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PREFACE.

The present work treats of that portion of Applied

Mechanics which has to do with the Design of Structures.

Free reference has been made to the works of other

authors, yet a considerable amount of new matter has been

introduced, as, for example, the Articles on " Surface Loading"
by Carus-Wilson, " The Flexure of Columns " by Findlay, and
*' The Efficiency of Riveted Joints " by Nicolson ; also my
own Articles on "Maximum Shearing Forces and Bending
Moments," " The Flexure of Long Columns," " The Theorem
of Three Moments," etc.

I am much indebted to Messrs. C. F. Findlay and W. B.

Dawson for valuable information respecting the treatment of

Cantilever Bridges, Arched Ribs, and the Live Loads on Bridges.

To Messrs. J. M. Wilson, P. A. Peterson, C. Macdonald,

and others, many thanks are due for data respecting the Dead
Weights of Bridges.

I am under deep obligation to my friend Prof. Chandler,

who has kindly revised the proof-sheets, and who has made
many important suggestions.

I have endeavored so to arrange the matter that the

student may omit the advanced portions and obtain a com-
plete elementary course in natural sequence.

At the end of each chapter, a number of Examples,
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selected for the most part from my own experience, are

arranged with a view to illustrating the subject-matter—an

important feature, as it is admitted that the student who care-

fully works out examples obtains a mastery of the subject

which is otherwise impossible.

The various Tables in the volume have been prepared from

the most recent and reliable results.

A few years ago I published a work on " Applied Me-

chaiiics," consisting mainly of a collection of notes intended

for the use of my own students. The present volume may be

considered as a second edition of that work, but the subject-

matter has been so much added to and rearranged as to make

it almost a new book. I venture to hope that this volume

may prove acceptable not only to students, but to the profes-

sion at large.

Henry T. Bovey.
McGiLL College, Montreal,

November, 1892.

PREFACE TO SECOND EDITION.

In this edition many corrections have been made, new

examples have been added, and an Appendix to Chap, I.,

illustrating Bow's method of lettering, has been introduced.

Henry T. Bovey.
McGiLL College, Montreal,

November, 1896.
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THEORY OF STRUCTURES.

CHAPTER I.

FRAMES LOADED AT THE JOINTS.

1/
I. Definitions.—Frames are rigid structures composed of

•straight struts and ties, jointed together by means of bolts,

straps, mortises and tenons, etc. Struts are members in com-

pression, ties members in tension, and the term brace is applied

to either.

The external forces upon a frame are the loads and the

reactions at the points of support, from which may be found

the resultant forces at the joints. The greatest care should be

exercised in the design of the joints. I'he resultant forces

should severally coincide in direction with the axes of the

members upon which they act, and should intersect the joints

in their centres of gravity. Owing to a want of homogeneity

in the material, errors of workmanship, etc., this coincidence is

not always practicable, but it should be remembered that the

smallest deviation introduces a bending action. Such an

action wiil also be caused by joint friction when the frame is

insufficiently braced. The points in which the lines of action

of the resultants intersect the joints arc also called the centres

of resistance, and the figure formed by joining the centres of

resistance in order is usually a polygon, which is designated the

line of resistance of the frame.

The position of the centres should on no account be allowed

to vary. It is assumed, and is practically true, that the joints

of a frame are flexible, and that the frame under a given load
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does not sensibly change in form. Thus an individual mem-

bcr is merely stretched or compressed in the direction of its

length, i.e., along its line of resistance, while the frame as a

whole may be subjected to a bending action.

The term truss is often applied to a frame supporting a

weight

2. Prame of Two Members. — OA, OB are tv/o bars

jointed at O and supported at the ends Ay B. The frame in

Fig. 1. Fig. a. Fig. 3.

Fig. I consists of two ties, in Fig. 3 of two struts, and in Fig.

2 of a strut and a tie.

Let P be the resultant force at the joint, and let it act in

the direction OC. Take OC equal to P in magnitude, and

draw CD parallel to OB. OD is the stress along OA, and CD
is that along OB.

Let the angle AOB — ix, and the angle COD — ft.

Let S^ , S^ be the stresses along OA, OB, respectively.

S, _qD_ sin(ry — ft)

P ~ 0C~ sin a~ ''

and -- = —-" =CD
OC

sin ft

sin a

I I 3. Frame of Three or More Members—Let A,A,A^ . .

.

be a polygonal frame jointed at A,, A,, A,, . . . Let/*,,

/*,, P^, ... be the resultant forces at the joints A^, A,, A,,

. . . , respectively. Let 5,, S,, S^, . . . be the forces along

A,A,, A,A^, . . . , respectively.

Consider the joint A^.

The lines of action of three forces, P,,S^, and 5", , intersect

in this joint, and the forces, being in equilibrium, may be

represented in direction and magnitude by the sides of the

i
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triangle C?j,j, , in which s^s^ is parallel to /', , Os^ to 5,, anrl Os^

to 5,.

Similarly, P, , 5, , 5, maybe represented by the sides of

the triangle Os^s, which has one side, Os^, common to the

triangle Os^s^, and so on.

Thus every joint furnishes a triangle having a side common
to each of the two adjacent triangles, and all the triangles to-

gether form a closed polygon s^s^s^. . . The sides of this

polygon represent in magnitude and direction the resultant

Fig. 4. Fig. 5,

I >

-

forces at the joints, and the radii from the pole O to the angles

s^s^s., , . . . represent in magnitude, direction and character,

the forces along the several sides of the frame A^A,^A^. . .

The polygon A^A^A^ ... is the line of resistance of the

frame, and is called the funicular polygon of the forces /'
, P.^ y

/*3, . . . with respect to the pole O.

The two polygons are said to be reciprocal, and, in general,

two figures in graphical statics are said to be reciprocal when
the sides in the one figure are parallel or perpendicular to co--

responding sides in the other.

A triangle or polygon is also said to be the reciprocal of a

point when its sides are parallel or perpendicular to correspond-

ing lines radiating from the point. Thus the triangle Os^s^ is
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the reciprocal of the point A^, and the polygon A,A,A^ . . ,

is the reciprocal of the point 0.

If more than two members meet at a joint, or if the joint is

subjected to more than onf load, the resulting force diagram

will be a quadrilateral, pentagon, hexagon, . . . according as

the number of members is 3, 4, 5, . . . or the number of loads

2, 3. 4. • • .

In practice it is usually required to determine the stresses

in a number of members radiating from a joint in a framed

structure. If the reciprocal of the joint can be drawn, its

sides will represent in direction and magnitude the stresses in

the corresponding members.

Corollary.—The conver^-e of the preceding is evidently true.

For if a system of forces is in equilibrium, the polygon of

forces s^s.^s^ . . . must close, and therefore the polygon which

has its sides respectively parallel to the radii from a pole O to

tlie angles s^, j,, .^3 , . . . and which has its angles upon the

lines of action of the forces, must also close.

EXAMlM.K I. Let O be a joint in a framed structure, and

let Os^, Os,, Os^, ... be the axes of the members radiating

from it. The polygon A^A^A^ ... is the reciprocal of O, the

side A^A^ representing the stress a'ong OSi, the side A.^A^ that

along Os^, etc.

Ex. 2. Let the resultant forces at the joints be paral-

lel. The polygon of forces becomes the straight line s^s^.

Fig. 6. F'o. 7.

NtMiMiMi
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which is often termed the line of loads. Thus, the forces /*,

,

/',,... P^ are represented by the sides j,.t,, s^s j^j,, which

are in one straight line closed by j,j, and j,j, , representing the

remaining forces /*, and P^, and the triangles Os^s^, Os^s,, . . .

are the reciprocals of the points A^, A^. . . . Draw OH per-

pendicular to s^s^. The projection of each of the lines C?j,

,

Os,, Os^, ... perpendicular to s^s^ is the same and equal to

OH, which therefore represents in magnitude and direction

the stress which is the same for each member of the frame.

Let t^t, o(^, or,, . . . be the inclinations of the members
A^A,, A^A,, . . . respectively, to the line of loads. Then

OH = Hs^ tan «, = Hs^ tan a,

;

.•. 0//(cot a^ -\- cot Of,) = Hs^ + Hs^ = s^s^

= /\ + /'.-f/', + /', = /^. + /'..

and OHy in direction and magnitude, is equal to the stress

common to each member. Also, the stress in any member,

e.g., A^A^ = Os,= OH coaec a^ .

Corollary.—Let the resultant forces at the joints A^, A^

be inclined to the common direction of the remaining forces,

and act in the directions shown by the dotted lines. Let P,',

PJ be the magnitudes of the new forces; draw s^St parallel to

the direction of P^ so as to meet Os^ in s^ ; join s^sj. Since

there is equilibrium, s^s^ must be parallel to the line §

of action of /*„'. Thus, j/Vi 's the force polygon.

Ex. 3. The forces, or loads, /*,, P^, . . . P^ are

generally vertical, while P^, P^ are the vertical re-

actions of the two supports.

Suppose, e.g., that A,A^ ... yi, is a rope or chain

suspended from the points A,, A,, in a horizontal

plane and loaded at A^A, . . . with weights /*,,/',,...

The chain will hang in a form dependent upon the

.magnitude of these weights. The points H and 5",

will coincide, and OH will represent the horizontal

tension of the chain.

Let the polygon A^A^ ... ^, be inverted, and let the rope

be replaced by rigid bars, A;A^, A^A^. . . The diagram of

Fio. 8.
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forces will rcin.iiii the saiu'j. aiul the fiainc will be in

c(|iiilibriiini under the ^(/-/'rr// loads. The equilibrium, however,

is utistable as the chain, ami consequently the inverted frame

will cliani^t' form if the u(i'^r|,ts vary, liraces must tiien be

introduced to prevent distortion.

D/'fi!

Fio. 9. Fig. 10.

Take the case of a frame DCBA . . . symmetrical with

respect to a vertical through yi, and let the weights at A,B, C,

. . . be W,, IV,, IVj, . . . , respectively.

Drawing the stress diagram in the usual manner, 0// rej)-

resents the horizontal thrust of the frame.

The portions s^s^, s^s^ , ... of the line of loads give a

definite relation between the weights for which the tru.ss will

be stable. The result may be expressed analytically, as

follows:

Let «,, <4r, ,«,,... be the inclinations of ^IB, BC, CD, . . . ,

respectively, to the horizontal.

Let the horizontal thrust OH — H. Then

H^ ^ cot a,^[^^ W/)cot a,= (^4- W,-^- J^.jcot «,= ...

cot «, = 3 cot a'j = 5 cot «,= ...

It there are two bars only, viz., AB, BC, on each side of the

vertical centre line, the frame will have a double slope, and in

this form is employed to support a Mansard roof.

i

kaiMM
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4. Non-closing Polygons.— Let a number of forces J\,

P^, /\, . . . act upon a structure, and let tliese forces, /iihfi in

order, be represented in direction and lui^jiiitude by the sides

of the unclosed figure MNPQ . . . This figure is the unclosed

polygon offorces, and its closing line TM represents in direction

and magnitude the resultant of the forces }\, P^, P,, . . .

For PM is the resultant of P^ and /*,, and may replace

them ; QM may replace PM and P.^, i.e., /*, , P^, and /*, ; and

so on.

Take any point O and join OM, ON, OP, . . .

Draw a litjc AB parallel to OM and intersecting the line of

action of P^ in any point B. Through B draw BC parallel to

ON and cutting the line of action of P^ in C. Similarly, draw

CD parallel to OP, DE to OQ, EF to OR, . . . The figure

ABCD ... is called the funicular polygon of the given forces

with respect to the pole O. The f)osition of the pole O is arbi-

trary, and therefore an infinite number of funicular polygons

may be drawn with different poles.

Also the position of the poii.t B in the line of action of /*,

is arbitrary, and hence an infinite number of funicular polygons

with their corresponding sides parallel, i.e., an infinite number
of similar funicular polygons, may be drawn with the same pole.
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5. To show that the Intersection of the First and Last
Sides of the Funicular Polygon (i.e., the Point G) is a Point
on the Actual Resultant of the System of Forces P,, P,,

P,, . . .—First consider two points /*,, /*,, MNP being the

force and ABCD the tunicular polygon.

Let ABy DCy the first and last sides of the latter, be pro-

P^^K

I

ai

Fig. ta.

\

duced to meet in ^, ; also let 0(7 produced meet the line of

action of /*, \\\ H.

Produce (9/' and MN to meet in K.

Let the lines of action of /*, and /*, meet in L.

By similar triangles,

Hence

or

KP HC KN
J'N~ HL' KO ~
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But /W represents in magnitude the resultant of tlic forces
/',,/;, and IS parallel to it in direction.

Therefore Lg, is also parallel to the direction of the re-
sultant.

But L is evidently a point on the actual resultant oi P P
Hence ^. must be a point on this resultant.

" '

'

Next, let there be three forces, Py, P^, P .

Replace P,
,
P^ by their resultant" 'x acting in the direction

Lgy. The force and funicular polygons for the forces A' and
/^,are evidently MPQ and Ag.DE, respectively; andr , the
point of intersection of Ag, and ED produced, is, as already
proved, a point on the actual resultant of X and P,, i.e. oi
Pt,P, , and P^.

Hence the Jlrst and /ast sides, AB, £D, of the funicular
po ygon ABCDE of the forces Py,P,,P,, with respect to the
poJe O, intersect m a point which is on the rt.Y//.?/ resultant of
the given forces.

The proof may be similarly extended to four, f. e, and any
number of forces.

If the forces are all parallel, the force polygon of the two
forces P,

,
/>, becomes a straight line, AINQ. Draw the funicular

Fig. i^.

polygon ABCD as before, and through g, , the intersection of the
Jirst and /ast sides, draw^, Fparallel to MQ, and cutting BC in K

By similar triangles,

P^_MJV _^gV
ON ~ ON ~ BY and ON

QN
ON CY

CY_

BY'

%
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\

\

Hence Yg^, which is parallel to the direction of the forces /*,,

/",, divides the distance between their lines of action into seg-

nr.ents which are inversely proportional to the forces, and must

therefore be the line of action of their resultant. The proof

may be extended to any number of forces, as in the preceding.

Funicular Curve.—Let the v/eights upon a beam AB become
infinite in number, and let the distances between the weights

diminish indefinitely.

The load then becomes continuous, and the funicular poly-

gon is a curve, called the funicular curve.

The equation to this curve may be found as follows:

Let the tangents at two consecutive points /^and Q meet
in R. This point io on the vertical through the centre of

gravity of the load upon the portion MN of the beam.

A X M(<.ft»(_
» ^1 111^
1 111

B

Fig. 14. Fig. 15.

Let \n be the line of loads, and let OS, OT he the radial

lines from O, the pole, parallel to the tangents at P and Q.

Take A as the origin.

Let be the inclination of the tangent at P to the beam,

and let the polar distance OV = p.

udx = the load upon the portion A/iV. Then

wi/x = ST = 5r - TV ^ p tan ^ - / tan («/ + dO)

= — pM^ approximately.

w
dd cPy , ^ dy

^Tx=^d?^ ^'""" ^ = Tx'

Integrating twice,

Py=- ff'^dx' -f c,x + <:,

,

iT, and c^ being constants of integration.

;*>:
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If the intensity, w, of the load is constant,

and the curve is a parabola.

6. Centres of Gravity.—Let it be required to determine

the centre of gravity of any plane area symmetrical with re-

spect to an axis XX. Divide the area into suitable elementary

areas a^, a^, a^, . . . having known centres of gravity.

Fig. i6. Fig. 17.

Draw the force (the line m) and funicular polygons corre-

sponding to these areas, and let o^ be the point in which the first

and last sides of the funicular p(il\t;on meet. The line drawn

through
_<f

parallel to i« must pass through the centre of gravity

of all the elementary areas and, therefore, of the whole area.

Hence it is the point (7 in which this line intersects the axis .^X.

Rail and similar sections may be divided into elementary

areas by drawing a number of parallel lines at right angles to

the axis of symmetry, and at such distances

apart that each elementary figure may, with-

out sensible error, be considered a rectangle

of an area equal to the product of its breadth

by its mean height.

In the case of a very irregular section, an

accurate template of the section may be cut

out of cardboard or thin metal. If the tem-

plate is then suspended from a pin through a point near the

Pig. 18.
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edge, the centre of gravity of the section will lie in the vertical

through the pin. By changing the point of suspension, a new
line in which the centre of gravity lies may be found. The
intersection of the two lines must, therefore, be the centre of

gravity required. Another method of finding the centre of

gravity is to carefully balance the template upon a needle-point.

The area of such a section may be determined either by
means of a planimeter or by balancing the template against a

rectangle cut out of the same material, the area of the rectangle

being evidently the same as that of the section.

7. Moment of Inertia of a Plane Area.—Let any two
consecutive sides, (7,6,, CjC,, of the funicular polygon meet
line gG in the points ;«, , ;/,

.

Let x^,x^,x^, . . . be the lengths of the perpendiculars from

t iic centres of gravity of <?, , a, . /», , - . . , respectively, upon gG^
Draw the line ON perpendicular to the line of loads, and

let OH =p.
By the similar triangles C^m^n^ and d?34.

»«,»8 34 a^ «,^,

-r.
- p- P-

°' ""'•= /

'h 'I'a" ^.= m.n. — = area of triangle Cjhji^

But the total area A bounded by the funicular polygon^

C\CtCi . . . and the lines ^C,,^^ is the sum of all the triangular

areas C^m^, C^m^n^, C^m^n^, .... described in the same manner

as C^m^n^.

a,x.^-
/> 2 +/> 2

+
2{ax')

The sum ^{ax'') is ^he moment of inertia, /, of the plane

area with respect to gG. Hence,

A = ~. or /= 2Ap.

MM* mmmmmm'
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The moment of inertia I, of the area, with respect to a
-parallel axis at distance^, from gG, is given by the equat' .n

where S = A,-^ A^-\- . . .

Let the new axis intersect C,g and kg in the points q and r.
The triangles qgr and 0\n are similar.

and, therefore, the area A' of the triangle qgr

2p
= 7^.

Hence

/, = 2pA -\-2pA' = 2p{A + Ay

Note.~\{p be made = i^ = -22'

/=^' and Sy^^AA',
and

/> = .4(^+^';.

The angle iC>« is also evidently a right angle.
8. Cranes.-(^). Jib-crane.— Y\^. 19 is a skeleton diagram of

an ordmary jib-crane. OA is the post fixed in the ground atO
;
OB is the jib

;
AB is the tie. The jib, tie, and gearing are

suspended from the top of the post by a cross-head, which
admits of a free rotation round the axis of the post.

Let the crane lift a weight W.
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Three forces in equilibrium meet at B\ viz., W^ the tension

T in the tie, ai d the thrust C along the jib.

Fig. 30.

Draw the reciprocal figure SS^S^ of B, 5,5, representing W.

and

T SS, AB

W ~ S,S^'~ Ad'

/

The load is not suspended directly from 5, but is carried by
a chain passing over pulleys to a chain-barrel usually fixed to

the crane-post. The stress S in the chain depends upon the

W
system of pulleys, and is. e.g., — , if n is the number of falls of

;/

chain from B and if friction is neglected. In order to obtain

the true values of T and C this tension 5 must be compounded
with W.

Draw SJ: parallel to the direction in which the chain passes

from B to the chain-barrel, and take SJi to represent 5 in.
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magnitude. The line SJt evidently represents the resultant

force at B due to ^Fand 5.

Draw kt parallel to AB^
The tension in the tie and the thrust in the jib are now

evidently represented by tk, tS^ , respectively.

Generally the effect of chain-tension is to diminish the ten-

sion of the tie and to increase the thrust on the jib.

BD BD
The vertical component of T, viz., T^rj. — ^F~^7S. is trans-

mitted through the post.

The total resultant pressure along the post at O

= - Tsin BAD-\-Csin BOF= ^^AO^ AO BO

The pull upon the tie tends to upset the crane, and its

moment with respect to O is

A R AD
T cos BAD XAO= W-r^ -rijAO = WAD ^ WOF,

OF hQxng the horizontal projection of AB.
OF is often called the radius or throw of the crane.

If the post revolves about its axis (as in /zV-cranes), the jib

and gearing are bolted to it, and the whole turns on a pivot at

the toe G. In this case, the frame, as a whole, is kept in

equilibrium by the weight W, the horizontal reaction H of the

web-plate at O, and the reaction R at G. The first two forces

meet in F and, therefore, the reaction at G must also pass

through F.

Hence, since OFG may be tf^,ken to represent the triangle

of forces,

H=W-OFOG and R-W-GF
OG'

In a portable crane the tendency to upset is counteracted

by means of a weight Q placed upon a horizontal platform

OL attached to the post and supported by the tie AL.

The horizontal projection tm of tk represents the horizontal
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i

I

Fig. ai.

pull at A, and if /« be drawn parallel to AL, the intercept /««

cut off on the vertical through m by the lines fm and /// repre-

sents the counter-weight required at L.

{b) Derrick-crane.—The figure shows a combination of a der-

B rick and crane, called a derrick-

crane. It is distinguished from

the jib-crane by having two

back-stays, AD, AE. One end

of the jib is hinged at or near

the foot of the post, and the

other is held by a chain which

passes over pulleys to a winch

on the post, so that the jib may
be raised or lowered as required.

The derrick-crane is gener-

ally of wood, is simple in con-

struction, is easily erected, has

a vertical as well as a lateral

•motion, and a range equal to a circle of from lo to 60 feet

radius. It is therefore useful for temporary works, setting

masonry, etc.

The stresses in the jib and tie are calculated as in the jib-

crane, and those in the back-stays and post may be obtained as

follows :

Let the plane of the tie and jib intersect the plajie DAE of

the two back-stays in the line AF, and suppose the back-stays

replaced by a single tie AF. Take OF to represent the hori-

zontal pull at A. The pull on the " imaginary" stay AF is then

represented by AF and is evidently the resultant pull on the

two back-stays. Completing the parallelogram FGAH, AH
will represent the pull on the back-stay yi^, and y^G^ that upon

AD, their horizontal components being OK, OL, respectively.

The figure OKFL is also a parallelogram.

If the back-stays lie in planes at right angles to each other,

OL = OF cos = Z sin tt cos 0, and is a max. when = 0°,

.and

OK= OF sin ^ = r sin a sin B, and is a max. when d 90%

fri'i iijUIji
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6 being the angle FOL, and a the inclination of the tie to the

vertical.

Hence the stress in a back-stay is a maximum when the

plane of the back-stay and post coincides with that of the jib

and tie.

Again, let /3 be the inclination of the back-stays to the ver-

tical. The vertical components of the back-stay stresses are

Tsin a cos cot /8 and T sin a sin ^ cot /J;

and, therefore, the corresponding stress along the post is

T sin a cot /i (cos ^ -|- sin ^),

which is a maximum when 6 = 45°.

9. Shear Legs (or Shears) and Tripods (or Gins) are

ow

Fig. 33.

often employed when heavy weights are to be lifted. The
former consists of two struts, AD, AE, united at A and sup-

ported by a tie A C, which may be made adjustable so as to

admit of being lengthened or shortened. The weight is sus-

pended from A, and the legs are capable of revolving around

DE as an axis. Let the plane of the tie and weight intersect

aie plane of the legs in AF, and suppose the two legs replaced

by a single strut AF. The thrust along AF can now be

easily obtained, and hence its components along the two legs.

In tripods one of the three legs is usually longer than the

others. They are united at the top, to which point the tackle

is also attached.

10. Bridge and Roof Trusses of Small Span.—A single

girder is the simplest kind of bridge, but is only suitable for
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\\

very short spans. When the spjns are wider, the centre of the

girder may be supported by struts OC, OD, through wliich a

portion of the weight is transmitted to the abutments.
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The thrust in EC (or FD) = SS, = Z''^-' I -,^, and the
jrlt

s//
horizontal thrust in the straining piece = SN = P -r-jy ~ P^-

AE
S,H ' AC

If a load is uniformly distributed over AB, it may be

assumed that each strut carries one half of the load upon AF
(or BE), and that each abutment carries one half of the load

upon AE (or /)/'').

By means of straining cills the girders may be supported at

several points, i, 2, . . . , and the

weight concentrated at each may
be assumed to be one half of the

load between the two adjacent

points of support. The calcula-

tions for the stresses in tlie struts,

etc., are made precisely as above.

If the struts arc very long they are liable to bend, and

counterbraces, AM, BN, are added to counteract this tendency.

12. The triangle is the only geometrical figure of which

the form cannot be changed without varying the lengths of the

sides. For this reason, all compound trusses for bridges, roofs,

etc., r re made up of triangular frames.

Fig. 28 represents the simplest form of roof-truss. AC,

BC a.re rafters of equal length inclined to the horizontal at an

angle a; and each carries a uniformly distributed load IV.

Fig. 97.

Fig. 28.

The rafters react horizontally upon each other at C, and

their feet are kept in position by the tie-beam AB. Consider

the rafter AC.
The resultant of the load upon AC, i.e., W^, acts through

the middle point D.
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Let it meet the horizontal thrust // of BC upon AC in /**.

For equilibrium, the resultant thrust at /] must also act

through /''.

I'he sides of the triangle AFE evidently represent the

three forces. Hence

jj ...All WAR W
,N=W-^- =— -— =— cot a

;

£/" 2 Dh 2

11

K = lV^^=W,

=V'+4(;'')'='V-+-°f"

The thrust R produces a tension H in the tie-beam, and a

vertical pressure PF" upon the support.

Also, if y is the angle FAE,

EF DE
tan y = ---, = 2 --,- = 2 tan at.

AE AE

If the rafters AC, BC arc unequal, let a-, , a^ be their in-

clinations to A, B, respectively.

Let W^ be the uniformly distributed load upon AC, W^
that upon BC.

\1\ r*p

Fig. 39.

Let the direction of the mutual thrust P at C make an

angle yS with the vertical, so that if CO is drawn perpendicular

imw iiiiii i
I
. J. i J

,
I

I
l UJA lU iiii " I -HII .

11
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to /"C the angle COB-ft\ the angle ACF—^'' - ACO
= 90" - (/^ - ^r,).

Draw AM perpendicular to the direction of /', and consider

the rafter AC. As before, the thrust A*, at W, the resultant

we-ght W^ at the middle point of ACy and the thrust P at C
meet in the point F.

Take moments about A. Then

P.AA/= W,AE.

liut W;!/ = ACsxn ACM = AC cos (/8 ~ a,),

and AE = — - cos «,.
2

^F, cos a,

2 cos(/:^ — tf,)'

Similarly, by considering the rafter /iC,

cos a„IV.,

2 9,\n{(i + «(., — 90")

IV^ cos a*,,

2 cos(^-f-ar,)'

Hence

IV^ cos ^y,

2 cos(/? — <J',)

= ^ = - -JT' cos a.

2 coi>[/ii 4- rtJ

'

and therefore

tan /3 = W,-{- W,

W^ tan «, — PK, tan or,

*

The horizontal thrust of each rafter = P sin ft.

The vertical thrust upon the support A — IV^ — P cos /?.

The vertical thrust upon the support B = lV^-\- Pcos ft.

13. King-post Truss.—The simple triangular truss may
be modified by introducing a C

king-post CO, which carries a

portion of the weight of the

beam AB, and transfers it

through the rafters so as to act

upon the tie in the form of a tensile stress.
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w

l^

Let P be the weight borne by the king-post ; represent it

by CO.

Draw OD parallel to BC, and DE parallel to AB.
CE P

-cosec a is the thrust in CA due to P, andDC
bui a

is of course equal to DO, i.e., the thrust along CB.
P

DE — CE cot « = — cot a is the horizontal thrust on
2

each rafter, and is also the tension in the tie due to P.

Let JTbe the uniformly distributed load upon each rafter.

The total horizontal thrust upon each rafter = ( W-\- P) .

p
The total vertical pressure upon each support = W -\ .

If the apex C is not vertically over the centre of the tie-

beam take COi as before, to represent the weight P borne by

the king-post ; draw (^Z? parallel

to EC, and DE parallel to AB.
The weight P produces a

thrust CD along CA, DO along

CB, and a horizontal thrust DE
upon each rafter.

CE. is tlie portion of P supported at A, and EO that sup-

ported at B.

DE, and therefore the tension in the tie AB, diminishes

with AO, being zero when AC
is vertical.

Somei-inies it is expedient

to support the centre of the tie-

beam upon a column or wall,

the king-post being a pillar

against which the heads of the

rafters rest.

Consider the rafter AC.
The normal reaction R' of

CO upon AC, the resultant

F,G. 32. weight W at the middle point

D, and the thrust R at A meet in the point E.

Fig. 31.
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Take moments pbout A. Then

23

W
R'AC= W. AE, or K - — cos a.

Thus tji'=: total thrust transmitted through CO to the sur.'-

W
port at 6? is 2- - cos «r . cos n = IV cos' a.

The horizontal thrust upon each rafter

W . W .

=: — cos a sin a = — sm 2a,
2 4

14. If the rafters are inconveniently long, or if they are in

danger of bending or breaking transversely, the centres may
be supported by struts OD, OE. A portion of the weight upon

Fio. 34.

the rafters is then transmitted through the struts to the

vertical tie (king-post or rod) CO, which again transmits it

through the rafters to act partly as a vertical pressure upon

the supports, and partly as a tension on the tic-beam. The
main duty, indeed, of struts and ties is to transform transverse

into longitudinal stresses.

This king-post truss is the simplest and most economical

frame for spans of less than thirty feet. In larger spans two

or more suspenders may be introduced, or the truss otherwise

modified.
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Let there be a load 2W uniformly distributed over the

rafters AC, BC, and assume it to be concentrated at the joints

A n r n P •
.s. r IV IV IV W W

A, D. 6, h, B, \\\ the proportion — , — , — , — ,42224
Also, let the load (including a portion of the weight upon

the tie-beam AB, and the weights of the members OD, OE,

OC) borne directly at O be P.

P
1 he total reaction at each support is W-\- — , and acts in

W
an opposite direction to the weight -— there concentrated.

4
Hence the resultant reaction at a support is \W-\-^F.

Thus, the weights at the points of support A and B are

taken up by the abutments, and need not be considered in de-

termii'ing the stresses in the several members of the frame.

Draw the reciprocal S^HS^ of As Then

xW P
S,H = -^

h - ; ^.S, = tension in A

O

;

4 2

^jvS, = compression in AD,

Draw the reciprocal S^S^S^S^ of D. Then

S^S^ = compression in OD ; S^S^ = compression in DC\

W
S^S^ = — = weight at Z?,

Draw the reciprocal S'^Sg^'j^'e^!, of C* Then

W
StSt = tension in CO= -—-{-P; S^S, = compression in CE;

W
5e5, = — = weight at C.
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Draw the reciprocal S^SJS^S^S^ of E. Then

35

5,5, = compression in OE : SJS^ = compression in BE ;

S^S^ = — = weight at E.

Draw S.K horizontally. Then

S,KS,S, is evidently the reciprocal of B; KS, = llV-\- iP,

being the reaction at B, and 5gArthe tension in the tie BO. The
reciprocal of O is also the figure S^HKS^S^S^S, , and HK = P.

15. Collar-beams {DE), queen-posts {DF, EG), braces, etc.,

may be employed to prevent the deflection of the rafters.

The complexity of the truss necessarily increases with the span

and with the weight to be borne.

H^——sr-*^-

Fig. 35 Fig. 36.

With a single collar-beam and a uniformly distributed load,

S^HS^ is tiie reciprocal of A, and S^S^S.,S^S^ the reciprocal of

D ; 5,// being the reaction at A, and S^S^ the weight at D.
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become indeterminate. To render them determinate it is

sometimes assumed that the components of the weights at D
and E, normal to the rafters, are taken up by the collar-beam

and corresponding king-post. Thus SiHS^ is the reciprocal of

A, and S^S.^S^S^S^ the reciprocal of D, S^H being the reaction at

A, S^S, the weight at Z>; 5,5, is the normal component of the

weight, and the components of 5,5,, viz., 5,53 horizontal and

535, vertical, represent the stresses borne by BE and DF, re-

spectively.

This frame beloiv^s to the incomplete (Art. 18) class, and if

it has to support an unequally distributed load, braces must be

introduced from D to G and from E to F.

16. The truss ABC, Fig. 40, having the rafters supported

at two intermediate points, maybe employed for spans of from

30 to 50 feet. Suppose that these intermediate points of sup-

port trisect the rafters, and let each rafter carry a uniformly dis-

tributed load W.

Fig. 39. Fig. 40.

Then a weight may be considered as concentrated at each

W
of the joints //, D, C, E, K. This weight = —

.

3
Let P be the weight directly supported at each of the

joitits F, G.

The resultant reaction aX A — % IV -{- P.

S^HS., is the reciprocal of A. S,H representing l-W -\- P.

S,S^S^S^S^ is the reciprocal of //.

S.,S.,/-fKS^Ss is the reciprocal of F, HK representing P, the

weight directly borne at F.

S,S,S^S,S,S^ is the reciprocal of D, S,S, representing the

weight at /J, S,S, the thrust along HD, S,S, the

tension in IJF, S,S, the thrust along ED, and
SS, the thrust alon" CD.
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As in the preceding case, this truss will be found incomplete

if the load is unevenly distiibuted, and the reciprocals of D and

E will not close. In practice, however, the friction at the joints,

the stiffness of the several members, and the mode of construc-

tion render the truss sufficiently strong to meet the ordinary

variations of load.

17. General Remarks.—In the trusses described in Arts.

13 and 14 the vertical members are ties, i.e., are in tension, and

the inclined members are struts, i.e., are in compression. By
inverting the respective figures another type of truss is obtained

in which the verticals are struts while the inclined members are

ties. Both systems are widely used, and the method of calcu-

lating the stresses is precisely the same in each.

In designing any particular member, allowance must be

made for every kind of stress to which it maybe subjected.

The collar-beam DE, for example, must be treated as a pillar

subjected to a thrust in the direction of its length at each end ;

if it carry a transverse load, its strength as a beam, supported

at the points D and E, must also be determined. Similarly,

the rafters AC, BC, etc., must be designed to carry transverse

loads and to act as pillars. But it must be remembered that

struts and queen-posts provide additional points of support

over which the rafters are continuous, and it is practically suf-

ficient to assume thart the rafters are divided into a number of

short lengths, each of which carries one Jialf oi the load between

the two adjacent supports.

When a tie-beam is so long as to require to be spliced,

allowance must be made for the weakening effect of the splice.

18. Incomplete Frames.—The frames discussed in the

preceding articles (excepting those referred to in Art. 15) will

support, zvithout change of form, any load consistent with

strength, and the stresses in the several members can be found

in terms of the load. It sometimes happens, however, that a

frame is incomplete, so that it tends to change form under every

distribution of load. An example of this class is the simple

trapezoidal tru.ss, consisting of the two horizontal members AB,
DE, and the two equal inclined members AD, BE, Fig. 41.

First, let there be a weight W at each of the points D, E.
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The triangles of forces for the joints D and E, viz., 55,// and

SS^H, can be drawn, and hence it follows that there must be

KiG. 41. Fig. 42.

equilibrium. This is also evident from the symmetrical char-

acter of the loading.

The same triangles represent the forces at the points of

support A, B.

.'. reaction at A = S,I/ = W= S^// = reaction at B.

Next, let there be a weight W^ at D and a weight W^

(< W,) at E.

Si

Fig. 43. Fig. 44.

It will now be found that the diagram of forces will not

close, so that there cannot be equilibrium. The joint D will be

pushed in and the frame distorted. The distortion may be

prevented by introducing a brace from A to £" or from B to D.

In the latter case S^viSSJS^ represents the stress-diagram, the

triangle S^HS being the reciprocal of the joint E, and the quad-

rilateral 5w5,//tliat of the joint Z>. Drawing the horizontal

mn, the triangle mnS^ and the quadrilateral inSS^n are evidently

the reciprocals of A and B, respectively.

.'. «5, = reaction at A and «5, = reaction at B,

^BatSm\i\Mknmm
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In practice the loads are usually transmitted toZ? and E by
means of two vertical queen-posts {queen-rods or queens) DF, EG,

Fig. 45.

If there are no diagonal braces DG, EF, the distortion of

the frame under an unevenly distributed load can only be pre-

vented by the friction at the joints, the stiffness of the mem-
bers, and by the queens being rigidly fixed to AB at /''and G.

Let W, be the load at F transmitted through the queen
FD to D.

Let W^ (< W,) be the load at G transmitted through the

queen GE to E.

If the frame is rigid, the reactions R^ at A and R^ at By
which will balance these weights, can easily be found by taking

moments about B and A, successively. Thus,

and

vv w
RJ=-:^{l-\-c) + ~V-c)

W IV

\v\\trQ AB = I a.r\d FG =^ c.

Draw the triangle of forces SHS, for the joint A, SH vQp-

resenting 7?,

.

The triangle SS,X is the reciprocal of the joint at D, and the

tension in FD should, therefore, be XS, — SH = R, . But the
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tension in FD is actually W^ , so that there is an unbalanced

force,

= rr. - /?.

IV, - W, l-c

acting along FD.

To take up this unbalanced force and render the frame rigid

the diagonal DG is introduced, and the stress for which it

should be designed is evidently

( W, - A\) sec FDG = W^. WJ-cs
I iV

s being the length of the diagonal and d the depth of the truss.

The complete stress diagram is as shown in Fig. 46.

Cor. I. The manner in which distortion is prevented by the

stiffness of AB may be shown as follows:

Let X be the force of resistance which AB, by its stiffness,

can exert at F or G against any load which tends to make it

deviate from the horizontal.

If J'Fis the load at F, the actual downward pull upon D is

IV— .V ; this must necessarily produce an equal upward pull at

E, which must be balanced by the force of resistance x at G,

and

.*. W— X = X,

W
X =

Thus the beam AB will be acted upon by an upward pull

W
-— at /^ and an equal downward pull at G", forming a couple

2
of moment —c, and showing inat equilibrium is impossible.

The upward reaction R, at A is

' A 2 2 2 2 2 I
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= downwarci reaction at B, and the moment at F (or G)

_ W cl~c _ W c

2/2
Cor. 2. Let a weight ff^bc supported at the joint D of afiy

quadrilateral frame ADEB. Draw the reciprocal SS^S^ of D,

Fig. 47. Fig. 48.

5,5, representing IV. Draw 553 parallel to EB and intersecting

the vertical S.S., produced in S.^. The weight which can be

borne at E consi.stent with equilibrium is represented by 5^53

.

19. Composite Frames or Trusses (i.i;., frames made up

of two or more simple frames).—An example of this class has

already been given in the case of the king-post roof (Art. 13).

Bent Crane.— Fig. 49 shows a convenient form of crane

when much head-room is required near the post. The crane

is merely a semi-girder, and may be tubular w'^h plate-webs if

the loads are heavy, or its flanges may be braced together as

in the figure for loads of less than ten tons. The flang.^s may
be kept at the same distance apart throughout, or the distance

may be gradually diminished from the base towards the peak.

Let the numbers in Fig. 50 denote the stresses in the cor-

responding members. Three forces, 5, , C, , and W, act through

the point (i), so that 5, and C^ may be obtained in terms of

W\ three forces, S^, S^, Z!, , act through (2), so that 5, and 7",

may be obtained in terms of 5, and therefore of W\ four

forces, 5, , C\ , 5, , C , act through (3), and the values of 5, , C,
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being known, those of 5, , C^ may be determined. Proceed-

ing in this way, it is found that of the forces at each succeed-

ing joint only two are unknown, and the values of these are

consequently determinate.

Fig. 49. Fig. so.

The calculations may be checked by the method of moments

and by the stress diagram (Fig. 50).

E.g., let \V=: 10 tons.

Take moments about the point (7). Then

T.ixy) = io(;/7)or T,
3-^5

1.25
= 26 tons = (68) in Fig. 50.

No other forces enter into the equation of moments, as the

portion of the crane above a plane intersecting (68) and passing

through (7) is kept in equilibrium by the weight of 10 tons

and the stresses Ty, 5„, C^; the moments of 5, and C^ about

(7) are evidently zero.

In the stress diagram (Fig. 50) PaQ is the reciprocal of the

point I, adQ of the point 2, PcdQ of 3, Qdcd of 4, and so on.

Other examples of composite roof and bridge frames will

now be given.

20. Roof-trusses.—A roof consists of a covering and of

trusses (or frames) by which it is supported. The covering

is generally laid upon a number of common rafters which rest.

IMM
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upon horizontal beams (or purlins), the latter being carried

by trusses spaced at intervals varying with the type of con-

struction but averaging about lo ft. The truss rafters are

called principal rafters, and the trusses themselves are often

designated as principals.

In roofs of small span the trusses and purlins are sometimes

dispensed with.

Types of Truss.—A roof-truss may be constructed of tim-

ber, of iron or steel, or of these materials combined. Timber

is almost invariably employed for small spans, but in the

longer spans it has been largely superseded by iron, in con-

sequence of the combined lightness, strength, and durability

of the latter.

Attempts have been made to classify roofs according to the

mode of construction, but the variety of form is so great as to

render it impracticable to make any further distinction than

that which may be drawn between those in which the reac-

tions of the supports are vertical and those in which they are

inclined.

Fig. 51. Fig. S3. Fig. S3.

Fig. 54. Fig. 55. Fig. 56.

\
Fig. 57. Fig. 58. Fig. S9.

Fig. 5 1 is a simple form of truss for spans of less that 30 ft.

Fig. 52 is a superior framing for spans of from '30 to 40 ft.;

it may be still further strengthened by the introduction of

struts, Figs. 53 and 54, and with such modification has been

employed to span openings of 90 ft. It is safer, however, to

limit the use of the type shown by Fig. 53 to spans of less than
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60 ft. Figs. 55, 56, 57, 58, and 59 arc forms of truss suitable

for spans of from 60 to 100 ft. and upwards.

Arched roofs, Figs. 58 and 59, admit of a great variety of

treatnrent. They have a pleasing appearance, and cover wide

spans without intermediate supports. The flatness of the

arch is limited by the requirement of a minimum thrust at the

abutments. The thrust may be resisted either by thickening

the abutments or by introducing a tie. If the only load upon

a roof-truss were its own weight, an arch in the form of an

inverted catenary, with a shallow rib, might be used. But the

action of the wind induces oblique and transverse stresses, so

that a considerable depth of rib is generally needed. If the

depth exceed 12 in., it is better to connect the two flanges by

braces than by a solid web. Roofs of wide span are occasion-

ally carried by ordinary lattice-girders.

Principals, Purlins, etc.—The principal rafters in Figs. 51

to 57 are straiglit, abut against each other at the peak, and are

prevented by tie-rods from spreading at the heels. When
made of iron, tee (T), rail, and channel (both single i—

. and

double ][) bars, bulb-tee (T) and rolled (I) iron beams, are all

excellent forms.

Timber rafters are rectangular in section, and for the sake

of economy and appearance, are often made to taper uniformly

from heel to peak.

The heel is fitted into a suitable cast-iron skew-back, or is

fixed between wrought-iron angle-brackets (Figs. 60, 61, 62)^

and rests either directly upon the wall or upon a wall-plate.

Pig. 60. Fig. 61. Fig. 6a.

When the span exceeds 60 ft., allowance should be made
for alterations of length due to changes of temperature. This
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may be effected by interposing; a set of rollers between the

skew-back and wall-plate at one heel, or by fixing one heel to

the wall and allowing the opposite skew-back to slide freely

over a wall-plate.

The junction at the peak is made by means of a casting or

wrought-iron plates (Figs. 63, 64, 65).

Fio. 63. Fig. 64. Fig. 65.

Light iron and timber beams as well as anglt irons are em-
ployed as purlins. Tliey are fixed to the top or sides of the

rafters by brackets, or lie between them in cast-iron shoes

(Figs. 66 to 71), and are usually held in place by rows of tie-

FiG. 70. Fig, 71. Fig. 7*.

rods, spaced at 6 or 8 ft. intervals between peak and heel,

running the whole length of the roof.

The sheathing boards and final metal or slate covering are

fastened upon the purlins. The nature of the covering regu-

lates tiiv, .^pacing of the purlins, and the size of the purlins is

governed by the distance between the main rafters, which may
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vary from 4 ft. to upwards of 25 ft. But when the interval

between the rafters is so great as to cause an undue deflection

of the purh'ns, the latter should be trussed. Each purlin may
be trussed, or a light beam may be placed midway between the

main rafters so as to form a supplementary rafter, and trussed

as in Fig. 72,

Struts are made of timber or iron. Timber struts are

rectangular in section. Wrought-iron struts may consist of

L-irons, T-bars, or light columns, while cast-iron may be em-

ployed for work of a more ornamental character. The strut-

heads are attached to the rafters by means of cast caps,

wrought-iron straps, brackets, etc. (Figs. 73 to "]()), and the

strut-feet are easily designed both for pin and screw connec'

tions (Figs. ^^ to 80).

Fig. 73 Fig. 74. Fig. 75. Fig. 76.

Fig. 77 Fir. 79. Fig. 80,

Ties may be of flat or round bars attached either by eyes

and pins or by screw ends, and occasionally by rivets. The
greatest care is necessary in properly proportioning the dimen-

sions of the eyes and pins to the stresses that come upon them.

To obtain greater security, each 01 the end panels of a roof

may be provided with lateral braces, and wind-<^ies are often

made to run the whole length of the structure through the

feet of the main struts.

k

mmmmmm i

l!'J.II!> "



ROOF WEIGHTS. 37

Due allowance must be made in all cases for changes of

temperature.

21. Roof-weights.—In calculating the stresses in the

different members of a roof-truss two kinds of load have to be

dealt with, the one permanent and the other accidental. The
permanent load consists of the covering, the framing, and ac-

cumulations of snoiv.

Tables at the end of the chapter show the weights of various

coverings and framings.

The weight of freshly fallen snow may vary from 5 to 20

lbs. per cubic foot. English and European engineers consider

an allowance of 6 Ibf.. per square foot sufficient for snow,

but in cold climates, snnilar to that of North America, it is

probably unsafe to estimate this weight at less than 12 lbs.

per square foot.

The accidental or live load upon a roof is the wind-pressure,

the maximum force of which has been estimated to vary from

40 to 50 lbs. per square foot of surface perpendicular to the

direction of blow. Ordinary gales blow with a force of from 20

to 25 lbs., which may sometimes rise to 34 or 35 lbs., and even

to upwards of 50 lbs. during storms of great severity. Press-

ures much greater than 50 lbs. have been recorded, but they

are wholly untrustworthy. Up to the present time, indeed, all

wind-pressure data are most unreliable, and to this fact may be

attributed the frequent wide divergence of opinion as to the

necessary wind allowance ii any particular case. The great

differences that exist in all recorded wind-pressures are pri-

marily due to the unphilosophic, unscientific, and unpractical

character of the anemometers which give no correct informa-

tion either as to pressure or velocity. The inertia of the mov-

ing parts, the transformation of velocities into pressures, and

the injudicious placing of the anemometer, which renders it

subject to local currents, all tend to vitiate the results.

It would be practically absurd to base calculations upon

the violence of a wind-gust, a tornado, or other similar phe-

nomena, as it is almost absolutely certain that a structure

would not lie within its range. In fact, it may be assumed

that a wind-pressure of 40 lbs. per square foot upon a surface

if
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perpendicular to the direction of blow is an ample and perfectly

safe allowance, especially when it is remembered that a greater

pressure than this would cause the overthrow of nearly all the

existing towers, chimneys, etc.

22. Wind-pressure upon Inclined Surfaces.—The press-

ure upon an inclined surface may be obtained from the follow-

ing formula, which was experimentally deduced by Hutton,

viz.

:

/„ =/ sin ^»' -84 cos a -I. (A)

p being the intensity of the wii^.d-pressure in pounds per square

foot upon a surface perpendicular to the direction of blow, and

Pn being the normal intensity upon a surface inclined at an

angle (t to the direction of blow.

Let//, j/j, be the components of />„ ,
parallel and perpen-

dicular, respectively, to the direction of blow.

•'- Ph = Pn sin «, and p^ — p„ cos a.

Hence, if the inclined surface is a roof, and if the wind blows

horizontally, n is the roof's pitch.

Again, let v be the velocity of a fluid current in feet per

second, and be that due to a head of /i feet.

Let IV be the weight of the fluid in pounds per cubic foot.

Let p be the pressure of the current in pounds per square

foot upon a surface perpendicular to its direction.

If the fluid, after striking the surface, is free to escape at

right angles to its original direction,

p = 2niv = —w.

Hence for ordinary atmospheric air, since w = .08 lb., approx-

imately,

_ .08 , _ fV_\'
(B)
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V/hen the wind impinges upon a surface oblique to its

... , . . , , . /^ sin /J\' , .

•direction, the intensity of the pressure is I—^
) , v being

the absolute impinging velocity, and yS being the angle between

the direction of blow and the surface impinged upon. (See

chapter on Bridges.)

Tables prepared from formulae A and B are given at the

end of the chapter.

23. Distribution of Loads.— Engineers have been accus-

tomed to assume that the accidental load is uniformly dis-

tributed over the whole of the roof, and that it varies from 30

to 35 lbs. per square foot of covered surface for short spans,

and from 35 to 40 lbs. for spans of more than 60 ft. But the

wind may blow on one side only, and although its direction is

usually horizontal, it may occasionally be inclined at a con-

siderable angle, and be even normal to a roof of high pitch.

It is therefore evident that the horizontal component i^p,) of

the normal pressure (/„) should not be neglected, and it may
cause a complete reversal of stress in members of the truss,

especially if it is of the arched or braced type.

If P„ is the total normal wind-pressure on the side of a

roof of pitch a, its horizontal component P„ sin a will tend to

push the roof horizontally over its supports. This tendency

must be resisted by the reactions at the support.s.

In roors of small span, the foot of each rafter is w^v^^Wy fixed

to its support, and it may be assumed that each support exerts

P sin (n

the same reaction, which should therefore be eoual to — ^^
.

2

In roofs of large span the foot of one rafter is fixed, while that

of the other rests upon rollers. The latter is not suited to with-

stand a horizontal force, and the whole of the horizontal com-

ponent of the wind-pressure must be borne at the fixed end,

where the reaction should be assumed to be equal to P,^ sin a.

In designing a roof-truss it is assumed that the wind blows

on one side only, and that the total load is concentrated at the

joints (or points of support) of the principal rafters.

E.g., let the rafters AB, AC ol a truss be each supported at
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two intermediate points (or joints), Z>,£ and F^ G, respectively,

and let the wind blow on the side AB.

Fic. 8i.

Take BD = CFz= I,, DE = FG = l^, EA = GA = l,\ and

let /, 4-^a + ^3 = ^; .'. BC = 2/ cos a, a being the angle

ABC.
Let IV be the permanent <^or dead) load per square foot of

roof-surface.

Let p„ be the normal wind-pressure per square fo A of roof-

surface.

Let d be the horizontal distance in feet from centre to

centre of trusses.

