic chain is to form part of a machine or a whole machine, then all the links must be so conneeted as to have definite relative motions, this being an essential condition of the machine.

In Fig. 7 threc cases are shown in which each link has two turning eldments. Case (a) could not form part of a machine because the three links could have no relative motion whaterer, as is evident by inspection. while at (b) it would be quite impossible to move any link without the others having eorresponding changes of position, and for a given change in the relative positions of two of the links we have a definite ehange produced in the others. Look-
ng next at case (c), we observe at once that we could wecure both $D C$ and $O D$ to the ground and yet move $A B, B C$, and $O A$, that : definite change in $A B$ produces no necessary change in $O A$, or se link may move without the others undergoing motion or relative ehange of position. Such an arrangement could not form part of a machine ecause the relative motions of the parts are not fixed but variable according to conditions. At (d) again we find a chain which can be used because here if we move any one link relatively to any other all the links move relatively, or if we fasten one link, say $O D$). to the ground and mover $O A$ then must all the other links move.

When a chain is used as a machine, usually one of the links acts as the frame and is fixed to a foundation or other stationary boxly.

lig. 7

In studying the motions of various links it is not necessary to know the exaet shape of the links at all, for the motion is completely known if we know the loeation and form of the pairs of elements. Thus we may replace the actual link by a straight bar which conneets the eicments of the link together, and we shall always assume that this bar never changes its shape during motion. We shall thus in future represent the ehain by straight lines and a chain so represented and having the relative motions of all links completely constrained and having one link fixed we shall call a mechanism.

If the links of a chain have only two elements each. the chain
is said to be simple, but if any link has three or more elements as at Fig. 7 (d), the chain is compound.

Inversion of the Chain.-Since in forming a mechanism we fix one link of the chain it would appear that since any of the links may be fixed in a given chain, it may be possible to change the nature of the resulting mechanism by fixing various links successively. Take as an example the mechanism shown at (1) Fig. 8. d being the fixed link, here a would describe a circle. c would swing about C and b would have a pendulum motion, but with a moving pivot B. If we fix b instead of d, a sitil rotates, c swings about b and d now has the motion boriginally hatl, or the meehanismi is unchanged.

If a is fixed then the whole meehanism may rotate, b and d rotating about A and O respectively as shown, and c also rotating, the form of the mechanism being thus changed to one in wieh all

the links rotate. If, on the other hand, we fix c ther none of the links can rotate but b and d simply oscillate about β and C respectively. The student will do well to make a cardboard model to illustrate this point.

The proces, by which the nature of the re chanism is altered by changing the fixed link is called inersion of the chain, and in general, we may say that there are as many meehanisms as there are links in the chain of $w:$:eh it is eomposed, although in the above illustration there are only three for the four links.

This inversion of the chain is very well illustrated in ease of the chain used in the steam engine, which we slall refer to in future as the slider-crank chain. The mechanism is shown in Fig. 9 with the crank a, connecting rod b and piston c, the latter having one sliding
and one turning element and representing the reciprocating masses, ie., piston, piston-rod and crosshead. The frame d is here represented by a straight line (although it is common yet the line of motion of c does not always pass through O, as shown at (1). it

Fig. 9
represents the ordinary steam engine). If now, instead of fixing d we fasten b to the foundation. b being the longer of the two links containing the two turning elements, then a still can rotate, c merely swine about 9 and d has a swinging and sliding motion, and if c

is a cylinder and a piston is attached to d we get the oscillating engine ats shown at (2) Fig. 9, and drawn in some detail in Fig. 10.

If instead of fixing the long rod b with the twi, turning elements.
we fix the shorter rod a, then b and d revolve about P and 0 respectively, and c also revolves sliding u_{1}, an 1 down d. If we drive b by means of a belt and pulley at eo stant speed then the angular velocity of d is variable and the devi e may be used as a quiek return motion, in fact, it is the Whitw th quiek return motion and

トі! ! !
is illustrated at (3). The practical form is also shown, Fig. 11, and the student should study the relation between the mechansim and the actual machine.

In the Whitworth quick-return motion. Fis. 11, D is the pinion driven by belt and this meshes with the gear b. The gear rotates on a large bearing E attached to the frame a of the machine, and through

Fig. 12

IFig. 13
the bearingr f is a pin F, to one site of the centre of F, carrying the piece d, the latter being driven from b by a pinc working in a slot. The arm A is attached in a tool holder at B.

The fourth inversion found by fixing c is rarely used though it is found occasionally: It is shown at (4) Fig. 9.

There are thins four inversions of this chain and it might be further changed shighty bey placing ! to one side of the link d thus
giving the scheme used in operating the slecves in sors: forms of gas engines, e.g., the Knight engine.

A further illustration of a ehain which goes through many inversions in practice is given in Fig. 12, and contains two links. b and d, with one sliding and one turning element each, also one link

Fig. 14
a with two turning elements and one c with two sliding elements When the link d is fixed c has a reciprocating inotion and such a setting is frequently used for small pumps driven by belt through the erank a (Fig. 12), c being the plunger. A detail of this has already been given in Fig. 6. With a fixed the device becomes Oldham's

Fig. 15
coupling which is used to connect two parallel shafts which are very nearly in line, Figs 1.3 and 14.

In Fig. 14, A and C are the two shafts which are parallel and which rotate about fixed axes. Keyed to each shaft is a coupling with a slot running right across its face and between the couplings is a piece B with two keys at right angles to one another, one on each side, fitting in grooves in A and C. As A and C revolve, B works sideways and vertically. both shafts always turning at the stame speed.

A somewhat different modification of the slider-crank chain is shown at Fig. 15, a device also used as a quick-return motion in shapers and other machines. On comparing it with the Whitworth motion shown at Fig. 11, it is seen that the nature of the mechanism may also be somewhat altered by varying the proportions of the links. The mechanism illıitrated at Fig. 15 should be clear without further explanation D is the driving pinion working in with the large gear b, the tool is attached to B which is driven from c by the link A. It is readily seen that B moves faster in one direction than the other, Furtheran arrangement is made for varying the stroke of B at pleasure by moving the centre of c eloser to, or further from, that of b.

CII.JPTER II.

MOTION IN MACHINES

We shall innd it useful to stude very briefly certain of the characteristies of plane motion, and shall here agratn explain the term bey stating that any body has plane motion when it moves in such a way' that amy riven point in it ahralys remains in one and the same phate. and further, that the planes of motion of two different points in the body are paratlel. Thus, if ant boty hate plane motion relative to the paper, then any point in the boty must remain in a plane parallel to the plane of the paper during the motion of the borly.

A little consideration will show that in the case of phane motion the location of a body is known when the location of ant line in the boty is known, this line being in a plane paralle to the plane of motion orelse in the plane of motion itself. The explanation is that since all points in the body hate plane motion, then the projection of the boly on the plane is abays the same for all positions and hence the line in it simply beates the boxle. For example, if a chair were pushed about upan the floor and hat points marked R and L. upon the bottons of two of the legs, then the location of the chat is abwas known if we • me the positions of K and l., i.c., of the (imaginary) line $R L$, if. bewerer. the chair were free to go up athd down from the floor it woukl be necessary for us to know the position of the projection of RL. on the floor and also the height of the line above the floor at any instant. Further, if it were possible for the chair to be tiltedbackivards about the (innginary) line $R /$, the position of the latter wouk tell us very litte about the chair, as the tips of its legs might be kept stationary while we were tilting the ehair back and forth, the position of R^{\prime}. being the same for varions angular positions of the chair.

If we consider the ease where a boty has not planemotion, then the line will tell us very little about the pesition of the body, in the case of an air ship, for example, the ship may stand at various angles about a given line, say the axis of the wheds. the ship dipping downward on rising at the will of the operator.

If now the location of a body having plane motion is known when the location of any line in the body is known, then the motion of the boty will be complely known, if the motion of any line in the body is known. Thus let (Fig. 16, represent the proiection on the
plane of the paper of any broly having plane motion, AK being any line in this tordy: and let t / β tee assumed to be in the plane of the paper. which is userl as the plane of referchere. Suppence now it is known that while C moves ir, C°. the prints A and f move over the paths 1.1^{\prime} and $B B^{\prime}$, then the motion of C during the change is completely known. Thus at some intermediate prsition the line is at A, B, and the figure of C can at onee be drawn about this line. and this locates the prosition of the body corresp onding

I:ig. 16 (") the location A, B, of the line $1 / 3$. It will therefore follow that the motion of a brody is comple tely known prowided only that the motion of any line in the bolls: : known. This propssition is rif much inprotance and should be carefully sturlied and understorel.

REL.ATIVE MOTION

It will be necessary at this print to grasp some idea of the meaning of relative motion. We have practically no idea of any other kind of motion than that referred io) some other borly which moves in space, we say that the morn moves simply treause it changes its posi ion as we view it from the earth, or we say a train is moving as it pa- es us while we stand on a railroad crossing. Agair, we see passengers in a railroad car as the train moves out and we sry they are moving. While each in turn looks at other nassengers sitting in the same car and says the latter are still. Again. brakeman may walk backward on a flat car at exactly the same ; the car goes forward. and a person on the ground who couid jus nis head would say he was stationary; while the engine driser whald say he was moving at several miles jer hour. If we stood on shore and saw a ship go out we would say that the funnel was moving, and yet a person on the ship would say that it was stationary.

These conflicting statements, which are, however, very common, would lead to endless confusion unless the essential differences in the rarious cases were grasperl. and it will be scen that the real difference of view results from the fact that different persons have
entirel! differcn: standards of comparison. Standing on the ground the standard of rest is the earth, and anything that moves relative te it is said tobemoving. The man on the flat car would be deseribed as stationary because iry is not move with regard to the chosen standard-the eartl in: a engine driver vould be thinking of the train, and he "ribis y the man moved becatuse he moverd relative to his standar: lie train. It is easy to multiply these illustrations indefinitely, but they would always lead to the same result, that whether a body moves or remains at rest depermeds alltogether upon the standard of comparison, and it is usual to saly that a body is at rest when it has the same motion as the body on which the observer stands, and that it is in motion when its motion is different to that body on which the ohserver stands. On a railroad train we speak of the poles flying past us, whereas a man on the grotind says they are fixed.

When the standard which is used is the earth it is usual to speak of the motions of other bodies as absolute (although this is ineorrect. for the earth itself moves) and when any standard which moves on the earth is used, the motions of the other bolies are said to be relatice. Thus the absolute motion of a body is its motion with regard to the earth, and the relative motion is the motion as eompared with another body which is itself moving on the earth. Unless these ideas are fully appreciated the reader will undoubtedly meet with much difficulty with what follows, for the notion of relative motion is difficult.

In this connection it should be pointed out that a body secured to the earth may have motion relative to another body which is not so secured. Thus when a ship, is coming into port the dock appears to move toward the passengers. but to the person on shore the ship, appears to come toward the shore, thus the motion of the ship relative to the dock is equal and opposite to the motion of the doek relative to the ship.

Certain, opositions will now be self-erident, the first being that if two bodies have no relative motion they have the same motion relative to every other body. Thus, two passengers sitting in a train have no relative motion, or do not change their positions relative to one another, and thus they have the same motion or change of position relative to the earth, or toanother train or to any other body: the converse of this proposition is also true, or two
brolices which have the same change of position relative to other lowlies have no relative motion.

Another very important proposition may be stated as follows; the relative motions of two bodies are not affected by any motion which they have in ermmon. Thus the motion of the erank and connceting roxl of an engine relative to the frame is the same whether the engine is a stationary one, or is on a steamboat or a lecomotive. simply beeause in the latter cases the motion of the lecemotive or ship is common to the crank, eonneeting rod and frame and does not effeet their relative motions.

The lacter proposition leads to the statement that if it be desired to study the relative motions in any machine it will not produce an.* effeet u pon them to add the same motion to all parts. For example, if a bieyele were moving along a road it would be found almost impossible to sturly the relative motions of the various parts, but it is known that if to all parts a motion be added sufficient to bring the frame to rest it will not in any way affeet the relative motions of the parts of the bieycle. Or if it be desired to study the motions in a locomotive engine, then to all parts a common motion is added which will bring one part, usually the frame, to rest relatively to the observer, or to the observer and to all parts of the machine such a motion is adrled as to bring him to rest relative to them, in fact, he stands upon the engine, having added to himself as well as the engine this common inotion. So that whenever it is found necessary to study the motions of machines all parts of which are moving, it will always be found convenient to add a common motion to all links which will bring one of them to rest.

To give a further illustration, let two gear wheels a and b run together and turn in opposite sense about fixed axes. Let a run at $+50 \mathrm{r} . \mathrm{p} . \mathrm{m}$. , and b at $-80 \mathrm{r} . \mathrm{p} . \mathrm{m}$. , it is required to study the motion of b relative to a. To do this add to each such a motion as to bring a to rest, i.e., $-\mathbf{5 0} \mathrm{r} . \mathrm{p} . \mathrm{m} .$, the result being that a turns $+\mathbf{5 0}-\mathbf{5 0}$ $=0$, while b turns $-80-50=-130 \mathrm{r}$. p. m. or b turns relative to a at a speed of $130 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and in opposite sense to u. We have here simply added to each wheel the same motion, which does not affeet their relative motions but has the effect of bringing one of the wheels to rest. To find the motion of a relative to b we bring b to rest by adding $+80 \mathrm{r} \mathrm{p} . \mathrm{m}$. . so that for a we get $+50+80=$ 130 r . p. m., or the motion of b relative to a is equal and opposite to that oi a relative to b

It has alrealy been pointed out on page 26 that the motion of any body is completely known provided the motion of any line in the borly in the phane of motion is known, that is, provided the motions or paths of any two points in the borly are known. Now let (${ }^{\circ}$ Fig. 17, represent any borly moving in the plane of the paper at any instant, the line $A B$ being also in the plane of the paper, and let $F A$ and Bl : represent short lengths of the pathis of A and B respectively at this instant. Now the direction of motion of A is tangent to the path $F A$ at A and that of B is tangent othe path $B l i$ at B, or the paths of t and k give at once the direction of the motions of these points at the instant. Through A draw a normal $A O$ to the direction of motion of $\cdot 1$, then, if a pin is stuck through any point on the line AO into the plane of reference and (is turned very slightly about the pin it will give to A the direction of motion
 it has at the instant The same argiment applies to $B O$ and hence to the point O where $A O$ and $B O$ intersect, that is, if a pin be put through the point O in the body C and into the plane of reference. then at the given instant that the body is in the position shown. its motion is the same as if r-tated for an instant about this pin. O is called the instantancous or sirtual eentre, because it is the point in the bodly C about which it is virtually turning, with regard to the paper, at the instant, and it will at once appear that O will ehange in general from one instant to the next, see Fig. 17, unless the paths of A and B happened to be concentric circles or were parallel straight lines.

Now this virtual eentre gives a great deal of information about the body at the gieen instant. thus it shows that the direction of motion of G is $\perp t o O G$ and of H is \perp to $O H$, because the direction of motion of any point in a rotating boly is always perpendicular to the radius to that point : so that when the virtual centre is known the direction of motion of every point in the body is also known. We are not free to pui down a path at random for G on $A B$ because it might not agree with the paths given for A and B, but when the latter are given. the former path is determined and hence cannot be assumed.

Further, the relative linear velocities of all points in C are known. Let the body C be turning at this instant at the rate of n revs. per min., corresponding to ω radians per sec., so that $\omega=\frac{2 \pi n}{60}$ Then at the instant the linear velocity v of any point B situated at $O B=r \mathrm{ft}$. from O will evidently be $v=2 \pi r \cdot \frac{n}{60}=r \omega \mathrm{ft}$. per sec., and since ω is the same for the whole body it is seen that the linear velocity of any point is proportional to its distance from the virtual centre. Thus $v_{1 B}^{\prime}=O B . \omega ; v_{A}=O A \cdot \omega ; v_{G}=O G . \omega$, and so on, and the sense of the velocities v must agree with that of ω.

The virtual eentre for a body may, therefore, be found, provided only that we know the directions (not necessarily the paths) of motion of two points in it, and having found this centre the directions of motion of all points in the body are known, and further their relative velocities, and the actual velocities in magnitude, sense and direction will be known if the angular velocity is known. (This should be compared with the phorograph discussed in a later chapter.) It is to be further noted that the virtual centre O is a double point; it is a point in the paper and also in C, and the motion of any point in C with regard to the paper being perpendicular to the radius from O to that point so also the motion of any point in the paper with regard to C is perpendicular to the line joining this point to O.

Another point is to be rivticed, that if the various virtual centres O are known, then at onee the relative motions of C and the paper are known. Thus the virtual eentres of one body with regard to another give always the motion of the one body with regard to the other.

THE PERMANENT CENTRE

It has already been pointed out that the instantaneous or virtual eentre is the centre for rotation of any one body with regard to another at a given instant, and that the location of this centre is changing from one instant to the next. There are, however, very many eases where one body is joined to another by means of a regular bearing, as in the ease of the erank shaft of an engine and the frame, or a wagon wheel and the body of the axle, or the connecting-rod and crank pin of an engine. A little reflection will show that in each of these eases the one body is always turning with regard to the other, but that the centre or axis of revolution has a fixed position with regard to cach
of the lxalies concerned, thus in these cesses the virtual centre remains relatively fixed and we may apply t^{\prime} it the torn permanent centre.

The term permanent centre must not ix confused with the term fived centre. which would be applied to a centre fixed in place on the earth, but is intended to include only the ease where the virtual centre for the rotation of one boxly with regard te another is a print which remains at the same place in each brely and des's mot change from one instant to another, thus the centre lexween the connecting rod and crank and leetweon the crank shaft and frame are foth permiment, the latter feing also fixerl usualls:

THE THEOREM OF THI: TIIREE CENTRIS

Before applying the virtual centres in the solution of problems of various $\begin{aligned} & \text { inds, a very important property comerteri with then will }\end{aligned}$ be proved. Let a, b and c, Fig. 18, represent three bexlies all of which have plane motion of any nature whatever, and which motion is for

Fig. 18
the time being unknown. Now, gencrally a has motion relative to b, and b has motion relative to c, and similarly c with regard to a, in brief all three bolies move in different ways. hence from what has already been said, there is a virtual eentre of $a \leftrightarrows b^{*}$ which we may call $a b$, and this is of course also the centre of $b \zeta a$. Further, there is a virtual ceatre of $b \rightarrow i$ which we call $b c$, and also a centre of $c \zeta a$, which is $c a$, thus for the three bodies there are three virtual centres. Now it will be assumed that enough information has been given about the motions of a, b and c to enabie us to locate $a b$ ind $a c$ only, athd it is required to find $b c$.

Since $b c$ is a point common to both bodies b and c, it must lie

[^0]somewhere in the area where they overlap, and let it be assumed to lie at $P^{\prime \prime}$. Then P^{\prime} is a point in b and also in c. Asa point in b its motion with regarl to a will be normal to $P^{\prime}-a b$. $\vdots . e$., in the direction $I^{\prime \prime} A$, because the : of any pint in one broly with regard to another berly is nonmal to the line joining this point to the viriual centre for the two oxdies. As a proint in c, the motion of $P^{\prime} \rightarrow a$ is normal to $P^{\prime}-a c$ or in the direction $P^{\prime} B$, so that P^{\prime} has two differerit motions with regard to a at the same time, whieh is impossible or P^{\prime} cannot be the virtual centre of $h \rightarrow c$. Since, however, this is not the print. it shows at once that the point bo is located somewhere along the line ah-ca, or say at P. because it is only such points as P which give the same motion with regard to a whether considered as points in b or in c : thus the centre b must lie on the same straight line as the cenires $a b$ and $a c$. It is not mossible to find the exact prosition of be, however, without further information, all that is known is the line on whicl it lies.

This proposition may be thus staterl:-If in any mechanism we have any three links a, f, g, all having plane motion, then for the three links there are three virtual centres $a f, f g$ and $a g$, and these three centres must all lie on one straight line.

Two of the eentres may be permanent but not the third; in the stean engine we have the crank a, the connect ng rod b and the frame d. and the centres ab and ad are permanent, but bd is not.

THE DETERMINATION OF VIRTCAL CENTRES

The chapter will be concluded by finding the virtual eentres in a few mechanisms simply to illustrate the method, the application being given in the next chapter. As an example, consider the chain with four turning pairs, which is taken on account of its simplicity and its very common application. It is shown in Fig. 19, and consists of fuur links a, b, c and d, of different lengiths, a being fixed, and be inspection the four permanent centres $a b, b c, c d$ and $a d$, at the four corsers of the chain are at once located. It is also seen that there are six possible centres in the mechanism, viz., $a b, b c, c d, d a$, $b d$ and $a c$, these being all the presible combinations of the links in the chain when taken in 1 aits, and of these six, the four permanent ones are found alrcady, and only two others, ac and $b d$ remain. There are two methods of finding them, the irst of which is the most instructive, and will be given tor that reason.

To find the centre ind. By the principle of the virtual centre we may do this at once if we know the dirction of motion of any two points in $b \rightarrow d$. Now, on examining ab it is seen that it is a point in a and also in b; as a point in a it moves with regard to d about the centre $a d$ and thus . direction nomal to ad-ab or to a itself. And as a point in b it must have the same motion with regard to d as it has when considered as a point in $a ; i . e .$, the motion of $a b$ in b with regard to d is in the direetion perpendicular to a. Hence, from page 30, the virtual centre will lie on the line through $a b$ in the direction of a, i, in a profuced. Again b e is a point in b and c, and ats a point in c it moves with regard to din a direetion perpendieular to $a d-b c$, or in the direction $b-F$, and this must also be the direction of $b c$ as a point in $b \rightarrow d$, so that the virtual centre of

lig. 19
$b \rightarrow d$ must also lie in the line through $b c$ normal to $b c-F$, or in c produced. Hence, $b d$ is at the interscetion of a and c produced.

This could also ' ${ }^{\text {a }}$ an solved by the theorem of the three centres, for there 11 . bodies a, b and d, ana both $a d$ and $a b$ are knowi, eentres, $a d, a b$ and $b d$, for the three
t lie in ene straight line, and as es at onee the line on which $b d$ lies. Similarly, by considering the three bodies, b, c and d, and knowing the eentres $b c$ and $c d$, there is found again the line on which $b d$ lies, and hence bd is readily tound. To find the centre ac it is possible to proeced in either of the ways already explained, and find $a c$ at the intersection of the lines b and d produced.

One other example may be solved, and in order to include a sliding pair consider the ease shown in Fig. 20. in which a is the
crank, b the comnecting rul, e the crosshearl, pistom, etc., and d the fixed frame. As before there are six centres $a d, a b, b c, c d, a c, b d$. of which ad. ab, and be are permanent and lound by inspection.

To find the centre $c d$. The motion of $c \rightarrow d$ is one of slicling in the horizontal direction, that is, c moves in a straight line, or what is the same thing, in a circle of infinite radius, and the centre of this

1.ig. 20
circle must, as before, lie in a line normal to the direction of motion of $c \zeta d$. Thus $c d$ lies on a vertical line through $b c$, or in a vertical line through any point in the mochanism such as $a d$, as well as $b c$.

Having found $c d$, the other centres, $a c$ and $\dot{d} d$ may be found at once by the theorem of the three centres. Thus, $b d$ lies on $b c-c d$ and $a d-a b$ which gives $b d$, while $a c$ lies at the intersection of $b c-a b$ and $a d-c d$.

CHAPTER III.

VELOCITY DIAGRAMS

In order to show some of the practical applications of the virtual centres, a few problems will be solved, and at this stage of the subject only such problems as relate to velocity, although in later chapters some further applications of these prineiples will be given

RElative linear velocities in mechanisms

The method will be demonstrated by applying it in one or two of the very simplest eases, choosing first the meehanism shown in Fig. 21, and for which all the centres have already been found. Let the first problem be to compare the linear velocities of different

Fig. ${ }^{11}$
points in one link, say a. Since the link a turns with regard to the earth about the permanent centre ad. it will be at onee clear that the linear velocity of any point A_{1} is to that of any point A_{2} in the ratio of their distances from $a d$, so that if A, E be drawn in any direetion to represent the veloeity of A_{1}, and if through A_{2} is drawn $A_{2} F$ parallel to A, E to meet $a d-E$ in F, then will $A_{2} F$ represent the linear velocity of A_{2} on the same seale as $A_{1} E$ represents the linear velocity of $A_{\text {, }}$, If the veloeity of A_{1} is unknown, then this must be written in the form $\frac{\text { Linear velocity of } A_{1}}{\text { Linear velccity of } A_{2}}=\begin{aligned} & A_{1} E \\ & A_{2} F\end{aligned}$, giving simply the ratio between the velocities.

If it were required to compare the linear velocity of a point $A_{\text {, }}$ in a with that of a point B, in b, the method of procedure would be
as shown in Fig. 22, which is drawn separately from the former figure for the sake of elearness. Here there are the two links a and b under consideration, and also the fixed link d, and these three links have the three centres $a d, a b, b d$, all on one line. $a b$ is a point common to a and b, being a point on err. ink. Treating it as a point in a, proceed as in the last example i ind its veloci 5 . Thus set off $A_{1} E$ in any direction to represent he Jincar vel ity of A_{1}, then will $a b-F$ parallel to A, E represent th: velocity $0 a b$ to the same scale. Now treat $a b$ as a point in b and is veiuci i, \because given as $a b-F$, so that the matter now resolves itself into finding the velocity of a point B in b, the velocity of the point $a b$ in the same link being given.

It must here be remembered that $a b-F$ represents the absolute velocity of the point $a b, i . e$., the velocity of this point, using the fixed

Fig. 22
frame of the machine as the standard. With regard to the frame the link is turning about the centre $b d$, thus for the instant b turns relative to d about $b d$, and the velocities of all points in it at this instant are simply proportional to their distances from $b d$. The velocity of B , is to the velocity of $a b$ in the ratio $b d-B$, to $b d-a b$, and in order to get, this ratio conveniently, draw the arc $B_{1} B_{t}{ }^{\prime}$ with centre $b d$, then join $b d-\mathrm{F}$ and draw $B_{1}^{\prime} C$ parallel to $a b-F$ to meet $b d-F$ in G, then $B_{G} G$ represents the velocity of B, in the link b on the same scale that $A_{1} E$ represents the velocity of A_{1}. If desired, it is possible also to find the relative velocities of B_{1} and B_{2} on b by the construetion shown, the circles $B_{2} B_{2}{ }^{\prime}$ and $B_{1} B_{1}{ }^{\prime}$ both having the eommon centre bd.

Notice that in dealing with the various links in finding relative
velocities, it is neeessary to use the centres of the links under consideration with regard to the fixed link; thus the centres $a d$ and $b d$ and the common centre $a b$ are used. The reason $a d$ and $b d$ are employed, is because the velocities under consideration are all absolute.

To compare the velocity of any point A, in a with that of C_{t} in c. Fig. 23, it would be nocessary to use the centres ad, ac, and $c d$. Proceding as in the former case the velocity of ac is found by drawing the are A, L with centre ad and making $L N$ represent the velocity of A_{1} on any scale, then the line $a c-M$ parallel to $L N^{\prime}$ meeting $a d-N^{\prime}$ proluced in M will represent the velocity of $a c$. Join $c d-M$, draw the are $C_{1} C_{1}{ }^{\prime}$ with centre $c d$ and then $C_{1}{ }^{\prime} K$ parallel to $a c \cdots M$ will represent the linear velocity of C_{1}.

A general proposition may be stated as follows:-The velocity of any point A in link a being given to find the linear velocity of F in f, the fixed link being d. Find the centres $a d, f d$ and $a f$, then,

Fig. 23
using $a d$ and the velocity of A, find the velocity of $a f$, and then treating of as a point in f and using the centre $f d$, find the velocity of F

relative angílar velocities in mechanisms

Similar methods to the preceding may be employed for finding angular velocities in mechanisms.

Let any body having plane motion turn through an angle θ about any axis, either on or off the body, in time t, then the angular velocity of the body is defined by the relation $\omega=\frac{\theta}{t}$. As all links
in a mechanism move exce; the one which we term the fixed link, there are in general as man! different angular velocities as there are moving links. The angular velocities of the various links a, b, c, ete., will be designated by $\omega_{a}, \omega_{b}, \omega_{c}$, etc., respectively, the unit being the radian per second.

The relative angular velocities of two links such as a and b may be expressed as a ratio $\frac{\omega_{a}}{\omega_{b}}$ which is a pure number, or by a difference $\omega_{a}-\omega_{b}$, which is a number of radians per second. In the former method the relation between the two velocities is obtained when both are referred to the earth as the standard, and it is this ratio which is commonly referred to in connection with pulieys, gears and other devices. Thus if a belt connects two pulleys of 20 in . and 30 in . diameter, the velocity ratio is $\frac{2}{3}$, i.e., when standing on the ground and counting the revolutions with a speed counter one of the wheels will only make $\frac{2}{3}$ the number of revolutions of the other

There are, however, cases in which it is desirable to know the velocity with which one body turns relative to another; then the latter method is used. If, for example, there are two gears, one a turning at the rate of 20 revs. . $\because .$. , and the other b at the rate of 30 revs. per min., in the sai. 3.14 , then the velocity of a with oard to b will be $\omega_{a}-\omega_{b}=-1.05$ radians per second, that is, if we stood on the gear b and looked at the gear a, the latter would appear to turn backward at the rate of 10 revs. per min. $=1.05$ radians per sec. If we stood on gear a, then b would appear to turn forward, since $\omega_{b}-\omega_{a}=1.05$, the angular motion of $a \zeta b$ being equal and opposite to that of $b \zeta a$. This method of dealing with angular velocities is quite common, and finds many useful applications.

Given the angular velocity of a link a to find that of any other link b. Find the three centres $a d, b d$ and $a b$; then as a point in a, $a b$ has the linear velocity $(a d-a b) \omega_{a}$ and as a point in $b, a b$ has the velocity $(b d-a b) \omega_{b} \quad$ But as $a b$ must have the same velocity whether considered as a point in a or in b, then $(a d-a b) \omega_{a}=(b d-a b) \omega_{b}$, or $\frac{\omega_{b}}{\omega_{a}}=\frac{a d-a b}{b d-a b}$. The illustration in Fig. 24 gives the method
and will require very littic explanation. Draw a circle with centre $a b$ and radius $a b-a d$, which cuts $a b-b d$ in $a_{1} d_{1}$, lay off $b d-F$ in any direction to represent ω_{μ} on any scale, then draw $a_{1} d_{i}-E$ parallel to $b d-F$ to meet $a b-F$ in E, and $a_{1} d_{1}-E$ will represent the angular velocity of b or ω_{h}.

Similar processes may be employed for the other links b aiai c. and as all cases may be dealt with very simply, no furt her discussion of the point will be given here. The general constructions are very similar to those for finding linear velocities.

THE 'IRTC'AL CENTRE METHOD OF FINDING VEIOCITIES

Although the determination of the linear and angular velocities by means of the virtual centre is simple enough in the eases just considered, yet when it is employed in practice there is frequently much difficuity in getting convenient constructions to suit the requirements. Many of the lines locating virtual centres are nearly parallel and do not interseet within the limits of the drafting board, and hence special and often trouble-

Fig. 24 some methods must be employed to bring the constructions within ordinary bounds. Further, although we are commonly given the motion of one link such as a, and often only require the motion of one other point or link, say f, lsewhere in the mechanism, :hich would only require the finding of three virt ual centres, $a d$, af and $d f$, yet in practice we frequently learn that all of these cannot be obtained without locating almost all the other virtual centres in the mechanism first. This involves an immense amount of labor a.. 1 patience, and in some cases makes the method unworkable.

A practical example of a more complicat d merhanism in very common use will be worked out here to illustrate the method, no more centres being found than those absolutely necessary for the solution of the problem. Fig. 25 shows the Joy valve gear as frequently used on locomotives and other engines, more especially in England: a represents the engine crank. b the connecting rod. and c
the piston, ste., as in the ordinary case, the frame being d. One end of a link e is connceted to the rod b and the other end to a link \therefore the latter link being also connected to the engine frame, while to the link e a rod g is jointed, which rod is also jointed to a sliding block h, and at its extreme upper end to the slide valve stem V. The part

Fig. 25
m on which h slides is controlled in direction by the engineer who moves it into the position shown or else into the dotted position according to the sense of rotation desired in the crank shaft, but once this piece m is set, it is left stationary and virtually becomes fixed for the time.

A very useful i . oblem in such a rose is to find the velocity of the valve and stem V for a given position and speed of the crank
shaft. Here we are coneerned with three links, a, d and g, the upper end of the latter link giving the valve stem its motion, so that we need the threc eentres $a d, a g$, and $d g$. First write on all the centres which it is possible to find by inspection, such as $a d, a b, b e, b c, c d$, $a c, e f$, ete., and then proceed to find the required centres by the theorem of three eentres giver. on page 32. The centres a_{g} and $d g$ eannot be found at once and it will simplify the work to set down roughly in a circle (not necessarily accurately) anywhere on the sheet. a set of points which are approximately equidistant, there being one point for each link, in this ease eight. Now letter these points a, b, c, d, e, f, g, h, to correspond with the links. As a centre such as $a b$ is

Fig. 26
found it is necessary to join the points a and b in the lower diagram and in this way it i is possible to join a fairly large number of the points at onee, any two points not joined representing a centre still to be found. The figure shows by the plain lines the stage of the problem after the centres $a b, a c, a d, a e, a f, a g, b c, b d, b f, b e, c d, d e, d f, d g, d h$, ef, eg, $g h$, have been found which represent the work necessary to find the above three centres $a g, a d$ and $d g$.

When all points on the lower figure are joined, all the eentres have been found, the figure showing by inspection what centres ean be
found at any time, for we ean find any centre provided there are at any time two paths between the two points. From the figure below as shown in the plain lines, the centres joined by any line such as $u b, a c, a d, d e, d f$, ete., are known, but the centres $a h, b g$, ch, ete., are not known, and by inspection of the figure, it is evident that $f g$ may be found if desired, beeause between these two points there are the paths $g d-d f$ and $g e-e f$ and $f g$ is at $l \because$ intersection of these two lines. It would not be possibie to get $g e$ bafore $g d$, however, as there is only one path $g a-a c$, and this line is not enough to locate the point.

Having now found the centres $a d, d g$, and $a g$, we may proceed as in the previous eases to find the velocity of V or the valve, from the known velocity of a. If the velocity of the crank pin $a b$ is given, revolve $a d-a b$ into the line $a d-d g$ and lay off $a^{\prime} b^{\prime} B$ to represent the velocity of $a b$ on any seale. Join $a d-B$, then $a g-A$ parallel to $a^{\prime} \quad b^{\prime} B$ gives the velocity of $a g$. Next join $d g-A$ and with eentre $d g$ draw the are $1 l^{\prime \prime}$ then will $V^{\prime} C$ parallel to $a g-A$ represent the velocity of the value V. The whole process is evidently very cumbersome and laborious and in general, too lengthy to be adopted very commonly.

The solution of the same problem by the method explained in Chapter IV. is shown in Fig 26, and the gain in simplicity is very noted. Here the length $O I^{\prime \prime}$ represents the linear velocity of V on the same scale as the length $O P=a$ represents the linear velocity of the erank pin. The method used is fully explained later on, and it is only given in this place to show that preblems of this important nature can be solved without undue complexity. The figure is put in here for the purpose of direct comparison of methods; the reader is however, advised to leave a study of Fig. 26 until he has finished reading Chapter IV.

GRAPHICAL REPRESENTATION of VElocities

It is frequently desirable to have a diagram to represent the velocities of the various points in a machine for one of its complete eyeles, as the study of such diagrams gives very much information about the nature of the machine and of the forces aeting on it. Two methods are in fairly common use (1) by means of a polar diagram (2) by means of a diagram on a straight base. These methods may be best explained by an example.

To illustrate this a very simple and useful ease, the slider-crank
mechanism, Fig. 27, will be selected, and the linear velocities of the piston will be detemined, a problem which may be very conveniently solved by the method of virtual centres. Let the speed of the engine be known, so that it is possible to calculate at onee the linear velocity of the erank pin $a b$; for example, let a be 5 in . long, and let the speed be 300 revs. per min., then the velocity of the crank pin $=$ $2 \pi \times{ }_{60}^{300} \times{ }_{12}^{5}=13.1 \mathrm{ft}$ per second. Now be is a point both on the piston c and on the rod b and elearly the velocity of $b c$ is the same as that of c the latter link having only a motion of translation, and further the velocity if the crank pin $a b$ is known, which is

Fig. 27
also the same as that of the forward end of the conneeting rod. The problem then is: given the veloeity of a point $a b$ in b to find the veloci$t y$ of $b c$ in the same link, and from what has already been said, the

$$
\text { velocity of piston }=\text { velocity of } b c
$$ relation may be written, velocity of erank pin $=$ vekcity of $a b$

$$
\begin{aligned}
& =\begin{array}{l}
b d-b c \\
b d-a b
\end{array} \text {. But by simitar triangles } \begin{array}{l}
b d-b c \\
b d-a d
\end{array}=\frac{a c-a d}{a d-a b} \text {, so } \\
& \text { that } \frac{\text { velocity of piston }}{\text { velocity of crank pin }}=\begin{array}{l}
a d-a c \\
a d-a b
\end{array} \text {, and as ad-ab is constant }
\end{aligned}
$$

for all positions of the machine, it is evident that ad-ac represents the velocity of the piston on the same scale as the length of a represents the linear velocity of the crank pin. Or in the case chos n, if the mechanism is drawn full size then $a d-a b=5$ in., and the s.ale will be 5 in . $=\mathbf{1 . 3 . 1} \mathrm{ft}$. per sec. or $1 \mathrm{in} .=2.62 \mathrm{ft}$. per sec

Now it is convenient to plot this velocity of the piston either along e as $a d-E$ if the diagram is to show the result for the different crank positions, or vertically above the piston as $b c-F$, if we wish to represent the velocity for different positions of the piston. If this determination for the comp iete revolution is made, there are obtained the two diagrams shown, the one OEGOHJO is called a polar diagram, O being the pric. The diagram for the piston positions is $K F L / M K^{\circ}$. If the connecting rod is very long, the polar diagrams approach a cirfular form and the diagram becomes more

Fig. 28
nearly symmetrical above a vertical centre line, while for a shorter rod the curves become more distorted in the way indieated in the figure.

If the direction of motion of the piston does not pass through ad, then the eurve FKML is not symmetrical about the line of motion of the piston, but takes the form shown at Fig. 28, where the piston's direction passes above ad, a device in which it is clear from the velocity diagram that the mean velocity of the piston on its return stroke is greater than on the out stroke, and which may, therefore, be used as a quick-return motion in a shaper or other similar machine. Automotsile engines are sometimes made in this way, but with the cylinder only slightly off-set as it is called.

One very useful application of such diagrams as those just described may be found in the case of pumping engines. Let A be the area of the pump eylinder in square feet, and let the velocity of the plunger or piston in a given position be $v \mathrm{ft}$. per sec., as found by the preceding method, let Q cu. ft. per sec. be the rate at which the pump is discharging water at any instant, then evidently $Q=A v$ and as A is the same for all piston positions, Q i. simply proportional to v, or the height of the pisten velocity diagram represents the rate of delivery of the pump for the corresponding piston position.

If a pipe were connected directly to the cylinder, the water in it would vary in velocity in the way shown in the velocity diagram

Fig. 29
(a), Fig. 29, the heights on this diagram representing piston velocities and hence velocities in the pipe and horizontal distances showing the distances traversed by the crank pin. Here we show the effect of both ends of a double-acting pump; this variation in velocity would produce so much shock on the pipe as to injure it and hence a large air chamber would be put on to equalize this velocity.

Curve (b) shows two pumps delivering into the same pipe, their cranks being 90° apart, the heavy line slowing the variation of velocity in the pipe line requiring a much smaller air chamber. At (c) is shown a diagram corresponding to three cranks at 120° or a three-throw pump, in whicl. case the variation in velocity in the pipe line would be very nuch smaller, and this velocity is represented by the height $t \boldsymbol{p}$ to the heavy line, all the curves are drawn for the case of a very long connecting rod.

Thus the velocity diagram enables the study of such a problem to be inade very accurately and there are very many other useful purposes to which it may be put, and which will appear in the course of the engineer's experience. Angular velocities may, of course. be plotted the same way as linear velocities.

A very useful and convenient method of findirg both linear and angular velocities is described in the next chapter, and a few suggestions are made as to further uses of these velocities in practice

CHAPTER IN.

THE MOTION DIAGRAM

In the previons chapter we have pointer out methode of finding the velocities of various peints in at mathine, and have shown some of the uses to which these velocity derominations and the eorrespond. ing diagrams may le put. There are very many further problems which may ine studed it this way, such as the relative merits of different quick-return motions or other devieces, which are used for similar important work, as operating valse gears, cte. Them again it is often neeessary to determine the turning effeet proxlueed on the crank shaft of an engine be the stemen pressure on the piston, or to study the adsamtage in the way of proslucing uniform motion of placing four evpinders on ant atomobile engine, etc.

All of these problems may belved very direetiy by the determination of the velocities of various points in the machine tuder consideration. amd as such problems are of very frequent oceurrence in the experience of the desigmitig enginecr, it is desirable thatt as simple a process as possible be emploted in solving them. The problems maty be solved by graphical methods most comseniently, as the motions in most mathines are so complex that algebraic solutions are too tedious and difficult.

In all machines there is one part which has a known motion, and generally this motion is one of uniform angular velocity about a fixed axis, e.g., the flywhed in an engine, the belt wheel in a shaper, the belt wheel in a stone erusher, ete.

In most cases in machines all parts have plane motion, and in whit follows it is to be understood that all parts referred to remain in one plane, umless the contrary is expressly stated. The solutions may in general be applied to non-plane motion with proper modifications.

The method of detemining the velocities of parts of machines to be explained here is called the phorograph* method, and gives a convenient graphical method for finding the desired velocities.

THE: PHOROGRAPH
Let us consider any body having plane motion, such as the connecting rod of a steam engine. It is well known that any point

[^1]in this real can nowe relatively to any other point in it only at right angles to the lise joining these prints. Thus let A, Fig. 30 represent a part of this rod, in which are two points B and C, which we shall for convenience assume are in the plane of the paper. Let the boly A mowe to the new position A_{1}, B and C taking the prositions B, and (i respetively, and although we are uncertain as to the actual history of the motion cluring the charge of position. it is quite evident that it misy have been aceomplished by (a) a motion of translation of the |xaly A through the distance $C^{\circ} \because_{1}$, during which C reaches its new position C_{1} and B arrives at B_{1}. During this motion B and C have moved through the same distance in the same direction and sense, and hence have had no relative motion. The second part of the motion consists of (b) a motion of rotation of the whole berly A

Fig. 30
about an axis normal to the paper through the point C_{1}, rotation taking place through the angle $B, C^{\prime} B^{\prime}$.