The total normal live load concentrated

iiX.B=pJi\ aXD=pJ/.+/.. \

dX E = pnd
/,+/.

BXA =p^d-.^" 2

The total vertical dead load concentrated at D and F ss

z^^^L±i?
; at £ and (7 = wd^^'^ ; at A = wd/,.

Let 7?, , ^, be the resultant vertical reactions at B and 6,

respectively (i.e., the total vertical reactions less the dead

ghts \wd-\ concentrated at these points).wei
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ly, Take moments about C.

.'. R^2l cos a = sum of moments of live loads about C-f- sum
of moments of dead loads about (7,

= moment of resultant wind-pressure about C
-|- moment of resultant dead load about C,

= pjtd\- -J- / cos 2aj + wd{l^ -f 2/,+ 2/,)/ cos ar,

Id

le

Df

f-

where -j- / cos 2a is the perpendicular from C upon the line

of action of the resultant wind-pressure which bisects AB
normally.

(N.B. The moment of the horizontal reaction at 5 or C
about C is evidently «z7.)

y?, may be found by taking moments about B,

To determine the stresses in the various members of a roof-

truss two methods may be pursued :

{x) A single stress diagram may be drawn to represent the

combined effect of the live and dead loads. This will be found

to be the quickest and most useful method.

(^) The normal wind-pressure (/„) may be resolved into its

vertical (/„) and horizontal (/*) components
; /„ may then be

combined with the dead load W^ and a stress diagram drawn

for the vertical loads only. A second diagram may be drawn
for the horizontal loads. The resultant stresses will be the

algebraic sum of the corresponding stresses in the two dia-

grams.

A third method will be referred to in a subsequent article.

24. Ex. I. Method {pc) applied to the roof-truss ABCt
Fig. 8?,

The dead load = wld concentrated at A.

Id
The live loads = /„— acting at each of the points A and

B. normally to AB.
The vertical reaction at B

wld
,
pjd 1 1 . cos 2a

*

2 cos a\4 ' ',
)•
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Let rollers be placed underneath C,

The total horizontal reaction = pjd sin a, and is wholly

borne at B.

Fig. 82.

Fig. 83.

At B there 2iXe. five forces in equilibrium, of which three are

known, and the reciprocal of B may be thus described :

Draw 5,5, to represent the normal wind-pressure (a~")

at B ; 5,5, to represent /?, ; 5,5^ to represent the horizontal

reaction {pnld sin a) ; 5,5, parallel to BD ; S^S^ parallel to

AB.
The closed figure S^S^S^SJSJS^ is the reciprocal required, and

the stresses in BD, AB, at B, are represented by SJS^, S^S^,

respectively, being a tension and a thrust.

At D there are three forces in equilibrium, of which the

tension in DB has been found. Drawing SJS^ horizontally

and 5,5, parallel to AD, the triangle SJS^S^ is evidently the

reciprocal of D, the stresses in DA, DE being represented by

-5,5,, S^S^, respectively, and being both tensions.

mmWSKmmlilK^»*^i ' -*»<«.'
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Again, the triangle 5^5,5, is the reciprocal of E, the stresses

in EC, EA being represented by S^S^ , S^S^ , respectively, and

being both tensions.

At A there are six forces in equilibrium, of which two, viz.,

/ /^\
the normal pressure, [/>„—), and the dead weight, {wld), are

given, while the stresses in AB, AD, AE have been found.

Draw S^S^ to represent p„- , and 5,5, to represent wld.

Five of the forces at A are therefore represented by the

following lines, taken in order : S^S,, S^S^ , S^S^, S^S^ , 5,5,

.

Hence the closing line S^S^ must necessarily represent in

direction and magnitude the force in AC at A, and it is a

thrust.

Also, S^S^S^ must be the reciprocal of C, and therefore 5,5,

represents the reaction at C.

The resultant reaction at B is represented in direction and

magnitude by SJS^

.

The line S^S^ must pass through the point 5, , as S^S,^ , the

horizontal reaction, is merely the horizontal projection of S^S^
,

the total wind-pressure.

The dotted lines show the alterc^ stresses if rollers are

under B, the end C being fixed. The stress in each member is

diminished, and as the truss should be designed to meet the

most unfavorable case, the stresses should be calculated on the

assumption that the rollers are on the leeward side.

This may be considered an invariable rule for roof-trusses.

Ex. 2. Method {x) applied t > the roof-truss ABC, Fig. 84.

vld
The vertical dead loLd — — at each of the points

F, A,G.

The live load, acting normally to AB^ = —— at each of
4

the points B and A, and = —— at F.
aw

The vertical reaction R^ at B

= Iwld + ^"^"^
(cos 2a+ i).*

' 2 cos a ' "'
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Tlie horizontal reaction at ^ = pjd sin or, rollers beings

under C as before.

Fig. 85.

Describe the stress diagram in precisely the same manner
as in Ex. i.

Taking 5,5, to represent the normal wind-pressure at B^

vertical reaction R^ at /?,

horizontal reaction at 5,

.'. S,S^S,,S^S^S, is the
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The dotted lines show the altered stresses if rollers are

under B.

The resultant reaction at B is represented in direction and
magnitude by 5,5^.

Ex. 3. Method (4:) applied to the truss represented by
Fig. 86.

Fig. 86.

Data. —Pitch = 30° ; AD = BD ^ AE = C^ = 23 ft.

;

trusses 13 ft., centre to centre ; dead weight = 8 lbs. per square
foot of roof-surface ; wind-pressure on one side of roof (say ^!^)
normal to roof-surface = 28 lbs. per square foot; DF=DH
= EG = EK\ DP and EG are vertical ; rollers under one end,

say C\ span = 79 ft. ; AFd^BH =21 ft., nearly ; FH— i\ ft.,

nearly.

Total live load = 4459 lbs.(=^? 13-28) at each of the

points F, H,

and = 3822 lbs.(=:-. 13.28) at each of the

Total dead load =

points A, B.

1274 lbs.( = ^^- . 13.8) at each of the

points F, H, K, G,

and = 2184 lbs. ( = 21 . 13 . 8) at the point A.
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Resultant vertical reaction at B

= i(4 X 1274 + 2184) + ^_^- = 1 3201.8 lbs.

V3

Horizontal reaction at B = 16562 sin 30° = 8281 lbs.

Let I inch represent 16,000 lbs., and on this scale draw

SJS^ — 3822 lbs., the normal wind-pressure at B
;

S.^S^ = 1 3201.8 lbs., the vertical reaction at B ;

S^S^ = 8281 lbs., the horizontal reaction at B ;

S^S^ parallel to BD, and StS^ parallel to BA.

The figure S^S^S^S.S^S^ is the reciprocal of B.

The stress diagram can now be easily completed, the recip-

rocals of the points N, F, B, A, G, K, E, and C being

S,^S^^S^^S^,S^^y S„S,^S^,S,,S^,, and 5„5,g5,5„, respectively.

5«, as before, is in the vertical line S^^S^^ produced.

On the assumed scale,

S^St = the tension at BD ;

S„S„= " " " AD;
S,S,,= " " " BE;

SA =
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Exs. 4 and 5. Method (jr) applied to the trusses repre-

sented by Figs, 88 and 90.

It is assumed, as before, that there is a normal wind-press-

ure upon AB^ and that rollers arc under C,

Figs. 89 and 91 are the maximum stress diagrams corre-

sponding to Figs. 88 and 90, respectively, and are drawn in pre-

cisely the same manner as described in the preceding examples.

Remark on Fig. 88.—The stresses at the joints F and D
are indeterminate, and it is assumed that the stress in FL

Fig. 88.

\

Fig. 89.

is equal to that in FH. The reciprocal of F thus becomes

5„5„5,5,5,5„5„5„, 5„.S„(= 5".5,) being the stresu in FL, This

truss is an example of a frame with redundant bars, in which

the stresses can only be determined when the relative yield of

the bars is known.

:<ffi
'" '!'B!WW»IHII»).'4»"|J mwiBilI ll W>*^^'^-
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pre-

ress-

)rre.

pre-

jles.

J D
FL

les

lis

ch

of

Remark on Fig. 90.—Tlic stress-diagram, Fig. 91, for each of

the joints in the horizontal /y6'(Fig 90) is closed by the return

of one side upon another. Thus at D the stress diagram is

S,S,StS^i>,, the closing line S^S, (the tension in DF) returning

Fig. 91.

upon S,^S, (the tension in DB). The total stress in AF is

evidently represented by 5„5,3, the reciprocal of A being
.,

V S" S" S" S"

Ex. 6. A truss with curved upper and lower chords, the

portions, however, between consecutive joints being assumed
strai:^ht.

Under a uniformly distributed load the truss {Y\^. 92) is

evidently incomplete, and the stress diagrams at the joints in

the lower chord will not close, so that equilibrium is impossible.

The frame is made complete and the stresses determinate by
introducing tics as in Fig. 93, the corresponding stress diagram
for one half the truss being shown by Fig. 94.

Next, let there be a wind-pressure on the side AB of the

truss. In order to prevent a reversal of stress in the diagonal

ties on the side^^^^ (Fig. 93), additional ties DF, FG, called

counter-braces, are introduced as in Fig. 95. Fig. 96 gives the
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Stress diagram due to wind-pressure only, it being assumed

that the end C rests upon rollers and that B is fixed.

Fia, 99. Fig. 95.

Fig. 93.

Fig. 94. Fk;. 96.

Note.—2\ —
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qni is the weight at F and is

p^ cos aA;-wBH = weight at H= mn.

51

Fig. 97. Fig. 98.

Fig, 99 is the stress-diagram due to horizontal component

of wind pressure, rollers being placed under />' and the end C
being fixed.

p'o' = downward reaction at ^ =
pjd sin' a

4 cos fX

. » •

o'g' = horizontal force of wind at ^ = ——'- BF:

a'm' = m'n'= horizontal force of wind at /^or//= —— BH.^ 2

Total resultar.c stresses in the members BF, FH, HA, DF,
DH, DB, DA, DF are represented by qr — q'r' , ms — m's',

nt — n't', sr — s'r', st — s't', pr — p'r', tv - t'v', pv — p'v',

respectively.

Note.—The stress diagrams for tru.sses with both of the lower

ends of the principal rafters fixed, are drawn in precisely the

same manner as de.'^cribed in the preceding examples.
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Thus, in Fig. i<X), 5,5,5,.S,5,5", is the reciprocal of A, S.,S,

representing the portion of the horizontal wind-pressure borne

Fig. ioo.

at A. Again, IfS,S,S,H is the reciprocal of B, HS, represent-

ing; the portic II of the horizontal wind-pressure borne at C.

HS^ = //S^ -\- S^S^ = total horizontal wind-pressure, S^S, repre-

senting the vertical reaction at B, and NS, that at C.

25. Bridge-trusses.—A bridge-truss proper consists of

an upper chord {ox flange), a lower chord (or flange), and an in-

termediate portion, called the web, connecting the two chords.

Its depth is made as small as possible consistent with economy,

strength, and stiffness. Its purpose is to carry a di.stributed

load, wliich, as in tu*: case of roof-trusses, is assumed to be

concentrated at the joints, or panel-points, of the upper and

lower chord. Trus.sed beams are also employed for the same

object, and examples of simple frames of this class have already

been given.

The following are bridge-trusses of a more complex char-

acter.

Ex. I. The beam BC{Y\%. loi) is supported at three points

by the vertical struts DF, AK, EG, which are tietl at the feet

by the rods DB, I)K, AB, AC, and /£K, EC. Let W,, IV,, J4,

be the loads concentrated at the joints F, K, 0, respectively.

Draw the line of loads S,S^ , S^S^ being IV^ , S^S^ = IV, , and

Describe the funicular polygon with any pole O, and draw

OH parallel to the closing line MN of this polygon. Tb<>n
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HS^ is the reaction at B and HS^ the reaction a<; C(Art. 3).

HS^S^ is the reciprocal of B, S^S^ bein^^ the thrust along

FB, and SJ/ the tension along BD.

S^S,S.,S^S^ is the reciprocal of /'', S^S^ being W,, the

weight at F, S^S„ the thrust along KF, S^S^ the

thrust along JJF.

HS^S^S.H is the reciprocal of D, S^S^ being the tension

along DK, and S.,H the tension along Z)y3.

NS^S^H is the reciprocal of A, 5,5^ being the thrubl along

K^l, and .S'„// the tension along AE.
So, 5,5,5„5,5,5,5, , S,S,S,,S,S, , S,S,„//S^S, , and ^^//S.o are

the reciprocals of A", (7, i^\ and C, respectively, the closing line

5,o5, being necessarily h- 'zontal and representing the stress

in GC.

-:>0

Fig. ioi. Fig. loa.

This truss inverted is often used for bridge purposes in dis-

tricts where timber is plentiful as it may be constructed

entirely of wood. T'lc stresses in ihe several members of the

inverted truss are of course reversed in kind but unchanged in

magnitude, and are given by the same stress diagram.

NoU'.—The reactions US,, HS^ may be obtained at once by

the method of moments. Thus, by taking moments about C,

the reaction R^ at .^ is

and by taking moments about B, the reaction /?, at 6" is
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Ex. 2. In the truss represented in the accompanying figure,

the length of the beam AB is so great that the single triangu-

lar truss ACB with a single central strut CO is an insufficient

support. The two halves are therefore strengthened by the

simple triangular trusses AGO with a central strut GF and

BPO with a central strut FS.
Again, each quarter-length, viz., AFy FO, ON, NB, is simi-

larly trissed. The subdivisions may, if necessary, be carried

still farther. This truss in /our, eight, sixteen, . . . divisions or

D FSHOL NQB

panels is ku^ ./n as the Fink truss, and has been v/idely em-

ployed in America, the number of panels usually being eight

or sixteen.

The members shown by the dotted lines maybe introduced

for stiffness, and the platform rray be either at the top or

bottom. The weir^ht directly borne by a strut is usually de-

termined from the loads upon the two adjacent panels by

assuming the corresponding portions of the beam to be inde-

pendent beams supported at the ends. Thus if there be a

weight W^at the point .S" in the panel FH, the portion of W
borne by the strut GF at /•' is

SH
IV
FH'

and the portion borne by the strut /C/f at ff is

FSWFH
Let W,, W„ IV,, IV,, W IV., W, be the weights upon

the struts (or post.s) l)H, FG, HK, OC, LM. Nl\ QR, respect-

ively.

Let P, , P,, y-*,
. P^, P^, P., P. be the compressions to which

these posts are severally subjected.



FINK TRUSS. ss

Let a, /?, Y be the inclinations to the vertical of AE^ AG,
AC, respectively.

Let 7",, 7",, 7!,, . . . be the tensions in the ties, as in Fig. 103.

The tensions in the ties meeting at the foot of a post are

evidently equal.

Each triangular truss may be considered separately.

From the \.xw^?iAEF, 2 7, cos a = P^= W,',

from the truss A GO, 2 T^ cos yS= /',= W,-^{ T,-^ 7.) cos a ;

from the truss FKO, 2 7, cos a = P.^— W^;

from the truss /iC'Z*',

2 7, cos ;. = Z'. = W^, + ( 7, + 7.) cos /^ + ( 7, -f- 7.) cos « ;

from the truss OMN, 2 7^ cos a = P^ — W^ ;

from the truss OPB, 2 7. cos fi=P,^ W,-\-{ 7.+ 7,) cos a
;

from the truss NRB, 2 7, cos a = P,= W,.

Hence

7, = — sec or,

7, = — sec /y,

2\ 2 4 I
'

7, = - sec a,

7; = 2 ^. H r j sec /?,

7;

2\

—'- sec a,
2

and the values of P, , P.,, P^, . . . can be at once found.
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Again, the thrust along AF= T', sin a -\-T^%\n ^ -\- T^ sin y ;

" at F = 7", sin fi -\- T^ sin y :

*• along F0=^ 7", sin ft -\-T^sm y -\- 7", sin a

;

" at (7 = 7« sin y ;

etc., etc.

If the truss carries a uniformly distributed load W,

W,= W,= W,= IK = W,= W^=.W,= ^;

IV
T^—T^—T^=T, — -^ sec a,

T^= T, = — sec ft, ^« = "7 sec ;/.

If the above diagram is inverted, it will represent another

type of truss in which the obliques are struts and the verticals

ties.

Note.—The stresses in the several members of each of the

trusses due to the weight it is designed to carry, may of course

be easily determined graphically in the manner already de-

scribed in previous articles.

Ex. 3. Fig. 104 represents a beam trussed by a number

of independent triangular trusses, the vertical posts being

Pig. 104.

equidistant. The weight concentrated at the head of each

post may be found by the method described in Ex. 2, which

in fact is generally applicable to all bridge and roof trusses.

Let 7", , 7, be the tensions in AE, BE, respectively.

Let W^ be the weight at D.

-.^f'mf'mgmm! '.w»,-™fwi»** i

-
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Let rt, , Of, be the inclinations of AEy BE, respectively, to

the vertical.

sin nT - W — —I— T = W
sni (a, -|- a,)

sin Of,

sin («, + a,)

'

Similarly, the stress in any other tie may be obtained.

The compression in the top chord is the algebraic sum of

the horizontal comijonents of all the stresses in the ties which

meet at one end.

The verticals are always struts and the obliques ties.

This truss has been used for bridges of considerable span,

but the ties may prove inconveniently long.

Ex. 4. The figure SANT represents an ordinary triangular

truss of the Warren type, supported at the ends 6' and T.

Draw the line of loads 16, 12 a c e .g l n

being the weight at B, and 23, 34, /\7X/\T\T\/\
45, 56 the weights at D, F, K, My g

'

b ' 'd' 'f ' 'k '
'm '

' -

r

respectively. F'°- '"S-

With any pole O describe the

funicular polygon and draw OP par-

allel to its closing line QR.
.'. iP is the reaction at S, and 6/^

that at T.

The reciprocal of 5 is the triangle

Pr5", ; 1 5, being the tension in SB,

and 5,/* the compression in AS.

The reciprocal of A is the triangle Q^

PS^S^\ 5,5, being the tension in AB,
and ^j/'the compression in CA.

The reciprocal of B is the figure

5,i25s5j5, ; 25, being the tension in

BD, SjS, the compression in CB, and

12 the weight at B.

The reciprocal of C is the figure PS^S^StP; 5,5^ being the

tension in CD, and 5^/* the compression in EC.

The reciprocal of D is the figure 5,235^5^5, ; 3^^ being the

tension in DF, S^S^ the compression in £D, and 23 the weight

at D.

Fig. 106.

Fig. 107.
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The reciprocal of E is the figure PSJS^SJ^\ SJS^ being the

tension in EF, and S^P the compression in GE,

The reciprocal of /'^is the figure S^})^S^S^S^\ 45, being the

tension in FK, S^S„ the tension in FG, and 34 the weight at F.

And so on, the closing line FS„ for the reciprocal of T being

necessarily parallel to NT.
The arrow-heads show the character of the stresses in the

several members of the truss.

Noie.—The reactions may also be at once determined by

the method of moments.

Thus iP=^l{i2) + 1(23) + K34) + f(45) + KS^),

and 6P = K12) + 1(23) +i(34) + 1(45) + ^(56).

Ex. 5. In the truss represented by the accompanying figure,

the joints in Uie upper as well as

those in the lower chord are loaded,

the weights being transmitted to the

former by means of vertical sus-

penders.

Fig. 109 is evidently the corre-

sponding stress diagram.

iVo/i: — In the trusses repre-

sented by Figs. 106 and 109, the floor

is carried upon the lower cliDrds. If

the trusses are inverted, the floor

may be carried on the upper chords.

The stresses in the several members
are evidently the same in magnitude

and are only reversed in kind.

^'^- °9- Ex. 6. The IIowc truss repre-

sented by Fig. no is very widely used and may be constructed

of timber, 3f iron, or of timber and iron combined.

A C. E. G L N, R

(12) (S:l) (;W) (46) (30) (07; (7d)

Fig. 108.

Pic. ho.
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Let there be a uniformly distributed load upon the truss

consisting of a weight W at each of the joints /?, Z), . . . in the

lower chord.

The reaction at each support = ^^W.

Fig. 1 1 1 is the stress diagram, and the several members of

the truss are indicated on the lines representing the stresses to

i

BS

*w

w
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ing P, and the arrow-heads showing the directions of the forces

now acting at D. Thus the force in Dli at D^ represented by

5,5^ , acts from D towards /i, and is, thcrclorc', a tension.

Hence, in order that Dli may not be subjected to a tensile

force, counterbraces CF, EH are introduced so that the por-

tion of P borne on the support at T may be transmitted

through the system CFEH io //and from //to /"through tlic

regular system HGKLMNQRT. The reciprocal of 1) is now

5,^,535„ (Fig. 1
1 3), and the reciprocal of Cthe figure HS^S^S^S^H,

the arrow-heads showing the directions of the forces at C. It

will be at once observed that FC must be a strut.

In order to make provision for a varying load, as when a

train passes over a bridge, counterbraces are introduced in the

panels on both sides of the centre, and although they may not

be necessary in every panel, they will give increased stiffness to

the truss.

Note.—Generally speaking, a panel is that portion of the

bridge-truss between two consecutive verticals, and the ends

of the verticals are called panel-points.

Ex. 7. Fig. 114 represents a Pratt truss, and is merely an

inverted Howe truss. The diagonals become ties and the

^ \
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gram for a uniformly distributed load and for one half the

truss is Fig. il6.

The panels, however, arc incomphte frames, and if the truss

S, S.

Fig. ii6. Fig. 117.

has t*' carry an unequally distributed load, ties similar to that

shown by the dotted line J/iVmust be introduced in the several

panels in order to prevent distortion.

For example, let there be a single load P at the joint N,

and let there be no brace NM. The stress in the first vertical

is evidently nil. The reciprocal of N is S^S^S^S^S^S, , Fig. r 17,

S^S, representing P. The reciprocal of L is //S^S^S^f/, and the

arrow-heads show the directions of the forces at //.

Thus the force in OL, which is represented by 5,5„ , acts from

O towards L, and is, therefore, a compression. But, under a

uniformly distributed load, the diagonals are all ties, and NiM
is introduced to take up that portion of P which would be

otherwise transmitted through LO in the form of a compression.

In this case the reciprocal oi L is HS^S^H, since the stress in f.O

clue to P is assumed to be ////. Also the reciprocal of A'' is

5,.S",.V35,5',5'j5', . The stress in NM, represented by 5,S, , acts

from N to J/ and is a tension.

Hence the diagonals NM are also ties, and the portion of

the weight P borne at L is carried to Q through the system

NMOQ.
Ex. g. Fig. 118 is a bowstring truss with isosceles bracing.

Under an arbitrary lead Fig. 119 is the stress diagram, the

loads at a, b, c, d, e,/, g being 12, 23, 34, 45, 56, 67, 78, respect-

ively. As in the Warren girder, the diagonals may, under the

action of a varying load, bv. subjec-.ed to b-)th tensile and com-
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prcsslve stresses. They must, therefore, be designed to bear

such reversal of stress.

^-K/
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Ex. I. ABC is a roof-truss of 60 ft. span and 30" pitch.

Pig. lao.

The strut DF=GH=S ft.: the angle FDA =90°. Also

AF=^FB= AG= GC.

The vertical reaction at ^ = 5 tons. The weight concen-

trated at D = 4^ tons.

Let the angle AJiF = a.

AS — 30 sec 30° = 20 )/i ; cot a =

sin a
i/13

cos a =

10 1^3

5

= 2^3,

If the portion of the truss on the right of a secant plane

MNhe removed, the forces C, T', , T^ in the members AD,AF,
FG must balance the external forces 5 tons and 4^ tons in order

that the equilibrium of the remainder of the truss may be pre-

served.

Hence, resolving horizontally and vertically,

r, -(- r, cos {a + 30°) - C sin 60° = o

;

7; sin {a + 30°) - C cos 60"
-I- 5 - 4i = O.

Taking moments about F,

Cs - SBF cos
( 30 - «) H- 4hDF sin 30" = o.

But

cos(«+30°) = —7=-, sin («-f-30°)=
-Li. cos(30°-a)= ^

2i^3 24/13 2Vii'
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BF— BD sec a = 5 ^'13, and Z>F= 5 tt.

2 V 13 2

2 s'\i

C.^ + i = o.

<^'. 5 - 5 • 5 i/13 .
--

4----f- 4^. 5 . i = o.

Hence ^=15^ tons, 7", = 9.89 tons, and 7", = 6.315 tons.

Ex. 2. The figure represents a portion of a bridge-truss cut

f off by a plane AIM and supported at

^ -^"^^ the abutment at A.400,100 U.K.
p

Fig. 121.

The vertical reaction at A

I

, — 409,4(X) lbs.

tF~ The weight at B = 49,500 lbs.

'' C = 38,700 lbs.

A/i~ BC = 24 ft. ; BD= 24 ft.; C/t ^ 29^ ft.

The forces C, /)'. T in the members met by AfN must

balance the external forces at ./, />, C.

Ri'volving horizontally and vertically,

T-\- D' cos a — L" C(;s p =o;

D' sin a + C sin ft
— 409400 + 49500 +38700 = O

:

a and ft being the inclinations to the horizon of EF^ Dli,

respectively.

Taking moments about E,

T X 29.^ + 409400 X 48 — 49500 V 24 — O.
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But tana = |^*=i' and tan /? = ^f ^ £
^4 9 ^ -24

sin a = —^--
, cos a =^ —^4—

V'202. i/2oi
, sin ^ =.-At , cos d = --2_

i/85, vsy
Hence x_= 629,427-iiV lbs.

;

C = 2?i450° vo- _ IO905CX)
1 17

5
—

^, _ 1994600 —
-^ ——jT— i 202 lbs.

—-- ^85 lbs.
;

27. Piers.—To determine the stresses in the members of
the braced piers (Fig. 122) supporting a deck bridge.

io tons

Fig.
Fig, ti}.

Data.—Uciirht of pier =^ 50 ft. ; of tru.ss .= 30 ft. Width
of pior at top =: 17 ft. ; at bottom -.

jjl ft.

iiMffirlfiiM^ii^-
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The brid[]^e when most heavily loaded throws a weight of

lOO tons on each ui the pt^ints A and />.

\Vci_i>;lit ')f half-pier = 30 tons.

The increased weij:fht at each of the points C, D and K, F,

from the portions .IP and CF o{ the pier = 5 tons.

Resultant horizontal wind-pressure on train - 40 tons at

87^ feet above base.

Resultant horizontal uind-pressure on truss = 20 tons at

65 feet above base.

Resultant horizontal wind-piessure on pier = 2^ tons at

each of the points C and /;.

With the wind-pressuic acting as in the figure, the diai^onals

CB, HI), and CA are required. When the wind blows (jm the

other side, the diagonals D to A, F to C, and // to F are

brought into play. The moment of the couple tending to

overturn the pier

= 40 X 87^ -|- 20 X 65 -|- 4 X 25 = 4900 ton-feet.

The moment of stability = (200 -f 30) X \^ = 3^7 if ft.-tons.

Thus the difference, = 4900 — 387 1| = I028.| ft.-tons, :; jst

be provided for in the anchorage. The pull on a vertical

^ '028^
anchorage-tie at d = ~- ~ 30,Y,- tons.

33a

Again, if // be the horizontal force upon the pier at A due

to wind-pressure,

// X 50 ~ 40 X 87^ + 20 X 65 ~ 4800

;

// — 96 tons.

The stress diagram can now be easily drawn.

The reciprocals of the f)oints //. /> C, D, F, F are 4321,

2561, 11-10-4169, 65789, 13-12-1 1-98 14, and 87-15-16-14, respec-

tively. In the stress diagram 43 = 96 tons, 32 = 25 = 100 tons,

57 -- 7-15 = 4.10 = 11-12 =: 5 tons, and 10-11 = 12-13 = 2^

tons. The stress in FG is of an opposite kind to the stresses

in AC, CF.
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Note.—In computing the stiL'SMs '\\\ the Iccwaicl post^ of a

braced pier, it is usual in American praclice to assume that the

maximum load is upon the hri(l<4e and that the wind exerts .1

pressure of 30 lbs. per sq. ft. upon the surfaces of the train ami

structure, or a pressure of 50 lbs. per sq. ft. upon the surface

of the structure alone. The ne«;ative stresses in the windward

[)<)sts of the pier are determiiietl when the minimum load is on

tlie bridge, the wind-jiressurr remaining the same.

TAHLE OF WEIGHTS OF ROOF COVERINGS.

Description of Covering.

BoardiriR (5-inch)

Hc);irtlinj{ and shet-t-iron.

.

("asi-irnii plales (§-inch). .

Copper
Coriu^jalcd iron ui\d laths.

Felt, asphalted
Fi-it and ^r .vel . .

(jalvanizcd iron

Laths ami plaster

Pantiles

Sheet lead

Sheet zinc

Sheet-iron (corrugated). .

.

Sheet-iron (16 W.G.)and laths.

Shingles (if)ii)(h)

(W'ligi

Sheathinjj { i-inch pine)

(chestnut and maple)
(ash, hickory, oak).

.

Slates (ordinary)

Slates (large).

Slates and iron laths

Thatch
Tiles

Tiles and mortar
Timhering of tiled and slate

roofs (additional).

Weight of
Covering
in lt)s. per
sq. ft. of
Covered
Area

2.S to 1

0.5

15

8 to 1.25

5-5

3 to .4

8 to 10

t to 3

i) to 10

6 to 10

5 108
I 25 to 2

3 4

3-4

2

3

3

4

5

5 to «j

9 to II

lu

6.5

7 to 20

25 U) 30

5-.S to 6.5

Dead WeiKtn of Root in .t)S per sq
It of Covered Arra

12

without boards and 11 with boards
for spans up to 75 ft.

without boards and 15 with boards
for spans from 75 to 150 ft.

•3

17

on laths for spans uj) to 75 ft.

on laths (or spans from 75

150 ft.

to

without boards or on laths and 16

on i^-in. boards for spans up to

75 ft.

without boards or on laths and 20
on i^-in. boards for spans from
75 to 150 ft.
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WEIGHTS OF VARIOJS ROOF-FRAMINGS.

Description of Roof.

Pent
Common Truss.

Location
CoTer-
ing.

Span.

I

Weight in lbs.

per sq. ft. of
Width Covered Area.

of .

Bays.
Fram-
ing.

Liverpool » —
,

Docks (
P*''

ft. in. ft. in.

15 o

37 o
4u o

50 o,

5 t>

12 (J

10 O!

3-5
4.6
5-5
3.0

53 3 II o' 2.085

^.
Timber

rafters and
struts, iron

j

1

54

55
7a

14 (' 9-5
f< 6 II. 6
20 ol 7.0

ties

\ Liverpool » „. .^
. Docks «

Z'"*^
i

6« o 12 o

Zinc
Zinc
Slates

76

79 o
80 8

go 3

Common Truss ' 84 o
" " loo o
" "

' 130 o
Bowstring Manchester 50 o

25

>3
II

3-OI3

2.6
3.86
4-72

Cover-
inK-

5.00

5.66

7.72
5-42

12. 1

20 Oi 136

Arched Strasburg
P.iris

Lime Sircoi 154
Kirmingham 21

1

, 97
, «53

Dublin
1 41

Derby Si

Sydenham 1 20
' " 72

St. Pancras 240
Cremorne

\ 45
I I 1

9
14

26

It

2U

24

13

26

16

24

2'j

14

8-5

7.0
f).4

9.6

4.9
o 1 1 . o
1, 12.0
o 150
o 10.7

oii6.8
II. 8

>i-3

424.5
61 1 1,

5

Pitch.

30' •*

SO-

30°

26° 34

' In the ruuls dcsij^naictl by * tlic wiod-prevsurc was taken at 40 lbs. per square foot of

vertical surface, and the weights of

Fitchpinc

Deals and boarding.

SUUcs on bu.irilini;.

.

Fell with laths

Zinc

at 45 lbs. per cubic foot

;

30

ti.4 lbs. per square foot;

1.0 '

.66 ,
allowrng for 5-in. laps, screws,

and tiirrugation.
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TABLE OF THF. ""LtJES OK /'„. /•„, A. IN LBS. PER SQ. FT. OF
SURFACE. WHEN i^ := 40. AS DETERMINED BY

THE FORMULA /'„ :-^ /'
. sin </' «4 fo»,.-i.

Pitcll of Ronf.
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EXAMPLES.

1. Show that the locus of the poles <~i the funicular polygons o(

which the first and last sides pass through two fixed points on the clos

ing line, is a straijj;ht line parallel to the closinj^ line.

2. The first and last sides of a funicular polygon of a system of forces

intersect the closing line in two fixed points. Show that for any position

of the pole c;ich side of the polygon will pass through a fixed point on

the closini; line.

3. Four bars of equal weight and length, freely articulated at the

extremities, form a square y^/>'C'Z^. The system rests in a vertical |)lane,

the joint A being fixed, and the form of the square is preserved bv

means of a liorizontal string connecting the joints B and I). If //'be

the weight of each bar, show (<i) that the stress at C is horizontal and

W= — . (^) that the stress on BC at B is

2

'1^5WZl. and makes with the ver-
3

tical an angle tan "
\, (r) that the stress on AB at B is W. i/13 and

makes with the vertical an angle tan"'|, (//) that the stress upon

AB at A is | W, U) that tiie tension of the string is 2 W.

4. Five bars of equal length and weight, freely articulated at tiie

extremities, form a regular pent;igon ABCD/C. The system rests in a

vertical plane, the bar CD being fixed in a horizontal position, and the

form of the pentagon being preserved by means of a string connecting

llic joints /)' and A". If the weight of each bar be IV, show that the
//'

tension of ilie string is - - (Ian 54 +3 tan iS"), and find the ni.igni-
2

tudes and directions of the stresses at the joints.

5 Six bars <)( equal lengih and vveight ( ~ IV), freely articulated at

ilic extremities, form a regular hexagon ABCDEF.
First, if tlu; system hang in a vertical plane, the bar AB being fixed

ill a horizontal position, and the form of tlie hexagon being preserved

by means ol ;i string connecting the middle points of AB and DE, show

W
that (rt) the tensi(^n of the string is 3//^, (b) the stress at C is and

liorizontal, (< ) the stress at D is /''4/-^ and makes with the vertical
^ 12

an angle cot ' 2 4/3.

Second, if the >ystem rest in a vertical plane, the bar DR being fixed

in a horizontal position, and the I'orm of the hexagon being jjreserved

\
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by means of a string connecting the joints C ami F, show that (a)

the ten^ .J of the string is W —r-, (p) the stress at C is IV a/ }^

V3 '12
and

7_

12

makes with t7> an angle sin '4/ -A., {c) the stress at B is W A/
'124 ^

and makes with CD an angle sin -'4/ J..
*^ 28

Third, if the system hang in a vertical plane, the joint A being fixed,

and the form of the hexagon being preserved by means of strings con-

necting ^/ with the joints E, D, and C, show that {a) the tension of

each of the strinjis AE and AC is //' 4/3, (li) the tension of the string

^ID is 2 \V\ and determine the magnitudes and directions of the stresses

at the joints, assuming that the strings are connected with pins distinct

from the bars.

6. Show that the stresses at 6' and F in the first case of Ex. 5 rem;iin

horizontal wiien the bars AF, FE, BC, CD are replaced by any others

which are all equally inclined to the horizon.

7. If the pole of a funicular polygon describe a straight line, show
that the corresponding sides of successive funicular polyf;ons with re-

spect to successive positions ai the pole will intersect in a straight line

which is parallel to the locus of the pole.

8. A system of heavy bars, freely articulated is suspended from two

fixed points; determine the magnitudes and directions of the stresses at

the joints. If the bars are all of equal weight and length, show tiiai the

tangents oi the angles which successive bars make with the horizontal

are in arithmetic progression.

9. If an even number of bars of equal lenglb and weight rest in iqui-

librium in the form of an arch, and if di, da, . . . a« be the respective

angles of inclination to the horizon of the 1st, 2d, . . . «th bars count-

ing from the io|j, show that

tana„-|-, =
2« -f I

211 — 1

tan Un

10. Three bars, freely articulated, form an equilateral triangle ABC.
The system rests in a vertical plane upon supports at />' and C in the

same horizontal line, and a weight H^ is suspended from A. Determine

the stress in BC, neglecting the weight of the bars.

ir
A/is. -.

11. Three bars, freely articulated, form a triangle ABC, and the sys-

tem is kept in equilibrium by thn^e forces acting on the joints. Deter-

mine the stress in each bar.

What relation holds between the stresses when the lines of action of
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the forces meet (a) in the centroid. (fi) in thi- orlhocentre of the

triaiifjle ?

12. A trianp;iilar truss of white pine consists of two equal rafters Ali,

AC, and a tiL'-i)tain liC\ llic span uf the truss is 30 ft. and lis rise is 7^

ft.; the uniformly distributed load upon each rafter is 8400 lbs. Deter-

mine the stresses in the several members.

Ans, Stress in HC — 84CX) lbs., in AH = 4200 4^5 lbs.

13, ,//>T/? is a quailriliiteral truss, .//>' and CP beini^ horizontal and

15 and 30 ft. in lenj^th, respectively. The length (jf AC is 10 ft., and its

inclination to the vertical is 60". A weight W\ is placed at C. and \\\

at D. What must be the relation between IW and lVi so that the truss

may not i)e deformed? For any o'lier relation between /f'l and ff'..

.

e.xplain how you would modify the triiss to preve^ dcfurmiUioM, aiuj

find the stresses in all ihe members.

Ans. w. = (f,-il:ti.

14. A Warren jjirderSo ft. lontj is formed ol five equilatentt UiauHles.

Weijihts of 2. V 4, 5, tons are concentrated, respectively, at the 1st, 2d,

3d, and 4tli ape.x alon>; the upper chord. Determine the stresses in all

the members of the fjirder.

Alls.— TiHsion Chord : Stress in ist bay = 2 1^3 ; 2d = 5^ \'i
'•

3d = 7 t 3 ; 4th = 6^1/3; 5th = 2« i/3.

Comprission Chord : Stress in ist bay = \^\\

z^\^Ci^y, 3d = 7iV3; 4il> = 5ii'3.

Diagoiiiih : Stress in ist and 2d. = 4 1^3 ;

3d and 4th = 2| i^3 ; 5th and 6th = S ^3 ;

7th and 8th = 2 4/3; 9th and loth =: si ^ },.

15. In a quadrilateral truss ABCD. AD is horizontal. AB and //Care

inclineil at angles of 60° and 30" respectively to the horizontal, and CD
is inclined at 45° to the horizontal. What weight tnust'be concentrated

at C to maintain the equilibrium of the frame under a weight /fat /?.'•

If a weight /(>' is placed at Cas well as at D, what men\ber must be

introduced to prevent distortion? Wliat will be the stress in that

member ?

Ans. First: \V^±}..
2

Second : Introduce brace BD and let BDA = cr.

Then stress in /?/? =
2 sin (60° + a)
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i6. The boom ATi of the accompanvinp tniss is stipportod at five

intermcfliate points dividing the lonRtii

into six segments each lo ft. lon«. The ^x.|uA^'v\'j*!A
'

^
depth of the truss =io ft. Draw stress Cl "^^̂ ^ h '^X^i>^ *^

diagrams for the following cases :
Via. 1J4.

(ii) A weight of 100 lbs. at each intermediate point of support.

{/>) Weights of 100, 200, 300, 400, 500 lbs. in order at these points.

Ans. (rt) Stress in « = 375 ; /; = 325; c= 375 '< ^' = 45°;

;« = 125 i/13: ;/ - 50 i/5; t'^ 50^5;

/— 35 1^13 lbs.

(d) Stfpss ill 'J = 875; /' = 8:5; r = 925;// =1350;^= 1325,

^= 1125; /:rTi 375; »i = ^oV'$; ft - looi^s;

- 14 J S ^73 ; /> = ^\^Ts ;
;• = 2001/5 ;

J = 250 l^s ; / - 458i I//3 lbs.

{"J. The mf»crs///?, ACnf a factory roof are 18 and 24 ft. in length

respectively. The tie fiC is horizontal and 30 ft. long. The middle

points f)f l)\i raft' rs ar'.' siipjjoi ted by .struts /V-,", J>F from the middle

ijoinl I) 'A t|je tie //C; the pcjint D is supported by the tie-rod A/).

The ^rwss csffi'-'S ^ '"^fl "f $0° lbs. at each of tlic points /f, //, and /•'.

I'lHii ffit- stif'sses i/i all the members. Secondly, t'lnd the stresses in tite

|iL-in|n;rs w|/(!f.' tlic rafter ./// is si/bjecl.cd Uf U »uf;j)al pressure of 300

bs. \0 iUkiii if.* tuifbts Jielng at C.

Ans. Stress in/ik- Hilji; fwf

/ih - 502 iffs.

fi/i=667k

^$00; CF- roi6S ;
/•". / = 600

;

81 jA; /Vr-3i2i:/^/--=4i68;

StrcHses due to 300 lbs. in ///• - 1012* : FA = 1800;

/i/i = 28(3i ; np = 3847* ; A/J = 2250 ;

DC — 2160 ; AC - 2700 ; J)F = o.

18. If it be nssiimrfj In the fi^^t part of the last question that the

whole of the weight is coiiteiilratefj at tlie points /:' and /•', draw the

stress diagram.

19. A triangidar truss consists of two equal rafters ^l/i, AC and a tie-

beam FC, all of white pine; the centre /? of the tie-beam is supported

from ./ by a wrought-irnn rod .1/); the uniformly distributed load upon

e(|( li rafter is 8400 lbs., and upon the tie-beam is 36000 lbs.; determine

(1/1 Ihe glrUNNDN Id the different members, //C being 40 ft. and ^ID 20 ft.

What (/') will be the elicit upon tin; several members if the centre of the

iic-beam be Hi||iiifi|led upon a wail, and if for the rod a post be substi-

tuted against wliii li llic |ica<|fj of the rafters can rest.? Assume that the

pressure betweod |.|te rafter and post acts at riylil angles to the rafter.

A*s. (a) Stresses In Ji/) — 13200; A/> = tSooo; AF = 13200 \ 2 lbs.

{t) •< " = 4auo( " :^ H.pio; " 1= 6300 i/2"lbs.
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20. A trianjjular truss of white pine consists of a rafter AC, a vertical

post Ali, and a horizontal tic-beam BC\ the load upon the rafter is 300

lbs. per lineal foot; AC — 30 ft.. Ali — 6 ft. Find the resultant pressure

at C.

Ans. 4409 lbs.

Find the stresses in the several members when the centre D of tlie

rafi T is also supported by a strut from li.

Ans. Stress in liC = 4500 ^6: CD = 22500; £)B = 11250;

DA = 1 1250; AJi = 2250 lbs.

21. The rafters AB, AC oi a roof-truss are 20 ft. long, and are sup-

pf)rtcd at the centres by the (struts DK, DF\ the centre /? of the tie-

beam liC is supported by a tie-rod AD, 10 ft. long; the uniformly dis-

tributed load upon AB is 8000 lbs., and upon AC is 2400 lbs. Determine

the stresses in all the members.

What will be the effect upon the several members \{ AB be subjected

to a horizontal pressure of 156 lbs. per lineal foot.'

Ans. (a) Stress in BD = 4600 ^^3 ; BE — 9200; JCA = 5200;

J£D = 4000 ; AD = 3600 ; DF = 1 200

;

AF = 5200 ; CF = 6400 ; CD -- 3200 \^J.

(b) Tens, in BF = 520 1/3; AD = 260 f'3 ; compres. in

FD = 520 \/^; AC = 520 |/J; DC= 780.

No stresses in BD, /IF.

22. Determine the stresses in all the members of the truss in the

preceding question, assuming the tie-beam to be also loaded with a

u-ciglit (if 600 lbs. per lineal foot.

Ans. Stress in . / A' increased by 6000 4/3 lbs. ; in BC by 9000 lbs.;

in /ID by 6000 \/t, lbs.

23. A horizontal beam is trussed and supported by a vertical strut at

its middle point. If a loaded wheel roll across the beam, show that the

stress in each member increases proportionately with the distance of the

wheel from tiic end.

W
Ans. Stress in tie-beam (hor.) = -j-x cot

W
on strut =

-J
2.x.

on tie = ]Vx

1 sin 0'

24. A frame is composed of a horizontal top-beam 40 ft. long, two

vertical struts 3 ft. long, and three tie-rods of which the middle one is

horizontal and 15 ft. long. Find the stresses; produced in the several

members when a single load of 12000 lbs. is concentrated at the head of

each strut.

Ans. Stress in horizontal members = 50000 lbs.

" sloping " = 51420 "

" " struts = 12000 "
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25. If a wheel loaded with 12000 lbs. travel over the top-beam in thr

last question, what members must be introduced to prevent distortion?

What are the maximun) stresses to which these members will be sub-

jected ?

Ans. 191 22 lbs.

26. A beam of 30 ft, span is supported by an inverted queen-truss,

the queens bciii^ each 3 ft. long and the bottom hori/oiital nuiii'irr ic

ft. h^ng. Find the stresses in the several members due to a weifjht W
at the head of a queen, introducing; the (lia}j;oiial required to prevent

distortion. Also find the stresses due to a weight W^at centre of beiri.

Ans.— I. Stress in AB = -°/r; A/i = 2.32 W^; /lF = -°IV;99
PE= -//'; /.'/•= i.i6fr; PC = -°IV;

3 9

CF=o. /)/' = t i6f^.

2. Stress in //-ff = *ff': AE = 1.74^^; /.'£ = --;32
Er = ' IV.

3

27. A roof-truss of 20 ft. span and 8 ft. rise is compose' of two

rafters and a horizontal tie-rod between the feet. The load upon the

truss = 500 lbs. per foot of span. Find the pull on the tie. What would

the pull be if the rod were raiseii 4 ft..'

Ajis. 3125 lbs.; 6250 lbs.

28. The rafters A/i, AC of a roof are unc(|iiai in length and are in-

clined at angles <i, /i 10 the vertical ; the uniformly distributed load upon

AJ) = H\ , upon ylC = ll'i. Find the tension on the tie-beam.

2 sin (<i + li)'

Alts.

29. In the last question, if the span = 10 ft., a = 60" and /i = 45\ fine

the tension on the tie, the rafters being spaced 2| ft. centre to centre,

and the roof-load being 20 lbs. per square loot.

Ans. 198 lbs.

30. The ecjual rafters ///>', AC for a roof of 10 ft. span and 2^ ft. ri.ve

are spaced 2^ ft. centre to centre ; the weight of the roof-covering, etc.

= 20 lbs. per square foot. Find the vertical pressure and outward thrust

at the foot of a rafter.

Ans. Total vertical pressure = 125 4/5 lbs. = horizontal thrust.

31. The lengths of the tie-beam and two rafters of a roof-truss are in

the ratios of 5:4:3. Find the stresses in the several members when
the load upon each rafter is uniformly distributed and equal to 100 lbs.

Ans. Stress in tie = 48 lbs. ; in one rafter = 60 lbs. ; in other = 80 lbs.
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32. In a triangular truss the rafters each slope at 30' ; the load upon

the i. pex = 100 lbs. Find the thrust of the roof and the stress in each

rafter,

Ans. 100 lbs.; 86.6 lbs.

33. A roof truss is composed of two equal rafters and a tie-beam, and

the span = 4 times the rise; tlie load at the apex = 4000 lbs. Find the

stresses in the several members.

Secondly, if a man of 150 lbs. stands at the middle of a rafter, by

how much will the stress in the tie-beam be increased .'

Ans.— I. Stress in tie = 4000 lbs. ; in each rafter = 2000 1/5 lbs.

2. 75 lbs.

34. A king-post truss for a roof of 30 ft. span and 7^ ft. rise is com-

posed of two equal rafters AB, AC, tlie horizontal tie-beam BC. the

vertical tie AD, and the struts DE, DF from the middle point 1) of the

tie-beam to the middle points of the rafters ; the roof-load = 20 lbs. per

square foot of roof-surlace, and the rafters are spaced 10 ft. centre to

centre. Find the stresses in the several members.

Second, find the altered stresses when a man of 150 lbs. weight stands

on the ridge.

Third, find the altered stresses when the tie-beam supports a ceiling

weighing 12 lbs. per square foot.

Ahs.—i. Stress in /iE' = 5625 lbs. ; BB = 2250 Vs lbs.

;

^yi = 3750 lbs. ; £>£= 1875 lbs.

;

AD= 750 l/s'lbs.

2. Stresses in BD, BE, AE increased by 1 50 lbs., 75 4/5

lbs., and 75 4/^5 lbs., respectively; other stresses un-

changed.

3. Stresses in AD, tie-beam, and rafters increased by iCoo,

1800 and 900 j/5 lbs., respectively : ether stresses

unchanged.

35. The platform of a bridge for a clear span of 60 ft. is carried by

two queen-trusses 15 ft. deep; the upper horizontal member of the truss

is 20 ft. long ; the load upon the bridge = 50 lbs. per square foot of plat-

form, which is 12 ft. wide. Find the stresses in the several membe-s.

Ans. Stress in vertical r= 6000 lbs.; in each sloping member
= loooo lbs. ; in each horizontal member = 8000 lbs.

36. If a single load of 6000 lbs. pass over the bridge in the last ques-

tion, and if its effect is equally divided between the trusses, find {a) the

greatest stress in the members of the truss, and also {b) in the members
which must he introduced to prevent distortion. Also find {c) the

stresses when one half tiie brioge carries an additional load of 50 lbs. per

square foot of platform.
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Ans.—{a) In sloping end strut = 3333! lbs.; horizontal tie =
2666I lbs.; horizontal strut = 1333^ lbs.

{c) In sloping end strut = 6250 lbs.; horizontal tie =
5000 lbs.; horizontal strut = 3000 lbs.

{b) In case (a) = i666f lbs.; in case {c) = 2500 lbs.

37. A roof-truss consists of two equal rafters AB, AC inclined at 60"

to the vertical, of a horizontal tie-beam BC of length /, of a collar-beam

DE of length — , and of queen-posts DF, EG at each end of the

collar-beam ; the truss is loaded with a weight of 2600 lbs. at the vertex,

a weight of 4000 lbs. at one collar-beam joint, a weight of 1200 lbs. at

the other, and a weight of 1500 lbs. at the foot of each queen; the

diagonal DG is inserted to provide for the unequal distribution of load.

Find the stresses in all members.

Ans. Stress in 5Z> = 1 1733* :
/>'^ = S866S V), ;

DI'^ = 1 500 ;

BA = 2600 ; DE = 3633^ ^3 ; DG ~ i866|

;

CC = 4933^ V3 ;
^^^ = 2433i ; C7S = 9866^ ;

AE = 2600 lbs.