During the motion of A therefore B has had onls one motion not shared by C, or B has movid relatively to C through the arc $B_{1} B^{1}$. and at each stage of the motion the direction of this are was evidently at right angles to the radius from C^{1}, or at right angles to the line joining B and C.

Thus when a body has plane motion any point in the body can move relatively to any other point in the body only at right
angles to the line joining the two points. It follows from this that if the line joining the two points should lie normal to the piane of motion the two points could have no relative motion.

We shall now employ this principle to the determination of velocitics. Let Fig. 31 represent diagrammatically a machine having four links a, b, c, d, joined together by four turning pairs at O, P, Q, R. If the link d is nearly vertical and the length of a be decreased this could be taken to represent one-half of a beam engine, in which a is the crank, b the connecting rod, and c is one-half of the walking beam, the other end of which would be connected with the piston rod.

In all such machines one link is fixed and forms the frame, here indicated by d. Thus O and R are fixed bearings and P and Q move in arcs of circles about O and R respectively. Let us

Fig. 31
now choose one of the moving links as the link of reference, either a or c will be the most convenient, as they have one fixed bearing, and a will be selected. Imagine that to a an immense sheet of cardboard is attached which extends indefinitely in all directions from O, and let us for brevity refer to this whole sheet as the link a.

A consideration of the matter will show that on the link a there are points having all conceivable velocities in magnitude, direction and sense, thus if a circle be drawn on a with centre at O all points on the circle will have velocities of the same magnitude, but of different direction and sense; or if a vertical line
be drawn through O all points on this line will move in the same direction, i.e., horizontal, those above O moving in opposite selnse to those below O, and the magnitudes of all the velocities being different. Thus, if any point be chosen on a the magnitude of its velocity will depend upon the distance from O, the direction of its velocity will be normal to the radial line joining it to O, and its sense will depend upon the relative positions of the point and O on the radial line. It must be remembered that the above statements are true whether a has constant angular velocity or not and are also true although O is moving.

From the foregoing it follows at once that it will be possible to find a point on a having the same motion as that of any point,

Fig. 32
such as Q, in the machine, which motion it is desired to study; and thus we can collect on a a set of points, each representing the motion of a given point in the machine, and since this set of points is all on the one link their relative velocities is at once known completely. This collection of points on a will be of great assistance in studying the motions of points in the machine, because if the motion of a is known, as is usual, that of any other point is known; whereas if the motion of a is unknown only the relative motions of the different points are known. This collection of points on the link of reference is
ealled the Phorograph, as it represents graphically the motions of all prints in the machine.

The method of determining the phorograph for a given nachine may be explained as folows: Let any body K, Fig. 32, have plane motion, and let us choose in it two points E and F. We are, however, given no information about the nature of the motion of K. On some other body there is a point G, and we are told the direction only of the motions of $G G E$, viz., $G-1$, and of $G G F$, viz., $G-2$: it is required to find a point on K having the same motion as G.

Referring to our preliminary proposition we see that the motion of ally point in $K \quad E$ is perpendicular to the line joining it to E, e.g., the motion of $F \leftrightarrows E$ is \perp to $F E$. But a point is to be found having the same motion at G, and as the direction of $G G E$ is given we are at once told the direction of the line joining E to the reguired point, it must be \perp to $G i$ and pass through E as it is only points on $E: G^{1}$ which have the desired direction $G \leftrightarrows E$. If we eall the point to be found G^{1} then G^{1} lies on $E G^{1} \perp$ to $G-\mathrm{I}$. Similarly it may be shown that G^{\prime} must lie on a line through $F \perp$ tn $G-2$, and hence it must lie at the intersection of the lines through E and F or at G^{1}, as shown i_{11} Fig. 32. Thus G^{1} is a point on K having the same motion as the point G in some external body.

It is to be noted that we cannot assume the sense of the motions nor the magnitude, only the two directions. We could, howerer, assume the magnitude, direction and sense of $G \leftrightarrow E$ and find G^{1}, provided the angular velocity of K were known. If K turns in the elockwise sense then the senses of the lines representing the motion of G are $G-1$ and $G-2$, and if the angular velocity of K is ω radians per second the magnitude of the veloeity of $G G E$ is $G^{1} E . \omega$ and of $G \hookrightarrow F$ is $G^{1} F . \omega$

We shall now apply these principles to the solution of problems comnceted with machinery, first calling particular attention th the fact that the usual information given us is such as we nave chosen above, viz., the directions of motion of an externat point relatively io two points in the link of reference. The simple mechanism with four links and four turning pairs will le chosen as the first example, and is shown in Fig. 33. the letters a.b., , $, O, P, Q, K$ having the same signifieance as before, and
a being chosen as the link of reference, and a rough outline of this link is shown to indicate its large extent. It is required to find the linear velocity of the point Q. Points will first be found on a having the same motions as Q and R, which are external to a, and the points so found shall be referred to as the images of Q and R and indicated by accents, thus Q^{1} is a point on a haveing the same motion in every respect as Q and similarly with R^{1}.

Inspection will at once show that since P is a point on a, P^{1} will coincide with P, and if we call ω the angular velocity of a in radians per second (which may be constant or variable), then the linear velocity of P is $O P . \omega=a \omega \mathrm{ft}$. per sec., and is in the direction \perp to $O P$ and in the sense indicated by ω. Such

Fig. 33
being the case the length $O P$ or a represents $1 \omega \mathrm{ft}$. Yer sec., and the scale is thus $\omega: 1$. Further inspection will also show that since R^{\prime} is stationary, R^{1} will lie at the only stationary point in a, viz., at O.

The remaining point Q^{\prime} may be found thus: The direction of motion of $Q \rightarrow P$ is \perp to $Q P$ or b, and hence, from the proposition already given, Q^{\prime} must lie in a line through P^{1} (or P^{\prime}) \lrcorner to the direction of $Q \rightarrow P$. ie., on the line through p^{1} in the direction of b or on b produced. Again, the direction of motion of $Q G R$ is \perp to $Q R$ or c, and since R^{1} (at O) has the same motion as R this is also the direction of motion of Q © R^{1}. so that Q^{\prime} lies on a line through $R^{1} \perp$ to the mo-
timon of $Q \quad R$, ie., on a line through R^{1} in the direction of c, and thus Q^{1} is fixed. The velocity c. Q is then $Q^{1} O . \omega$, the direction in space is \perp to $O Q^{1}$ and the sense is fixed by that of ω.

Since P^{1} and Q^{1} are the images of P and Q on b, we may regard $P^{1} Q^{1}$ as the image of b, and shall in future denote it by b^{1}, similarly $R^{1} Q^{1}\left(O Q^{1}\right)$ will be denoted by c^{1}. By a similar

a parallel to c
ω_{b} and ω_{c} in
same sense as ω
$\therefore b^{t}=0$
$\therefore \omega_{b}=0$

ω_{b} opp. sense

$$
a=c, b=d
$$ to ω and ω_{c}

$\omega_{b}=0$ in opp. sense
$\omega_{c}=\omega_{a}$

The figure $O^{1} P^{1} Q^{1} R^{1}$ is evidently a vector diagram for the mechanism, the distance of any point on this diagram from the pole O being a measure of the velocity of the corresponding point in the mechanism. The direction of motion is normal to the line joining the point on the vector diagram to O and the sense of motion is also known from that of the angular velocity of the primary link. Further, the lengths of the sides of this figure $b^{1}\left(P^{1} Q^{1}\right), d^{1}$ or ($O R^{1}$) etc., are measures of the angular velocities of the links, the sense of each angular velocity being readily determined. (Note that the length d^{2} or $O R^{1}$ is infinitely

Fig. 35
short denoting that d has no angular velocity, since it is fixed in space.)

In Fig. 34 other positions and proportions of a similar mechanism are shown in which the solution is given and varions relations marked below. It is to he noted that if the image of any link reduces to a single point two causes are possible, (a) if this point falls at O the link is stationary for the instant. as at d^{1}, but if the point be not at O the inference is that all points in the link move in exactly the same way, or the link has a motion of translation at the given instant.

The method will now be employed to solve a few typical cases.

Fig. 35 is taken as a simple example, not because it illustrates ally practical mechanism.

Here we find $Q^{1} P^{1}$ and R^{1} as before, and since we know the motions of $S G Q$ and $S \quad P$ to be \perp respectively to $S Q$ and $S P$. hence we draw $S^{1} P^{\dagger}$ parallel to $S P$ and $S^{1} Q^{2}$ par-
allel to $S Q$, which determines S^{1};also $R^{1} T^{1}: T^{1} Q^{1}=R T: T Q$ determines T^{1}. Next, since we know the motions of $U G S$ and $U G T$, we draw $U^{1} T^{1}$ parallel to $U T$ and $S^{1} U^{1}$ parallel to $S U$, and thus U^{1} is determined. If a be assumed to turn in the sense shown with angular vel city ω, then the angular velocity of $S U$ is $\frac{S^{\prime} U^{\prime}}{S U} \cdot \omega$, and is in the same sense as a, and the angular velocity of UT i- $\frac{U^{\prime} T^{\prime}}{U \bar{T}} \quad \omega$ in opposite sense to a. The linear velocity of U is $O U^{1}$. ω the direction is \perp to $O U$, and the sense is to the left.

Fig. 36 gives a further example in which a sliding pair is introduced. $O P$ is again the link of reference and P^{1}, Q^{1}, R^{1} and S^{1} are found as before. The direction of T is given in space by construction. It slides in the directions shown. Hence T^{1} will

Fig. 36
lie on a line through $O \perp$ to the direction of T, and as T^{1} lies on $S^{1} T^{1}$ parallel to $S T, T^{1}$ becomes fixed. The velocity of T is $O T^{1}$. ω its direction -1 to $O T^{1}$, and its sense is to the right.
lig. 37 shows the engine mechanism in two forms, (a) where the piston direction passes through the crank shaft. (b) where the cylinder is offset. The same letters and description apply to both. Evidently Q^{1} lies on $P^{1} C^{1}$ through P^{1}, parallel to $I Q$ (here on $Q P$ produced), and also since the motion of
Q in space is horizontal, Q^{1} will lie in the vertical through O. Thus the velocity of the piston Q is $O Q^{1} . \omega$ in the direction and sense shown, and offsctting the cylinder evidently decreases the piston velocity in this position, and it may be shown that there will be a corresponding increase in the return stroke. The alıgular velocity of the rod is $\frac{P^{\prime} Q^{\prime}}{P Q}$. Inspection shows that in the upper diagram the piston velocity is zero at the dead points, is equal to that of the crank pin when the crank is ver-

Fig. 37
tical, and has a maximum value when the crank pin is slighty to the right of the vertical through O. lor the lower diagram the piston velocity is also that of the crank pin when the crank is vertical.
lig. 38 shows the Whitworth quick-return motion, which is sl:ghtly more difficult. There are here four links a, b, d and e and two sliding blocks, c and f, d being fixed and a being the driving link, which rotates at constant angular velocity ω in the clockwise sense. P^{1} and Q^{1} are found by inspection. Further, S^{1} lies on a vertical line through O, and R^{1} on a line through Q^{1} parallel to $Q R$. Now, P is a point on both a and c. Choose T
on b exactly below P on a and c, and it will be evident that since a, b and c all have plane motion, the only motion which T can have relative to P is sliding in the direction of b, or the motion of $T G P$ is in the direction of b, hence T^{1} is on a line through $P^{\prime} \perp$ to b, and since it is also on a line through O parallel to b it is found at T^{\prime}. Again, R^{1} may be found since $\frac{Q^{\prime} T^{\prime}}{T^{\prime} R^{\prime}}=\frac{Q T}{T K}$ The dotted lines show a simple geometrical method for obtaining this ratio. S^{1} is on $R^{1} S^{1}$ parallel to $R S$ and also on the vertical through O.

It will be understood that T is not a fixed point on b, but will change for each position of the mectanism. The linear

Fig. 38
velocity of the tool holder S will be $O S^{1} \cdot \omega$ and the angular velocity of $R S$ will be

Note that althongh P and T coincide, their images do not. for T has a sliding motion with regard to P, and hence both could not have the same velocity. If P^{1} and T^{1} coincided then both P and T would have the same velocity.

The Stephenson ling motion shown in Fig. 39 involves a slightly different method of attack and is worked out in full liere, but is not drawn correctly to scale, so as to avoid confusion
o: the diagram. In this case the link of reference is the crank shaft containing the crank C and the eccentrics E and F, and instead of making C^{1}, E^{1} and F^{1} coincide with C, E and F, as in the previous examples, we have made $O C^{1}=2 O C$, etc. The scale will then be $O C^{1}=O C \times \omega \mathrm{ft}$ per sec. We locate $C^{1}, E^{1}, F^{1}, H^{1}, D^{1}$ and J^{1} at once. Further, we choose M on the link $A B$ directly below K on $I . D K$, and we also know that $E^{1} A^{1}$, $F^{1} B^{1}, H^{1} G^{1}$, and $D^{1} K^{-1}$ are parallel respectively to $E A, F B, H G$ and $D K$. Now, we have already seen that the image of each link is similar and similarly divided to the link itself, and we

Fig. 39
see that the link $A G B$ has the points G, A and B. We also know the lines along which G^{1}, A^{1} and B^{1} lie, so that the problem is simply one of locating a curved line similar to $A G B$, with its ends on the lines $A^{1} E^{1}$ and $F^{1} B^{1}$, and divided at G^{1} by the line through O parallel to $G H$, so that $\frac{A^{\prime} G^{\prime}}{B^{\prime} G^{\prime}}={ }_{A G}^{A G}$ (There are simple geometrical methods of accomplishing this result. but these are omitted here.) Thus $A^{1} G^{1} B^{1}$ is located and the whole link may be drawn in similar to $A G B$, but to a larger scale, and on
it the point M^{\prime} may be found from the relation $\frac{M^{\prime} A^{\prime}}{B^{\prime} M^{\prime}}=\frac{M B}{M A}$. Since K slides with regard to M we have $K^{1} M^{\prime}$ normal to $A^{\prime} B^{\prime}$ at M^{1}, which locates K^{2}, and we may readily locate L^{2} from the relation $\frac{L^{\prime} D^{\prime}}{D^{\prime} K^{\prime}}=\frac{L D}{D K}$

The linear velocity of the slide valve is $O L^{1}, \omega$, and it moves to the right.

Note.-The images of all links are similar to and similarly divided to the links themselves, and are always parallel to the links, of which they are the images.

Lack of space prevents further illustrations, of which very many useful ones cxist, but enough cases have been given to show the method of procedure in any mechanism, and to show that by this method the velocity of any point in a mechanism may readily be found by means of a drafting board. Those using the phorograph will no doubt invent geometrical methods for getting the desired ratios between the image and the link in any case which occurs.

CHAPMER V:

TOOTHED GEARING

In many cases in machinery it is necessary to transmit power from one shaft to another, the ratio of the angular velocities of the shafts being known, and in rery many cases this ratio is constant; thus it may be desired to transmit power from a shaft running at 120 revs. per min. to another ruming at, say 200 revs. per mill. Various methods are possible, for example, pulleys of proper size may be attached to the shafts and connected by a belt, or sprocket wheels may be used connected by a chain, as in a bicycle, or pulleys may be placed on the shafts and the faces of the pulleys pressed together, so that the friction between them may be sufficient to transmit the power, a cirive used sometimes in auto wagons, or, again, toothed wheels called gear wheels may be used on the two shafts, as in street cars and most automobiles.

Any of these methods is possible in some cases, but usually the location of the shafts, their speeds, etc., make some one of the methods the more preferable. Thus, if the shafts are not very close together, a belt and pulleys may be used. but as the drive is not positive the belt may slip, and thus the relative speeds may change, the speed of the driven wheel often being five per cent. lower than the diameters of the pulleys would indicate. Where the shafts are fairly close together a belt does not work with satisfaction, and then a chain and sprockets are sometimes used which cannot slip, and hence the speed ratio required may be maintained. For shafts which are still closer together either friction gears or toothed gears are generally used. Thus the nature of the drive will depend upon various circumstances. one of the most important being the distance apart of the shafts concerned in it.

We shall deal here only with drives of the latter class or toothed gears, which, broadly speaking, are used between shafts which are not far apart. and for which the ratio of the angular velocities must be fixed and known at any instant. We shall first deal with parallel shafts which turn in opposite senses, the gear wheels connected with which are called spur toheels, the larger one commonly ralled the sear, and the smaller one the
pinion. Kinematically, spur gears are the exact equivalent of a pair of smooth round wheels of the sume mean diameter, and which are pressed together so ns to dive ane another by friction. Thus if two shafts 15 in . apart are to rotate at 200 revs. and 100 revs. per min., respectively, tho whe bennected by two smonth whecls to in. and 20 in . 1 il diancter, one on each shaft, which are pressed together so thi will not slip, or ly a pair of spur wheels of the same rean wiant cr, both methods producing the clesired results. Wut if the pe wer to be transmitted is great the friction wheels are mathai sible on account of the great pressure between then necerany i. preme slipping. If slipping occurs the velocit ratien is aria nie and such an arrangement would be of no value n suci a rive, as is used on a street car, for instance, on accoult of the jerky motion it would produce on the latter.

In order to begin the problem in the simplest possible way we shall first take the most general case of a pair of spur gears connecting two shafts which are to have a constant velocity ratio. That is, the ratio between the speeds n_{1} and n_{2} is to be constant at every instant that the shafts are revolving. Let l be the distance from centre to centre of the shafts. Then, if friction wheels were used, we would have the velocitics at the rim of each $\pi d_{1} \eta_{1}$ and $\pi d_{2} \|_{2}$ in inches per minute, where d_{1} and d_{2} are the diameters of the wheels in inches, and it will be clear that the velocity of the rim of each will be the same since there is to be no slipping. Thus $d_{1} n_{1}=d_{2} n_{2}$ or $r_{1} n_{1}=r_{2} n_{2}$, where r_{1} and r_{2} are the radii of the wheels. But $r_{1}+r_{2}=l$. Therefore since $r_{1}=r_{2} \cdot \begin{aligned} & n_{2} \\ & n_{1}\end{aligned}$ we get $r_{2} \cdot \frac{n_{2}}{n_{1}}+r_{2}=l$,

$$
\text { or } r_{2}\left[\frac{n_{2}}{n_{1}}+1\right]=l \text { or } r_{2}=\frac{n_{1} l}{n_{1}+n_{2}} \text { and } r_{1}=\begin{gathered}
n_{2} l \\
n_{1}+n_{2}
\end{gathered}
$$

Now, whatever actual shape we give to these wheels the motion of the shafts must be the same as if two smooth wheels. of sizes as determined above, rolled together without slipping. In other words, whatever shape the wheels actually have the resulting motion must be equivalent to the rolling together of two circles centred on the shafts. In gear wheels these circles are called the fitch circles, and they evidently touch at a point on the line joining the centres of the wheels, which point is called
the pitch point. Now, let the actual outlines of these wheels be as shown on lig. 40. the projections being plaeed there in order that the slipping of the piteh lines may be prevented. It i.: desired to find the necessary shape which these projections must have. let the wheels touch at any point P and join P to the piteh point C.

It has already been shown that these pitch circles must always roll upon one another without slipping. Now P is a point whieh is common to both wheels. As a point in the gear it moves with regard to C on the pinion at right angles to $P C$, and as a point in the pinion it must move at right angles to $P C$ with regard to C on the gear, thus, whether P is a point on the gear or pinion its motion must be normal to the line joining it

Fig. 40
IN C. Some eonsilleration will show that in order that P bay have this direction of movion in each wheel, the shap a the wheels at P must be perpendienlar w $P C$.

In order to see this let us examine the case own in the lower figure, where the pr jections are not normat to $f^{2} C$ at the point P_{1}, where they touch. It is at once eviden that sliding must oecur at P_{1}, from the very nature of the r ie. and where two bodies slide upon one another the direction of slidin must abwass be along the common tangent to their surf: is it an
point of contact, hence the direction of sliding here must be $I_{1} P^{1}$. But P_{1} is the point of contact and is therefore a point in each wheel, and the motion of the two wheels must be the same as if the two pitch circles rolled together, having contact at C. Such being the case, if we place two projections, as shown on the wheels, the direction of motion at their point of contact should be perpendicular to $P_{1} C$, whereas here it is perpendicular to $P_{1} C^{1}$. This would cause slipping at C, and would give the proper shape for pitch circles of radii $A C^{1}$ and $B C^{1}$, which would correspond to a different velocity ratio, thus C^{1} should lie at C and $P_{1} P^{1}$ should be normal to $P_{1} C$.

From the foregoing we may make the following important statements: The shapes of the projections on the wheels must be such that at any point of contact they will have a common normal passing through the fixed pitch point, and that while the pitch circles roll on one another the projections will have a sliding motion. These projections on gear wheels are called treth, and for convenience in manufacturing, all the teeth on each gear have the same shape, although this is not at all necessary to the motion. The teeth on the pinion are not the same shape as those on the gear with which it meshes.

There are a great many shapes of teeth, which will satisfy the necessary condition set forth in the previous paragraph, but by far the most common of these are the cycloidal and the involute teeth, so called because the curves forming them are cycloids and involutes respectively.

CyCloidal teetir

Select two circles $P C$ and $P^{\prime} C$, Fig. 41, and suppose these to be mounted on fixed shafts, so that the centres A and B of the pitch circles, and the centres of the describings circles PC and $P^{\prime} C$, as well as the pitch point C, all lie in the same straight line, which means that the four circles are tangent at C. Now place a pencil at P on the circle $P C$ and let all four circles run in contact without slipping, i.e., the circumferential velocity of all circles at any instant is the same. As the motion continues l ' approaches the pitch circles $e c$ and $f c$, and if the right hand body be extended beyond the circle $f c h$, the pencil at P will describe two curves, a shorter one $P e$ on the body ecg and a
longer one $P f$ on the body $f c h$, the points e and f being reached when P reaches the point c, and from the conditions of motion are $P C=\operatorname{arc} c c=\operatorname{arc} f c$.

Now P is a common point on the curves $P c$ and $P f$ and also a point on the circle $P C$, which has the common point C with the remaining three circles. Hence the motion of P with regard to ecg is perpendicular to $P C$, and of P with regard to fth is perpendicular to $P C$; that is, the tangents to $P \mathcal{E}$ and $P f$ at P are normal to $P C$. or the two curves have a common tangent, and hence a common normal $P C$ at their point of contact, and this normal will pass through the pitch point C. Thus $P e$ and Pf fulfil the necessary conditions for the shapes of gear teeth,

Fig. 4I
Evidently the points of contact of these two curves lie along $P C$, since both curves are described simultaneously by a point which always remains on the circle $P C$. Since these curves are first in contact at P and then again at C, when P, c, c and f coincide, it is evident that during the motion from P to C the curve $P e$ slips on the curve $P f$ through the distance $P f-P e$. Below C the pencil at P would simply describe the same curves over again, only reversed.

To further extend these curves, we place a second pencil at P^{1}, which will draw the curves $P^{1} g$ and $P^{1} h$ in the same way as before, these curves having the same properties as $P e$ and $P f$, the amount of slipping in this case being $P^{1} g-P^{1} h$, and the points of contact always lying on the circle $C P^{1}$.

Now join the two curves formed on ecg, that is, join $g P^{1}$ to $P e$, as shown at $\operatorname{Pcg}{ }^{1} P_{1}{ }^{1}$, and then the two curves on fch, as shown at $P f h_{1} P_{1}{ }^{1}$, and we have a pair of curves which will remain in contact from P to P_{1}, which always have a point of contact on the curve $P C P^{1}$, and which always have a common normal at their point of contact passing through C. The relative amount of slipping is $P f h_{1} P_{1}{ }^{1}-P e g^{1} P_{1}{ }^{1}$. If, now, we cut out two pieces of wood, one having its side shaped like the curve $P e P_{1}{ }^{1}$ and pivoted at A, while the other is shaped like $P f P_{1}{ }^{1}$ and pivoted at B; then from what has been said, the former may be used to drive the latter, and the motion will be the same as that produced by the rolling of the tuo pitch circles together; hence these slapes will be the proper ones for the profiles of gear teeth.

The curves $P c, P f, P^{1} g$ and $P^{1} h$, which are produced by the rolling of one circle inside or outside of another, are called cycloidal curves, the two P_{i} and $P^{1} h$ being known as hypocycloids, since they are formed by the describing circle rolling inside the pitch circle, while the two curves $P f$ and $P^{1} g$ are known as epicycloidal curves, in this case lying outside the pitch circles. Gears laving these curves as the profiles of the teeth are said to have cycloidal teeth (sometimes erroneously called epicycloidal teeth), a form which is in very common use. So far we lave only drawn one side of the tooth, but it will be evident that the other side is simply obtained by making a tracing of the curve $P c P^{1}$, on a piece of tracing cloth, with centre A also marked: then by turning the tracing over and bringing the point A to the original centre A, the other side of the tonth on the wheel ecg may be pricked through with a needle. The same method is employed for the teeth on wheel fch.

Nothing has so far beetl said of the sizes of the describing circles, and, indeed, it is evident that any size of describing circle, so long as it is somewhat smaller than the pitch circle, may be used, and will produce a curve fulfilling the desired conditions,
but it may be shown that when the describing circle is one-half the diameter of the corresponding pitch circle the hypocyloid becomes a radial line in the pitch circle, and for reasons to be explained later this is undesirable. The maximum size of the describing circle is thus one-half that of the corresponding pitch circle, and for convenience the two describing circles are frequently of the same size, although this is not a necessity.

The proof that the hypocycloid is a radial line if the describing circle is half the size of the pitch circle, may be given as follows: Let $A B C$, Fig. 42, be the pitch circle and $D P C$

Fig. 42
the describing circle, P being the pencil, and $B P$ the line described by P, as P and B approach C. The arc $B C$ is equal to the arc $P C$ by construction, and hence the angle $P E C$ at the centre E of $D P C$ is twice the angle $B D C$, because the radius in the latter case is twice that in the former. But the angles $B D C$ and $P E C$ are both in the one circle, the one at the circumference and the other at the centre, and since the latter is double the former they must stand on the same arc PC. In other words $B P$ is a radial line.

In the actual gear the tooth profiles are not very long, but are limited between two circles concentric with the pitch circles
in each gear, and called the addendum and root circles, as indicated in Fig. 43 the path of contact being evidently $P C P$, and the amount of slipping on each pair of teeth is $P R-P D+$ $P_{1} E-P_{1} F$, or $P R+P_{1} E-\left(P D+P_{1} F\right)$. Further, since the common normal to the teeth pass through C then the direcion of pressure between a given pair of teeth is always the line joining their point of contact to C, friction being neglected.

The arc PC is called the arc of approach, being the location of the points of contact down to the pitch point C, and $C P_{1}$ is called the arc of recess, P being the last point of contact. The

Fig. 43
angles $D A C$ and $C A E$ are called respectively the angles of approach and recess. As will be explained later, the distance between the addendum and root circles and the pitch circle depends upon the number of teeth in the gear, so that with these circles fixed the length of the arc of contact $P C P$, will depend upon the diameters of the describing circles being longer as the describing circles become larger. If this arc of contact is shorter than the distance between two teeth on the one gear, then only one pair of teeth can be in contact at once, and the running is uneven, while, if this are is just equal to the distance between
the centres of a given pair of teeth on one gear, or the pitch, as it called (See Fig. 46) one pair of teeth will just be going out of contact as the second pair is coming in, which will also cause jarring. It is usual to make $P C P^{1}$ at least 1.5 times the pitch of the tee ${ }^{4}$. This will, of course, increase the amount of slipping of the teeth.

With the usual proportions it is found that when the number of teeth in a wheel is less than 12 the teeth are not well shaped for strength or wear, and hence, although they will fulfil the kinematic conditions, they are not to be commended in practice.

INVOLUTE TEETH

The second and perhaps the most common method of forming the curves for gear teeth is by means of involute curves. Let A and B. Fig. 44, represent the axes of the gears, the pitch circles of which touch at C, and through C draw a secant

Fig. 44
$D C E$ at any angle θ to the normal to $A B$, and with centres A and B respectively draw circles to touch the secant in D and E. Now $\frac{n_{1}}{n_{p}}=-\frac{B C}{A C}=\frac{B D}{A E}$ so that if a string be run from D to E
and used as a belt between the two dotted base circles at D and E, we would have exactly the same velocity ratio as if the original pitch circles rolled together having contact at C.

Now, choose any point P on the belt DE: and attach at this point a pencil, and as the wheels revolve it will evidently mark on the original wheels, having centres at A and B, two curves $F a$ and $P b$ respectively, a being reached when the pencil gets down to E, and b beng the starting point just as the pencil leaves D, and since the point I traces the curves simultaneously they will always be in contact at some point along $D E$, the point of contact traveling downward with the pencil at P. Since P can only have a motion with regard to the wheel aE normal to the string $P E$, and its motion with regard to the wheel $D b$ is at right angles to $P D$, it will be at once evident that these two curves have a common normal at the point where they are in contact, and this normal evidently passes through C. Hence the curves may be used as the profiles of gear tecth.

The curves $P a$ and $P b$ are called involute curves, and when they are used as the profiles of gear teeth the latter are called involute teeth. The angle θ is called the angle of obliguity, and evidently gives the direction of pressure between the teeth, so that the smaller this angle becomes the less will be the pressure between the teeth for a given amount of power transmitted. If, on the other hand, this angle is unduly small, the base circles approach so nearly to the pitch circles in size that the curves $P a$ and $P b$ have very short lengths below the pitch circles. Many firms adopt for θ the angle $1+1 / 2^{\circ}$, in which case the diameter of the base circle is .968 (about $31 / 32$) that of the pitch circle. If the teeth are to be extended below the base circles, as is usual, the lower part is made radial. With teeth of this form the distance between the centres A and B may be somewhat increased without affecting in any way the regularity of the motion. Involute teeth are also stronger in general than the corresponding cycloidal teeth.

The arc of contact in these teeth is usually about twice the pitch, and the number of teeth in a gear should not be less than 12, as the teeth will be weak at the root unless the angle of obliquity is increased.

Gears are sometimes made with the teeth on the inside instead of the outside of the rim, Fig. 45. Such gears are called amular gears, and they are always made to mesh with a spur pinion, the property being that both gear and pinion rotate in the same sense. The teeth on the annular gear are made in exactly the same way as those for the spur gear, and are involute or cycloidal.

When one gear of the pair has an infinite radius the pitch line becomes a straight line, and it is then called a rack, the teeth

Fig. 45
being cycloids in one case. and in the involute system being straight lines, forming an angle $90 \quad \theta$ with the pitch line, the gear meshing with the rack being called the pinion. \cdot..

Gear teeth are formed in various ways, such as casting, cutting from solid casting, etc., and as it is only possible to make the teeth accurately by the latter method, we shall speak hereafter of cut teeth. In this case an acenrately turned casting is taken of the same diameter as the outside of the teeth, and the metai forming the spaces between the teeth is carefully cut out, leaving accurate shapes if the work be properly done. The varinus terms applied to gear teeth will appear from Fig. 46. The uddendn", line is a circle whose diameter is that of the outside of the gear. The root or dedendum line is a circle whose diameter is that at the bottoms of the teeth. The difference between the radii of these two circles gives the height of the teeth. The dimension of the teeth parallel with the shaft is the width of face or often the face of the tooth, although the word face is also used to clenote the surface of the tooth outside the pitch line, the
part of the surface of the tooth below the pitch line being the flank. The solid part of the tooth above the pitch line is the point, and the solid part below this line is the root.

Let d be the pitch diameter of a gear having t teeth, h_{1} be the height of the tooth above the pitch line, and h_{2} the depth below the pitch line, the total height $h=h_{1}+h_{2}$; further, let w $b e$ the thickness of the tooth measured along the pitch line. The distance from centre to centre of teeth measured along the pitch line is the circular pitch or pitch p, and this definition at once gives $t p=\pi d$. As a matter of convenience Brown and Sharpe have introduced a second pitch, now also commonly adopted, called the diametral pitch and defined as $q=\frac{t}{d}$. It would naturally be expected that the diametral pitch would be the number of inches of diameter per tooth, since the circular pitch

Fig. 46
is the number of inches of circumference per tooth. The ciametral pitch is, however, the inverse and is not a number of inches. The following formulas are adopted by Brown and Sharpe:
$p=\pi d ; \quad q=\frac{t}{d} ; \quad h_{1}=\frac{1}{q} ; \quad h_{z}=\frac{1}{q}+\frac{p}{20} ; \quad w=\frac{p}{2}$, these dimensions being used for cut teeth. For cast teeth $z=.48 p$, and hence there is a back lush $=.04 p$ between any pair of teeth which are in mesh. In cut gears there is no back

TOOTHED GEARING

lash. Notice that since $h_{2}-h_{1}=\frac{p}{20}$ there is always a clearance space of $.05 p$ between the top of one tooth and the root line of the other.

It will be evident at once that if a pair of gears are to work together it is necessary that they have the same pitch p, and also that in the cycloidal system the same describing circle must have been used in both, or if in the involute system, the same obliquity should be used in both. Wheels so constructed that any pair of them may work together correctly are called set whcels. Let d_{1} and d_{2} be the pitch diameters, and r_{1} and r_{2} the radii of two wheels which are to work together the shafts being l inches between centres, and the wheels turning at n_{1} and n_{2} revolutions per minute. Then from page 6 ?,

$$
r_{1}=\frac{n_{2}}{n_{1}+n_{2}} l \text {, and } r_{2}=\frac{n_{1}}{n_{1}+n_{2}} l \text {, }
$$

this formula applying to spur gears only, not to annular gears. Further $\begin{aligned} & r_{1} \\ & r_{2}\end{aligned}=\frac{t_{1}}{t_{2}}=\frac{n_{2}}{n_{1}}$.

Example:-Two spur wheels are to be placed between shafts running at 100 and 200 revs. per min. respectively, the shafts being 9 in. centres, and the diametral pitch being 3 .

Then $r_{1}=\frac{200}{100+200} \times 9=6$ in. while $r_{2}=\frac{100}{100+200} \times 9$ $=3$ in. Thus $d_{1}=12$ in., $d_{2}=6 \mathrm{in}$. Again, $t_{1}=$ $q \dot{a}_{1}=3 \times 12=36$ teeth, and $t_{2}=3 \times 6=18$ teeth. The outside diameter of the gears are $d_{1}+\frac{2}{q}=12+\frac{2}{3}=12 \frac{8}{3}$ and $d_{2}+\frac{2}{q}=6+\frac{2}{3}$ or i_{i} in. The circular pitch p is $\frac{\pi d_{1}}{t_{1}}=$ $\pi \times \frac{1}{\frac{t_{1}}{d}}=\pi \times \frac{1}{q}$, or $p=\frac{\pi}{q}=\frac{3.1416}{3}=1.047 \mathrm{in}$. The height $h_{2}=\frac{1}{q}+\frac{p}{20}=\frac{1}{3}+\frac{1.047}{20}=.385 \mathrm{in} . \therefore h=.719 \mathrm{in}$.

The student should practice solving problems on gears, assuming different quantities, and also working on questions involving annular gears. On being told that the outside diameter of a gear is 4 in . and the diametral pitch 8 , he should at once
know that it has 30 teeth, and he should become very familiar with such calculations.

helic.al GEars

A study of Fig. 43 shows that the less the height of the teeth the more nearly the lines $P C$ and $P_{1} C$ become normal to the line of centres $A C B$, and hence, under such a condition, the less the pressure between the teeth (which is in the direction $P C$ for a given amount of power transmitted. Thus for a given pressure between the teeth the maximum power would he transmitted if the line of pressures were tangent to the pitch circles at C. If the height of the teeth is decreasell, however, the arc of approach is decreased, and hence, for a given pitch, the smaller will be the number of teeth in contact at once, and the more uneven will be the motion. If now, instead of making the teeth directly across the gear parallel with the axis, they be run across it diagonally, so as to form parts of a helix, then, instead of a whole tooth on the gear coming suddenly into contact with a whole tooth on the pinion, we would have a pair of teeth coming gradually mino contact. the contact beginning at one end and gradually working across the gear, till the other end is touching its mate. In such a case the tecth need not be high, and yet there will be no unevenness in the motion.

Wheels with the teeth made in this way are called helical gears. and it is to be remembered that if we pass a plane through the wheel normal to its axis the profile of the tooth so shown should be involute or cycloidal.

Helical wheels are used in the De Laval steam turbine. where the pinions run at 400 revs. per sec. without noise. They are also used in mills and other places, where steady motion is desired or the power transmitted is large.

CHAPTER VI.

BEVEL AND SPIRAL GEARING

It very frequently happens in praetice that the shafts on which the gears are placed are not parallel, so that instead of the spur gears already described some other type must be used. If the shafts intersect, the gears used between them are known as bevel gears.

This elass is by far the inost common one of the genera' type under diseussion, being used on such devices as the main transmission in automobiles, or the connection between the vertical shaft of a water turbine and the main horizontal shaft, and in many other well known machines.

On the other hand it not infrequently happens that the two shafts do not interseet, as in the rnse of the eam and crank shafts of a gas engine, and in such a ease ie bevel gear is not of value. Quite frequently the shafts are at rigt.t angles to one another, although there are eases where they are not. Gears whieh suit sueh conditions are of two classes, (a) hyperboloidal gears, which have line contact between teeth and may be used for shafts inclined at any angle, and the diameters of which depend upon the velocity ratio and location of the shafts, and (b) spiral gears. the teeth of which have point contact, and which are used most frequently for shafts at right angles, and the diameters of such gears being in general independent of the velocity ratio between the shafts. We shall now discuss these different forms in a general way.

Although a general method may be described for dealing with the problem mentioned, it will be found more simple to defer it for the present, dealing with the simplest case first, and afterward describing the general method. The case will therefore be first discussed where the two shafts interseet.

BEVEL GEARING

The axes of the shafts may be inclined at any angle to one another, the most common case being where they are at right angles, although they frequently intersect at other angles. The gears used to drive between two such shafts are called bevel gears, and in the ease where the shafts are at right angles and both turn at the same speed, the two bevel wheels would be exactly cqual in all respects, and are then called mitre gears. Bevel gears are rarely made annular.

Let A and B, Fig. 47, represent the axes of two shafts intersecting at C, and let their speeds be n_{1} and n_{2} respectively To find the sizes of the gears necessary to drive between them. let l : be a point of contact between the gears, the radii to it being r_{1} and r_{2}. Then we have $r_{1} n_{1}=r_{2} n_{2}$, as in the case of the spur gear, or $\frac{r_{1}}{r_{2}}=n_{n}=$ constant, and hence at any point where these gears would touch we should have the ratio ${ }_{r}$ const., a condition which can only be fulfilled by points r_{2}^{2} ying on the line EEC. In the case of bevel gears, therefore, contact is

Fig. 47
along a straight line passing through the intersection of their shafts, and it may be shown that we can only get the desired motion by rolling together two cones, each having its apex at C, and an angle at the apex of $2 \theta_{1}$ or $2 \theta_{2}$, as marked. If $\theta=90^{\circ}$ ard $n_{1}=n_{2}$, then $\theta_{1}=\theta_{2}=45^{\circ}$. It is to be observed here that the angles θ_{1} and θ_{2} are fixed, when θ_{1}, n_{1} and n_{2} are known, but one of the radii r_{1} or r_{2} may be selected at will by the designer.

It is not considered advisable in this discussion to enter into the exact form the tecth should have in such a case, and
the method of finding the proper shapes will merely be described. Let Fig. 48 represellt one of the wheels, with angle $2 \theta_{1}$ at the vertex of the cone, and let the radii r_{1} and r_{1}^{\prime} be selected to suit external conditions. Through D and F draw lines $D C$ and $F H$ normal to CDF, to intersect the axis of the shaft at G and H respectively. Then at D the teeth will have the same shape as if constructed for a spur gear of radius GD, and at F the teeth should be constructed for a spur gear of radius $H 1$, and so for

Fig. 48
any intermediate point. The teeth are, of conrse, tapering from F to D, and either the involute or cycloidal system may be used.

HYPERBOLOIDAL GEARING:

The teeth of which have line contact

Having discussed the particular case of interseeting shafts, we shall now consider the general problem. Let $A O$ and $B P$. Fig. 49. represent the two shafts under consideration. Then, as a rule, the axes of these shafts wil: be horizontal, and the lines shown will represent the ordinary plan and elevation of the centre lines of the wiafts, but whether the shafts are horizontal or not we shal' assume the planes of reference for the drawing chosen. the one normal to $O P$. the shortest distance between the shafts, while the other passes
through the line $O P$ and also the axes $O^{\prime} A^{\prime}$ of one of the shafts. This corresponds to the ordinary plan and elevation of the shafts that would in general appear in practice. The angle $A O B=0$ between the projections $A O$ and $B P$ on the normal plane is called the angle between the shafts, while the distance $O^{\prime} P^{\prime}=h$ between the projections on the other plane, we call the distance between the shafts, meaning by it the shortest distance; we shall assume h and θ, known as well as n_{1} and n_{2}, the angular velocities of the shafts $A O$ and $B P$ respectiveiy.

The angle between the shafts may be selected as $A O B$ or its supplement and confusion may arise as to the proper angle to select. Throughout the remainder of this discussion we

have seleeted the angle so that the line of contact $C Q$ falls within it, and as annular gears of this type are not used, $C O$ will be so located that if the gears have contact along this line, the shafts to which they are attached will turn in opposite sense. Thus in Fig. 49, θ is the angle $A O B$ and not $A, O B$, for if the line of contact were chosen, say at $C,()$ in $A, O B$, then it would be necessary to put on one annular gear to give the proper sense of rotation to the shafts.

The problem now is to design a pair of gears which will work between the two shafts and fulfil the given conditions, and in order to have the best possible service from the gears, it will be assumed that there is to be line contact between them. Let $C Q$, the line of contact pass through $O P$, it is required to locate $C Q$, i.e, to
find $\theta_{1}, \theta_{2}, h_{1}$ and h_{2}, and also the proper sizes of the gears. Choose any point R, Fig. 50, in the line $C Q$ as a point of contact, the projections of this point being R and R^{\prime}, and draw from R the radii $R T$ and $R V$ respectfively on the shafts $A O$ and $B P$.

Let the components of these radii parallel to $O P$ be $S T$ and $U V$ respectively, the corresponding components parallel to the normal plane to $O P$ being $R S$ and $R U$, so that $R T^{2}=R S^{2}+S T^{2}$ and $R V^{2}=R U^{\prime 2}+U V^{2}$. (To draw these radii it is only necessary

Fig. 50
to remember that $R S$ is perpendicular to $O A$ and $R U$ is perpendicular to $B P$, furiher that S^{\prime} and U^{\prime} are found by projecting ove: S and U^{\prime} from the normal projection and also that $S^{\prime} T^{\prime}$ and $L^{\prime \prime} V^{\prime}$ are parallel to $O^{\prime} P^{\prime}$.)

Now at the point of contact R, it is essential that the velocity ratio $n_{1}: n_{2}$ must be maintained between the shafts, and since E is the point of contact, it is a common point in both gears. From what has already been said at page 63 , it will be elear that, as a point in A, the motion of K in a plane normal to ihe line of contac: $R Q$ must be the same as the motion of the same point R as a proint in B in the same plane, i.c., in the plane normal to the line of contact $R Q$, the two wheels must have the same motion at the point of contact R. It is to be kept in mind, however, that sliding along $C Q$ is permissible for a similar reason that there is no objection to the axial motion of spur gears relative to one another while they are running; thus we
shall not need to design the wheels to prevent slip along the line of contact.

In order to fulfil the desired conditions as simply as possible, we shall divide the motion of R in each wheel in the normal plane to $R Q$, into two parts, viz., those normal to each plane of reference in the drawing. Taking first the motions of R in each wheel in the

Fig. 51
direction of $P O$ and in the plane normal to $C Q$, we find that (a) as a point in $A O$ its motion is $R S . n_{1}$ and (b) as a point in BPits motion is $R U . n_{2}$, and since the motions at R are equal the components of these motions are equal or $R S . n_{1}=R U \cdot n_{2}$.

But from the figure it is evident that $R S=O R \sin \theta_{1}$, and $R U$ $=O R \sin \theta_{2}$ and hence $R S . n_{1}=R l^{\prime} \cdot n_{2}$ becomes $O R \cdot \sin \theta_{1} \cdot n_{1}$ $=O R \sin \theta_{2} . n_{2}$ or $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$.

Again in the direction perpendicular to $O P$ the actual motion of R as a point in $A O$ in the plane $R S T$ would be $S^{\prime} T^{\prime} \quad n_{1}$ and on resolving it into the plane normal to $R Q$ we wuuld have $S^{\prime} T^{\prime} \cdot n_{1} \cos \theta_{1}$, similarly the motion of R as a point in $B P$ in the same direction will be $U^{\prime} V^{\prime} \cdot n_{2} \cdot \cos t_{2}$. Since these two motions must be the same we get $S^{\prime} T^{\prime} \cdot n_{1} \cos i_{1}=U^{\prime} V^{\prime} n_{2} \cos \theta_{2}$ or $h_{1} n_{1} \cos \theta_{1}=h_{2} n_{2} \cos \theta_{2}$.

It is now seen by combining these equations that the location of $R Q$ is fixed by four conditions, vi

$$
\begin{align*}
h_{1}+h_{2} & =h_{1} \\
\theta_{1}+\theta_{2} & =\theta_{1} \tag{ii}\\
n_{1} \sin \theta_{1} & =n_{2} \sin \theta_{2}, \tag{iii}\\
\text { and } h_{2} n_{1} \cos \theta_{1} & =h_{2} n_{2} \cos \theta_{2},
\end{align*} \text { (iii) }
$$

and as there are c:ily four unknowns when h, θ, n_{1} and n_{2} are givell the values of $h_{1}, i_{12} \theta_{1}$ and θ_{2} may be found. A simple graphical

Fig. $\mathbf{5 2}^{2}$
method may be employed as follows: In Fig. 51 lay off $O M=n_{2}$ and $O N=n_{1}$, to any scale, these to be in opposite directions from O because the shafts turn in oppos te sense. Join $M N$ and draw $O K$ perpendicular to $M N$ then will $M N$ be parallel to the required line $O C$, the angle $O N K^{\circ}=\theta_{1}$ and $O M K^{*}=\theta_{2}$ and evidently $\theta_{1}+\theta_{2}$ $=\theta$. Further, $N K: K M$ is the ratio $h_{2}: h_{1}$, so that if in the con-
struction $N L$ be made equal to h and M be joined to L then by drawing $J K$ parallel to $L M$ there is obtained $N J=h_{2}$ and $L J=h_{1}$. The proof of the graphical construction is: Since $O M=n_{2}$ and $O N=n_{1}$, hence $O K=n_{1} \sin O N K=n_{2} \sin O M K$ from which it is evident by comparing this with equation (iii) that $O N K=\theta_{1}$ and $O M K=\theta_{2}$, also $A O B=O M K+O N K$ or $\theta=\theta_{2}+\theta_{1}$ which satisfies

Fig. 53
also equation (ii). Further, $N K^{\prime}=n_{1} \cos \theta_{1}$ and $K M=n_{2} \cos \theta_{2}$ or $\frac{N K}{K M}=\frac{n_{1} \cos }{n_{2} \cos } \frac{\theta_{2}}{\theta_{2}}$ and by comparing this with equation (iv) which may be written $\frac{h_{1}}{h_{2}}=\frac{n_{2} \cos \theta_{2}}{n_{1} \cos \theta_{1}}$, it is at once cvident that $h_{2}: h_{1}=N K: K M$. The construction for finding the actual valucs of h_{1} and h_{2} presents no difficulties.

The four equations (i), (ii), (iii) and (iv) give a means of solving any problem of this nature and the application to a few cases will show the general nature of the method. n_{t} and n_{2} are always assumed given.

BEVEL AND SPIRAL GEARING

Case (r.) Shafts inclined at any angle θ and at given distance h apart. This is the general case already solved and $\theta_{1}, \theta_{2}, h_{1}$ and h_{2} are found as indicated.

Case (2.) Shafts inclined at angle $\theta=90^{\circ}$ and at distance h apart. (Care must be taken not to confuse the method and type of gear here described with the spiral gear to be discussed later.) Choose the axes as shown in Fig. 52, lay off $O N=n_{1}$, and $O M=n_{2}$ and join $M N$; then draw $O K$ perpendicular to $M N$ from which we at once obtain $N K: K M=h_{2}: h_{1}$. In this case $h_{1} n_{1} \cos \theta_{1}=h_{2} n_{2} \cos \theta_{2}$ gives $\frac{h_{1} n_{1}}{h_{2} n_{2}}=\frac{\cos \theta_{2}}{\cos \theta_{1}}=\frac{\sin \theta_{1}}{\cos \theta_{1}}=\tan \theta_{1}=\frac{n_{2}}{n_{1}}$, and hence $\frac{h_{1}}{h_{2}}=\left(\frac{n_{2}}{n_{1}}\right)^{2}$.

To take a definite case, suppose $n_{1}=2 n_{2}$ then $\frac{h_{1}}{h_{2}}=\left(\frac{n_{2}}{n_{1}}\right)^{2}$ $=\binom{n_{2}}{2 n_{2}}^{2}=\frac{1}{4}$ and if the distance apart, h, of the shafts is 20 in. then $h_{1}=4 \mathrm{in}$. and $h_{2}=16 \mathrm{in}$., and the angle θ_{1} is given by $\tan \theta_{1}={ }_{n_{2}}^{n_{1}}=\frac{1}{2}=.5$, or $\theta_{1}=26^{\circ} 34^{\prime}$ and $\theta_{2}=90-\theta_{1}=$ $63^{\circ} 26^{\prime}$, so that the line of contact is readily located.

Case (3.) Parallel shafts at distance h apart, this gives the ordinary case of the spur gear. Here $\theta=o$ and therefore $\theta_{1}=0=$ θ_{2}, henee, $\sin \theta_{1}=0=\sin \theta_{2}$ and $\cos \theta_{1}=1=\cos \theta_{2}$, so that there are only two conditions to satisfy, viz., $h_{1}+h_{z}=h_{h}$ and $h_{1} n_{1}=$ $h_{2} n_{2}$. Solving these gives $h_{2}=\begin{aligned} & n_{1} \\ & n_{2}\end{aligned}$ h, and substituting in $h_{1}+h_{2}$ $=h$ gives at once $h_{1}=\frac{n_{2}}{n_{1}+n_{2}} \cdot h$ and $h_{2}=\frac{n_{1}}{n_{1}+n_{2}} h$ formulas which will be found to agree exactly with those on page 62 for spur gears.

Case (4.) Intersecting shafts. Here $h=0$, therefore $h_{1}=0$ and $h_{2}=o$. Referring to Fig. 53, draw $O M=n_{2}$ and $O N=n_{1}$ then $M N$ is in the direction of the line of contact $O C$ for there are only two equations here to satisfy, viz., $\theta_{1}+\theta_{2}=\theta$ and $n_{1} \sin \theta_{1}=$ $n_{2} \sin \theta_{2}$, and these are satisfied by $M N$. Then draw $O C$ parallel to $M N$ (Compare this with the ease of the bevel gear taken up at the beginning of the ehapter).

Case (5.) Intersecting shafts at right angles. Here $\theta=90^{\circ}$. Further let $n_{2}=n_{1}$ then $\theta_{1}=\theta_{2}=45^{\circ}$, thus the wheels would be equal and are ealled mitre wheels.

We shall now return to the general problem in wh:ch is given θ, h, n, and n_{2} and have found the location of the line of contact $C Q$ by the method described for finding h_{1}, h_{2}, θ_{1} and θ_{2}. Now just as in the case of the spur and bevel gears. seleet a short part of

Fig. 54
the line of contaet to use for the gears according to the width of face which is deeided upon, the width of face largely depending upon the power to be transmitted, and therefore being rather beyond the scope of the present discussion.

Now it is known from geometry that if the line $C Q$ were secured to $A O$ while the latter revolved, the former line would describe a surface known as an hyperboloid of revolution and a second hyperbolvid would be described by securing the line (Q to $B P$, the curved lines in the drawing. Fig. 54, showing seetions of these hyperboloids by planes passed through the axes $A O$ and $B P$. As the proeess of developing the hyperboloid is somewhat difficult and long, the reader is referred to borks on deseriptive germetry or other works for the methord. Shoukd the distance h between the shafts be small.
then sections of the hyperboloids selected as shown at D and E must be employed and this can only be done by drawing the true curves, when, however, the shafts are far enough apart, as is frequently the case, the gorges of the hyperboloids may be used and no serious error will result by using two cylindrical wheels F and G of radii h_{1} and h_{2} found as before explained.

In case the wheels F and G are used the angles θ_{1} and θ_{2} give the inclination of the teeth across the faces of the cylinders, but if it is necessary to use D and E on aecount of the small value of h, the true surface is located as already explained and then the cones are seleeted which eorrespond nearest to these surfaces, the wheels being treated as ordinary bevel wheels with the teeth running diagonally across the face.

In order to explain the method, assume that the gorge wheels F and G may be used, and the angles θ_{1} and θ_{2} of inclination

Fig. 55
of the teeth across the surface are known. As a numerical example lake case (2), page 82, for which $\theta=90^{\circ}, n_{1}=2 n_{2}$ and $h=20 \mathrm{in}$. and it has been found in this example that $h_{1}=4 \mathrm{in} ., h_{2}=16 \mathrm{in}$., $\theta_{1}=26^{\circ} 34^{\prime}$ and $\theta_{2}=63^{\circ} 26^{\prime}$. Evidently h is sufficiently great to allow the use of the gorge wheels F and G, so that the diameter of the wheel F on $O A$ is $d_{1}=2 h_{1}=8 \mathrm{in}$. and that of $\left(i\right.$ is $d_{2}=2 h_{2}=32 \mathrm{in}$. The actual number of the teeth on each gear will depend upon the load the pair must carry so that the number of teeth will here be assumed, without caleulation. Let the number of teeth on the wheel F be $t_{1}=20$ then the distance from centre to centre of teeth measured on the pitch line, Fig. 55, along the end of the gear is $f_{1}=$ $\frac{\pi \times 8}{20}=1.256 \mathrm{in}$. and this distance will not be the same as the corresponding distance in the gear C. If the gears are to work together properly, however, the normal distance from centre to
centre of the teeth along the pitch line, i.c., the pitch p, must be the same in both gears and hence $p=p, \cos \theta,=1.256 \cos 26^{\circ} 34^{\prime}$ or $p=1.256 \times .8944=1.123 \mathrm{in}$.

For the gear G the number of teeth must be $t_{\alpha}=40$ since $n_{1}=$ $2 n_{2}$, and hence $p_{2}=\frac{\pi \times 32}{40}=2.513$ in., and $p=p_{2} \cos \theta_{2}=2.513 \times$ $\cos 63^{\circ} 26^{\prime}=2.513 \times .4472=1.123 \mathrm{in}$. as before.

A section of the teeth normal to their direction will have a profile like an ordinary spur gear, i.e., the section taken in that direction will have involute or cycloidal curves and may be laid out exaetly the same as for spur wheel teeth of pitch p. In this type of gearing

Fig. 56

Fig. 57 there is of necessity considerable slip along the line of contact $C Q$, so that the frictional losses may be high and they are therefore not to be preferred in many cases. If properly made, however, they run very smoothly and if run in oil the frictional losses may be reduced.

SPIRAL GIEARING
THE TEETH OF WHICH HIVE POINT CONTACT
In speaking of gears for shafts which were not parallel and did not intersect, we mentioned two classes (a) hyperboloidal gears (b) spiral gears, and having discussed the first at some iength we shall now refer to the second class somewhat briefly. In this class of gearing there is no necessary relation between the diameters of the wheels and the velocity ratio $\begin{aligned} & n_{1} \\ & n_{2}\end{aligned}$ between the shafts; thus one finds very frequently that. while the cam shaft of a gas engine runs at
one-half the speed of the crank shaft, and is in general at right angles to the latter, the spiral gears connecting the two shafts are of practically the same size.

The most familiar form of this gearing is the well-known worm and worm wheel, which is sketched in Fig. 56, and it is to be noticed that the one wheel here takes the form of a screw, this wheel being distinguished by the name of the uorm. The distance which any point on the worm wheel is moved by one revolution of the worm is called the pitch of the worm, and if this pitch corresponds to the distance from thread to thread along the worm, the thread is called single pitch. If the distance from one thread to the next is one-half of the pitch the thread is double pitch, and if this ratio is one-third the pitch is triple, etc. The latter two cases are illustrated at (a) and (b), Fig. 57.

Let p, be the axial pitch of the worm and D be the pitch diameter of the wheel measured on a plane through the axis of the worm and notmal to the axis of the wheel. Then the circumference of the wheel is πD, and since, by definition of the pitch, one revolution of the worm will move the gear fortrard p_{1} in., hence there will be $\frac{\pi D}{p_{1}}$ revolutions of the worm for one revolution of the wheel or this is the ratio of the gears. Let t be the number of teeth in the gear, then if the worm is single pitch $t=\pi /$) or the ratio of the gears is simply the number of teeth in the wheel. If the worm is double pitch, then p_{1} the distance from centre to centre of teeth measured as before is given by $p_{1}=2 p^{\prime}$, where p^{\prime} is the axial distance from the centre of one thread to the centre of the next one, and $t=\pi I$ and as the ratio of the gears is πD p_{1} we get in this case the ratio equal to $\frac{t}{2}$. and for triple pitch the ratio is $\frac{t}{3}$ etc.

A brief study of the matter will show that as the velocity ratio of the gearing is fixed by the pitch of the womn and the diameter of the wheel, henee no matter how large the worm may be made it is possible still to retain the same pitch, and hence the same velurity ratio, for the same wheel. The onl: change produced by changing
the diameter of the worm is that the angle of inclination of the spiral thread is altered, being decreased as the diameter increases, and vice versa. The angle made by the teeth across the face of the wheel must be the same as that made by the spiral on the worm, and if the pitch of the worm be denoted by p, and the inean diameter of the thread on the latter by d_{1}, then the inclination of the thread is given by $\tan \theta=\frac{p_{1}}{\pi d_{1}}$, and this should also properly be the inclination of the wheel teeth. From the very nature of the case there will be a great deal of slipping between the two :wheels, for while the wheel moves forward only a single tooth there will be slipping of amount πd, and hence considerable frictional less, so that the diameter of the worm is made as small as possible consistent with reasonable values of θ.

When both the worm and wheel are made parts of cylinders. Fig. 58, then there would only be point contact with the worm, but as this is very unsatisfactory for power transmission,

Fig. 58 the worm and whed are usually made as shown in section in the left-hand diagram in Fig. 58 where the construction of the teeth may be such as toapproach line contact. The usial method of construction is to turn the worm up in the lathe, cutting the threads as accurately as may be desired, then to turn the wheel to the proper outside finished dimensions. The cutting of the teeth in the wheel rim may then be done in various ways of which only one will be described, that by the use of a hoh.

A hob is constructed of sted and is an exact copy of the worm with which the whed is tw work. Grooves are cut across the threads so as to make it after the fashion of a milling cutter, as shown in Fig 59, which is taken from the Brown and Sharpe catalogue. The hoh is then hardened and ground and is ready for survice. The tecth on the wheel may now be roughly milled out by a cutter, after which the hob and gear are brought into contact and run at proper relative specels, the hol milling out the tecth and gradually being furced down on the wheel till it occupies the same relative fosition
that the worm will do. In this way teeth of the exaet form required are cut out and the worm and wheel will run perfectly together having contact approximately along a line.

Space does not permit here to go further into this very interesting form of gearing, and the reader will find very much written regarding it. Only one or two points more will be mentioned. It has already been pointed out that the frietional loss in the gear is very high owing to the great amount of slipping, and hence the velocity of slipping is reduced as much as possible by reducing the size of the worm, and at the same time the latter is usually immersed in oil

Fig. 59
while running, but for all that the frictional loss is rarely less than 25 per cent. of the power transmitted. and frequently exceeds 50 per cent.

From the point of view of velocity ratio, however, there are great advantages in being able to obtain very high ratios without exeessively large wheels. Thus if a worm wheel has 40 teeth, and is geared with a single-threaded worm, the velocity ratio will $\frac{1}{40}$, while with a double-threaded worm it will be $\begin{gathered}2 \\ 40\end{gathered}=\frac{1}{20}$, so that it is very convenient for such large ratios. It also finds favor because ordinarily it

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

cannot be reversed, i.e., the worm must always be used as the driver and cannot usually be driven by the wheel.

Consider now the case of the worm and whecl shown in Fig. 58, in which both are cylinders, and suppose that with a worm of given size a change is made from a single to double thrcad, at the same time keeping the threads of the same size. The result will be that there will be an increase in the angle θ and hence the threads will run around the worm and the teeth will run across the wheel at greater angle than before. If the pitch be further increased there is a further increase in θ which may be made as great as 45°, or even greatcr, and if at the same time the axial length of the worm be decreased, the threads will not run around the worm completely, but will run off the ends just in the same way as the teeth of wheels do.

By the method just described the diameter of the worm is unaltered, and yet the velocity ratio is gradually approaching unity, since we are increasing the pitch, so that keeping to a given diameter of worm and wheel, the velocity ratio may be varied in any way whatever, or the velocity ratio is independent of the diametcrs of the worm and wheel. When the pitch of the worm is increased and its length made quite short it changes its appearance from what it originally had and takes the form of a gear wheel with teeth running in helices across the face. A photograph of a pair of these wheels uscd for driving the cam shaft of a gas engine is shown in Fig. 60, and in this case the wheels give a velocity ratio of two to one between two shafts which do not intersect, but have an angle of 90° between planes passing through their axes. This form of gear is very extensively used for such purposes as the above, giving quiet stcady running, but, of course, the frictional loss is quite high.

Some of the points mentioned in this discussion may be made clearer by an illustration. Let it be required to dcsign a pair of gears of the above type to drive the cam shaft of a gas engine from the crank shaft, the velocity ratio in this case being $2: 1$, and let both gears be of the same diameter, the distance between centres being 12 in . From the data given the pitch diameter of each wheel will be 12 in . and since for one revolution of the cam shaft the crank shaft must turn twice, hence the pitch of the thread on the worm must be $\frac{1}{2} \times \pi \times 12=18.85$ in., so that for the gear on the crank shaft
(corresponding to the worm) the "tecth" will run across its face at an angle given by $\tan \theta=\frac{18.85}{\pi \times 12}=.5$, or $\theta=26^{\circ} 34^{\prime}$, and this angle is to be measured between the thread or tooth and the plane
 normal to the axis of rotation of the worm. The angle of the teeth of the gear on the cam shaft (corresponding to the worm wheel) will be $90-26^{\circ} 34^{\prime}$ $=63^{\circ} 26^{\prime}$ measured in the same way as before.

It will be found that the number of teeth in one gear is double that in the other, also the normal pitch of both gears must be the same. The distance between adjacent teeth is made to suit the conditions of loading and will not be discussed.

Spiral gearing may be used for shafts at any angle
Fig. 60 to one another, although they are most common in practice where the angle is 90°. A more detailed discussion of the matter will not be attempted here and the reader is referred to other complete works on the subject.

GENERAL REMARKS ON HYPERBOLOIDAL AND SPIRAL GEARING
In eoneluding this chapter it is well to point out the differences in the two types of gearing here discussed. In appearance in many cases it is rather difficult to tell the gears apart, but a closc examination will show the decidcd difference that in hyperboloidal gearing contact between the gears is along a straight line. While in spiral gearing contact is at a point only. A study of gears whieh have been in operation shows this elearly, the ordinary spiral gear as used in a gas engine wearing only over a very small surface at the eentres of the teeth. It is also to be noted that the teeth of hyperboloidal gears are straight and run across the face of the gear while the teeth of spiral gears run aeross the face in heliecs.

Again in both elasses of gears the ratio between the numbers of teeth on the gear and pinion is the velocity ratio transmitted and in the case of the spiral gears the relative diameters may be selected as desired while in the hyperboloidal gears the diameters are fixed when the angle between the shafts and the velocity ratio is given.

CHAPTER VII.

TRAINS OF GEARING

In ordinary use gears* are frequently arranged in a series on several separate axles, a series being called a train of gearing, so that a train of gearing consists of two or more wheels, which all turn at the same time, the angular velocities of all wheels in the train being known when that of any one is given. A train of gearing may always be replaced by a single pair of wheels of proper diameter, but in many cases the diameters of the two gears would be such as to make the arrangement undesirable.

When the train consists of four or more wheels, and when any two of these of different sizes are keyed to the same intermediate shaft, the arrangement is said to be a compound trrin. These trains are very common. If the gears are so arranged that the axis of the last gear lies in the same straight line as that of the first gear, as in the train between the minute and hour

Fig. 61
hands of a clock, the train is said to be recerted. If one of the gears in the train is held stationary and some or all of the other gears revolve about it, as in the case of the differential gear of an automobile, where one back wheel stops, the scheme is called an epicyclic train. It is quite common to have a reverted, epicyclic, compound train or a simple epicyclic train. Thus in the epicyclic train the axis of the last gear may coincide with that o! the first, although this is not at all necessary.

The zelocity ratio of any train of gearing is the number of revolutions made by the last wheel divided by the number of

[^2]revolutions in the same time of the first wheel in the ordinary train, or of the frame in the epicyclic train. Thus, let n_{2} be the number of revolutions per minute made by the last gear, and let n_{1} be the revolutions per minute of the first gear in the ordinary train or of the frame in the epicyclic train, then the ratio of the train $R=\frac{n_{p}}{n_{i}}$. Taking first a train in which the frame is fixed and all wheels revolve, let it consist of spur gears I, a, b, c, e, and 2, Fig. 16, having speeds n_{1}, n_{a}, etc., etc., radii r_{1}, r_{a}, etc., and numbers of teeth, $t_{1}, t_{\mathrm{a}} \ldots \ldots t_{2}$, respectively, the gears a and b being keyed to one shaft, as also the gears c and e. Thus, this is a compound train. Evidently any pair meshing together, such as b and c, must have the same pitch, and also the same type of teeth (i.e., involute or cycloidal), but any other gear in the train may have a different system and pitch, provided only that it suits the gear with which it meshes. Then, it at once follows that
$\frac{n_{a}}{n_{s}}=\frac{r_{1}}{r_{a}}=\frac{t_{f}}{t_{a}}$ and $\frac{n_{e}}{n_{b}}=\frac{r_{b}}{r_{e}}=\frac{t_{b}}{t_{e}}$ and $\frac{n_{g}}{n_{e}}=\frac{r_{s}}{r_{s}}=\frac{t_{e}}{t_{z}}$ and hence that
$R=\frac{n_{z}}{n_{i}}=-\frac{n_{a}}{n_{i}} \cdot \frac{n_{c}}{n_{a}} \cdot \frac{n_{s}}{n_{c}}=\frac{r_{i}}{r_{a}} \cdot \frac{r_{b}}{r_{c}} \cdot \stackrel{r_{0}}{r_{s}}=\frac{t_{1}}{t_{a}} \cdot \frac{t_{b}}{t_{c}} \cdot \frac{t_{\mathrm{e}}}{t_{s}}$ Calling now the first wheel in each pair the driver, and second wheel the driven, we at once get the rule: The ratio of a train R is the product of the radii of the drivers divided by the product of the radii of the driven wheels, or the ratio is the product of the teeth in the drivers divided by the product of the teeth in the driven wheels.

Should any of the wheels in the above train be annular, exactly the same law holds; and, in fact, the same law will hold if some of the gears are replaced by belts and pulleys, so that the determination of the ratio is quite simple in any case. Thus, in the above case, let $n_{1}=50$ revs. per min., $n_{\mathrm{a}}=80$ revs., $n_{c}=$ 120 revs., and $n_{2}=200$ revs, and let $r_{1}=6 \mathrm{in} ., r_{b}=4 \mathrm{in}$., and $r_{e}=5$ in.: also let the diametral pitches be 4,6 and 8 for the pairs I and a, b and c and e and 2 respectively. Then we have $r_{4}=33 / 4 \mathrm{in}$., $r_{\text {e }}=2 \frac{2}{3}$ in., $r_{2}=3 \mathrm{in.}$, or $d_{1}=12 \mathrm{in} ., d_{\mathrm{a}}=71 / 2$ iil., $d_{\mathrm{b}}=8$ in., $d_{c}=5 \frac{1}{3}$ in., $d_{e}=10 \mathrm{in}$., and $d_{2}=6 \mathrm{in}$.; also t_{1} $=48$ teeth, $t_{\mathrm{a}}=30$ teeth, $t_{\mathrm{b}}=48$ teeth, $t_{c}=32$ teeth, $t_{e}=$ 80 teeth, and $t_{2}=48$ teeth.

The volocity ratio R of the train $=$

$$
\begin{aligned}
& \begin{array}{l}
r_{1} \times r_{b} \times r_{0}=\frac{6 \times 4 \times 5}{r_{a} \times r_{b} \times r_{s}}=\frac{33 \times 2 \times 2 \times 3}{4}=4
\end{array} \\
& \text { or } R=\frac{t_{1} \times t_{n} \times t_{c}}{t_{n} \times t_{c} \times t_{s}}=-\frac{48 \times 48 \times 80}{30 \times 32 \times 48}=4
\end{aligned}
$$

It may be observed that the whole train might be replaced by a gear 39.07 in dia., meshing with a pinion 9.76 in dia., without changing the distance between the first and last shafts, but the sizes of these gears would in many cases be prohibitive.

As to the sense of rotation, it will be evident that for one contact (two wheels) between s_{c} :ar gears, the sense is reversed; for two contacts it is the same, for three reversed, etc., i.e., if the number of contacts is odd the first and last wheels turn in opposite sense and vice versa. Each contact with an annular gear neutralizes a contact with spur gears in respect to the sense of rotation, and if at any place between gears of the train a belt and pulley are used, then an open belt produces the same effect as an annular gear and pinion, and a crossed belt the same effect as a spur gear and pinion.

It not infrequently happens that in a compound train the two wheels on an intermediate axle are made the same diameter and combined into one. Thus we may make $r_{a}=r_{b}$, i.e., $t_{a}=$ t_{b}. Such a wheel is then called an idler, and inspection of the formula shows that such an idler has no effect upon R, and is used solely to change the sence of rotation or to increase the distance between the axes of the other wheels without at the same time increasing thei: diameters.

We shall now solve a few problems illustrating the use of the formulas:
(I.) A wheel of 144 teeth drives one of 12 teeth, on a shaft which makes one revolution in 12 secs., while a second shaft driven by it makes a revolution in 5 secs. On the latter shaft is a 40 in . pulley connected by a crossed belt with a 12 in . pulley, this latter pulley uraking 2 revs.. while one geared to it makes 3 revs. Show that the ratio of the train is 144 , and that the first and last wheels turn in the same sense where no annular gears are used.
(2.) It is required to arrange a train of gears giving a ratio
we might use directly a gear of 250 teeth to d:ive a pinion of 13 teeth; but if this gear is too large we may break up the ratio R thus: $R=\frac{250}{13}=\frac{5 \times 5 \times 10}{: 3}=\frac{5}{1} \times \frac{5}{4} \times \frac{40}{13}$
o1 $t_{1}=60, t_{\mathrm{a}}=12, t_{\mathrm{b}}=20, t_{r}=16, t_{r}=40$, and $t_{2}=13$, giving gears without large numbers of teeth. If the distances between centres are given, then we must either arrange the diametral pitch to suit, or we must select some of the large number of other values of $:, t_{n}$, etc., which will fit the al we case The above solution gives six wheels, but we might use eight or four as well.
(3.) To design a train of gears which would be suitable for connecting the second hand of a watch to the hour hand. Here $K=720$, and the last wheel must turn in the same sense as the first one, and hence the number of contacts must be even, requiring 4 or 8 or 12, etc., wheels in the train. As before, many solutions are possible, thus
$R=\frac{720}{1}=\frac{4 \times 4 \times 5 \times 9}{1}=\frac{56}{14} \times \frac{48}{12} \times \frac{50}{10} \times \frac{108}{12} c^{-}$
$R=\frac{720}{1}=\frac{6 \times 6 \times 4 \times 5}{1}=\frac{72}{12} \times \frac{60}{10} \times \frac{52}{13} \times \frac{60}{12}$
with 8 wheels. The solution may also be woried for 12 wheels if desired.
(4.) The train of gears for connecting the minute and hour hands of a clock is required. Here the train is reverted with? $R=12$, and we must have an even number of contacts, so that we shall select four wheels. In addition to obtaining the desired ratio, we must have $r_{1}+r_{\mathrm{a}}=r_{b}+r_{2}$, and if all the wheels have the same pitch, $t_{1}+t_{\mathrm{a}}=t_{\mathrm{b}}+t_{2}$.

Now, $R=\frac{12}{1}=\frac{4 \times 3}{1 \times 1}=\frac{48}{12} \times \frac{45}{15}$, thus the intermediate shaft would have the gears with 12 and 45 teeth, while the 48 -toothed wheel would be connected to the hour hand, and the 15-touthed wheel to the minute hand.

THE SCREW-CUTTING LATHE
Most lathes are arranged for the cutting of thieads on a piece of work, and as these form an interesting application of the principles already described, we shall use it as an illustration.

The general arrangement of the headstock of a lathe is shown in Fig. 62, in which the back gear is omitted to avoid complication. The cone C is connected by belt to the sourec of power, and is sceured to the spindle S, which earries the live centre and also the chuck for driving the work, so that S turns at the same rate as C. To the end of S is a gear e, which drives a gear h through one idler g or two idlers f and g. The sliaft which carries h aso has a gear i, which is keyed to it, and must turn with the shaft at the same speed as h. The gear i meshes with a pinion a on a separate shaft, this pinion being also rigidly connected to and revolving with gear b, which latter gear meshes with the wheel 2 , which is keyed to the leading screw L. Thus the spindle S is geared to

Fig. 62
the leading screw I. through the wheels $e, f . g, h, I, a, b, 2$, of which the first four are permanent, and the latter four may be changed to suit conditions, and are called change gears.

The work is attachcd between the centre on S and the centre on the tail stock, and is attached to S so that it rotates with it. The leading screw L passes through a nut in the earriage carrying the cutting tool, and it will be evident that for given gears on $1, a, b, 2$ a definite number of turns of S correspond to a definite number of turns of L, and hence to ? ceriain horizontal travel of the carriage and cutting tool. Suppose now that we wish to cut a screw on the work having s threads per inch, the number of threads per inch l on the leading serew being given. Then it will be elear that while the tool travels one inch horizontally corresponding to l turns of the leading screw L, the work must revolve s times, or if n, represents
the revs. per min. of the work, and n_{2} of the leading screw, we have

$$
R=\frac{n_{2}}{n_{1}}=\frac{l}{s}=\frac{t_{2}}{t_{A}} \cdot \frac{t_{1}}{t_{a}} \cdot \frac{t_{b}}{t_{2}}=\frac{t_{1}}{t_{1}} \cdot \frac{t_{n}}{t_{2}}
$$

where $t_{a}, t_{b}, t_{1}, t_{a}, t_{b}$, and t_{2} are the teeth in the wheels $e, h, 1, a, b$ and 2 respectively, the idlers f and g having no effeet on the velocity ratio, and we are considering the common case where $t_{0}=t_{A}$. If, further, L and S turn in the same sense the thread cut on the work will be right hand, that on the leading screw being right hand, and viceversa.

The idlers f and g are provided to facilitate this matter, and if a right hand thread is to be cut, the handle m carrying the axes of f and g is moved so that g alone connects e and h, while, if a left hand thread is to be cut the handle is depressed so that f meshes with e and g with h. The figure shows the setting for a right hand thread.

An illustration will show the method of setting the gears to do a given piece of work. Suppose that a lathe has a leading screw eut with 4 threads per inch, and the change gears have respectively $20,40,45,50,55,60,65,70,75,80$ and 115 teeth.
(1) It is required to cut a right hand screw with 20 threads per inch. We have $\frac{l}{s}=\frac{t_{1}}{t_{a}} \cdot \frac{t_{b}}{t_{2}}$ where $l=4$ and s is to be 20.

Thus $\frac{t_{1}}{t_{a}} \cdot \frac{t_{b}}{t_{2}}=\frac{4}{20}=\frac{1}{5}$
This ratio may be satisfied by using the following gears $t_{1}=20$, $t_{a}=50, t_{b}=40$ and $t_{2}=80$. Only the one idler g would be used to gi- h.. igh.t hand thread.
: a standard thread on a 2 in , gas pipe in the lathe. The umber of threads here would be $11 \frac{1}{2}$ per in. and hence $l=\quad 11 \frac{1}{8} \cdot 1 \frac{t_{1}}{t_{n}} \cdot \frac{t_{b}}{t_{2}}=\frac{4}{11 \frac{1}{2}}=\frac{8}{23}$. Here we could make it $t_{1}=40$ and $t_{2}=115$, if we made $t_{b}=t_{a}$ or replaced both by an idler.
(3) If we required to cut 100 threads per inch then $l=4$, $s=100$ and $\frac{t_{1}}{t_{\mathrm{a}}} \cdot \frac{t_{b}}{t_{2}}=\frac{4}{100}=\frac{1}{25}$, and we may divide this into two parts, thus, $\frac{1}{25}=\frac{1}{4} \times \frac{1}{6 \frac{1}{4}}$, so that if we make $t_{1}=20, t_{4}=80$. $t_{3}=75$, we should have to have an extra gear of 12 teeth to take the place of b, as $t_{b}=12$.

The axle holding the gears a and b may be ehanged in position so that to make these gears fit in all cases between 1 and 2 . The details of the method of doing this are omitted in the drawing.

When odd numbers of threads are to be cut various artifices are resorted to, sometimes only ajproximations being employed. For example, the number of threads per inch commonly used on a 1) in., gas pipe is 11 , but no serious trouble would ordinarily result if we had to cut it in a lathe in which the nearest number of threads would be 111 per in. There are eases, however, in which certain exact threads of very odd pitches must be cut, and one exanıple will be given to show how such a case may be solved.

Let it be required to cut a screw with an exact pitch of one millimeter, the leading screw on the lathe having 8 threads per in ($1 \mathrm{~mm} .=.0393708 \mathrm{in}$.). This is worked out by a series of approximations by the method of continued fractions, the exact value of R for the case being $\frac{1}{R}=-\frac{1}{8} \times-\frac{1}{.0393708}$.

The first approximation is 3 , the real value being $3 \frac{68876}{393708}$ The second approximation is $3+\frac{1}{5}$, the real va ue being

$$
3+\frac{1}{5} \begin{gathered}
49328 \\
68876
\end{gathered}
$$

and proceeding in this way we find the third, fourth, fifth, sixth, etc. approximations, the sixth being

$$
3+\frac{1}{5+-\frac{1}{1+-\frac{1}{2+\frac{1}{1+1}}}}=3 \frac{7}{40} \text { or } \frac{127}{40}
$$

Thus the sixth approximation gives $\frac{1}{R}=\frac{127}{40}$ or $R=\frac{40}{127}$. (It is worthy of note that $1, \frac{1}{,} \times 3.17494$ while $\frac{127}{40}=$ 3.175) so that this screw could be cut with great exactness by the use of the ratio $-\frac{40}{127}$ between the work and leading, screw.

Many problems of similar nature occur in practice, all of which may be solved by this method.

Hunting tooth gears have now almost disappeared, but were formerly much used by millwrights who thought that more evenness of wear resulted when a given pair of teeth in two gears came in contact the least number of times. Suppose we had a velocity
ratio $R=1$, and a pair of gears had 80 teeth each. then a given tooth on one gear would come in contact with the same tooth on the other gear at each revolution, but if we place 81 teeth in one gear, leaving the other with 80 teeth, then the ratio R is $\frac{81}{80}$ which differs very !ittle from the value desired, but a given tooth on one gear will only come in contact with a certain twoth ol the other when one of the wheels has made 80 revs. and the other 81 revs. This may be compared with the case where the numbers of teeth are 12 and 13.

EPICYCLIC GEARING

An epicyelic train of gears has already been defined as one in which one of the wheels is ield stationary and at least one other gear ievolves about it. The frame carrying the revolving gear must also revolve. The train is called epicyclic because a point on the revolving gear describes epicyclic curves. This arrangement is in very common use where a very low velocity ratio is to be obtained without an unduly large number of gears; thus a ratio of $\frac{1}{10,000}$ may readily be obtained by the use of four gears, the largest one

Fig. 63
having only 101 teeth. ? e train may have many or few wheels, but it usually contains not over four. We shall start with the simplest case of two wheels.

In Fig. 63 let 1 and 2 represent gear wheels of radii r_{1} and r_{3}
end teeth t_{1} and t_{3} respretively, F being the frame which is attached by a pin bearing to both wheels. Now if we hold the frame stationary the ratio of the train would be $R=\frac{r_{1}}{r_{2}}=\frac{l_{1}}{t_{2}}$, .and is negative i. e., the first and last wheels turn in opposite sense. If now we fix thr wheel 1 so that it cannot revolve, and turn the frame F about the pin connection to 1 , we would have the gear 2 revolving about its bearing on the frame and the train would be called epicyelic, and the ratio, E, of the train would be the number of turns of the last wheel 2, per turn of the frame F. To find E we may first assume that the frame and both wheels are rigidly connected together like one solici body, then turn the whole machine about the axis between F and 1, that is, wheel 1 gets one reolution as do also the frame F and wheel 2. But in the operation the wheel 1 is to remain at rest, we therefore revolve it back one revolution without disturbing the frame, and 'uring this operation the wheel 2 turns forward R revolutions beeau these wheels revolve in the opposite sense.

During the emplete motion above described, the frame has revolved one revolutio:i, the first wheel has revolved one revolution and then back again, i.c., the net result is that it has not moved at all while the last wheel has turned $1+R$ revolutions, so that the ratio of the train $E=\frac{1+K}{1}=1+R$. If the train had three wheels or if the number of contaets between the toothed wheels were even, then R would be positive and the ratio would be $E=1--R$. In fact this latter formula is the general one and R is positive or negative according to whether the last wheel in the train would revolve in the same or opposite sense of the first wheel if the frame were fixed.

The following met!od for obtaining E may appeal to some, the ratio R being here taken as positive, i.e., the number of contacts are even. Let us first assume that the frame is fixed and all wheels revolve as in the ordinary train, then we may set down the results as follows:

Frame fixed.	-1 rev. added to each part.
Turns made by f:ame $=0$ revs.	Turns made by frame $=$
First wheel turned through 1	$0-1=-1$ rev.
rev.	First wheel turns $1-1=0$ revs.
Last wheel must turn $+R$ revs.	Last wheel turns $+R-1$ revs.

That is, after the last operation the first wheel has been returned to its pusition of rest, the frame has made -1 rev. and the last wheel $R-1$ revs., or the ratio $F:=\frac{R-1}{-1}=1-R$.

A few examples will illustrate the case.

1. Let the frame have a wheel 1 with 60 teeth, an idler and a wheel 2 with 59 tecth; to find the ratio of the train when wheel 1 is fixed.

$$
\text { Here } R=+\begin{aligned}
& t_{1} \\
& t_{1}
\end{aligned}=+\begin{aligned}
& 60 \\
& 59
\end{aligned} \therefore E=1-\mathrm{R}=1-\quad, \quad,=-\begin{gathered}
1 \\
59
\end{gathered},
$$ or the wheel 2 will revolve in opposite sense to the frame and at $\frac{1}{59}$ the speed.

If wheel 2 had been fixed $F=+\begin{array}{r}59 \\ 60\end{array} \therefore E=1-\frac{59}{60}=+\frac{1}{60}$ or the wheel 1 would turn in the same sense to the frame and at $\frac{1}{60}$ of the speed.
2. Design an epicycle train giving a ratio of $\frac{1}{100000}$, the last whee! to turn in the same sense as the frame. Here $E=+\frac{1}{10000}$ $=1-R$ if there are an even number of contacts. Hence $R=1-$ $\frac{1}{10000}=\left(1-\frac{1}{100}\right)\left(1+\frac{1}{100}\right)=\frac{99}{900} \times \frac{101}{100}$,co that fixed wheel should have 99 teeth, the two wheels en the inter iate shaft 100 (gears with the fixed wheel) and 101 and the las! beel would have 100 teeth.

In practice such a train could be readily revertred because the diameters of all gears could be made equa. . nhout seri, usiy affectiug the teeth, and we should then have the iangement sketched in Fig. 64, which shows a practical form of the drive, the belt wheel being the frame and running 10000 times as fast as the slow speed shaft. The pulley \mathbf{A} is a running fit on the shaft B which shaft is keyed to the support C and also to the gear with 99 teeth. The gears are loose on the pins D, while the 100 toothed gear is keyed to the slow speed shaft.
3. The Weston triplex pulley block contains a further example o! the epicyclic train, and for the sake of simplicity only the essential parts are illustrated in Fig. 65. The frame D contains bearings
which earry the hoisting sprocket wheel F and to the easting earrying the hoisting sproeket are axles each carrying a pair of eompound gears $B C$, the smaller one C of which gears with an annular wheel made as part of the frame D, while the other and larger gear o^{-}the pair meshes with a pinion A attached to the end of the sheft S earrying the hand chain sprocket H. When a workman pulls on the hand ehain he revolves correspondingly the sprocket F and hence the pinion A on the end of the shaft, which in turn sets the compound gears ${ }^{1}$

Fig. 6
with the annular wheel in the frame, the latter wheel being stationary, the only possible action is for the axles of the compound gears to revolve in a circle carrying the hoisting sproeket with them.