38. The rafters AB, AC are supported at the centres by the struts

DE, DF; the centre of the tie-beam is supported by the tie AD;
BC= 30 ft., AD=: 7i ft. ; the load upon AB is 4000 lbs., that upon AC
1600 lbs. Find the stresses in all the members. By an accident the

strut /^ii was torn away; how were the stresses in the other members

affected ?

Ans.—Case i : Stress in BE = 2400 1/5"; BD = 4800 ;

DE = 1000 V 5 ; AE = 1400 1/5 ;

AF — 1400 1/5 ; DF = 400 v'S ;

EC ^ 1800 4/5"; DC — 3600 lbs.

Case 2: Stress in 5^ = 1400 \/J; BD = 2800

;

AD = 400 ; AF = 1400 4/5 ;

i^c = 1800 Vs"; DF — 400 \/J;

DC = 3600.

39. The platform of a bridge for a clear span of 60 ft. is carried by

two trusses 15 ft. deep, of the type shown by the
^ ^ ^ -

accompanying diagram ; the load upon the

bridge is 50 lbs. per square foot of platform,

which is 12 ft. wide. Fmd the stresses in the
. Fio. 125.

several memoers. '

Ans. Stress in BE = 1 3500 ; BG = 6750 j/f; EG = 4000

;

ED — 1 3500 ; GD = 2250 \/'s; GA = 4500 Vj',

AD — 9000 lbs.



78 THEORY OF STRUCTURES.

40. If a single weight of 2000 lbs. pus? over a truss similar to that

s'lown in the preceding question, find the stresses in the several members

when the load is (i) at E, (2) at l>.

Ans.—Lase i: Stress in HG = 1500 1^5 ; JiJ-J = 3000;

EG = 2000 ; ED = 3000

;

GD = 1000 ;^5 ; AG — 500 4/5 ;

AH = 500 4/5"; DM = o ; F// = o

;

DF = 1 000 ; FC = I cx)o ;

CH = 500 1/5" lbs.

Case 2: Stress in />V/and CA = 1000 4/5-

BD and DC ~ 2000 ; AD = 2000 lbs.,

and in other members = o.

41. A white-pine triangular truss consists of two rafters AB, AC, of

unequal length, and a tie-beam A'C. A vertical wrought-iron rod from

.1, 10 ft. long, supports the tie-beam at a point D, dividing its length

i'lto the segments />/> = 10 ft. and CD = 20 ft. The load upon each

rafter is 300 lbs. per lineal ft. ; the load upon the tie-beam is i<S,ooo lbs.,

uniformly distributed. Determine the stresse; in the several members.

Alls. In AB =. 9650 1^2 lbs. : AC=. 4825 4/5 lbs. ; BD = CD = 9650 lbs.

42. Tile post of a jib-crane is 10 ft. ; the weight lifted = IV; the jib

is inclined at 30". and tin' tie at 60°, to the vertical. Find ((?) the stresses

in the jib and tie, and also the B. M. at the foot of the post.

How (/') will these stresses be modified if the chain has/our falls, and

if it pas.ses to the chain-barrel in a direction bisecting the angle between

the jib and tie ?

Ans.— (a) Stress in tie = ^F; in jib= ^'4/3, ii. M.= //
'54/3 ft. tons.

0) =.87 IV, " =1.87 IV.

43. An ordinary jib-crane is required to lift a weight of 10 tons at a

horizontal distance of 9 ft. from the axis of the post. The hanging part

of the chain is in /our falls; the jib is 15 ft. long, and the top of the

post is i6i ft. above ground. Find the stresses in the jib and tie when
the chain passes (i ) along the jib, (2) along the tie.

The post turns round a vertical axis. Find the direction and magni-

tude of the pressure at the toe, which is 3 ft. bek w ground.

Ans.—(i) Stress in tie = 3° v 5 tons; in jib = 1 1^ tons.
1

1

(2)
.. _ (32j/j_ _ 2A tons . in jjt,

_ g^t^ ^Q^g

Pressure on toe = 10 ^\o tons, and is inclined to vertical at an angle

tan - '
3.

* ''^^mm
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44. In the crane represented by the fip;nre AB = AC — a

35 ft.; y)C = 2oft.; />7^= 2o ft.; the weight lifted = 25 tons; f^'^i?;;^

—

j^

AC slopes at 45° ; the chain hangs in four falls and passes to^H\7^A
from A to D. Find the stresses in all the members and c d

the up ard pull at D. Fig. 126.

Ans. Stress in BC = 26 ; AC = 47.6 ; AB = 28.4 ; CD = ji^tons.
Vertical pull at J) — 31.3 tons.

45. The figure represents the framing of an hydraulic crane. AB=nn
= DF = FG = //A' = : ft.; KG = BC = 2 A fi. Find the

l\/T^x^^
stresses in the members of the crane when the weight

K GFDB A (I ton) lifted is {a) at A ; {l>) at B ; (c) at /). Also 0/) find

Fig. nj. the stresses when there is an additional weiglit of ^ ton

at each of the points B, J\ /•', inxl G.

42
Ans.— [a) Stress in tons in AJ>' = BJ) = 2 ; /)F = FG = -

;

A^G=^^J; AC= \/J- CE = - j/J;
26 9

yooy 9

^^=99^^^^' ^^^=143 ^'^7;

26

10 /-•
iV) Stress in tons in AB = 0- AC; BC=. \; C£ = ~^2;

30 ./T. 28
HE=:^- V2; DF=FG =—

; CA- = -i;

13 " 2

EG = - - V3T7 \ HG='^-'^
143 26

(f) Stress in ^^ = o = AC = BC = DC= BD^CE',

j^f^^A^FG; DE = 1 V3I7 ;

20HE= - \/2; fCG = 2\.
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{d) Stress in tons {nAB = o = AC; EC = - = EF\

FD=-z= FG ; KG =
II

62

'«3
CF = 5^/2

//£ =_30 4/2

'3
F>E = — 1/317

99

-7
t^^- ^6^/317; //^

20
1/5";

Fig. 128.

46. The iiiclined bars of the trape-

zoidal truss represen'ted by the fipjure

make angles of 45° with the vertical ; a

load of 10 tons is applied at the lop

joint of the left rafter in a direction of

45° with the vertical. Assuming the

reaction at the right to be vertical, find

the stresses in all the pieces of the frame.

Ans.
. ^ 10 ,—

Vert, reaction at Z> = - y 2 ;

3

10
stress in DE=. — \/'2

;

3

DB = 6\\ BE = 6t ; BA = -° i/2;AE = — \/2;

AC =^°
; CE = ^ V 2 tonr.

3 3

47. The ,jost of a derrick-crane is 30 ft. high ; the horizont?\l traces of

the two back-stays are at right angles to each other, and are 15 ft. and

25 ft. in length. Show that the angle between the sliorter trace and the

plane of the jib and lie, when the stress in the post is a maximum, is

30- 58'.

Also find the greatest stresses in the different members of the crane

when the jib, which is 50 ft. long and is hinged at the foot of the post, is

inclined at 45° to the vertical, the weight lifted being 4000 lbs.

Ans. Stress in jib = 6666f^ lbs.; in tie = 4768.4 lbs.; max.

thrust along post = 10991.5 lbs. ; max. stress on long

back-stay = 7362.7 lbs.; on short back-stay = 10539 't>s.

48. A queen-truss for a roof consists of two horizontal members, the

lower 48 ft. long, che upper 16 ft. long; two inclined members AB. DC,

and two queens BE, CF, each 8 ft. l-^ng; the points £", /^divide WZ> into

three equal segments ; the load upon the members AB, BC, CD is

120 lbs. per lineal foot. Find (a) the stresses in the several members.

How {d) will these stresses be modified if struts are introduced from the

t

V'^iiK:
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feet of the queens to the midcile points G, H of the inclined members ?

In tills latter case also, determine (c) the stresses due to a wind-pressure

of 1 20 lbs. per lineal ft. normal to AH, as;uimin}^ that the horizontal re-

action is equally divided between the two supports at A and D.

Ans.— (rt) Stress in lbs. in AE = 4066.56 = 7!i7'"= UF — BC\
AB — 4546. 56 = CD ; HE --^ 2033.28 = CF.

{b) .Stress in Uis. in AE— 5139.84 :== DF\
EC = 4066 56 = ^/-; AG^. 5746.56 ^ DH;
BG - 4546. 56 - CH\ EG -

1 200 = F//;

BE ^ 536.64 -.-= CF.

(c) Additional stress in AG = 1040 y'^ ; />G = 680 4/5 ;

GE— 600 \/$; AE=z222o; BE — 600; BC— 400 \/J'f

BE= 400 4/5 ; CF = 400 ; CB — 400 4/5^ ; EF = 1 1 20

;

FD =^20.

(In case (c) the brace BF is introduced to prevent distortion.)

49. A pair of shear-legs, each 25 ft. lont^, with the point of suspension

20 ft. vertically above the ground surface, is sup))orted by a tie 100 ft.

long; distance between feet of legs = 10 4/5 ft. Find the thrusts along

the legs and the tension in the tie when a weight of 2 tons is being

lifted.

Ans. Tension in tie = 1. 137 tons; conipn. in each leg = 1.87 tons.

50. In the crane yWC, the vertical post AB — 15', the jil) AC=- 23',

and the angle BAC = 30°. Find {a) the stresses in the jib and tie, and

also the bending moment at the foot of the post when the crane lifts a

weight of 4 tons.

The throw is increased by adding two horizontal members CE, BD
and an inclined member DE, the figure BE being a parallelogram and

the diagonal CD coincident in direction with CA. Find {d) the stresses

in the several members of the crane as thus modifud, the weight lifted

being the same.

In the latter case show {c) how the stresses in the members are affected

when the chain, which is in four falls, passes from E to B and then down
the post.

Ans.—{a) Tension in tie = 3^ tons; thrust in jib = 6^?j tons;-

(b) Stress in CE - 9.34; in ED = 10.16; in CB = 13.49;

in CD = 6.15; in DA = 10.7 ; in BD = 7 tons.

(c) Stress in CE = 8.9; in ED = 10.7; in CB = 12.9;

in CD = 5.8 ; in DA — 10.7 ; in BD — 7.4 tons,

51. The horizontal traces of the two back-stays of a derrick-crane

are x and^* feet in length, and the angle between them is fi. Show that

the stress in the post is a maximum when
cos (fi — 0) X

cos 6
= -, being the

angle between the trace x and the plane of the jib and tie.
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52. The two back-stays of a derrick-crane are each 38' long, and the
angle between their horizontal traces 2 tan''/j; height of the crane-
post = 32'; the length of the jib = 40'; the throw of the crane = 20';

the weight lifted = 4 tons. Determine the stresses in the several mem-
Ijcrs and the upward pull at the foot of eacii back-stay when the plane of
tile jib and post (a) bisects the angle between the horizontal traces of
the back-stays, {b) passes through a back-stay,

Ans. In jib = 5 ; in tie = 2.52 tons; in back-stay in (a) = 2.56,

in (/') = 4,7 tons.

53. Find the stresses in the members of the crane represented

by the figure; also find balance-weight

at C.

Ans. Stress in BE = 2^; DE = 26.9;

DB = M?ol;'' ZfA = 26,08

;

BA = .Ji^BC = i^ia'^ns.
Counterweight at C = ^'^.14'^'

Fig. 129. tons.

54. Draw the stress diagram for the truss represented by the figure,

the load at each of the points B and C being 500 lbs.

10TON8

Fig. 130.

Also, if the rafter AB is subjected to a nominal wind-pressure of 100

lbs. per lineal ft., introduce the additional member required to prevent

deformation, and state in lbs. the stress it should be designed to bear.

Draw the stress diagram of the modified truss, assuming that the foot A
is fixed, and that there are rollers at Z>.

(AB = AE= is'; BC= \o'; angle BAD = 45° ; angle EA£> = 30°.)

55. The post AB of a jib-crane is b_

20 ft. ; the jib AC is inclined at 30° and

the tie BC at 45° to the vertical ; the

weight lifted is 5 tons. Find the

stresses in the jib and tie when the

chain passes (a) along the jib, (d) along

the tie, (c) horizontally from C to the

post.

The chain has two falls.

56. In a mansard roof of 12 ft. rise, the upper triangular portion (of

4 ft. rise) has its rafters inclined at 60° to the vertical. The rafters of the

Fig. 131.

»

f
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i.

lower portion are inclined at 30° to the vertical. If there is a load of

1000 lbs. at the ridge, find the load at each intermediate joint necessary

for equilibrium, and the thrust of tlie roof.

A load of 2000 lbs. is concentrated at each of the intermediate joints

and a brace is inserted between these joints. Find the stress in the

brace.

Ans. 1000 lbs.; thrust = 500 (
'3 lbs.; 333^4/3 lbs.

57. The horizontal boom CD is divided into eight segments, each

8 ft. long, by seven intermediate supports;

the depth of the truss at each end = 16 ft.;

a weight of i ton is concentrated at. C and

at IK and a weight of 2 tons at each of the

points of division. Determine the stresses

ill tlie several members.

58. The figure is a skeleton diagram of a roof-truss of 72 ft. span and

12 ft. deep; G,K,L,0, Hare respectively the middle points of W£", itZ,

EF, U\ FB ; AE- EL = LF= FB = 20 ft.;

the trusses are 1 2 ft. centre to centre ; the dead

weii;ht of the roof = 12 lbs. per sq. ft.; the

normal wind-pressure upon ^i^may be taken

= 30 lbs. per sq. ft.; the end A is fixed and

Show by dotted lines how the

Fig. 13a.

L O F

nc

Fig. 133.

B is on rollers. Draw a stress diagram

stress diagram is modified with rollers under A, B being fixed.

59. The platform of a bridge of 84 ft. span b c d e

and 9 ft. deep is carried by a pair of trusses of

the type shown in the figure. If tiie load borne ^' "^ '^ "^

jj;

by each truss is 300 lbs. per lineal ft., find the Fig. 134-

stresses in all the members.

Ans. Stress in AB = 6000 ; AC = 1200 4/73 ; AD = 3600 |/i7

;

BC = 4800 ; CD = 14400 ; DE = 28800.

Stress in horiz. chord = 288000; in each vertical = 3600

lbs.

60. The figure represents the shore portion of one of the trusses for

a cantilever higiiway bridge. The depth of

truss over pier = 51 ft.; the length of each

panel = 17 ft.; the load at A (from weight of

centre span) = 16800 lbs.; the width of road-

way = 15 ft.; the load per sq. ft. of roadway
^'°* *35- = 80 lbs. Find the stresses in all the mem-

bers, assuming the reaction at the pier F to be vertical.

Ans. ti = /j = 28000 ; /s = 36500 ; A = 45000 ; tf, = 53500

;

/o = 55200 ; /t = 48400 ; /a = 41600 = /g ; Ci = 5600 4/34 :

fa = 7300 V34 ; ^1 = 10200 ; v.> = \ 5300; 7'3 = 2o^co
;

t& ts tr ts <oB

16,800 lbs,
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f

V4 ;55cxj; 7>,, z= 45(;oo; 7', :o4o3 ; ih --n 15300;

v» = 10200 ; ra = youo V 34 ; '1 = 10700 ^ 34 ;

fi = I 2400 1^34 ; Tb = 77500; r7 =69000; r» = 60500;

c» = 52000 ; rA = 1700 1/34 ; r/a = 1700 |/6i :

</s = 1700 |/io6 ; cA = 22100; r/« = 1700 ^97 ;

r/d = 3400 |/|3 ; </; = S500 lbs.

61. The inner flaiijje of a bent crane forms a quadrant of a circle of

20 ft. radius, and i.s divided into /our equal bays The outer flange

forms the scj^nnent of a circle of 23 ft. radius. The two flanges are 5 ft.

apart at the foot, and are struck from centres in the same horizontal

line. The braciPi^ consists of a series of isosceles triangles, of w'.iich the

bases are the equal bays of tlie inner flangs . The crane is required t(>

lift a weight of 10 tons. Determine the stresses in all the nieuiljers.

62. A braced semi-arch is 10 ft. deep at the wail and projects 40 ft.

Tiie upper flange is horizontal, is divided intoy6»//A- equal bays, and carries

a uniformly distributed load of 40 tons. The lower flange forms the

segment of a circle of 104 ft. radius. The bracing consists of a series of

isosceles triangles of which the bases are the equal bays of the upper

flange. Determine the stresses in all the members.

63. The domed roof of a gas-holder for a clear span of 80 ft. is strength-

ened by secondary and primary trussing as in the ligure. The points B
and C are connected by the tie BPC passing

beneath the central strut ^y", which is 15 ft.

long, and is also common to all the primary

trusses; the rise of A above the horizontal is 5

ft.; the secondary truss ABKF consists of the

equal bays AH, HG, GB, the ties BE, EF, FA, of which BE is horizon-

tal, and the struts GE, FH, which are each 2 ft. 6 in. long and are par-

allel to the radius to the centre of GH ; the secondary truss ACLK is

similar to ABEF; when the h(j!der is empty the weight supported by

the truss is 36000 lbs., which may be assumed to be concentrated at G,

H, A, M, N, in the proportions 8000, 4000, 1000, 4000, and 8000 lbs., re-

spectively. Determine the stresses in the different members of the truss.

64. The figure is the skeleton diagram of a cantilever for a viaduct in

42' I 12'

6 6 6
91 toua 48 toBi 43 tou 4ii \a» S

I

Fig, 137.

•-mmtitkm
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the stresses in the several members when a weight of 3500 lbs. is con-

centrated at the vertex.

Ans. 7000 lbs.; 6309.8 lbs.; 3500 lbs.

{b) The roof in {a) is loarled with 10 lbs. per square foot on one side

and 33 lbs. per square foot on the other; tlie trusses being 13 ft. centre

to centre. Determine («) the stresses in the several members. Examine

(p) the ellect of a horizontal pressure of 14 lbs. per square foot on the

most heavily loaded side, assuming that the reaction is equally divided

between the two supports.

Ans. (d) 1 1 180 lbs.; 10077.65 lbs.; 5590 lbs.

69. In the truss represented in the accompanying figure, the load

on AH = Wx ,or\ ACz= IVt ; the angle Alil) = (i-,

AD = BD= AE = CE. Find the total weight

^j£^^ ^~^^c of metal (wrouglit-iron) in the tie-rods.

Ans. -
6

5 W, + W-,

F'G. 141. 6 /
and/ the inch-stres

(a) If the stress i

<r

/8 = 60°
; a being the angle ABC.

S cot (i ; S being the span

BD or EC is equal to the stress in DE, show that

(b) The trusses are 12 ft. centre to centre ; the span is 40 ft.; the hori-

zontal tie is 16 ft. long; the rafters are inclined at 60" to the vertical; the

dead weight of the roof, including snow, is estimated at 10 lbs. per sq. ft.

of roof-surface. Determine the stress in each member when a wind

blows on one side with a force of 30 lbs. per sq. ft. normal to the roof-

siiitace, assuming that the horizontal reaction (i) is wholly borne at B,

(2) IS equally divided between the supports.

Ans.—\\) Stress in AB = 8956.8 lbs.; BD = 10015.2 lbs. = EC;
AD— 2503.8 lbs. - AE; DE = 8196 lbs.;

AC = 1 1356.8 lbs.

(2) Stress in AB = 7756.8 lbs.; BD = 6840.9 lbs. = EC;
AD=s lyiolbs. = AE; AC = loi $6.8 Ihs.

70. In the truss represented by the accompanying figure, the load

upon AB = IVi , upon AC= IV, ; the angle ABD=
^

/S; the span BC= S; the ties AD, BD, AE, CE are

equal ; E and G are the middle points of the rafters.

Find the amount of metal in the tie-rods (wrought-

iron).

- I 7

Fig. 142.

lVi+(lVi+ IV,) cos' ft

sin ft cos ft

(a) The struts DP and EG are each 5 ft.; the angle ABC = 30° ; the

dead weight of the roof, including snow, is 9 lbs. per square foot of roof-

surface, and the trusses are 12 ft. centre to centre. Determine the

stresses in the several members when a wind blows with a force of 30



EXAMPLES. 87

)

lbs. per square foot of roof-surface normal to the side AB. The span

= fio ft., ami the cud C rests upon rollers.

Secondly, determine the stresses produced in the members of the

truss in the preceding question when a single weight of 3000 lbs. is sus-

pended from (/.

//«i.—(0 Stresses in /W; DA; DE\ EA\ EC;
31238.55; 19852.35: 12633.6; 81

1 3.5; 14379.43;

BF; FA; Fl); CG\ GA; GE.

29620.44; 28685.16; 7855.2 ; 22420.44; 21485.16; 1620 lbs.

(2) Stresses in BD; DA; DE; FA; EC;

375 Vy)\ 125 i/39; toooi/J; 875 \/^; 1125 V^;
BF; FA; FD; CG; GA; GE. _
2625; 2625; o; 7875; 6375; 1500^/3 lbs,

{b) The rafters AB, AC are of unequal length and make angles of

60° and 45°, respectively, with the vertical ; the strut DF = 7i ft.; the

tie DE is horizontal; the dead load upon each rafter = 100 lbs. per

lineal foot ; the wind-pressure normal to AB = 300 lbs. per lineal foot,

rollers are placed at C. Find the stresses in all the members. The
rafter AB = 45 ft.

Show by dotted lines how the stress diagram will be modified:

(i) If the rollers a>e placed at B.

(2) If the strut I)F is omitted.

(3) If a single weight of 500 lbs. is concentrated at Z>.

(c) If it is assumed that the horizontal reaction is equally divided be-

tween i9 and C, show that the stress in Z^A' due to a horizontal wind-

pressure upon AB is nil ; the angle ABC being 30°.

(d) In a given roof, the rafters are of pitch-pine, tlie tie-rods of

wrought-iron ; the span is 60 ft.; the trusses are 12 ft. centre to centre;

DF= 5 ft.=^^G^; the angle ABC = 30"; the dead weight of the roof, in-

cluding snow, is 9 lbs. per sq. ft. of roof-surface ; rollers are placed at C\

a single weight of 3000 lbs. is suspended from F, and the roof is also

designed to resist a normal wind-pressure of 26.4 lbs. per sq. ft. of roof-

surface on one side AB. Determine the stresses in the several

members.

71. In the truss represented in the accompanying figure, the struts

DF, DH, EG, EK are equal, and the ties BD, AD, a

EA, EC are also equal ; the load upon AB is W\ , jj^^^^^ -

and upon AC is IV-i . Find the weight of metal —i*"*^ ^"""^ ^

(wrought-iron) in the ties.

Ans.

Fig. 143.

J_ ^ 4 ^1 + 3^ ^1 + W^) cos' P
18/ cos li sin ft

(a) AD = AE = BD = EC = 23 ft.; the angle ABC = 30° ; the span
= 79 ft.; the trusses are 13 ft. centre to centre; the heel B is free to
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slide on a smooth wall-plate; the dead weiijht of the roof, including

snow, is 8 lbs. per square foot of roof-surface. Dctenniiic the stress to

which each motnI)er is subjected when the wind blows horizontally with

a force of 40 ll)s. per square foot of vertical surface (i) upon the side

AB, (2) upon the side AC.

Ans. See Ex. 3. Art. 24.

ib) The rafters AB, AC are inclined at 60' to the vertical and are

cacli 40 ft. in length. The foot Crests

on rollers, <ind the foot B is fixed. The
strut DF is vertical, is 10 ft. long, and

is equal to the strut DE in length.

A Iso ^Z' =HF = I o ft. The dead load

carried by the rafters is 120 lbs. per

lineal foot. Provision has also to be

made for a normal wind-pressure upon
///)' of 300 lbs. per lineal foot. Draw
the stress diagram, and show how it

will be modified if the strut DF is re-
^'"^- '»+• moved.

Ans. Vertical reaction at B — 10528 lbs. both before and after

DF is removed.

Horizontal reaction at ^ = 6000 lbs.

The dotted lines show the modified stresses for one iialf

of the truss.

72. The load upon a roof-truss of the accompanying type is 1000 lbs. at

each joint; the span 100 ft.; the rise = 25 ft. Find the stresses in

A
N

i

E G K N P

Fig. 145.

the different members. How will the stresses be affected by an addi-

tional load of 250 lbs. at each of the joints between the foot and ridge

on one side ?

Ans. Stress in ^Z? = S^oo i/5"; ^^ = 50°° f'5";

FH = 4500 v'5 ; //L = 4000 1/5 ; LN — 3500 4/5";

A^A = 3000 v^5 ; J^^ = o ; FG = 500 ; HK— 1000;

LM= 1 500 ; NO — 2000 ; AP = 5000 ;

BE —
I looc = EG ; GK= loooo ; KM = 9000

;

MO = 8000 ; OP = 7000 ; DG = 500 4/5";

FK = 1000 1/2; HM — 500 4/13; LO = 1000 Vs";

AT' = 500 4/29 lbs.

I
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73. The dead load upon a roof-truss of accompanying type consists

^
of 1000 lbs. at F, 1000 lbs. al A', and 500 lbs.

at G\ the wind-pressure is a normal force of

30 lbs. per square loot, of roof-smface upon
AB ; the span — 90 ft.; the rise = 25 ft.; tlie

trusses are 25 ft. centre to centre. Find the

stresses in the several members when rollers

r
H/'1\ K

G

D L E

Fig. 146.

are (a) at C {(>) at B.

Ans.—{a) Reaction (vertical) at C= 1 2291 S Ihs.; vertical reaction

at /)' — 239584^ lbs.; horizontal reaction at i^ =
18750 lbs.

Tension in BD = 48625 ; J7L = 34475 : LE = 21675 '<

EC= 22125; /-'>'/ = 7«6i^; ^IL = 15888 J;

A'E = 250 lbs.

Compression in />/^=3666f |/io6 ; FH=2jS%\ f^io6;

HA —
1977 J i 106; AK = 2325 f 106;

KG = 2408 ?r \ 106 ; GC = 2458^ ^ 106 ;

DF =
1 572'5 V 106 ; Z,// = 1 505;;; \ rsT ;

LA' = 83 J V'Tsi : FG = 50 4/106 lbs.

(^) Only alteration in stresses is that each stress in the

different sections of the horizontal tie is diminished

by 18750 lbs.; all the remaining stresses are un-

changed.

74. In the accompanying roof-truss, angle ABC = 30° , the span = 90^
A ft.; VF = FG = loi ft.; each rafter is divided into

four equal segments by the points of support

;

the trusses are 20 ft. centre to centre ; the weight

of a bay of the roof = 24416 lbs. Determine the
F'<5- '47- stress in each member.

Also determine the stresses due to a wind-pressure of 30 lbs. per square

foot of roof-surface acting normally to AB, when rollers are under {a) C,

ib)B.

75. The figure represents a bowstring truss of 80 ft. span, cut off by

the plane AfN and supported at O. The upper

flange OCDE is an arc of a circle of 85 ft. radius;

OA — AB — etc. = 10 ft. ; the rise of the truss

= 10 ft. ; a load of 15 tons is concentrated at each

of the points A and B \ the reaction at O = 45
tons. Find the stresses in the members cut by

the plane MN, PlO. Z48.
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76. The figure is a portion of a bridjj[e-truss cut off by the plane MN'
and supported upon the abutment at A\ AC
— CE= HsV ft.; the depth BC = DE = I7i ft.

;

in the third panel the compression in tlie upper

chord is 64,600 lbs. ; the tension in the lower

chord is 53,800 lbs. Find the reaction slIA, the

equal weights supported at C and E, and the

diagonal stress T.

Ans, Reaction = 38,943 lbs. ; weight at C
andatZf= 12,954 lbs.; 7^= 16, 578 lbs.

Tj. The top beam of a roof for a clear span of 96 ft consists of six

bars AB, BC, CD, DE, EF, FG, equal in length and so placed that

A, B, C, D, E, F, G are on circle of 80 ft. radius , the tower boom also

consists of six equal rods AH, HK, KL, LM, MN, NG, the points //, A'.

L, M, and A' being on a circle of 148 ft. radius; B is connected with

H, Cwith K, D with L, £" with M, and /"with N ; the opposite corners

of the bays are connected by cross-braces ; the end A is fixed to its sup-

port, G being allowed to slide freely over a smooth bed-plate. Determine

graphically the stresses in the various members when there is a normal

wind-presGure per lineal foot of 460 lbs. upon AB, 340 lbs. upon BC, and

60 lbs. upon CD.

78. A bowstring roof-truss, with vertical and diagonal bracing, of

50 ft. rise, and five panels, is to be designed to resist a wind blowing

horizontally with a pressure of 40 lbs. per square foot. The depth of the

truss at the centre is 10 ft. V)&term\ne, grap/itca/ly, the stresses in the

several members of the truss, assuming that the roof rests on rollers

at ti\c windward support.

79. Determine the chord, vertical and diagonal stresses in a Howe
truss of 80 ft. span, 8 ft. depth, and ten panels, due to a load of 40 tons

(a) concentrated at the centre ; {d) concentrated at the third panel point

;

{c) uniformly distributed ; {d) distributed so that 5 tons is at first panel

point, 10 tons at second, and 25 ^ons at third.

Ans. Panel stresses in tension chord :

a
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Panel stresses in compression chord

a
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Ans.— a! lmnopqrs! Stress in BA, BM, DM, DO, FO, FQ,

HQ, HS, same and =
BCDEFGH K

Fig. 150.

IV ^
~6^ III

W
CA, CO, GO, GS same and =->- \^2

;

10

/p j^
in EA, ES same and = -„ -t/c ; in AK — — yi7 ; in BL,

W W
DN, FP, HR, same and = —^ ; in CM, GO same and = -r- ;

10 "^ 6

IV W
in £"0 = —- ; in A'^ = — ; in AM, MO, OQ, QS same and

4 2

64

82. Determine the stresses in the members of a Bollman truss 100 ft.

lone; and 12A ft. deep, under a uniformly distributed load of 200 tons, to-

gether with a single load of 10 tons concentrated at 25 ft. from one end.

Ans. Stress in AB = ^^ ^2; 5Z = ifi 4/2 ; AD = ^- 4/5 ;

DL = ^/ 4/37 ; ^Z- = ^F V^o; FL = V- V'26;

^// =r -i^5. ^7y = //j:; in ^C = 25 = FG =--

//A' = etc.; DE— 50 tons; compression alor.g

A'L = 193J tons.

Note.—Questions 53, 54, 57-59, 61, 66, 67, 70, 71, 73, and 74 can be

easily solved graphically.

83. Determine the stresses in tiie several numbers when the throw

of the crane in Question 55 is increased by the introduction of the new
members, shown bv the dotted lines.



CHAPTER II.

SHEARING FORCES AND BENDING MOMENTS.

I^^ote.—In this chapter it is assumed that all forces act in one and the same

plane, and that the deformations are so small as to make no sensible alterati'^n

either in the forces <-.r in their relative positions.

I. Equi^brium of Beams.—A beam is a bar of somewhat

considerable scantling, supported at two points and acted upon

by forces perpendicular or oblique to the direction of its length.

Case I. AB is a beam resting upon two supports in the

same horizontal plane. The reactions

R^ and A\ at the points of support are

vertical, and the resultant /-* of the

remaining external forces must also

act vertically in an opposite direction

.Ri

iA Bi

r
Fig. 152.

at some point 6. According to the principle of the lever,

BC
R, = P

AB'
R -P^-^

' ~ AB'
and R,-{-R, = P.

Fig. 153.

Case II. AB is a beam supported or fixed at one end.

Such a support tends to prevent any deviation from the

straight in that portion of the beam,

11 t p and the less the deviation the more
^

''^"TT
^ —

:

'B perfect is the fixture.

^O 'J ^P The ends may be fixed by means of

two props (Fig. 153), or by allowing it

iL_- to rest upon one prop and preventing

upward motion by a ledge (Fig. 154), or

by building it into a wall (Fig. 155).

In any case it tnay be assumed that

j==iB the effect of the fixture, whether perfect

tp or imperfect, is to develop two unequal
P"^ "ss- forces, (2 and /?, acting in opposite di-

rections at points M and N. These two forces are equivalent

93

R.

Fig. f;4.

Ac f¥
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to a left-handed couple (^, — 0, the moment of which is

Q.MN, and to a single force R—Q at N. Hence R — Q
must = /".

Case III. AB is an inclined beam supported at A and

resting upon a smooth vertical surface

at i9.

The vertical weight P, acting at the

point C, is the resultant load upon AB.
Let the direction of P meet the hori-

zontal line of reaction at B in the

point D.

The beam is kept in equilibrium by

the weight P, the reaction R^aX A, and the reaction R^ at B.

Now the two forces R^ and P meet at D, so that the force R^

must also pass through D.

Hence /?, = />__^^ and /?, P tan ADC.

Note.—The same principles hold if the beam in Cases I and

n is inclined, and also whatever may be the directions of the

forces P and R^ in Case HI.

Case IV. In general, let the beam AB be in equilibrium

under the action of any number of forces /*, , /^ , P, , . . .
,

(2i > <2a > Gs > • • • > of which the magnitudes and points of appli-

R R

AC l_f
M

Q6

I
P5

k V Y

>B

Fig. 157.

cation are given, and which act at right angles to the length of

the beam. Suppose the beam to be divided into two segments

by an imaginary plane MN. Since the whole beam is in equi-

librium, each of the segments must also be in equilibrium.

Consider the segment AMN.
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It is kept in equilibrium by the forces P,, P^, f^, . . . and

by the reaction of the segmen*^ ^JlIN upon the segment AMN
at the plane MN\ call this reaction/:,. The forces/*,,/*,,

/*3, . . . are equivalent to a single resultant /?, acting at a point

distant r, from MN. Also, without affecting the equilibrium,

two forces, each equal and parallel to R^ , but opposite to one

another in direction, may be applied to the segment AAfN at

the plane MN, and the three equal forces are then equivalent

to a single force R^ at AfN, and a couple {R^ , — /?,) of which

the moment is R,r^,

Ac

R.

v-^ ili /
Ri Rj

Fig. 158.

)B

Thus the external forces upon AMN are teducible to a

•single force R, at MN, and a couple (/?, , — -/?,). These must

be balanced by ^, , and therefore £, is equivalent to a single

force — R, at MN and a couple (-/?, , R,).

In the same manner the external forces upon the segment

BMN are reducible to a single force R^ at MN, and a couple

{R^, — R^ of which the moment is /?,r, . These again must

be balanced by ^,, the reaction of the segment yiJ/iV upon

the segment BMN.
Now £, and E^ evidently neutralize each other, so that the

force /?, and the couple {R^ ,
— /?,) mu^ neutralize the force

R^ and the couple (7?,, — R,). Hence the force /?, and the

couple {Ri , — Ri) are respectively equal but opposite in effect

to the force /?, and the couple {R,, — R,) ; i.e.,

R^ = R^ and R,r, = R^r^ ; .-. r, = r,.

The force R^ tends to make the segment AMN slide over

the segment BMN at the plane MN, and is called the Shearing
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'•

Force with respect to that phuic. It is equal to the algebraic

sum of the forces on the left of MN,

So /?, = Q, Q, - Q,-^. . . = 2{Q) is the algebraic sum
of tile forces on the rii^/if of Jl/N, and is the force whicii tends

to make the segment liiMN slide over the segment AMN aX.

tile plane AfiY. A', is therefore the Shearing Force with respect

to MN, and is equal to A', in magnitude, but acts in an opposite

direction.

Ag.Jn. let/, ,/>,,/,,..., ^, , <7, , <7g ,..., be respectively the

distances of tin; points of application of P^, P^, P^, . . . yQ^, C?.j

,

(J,, . . . from MN.
Then A',r, , = the algebraic sum of the moments about

MN of .i\\ the lorces on the /e/^ of A/N,

= P>A -I- ^.A ~ P.P. + .
. . = 2{Pp),

is the moment of the couple [R^, R^).

This couple tiiids to bend the beam at the plane AIN, and

its moment is c.dled the Bending Moment with respect to MN
of all the forces on the left of MN.

So A'.jr.j., i::; me algebraic sum of the moments about MN
of all the forces on the right of MN,

= Q.^h Q.q. - . .
.
= ^{Qq\

is the Bending Moment, w ith respect to MN, of all the forces on

the right of MN, and is equal but opposite in effect to A\r,

.

It is seen that the Shearing Force and Bending Moment
change sign on passing from one side of MA^ to the other, so

that to define them absolutely it is necessary to specify the seg-

ment under consideration.

Remark.—The reaction E^ has been shown to be equivalent

to the force — R^ and the couple (— R^ , R^). The Moment
of this couple may be called the Elastic Moment, the Moment

of Resistance, or the Motnent of Inflexibility, and is equal in

magnitude, but opposite in effect, to the corresponding Bend-

ing Moment due to the external forces.
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Fig. 159.

2. Examples of Shearing Forces and Bending Mo-
ments.— 111 each of tin- following

examples the beam is horizontal and

of length /.

Ex. I. The beam OA, p-ig. 159,

is fixed at A and carries a weight

P at O.

The Shearing Force \S^ at every

point of tiie beam is evidently con-

stant and equal to P.

Upon the verticals through A and O take AB and C^Ceach
equal or proportional to /-*; join BC. The vertical distance

between any point of the beam and the line BC represents the

shearing; force at that point.

Again, the Bending Moment (M) at any point of the beam
distant x from O is Px ; it is nil at O, and P/ at A.

Upon the vertical through A take AD equal or propor-

tional to P/\ join DO. The vertical distance between any

point of the beam and the line DO represents the bending

moment at that point.

Ex. 2. The beam OA, Fig. 160, is fixed at A, and carries

a uniformly distributed load, of in-

tensity zu per unit of length.

The resultant force on the right

of a vertical plane J//V distant x from

O is 7VX and acts half-way between

O and MN.
The Shearing Force {S) at MN is

therefore zvx] it is nil at O, and 7vl

at A. Upon the vertical through A
take y? 5 equal or proportional to wl\ join BO. The vertical

distance between any point of the beam and the line BO rep-

resents the shearing force at that point.
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The bcncHiij^ moment at any point of the beam is repre-

sented by the vertical chstancc between that point and a pa-

rabola CO having its vertex at O and its axis vertical.

Ex. 3. The beam OA, Fig. 161, is fixed at A and carries

a single weight P at O, together with a uniformly distributed

load of intensity w per unit of length.

The Shearing Force {S) at a plane MN distant x from O
is evidently P -\- wx ; ii: is P at O, and /*-[- '''^ ^t A.

Upon the verticals through O aiul A take OC ci\\xd\ or pro-

portional to /*, aid AB equal or proportional to ivl -\- P\
join BC. The vertical distance between any point of the

beam and the line BC represents the shearing force at that

point.

Again, the Bending Moment {M) at MN is evidently

X
ivx— + Px

2 '

wx'^
+ Px\

it is nil at O, and -f PI at A

Upon the vertical through A take AD equal or propor-

tional to 1- PL The bending moment at any point of

the beam is represented by the vertical distance between that

point and a parabola DOE having its axis EF vertical and its
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vertex at a point /i, wlicre O/'' = and /i/'^ is equal or pro-
71'

portional to — .

Note.—Tile ordiiiatcs of the line BC in Ex. 3, arc equal to

the algebraic sum of the corresponding ordinates of the straight

lines BC and BO in Kxs. i and 2. Also, the ordinates of the

cur\e DO in Kx. 3, are ecjual to the algebraic sum of the cor-

responding ordinates (^f the line DO in I'^x. i, and the curve

CO in Ex. 2. Ilence the same conclusions as in Ex. 3 are

arrived at by treating the weight P and the load ivl inde-

pendently, and then superpijsing the respective results.

E.V. 4. The beam OA, Fig. 162, rests upon two supports

at O and A, and carries a weight /-*

at a point /?, dividing the beam
into the two segments OB, BA, of

which the lengths are a and b re-

spectively.

The reactions A\ , R^ at O and

A are vertical, and according to the

principle of the lever, f,g. ,62.

a
R, = P-, and R^ ^ P-..

The Shearing Force (5) at every point between O and B is

b
constant and equal to R^ = P.. On passing B the shearing

force (S) changes sign, and its value at every point between />

a
and A is constant and equal \.o R^ — P = - Pj = — R^. Upon

the verticals through O, B, and A take OC, BE, each equal or

Pb
[)roportionaI to -v , and BP, AD, each equal or proportional

to
—J- ;

join CE and DP. The shearing force at any point of

tne beam is represented by the vertical distance between that

point and the broken line CEFD.
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i

Again, the Bending Moment {M) at any point between O

and /> distcint x from is R^x — P .x\ it is nil at 6?, and

Tile Bending Moment (M) at any point between B and A

distant x from O is A',a — P{x — rt) = /^-yl/ — a) ; it is

P . at /)', and nil at A.

Upon the vertical through B take BG equal or propoitional

to P-j' joi" ^^ 'I'^'J -^^^ Tile bending moment at any

point of the beam is represented by the vertical distance be-

tween that point and the line OGA.
P

Cor.— If Pbe at the centre of the beam, S ~ -, and M
at the centre = PI

Ex. 5. The beam OA, Fig. 163, rests upon two supports

^ aX O and A, and carries a uni-

formly distributed load of inten-

sity zv per unit of length.

The reactions at O and A are

. each equal to -.

The resultant force between O
^ and a plane MN distant x from O

is wx, and acts half-way between

and MN. The Sheari)

Fig. 163.

tng {S)

wl — ivx ; it IS

wl

wl
at O, nil at the middle point B, and

at A. Upon the verticals through O and A take OC

zvl
and AD, each equal or proportional to —

;
join CD. The

shearing force at any point of the beam is represented bv the

vertical distance between that point and the line CD.
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AjTuin, the Bcmiing Monuiit {M) at MN is

— .V — tvx = —X — —2T -> >

it is nil at and at A ; it is a maximum and equal to - at

the middle point />. Upon tiie vertical thiou»;ii li t.ike HH

equal or proportional to . The bending moment at any
o

point of the beam is represented by thp vertical distance be-

tween that point and a parabola OEA having its vertex at E
and its axis vertical.

Cor. I. The shearing force is a minimum and zero at the

%vt
centre, a maximum and — at the ends, and increases uni-

2

formly with the distance from the centre.

Cor. 2. The bending moment is a minimum and zero at

zvl'
the ends, a maximum and -^ at the centre, and diminishes

o

as the distance from the centre increases.

Ex. 6. The beam OA, Fig. 164, rests upon two supports at

O and A, and carries a weight P dX

a point B, together with a uniformly

distributed loau of intensity zu per

unit of length.

Let the lengths of the segments

OB, BA be a and b, respectively.

The reactions R^ at 0, and /?,

at A, are vertical, and according to

the principle of the lever,

b . wl

and

^. = /s +

a wl
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The Shearing Force (S) ai any vertical plane between O and

JJ disunt X from O is

_ _^ zt'/

/ 3

P^^ w/ ^ .
Pb

^
wl

It IS —r H ^ at 6', and -r ^ ^ew at B.
/ ' 2 / ' 2

The Shearing Force (5) at any plane between i? and yJ

distant x from (9 is

b zvl

' / ' 2
/* — w;ir = wl Ji

P-j — zvx ;

. , wl Pa
It IS T — 7va at /j, and

2 /
, at A.
I 2

i''

It' '

i I

I' !

Upon the verticals through O, B, and yi take OC equal or

^'^ Z£^/ „^
proportional to , H -/^Z? equal or proportional to

If ^

Pb .
wl zvl Pa

-j — zva, BE equal or proportiopr.! to ;

/ • 2
wa.

wl Pa
and AF equal or proportional to — j\ join CD and

/r/'"! The shearing force at any point of the beam is rep-

resented by the vertical distance between that point and the

broken line CDEF.
wl Pa

If — > y- -j- wa, BE is positive, and therefore E is ver-

tically above B.

Again, the Bending Moment (M) at any point between

O and B is

„5 , Zi'l\ wx*
P , A \x ;

/ ' 2 / 2

it is nil at O, and

/',+ '!^\ - wa
at B.
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The bciidiny; moment (J/) at any point between B and A
distant X from O is

it is \P-, -\ ja — at B, and nil at A.

Upon the vertical through B take BG equal or propor-

tional to \P-'. -f-
~)^ • The bending moment at

any point of the beam between O and B is represented by tlie

vertical distance becween that point and a parabola OGM
having its axis HT vertical and its vertex at a point H, where

and

HT is equal or proportional to -- [Pj -\ 1

f

The bending moment at any point between B and A is

represented b}- the vertical distance between that point nnd a

parabola AGK having its axis /i'F vertical and its vertex at a

point K, where

w\ / ' 2 /

and

(I zv/yKV is equal or proportional to ~l — Pj -\ ) -|- Pa.

Cor.— If the weight /* is at the centre,

P PI xvf
S — —

, and M at the centre — 1—5-.
2 4 "

Note.—The ordinates of the lines CD and EF in Ex. 6 are

equal to the algebraic sum of the corresponding ordinates of the
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liiu's (7'!, FP ill I-'x. 4, and the liiu" (.'P in I'-x. 5. Also, the

ortllnatcs of tlir curves (Ui, A(i arc iMjual to tlic al{;cl)iaic

sum ol tlic cot ri'spoiuliiii; oidiiiativs of tlu" lines (Hi, A(i in I',x.

4, and the cur\e 0/i.l in ICx. 5. llence the same conclusions

as in V.\. () are ai rived at by treating the weicjht /'and the

loatl a'/ in-.icpeiulently, and then superposing the respective

results.

I'A. 7. in line, a beam, however lojided, may be" similailx'

tie.ited, remcmbeiini; that if the load changes ^?/;;7//'/'/j' at dif-

ferent [)oints. the portions of the beam between the points of

iliscontinuity are to be dealt with separately. I*"or example,

the beam 0.\, Fig. 165, rests u[).)n two supports at (? and .i,

and c irries three weights P^, P.^, /\ at points C\ P, /:". of which

the ilistances from O arc />, , />.,, />.,, rc^spectivi-ly. A point />'

divitles O.l into segments OB = a and BA = />, which are

uniformly loaded with weights of intensities 70^ and u\ per

unit of length, respectively. The reactions /?, and R, at O and
A are vertical, and according to the principle of the lever,

^/ = P.iJ - P.) + Pll - A) + Pll- A)

and

R,/ =/',/'. + P.A + P.P. +~-^ w',^? + 4
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To represent <^rapliic.illy tlic Skcnrinc; Force at rliffcrcnt

points of the beam :

Upon the verticals through O, (\ /.', /), /'., A, take OF. C(r,

C/I, /»'A', PL, DM, EN, /iV, and A'J\ respectively equal r)r

pr(jportional to

anil

A',, A', - 7i',/>,, A' 7i',/', " I\, A\ 7(>,a

J\, — 7(1,(1 - - J\ Tl',//., -- It),

A\ - 7v,a — P, - n>,{ />, — n) — P,,

A*, - 70,(1 — J\ - 7C'.>/y, (f) /\,

A, - 7v,n - J\ ~ 7c,{p.., - o) l\ - P,,

-p.

A. 7i\a - P, - 7vJ) - /', - /; = A,.

Join FG, HK, KL, MN, and VT. The shearing force at

any point of the beam is represented by the vertical distance

between that point and the broken line FGHKLMNVT.
To represent graphically the Bending Moment \M) at dif-

ferent points of the beam :

MamO^o; MatC= R,p, - "^-^
;

11) d
M^\B^R,a--^--Pia-py,

M at £> = A,A - ^v,a\p, -
I)

— w,
(A-«)'

Pip. - P.) .
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M at E = R,p, - xva[p, -
^J

— "W, -Pip.~p.)-P.{p.-P.)-^

and

Milt A = o.

Upon the verticals through C, B, D, and E take C\, B2,

Z>3, and E/\, respectively equal or proportional to the bending

moments at these points.

The bending moment at any point of the beam is repre-

sented by the vertical distance between that point and the

parabolic arcs 0\, 12, 23, 34, and ^A. The axes of these pa-

rabolas are vertical, and the positions of the vertices may be

easily found from the several equations.

Ex. 8. A beam OA, Fig. 166, of which the weight may be

neglected, is 15 ft. long, is fixed

at O, and carries a weight of 80
lbs. at A. Determine the bend-

ing moment at a point distant 10

ft. from the free end. Also illus-

trate the shearing force ana bend-

ing moment at different points of

the beam graphically. The re-

quired bending moment is 80 X
10 = 800 Ib.-ft.

The shearing force is the same at every point of the beam,

and equal to 80 lbs. Choose a vertical scale of measurement

so that half an inch represents 80 lbs.

Upon OA describe a rectangle OABC, in which OC = AB
= ^". The ordinate from every point of BC to AO is ^", or

80 lbs., and is therefore the shearing force at the foot of such

ordinate.

Again, the bending moment at O is 80 X 15 = 1200 Ib.-ft.

Choose a vertical scale of measurement so that 1 inch repre-

sents 1200 Ib.-ft. Upon the vertical through C? take OD =
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I inch ;
join DA. The ordinate from any poii of DA to OA

is the bending moment at its foot. For example, at ii^ ft.

from O tlie ordinate is \" , or 300 Ib.-ft., and this is equal to

80 X 3f', i.e-. the bending moment.

Ex. 9. A beam OA, Fj. 167, of which the weight may be

neglected, rests upon two supports ^^

at O and A, 30 ft. apart, and carries

a uniformly distributed load of 200

lbs. per lineal foot, together with a

single weight of 600 lbs. at a point

B dividing the beam into segments

OB, BA, of which the lengths are 10

and 20 ft. respectively. Determine

the shearing force and bending mo-

ment at the points C and D, distant

5 ft. from the nearest end. Also,

illustrate graphically the shearing

lorce and bending moment at differ-

ent points of the beam.

Let 7?, , R, be the reactions at O
and A, respectively. Then

^, . 30 = 6cx) . 20 + 200 . 30 . 1 5 = 102000

;

.•. Ri = 3400 lbs., and A^, — 200 . 30 -f 600 — /?, = 3200 lbs.

The Shearing Force at C = 3400 — 200 . 5 = 2400 lbs.

" " " " Z>=3400— 200. 25—600= — 2200 lbs.

The Bending Moment at C = 3400 . 5 — 200 . 5 .
-

= 14,500 Ib.-ft.

Fig. 167.

The Bending Moment atD= 3400. 2 5

25
200. 25. — — 600. 15'2 -^

= 13,500 Ib.-ft.

Next, considering the segment OB, the shearing force at O
is 3400 lbs., and at B 1 400 lbs.

Considering the segment BA, the shearing force at A is

— 3200 lbs., and at B 800 lbs.

Choose a vertical scale of measurement so that i inch repre-

sents 3000 lbs. Upon the verticals through O, B, A take OE
= i^s^", BF= -iV'. ^^ = tV'» and AH= lyV" ;

join EF and
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Gil. The ordinate from ajiy point of the broken line EFGH to

OA is the Shearing Force at its foot. For example, the ordinate

at D is — jy, or — 2200 lbs.