In a one ton Weston triplex block the annular gear on the frame has 49 teeth, while the two gears, B and C have respectively 31 teeth and 12 teeth there being 13 teeth in the pinion A on the hand wheel shaft. The hoisting wheel is $3 \frac{1}{8} \mathrm{in}$. diam., while the hand wheel is $93 / 4 \mathrm{in}$. diam. To find the pull on the hand chain to lift one ton, neglecting friction:

In this case $R=\frac{49}{12} \cdot \frac{31}{13}=9.73$ and is negative, as cne of the whee's is annular. Hence $E=1-R=1-(-9.73)=10.73$, so that the hand wheel turns 10.73 revs. for one rev. of the hoisting wheel, and hence for each foot the load is lifted the hand chain mu t be moved $10.73 \times \frac{93 / 4}{31 / 8}=33.2 \mathrm{ft}$. Or the pull on the hand cha n to lift one ton, neglecting friction, would be $\begin{gathered}2000 \\ 33.2\end{gathered}=60$ pounds. (Note-In the actual ease friction would raise this probably to 80 pounds or more)
4. A form of motor driven portable drill is shown at Fig. 66 in which the gears are worked on this principle. Here, again, only

Fig. 65
the barest outlines are shown as the actual construction is rather complicated. The machine is very well made and fitted with ball bearings throughout instead of the plain bearings shown. The
tool is called the Duntley drill and is made by the Chicago Pneumatic Tool Co.

The outer casing of the machine, Fig. 66, is held stationary by the two handles shown and contains two motors driven by current brought in through one of the handles. Each of the motors has a pinion C attached to it which meshes with the larger gear D of a pair of compound gears which latter rotate freely on a central

Fig. 66
shaft as indicated. The smaller gear of the pair meshes with two gears E carried on axles on which they run freely mounted on the piece F shon 1 black in the figure, this latter picce carrying the socket for the drill which is to be driven. The two gears also mesh with an annular wheel B, forming part of the frame and thus remaining stationary whether the motors run or not. When the motors are driven the compound gear is driven by the pinion attached to each motor. The compound gear drives the gear E and hence the part shown in black is caused to rotate.

CHAPTER VIII.

CAMS

In machinery there are many motions which are more or less irregular and which are not uniform. Take for instance the belt shifter on a planer, which remains stationary during the main part of the stroke of the t able, and then moves quickly at the end of the stroke and again comes to rest; or the exhaust valve of a gas engine which is first quickly opened, then held stationary, and then returned to its closed position, or again the needle bar of a sewing machine, the motion of which is well known and is also not uniform. In such cases of non-uniform motion as have been described, we usually have to obtain the driving power from some shaft or other link moving at uniform velocity, such as the countershaft for a planer or the lay-shaft of a gas engine, or the main shaft of a sewing machine. Now, since the one part of the machine moves non-uniformly, deriving its motion from some other part which has uniform motion, hence at least one of the connecting links between them must be more or less irregular in shape, and the whole irregularity is gencrally confined to one piece which is frequently fastened to the rotating shaft, or other part of the machine having uniform motion, this piece being commonly called a cam. Thus a cam is in many cases a disk of non-circular shape which is sccured to a shaft running at uniform speed, the shape of the cam being such as to impart any desired non-uniform motion by suitable mechanism to any other link.

While cams are usually secured to rotating shafts, yet this is not necessarily the case, and many cams are made in the form of sliding plates, as in some forms of planers.

It will be found most simple to describe the construction and action of cams by a few illustrations so that certain typical cases will now be given.

The first illustration chosen will be the case of the stamp mill as used in mining districts for crushing ores. Let Fig. 67 represent an outline of such a machine, consisting of several stamps A which are merely heavy picces of metal, and in the operation of the mill these stamps are to be lifted in some way to a desired height and then allowed suddenly to drop so as to crush the ore below them. The power to lift the stamps is supplied through a shaft B which is driven at constant speed by a motor or belt, and in this case much freedom
is allowed in the method of lifting the stamps, the necessary eondition being that they shall be lifted with the least amount of energy and then be suddenly released so that they drop freely under the action of gravity alone.

Let w be the weight of a stamp, the mass of which is $m=\begin{aligned} & u \\ & g\end{aligned}$, then the force which must be applied to lift the stamp is $P=m f+w h$

Fig. 67
where f is its acceleration, while rising, h being the height through which the stamp is lifted. and this force P will be a minimum in a given case for minimum value of the aeceleration f, which will occur when the velocity is kept constant as the acceleration is then zero. Now supposing that a collar C is attached to the stamp A, and that to the shaft B is keyed a cam D, it is desired
to find the proper shape of the cam to give A a constant velocity. In solving this problem the usual construction will be followed, in which the stamp A is lifted twice for each revolution of B, there being thus two similar cams attached on opposite sides of B, these being so designed as to lift the stamp while the shaft, turns less than 190°, say 102°. Let the lift of the $\operatorname{stamp} A$ due to the eam be $h \mathrm{ft}$.

In order to solve the problem, draw to a very much enlarged scale the limiting positions of the collar C and also the centre line of the shaft B, as shown at Fig. 68. Divide the lift h into any number of equal parts, say six, numbered, $1,2,3,4,5$ and 6 in the figure, then

Fig. 68
since the velocity of the stamp is to be constant, each of the distances $0-1,1-2,2-3$, etc., must be passed through in the same interval of time, i.e., the angles turned through by 3 will be equal for each of the spaces 0-1, 1-2, ete., each angle being equal to $\begin{gathered}102 \\ 6\end{gathered}=17^{\circ}$.

Draw $B F$ perpendicular to the line of motion of the stamp and lay off the angle $F B E=102^{\circ}$, dividing the latter into the same number of parts as the height h, viz., six, marked respectively $F B G$, $G B H$, etc. With centre B and radius $B F$ draw a circle $F G H--E$ tangent to the line of motion 0-6 of the stamp, and also draw GM,
$H N$, ete.,tangent to the circle at G, H, etc. Now while the stamp is being lifted from 0 to 1 , the shaft B will have turned through the angle $F B G$ and hence the line $G M$ will then be vertical, so that it should we long enough to revel from F 1.0 1, or $G M$ should equal $F I$. Similarly, make $H N=F 2, J P=F 3$, ete., thus the points $O M N P Q$ $R S$ may be at once located and the outline of the cam drawn through them. As a guide in drawiizg the eam it is to be cemembered that at any point such as Q the line $Q K$ is a normal to the curve of che cam.

Fig. 69
A hub of suitable size is now drawn on the shaft, the dimensions of the hub being determined from the principles of machine design, and short curves drawn from S and O down to this hub, the curve from S must be so constructed as to let the stamp fall freely without striking it.

A little consideration will show that the curve $O M N \ldots 5$ is an involute having the base circle $F G H-F_{\text {, i.e., the curve of }}$
the cam is that which would be described by a pencil attached to a cord on a drum of radius $B F$ if this cord were unwound and the string were kept tight. The dotted line shows the other half of the eam.

It will be noticed that in :his cam there is line contact, that is, there is higher pairing and the part coming in contact with the cam and receiving motion from it is called the follower.

As a second illustration, take a problem similar to the latte;, except that the follower is to have a uniform velocity on the up ard during stroke and its line of motion is to pass; through the shaft B. It will be further assumed that a complete revolution of the shaft will be necessary for the coinplete up and down motion of the follower.

Let 0-8, Fig. 69, represent the travel of the follower, the latter being on a vertical shaft, with a roller where it comes in contact with the cam. Divide $0-8$ into say eight equal parts as shown, further,

Fig. 70
divide the angle $O B K^{-}\left(=180^{\circ}\right)$ into the same number of equal parts, eight, giving the angles $O B 1^{1}, 1^{1} B, 2^{1}$, etc. Now since the shaft Γ turns at uniform speed we will have the follower at 1 when $B 1^{1}$ is vertical and at 2 when $B 2^{1}$ is vertical, ctic, hence it is only necessary to revolve the lengths $B 1, B 2$, etc., about B till they coincide with the lines $B 1^{1}, B 2^{1}$, etc., respectively, when the points $1^{1}, 2^{1}, 3^{1}$, will be obtained on the radial lines $B 1^{1}, B 2^{1}$, etc., as the distances from B which the follower must have when the corresponding line is vertical. With centres $1^{1}, 2^{\prime}, 3^{1}$, etc., draw circles to represent the roller and the heavy line shown, $d d$. Tangent to these will be the proper outline for one half of the cam, the other half being exactly the same as this about the vertical er re line. Here again we have higher pairing and some external force is supposed to keep the follower always in contact with the cam.

In many cases the position is known in which it is desired to have the follower at a certain time, and the cam may be designed to suit any conditions of this nature. Suppose it is required to design a cam for a shear of the type shown in Fig. 70, and that from the nature of the work which it has to do the various pesitions of the line $A B$, which comes in contact with the cam, are known for different positiors of the revolution of the latter. For somewhat over onehalf of the revolution let its position be A, B, then let it rise uniformly from $A_{1} B_{1}$ to $A_{2} B_{2}$ during 120° of the cam's motion. It is required to design the cam.

In the enlarged drawing in Fig. 71, is shown the centre Q, also the extreme positions $A_{1} B_{1}$ and $A_{2} B_{2}$ of the line $A B$. Draw

Fig. 71
for convenience the vertical line $Q B_{1} B_{2}$ and lay off the angle $B_{1} Q B_{3}{ }^{\prime}$ $=120^{\circ}$, then the semi-circle $B_{1} F G$ is one-half of the eam. Now divide the angle $B_{1} O B_{2}$, Fig. 70, into any convenient number of parts, say four, by the lines $O C, O D$ and $O E$ and divide the angles $B_{1} Q B_{3}$ into the same number of parts by the lines $Q C^{\prime}, Q D^{\prime}$ and $Q E^{\prime}$. Now while the cam turns through the argle $B, Q C^{\prime}$ the arm is rising to $O r$ so that tle lire $O C$ must be a tangent to the cam when $O C^{-1}$ is vertical,
the arm for this position moving upward. The outline of the cam may be readily drawn in as follows: Lay of $Q C^{\prime}=Q C$ and through C^{\prime} draw a line at angle u, to $Q C^{\prime}$, the lines so drawn will be a tangent to the cam.

In the same way draw a line at D^{\prime}, making the same angle with the corresponding radius from Q that $O D$ makes with $Q D$, in this way obtaining another tangent to the cam. By carrying this construction out for a number of points a set of tangents are readily obtained

Fig. 72
and the outline of the cam may then be drawn as shown. By a similar process the baek of the eam may be designed so as to again lower the arm in any desired manner.

Cams may be drawn to suit any given set of conditions by following out the method explained above.

In mary eases such as in gas engines, the follower moves in the arc of a circle, a sketch of such a cam and follower as used being shown in Fig. 72, in which ease allowance must be made for the deviation of the follower from a radial line. A form of cam used very frequently on screw maehines is made ky attaching by screws a bar of metal of any required shape to the eylindrieal surface of a pulley or drum. In such a case the follower moves axially across the face of the drum and such an arrangement possesses eonsiderable merit for the elass of work on which it is used, beeause it is easy to alter the eams to suit new work by merely taking out the serews, removing the bar from the surfaee of the drum, and screwing a new piece on in its place. Very many other forms of this contrivance exist, but further details will not be given at this place as the reader will find frequent examples in the ordinary work of designing.

The work along this line will be eoneluded by a very general example of useful nature. In the most general case there is a certain operation to perform and it should be aecomplished with the minimum
expenditure of energy and shock to the parts. To take a definite example, suppose it is desired to design a cam to operate the exhaust valve of a gas engine. In such a case just before the valve is raised the pressure upon it due to the gas in the cylinder is great, nnd immediately after the valve is opened the pressure drops almost to that of the atmosphere. Now the desirable eondition in the opening of

Fig. 73
such a valve will evidently be to raise it gently and slowly until it has opened sufficiently to release to some extent the pressure acting on it , the valve should then be opened very quiekly to its extreme position and held in this position till the exhaust stroke is almost completed. At this point the valve should be rapidly lowered, but
with decreasing velocity, upon its seat again, which final position it should attain without undue shock, i.e., its velocity should not be high at the instant just before it comes down to the valve seat.

For such a case the velocity-time curve can be assumed and will take a form similar to that shown at (a), Fig. 73, it being assumed in a given case that enough information is given ahout the motion to draw the velocity-time curve. Since the valve must open and close while the eam-shaft turns less than one-half a revolution the cam must occupy less than one-half the circumference.

From the velocity curve the corresponding space curve may be drawn by integration.

In Fig. 73 (b) is shown the lay shaft A to whish the eam is attached, the fulcrum about which the exhaust valve iever swings not being shown, the follower in this ease is provided with a roller C. The highest position of the roller is at 1 , and two other positions are indieated by 2 and 3, these corresponding to the points $1^{\prime}, 2^{\prime}$ and 3^{\prime} on the space diagram. The remainder of the process is exactly thie same as that illustrated in Figs. 70 and 71, exeept that in the present ease the follower is a roller while in the former ease it was a straight line.

The complete construction for the point 3 is shown, this point corresponding to about $1 / 2 \mathrm{rev}$. of the cam shaft, i.e., to a turn of 17°. The angle $a A b$ is made equal to 17°, and by the conditions of the problem, when the eam shaft has turned through 17° from the position $A a$, i.e., when the radius $A b$ coincides with the line $A a$, the follower will have moved from the position 1 to the position 2 . Hence revolve $A 2$ about A to $A 2^{\prime}$ making $A 2^{\prime}$ equal to $A 2$, then drawing the roller about the eentre 2^{\prime} gives one position of the follower to which the cam must be tangent. The whole cam may be completed by : sımilar p. sess.

CHAPTER IX.

FORCES ACTING IN MACHINES

Whrin a machine is performing any useful work, or even where it is at 1 -st there are certain forces acting on it from without, such as the steam pressure on an engine piston, the belt pull on the driving pulley, th: force of gravity due to the weight of the link, the pressure of the water on a pump plunger or the pressure produced by the stons which is being crushed in a stone-crusher. These forces are called external because they are not due to the motion of the machine, but to outside influence, and these external forces are transmitted from link to link, producing pressures at the bearings and stresses ir the iinks themselves. In problems in machine design we must know the effect of the external forees in producing stresses in the links, and further what the stresses are and what forees or pressures are produced at the bearings, for the dimensions of the bearings and sliding ulocks depend to a very large extent upon the pressures they have to bear, and the shape and dimensions of the links are determined by these stresses.

The matter of determining the sizes of the bearings or links does not concer: us at present, but we shall find it convenient to determine the stresses produced and leave to the machine designer the work of making the links, ete., of proper strength.

In most machines only one part travels with uniform motion, for example an engine crank shaft, or the belt wheel of a shaper or planer, many of the other parts moving at variable rates from moment to moment. If the links move with variable speed then they must have aceeleration and a foree must be exerted upon the link to overceme this. This is a very important matter as the forees required to aceclerate the parts of a machine are often very great, but we shall leave the consideration of this question to a later chapter, and shall for the present negleet the weight of each link and its aceeleration and deal with a mechanism as if it consisted of light, strong parts which although they require no foree to aceelerate them, are yet strong enough.

It will be further assumed that at any instant under consideration, the machine is in equilibrium, that is, no matter what the forces aeting are, they are balanced amongst themselves, or the whole machine is not being accelerated. Thus, in case of a shaper, ecrtain
of the pats are undergoing acceleration at various times during the motion, but as the belt wheel makes a constant number of revolutions per minute, there must be a balance between the resistance due to the cutting and friction on the one hand and the power brought in loy the belt on the other. In the ease of the locomotive which is just starting up, the speed is steadily increasing and the locomotive is leing accelerated, which simply means that more energy is being supplied through the steam than is being used up by the train, the balance of the power bring free to proxluec the acceleration, and the forees acting are not balanced. When, however, the train is up to speed and running at a uniform rate, the input and output must be equal. or the locomotive is in equilibrium, the forees aeting upon it being balaneed.

The most general form of problem of this kind which comes up in practice is such as this: given the force required to crush a piece of rock in a erusher, what belt pull will be required for the purpose? or: what turning moment will be required on the driving pulley of a punch to punch a given hole in a given thickness of plate? or: given an indicator diagram for a steam engine, what is the resulting turning moment produced on the crank shaft?, and many other similar and useful problems. Such problems ray be solved in two ways (a) by the use of the virtual eentre (b) by the use of the phorograph, and as both methods are instructive they will both be discussed briefly.

SOLITION OF THE PROBLEM BY TIE L'SE OF THE VIRTLAL iNTRE
This method depends on the following fundamental principles which should be understood and proved by the reader. If any set of forces zet upon a link of a machine, then there will be equilibrium, provided (1) that the resultant of all the forees is zero, (2) that the resultant is a single force passing through a fixed permanent centre, because if the force pass through a point at rest its action will simply be resisted by a stress in the frame, and (3) that, if the resultant is a single force, the latter passes through a point on the link which is for the moment at rest.

Let a set of forces act on any link b, then there will be equilibrium provided the resultant is a single force passing through $b d, d$ being the fixed link and $b d$ either a permanent or virtual centre. If the resultant of the forces is a couple then both forces of the couple must
pass through $b d$ which is only possible where $b d$ is infinitely distant or where the link has a motion of translation. A few examples will explain these points fully.

Example 1. Threc forces, P_{3}, P_{2} and P_{3} act on the link b, Fig. 74, under what condition will they be in equilibrium? Now P_{1} and P_{3}

Fig. 74
interseet at A then if P_{2} be treated as the balancing foree, the latter must pass through A and also through the stationary point $b d$, so that its direction is known. The rector polygon on the right gives its magnitude, thus P_{2} is to be as shown.

Example 2. Find the resistance P_{2} which must be produced by the crank pin of an engine, Fig. 75, to balance the force P_{1} on the piston,

Fig. 75
In this ease both P_{1} and P_{2} may be regarded as forees on b and these will intersect at $b c$, also their resultant must pass through the eentre $b d$ and also through $b c$ and is thus known in direction and position.

In the diagram to the right draw $P_{1}=A B$ to scale to represent the pressure on the piston, draw $A C$ parallel to P and $B C$ to P_{2} then P_{2} is given by the length $B C$. The moment of P_{2} on the crank shaft is $O D \times P_{2}$, and it may readily be shown by geometry that this is equal to $P_{1} \times O a c$, or the turning effect on the crank shaft due to P_{t} is found in magnitude, direction and sense by simply transferring $P_{\text {, }}$ to ac.

Let the force P_{3} act normal to a, to find its magnitude. Here P_{3} and P_{1} intersect at H and their resultant passes through H and $b d$. Draw the triangle $E F G$ making $E F$ equal to the known value of P_{1} and $F G$ and $E G$ parallel respectively to P, D and $b d-H$. Then $F G=P_{3}$ and $E G$ equals the resultant force P^{\prime} of P_{1} and P_{3} and

Fig. 76
the force P_{3} is called the crank effort, being the force passing through the crank pih normal to a which just balances the steam pressure P_{1}.

Example 3. The direction of pressure between the tecth of a pair of gears is $A B$, Fig. 76, the pitch circles of which are shown, to find the relation between P_{1} and P_{2}. In this case $A B$ meets P_{1} in A and P_{2} in B, join $A-a d$ and $B-b d$. The forces acting on a are now P_{1} and the force P_{3} due to the gear b and the resultant P of these must pass through ad so that the vector triangle gives P_{3}. Now for wheel b there are two forces P_{3} and P_{2} acting through B and their resultant P^{\prime} must pass through B and $b d$, so that the figure on the left shows how the magnitudes of P, P_{3}, P^{\prime} and P_{2} are found by the vector triangles.

Example 4. Only one further example will be given here and for this the beam engine shown in Fig. 77 will be selected. It is required to find the turning effeet produced on the crank shaft by
a given pressure P_{1} produeed on the walking beam from the piston. Taking moments about $c d, P_{1}$ may be replaced by a eorresponding foree P_{2} acting through $b c$ parallel to P_{1} where $P_{1} \times C-c d=P_{2}$ $\times b c-c d, P_{2}$ and P_{1} are in opposite senses and the proeedure is now exaetly the same as in example 1. If preferred, however, $P_{\text {, }}$ may be omitted and any point D on P, may be seleeted. Resolve the latter foree into two components eaeh passing through D, the one P_{3} also passing through ac, while the other component P passes

through D and $c d$. As the point $c d$ is stationary it is only the component P_{3} which has any effect and as P_{3} passes through ac a point a, on the problem is readily solved.

Draw ad - E normal to P_{3} from ad, then the moment of P_{3} on a is $f_{3} \times d a-E=f_{3} \times h_{1}$, whieh was required. Consideration of the matter will show that the result is independent of the position of D.

At present no further examples of this method will be given, although it will be applied later on and some further examples will be given then.

SOLUTION OF THE PROBLEM BY MEANS OF THE PHOROGRAPH

In solving such problems as are now under eonsideration by the use of the phorograph the matter is approached from a somewhat different standpoint, and as there is frequent oceasion to use the method it will be explained in some detail.

It has already been pointed out that the present investigation
deals only with the case where the machine under consideration is in equilibrium, or where it is not, on the whole, being accelerated. This is always the case where the energy put into the machine per second by the source of power is equal to that delivered by the machine, e. g., where the cnergy per sccond delivered by a gas engine to a generator is equal to the energy delivercd to the piston by the explosion of the gascous mixture, friction being neglected.

Suppose now that on any mechanism there are a series of forces P_{1}, P_{2}, P_{3}, etc., acting on the various links, and that these forces are acting through points having the respective velocities v_{1}, v_{2}, v_{3}, etc., ft . per sec. in the directions of P_{1}, P_{2}, P_{3}. The energy which any force will impart to the mechanism per second is proportional to the magnitude of the force and the velocity with which it moves in its owr direction, thus if a force of 20 pounds acts through a point moving at 4 ft . per scc. in the direction of the force, the energy imparted by the latter will be 80 ft . pds. per sec., and this will be positive or negative according to whether the sense of force and velocity are the same or different.

The above forces will impart respectively $P_{1} v_{1}, P_{2} v_{2}, P_{3} v_{3}$, etc., ft . pds. per sec. of energy, some of the terms being negative usually, and the direction of action of the various forces are usually different. The total encrgy given to the machine per second is $P_{1} v_{1}+P_{2} v_{2}+$ $P_{3} v_{3}+$ etc., ft. pds. and if this total sum is zero there will be equilibrium, since the net energy delivered to the machine is zero. This leads to the important statement that if in the machinc any two points in the same or different links have identical motion: ${ }^{\text {then }}$, as far as the equilibrium of the machine is concerned, a given iorce may be applied at either of the points as desired, or if at the two points we apply furees of equal magnitude and in the same direction but opposite in sense, then the equilibrium of the machine will be unaffected by these two forces, for the product $P v$ will be the same in each case, but opposite in sense, and the sum of the products $P v$ will be zero.

To illustrate these points further let any two points B and B^{\prime} in the mechanism have the same motion, and let any force P act through B, then the previous paragraph asserts that without affecting the conditions of equilibrium in any way, the force P may be transferred from B to B^{1} and such a proposition, along with the principle of the phorograph, Chapter IV., enables onc to solve any problem relating to the forces acting on a machinc.

From the principle of the phorograph we know that to every point in a mechanism there is a point on a link of reference (which link is usually chosen as the one with fixed centre and turning with uniform angular velocity) which has the same velocity as the original point, and which is called the image of the point. From the preceding each acting force may be transferred from its actual point of application to the image of the latter, with the result that all forces may

Fig. 78
thus be transferred to determined points on the one link of reference, and the whole problem simply resolves itself into finding the conditions of equilibrium of a set of forces all acting on one link. There will be equilibrium if the sum of the moments of these forces about the point of rotation is zero.

This principle is best illustrated by a series of examples, and here difficult, although usual, practical examples will be selected. It is assumer that the reader can obtain the phorograph, without explanation by the methods discussed in Chapter IV., exeept in the more difficult eases, in whieh the construction will be deseribed.
(1) To find the turning effect produced on the erank shaft of an engine by the weight of the conneeting rod. Let $O A$, Fig. 78, be

Fig. 79
the erank, and $A B$ the conneeting rod of an engine, the latter with eentre of gravity G and of weight $\mathrm{IV}^{\prime} \mathrm{lbs}$ Find A^{\prime}, B^{\prime} and G^{\prime}, the images of A, B and G. The weight I° is assumed to aet through G, and it will impart energy at the rate $W ? \mathrm{ft}$. pds. per sec. where $?$
is the velocity of G in the directior. of W. But G^{t} has the same motion as G and is a point on the crank $O A$, hence W may be transferred from G to G^{t}, because in the latter case it will impart energy to the machine at the same rate as when located at G. The turning moment due to the weight is then $W h \mathrm{ft}$. pds. on the crank.

Note that W is moved from G to G^{\prime}, it must not be thought that the force W at G and also W at G^{\prime} act at once, the dotted line shows the new position. Also G^{\prime} is a point on the crank $O A$ by the principle of the phorograph, the moment thus being Wh.
(2) A shear Fig. 79, somewhat distorted in proportions, is operated by a cam a attached to the main shaft O, the shaft being

Fig. 80
driven at constant speed by a belt pulley. Knowing the force F necessary to shear the bar at S, the turning moment which must be applicd at the cam shaft O is required. Let P the point on the cam a where it touches the arm b at Q, then the motion of P with regard to Q is one of sliding along the common tangent at P. Choosing a as the link of refcrence, P^{\prime} will lic at P, R^{\prime} at $O, R^{t} Q^{t}$ will be parallel to $R Q$ and Q^{t} will lie in $P^{t} Q^{t}$ the common normal to the surfaces at P, this locates O^{r} Having now two points on b^{t}, viz., R^{t} and Q^{\prime},
complete the figure by drawing from Q^{\prime} the line $Q^{\prime} S^{\prime}$ parallel io $Q S$, also drawing $R^{\prime} S^{\prime}$ par.tle $\sim R S$ and thus locating S^{\prime}. The figure shows the whole jar c^{\prime};t in, although it is quite unnecessary. Having now found S a κ_{\ldots}, m a with the same velocity at S on b, the force F may now be iriilsierred to S^{\prime} and the moment F. h of F about O is the moment which must be produced on the shaft in the opposite sense. By finding the moment in a number of positions it is quite easy to find the neeessary power to be delivered by the belt for the complete shearing operation.
(3) Stone crusher, Fig. 8:. (Not to scale.) To find the relation between the pressure on the erank and that produced by the

Fig. 8i
jaws of the crusher. The crank is at G and it will be assumed that a stone is at H between the jaw EHC and the frame which requires a force P to crush it. The crank $O A$ is joined through the rod $A B$ to the toggle joint $C B D$, and as the crank rotates in the sense shown, B is raised, C pushed to the left and the stone crushed. Choosing $O A$ (i.e., $O G$) as the link of reference find the images of all the points, and for clearness the scale of the phorograph has been doubled so that $O A_{1}=20 \mathrm{~A}$. Having found H^{\prime} transfer P from H to H^{i} and if h is used for the shortest distance from O to P, then the force necessary at G to overcome P must aet through G^{\prime} the image of G where $O G^{\prime}=2 O G$, and
the magnitude of the force through G will be $\frac{P h}{O G^{\prime}}$ it being assumed that the force through G acts normal to the radius $O G$. This pressure may be determined for every position of the jaw and crank, and thus the necessary pressure on the crank for different parts of the revoludion may be found.
(4) Proell governor. Governors are dealt with in a later chapter but the present illustration is instructive and has not been discussed elsewhere in this book. In Fig. 81, a represents an arm pivoted to a fixed point O on the spindle and also at A to the arm b which latter

Fig. 82
arm is attached at B to a central weight $\|^{\circ}$ sliding on the spindle, while an extension of b carries the centrifugal weight $\frac{I^{\circ}}{2}$ at C. Treating a, Fig. 82, as the link of reference and O as the fixed centre, find A^{\prime} at A and also B^{\prime} and C^{\prime}, then transfer ${ }_{2}{ }^{\prime}$ (one half the central weight acts on each side) to B^{\prime} and ${ }_{2}^{w}$ to C^{\prime}, and if it is desired to allow for the weights u_{α}^{\prime} and u_{3}^{\prime}, of the arms a and b the eentr${ }^{r} s$ of gravity G and H of the latter are found and also their images G^{\prime} and H^{\prime}, then z_{b}^{\prime} is transferred to I^{\prime}, but as G^{\prime} is at G, w_{a}^{\prime} is not moved.

If the balls revolve with linear velocity $v \mathrm{ft}$. per sec. in a cirele of radius $r \mathrm{ft}$. then the centrifugal foree acting on each ball will be $\begin{aligned} & u^{\prime} \\ & 2 g\end{aligned} \times{ }_{r}^{v^{3}}$ pds. in the horizontal direction, and this foree P is transferred to C^{\prime}. Ïet the shortest distanees from the vertieal line through O to $B^{\prime}, C^{\prime}, G^{\prime}$ and H^{\prime} be h_{1}, h_{2}, h_{3}, and h_{4} respeetively, and let the vertical distance from C^{\prime} to $O B^{\prime}$ be h_{5}, then for equilibrium of the parts (neglecting friction)

$$
\frac{I^{\bullet}}{2} \cdot h_{1}+\frac{w}{2} \cdot h_{2}+u_{a} h_{3}+u_{b} h_{4}=\frac{w}{2 g} \times \frac{v^{2}}{r} \times h_{g} .
$$

which enables the velocity v neeessary to hold the governor in equilibrium in any given position to be found.

CHAPTER X.

CRANK EFFORT AND TURNING MOMENT DIAGRAMS

In tue case of steam engines, gas engincs, air compressors, pumps, etc., it is essential that the relation between the pressure acting on the piston by the stcam, gas, etc., and the corresponding turning moment at the crank shaft be known. This is desirable in the study of the relative merits of single and double-acting engines, tandem and cross-compound engincs with various crank settings, two and four cycle gas engincs, and various other arrangements, in connection with the steadiness of motion which is desirable in all cases.

It will be evident that the motion of any of the above machines will be steadier the more uniform is the turning moment produced on the crank shaft by the working fluid acting on the piston. The more uniform the turning moment also the lighter the fly-wheel

Fig. 83
becomes for any purpose, thus in the single-acting, four-cycle gas engine, where there is only one power impulse for two revolutions, it will be readily understood that there should be a much heavier flywhecl than on the double-acting steam engine with two power impulses per revolution. One notices the extremely heavy fy-wheels used on gas engines, in comparison with steam engines, in order to reduce this unsteadiness to a minimum, and even with all this one often finds that where a gas engine drives a dynamo the lights fluctuate in a very unpleasant way, even with heavy fly-wheels, whereas, with the steam engine with much lighter wheels the fluctuation is not noticeable.

It is thercfore of considerable importance to the engineer that
he understands the causes of these difficulties, and also the possible remedies, and the matter will be studied in some detail.

An outline of a steam engine is shown in Fig. 83 and it is assumed that a force P is acting on the piston and transferred by it to the wrist pin B. The image of B is found at B^{\prime}, and since for the purposes of equilibrium a force may be transferred from its actual point of application to the image of this point, it is therefore possible to move P to B^{\prime} without changing its turning effect. Now the moment produced by P on the crank shaft is evidently $P \times O B^{\prime} \mathrm{ft}$. pds., which is properly called the lorque T on the crank shaft, and the more uniform this torque is the more uniform will be the motion of the engine. In general, it will be found convenient to divide the torque T by the length a of the crank arm, and the quotient will be the force which, if acting through the crank pin A normal to the crank, would produce the actual torque 7 acting, and this force will evidently be a measure of the torque produced by the force P on the piston. The force through B acting as above is called the crank effort and is denoted by E so that $T=P \times O B^{\prime}=E \times O A=E \times a$ or $E=P . \begin{gathered}O B^{\prime} \\ a\end{gathered}$.
For any force P the corresponding crank effort E may be readily found graphically by laying off a distance $O H$ along a to represent P on any convenient scale and drawing $H K$ parallel to $A B$, then will $G i A^{\circ}$ represent E on the same scalc.

Suppose now that the indicator diagrams are given for an engine and it is required to draw a corresponding crank effort diagram, i.e., a diagram showing the crank efforts for all positions of the crank. Let the diameter of the cylinder be d in. and of the piston rod d_{r} in. then the area of the head end of the piston will be $A={ }_{4}^{\pi} d^{2}$ sq. in. and of the crank end $A^{\prime}=\begin{array}{r}\pi \\ 4\end{array} d^{2}-{ }_{4}^{\pi} d_{r}^{2}$ sq. in.; let the stroke of the piston be L. ft.

Let the indicator diagrams be drawn with a spring of scale s in the indicator, by which is mcant that each inch in height of the diagram represents a pressure of s pds. per sq. in. on the piston, thus if $s=60$ then 1 in . in height on the diagram means 60 pds. per sq. in. on the piston. The length of the diagrams for the head and crank ends which are usually the same, is indieated by l in., and is usually
much less than L., for l very rarely exceeds 4 in. for any engine while I. varies from 6 in. 10.5 ft . or more.

The diagrams are now placed above the cylinder, Fig. 84, with the atmospheric li.- arollel with the line of motion of the piston, and for elearness t:te two diagrams for both ends are shown above one another insteed of having both atmospheric lines coincide, as they usually do in taking the diagram. The indicator diagrams arn shown here of the same length as that taken to represent the stroke of the piston. This may be done by changing the length of the diagram to suit the scale adopted for the mechanism or else by making the seale of the mechanisin such that the stroke is the same as the length of the diagrams. Next draw on the indicator diagrams the lines of absolute zero pressure which are parallel with the atmospheric lines and at distances below them to represent the barometrie pressure to scale s.

Now divide the c.ank pin cirele into any convenient number of parts, say 24 , as shown at Fig. 84, and for each position drawn in crank, connecting rod and piston, only one position is shown on the figure. Draw a vertical line above each piston position through the diagrams and also find the point B^{\prime}. Looking now at the indicator diagrams it is seen that, since the piston is moving to the left, the crank end is cxhausting while the head end is working under live steam, thus the point M on the head end and N on the crank: end are being drawn simultaneously. (It is to be observed that the piston will again occupy the position shown on its return stroke, but at this time the piston will be driven to the right by steam in the crank end and will at the same time be exhausting from the head end, at this instant the points R in the crank end diagram and Q in the head end will be drawn).

Let h_{1} in. be the height of M above the zero line and h_{z} the corresponding height of N, then the foree urging the piston forward is $h_{1} \times s \times A$, and that opposing the motion of the piston is $h_{2} \times s \times A^{\prime}$ so that the net foree acting is $P=h_{1} \times s \times A-h_{2} \times s \times A^{\prime}$ pds. This fcere P is in most eases positive, i.e., acts in the direction the pisto: 1 is moving in, but at some parts of the stroke it is frequently negative, which : leans that the fly-wheel must at such places have enou; 1 c energy in it to drag the piston along against the resistance offered by the steam. Now lay off $O H$ to represent P on a chosen scale then $O K^{\circ}$ represents the crank effort E on the same seale. This same construction is earried out for cach crank
position and the value of E found in each case, it will be found that the variations in E are fairly large.

Now lay off in Fig. 85 a straight line base $0-24$ of a length to represent the circumference of the crank pin circle and divide the line into the saine ber of equal parts as the crank pin circle is divided into, in this case twenty-four, and at each point draw a vertical line to represent in height the crank effort E for the corresponding crank pin position. By joining the tops of the vertical lines we obtain a crank effort diagram, the height of which at any puint represents the crank effort for the corresponding crank pin position.

Sinc: vercical heights on this diagram represent forces and horizontal distances represent the space travelled through by the crank pin, the area of the diagram represents foot pounds of work done and to the proper scale the area of this diagram must be the same as that of the indicator diagrams, since both must represent the same amount of work. Thus if the length of the base of the crunk effort diagram is taken exactly equal to the circumference of the crank pin circle then the horizontal length of the crank effort diagram will be π times the length of each indicator diagram and as it takes two complete strokes for the two diagrams and for the crank pin to describe the complete circle therefore the mean height of the crank effort diagram in pds. will be ${ }_{\pi}^{2}$ times the mean total pressure acting on the piston.

By the method just described we obtain a diagram representing the pressure on the crank pin, normal to the crank, which corresponds with the pressure produced on the piston. It is to be noted that to get the turning moment or torque acting on the crank shaft in any position it is only necessary to multiply the corresponding effort by the crank radius or $T=E \times a$, and as a is a constant for all positions, the cra ${ }^{\prime} \cdots$ see that the torque is proportional to the crank effort. Th' 'rm already obtained is also a torque diagram, vertical he $t_{1_{k}}$
hich represent on a certain scale a number of foot-pounds.

Only a very brief discussion will be given here as to the effect of the shape of this diagram on the steadiness of motion, as this matter is discussed very fully in the chapter dealing with the weight of fly-wheels, but it will be helpful here to point out some features of the matter. For the sake of simplicity it will be assumed that the engine is driving a dynamo, or a turbine pump or the machinery in a machine shop or other machinery which is of such a nature as to

offer a constant resistance to motion. In all the machines above mentioned, for instance, if driven byy a belt the belt would for all parts of the rerolution have a constant tension, in other words, the machines are such that they will require a constant torque for operation. This is one of the simplest cases of loading of an engine.

Now the total work delivered to the engine per revolution is represented by the area of the indicator diagrams and also by the area under the crank effort diagram as has already been explained. If now the mean height of this crank effort diagram is found and a horizontal line drawn the height of this line will represent the mean crank effort, and also the mean torque during the revolution, and this line is to be so located that the sum of the positive and negative areas between it and the crank effort curve will be equal. This mean line cuts the crank effort diagram at four points, M, N, R and S, Fig. 85.

Since friction is being neglected the work which the engine is capable of doing in the way of driving other machinery, is also equal to the area under the crank effort diagram and this discussion deals with the case where the load offers a constant resisting torque, therefore the torque diagram for the load will be a horizontal line, and if drawn on the same axes as the crank effort curve will be the line L, M, N, R, S, l°, where the area under this line is equal to the work put into the engine per revolution. Further, the work put in by the working fluid will be equal to that given out in the same time if the engine is to make a constant number of revolutions per minute. Thus the mean crank effort curve may be also looked upon as the load eurve for the case under consideration.

A study now of the diagram in Fig. 85 shows certain important features. During the first part of the out-stroke it is evident that the crank effort due to the steam pressure is less than that necessary to drive the load, this being the case until M is reached, at this point the effort due to the steam pressure is just equal to that necessary to drive the load, thus during the part $O M^{\prime}$ of the revolution the input to the engine being less than the output the energy of the links themselves must be drawn upon and must supply the work represented by OML. But the energy' which may be obtained from the links will depend upon the mass and velocity of them, the energy being greater the larger the mass and also the greater the velocity, the result is that if the energy of the links is: decreased by drawing from them for any purpose, then since the mass of the links
is fixed by construction, the only other thing which may happen is that the speed of the links must decrease.

In engines the greater part of the weight in the moving parts is in the fly-wheel and hener fom what has been already said, if energy is drawn from t! • links the: we velocity of the fly-wheel will decrease and it will ontinue io do tease so long as energy is drawn out from it. Thi ; caring O, V^{\prime} the speed of the fly-wheel will fall continually but at is doresing rate as we approach M^{\prime}, and at this point the wheel will have reached its minimum speed. Having passed M^{\prime} the effort supplied by the steam is greater than that necessary to do the external work and henee there is a baiance left for the purpose of adding energy to the parts and speeding up the fly-wheel and other links, the cffort available for this purpose in any position being that due to the height of the crank effort curve

Fig. 86
above the load line. In this way the speed of the parts will increase between M^{\prime} and N^{\prime} reaching a maximum for this period at $\lambda^{\prime \prime}$.

From $N^{\prime \prime}$ to R^{\prime} the speed will again decrease, first rapidly then more slowly, and reaching a minimum again at R^{\prime} and from R^{\prime} to S^{\prime}, there is increasing speed with a maximum at S^{\prime}. The fly-wheel and other parts will, under these conditions, be continually changing their speeds from minimum to maximum and vice versa, producing much unsteadiness in the motion during the revolution. The magnitude of the unsteadiness will evidently depend upon the fluctuation in the crank effort curve, if the latter curve has large variations then the unsteadiness will be increased.

In Fig. 86, a crank effort curve is shown for two engines coupled to one shaft and with their cranks at right angles as in a locomotive. Curve A represents the crank effort curve for one cylinder and B
that for the one with crank 90° behind the first while C represents the resultant crank effort and D the mean crank effort, and if the same nature of loading as before be assumed then D will also be the load eurve. It will be evident in this case that while there are a greater number of maximum and minimum speeds than before, yet the fluctuation in speeds must be much less, since the effort curve C due to the stean is closer throughout to the load curve than in the previous example.

TANDEM AND CROSS COMPOUND ENGINES

In order to show the relative merits of tandem and eross-compound engines with respect to the steadiness of motion and uniformity of torque a comparison should be made between Figs. 86 and 87. The curves in Fig. 86 are very similar to those that would be obtained

Fig. 8;
from a cross-compound engine with cranks at 90° while in Fig. 87 is shown the curve for a tandem engine. A study of these diagrams at once shows the advantages of the cross-compound arrangement in securing uniform torque and it therefore makes a much preferred design from this point of view.

Engines are frequently built to work triple expansion with cranks at 120°, and if the reader will plot the curves in this case he will find that the turning moment is extremely uniform.

INTERNAL COMBUSTION ENGINES

Internal combustion engines are made to work cither two or fuur eyele and the latter class alone will be treated here, as it is
very common, at last, on larger, sizes and besides it gives a rather more instructive case.

The four cycle engine is usually made single-acting, and the complete cycle of the engine is finished in four strokes. Starting with the crank on the inner dead centre the inlet valve opens and as the piston makes the first out-stroke called the suction stroke, the charge of explosive mixture is drawn in at constant pressure slightly below that of the atmosphere, the valves in the cylinder are now closed and the piston is forced in during the compression stroke the mixture being compressed. Near the end of the compression stroke the charge is ignited, causing a sudden rise in pressure which drives the piston forward producing the expansion stroke, and then the exhaust valve is opened, and the burnt gases are swept out of

Fig. 88
the eylinder by the t
\mathbf{r} exhaust stroke, the pressure in the cylinder during this str ac being nearly constant and slightly higher than that of the atmosphere.