Again, the bending moment at B is 3400. 10— 200. 10. 5

= 24,000 Ib.-ft. Choose a vertical scale of measurement so tliat

I inch represents 24,000 Ib.-ft. Ujion the vertical through 11

take BK= I inch. Draw the parabolas OK, AK, with their

vertices at points determined as in Example (6). The ordi-

nate from any point of the curves OK, AK is the bending

moment at its foot.

For example, at a point 14 ft. from O the curve ordinate is

i-^-^" , or 25,600 Ib.-ft., and this is the Bending Moment at the

same point, being also the greatest for the segment BA. The

vertex of AK is, therefore, vertically above the point of

which the horizontal distance from O is 14 ft.

3. Relation between Shearing Force and Bending
Moment.—Let a beam AB be arbitrarily loaded with weights

1

'

^'3
.

"^^3
»

concentrated at the points I, 2, 3,

-I 3 r-X r 'Ml 7)^ B

Fig. ir,8.

Let a, , a^, a^, . . . he the lengths of the segments Ai, 12,

23, . . . , respectively.

Let Af.i , Mb be the moments at A and B. These moments
are of course }iil if the beam merely rests upon supports at its

ends.

The reaction R Tit A is given by the equation

Rl = 7£/,(/ - a,) -f w,{l -a,-a,)+...-{-Ms-\-M^,

I being the length of the beam.

The shearing force 5, between A and \ = R\
I

"
2 = R — W^'y

2 " 1 = R — iv^ — w^\«

5„ " «-i " n-R- '2{iv)\

2{w) denoting the sum of the first (« — i) weights.
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The bending moment

M,t at A = 3fi ;

109

il/. " 2

Hence the difference between the bending moments at the be-

ginning and end of any interval is equal to the product of the

shearingforce {S) for that interval by the length {a) of the in-

terval.

Let AM denote the difference between any two consecutive

bending moments ; then

/IM = Sa.

This' result has been deduced without any assumption as to

the number of the loads. Tliey may therefore be infinite in

number and in the limit form a continuous load.

Thus, if 5 be the shearing force at a distance x from A^

dM
dx

= S;

or, the shearingforce at any point is equal to the rate of increase

of the bending moment per unit of length.

The above results may also be expressed as follows : The

shearing force at any point is measured by the tangent of the slope

at the corresponding point of the bending-moment polygon or

curve.

The shearing force is positive, zero, or negative according as

<
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^{tv) being the sum of the weights up to the point under con-

sideration. In the case of a continuous load, of intensity w,

^w) = /' wdx.

Thus the bending moment AT ^t the same point is a maxi-

DiHin (or a miniviuin in certain special cases) when the shear-

ing force changes sign, i.e., when

5 = o.

Again, with an arbitrarily distributed load

and with a continuous load

Thus the difference between the ordinates of the bending-

moment diagram at any point and A is proportional to the

area of the shearing-force diagram between the same points.

From this result an important deduction may at once be

made.

The bending moment M^ at any point between r and r-\-i

distant x from r is

M^ — R{a,-\-a,-\- . . . -{-a,-Jrx)—w^{a^-{-a,-\- . . . -\-ar-\-x)-\- , .

,

= M,. -(- x{R — w, — w, — . . . — w^

Now M^+^ = M,. 4" «,.+,5,^.,, and therefore 5^+, is zero if

iJ/, + , = Mr , and also M, = M^ = Mr+, .

Thus, i/i^ bending moment is ike same at every point between

r and r -f I, and the case is one of simple bending without shear,

as, e.g., with a carriage-axle.
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4. To Discuss the Effect of a Rolling Load.—Case I.

Let a single weight W travel from left to right over a girder

OA of length /, resting upon two

supports at and A.

The reaction /?, at O, when W is

I — X
at B distant x from O, is W—-.—
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when the weight is at B, is equal or proportional to BC (Fig.

169), which is evidently greater than 6"//, representing the

shearing force at />', when tlie weight is at an}- other point G.

Again, the bending moment at /> (Fig. 170), when W is at

/>', is WI -JX. If \V is at any other point G distant a from

aI — X I -

(\ tlie bending moment at B is W(t—.-' or IVx- . ,

according as ^? < or > x, and in cither case is greatest when

a = X, i.e., when the weight is at B.

Cor. 2. In addition to the rolling load, let the girder carry

a permanent weight W at the centre.

Consider one half of the i^irdcr only, and, for convenience,

trace the shearing-force and bending-moment diagrams for W
bcloiv OA.

The compound diagram for maximum shearing forces is

IVDTLFD (Fig. 171), where KT is equal or proportional to —

,

and KL — OF is equal or proportional to
W

The maximum shearing force at a point distant x from the

centre is represented by -a K = ~T\ + ^\ "h " •

D
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The luaxinuim hcinlin^ moment at a point distant x from

the centre is represented by

Cor. 3. Theoretically, the total volume of material required

in the web of the ^irtler in Cor. 2 is equal or proportional to

2 X AVcviJyrLF 3 ^^7 I w^
4 /.

"^
2 /,

/, being the web unit stress,

So, if li be the effective depth of the girder, and / the unit

stress in one of the flai'-ges, the total volume of metal in that

flange is equal or proportional to

2 X area OEFO 2IVP ivrr

3 4/^+ s/;y

I IIT I [FT

Case II. Let a train weighing zv per unit of length travel

over the girder from right to ieffr, and let the total length of

the train be not less than that of nr

the girder.

The reaction at A, Fig. 173,

when the front of the train is at

^ . wjtr"
,B distant x from O, is -^ , and

is the shearing force for all points

between A and B. Upon the vcr- i^'g- '73.

ticals through A and O take AD and OE each equal or pro-

portional to — . Thus between A and B the shearing force

at any point is represented b}^ the vertical distance between

that point and a parabola having its axis vertical and its vertex

at 0.

After the end of the train has passed 0, the shearing force

at any i)oint of the uncovered portion of the girder is evidently

represented by the vertical disiance between that point and the

parabola AFE, having its axis vertical and its vertex at A.

Again, as the train moves from O towards B, the reaction.
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at A, and consequently the bending moment at H, continually

increase. On passing /j\ the reaction at A still increases, and

the bendin}4 moment at B when the train covers a length a

of the girder is

wa
27
{I-X)- y(rt - xy = --^^(2/ -a)- -

.

This expression is evidently a maximum when a{2/ — a) is a

maximum, i.e., when a — I. Hence the bending moment, and

therefore the flange stresses, at any point are greatest when the

mtwini; load covers the whole girder.

Cor. I. The shearing force at any point />' is a maximum
when the train covers the longest segment OB.

This is evidently the case until the train arrives at B, for

the reaction at A^ and therefore the shearing force at />', will

continually increase up to this point. When the train passes

B and covers a length rt(>,v) of the girder, the shearing force

at /> IS , — w{a — X).

But this is <
ivx
"2/"' the shearing force at B when OB is

covered, if

c^-x"
<,a — X, i.e.

.. a -{- X
, . , .

if T'<. I, which is evi-
2/2/

dently the case.

Cor. 2. In designing the flanges of a girder, the rolling

load is supposed to cover the whole girder, and may be treated

as a uniformly distributed load.

Cor. 3. In addition to the roll-

ing load, let the girder carry a uni-

formly distributed load of w' per

unit of length.

As before, consider one half of

the girder only. Trace the shear-

ing-force diagram for the perma-

nent load below OA. The com-

pound diagram is DHGK, where GH and AK are equal or

wl w'l
proportional to -^ and —- , respectively.
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The maximum shearing force at a point distant x from the

centre i- represented by A'K and is equal to

l/(^ + '*') +«''^-

Again, the maximum flange-stresses are obtained by assum-

ing the total load upon the girder to be iv \- iv per unit of

length.

Example.—The two main girders of a single-track bridge

•irc 80 ft. in the clear and 10 ft. deep. The dead load upon the

bridge is 2500 lbs. per lineal foot. If the bridge is traversed by

a uniformly distributed live load of 3000 lbs. per lineal foot,

determine the maximum bending moment and siiearing force

at a point of the girder distant 10 ft. from one end.

The bending moment at any point is a maximum when the

train covers the whole of the bridge, in which case the total

distributed load is 5500 lbs. per lineal foot, of which each girder

carries one half.

Thus the reaction at each support = -
. 80. = 1 10,000

lbs., and the bcmiiug movicnt at the given point = IIOOOOXIO
— 10 X 2750 X 5 = 962,500 Ib.-ft.

The sluaring force at the given point due to the dead load

= 50,000 — 10 X 1250 = 37,500 lbs.

The shearingforce due to the live load is a maximum when
the live load covers the 70 ft. segment, and its value is then

1500x70* , „

-h^^- = 45,937i lbs.

Hence the total maximum shearing force

= 37.500+ 4S,937i = 83,437i lbs.
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5. Moments of Forces with respect to a given Point Q^—First, consider a single force /',.

Describe the force and fu-

nicular polygons, i.e., the line

5,5„ and the lines AB, BC.
Through the point Q draw a

line parallel to S^S^, cutting the

lines AB and CB produced in x
and y.

Drop the perpendicularsBM
and ON \!i'^ox\ yx and 5,5, produced. Then

xy SA
BM ~ ON ~ ON'

:. 1\BM = xy . ON

But B3f is equal to the length of the perpendiculir from Q
to the line of action of J\, and the product xy. ON is, there-

fore, equal to the moment of P, with respect to Q. Hence, if

a scale is so chosen that ON = unit\', this moment becomes

equal to xy; i.e., /V /s the intercept cut off by the tzvo sides of
the funicular polygon on a line

draivn through the given point

parallel to the given force.

AU'xt, let there be two forces,

P P
Describe the force and fu-

nicular pol)-gons 5,^5,5, and

ABCD.
Let the first and last sides

{AB and DC) be produced to

meet in G, and let a line through

tirj given point Q parallel to the line S^^ intersect these lines

in X and y.

Draw GM perpendicular to xy, and ON perpendicular to

Then

Fin. 176.

^>;

sxxy

GM^ ON
resultant of /*, and P,

'ON '

!h
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and hence

(the resultant of P, and P^ X GM = xy . ON.

But GM is equal to the length of the perpendicular from Q
upon the resultant of /*, and P^, which is parallel to S^S^ and

nust necessarily pass through G. Hence, if a scale is so chosen

that ON = unity, xy is equal to the moment of the forces with

respect to Q ; i.e., it is the intercept cut off by the first and last

sides of the funicular polygon on a line drawn through the given

point parallel to the resultant force.

A third force P^ may be compounded with /*, and P^ , and

the proof may be extended to three, four, or any number of

forces.

The result is precisely the same if the forces are parallel.

The force polygon of the ;/ parallel forces /',,/',,.../'„

S,

AO

s,;

Fig. 177.

becomes the straight line S^S^S^ . . . S„. Let the first and last

sides of the funicular polygon meet in G. Dr()[) the ])erpen-

diculars GAT, ON upon xy and S^S„, xy, as before, being the

intercept cut off on a line through the given point Q parallel

to S^S„ . Then
xy . ON = GUI . S,,S„ . Hence, etc.

Thus the moment of any number of forces in one and the

same plane with respect to a given point may be represented

by the intercept cut off by the first and last sides of the innicu-
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lar polygon on a line drawn through the given point parallel to

the resultant of the given forces.

6. Bending Moments.—Stationary Loads.—Let a hori-

zontal beam AB, supported at A and B, carry a number of

weights /»,, P,, /;,... at the points N^, N^, N^, . . .

« -'

i*"iG. 17&

The force polygon is a vertical lin? 1234 . . . «, where

12 = P, . 23 = P,, etc.

Talce any pole and describe the funicular polygon

A^A^A^ . . ,

Let the ^rst and /asf sides of this polygon be produced to

meet in G and to cut the verticals through A and B in the

point.s C and D.

Join CD.

Let the vertipal through G cut AB in L and CD in K; LG
is the line of action of the resultant.

Draw OH parallel to CD.

From the similar triangles OiH diXvA GCK^

i i;

\H _ GK
OH ~ CK
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From the similar triangles OnH and GDK^

nH GK

119

OH ~ DK

\H
nH

DK
CK

BL _R,
AL K'

/?, . /?, being the reactions at A and B, respectively.

But iy/+ nH ^in = P,-\-I\-\-... = R^J^R^

Hence iH=R, and nH = R„

Thus l/ie line drawn through the pole parallel to the closing

line CD divides the line of loads into two segments, of which the

one is equal to the reaction at A and the other to that at B.

Let it now be required to find the bending moment at any
point M of the beam, i.e., the moment of all the forces on one

side of J/ with respect to M.
In the figure these forces are R^ , P^, P.^, P^y P^, P^, and the

corresponding force polygon is //"r 23456. The first and last

sides of X\\Q funicular polygon of the forces are CD parallel to

OH, and A^A^ parallel to 06. If the vertical through M meet

these sides in x and j, then, as shown in Art. 5, the moment of

the forces R^, P^, P^, P^, P^, /\ with respect to M, i.e., the

bending moment at M, = ON.xy, ON being the perpendicular

from O upon i// produced.

Hence, if a scale is chosen so that the polar distance ON \s

unity, the bending moment at any point of the beatn is the inter-

cept on the vertical through that point cut off by the closing line

CD and the opposite bounding line of the funicular polygon.

7. Moving" Loads.—Beams are often subjected to the

action of moving loads, as, e.g., in the case of the main girders

of a railway bridge, and it becomes a matter of importance to

determine the bending moments for different positions of the

loads. It may be assumed that the loads are concentrated on

wheels which travel across the bridge at invariable distances

apart.

At any given moment, let the figure represent a beam 1

1
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under the loads /», , P, , P, . . . Describe the corresponding

funicular polygon CC'C" . . . D, the closing line being CD.
Let the loads now travel from right to left. The result will

be precisely the same if the loads remain stationary and if the

supports 1 1 are made to travel from left to right.

Thus, if the loads successively move through the distances

Fig. lyg.

12, 23, 34, . . . to the left, the result will be the same if the

loads are kept stationary and if the supports are successively

moved to the right "nto the positions 22, 33, 44, . . . The new
funicular polygons are evidently C'C" . . . D', C"C" , . . I)'\

C"'C"" . . . D"\ . . . the new closing lines being CD', CD",
€"'D"', ...

The bendiug moment at any point M is measured by xy for

the first distribution, x'y' for the second, x"y" for the third,

etc., the position ofM for the successive distributions being de-

fined by MM' ^ 12, M'M" = 23, M"Af'" = 34, . . .

Similarly, if the loads move from left to right, the result

will be the same if the loads are kept stationary and if the sup-

ports are made to move from right to left.

It is evident that the envelope for the closing line CD for

all distributions of the loads is a certain curve, called the enve-

lope of moments. The intercept on the vertical through any

point of the beam cut off by this curve and the opposite bound-

II
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ary of the funicular polygon is the greatest possible bending

moment at that point to which the girder can be subjected.

Example. Loads of 12 and 9 tons are concentrated upon a

horizontal beam of 12 ft. span at distances of 3 and 9 ft. from

the right-hand support. Find (a) the B. M. at the middle point

Fig. t8o.

of the beam, and also {i>) the max. B. M. protiuced at the same
point when the loads travel over the beam at the fixed dis-

tances of 6 ft. apart.

Scales for lengths, -J in. = i ft. ; for forces, -jig- in. = i ton.

Take polar distance = -| in. = 10 tons.

Cast- a. B.M. = xjf X 10 = 3.15 X 10 tons = 31^ ton-ft.

Case b. B. M. —x'y' X 10 = 3.6 X lo tons = 36 ton-ft.

8. Analytical Method of Determining the Maximum
Shear and Bending Moment at any Point of an Arbitrarily

Loaded Girder AB.—At any given moment let the load con-

sist of a number of weights w, , w.^ , . . . iVn, concentrated at

points distant «, , rt'^ , . . . «„ , respectively, from B.

The corresponding reaction /?, at a is given by

R^l = %i\a, + w.,a^ -f- . . . + ee'„rt„;

/being the length of the girder.

Let W„ = u\ -J- ^^a + • • • + ^» » the sum of the n weights.

«' IVr = w^ -^ w, -\- . . . -\- w^ , the sum of the first r w'ts.

The s/iear at a point P between the rth and the {r -J- i)th

weights is

S, = R,- w, w,— ... w, = R. IVr.
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Let all the weights now move towards A through a distance

X, and let p of the weights move off the girder, q of the weights

be transferred from one side of P to the other, and s new
weights, viz., w„.,

,
, «;„+, , . . . iv„j^^ , advance upon the girder,

their distances from B being rt„^, , a„^, , . . . n„^,, respectively.

Let L = 2v^ -\- zv, -\- . . . -\- TVf, , the total weight leaving the

girder.

Let T = zf^+, + 70^^, -\- . . . -\- w^^g , the total weight trans-

ferred from one side of P to the other.

Let Rf,l = zv,a, -f tv^a,-\- . . . + w^fiip.

" RJ = WHi^'^-i + '^r-^2(ir+2 + • • • H- ^t'^+,«r+,

•

" RJ = w„+,«„H + ^t'„+,t?„H -I" . . . + w„+,a„+,.

Thus Rp, R^, Rs are the reactions at A due, respectively, to

the weight which leaves the girder, the weight which is trans-

ferred, and the new weight which advances upon the girder.

The reaction R^ at A with the new distribution of the loads

is given by

RJ = ^V+.(«/>+i + ^) -r ^^/+.(«/+2 -I- x)-\- . . . -{- w\a, + x)

4- 7c/,.^,(rt,+, -\-x)-\r . . .^ 7i>„{a„ H- ;r) + ^£^„+ia„+, + • . •

+ 2V„+s^n+s = A^/ - R,/ H- x{W,-L) + RJ,

and hence

{R, -R,)l= {R, - Rp)l+ x{ W, - L).

Also, the corresponding shear at P is

S, = R,- {w^^, + Wf^, -\- .

= R^-{W.-L-j- T).

+ W, + W,.+, -f . . . -f Wr^)

Hence the s/iear at P with the first distribution of weights

is greater or less than the s/iear at the same point with the

second distribution according as

1)1

or

or

c > c
'^i < "^a »

R,- W,%R,- W^^L^T,

L>:R.- R
I >
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or T-L%R,-R,Jr-^{lV„-L). (A)

Note.—When no weights leave or advance upon the girder,

R,, Rp, and L are severally nil, and hence

c > c

according as

i.e., according as the weight transferred divided by the distance

through which it is transferred is greater or less than the total

zveight on the girder divided by the span.

Again, let z be the distance of P from B, and let

RJ = w,a, -\- w^a^ -f" • • • 4" "^r^r •

The bending moment at P with the first distribution of

weights is

M, — R,{1 — z) — 7v,(a, — z) -- ivj^a^ — z) — . . . — wXa^ — z)

= rIi-z)- RJ+zW,.

The bending moment at the same point with the second dis-

tribution is

J/, = RJ^l — z) — zvp^,{af^, -\- X - z) ivp^iap^^ -\- x — z) — . . .

— zvjyar \- X — z) — . . . — %t\^la^^^ -\- x — z)

= Ril -z)- {RJ - Rpl+R,l) -yx~z){W^-L-\- T).

Hence the bending moment at /'with the first distribution

of weights is greater or less than the bending moment at the

same point with the second distribution according as

M,>M,,

or

Rj^l -z)-R,l^zWr% Rll -z)- {R^ -RpJr R,)l

-.{x-z){Wr-L+T),
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«r

zWr~{Rp-R:)lMx-^){Wr-L-\-T)%{R„-R:il'-z)

or

^(z, _ r-h/e, - /?,) + /(/?, - ^,) + ^-(fn - /^+ n
X

>Z{/-s){lK,-L). (B)

iVi?/^.—If no weights leave or advance upon the girder A,,

Jif and L are severally nil, and

M,^M,,
according as

If also the point P coincide with the rth weight, and the

distance of transfer, ,r, =0^ — a^j^j , then

RJ = 7c,._j.,rt^+, , T = zv^j^i , and s — a^-

Hence J/, ^ J/, , according as

or

/-^,< /
'

i.e., according as t/ie sum of tJic first r zoeights divided by the

length of the corresponding segment is greater or less than the

total xveight upon the girder divided by the span.

If the weights are concentrated at the panel points of a

truss, the last relation may be expressed in the form

hrst {r) weights
«j^ total weight

r panels total number of panels*

Example. A series of loads of 3000, 23,600, 20,100, 21,700,
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22,900, 18,550, 18,000, 18,000, and 18,000 lbs. travel, in order,

over a truss of 240 ft. span and ten panels.

Let Ap^p^ . . . B be the truss, P^, p^, P^, . . . being the

panel points. Let the loads travel from B towards A, and
compare the shear in the panel/*,/, when the weight of 3000
lbs. has reached p^ with the shear in the same panel when the

weights have advanced another 24 ft.

.^. = ^ . 18550 = 1855 lbs., Rp = o, - = --,

W„ = 91300 lbs., Z = o, r = 3000 lbs.

Hence 5, ^ S,, according as (see A)

3000 — o>;i855 + —(91300 — o)^ 10985,

and

• • Oj ^^ ^^ *

Let the weights again advance 24 ft.

I XI.
R, — — . 18000 = 1800 lbs., R. = o, -r = —

,

10 / 10

W„ = 109,300 lbs., L = o, T = 23,600 lbs.

Hence 5, ^ 5, , according as (see A)
f .J

T

23600 — o^ 1800 — o-f- -(109300 — o), or 23600^12730,

and

• • Oj i^ Oo •

Hence the shear in the panel p,p^ is a maximum when the

weight of 3000 lbs. is at p^

.

Again, let the 3000 lbs. be at p^ , and compare the bending

moment at p^ with the bending moment at the same point

when the weights have advanced first 24 ft. and then 48 ft.

towards A.

First. 2= 120 ft., L — 0, r= 22,900 lbs., R,l — 18000X24,
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m :

1 i!i , i.li

f

Rp = o, RJi = 22900 X 96, X = 24 ft., Wr = 68,400 lbs.,

W„ = 145.850 iLS.

Hence A/, ^ ;!/,, according as (see B)

120(0 — 22900 + 1800 — o) -|- 22900 X 96 — 18000 X 24

-\- 24(68400 — o + 22900) ^ — (240 ~ 120X145850 — o),

or

and

240

1425600^ 1750200,

Second, s = 120 ft., L = 3000 lbs., T= 18550, /?, = o, Rf./

= 3000 X 216, RJ = 18550 X 96, ^ = 24 ft., W^ = 91,300 lbs.,

W„ = 163,850 lbs.

Hence A/^ ^ J/, , according as (see B)

i2o[300o — 18550 + — 3000. ^^
)
+ 240(18550. — — 0)

+ 24(91300— 3000+ 18550)^— (;240- 120X163850 — 3000),
240

or

and

2155200^ 1930200,

.-. M, > M, .

Hence the bending moment at />» is a maximum when the

weight of 3000 lbs. is at/,, i.e., when all the panel points are

loaded.

9. Hinged Girders.—Any point of a girder at which the

bending moment is ;«7 is termed a point of contrary flcxnre,

and on passing such a point the bending moment must neces-

sarily change sign.

Consider a horizontal girder resting upon supports at A^ By

C, D, and hinged at the points E and F in the side spans.

In order that there may be no distortion by the turning of

the hinges, the latter must not be subject to any bending

action ; i.e., they must be points of contrary flexure.
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Let AE = a,En^ h, BC = c, CF = e, DF = d.

Let W,, IV„ IV,, IV,, VV, be the loads upon AE, EB, BC,

DF, FC, respectively, and let .r, , .x\, x^, x,, x^ be the several

distances of the corresponding centres of gravity from the

points E, B, C, F, C.

Fir,. i8t.

The two portions AE and DF are evidently in precisely the

same condition as two independent girders of the same lengths,

carrying the same loads and supported at the ends. EF may
also be treated as an independent girder supported at B and C,

carrying the weights W^, W,, W^, and loaded at the cantilever

ends E and F with weights equal to the reactions at E and F
for the portions AE, Dh assumed to be independent girders.

Let A\, A',, A3, R, be the reactions at A, B, C, D, respec-

tively. Then

R,a-. W,x„

and

R,d=: lV,x,.

Hence, since R^ and R, are aXways positive, there can be no

upward pull either at A or D, and no anchorage will be needed

at these points.

Next, taking EF as an independent girder,

the load at ^ = PF, - A. = w{i - ^) ;

F= W,-R,= W[x -^).u «
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Take moments about C and IL Then

and

- ( fF, - ;?,)^ - w,x, + rF,(f - x:) - r,c

h ^^.(-v. + 4- ( ^^'. - ^J(^ + ^) = o

:

two equations giving R^ and A',, since A', and A\ have been

already determined,

'\\\c pier niflincnts /*, at /> and /^, at C are

/'. = - (^. - ^.)'^ - ^rt., = - "^.-(^^ - ^.) - ^^;^,

and

/',= -( W, - A\y - rn^r, = - lV,-,{d - A'J - W,x,
;

///i7> ^'allies depending solely upon the loads on the spans contaii

ing the hinges.

The bending moment at any point in HC distant x from B

.
= A> -

( W, - R,ib + x) - ]\\{x, -h x) - M
= P, + x{R, -\-R,- IV, - W,) - M\

M being tlic bending moment due to the load upon the

Icngtii X.

The shearing-force and bending-moment diagrams for the

whole girder can now be easily drawn.

P'or any given loads upon the side spans, let AEH and DFL
be the bending-moment curves for the portions ABy CD; BH
and CL representing the pier moments at B and C, respec-

tively. The bending moments for the least and greatest loatls

upon BC will be represented by two curves HKL, HK'L, and

the distances T'f, W through which the points of contrary

flexure must move, indicate those portions of the girder which

are to be designed to resist bending actions of opposite signs.
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Again, let the two hiii^^cs be in the intermediate span.

Let Ali = a, lUi = /;, AV'" = c, FC = i\ CI) = d.

Let IV,, IV,, IV,, W,, W, be the loads upon AD, BE, EF,
CD, CF, respectively, and let .r, , .r,, .r, , x^, x\ be the several

distances of the corresponding centres of gravity from tiie

points B, B, F, C, C.

Fig. i8a.

EF evidently may be treated as an independent girder sup-

ported at the two ends and carrying a load W^.

AE and DF m^y he treated as independent girders carry-

ing the loads W, , W., and W^, W^, respectively, and also loaded

at the cantilever ends E and ^with weights equal to the reac-

tions at E and F due to the load W^ upon girder EF, which is

assumed to be independent. Thus

the load at ^i = VV,- ;

I'

F = wii -
fl.

t( u

The pier moments P^ at B and P, at C are

and

P,= n^.^.+ ivii-^)e',

their values depending solely upon the loads on the span contain-

ing the hinges.
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Let R^, /\ , R,,, R^ be the reactions at A, B. C, D, respec-

tively, and take moments about the points H, A, D, C. Then

R,a - W,x, H- (
lV,x, + VV,x^-) = o =^ R^a - W,x, + P,

;

- A> -!- VV,{a - X,) -f- IVja + x^) + W^x^^^ = o :

R,ci -W^i- f){e + rt ) - lV,{x, + ci)- Wld -x,) = o;

- R,d - w{i - ^)e - PKx, + W,x, = o

/^, and /?, are always positive;

/?, '\'> positive or negative according; as W^,.r, ^ P^ ; and

/f,
" " " " W,x,>P,.

Thus there will be a downward pressure or an upward pull

at each end according as the moment of the load upon the ad-

joining span is greater or less than the corresponding pier mo-

ment. The ends must therefore be anchored down or they

will rise off their supports.

The shearing-force and bending-nfioment diagrams for the

whole girder can now be easily drawn.

Let HEFL be the bending moment curve for any given

load upon the span BC, BH and CL being the pier moments
at B and 6', respectively.

The bending-moment curves for the least and greatest

loads on the side spans may be represented by curves A TH,
ATM and DVL, DV'L, and the distances TT\ VV through

which the points of contrary flexure move indicate those por-

tions of the girder which are to be designed to resist bending

actions of opposite signs.

Reverse strains may, however, be entirely avoided by

making the length of EF sufficiently great as compared with

the lengths of the side spans.

The preceding examples serve to illustrate the mechanical

principles governing the stresses in cantilever bridges.
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EXAMPLES.

fy'"
I. A beam 20 ft. lonpf and weighing 20 lbs. per lineal foot is placed

upon a support dividing it into segments of 16 and 4 ft., and is kept

horizontal by a downward force /' at the middle point of the smaller

segment. Find the value of P and the reaction at the support.

Show that the required force /' will be doubled if a single weight of

150 lbs. is suspended from the end of the longer segment. Draw shear-

ing-force and bending moment diagrams in both cases.

Ans. 1200 lbs.; 1600 lbs.

C^ 2. A man and eight boys carry a stick of timber, ilie man at the end

and the eight boys at a common point. Find the position of this point,

if the man is to carry twice as much as each boy.

Ans. Distance between supports = f length of beam.

C 3. A timber beam is supported at the end and at one other point ; the

reaction at the latter is double that at the end. Find its position.

Ans, Distance between supports = \ length of beam,

4. Two beams ABC, BCD are bolted at /> and C so as to act as one

beam supported zlA and D\ AB = 12 ft., BC = 4 ft., CD — 16 ft. ; each

of the bolts will bear a bending moment of 100 Ib.-ft. Find the greatest

weight which can be concentrated on the portion BC.

Ans. \\^^ lbs,

5. In the preceding question fmd the greatest uniformly distributed

load which the beam will be. .

Draw the shearing-force and bending-moment diagrams.

Ans. 25if lbs.

6. A uniform beam 20 ^'3 ft. in length rests with one end on the

ground and the other against a smooth vertical wall ; the beam is inclined

at 60° to the vertical and has a joint in the middle whicii can bear a

bending moment of 30,000 lb. -ft. Find the greatest load which may be

uniformly distributed over the i)eam. Also fmd how far tiie foot of the

beam should be moved towards the wall in order that an additional

2000 lbs. ni.'iv be concentrated at the joint.

Draw curves of shearing force and bending moment in each case.

Ans. 8000 ibs. ; distance = 10 ft.
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7. A man of weight W ascends a ladder of length / which rests

against a smooth wall and the irround and is inclined to the vertical at

an angle a. The ladder has n rounds. Find the bending moment at

the rth round from the foot when the man is on the/th round from the

foot. (Neglect weight of ladder.)

Ans, IVpi— 7 sin a.^ (« + I)'

8. A regular prism of weight [Fand length a is laid upon a beam of

length 2l(>a). If the prism is so stiff as to bear at its ends only, show
that the bending action on the beam is less than if the bearing were con-

tinuous from end to end of the prism.

Ans.—isl. Max. B.M. = jwU-^A-

2d.

9. A railway girder, 50 ft. in the clear and 6 ft. deep, carries a uni-

formly distributed load of 50 tons. Find the nui.Kimum shearing stress

at 20 ft. from one end, when a train weighing i^ tons per lineal foot crosses

the girder.

Also tind the minimum theoretic thickness of the web at a support

4 tons being the safe shearing inch-stress of the metal.

Ans. i6itons; .195 in.

10. A beam is supported at one end and at a second point dividing its

lengiii into the segments »/ and ;/. Find the two reactions. Also find

the ratio of m to « which will make the maximum positive moment equal

to the maximum negative moment.

I + V2: I.Am:
w w
2;« 2m

m : n

11. One of the supports of a horizontal uniformly loaded beam is at

the enfl. Find the position of the other support so that the straining of

the beam may be a minimum.

T^. , .
length

Ans. Distance from end support =—-=-.

V2

12, A rolled joist 17 ft. long is supported at one end and at a point

13 ft. distant from that end. Two wagon-wheels 5 ft. apart and each

carrying a load of 1300 lbs. pass over the joist. Find the maximum
positive and negative moments due to these weights, and also the corre-

sponding reactions.

Ans. Max. posiitve B. M. = 5512^ Ib.-ft.

;

reactions = 1550 and 1050 lbs.

Max. negative B. M. = 5200 lb. -ft.
;

reactions = 1700 lbs. and — 400 lbs.

or = 2900 lbs. and — 300 lbs.
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Denoting the distance from a support by x, the max. positive B. M.
diagram for each half of the 13-ft. span is given by Mx = 100(21 — 2x)x.

13. A uniformly loaded beam rests upon two supports. Place the

supports so that the straining of the beam may be a minimum.

Afts, Distance of each support from centre = /( i

—J.

14. Two bars AC, CB in the same horizontal line are jointed at C and

supported upon two props, the one at A, the other at some point in CB
distant x from C. The joint C will safely bear u Ib.-ft. ; the bars are

each /ft. in length and w lbs. in weight. Find the limits within which

X must lie.

, Tt// ± 2«
Ans. I ;

.

yivl T in

15. A uniform load PQ moves along a horizontal beam resting upon

supports at its ends A and B. Prove that the bending moment at a

given point O is a maximum when PQ occupies such a position that

OP -.OQwOA: OB.

Draw curves of maximum shearing force and bending moment for all

points of the beam.

16. A beam is supported at the ends and loaded with two weights

m W and nW at points distant a, b, respectively, from the consecutive

supports. Show that the bending action is greatest at m IV or n W
vt^b

accordmg as - ^ —

.

n - a

17. A wheel supporting 10 tons rolls over a beam of 20 ft. span. Place

the wheel in such a position as to givi- the maximum bending moment,

and find its value.

Ans. At the centre ; 50 ton-ft.

18. Two wheels a ft. apart support, the one mW tons, the other

;//f'tons, m being > n, and roil over a beam of / ft. span. Show that

tht; bending moment is an absolute maximum at the centre or at a point

. ^ w J-
whose distance from the nearest support is accorauig as

l^a

2 2(w + n)

[1+4/ 1, and find its value in each case. (/ < 2a.)
\ '^ «i + nj

^ '

Ans. ton-ft. ; r- VV \ I— \ ton-ft.

4 \l I m 4- «
)

19. Find the max. B. M. on a horizontal beam of length / supported

at the two ends and carrying a load which varies in intensity from w at

one end to w + pi at the other.
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i
\.

20. Four wheels each carrying 5 tons travel over a girder of 24 ft.

clear span at equal distances 4 ft. apart. Determine, graphically, the

max. B. M. at 8 ft. from a support, and also the absolute max. B. M. on

the girder.

Ans. «l^ ton-ft. ; 80J ton-ft.

7 21. Two wheels each supporting 7 tons roll over a beam of 7^ ft.

"" span. Find the maximum bending moment for the whole span, and also

the curve of the maximum bending moment at each point when tlie

wheels are 4 ft. apart.

Ans. Abs. max. B. M. =W ton-ft. at wheel at 2| ft. from one

end. Denoting the distance from support by x, the max.

B. M. curve for the first 3^ ft. is given by

M:c = \t(ll —2x)x,
and for the remaining 4 ft. by

^x = ||(7i -- ^)^-

f %
22. Two wheels supporting, the one 11 tons, the other 7 tons, travel

over a beam of 12^ ft. span. Find the maximum bending moment for the

whole span, and also the curves of the max. shearing force (both positive

and negative) and maximum bending momei . at each point when the

wheels arc 6 ft. apart.

Ans. Abs. max. B. M. = 37.2 ton-ft.

The wax. positive shearing force at each point is given by

the equations

5; =
i83-i8.ir ii(i2i-.r)—— and Sx— -.

iiii

The max. w^^a/^w shearing force at each point is given by

the equations

c _ 7-^ c _ 45i - '8.r _ 42 + iS.r _ \\x

^'~~Tz\' '~"
12i

'

•'---"
,2i ' •^*-~12i-

The max. B. M. curve is given by the equations

183-uS.r \\{\2k -x) 75jr - i8.ar» + 273
M* — —-^——^ X, Mx = r^, X, and Mx = —

X2\ 124 I2i

;V.//.— In the above cases x is measured from the support to the

nearest load.

23. In ihe preceding example show tliat the niaxinium negative shear

at 42^2 ft. from a support, when the 7-ton wheel only is on the beam, is the

same as tlie maximum negative shear at the same point when both of
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the wheels are on the beam, and find its value. Also show that the

maximum negative shear at f)\ ft. from a support is the same when only

the ii-ton wheel is on the beam as when the two wheels are on the

beam, and find its value.

Ans. 5f^ tons ; W/ tons.

24. Solve example 22 when the beam carries an additional load of

1250 lbs. (= \ ton) per lineal foot.

Ans. Abs. max. B. M. is at 5.291 ft. 1 = ^ ft.] from support.

Max. positive shearing-force diagram is given by Sx =
18,54625—2.065^ from -r=o toA=:6^ ft., and 6".^= 14.9062 5—
1.505.1: from x = 6i to x— 12^ ft. The max. ne^^ative

shearing-force diagram is given by Sx = — .56.r from jr = o

to .1- ~ 4/5 ft.; = 3.64 — \.\\x from x = 4g\ to,r = 6^ ft. ;

= 7.54625 — 2.065.1- from .r = 6^ to .r = 6^ ft.; = 3.90625—
1.505.1: from x =: 6i to.r = 9^ ft.; = 9. 18625 — 2.065.V from

:r = 9^ to x = 12^ ft. Max. B. M. curve is given by Mx =
(18.54625 — i.7525.t-).r, and Mx — (14.90625 — i.i925.r).r.

25. Three wheels, each loaded vyith a weight W and spaced 5 ft. apart,

roll over a beam of 18 ft. span. Place the wheels in such a positif)n as

to give the maxiimim bending moment, and find its value.

Ans. Middle weight at centre of beam ; 8A \V.

26. Place (a) the wheels in the preceding exampie so that H. M. at

any point between the two hindmost wheels may be constant, and find

its value. Also (b) determine all the positions of the wheels wliicli will

give the same bending moment at 6 iMid 12 ft. from one end, and find its

value.

Ans.—(a) ist wheel at i ft. from support; B. M. = 7 \V.

{b) When distance belv/ecn end wheel and sup-

port is ^ 2 ft. and ^ 6 ft.; B. M. = 7 VV.

27. Four wheels each loaded with a weight W and spaced 5 ft. apart

roll over a beam of 18 ft. span. Place the wheels in such a position as to

give the maximui.i bending moment, and find its value.

Ans. One wheel oft" the beam and middle wheel of remaining

three at the centre ; max. B. M. = 8.V W. If all wheels

are on beam, max. B. M. = 8ff W.

28. All the wheels in the preceding example being on the beam, the

B. M. at the centre for a certain range of travel is constant and equal to

that for a particular distribution of the v.rheels when only three are on
the beam. Find the range, the B. M., and the position of the three

wheels.
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Arts. While the end wheel travels 3 ft. from the support \ %W;
first wheel 5 ft. from the support.

29. A span of / ft. is crossed by two cantilevers fixed at the ends and
hinged at the centre. Draw diagrams of shearing force and bending

moment (i) for a single weight /Fat the hinge, (2) for a uniformly dis-

tributed load of intensity 10.

Ans. Taking hinge for origin, the shearing-force and bending-

moment diagrams are given by

(i) 5.V =
W

M.r = - IVx

(2) .S-. wx ; Mx = - 1UX'

30. A beam for a span of 100 ft. is fixed at the ends. Hinges are in-

troduced at points 30 ft. from each end. Draw curves of shearing force

and bending moment (i) when a weight of 5 tor- - concentrated on

each hinge ; (2) when a uniformly distributed load of \ ton per lineal foot

covers {a) the centre length, {b) the two side lengths, {c) the whole span.

Ans. Take a hinge as origin ; the diag.ams are given by

—

(1) For each side span S^ -- 5, M.i = — 5.r

;

for centre span -^.r = o, Mx = o.

(2)

—

{a) For eacli side span Sx — -
, Mx = .*

;

5 X c jr'

for centre span Sx -= s , Mr = -x ? .*^

2 8 "^
2 16

X 1 5 ;f*

(6) For each side span S,i = rr, Mr = — — x + -^ ,

for centre span 5, = o, Afx — o.

ex 25 x^
(c) For each side span 5, = ~ + V - ^-^ = ^ + ~2 I

5 -* •! -^^

for centre span 5jr = — — 3- , Mx = —x ^

.

20 2 16

31. If the load on each of the wheels in example 27 is 5 tons, and if

the beam also carries a uniformly distributed load of 20 tons, and two

loads of 2 and 3 tons concentrated at points distant 5 and 9 ft., respec-

tively, from one end, find the maximum shearing force (both positive

and negative) and the maximum bending moment for the whole span;

also find the loci for the maximum shearing force and bending moment
at each point.
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Ans. Denoting the distance from siipf)ort by x, the ma.w
positive sheariiij;-force diagram is given by A, =
^4 — Jj'Lt from .1- = o tf) .1- = 3; Sx = V — ^i'

from .1=3 to .r = S ; .S'^ = ',Y' — ^.r from .r = 8 to

5-1-

^ = 13 ; .Sj = 5 — from .r = 13 to .1 = 18 ft.
lo

The

max. nci^ative shearing-force diagram is given by

Sx = — -^^x from A- = o to .r = 5 ; Sx = \\ — [;..r from
;r = 5 to .r = 10 ; ^V.r = -'„ — %x from .1 = 10 to .r = 15;

50 20. r
,

Sx = t:
— —^ from .r = 15 to x 18. Max. positive

6 18

shear — '.,•' tons ; max. iifij^atiiu' shear = -^^ tons ; tnax.

bendini^-Diomcnt curve is given by J/.r = "frf'-i"
~

"V'-^'"

from .1- = o to .r = 3 ; J/,- = -'{l^.r — ^'^.i- from .r = 3 to

.r = 5 ; J/.- = i'?;".!- - -(,"•''" — ' 5 from .r = 5 to .v = 8 ;

Mx = -^V-r — \\x' -f 12 from .r = 8 to .r = 9; abs. max.
B. M. = 142 ton. -ft.

32. A rolled joist weighing 150 lbs. per lineal foot and 20 ft. long

carries a uniformly distributed load of 6000 lbs., and two whei Is 5 fi.

apart, the one bearing 5000 lbs. and the other 3000 lbs., roil over the

joist. Find the maximum shears at the supports, at the centre, anfl at 5

ft. from each end.

Ans. 10,250 lbs. ; 9750 lbs. ; 3250 lbs. ; 6750 lbs.; 6250 lbs.

33. A beam /ft. long and weighing iv lbs. per lineal foot nas a load

of viW\h%. at a ft. from the left end and a load of n\V\\)%. at b ft.

from the right end. Find the shearing forces and bt.iding moments at

the weights and at the middle of the beam, a and b being each < —

.

How will the result be affected if <^> — ?
2

34. A rolled joist weighing 450 lbs. per lineal foot and 20 ft. long

carries the four wheels of a locomotive at 3, 8, 13, and 18 ft. from one

end. Find the maximum bending moment and the maxiinum shears,

both positive and negative, the load on each wheel being 10,000 lbs.

Ans. Mi'.t. R. I !. = 123,600 Ib.-leet. ; max. shears = 23,500 lbs.

ynd 25, 'oo Ib.s.

35. Solve the precedi.ig example when a live load of 2f tons per

lineal foot is substituted for the four concentrated weights on the

wheels.

36. The loads on the wheels of a locomotive and tender passing over

a beam of 60 ft. span are 14,180, 14,180, 21,260, 21,260, 21,260, 21,260,

16,900, 16,900, 16,900, 16,900 lbs., counting in order from the front, the
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#l;

intervals bein>^ 5, 5}. 5, 5. 5. 8|, 5. 4, 5 fi. Place the wheels in such a

po-siiion as Vt ^ive ilie maximum bciuiiiiH; moment, and find its value.

Also lind the maximum bending; moments for spans of 30, 20 and 16

feet.

Ans. For 60-ft. span. max. B. M. is at 5th wheel and = i. 559,9:5.4

Ib.-ft. when ist wheel is 7.95 fr. iwnw

support.

For 30-ft. span, max. H. M. at 5lh wheel when 2d wheel is

.596 fi. from support and = 436.761.4

Ib.-ft.

For 20-ft. span, max. B. M. at centre when 3(1 wheel is z\

ft. from support and = 212,600 Ib.-ft. =
max. B. M. at same point v. hen 4th wheel
is 5 ft. f''om support.

For l6-ft. span, max. B. M. is at 51)1 wheel and = 132,875

Ib.-ft. when 4th wheel is 5 ft. from sup-

port.

37. If the 60-ft. beam in the preceding example also carries a uni-

formly distributed load of 60,000 lbs., find the curves cX maximum
shearing force and bendinu; moment at eacii point.

38. If a beam is supported at the ends and arbitrarily loaded, show
that the ordinate at the point of maximum moment divides tlie area of

the curve of loads into two parts which are equal to the supporting

forces. If a and h are the distances of the centres of gravity of the parts

from the ends of the beam, and if \V \% the total wei>;ht on the beam,

show that the maximum bending moment is W -5- (~ + r ) •

39 A span of / ft. is crossed by a beam in two half-lengths, sup-

ported at the centre by a pier whose width may be neglected. The suc-

cessive weights on the wheels of a locomotive and tender passing over the

beam are 14.000. 22,000, 22,000, 22,000, 22,000, 14,000, 14,000, 14,000, 14,000

lbs., the intervals being 7i, 4A, 4A, 4A, loj, 5, 5, 5 ft. Place the wheels in

such a position as to throw the greatest possible weiglit upon the centre

pier, and find the magnitude of this weight for spans of (i ) 50 ft.; (2) 25

ft.; (3) 2C ft.; (4) 18 ft.

40. Loads of 3^, 6, 6, 6, and 6 tons follow each other in order over a

ten-panel truss at distances of 8, 5J, 4.^, and \\ ft. apart. Apply the

results of Art. 8 to determine the position of the loads which, will give

the maximum diagonal and flange stresses in the third and fourth panels.

41. A truss of 240 ft. span and ten panels, has loads of 12A, 10, 12, 11,

9, 9, 9, 9, and 9 tons concentrated at the panel points. Find, by scale

measurement, the bending moments at the four panel points which are

the most heavily loaded, and determine by Art. 8 whether these are the
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greatest bending mnmeiits to wliich the truss is subjected as the weights

travel over tlie truss at the panel distances ai)art.

42. Loads of 7A, 12, 12, 12, 12 tons are concentrated uixm a iiorizontal

beam of 25 ft. span at distances of 18, 108, 164, 21O, and 272 in.,

respectively, frou) liie left support. Find, graphically, the bending

nionient at the centre of the span. If the loads travel over the truss at

the given distances apart, find the niaximuiii H. M. at the same section.

43. A beam AliCD is supported at four points //, />', C, and 1), and

the intermediate span liC is hinged at the two points /•- and /-". The
load upon the beam consists of 15 tons uniformly distributed over ^/A',

10 tons uniformly distributed over ///s. 5 tons uniformly distributed over

FC, 30 tons uniformly distributed over CD, and a single weight of 5 tons

at the middle point of EF. Ali = 15 ft.; />7i = 5 ft.; EF = 15 ft.,

FC = 10 ft. ; 67^ = 25 ft. Draw curves of B. M. and S. F., and find

points of inflexion.

44. Four wheels loaded with 4, 4, 8, and 8 tons are placed upon a

girder of 24 ft. span at distances of 3 in,, 6i ft., 8J ft., and 9 ft. from the

left suppcjrt. Find by scale measurement the t)ending moment at the

centre of the girder. If the wheels travel over the girder at the given

distances apart, find the maximum B. M. to which the girder is sub-

jected.

45. Three wheels loaded with 8, 9, and 10 tons and spaced 5 ft. apart,

are p'aced upon a beam of 15 ft. span, the 8-ton wheel being 3 ft. from

the left abutment. Determine graphically the B. M. at 6 ft. from the

left abutment. Also find the greatest B. M. at the same point when the

weights travel over the beam, and the al>s. iiui.w bending moment to

which tile beam is suijjected.

Alls. 47;,' ton-It.; 53,1 ton-fi.; abs. max B. M. = S^\l\ ton-ft. at

2d wheel when ist is 2\\ ft. from support.
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CHAPTER III.

DEFINITIONS AND GENERAL PRINCIPLES.

I. Definitions.—The science relating to the strength of

materials is partly theoretical, partly practical. Its primary

object is to investigate the forces developed within a body, and

to determine the most economical dimensions and form, con-

sistent with stability, of that body. Certain hypotheses have

to be made, but they are of such a nature as always to be in

accord with the results of direct observation.

The materials in ordinary use for structural purposes may
be termed, generally, solid bodies, i.e., bodies which offer an ap-

preciable resistance to a change of form.

A body acted upon by external forces is said to be strained

or difonned, and the straining or deformation induces stress

amongst the particles of the body.

The state of strain is simple when the stress act.3 in 07ie

direction only, and the strain itself is measured by the ratio of

the deformation to the original length.

The state of strain is coinpojind when iiuo (or vtore) stresses

act simultaneously in different directions.

A strained body tends to assume its natural state when the

straining forces are removed : this tendency is called its elas-

ticity. A thorough knowledge of the laws of elasticity, i.e., of

the laws which connect the external forces with the internal

stresses, is absolutely necessary for the proper comprehension

of the strength of materials. This property of elasticity is not

possessed to the same degree by all bodies. It may be almost

absolute, or almost zero, but in the majority of cases it has a

mean value. Hence it naturally follows that solid bodies may
be classified between two extreme, though ideal, states, viz.,

140
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a perfectly elastic state and a perfectly soft state. Perfectly

elastic bodies which have been strained resume their original

forms exactly when the straining forces are removed. Per-

fectly soft bodies are wholly devoid of elasticity and offer no,

resistance to a change of form.

Bodies capable of undergoing an indefinitely large deforma-

tion under stress are said to h^ plastic.

2. Stresses and Strains.—Kvery body may be sub-

jected to five distinct kinds of stresses, viz.

:

{a) A longitudinal pull, or tension.

{b) A longitudinal thrust, or compression.

{c) A shear, or tangential stress, which inay be defined as a

stress tending to make one surface slide over another with

which it is in contact.

{(i) A transverse stress.

yc) A twist or torsion.

Under any one of these stresses a body may suffer either an

elastic deformation, of a temporary character, or a plastic de-

formation, of a permanent character.

3. Resistance of Bars to Tension and Compression.

—

Let a straight bar of homogeneous material and length L be

stretched or compressed longitudinally by a force P uniformly

distributed over the constant cross-section z/ of the bar; let

the line of action of P coincide w ith the axis of the bar, and

let / be the consequent extension or compression, i.e., the de-

formation.

If the transverse dimension: of the bar are small as com-

pared with the length, experiment shows that, icitJiin certain

limits, the force J^ is directly proportional to the deformation /

and to the area A, anti inversely proportional to the length L,

these quantities being connected by the relation

/^ L- P^EA U
where £ is a constant dependent upon the material of the bar

and is called the coefficient or moilulus of elasticity. It is evi-

dently the force which will double the length of a perfectly

elastic bar of unit section. Denoting the unit stress (—7I by/,
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and the strain per unit of length ( -. j by \, the above equation

may be written

or the unit stress = E times the unit strain.