In internal combustion engines of this type there is one stroke (the expansion stroke) of the four composing the cycle in which energy is being received from an external source of supply through the working fluid and during the remaining three strokes no energy is supplied externally (compare this with the ordinary case of the double acting steam engine) so that whatever energy is given out during these three strokes must be drawn from the moving parts.

The crank effort diagram for a single cylinder engine is shown in Fig. 88, and it will be noticed that the line of mean torque falls far below the maximum torque in the eycle so that unless the rotating masses are very heavy there will be large fluctuations in speed. We shall not here attempt further discussion of this subject but the advantages of four or six cylinders with properly arranged cranks will be very evident if the crank effort curves are drawn.

CHAPTER XI.

THE EFFICIENCY OF MACHINES

The accurate determination of the efficieney of machines and the loss by friction is extremely complicated and difficult and it is doubt ful whether it is possible to deal with the matter except through fairly close approximations. All machines are constructed for the purpose of doing some specific form of work, the machine receiving energy in one form and delivering this energy, or so much of it as is not wasted, in some other form. Thus, the water turbine receives energy from the water and transforms the energy thus received into electrical energy by means of a dynamo, or a motor receives energy from the electric circuit, and changes this energy into that necessary to drive an automoiile, and so for any machine, the machine receives energy in a certain form from some source and changes this energy into some useful form, delivering it again for the particular purpose desired. For convenience, the energy received by the machine will be referred to as the input and the energy delivered by the machine as the output.

Now a r. nine cannot create energy of itself, but is only used to change the form of the a ailable energy into some other which is desired, so that for a complete cycle of the machine (e.g., one revolution of a steam engine, or two revolutions of a four-cycle gas engine or the forward and return stroke of a shaper) there must be some relation between the input and the output. If no energy were lost during the transformation the input and output would be equal and the machine would be perfect, as it would change the form of the energy and lnse none. However, if the input per cycle were twice the output then the machine would be very inperfect for there would be a loss of ne helf of the energy available during the transformation, the output can, of course, never exceed the input. It is then the province of the designer to make a machine so that the output will be as nearly equal to the input as possible and the more nearly these are to being equal the more perfect will the tuachine be.

In dealing with machinery it is customary to use the term mechanical efficiency or efficiency to denote the ratio of the output per cycle to the input, or the efficiency $\eta=\frac{\text { output }}{\text { input }}$ per cycle. The maximum value of the efficiency is unity, which corresponds to the
perfect machine, and the minimum value is zero which means that the machine is of no value in transmitting energy; the effieieney of the ordinary machine lies netween these two limits, clectrie motors having an efficieney of .92 or over, turbine pumps usually not over .80 , large steam pumping engines .95 , ete., and in the ease where the cluteh is disconnected in an automobile enginc the efficieney of the latter is zero.

The quantity $1-\eta$ represents the proportion of the input which is lost in the bearings of the machine and in various other ways, thus in the pump above mentioned, $\eta=.80$ and $1-\eta=.20$, or 20% of the energy is wasted in this ease in the bearings and the frietion of the water in the pump, similar results may be obtained ior oth r machines. The amount of energy lost in the machine, and which helps to heat up the bearings, ete., will depend on many things such as the nature of lubrieant used, the nature of the metals at the bearings and many other considerations to be discussed later.

Suppose now that on a given machine there is at any instant a foree P acting through a certain point on one of the links and this point is moving at velocity v, in the direction and sense of P, then the energy put into the machine will be at the rate of $F v, \mathrm{ft} . \mathrm{pds}$. per sec. Now at the same instant let there be a resisting foree Q aeting on some part of the machine and let the point of applieation of Q have a velocity v_{2} in the direction $o^{*} \cap$ so that the energy output is at the rate of $Q v_{2} \mathrm{ft}$. pds. per see. (The foree P may be the pressure acting on an engine piston or the difference between the tensions on the tight and slack sides of a belt driving a lathe, while Q may represent the resistance offered by the main belt on an engine or by the metal being cut off in a lathe.) Now from what has been already stated the effieiency at the instant is $\eta=\frac{\text { cutput }}{\text { input }}=\frac{Q \cdot v_{2}}{P \cdot v_{1}}$ and if no losses occur then this ratio will be unity, it is, however, always less than unity in the actual case. Now, as in practice, $Q v_{2}$ is always less than $P v_{1}$ choose a foree P_{o} acting through the point of application of P such that $P_{0} v_{1}=Q v_{2}$, then elearly P_{0} is the force which, if applied to a frictionless machinc of given type, would just balance the resistance Q and $\eta=\frac{Q v_{2}}{P v_{1}}=\frac{P_{0} v_{1}}{P v_{1}}=\frac{P_{0}}{P}$ so that evidently the efficiency will be $\begin{gathered}P_{\circ} \\ P\end{gathered}$ at any instant, P_{\circ} being always less than P.

The efficiency may also be expressed in a different form. Thus, let Q_{0} be the force which could be overcome by the foree P if there were no friction in the machine then $P_{v_{1}}=Q_{0} v_{2}$ and thercfore
$\eta=\frac{Q v_{2}}{P v_{1}}=\frac{Q_{v_{2}}}{Q_{0} v_{2}}=\frac{Q}{Q_{0}}$

FRICTION

Whenever two bodies touch each other there is always some resistance to their relative motion, this resistance being called friction. Suppose a pulley to be suitably mounted in a frame attached to a beam and that a rope be passed over this pulley, each end of the rope holding up a weight w lbs. Now, since each of these weights is the same they will be in equilibrium and it would be expected that if the slightest amount were added to either weight the latter would descend. Such is, however, not the case, and it is found by experiment that one weight may be considerably increased without disturbing the conditions of rest.

It will also be found that the amount it is possible to add to one weight without producing motion will depend upon such things as (1) the amount of the original weight w being greater as w increases, (2) the kind and amount of lubricant used in the bearing of the pulley, (3) the stiffness of the rope, (4) the materials used in the bearing and the nature of the mechanicel work done on it, and upon very many other considerations which the reader will readily think of for himself.

Now it is evident that there must be some force coming into play which counteracts the effect of the additional weight and keeps the pulley at rest, and it is further evident that the magnitude of this force must vary with the conditions, being zero when no addition is made to either weight and gradually inereasing as the additional weight increases until motion begins. This force, which acts in such a way as to resist the motion, we call friction and as has been pointed out it is found that it acts in such a way as to hinder motion and is variable in amount.

Before passing on one more illustration might be given of this point. Suppose a block of iron weighing 10 lbs . is placed upon a horizontal table and that there is a wire attached to this block of iron so that a force may be produced on it parallel to the table. If now a tension were put on the wire and there were no loss of energy
the block of iron should move even with the slightest tension, because no change is being made in the potential energy of the binck by moving it from place to place on the table, as 110 alteration is taking place in its height. It will be found ,however, that the block "rill not begin to move until considerable force is produced in the wire, the force possibly running as high as $1.5 \mathrm{pd}^{-}$or less. The magnitude of the force necessary will as before depe. id upon (1) the material of the table, (2) the nature of the surface of the table, (3) the area of the face of the block of iron touching the table, etc.

Just as in the case of the pulley, therefore, some force springs into existence to balance the pull in the wire, the greater the pull in the wire the greater will be the balancing force and vice versa, thus the latter force is variable in mangitudc, being only sufficient to balance the external pull applied, and increasing as the latter increases till the limit is reached where the bloek begins to move. The force thus called into play is called friction.

Wherever motion exists frietion is always acting in a sense opposed to the motion, although in many cases its very presence is essential to motion taking place. Thus it would be quite impossible to walk were it not for the friction between one's feet and the earth, a train could not run were there no friction between the wheels and rails, and a belt would be of no use in transmitting power if there were no friction between the belt and pulley. Friction therefore, aets as a resistance to motion and yet without it many motions would be impossible.

A great many experiments have been made for the purpose of finding the relation between the friction and other forces acting between two surfaces in contaet, the laws of Morin stating that the frictional resistance to the sliding of one body upon another depended upon the normal pressure between the surfaces and not upon the areas in contact nor upon the velocity of slipping and that if F were the frictional resistance to slipping and N the pressure between the surfaces, then $F=\mu N$ where μ, the coefficient of friction, depended only upon the nature of the surfaces in contact as well as the materials composing these surfaces.

A discussion of this subject would be too lengthy to place here and the student is referred to the numerous experiments and diseussions in the current engineering periodicals and in books on mechanics, such as Kennedy's "Mechanies of Machincry," and Unwin's "Machine Design," books well worthy of study. It may only
be stated that the law giveh above is known to be quite untrue in the ease of machines where the pressures are great, the velocities of sliding high and the methods of lubrication very variable, and a special low must be formulated in such cases. Thus before we ean tell what friction there will be in the main bearing of a steam engine, we must know by experiment what laws exist for the friction in case of a similar engine ha ing similar materials in the shaft and bearing and oiled in the same way, and if we are dealing with a horizontal Corliss engine we shall not get the same laws as with a vertical high speed engine, and again the laws will depend upon whether the lubrieation is forced or gravity and on a great many other things. For each type of bearing and lubrication there will be a law for determining the frietional loss and this law must in each ease be determined by careful experiments. Following the

Fig. 89 method of Kennedy*, the formula $F=f N$ will be used for the friction force F in terms of the pressure N between the surfaces, and we shall employ f to denote the friction factor. The law for f may be very complicated, and should be found by experiments of the kind already referred to, as this factor will vary with so many different properties of the bodies in eontact and the nature of the motion.

In dealing with machines it hats been shown that they are made up of parts united usually by sliding or turning pairs, so that it will be well at first to study the friction in these pairs separately.

FRICTION IN SLIDING PAIRS

Consider a pair of sliding elements as shown in Fip. 89 and let the normal component of the pressure between these two elements be N and let R be the resultant external force acting upon the upper element which is moving, the lower one, for the time being, considered stationary. Let the force K act parallel to the surfaces in the sense shown the tendeney for the body is then to move to the right. Now, from the previous discussion, there is a certain resistance to the motion of a the amount of which is $f N$, where f is the friction factor, and this force must in the very nature of the case act tangent to the

[^3]surfaces of contact, thus from the way in which R is ehosen in this case the friction force $F=f N_{\text {, }}$, and R are in the same direction.

Now if R is small there will be no motion as is well known, for the resistance F may easily be much greater than R, this corresponds to the case of a sleigh stalled on the road where the pull of the horses is horizontal, but less than the frictional resistance. Again if R be increased sufficiently the body will move with uniform velocity, in which case the resistance F due to friction must just be equal to the force R acting, as in the case of the sleigh being drawn at uniform speed along a road, but if K be increased above this last value, then the motion becomes accelerated as frequently occurs when a sleigh

Fig. 90 is being drawn down hill, the resolved part of the force of gravitation parallel with the ground being greater than the frictional resistance. Stating these results together, we have
(1) R less than F, i.e., $R<f N$, no relative motion.
(2) $R=F$, i.c., $R=f N$, motion with uniform velocity.
(3) R greater than F, i.e., $R \rightarrow f N$, aecelcrated motion.

Assuming that motion is actually taking place there is only equilibrium provided $R=f N$.

Consider next the ease shown in Fig. 90, where the resultant external force acts as shown, the motion of a relative to d being to the right as indicated on the figure. Let N be the resolved part of R normal to the surface of contact, then we already have seen that according to the method adopted in this diseussion, the frictional resistance to slipping of a on l is $F=f N$, and this acts in such a way as to oppose the force producing motion. Resolve R into its two components $A B$ parallel to the surfaces and $B C$ or N normal to these surfaces, then from the argument of the preceding paragraph, $A B$ cannot be less than F as there would then be no motion, and if $A B=$ F the motion will be of uniform velocity, while if $A B$ is greater than F there will be acceleration of a relative to b. Let the angle $A C B$ be denoted by ϕ so that $A B=K \sin \phi$, also $B C=N=R \cos \phi$ and $A B=N^{\prime} \tan \phi . \quad$ For the case in which motion takes place without acceleration, i.e., for the condition of equilibrium; $A B=F=f N$ or $A B$ $=f=\tan \phi$ or the tangent of the angle of inclination of the resultant furce R to the normal is the friction factur.

Hence for equilibrium during the relative motion of the two bodies, the resultant must be inclined at an angle $\phi=\tan ^{-1} f$ to the normal to the surfaces and on such a side of this normal that the tangential component $A B$ is in the direction of motion. The angle ϕ may be conveniently ealled the angle of friction, and will be in future denoted by the letter ϕ, frequently without using the words "angle of friction" to designate it.

In connection with this discussion it is to be borne in mind that ϕ is the limiting angle of inelination of the resultant force on the moving body, and that if the resultant aets at any angle θ to the nor-

Fig. 91
mal then there will be no motion or acceleration according as θ is less or greater than ϕ for if θ be greater than ϕ then $\tan \theta>\tan \phi$ and $A^{\prime} B^{\prime}=R \sin \theta$ is greater than $A B=R \sin \phi$ or $A^{\prime} B^{\prime}$ is greater than the frictional resistance F and the unbalaneed force will eause aceeleration, similarly θ if is less than ϕ the resistance F exeeeds $A^{\prime} B^{\prime}$ and there will be no motion, so that it is only when $\theta=\phi$ that there is equilibrium.

A few cxamples should make this matter elear and in those first given, all friction is negleeted exeept that in the sliding pair. The frietion in other parts will be considered later.
(1) As an illustration, take an engine, with the erosshead moving to the right under the stcan pressure P acting on the piston, Fig. 91.

The forces acting on the crosshead are the steam pressure P, the thrust Q due to the connecting rod and the resultant R of these two which also represent the pressure on the crosshend due to the guide. Now we know from the principles of staties that P, Q and R must all intersect at one point, in this ease th rentre of the wrist-pin O, and further that the resultant R mיst be inelined at an angle ϕ to the normal to the surfaces in contact, thus R has the direction shown. (Note that the side of the normal on which R lies must be so chosen that R has a component in the direction of motion.) Now draw $A B=P$, the steam pressure and draw $A C$ and $B C$ parallel respee-

twely to R and Q, then $B C=Q$, the thrust of the rod and $A C=R$ the resultant pressure on the eross-head shoe.

If there were no friction in the sliding pair then R would be normal to the surface and in the triangle $A B D$ the angle $B . A I$) would be $90^{\circ}: B D$ is the force in the connecting rod and $A D$ is the pressure on the shoe. The eff acy will thus be $\eta=\frac{B C}{B D}=\frac{Q}{C_{0}}$. Or we may find P_{n} the force newessary to overcume Q if there were no friction by drawing $C E$ normal to $A B$ then $P_{\circ}=B E$ and $\eta=\frac{P_{\circ}}{P}=B E$
(2) A cotter is to be designed to connect two rods. Fig. 92,
it is regnired to find the limiting taper of the cotter to prevent it slipping out when the rox is in tension. It will le assumed that looth parts of the joint have the same friction factor f, and henee the same frietion angle ϕ, and that the cotter tapers only on one side with ant angle θ. The sides of the cotter on which the pressure eomes are marked in heary lines and on the right hand side the total pressure K_{1} is divided into two parts be the shape of the outer piece of the eonnection. Both the forces K, and K_{2}, act at angle ϕ to the nomal to their surfaces and from what has already leen satid it will be readily maderstood that they act on the side of the nomal shown when the cotter just begins to slide out, so that by drawing the vector triangle of height $A B=P$) and hating (B and $/ B I$) respectively parallel to

Fig. 9.3
R, and R_{2}, the foree Q necessary to force the cotter out is at once determined.

From the figure it is seen that the angle $C B A=\phi$ and $A B D$ $=\phi-\theta$, so that $Q=P[\tan \phi+\tan (\phi-\theta)]$ and evidenty the cotter will slip out of itself if $Q=0$, i.e.. if $\tan \phi+\tan (\phi-\theta)$ $=o$ or $\theta=2 \phi$. This is evidently independent of P exeept in so far as ϕ is affected by the latter force.

If the cotter is being driven in the forees K_{1} and R_{z} take the directions K_{1}^{\prime} and K_{2}^{\prime} shown, and the corresponding vector diagram is shown in the figure. Here the foree !) required is given by the relation.

$$
O_{1}=P|\tan \phi+\tan (\theta+\phi)|
$$

whieh is evidently increased with an inerease in θ. Small values of θ make the cotter easy to drive in and hard to drive out.
(3) An interesting example of the friction in sliding pairs is illustrated in Fig. 93, which represents the very common ease of a jack, which is in frequent use for various purposes. The machinery

Fig 94
of the jack is not shown, the barest outline alone being drawn to explain the principles now under diseussion.

In this figure the force P which is being applied to lift the jaek is assumed to aet vertically, although its direetion will really depend upon the meehanism which is used in applying the lifting power. The position of the load Q to be lifted is also assumed and the load causes the heel of the jack to press against the frame with the foree K_{1}, in the direction shown (the jack is assumed to be raising the load)
while the force with which the top of the jack presses against the frame is R_{2}.

At the base of the jack are the forces Q and R_{t}, the resultant of which must pass through A, while at the top are the forces R, and P, the resultant of which must pass through B, and if there is equilibrium the resultant $F_{\text {, of }} Q$ and R, must balance the resultant $F_{\text {, of }}$ R_{2} and P_{1}, which can only be the case if F_{1} passes through A and B, thus the direction of F_{1} is known.

Now draw the vector triangle $E C G$ with sides parallel to F_{1}, R_{2}, and P, the latter force also being known in magnitude, so that $F_{1}=E C$ and $R_{2}=C G$. Next through E draw $E D$ parallel to R^{\prime} and through C draw $C D$ parallel to Q from which $Q=C D$ is found. If there were no friction the reactions between the jack and the frame would be normal to the surfaees at the points of contact, thus A would move up to A_{0} and B to B_{o} and the vector diagram would take the form $E D_{0} C_{0} G$ where $E G=P$ as before and $D_{0} C_{0}=$ Q_{o} so that $Q_{0}=P$.

The efficiency of the device in this position is evidently $\eta=\begin{aligned} & Q \\ & Q_{0}\end{aligned}$. It is evident that the efficiency is a maximum when the jack is at its lowest position because $A B$ is then most nearly vertical, while for the very highest positions the efficiency will be very low.

One more example of this kind will suffice to illustrate the principles. Fig. 94 shows in a very elementary form a quick return motion used on shapers and machine tools, and illustrated carlier in this book, Let Q be the resistance offered by the cutting tool which is moving to the right and let P be the net force applied by the belt to the circumference of the belt pulley. For the present problem we shall consider only the friction losses in the sliding elements, leaving the other parts till later. Here the tool holder g presses on the lower guide and the pressure on this guide is R_{1}, the force in the rod e is denoted by F_{1}. Further the pressure of b on c is to the right and as the former is moving downward for this position of the machine, the direction of pressure between the two is R_{2} through the eentre of the pin.

Now on the driving link a the forces acting are P and R_{2}, the resultant F_{2} of which must pass through O and A. In the vector diagram draw $B C$ equal and parallel to P_{1} then $C D$ and $B D$ parallel respectively to F_{2} and R_{2} will represent these two forces, so that R_{2} is deternined. Again on C the forees aeting are R_{2} and F_{1}, and their
resultant passes through O, and also through E, the intersection of F_{1} and R_{2}, so that drawing $B G$ and $D G$ in the veetor diagram parallel respectively to F_{3} and F_{1} gives the foree $F_{1}=D G$ in the rod e. Aeting on the the tool holder g are the forees F_{1}, Q and R_{1}, and the directions of them are known and also the magnitude of F_{1}, hence complete the triangle $G H D$ with sides parallel to the forees coneerned and then $G H=Q$ and $H D=R$, which gives at onee the resistance Q which can be overcome at the tool by a given net foree P applied by the belt.

If there were no frietion in these sliding pairs then the forees R_{1} and R, would aet normal to the sliding surfaces instead of at angles ϕ_{1} and ϕ_{2} to the normals so that A moves to A_{\circ} and E to E_{0} and the construction is shown by the dotted lines, from which we get the value of Q_{0}, and the efficiency for this position of the machine is $\eta=\frac{Q}{Q_{0}}$
The value of η should be found for a number of other positions of the machine, and, if desirable a curve may be plotted so that the effeet of frietion may be properly studied.

Before passing on to the ease of sliding pairs the attention of the reader is ealled to the faet that the greater part of the problem

Fig. 95
is the determination of the condition of static equilibrium as deseribed in Chapter IX, the method of solution being by means of the virtual eentre, in these eases the permanent centre being used. The only difficulty here is in the determination of the direction of the pressures R between the sliding surfaces, and the following suggestions may be found helpful in this regard.

Let a erosshead a, Fig. 95, slide between the two guides d_{1} and d_{2}, first find out, by inspeetion generally from the forees aeting whether the pressure is on the guide d_{i} or d_{2}. Thus if the connecting rod and
piston rod are in compression the pressure is on d_{2}, if both are in tension it is on d_{1}, etc., suppose for this case that both are in compression, the heavy line showing the surface bearing the pressure.

Next find the relative dircction of sliding. It does not matter whether both surfaces are moving or not, we simply wish the relative direction and shall assume it in the sense shown, i.e., the sense of motion of a rclative to d_{z} is to the left (and, of course, the sense of motion of d_{2} relative to a is to the right). Now the resultant pressurc between the surfaces is inclined at angle ϕ to the normal where $\phi=\tan ^{-1} f, f$ being the friction factor, so that the resultant must be either in the direction of R_{1} or R_{t}^{\prime}.

Fig. 96
Now R_{1} is the pressure of a upon d_{2}, then R_{i} acts downward, and in order that it niay have a resolved part in the direction of motion, then $R_{\text {, }}$ and not R_{1}^{\prime} is the correct direction. If R, is treated as the pressure of d_{2} upon a then R, acts upward, but the sensc of motion of d_{2} relative to a is the opposite of that of a relative to d_{2}, and hence from this point of view also R_{t} is correct.

The reader may readily remember the dircction of R, by the following simple rule: Imagine either of the sliding pieces to be an ordinary carpenter's wood plane, the other sliding piece being the wood to be dressed, then the force will have the same direction as the tongue of the plane when the latter is being pushed in the given dircction on the cutting stroke, the angle to the normal to the surfaces bcing ϕ.

FRICTION IN TURNING PAIRS

In dealing with turning pairs the same principles are adopted as are used with the sliding pairs and should not cause any difficulty.

Let a, Fig. 96, represent the outer element of a turning pair, for example, a loose pulley, which is turning in the sense indicated upon a fixed shaft d of radius r, and let P be the applied force, Q being the resistance. If there were no friction then the resultant of P and Q would act through the intersection A of these forces and also through the centre O of the bearing, so that under these circumstances it would be simple to find Q for a given value of P by drawing the vector triangle.

There is, however, frictional resistance offered to motion at the surface of contact, hence if the resultant R of P and Q acted through O, there could be no motion. In order that motion may exist it is necessary that the resultant produce a turning moment about the centre of the bearing equal and opposite to the resistance offered by

Fig. 97
the friction between the surfaces. It is known already that the frictional resistance is of such a nature as to oppose motion, and hence the resultant force must act in such a way as to produce a turning moment in the direction (sense) of motion equal to that offered by friction in the opposite sense. Thus in the case shown in the figure the resultant must pass through A and lie to the left of O. Fig. 97 shows an enlarged view of the bearing.

In Fig. 97 let p be the perpendicular distance from O to R, so that the moment of R about O is $K p$. The point C may be convenient ly called the centre of pressure, being the point of intersection of R and the surfaces under pressure. Join $C O$. Now resolve R into two
components F tangent to the surf ces at C and N normal to the surfaces at C, i.e., radial; then elearly F will be the force necessary to overcome the friction, and following the method already adopted $F=f N$ where f is the friction factor and $f=\tan \phi$ where ϕ is the angle of friction. Thus $F=f N=N^{\prime} \tan \phi$, so that the angle between N and R is ϕ, and ϕ is therefore also the angle at C between R and the radial line $C O$.

With centre O draw a eircle tangent to R as shown dotted, this circle will have a radius p where $p=r \sin \phi$, and is usually designated as the friction circle. Thus in the case of the turning pairs the resultant must also make an angle ϕ with the normal to the surfaces in contact, and this is accomplished by drawing the resultant tangent

Fig. 98
to the frietion circle which latter is concentric with the bearing and has a radius $p=r \sin \phi$. The side of the circle on which the resultant lies is determined by the fact that there must be a turning moment in the sense of motion.

In practice, f is always small and therefore $\tan \phi$ and ϕ are also small, so that no serious error will result in assuming $\tan \phi=\phi=$ $\sin \phi$ and approximately $p=r \tan \phi=r f$.

Four different arrangements of forces on a turning pair are shown
correctly drawn on Fig. 98, the same letters being used as in the previous figure, and the reader will be able to check the constructions. The first case (a) shows P and Q acting in interchanged sense from the position shown in Fig. 96, the sense of rotation being the same, and both P and Q act on the outer element, (c) shows a case similar to (a), in all respects except that P and Q act on the inner element, and it will be noticed that this does not change the position of R but moves C from the lower to the upper side. The cases shown at (b) and (d) are similar in that the sense of rotation is the same and the forces act on the outer element, but since the sense of R is reversed.

Fig. 99
the latter changes from the left t, the right hand side of the friction circle.

The construction already shown will be applied in a few practical cases.
(1) The first case considered will be an ordinary bell-crank lever, Fig. 99, on which the force P acts horizontally and Q vertically on the links a and c respectively, the whole lever turning in the clockwise sense. An examination of the figure shows that the sense of motion of a relative to b is counter-clockwise as is also the motion of c relative to b, therefore P will be tangent to the lower side of the friction circle at bearing 1 , and Q will be tangent to the left-hand side of the friction circle at bearing 2. and the resultant of P and Q
must pass through A and must. be tangent to the upper side of the friction circle on the pair 3 so that the direction of R becomes thus fixed. Now draw $D E$ in the direction of P to represent this force and then draw $E F$ and $D F$ parallci respectively to Q and R and intersecting at F, then $E F=Q a \cdot 1 D F=R$.

In case there were no friction and assuming the directions of P and Q to remain unchanged (this would be unusual in practice) ${ }^{\text {c }}$ then P, Q and their resuliant, would act through the centres of the joints 1,3 and 2 respectively. Assuming the magnitude of P to be unchanged, then the vector triangle $D E F^{\prime}$ has its sides $E F^{\prime}$ and $D F^{\prime}$ parallel respectively to the resistance Q_{0} and the resultant R_{0} so that there is at once obtained the force $Q_{0}=E F^{\prime}$. Then the efficiency of the lever in this position is $\eta=\frac{Q}{Q_{0}}$ and for any other position may be similarly found.

The frietion circles are not drawn to scale but are made larger than they should be in order to make the drawing clear.
(2) Let it be required to find the line of action of the force in the connecting rod of a steam engine taking into account friction at the crank and wrist pins. To avoid confusion we shall omit the details of the rod and simply represent it by a line, drawing in the friction circles to a very much exaggerated scale. Let Fig. 100 represent the rcd in the position under consideration, the direction of the crank is also shown and the piston rod is assumed to be in compresssion, this being the usual condition for this position of the crank.

Fig. 100

Fig. 101

Inspection of the figure shows that the angle a is increasing and the angle β is decreasing, so that the line of action of the force in the connecting rod must be tangent to the top of the friction circle at 2 and also to the bottom of the friction circle at 1 , hence it takes the position shown in the light line and crosses the line of the rod.

This position of the line of action of the force is seen on examination to be correct, because in both cases the force acts on such a side of the centre of the bearing as to produce a turning moment in the direction of relative motion.

Two other positions of the engine are shown in Fig. 101 and 102, the direction of revolution being the same as before and the line of action of the force in the rod is shown dotted. In the case Fig. 101, the rod is assumed in compression and cvidently both the angles a and β are decreasing so that the line of action of the force lies below the axis of the rod, while in the position shown in Fig. 102, the connecting rod is assumed in tension, α is decreasing, and β is increasing so that the force intersects the rod. In all cases the determining factor is that the force must lie on such a side of the centre of the pin as to produce a turning moment in the direction of relative motion.

EFFICIENCY OF MACHINES cONTAINING TURNING AND SLIDING PAIRS
The first machine to which we shall apply the methods already described will be the steam enrẹne, as it is a very common and useful

Fig. ${ }^{103}$
illustration. Fig. 103 shows simply the outlines of an engine, which is being used for lifting a weight from a pit, the resistance, thercfore, is a vertical force acting at the circumference of the drum. No account will be taken of the friction in the rope.

From the principles already laid down, the direction of R, is known, also the line of action of F_{1} and of R_{2}. For equilibrium the
forces F_{1}, R_{1} and P must intersect at one point which is cridently A, as P, the force due to the steam pressure, is taken to act along the eentre of the piston rod. On the crank shaft there is the force F_{t} from the connecting rod, the foree Q due to the weight lifted, and if there were no friction, their resultant would pass through their point of intersection B and also through O the centre of the crank shaft. To allow for friction, however, R_{2} must be tangent to the friction circle at the crank shaft and must touch the top of the latter, hence the position of K_{2} is fixed. Thus the locations of the five forces, P, F_{1}, K_{1}, K_{2}, Q are known.

Fig. 104
Now draw the veetor diagram, laying off $C D=P$ and drawing $C E$ and $D E$ parallel respectively to R_{1} and F_{1}, which gives these two forces, next draw $E F$ parallel to R_{2} and $D F$ parallel to Q which thus determines the magnitude of Q.

If there were no frietion, F, would be along the axis of the rod. and R, normal to the guides, both forecs passing through A_{o} the centre of the wrist pin. Further, R_{2} would pass through B_{0} the intersection of F_{1} and Q, it would also pass through O, so that we know the lines of action of all of the forces and may again draw the vector diagram $C E_{\circ} F_{\circ} I$, obtaining the resistance $Q_{0}=D F_{o}$, which could be overcome by the pressure P on the piston if there were no friction. The efficiency of the machinc in this position is then $\eta=\frac{Q}{Q_{0}}$, and may be found in a similar way for other pesitions.

A further illustration may be given in the case of the governor illustrated in Fig. 104, which is a copy of Fig. 111, as found in the chapter in this work dealing with governors. Only one half of the governor is shown, and as generally constructed it will be safe to neglect the friction of the weight W' on the spindle, also for simplicity the same assumption as before is made, that W includes the pull of the valve gear on the sliding weight and also the weight itself. In the problem solved in Chapter XII, no account is taken of the iriction nor 'f the pressures on the pins, in this case, however, these pressures must be known, because the frictional resistance depends directly on them, so that a somewhat different method of treatment will be adopted here. The friction circles at A, B and C are not drawn to scale, being much larger on the drawing than they should be.

$$
\text { On the hall there is the centrifugal force } \begin{aligned}
& C \\
& 2
\end{aligned}={ }_{2 g}^{w} r \omega^{2} \text { and also the }
$$ action of gravity $\frac{w}{2}$, the two acting at right angles to one another, these forces produce the resultant force P acting on the ball. Now the arms $A B$ and $B C$ are evidently both in tension also, when the balls are moving outward, α increases and β decreases, so that the direction of the force F, in the arm $B C$ crosses the axis of the latter as shown. On tite ball arm the forces acting are P and F_{1}, and if there were no friction at A their resultant R would have to pass through the centre of A. On account of friction, however, the force R passes tangent to the friction circle and on the left side. this force must also pass through the intersection of F, and P at H.

The weight W is held up by the pull F, in $B C$ and a corresponding pull in the arm of the other half of the governor, thus draw $D E=\frac{W}{2}$ and $D G$ horizontal and $G E$ parallel to F_{1}, the latter line will evidently represent the force F_{1}. Next draw $G J$ and $E J$ parallel respectively to R and P, P is thus known, and if the weight w is known, the corresponding speed may be easily computed by the methods given in the following chapter.

Next consider the case where the ball moves inward from the same position, W^{*} remaining unchanged. Here the arms are still in tension and will deerease while B increases, which causes $F_{\text {: }}$ to change to the position F_{1}^{\prime} and R to the dotted position and H to H^{\prime}.

Drawing the vector diagram starting with $D E=\frac{\mathrm{IV}_{2}}{2}$ as before we find $P^{\prime}=E J^{\prime}$ as the force which must now be applied to the ball, and since w vill usually be small compared with C, it is approximately true that C has decreased in the same ratio as P or $C^{\prime}=C \frac{p^{\prime}}{P}=$
 which shows the proportional falling off in speed before the balls begin to move inward. Or to explain more fully, suppose that the balls are slowly moving outward, having reached the position shown. and that there is then a load thrown on the engine causing the speed to decrease, the solution of this problem shows that the speed would have to decrease in the ratio $\sqrt[E J_{1}]{E J}$ before the balls would begin to move inward.

We have assumed P^{\prime} and P to be in the same direction, which is not strictly corrcet, but the error introduced in this assumption is negligible in practice.

It must be understood that no allowance has been made for friction in the valve gear, W° being taken as the known force necessary to move the weight and valve gear. Further, the friction circles are all drawn to a very much enlarged scale to make the work clear, and no governor would be of much practical value in which the ratio $\sqrt{E J J^{\prime}}$ was at all large. The reader would probably do well to study this problem after having read the chapter on governors.

CHAPTER XII

GOVERNORS

In all prime movers, which we will briefly call engines, there must be a continual talance between the energy supplied to the engine by the working fluid and the energy delivered by the machine to some other which it is driving, e.g., a dynamo, lathe, etc., allowance being made for the friction of the prime mover. Thus, if the energy delivered by the working fluid (steam, water or gas) in a given time exceeds the sum of the energies delivered to the dynamo and the friction of the engine, then there will be some energy left to accelerate the latter, and it will go on increasing in speed, the friction also increasing till a balance is reached or the machine is destroyed. The opposite result happens if the energy coming in is insufficient, the result being that the machine will decrease in speed and may eventually stop.

In all cases in actual practice, the output of an engine is continually varying because if a dynamo is being driven by it for lighting purposes the number of lights in use varies from time to time, the same is true if the engine drives a lathe or drill, the demands of these continually changing.

The output thus varying very frequenlly, the energy put in by the working fluid must be varied in the same way if the desired balance is to he maintained, and hence if the prime mover is to run at constant speed some means of controlling the energy admitted to it during a given time must be provided.

Various methods are employed, such as adjusting the weight of fluid admitted, adjusting the energy admitted per pound of fluid, or doing both of these at one time, and this adjustment may be made by hand as in the locomotive or automobile, or it may be automatic as in the case of the stationary engine or the water turbine where the adjustment is made by a contrivance called a governor.

A governor may thus be defined as a device used in connection with prime movers for so adjusting the energy admitted with the working fluid that the speed of the prime mover will be constant under all conditions. The complete governor consists essentially of two parts, the first part consisting of certain masses which rotate at a speed proportional to that of the prime mover, and the second part a valve or similar devier controlled by the part already described and operating directly on the working fluid.

It is not the intention here to disens: ble seemel part, or vallee, because this takes various forms, aceo, ling to circumstanees and forms a subject of stuly by itself for each ges case. Suffice it to say that this device is usually mate to : 1 one of the following ways:
(a) To partly elose off the workits Ab \mid and thus reduce the weight admitted in a given time; c. '1 Waire in a water turhine or the length of cut off in a steam cump.
(b) To reduce the energy fer pomel i n king fluid admitted. e.g., to throttle the steam and thus rulue it wressure is it enters an"engine.
(c) Various combinations of the a'm.0. methors.

The part of the governor which hat nass, s revolving at a speed proportional to that of the engine will now be chandered in detail,

Fig. 103
and for eonvenience will be referred to in future as the governor. One of the simplest fons of this de ifee, also shown diagrammatieally in conncetion with the valve as required for a throttling steam engine is shown at Fig. 105. It eonsists of a vertical spindle, driven from the engine shaft at a speed which bears a fixed ratio to that of the erank shaft. To this spindle balls, are attached by arms, as shown, and these balls ars again monerted to a sloeve. which is free to slide u) and down the spindle. To this seeve
the throtlling value or valve gear is attached by suitable mechanism such as that indicated in the figure. The action is evidently as follows: assume the engine to be running at normal speed, then the balls will rotate in a given plane the height of which will be fixed by the resultant of the centrifugal force on the balls, the weight of the latter and the pull probliced by the collar. If nuw part of the load be suddenly thrown off the engine the latter will tend to speed up, the centrifugal force will increase and the ballf will rise, lifting the collar and closing the supply of steam until the equilibrimm

Fig. 106
is again restored. but in general the balls will rotate in a higher plane than before. The converse is true for decrease of load.

Let us examine the problen first of all without consid ring the effeet of friction or the resistance uffered by t] sleera. Let each ball have a weight $\begin{gathered}w \\ 2\end{gathered}$ and rotate in a circle of radius r : Fig. 106, and let the spindle rotate with ansular velocit. ω - wlius per second. Each ball is leeld in equilibrium by three i $\quad \mathrm{Ce} ;(a)$ the attraction of gravity mrallel to the spindle rount $\begin{gathered}w \\ 2\end{gathered}$ pds., (b) the centrifugal force acting normal to the pir. lle and of amount $\frac{w}{2 g} r \omega^{v}$ pds, (c) the resultant of thest $i w$ fori s must be in the direction of the arm.

Now if we take l to represent length of the arm, and h the vertical height from the plane of rotation of the halls to the place where the ball arms (or the arms produced, see figures) intersect the spindle the following relation is at once evident:

$$
\frac{w}{\frac{w}{g} r \omega^{*}}=\frac{h}{r} \text { or } h=\frac{g}{\omega^{*}}
$$

or the height h varics inversely as the square of the angular velocity and is independent of the dimensions of the parts of the governor.

An examination of thisgovernor will show at once that it possesses

Fig. 107
certain scrious defects: (1) That from the very construction of the governor a change in adjustment of the collar will correspond to a change in the height h and hence a change in ω, a condition which it is the purpose of a governor to prevent, for a governor is designed essentially to keep the speed constant for all loads on the engine, and (2) That for any reasonable value of ω, h is very small. Thus let the spindle turn at 120 revs. per min., then $\omega=2 \pi \times 120=4 \pi$ radians per sec, and $h=\underset{\omega^{4}}{g}=\frac{32.16}{(4 \pi)^{*}}=.2036 \mathrm{ft}$. or 2.44 in . a dimension which is so small as to be difficult to work with in practice.

The first defeet is described by saying that the governor is not isochronous, the meaning of isochronism being that the speed of the governor will not vary during the entire range of travel of the collar, or in other words the valve of the engine may be moved to any position to suit the load, and yet the engine will run at the same speed. It will at once be recognized that if isochronism had no counterbalancing disadvantages it would be very desirable and we shall see how it may be accomplished.

From the formula $\omega^{2} h=g$ it is cvident that if ω is to remain constant the height h must also remain constant, and it is evident that the crossed arm arrangement sketched in Fig. 107 will, under eertain conditions, give approximately constant heights for different positions of the balls.

Inspection of the figure gives the relation

$$
h=l \cos \theta-a \cot \theta
$$

If now h is to remain constant during variations in θ we have

$$
\frac{d h}{d \theta}=0=-l \sin \theta+a \operatorname{cosec}^{2} \theta
$$

$$
\text { or } \quad a=l \sin ^{x} 6
$$

$$
\text { andl } h=l \cos ^{3} \theta
$$

$$
\therefore a=l \sin ^{3} \theta=h \tan ^{3} \theta={\underset{\omega^{2}}{R} \tan ^{3} \theta}^{2}
$$

Ex.-Let $\omega=10$ radians per sec. (97 revs. per min.), $\theta=30^{\circ}$
Then $a=.062 \mathrm{ft} .=.74 \mathrm{in}$., and $l=\frac{a}{\sin ^{3} \theta}=.494 \mathrm{ft} .=5.92 \mathrm{in}$.
The value of h corresponding to $\theta=30^{\circ}$ is .322 ft ., and when through a changed load the balls move out till θ becomes 35° then h becomes .316 ft . a decrease of about 2% and the change in speed corresponding to this is slightly less than 1%.

In the case of the governor without the crossed arms taking $\omega=10$ as before, a change of θ from 30° to 35° means a change in speed of 3%.

It has been suggested that a governor of this type could be made isochronous for a large range of positions, provided the centres of the balls are made to move so that they always lie in a paraboloid of revolution which has the spindle for its axis, and it may be shown that for such a design h and therefore ω will be constant for all positions.

The defect of an isochronous governor, however, is that it will alter its position enormously for the slightest momentary cnange
in speed of the engine and the balls will race out and in producing corresponding changes on the engine, and there is considerable hunting for the correct position, i.e., such a governor is not stable. The condition of instability is not admissible in practice and designers always must sacrifice isochronism to some extent to the very necessary feature of stability, because this hunting of the balls for their final position means that the valve is being opened and closed too much and hence that the prime mover is changing its speed continually or is racing. Reverting to our original example, it will at once appear that a definite position of the balls will correspond to each speed because for each position there is a definite value of h, and therefore of ω.

We shall next consider the modification introduced by Mr. C. T. Porter, which consists in placing a heavy weight on the collar or sleeve of the governor, either with or without crossed arms, Fig. 108 shows such an arrangement. The conditions of equilibrium are readily solved by the phorogr. ph considering $O P$ as the link of reference, thus the images of Q and P are as shown, and by taking moments about O we get

$$
\frac{W^{\prime}}{2}-.2 l \sin \theta+\frac{w}{2} l \sin \theta-\frac{w}{2 g} r \omega^{*} l \cos \theta=0
$$

From which it follows that

$$
h=-\frac{2 W+w}{w} \cdot \frac{g}{\omega^{7}}
$$

Ex. Given $l=.75 \mathrm{ft}$. (9 in .) $\omega=20$ radians per sec. (194 revs. per min.) $w^{\prime}=8 \mathrm{lbs} . \theta=45^{\circ}, a=0$, we find $h=.53 \mathrm{ft}$. and hence $\Pi^{\prime}=2.8 w=22.4 \mathrm{lbs}$.

This governor possesses the following important advantages over the type already described:-
(a) The height h may be adjusted to suit any proportions required in practice merely by altering $\mathbb{1 1}^{\circ}$ to suit.
(b) The variation in height h corresponding to a given change in ω is very much increased in this case. Thus for a given alteration in speed the change in position of the sleeve is much greater than ofrmerly, or a smaller range in speed will be necessary to correspond to the two extreme positions of the throttling valve, that s_{s} this governor is more sensitive than the former one.

To illustrate this take a simple unweighted governor for which the relation is $h=$

$$
\underset{\omega^{*}}{g} \text { or } g=h \omega^{*}
$$

By differentiation we obtain the result

$$
\frac{\delta h}{h}=-\frac{2 \delta \omega}{\omega}
$$

or the proportional change in height is twice the proportional ehange

Fig. 108
in speed and an increase in the former means a deerease in the latter.

The ratio $\frac{\delta}{\omega}$ is called the sensitivencss* where $\delta \omega$ is the change of speed corresponding to the extreme range of travel of the sleeve and ω is the mean angular velocity. Now let, $\omega=10$ radians per sec., and suppose the total range of height of the sleeve is $1 / 2 \mathrm{in}$., the height h for $\omega=10$ being 3.86 in .

$$
\text { Here } \frac{\delta h}{h}=\frac{\frac{1}{h}}{3.86}=.129=-2 \frac{\delta \omega}{\omega} \text { or }-\frac{\delta \omega}{\omega}=.064
$$

or for this range the variation of speed or sensitiveness is 6.4%.

[^4]For the weighted governor let $W=60, w=8$ and taking $\omega=10$ as before, we get
$h=\frac{2 W+w}{w} \times 3.86 \therefore{ }_{h}^{\delta h}=-2 w+w \times .129=.008$ hence ${ }_{\omega}^{\delta \omega}=\frac{.008}{2}$ or the sensitiveness here is $.4 \%$.

It is evident that as it is not possible to produce exact isochron-

Fig. 109
ism in a governor it will be very desirable to have it as sensitive as possible, and thus decrease the variation in spead.
(c) Since the sleeve alrealy has a very heavy weight attached
to it, therefore the governor is less effeeted by frietion of the sleeve on the spindle or the pull neeessary to operate the valve gear and have such a governor is said to be powerful. Powerfulness is also a very desirable feature, for it is well known in practice that the foree neees ${ }^{2}$ ry to operate the valve gear is not constant and, therefore produees a variable effeet upon the rotating parts, it is thus important that this variable effect be made as small proportionately as possible.

Thus the Porter governor may be arranged to suit any speed, the variation in speed eorresponding to the extreme positions of the valve gear may be made as small as required and the governor is not greatly affeeted by the external forees produeed by the eonneetion to the valve gear.

Having now generally defined and explained the terms employed in conneetion with governors we shall choose one or two types and study them more in detail. Let us consider the weighted or Porter governor illustrated in Fig. 109.

The Characteristic Curve, A curve showing the relation between the radius of rotation of the balls and the eentrifugal foree is of very great value in studying governors and as its shape shows, very many things eonnected with the aetion of the governor it is ealled the eharaeteristic curve, or we shall simply call it the C curve. Let r, and r, represent the inner and outer radii of rotation of the balls, the corresponding angular velocities being $\omega_{\text {, }}$ and ω_{2}, and let r be the radius of rotation eorresponding to the mean speed o: rotation ω. defined $b_{\because} \cdot$ the formula $\omega=\frac{\omega_{1}+\omega_{2}}{2}$. Now at any radius the eentrifugal force $C=\frac{w}{g} r \omega^{z}$ where w is the total weight of the two balls and r is in ft ., ω in radians per see.

If now it were possible to make the governor isoehronous we would have $\omega_{1}=\omega_{g}=\omega$ a constant, and hence C would depend on r only, i.e, the C curve would be a striaght line passing through O as shown at $O C$ and here the ball may occupy any position at the same speed, sueh an arrangement is not stable as has been said already. If we plot the C curve for the ease shown in figure, however, it takes the form C, C, crossing the curve $O C$ and being steeper than $O C$ where they interseet. It will be evident that the curve $C, C C_{y}$ means that the speeds are not the same for the three positions of the halls and from the formula $C=\frac{w}{g} r \omega^{2}$ it is seen that $\omega_{1}<\omega<\omega_{r}$.

This eurve $C, C C_{z}$ eorresponds to a stable arrangenmet beeause to each position only one speed eorresponds and sueh speed increases as the balls move out.

Further, the shape of this curve is a measure of the sensitiveness of the governor as is shown helow. Calling S the sensitiveness, we have

$$
\begin{aligned}
& S=\frac{\omega_{p}-\omega_{1}}{\omega} \text {; now } \frac{\omega_{z}-\omega_{1}}{\omega}=\frac{\left(\omega_{p}-\omega_{1}\right)\left(\omega_{p}+\omega_{1}\right)}{\omega\left(\omega_{p}+\omega_{1}\right)} \\
& \therefore S=\frac{1}{2}-\frac{\omega_{z}^{z}-\omega_{i}^{z}}{\omega_{1}^{z}} \text { since } \omega=\frac{\omega_{1}+\omega_{z}}{2} \\
& \text { but } C=\frac{w}{\mathbf{g}} r \omega^{*} \therefore C_{1}=\frac{w^{\prime}}{\mathbf{g}} r_{1} \omega_{1}^{\prime} \text { and } C_{z}=\frac{w}{g} r_{z} \omega_{z}^{z}
\end{aligned}
$$

C is the centrifugal foree eorresponding to the mean speed ω.
Again $C_{r_{1}}^{C_{1}}=\tan \theta_{1}=\frac{B A}{O A} \quad$ also $\quad C_{z}=\frac{C_{r} A}{O A}$ and $\begin{aligned} & C \\ & r_{z}\end{aligned}=\frac{D A}{O A}$
Hence $S=\frac{1}{2}\left[\frac{\tan \theta_{2}-\tan \theta_{1}}{\tan \theta}\right]=\begin{aligned} & 1 \\ & 2\end{aligned}\left[\begin{array}{c}C_{r} A-B A \\ D A\end{array}\right]$

$$
=\frac{1}{2} \frac{C_{2} B}{D A}
$$

This curve shows that an inerease in the stability of the governor means a decrease in the sensitiveness. If at any part of its length the C curve is radial from O at that part $S=O$ and the governor is isochronous and therefore not stable so that if stability is desired the curve must make as great an angle as possible with the line joining it at any point to O, but on the other hand this angle must not make too large an angle on aeeount of a decreased sensitiveness. For exampic at C, the governor is as nearly isochronous and unstable so that we would get most uniform results by making the curve $C, C C_{2}$ as nearly a straight line as possible.

It is desirable here to point out that if the curve takes the dotted form $C_{1}{ }^{\prime} C C_{,}^{\prime}$ then the sensitiveness is very mueh improved
and may be made almost perfect, but here since $C=\frac{w}{g} r \omega^{z}$ the outer position corresponds to the lowest speed and the inner position to the highest speed since it is evident from the figure that C does not increase as rapidly as r. Such an arrangement is evidently unstable since by an increase in speed more energy is imparted to the balls and the weights are being lowered thus further increasing the energy supplied to the system, instead of balancing it, so that if the ball begins to move inward it will fly to its inmost position under the combined action of the two forces. Thus we get stability only when the C curve is steeper than the line from O which cuts it. In Fig. 110 curve $C, C C_{z}$ denotes stability, $C_{i}^{\prime} C C_{z}^{\prime}$ instability, $C_{1} C C_{y}^{\prime}$ stability of the part $C_{1} C$ and instability for the part $C C_{v}$.

This C curve may be used for a further purpose of showing the powerfulness of the governor, sinee on the curve horizontal distances denote the space through which the ball moves and vertical

Fig. : 10
neights the corresponding forces acting while the ball is moving. Thus any elementary area $C . \delta r$ on this diagram represents a producs of foree and distance or work done hence the area $C, r, r_{z} C_{8} C_{1}$ it the work done on the balls while they move out, and further represents the work which can be done by the halls on the weights and valve gear.

This total work $=\int C d r$ is expended in lifting the weigh w st and W, and in overcoming friction and resistance offered by the valve gear. We shall negleet the effect of frietion (although in the actual
case it must be considered) and shall further assume that the resistance in the valve gear may be included in W, it should, however, be stated that this latter resistance is variable and these variations

Fig. III
should be considered in any design, but are omitted here on account of the complication of the eases. The effect of this variation on the governor's action will depend largely on the magnitude of it as com-
pared with the total weight W and the mean resistance offered by the gear.

It will be noted that the force C is balanced by the sum of several other forces, viz.: (a) That due to the weight of the balls w : (b) That due to the central weight W^{\prime}; (c) The resistance at the collar, and (d) The friction of the parts. We shall assume that the force required to move the valve gear, (c) is included in (b), i.e., that the force necessary to move the valve gear is constant and that this force plus the central weight amounts to Wpds, we shall also neglect friction. Fig. 111 shows a Porter governor with the corresponding C curve. To find the part of C necessary to lift the weight w we resolve w in the directions of C and of the arm, then C_{w} is the part in the direction of C and which

Fig. 112
must be overcome by the latter while the remaining part produces a pull on the upper pin A. Lay off above the axis of r the values of C_{r} thus found for each position of the balls getting the C_{m} curve. Next find the part of C necessary to balance W as follows-Draw a $\triangle C D E$, making $C D=W$ and making $B C E$ a straight line, then $C E$ is the resolved part of W in the direction of the arm $C B$. Now oreslve $C E$ into two parts, one horizontal C_{w} and one passing through the pin A, these forces are at once found by the method shown above A, where $F A=W$ and $G A$ is parallel to $C B, H G$ is then C_{w} the part
of C necessary to balance $I V$. Lay off C_{w}, for each position of the balls, above $O r$ obtaining the C_{w} curve. Since $C=C_{r}+C_{w}$ the ordinates between the curves of C and $C_{\text {w }}$ must represent the corresponding C_{k}.

It will be at once evident that for the unloaded governor the power is only the area below the C_{κ} curve, since, neglecting friction and the pull of the valve gear, the whole of C is spent in overcoming the effect of the weight of the balls or $C=C_{w}$, while for the loaded governor it is very much increased, being the area below the ${ }^{\circ} C$ curve. The work represented by the area below the C_{w} curve

Fig. 113
must be employed in lifting the central weight and overcoming any force necessary at the clutch to operate the valve gear.

Before leaving this matter the C curve will be applied to the solution of one problem in the de.ign of a governor. Suppose it is required to design a governor of the Porter type to operate at a mean speed Nin revs. per min. and the maximum and minimum speeds n_{z} and n_{i} are given. The work to be performed (or the power) is also given. to find the dimensions of the various parts. From
gencral experience certain proportions will be known and only one or two points remain to be determined. We shall assume that r_{1} and r_{1} are given, also the lengths $L=A B=B C$ of the arms. In Fig. 112 lay off r_{1} and r_{z} to scalc, then from the work which the governor is to do lay off $G H$ equal the mean height up to the C curve (note the area $G H \times r_{1} r_{2}$ is the total work of the governor including that required to lift the balls, the available work at the clutch will be correspondingly decreased). Now the sensitiveness $S=\frac{n_{2}-n_{1}}{n}$ which is given, hence we lay off the distance (see page 164) $S \times K r_{1}$ ($=K L=K C_{8}$) both above and below K along the line $r_{2} K$, then jeining $L O$ we at once get C_{1} and C_{2} and without serious error the C curve is the line $C_{1} C_{;} C_{8}$.

Next $C_{1}={ }_{g}^{w} r_{1} \omega_{1}{ }^{\prime}$ gives at once w the weight of the two balls since $C_{1} r_{1}$ and ω, a known. This may be also computed from $C_{z}=\frac{u^{\prime}}{g} \quad r_{z} \omega_{z}{ }^{2}$. We may now finish the problem in one of several ways depending on which quantities we assume and which we leave to determinc. Probably we could best assume the angle $A B C$ (which gives us the $\quad A B C$) and also 11 . Assuming angle $A B C$ at once enables $u s$ to draw the $\triangle M N P$, see Fig. 111, from which we find $C_{w_{1}}$ which we lay off along $r_{1} C_{1}$ and we then get $C_{w_{1}}$ $=R C_{1}$. Now above A lay off $A F=11^{\circ}$ and draw $A G$ parallel to $C B$ and from G lay off $G H$ horizontally through F so that $G H=C_{w}$ and then $H A$ produced intersects $C B$ at.X and the horizontal line through X intersects $A B$ at M the centre of the ball. The radius r_{1} then locates the spindle and the design is complete.

The design should be checked at the outer radius r_{2} and also the exact form of the C curve should be found and if it does not agree with that assumed, some of the assumed quantities must be adjusted and the calculation made over again.

Before leaving the matter it must be stated that the design of a governor is a very complicated piece of work in the actual case because the effect of friction is very serious and must in all cases be taken into account and further the exact forces at the clutch nccessary to operate the valve gear must always be determined, and these are not constant. The determination of these forces is too complicated and lengthy to be introduced here and must be left to be considered by the designer, but when these forces have been deter-
mined the work may be carried out by a method similar to that described.

Fig. 113 shows an outline of a weighted governor by Proell possessing advantages over the Porter type which it would be of considerable value for the student to work out for himself.

```
SFRING GOVERNORS
```

The modern tendeney is to replace the weight U ' by a spring and as this usually means a rather different disposition of the parts,

Fig. 114
some consideration will be given to it here. Fig. 114 shows one of the very simplest governors of this type which is shown mounted on a vertical shaft although it is quite as frequently used on a horizontal shaft, it generally runs at a fairly high speed. Now let W ' be the weight on the spindle ineluding the spring weight, F be the foree produced by the spring, and w be the combined weight of the two
balls. Then taking moments about A for the flect of II we get $W^{\prime} b \cos \theta=C_{w} a \cos \theta$ or $C_{w} \quad b \quad W=$ const. and further taking moments about A for the ball weight w we get $C_{\sim} a \cos \theta=-u a \sin \theta$ or $C_{\infty}=-w \tan \theta$. Sn that C_{σ} is positive or negative according to the value of θ. From a knowledge of these curves for C_{w}, C_{*} and C we are at once able to draw the C_{*} curve showing the resistance which must be ofiered hy the suring together with the force required to move the valve gear. Such governors are evidently powerful and may be made as sensitive as desired.

Calling F the force excrted by the spring assuming the curve C_{F} to be a straight line, we may readily obtain the necessary lata for the design of spring. Thus $F b \cos \theta=C_{V} u \cos \theta$ or
$F={ }_{h}^{a} C_{r}=C_{r} \times a$ constant so that the C_{r} eurve may be also taken to represent a curve of F on a different seale, firis at ratius

Fig. 115
r, the value of F is rerpesented by $r_{1} E$. Now prodnce the curve for C_{r} till it meets the axis of r at H. Then at radius $O H, F=O$ and hence the spring must be so designed that its zero compression corresponds is CH and the compression force S which it must produce per unit of compression will be

$$
L K \times \frac{a}{b} \times \frac{1}{r_{z}-r_{i}} \cdot \text { (Fig. 115.) }
$$

An arrangement of this kind is not to be recommended because
of the very great pressure and the corresponding friction produced on the pin A. A governor of the form already described is used on the small Leonard engines amongst others, but its shaft there is horizontal so that C_{\sim} and C_{w} are zero.

The form of governor used by Belliss and Morcom on their high speed engines is shown at Fig. 116, the governor being on the crank shaft and therefore horizontal so that C_{m} and C_{w} become zero and the centrifugal furce of the balls is balanced by the pull of the spring and the resistance offered by the valve gear. Taking

lig. 116
11^{\prime} as the weight of the two balls and a and b as stetehed and calling F the spring pull we may find this force be the fommula below provided the resistance offered by the valve gear is neglected. We have

$$
F . b \cos (\theta-a) \quad C a \cos u \therefore F \cdot c \frac{a}{b} \cdot \frac{\cos u}{\cos (u+\theta)}
$$

where a is the angle between the axis of rotation and the ball amm, or $F=C{ }_{b}^{a} \cdot \cos \theta-\frac{1}{b} \theta \tan a$ and in this fommula a, b, θ are constants, the only variables being \ddot{C} and μ, so that in a given case the spring pull F is readily found and the proper design and location of the spring pins B to pronluce best results maty be directly determined.

The sprivg pull in the actua case should be less than the force F as determined abowe because of the force necessary to move the valve gear, and of course this difference can only le determined when we know the exact construction and operation of the gear so that
no general solution will here be attempted. In any case, however, this may be determined and plotted below the C curve at $V_{1} V_{2}$ the force V at any time being the part of C necessary to operate the valve gear and the distance from the V curve to the C curve representing the part of C which must be balanced by the spring pull. Having determined the spring pull for each radius, the corresponding value of S can readily be found as in the last example. Then since the spring pull $F=e S$ where e is the extension of the spring and S the force necessary to stretch it one inch, the location of the pin connections must be so chosen that the elongation e is proportional to the force F acting at any instant.

As has already been pointed out, all spring governors may be made very powerful beeause the spring may be made to offer great resistance without being unduly large or heavy, and hence the angular velocity of these governors may be great. High angular velocity \boldsymbol{w} means large power because the height of the C curve on which the power depends is $C=\begin{gathered}w \\ g\end{gathered} w^{w}$ which evidently increases as the square of u, so that doubling the speed makes the power roughly four times as great.

Certain firms are now undertaking the manufacture of complete governors for specified duty, and the student is recommen'l. to get catalogues from these makers and study the forms adopted by them. The advantage of any form may readily be determined by the methods given

THE SHAFT GOVERNOR

In modern practice it has been found desirable in mariy cases to connect the governor directly to the mair. shaft of the machine, such as the crank shaft of an engine or else to the main lay shaft. as the eam shaft in a gas engine. In general in such a case the revolving weights are pivoted to a wheel keyed on the shaft, the weights thus always revolving in one plane instead of in planes of varying position as in the governors already described. Such governors are commonly called shaft governors and possess numerous points of excellence, so that it will be an advantage to study them with some eare.

The shaft governor is used most commonly on steam engines and also finds considerable favor with builders of large gas engines. In the case of the steam engine the revolving weghts are usually
connected directly to the eccentric which operates the slide valve, the eccentric eye not being fixed to the shaft, but its position controlled by the governor. In most cases the governor alters the eccentricity as well as the angular advance of the eccentric, thus changing all the events of the stroke for a given change in load.

A little thought will show that such governors should be made very powerful because the weights must be able of themselves to hold the eccentric in position against the force necessary to move the slide valve and although the latter always is of special construction in this type of engine yet this force is not inconsiderable; to make such a governor powerful the eentrifugal force must be large or the revolving weights must be heavy and we must have high rotative speeds or especially adapted high-speed engines. It

liig. 117
is not the purpose here to enter into a diseussion of the steam distribution as affered by such governors.

Consider the conditions existing on a disk A, Fig. 117, which is revolving alout a fixed centre O at n revs. per min., and we shall neglect the effeet of gravity because in most governors it is balanced, although in this case no arrangement is shown for this purpose. To this ball let a spring l) be attached, which is also attached to the disk at f and let the ball be free to move radially along the rox B. When the ball is at any distancer r ft. from the centre of rotation O.
the centrifugal force C acting on it is $C=\frac{w}{g} r w^{2}$ where w is the weight of the ball and ω is the angular velocity in radians per second corresponding to n.

Now let S denote the spring pull per foot of extension and let the spring have no extension when the ball is at O, thus for this position of the weight the extension of the spring will ber ft . 'Then the pull exerted by the spring will bes $\times r$;ods., and as there must be equilibrium between the pul: of the spring and the centrifugal force we have $s^{1} r=\frac{w}{g} r \omega^{2}$ or $s^{1}=\frac{w}{g} \omega^{2}$. We shall find it convenient to use S to denote the force required to change the length of the spring one inch so that $s^{\prime}=12 S$. And if r be also measured in inches then we get by supplying the constants $S r=.0000284 w r n^{2}$ for the

Fig. 118
inch unit. Suppose now we wish to have n constant for all values of r, i.e., an isochronous arrangement, we would then make $S=.0000284$ $w n^{2}$, or if we take $w=25 \mathrm{lbs}, n=200$ revs. per mi.. $S=28.4 \mathrm{lbs}$. i.e., if to this ball we attach a spring so designed that a force of 28.4 pounds will change its length by one inch, and if further the spring be so connected with the ball that the extension of the former is always equal to the radius of rutation of the latter, then the
arrangement is isochronous, or the ball will remain at any radius from the centre so long as the speed is $200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. It will be evident, however, that the least external force would send the ball to the extreme end of its travel, or it is not stable.

Now let us examine the effect of altering S and let us take two cases (1) $S=50$ pounds, and (2) $S=24$ pounds. Taking the first case, let us assume as before a condition of equilibrium at 200 revs. per min. when the ball is 12 in . from the centre of rotation. Then $C=0000284 w r n^{*}=340.8$ pounds, and hence the extension of the spring must now be $-\frac{340.8}{50}=6.82 \mathrm{in}$. instead of 12 in ., n other words the extension of the spring will be less than the radius of rotation of the ball or the spring will have its free length when the ball is $12-6.82=5.18 \mathrm{in}$. from O and the arrangement is sketehed in Fig. 118 in which the extension of the spring is denoted by a.

[ig. 119
Now let the ball move out 2 in. n being still 200 revs. per min., a is then 8.82 in,$r=14 \mathrm{in}$. and hence $\mathrm{Sa}=441$, which tends to draw the ball inward while $C=.0000284 u^{\prime} r u^{2}=397.6$ pounds tending to force the ball outward and hence the ball will return to its original position at 12 in . radius unless a force of 43.4 pounds be intersposed to prevent this. On the other hand if the ball is rotated in acircle of 10 in . radius we would have $S a=241$ pounds and $C=284$ pounds, so that a force of 43 pounds is urging the ball outward and hence there is only one position at this speed in which it can remain or the arrangement is stable.

Now let $S=24$ pounds, then if equilibrium is to be maintained at $r=12$ as before we find $a=14.2 \mathrm{in}$. or when the ball is at O the spring will have an elongation of 2.2 in . At 14 in . from the centre $C=398$ pounds and the spring pull $S a=388.9$ or the ball will stay at the outer radius whereas if $r=10 \mathrm{in} . C=284$ and $S a=292.8$ pounds or the ball will stay at the inner radius. Hence, f in this case the ball be disturbed at all it will immediately fly outward or inward having no tendency to return to its proper position at. 12 in . radius, in other words the equilibrium is unstable.

This is very nicely illustrated by a study of the \bar{C} curves, Fig. 119, in each case.

It is further to be noted that with $S=\mathbf{5 0}$ we could only have the ball remaining at 14 in . from O when $:=211$ revs., and at

Fig. 120
10 in . when $n=18 \mathrm{tevs}$. Hence, if this represents the necessary range of travel of the ball the sensitiveness is $2\left[\begin{array}{c}211-184 \\ 211+184\end{array}\right]=15 \%$. Where, however, $S=24$, the corresponding speeds will be $19 \times$ revs. for $r=1+$ ins., and 203 revs. at $r=10$, with the curious result that the speed inereases as the balls move inward. Here the sensitiveness is 1.24% as eompared with 15% in the previous case, thus, while the sensitiveness is very much improved in the ease where $S=24$ pounds, yet on account of the instaisility the arrangement is an impossible one.

In the shaft governor, however, the weights cannot be arranged as above, but must be mounted so that they may act directly on the eccentric and, consequently, the forces which they can exert must in some way be controlled. A very common arrangement is shown at Fig. 120, in which two weights are used attached to the rotating disk, or wheel by pins B_{1} the centrifugal forec of the balls w being balanced by the springs F and links shown connceting the ball arms to the eecentric. (Note-This form of governor is not much used now, but for the purpose of instruction it is chosen as an illustration, the modern form following later on).

Let Fig. 121 represent one half of a typical shaft governor, the other half being similar and the two parts being so conneeted that

Fig. 121
gravity effect is neutralized. A is the centre of rotation, B the point of connection of the weight with the fly wheel, C the centre of gravity of the weight H, and K the peints of connection of the spring
to the weight and wheel respectively, and F is the force in the spring. The letters indicate the following $a=A B, r=A G, b=B G$, d_{1} is the shortest distance from B to $A G$, and d_{2} is the shortest distance from B to $H K$, the direction of the force F.

Now let w be the weight of each revolving mass and F the force produced ly one spring, then we have at once $C=\frac{w}{g} r \omega^{2}=m r \omega^{2}$ where $m=\frac{w}{g}$ and the moment of C about the pivot B is $M=$ $m r \omega^{2} d_{1}$ and if we let x represent the shortest distance from G to $A B$ it is at once evident from similar triangles that $r \cdot d_{1}=a \cdot x$ and hence that $M=m r \omega^{2} d_{1}=m \omega^{2} a x$. From this it will be seen that M depends entirely on ω and x, and if we choose M and x as axes of co-ordinates, we may plot ujon the sheet curves similar to the C curves already taken up. If ω is constant or the governor is isochronous then, evidently M varies direetly with x only and the " M " curve will be a straight line passing through O and we have again the case of neutral equilibrium. From what has already been said, it will be evident that if the M curve is stecper than the line from any point on it to O, the arrangement is stable, and on the other hand if the curve is less steep the arrangement will be unstable, the stable condition again corresponding to greater variations in speed than the unstable case, exactly as in the case of the fly ball governor already discussed. Thus the M curve is the characteristic curve for this type of governor.*

Now through K° draw a line perpendicular to $A B$, cutting the latter line at distance ε from the pin B. Let C_{b} be the resolved part of F such that the monent of the spring about $B=C_{b} \cdot \varepsilon=F d_{2}$ and then we have $M=m \omega^{2} a x=C_{b} \cdot \varepsilon$ provided we reglect the effeet of the valve gear. Thus $C_{b}=m \omega^{t} x{ }_{c}^{a}$ const $\times m \omega^{2} x$, or the C_{h} curve may also be drawn on the same axes as before, and this curve shows the effect of the spring. From the curve thus drawn the spring pull F may be found and the spring designed to suit the given conditions.

If, in addition to the two curves already described, a C curve on an r base be drawn the power of the governor may be obtained by integrating the quantity $C^{\circ} . d r$ between r_{1} and r_{2}.

[^5]While the investigations already made enable one to determine the conditions of equilibrium of the parts, they give no information as to the rapidity of the adjustment to new conditions of load, and this point will now be discussed. So far we have only been dealing with the centrifrugal force on the balls, i. i., the force due to the acceleration of the weights along a radius, and this foree acts continuously during the running of the governor. When, however, the speed of the wheel is changing during the adjustment for new load, we must accelerate the wheel as well as all masses conneeted with it, each mass having an anguiar acceleration $u=\frac{\delta \omega}{\delta t}$ where $\delta \omega$ is the change in the velocity of the wheel in time δt., and further an aceeleration in the dircetion of motion or tangential to the circle

Fig. 122
in which it is travelling, we may eall this the tangential acceleration These accelerations of the weights, which only come into play when the speed changes, may be made to oppose or assist the effect due to centrifugal force, and thus may be made to catuse slow or rapid change of adjustment.

The diagrams in Fig. 122 will show the meaning of this very nicely where in ail cases A is the centre of rotation, B the peint of conneetion of the weight to the disk and G° is the centre of gravity of the weight. The centrifugal force due to radial acceleration of the ball is always in the direction $A(i$. At (a) the tangential aceclerition prorluces no effect since the tangent to the path of G
passes through the pin B and the force necessary to accelerate the weight is borne directly by the pin B. At (b) the centrifugal effect is zero, the tangential acceleration producing a very decided turning moment about the pin B - but in both of these cases the angular acceleration is small since the weight is concentrated about its centre of gravity or its moment of inertin about its centre of gravity is small. (c) and (d) show a different distribution of the mass, and in both cases the angular acceleration produces considerable effect, and when we have a change of speed δ we must not only accelerate the centre of gravity G, but also the whole weight undergoes an angular

Fig. 123
acceleration, and in (d) the angular acceleration is the only active force.

In the figures $(e),(f)$ and (g) the sense of rotation is marked, and we shall suppose that in each case there is a sulden inerease in speed corresponding to a decreased load. In fig. (e) the tangential acceleration assists the centrifugal force in producing ronid adjustment, while in (f) these oppose one another resuiting in slower adjustment merely due to change of sense of rotation and in (g)
rapid adjustment is again realized. In these three cases the angular effect is small.

The distribution of the weights for a Rites governor is shown in Fig. 123, and it will be readily seen that the centrifugal effect is not large, comparatively, the tangential effect is also decreased and the angular accelcration produces a very decided effect. Such governors as these adjust themselves very rapidly and may be made as stable as desired, without undue variation in speed for varying loads and positions.

CHAPTER XIII.

SPEED FLUCTUATIONS IN MACHINERY

The flywheel of an engine or punch or other similar machine is used to store and restore energy to the machine according to the conditions. Thus, in an engine the energy supplied by the stcam or gas per second is not constant, but varies from time to time, at the dead centres the piston is stationary and hence no energy is delivered by the working fluid, whereas when the piston has covered possibly a third of its stroke, the energy being delivered by the steam to an engine is about its maximum because the piston is moving at high speed and yet the pressure of the steam is high if cut-off has not taken place. Toward the end of the outward stroke of the piston the energy delivered per second is small, because the piston is moving with decreasing velocity, and also the pressure of the steam has very much decreased due to expansion, and in the return stroke the piston must supply energy to the working fluid to drive it out through the exhaust ports.

In the case of the lelt-driven punch, we supply to the main shaft a constant quantity of energy per second through the belt.

Now the engine nay be used to drive a pump, an air compressor, a dynamo, or other machine, but the simplest case will here be considered, viz., where the engine drives a dynamo. The resistance which such a machine will offer to the crank shaft will be constant. or the torque at the crank shaft necessary to drive this dynamo will be constant, that is, with such a load the energy given out by the engine per second is constant. The energy supplied by the working fluid varies from time to time as has already been explained, at the beginning of the stroke it is much less than that neeessary to drive the dynamo, and a little further on it is much greater than required, while still farther on in the stroke, and for the entire return stroke the energy supplied by the working fluid is altogether too small to drive the load, and is, in faet, negative for certain periods.

There must, therefore, be some means of adjusting these inequalities. the usual plan being to place on the erank shaft a wheel with a very heavy rim, and of large diameter, so that when the energy supplied to the engine is greater than that given out by it the execss errergy may be used in speeding up the fly-wheel and inereasing its kinetie energy, and the energy thus stored up must be sufficient

MUCROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
1653 East Main Street
Rochester, New York 14609
USA
(716) 482 - 0300 - Phane
(716) 288 - 5989 - Fax
to supply the deficit toward the end of the forward stroke and during the entire return stroke of the piston. The fly-whed is therefore, continually storing up and restoring energy, in the storing up proeess it is increasing its kinetic encrgy by inercasing its speed, and in the restoring process its speed is decreasing, thus the speed of the fly-wheel of the engine is of necessity variable.

In the ease of the punch, the condition is somewhat similar, although in this ease, the energy supplied by the belt is quite constant, but that given out is variable. While the punch runs ligint, no energy is given out (neglecting friction), but when a hole is being punehed the energy supplied by the belt is not sufficient, and the fly-wheel is drawn upon (with a corresponding decrease in speed) to supply the extra energy, and then after the hole is punched, the belt gradually speeds the wheel up again to normal, after which another hole may be punched. Evidently the fly-wheel should have a heavy rim and run at high speed to be most effective.

Now it will be noticed that a fly-wheel is required if the supply of energy or if the delivery of energy (or load) is variable, so that a fly-wheel is required on an engine driving a dynamo or a reciproeating pump, or a compressor, cr a turbinc pump, also a fly-wheel is necessary on a punch or a sheet metal press. It is not, however, in general, necessary to have a fly-wheel on a steam turbine-driven generator, or on a motor driven turbine pumping set, or on a water turbine-driven generator working at constant head of water, because in these latter eases, both the energy supplied per second, and the load are constant, the supply being always equal to the energy given out.

The speed variations in the fly-whecl here referred to are those aecruing during a given revolution or complete eyele, and no referenee is made to a permanent change of speed, which may be due to a heavy load coming on the machine, it is the business of the governor to keep the mean specd of any machinc constant.

The present investigation deals with the proper weight of the fly-wheel for a given maehine and takes into account the inertia of the different parts of the machine itself.

THE KINETIC EN: - GY OF MACHINES
If a body have plane motion at any instant this motion may be divided into two parts, viz.: A motion of translation of its centre of
gravity and a motion of rotation about its centre of gravity. Let a body of weight w and of mass $m=\frac{w}{g}$ be moving in a planc and at any instant let the vclocity of its centre of gravity be $v \mathrm{ft}$. per sec., and let the angular velocity of the body be ω radians per sec. Further, let the moment of inertia of the body about its centre of gravity be I and the corresponding radius of gyration k, so that $I=m k^{2}$. Then from the principles of mechanies it may be shown that the total kinetic energy of the body at the given instant is
$E=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}=\frac{1}{2} m v_{1}^{2}+\frac{1}{2} m k^{2} \omega^{2}$, hence, in order to find the kinetie energy of a body we have only to find i and ω and from the other known properties E may readily be computed.

Let Fig. 124 represent a machine with four links conneeted by four turning pairs, the links being a, b, c, and d, of which the latter

Fig. 124
is fixed, and let I_{a}, I_{b}, I_{c} represent respectively the moments of inertia about the eentres of gravity of the links, the masses of the links being m_{a}, m_{b} and m_{c}. Given the angular velocity of the link a, it is required to find the kinetie energy of the machine while passing through a given position.

Find the images of a, b, c, d, P, Q, and of G, H, and N, the latter points being the centres of gravity of the links a, b and c, respectively,
and let ω be the angular velocity of a, which is given, he angular velocitics of the links b and c being represented by ω_{b} and ω_{c}. From the principles of the phorograph, $v_{G}=O G^{\prime} . \omega, v_{H}=O H^{\prime} . \omega$ and $v_{N}=O . N^{\prime \prime}$. ω where v_{G}, v_{H} and v_{N} represent respectively the velocities of G, H and N, the centres of gravity of the links a, b and c, also $\omega_{b}=\frac{b^{\prime}}{b} \omega$ and $\omega_{c}=\frac{c^{\prime}}{c} \omega$, so that all the necessary linear and angular velocities are known from the drawings. The determination of the kinetic energy will be made for b and the construction for it will also apply to the other links.

Let E_{b} be the kinetic energy of b at a given instant I_{b}, being its moment of inertia, about its centre of gravity, then from the general statement already made, $E_{b}=\frac{1}{2} m_{b} v_{H}^{2}+\frac{1}{2} I_{b} \omega_{b}^{2}$, since H is the centre of gravity of b. Also $v_{H}=O H^{\prime} . \omega$ and $I_{b} \omega_{b}^{2}=m_{b} k_{b}^{2} \omega_{b}^{2}=m_{b} k_{b}^{2}, \begin{aligned} & b^{\prime 2} \\ & b^{2}\end{aligned} \omega^{2}=m_{b}\left(\frac{b^{1}}{b}, k_{b}\right)^{2} \omega^{2}$. Now, fcllowing the notation already adopted, let $\begin{aligned} & b^{\prime} \\ & b\end{aligned} k_{h}$ be represented by k_{b}^{\prime}, as it corresponds exactly with the image of k_{b} on the phorograph. The magnitude of k_{b}^{\prime} is found by drawing a line $H T=k_{b}$ in any

Fig. 125
direction from H and finding T^{\prime} by the method indicated, in Fig. 124, $H^{\prime} T^{\prime}$ being the corresponding value of k_{b}^{\prime} and is drawn parallel to $H T$. Then $E_{b}=\frac{1}{2} m_{b} v_{H}^{2}+\frac{1}{2} I_{b} \omega_{b}^{2}=\frac{1}{2} m_{b}\left[O H^{2}+k_{b}^{t^{2}}\right] \omega^{2}$ and le the quantity in the square bracket be denoted by K_{b}^{2}, then evidently K_{b} may be considered as the radius of gyration of a body, which, if secured to the link a, and having a mass m_{b}, would have the same kinetic energy as the link b actually has at this instant.

It is evident that the graphical construction for K_{b} is quite simple, it is the hypothenuse of the right-angled triangle of which one side is $O H^{\prime}$ and the other k_{b}^{\prime}, and the method of finding it is show dotted on Fig. 124. Employing this method gives $E_{b}=1 / 2 m_{b} K_{b}^{2} \omega^{2}$ and similarly, it is possi: le to write $E_{a}=1 / 2 m_{a} K_{a}^{2} \omega^{2}$ and $E_{c}=1 / 2 m_{c} K_{2}^{c} \omega^{2}$, the constructions for these being also shown on the figure.

For the whole machine the kinetic energy E is thus given by

$$
\begin{aligned}
E & =\frac{1}{2} m_{a} K_{a}^{2} \omega^{2}+\frac{1}{2} m_{b} K_{b}^{2} \omega^{2}+\frac{1}{2} m_{c} K_{c}^{2} \omega^{2} \\
& =1 \\
& =\frac{1}{2}\left[m_{a} K_{a}^{2}+m_{b} K_{b}^{2}+m_{c} K_{c}^{2}\right] \omega^{2} \\
& \left.=1-J I_{b}^{\prime}+I_{c}^{\prime}\right] \omega^{2}
\end{aligned}
$$

where $I_{a}^{\prime}, I_{b}^{\prime}$ and I_{c}^{\prime} may be looked upon as the moments of inertia of masses which, if placed on a, the link which is rotating with angular velocity ω, would have the same kinetie energies in the given position as the actual links have, and J may be properly called a reduced moment of inertia for the machine, or it is the moment of inertia of a single mass which, if pivoted at O and rotated at the angular velocity ω of the link a, would have the same kinetic energy in this position as the whole machine has. l, of course, varies from one position to another of the machine and is a function of the position of the machine and of the form and specific gravity of the links.

This proposition enables one at any time to reduce any whole machine, no matter how complex, down to a single mass, rotating with the same speed as the selected primary link, and in this way to find the kinetic energy of the machine very casily.

An important application of this construction may be made to the steam engine, this being a well-known machine and the solution of this problem is shown in Fig. 125. The lettering and method employed in the preceding machine may be used here, the only difference being that the link c has only a motion of translation and hence $\omega_{c}=0$ and for it the kinetic energy is $E_{c}=\frac{1}{2} m_{c} v_{Q}^{2}$ or $E_{c}=\frac{1}{2} m_{c} \cdot O Q^{\prime} \cdot \omega^{2}$, and for this link $I_{c}^{\prime}=m_{c} O Q^{\prime}{ }^{2}$. The solutions for the liriss a and b are made precisely as before.

Any other machine may be treated in a similar manner so that it is convenient to determine the total kinetic energy of any machine in a given position by this very simple method.

SPEED FLCCTCATIONS

One of the most useful applications of the furegoing theory is to the determination of the proper weight of fly-wheel to suit given running conditions and to prevent undue fluctuations in speed of the main shaft of a prime mover. U ually the allowable speed variations are set by the machine which the engine or turbine or other motor is driving and these variations must be kept within very narrow iimits in order to make the engine of value, because when a dynamo is being driven, for example, variations in speed affect the lights, causing them to become aicernately bright and dim and spoiling their usefulness. Further, where alternators are to work in parallel, the speed variations must be very small and the same is true in many other cases of loading.

Again in many rolling mills motors are being used to drive the rolls and in such cases the rolls run light until a bar of metal is put in, when the maximum work has to be done in rolling the bar. Thus, in such a case the load rises suddenly from zero to a maximum and then falls off again suddenly to zero. Without some storage of energy this would cause probable damage to the motor and henee it is usual to attack a heavy fly-wheel somewhere between the motor and the rolls, this fly-wheel storing up energy as it is being accelerated after a bar has passed through the rolls, and again giving out part of its stored up energy as the bar enters and passes through the rolls.

The electrical conditions deterrine the allowable variations in speed, but when this is known, and also the work required to roll the bar and the torque which the motor is eapable of exerting under given conditions, then it is necessary to determine the proper weight of fly-wheel to keep the speed variation within the set limits.

In the case of a punch already mentioned, the machine runs light for some time until a plate is pushed in suddenly and the full load is thrown on the punch. If power is being supplied by a belt a fly-wheel is also placed on the machine, usually on the shaft holding the belt pulley, this fly-wheel storing up energy while the machine is light and assistirg the belt to drive the punch through
the plate when a hole is being punched. The allowable percentage of slip of the belt is usually known and the wheel must be heavy enough to prevent this amot nt of slip being exceeded.

The general factors on which speed fluctuations depend have been mentioned at the beginning of the chapter and need not be again discussed here. Let E, be the kinetic energy, deteımined by the process just explained, of a machine at the beginning of any interval of time, and E_{2} the kinetic energy at the end of this interval, then, neglecting friction, the gain in energy dal g the interval is $E_{2}-E_{1}$, whieh may be positive or ncgative, according as E_{2} is greater or less than E_{1}. In the ease of an engine, $E_{2}-E_{1}$ will represent the difference between the work done by the working fluid on the piston and the work done at the crank shaft on some external machine and the friction during the interval before mentioned, beeause the kinetic energy of the machine ean only increase if the work done by the engine is less than the energy received by it from the working fluid. In order to simplify the problem, friction will be negleeted.

A little consideration will show that $E_{2}-E_{1}$ will be alternately positive and negative, that is, for part of the revolution E will increase till it reaches a maximum value and then again it will decrease to a miminum and so on. As long as E increases, the speed of the maehine must increase in general, and thus the speed will be a maximum at the place where E just begins to decrease and conversely the speed will be a minimum at the place where the energy E just begins to increase. But E must increase just so long as the energy put into the machine is greater than that given out by the machine in a given interval, hence, also ve get the maxim or sheed at the end of any period in which the work input to the .ne exceeds ihe work output, the opposite is true for the minimum speed.

Suppose now that E_{1}, ω_{1}, J_{1}, and E_{2}, ω_{2}, and J_{2} represent respectively the kinetic energies, the speeds of the primary link and the reduced inertias of the machine at the beginning and end of a certain interval of time, then

$$
\begin{aligned}
& E_{1}=\frac{1}{2} J_{1} \omega_{1}^{2} \text { and } E_{2}=\frac{1}{2} J_{2} \omega_{2}^{2} \\
& \text { and } E_{2}-E_{1}=\frac{1}{2}\left[J_{2} \omega_{2}^{2}-J_{1} \omega_{1}^{2}\right]
\end{aligned}
$$

An approximate method may now be employed without in-
troducing a very serious error in many cases, by taking $J=\frac{J_{1}+J_{2}}{2}$ as being approximately equal to J, or J_{2}, because in most cases, if the time interval is small the change in l is small and the difference between $J_{,} J_{1}$ and J_{2} may be negleeted, especially when these quantities are used as multipliers. Thus:
$E_{2}-E_{1}=\frac{1}{2} J\left(\omega_{2}^{2}-\omega_{1}^{2}\right)$ or $E_{2}-E_{1}=\frac{\left(\omega_{2}-\omega_{1}\right)\left(\omega_{2}+\omega_{1}\right)}{2}$ $=\left(\omega_{2}-\omega_{1}\right) \omega$. where $\omega=\frac{\omega_{1}+\omega_{2}}{2}$; if the machine is suen as an engine or motor, and is constructed to operate under small speed variations imposed in practice, this value of ω eannot much differ from the mean speed of the main shaft and may be regarded as constant for all positions of the machine.