Thus tlic equation is tlic analytical (.xpression of Hooke's

law, that for a body in a state of simple strain the strain is pro-

portional to the stress.

The longitudinal strain is accompanied by an alteration in

the transverse dimensions, the lateral unit strain being — —

,

where in is a coefficient which usually varies from 3 to 4 for

solid bodies and is appro.ximately 4 for the metals of construc-

tion. In the case of india-rubber, if the deformation is small,

in is about 2.

Generally the deformation may be calculated per unit of

original lengtli without sensible error, but for india-rubber it is

more accurate to make the calculation per unit of stretched

length (= ^.
I lateral strain

The ratio — = -.
—

..—r——r-

;;/ ioncitudinal stram
is called Poisson's ratio.

If the transverse dimensions of a bar under compression

are small as compared with tlu ength L, a slight disturbing

force will cause the bar to bend sideways, and the bar will be

subjected to a bending action in addition to the compression.

If the bar is to be capable of resisting a direct thrust only,

the ratio of L to its least transverse dimension should not

exceed a certain limit depending upon the nature of the ma-

terial. For example, experiment indicates that this limit

should be about 5 for cast-iron, 10 for wrought-iron, 7 for

steel, and 20 for dry timber.

If the temperature of the bar is raised t°, the consequent

strain is at, a being the coefficient of linear dilatation ; and a

stress Eat° will be developed if a change of length is pre-

vented.
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4. Specific Weight; Coefficient of Elasticity; Limit

of Elasticity ; Breaking Stress.—Hcfore tlic strength of a

body can be fully known, certain physical constants, whose

vaUu;s ilei)end upon the material, must be determined.

{a) S/^iciJic IViiji/i/.—The specific weight is the weight of a

unit of volume. The specific weights of most of the materials

of construction have been carefully found and tabulated. If

the specific weight of any new material is rec[uiretl, u conven-

ient approximate method is to prepare from it a number of

regular solids of determinate volume and weigh them in an

ordinary pair of scales. The ratio of the total weight of these

solids to their total volume is the specific weight. It must be

remembered that the weight may vary considerably with time,

etc. ; thus a sample of greenheart weighed 69.75 lbs. per cubic

foot when first cut out of the log, and only 57 lbs. per cubic

foot at the end of six months. When the strength of a timber

is being determined, it is important to note the amount of

water present in the test-piece, since this appears to have a

great influence upon the results.

The straining of a structure is generally largely due to its

own weight.

The Ma/ load upon a structure includes all the external

forces applied to it, and in practice is designated dead {pvrjna-

Hcnt) or live {rolliiii^), according as the forces are grailually ap-

plied antl steady, or suddenly applied and accompanied with

vibrations. For example, the weight of a bridge is a dead

load, while a train passing over it is a live load ; the weight

of a roof, together with the weight of any snow which may
have accumulated upon it, is a dead load ; xvind causes at times

excessive vibrations in the members of a structure, and al-

though often treated as a dead load, should in reality be con-

sidered a live load.

The dead loads of many structures (as masonry walls, etc.)

are so great that extra or accidental loads may be safely disre-

garded. In cold climates, great masses of snow and the pene-

trating effect of the frost necessitate very deep foundations,

which proportionately increase the dead weight.

ib) Coefficient of Elasticity.—Generally speaking, a knowl-

edge of the external forces acting upon a structure, discloses
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the manner of their distribution amongst its various members,

but the deformation of these members can only be estimated

by means of the coefficient of elasticity, which expresses the

relation between a stress and the corresponding strain.

In practice it is usually sufficient to assume that a material

is elastic, homogeneous, and isotropic, and its deformation

under stress may be found, if the coefficients of elasticity, of

form, and of volume arc known.

In a homogeneous solid there may be twenty-one distinct

coefficients of elasticity, which are usually classified under the

following heads

:

(i) Direct, expressing the relation between longitudinal

strains and normal stresses in tlie same direction.

(?) Transverse, expressing the relation between tangential

stresses and strains in the same direction.

(3) Lateral, expressing the relation between longitudinal

strains and normal stresses at right angles to the strains; i.e., a

lateral resistance to deformation.

(4) Oblique, expressing other relations of stress and strain.

If a body is isotropic, i.e., equally elastic in all directions,

the tiventy-one coefficients reduce to tivo, viz., the coefficients

of direct elasticity and of lateral elasticity. Such bodies, how-

c^er, are almost wholly ideal. In a perfectly elastic body i:"

would be the same both for tensior. and compression. In the

ordinary materials of construction

it is slightly less for compres.^ ^n

than fo*' tension; but if the stresses

do not exceed a certain limit (§ ie),

page 145). tl^'„ difference is so slight

that it may be disregarded.

The equation / — E\ may be

represented graphically by the

straight line MON, the ordinate at

any point representing the unit

stress required to produce the unit

strain respresented by the corresponding abscissa.

The angle MOY = tan -^ = tan -'{^.

Coefficients of elasticity must be determined by experiment.

Y-

ConipiX88louS

Extensions

Fig. 183.
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The coeflficients of direct elasticity for the different metals

and timbers are sometimes obtained by subjecting bars of the

material to forces of extension or compression, or by observing

the deflections of beams loaded transversely. The coefficients

for blocks of stone and masonry might also be found by trans-

verse loading; they are of little, if any, practical use, as, on

account of the inherent stilfnoss of masonry structures, their

deformations, or settlings, are due rather to defective work-

manship than to the natural plaj' of elastic forces.

The torsional zoc^z\cx\\. of elasticity, i.e.. the coefficient of

elastic resistance to torsion, has been shown by experiment to

vary from two fifths to three eighths of the coefficient of direct

elasticity. .

{e\ Limit of Jilasticity-—When the forces which strain a

body fall below a certain limit, the I 'dy, on the removal of the

forces, will resume its original form and dimensions without

sensible change (^disregarding any effects due to the develop-

ment of heat) and may be treated as perfectly elastic. But if

the forces exceed this limit, the body will receive a permanent

deformation, or, as it is termed, a set.

Such a limit is called a /////// of elasticity, and is the greatest

stress that can be applied to a bod}- without producing in it an

api)reciable and permanent deformation.

This is an unsatisfacti^ry definition, as a body passes from

the elastic to the non-elastic state by such imperceptible

degrees that it is impossible to fix any exact line of demarca-

tion between the two states. Fairbairn defines the limit more
correctly, as the stress below which the deformation is approxi-

mately proportional to tlic load which produces it, and beyond

which tht deformation incr<.ases much more rapidly than the

load. In fact, both the elastic and ultimate strengths of a ma--

terial depend upon the nature of th<.' stresses to which they are

subjected and upon \\\c freifioney of their application. For ex-

ample, in experimenting upon bars of iron having an ultimate

tenacity of 46,794 lbs, per sq. in. and a ductility of 20 %,

Wohler found that with repeated stresses of equal intensity,

but alternately tensile and compressive, a bar failed after 56,430

repetitions when the intensity was 33,000 lbs. per sq. in. ; fi.



r46 THEORY OF STRUCTURES.

second bar failed only after 19,187,000 repetitions when the

intensity was 18,700 lbs. per sq. in. ; while a third bar remained

intact after more than i32,ooo,cxX) repetitions when the inten-

sity was 16,690 lbs. per scj. in. These experiments therefore

indicated that the limit of i'lasticity for the iron in question,

under repeated stresses of equal intensity, but alternately

tensile and compressive, lay between 16,000 and 17,000 lbs. per

sq. in., which is much less than the limit under a steadily ap-

plied stress. Similar results have been shown to follow when
the stresses fluctuate from a ma.ximum stress to a minimum
stress of the same kind.

Generally speakin*;, then, the limit of elasticity of a ma-

terial subjected to repeated stresses, is a certain, maximum
stress below which the condition of the body remains unim-

paired.

Bauschinger's experiments indicate that the application to

a body of any stress, however small, produces a plastic or

permanent deformation. This, perhaps, is sometimes due to a

want of uniformity in the material, or to the bar being not

quite straight initially. In any case, the deformations under

loads which are less than the elastic limit, are so slight as to be

of no practical account and may be safel\' disregarded.

'fhc main object, then, of the theory of the strength of

rnstcrials, is to determine whether the stresses developed in any
particular member of a structure exceed the limit of elasticity.

As soon as the)' do so, that member is permanently deformed,

its strength is impaired, it becomes predisposed to rupture, and

tiie safety of the whole structure is threatened. Still, it must

be borne in mind that it is not absolutely true tha* a material

is always weakened by being subjected to forces superior to

this limit. In the manufacture of iron bars, for instance, each

of the processes through which the metal passes changes its

elasticity and increases its strength. Such a material is to be

treated as being in a new state and as possessing new properties.

The strength of a material is governed by its tenacity and

rigidity, and the essential requirement of practice is a tough

material with a high elastic limit.

This is especially necessary for bridges and all structures
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liable to constantly repeated loads, for it is found that these

repetitions lower the elastic limit and diminish the strength.

In tile majority of cases, experience has fixed a practical

limit for the stresses, much below the limit of elasticity. This

insures greater safety and provides against unforeseen and

accidental loads, which may exceed the practical limit, but

which do no liarm unless they pass beyond the clastic limit.

Certain operations have the effect of raising the limit of

elasticity : a wrought-iron bar steadily strained almost to the

point of its ultimate strength and then released from strain and

allowed to rest, experiences an elevation both of tenacity and

of the elastic limit.

If the bar is stretched until it breaks, the tensile strength

of the broken p: os is greater than that of the bar. A similar

result follows in the various processes employed in the manu-
facture of iron and steel bars and wires : the wire has a greater

ultimate strength than the bar from which it was drawn.

Again, iron and steel bars, subjected to long-continued com-

pression or extension, have their resistance increased, mainly

because time is allowed for the molecules of the metal to as-

sume such positions as will enable them to offer the maximum
resistance ; the increase is not attended by any ap-

preciable change of density. /

Under an increasing stress a brittle material will /

be fractured without any great deformation, while a /

tough material will become plastic and undergo a V

large deformation. y
{d) Brcakiui^ Stress.—W\\Qr\ the load upon a /

material increases inde ^itely, the material may /

merely suffer an increasing; leformation, but generally /

a limit is reached at which fracture suddenly takes /

place. /

Cast-iron is perhaps the most doubtful of all /

materials, and the greatest care should be observed /
in its employment. It possesses little tenacity or

elasticity, is very hard and brittle, and may fail sud- ^'°" ''^"

denly under a shock or an extreme variation of temperature.

Unequal cooling may predispose the metal to rupture, and its



148 THEORY OF STRUCTURES.

Strength may be still further climini.sljccl by the presence of

air-holes.

Cast-iron ami similar materials receive a sensible set even

under a small load, and the set increases with ihe load. Thus
at no point will the stress-strain curve be absolutely straight,

and the point of fracture will be reached without any gnat
chan<^e in the slope of the curve and without the development

of much plasticity.

Wrouglit-iron and siccl are far mcjre uniform in their be-

havior, and obey with tolerable regularity certain theoretical

laws. They are tenacious, ductile, have great compressive

strength, and are most reliable for structural purposes. Their

strength and elasticity may be considerably reduced by high

temperatures or severe coUl.

When a bar of such material is tested, the stress-strain

curve ( / = ± i^A), as has already been pointed out, is almost

absolutely straight within the elastic limit, e.g., from O to A in

tension and from O to B in com-

pression. As the load increases

beyond the elastic limit, the in-

creasing deformation becomes

plastic and permanent, and the

stress-straii; diagram takes an ap-

preciable curvature between the

limits A and B and the points D
and /: corresponding to the maxi-

mum h^-ids. In tension, as soon

as the point D is reached, the bar

rapidly elongates and is no longer

able to sustain the maximum load,

its sectional area rapidly ditnin-

ishes, and fracture ultimately takes

place under a load much less than

the maximum load. The point of

fracture is lepn. sented ;n the figure

by the point F the ordinate of /' being the actual ultimate

final load on the bar
intensity of stress = £. ^ j~ —r=—

•

-^ ' area of fractured section

Pig. iI<.
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The exact form of the stress-strain curve between D and /'"

is unknown, as no definite relation has been found to exist be-

tween the stress and strain durinyj the clonjjation from D\.o F.

Ordinarily, the breaking tensile stress has been defined to be

the maximum load ap/^iied (.\'\wk\ci\ by the initial sectional xrea

of the bar; but this, although convenient, is numifestJy in-

correct.

It ii important to note that, as the deformation gradually

increases untler the increasing load, the molecules of the ma-

terial require greater or less time to adjust themselves to the

new ct)iulition.

During the tensile test of a ductile material there is, at

some point beyond the elastic limit, an

abrupt break GH in the continuity of the

stress-strain curve, the curve again becom-

ing continuous from H to D.

The point G has been called the Yield

Point or the Breakiiiii-douui Point, and the

deformation from // (inward is almost

wholly plastic or permanent.

/// compression there is no local stretch

as in tension, and there is consequently

no considerable change in the curvature of

the compression stress-strain curve u[) to the point of fracture.

Timber is usually tested by being subjected to the action

of tensile, compressive, or transverse loads. Other character-

istics, however, must be known before a full conception of the

strength of the wood can be obtained. Thus the specific

weight must be found ; the amount of water present, the loss

in drying, and the corresponding shrinkage should be deter-

mined ; the j/r«f/«r^/ differences of the several specimens, the

rate of growth, etc., should be observed.

The chief object of experiments upon masonry and brich

work is to discover their resistance to compression, i.e., their

crushing strength. In fact, their stiffness is so great that they

may be compressed up to the point of fracture without sensible

ch:.nge uf form, and it is therefore very difificult, if not impos-

sible, to observe the limit of elasticity.

Kir,. 186.
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The "«/ or mortar uniting the stones and bricks is most

irregular in quaHty. In every important work it should be an

invariable rule to prepare specimens for testing. The crushing

str ngth of cement and of mortar is much greater than the ten-

sile strength, the latter being often exceedingly small. Hence it

is advisable to avoid tensile stresses within a mass of masonry,

as they tend to open the joints and separate the stones from

one another. Attempts are frequently made to strengthen

masonry and brickwork walls by inserting in the joints tarred

and sanded strips of hoop-iron. Their utility is doubtful, for,

unless well protected from the atmosphere, they oxidize, to the

detriment of the surrounding material, and, besides this, they

prevent an equable distribution of pressure. They are, how-

ever, far preferable to bond-timbers.

The working load (or stress, or strength) is the maximum
stress which a material can safely bear in ordinary practice,

and depends both upon the cJiaracter (see Art. 5, below) of the

stress and upon the ultimate strength of the material, the ratio

of the ultimate or breaking stress to the working stress being

usually called a factor of safety. For example, the factor is

about

3 for long-span iron bridges, or bridges having great weight

as compared with the live load (a moving train),

4 for ordinary iron bridges.

5 for ordinary metal shafting.

8, 10, and even more for long struts and members subjected

to repeated stresses of varying magnitude.

10 is also generally taken to be the factor of safety for

timiber.

Under a steady, or a merely statical load, even as great as

•| of the breaking stress, a member of a structure may prob-

ably not be unsafe.
,

5. Wohler's Law.—It is now generally admitted that

variable forces, constantly repeated loads, and continued vibra-

tions diminish the strength of a material, whether they pro-

duce stresses approximating to the elastic limit, or exceedingly

small stresses occurring with great rapidity. Indeed many
engineers design structures in such a manner, that the several

/
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members are strained in one way only, so convinced are they

of the evil effect of alternating tensile and compressive stresses.

Although the far' of a variable ultimate strength had thus been

tacitly acknowledged and often allowed for, Wohler was the

first to give formal expression to it, and, as a result of obser-

vation and experiment, enunciated the following law:

" That if a stress /, due to a static load, cause the fracture

of a bar, the bar may also be fractured by a series of often-re-

peated stresses, each of which is less than /; and that, as the

differences of stress increase, the cohesion of the material is

affected in such a manner that the minimum stress required to

produce fracture is diminished.'

This law is manifestly incomplete. In Wohler's experi-

ments the applications of the load followed each other with

great rapidity, yet a certain length of time was required for the

resulting stresses to attain their full intensity ; the influence due

to the rapidity of application, to the rate of increase of the

stress, and to the duration of individual strains still remains a

subject for investigation.

The experiments, however, show that the rate of increase of

repetitions of stress required to produce fracture, is much more
rapid than the rate of decrease of the stresses themselves, and

depends both upon the maximum stress and upon the differ-

ence ox fluctuation of stress.

The effect of repeated stresses of equal intensity, but alter-

nately tensile and compressive, has been already pointed out

in Art. 4.

Bars of the same material repeatedly bent in one direction,

bore 31,132 lbs. per square inch when the load was wholly re-

moved between each bending, and 45,734 lbs. per square inch

when the stress fluctuated between 45,733 lbs. and 24,941 lbs.

The table on page 152 gives the results of similar experi-

ments on steel.

The axle-steel was found to bear 22,830 lbs. per square inch,

when subjected to repeated shears of equal intensity but oppo-

site in kind, and 29,440 lbs. per square inch, when the shears

were of the same kind. It would tlierefore appear that the

shearing strengths of the metal in the two cases arc about ^
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of the strengths of the same metal under alternate bending and

under bending in one direction, respectively.

Character of Fluctuation.

Alternating stresses of equal intensity . . .

.

Complete relief from stress between each
bending

Partial relief fiom stress between each
beiuling

Maximum Resistance to Repeated
Stresses in lbs. per square inch.

Axle-steel.

29,000,-29,000

49,890, O

83.110, 36,380

SprinfT'Steel (un-
hardened).

52,000, O

93,5CK), 62,240

From torsion experiments with various qualities of steel,

the important result was deduced, that the maximum resistance

of the sLeel to alternate twisting was ^ of the maximum resist-

ance of the same steel to alternate bending.

Woliler proposed 2 ns a factor of safety, and considered

that the maximum permissible working stresses should be in

the ratios of 1:2:3, according as members are subjected to

alternate tensions and compressions (alternate bending), to

tensions alternating with entire relief, or to a steady load.

The weakening of metal by repeated stresses has been

called y*!/?^/^, and is much more injurious to iron and steel

under tension than under compression. Egleston's investiga-

tions have shown that a fatigued metal may sometimes be

restored by rest or by annealing.

From the law, however, as it stands formulae may be de-

duced which, it is claimed, are more in accordance with the

results of experiment, give smaller errors, and insure greater

safety than the false assumption of a constant ultimate

strength.

The formulae necessarily depend upon certain experimental

results, but in applying them to any particular case, it must be

remembered that only such results should be employed, as

have been obtained for material of the same kind and under

the same conditions as the material under consideration. The
effects due to faulty material, rust, etc., are altogther indeter-

minate, so that no formula can be perfectly universal in its

application. Hence the necessity for factors of safety, with

values depending upon the class of structure, still exists.
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A brief description of the principal of these formulae will

now be given, and in the discussion

/, //if statical breaking^ strength, is the resistance to fracture

under a static or under a very gradually applied load.

7/, the primitive strength, is tlie resistance to fracture under

a given number of repeated stresses, the stress in each repeti-

tion remaining unchanged in kind, i.e., being due either to a

tension, a compression, or a shear.

s, the vibration strength, is the resistance to fracture under

alternating stresses of equal intensities, but different in kind,

due to a vibratory motion about the unstrained state of equi-

librium.

b is the admissible stress per unit of sectional area

F'xs the effective sectional area and is

_ numerically absolute maximum load
^ .

<.

c

c

:r

e

s

r

e

/ 6. Launhardt's Formula.—A bar of unit sectional area is

subjected to stresses (/>') which are either wholly tensile, wholly /

compressive, or wholly shearing, and which vary from a maxi- v^

mum rt, (= max. B) to a minimum a, (= min. B).

Let a^ — a^—d = the maximum difference of stress.

Let

If rt, = o.

If d=o.

By Wohler's law,

min. Brt.

a, max. B

a^=. d — u.

a, = a, = /.

= 0.

a^oi.d = fd, (i)

y being an unknown coefficient of which the value remains to

be determined.

N

If t/ = o.

If d = «,

a^ = t and / = 00.

a^ = d and /= i.
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t - //

Liunhardt's assumption, \\7.., f , satisfies these ex-

trcinc conditions, and also gives intermediate values of rt', which

closely agree with the results of the most reliable experiments..

Hence (i) becomes

t — n , t -

u

and

This is Launhardt's formula, and is an analytic.il expression

of Wohler's Law.

Wohler in his bending experiments upon Phoenix axle-iron

found that u = 2195* per cent."* and / = 4020* per cent.';

i — tf

u

5

6

The same iron under tension gave u = 2195* per cent.' and

/ = 3290* per cent.'

;

/ — u _ i_

U ~~ 2

Choosing the most unfavorable case, and, in order to insure

greater safety, taking u = 2100* per cent.', equation (2) becomes

«. = 2100^1 + J. (3)

If 3 is the factor of safety,

* = 700(1 +
f).

(4>

* A per cent.* is an abbreviation for kilogrammes per square centimetre.

One Icilogramme per s(;uare centimetre is equivalent to 14.2232 lbs. per sq. in..
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In his bending experiments upon Krupp cast-steel (untcm-

percd) it was found that u — 3510* per cent.' and t — 7340* per

cent'.

;

t — u 7
6'

But steel varies considerably in strength, and great care

must be exercised in its use, especially in bridge construction.

For this i •^ason take // = 3300* per cent.' and / = 6cxx)* per cent.';

/— //

II

and (2) becomes

rt, = 3300 (• + !»• (5)

If 3 is the factor of safety,

^= 1100(1 + ^^-0). (6)

Example i.—The stresses upon a bar of IMujenix axle-iron,

normal to its cross-section, vary from a maximum tension of

50000* to a minimum tension of 20000*. Determine the admis-

sible stress per cent.' and tlie necessary sectional area.

By (4).

and

/
,

I 20000 \ ,, .

* = 7oo(i-f-^^^j::=840*percent,*,

50000 50000
.*. F = —T- = —^— = 5952 sq. centimetres.

Let/ be the dead load and q the total load, per lineal unit

of length, upon the flanges of roof and bridge trusses.
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.'. = - , and equations (4) and (6) respectively become

(;)

(8)

Ex. 2.—Determine the limiting stress per cent.* for the

flanges of a wrou^ht-iroii hittice girder when the ratio of the

dcatl load to tlie greatest total load is —r.

By (7).

^ = 700(1
+-^-'J

= 800*.

V 7. Weyrauch's Formula.— I.ct a bar of a unit sectional

area be suJjjcctcd to stresses which are alternately different in

kind, and which vary from an absolute numerical maximum a'

(= max. /)') of the one kind to a maximum a" (= max. />'') of

the other kind.

Let a' -\- a" =. d =. the maximum numerical difference of

stress.

Let

If a" = o,

If a" = s,

By VVohler's Law,

a

a

II max. B'

max. B = 0'.

a' ^= d =^ n.

a z= s = —

.

2

a' oc d =fd, (9)

J being an unknown coefficient of which the value remains to

be determined.

If a' = u,

If a' = s,

/=!.

/=i.
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Weyrauch's assumption, viz., / =
u

;, satisfies
211 — s — a

these extreme coiuliticnis, tlic most reliable results of the few

experiments yet recorded, and also Wohler's detluction that a'

diminishes as d increases and vice versa.

Hence (9) becomes

u — s
a =

2// — s
7(i =

H

2u — s — a
ia' 4- a'%

and

/ u — sa' \ I It — s ,\

This is Weyrauch's formula, and it may be always applieil

to those cases in which a member is subjected to stresses alter-

nating between tension antl compression, or tlue to shearing

actions in opposite directions.

In the Phoenix iron experiments already referred to it was

found that s = 1 170* per cent.'

;

7/

H
L
•5

u — 5

H
= .. (10)Taking u = 2100* as before, and making

becomes

«' = 2100(1 - ^j (II)

If 3 is the factor of safety,

b = ;oo(i - -|-) (12)

Weyrauch considers 3 to be the proper factor of safety for

bridges and similar structures. It is also a suitable factor for

the parts of machines subjected to determinate straining

actions. A larger factor will be required when other con-

tingencies have to be provided against.

I
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In the steel experiments, Woliler found that s — 2050* per

cent.'

:

u

u
_5_

12

Taking u = 3300* and s = 1800*,

H — s

It

J.
1

1

(13)

and (10) becomes

rt' = 3300(1 -t\<?^')

If 3 is the factor of safety,

/> = i'00(i - -j«V0') (14)

If a very soft steel is employed in the construction of a

bridge, it may be advisable to diminish still further the ad-

missible itress per unit of sectional area. For example, it may
be assumed that / = 5200*. u = 3000*, and s = 1500*, so that

(2) and (10) respectively become

a

and

3000(1 -f J0) (15)

a' = 3000(1 - 10') (16)

Example.—The stresses in a wrought-iron bar normal

to its cross-section, vary between a tension of 40000* and a

compression of 30000*. Find the sectional area (disregarding

buckling).

B3'(i2)

-^ = 700(1 - ^ X JHM = 437-5* per cent.'.

40000
.: r = — QI.42 sq. centimetres.

437-5 ^ ^ ^

Shearing Stresses.—For shearing stresses in opposite direc-

tions Wohler found, in the case of Krupp cast-steel (untem-
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pered), that u = 2780* per cent.' and s = 1610* per cent.', or

about 1^ of the corresponding values for stresses which are

alternately tensile and compressive, and it may be generally

assumed, that the value of d for shearing stresses, is ^ of its

value for stresses which are alternately tensile and compressive,

arid vhich have the same ratio 0'

8. Unwin has proposed to include all cases of fluctuating

stress in the formula

a' = --\- ^^('- - ^td),

n' being the actual strength, d the fluctuation of stress, t the

statical breaking strength, a.^id « a coefTicient whose value

remains to be determined.

When d = o, the load is steady and a' = /.

When d ~ a', the load alternates with entire relief and

a' = 2t{Vi 4 n' - n).

When d = 2a', the stresses are alternately tensile and com-

pressive and of equal intensity. The stress fluctuates from

a' to — a', and a' = — .

2n

In these extreme cases, if n is made equal to 1.42 for

wrought-iron and to 1.66 for steel, results are obtained almost

identical witii those given in Arts. 6 and 7. The formula may
therefore be assumed to be approximately correct for inter-

mediate cases.

The mean value of n for iron and steel seems to be ^, so

that the formula may be written

a' = - -f Vt{t - 1^).

WUt^

Example.—One of the diagonals of a bowstring truss has

a sectional area of 3 square inches, and is subjected to stresses
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vv hich fluctuate between a tension of 14 tons and a comprescion

of 6 tons. Find the statical strength of the iron.

ii = V

;

d = fluctuation of stress =
14 -(-6) 20

~

3

.-. Y = Y -I- \'t{t - 10).

/ =: 10.17 tons per sq. in.

9. Remarks upon the Values of ^, */, », and ft.—As yet

the value ol n in tumpression has not been satisfactorily deter-

mined, and for the present its value may be assumed to be the

same both in tension and compression.

If. as Wohlcr states, "repeated stresses" are detrimental to

the stren^tii of a material, then the values of u and s diminish

as the repetitions increase in numhei-. and arr minima in struc-

tures desiLjiied for a practically unlimited life.

Only a very lew of Woiiler's experiments ^ive the values of

/, 7/, s. and a, so that Launhardt's and Wej'rauch's assumptions

for the value of /must be refjarded as tentative only, and re-

quire to be verified by further e.vperiments. The close agree-

ment of VVoliler's results from tests upon unt'-mpered cast-steel

(Krupp), witli those given b\' Launhardt's fo; ula, may be seen

from the following

:

Vox t — 1100 centners'"'' per sq. /.oil, Wohler found that

u = 500 centners per sq. /oil. Thus (2j becomes

«. =500(1+^';^;).

and
.*. a^ — 500./, - 6oo</, — o.

Hence for «, = o, 250, 400, 600. 1 100,

Launhardt's formula gives

fl, = 500. 710, 8cx), 900, 1 100;

'*' A centner — iiu.33 pounds. A square zoll = 1.U603 square inches.
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while Wohlcr's cxpcrimcMits ^avc

rt, = 500, 700, 800, 900, 1 100.

A;j[;iin, with ThuLMiix iron, for / — 500 centners per sq. zoll,

« was tound to be 300 centners per sq. zoll, and

.-. ^^ = 3oo(. + 5;;')

or

rt," — 30o</, — 250^/,

If a^ = 240, (I, = 436.8, which ahnost exactly a^jrees with

tlie result <^iven by the tension txperinients.

In ^eiu:ral, the admissible stress per sc|uare unit of sectional

area may be expressed in the form

6 = r{i ± ///0) (17)

p and VI beinjT certain coefficients which depend upi<,. the

nature of the material and also upon the manner of the loading.

Consider three cases, the material in each case beins^ wrought-

iron :

(n) Let the stresses vary between a maximum tension and

an equal maximuiti compression ; then

and

0= I,

.'. l> = 700(1 — i) = 350* per cent.'.

(/') Let the material be subjected t(j stresses which are

either tensile or coni|)ressive, and let it always return to the

original unstrained condition ; then

min. /)' = o, or max. />" = o, and .'. </> = o.

.-. d = 700(1 ± o) = 700^ per cent.'.

{<) Let the material be continually subjected to the same

deaii load ; theti

miti. /i = max. B,

I
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.'. b = 700(1 -[- i) — 1050* per cent.' = J4.934 lbs. per sq. in.,

whicli is one iliird of the ultimate bieakin<j .^tienyth, \ iz.,

1050* per cent.'.

Thus in these three cases the ;uiinissible stresses are in the

ratios of 1:2: 3, ratios which have been already adopted in nia-

ciiine construction as the result of experience.

Wohler, from his experiments uj)()n untempered cast-steel

(Kriipp\ concluded that for alternations between an unloaded

condition and either a tension or a compression, /; =: 1 100, and

for alternations between equal compressi^'e ami tensile stresses,

/; = 580.

In America it has often been the practice to take

F = max. B -f niux. />' a' -j- a'

700 700

for stresses alternately tensile and conipressive, it beint:^ as-

sumed that if the stresses are tensile only, their admissible

values may vary from O* to 700* per cent.'.

(I

bmce = -T, a
70oF

, ,
a'—,

-
.

, . and .•. = ^ =
I -j-0

Comparing this with (12),

for 0' = o, |. i,

(18) gives /> — 700, 560. 467, 400.

and (12) gives /;= 700, ^)I2. 525. 437,

700
(18)

h I,

350,

350.

10. Flow of Solids.—When a (luctilf bod)' is strained

beyond the elastic limit, it approaches a jjurcl}- plastic con-

dition in which a sufficiently great force will dcfoim the body

indefinitely. Under such a force, the elasticit}' disai)pears and

the material is said to be in a yf///V/ state, behaving precisely

like a fluid. For exami)le. it flows through orifices and shows

a contracted section. The stress dc\eloped in the material is

called i\\{2 y//n)/ />nssi/ri' or locfficicnt ofJhiidity.

The general principle of the flow of solids, deduced by

Tresca, may be enunciated as follows:

at;j
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A pressure upon a solid body creates a tendency to the relative

motion of the particles in the direction of least resistance.

i iiis gives an explanation of the various elTccts produced

in m-'^erials by the operations of wire-drawing, punching, shear-

ing, rolling, etc., and in the manufacture <if lead pipes. Prob-

ably it also explains the anomalous behavior of solids under

certain extreme conditions.

Rails which have been in use for some time arc found to

have acquired an elongated lip at the edge. This is doubtless

due to the flow of the metal under the great pressures to which

the rails are continually subjected. Other examples of the flow

of solids arc to be observed in the contraction of stretched bars

and in the swelling of blocks under compression. Tiie period

of fluidity is greater for the more ductile materials, and may
disappear altogether for certain vitreous and brittle substances.

In punching a piece of wrought-iron or steel, the metal is

at first compressed and Jloios inwards, while the shearing;;' only

commences wlien the opposite surface begins to open. A case

brought under the notice of the author may be mentioned in

illustration of tiiis. The thickness of a cold-punched nut was

1.75 inches, the nut-hole was .3125 inch in diameter, and the

length of the piece punched out was onl\- .75 inch. Thus the

flow must have taken place through a deptli of i inch, and the

shearing through a depth of .75 inch. Hence the surface

really shorn was ;r x .3125 X .75 = .736 sq. in. in area, and a

measure of the shearing action is the product of this surface

area and i[\c fluid pressure. The nature of the flow' ma)' be

observed by splitting a cold punched nut in half md treating

tne fractured surfaces with acid, after having planed them and

given them a bright polish The metal boidering the core will

be found curved downwards, the curvature increasing from the

bottom to the top, and well-defined curves will mark the sepa-

rating planes of the plates which were originally useii in piling

and rolling the iron.

Jn experimenting upon lead. Tresca placed a number of

j)latcs, one above the other, in a strong cylinder, Fig. 188, page

165, with a hole in. the bottom. Upon ap[)lying pressure the

'J a.J was always found to flow when the coefficient of fluidity

M

il
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I I

^f

was about 2844 lbs. per scj. in., the diffcrouc of sir > being

double this aniounl. The separating" planes assuniei cmvetl

forms analogous to the corresponding surfaces of flow when

water is substituteil in the cylinder for the lead.

The flow of ductile metals, e.g., copper, lead, wrought-iron,

anil soft steel, commences as soon as the elastic limit is ex-

ceeded, and in order that the flow may be continuous the dis-

torting stress must constantly increase. On the other hand,

in the case of truly plastic bodies, flow commences and con-

tinues under the same constant stress. It evidently depends

upon the hardness of the material, and has been called the lo-

efficient of hardIIiss. The /(^//i,T;' the stress acts the greater is

the deformation, which gradually increa.ses indefinitely or at .1

diminishing rate.

Experiment shows that there is very little alteration in the

density of a ductile body during its plastic deformation, and

Tresca's analytical investigations are based on the assumpt'on

that the body is deformetl without sensible change of volume.

Consider a prismatic bar undergoing plastic deformation.

Let L be the length and A the section of the bar at com-

mencement of deformation.

Let L -\- X he the length and a the section of the bar at a

subsequent period.

Let/ be the intensity of the fluid pressure.

Since the volume remains unchanged,

LA={L±x)a, (I)

the positive or negative sign being taken according as the bar

is in tension or compression.

Let P^ be initial force on bar.

Let P be force on bar when its length is Z, ± ^. Then

P,=pA,

TiUd hence

Hence

P=pa,

P _a
P. - A

' L±x" '

P{L ± x) = P^L = a constant,

(2)

(3)

y
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and the force ditninis/ics as the b.ir stretches and ina eases as

the bar contracts under pressure.

If ecjuation (3) be refeiied to rect-

antjular axes, tlie ordinates rtpre-

sentin^ different vakies of P and

the abscissa; the corresponding

values of .r, the stress-strani dia-

-4> % grams, // in tension and cc in com-

pression, are hyperbolic curves,

havint^ as asymptotes the axis of

X, XOX, and a line parallel to the

axis of y at a distance from it

/ equal to the length L of the bar.

Next consider a metallic mass
Fig. 187. / « i\ • 11

(e.g., lead) restnig upon the entl

CD of a cylinder of radius R, and filling up a space of depth

D. A hole of radius r is made at the centre

of the face CD, through which the mass

flows under the pressure of fluidity exerted

by a piston. When the mass has been com-

pressed to the thickness DO — x\ let y be

the corresponding length KE of the "jet."

Firsf, assume that the specific weight of

the mass remains constant.

If (/x be the diminution in the thickness

DO corresponding to an increase dy in the

length of the jet, then

nk'dx 4- Ttr'dy = o. . . (i)

Integrating eq. I, and remembering that

y — Q when X — D,

R\D - .r) - r'y (2)

Sirond, assume that the cylindricid portion EFGH is gradit-

tdly transformed into NMPLKON, of which the part PMNQ
.s cylindrical, while the diameter of the part PLKQ gradually
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increases from the face of the cylinder to KL ( = EF), at the

end of the jet. Then

n{R'-r')dx amount of metal which flows into the

central cylinder

= znrdrx, (3)

dr being the depth to which the metal penetrates.

Third, assuniL' that the diminution of the diametei of the

cyliiulrical portion PMNQ is directly proportional to the said

diameter.

Then, if s be the radius of the cylinder PQNM,

/

dr ds

z (4)

By eqs. (3) and (4),

(A" — r') = 2r'—

Integrating,

(A' - r') log, X = 2r' log, 3-\-c,

c being constant of integration.

When X = J), a — r,

.: (A"-r')log,^-z=2rMog.-^,

Of
Ml

-:=(^)"

^-r!>

(5)
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By eqs. (2) and (5),

^('

A'» - r«

r y
K' 1)

167

. (6)

which is the equation to the profile PL or QK.

Note.— If R^ — ir\ eq, (6) represents a straight line.

" R' = 2r\ " " •• parabohi.

II. Work.—Work must be done to overcome a resistance.

Thus bodies, or systems of bodies, which have their parts suit-

ably arranged to overcome resistances are capable of doiiijr

work and are said to possess energy. This energy is termed

/ kinetic ov potential accordin^' as it is due to motion or to posi-

tion. A pile-driver falhng from a height upon the heuM o^ a

/ pile drives the pile into the soil, doing work in virtue of its

Jl'otion. Examples of potential energy, or energy at rest, are

afforded by a bent spring, which does work when allowed to

resume its natural form ; a raised weight, which can do work by

falling to a lower level; gnnpo7V(/er and (fynaniite, which do

W()| k by exploding ; a Leyden jar charged with electricity, which

dues work by being discharged ; coal, storage batteries, a head

of n'ttf( r, etc. It is also evident thrt this potential energy

niust be converted into Kinetic energy before work can be

tioJK'- A faipiliar example of this transformation may be seen

in the actioh o^ a common pendulum. At the end of the

swing It Is at rest for a moment and all its energy is potential.

\V|un, under the action of gravity, it has reached the lowest

point, it can do no iiiori" wr)rk in virtue of its position. It has

acquired, however, a certain velocity, and in virtue of this

velocity it does work which enables it to rise on the other side

of the swing. At intermediate points its energy is partly

kinetic and partly potential.

A measure of energy, or of the capacity for doing work, is

I he K'ork done.

llie energy Is exactly equivalent to the actual work done

'n fill' following cases:

1(1} If tlic tff<irt exerted and the resistance have a common
jMiliil 111 application.

J
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{b) If the points of application are different but are rigidly

connecteil.

{c) If the energy is transmitted from memhir to nieniljcr,

{jrovided the members do not change form umler stress, ami

that no eiurg)' is absorbed by frictional resistance or restraint

at tl le connections.

(ienerally speaking, work is of two kinds, \iz., internal work,

or work done against the mutual forces exerted between the

molecules of a body or system of bodies. an<l ixtirnnl -ii>prk,oY

work done by or against the external forces to which the btnly

or bodies are subjected. In cases {a), {b), {c) above, the inter-

nal work is necessaril)- ni'l.

As a matter of fact, every body yields to some extent under

stress, and work must be done to produce the deformation.

Fiictional resistances tend to oppose the relative motions of

members and must also absorb energ)-. If, however, the work

of deformation and the work absorbed by frictional resistance

are included in the term 7uork (Lyiw, the relation still holds that

Energy = work done.

A measure of work done is the product of the resistance by

the distance throutjh which it is overcome. When a man
raises a weitiht of one pounci one foot a<rainst the act ion o f

gravit)' he does a certain amount of work. To raise it two feet

he must do twice as much work, and ten times as much to raise

it ten feet. The amount of work mu^t therefore be propor-

tional to the number of feet through which the weight is

raised. Again, to raise two pounds one foot requires twice as

much work as to raise one pound through the same distance;

while five times as much work would be required to raise five

pounds, and ten times as much to raise ten pounds. Thus the

amount of work must also be proportional to the weight raised.

Hence a measure of the work done is the product of the

number of pounds by the number of feet through which they

are raised, the resulting number being designated foot-pounds.

Any other units, e.g., a pound and an inch, a ton and an

iicli. a kilogramme and a metre, etc., may be chosen, and the

rt'ork clone reijrescnted in inch-pounds, inch-tons, kilogram-
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mctrt's. etc. This staiulard of nicasuroiiKMit is applicable to all

classes ol machi'icr)'. siiice ever}' machine iiiii;ht be worked h\
means oi a pulle\- (lii\'eii bj- i falling weight.

12. Oblique Resistance.— Let a boil)- mov against a

resistance R inclined at an angle ^ to the direction of motion
(I'ig. 189). No work is done against the

n<irmal component R sin ^, as there is

no movement of the point of applica-

tion at right angles to the direction of

m* It ion. This component is, there-

fore. mercl\' a pressure' Th( wor

Fir, i&j

iione against the tangential compf)nent

A' cos H between two consecutive

points M and N of the path of the body is A' c^.s ^ . MX.
Hence the total work done between any two points A ami A' of

the path

MN) =£ cos ft/A,= 2"(/ecos ^,

s being the iengiii of ///>.

I' AJi is a straight line (Fig. 190), and if A' is con>tant in

directitm anil magnitude,

the tol.il work = R cos H.AJi=R.lC,

/iC being the projection of the displacement upon the line of

action of the resistance. Let the path be the arc of a circle

Fig. too.

I Fig. 191) subtending an angle a at the centre. If R and (i re-

main con.'.tant, the work done from A to B

=^ R cos ^ arc AB — R cos H
. a-. . rr = /? . 0.]f cos H . n

:^ R/>a — J/n,
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p being the perpendicular from upon the direction of R, and

M — Rp beinfT the moment of resistance to rotation.

If there are more resistances than one, they may be treated

sepaiately and their several effects superposed. In such case,

J/ will be the total moment of resistance and will be equal to

the algebraic sum of the separate moments.

llie iiornial component R sin ^ produces a pressure.

13. Graphical Method.— Let a body describe a path AB
B (Fig. i92)against a variable resistance of

such a character that its magnitude in

the direction of motion may be repre-

sented at any point M by an ordinate

'*D MN to the curve CD. Let the path

AB be subdivided into a number of

parts, each part MP being so small

that the resistance from M to P may-

be considered uniform. The mean

c u- . MN+PQ ^ ^value of this resistance = '—
, and the work done in

2

MN 4- PQ
overcoming it = -~.MP=zi[\e area MNQP in the

limit. Hence the total work done from A to B = the area,

bounded by the curves AB, CD and the ordinates AC, BD.

14.. Kinetic Energy.—The velocity v acquired by a body

of weight Tc and mass in in falling freely from rest through the

vertical distance // is

W V^ I''

.'. zvli = — - = W-.
a- -y -7

^> - -

Tliu^ an amount of work 7a/i is done, and the body possesses

the kinetic energy w—

.

Again, lee 7>' be the velocity of the body after falling

through a further distance x, measured vertically. Then

zv{/i + .r) = ///:
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and

m
.'. wx = — (t''" — v*\

Thus the work done in falling through the vertical distance x
is wx, and is equal to the corresponding change of kinetic

energy.

15. Example i. Let it be required to determine the iio>k

done in stretching or compressing a bar of length L and sec-

tional area A by an amount /.

Suppose that the force applied to the bar gradually in

creases from o until it attains the value P\ its mean value :s

P P
—, and the work done is therefore -/.
2' 2

/
But P = EAj ; E being the coefficient of elasticity.

.u , J ^ A^" ^ (PVAL
.'. the work done = —Ay =:y.[--] .

2 Z E\Al 2

This formula is only true for small values of the ratio j.

In the case of a compressive force it is assumed that the bar

does not bend.

P
A suddenly applied force, — , will do as much work as a

steady force which increases uniformly from o to P, and hence

it follows that a bar requires twice the strength to resist with

safety the sudden application of a given load than is necessary

when the same load is gradually applied.

If /is the proof stress or clastic limit per unit of sectional

area, "7. is the corresponding /r^^/i'/^'^m, and the work done in

producing the latter is called the resilience of the bar. Accord-

P AL /"
mg to the above, its value is -^ ; -^ is called the ModulusE 2

III
Its

of Resilience.



I

1/2 THEORY OF STNUC'ICRES.

Ex. 2. A wrought-iron tie-rod, 30 ft. in Icngrh and 4 x,^,

ill. ill sectional area, is subjected to a longitudinal pull of

40,(X)0 lbs. Detennine the unit stress, the strain, and the elon-

gation, the coefificient of elasticity being 30,000,000 lbs.

nr.. .
4OOCO

The unit stress is — 10,000 lbs. per sq. in.

Also, from the elastic law, loooo = 30000000 X strain.

.*. the strain =
and the elongation — -~=i^it.

3000

30

Ex. 3. A steel rod is 15 ft. long and 2\ sq. in. in sec-

tional area. The proof strain of the steel is ;^, and its coeffi-

cient of elasticity is 36,000,000 lbs. Find the greatest weight

that can be safely allowed to fall upon the end of the rod from

a height of 27 ft.

The proof stres:i = ^X proof .strain = 36,000 lbs, per sq. in.

The compression of the rod under the proof-stress is

'5

1000 = - ft9r« **-•

The resilience of the rod

PAL (36000)' 2i X 1 5 X 12

~ E 2 ^ 36000000 2

= 8100 inch-lbs. = 675 ft.-lbs.

Again, let WhQ the required weight in pounds.

The total distance through which it falls = 27 ft. + com-

pression = (27 + J^) feet, and the corresponding work is

W''(27 -f- ^ ft.-lbs. This must of course be exactly equivalent

to the resilience of the rod, and

and

• W{27 + ^) = 675,

VV = 24.9 lbs.

'>eiu^ s.
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1 lit rer.iHence of tlic rod may also be at once found from

the fact that it is the product of one half of the total stress by

the compression, i.e., i- . 2^ . 36000 X ^h,
= 6/5 ft.-lbs.

Ex. 4. Let u\ , tu^, zc\, . . . re,, be the weights of a system

of particles rigidly connected together and at distances a\ , .x\
,

.f3 , . . . ,v„ , respectively, from a given axis. Let the systL-m

revolve around the axis with a uniform angular velocity A.

The kinetic energies of the several particles are

zt\
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suit being the same as if the particles were collected in a ring

of radius k, sometimes called the equivalent ring or fly-wheel.

Let Ig be the moment of inertia of the system with respect

to a parallel axis through the centre of gravity, and let. h be the

distance between the two axes. Then

/r = ^f^k^^ - ^.)' + w,(/! - ^,}' + . . . + vi„{Ji - x,S
= /i'2{m) - 2h'S{m.x) -[- 2i{tnx').

Since the new axis passes through the centre of gravity,

2,nx = Mh.

Also, '2{jn) - M and '^^{inx') = /;

.-. /. = MO" -f / - 2A'm ;

Sc, if /' is the moment of inertia about another parallel axis

a', the distance h' from the centre of gravity,

r = L-\-Mh'\

.'. I - Mh' = r - M/i'\

Hence, if the positions of two parallel axes relatively to the

centre of gravity are known, and if the moment of inertia about

one is given, the moment of inertia about the otiier can be

obtained by means of the last formula.

Note.— Nothing has been said as to the number of tlie par-

ticles. They may be infinite in number and infinitely near

each other, forming in fact a solid body. The summation

^(w;tr°) is then best effected by integration.

it. Values of A;^

1. For a rectangular plate of depth d with re-

spect to an axis through the centre „

perpendicular to the side d. k^ = --.

2. For a circular plate of radius r with re-
T

spect to a diameter ^^ = —

.

-^,
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•;. For an annulus of external radius r, and

incernal radius r, with respect to a

diameter ... k^

Note.— If r, — r, = t, and the breadth

i of the annulus is small as compared

vvith ihe radius r, , then

175

_ r: -f r.

^^_r:-\-{r,-tY _rir-t)
approx.

and the area

= 7i{r^ — r„^) = zrrrj, approx.

4. For the plates in (2) and (3) with respect

to an axis through the centre perpen-

dicular to the plates, the numerators

remain the same but the denominator

is in each case 2.

5. For a sphere of radius r with respect to a

diameter.
, k''

6. For a solid cylinder of radius r with re-

spect to its axis '.

k'

7. For an elliptic plate of which the major

and minor axes are 2b and 2d respec-

tively :

With respect to the major axis k'

With respect to the minor axis k^

8. For a triangular plate of height h with re-

spect to an axis coinciding with the

base k'

^-r-.

2

d'

4°

/I

6

i

¥.



176 rin-:oRY of stkuctukes.

17. Momentum—Impulse.—A moviiit; body of weight iv

and mass w acted upon in ihc direction of motion for a time /

by a force F will acquire a \eIocit)- i' which is directly propor-

tional to Fand to A and inversely proportional to w. Hence

Ft
n w

n being some coefficient.

If /<' = lij, the velocity generated in one second is^.

g~ n,

and

or

Ft Ft
••• ^=^.u in

111V — Ft.

This is the analytical statement of Newton's Second Law
,if Motion, which has been expressed b\ Clerk Maxwell in the

following form : "The change of inoincntuni (i.e , the product of

tile mass and velocity) is numerical)}' cgnoi to the impulse (i.e.,

the product of the force and the time during which it acts)

ii.'hich jTodiiccs it, and is in the same direction.''''

Again, let/ be the perpendicular from a fixed axis O upon

the direction of motion of the bod)-, and let ;' be the radius OP
to the body. Then .

'hli vivp — Ftp = Fpt = Alt,

where M —- Fp\ or the change of the moment of motnentum, i.e.,

of the angular momentum, is equal to the moment of impulse.

The above results are also true for two or more bodies or

systems of bodies severally acted upon by extraneous forces,

and the equations may be written

2mv = 2Ft, 2vtvp = 2Fpt = 2Mt.

I n words, the total change of momentum in any assigned direction

is equal to the algebraic sum of the impulses in the '^inie directioUy

^^ X
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'~r-

A
y^^

^»

r-r .

R

and the total change of angular momentum is equal to the alge-

braic sum 0/ the moments of the impulses.

Hence it follows that if two or more bodies or systems of

bodies mutually attract or repel each other, and if there are no

extraneous forces, the total momentum in u, yy

any assigned direction is constant (the

principle of the conservation of linear

momentum), and the angular momentum
about a given axis is constant (the prin-

ciple of the conservation of angular /

momentum). jy
Suppose that the velocity of the body ^ "r"

of weight zu and mass /// changes from

v^ to 7', in the time / under the action of " "^. /
a couple of moment M, and let p^ , p^ be i^'o- 193-

the corresponding values of />, and r, , r^ those of r. Fig. 193.

.-. m(z>J>, — v^^ = Mt
;

or if w, , w^ are the components of v^, v, in directions perpen-

dicular to r^, r„, respectively,

m{w^r^ — w^r^ — Mt.