Then $\frac{E_{2}-E_{1}}{J}=\left(\omega_{2}-\omega_{1}\right) \omega$ or $\omega_{2}-\omega_{1}=\frac{E_{2}-E_{1}}{J \omega}$
To make the case general however, it will be desirable to take account of the variations in J in which case the following method is to be adopted.

Since $E=1 / 2 / \omega^{2}$ there is obtained by differentiation

$$
\left.\delta E=1 / 2[2 \omega] \cdot \delta \omega+\omega^{2} \delta J\right]
$$

and solving for $\delta \omega \operatorname{gives} \delta \omega=\frac{\delta E-1 / 2 \omega^{2} \delta J}{J \omega}$ where $\delta \omega$ is the change of speed in a given short interval of time, and δJ and δE the corresponding changes in the reduced inertia and the kinetic energy of the machine, the primary link of whieh rotates at mean speed ω and has a mean reduced inertia J during the given time interval.

If in the case of an engine, for example, the effect of the connecting rod piston, etc., is neglected and the fly-wheel only is considered, thel: $\delta J=o$, as the moment of inertia of the fly-wheel is constant, so that $\delta \omega=\frac{\delta E}{J \omega}$. In any ease, if δE and ω are given for any engine $\delta \omega$ can be computed, or if the allowable variation $\delta \omega$ in the speed is given, the equation nay be solved, for J and the necessary moment of inertia of the fly wheel may be found.

The meanings and application of these quantities may be best illustrated by an example which will now be discussed, and as the steam engine involves all the principles used, and is so common, it will be selected for the illustration. Moreover, the method of
selecting the data in this ease is very readily explained and understood.

Consider the double-aeting steam engine shown in Fig. 126, with the corresponding indicator diagrams for the head and crank ends. It is required to find the ehange of speed while the engine moves from position A to B. It will be assumed for simplicity that the engine drives a turbine pump which offers a uniform resisting

Fig. 126
turning moment, and in this case, the work done by the engine will evidently be $\frac{\theta_{2}-\theta_{1}}{.360}$ of the total work done per revolution or the ns. by the engine is in direct proportion to the angle passed sy the crank. The effect of friction will be neglected.
II be the work done per revolution, as shown by the indi-
sagraris, and let some numerical value of $\theta_{2}-\theta_{1}$ be ehosen tor conven: see, say 18°, then the work done by the engine while the erank moves from A to B will be $\frac{18}{360} \times W=\frac{W}{20}$. Now let A, be the area of the head end of the cylinder and A_{2} that of the erank. end in sq. in., also let L be the stroke of the piston in ft ., and l be the length of the diagram in in., the seale of the diagram being s pds. per. sq. in. $=1 \mathrm{in}$. Then each square inch on the diagrem will represent $s A_{i}, \frac{L}{l}$ and $s A_{2} \frac{L}{l} \mathrm{ft}$. pds., for the head and erank ends respectively. Let the area of the head end diagram, reekoned above the zero line of pressures, swept out during the motion of the erank under consideration, be a_{1} sq. in., the corresponding area for the
crank and diagram being a^{2} sq in.. both of which are shown hatched on the diagram Fig. 126.

Now the total energy delivered to the machine by the steam during the interval under consideration will be $a_{1} s A_{1} \frac{L}{l}-a_{2} s A_{2} \frac{I}{l}$ ft . pds., while the energy delivered by the machine to the pump will be $\frac{\mathrm{I}}{20} \mathrm{ft}$. pis. (Note that the total work I. must be the same as that represented by the sum of the two indicator diagrams, and is the

Fig. 127
work corresponding to the areas of these two diagrams, per revolutions. Hence we have an unbalanced amount of work $a_{1}, s A_{1}^{L}-a_{2} s A_{2} \frac{L}{l}-{ }_{20}$ and this amount of work must be stored up in the moving parts of the machine during this interval, or if E_{t} represents the kinetic energy of the machine when the crank is at A and F_{2}, the corresponding energy when the crank is at B, then

$$
E_{2}-E_{1}=a_{1} s A_{1} \frac{L}{l}-a_{2} s A_{2} \frac{L}{l}-\frac{11}{20} \text { the numerical value }
$$

of which will thus be known. But $E_{1}=1 / 2 J_{1} \omega_{3}{ }^{3}$ and $E_{3}=1 / 2 J_{2} \omega_{3}{ }^{2}$ and J_{1}, and J_{2} are to be found according to the method already explained, so that $\delta J=J_{2}-J_{2}$. The change in speed is then found from the formula $\delta \omega=\delta E-1 / 2 \omega^{2} \delta J$ where δE equals $E_{2}-E_{1}$, ω is the mean speed of rotation itnd $J=\frac{I_{1}+J_{2}}{2}$. The change in speed $\delta \omega$, may be positive or negative, and in fact, for the whole revolution must ehange from one to the other, otherwise the engine would continually inerease in speed.

The complete determination of these quantities is given for an engine with a eylinder $1 ? 1-16 \mathrm{in}$. dia. $\times 30 \mathrm{in}$. stroke, running at 86 revs. per min. The conneeting rod is 90 in . centre to centre, and weighs 175 lbs ., the radius of gyration of the rod about its centre of gravity is 31.2 in . The piston, crosshead, etc., weigh $250 \mathrm{lbs} .$, while the fly-wheel has a weight of 5820 lbs ., and a moment of inertia about the axis of rotation of 2400 .

Taking the data in this problem gives $a=1.25$ feet, $b=7.5 \mathrm{ft}$., $\omega=9$ radians per sec., $m_{a}=181, m_{b}=5.44, m_{c}=7.78, I_{a}=2400$, $k_{b}=2.60 \mathrm{ft}$. The units are the ft., pd., sq. in., uuless otherwise stated.

The indicator diagrams for the engine are given in Fig. 127, and the complete calculation for all of the quantities in the ta 2. while the crank is turning from $\theta=36^{\circ}$ to $\theta=54^{\circ}$ is give:. slow. The drawings, Figs. 127 and 128, show the different yuantities on the diagram for one position of the mechanism and also the areas on the indicator diagrams for the positions stated above. It is assumed that the engine is driving a dynamo at constant load so that the resisting torque due to the load will be constant.

The following quantities were measured direetly from ti. a drawing in feet.

$\begin{gathered} \theta \\ \text { degrees } \end{gathered}$	$\begin{gathered} b^{\prime} \\ \mathrm{ft} \end{gathered}$	$\begin{array}{r} O H^{\prime} \\ \mathrm{ft} . \end{array}$	$\begin{gathered} k_{b}^{\prime} \\ \mathrm{ft} . \end{gathered}$	$\begin{aligned} & K_{b} \\ & \mathrm{ft} . \end{aligned}$	$\begin{aligned} & O Q^{\prime} \\ & \mathrm{ft} . \end{aligned}$
36	1.017	. 9.5	. 352	1.00	. 84
54	. 741	1.123	. 257	1.15	1.11

from which there are at once obtained the following results for the two crank angles.

$\begin{gathered} \theta \\ \text { deg. } \end{gathered}$	$\begin{gathered} I_{h}^{\prime}= \\ m_{h} K_{h}{ }^{2} \end{gathered}$	$\begin{aligned} & I_{c}^{\prime}= \\ & m_{c} . O Q^{\prime 2} \end{aligned}$	I_{a}	$\begin{gathered} I= \\ I_{a}+I_{b}^{\prime}+I_{c}^{\prime} \end{gathered}$	8.1
30	5.442	5.488	2400	2410.9	
54	7.200	9.578	2400	2416.8	$+5.9$

Thus during this part of the revolution there is a gain in the reduced inertia of amount 5.9 , while in some other parts of the revolution value of $\delta / /$ is negative.

Measurem ts were then made on the indicator diagrams, which were takc.. vith a 60 spring, after computing the values of $A_{1}=114.28$ sq. in., and $A_{2}=111.52$ sq.in., the piston rod being 17.8 in. dia. The lengths of l of the diagrams were 3.55 in ., and 3.58 in ., the stroke of the piston L being 2.5 ft ., so that
$s_{A_{2}} \frac{L}{l}=60 \times 114.28 \times \frac{2.5}{3.55}=4829 \mathrm{ft}$. pds. and
$s A_{2} L_{l}=60 \times 111.52 \times \frac{2.5}{3.58}=4673 \mathrm{ft}$. pds. per sq. in. of diagram area on the head and erank ends respectively. The results are set down in the following table:

The diagram area is measured directly as indieated and the work computed as above thus $a_{1} \times 4829=.550 \times 4829=2656$ pds. and $a_{2} \times 4673=.035 \times 4673=163 \mathrm{ft}$. pds. The work done on the dynamo is $\frac{18}{360}$ of the total work represented by the two diagrams together, and the net work producing the increase of kinetie energy
is $249 \mathrm{a}^{3}-1079=1414 \mathrm{ft}$. juis., so that the gain in energy of the machine during the interval is also $1+14 \mathrm{ft}$. pls., or $\delta E=$ $+141+\mathrm{ft}$. pis.

The gain in angular velocity is now readily obtained, thus the average value of $J=1 / 2(2410.9+2415.8)=2413.8$. and hence, $/ \omega=2413.8 \times 9=21724.6$. also $1 / 2 \omega^{2} \delta J=1 / 2 \times 9^{2} \times 5.9=238,9$. and thus $\delta \omega=$

$$
\delta E-1 / 2 \omega^{2} \delta J=
$$

$J \omega$

$$
\frac{1+14-2.38 .9}{21724.6}=.054 \text { ra 'inns per sec., }
$$

which gives the gain in velocity during the time the erank is turning through the 18° considered.

Having obtained these values of $\delta \omega$. they are then plotted with a straight line base, Fig. 129, which has been divided into 20 equal parts to represent the corresponding erank angles. If the variation in speed of the engine is small then no serious error will be :nade by assuming that these erank angles are passed through in equal intervals of time, and henee, that the base line of the diagram on which the values of $\delta \omega$ is plotted is also a time base, equal distances u ! ? ? which represent equal intervals of thit. If desired, the equal angle base ray be corrected for the variations of angular velocity by using the values of $\delta \omega$ as already found, but the author does not think it is worth the labor and had made no correction of this kind on the diagram shown.

Now, since the space traversed is the product of the velocity and the time, we may find the space variation $\delta \theta$ by multi-

	$\begin{gathered} K_{b} \\ \mathrm{ft} \end{gathered}$	$\begin{gathered} I_{b}^{\prime}= \\ m_{b} k_{h}^{2} \end{gathered}$	$O Q^{\prime}$	$\begin{gathered} I_{c}^{\prime}= \\ m_{c} \times \\ O Q^{2} \end{gathered}$	$\begin{array}{lll} I_{a} & I_{u}+I_{b} \\ & +I_{c} \end{array}$		¢J	Work done by steam on piston			$\begin{gathered} \text { Work } \\ \text { Output } \\ \text { Oone } \\ \text { Genter } \\ \text { rator } \\ \text { ft. puds. } \end{gathered}$	Net Work producing kinetic energy δE ft. nds.	$\begin{gathered} \infty \\ \omega_{3} \\ -1 N \end{gathered}$	$\begin{gathered} \infty \\ \infty_{3} \\ -\mid r \\ 1 \\ \infty \\ \infty \end{gathered}$	$\begin{gathered} \text { Angular } \\ \text { Velseivy } \\ \text { Variation } \\ \delta \omega \\ \text { Radians per } \\ \text { seconc } \end{gathered}$		
							$\begin{gathered} \text { Posi- } \\ \text { tive } \\ \text { Work } \end{gathered}$	$\begin{aligned} & \text { Neg- } \\ & \text { ative } \\ & \text { Work } \end{aligned}$	$\begin{aligned} & \text { Net } \\ & \text { Work } \end{aligned}$								
0	76	3.15	0.00	0.00	2400	$2+03.2$											
18	.84	3.84	. 85	1.58	${ }_{24}^{2400}$	$\underset{\substack{2+105 . \\ 2+1 \\ \hline}}{+}$	+2.2 $+\quad 5.5$	2583	117	- 8466		$-\quad 233$ $+\quad .387$	+ 93.1 $+\quad 222.7$	+ $\begin{array}{r}326.1 \\ \hline\end{array}$		0151	
. 36	1.00 1.15	5. 74	1.84	5. 49 98	${ }_{2+(0)}^{2400}$	$2+109$ $2+168$	+5.5 $+\quad 5.9$	2656	163	${ }_{2+93}^{2+66}$		$+\quad .381$ $+1+14$	$+\quad 22.7$ +238.9	+ 1177.1	. 0531		
5	1.24	8.27	1.25	12.15	2400	$\xrightarrow{2+16.8}$	+ 3.7 +0.7	1956	178	1778	' ${ }^{\text {® }}$	+ 699	+ 149.8	+ 549.2	. 0252		
90	1.25	8.51	1.25	12.15	2400	$2+20.7$	+ 0.2	$1+24$	159	1265		+ 186	+ 8.1	$+\quad 177.9$. 0082		
108	1.18	7.58	1.13	9.93	2400	$2+18.5$	- 2.2	1038	150	888		- 191	- 89.1	- 101.9		. 0047	
126	1.06	6.12	92	6.58	2400	$2+12.7$	5.8	749	131	618		- 461	- 23.9	- 226.1		. 0104	
$14+$. 93	4.71	64	3.19	2400	2407.9	- 4.8	531	98	433	\cdots	- 646	- 19.4.	- 451.6		0208	
162	81	3.57	33	85	2400	2404.4	- 2.5	314	93	221		- 858	- 101.2	- 756.8		. 0350	
180	. 76	3.15	0.00	0.00	2400	2403.2	-1.2	72	70			-1077	- 48.6	- 1028.4		. 0475	
198	. 81	3.57	33	85	2400	2404.4	+ 1.2	607	48	559			+ 48.6	- 568.6		. 0263	
216	93	4.71	64	3.19	2400	2407.9	+2.5	1878	121	1757	F	+ 678	+ 101.2	576.8 $+\quad 165$.	. 0266		
234	1.06	6.12	92	6.58	2400	$2+12.7$	+5.8 $+\quad 58$	2584	145	2439	2	+1360 $+\quad 738$	+ 19.4		. 0537		
252	1.18	7.58	1.13	9.93	2400	$2+18.5$	+ 5.8	1986	169	${ }_{1317}^{1817}$	E	$+\quad 738$ $+\quad 29$	+ 234.9	+ 503.1	. 0231		
270	1.25	8.51	1.25	12.15	2400	$2+20.7$	+ 2.2	1542	169	1373	.	$\begin{array}{r} \\ +\quad 294 \\ \hline\end{array}$	+ 89.1	$+\quad 204.9$. 0094		
288	1.24	8.37	1.25	12.15	2400	$2+20.5$		1215	169			- 333	- 8.1	- 24.9		. 00011	
306	1.15	7.20	1.11	9.58	2400	$2+16.8$	- 3.7	916	169	747 533	\%	- 332	- 149.8	- 182.2		. 0084	
324	1.00	5.44	84	5.49	2400	$2+10.9$	- 5.9	654	121	533		- 546	- 238.9	- 307.1		0141	
342	84	3.84	4.5	1.58	240)	2405.4	- 5.5	${ }^{378}$	96	282	\pm	- 797	- 222.7	- 574.3		0265	
360	76	3.15	0.00	0.00	2406	$2+03.2$	- 2.	93	72	21			- 93.1	- 964.9		0446	
							Totals			21584		0.00	0.00		. 2539	2545	

plying the eorresponding $\delta \omega$ by the time t required to turn the crank 18° or $\delta \theta=t . \delta \omega$, and in this way the integration of the $\delta \omega$ - t curve gives the $\delta \theta-t$ curve, whieh shows the number of radians or degrees whieh the fly-wheel swings back and forth from its mean position This is a very important matter for alternators running in parallel.

The results for the complete revolution of the crank are given in the table on page 196.

The reader should notiee that the result of the calculation gives the gain in velocity and angular position, so that in plotting some arbitrary zero line is assumed, and the results are laid off in succession, not from the base line but from the end of the curve in each case. The line of rean speed is in sueh a position that the sums of the positive and negative areas between this line and the eurve are equal. In the engine discussed, the minimum speed was 8.922 radians per sec., while the maximum was 9.063 radians per see., a variation .141 radians or 1.57%.

The angular space variation had a maximum value of 0.58 degrecs as measured from the curves drawn.

The comıplete results for this engine have been given here in the hope that it will make the method clear, and that the student will understand the procedure in any other case. The process is not very lengthy, and results may be obtained very quickly by the use of the slide rule and the drafting board.

In the casc of other maehines or other arrangements of steam or gas engines, the method is precisely the same. In some machines the variation of angular velocity is all that is required while in others it is necessary to determine the spaee variation, as in the case of alternators in parallel, when there is a definite limit set to the number of degrees of oscillation of the rotor about its mean position.

CHAPTER XIV.

THE PROPER WEIGHT OF FLY WHEELS

In the preceding chapter a complete discussion has been given as to the causes of speed fluetuations in machinery and the method of determining the amcunt of such fluctuation. In very many cases a certain machine is on hand and it is the province of the designer to find out whether it will satisfy certain conditions whiel are laid down. This being the ease the problem is to be solved in the manner already discussed, i.e., the speed fluetuation corresponding to this maehine and its methods of loading are to be determined.

Most frequently, however, the converse problem is given. It is required to design a maehine which will conform to certain definite conditions, thus a steam engine may be required for driving a eertain maehine at a given mean speed but it is also stipulated that the variation in speed during a revolution must not exceed a certain amount. In any sueh ease the weights and dimensions of the piston, crosshead, etc., are fixed by constructional conditions and are independent of the speed condition.

Thus the diameter of the piston depends upon the power, pressure, mean speed, and stroke of the piston. Having determined the diameter, the thiekness, and hence the weight is fixed from a consideration of the strength, so also with the crosshead, connecting rod and crank, the dimensions of all of these parts being fixed without regard to the speed fluctuation. The dimensions of the fly-wheel are, however, independent of the conditions of power, and this wheel may be light or heavy, large or small, just as required, some machines having no fly-wheel at all, others having very heavy and very large ones.

Under ordinary circumstances, the fly-wheel is designed to prevent undue fluetuations in speed, being of large diameter, and having a heavy rim, in general, if the fluctuations are small, and viee versa. Or again, the conditions may be satisfied by using a small wheel running at high speed, if sueh is permissible, and it is to the discussion of this very important problem that the present chapter is devoted. The problem will be to determine the proper dimensions of a flywheel to satisfy given eonditions at a given mean speed.

Referring to the preceding chapter, the equation giving the kinetic energy of a machine is $E=1 / 2 J \omega^{2}$, where J is the reduced inertia,
and by re-arranging there is found $1 / 2 \omega^{2}=\frac{E}{J}$ which gives the speed at any instant at whieh E and J are known. The method of obtaining E has been explained in Chapter XIII., the value of E teing obtained in any case from the input and load conditions, for cxample, in a steam engine, by a consideration of the indicator and load diagrams, J being determined from the dimensions of the machine.

For the purpose of presenting the subjeet in the clearest possible way, the whole discussion will be taken up and applied to one particular machinc. The machinc selected will again be the reciprocating steam engine, partly because of the general nature of the

Fig. ${ }^{3} 3$
discussion as applied to sueh a maehine, and partly because the data in such a ease may very readily be assumed.

For the : resent purpose, it will be eonvenient to divide J into two parts (a) that due to the rotating parts, crank, fly-wheel, etc., alonc, which may be called J_{a}, and (b) that duc to the conneeting rod, piston, cte., which is ealled J_{b}. The former of these will be the same for all positions of the erank, and the latter will vary with the erank angle, both of these will, however, be independent of the speed of the engine, simply depending on the masses of the parts and the distribution of the masses about their centres of gravity.

Suppose now that for any machine the values of J be plotted on a diagram along the x axis, the ordinates of which diagram
represent the corresponding value of the energy E, this will give a diagram as shown at Fig. 130, where the curve represents J for the corresponding value of E shown on the vertical line.

Having now obtained the figure $K F G H K$, it is evident that its width depends on the value of J at the instant and this value of J is independent of the speed. Also, the height of this figure depends on the difference between the works put into the machine and the work delivered by the machine during given intervals, that is, it will depend on the shapes of the indieator and load curves. The shape of the indicator diagrams within certain limits depends on whether the engine is run by gas or steam, and on whether it is simple or compouid, ete., but for a given engine this is also independent of the specd: the load cur will, of course, depend on what is being driven, whether it is dynamo, compressor, ete.. so that the height of the curve is also independent of the speed.

It will further be noted that the shape of the figure does not depend on J_{a}, which is constant for given wheel, but only on the values of J_{b}, so that the shape of this figure will be independent of the weight of the fly-wheel and speed, in so far as the indicator and load eu.ves are indepundent of the speed, depending solely on the reciprocating masses, the conneeting rod, the indicator diagrams and ihe load curves.

Now draw from O the two tangents, $O F$ and $O H$, to $K F G H$, touching it at F and H respectivily, then for $O H$ we have $E_{1}=H H^{\prime}$, and $J_{1}=O H^{1}$ and $1 / 2 \omega_{1}^{2}=\frac{E_{1}}{J_{1}}=\tan a_{1}$, and since u_{1} is the least value such an angle can have it is evident that ω_{1} is the minimum speed of the enginc. Similarly, $E_{2}=F F^{\prime}$ and $J_{2}=O F^{\prime}$, and $1 / 2 \omega_{2}{ }^{2}=\frac{E_{2}}{J_{2}}=\tan a_{2}$ and hence, ω_{2} would be the maximum speed of the engine.

If now it is desired to design a fly-wheel, determine beforehand the allowable values of ω_{1} an $1 \omega_{2}$ and also the mean speed $\omega=\frac{\omega_{1}+\omega_{2}}{2}$. The allowable variation in specd $\omega_{2}-\omega_{1}$, as f:as already been explained, is fixed by the elass of serviee for which the machine is designed, thus in driving a!ternators $\omega_{2}-\omega$, must be a very small proportion of ω, whereas, in plunger pumps, much larger varir "ons nay be allowed. Next from assumed or known indicator
diagrams and from the load curve as well as the dimensions of the parts of the machine, except the fly-wheel, draw the $E-J_{6}$ diagram $K F G H$. Observe that the exact position of the figure $K F G H$ with regard to the origin and the axes of E and J cannot be found without previousiy knowing the val te of J_{u}, i.e., the weight of the fly-wheel. A little consideration will show, however, that a new axis $E^{\prime} O$, may be assumed where the distance $O O$, represents J_{a}, and then from the axis $O_{1} E^{\prime}$ the values of J_{b} may be laid rff.

Aga:n the shape of the figure does not depend upon the absolute value of E but only upon the changes in the latter. Thus an arbitrary axis $O^{\prime} J_{b}$ may be assumed and starting with any arbitrary initial value of E the figure may be plotted. In fact, for a given machinc with given load and indicator diagrams, the weight of wose fly-wheel is to be determined, the figure $F G H K$ and the position and direction of the axis $E^{\prime} O$, are known, but the position of the origin O and thus of the axes of E and I will depend entirely upon J_{a} and the speed of the engine.

Having settled ω_{1} and ω_{2}, two lines may be drawn tangent to the figure at H and F and making the angles a_{1} and a_{2} respectively, with the direction $O^{\prime} J_{b}$ where $\tan \alpha_{1}=1 / 2 \omega_{1}{ }^{2}$ and $\tan \alpha_{2}=1 / 2 \omega_{2}{ }^{2}$. The intersection of these two lines gives O and hence the axis $E O$, so that the required moment of inertia of the wheel may be scaled from the figure, thus $J_{a}=O O$. It should, however, be pointed out that if the position of the axis of E is known, it is not possible to choose ω_{1} and ω, at will. for the selection of either one will determine the position of O. In making a design it is usual to select ω and $\omega_{\text {, }}$ and ω_{2}, and from the chosen values to determine the position of O and hence the axes of E and J. The mean sped ω correspond.; with the angle a.

Draw a line $N M L R$ perpendicular to $O J$, in any convenient position. Then $\begin{aligned} & L R \\ & O R\end{aligned}=\tan a_{1}, \frac{N R}{O R}=\tan a_{2}$ and $\begin{gathered}M R \\ O R\end{gathered}=\tan a$, so that on some scale which may be found, $N R$ represents $\omega_{1}{ }^{2}$, or the square of the speed n_{1} in revs. per min., $L R$ represents $n_{2}{ }^{2}$ and $M R$ represents the square of the mean speed n all on the same scale. As in engines the difference between n_{1} and n_{2} is never large it is fairly safe to assume $2 n^{2}=n_{2}{ }^{2}+n_{1}^{2}$ or that M is midway between N and L.

Using now δ to denote the coefficient of speed fluctuation, then δ
is defined by the relation $\delta=\begin{gathered}n_{2}-n_{1} \\ n\end{gathered}$

$$
\therefore \delta=\frac{n_{2}-n_{1}}{n}=\frac{n_{2}-n_{1}}{\frac{n_{2}+n_{1}}{2}}=2 \begin{aligned}
& n_{2}^{2}-n_{1}^{2} \\
& \left(n_{2}+n_{1}\right)^{2}
\end{aligned}=2 \frac{n_{2}^{2}-n_{1}^{2}}{(2 n)^{2}}
$$

$$
\text { or } 2 \delta=\frac{n_{2}^{2}-n_{1}^{2}}{n^{2}}
$$

hut $1 / 2 \omega_{1}^{2}=\frac{E_{1}}{J_{1}}=\tan \alpha_{1}$ and as $\omega=\frac{\therefore \pi n}{60}$ then $\frac{4 \pi^{2} u_{1}^{2}}{2 \times 60^{2}}=\tan a_{1}$ or $n_{1}^{2}=C^{t} \tan a_{1}$, similarly $n_{2}^{2}=C^{\prime} \tan a_{2}$ and $n^{2}=C^{\prime}$ tan a where C^{t} is constant and equal to $\frac{2 \times 60^{2}}{4 \pi^{2}}=182.3$

Now, since in the figure all angles have been measured with the common base $O R$, therefore, $R L=O R \tan a_{1}=O R \begin{aligned} & n_{1}{ }^{2} \\ & C^{\prime}=C n_{1}{ }^{2}\end{aligned}$ where $C=\frac{O R}{C_{i}}$ Also $R M=C n^{2}$ and $R N=C n_{2}{ }^{2}$.

Thus $N L=2 R M$. δ In general, $a_{2}-a_{1}$ is a small angle in which case M will usually nearly biseet $N L$, the error introduced by assuming this to be the ease being small in general. Hence $N M=M L=n \delta$ nearly.

The reader will see that the shape of the eurve on the $E-J$ diagram has a very important effeet on the best speed and the best weight of a fly-wheel to suit given conditions. Thus suppose this eurve were long and flat, as shown in Fig. 131, then it will be seen that there is c ne certain speed which will give the smallest fluetuation δ. Thus, if the origin be located along the line passing through the long diameter of the figure the case would correspond to a very small fluctuation in spud, even where O were moderately close to the figure, because $\delta=\frac{N M}{M R}$ would be very small. If now the speed be
lowered, keeping the same fly-wheel, then this raises O vertically to O_{1}, and the speed fluctuation will be $\frac{N, M_{1}}{R_{1} M_{1}}$ which is very much greater than before, while an increase in speed lowers O to O_{2}, and gives a greater fluctuation in speed.

On the other hand, increasing the inertia, and hence the weight, of the fly-wheel without changing the speed, moves O out to O_{3} end an examination of the figure also shows a greater speed fluctuation than in the original case.

Fig. 131
For a given case there is in general a certain weight of flywheel and speed of rotation which gives minimum speed fluctuation, and an increase or decrease in fly-wheel weight or speed will cause an increase in the fluctuation. This is much more marked in the case where the E-J curve is elongated and narrow and less marked where its boundaries come nearest to touching an enclosing circle.

If the axis of J were to cut the $E-J$ curve the machine would not work, no matter how heavy a fly-wheel it possessed, because for the part of the curve below the axis of J it could have no speed. The limiting case is where the curve touches the axis of J, in which

Fig. ${ }^{132}$
case the engine would stop at this point where contact occurs which is not usually the dead centre.

The matter will now be illustrated by a practical example, and the case chosen will be the simple slow-speed engine discussed in the last chapter. This engine having a cylinder 12 1-16 in. dia., 30 in . stroke, and a mean speed of 87 revs. per min. In the table
appearing in Chapter XIII., the value of J is put dows for each 18° of crank angle, and also the work input and output corresponding to the various angles, and hence the corresponding gain in E for each 18°. In table given herewith, there is set down for convenience, the corresponding values of J, and also the gain in E for the angles given, these being direetly eopied from table referred to in Chapter XIII.
table of values of J and E for $121-16 \mathrm{in} . \times 30 \mathrm{in}$. engine

$\begin{gathered} \theta \\ \text { degrees } \end{gathered}$	Ju	J_{b}	$J_{a}+J_{b}$	δE
0	2400	3.2	2403.2	- 233
18	"	5.4	2405.4	$+1387$
36	"	10.9	2410.9	+1414
54	"	16.8	2416.8	+699
72	.	20.5	2420.5	+ 186
90	.	20.7	2420.7	-191
108	"	18.5	2418.5	- 461
126	"	12.7	2412.7	- 646
144	"	7.9	2407.9	-858
162	"	4.4	2404.4	- 1077
180	*	3.2	2403.2	- 520
198	.	4.4	2404.4	+ 678
216	"	7.9	2407.9	+ 1360
234	.	12.7	2412.7	+ 738
252	"	18.5	2418.5	+ 294
270	"	20.7	2420.7	- 30
288	"	20.5	2420.5	- 332
306	.	16.8	2416.8	- 546
324	.	10.9	2410.9	- 797
342	"	5.4	2405.4	- 1058
360	"	3.2	2403.2	

The values in this table are plotted on Fig. 132, where a scale of 5 has been used for J, and of 1000 ft . pds. $=1 \mathrm{in}$. for E, the axis of E^{\prime} being placed at $J_{a}=2400$ (the moment of inertia of the erank
and fly-wheel), in order to prevent undue length of the figure. The axis $0^{:} f^{\prime}$ is chosen arbitrarily for the present, its location being found later, and of the two diagrams plotted, the plain one is for

Fig. 133
the out-stroke and the dotted one for the return stroke of the piston.
Having now obtained these figures, the axis of J is determined by remembering that $\frac{1}{2} \omega^{2}=-\frac{E}{J}=\tan u$ and hence $\tan u=$ $\frac{1}{2}(9)^{2}=40.5 .=\frac{E}{J}$. Let the height e in inehes on the diagram represent the emergy E, so that $E=1000 e$ since the seale is 1000 ft . pds. per inch. and using a similar notation, $J=5 j$. Thus $\frac{E}{J}$ $=40.5=\begin{gathered}1000 e \\ 5 j\end{gathered}$ where e and j are a number of inches as measured on the diagram already construeted, hence $\frac{e}{j}=\frac{5}{1000} \times$ $40.5=.202$. Now lay off a distance to the left of $O^{\prime} E^{\prime}=2400$ to represent the value J_{a} and we thus get the axis of E. Then drawing as nearly as possible through the centre of the figure a line
having a tangent . 202, which corresponds to the mean speed o. ... tation $\omega=9$, gives at once the origin O, and the axis of J is a horio.,ntal line through O. See Fig. 133.

V . x^{\prime} through the origin O draw tangents $O F$ and $O / /$ to the $E-I$ curve, then $O F$ corresponds to the maximum speed of rotation n_{2}, and $O / /$ to the minimum speed n,. In drawitg the tangents and locating O usually a smaller scale will have to be adopted than that used in plotting the $E-J$ curve. but this gives no real trouble and the smaller scale may in seneral be avoided if desired. Thus, QM, Fig. 132. may be drawn through the centre of the figure to represent n, it being inelined to the axis of $/$ at an angle whose tangent is . 202, and for the variations ordinarily occurring. $F S$ and $H /$., the tangents at F and A inay have the same angle if the vertical line $N M L$ is close te the figure. Now, if R be the point where $N M L$, cuts the axis of J, then $n_{2}=$ const. $\mid \Lambda R, n_{1}=$ const. $\left.\right|^{\prime} L K$ and $n=$ const. $\mid R M$ and $2 \delta=\begin{aligned} & N / \\ & M R\end{aligned}$. Now $M h$ corresponds to the mean speed n for which $\omega=9$, and since $E=\begin{aligned} & 1 \\ & 2\end{aligned} / \omega^{2}$, and $/$ has a mean value \#11 this case of approximately 2410 , the value of E will te $E=$ $-\frac{1}{2} \times 2410 \times y^{2}=97605 \mathrm{ft}$. pds., which is represented by $R M$. Now from measurements on Fig. 1.32, there is obtained $N L_{0}=3180 \mathrm{ft}$. pds.. hence $2^{\delta}=\frac{3180}{97605}=.0312$ or $\delta=.0156$ or the total variation in speed will be 1.56°, Compare this with result given on page 198.

This method shows at onee the effeet of changing the weight of fly-wheel and also of changing the speed of the engine.
(1) Let the speed of the engine be kept constant at 87 revs. per min., then the direction of the line $O Q M$ is fixed for in the case of this line tan $u=\begin{aligned} & 1 \\ & 2\end{aligned} \omega^{2}$, which depends on ω only, and also the position of the line is fixed because it must pass through the centre of the figure. So long as the speed remains constant, therefore, the origin O must lie on a fixed line $O Q M$. If the moment of inertia of the fly-wheel be decreased, the point O moves toward M, the tangents $O F$ and $O H$ make wider angles with one another, raising
N and lowering $/$. and increasing $\mathcal{N} L$, and hence the speed fluctuation, since $R M$ deereases at the same time.

Suppose, for example, the moment of inertia (or what is approximately the same thing, the weight of the rim) of the fly-wheel is reduced to $\frac{1}{2}$ its present value, making it 1200 instead of 2400. Then $R M$ represents $E=\frac{1}{2} \times 1210 \times 9^{2}=49005 \mathrm{ft}$. pds., and NI. will also increase slightly, but the change in it will be small and it will be considered constant. Then $2 \delta=-3180=49000=.065$ or $\delta=032$ or the variation in speed will be 3.2% or double what it was before.
(2) Let the moment of inertia of the fly-wheel be kept constant but let the speed of the engine be increased, then the origin O will

Fig. 134
travel down the vertical line through O. Let the speed be increased $\frac{1}{6}=11.1 \%$ so as to bring n tip to 97 zevs. per min. $(\omega=10)$, then $\tan \alpha=1 / 2 \omega^{2}=50$, and hence $\frac{E}{J}=50$ or since $J=2410$ as before, $E=50 \times 2410=120500 \mathrm{ft}$. pds., which is represented by $M R$. The fluctuation in speed is now $2 \delta=\frac{\lambda L}{M R}=\frac{2960}{120500}=.0245$ or $\delta=$.0123 , or the variation in speed is reduced to 1.23% as against 1.56% in the original case.

The graphical method described here is very useful and instructive, but it is much more helpful to use a combination of this method with the arithmetical process described in the last chapter.

Another illustration may be given in concluding the chapter, this being the case of a four-cycle gas engine which was built for

lïg. 135
direct connection to an electric gencrator. The engine was singleacting having a cylinder $141 / 2 \mathrm{in}$. diam. and 22 in . stroke, the piston, etc., weighed 360 lbs ., the connecting rod weighed 332 lbs ., and had a radius of gyration about the centre of gravity of 1.97 ft ., the centre
of gravity of the rod was 24.3 in . from the centre of the crank pin. while the length of the rod was 55 in . centre to centre.

The engine had two fly-wheels which had a combined weight of 7000 lb . and a combined moment of inertia of 1600 (ft . pd. units). No allowance was made for the rotating part of the generator which was small in diameter, and would produce very little effect as far as steadiness of motion was concerned.

The mean speed of the engine was 172 revs. per min. The indicator diagram for this engine is given at Fig. 134, and the $E-J$ diagram at Fig. 135, the axis of E being chosen at the point where $J=1600$, the moment of inertia of the fly-wheels, so that the figure represents only J_{b}.

The figure in this ease differs very materially in appearance from that for the steam engine. For this diagram $\tan a=1 / 2 \omega^{2}=$ $\frac{E}{J}=162$ since $\omega=18$. Further, $E=6000 e$ and $J=4 j$ so that $\tan a=162=\frac{6000 e}{4 j}$, hence ${ }_{j}^{e}=.108$ which gives the actual slope of the mean speed line on the paper. The mean value of E for $J=1600$ is $E=162 . J=259200 \mathrm{ft}$. pds. and hence the speed variation is

$$
\delta=\frac{1}{2} \times \frac{31200}{259200}=.0602=6.02 \%
$$

It is needless to say that the engine was absolutely unfitted for its purpose, and the student will do well to compute the necessary moment of inertia of the wheels to reduce the variation to say 2%, first at the speed of $172 \mathrm{r} . \mathrm{p} . \mathrm{m}$. , and also if the speed were increased to 210 r.p.m.

[^6]
ACCELERATIONS IN MACHINERY AND THE FORCES DUE TO THE INERTIA OF PARTS

It is frequently necessary to determine the aceeleration of the different parts of a machine, e.g., in the steam or gasoline engine it is desirable to know the pressure necessary at any time to accelerate the piston and cross-head, in order to determine the turning effeet on the crank shaft, or in the case of valve giars of gas engines the acceleration of the valve is necessary in order to determine the proper design of the different parts, for the foree necessary to move

Fig. 136
any link at any time depends upon its aceeleration and the resistanee aeling upon it. The method here described shows how the aceeleration of the parts of a machine may be found in a simple and direet way.

Only motion in one plane is being considered, which will eover most eases aceurring in practice. Suppose a body of weight w lbs. and mass $m=\frac{w}{g}$ is moving in a plane at any instant, then by the
principle of the virtual centre, it is known that its motion is equivalent to that of rotation, for the instant about some point; if this point is at an infinite distance the motion is simply one of translation. Let Fig. 136 be the body under consideration, which is moving in the plane of the paper, and for the instant of its motion let it be rotating about the centre O, then any point in the body, such as P will travel in a direction normal to $O P$ and the sense will be as indicated, where the angular velocity is in the sense shown. This point P has an acceleration toward O of amuunt $O P . \omega^{2}$ or $r \omega^{2}$, and the force necessary to produce this acceleration is $m r \omega^{2}$ in the radial direction, the force balancing this is usually called the centrifugal force.

If , ow the body is rotating about O with varying velocity then the point P has also accelcration or change of velocity in the direc-

Fig 137
tion of mution. Let $O P$, Fig. 137, represent the radius to the point P, the angular velocity being ω and let $O Q$ represent the positicn of this radius at time δt later, when the angular velocity is $\omega+\delta \omega$, the gain in angular velocity in time δt being $\delta \omega$, or the angular acceleration $\mu=\begin{gathered}\delta \omega \\ \delta t\end{gathered}$. Draw $S M$ to represent the linear velocity of P, i.c.. make $S M=O P$. $\omega=r \omega$ and draw $S N$ at angle $\delta \theta$ from $S M$ to represent the velocity after the time δt when $O P$ has reached $O Q$ or $S J^{\circ}=r(\omega+\delta \omega)$, then the gain in velocity of P in time δt is $M N$, and the normal and tangential components of this gain in velocity are respectively $M R$ and $R N$.

Now the normal gain in velocity in time $\delta!$ is $M R=r \omega . \delta \theta$,
and therefore, the normal acceleration is $\frac{M R}{\delta t}=\frac{r \omega \delta \theta}{\delta t}=r \omega^{2}$ while the tangential acceleration is evidently

$$
\frac{R N}{\delta t}=\frac{S N-S R}{\delta t}=\frac{r(\omega+\delta \omega)-r \omega}{\delta t}=r \frac{\delta \omega}{\delta t}=r u
$$

The sense of the tangential acceleration $r a$ is determined by the sense of a and the normal acceleration $M R$ is toward the centre of rotation. Evidently $r \alpha=o$ if $a=o$, but $r \omega^{2}$ is never zero if the body is rotating.

Returning now to Fig. 136, since the normal acceleration of P or $P_{N^{\prime}}$ is $r \omega^{2}$ toward O, take the length $O P$ to represent this guantity adopting the scale of $-\omega^{2}: 1$; this is negative since the line $O P$ represents the acceleration $r \omega^{2}$ in the direction and sense $P O$.

:in. 138
Then also the tangential acceleration P_{T} may be represented by a line normal to $O P$, its length will be $\begin{array}{r}r a \\ \omega^{2}\end{array}$ since the scale is ω^{2}. 1 , and its sense is to the right, since the scale is negative, hence draw $P P^{\prime \prime}=\begin{gathered}r a \\ -\omega^{2}\end{gathered}$. Now if $O P^{\prime \prime}$ be drawn, then $O P^{\prime \prime}=$ vector sum $O P+P P^{\prime \prime}$ or $O P^{\prime \prime}=P_{\checkmark}+P_{T}$ which will therefore give the total acceleration of P. or the total acceleration of P is $P^{\prime \prime} O . \omega^{2}$ in the
direetion and sense $P^{\prime \prime} O$. It nay very easily be shown that in order to find the acceleration of any other point R on this body at the given instant it will only be necessary to loeate a point $R^{\prime \prime}$ bearing the same relation to $O P^{\prime \prime}$ that R does to $O P$, the acceleration of R, which is represented by $O R^{\prime \prime}$, being $R^{\prime \prime} O \cdot \omega^{2}$ and its dircetion and sense $R^{\prime \prime} O$.

These ideas may now be applied to machines and the first case considered will be as general as possible, the machine being one of four links with four turning pairs, Fig. 138. Let the angular velocity ω and the angular acceleration α of the primary link be known, it is required to find the angular accelerations of the other links as well as the linear accelerations of different points in them. From the phorograph, Chapter IV, the angular velorities of the links b and c are $\omega_{b}=\begin{aligned} & b^{\prime} \\ & b\end{aligned} \omega$ and $\omega_{c}=\begin{aligned} & c^{\prime} \\ & c\end{aligned} \omega$, and from the foregoing propositions $P_{N}=a \omega^{2} ; P_{T}=a a ; Q_{N}=b \omega_{b}{ }^{2} ; Q_{\tau}=b \alpha_{b} \quad$ also $R_{N}=c \omega_{c}{ }^{2}$ and $R_{T}=c \omega_{c}$.

Using the principle of vector addition the total acceleration of R with regard to O is the vector sum of the accelerations of R with regard to Q. of Q with regard to P and of P with regard to O. But as R and O are stationary, the total acceleration of R witt. regard to O is zero. Hence, the sum of the above three accelerations is zero, or $R_{T}+R_{N}+Q_{T}+Q_{N}+P_{T}+P_{N}=O$, i.e., the vector polygon made up with these accelerations as its sides must close, or if the polygon be started at O it will close at O also.

The point $P^{\prime \prime}$ nay be located according to the meth. 4 previously given, the scale being $-\omega^{2}$ to 1 , and in order to locate $Q^{\prime \prime}$. giving the total aceelcration of Q, proceed from $P^{\prime \prime} \quad O$ by means of the vectors $Q_{N}+Q_{T}+R_{N}+R_{T}$. The direct .11 sense of both Q_{N} and R_{N} are known, they are respectively Q_{s}.ad $R Q$, further, the direction, but not the sense of Q_{T} and R_{T} is known, in each ease, it is normal to the link itself, or Q_{T} is norntal to b and R_{T} is normal to c,
Ag in $Q_{N}=b \omega_{b}^{2}$ toward P and $\omega_{b}=\begin{aligned} & b^{\prime} \\ & b\end{aligned} . \omega$, therefore, $Q_{N}=b\binom{b^{\prime} \omega}{b}^{2}=\frac{b^{\prime 2}}{b} \cdot \omega^{2}$, similarly $K_{N}=\begin{gathered}c^{\prime 2} \\ c\end{gathered} \cdot \omega^{2}$, and since the scale is $-\omega^{2}$ to 1 , draw $P^{\prime \prime} A=\frac{Q_{N}}{\omega^{2}}=\frac{b^{\prime 2}}{b}$. and further, $A B=\begin{array}{cc}R_{N} & c^{\prime 2} \\ \omega & c\end{array}$. The polygon from R to O may now be eom-
pleted by adding the vent... $<Q_{T}$ and R_{T}, and as the directions of these are known, the proce.s, is . . intly to draw from O the line $O C$ in the direction R_{T}, i.e., ncaral and from B the line $B C$ normal to b. which is in the diree $L_{0} \quad, T$, these lines intersecting at the point C. Then it is evident ta...i $B C$ represents Q_{T} on the seale - ω^{2} to 1 , and that $C C$ represents R_{T} on the same seale, so that in the diagram $O P P^{\prime \prime} A B C Q^{\prime \prime} O$ it is evident that $O P=P_{N} P P^{\prime \prime}=P_{T}$, $P^{\prime \prime} A=Q_{N}, A B=R_{N}, B C^{\circ}=Q_{T}$ and $C O=R_{T}$, all on the seale $-\omega^{2}$ to 1. By completing the parallelogram $C A$ evidently $O P^{\prime \prime}=$ $P_{N}+P_{T}, P^{\prime \prime} Q^{\prime \prime}=Q_{N}+Q_{T}$ and $Q^{\prime \prime} O=R_{N}+R_{T}$, and therefore, the veetor triangle $O P^{\prime \prime} Q^{\prime \prime} R$ gives the vector acceleration diagram of all links on the machine.

The angular accelerations of the links may be found as follows. Since $Q_{T}=A Q^{\prime \prime} \times-\omega^{2}=b a_{b}$, then $b a_{b}=-A Q^{\prime \prime} \cdot \omega^{2}$ or - $a_{b}=A Q^{\prime \prime} \cdot \frac{\omega^{2}}{b}$ so that the length $A Q^{\prime \prime}$ represents a_{b}, the angular acceleration of the link b, and similarly $C O$ represents the angular aceeleration a_{c} of c or $a_{c}=-C O{ }_{c}^{\omega^{2}}$. The sense of these angular aceclerations may be found by noticing the way one turns to them in going from the corresponding normal acceleration line, thus, in going from P_{N} to P_{r} one turns to the right, in going from $Q_{N}\left(P^{\prime \prime}\right.$ A) to $Q_{T}\left(A Q^{\prime \prime}\right)$ the turn is to the left and hence u_{h} is in opposite sense to u, and by a similar process of reasoning a_{c} is in the same sense as α. Thus, in the position shown in the diagram, Fig. 138. all of the angular velocities are inereasing.

The linear acecleration of any point such as (a on b is readily shown to be represented by $O G^{\prime \prime}$ and to be equal to $G^{\prime \prime} O . \omega^{2}$, where the point $\mathrm{G}^{\prime \prime}$ divides P " Q " in the same way that G divides $P Q$. the direct:on and sense of the acceleration of G is $G^{\prime \prime} O$. Similarly, the aceleration H in c is $H^{\prime \prime} O . \omega^{2}$ in magnitude, direction and sense where $H^{\prime \prime}$ divides $O Q^{\prime \prime}\left(R^{\prime \prime} Q^{\prime \prime}\right)$ in the same way as H divides $R Q$.

THE FORCES ACTING ON THE MACHINE PARTS

It is often necessary to find the foree which must be exerted upon any link to balance the inertia of the link, and the determinations of the above aceelerations enable this to be done. Let $O P^{\prime \prime} Q^{\prime \prime} O$, Fig. 139. be the vector acceleration diagram for the machine, the phoro-
graph being $O P^{\prime} Q^{\prime} O$, and let it be required to find the force which must be exerted on the link b to produce its motion in the given position. Let G be the centre of gravity of the link and let $I_{b}=m_{b} k_{b}{ }^{2}$ represent the moment of inertia of the link about G, k_{b} being the radius of gyration, and m_{b} the mass, i.e., the weigint divided by g. Let a_{b} be found as already described, also the acceleration of G is $G^{\prime \prime} O . \omega^{2}$, as alrcady explained.

Now in order to produce the aeceleration of the eentre of gravity of the link it is necessary to apply a force F acting through G and in the sense and direction $G^{\prime \prime} O$ of the acceleration. The magni-

Fig. 139
tude of this force is the mass of the link multiplicd by the acceleration of the centre of gravity, or $\mathrm{F}=m_{b} \cdot G^{\prime \prime} O \cdot \omega^{2}$, a force which is given completcly in magnitude, direction, sense and position. Again, in order to produce the angular acceleration a_{b} which the body has, there must be applied a torque T equal to the moment of inertia of the link about G multiplied by the angular acceleration of the link, and the sense of T must be the same as a_{b}, thus $T=I_{b} a_{b}=$ $m_{b} k_{b}^{2} u_{b}$. This torque may be produced by a couple, consisting of two parallel forees, and the forces composing the couple may have any magnitude so long as the distance apart is made suffieient to give the torque T. Choose therefore, two parallel forces in opposite
sense each equal to F and let the distance between them be $x \mathrm{ft}$., then must $F x=T$.

Now, as this couple may act in any position on the link b let it be so placed that one of the forces passes through G and let the forces have the same direction as the acceleration of G. Further, let the force passing through G be the one which acts in opposite sense to the accelerating force F, this is shown on Fig. 139. Now the accelerating force F and one of the forces F composing the couple act through G and neutralize one another and thus the accelerating force and the couple producing the torque reduce to a single force F whose magnitude is m_{b}. $G^{\prime \prime} O . \omega^{2}$, whose direction and sense are the same as the acceleration of the centre of gravity G of b, and which acts at a distance x from G, (x being determined by the relation $T=F x$). and on that side of G which makes the torque act in the same sense as the angular acceleration a.

The distance x of the force F from G may be found as follows: Since $Q_{T}=b a_{b}=Q^{\prime \prime} A \omega^{2}$, Fig. 138, then $a_{b}=Q^{\prime \prime} A . \omega^{\omega^{2}} \quad$, because the line $A Q^{\prime \prime}$ represents Q_{T} on a scale $-\omega^{2}: 1$.
Also $T=I_{b} a_{b}=m_{b} k_{b}^{2} Q^{\prime \prime} A \quad . \omega^{2}$
and $F=m_{b} \cdot G^{H} O \cdot \omega^{2}$
therefore $x=\frac{T}{F}=\begin{gathered}m_{b} k_{b}^{2} Q^{\prime \prime} A \\ m_{b} \cdot G^{\prime \prime} O \cdot \omega^{2}\end{gathered}=\frac{k_{b}{ }^{2}}{b} \cdot \frac{Q^{\prime \prime} A}{G^{\prime \prime} O}$ where $k_{b}^{{ }^{2}}$ is a constant, so that $x=$ const. $\times \frac{Q^{\prime \prime} A}{G^{\prime \prime} O}$ which ratio can readily be found for any position of the mechanism. This gives the line of action of the single force F and, having found the position of the force, let M be its point of intersection with the axis of link b. Now find M^{\prime} the image of M and move the force from M to its image M^{\prime}, then the turning moment necessary on the link a to accelerate the link b is $F h$, where h is the shortest distance from O to the direction of F, Fig. 139.

This completes the problem, giving the force acting on the link and also the turning moment at the link a necessary to produce this force. The same construction may be applied to each of the other
links, such as c and a, and thus the turning moment on a necessary to accelerate the different links may be found.

DETEFVINATION OF THE STRESSES IN THE PARTS DCE TO THEIR INERTIA

The method just described may be used to find the bending moment produced in any link at any instant due to its inertia. Any part such as the connecting rod of an engine is subject to stresses due to the transmission of the pressure from the piston to the crank pin, but in addition to this the rod is continually being accelerated

and retarded, these ehanges of velocity producing bending stresses in the rod and these latter stresses may now be determined.

To make the case as general as possible, let $O P Q R$, Fig. 140, represent a machine for which the vector acceleration diagram is $O P^{\prime \prime} Q^{\prime \prime} O$, it is required to find the bending moment in the rod b due to its inertia. Lay off at each point on b the acceleration of that point, thus make $P A_{1}, G C_{1}, Q B$, ete., equal and parallel respectively to $O P^{\prime \prime}, O G^{\prime \prime} O Q^{\prime \prime}$ ete., obtaining in this way the curve $A_{1} C_{1} B_{1}$.

Now resolve the accelerations at each point in b into two parts, one norral to b and the other parallel to the link. Thus $P A$ is the acceleration of F normal tu b, and $G C$ and $Q B$ are the correspond-
ing accelerations for the points G and Q respectively. In this way a second curve $A C B$ may tre drawn, and the perpendicular to b drawn from any point in it to the line $A C B$ represents the acceleration at the given point in b in the direction normal to the axis of the latter, the scale in all cases being $-\omega^{2}: 1$. Thus the acceleration of P normal to b is $A P . \omega^{2}$, and so for other points.

The bending moment in the rod is due to the acceleration normal to the axis of the latter and hence is proportional to the distances from b to the curve $A C B$. Further, the bending moment is proportional to the distribution of the mass of the rod; thus it is proportional to the rass and the acceleration. In this discussion the actual bending morrent is not determined, simply the load curve.

In fig. 140 (a), the rod is shown along with the curve $A B$. Divide the rod up into a series of elementary parts, each of weight δu and of mass $\delta m=\begin{array}{r}\delta \\ u^{\prime}\end{array}$, one of these masses being shown at D, at which place the acceleration is $E I) . \omega^{2}$, and hence the force acting at this point is $\delta m . E D \cdot \omega^{2}$. In this way a load curie may be drawn for the rod and for the load curve thus obtained, the correspending bending moment curve may be found $b:$ the ordinary methods of mechanics.

If the rod is of uniform diameter, then $A C B$ is also a load curve on a scale which may readily be determined, whereas if the rod tapers uniformly from P to Q the load curve wili take a form similar to that shown dotted above b. Usually the rod varies in shape and crosssection from end to end. frequently being larger in the centre than at the ends, in which case the process is rather more tedious but may be carried out to any degree of accuracy desired by the designer.

It may be mentioned that the method is essentially one for the drafting-board and the methods of the calculus are usually too cumbersome to be adopted except in the most simple shapes.

APPIICATION TO THE STEAM ENGINE

This construction and the determination of tive accelerations and forces has a very uscful application in the case of the zeciprocating engine and this machine will now be taken up. Fig. 141 represents an engine in which O is the crank shaft, P the crank pin and Q the wrist pin. the block c representing the crosshead, piston and piston rod. Let the crank turn with angular velocity ω and have an accelera-
tion u in the sense shown. and let G be the centre of gravity of the connecting ro To get the vecter aceleration diagram find $P^{\prime \prime}$ exactly as in tike former construction, $O P$ representing the acceleration $P O . \omega^{2}$ and $P P^{\prime \prime}$ the acceleration a_{u}, both on the scale $-\omega^{2}$ to 1 .

Now the motion of Q is one of sliding and thus Q has only tangen: tial acceleration, or acceleration in the direction of sliding, in this case $Q S$, the sense being determined later. Hence, the total acceleration of Q must be represented by a line through O in the direction $Q S$ so that $Q^{\prime \prime}$ lies on a line through the centre of the crank shaft, and the diagram is reduced to a simpler form than in the more general case. Having found $P^{\prime \prime}$, draw $P^{\prime \prime} A$ parallel to b, of length $\frac{b^{\prime 2}}{b}$ to represert Q_{N}. and also draw $A Q^{\prime \prime}$, normal to $P^{\prime \prime} A$, to meet the line $Q^{\prime \prime} O$ (which is parallel to $Q S$)

Fig. 14
in $Q^{\prime \prime}$. Then will $A Q^{\prime \prime}$ represent the value of the angular acceleration of the rod b, since $b a_{b}=Q^{\prime \prime} A . \omega^{2}$ or $a_{b}=Q^{\prime \prime} A . \omega_{b}^{\omega^{2}}$, and since $A Q^{\prime \prime}$ lies on the same side of $P^{\prime \prime} A$ that $P P^{\prime \prime}$ does of $O P$, therefore a_{b} is in the same sense as a; thus sinee ω_{b} is opposite to ω, the angular velocity of the rod is decreasing, or the rod is being retarded.

The acceleration of the centre of gravity of b is represented by $O G^{\prime \prime}$ and is equal to $G^{\prime \prime} O . \omega^{2}$, and similarly the acceleration of the end Q of the rod is represented by $O Q^{\prime t}$ and is equal to $Q^{\prime \prime} O \cdot \omega^{2}$, this being alro the acceleration of the piston.

It will be observed that all of these accelerations increase as the square of the number of revolutions per minute of the crank shaft. so that while in si ared engines the inertia forces may not produce any very serious troubles, yet in high speed engines they are very important and in the case of such engines as are used on automobiles, which run at speeds of 1500 revs. per min., these accelerations are very large and the forces necessary to produce them cause considerable disturb~nces. Take the piston for example, the force required to move it will depend on the product of its weight and its acceleration so that if an engine ran normally at 750 revs. per min. and then it was afterwards decided to speed it up to 1500 revs. per min., the force

Fig. $1+2$
required to move the piston in any position in the latter ease would be four times as great as in the former case.

In the aetual of the steam engine, the calculations may be very much simp: to certain limitations which are imposed on all designs of $\mathrm{en}_{\text {t }}$ being briefly that the ,
' $\eta \mathrm{g}$ other machinery, these limitations
in velocity of the fly-wheel must be comparatively small, i.e., the angular aceleration of the fly-wheel must not be great, and in faet, on engines the fly-wheels are made so heavy that a cannot be large.

To get a definite idea on this subject a ease was worked out for a $10 \mathrm{in} . \times 10 \mathrm{in}$. steam engine, running at 310 revs. per min., and the maximum angular aceeleration of the crank was found to be slightly less than 7 radians per sec., per sec. For this case the normal aeceleration of P is $r \omega^{2}=\frac{5}{12} \times 1100=458 \mathrm{ft}$. per sec., per sec., while
the tangential acceleration is $\mathrm{ra}=\frac{5}{12} \times 7=5.8 \mathrm{ft}$. per sec. per sec., which is very small compared with 458 ft . per sec. per sec., so that on any ordinary drawing the point $P^{\prime \prime}$ would be very close to P. Thus without serious error ra may be neglected compared with $r \omega^{2}$ and thus we may take $P^{\prime \prime}$ at P in the case of the steam engine.

With the foregoing modification for the steam engine, the complete acceleration diagram is shown at Fig. 142, the length PA representing $\begin{gathered}b^{\prime 2} \\ b\end{gathered}, A Q^{\prime \prime}$ being normal to b, thus $P^{\prime \prime} Q^{\prime \prime}$ is the acceleration diagram for the connecting rod and $O Q^{\prime \prime}$ resents the acceleration of the piston on the scale - ω^{2} to 1 . Tu, cases are shown (a) for the ordinary construction and (b) for the off-set cylinder. The acceleration of any such point as G is found by finding $G^{\prime \prime}$, making the line $G G^{\prime \prime}$ parallel to $Q Q^{\prime \prime}$, the accelerations then is $G^{\prime \prime} O \cdot \omega^{2}$. Dealing only with the case shown in figure (a) it is seen that when the crank is vertical, b^{\prime} is zero, and hence A is at P, or $Q^{\prime \prime}$ lies to the left of O, so that the piston is being retarded. The numerical value of the acceleration may be found in this case by remembering that $Q^{\prime \prime} Q$ may be taken as the diameter of a circle which will pass through P and hence $Q^{\prime \prime} O . O Q=O P^{2}$ or $O Q^{\prime \prime}=\begin{gathered}O P^{2} \\ O Q\end{gathered}=\begin{gathered}a^{2} \\ 1 b^{2}-a^{2}\end{gathered}$ so that the a.cceleration of the piston is $O Q^{\prime \prime} \cdot \omega^{2}=\begin{gathered}a^{2} \\ 1 b^{2}-a^{2}\end{gathered} \omega^{2}$

At both 'he head and crank ends $b^{\prime}=a$ hence $P^{\prime \prime} A=\begin{gathered}b^{\prime 2} \\ b\end{gathered}=\begin{gathered}a^{2} \\ b\end{gathered}$, so that for the head end $Q^{\prime \prime} O=a+\frac{a^{2}}{b}$ and the piston has its maximum acceleration at this point, which is $\left(a+\frac{a^{2}}{b}\right) \omega^{2}$ toward O, while for the crank end $Q^{\prime \prime} O=a-a^{2}$ and the accelcration is $\left(a-\frac{a^{2}}{b}\right) \omega^{2}$ toward O, so that the piston is being retarded.

Example: Let an engine with 7 in . stroke and a connceting rod 18 in . long run at 525 revs. per min. Then $a=\frac{3^{1 / 2}}{12}=.29 \mathrm{ft}$., $b=$ $\frac{18}{12}=1.5 \mathrm{ft}$. and $\omega=55$ radians per sce.

At the head end the acceleration of the piston would be

$$
\left(a+\frac{a^{2}}{b}\right) \omega^{2}=\left(.29+\frac{.29^{2}}{1.5}\right) \times 55^{2}=931 \mathrm{ft} . \text { per sec. }
$$ per sec.

At the crank end the acceleration would be:

$$
\left(a-\frac{a^{2}}{b}\right) \omega^{2}=\left(.29-\frac{.29^{2}}{1.5}\right) \times 55^{2}=623 \mathrm{ft} . \text { per sec. }
$$ per sec.

At the time when the crank is vertical the result is:
$\frac{a^{2}}{1 b^{2}-a^{2}} \omega^{2}=\left[\frac{.29^{2}}{11.5^{2}-.29^{2}}\right] \times 55^{2}=173 \mathrm{ft}$. per sec., per sec.
The angular acceleration of the rod, being determined by the length $A Q^{\prime \prime}$, is zero at each of the dead points but when the crank is vertical this velocity has nearly its maximum value, its exact value being $Q^{\prime \prime} A \cdot \frac{\omega^{2} \cdot}{b}$ When the crank is vertical a diagram will show that $Q^{\prime \prime} A=\begin{aligned} & a b \\ & 1 b^{2}-a^{2}\end{aligned}$, and the acceleration will be $a_{b}=\frac{a}{a b^{2}-\overline{a^{2}}} \omega^{2}$. For the engine already examined $a_{b}=\left[\begin{array}{c}.29 \\ 1 \quad 1.5^{2}-.29^{2}\end{array}\right] 55^{2}$ $=596$ radians per sce. per sec.

approximate graphical soletion for the stean engine

In the approximate method already described, in which the angular acceleration of the crank shaft is neglected and $P^{\prime \prime}$ is assumed to coincide with P, it will be noticed that length $P^{\prime \prime} A=\begin{gathered}b^{\prime 2} \\ b\end{gathered}$, is laid off along the connecting rod, the length $P^{\prime} Q^{t}$ representing b^{\prime}, and $P Q$ the length b, and then $A Q^{\prime \prime}$ is drawn perpendicular to $P Q$. This may be carried out by a very simple graphical method as follows: With eentre P and radius $P^{\prime} Q^{t}=b^{\prime}$ describe a circle, Fig. 143 , then describe a second circle, having the connecting rod b as its diameter cutting the first circle at M and N and join $M N$, where $M N^{\prime}$ cuts b locates the point A and where it cuts the line through O in the direction of motion of Q gives $Q^{\prime \prime}$

The proof is that $P M G$ being the angle in a semicircle is a right
angle, also $M N$ a chord in the circle $M P N Q$, is normal to $P Q$ by construction, so that $M N$ is bisected at A. Thus in the circle $M P N Q$, there are two chords $P C_{1}$ did $M N$ intersecting at A, hence $P A . A Q=M A^{2}$ hence $P A(P Q-F 1)=b^{\prime 2}-P \cdot$ that is $P A . P Q-P A^{2}=1^{14}-P^{\prime} 1$ rom which $P A . P Q=b^{\prime 2}$

Fig. 143
or $P A . b=b^{\prime 2}$ or $P A=\begin{aligned} & b^{\prime 2} \\ & b\end{aligned}$ which proves that the construction is correct.

THE EFFECTS OF THE ACCELERATIONS OF THE PARTS U'PON THE FORCES ACTING AT THE CRANK SHAFT OF AN ENGINE.

In order to accelerate or retard the various parts of the engine, some torque must be required or will be produced at the crank shaft, and a study of this will now be taken up in detail.
(a) The effect produced by the piston.

By the construction already described the acceleration of the piston is readily found and it will 've seen that $Q^{\prime \prime}$ lies first on the eylinder side of O and then on the opposite side. When $Q^{\prime \prime}$ lies
between O and Q. Fig. 144, then since the accelcration is $Q^{\prime \prime} O . \omega^{2}$, the acceleration of the piston is in the same sense as the motion of the piston, or the piston is being accelerated. Conversely, when $Q^{\prime \prime}$ lies on $Q O$ produced the acceleration being in the opposite sense to the motion of the piston, the latter is being retarded. If now the accelerations for the different piston positions on the forward stroke be plotted, the diagram EJH will be obtained, Fig. 144, where the part of the diagram $E J$ represents accelerations of the piston, and the part $J H$ negative accelerations, or retardations. The corresponding diagram for the return stroke of the piston is omitted to avoid complexity.

Let the combined weight of the piston, piston rod and crosshead be w_{c} lbs., the corresponding mass being $m_{c}=\frac{u_{c}^{\prime}}{g}$, and let f represent the acceleration of the piston at any instant, then the force

Fig. I 44
P_{c} necessary to produce this acceleration will be $P_{c}=m_{c} . f$. This force will be positive if f is positive and vice versa, i.e., if f is positive a force must be exerted on the piston in its direction of motion and if it is negative the force must be opposed to the motion. In the first case energy must be supplied by the fly-wheel, or steam, or gas pressure, to speed up the piston, whereas, in the latter case, energy will be given up to the fly-wheel due to the decreasing velocity of the piston, but it is to be remembered that since no net energy is received during the operation, therefore, the work done on the piston in accelcrating it must be equal to that done by the piston rehile it is being retarded.

Two methods are employed for finding the turning effect of this force, $P_{c}:$ (a) to reduce it to an equivalent amount per square inch of
piston area by the formula $p_{c}=\begin{aligned} & P_{c} \\ & A\end{aligned}$ where A is the area of the piston, and then to correct the corresponding pressures as shown by the indicater diagram by this amount. In this way a reduced indicator diagram for each end is found, as shown for a steam engine in Fig. 145, where the dotted diagram is the reduced diagram found by subtracting the quantity p_{c} from the upper line on each diagram. The remaining area is the part effective in producing a turning moment on the erank shaft.
(b) The second method is to find direetly the turning effect necessary on the crank shaft to overcome the foree P_{c}, and from the

Fig. 145
principles of the phorograph this torque is evidently $T_{c}=P_{c} \times O Q^{\prime}$ $=m_{c} \cdot f . O Q^{\prime}$. In the position shown in Fig. 144, P_{c} would act as shown, and a torque aeting in the same sense as the motion of a would have to be applied.

The first method is very instructive in that it shows that the foree necessary to aceelerate the piston at the beginning of the stroke in very high speed engines may be greater than that produced by the steam of gas pressure, and hence, that in such eases the connecting rod may be in tension at the beginning of the stroke, but, of course, before the stroke has very much proceeded it is in compression again. This change in the condition of stress in the rod frequently eauses "pounding" due to the slight slackness allowed at the various pins.
(b) The effect produced by the connecting rod.

This effect is rather more difficult to deal with on accoun: of the nature of the motion of the rod. The resultant force aeting may, however, be found by the method described earlier in the ehariter, but in the case of the steam engine, the construction may be much simplified, and on account of the importance of the problem the simpler method will be described here. It consists in dividing the rod up into two equivalent concentrated masses, one at the crosshead pin the other at a point to be determined.

Referring to Fig. 146, the rod is represented on the acceleration diagrams by $P^{\prime \prime} Q^{\prime \prime}$ and the aceeleration of any point on it or the angular acceleration of the rod may be found at once by processes already explained. Let I_{b} be the moment of inertia of the rod about its centre of gravity, k_{b} being the corresponding radius of gyration and m_{b} the mass, so that $I_{b}=m_{b} k_{b}{ }^{2}$, and let the centre of gravity lie on $P Q$ at distance r, from Q. Instead of considering the actual rod it is possible to substitute for it two masses m_{1}, and m_{2}, which.

Fig. 146
if properly placed, and if of proper weight, will have the same inertia and weight as tne original rod. Let these masses be m_{1} and m_{2} where $m_{1}=\frac{w_{1}}{g}$ ard $m_{2}=\frac{w_{2}}{g}, w_{1}$ and w_{2} being the weights of the masses in lbs. Further, let mass m_{t} be coneentrated at Q, it is iequired to find the weights w_{1}, and w_{2} and the position of the weight w_{2}^{\prime}. Let r_{2} be the distance from the centre of gravity c°. the rod to mass m_{2}.

These masses are determined by the following three conditions:
(1) The sum of the weights of the two masses must be equal to the weight of the rod, or $u_{1}+w_{2}=u_{b}$, or $m_{1}+m_{2}=m_{b}$.
(2) The two masses m_{1} aitd m_{2}, must have their combined centre of gravity in the same place as before, or $m_{:} r_{1}=m_{2} r_{2}$
(3) The two masses must have the same moment of inertia
about their combined centre of gravity as the original rod has about the same point, or $m_{1} r_{1}{ }^{2}+m_{2} r_{2}^{2}=m_{b} k_{b}{ }^{2}$.

For convenience we shall assemble these together.

$$
\begin{align*}
& m_{1}+m_{2}=m_{b} \tag{1}\\
& m_{1} r_{1}=m_{2} r_{2} \tag{2}\\
& m_{1} r_{1}^{2}+m_{2} r_{2}^{2}=m_{b} k_{b}^{2} \tag{3}
\end{align*}
$$

Solving these gives $m_{1}=m_{b} \begin{aligned} & r_{2} \\ & r_{1}+r_{2}\end{aligned}$ and $m_{2}=m_{b} \frac{r_{1}}{\therefore_{1}+r_{2}}$ and $r_{1} r_{2}=k_{b}{ }^{2}$ or $r_{2}=\frac{k_{b}{ }^{2}}{r_{1}}$.

Thus, for the purposes of our problem the whole rod may be replaced by the two masses m_{1}, and m_{2} placed as shown in Fig. 146. The one mass m, merely has the same effect as an increase in the weight of the piston and the meihod of finding the force required to accelerate it has already been deseribed. Turning then to the mass m_{2}, which is at a fixed distance r_{2} from G; the centre of gravity of m_{2} is K^{\prime} and the acceleration of K^{-}is evidently $K^{-1 \prime} O . \omega^{2}, K^{\prime \prime \prime} K^{\prime}$ being parallel to $G^{\prime \prime} G$. The direction of the force acting on m_{2} is the same as that of the acceleration of its centre of gravity and is therefore through K parallel to $K^{-\prime \prime} O$, and the magnitude of this force is $m_{2} \cdot K^{\prime \prime} O \cdot \omega^{2}$. The force acts through K, it: line of action being $K L$ parallel to $K^{\prime \prime} O$.

The whole rod has now been replaced by the two masses $m_{\text {, }}$ and m_{2}, the force acting on the former being $m_{1} \cdot Q^{\prime \prime} O . \omega^{2}$ through Q parallel to $Q^{\prime \prime} O$, i.c., this force is in the direction of motion of Q and passes through L on $Q^{\prime \prime} O$. The force on the mass m_{2} is $m_{2} \cdot K^{\prime \prime} O \cdot \omega^{2}$, which also passes through L, so that the resultant force F acting on the rod must also pass through L. Thus the construction just deseribed gives a convenient graphical method for locating one point L on the line of action of the resultant ferce F acting on the connecting rod.

Having found the point L the direction of the force F has been already shown to be parallel to $G^{\prime \prime} O$ and its magnitude is $m_{b} \cdot G^{\prime \prime} O \cdot \omega^{2}$. Let F intersect the axis of the rod at H, find the image H^{\prime} of H, and transfer F to H^{\prime}, the moment required to produce the acceleration of the rod is then Fh.

A number of ials on different forms and proportions of engines have shown that the point L remains in the same position for all crank angles, and hence if this is determined once for a given mechan-
ism it will only be necessary to determine $G^{\prime \prime} O$ for thedifferent crank positions.

In the position of the machine shown in Fig. 146, let P be the total pressure acting on the piston due to the steam or gas pressure then the turning moment acting on the crank shaft is $P . O Q^{\prime}$ $\left[m_{c} \cdot Q^{\prime \prime} O \cdot \omega^{2} \cdot O Q^{\prime}+m_{b} \cdot G^{\prime \prime} O \cdot \omega^{2} \cdot h\right]$ after making allowance for the effect of the incrtia of the connecting rod and piston, and this turning moment will produce an acceleration of the fly-wheel if it exceeds that necessary to produce the, power and a retardation of the wheel if the turning moment required fo the power is in excess.

THE FORCES ACTING AT THE BEARINGS
The principles already discussed enable a determination to be made of the forces acting at the bearings in engines of differenttypes and as the accelerations have been discussed very fully the reader is left to work out this important problem by himself.

In high speed engines the pressures on the bearings due to the inertia of the parts become very high indeed and may readily exceed the pressures due to the working fluid. Take, for example, a four cycle automobilc engine, rınning at a speed of possibly 1600 r.p.m., it has already been shown that the inertia forces vary as the square of the speed and in such a machine they will be found very high. Due to the working fluid the connecting rod would be in compression in all but the suction stroke, however, when the inertia forres are considered, the rod may casily be in tension in all strokes and in

TABLE SHOWING THE EFFECT DUE TO THE INERTIA OF THE PARTS OF AN $11 \mathrm{in} . \mathrm{x} 7 \mathrm{IN}$ ，

		－Bỉn Jin 으웅 Nにづが
Connecting Rod		
	O⁄	
Piston，Crosshead，etc．		
	\bigcirc	
		 $+\quad+11+\quad+1 \quad 1$
	نـ	 $+\quad+1+1+1$
$\text { 总苞花 } \infty$		

case the engine does not explode at any time the forces acting on the rods and pins may be very much greater thanduring an explosion, because of the great forces required to move the parts.

Evidently, in such machines much damage might very easily be done by allowing the speed to become unduly high, and although the engine were doing no work it might easily be destroyed at this high speed.

The matter is well worthy of the careful study of the student. COMPLTATION POR AN ACTULL ENGINE
This chapter will now be ended by a computation on an actual steam engine, partly for the purpose of explaining the method more fully and partly to give an idea of the magnitude of the various forces.

The engine selected is the high-pressure side of a vertical, compound, high-specd engine of about 125 h . p. The engine has a cylinder 11 in . dia. and 7 in . stroke and runs at 525 revs. per min., the piston, piston rod and crosshead weigh 161 lbs . The connecting rod is 18 in . long centre to centre, weighs 47 lbs . and has a radius of gyration about its centre of gravity of 7.56 in . The centre ot gravity of the rod is 4.7 in . from the centre of the crank pin.

Taking the above data gives $\omega=55$ radians per sec., the mass of the piston, etc., $m_{c}=5$. For the connecting rod $m_{b}=1.46, k_{b}=$ $.63 \mathrm{ft} ., r_{1}=1.11 \mathrm{ft} ., r_{2}=\frac{.63^{2}}{1.11}=.36 \mathrm{ft} . m_{1}=1.46 \times \frac{.36}{1.11+.36}$ $=.35, m_{z}=1.11$.

The complete construction for the crank angle 36°, is shown in Fig. 147, where all the quantities lave been clearly marked. I:. this case L, remaincd fixed for all crank angles, being at a distance .44 in. from O on the same side as the piston. The results for this engine are set down in the accompanying table in which it is observed that at the head end of the stroke a force of $5262 \mathrm{p} d \mathrm{~s}$. would be required to move the piston which would mean a net pressure on the piston area of over 55 pds. per sq. in., in other words. if the engine were driven with an effective steam pressure of less than 55 pds. at the beginning of the down stroke, then the piston rod would be in tension instead of compression for this position.

It is further to be noted that the disturbing effect of the connecting rod is much less marked than that of the crank and as far as its effect on the turning moment is concerned the connecting rod might be neglected. The total effect of all the moving parts, as given in the last column. is evidently very decided.

INDEX

A PAGE Acceleratiov, angular 214
effect of
115
115
effeet of speed on 208
effect on erank effort 225
effeet on torque 218
forces due to
212
212
in machines 212
in steam engine
220
220
in actual engine 231
normal, in machumes
213
213
of piston 223
of piston, approximate method
224
224
resilts, table of
231
231
stresses in links clue to
219
219
tangential 214
AdDENDCM circle 68
Air chamier 46
ANGLE of olliquity
70
70
Angillar acceleration: 214
variation of Hy-wheel
107
107
velocity 38, 54
AnNulargear
71
71
Arc of approach in gears 68
of recess in gears 68
contract in gears 68
Base circleB
Beam engine, crank effort 70
Bearings, forces it, due to acceleration of parts 117 117
outboard 230 230
roller and ball 18
Bell erank lever, efficiency of
149
149
Belliss and Morcom governor
172
172
Bevel gears 75 77
sizes of
sizes of
Cams
C
for stamp mill 105
for shear 107
for gas engine 109
general problem in design of 111 111 112
spectial
spectial
Centre fixcel 108
instantancous 32
permanent 30 30
theorem of three virtual 31
virtual 32
determination of 30
in slider crank chain 33 33
Chais, closure 3.
compound 15
inversion of 21
kinematic 20
simple 21
slider erank
21
21
Characteristic curve for governors 163
Circi.f, rolling PAGE
maximum diameter of
Cobfficient of friction. 67 66 66
of sperel fluctuation. 137
302
302
Connectini; rol
${ }^{7} 8$
acceleration of
22
22
effect of acceleration of
228
228
velocity of. 57
Cottrer, design of
$1+1$
$1+1$
Coupling, Oldham's
24
24
Crank
Crank 9
Crossedarm governor 117,125 158

Crosshead

Crosshead
Cyclomid. 9, 16
Cycloidal teeth 66
DDedendem line
Diagrams, welocity 71
Discharge of pump. 36
DriliL, Inintley 46
104
Efficiency. formula for
E
E
13.5
13.5
mechanical
1.34
1.34
of matchines. 134
of steam engine 151
Elements
14
14
200
200
E.vginf., alutomobile
Energy inertia ($\mathbf{E}-\mathbf{J}$) diagram
Energy inertia ($\mathbf{E}-\mathbf{J}$) diagram
16
16
beam.
117
117
gasoline. 19
oscillating 22
Epicyclic, train of gearing
92,99
92,99
lesing of
101
101
relocity ratio
relocity ratio
relocity ratio 100 100
Epicycloid 66
Face of gear
71
Feather
16
16
Fixed centre
32
32
Flank of gear tooth 72
Force elosure
15
15
Forces in machines
114
114
Friction 114
external
external 136
coefficient of 147
factor. 137 137
in crosshead 138
in governor. 140
in jack 1.5 1.5
in sliding pairs. 143
in turning pairs 138
$1+6$
laws of
137
137
Fly-ball governor 157 167
design of
design of
INDEX235
Fly-WheEl. Paide
weight of 183 183
weight for given speed variation 201
weight for gas engine
20)
20)
weight for steam engine.
205
205
weight as affected by speerl. 204
FOLLOWER of cam 109
Gas engine, cam for
working of 111
Gearing, toothed 133
uses of 61
Gearing trains. 61
compound 92
epicyclie 92
problems. 92 92
ratio of. 94
reverted 93
Gears, comparison of typers 92
desirable shape of teeth for 90 90
reaction between. 6.3 6.3
sizes of. 117
Guvernors 62
action of 155
characteristic curve for 155
crossed arm 16.3
design of 158
fy-ball. 167
friction in. 157
Proell 152
purpose 122,170
shaft. 155
springs for 173
Graphical representation of velocities 170
H
Hegoht in governors
158
158
Helical gears.
Helical gears.
74
74
Hustingi in governors. 88
Henting tooth gear 160
Hyperboloidal gears. 98 75. 77
pitch of
pitch of
sizes of 85
special cases 78 79

Hypocycloid

Hypocycloid 66
I
IdLer gear 9
Indicator diilgram 126, 192
Inertia, forces due to 127
of parts of a machine 217
reduced 212
INPUT work 187
Instantaneous centre. 13430
PAGE
Invol.itfe gear tecth 6)
Incechmonism in gowernors. 15)
J
Jack, friction in. 14.3
Jolnsal friction. 150
Jov valte gear. $+1$
K
Kinftic energy 184
of link. 185
of machine 185
of stertm engine 186
L
lathe 10,95
screw cutting in 96
linear velocity. 36, 53 36, 53
LINK. 19
I.OAD On engine 130
Machine, 17
construction of 11
definition of 12
motion in 26
nature of. 9
purpose of 12
simple 10
machinery, kincmatics if 1.3
Mechanical efficienc: 134
Mechavisms. 17, 20
Mesh of gear tecth. 64
Mitregears 75
Motios, absolute. 28
helical. $1+$
pline. 1.3
relative 9.11, 2(). 27
screw 14
slicling 1.5
spheric 14
tus ning 14
NNormal acecleration213
Obliocits, angle of 70
Oldham's coupling. 21
Octict work. 134
Pair. higher 17
lower. 17
sliding. 15
turning 14
Phorchirapil 49
angular velocity by 54
applications of 52. 5.5
crank effort by 118
INIDEX 23
Phororiraph (comlinued)
linear velucity hy P.age
principle of 53
Pinion 49
Piston, accelcration of 62
pressure on 22.3
velocity of. 126
Pitcil H. 45
circle 69
circular 62
diameter 72
diametral 72
moint. 72
Planek. 63
Ple:Nigk 16
Ponse of sear texoth 24
Polan velen ity diagram 72
Pokter governor. 43
Powerfilasess in gowernors 161
Proeligevernor 163
Pimp 122.170
discharge of 19. 24 46

Q

Q Quick return inotion Quick return inotion
Quick return motion.........
Quick return motion......... 25 25
Whitworth. 144
Racisis in governors
Redtcedinertia
Reverted gearing trains.
Rowt circle
Row of gear teeth.
$161)$
$161)$ 187 187 187 91 91 68 68
R
Rcotch yoke. SS
Screw cutting 19
SCREWS, eutting special
96
96
Sensitiveness in governors 98
Shaft governor 161
angular acecleration 17.3
distribution of weights 180
moment eurve
moment eurve 180
normal acceleration. 179
properties of 180
Kites 17.3
spring for 182
stability of. 176
tangential acceleration 179
SHEAR, cam for. 180
tirning montent in $1(1)$
Sliding pairs, friction in 120
SPEED, cffect on weight of fy-wheel 1.38
Speed fluctuation. 204
caluses. 183
chart of 183
coefficient of 197
determination of 202
diagrimu of 189,191
effeet of loid 195183
Speed (Continued) PAGX
effeet of type of machinee 183
effect on fly-wheel weight 200
in machines 129, 188
table of 196
Spiral. gear. 75, 85
Spring governor. 170
design of spring 171
Spur wheel 61
Stability in governors. 160
Stamp mill cam 106, 107
STANDARD of comparison 28
Steam engine, efficiency of 151
STEPHENSON link, valve velocity 57
Stone crusher, torque required 122
Stresses in links due to acceleration 219
T
Tangential aceeleration 214
Teeth of gears 63, 64
eyeloidal 64
height of 71 71
involute 69 69
mesh of 64
method of cutting 71
profile of 66
proportions of 72
slip of 68
Toothed gearing 61
Torque 126
TORQUE diagrams, eross compound engine 132
internal combustion engine 132
single cylinder engine 129
tandem engine 132
two eylinder engine 131
Trains of gearing 92
compound. 92
Triplex pulley block, Weston 101
Turning moment diagram 125
Terning pairs, frietion in 146
V
Valve, velocity in Stephenson link 57
Vabiations of speed in machines. 128
Velocity, angular 38
diagrams 36, 43
graphical representation 43
linear. 31, 36
of piston 44, 45
of valve. 41, 42
Virtual eentres. 30
W
Weighted governor 160
Weston triplex block 101
Whitworth quick-return motion. 23, 57
Worm. 86
Worm wheel 86
cutting of 90
Worm and wheel, ratio of speed 86
Wrist pin 9 9

[^0]: * The sign means "with regard to."

[^1]: * Sa nimsd by its discoverer, Professor T. R. Rosebrugh. of the University of Toronto, who gave the method to hie utudente twenty yeare ago. but en far as the writer knowg the method has not been discovered or used elsewbere.

[^2]: *The discussion in this chapter refers only to spur and bevel gears

[^3]: * Jechanics of Machinery-Kenneds:

[^4]: *This methol of defining sensitiveness is a little misleading hecause the governor having the least value of this ratio is said to be the most sensitive. For want of a better designation the above definition has been adopted in this brok.

[^5]: This methed is explained very fully in " I ie Kegefung der Kraftmaschinen." by M. Tolle. a book which the designer of governors will tiod of very great value.

[^6]: The writer believes that the E--J diagram is due to Wittenbauer, see " Zeitschrift des Vereines deutscher Ingenieure " for 1 gos. The method is fully discussed in " Dic Regelung der Kraftmaschinen " by M. Tolle. (Springer. Berlinn) which is recommenced to those interested.