For example, a weight W of water passing through a turbine

of external radius r, and internal radius r^ has its angular mo-

W W
mentum changed from — zf,r, to — 2t',^a, w, , w^ being

S
the tangential components of the velocity with which the

water enters and leaves the wheel. The water, therefore, exerts

W
iipon the wheel a couple of moment — (ze^,r, — lojr^y and if

the wheel rotates with an angular velocity A, the work done

upon the wheel by the water

W W= ~A{w,r, - w^r^ = --{w,u, - w^u^.

u^ and «, being the circumferential velocities corresponding to

r, and r,, respectively.
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18. Useful Work—Waste Work.~Let a body of mass m
and wcit^hl xv pass (jvcr the distance s under tlie action of a

force F acting in the direction of motion for a time /. and let

the velocity of the body change from 7', to 7',. Assume / to

be so small that, for the interval in question, the velocity may

be regrarded as constant and of the average value -^~-—
^;

s —
2

V.

But Ft = (mv, — mv^).

m.

or

• Fts = -iv: - v.y,

Thus Fs, the work done, is equal to the change of kinetic

energy in the given interval.

If the body is a material particle of a connected system, a

snnilar relation holds for every other particle of the syst'^m, and

the total work done = \{'2mv,^ — 2mv,^).

A part of this work may be expended in doing what is

called effective work, i.e., in overcoming (i) an external resist-

ance, or in doing nseful work, and (2) frictional resistance, or in

doing li'asted work.

Denoting the total effective work by T^ and the total moti' <

work by T,„ , the last equation may be written

T„-Z = U^mv,' - :Emv,%

and the difference between the total motive work and thetotai

effective v/ork is equal to the total change of kinetic energy.

In the case of a machine working at a normal speed the

velocities of the different parts are periodic, being the same at

the beginning and end of any period or number of periods.

For any such interval, therefore, v^ = v^, and .*. T„ = 7",, so

or

or
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ihat there is an equality between the motive work and the

effective work.

19. General Case.—Let ,v, , ^, ,;:, be the co-ordinates of

the C. of G. of a moviii^r body of mass J\I with respect to three

rectangular axes at any given instant.

Let ,r,,, /j, s^ be the co-ordinates of the same point after a

unit of time.

Let ,r,
, }\ , ;?, be the co-ordinates of any particle of mass w

at the given instant.

Let x.,,_y.,, 2, be the co-ordinates of the same particle after

a unit of time.

.'. Mx] = 2{mx,), My, = ^{niy), Ml, = 2:(wj,)

;

J/J, = ':^{inx^. My, = :^{myX M2, = 2{wc,)]

M{2, — 2,) = 2w{3, — 2,),

Mu = 2mn, Mv ^ ^mv, Mzv =^ 2mzo,

or

H, V, w being the component velocities of the C. of G. at the

given instant with respect to the three axes, and u, v, zv the

component velocities of the particle m at the same instant.

From these last equations,

Mu = Sntuji, Mv = 2mt''v, Mw = 2mww,

.•. M{u -\- V -\- w) ^= 2m{uu -\~ vv + zaw),

which may be written in the form

Mff 4-V + w) + 2m {{u - lif + («; - vf + (w — wf \

or

MV ^ :^mV'' =^ :^mv\

t
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U being the resultant velocity of the C. of G. ; v, that of thu

particle ; and /', that of the particle relatively to the C. of G.

The last equation may be written

2: mi''

2 ' 2 "~ 2

Thus the energy of the total mass collected at the centre

of gravity, together with the energy relatively to the centre of

gravity, is equal to the total energy of motion.

If the body revolves around an axis through its C of G.

with an angular velocity A, the second term of the last equa-

tion becomes

T A* A*
-Smr'A' = ~^mr' = — /,
: 2 2 '

! ;,
;< I

r being the distance of the particle m from the axis, and / the

moment of inertia of the body with respect to the axis.

20. Example i. The charge of powder for a 27-ton breech-

loader with a 9-ton carriage is 300 lbs. ; the weight of the pro-

jectile IS 500 lbs., its diam. is 10 in., and its radius of gyration

3.535 in. : the muzzle velocity is 2020 ft. per sec. ; the velocity

of recoil, \6\ ft. per sec. ; the gun is rifled so that the projectile

makes one turn in 40 calibres.

Total energy of explosion — energy of shot -f- energy of recoil

:

Energy of shot = energy of translation -{- energy of rotation

_ 500 (2020)' 500 2
(
^'H 2020Y

/3-535\'

"32.2" 2
"I 32.2* 2' \ -^j ' 40-{^' \ 12 I

= 31680124.2 4-97758.6

= 31777882.8 ft.-lbs.

;

Energy of recoil
36 X 2240 (16J:)*

32.2 ' 2
= 330652.1 ft.-lbs.
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Hence, if C be tlie energy of i lb. t)f powder,

l8i

•%

C. 300 = 31777882.8 -f- 330652.1

= 32108534.9 ft.-lbs.,

and hence

C — 107028.45 ft.-lbs = 47,7 ft.-tops.

Kx. 2. Let ^Fbe the weipfht of a fly-wheel in lbs., and let

its max. antl min, angular velocities be A^,A.^, respectively.

The motion being one of rotation only, the energy stored up

when the velocity rises from /i, to /i,, or given out when it

falls from /J, to A,^, is

1 W W
- {a: - a:) = -/c-'M.' - ^;) = - {v,^ - v.^

v^, 7', being the linear velocities corresponding to A^, A,, and

^ being taken equal to the mean radius of the wheel.

It is usual to specify that the variation of velocity is not

to exceed a certain fractional part of the mean velocity.

Let Fbe the mean velocity, and - the fraction. Then

^. - ^, = -
;

also V,+V, = 2V\
A*

V, -V,

Hence the work stored or given out =
W V^

21. Centrifugal Force.—A body constrained to move in

a plane curve exerts upon the body which constrains it, a force
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'0

Fig, 194.

called centrifugalforce, which is equal and opposite to the de-

viating (or centripetal) force exerted by

the constraining body upon the revolving

body.

Let a particle of mass in move from a

point /-* to a consecutive point Q (Fig. 194)

of its path during an interval of time t

under the action of a normal deviating

force.

Let the normals at P and Q meet in O ; PQ may be con-

sidered as the indefinitely small arc of a circle with its centre

at O.

If there were no constraining force, the body would move
along the tangent at /* to a point T such that PT = vt, v

being the linear velocity at P.

Under the deviating force the body is pulled towards O
through a distance PN — ^ff, f being the normal accelera-

tion, and <2^V being drawn perpendicular to OP.

Also, in the limit, PQ = PT = QN = vt.

But QN' = PN. 20P\

R being the radius 0P\ and hence

v"

f=-^ = ,i'R,

A being the angular velocity.

Hence the deviating force jf the mass m

^= mf— m^ — mA*Ry

and is equal and opposite to the centrifugal force.

Again, if a solid body of mass M revolve with an angular

velocity A about an axis passing through its C. of G., the total
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centrifugal force will be nil, provided the axis of rotation is an

axis of symmetry, or is one of the principal axes of inertia at

the C. of G.

If the axis of rotation is parallel to one of these axes, but

at a distance R from the C. of G.,

the centrifu- ) ^ ., ... ^ ^o ,^s ^^ ,,v;

gal force ) g"

r being the distance of a particle of mass m from the axis, and

W^the weight of the body. Thus the centrifugal force is the

same as if the whole mass were concentrated at the C. of G.

If the axis of rotation is inclined at an angle to the prin-

cipal axis, the body will be con-

stantly subjected to the action of

a couple of moment 2E tan B, E
being the actual energy of the body.

Example.—A ring of radius r

rotates with angular velocity A about

its centre 0. Let p be the weight of

the ring per unit of length of periph-

ery. Consider any half-ring AFB.
The centrifugal force of any element

CC^^-^A^r.
S

,

The component of this force parallel to AB, is balanced by
an equal and opposite force at C" , the angle C"OB being =
the angle COA. Thus the total centrifugal force parallel to

AOB\s nil.

The component of the force at C, perpendicular to AB.

Fig. 195.

A—A'^r sin COD=^—-A''r cos CCE
S g

pCC „ CE A'r „„,
:

<- A'r7^ = /— Diy.
g CC "^ g
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Hence, the total centrifugal force perpendicular to AB

If T is the force developed in the material at each of the

points A and B,

2T= 2^A'r\

since the direction of T is evidently perpendicular to AB.

g g

V being the circumferential velocity.

Let / be the intensity of stress at A and B, and w the

specific weight of the material.

Assuming that T is distributed uniformly over the sectional

areas at A and B,

f=
zv
v\

Thus, the stress is independent of the radius for a given

value of V, and the result is applicable to every point of a flex-

ible element, whatever may be the form of the surfaces over

which it is stretched.

22. Impact.—Wher a body strikes a structure, or member
of a structure, the energy of the blow is expended in

(i) overcoming the resistance to motion of the body struck;

(2) deforming the body struck
;

(3) the kinetic energy of either or of both of the bodies

after impact, if the motion is sensible ;

(4) deforming the striking body

;

(5) producing: vibrations.
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Generally speaking, the energy represented by (5) is very

small and may be disregarded. Also, if the striking body is

very hard, the energy (4), absorbed in its deformation, is inap-

preciable and may be neglected.

First, let a body of weight P fall through a vertical dis-

tance h and strike a second body, the point of application

moving in the direction of the blow through a distance x
against a mean resistance R'. Then

im

P{h -\- x) = work done = R'x.

Let V be the velocity of the striking body at the moment
of impact. Then

P F'
energy of blow = = R'x = P{Ji -\- x).

The actual resistance is directly proportional to the dis-

tance through which the point of application moves, so long as

the limit of elasticity is not exceeded. Its initial value is nil,

TO

and if R is its max. value, the mean value is ^' = —

.

P F' Rx

li /i = o, R = 2P, or the sudden application of a load P
from rest, produces a pressure equal to twice the load, pro-

vided the limit of elasticity is not exceeded.

Example. A i-oz. bullet moving with a velocity of 800 ft.

per sec. strikes a target and is stopped dead in the space of

^^ inch {g — 32). Then

i.-iV.^V-(^oo)' = i?'./^.,V;
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.'. R', the mean resistance overcome by the bullet, = 5000 lbs.

The time in which the bullet is brought to rest

momentum -^^ . -^ . 800

force 5000 3200
sec.

Next, let a body of weight IV^ moving in a given direction

with a velocity v^ strike a body of weight W^ moving in the

same direction with a velocity v^ . After impact let the bodies

continue to move in the same direction with a common ve-

locity V.

momentum before impact

= (

momentum after impact

— +— ]v,

g gi

or

W,v,-Y W,'v, = {W,+ W,)v.

Energy before impact = —^ -^H -'—

.

after = (

W, + w,Y
g 12

Energy lost by impact

^{WX'+W,v:)-'^^{W,-i-W,)

^. wj,v, - v:f

2g{lV. + lV,)

>*»h:^.
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if either of the bodies is subjected to any constraint, energy

must be expended to overcome such constraint, and the loss of

energy by impact will be less.

Example i. Let a weight of W^ tons fall h ft. upon the

head of a pile weighing W^ tons and drive it a ft. into the

ground against a mean resistance of R tons, the head of the

pile being crushed for an appreciable length .*• ft.

Let V be the velocity of the weight when it strikes the pile
;

" P " " mean iorcQ of the bloiv

;

iV
'v

" y " " distance through which pile moves during ac- j
tion of blow

;

" t " " duration of the blow in seconds

;

-J

« y a u common velocity of the pile and weight during

action of blow
; J

" ;: " " distance through which pile moves after the J

blow. >^

'

Px -|- Ry = work done in crushing the pile -|- work "\
doin- in overcoming ground-resistance

in time / = energy dissipated by blow

W -I- IV V

Also, considering the change of momentum first of weight

and then of pile,

W W
Pt='-^{v-V) = Rt + !^-^V. .... (2)

Again, ^

Rz = work done after blow = ——- ?—
. . (i\

g 2 ^^^

Finally, y -\- z = a, (4)

and

v'^igh (5)
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also, the time of the penetration

W,W,
^VrW,-\^W,+ W,gR

V
~b sec, (8)

and the distance through which the timber moves

2^ - (ff^,4-W/+^ny2^i?"- (9)

23. On the Extension of a Prismatic Bar.—The ele-

mentary law of extension is sometimes enunciated as follows:

A prismatic bar of length L and sectional area A is

stretched, and its length is Z -f ;r when the force oi extension

is/*; if ^Z* is the increment of force corresponding to an in-

crement dx of length,

dP=EA dx

L-\-x
'

Hence, the force producing an extension / is equal to

J^ J^Aj-^ = EA \og\\ +-)=/>,, suppose.

But

iog.(i + z) = z - 2"(z) +Kz) - • • • = Z ' ^PP''^^-

'i

O.V T//E EXTENSION OF A PRISMATIC BAR. 1 89

Hence, substituting these values of F, and F, in eq. (5),

W^W,
{W,^\V:){^W,-\-W,-^W,)2g

— Rx\ . . . (;)

I ill

.'.P, = EAj
m
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Corollary.—From the last equation,
dP, EA

L
and

EA
dl ~ L '

""^ L
is consequently a measure of the longitudinal stiffness of a bar,

so that for the same material, the stiffness varies directly as the

sectional area and inversely as the length, while for different

materials it also varies directly as the coefficient of elasticity.

Work of Extension.—The force producing the increment dx

lia^ for its least value P[= EAj], for its greatest value

'dPP^ dP, and for its mean value P-\ • , so that the work done

is \P \- —]dx = Pdx, approximately.

Hence the work done in stretching the bar until its length

is Z, -[- / is equal to

pi pi X E/XPdx=£EA~^dx=-^EAr
2

24. On the Oscillatory Motion of a Weight at the End
of a Vertical Elastic Rod.—An elastic rod of natu-

ral length L{OA) and sectional area A is suspended

from O, and carries a weight Pat its lower end, which
elongates the rod until its length is OB = L -}- /.

Assume that the mass of the rod as compared
with P is sufficiently small to be disregarded, then

A

P^EA

Im

If the weight is made to descend to a point C, and

is then left free to return to its state of equilibrium, it

must necessarily describe a series of vertical oscilla-

tions about B as centre.

Take B as the origin, and at any time / let the

weight be at M distant x from B ; also let BC = c.

Two cases may be considered.

first, suppose the end of the rod to be gradually forced

down to C and then suddenly released.

Fig. ig6.
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According to the principle of the conservation of energy,

g 2 \dt I ~ the 7f<?r/! done between C and M

or

and hence

-' L V2~ 2I'

e-2 \dt) I 2^ ^''

V, the velocity of the weight at M, — a/Kic* ._ ^""jj^

Now V is zero when ;»r = ± c, so that the weight wih rise

above 5 to a point C, where BC^ ,—.-.=. BC.
i^gain, from the last equation,

,, /F_ dx
"^^y I -{c-'-xy

and integrating between the limits o and x^

and the oscillations are therefore isochronous.

When AT = t,

n IT

and the time of a conipiete oscillation is

Vi

1
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Next, suppose the oscillatory motion to be caused by a

weight P falling without friction from a point D, anu being

suddenly checked and held by a catch at the lower end of the

rod.

Take the same origin and data as before, and let AD = Ji.

The elastic resistance of the rod at the time t is

I EA
L '

and the equation of motion of the weight is

pay _ - EA '-±-^=p-f(/+.)

or
dt*' -h

Integrating,

-7 . j
= — jx'' -\-c^, c^ being a constant of integration.

I

^ dx . , , S 1

But — is zero when x = c, and c^ = -jc ,

Hence

[§)"=f(.-., =
.>

Tjiis is precisely the same equation as was obtained in ^he

first case, and between the limits o and x

y/f =si„-f.
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SO that the motion is isochronous, and the time of a complete

oscillation is

Cor. I. When x = — I,

and hence

or

Vf

^£)=2gh,

f
{C' -P) = 2gh,

f" = /» + 2lh.

Cor. 2. If h — o, i.e., if the weight is merely placed upon

the rod at the end A, c — ± /, and the amplitude of the

oscillation is twice the statical elongation due to P.

Cor. 3. The rod may be safely stretched until its length is

L '\- 1, while a further elongation c might prove most injurious

to its elasticity, which shows the detrimental effect of vibratory

motion. If a small downward force Q is applied to /*when it

has reached the end of its vibration, it will produce a corre-

sponding descent, and the weight Pwill then ascend an equal

distance above its neutral position. At the end of the interval

corresponding to P's natural perioa of vibration, apply the

force again, and P will descend still further. This process

may be continued indefinitely, until at last rupture takes place,

however small Pand (2 may be. If Q is applied at irregular

intervals, the amplitude of the oscillations will still be increased,

but the increase will be followed by a decrease, and so on con-

tinually. In practice the problem becomes much more com-

plex on account of local conditions, but experience shows that

?\. fluctuation of stress is always more injurious to a structure

than the stress due to the maximum load, and that the injury
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Is aggravated as the periods of fluctuation and of vibration of

the structure become more nearly synchronous.

An ex:imp!e of a fluctuating load is a procession marching

in time across a suspension-bridge, which may strain it far

more severely than a much greater dead load, and may set up

a synchronous vibration which may prove absolutely dangerous.

In fact, a bridge has been known to fail from this cause.

Cor. 4. The coefficient of elasticity of the rod may be ap-

proximately found by means of the formula

-V^
T being the time of a complete oscillation. For suppose that

the rod emits a musical note of ;/ vibrations per second, then

is the time of travel from C to C,

;

,'./z=z —r—
5 , and hence £ = -j-- .

47r « ^ ^

Cor. 5. Suppose that the weight is perfectly free to slide

along the rod. When it returns to A, it will leave the end of

the rod and rise with a certain initial velocity. This velocity

is evidently ^2gh, and the weight accordingly ascends to D,
then falls again, repeats the former operation, and so on. The
equations of motion are in this case only true for values of x
between x =. -\- c and x =. — I.

25. On the Oscillatory Motion of a Weight at the End
of a Vertical Elastic Rod of Appreciable Mass.—Suppose
the mass of the rod to be taken into account, and assume

:

{a) That all the particles of the rod hiove in directions par-

allel to the axis of the rod.

Henc
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i^EVm

{6) That all the particles, which at any instant are in a plane

perpendicular to the axis, remain in that plane at all times.

As before, the rod OA of natural length L and sectional

area /i is fixed at and carries a weight /', at A.

Take O as the origin, and let OX be the axis of the rod.

Let «*;, «'; -|- <A'T, and x, x -j- (/x, be respectively the actual

and y/<//«rrt/ distances from O of the two consecutive

sections MM, M'M'. q
Let /J„ be the natural density of the rod, and fj

the density of the section MM, distant $ from 0.

The forces which act upon the rod are

:

{a) The upward and constant force I\ at 0.

(b) The weight I\ at /].

{c) The weigl't of the rod.

{(i) A force ^V per unit of mass through the slice

bounded by the planes MM, M'M', distant S and

S -\- il^, respectively, from O.

Suppose the rod, after equilibrium has been es-

tablished, to be cut at the plane M'M'. In order to

maintain the equilibrium of the portion OM'M' it

will be necessary to apply to the surface of this plane a certain

iorce Pf and the equation of equilibrium becomes

5

Fig. 197.

- P, + f^pAd^X J^pj^p^gAx^ o.

But if the thickness dS of the slice MM' is indefinitely

diminished, P is evidently the elastic reaction, and its value is

EA
dB, — dx

dx

idB \

^^(^-)-

Hence

- ^« + jf^^XdB^EAi^^^-^-^rP,gAx = o.
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Differentiating with respect to x,

dB, d'$

dx dx'

But pd^ = p^dx,

.'. p,AX+EA~^^p,gA = 0,

or

Also, p^AXdx is the resistance to acceleration arising from

the inertia of the slice, and is therefore equal to

so that

d^$
-p,Adx-^,

^-~'de'

Hence

d'B Ed'^
df ~

p„ dx" + ^- (I)

To solve this equation.—In the state of equilibrium,

-(If-)

is the tension in the section of which the distance from

\
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O is ;r, and counterbalances the weight P, and the weight

p^A(J — x)g of the portion AMN of the rod.

,'.EA (^ _ i) = Z'. + p,Ag{l-x),

or

S='+^+¥<'-')-

Integrating,

5 = .+ A, + ^^f(,,_^). ... (2)

There is no constant of integration, as x and $ vanish

together.

This value of ^ is a particular solution of (i), and is inde-

pendent of /.

Put ^ = ^+r.-+¥('-i + *,

li

z being a new function of x and /. Then

dx^
"'

-'pS^-'JLi. and
dx^

d*$ _ d'z

de ~ de
•

Hence, from eq. (i),

d^z Ed^z .d^'z
, . E

^5- = r :7::»- = ^. -JZi^ where v* = -
df p.dx* dx" P.

The integral of this equation is of the form

z = F{x^v,t)-\-f{x-vA
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f!

i, f i *

y

i,{ ~ a/ — I being the velocity of propagation of the vibrations^

The full solution of (i) is therefore of the form

^ = *+ ^'+ ^('-^ - 7) + ^(^ + "''^ +'''^* - '''^•

26. Inertia-^Balancing.—Newton's First Law of Motion,

called also the Lazv 0/ Inerfm, states that "a body will continue

in a state of rest or of uniform motion in a straight line unless

it is made to change that state by external forces."

This property of resisting a change of state is termed

inertia and in dynamics is always employed to measure the

quantity of matter contained in a body, i.e., its mass, tb

which the inertia must be necessarily proportional. Thus, to

induce motion in a body, energy must be expended, and must

again be absorbed before it can be brought to rest. The inertia

of the reciprocating parts of a machine may therefore heavily

strain the framework, which shou'd be bolted to a firm foun-

dation, or must be sufficiently massive to counteract by its

weight the otherwise unbalanced forces.

Example i. Consider the case of a direct-acting horizontal

steam-engine. Fig. 198. At any

given instant let the crank OP
and the connecting-rod CP make
angles Q and 0, respectively, with

the line of stroke AB.
Let V be the velocity of the

crank-pin centre P, and let u be

the corresponding piston velocity, which must evidently be the

same as that of the end C of the connecting-rod.

Let OP produced meet the vertical through C in /.

At the moment under consideration, the points C and/* are

turning about / as an instantaneous centre.

Fig. 198.

H<

u

V

IC

IP

sin (^+0)
cos

\.
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Let W be the weight of the reciprocating parts, i.e., the

piston-head, piston-rod, cross-head (or motion-block), and a por-

tion of the connecting-rod.

Assume ^\) that the motion of the crank-pin centre is uni-

form
;

(2) that the obHquity of the connecting-rod may-

be disregarded without sensible error, and
.-. = 0.

Draw PN perpendicular to AB, and let ON—x; ON is

equal to the distance of the piston from the centre of the

stroke, corresponding to the position OP of the crank.

The kinetic energy of the reciprocating parts

g 2

W v' sin' B

1 2

H

r being the radius OP.

.: the change of kinetic energy, or work done, corresponding

to the values x^ , x^ of x.

W v" ix^ - x,'^

g 2 (^^1-

Let R be the mean pressure which, acting during the same
interval, would do the same work. Then

W v' x,"

g 2
^ = R{x, - X,),

and

g 2 r'

Hence, in the limit, when the interval is indefinitely small,

Xj = x, = X, and the pressure corresponding to x becomes

g f
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This is the pressure due to inertia, and may be written in the

form

con>

r

_/ W v'X
C [= ) being the centrifugal force of W assumed

centrated at the crank-pin centre. /? is a maximum and equal

to C when x = r, i.e., at the points A, B, and its value at

intermediate points may be represented by the vertical ordi-

nates to AB from the straight line EOF drawn so that

AE = BF = C. In low-speed engines, C may be so small that

the effect of inertia may be disregarded, but in quick-running

engines, C may become very large and the inertia of the recip-

rocating parts may give rise to excessive strains.

Another force acting upon the crank-shaft is the centrifu-

gal force of the crank, crank-^jin, and of that portion of the con-

necting-rod which may be supposed to rotate with the crank-

pin.

Let w be the weight of the mass concentrated at the crank-

pin centre which will produce the same centrifugal force as

these rotating pieces (i.e., wr = sum of products of the weights

of the several pieces into the distances of their centres of gravity

from O).

to v^
The centriiugal force of iv = .

g r

Thus the total maximum pressure on the crank-shaft

^ wv* v" A*= C-\--~ = —(lV4-w) = r(JV-\-w)—
^ g r gr^ ' ' ^ ' ' g

A being the uniform angtilar velocity of the crank-pin.

This pressure may be counteracted by placing a suitable

balance-weight (or weights) in such a position as to develop in

the opposite direction a centrifugal force of equal magnitude.
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1

X,et W^ be such a weight and R its distance from O. Then

from which, if R is given, W^ may be obtained.

During the first half of the stroke an amount of energy

represented by the triangle AEO is absorbed in accelerating the

reciprocating parts, and the same amount, represented by the

triangle EOF, is given out during the second half of the stroke

when the reciprocating parts are being retarded.

During the up-stroke of a vertical engine the weights of the

reciprocating parts act in a direction opposite to the motion of

the piston, while during the down-stroke they act in the same

direction.

InAE produced (Fig. 199) take £E' to represent the weight

of the reciprocating parts on the same scale g-

as AE represents the pressure due to inertia. E

Draw E'O'F' parallel to EOF. A

During the up-stroke the ordinates of

E'O' represent the pressures required to ac-

celerate the reciprocating parts, the pressures while they are

retarded being represented by the ordinates of O'F'.

The case is exactly reversed in the down-stroke.

Fig. 199.

iV^.^.—The formula R

follows

:

C- may be easily deduced as

u = v sin S; the acceleration = -j: = v cos ft -^ = -^x

:

at at r

W dti
.'. — ^ = accelerating force = force due to inertia

T* r

SI
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Ex. 2. Consider a double-cylinder engine with two cranks,

at right angles, ;uul let d be the distance between the centre

lines of the cylinders (Fig. 200).
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their rotation tend to balance both the force and the couple.

For example, the weights may be placed

upon the fly-wheels, or again, upon the driv-

ing-wheels of a locomotive.

Let a balance-weight Q be placed nearly

diametrically opposite to the centre of each

crank-pin (Fig. 201), and let R be the distance

from the axis to the centre of gravity of Q.

Let e be the horizontal distance between

the balance-weights.

The centrifugal force F d\xe to the rotation of Q

Fig. ao-..

g (velocity of Qf _ Q \ R"

g R ~gR -V'

Fig. 202.

and this force F is equivalent to a single force F acting half-way

^ between the weights and to a couple of moment
e

F -. Let be the angle between the radius

to a balance-weight, and the common bisector

of the angle between the two cranks (Fig. 202).

Since there are two weights Q, there will

be two couples each of moment F - , and two

forces each equal to F acting half-way between the weights,

the angle between the axes of the couples being i8o°— 20, and

that between the forces being 20. The moment of the result-

ant couple is Fe sin 0, and its axis bisects the angle between

the axes of the separate couples ; the resultant force parallel

to the line of stroke — 2F cos 0.

Q and may now be chosen so that

2FC0S = maximum alternating force = Ci^,

and

Fe sin = maximum alternating couple
2

^^•

.*. tan = -
,

e

n

III

i
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g r" g r ey
e'-^d*

.'.Q = ^IV r^ /e' + d'

e R

Ex. 3. Again, the pressure C at a dead point may be

balanced by a weight Q diametrically opposite.

If R is the radius of the weight-circle, then

Wv' _ QR
,

g r g r"

and

,'.Q=WR
e-i-d

The weight Q may be replaced by a weight Q on the
2e

e — d
near and a weight Q on the far wheel. Thus, since the

2e

cranks are at right angles, there will be two weights 90° apart

€ -\- d g — d
on each wheel, viz., Q in line with the crank and Q .

These two weights, again, may be replaced by a single weight

B whose centrifugal force is the resultant of the centrifugal

forces of the two weights. Thus

IB zry_ IQ e_±d v^\* (Q e_-d v^
^g R^~^g 2e R!'^\g 2e RI*

v' being the linear velocity at the circumference of the weight-

circle.

.• ^ = (2'
2e^
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or

=ve'-{-d*

If a is the angle between the radius to the greater weight
.e-\-d
Q -ZT~ «i"*^ the crank radius,

2€

Qe-dv"
g 2e R e — d

tan a — -S-

—

, , ,. = ~t v«

"g "2? X
^<7/^.—In outside-cylinder engines e — d is approximately

nil, and B=Q= W^.R
27. Curves of Piston Velocity.—Consider the engine in

Ex. I.

Fig. 203.

Let CP produced intersect the vertical through O in T, and
in OPtak^OT' = OT.

The piston velocity ti and the velocity v of the crank-pin

centre are connected by the relation

« _ sin {6 4- 0) _qT_ or
v~ cos ~'0P~ OP' (I)

If the velocity v is assumed constant, and if it is represented

by OP, then on the same scale OT' will represent the piston

velocity u. Drawing similai lines to represent the value of u

I

i
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for every position of the crank, the locus of T' will be found to

consist of two closed curves OGS, 6^//T", called \\\q polar curves

of piston velocity. They pass through the point O and throujjh

the ends i" and T of th'j vertical iliamcter. On the side towards

the cylinder they lie outside ^he circles having OS and OT as

diameters, while on the side away from the cylinder they lie

inside the circles. If the connecting-rod is so long that its

obliquity may be disregarded,

= and « — t^sin 6^,

and the curves coincide with the circles.

A rectangular diagram of velocity may be drawn as follows

^.<;^
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If the obliquity is very small,

^ . ^ sin 6*

tan = sin = , approximately,

and

( .
fi

,

sin 6> cos ^\ / .
fl ,

sin26\
• • « = ^ \s'n 6* H j = t^^sin B -f -^^j.

28. Curve of Crank-effort.—The crank-effort F for any
position OP of the crank is the component along the tangent

at P of the thrust along the connecting-rod.

This thrust =

.'.F=P

cos 0"

s:n(^ + 0)

cos

If the pressure P upon the piston is constant, and if it is rep-

resented by OP, then, on the same scale, OT', Fig. 203, will rep-

resent the crank-effort. Thus, the curves of piston velocity

already drawn may also be taken

to represent curves of crank-effort.

If the pressure P is variable, as is

usually the case, let OP, the crank

radius, represent the initial value

of P. After expansion has begun,

take OP' in OP, for any position OP
of the crank, to represent the cor-

responding pressure which may be

directly obtained from the indicator-diagram. Draw P'T'
parallel to PT, and take OT" ^OV. Then OT" will repre-

sent the required crank-effort, and the linear and polar diagrams

may be drawn as already described.

29. Curves of Energy—Fluctuation of Energy.—In the

curve of crank-effort as usually drawn, the crank-effort for any

position OP of the crank is the ordinate S'H, the abscissa DH
being equal to the arc AP, i.e., to the distance traversed by the

Fig. 205.

il

'III

^
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point of application of the crank-efTort. Thus, DSR and EVG^
being the curves,

DE = EG = semi-circumference of crank-circle = nr.

If the obliquity is neglected, the curves of crank-effort are

the two curves of sines shown by the dotted lines.

The area DS'ff also evidently represents the wor^ done an

the crank moves from OA to OP, and the total work done is

represented by the area DSE in the for'"ard and by EVG in

the return stroke.

Let F^ be the mean crank-effort. Then

F, X 2nr - 2PX 2r,

assuming Pto be constant.

• F = 2P
n'

2P
Draw the horizontal line 1234567 at the distance — from

DEG, and intersecting the verticals through D, E, and 6^ in i,

4, and 7, and the curves in 2, 3, 5, and 6. The engine may be

supposed to work against a constant resistance A' equal and^

opposite to the mean crank-effort F„

.

From D to 2, R > crank-effort, and the speed must there-

fore continually diminish.

From 2 to 3, ^ < crank-effort, and the speed must contin-

ually increase.

Thus 2 is a point of min. velocity, and therefore also of

min. kinetic energy.

From I to E, Ry crank-effort, and the speed must contin-

ually diminish.
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Thus 3 is a point of max. velocity, and therefore also of

max. kinetic encrfjy.

Similarly, in the- return stroke, 5 and 6 are points of min.

and max. ^locity, respectively.

Tile change or jhictiiation of kinetic energy from 2 to 3 =:

area 283, bounded by the curve and by 23.

The fluctuation from 3 to 5 = area 3^'5, bounded by 35 and

by tlie curve.

F Fr
Again, since 73 = 73^ , the ordinates of the curves may be

taken to represent the moments of crank-effort, and the abscissae

are then the corresponding values of ^.

The work done between A and any other position P of

the crank-pin

J. J. \ iV - sin' ^/

= Pr{\ ~ cos B -\- n — \'7e — sin'"^).

If there are two or more cranks, the ordinates of the crank-

effort curve will be equal to the algebraic sums of the several

crank-efforts. For example, if the two cranks are at right

angles, and if /\ , F^ are the crank-efforts when one of the

cranks (/^,) makes an angle ii with the line of stroke,

an(

/ sin 2^\

sin 2B\

2n /*

li

F.-P[cose

.'. F,-{-F, = /'(sin S -\- cos &) = combined crank-effort,

P being supposed constant.

N'ote.—In the case of the polar curves of crank-effort, if a

circle is described with O as centre and a radius = mean crank-

2P
effort = —r, it will intersect the curves in four points, which

are necessarily points of max. and min. velocity.
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TiiK srKKN(;riis, ki.asik 1 1 ii;s. and wi;ir;irrs of
VAUioiJs ALLOYS, i;k:.

Material.

Miiiniiiutn
Ill ,ISH

" (haiiiinL-rcil)

Ili.i iviif

('o|i|>,,. |)l;iif, liaiiiinert'd
'

itniUMlcil .

Ciipprr win?
( iiii'iiicUl

l.<-,ul

liMii wire
linisplinr l)r()n/.c

liii

/.ICIl'.

l.c.illiLr

M.i.K. I.oail nil ( )i i^inal Art.i
III lbs. pel Mi;. Ill,

I

'ri'tisiiiii.

yK.Kuc,

:,r,,,.«,

l,«S"

57.'""
4,.p.
7,VHj
4,<MX>

(lllll-

pri'SHiiiii.

i'.,irt..

7.""'

Sh.iir-

iiiK.

YdUlln's
Mmllllus

A
(III His. I.

(>. |IX),(NK)

l,|,'ri>'»,IKlO

I -,,( H »* J,l " H »

I ', I'C ! >,OI »« I

<7.""•'•""

71. .,,<.,,

Cocf
til irill 11) Wiiljlll
l<i){iiluy, III ll>'>.

(1 per Ml It.

(ill IIjs.).

(.fiuOiiK)!! ifiii 10 l(t<\

;(,4(»i,iKii) 4H7 to 524 .4

5.1)

5i7""."«' 55''

555
529
71a

5(^5".'*""

2,l4IJ,ri.K) ^r/, If, i^liV,

4.'.| to ,14'/

rilH STKK.NKirilS. ICLA.SriCII'IKS, AND WICKiiirs OF Tl .\1I{I:KS.

This t;il)li.' C()iit;iiiis the results of the most recent and

most leliable expeiimeiits, but, i^cneially speakiiij^, only small

specimens of the material have been tested. It is found that

the; sti(;n^th, elasticity, ami weight of a timber are affectctl by

the soil, Hj^e, seasoning, [)t.T cent of moisture, position in the

l;)Lj, etc., and hence it is not surprising' that specimens even

Avhen cut out of the same lo^ shf)w n-sults which often differ

very widely from the mean. Additional experiments on large

timbers are needed, and in each ca:'<.- slinu.ld be accompanied

by a complete hi:;tory of the .specimen from tlie time of fellinj.;.

Description of
Timber.
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THE STRENGTHS. ELASTICITIES, AND WEIGHTS OF TIMBERS
{Continued.)
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THE BREAKING WEIGHTS AND COEFFICIENTS OF BENDING
STRENGTH IN TONS (of 2240 i.Hs.) OF VARIOUS RECT-

ANGULAR BEAMS LOADED AT THE CENTRE.

Material.

Yellow pine ,

Pitch pine.

Baltic pine.

American elm,

Gret.-nlieart.

Red pine.

Clear
Span

between
Supports
in inches.

Breadth
ill inches.

I2(j

I2(J

45

45

45

45

45

45

121J

129

45

45

43
45
45

45
45

45

45

45

45

45

45

45
45

45

45

45

45

147
I -'7

14

14

5

5

5

5

2i

' r

14

5

5

5

5

2i

2i
5

5

2i

2i

5

5

2i
2i
5

2i

3

2i

2i
<)

6
6

Depth
in Indies.

15

15

7

7

5

5

3i

3i
15

15

7

7

7

7

3i
3i

7

7

3i

7

7

3i

3i
5

7

3

3i
3i
8

12

12

Mreakin^
Weiuht
in tons.

3S.

34
5.

5-

3-

3.

15

9
1
I

05
•925

1-075

59-25
60.25
7.8

9-75
10.65
II

1.6

1-35

7
•i-5

1. 125
1 .2

14.9
15-&
2.65
2.6

14

11-45

3-85
4.00

3-55
24-

5

7-5
8.45

Coel-
ticient of
IJi-iKlInK

Strength.

2-34
2 . 09
1.62

1-57
1.67
1 .64
2.U4

2.37
3-(J4

3-7
2.14
2.03

2.92

3 -'-'3

3-52
2-97
1.91

2-34
2.48
2.64
4.1

4.29
5-84

5-73
7-5f'

6.31

9.625
8. 8

1

7.82
8.87
'.91

2.15

Remarks.

Oil! timber

Old timber

Old timber

iV./y.—The results contained in the last two tables are mainly deduced from experi-
ments carried out under the supervision of W. Le Mesurier, M.Inst.C.E., Dock Yard, Liver-
DOol

AVERAGE OF THE RESULTS OBTAINED BY THE AUTHOR WITH
BEAMS OF LARGE SCANTLING IN THE TESTING

LABORATORY, McGILL UNIVERSITY.*

Canadian Timbers.

Douglas fii — specially selected, free

from knots, and cut out of log ;A a
distance from the heart

Doujrlas fir—ordinary first quality.

Red pine

Coefficient of
Rending

Strengtli in

lbs. per sq. in.

Q.OOO
6,000

5,100

Coefficient of
Rlasticity

in lbs.

2,000,000

1,430,000

1,430,000

Weight per
cubic ft. in lbs.

40
34
34-/8

Kor details of these tests tin- re.ider is referrei! to the Traiisiiclions of the Canadian
Society of Civil Engineers. Vol. IX, 1895.
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THE WEIGHTS AND CRUSHING WEIGHTS OF ROCKS, ETC.

Material.

Asphalt .

.

Basalt, Scutch
" Greenstone

Welsh
Beton
Brick, common

" stock (Eng.)
" Sydney, N. S
" yellow-faced (Eng.)
" Staffordshire blue

...e
'

' pressed (best)

Biickworii in ordinary lime mortar
Cement, Portland

Roman
Clav
Concrete, ordinary

" in cement. . . .

.

Earth
Firestone
Freestone
Glass, flint. . . ,

" crown
" common green

plate

Granite, Aberdeen gray..

.

red
" Cornish

Sorrel

Irish

U. S. (Quincy)...

Argyll
Gneiss
Limestone
Lime, quick
Mortar

" (average)

Masonry, common brick..
" in cement
" rubble

Marble, statuary
" miscellaneous...

OSlite, Portland stone. . .

.

Bath stone
Sand, quartz

" river , . . .

,

" pit
" fine

Sandstone, red (Eng.). . .

.

" Derby grit. . ,

" paving (Eng.)
" Scotch

U. S
Shingle
Slate, Anglesea

" Cornish
" Welsh

Trap

Weight per cu. ft.

in lbs.

156
184
181

172

100 to 135

112

86 to 94
100

119
119

137

77 to 125
112

192

157
158

172
T63

165
166

167

96 to 175

154 to 162

53
86 to II

9

106

116 to 144

170
168 to 170

151

123

177
"7
100

95
133
150

156 to 157

153 to IS5

83

179)

180)
170

Crushing- Weight in

lbs. per sq, in.

8,300

17,200
16,800

800 to 1 ,400

550 to 800
2,250
2,200

1,440
7,200
1,700

10,200
600 to 1,200

1,700 to 6,000

460 to 775

19,600

3,000 to 3.500
27,500

31,000
31,000

10,800

14,00c

12,800

10,450
15,000

10,900

19,600

7,500 to g,cx)0

120 to 240

500 to 800
760

^% of cut stone

3.200
8,000 to 9,700

4,100

5.700
3,100

5,700 to 6,000

5,300 to 7,800

5.300

10,000
10

34,000



TABLES.

FACTORS OF SAFETY

Good Ordinary Work.

Timber 2 to 3 for dead load, 3 to 6 for live Ioad=

Metals 3 " " " 6 " " "

Masonry 4 '

8 " " "

EXPANSIONS OF SOLIDS.

215

Materials.

Brass. . .

.

Bronze..

.

Cast-iron.

Copper. .

,

Fir

Glass

Cold

Gun-metal

Iron wire

Lead

Oak
Platinum

Silver

Steel, unhardened
" hardened

Tin

Wrought-iron (bar)

" (for smith-work).

Zinc, cast

" hammered

Linear Expansion per Unit of Length.
Expansion
in Bulk.

From 32° F. to
212° F.

From 32° F. to

572° F.

.001868

.00182

.001075

.001718

.00352

.00861

.001466

.00181

.00144

. 0002848

.000746

.000S84

.001909

.001079

.00124

.002173

.001235

.001182

. 00294

1

.003108

-sir
= 5J5

1— ?»5

— ^SIT
— TiVf

= S8T
— I5H
— 1— ttST

SBT

1

TTffT

B¥?

= a
TffTS

1

sis

.001883 = ,fr

From 32° F.
to 212° F.

.001468 = Tit

.0065

.0054

.0033

.0055

.0027

.0057

.0036

.0066

.0036

.fX)58

Noiic—Crushing strength gf ordinary brickwork in Portland cement, 1 to 3, = i5fv) to

^^<x) lbs. per sq. in.

\
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\ EXAMPLES.

1. How many square inches are there in the cross-sectiun of an iron

rail \veighiti<i 30 lbs. per lineal yard? How many in a yellow-pine beam
of the same lineal weij^lit.^ Ans. 3 sq. in.; 45 sq. in.

2. A vertical wrought-iron bar 60 ft. long and i in. in diameter is

lixed at the upper end and carries a weight of 2000 lbs. at the lower end.

Find the factors of safety for both ends, the ultimate strength of the

iron being 50,000 lbs. per sq. in. Ans, 19,"4 ; i8f*/^.

3. A vertical rod fixed at both ends is weighted with a load w at an

intermediate point. How is the load distributed in the tension of the

upper and compression of the lower portion of the rod }

Ans. Inversely as the lengths.

4. Find the length of a steel bar of sp. gr. 7.8 which, when suspended

vertically, would break by its own weight, the ultimate strength of the

metal being 60,000 lbs. per sq. in. Ans. 17,723 ft.

5. The iron composing the I'nks of a chain is \ in. in diameter; the

chain is broken under a pull of 10,000 lbs. What is the corresponding

tenacity per sq. in. ? Ans. S7'~7-it I'^s.

6. A vertical iron suspension-rod 90 ft. long carries a load of 20,000

lbs. at its lower end ; the rod is made up of three equal lengths square

in section Find the sectional area of each length, the ultimate tenacity

of the iron being 50,000 lbs. per sq. in., and 5 a factor of safety.

Jiir 800 cn in • 20 0eri in • iJOOOOOOci inTins. ,j,j- sq. m., -g^^ sq. in. , ^-rjsg— sq. m.

7. If the rod in the previous question is of a conical form, what

should be the area of the upper end ? Also find the intensities of the

tension at 30 and 60 ft. from the lower end.

Ans. 2.0407 sq. in.; 9999,612 lbs., 9999.605 lbs. per sq. in.

8. The dead load of a bridge is 5 tons and the live load 10 tons per

panel, the corresponding factors of safety being 3 and 6. If the two loads

are taken together, making 9 tons per panel, what factor of safety would

you use ? Ans. 5.

9. The end of a beam 10 in. broad rests on a wall of masonry. If it be

loaded with 10 tons, what length of bearing surface is necessary, the safe

crushing stress for stone being 150 lbs. per sq. in. .' Ans. 13^ in.

10. Find diameter of bearing surface at the base of a column loaded

with 20 tons, the same stress being allowed as in the preceding question.

Ans. 4 '380. 1 2.
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11. In the chain of a suspension -bridge five flat links dovetail with four

alternately, and a cylindrical pin passes through the eyes. The pull on

the chain is 200 tons. Find the area of the pin, the be? ring strength of

the metal being 6 tons per sq. in. Ans. 1 ij sq. in.

12. An iron bar of uniform section and 10 ft. in length stretches

.12 in. under a unit stress of 25,000 lbs. Find K.

Ans. 25,000,000 lbs.

13. A ship at the end of a 600- ft. cable and one at the end of a 500-ft.

cable stretch the cables 3 in, and 2^ in., respectively. What are the cor-

responding strains ? .Ifis. j^'oo-

14. A rectangular timber tie is 12 in. deep and 40 ft. long. If £ =
1,200,000 lbs., find the proper tliickness of the tie so that its elongation

under a pull of 27o,o<x) lbs. may not exceed 1.2 in. A/is. j\ in.

15. A wrought-iron bar 60 ft. long is stretched 5 in. by a pull of

50,000 lbs. Find its diameter, E being 25,000,000 lbs. A>is. .59 in.

16. A wrought-iron rod 984 ft. long alternately exerts a thrust and a

pull of 52,910 lbs. ; its cross-section is 9.3 sq. in. Find the loss of stroke,

E being 29,000,000 lbs. Ans. 4.632 in.

17. A wrought-iron bar 2 sq. in. in sectional area has its ends fixed

between two immovable blocks when the temperature is at 32° F. If

E = 29,000,000 lbs., what pressure will be exerted upon the blocks when
the temperature is 100° F. } <x = .00125. ^"•^- 2738815 lbs.

18. What should be the diameter of the stays of a boiler in which the

pressure is 30 lbs. per sq. in., allowing one stay to each i^^ sq. ft. of

surface and a stress of 3500 lbs. per sq. in. of section of iron ?

Ans. i^ in.

19. A force of 10 lbs. stretches a spiral spring 2 in. Find the work
done in stretching it successively i in., 2 in., 3 in., up to 6 in.

Ans. |, V, -V. ¥' ^ • ^F in.-lbs.

2C. A roof tie-rod 142 ft. in length and 4 sq. in. m sectional area is

subjected to a stress of 80,000 lbs. If ^ = 30,000,000 lbs., find the

elongation of the rod and the corresponding work.

Ans. 1. 136 in.; 37863 ft.-lbs.

21. An iron wire i in. in diameter and 250 ft. in length is subjected

to a tension of 600 lbs., the consequent strain being y^j^. Find £, and
show by a diagram the amount of work done in stretching the wire

within the limits of elasticity. Ans. 14,661,8i8^\ lbs.

22. A timber pillar 30 ft. in length has to support a beam at a point

30 ft. from the ground. If the greatest safe strain of the timber is Tf^g,

what thickness of wedge should be driven between the head of the

pillar and tne beam.' Ans. 1

TTJ ft.

m^
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23. An hydraulic hoist-rod 50 ft. in hMij^th and 1 in. in diameter is

attached to a plunger 4 in. in diameter, upon which the pressure is

800 lbs. per sq. in. Determine the altered length of the rod, E being

30,000,000 lbs. Ans. .0213 ft,

24. A short cast-iron post is to sustain a thrust of 64,000 lbs., tlie ul-

timate crushing strength of the iron being 80,000 lbs. per sq. in. and 10

a factor of safety. Find the dimensions of the post, which is rectangular

in section with the sides in the ratio of 2 to i. Ans. 4 in.; 2 in.

25. The length of a cast-iron pillar is diminished from 20 ft. to 19.97

ft. under a given load. Find the strain and the compressive unit stress,

E being 17,000,000 lbs. Ans. .0015 ; 25,500 lbs. per sq. in.

26. A rectangular timber strut 24 sq. in. in sectional area and 6 ft. in

length is subjected to a compression of 14,400 lbs. Determine the

diminution of the length, E being 1,200,000 lbs. Ans. .003 ft.

27. P^ind the height from which a weight of 200 lbs. may be dropped

so that the maximum admissible stress produced in a bar of i sq. in.

section and 5 ft. long may not exceed 20,000 lbs. per sq. in.,. the co-

elTicient of elasticity being 27,000,000 lbs.

Ans. 2V Ift., or, more accurately, 2Y0 ^t.

28. Find the H. P. required to raise a weight of 10 tons up a grade

of I in 12 at a speed of 6 miles per hour against a resistance of 9 lbs. per

ton (toil — 2340 lbs.). Ans. 31.3.

29. A square steel bar 10 ft. long has one end fixed ; a sudden pull of

40,000 lbs. is exerted at the other end. Find the sectional area of the

bar consistent with the condition that the strain is not to exceed yjg.

E = 30,000,000 lbs. Find the resilience of the bar.

Ans. 2 sq. in. ; 533^ ft.-lbs.

A 30. How much work is done in subjecting a cube of 125 cu. in. of

iron to a tensile stress of 8000 lbs. per sq. in. ? E = 30,000,000 lbs.

Ans. 1
1
J ft.-lbs.

31. A signal-wire 2000 ft. in length and \ in. in diameter is subjected

to a steady stress of 300 lbs. The lever is suddenly pulled back, and the

corresponding enfi of the wire moves through a distance of 4 in. De-

termine the instantaneous increase of stress. E = 25,000,000 lbs.

Ans. 5 1 J?? lbs.

32. If the total back-weight is 350 lbs., what is the range of the sig-

nal end of the wire? Ans. ft.

33. A steel rod of length L and sectional area A has its upper end

fixed and hangs vertically. The rod is tested by means of a ring weigh-

ing 60 lbs. which slides along the rod and is checked by a collar screwed

to the lower end. A scale is marked upon the rod with the zero at the

fixed end. If the strain in the steel is not to exceed .^i^. what is the

reading from which the weight is to be dropped ? E = 35,000,000 lbs.

Ans. Distance from point of suspension = (l^l — ^A)L.
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34. A load of 1000 lbs. falls i in. before commencing to stretch a sus-

pending rod by which it is carried. If the sectional area of the rod is

2 sq. in., length 100 in., and E — 30,000,000 lbs., find the stress pro-

duced. Alls. 17,328 lbs. per sq. in.

35. If the rod carries a load of 5000 ll)s., and an additional load of

2000 lbs. is suddenly applied, what is the stress produced ?

Ans. 4500 lbs. per sq. in.

36. Steam at a pressure of 50 lbs. per sq. in. is suddenly admitted

upon a piston 32 in. in diameter. The steel piston-rod is 48 in. in

length and 2 in. in diameter, E being 35,000,000 lbs. Find the work
done upon the rod. Ans. 117.69 ft. -lbs.

37. What should be the pressure of admission to strain the rod to a

proof of .001 } Ans. 68f| lbs. per sq. in.

38. A boulder- grappler is raised and lowered by a wire rope i in. in

diameter hanging in double sheaves. On one occasion a length of 150

ft. of rope was in operation, the distance from the winch to the upper

block being 30 ft. The grappler laid hold of a boulder weighing 20,000

lbs. What was the extension of the rope, E being 15,000,000 lbs. }

Ans. yfj ft.

39. The boulder suddenly slipped and fell a distance of 6 in. before

it was again held. Find the maximum stress upon the rope.

Ans. 50,452^ lbs. per sq. in.

40. What weight of boulder may be lifted if the proof-stress in the

rope is not to exceed 25,000 lbs. per sq. in. oi gross sectional c>rea.^

Ans. 78,571^ lbs.

41. The steady thrust or pull upon a prismatic bar is suddenly re-

versed. Show that its effect is trebled.

42. A weight IV is suspended by a spring, which it stretches. The
weight is further depressed i ft., when it is suddenly released and allowed

to oscilhitc. Find its velocity at a distance x from the pf)sition of

equilibrium.
Ans. |/io(i lO-r")

W'

43. If a spring deflects .001 ft. under a load ol i IL.. what will be the

period of oscillation of a weight of 14 lbs. upon the spr ng?

44. Show that the change of a unit of volume of a solid body under

/ 2\ A
a longitudinal stress is A i , which becomes — if in — 4, as in metals,

\ ml 2

and «//when w = 2, as in india-rubber (page 142).

45. A steel bar stretches ttW*^^ "f ''^s original length under a stress of

20,000 lbs. per sq. in. P^ind the change of volume and the work done
per cubic inch. Ans. ass^TVth; f,

ft. -lb. per cu. m.
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\(:. Durin^jf tlie plastic deformation of a prismatic bar, show that the

chaiiyc in bcciional area is proportional to the deforniatioii calculated on

the altered length of i ic bar,

47. A prismatic bar of volume F changes in Icngili from L to L ± .r

under the " fluid pressure"/. Find the corresponding work.

Alls. pyXc^Al^ ± .1).

48. Show that the total work done in raising a number of weights

through to a given level is the product of the sum of the weights and the

vertical displacement of their centre of gravity.

49. An engine lias to raise 4oooibs. loco ft. in 5 minutos. What is its

H. P. ? How long will the engine take to raise 10,000 lbs. 100 ft. ?

Ans. 243".) H. P. ; ij min.

50. How many men will do the same work as the engine in the pre-

ceding question, assuming that a man can do 900,000 ft. -lbs. of work in

a day <^f 9 hours.^ Ans. 480 men.

51. Determine the H. P. which will be required to drag a heavy rock

weighing 10 tons at the rate of 10 miles an hour on a level road, the

coefficient of friction being 0.8. What will be the speed up a gradient

of I in 50, the same power being exerted ?

Ans. \^^\\\ 9i"i miles per hour.

52. Two horses draw a load of 4000 lbs. up an incline of i in 25 and
1000 ft. long. Determine the work done. Ans. 160,000 ft. -lbs.

53. At what speed do the horses walk if each horse does 16,000 ft.-

Ibs. of work per minute ? Ans. 2-,\ miles per hour.

— 54. A wrought-iron rod 25 ft. in length and i sq. in. in sectional

area is subjected to a steady stress of 5000 lbs. What amount of live

load will instantaneously elongate the rod by \ in., E being 30,000,000

lbs. ? Ans. 6250 lbs.

55. Determine the shortest length of a metal bar a sq. in. in sec-

tional area that will safely resist the shock of a weight of W lbs. falling

a distance of // ft. Apply the result to the case of a steel bar i sq. in. in

stctional area, the weight being 50 lbs., the distance 16 ft., the proof-

strain Tj-^, and F. = 35,000,000 lbs.

2EWh
Ans. ^^ f being the safe unit stress ; -^4-1^ ft.

ap -2Wf'
56. A shock of X ft. -lbs. is safely borne by a bar / ft. in length and a

sq. in. in sectional area. Determine the increased shock which the bar

will bear when the sectional area of the last wth of its length is increased

to ra. . ,J I

Ans. N\ I

\ m rm)

57. The bar in Example 12 is i sq. in. in section. Determine the work

stored up in the rod in foot-pounds and compare it with the work which
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would be stored up if for half its length the rod has its section increased

to 4 in. Ans. 125 ft.-lbs.; \ of 125 ft.-lbs.

58. If 25,000 lbs. per sq. in. is the proof-stress, lind the modulus of

resilience for the i-in. rod. Ans. 25 in in. -lb. units.

59. A steel rod 100 ft. in length has to bear a weight of 4000 lbs. If

E = 35,000,000 lbs., and if the safe strain is .0005. determine the sectional

area of the rod (i) when the weight of the rod is neglected ; (2) when

the weight of the rod is taken into account. Also in the former case,

determine the work done in stretching the rod ^\ in., ^j in., fV 'i

-j^a
in., successively.

Afts. ^\ sq. in. ; /^Vr sq^ 'i- : 33i I33*. 30o, ... 1200 in. -lbs.

60. A line of rails is 10 miles in length when the temperature is at

32" F. Determine the length when the tempcratun* is at 105.J I'., and

the work stored up in the rails per sq. in. of section, Ji being 20,000,000

lbs. a = .0016 per 180° F. Ans. 10.00653 miles; 338060.8 ft.-lbs.

61. A wrought-iron bar 25 ft. in length and f sq. in. in sectional area

stretches .0001745 ^^- for each increase of 1° F. in the temperature. If

E = 29,000,000 lbs., determine the work done by an increase of 20° F.

How may this property of extension under heat be utilized in straight-

ening walls that have fallen out of plumb? Ans. 7.064 ft.-lbs.

• 62. Find the work done in raising a Venetian blind. 7u being the

weight of a slat, a the distance between consecutive slats, and n the

1
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66. A Icn^jtli 270 ft. of wire 1 sq. in. in section and of sp. gr. 7.8 is

suljjccted to I lie above conditions. Find tlu- tenacity of the wire and the

deflection, the coefficient of elasticity, E, beinj^ 25,300,000 lbs.

67. A brick wall 2 ft. thick, 12 ft. hij;li, and wei^liin^ 113 lbs. per

cu. ft. is supported upon solid pitch-pim* columns 9 in. in diameter,

10 ft. in lenj^tii, and spaced 12 ft centre to centre. Find the compress-

ive unit stress in the columns (i) at the head- (2j at the base. The tim-

ber weiglis 50 lbs. per cu. ft .Ins. 507.03 lbs. ; 510.5 lbs.

6d. If the crushinj; stress of pitch-pine is 5300 lbs. per sq. in. and the

factor of safety 10, tind the height to which tin; wall may be built.

Ans. 12.46 ft.

69. Ueteiniine the diameter of the wrought-iron columns which

might be substituted for the timber columns in question 67, allowing a

working stress in the metal of 7500 lbs. per sq. in. Ans. 2.36 in.

70. Find the greatest length of ;in iron suspension-rod which will carry

its own weight, the stress being limited to 4 tons per sq. in. What will

be the extension under this load, E being 12,500 tons.^

Ans. 2688 ft. ; .860 ft.

71. A horizontal cast-iron bar i ft. long exactly fits between two verti-

cal plates of ir(jii. How much should its temperature be raised so that

it might remain supported between the plates by the friction, the coef-

ficient of friction being \ ? Ans. ^ij" F.

72. The fly-wheel of a 40 H. P. engine, making 50 revolutions per

minute, is 20 ft. in diameter and weighs 12,000 lbs. What is its kineti(

energy ?

If the wheel gives out work equivalent to that done in raising 5000

lbs. through a height of 4 ft., how much velocity does it lose ?

The axle of the fly-wheel is 12 in. in diameter. What proptjrtion of

the H. P. is required to turn thi; wheel, the coefficient of friction being

.08?

If the fly-wheel is disconnected from the engine when it is making

50 revolutions per minute, how many revolutions will it make before it

ccnies to rest ?

Ans. 511,260.4 ft. -lbs. ; i .04 ft. per sec. ; j'^ths; 169.4.

73. The velocity of flow of water in service-pipe 48 ft. long is 64 ft.

per sec. If the stop-valve is closed in ^ of a sec, find the increase of

pressure near the valve. Ans. 375 lbs. per sq. in.

74. Work equivalent to 50 ft.-lbs. is done upon a bar of constant

acctional area, and produces in it a uniform tensile stress of 10,000 lbs.

per sq. in. Find the cubic content of the bar, E being 30,000,000.

Ans. 360 cu. in.

75. A fly-wheel weighs 20 tons and its radius of gyration is 5 ft. How
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inucli work i.s ^{ivcn out while llic speed falls from 60 lo 50 revolution:

per minute ? .[its. 94,VV4 ft. -tons

76. The resilience of an iron bar i sq. in. in section and 20 ft. lonj; is

30,000 ft. -lbs. What would be the resilience if for 19 It, ot its leiijj[tli it

was coni|)OSed of iron 2 sq. in. in seriion, the remaininj^ foot bein^ the

same size as before ? Ann. 15.750 ft, -lbs.

77. .\ particle under the action of a number of forces moves with a

uniform velocity in a straight line. What condition nmst the forces

fulrtl } Ans, Equilibrium.

78. Determine the constant effort exerted by a horse whicii does

1,650,000 ft. -lbs. of work in one hour when walking at the rate of 2j

miles per hour. Atis. 125 lbs.

79. A train is drawn by a locomotive of 160 H. P. at the rate (jf 60

miles an hour against a resistance of 20 lbs. per ton. What is the gross

weight of the train ? Aus. 50 tons.

80. A train of 292J tons is drawn up an incline of i in 75, 5^ miles

long, against a resistance of 10 lbs. per ton, in ten minutes. Find the

H. P. of the engine. The speed on the level, the engine exerting 769.42

H. I-*., is 43.4 miles per hour. What is the resistance in pounds per ton ?

.^
Ans. 1027 H. P. ; 22.7 lbs. per ton.

81. The dead load upon a short hollow cast-iron pillar with a sec-

tional area of 20 sq. in. is 50 tons (of 2000 lbs.). If the strain in the

metal is not to exceed .0015, find the greatest live load to which the

pillar might be subjected, E being 17,000,000 lbs. Ans. 205,001. lbs.

82. A steel suspension-rod 30 ft. in length and \ sq. in. in sectional

area carries 3500 lbs. of the roadway and 3000 lbs. of the live load. De-

termine the gross load and also the extension of the rod, E being

35,000.000 lbs. Ans. ij^lJ^ ft.

83. A steel rod 10 ft. in length and \ sq. in. in sectional area is

strained to the proof by a tension of 25,000 lbs. Find the resilience of

the rod, E being 35,000,000 lbs. Ans. 178^ ft. -lbs.

84. What form does the useful work done by a hammer take when a

nail is driven into any material ? What becomes of the rest of the energy

of the mass of the hammer after striking the blow }

85. A hammer weighing 2 lbs. strikes a steel plate with a velocity of

10 ft. per sec, and is brought to rest in .0001 sec. What is the average

force on the steel ? Ans. 6250 lbs.

86. A hammer weighing 10 lbs. strikes a blow of 10 ft. -lbs. and drives

a nail .5 in. into a piece of timber. Find the velocity of the hammer at

the moment of contact, and the mean resistance to entry. Also find the

«t«»dy pressure that will produce the same elTect as the hammer.
Ans. 8 ft. per sec. ; 240 lbs. ; 480 lbs.

Il
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'-1')

87. When a nail is driven into wood, why do the blows seem to have

little if any effect unless the wood is backed up by a piece of metal or

stone ?

88. In Question 86, taking the weight of the nail to be 4 oz. and the

weight of the piece of timber to be 100 lbs,, find tho depth and time of

the penetration {a) when the timber is fixed ; {b) when the timber is free

to move.

Also in case (b) find the distance through which the tini^>er moves.
• Ans.— (a) 1^ in. ; j'j sec.

{b) .44245 ill. ; .0009448 sec. ; .041 13 in

89. Show that the greater part of the energy of impact is expended

in local damage at high velocities, and in straining the impinging bodies

as a whole at low velocities.

90. A pile-driver of 300 lbs. falls 20 ft., and is stopped in -^^ sec. What
is the average force exerted on the pile } Ans. 3344 lbs.

91. A weight falls 16 ft. and does 2560 ft.-lbs. of work upon a pile

which it drives 4 in. against a uniform resistance. Find the weight of

the ram, and the resistance. Ans. 160 lbs. ; 7680 lbs.

92. A pitch-pine pile 14 in. square is 20 ft. above ground, and is

being driven by a falling weight of 112 lbs. \i E = 1,500,000 lbs., find

the fall so that the inch-stress at the head of the pile may be less than

800 11)S.

Supposing that the pile sinks 2 in. into the ground, by how much
Tvould it be safe to increase the lall ?

Ans. 7.456 ft. ; 1 16. 5 ft.

93. A weight of W\ tons falls k ft., and by n successive instantaneous

blows drives an inelastic pile weighing Wi tons a ft. into the ground.

Assuninf, the pile and weight to be inelastic, find {a) the mean effective

resistance of the ground.

If the ground-resistance increases directly as the depth of penetration,

find {b) how far the pile will sink under tlie .nh blow. If the head of the

pile is crushed for a length of x ft., x being very small as compared with

a
the oepth - of penetration, find (i) the mean thrust, during the blow,

n

between the weight and hammer ; (2) the time of penetrating the ground ;

(3) the time during which the blow acts.

An y.- (<i j -TT^ " ' + ( ^T, 4- ^F.) ; (b) \r\-(r-\)\\-^

{\\

W^ 4- Wi a S/n'

(2)
a

^^i 4« ^/i
?; (3)

94. An inelastic pile weighing 78C' lbs. is driven 3^ feet into the

ground by 120 blows from a weight of 112 lbs. falling 30 ft. Find the
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steady load upon the pile which will produce the same effect, assuming

the 'ground-resistance to be ((0 uniform
; (/>) proportional to tlie depth of

penetration. H the resistance is uniform, how long {c) does each move-

ment of the pile last.' How many blows (d) are required to drive the

pile the first half of the depth, viz., \\ ft., the ground-resistance being

7168 lbs. } How far {c) docs the pile sink under the last blow.'

Ans. (a) 14,336 lbs.
;

{b) 28,672 lbs.
; (c) .0107 sec. ; (</)30;

{e) .0146 ft.

95. A steamer of 8000 tons displacement sailing due east at 16 knots

an hour collides with a steamer of 5000 tons displacement sailing at 10

knots an hour. Find the energy of collision if the latter at the moment
of collision is going (i) due west; (2; north-wcsi; (3) north-east.

96. A hammer weighing 2 lbs. strikes a nai! with a velocity of 15 ft .

per sec, driving it in \ in. What is the mean pressure overcome by tlu;

nail.' Ans. 675 lbs.

97. A beam will safely carry ( ton with a deflection of 1 in. From
\\\\A\. heii;ht may a weight of 100 lbs. drop without injuring it, neglecting

ihe effect of inertia? Ans, 11.2 in.

98. A riflc-l)u!lot .45 in. in diameter weighs 1 oz. ; the charge of pow-

der weiL,'hs 85 grains; the muzzle-velocity is 1350 ft. per sec. ; the weight

of the rifle is g lbs. Neglecting the twist determine the energy of 1 lb. of

powder. If the bullet loses \ of its velocity in its passage through the

air, find the average force of the blow on the target into which the bullet

sinks Ji in.

If there is a twist of i in 20 in., find the charge to give the same
inuzile velocity, the length of tlic barrel being 33 in.

f^ 99. A leather lielt runs at 2400 ft. per minute. Find how much its

tension is increased by centrifugal action, the weight of leather being

taken at 60 lbs. per cubic foot. Ans. 2o\ lbs. per sq. in.

yA 100. Find ihe centrifugal forco arising from a cylindrical crank pin

6 in. long and 3J in. in di,. meter the axis of the pin being 12 in. from

the axis of the engine-shalt, which makes 100 revolutions per minute.

How would you balance such a pin ? Ans. 55.02 lbs.

101. The pull on one of the tension-bars of a lattice girder fluctuates

fr(jni 12.8 tons to 4 tons. If 24 tons is the statical breaking strength of

the metal, 15 tons the primitive strength, determine the sectional area

of the bar, 3 being a factor of safety. Ans. 2.15 sq. in. (Launhardt)

;

1.87 sq. in. (Unwin).

102. The stress in a diagonal of a steel bowstring girder fluctuates.

fr.-Mii a tension of 15.15 tons to a compression of 7.65 tons. If the

primitive strength of the metal is 24 tons and the vibration strength t2

11
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tons, find the proper sectional area of the diagonal, 3 being a (actor of

safety. Ans. 2.53 sq. in. (VVeyrauch)
;

1.7 sq. in. (Unwin), 40 tons per sq. in. being statical

strength.

103. A wrought-iron screw-shaft is driven by a pair of cranks set at

right angles Neglecting the obliquity of the connecting-rods, and

assuming that the pull on the crank-pin is constant, compare the coef-

ficients of strength {a and t) to be used in calculating ilie diameter of

the shaft. How is tlie result affected by the stopping of the engine.^

Ans. a — .82/": a' = ^/.

104. Taking/" = AM as the ordinary analytical expression of Hooke's

Law, find the value of the modulus uf elasticity when calculated (i) from

the actual stress and tlie elongation per unit of initial length ; (2) from

the actual stress and the elongation per unit of stretched length.

Ans. (I) E +/; (2) E +/( 1 + Xf = E -f-/(i -|- 2/I). if A is small.

105. In a fly-wheel weighing 12,000 lbs. anrl making 50 revolutions

per minute, the centre of gravity is one seventeenth of an inch out of the

centre. Find the centrifugal force. Ans. 50.4 lbs.

jo6. In the preceding question, if the axis of rotation is inclined to

the plane of the wheel at an angle cot "'.001, find the centrifugal

couple, the radius of gyration being 10 ft. Ans. 1028.9 ft.-lbs.

107. A cylinder and a ball each of radius R start from rest and roll

down an inclined plane without slipping. If V is the velocity of trans-

lation after descending through a vertical distance h, show that

V" = 1(2^'-//) in the case of the cylinder,

and

V = ^2^/i) in the case of the ball.

108. A wheel having an initial velocity of 10 ft. per sec. ascends an

incline of i in 100. How far will the wheel run along the incline, neg-

lecting friction .' ^ = 32.2. Ans. 232.9 ft.

109. A wrought-iron fly-wheel 10 ft. in diameter makes 63 revolutions

per minute. Find the intensity of stress on a transverse section of the

rim, disregarding the influence of the arms. If the wheel, which weighs

IV lbs., gives out work equivalent to that done in raising IV through a

height of 5i ft. in i sec, what velocity will it lose ? If the axle of the wheel

is 10 in. in diameter and if .08 is the coefficient of friction, show that it

IV
will take —— H. P. to turn the wheel, (e = 32.2.)

2500 vs J /

Ans. 16,335 lbs. ; 5.6 ft. per sec.

no. If the earth be assumed to be spherical, how mucli heat would

be developed if its axial rotation were suddenly stopped, a unit of heat

corresponding to 778 ft.-lbs. ?
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Weight of mass of earth = 10" x 6.029 tons ; diameter of earth

= 8000 miles.

111. A body weighing 50 lbs. is projected along a rough horizontal

plane, the velocity of projection being 100 ft. per sec. What amount of

work will have been expended when ilic body (oincs to rest? j^ = 32.2.

If tiie coefficient of friction is ^, how mucli work is done against fric-

tion in 4 sees., and in what time will the body come to rest? ^^ = 32.2.

Ans. 7763.9 ft. -lbs. ; 2298^ ft.-lbs ; 24JII sees.

112. A chain / ft. in length and a sq. in. in .sectional area has one
end securely anchored, and suddenly checks a weight of IV lbs. attached

to the other end, and moving with a velocity of V ft. per sec. away from

the anchorage. Find the greatest pull upon the chain.

Ans. Pull = r|/:
aEW

113. Apply this result to the case of a wagon weighing 4 tons and

worked from a stationary engine by a rope 3 sq. in. in sectional area.

The wagon is running down an incline at the rate of 4 miles an hour,

and, after 600 ft. of rope have been paid out. is suddenly checked by the

stoppage or reversal of the engine (£" = 15,000,000 lbs.).

Ans. 26,884 Ihs.

1 14. A chain / ft. in length and a sq. in. in sectional area has one end

attached to a weight of IV lbs. at rest, and at the other end is a weight

of n W lbs. moving with a velocity of V ft. per second and away from

the first. Find the greatest pull on the chain.

Ans. Pull
^,JjrJilVn_
^ fj!(.n + I)

115. A dead weight of 10 tons is to act as a drag upon a ship to

which it is attached by a wire rope 150 ft. in length and having an effec-

tive sectional area of 8 sq. in. If the velocity of the floating ship is

20 ft. per second, and if its inertia is equivalent to a mass of 390 tons,

find tlie greatest pull on the chain (E — 15,000,000 lbs.).

Ans. 208 tons.

116. (<i) A train weighing 160 tons (of 2240 lbs.) travels at 30 miles

an hour against a resistance of 10 lbs. per ton. What H. P. is exerted }

(b) With the same H. P. what will be the speed up a gradient of i

in 100?

{c) If the steam is shut off, how far will the train run before stopping

(i) on the incline; (2) on the level }

(d) If the draw-bar suddenly breaks, in what distance would the

carriages (100 tons in weight) be stopped if the brakes are applied im-

mediately the fracture occurs, the weight of the brake-van being 20 tons

and the coefficient of friction .2?

i
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(e) If the engine (weight = 60 tons) continued to exert the same
power after tlie fracture, what would be its ultimate speed?

(/) What resistance would be required to stop the whole train after

steam is shut off, in 1000 yards on the level ?

A/is. (a) 128; (A) g^\ miles per hour; (c) (i) 199.2 ft.,

(2) 6776 ft. ; Ui) 680.3 ft. on the level, 52.9 ft.

on the incline
;

(c) 80 miles an hour on the

level, 24.6 miles on the incline ; (/) 22.58 lbs.

per ton.

117. A 4-in. X 3-in. diameter crank-pin is to be balanced by two

weights on the same side of the crank ; the length of the crank is 12 in.

;

the engine makes 100 revolutions per minute; the distance of the C. of

G. of each weight from the axis of the shaft is 6 in. Find the weights.

118. A shaft is worked with cranks at 120°. Assuming the pressure

on the crank-pin to be horizontal and constant in amount, compare the

coelTicieius of actual and ultimate strength 10 be used in calculating the

diameter (jf the shaft. Ans. «' = .507/.

119. In a horizontal marine engine with two cranks at right angles

distant 8 ft. from one another, weight of reciprt jating parts attached to

each crank is 10 tons, revolutions 75 per minute, stroke 4 ft. Find the

alternating force and couple due to inertia.

Ans. 54.2 tons; 216.8 ft.-tons.

120. An inside-cylinder locomotive is running at 50 miles an hour;

the driving-wiieels are 6 ft. in diameter; the distance between the centre-

lines of the cylinders is 30 in., the stroke 24 in., the weight of one piston

and rod 300 lbs., and the horizontal distance between the balance-

\vcis;lits 4J ft. ; the diameter of the weight-circle is 4i ft. Find the

alternating force and couple, and also the magnitude and position of

suitable balance- weights.

A;is. 7871 lbs; 9839 ft.-lbs. ; 106.5 lbs. ; 27f°.

121. The pressure equivalent to the weight of the reciprocating parts

of an engine is 3 lbs. per sq. in.; the stroke is 36 iir. ; the number of

revolutions per minute is 45; the back-pressure is 2 lbs. per sq. in.; the

absolute initial steam- pressure is 60 lbs. persq. in.; the rate of expansion

is 3. Find the pressure necessary to start the piston, and also the effec-

tive pressure at each J of the stroke.

122. An engine with a 24-in. cylinder and a connecting-rod = six cranks

= 6 ft., makes 60 revolutions per minute. Show that the pressure re-

quired to start and slop the engine at the dead-points = ^{ of the weight

ot reciprocating parts.

I.''3. Find the ratio of thrust at cross-head to tangential effort on
crank-pin when the crank is 45° from the line of stroke, the connecting-

rod being = four cranks.
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124. Draw the linear diagram of crank-effort in tlie case of single

crank, the connecting-rod being = four cranks. Assume the resistance

uniform and a constant pressure of 9000 lbs. on the piston, the stroke

being 4 ft. and tlie number of revolutions per minute 55. Also find the

fluctuation of energy in ft.-lbs. for one revolution.

125. An engine witn a connectiiig-roil = six cranks = 6 ft. receives

steam at 70 lbs. pressure per sq. in., and cuts off at one-quarter stroke.

Find the crank effort when the piston has travelled one third of its for-

ward stroke. Diameter of piston = 2 ft. Also find the position of the

piston where its velocity is a maximum.
126. Data: Stroke = 3 ft. ; number of revolutions per minute = 60;

cut-off at one-half stroke; initial pressure = 56 lbs. persq. in. absolute;

diameter of piston = 10 in. ; weight of reciprocating parts = 550 lbs.

;

back-pressure = i^ lbs. per sq. in. absolute. Find the effective pressure

at each fourth of the stroke, taking account of the inertia of the piston.

Also find the pressure equivalent to inertia at commencement of

stroke.

127. A pair of 250 H. P. engines, with cranks at 90°, and working

against a uniform resistance and under a uniform steam-pressure, are

running at 60 revolutions per minute. Assuming an indefinitely long

connecting-rod, find the maximum and minimum moments of crank-

effort, the fluctuation of energy, and the coetficient of energy.

128. An inside-cylinder locomotive runs at 25 miles per hour; its

drivers are 60 in. in diameter; the stroke is 24 in. ; the distance between

the centre-lines of the cylinders = 30 in.; weight of reciprocating

parts = 500 lbs. ; horizontal distance between balance-weights = 59 in.

;

diameter of weight-circle =42 in. Find the alternating force, alternat-

ing couple, and tlie magnitude and position of suitable balance-weights.

Ans. 2.16.8 lbs.; 4113.8 ft.-lbs. ; = 26°.

129. Draw a diagram of crank-effort lor a single crank, the connect-

ing-rod bting equal to four cranks, the stroke 4 ft., and the number of

revolutions per minute 55. Assume a uniform resistance and a constant

pressure of 9000 lbs. on the piston.

130. A vertical prismatic bar of weight tFi , sectional area /i, and

length L has its upper end flxed, and carries a weight W^ at the lower

end. Find the amount and work of the elongation.

An,. E.xi. = ^^ (-^ + W--,] ; work = \
~(-^ + W,W, + W^^.

A right cone of weight W and height h rests upon its base of131

radius r. Find the amount and work of the compression.

IV

h

I WVt
Ans. Comp. = —rr^ ; work =

2ff/i>'" 5 ^r/fr"

132. A tower of height h, in the form of a solid of revohitimi about a

vertical axis, carries a given surcharge.
,
If the specific weight of the

m

'I

\

V\

H
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material of the tower is w, and the radius of the base a, determine the

curve of the generating line so that the stress at every point of the tower

may be/. If the surcharge is zero and the height of the tower becomes
infinite, show that its volume remains finite.

Ans. y =. ae
tux

17 vol. of tower of infinite height =—»«',
•w

133. Determine the generating curve when the tower in the last

question is hollow, the hollow part being in the form of a right cylinder

upon a circular base of given rar^ius R.

Ans. y^— R* = {a'' — R')e
wx
T.

134. A heavy vertical bar of length / and specific weight -w is fixed

at its upper end and carries a given weight ff at the lower end. Deter-

mine the form of the bar so that the horizontal sections rnay be pro-

portionate to the stress/ to which they are subjected. {Note.—Such a

bar is a bar of uniform strength.)

Ans. Sectional area at tlistance x from origin — —e
135. Find the upper and lower sectional areas of a steel shaft of uni-

form strength, 200 ft. in length, which will safeiy sustain its own weight
and 100 tons, 7 tons per sq. in. being the working stress, (i ton — 2240

lbs.) Am. 14.3 sq. in.; 15 sq. in.

136. A vertical elastic rod of natural lentjin L and of which the mass
may be neglected, is fixed at its upper end and carries a weight Wi at

the lower end. A weight Wt falls from a height h upon IV^ . Find the

velocity and extension of tlie rod at any time A

Ans. v*
+ ;rA L ) \dtl

'

X being measured from mean position of ( W^i + W-^,

137. Determine the functions /^and/ in Art. 24 when Px is zero, and
also when the rod is perfectly free ; i.e., when /"o = o and Px = o.

138. An elastic trapezoidal lamina ABCD, of natural length / and
thickness unity, has its upper edge AB {2a) fixed and liangs verti-

cally. If a weight IV is suspended from the lower edge CD (2<5), show
that, neglecting the weight of the lamina, the conseouent elongation

~ >~E a — ^^'J'
^" additional weight is placed upon /F and

then suddenly removed, show that the oscillation set up is isochronous

\ ivnoge

and that the time of a complete oscillation = n\ —-pr^
\ 2gE(a -

Examine the case when a = b.

Wl

a

f>)}

Ans. Ext. :-= - -- ; time of oscillation = ffi/_
2aE r ,

IVl

iiEg
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139. If the specific weijjlit of the lamina in the preceding question is

w, find how much it will stretch under its own weight, and also the work

of extension. Determine the result when a = b.

I w/^'/' . b 7uP a \- h wP
Ans. —p.

,

2E {a -w '°^' + -
4E a - b' 2E'

Tv^l^ I a* — b* ii i

140. An elastic lamina in the form of an isosceles triangle ABC has

its base AB (= 2a) fixed and hangs vertically. If its weight is W, find

its elongation. Take coefficient of elasticity = E, thickness of lamina

= unity, and L the distance of C from AB. . IVL
Ans.

4rt/f

141. A metal rod ^ sq. in. in area and 5 ft. long hangs vertically with

its upper end fixed and carries a weight of 18 lbs. at the lower end. On
striking the rod it emitted a musical note of 264 vibrations per second

(middle C of piano-forte). Find the coefficient of elasticity, the weight

of the rod being neglected. Ans. 30,979,160 lbs.

142. Diameter of a pipe is 18 in. ; at one point it is curved to an arc

of 6 ft. radius. Water flows round the curve with a velocity of 6 ft. per

second. Determine the centrifugal force per foot of lenfj;th of bend

measured along the axis. Ans. 20.717 lbs.

143. A disk of weight W-^and area A sq. ft. makes }i revolutions per

second about an axis through its centre, inclined at an angle 9 to the

normal to the plane of the disk. V'u\d the centrifugal couple.

IVAn''
Ans.

5.12
- tan 9 ft. -lbs.

144. In a circular pipe of internal radius r and thickness /, a column
of water of length I. flowing with a velocity due to the head /i, is sul.

denly checked. Show that

gk =
EtX'

1
'
+ ^K' -^ I:)

-I-

7^f

E being the coefficien , of e' isticity of the material of the pipe, Ei the

cocflicient of ompres-iibilitj of the vvater, and /I the extension of the

pipe circumference cor!-espon( ing to E.

145. A heavy l>all aaached bv a string to a fixed point O revolves in

a horizontal circle with a given uniform angular velocity 00. Find the

vertical depth of the centre of the ball below the point of attachment.

If a uniform rod be substituted for tiie ball and string, find its

position.

Also find the position when the ball is attached to the fixed point by



232 THEORY OF STRUCTURES,

a uniform rod ; r being the ratio of the weight of the rod to thf: weight

of tlie ball.

H
I + -

Ans. h = // =
rjj' 2 00' oa'

I +

2

i

146. The deflection of a truss of / ft. span is / x .001 under a station-

ary load /F. Wnat will be the increased pressure due to centrlfuj^al force

when f/^ crosses the bridge at the rate of 60 miles an hour?

242 IV
Ans. ;-.

125 /

147. A fly-wheel 20 ft. in diameter revolves at 30 rev(ylutions per

minute. Assuming weight of iron 450 lbs per cu. ft., lind the intensity

1)!' the stvess on the transverse section of the rim, assuming it unaffected

by the arms. A/is. 96 lbs. per sq. in.

148. Assuming 15,000 Ihs. per sq. in. as the tensile .strength of cast-

iion, and taking 5 as a factor of safety, fuid the maximum working speed

and the bursting .-speed for a cast-iron fly-wheel of 20 ft. me-'m diameter

and weighing 24.000 iljs., the section of the rim being 160 sq. in.

149. A 60-in. driving-wheel weighs 3^ tons, and its C. of G. is 1 in.

out of centre. Find the greatest and the least pressure on the rails.

150. A wheel of weight IV, radius of gyration /•, and making ;/

revolutions per second on an axle of radius A', comes to rest after having

made N revolutions. Find the coefficient of friction.

n/:"/.-''

Ans. sin = , and coeff. of fric. = tan <p.

\^\. A train starts from a station at/? and runs on a level to a station

at B, I ft. away. If the speed is not to exceed v ft. per sec, show that

the time between the two stations is

/ Wv_
V g 2 (P

P {- B
R)(B + A')

ff being the gross weight of the train, P the mean uniform pull exerted

by the engine, R the road resistance, and B the retarding effect of the

brakes.

Also, if the speed is not limited, show that the least time m which
the train can run between the specified points is

/2/
~P + B

g (P-R)(B+R)

and that the maximum speed attained is

sec,

2gl{P-R){B^R)
P + B

ft. per sec.
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152. A locomotive capable of exerting a uniform pull of 2 tons, with

a 24-in. stroke, 20-in. cylinder, and 6o-iii. driving-wheels, hauls a train

between two stations 3 miles apart. The gross weight of the train and

locomotive = 200 tons; the road resistance = 12 lbs. per ton (of 2000

lbs.); the brakes, when applied, press with two thirds of the weight on

the wheels of the engine and brake-van, viz.. 90 tons, the coefficient of

friction being .18. Find {a) the least time between the stations; {b) the

distance in which the train is brought to rest; {c) the maximum speed

attained ; {d^ the pressure of the steam ; {e) the weight upon the driving-

wheels.

Ans.—{a) 513.8 sec. ; (h^ 990 ft.; (<:) 42 miles per hour; id) 25

lbs. per sq. in. ; ie) \ \\ tons.

153. If the speed in the last question is limited to 30 miles an hour,

find (rt) the time between the stations; {b)\\\e. distance in which the train

is brought to rest ; {c) the distance traversed at 30 miles an hour.

Ans.—{a) S43i sec. ; (b) 504^ ft. ; (<r) 7773^ ft.

154. If the steam-pressure in the alcove locomotive is increased to 50

lbs. per sq. in., find {a) the weight of the heaviest train which can be

hauled between the stations in 10 minutes, the road-resistance being 20

lbs. per ton (of 2000 lbs.) and the braking power being sufficient to bring

*he train to rest in a distance of 720 ft.

Also find {b) the braking power; {c) the weight thrown upon the

drivers, the coefficient of friction being \ ; {d) the maximum speed

attained.

Ans.—(rt)3ioitons; {b) 15.6 tons; (£-)24tons; (rf) 36 miles per hour.

155. The weight upon the driving-wheels (D in. in diameter) of a

locomotive is W tons; the adhesion = one fifth ; the cylinders have a

diameter of d in. and a stroke ol / in. Find the steam-pressure re-

quired to skid the wheels. WD
,,

Ans. 400 --Tyr- lbs. per scj. in.

156. Two trains, each with a brake-power of 190 lbs. per ton (of 2000

lbs.), run between Montreal and Toronto, a distance of 333 miles, against

an average resistance of 10 lbs. per ton. One train ruos through, and
the other stops at A' intermediate stations. Show that the saving of

oN
fuel in the former is— per cent ; the speed is not to exceed 30 miles

per hour.

1 57. If the end of a railway wagon cposer '\ surface of 6 x 4 ft. to

the wind, what is the greatest gradient up which a 20 lb. to the sq. ft.

gale will drive it? Take the weigl.c at 10 tons, the friction 10 lbs. per

ton. Ans. i in 59.

1 58. A locomotive and tender weigh 70 tons, of which 26 tons are car-

ried by the driving-wheels. Taking the adhesion at \, friction 10 lbs. per

ton, what maximum gradient can the engine ascend } Ans. i in 16.



234 THEORY OF STRUCTURES.

159. Given a locomotive with two 18" x 26" cylinders, the connectinp-

rod = 6 ft., the boilcr-pressiire = 140 lbs., and driving-wheels of 7' o"

t I x^ ^, c • • 1 • force at periphery
diameter, calculate the adhesion-lriction, i.e., the ratio —t-, r

weij^hton drivers

160. A railway wagon weighing 20 tons, with two pairs of wheels
8' o" centre to centre, and with its centre of inertia 7' o" above top of

rails, has its wheels skidded while running. Take n = 0.15. Required

the total retarding force and pressure of each wheel.

Ans. 7.375; 12.625, and 3 tons on rail.

i6t Find (a) the least time in which a locomotive exerting a uniform

pull of P tons can haul a train weighing ly tons betv/ecn two stations

/ ft. apart on an incline of 1 in /«, the brake-power being /i tons and the

road-resistance /i tons.

Also find (/>) the time between stations when the speed is limited lo

V ft. per sec.

'

/
Ans—(a)\/2IV

I /^
-t- /i

g (P - A){B + A)
(^)

IVv p + n
V 2g {P-A){B + A)'

W
where A = J? +—

.

m
162. A locomotive exerting a uni'' rm pull of 4 tons hauls a train of

200 tons up an incline of i in 200, between two stations 2 miles apart,

the greatest allowable speed being }0 miles an hour. If the road-resist-

ance is 10 lbs. per ton (of 2000 lbs.), and if the brakes are capable of ex-

ertiiii,^ a pressure of 100 tons, the adhesion he'ing oni'/i///i, find (<?) the

time between the stations; (d) the distance in which the train is brought

to rest; (t) the distance traversed at 30 miles.

Also, if the speed is not limited to 30 miles, find (e/) the least time in

which the distance can be accomplished ; (e) the maximum speed attained;

(/) the distance in which the train is brought to rest.

Ans.—(a) si min. ; {/>) 275 ft.; (c) 7260 ft.; (</) 4.87 min.;

(e) 53,8 miles per hour; (/) 880 ft.

163. With the same brake-power, adhesion, and road-resistance, find

the weight of the heaviest train whicn the locomotive in the preceding

question, exerting the uniform pul! of 4 tons, can haul between the two

stations in 6 minutes. Ans. 360 tons.

164. If the locomotive has 60-in. drivers and 24-111. x 20-in. diameter

cylinders, find the weight required upon the drivers when the steam-

pressure is 50 lbs. per sq. in. Ans, 20 tons.



CHAPTER IV.

STRESSES. STRAINS. EARTHWORK AND RETAINING-
WALLS.

1. Internal Stresses.—The application of external forces

to a material body will strain or deform it, and the particles

of the body will be in a state of mutual stress.

In the following calculations it is assumed :

{el) That the stresses under consideration are parallel to one

and the same plane, viz., the plane of the paper.

{f>) That the stresses normal to this plane are constant in

direction and magnitude.

(<r) That the thickness of the plane is unity.

De/. The angle between the direction of a given stress and

the normal to the plane on which it acts is called the obliquity

of the stress.

2. Simple Strain.—The solid ABCD (Fig. 207) of uniform

transverse section A is acted upon ii. the direction of its length

by a force P uniformly distributed over its end,

p
producing an intensity of stress -^ =/. At any

other transverse section mn the intensity must be

the same in order that equilibrium n.ay be main-

tained.

Draw an oblique plane m'n', inclined at an

angle 6 to the axis. The total stress on m'n' = P
and necessarily acts in the direction of the axis.

p
The intensity of the stress on m'n' =

rp

m'n'

P P • a
-. = — Sin ^

mn cosec v A p sin B. The normal com- *'''°* *^*

ponent of the intensity on m'n' — p sin' Q — p^.

335
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The tatif^ential component or shear oii m'n'

= p sin ^ cos ^ — />/.

So, if ;//"// is an oblique plane [>er[)enJicular to m'n\ the nor-

mal comjjonent of tlic intensity on in"n" = p cos" ^ =. p^'.

The tangential component or shear on ;//'//"

= /> cos ^ sin <^ = /•/'.

.'. a' + A" = /» ^"tl // = pr = / sin # cos ^ = >^.illL?^.

2

The shear is evidently a maximum wlien 2B = 90" or

^ = 45°.

3. Compound Strain.—{a) First consider an indefinitely

small rectangular element OACB (Fig. 208) of a strained body,

.,
J, p kept in equilibrium by stresses

\ \ \ acting as in the figure.

p is the intensity of stress on

-O'' the faces OB, AC, and a its ob-

,j'/ liquity.

'.'

(/ is the intensity of stress on

the faces OA, BC, and ^ its ob-

FiG. ao8. Hquity.

OB .p cos a, the total normal stress on OB, is balanced by

AC .p cos ^1', the total normal stress n AC.
OB .p sin a, the total shear on OB, is equal in magnitude

but opposite in direction to ACp sin cr, the total shear on AC.
These two forces, therefore, form a couple of moment

OB .p sin a.OA.
Similarly, the total normal stresses on the faces OA,

BC balance and the total shears form a couple of moment
OA . ^ sin /S . OB.

In order that equilibrium may be maintained the two
coaples must balance.

or

•. OB .p sin a .OA = OA.q sin /ff. OB^

/ sin or = ^ sin /? = /, suppose.

I
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I

I

B

Fio. 309.

D

Hence, at any point of a strained body, the intensities of the

shears on any two planes at right angles to each other are equal.

{b) Next consider an indefinitely small triangular element

OAB (Fig. 209) of the strained body, bounded

by a plane AH and two planes OA, OH at

right angles to each other.

Let p be the intensity of stress on OB^
a its obliquity.

Let q be the intensity of stress on OA,
/3 its obliquity.

Let / be the intensity of shear on each of

the planes OA, OB. Then

t = p sin (t =. q sin fi.

p„, the normal component of/, — p cos n.

q„ . " "
'* "

<7. = ^ <^''- f^-

Produce OA and take OC = p„ . OB -\- t . OA = tlie total

force on OB in the direction of OA.
Produce OB, and take OD = q„ . OA -\- t . OB — the total

force on O.l in tlie direction of OB.
Complete the rectaui^le CD.

OE represents in direction and magnitude the resultant of

the two forces OC, OD, and must therefore be equal in magni-

tude and opposite in direction to the total stre;;s on AB.
Let/,, be the intensity of stress on AB. Then

(A . AB)^ = OE' = or + OD' = {p„ .OB-\-t. OAy

+ {q.. .OA+t. OBy ;

or /3 J, !

r —A I
0B\

) \-q." \AB)

OA . OB,

\ABI ' ^^ \AB) ' AB

Let y be the angle between AB and OA. Then,

p; = p„' sin' y 4- ^H cos' r-\-2t sin y cos y (/„ -f q„) -f f.

This gives the intensity of stress on any plane AB inclined

at an angle y to OA, and in the limit y^^ is a plane through O.
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a

cU'
,C.

^-^ \

Example.—Consider an indefinitely small triangular ele-

ment abc (Fig. 210) of a horizontal beam bounded by a plane

irT. ab'».ait
— bt^ iiulined at if to the vertical, the

horizontal plane ab, and the ver-

tical plane ac.

The element a^c is kept in equi-

Fig. aio. librium by the stress/ . ac upon v>:,

the shear s . ab (= / . ab) along ab, the shear / . ac along ac, and

the stress developed in the plane he. The weii(ht of the element

is neglected as being indefinitely small as compared with the

forces to which it is subjected. Let the stress upon be be

decomposed into two components, the one X . be norvr...^ and

the other Y . he tangential to be.

Resolving perpendicular and parallel to be,

and

or

and

X . be —. p . ac cos 6 — t .ab cos (^ ~ t .ac s,{n B

V. be =/>. ac sin 6 — t . ab sin B -{ t .ac cos B,

X^f cos' # - / siu 2fV

sm iB
,Y = p +/ cos 2b.

(0

(2)

The value of B for which A" is a maximum is given by

dX 2/= o = — / sin 2B — 2t cos 2B, or tan 2^ = . (3)

Substituting the value of B in eq. i, we have

max. value of A' = ^ + a/ - + /'. . . (a)

The value of B for which Fis a maximum is given by
ft

dY p-^ — Qz=. p COS2B — 2t s\.\\ 2B, or tan 26^ = . (5)
dv 21

''-^:
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Substituting the value of ^ in eq. (2), we have

239

max. value °'*'=\/7+'' (6)

Eq. (4) gives the maximum intensity of stress of the same

kind as /. Tlie maximum intensity of the opposite kind of

stress is ^ ~ \ + ^'

Eq. (6) gives the maximum intensity of shear.

The position of the planes of principal stress (see following

2/
article) is given by tan 26^= ---.

Let ^, , ^3 be the values of ^ for \\ ich A' and Kare respec-

tively maxima. Then

tan 26^, tan 2^. =
2t p
p 2/

= - I,

and

.-. ^ - ^ = 45^

Hence, at any point, the angle between the plane upon

which the norm.il intensity of stress is a maximum and the

plane upon which the tangential intensity of stress is a maxi-

mum, is equal to 45°.

Again, / is zero when ^, = 90° or 0°, and p is zero when
6>, = 45°.

Thus, he curve ofgreatest normal intensity cuts the neutral

axis at an angle of 45°, one skin surface at 90° and the opposite

at 0°, while the curve of grfatest tangential intensity cuts

the skin surfaces at 45°, and touches the neutral axis.

Fig. 211 serves to illustrate the curves of greatest normal

intensity. There are evidently two sets of these curves, re-

ferring respectively to direct thrust and direct tension.



240 THEORY OF STRUCTURES.

Fig. 212 illustrates the curves of greatest tangential in-

tensity.

29'
'dviirect "^tfii-u^t -.. ^

-)<-

Iw\
-^ff

'^M
"W tcTi?*!.'y- .90 ,•46'; -15°-

Fk. Plo 2ia

4. Principal Stresses. -Suppose that there is no shear

on vi/), Ki^. 209, ami that the -^iress is wholly normal.

In such a case OE must be perpendicular to AB.

tan Y = cot C0£ = qC_0C _ p„.OB ^t .OA
CE ~ 01) ~ g„ . OA -\-t .OB

— A tan y -f- /

~
<?„ + / tan /

2/

9u - /.,

tan y
I — tan y

= tan 2>'. • • • (7)

-,E Two values of y satisfy this equation, viz..

/ I

/ I

y and r -\- 90".

/ j

Hence, at any point of a strained body, there

•R i

^^^ *^^'^ planes at ri<rht an<j[les to each other, on

/ j

which the stress is wholly normal.

/ I
Such planes are calletl plams of principal

I

stress, and the stresses themselves principal

J stresses.
R D

5. Hllipse of Stress. -At any point of the
'""^'

straincti bod)-, consider .1 small triangular ele-

ment OABiVv;':,. 213), OA and OBhc'xug \\w planes of principal

stress

Let/*, be the principal stress normal to OB.
" A " "

" " " " OA.
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Complete the construction as before, and let i' be the angle

between OK and OC. Then

. , CE OD p„OA A
''""'^'-OE' 0F = p,AB-p,'''''y^

OC p,OB /, .

OE

(8)

/, sin '/' .
. p, cos //'

.*, cos y — ^ , sin V = - -—- ; and
A /.

, , . (A cos »/•)' (A sin »/»)•

I 3= sin' 7- 4 cos' ;r
=

. / - H .--—
/

1

Pi
. (9)

Take (''A' to rcprt sent /, in direction and magnitude.

Let X, Y be the co-ordin;ites of R with respect to 0. Then

X = p^ cos //', Y = pr sin '/',

and eq. (9) becomes

'=>+^7 ('°>

the equation to an ellipse with its centre at O, and its axes

(equal to 2/>, and 2/>,,) \y\\v^ in the planes of principal stress.

This ellipse is called the ellipse of stress, and the stress on any

plane AB at O is the semi-diameter of the ellipse drawn in a di-

rection makinjj an angle '/ with the axis OC, '/• being given by

A
tan '/' = ^ w >t K. (Eq. (^8).) . . . . (li)

Ft

6. Constant Components of />••. Take the planes of

principal stress as planes of reference (Fig. 214). , JW

V "^^^--R
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Draw (9A^ perpendicular to AB, and take ON = ^^—^-.
2

Let the obliquity o{ OR = 6 = RON = 90° — ip — y.

Join NR. riien

NR' = OR' + ON' - 2OR . ON cos

= Pr + (—
t"^--)^ - PXP. + A) sin (^ + Y\

But />,.' =/," sin' Y +/»,/ cos' ;/, and

p. p
sin (^' -J- ^) = sin ^' cos ^ -[- cos i' sin ;' = — cos* y + ' sin" k.

Pr pr

(See eqs. (8).)

NR' = />,' sin' r + A* cos' r + (^^f
- (A + AK/. sin" ;/ +/>, cos' ;/)

.-. NR = P.- P.
(12)

Hence, the intensity of stress OR at any point O 0/ the plane

AO/i is the resultant of tivo constant intensities

0N=^^±^^ and NR--^^^'^\

the former heiu^ perpendicular to the plane.
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7. The Angle ONR - 2y or 180° - 2y.

sin ONR OR pr

sin 6 NR ~ p.-p:

But

243

sin 6^ = cos (^ + ?') = cos '/' cos y — sin '/' sin y

= ^^^^^' sin r cos r = ^^^ sift 2Y.
pr

' '
2pr

^

sin ONR

2pr
^ 2

.*. sin ONR — sin 2y, and ONR — 2y or iZo° — 2y. (n >

Let A^^ (Fig. 214) produced in both directions meet OA in

/J^and OB\u G.

hi

HI

The angle (^/'W = 180° - ONR - NOP
= 180^ - 2;/ - (90° -y) = go° - y = FON.

.-. A^F = NO ; so, NG = N0 = NF.

Also

and

.*. A'' is the middle point of FG.

RF= FN - NR = ON - NR = p.

RG = RN-{- NG = RN-\- ON = p,.

N. B.—The shear at O

p.- P.
cos {2Y — 90°) = (/, — /,) sin y cos y.
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8. Maximui*! Shear.—ON has no component along AB.
Hence, the shear on AB is A7v cos (angle between NR and

AB), and is evidently a maximum when the angle is nil. Its

/i ~A
value is then NB, or -.

g. Application to Shafting.—At any point in a plane sec-

tion of a strained solid, let r be the intensity of stress, and B

its obliquity.

At the same point in a second plane let s be the intensity

of stress, and ^' its obliquity.

By Art. 6, r and s arc the resultants of two constant

stresses

A + A ., , A-

A

and .

and

(A^.y- ^ (A± A)V ,. _
,(^. +^,) CO, , (,4)

(Ar^-)' = f^^)'+ .' - .(/, + A) cos 8'. (.5)

Subtracting one equation from the other,

r' - s'

r cos 6* — s cos (^
'=A+A. . . (i6)

Firs/. Consider the case of combined torsion and bending,

as when a lengtii of shafting bears a heavy pulley at some point

between the bearings.

Let /» be the intensity of stress (compression or tension)

due to the bending moment Aft.
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Let q be the intensity of shear due to the twisting mo-
ment M,

.

p and q act in planes at right angles to each other.

/. r cos a = p, r sin = q = s, and 6' = 90°.

.'. r' = /' + q" and s ^=- q.

Hence, by eq. (16),

P.-^P.=P\ (17)

and by eq. (15),

.•.A = |+Y^ + / ..... (19)

and

A = f-v/-4+*' (^)

The max. shear = ^^-^-^ = a /^ +^' ; . . • • (21)

also

/ = ^* (Chap. VI.) and ^ =^ (Chap. IX.)

for a shaft of radius r.

''p^ = i?\J^i'^- ^W~-fW\-, . . . (22)



!|i

246

and

THEORY OF STRUCTURES.

A -/
2 =;^^^*' + ^/ (23)

Perhaps the most important example of the application of

the above principle is the case of a

shaft acted upon by a crank (Fig. 215).

A force P applied to the centre C of

the crank-pin is resisted by an equal

and opposite force at the bearing B,

forming a couple of moment P. CB = M.
Tiiis couple may be resolved into a

bending couple of moment M^ = J\ AB
= P . EC cos S z= M cos fJ, and a twisting couple of moment
M, = P . AC = P . BC sin d = M sin S ; S being the angle

Fig. 215.

ABC

.-.A = ~\Mcos6-^Af\ =^ cos
d

. (24)

»

, , ,
2M

and the max. shear = —,-

.

7ir
(25)

If the working tensile or compressive stress (/,) and the

working shear stress {—
''J

are given, the corresponding

values of r may be obtained from eqs. (22) and (23) or eqs.

(24) and (25) ; the greater value being adopted for the radius

of the shaft.

Second. Consider the case of combined torsion and tension

or compression.

Let the tensile or compressive force be P.

P
p, the intensity of the tension or compression, = —^ ;

« " shear
2Mt
nr*
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\

V

•••A ^"^^-^m' (26)

and

P.-P

—

Y

Fig. 9i6.

. 10. Conjugate Stresses.—Consider the equilib

indefinitely sm.ill parallelopiped

a/)af {¥\^. 216) of .1 strained body,

the faces <id, cd being parallel to

the plane XOX, and tjie faces ady

be to the plane YOY.
Let the stresses on ah, cd act

parallel to the plane YOY. The
total stresses on ab and cd are

equal in amount, act at the centres of the faces, are parallel to

YOY, and therefore neutralize one another.

Hence the total stresses on ad and be must also neutralize

one another. But they are equal in amount, and act at the

middle points of ad, be, they must therefore be parallel to

XOX.
Hence, if two planes traverse a point in a strained body,

and if the stress on one of the planes is parallel to the other

plane, then the stress on the latter is parallel to the first

plane.

Such planes are called planes of conjugate stress, and the

stresses themselves are called conjugate stresses.

Principal stresses are of course conjugate stresses as well.

Conjugate stresses have equal obliquities, each obliquity

being the complement of the same angle.

II. Relations between Principal and Conjugate

Stresses (Fig. 217).—Take any line ON =P.^P.
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Wi*h A'^as centre ami a radius = — ', describe a semi-
2

circle.

Let be tiie coinmun obliquity of a pair of conjugate

stresses.

Pig. 317.

Draw ORS, making an angle with ON, and cutting the

semicircle in the points R and S.

Join NR, NS.

OR and OS are evidently a pair of conjugate stresses.

Draw A^"' perpendicular to RS and Msecting it in V.

Draw the tangent 0T\ join NT.
Let OR = r, OS- s. Then

rs = OR.OS= OT' = ON' - NT'

|| -

ii,

= (^4- ^?^)'=AA. U8,

and

i!

r-\-s=^20V=20Ncos <? = (A+A)cos d. (29)

The maximum value of the obliquity, i.e., of d, is the angle

TON.
Call this angle 0. Then

sin0
NT ^ />.-A
ON A+A (30)
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Let OR, OR' be ;i p.iir of con-

jugate stresses (Fig. Ji8).

Let OG, OH be I Ik axes of r
greatest and least principal stress,

respectively.

Draw (7A' normal Ut OR'.

Let the angle COR '/•, RON
= ti, HON = GOR' = y, as before. Then

249

i>
= 9o°-r-e;

and by eqs. (8).

sin0

or

-j-cot y = tan ip =cot (x + ^ ;

.
cot(r + ^) _ A

cot r A'

_ A —A _ cot >^ — cot {y -f g) _ sin

~ A+A~cot y-h'cot(r4-^)~ sin (2^-1- 6/)'

. ,
,

^. sin ^

sin

y = i{-*+ si„-(^)| (30

Hence,

angle GON = go'- r={{ iio'+0-sm-{^
\ (32)

I

ang\.ffOR=y + e =^ {
» + sin-(^^

| . . . (33)

'
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12. Ratio of »• to ".

IP'

But

r _ OR _ OV^V _ 0V_- VNR' - NV*
7 ~ as" ~ 01'

f RV ~ oy^s'NR' - Nl^'

_ a\' COS - V A'A" - av siii^

co»«-/Q'-.„..

cos «+/(-y-.n-

NR A - P. _NT
ON p,+p,~ ON = sin 7(9A^=sin 0.

CO^e— l/sin" - sin'^ 6

s cos /V -f rsH? — sin" ^

COS H — v'cos' 6^ — cos'

cos ^ + V'cos' e - cos'
. (34)

Let
cos

COS 6
sin a. Then

r I T cos a . »

«

.,
^

- = - - — = tan' - or = cot' -

.

s I ± cos a 2 2 (35)

If 6* = o, a = 90 — 0.

^ = tan' (45-^) or = cot' (45 - f)• (36)

If ^ = 0, a = 90°

(37)
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13. Relation between Stress and Strain.—Let a solid

body be strait\ed uniformly, i.e., in such a niamicr that Hues of

particles which are parallel in the free state remain parallel m
the strained state, their lengths being altered in a ^iven ratio,

which is practically very small. Lines of particles which are

oblique to each other in the free state are generally inclined at

different angles in the strained state, and their lengths are

alteretl in different ratios.

Let the straining of the body convert a rectangular portion

ABCD (Fig. 219) into the rectangle AB'C'D', where AB' —
(I + iMB and AD' = {\-\- ft)AD.

Now (X and ji are very small, so that their joint effect niii\

be considered to be equal to the sum of their separate effects.

Hence

:

First. Let a simple longitudinal strain in a direction paral-

lel to AB convert the rectangle ABCD
into the rectangle AB'ED, where BB'

o';
F"f'" K c

= a.AB. D
'"

A line OF will move into the posi-

tion 0F\ where FF' = a . DF, and

^r. OF' -OF
the strain along OF =

r'-iE

FF' COS 6 a.DFcos e

OF

= a cos' ff, Fio. 919,~ OF ~ OF
B being the angle OFD.

Also, the " distortion or deviation from rectangularity"

^A
I ;

= angle FOF =—^,— a . DF sin 6

OF
= a cos 6 sin 6.

Second. Let a simple longitudinal strain "'n a direction

parallel to AD convert the rectangle ABCD into the rectangle

ABKD', where DD' = ft. AD.
The line OF will move into the portions 0'F'\ where

00' = ft.A0 and F"F = DD' = ft.AD.

the strain along OF = O'F" - OF
OF
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Draw O'M parallel to OF. Then

OF"- 0F= OF"- 0'M= F"M sin (^=z{F"F-FM) sin 6

= {DD' - 00') sin d = /3{AD - AO) sii)

= /S.ODsin e.

. , ^^ /3.0D sin e ^ . .^
/. the strain along OF = -jjr = /3 sin' 9.

The distortion = the angle F"0'M

F"M cos fi.OD cose

OF OF = ft sin 6 cos ^.

i

%

Hence, when the strains are simultaneous, the line OF ytiW

take the position O'F"' between O'F" dind OF', and

the total strain along OF =^ a cos* -\- fi sin'
;

the /(?/«/ distortion = (« — y9) sin 6 cos 6^.

Again, draw a line OG perpendicular to OF.

The angle OGA = 90° — e, and hence, from the above,

the total strain along OG = a sin' -\- fi cos' ^,

and the corresponding distortion = (a — /3) sin 6^ cos 6^.

Denote the strain along OF by ^, , that along (?6^ by ^,, and

each of the equal distortions by t. Then

e,
-I-

<, = « + /?.

Again, if OF, OG are the sides of a rectangle enclosed in

the rectangle A BCD, the straining will convert the rectangle

int ) an obliqufi figure with its opposite sides parallel. The
lengths of adjacent sides are altered by the amounts e^ and e,,

and the angle (^ by 2t. The above results may also be consid-

ered to hold true if the straining, instead of being uniform,

varies continuously from point to point.
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Consider a unit cube ABCD subject to stresses of intensity

p^ and p., upon the parallel faces

AD, HC and AH, DC. Hy Art. 3, f=

Chap. III. D A .C

h ink,
'

^ ~ nili
"^ E •

P,<- -*p,

and the strain perpendicular to the

UiceABCn= - ^' - ^;-.

If the stresses arc of equal intensity but of opposite kind,

i.e., if the one is a tension and the other a compression.

m

m

A- A = P, suppose.

Pi
ffL + -), an
h^ ml

d the third strain is «//.

Thus the volume of the .v/;v7///<v/ solid

= (i 4- «)(i — <'>')(') = ' — a' = I, approximately,

so that the volume is not sensibly changed.

Also, if OGHl' is an enclosed square, O being the middle

point of AD, (^ = 45°, and

i'j-

m

e, = ej= = o = strain along OF or OG,

and the distortion ~ change in angle O

a — ft 2p— 2t — 2 = 2a — ?(. + 'A
; ^ ^ ml
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This result may be at once deduced from tlie figure. Fcr

tan - = --y = —Y- -
r— = tan (^-

,

or

a tan / I — /

\ -{- a I -|- tan / i -f /
'

since / is very small. Hence

t — a.

As already shown in .'\rt. 3, shearing cannot take place

along one plane only, and at any point of a strained solid the

shears along planes at right angles are of equal intcnsit)'. The
effect of such stresses is merely to jjioiiuce a distortion of

Jigurc, and generally without sensible change of volume.

Thus, shears of intensity s along the parallel faces of the

unit sciuare A BCD will merely distort the square into a rhom-

bus ABC'D' (Fig. 221). Denoting the change of angle by 2/.

and assuming that the "stress is propor-

C' tional to the strain,
"

s — G.2t,

where G is a coefficient illed the vwdulus

of transverse elasticity, or the coefficient of

rii^idity, and depends upon a change of

form.

Consider a section along the diagonal BD.

The stresses on the faces. //>', AD, and on 6/>, CD, resolved

parallel and perpendicular to /)'/>, are evidently equivalent to

nil and a normal force s V 2, rcspectivel)-. Thus, there is no

sliding tendency along HD, but the two portions AHD and

s \ ->

CBD exert upon each other a pull, or tension, of intensity --tt^

s 4/2

\2
S.

Similarly it may be shown that there is no tendency to slide

along AC, but that the two portions .iBC and ADC exert
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upon each other a pressure of intensity s. The straining due

to the shearing stresses is, therefore, identical with that pro-

duced by a thrust and tension of equal intensity upon planes

at 45°. Hence, as proved above,

= (7.2/= t;-/(i +-),

and

^ E m
.'. G = —

2 I -\- m 2/

Now m rarely exceeds 4, and hence G is generally < ^E.

Again, \.\\<^ coefficient of elasticity of volume, or cubic elasticity

(Art. 23), is

K = mE
3('« - 2) 3\ \m — 2/

and hence

6A' + 26'

3A - 2G

I

.

w
i:l

14. Rankine's Earthwork Theory.—A mass of earth-

work tends to take a definite slope.

Rankine assumes, (1) that tlie str sses exerted in different

directions throui^h .1 particle of a granular mass are subject

to the general principles einmciated in the preceding articles
;

(2) that the cohesion of the particles is gradually destroyed,

and that the stability of the mass ultimately depends on friction

only.

In the limit, therefore, the face of the mass is inclined to

the hori/on at an angle equal to the angle of friction, or, as it

is sometimes called, the angle of repose.

Adopting for the present Rankine's assumptions, the equi-

librium of the mass requires that the direction of the mutual

pressure between the two parts into which the mass is divided

by a plane shall make an angle with the normal to the plane

less than the angle of friction.

im

mr

§-. t
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Denote the an^le of friction by 0.

The maximum obliquity must be ^ 0.

riy eq. (30),

P^ + A P.+P^~

Pt> }_
" sin

/>,
=

I H-sin
(38)

Thus, if a pressure of intensity />, acts through a mass of

earthwork, ec], (38)}4ives the lea^t intcnsit}'of pressure/, actintj

in a iliiection perpendicular to fliat of />, consistent with equi

librium

The limiting ratios of a pair of conjugate stresses in a mass

of eartlnvork may also easily be determinetl.

% eq. (34).

the ratio = cos ^ — \ cos" ^ — cos''

cos ft -\- k'cos" # — cos"

Hence the ratio cannot exceed

• • (39)

cos ft 4- cos" ^ — cos"

COS ff — V cos' ft — cos"

nor can it be less than

cos ft — 1'cos" ft — cos"

cos ft -\- Vcos" ft — cos"

If 6* = o, the ratio becomes

I ^ sin

I ± sin
(40)

For example, let the ground-surface be horizontal.

The pair of conjugate stresses become a vertical stress />,

and a horizontal stress/,.

A < I + sin

A =1 — sin 0' (41)
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or

• • (42)
A > I ~ si"

/, = 1 -r sin 0'

;is in eq. (jS).

Pressure (rj^atnsi a Virtical Plane.—Let ACB (Fig. 222),

the ground-surface of a mass of earthwork, bt inclined to the

horizon at an angle 0.

Consider a particle at a vertical depth CD = x below C.

Let .V be the vertical intensity of pressure on the particle

at /;.

Let r be the conjugate intensity of pressure on the i)article

at /;.

This conjugate pressure acts in the direction ED parallel to

the ground-surface, and its obliquity is d.

Take DE so that

DC
r cos 6 — V^cos" 6 — cos'

^ cos (^ 4" '^cos' & — cos"

Fig. 333,

Then zv . ED represents in direction and

magnitude the intensity of pressure on the

vertical plane DC at the point D, w being the weight of a unit

of volume of the earthwork.

Join CE.

The intensity of pressure at any other point ;;/ is evi-

dently 7C' . mn, mn bciiv^ drawn parallel to DE.
Hence, the total pressure on the plane /JC = weight of

prism DCE

w.DC.DE ^ rv.DCr= ' cos & = COS a
2 2 S

wx'= -^— COS fi

2

COS — V cos" fi — cos"

COS d + Vcos* 6 — cos"
^^'

Again, s is the pressure due to the weight of the vertical

column CD.

' !ill«

\ t̂

.'. S = 7VX COS 6

,

C44)



lijli

|. ii:.

2S8

and

THEORY OF STRUCTURES.

r = wx cos ^
cos ^ — V'cos' ^ — cos'

COS ii -j- S cos' 6* — cos'
(45^

By means of this last c(iiiation tlic total pressure on CD
may be easily deduced as follows :

The pressure on an element dx at a depth -i'

^cos a — Vcos' ^ — cos"
,= rax = ivx cos o . ax.

cos 6^+ ''cos'^ - cos''0

.•. total pressure = / V^/.t — etc.

The total resultant pressure is parallel in direction to the

ground-surface, and its point of application is evitlently ;it

two tliirtis of the total depth CD.

15. Earth Foundations.—Cask I. Let the \vein;ht of the

superstructure he uniforml)- distributed over the base, and let

p^ be the intensity of the pressure produced by it.

If pi, is the maximum horizontal intensity of pressure cor-

responding to/»,

,

pH^ \ — sin

In the natural ground, let p., be the maximum vertical in-

tensity of pressure corresponding to the horizontal intensity

Ph Then

A. < ' i:j*'"_0

/„ —
I — sin 0'

Hence

A </' +sin0\''A < /' +sm0y
p.„-\\— sin 0/

If ;r is the depth of the foundation, and w the weight of a

cubic foot of the earth,

p^ — wx;

.,
A < (Li»!!l^)'

(,6,
zvx = \I Sin 0/ ^^ '

^^,,
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Let h -\- X be the hciglit of the superstructure, and let a

cubic foot of it weigh iv' . Tlien

p, = iv\x\h).

Hence, a minimum value of x is given by

—v^" "
(. -"sin <h)^k- ^"PP°^^:

. X
7f — %v'k'' (47)

Case II. Let the superstructure produce on the base a

uniformly varying pressure of maximum intensity/*, and mini-

mum intensity/,.

By Ca.se I,

«'A:=U-sin0/ ^'^^^

In the natural ground the minimum horizontal intensity' of

pressure is

I — sin
*^

I -|-sm

When the foundation-trench is excavated, this pressure

tends to raise the bottom and push in the sides. The weight

of the superstructure should therefore be at least equal to the

weight of the material excavated in order to develop a hori-

zontal pressure of an intensity equal to p,^

.

. A < sin

p^- I +sin0'

Combining this with the last equation,

A > .

tvx (49)

Combining (48) and (49),

A=Vi-sin0^ ^50}

(Rankine's Civil Engineering, Arts. 237, 239.)

>f-1

•

>l

i^L-.-
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l6. Retaining-walls. - Coni^idcr a portion ABMN of a

wall \V\^. 223).

Let irbe its weight, and let the di-

rection of iV cut MN in C.

Let /'be the resultant of the forces

externally applied to ABNM and tend-

ing to overthrow it. Let D be its

point of application, and let its di-

rection meet that of J^Fin E.

Let F be the centre of pressiite (ur

Yyy
M resistance) at the bed A/N.

F.o. 923. Let O be the middle point of MN.
Let A/iV = t, OF — qt, OC = rt, q and r being each less

than unity.

Let x' and y\ respectively, be the horizontal and vertical

co-orilinates of D with respect to F,

Let the inclination to the horizon of hlM = a, of P's

direction = ^.

Conditions of Equilibrium.—{a) The moment of P with

respect to F ^ the moment of W with respect to F, or

P{y' cos (i — x' sin fi) ^ n\qt ^F rt) cos « ; . (511

the upper or lower sign being taken according as C falls on the

left or right of O.

In ordinary practice q varies from \ to f

.

Example.—A masonry wall (Fig. 224)

of rectangular section, x ft. high, 4 ft. wide,

weighing 125 lbs. per cubic foot, is built

upon a horizontal base and retains water

(weighing 62^ lbs. per cubic foot) on one

side level with the top of the wall. p""^- "4-

X
P—62^~, lV=i2'jX4x, a = o, /3 = 0, / = 4ft

x' = 2-\-4^, / = -, r = o.

.> <W^' - ^OOOqx,
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or

a" ^ 192^. (52)

If q-\, x' ^ 48 atitl x 1 6.928 ft.

If <7 = |, x^''l^2 and .r ^ 8.485 ft.

\b) The maxitmim intensity of pressure at the bed MN must

noL exceed the safe workiii<jj resistance of the material to

crusiiin^. Tlie load upon the bed is rarely if ever uniformly

distributed. It is practically sufficient to assume that the in-

tensity of the pressure diminishes at a uniform rate from the

most compressed edge inwards.

Let / be the maximum intensity of pressure, and A' ihe

t(n;!l pressure on the bed.

I nree cases may be considered.

(ASK \. J.etthe intensity of the pressure diminish uniformly

from /at y1/ to o at A^(Fig. 225).

'|"a)<e MG perpendicular to i)/iV and =/; join GN.
1 lie pressure up(;n the bed G--^.

is r^ b(isented by the triangle

Mi,.\. ' " ' "'

M F O
Fir., ass.I'he ordinate through the

centre of gravity of the triangle, parallel to GM, cuts MN in

the ceOtj-e of pressifre /''.

.-. q/ = OF = (Ut - FM=^~-- = -^A236

I N

Case II. Let the maximum intensity/ > MG in Case I.

Take MH — f, ami the triangle

MHK^ A* (Fig. 226).

The pressure on the bed is

now rejiiesented by the triangle

MIIK.

\

-:^;..

N,,^

a
Fit;. a«6.

R ^UIH.MK^ \f.MK.

Thi- ofdin.itc through the

•^

'I
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centre of gravity of the triangle MIIK parallel to HM cuts MN
in the centre of pressure F.

.'. at -OF- OM - MF = •.
^ 2 3

But MK = 2R

f
'

/ 1 R
.'. at =: ; and hence23/

^ = - - -^^ and IS evidently > ^. (53)

Case III. Let the maximum intensity/ < MG in Case I.

Take ML - f, and the trapezoid MLSN = R (Fig. 227).

The pressure on the bed is now represented by the trape-

zoid MLSN.

G
I ^
\

.\R = UML + NS)MN

->^-.^v

t: ^^s
and

M o
Fig. aa?.

N

.'.ML-{-NS:=^

m=lf-f.
The ordinate through the centre of gravity of the trapezoid

parallel to LJ\f cuts MN in the centre of pressure F.

Draw .ST parallel to NM.
The moment of MLSN with respect to O

— moment of MTSN with respect to O
4- moment of LST \\\t\\ respect to O,

or

T^
\{ML + NS)MN. 0F = o-\- ^LT -^-

... - --t,t =^L - NS) -^ =-[2/ .-
--J-

;

Hence, ./ = ^("o" — 0' ^"^ ''^ evidently < ^. . , . (54)
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Now W must be .1 function of x, the vertical depth of N
below /> ; P ak^o inii> be a function of x.

Hence if /is [^ivcii, and the cwrrcspondin^ value of q from

(53) "" (54) substituted in (52), .v may be found.

When (53) is employed, the value of x found must make

When (54) is employed, the value of x found must make

Example. The rectanfjular wall in {a), the safe crushing

strength of the material being 10,000 lbs. per square f'>ot(=/).

By (53).

R—W— iyoox.

I X
9 = ~-

2 110

Substituting in (52),

X^t \Q2\ - — ) 5q6-- ^ \2 120/ -^

Hence,

X 1 9.03 ft.

f^;

' I ^'

Again, g > ~ > -4248, and is it fortiori > v.

If (54) is employed,

Hence, by (52),

By trial x is found to lie between 12 and 13 ; each of these

values makes q > ^, which is contrary to (54).

The first is therefore the correct substitution.

(c) The angle between the directions of the resultant pres-

sure and a normal to the bed must be less than the angle of

friction.

I
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I

I <

Let be the angle of friction, R the mutual normal pressure.

Resolving along the bed and perpendicular to it,

and

Pros a -\- fi — IV sin a -^ R tan

P sin ^r^P"/3 -f PFcos a = R;

Pcos (^ -\- fi — Ws'm a
' Psin a -\- fi -\- IVcos a

which reduces to

< tan 0,

P{cos fi-\-a cos 0— sin /i-\-a sin 0) < ^F(sin cos a-j-cos 0sin a),

or

P cos /^ + a- 4- < IVsin n' -f 0,

or

or

P{cos 13 cos a-\- (p — sin /^ sin « -|- 0) < Wsm a-\-(l),

Pco-,0

.'. tan'

Psin f3-\- W

,
P cos fi

?s;n/«4- PF

< tan tr -|- 0.

— a < 0. (55)

17. Rankine's Theory of Earthwork applied to Retain-

Q ing-walls.—Fig. 228 represents a

vertical section of a wall retaining

earthwork. AB is a vertical plane

cutting tile ground-surface AC in the

point A.
•P Consider the equilibrium of the

whole mass of masonry and earth-

zvork in front of AB.
Let the depth AB = x.

The total pressure on AB is, by

(43)-

Fig. 228.

P = WX
cos B

cos B — v'cos' — cos"

cos e -\- v'cos" ^ — cos' *
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X
Its point of application is D, and BD = —

.

Let W be the weight of the whole mass under considera-

tion, and let its direction cut the base of the wall in the point G.

Let F be the centre of pressure in the wall-base.

Taking moments of /'and ^F about F,

)x „ { . ,
t\ . ,,, , ^\P\-co%^ — \qt-\- -1 sin(^-f «) \ = W{qt q= rt) cos n. (56)

The other conditions of equilibrium may be discussed as in

Art. 16,

18. Line of Rupture. —Another expression for the press-

ure on AB may be obtained as follows :

If the whole mass in front oi AB (Fig. 229) were suddenly

removed, some of the earthwork behind AB would fall away.

Suppose that the volume ABC would slip

along the plane CB.

The stability of ABC is maintained by the

reaction P on AB, the weight ^Fof ABC, and

the frictional resistance along BC.

Let the direction of P make an angle yS

with the horizon.

Let the angle CBA = i.

Let R be the mutual pressure on the plane BC.
Resolving along and perpendicular to BC,

Fig. 229.

and

Pcos{go° -i—/3)-\- lVcosi = Rtan</);

P sin (90° -- / - /3) 4- W%m i = R.

P sin (^ -{- i) -\- Wcost = tan0\Pcos{/3-\-t)-\- Wsmt\,

and

P= W cos i — sin i tan = W cos {i 4- 0)

sin (/i + i) + cos {fi + tan sin (/?+ «+ 0)
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„_ BA . BC . . wx^ COS 6 sin t

W^= w sin I = 777-j—T

;

2 2 Q.os{0-\-ty

'.P = wx^ COS 6* sin z cos {i -{- 0)
2 cos {p-\-i)s\n{fi -\- i -\- 0)

(57)

The only variable upon which P depends is the angle i.

Differentiating the right-hand side of eq. 57 with respect to

i and putting the result equal to zero, a value of i is found in

terms of /?, 6 and 0, which will make P a maximum.
The line inclined at this angle to the vertical is called the

line of rupture.

If the ground-surface is horizontal, ^ = o.

If the face retaining the earth is vertical, and if it is also

assumed that the friction bctzveen the face and the earthwork is

nil, Pis horizontal and fi = 0. Hence (57) becomes

wx
tan i cot {i -\- <p). • • (58)

This is a maximum when 2i = 90° — <p, and then

wx" r <f>\ /
, 0\

II ^ ~ tan -
0\ WX

\
2

I + tan
' 2'

or

I
'

P = wx* I — sin

2 r -j- sin '
^59)

the same result as that obtained by Rankine's theory.
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The following is an easy geometrical proof of eq. (59):

On any line KL (Fig. 230) de-

scribe a semicircle.

Draw AT/V inclined at the angle

to KL, and KN inclined at the

angle i to KM.
Join NL, cutting KM in T.

Let O be the middle point of ^

the arc KM.
Join 6>Z, cutting /O/ in Y.

Draw NV parallel to KM. Then

, NT KN NT VY
tan t cot (. + 0) = ^^X -M:

= NL= VL

267

Fig. S30.

'S,J"

VY
The ratio -7^,- is evidently a maximum when A^ coincides

with (9, and hence tan i cot {i \- (p) is a maximum when KN
coincides with KO.

Now the arc OK = the arc OM, and hence the angle OKM
= the angle OLK.

Hence, if OKM— i, OLK must also = z.

But C^/sfi. + 6>ZAr =go° = i-\-(p -\-i = 2t + 0.

= 45 -

:
: V » fj

19. Practical Rules.—When the surface of the earthwork

is horizontal and the face of the wall against which it abuts ver-

tical, the pressure on the wall according to Rankine's theory is

wx I sin

2 I -j- sin '

til

,

and the direction of P is horizontal.

This result is also identical with that obtained in Art. 18, on

the assumption of Coulomb's wedge of maximum pressure

( Poncelet's Theory).
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Experience has conclusively proved that the theoretical value

of P ^iven above is very much greater than its real value, so

that the thickness of a wall designed in accordance with theory

would be in excess of what is required in practice. In the

deduction of the formula, indeed, the altogether inadmissible

assumption is made that there is no friction between the earth-

work and the face of the wall. This is equivalent to the sup-

position that the face is perfectly smootli and that therefore

the pressure acts normally to it. Boussinesque, Levy, and St.

Venant have demonstrated that the hypothesis of a normal

pressure only holds true,

either, first, if the ground surface is horizontal and thewall-

face inchned at an angle of 45" to the vertical,

or, second, if the wall-face is vertical and the ground-surface

inclined at an angle <p to the horizon.

When the surface of the ground is horizontal and the face

of the wall vertical, and when 4' = 45°. the above formula gives

the correct magnitude of P. Its direction, however, is not hori-

zontal, but makes an angle with the vertical equal to the angle

of friction between the earth and the wall. The wall-face is gen-

erally suflficiently rough to hold fast a layer of earth, and in all

probability Bouss nesque's assumption that the friction between

the wall and the earth is equal to that inherent in the earth is

a near approximation to the truth. The direction of P will

thus be considerably modified, leading to a smaller moment of

stability and a corresponding diminution in the necessary thick-

ness of the wall.

In practice the thrust P may always be made small by

carrying up the backing in well-punned horizontal layers.

In order to neutralize the very great thrust often induced

by alternate freezing and thawing and the consequent swelling,

a most effective expelient is to give a batter of about i in i to

the rear line of the wall extending below the line to which frost

penetrates.

The greatest difificulty in formulating a table of earth-thrusts

arises from the fact that there is an infinite variety of earth-

work. As an example of this, Airy states that he has found
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the cohesive power of clay to vary from 168 to 800 pounds per

square foot, the corresponding coefficients of friction varying

from 1. 1 5 to .36, and that even this wide range is less than

might be found in practice.

A correct theory for the design of retaining-walls is as yet

wanting. According to Baker, experience has shown that with

good backing and a good foundation the stability of a wall

will be insured by making its thickness one-fourth the height,

and giving it a front batter of i or 2 in. per foot, and that under

no conditions of ordinary surcharge or heavy backing need its

thickness exceed one-half the height. Baker's usual practice in

ground of average character is to make the thickness one-third

the height from the top of the footings, and if any material is

taken out to form a face panel, three-fourths of it is put back

in the form of a pilaster.

General Fanshawe's rule for brick walls of rectangular

section retaining ordinary material is to make the thickness

24^ of the height for a batter of i in 5 ;

25"
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III

Brunei curved the face of the wall and made its thickness

one-fifth or one-sixtli the height. Counterforts 2 ft. 6 in. in

thickness were introduced at intervals of lo ft.

The vast impoitance of the foundation will be better appre-

ciated by bearing in mind that the great majority of failures

have been due to defective foundations. If water can percolate

to the foundation, a softening action begins and a consequent

settlement takes place, which is most rapid in the region sub-

jected to the greatest pressure, viz., the toe. In order to coun-

teract this tendency to settle, the toe may be supported by rak-

ing piles, the rake being given to diminish the bending action of

the thrust on the piles. It is also advisable to distribute the

weight as uniformly as possible over the base, a condition which

is not compatible with large front batters and deep offsets, as

they tend to concentrate weight on isolated points. In the

case of dock-walls, too, a large front batter will keep a ship

farther away from the coping and will necessitate thicker

fenders, as well as cranes with wider throws. As an objection

to offsets Kernays urges that, in settling, the backing is liable

to hang upon them, forming large holes underneath. He there-

fore favors the substitution of a batter for the offsets. On the

other hand, if water stands on both sides of the walls, the

hydrostatic pressure on the offsets will greatly increase its

stability.

Dock-walls are liable to far greater variations of thrust than

ordinary retaining-walls. The water in a dock with an im-

permeable bottom may stand at a much higher level than the

water at the back of the wall, and its pressure may thus even

more than neutralize the thrust due to the backing. With a

porous bottom the stability of a wall may be greatly dimin-

ished by an upward pressure on the base. The experience of

dock-wall failures has led to the conclusion that a large moment
of stability is not of so much importance as "weight with a

good grip on the ground." Many authorities, both practical

and theoretical, have urged the great advantages in economy

and strength attending the employment of counterforts. The

use of Portland cement, or cement concrete, will guard against

the breaking away of the counterforts from the main body of
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tlic wall, as has often happened in the case of the older walls.

But a unifornn distributic^n of pressure as well as of weight is

in:iportant, and it therefore seems more desirable to introduce

the extra weij^ht of the counterforts into the main wall. Be-

sides, the buildinp; of tlie counterforts entails of itself an in-

creased expense.

20. Reservoir Walls.—Let /be the maximum safe press-

ure per square foot of horizontal base, at inner face of a full

reservoir, at outer face when empty.

Let zv be the weight of a cubic foot of the masonry.

Assume that the wall is to be of uniform strength, i.e., that

the section of the wall is of such form that

in passing from any horizontal section to the

consecutive one below, the ratio of the in-

crement of the weight to the increment of

the surface is constant and equal to/.

Let AB, Fig. 231, be the top of the wall.

Take any point O as origin, and the vertical

through O as the axis of x.

Let OA = /, , 0B = t„ and let

B

(/gN G fifi

Fig. 231.

For the profile AP consider a layer of thickness dx at a

depth X. Then

'^vyeix , , ^

(0dy
= /

or

w y

c being a constant of integration.

When X = o, y =^ t^;

f
.-. o = -- log, t, 4- c.
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and hence

"^i'^^'i (^

which is the equation to AP 7\\\d is the logarithmic curve.

It may be similarly shown that the equation to BQ is

* = £-'°B'^ <3)

Equations (2) and (3) may also be written in the forms

w

y^t.ef"
(4)

and

y = U^'' (5)

Corresponding points on the profiles, e.g., Pand Q, have a

common subtausrent of the constant value — , for
"^ w

NT = PN td.n NPT{= y^\ =
^^

(6)

Area PNOA = fydx = /.(-^^' - -) = —{V. - t,), (7)

where /W= F..

Area QNOB = £ydx = £-(7, -^ (8)

where QN = Y,.

.-. Area QPAB = £-( F,-f Y, -7:T0 = £(^' - T), . (9)

where PQ= Y,-{- Y,= T.
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Tluis the area of the portion uiuU.t consideration is e([ual

to tile {)roiliict of the subtan^ent and the difference of thick-

ness at top anil Ijottoin.

Liiiis of /isistnu'Sf "with nsirvoir empty. Let g^ l)e the

point in whicii the vertical through the C. of G. of tlie portion

OAPN intersects PN. Then

Ng, X area OAPN = fydx^-
;

/ \ f C^'^ I /

.'. Ng, = 1^. + ^.

So if gj be the point in which the vertical through the

C. of G. of the portion OBQN intersects QN,

• '*

w

: ;

N^.=
K,+/,

Let G be the point in which the vertical through the

C. of G. of the whole mass ABQP intersects PQ. Then

NG X area ABQP= Ng, X area AONP- Ng, X area BONQ,

or

NG^-{Y,- /, + F, - Q = ---{¥,'
4 w

.-. A^6^ =
4( F, - /, + Fr- /,)

•

IM I

f H

I
I

jil

i
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Tlie horizontal ilistance between G and a vertical throujfji

the middle point of AB

Mr u, ,. (K-0'-(n-0' (K,-/,)-(K.-/.)

= one half of the horizontal distance between the verticals

through the middle points of AH and QP.

The locus of G can therefore be easily plotted.

Lines of Resistance xvith Reservoir Full— Let R be the centre

of resistance in PQ (Fijj. 232).

Draw the vertical QS, and consider

the equilibrium of the mass QSAl'O.

Let 7i'' nz: weight of a cubic foot of

_ S' BO A

water.

ZV X X

2 3

^Q N G R

Fig. 23a.

P^

or

tv'x'

= moment of water-pressure

against QS about R
= moment of weight of QBS

about R -\- moment of

weight of (9/Myy about /v,

/.
7.- = moment of 055 about R-^--(T' - T)w.GR
6 IV

^

The first term on the right-hand side of this equation is

generally very small and may be disregarded, the error being

on the safe side.

In such case

GR = I w X
6 f T' - T'

Also the mean intensity of the vertical pressure

_ _iv X area APQB _ / T\
—A — PQ —jy ~

T'l'
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and the maximum intensity of tlic vertical pressure

275

=A = 2R _.X~t]

or

= ^(1+6^) =/(! +6^)(i - ^\

General Case.—Let the profile be of any form, and consider

any portion ABQP, Fig. 233.

Take the vertical through Q as

the axis of x, and the horizontal

line coincident with top of wall as

the axis of y.

The horizontal distance {y) be-

tween the axis of x and the vertical

through the C. of G. of the portion

under consideration is given by the

equation

y£tdx = fjydx. __.\p

/ being the width, dx the thickness, Fig. 233.

and y the horizontal distance from OQ of the C. of G. of any

layer MN at a depth x from the top.

When the reservoir is empty, the deviation of the centre of

resistance from the centre of base

' !

«-lllii

\ >\\

qT= Y-^<

When the reservoir is full, let g'T be the deviation of the

centre of resistance from the centre of the base, and disregard

the moment of the weight of the water between OQ and the

profile BQ. Then
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^'T=-.

J'JIKOKY OF .V7Vv'6'{"/6'A7';.V.

moment of water pr. ± moment of wt. of O/iQ

\veij;lu ot AHQP
- T Y

= ±-—-

—

±yT y.

^7C' tiix
t'o

Hence

„ ^ I IV .r

6 .- r A/.1-

C

21. General Equations of Stress.—Let r, r, .t be tlie

co-ordinates with respect to three reetaiiL;ular axes of any point

O \\\ a strainetl body.

Consitler the equilibrium of an

element of the body in the form

of an indefmitely small paralleln-

piped with its edj^es OAi^— ii.\\,

01\r^ii)\ OC{=dz\ parallel to

the axes of x, j>, c. It is assumed

x that the faces of the element arc

sufficiently small to allow of the

distribution of stress over them

bein<j[ regarded as uniform. The

resultant force on each face will

therefore be a single force acting at its midd'c point.

Let A'^ , 1^, , ^, be the components parallel to the ;;xes .r, r, ^

of the resultant force per unit .iie >. on the

face nC.
'* A'",, y\,Zj be the correspondir.g components fi)r the

face AC.
" A\, ]\, Z^ be the eorresi)onding components for tlie

face A />'.

These components are functions of .1, j'. ;:, and therefore

bcCOUK,'

Fig. 2}4.

</x ilX I \ ' ' (tX

for the adjacent fn.e AD\
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-(•^^+'">)--(n+'2"4-(^+f4
for the adjacent face BD;

for the ailjacciit face DC.

Hence, the total stress parallel to the axis of x

-\-X^iixdy — ( A'j-}- ,'</cj(/xt/j>

= - U- + dy + dar^'^y'^''

Similarly, the total stress parallel to the axis of ^

IdV dV dVX ^

and the total stress parallel to the axis of ;:

'dx + dy + -^j'^^'^y'"^-

Let p be the density of the mass at O, and let P^, P^, P, be

the components parallel to the axes of x, y, c of the ixtcnttil

force, per unit mass, at O.

pdxdydcP^ is the component parallel to the axis of x of

the external force on the element

;

p(/xdydcPy i^ the component parallel to the axis of / of

the external force on the elemeiU
;

pdxdydzP. is the component parallel to the axis of s of

the external force on the element.

Hi!

|^

t»H
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The element is in equilibrium.

dX, dX, dX,

dx ~^ dy dz
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Next consider the equilibrium of a tetrahedral element

having three of its faces parallel to

the co-ordinate planes. Let /, ;//, n

be the direction-cosines of the normal

to the fourth face.

Also, let X, V, Z be the compo-
nents parallel to the axes of x, y, z

of the intensity of stress R on the

fourth face.

X= IN, + m 7; + « 7-,+ \pPJdx.

But the last term disappears in P'g- 235-

the limit when the tetrahedron is indefinitely small, and hence

X=lN,^mT,^nT,',

Z = lT,-{-mT, -\-nN,.

(4)

m

These three equations define R in direction and magnitude

when the stresses on the three rectangular planes are known.

Let it be required to determine the planes upon which the

stress is wholly normal. We have

X = IR, V=mR, Z=nR., . (5)

Substituting these values of X, Y, Z in eqs. (4) and eliminat-

ing /, m, n, we obtain

R' - R^{N,^N,^N:)+R{N,N, :^N,N,-^N,N,)- T^- T^- T^
-{N,A\N, - N,T,' - NJ\^ - N,T:-\-2T,T,T,) =0 ; (6)

a cubic equation giving three real values for R, and therefore

three sets of values for /, ;«, and 11, showing that there are three

planes at O on each of which the intensity of stress is wholly

normal. These planes are at right angles to each other and

are QdWed principalplaties, the corresponding stresses being /n«-

cipal stresses. They are the principal planes of the quadric,

N,x' + N,f + A^,5' -f 2 r.^2 + 2 T,3x +22 \xy = c. (;)
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For, the equation to the tangent phmc at the extremity of a

radius r whose direction-cosines are /, in, n is

Xrx + Yry + Zrz = c, (8)

and the equation of the parallel diametral plane is

Xx -\- Yy -\- Z:: — o
(9)

The direction-cosines of the perpendicular to this plane are

X _ Y _ Z _R~ ' R''"' R'~^^'

so that the resultant stress R must act in the direction of this

perpendicular.

Hence the intensities of stress on the planes perpendicular

to the axes of the quadric (7) are wholly normal.

Refer the quadric to its principal planes as planes of refer-

ence. All the T's vanish and its equation becomes

N,x' -{- N,f -i- N,::' = c (10)

Also, the general equations (3) become

^N,

Hx=^^^'^

dy ^ ^'

Again,

• • • . (II)

(ir+®+(fj./-+.'+.= I. . . (12)
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Consider X, Y, Z as the co-ordinates of the extremity of

the straight line representing R in direction and magnitude.

Equation (12) is then the equation to an ellipsoid whose semi-

axes are N^ , N^, N^. As a plane at O turns round (9 as a fixed

centre, the extremity of a line representing the intensity of

stress^ on the plane will trace out an ellipsoid. This ellipsoid

is called the ellipsoid of stress.

Note I. The coefficients in the cubic equation (6) are in-

variants. Thus, N^-\- N^-\- N^ is constant, or the sum of three

normal intensities of stress on three planes placed at right

angles at any point of a strained body is the same for all

positions of the three planes.

Note 2. The perpendicular/ from O on the tangent plane,

equation (8),

!, n*

I'P

= Rr-f-

R = i-.

pr
(13)

Note 3. Let the stress be the same for all positions of the

plane at O. Then N, = N, = N,, and the ellipsoid (12) be-

comes a sphere. The stress is therefore everywhere normal,

and the body must be a perfect fluid. Conversely, it the

stress is everywhere normal, the body must be a perfect fluid,

the ellipsoid becomes a sphere, and therefore iV, = yV, = .V,

.

22. Relation between Stress and Strain.—In Art. 13 it

was shown that when the size and figure of a body are altered

in two dimensions, there is an ellipse of strain analogous to the

ellipse of stress. If the alteration takes place in three dimen-

sions, it ma\' be similarlj- shown that every state of strain ma\'

bo lepresented bj- an ellipsoid of strain analogous to the ellip-

soid of stress. The axes of the ellipsoid are the principal axes

of strain, and every strain may be resolved into three simple

strains parallel to these axes.

hk K
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It is assumed that the strains remain very small, that the

stresses developed are proportional

!S'

^
Pil

yu /Rx-'R

to the correspondin<j strains, and

that their effects may be superposed.

Consider an element of the uii-

'_ i_q' strained body in the form of a rect-

Q ~* an<rular parallelopiped, having its.

edges PQ (= h\ PR (= k\ PS (= /)

parallel to the axes of co-ordinates.

When the body is strained, the

element becomes distorted, the new

edges bein- !''Q , PR', PS'.
Let .1 , y, J be the co-ordinates of P.

Let X -J- u, J'
-\- V, s -\- w be the co-ordinates of P'.

By Taylor's Theorem the co-ordinates with respect to P' of

dv \ dv' dv

,dn jdv A ,diu\
S are/—, /— , /li + -j-].

dz dz \ dz I

•./'G'=/<.+:l)o,

PR' = k[\

PS' = / I +

d^' \

div\

d^l'}

(14)

Hence, strain parallel to axis of ;ir = P'Q'-PQ du 1

« <i

PQ dx
'

^ ~ PR '~dy'

P'S'-PSdtv
PS ~ dz'

z =

(15)
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Again, cos Q'P'R

285

L I '+U +U; +l7vi 1 IW +V ^J +Uy (

J

dyf \dy

In the limit, this reduces to

Similarly,

dy dx

cose/" 5 =;7,- + ;^:h

«7 dz ^

Volume of unstrained element — hkl\

• • • . (16)

Volume of distorted element = ^^^(^+-7-)(i+-r)(^+T")

multiplied by the cosines-

of small angles

, ,
, / . dti , dv , dw\

in the limit.

Difference of volume du . dv , dw , .

^•^ . ^2 \- , , , (17)'"
Vol. of unstrained element dx dy ds^ ' ' '

= the volume or cubic strain.

23. Isotropic Bodies, i.e., bodies possessing the same elas-

tic properties in all directions.

A normal stress of intensity iV, parallel to the axis of x

N
produces a simple longitudinal strain —i, and two simple

E

lateral strains, each = N.

niE
It, parallel to the axes of y and z^.

%
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Li beiii^ tlie ordinary modulus of elasticity and — , Poisson's
;//

ratio (Art. 3. (liap. III).

Normal stresses A^, , N^ parallel to the axes of/ and s may
be similarly treated.

Let the three normal stresses act simultaneously and super-

pose the results. Then

total strain parallel to axis of .r = -'

E inE ~ dx'

^i u

i( <{ «

y = -ff

3 =

E inE dy ' ^

N, N,-\-N,_dzv

E mE dz

The form in which these equations are given is due to

Grashof.

Solving for N,, N^, N^,

N. = mE Idv dw\ ^

(w4-~i)(/«- 2)V7^ + 'd^l

'

iV, =

w(;;/ — i)E du

{7)1 -\- i){in— 2) dx {in -f- i)(/«— 2)\dy

ju[vi — i)E dv mE idzv du\ ^

(V^- I )(///- 2) dy
"^

{m + \){m-2)\ds
^

'ih:)''

"" (19)

iV. =_ in{iii — i)E dzv
+

mE
{m -\- i){m— 2)dz {m -\- i){m— 2)\dx dy l\

du dv

The last equations may be written

dx \dy dz I

'

)

dy \iz dxl ' '

.dzv ^ /du dv\

dz \dx dv I

, (20)
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mE
where A, = ;

"""-— . , is the coefficient of dilatation, and
{m^ \){m—2)

A _ in{in—\)E

Again, the straining changes the angle RPS by an amount

' — -I—^ , producing two tangential stresses, each equal to
dy dz

° -

^ dlV
,

dv\ II 1 i. .1 f IG r r )' parallel to the axes of j and s.
\d)> '^"'dzl

^ ^(dtu . dv\
^

Similarly,

iy

idn , div

„ „ldu dv\

J)

G is called the coefficient of rigidity or transverse elasticity,

and is designated « in Thomson and Tait's notation, and /< in

Lamp's notation.

Relation betiveen A, A, and G.—Equations (20) and (21) pre-

serve the same forms whatever rectangular axes may be chosen.

Keep the axis of z fixed and turn the axes of x and y
through an angle a.

Let A^,' be the normal stress parallel to the new axis of x.

.'. N/ = iV, cos" a 4" -^s sin" a -\- 2T^ pin a cos a. (22)

Let x'.y' and «', v' be the new co-ordinates and displace-

ments.

... .du'
,

yidv' . div'\ ,. .,dn'
, , ,, , ,

!'

PI ! \

U- U ^

m

*-'(U.fe'2<i

:i',
\ tf

' '''111

T. dii , dv ,
dw ^ du

I

dv , dw . . . ^
tor -y- 4- -,- + -7-, = t^ = J—, -\-

~Y', + TT » '3 an mvariant.
dx dy dz dx dy dz
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The values of N^ given by eqs. (22) and (23) must be
identical. Now,

X = x' cos a — y' sin a, y — x' sin a -\-
y' cos a;

n' — u cos IX -\- V sin «-, 7/ = — u s\x\ a -\-v qo% a

.

• (24)

fl^//' ^/« , dv
.'. —, = - cos a -j- -- sin a

dx dx dx

du
J,

dv . ^ . Idii , dv\ .= cos «-f sin"o'-f -f ]sin«r cos adx dy \dy dx'
du , , dv .

^ ^
T, .-- -— cos i\ -\- —- snr a + ^ s»n « cos a ;dx ' dy ^ G

and by eq. (23),

iAV = (^ -^)(^ cos^ «-f-^ sin' «+|^ sin a cos a) + A^. (25

.

Also by eqs. (20) and (22),

N; = {A—X)[~ cos= «+^ &in « +4^ sin a cos a]+A^. (26)

Eqs. (25) and (26) must be identical.

.-. G = A-X niE
0/ I

-T = /< = «. . . (27)
2(;;/ 4-1)

Adding together equations (20),

A'. + A^, + A^3 =

;«£ /^?^ , dv
, ^se*

m — 2W,r "^
^^ ' 'dzj

It may be easily shown that the normal stresses can each
be separated into a fluid pressure/ and a distorting stress.
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Hence, putting

mh idu
,
dv

,
^/:i'\

m — 2)\dx dy dzi3(/«

the cubic elasticity = , j' dn dv

dx'^dy

^ = ^"^ = A' 1^8)
u dx> dw T^^in — 2)

• ~ /

24. Applications.— I. Traction.—One end of a cylindrical

bar of isotropic material is fixed and the bar is stretched in the

• liiection of its length. The axis of the bar is the only line

not moved laterally by contraction.

Take this line as the axis of x.

The displacements ti, v, xv of any point x,y, z may be ex-

pressed in the form

n = ax, V — — fiy, zv = — fiz. , . . (29)

By eqs. (20) and (29),

^V, = a/l — 2ft\ (30)

N. .-fiA^l{fi-^a) = N,. . . . (31)

By eqs. (21) and (29), all the tangential stresses vanish.

Hence, since N, , A\^, N, are constant, and since the equa-

tions of internal equilibrium contain only differential coeffi-

cients of the stresses, the hypothesis, eq. (29), satisfies th'.se

equations.

First. Let N^ = = jV^; i.e., let.no external force act upon

the curved surface.

13A + A(/5 -\-a) = o,

/3

a A -\- \ in
(32)

Thus, the coefificient of contraction is less than the coefificient

)f expansion.

'<:

'

}

\ fi: If

If::

'
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Again, by cqs. (30) and (32),

a a III

' . • (33)

Si-coiii/. If the: bar, instead of bciiij.^ free to iiio\'c laterally^

lias its suifacc acted upon by a uniform pressure J\ then

a; = N, = P.

By ecjs. (31) and (32),

a~ l{N,-\-2P)- AX . - . . (35I

For example, let /' be sufifieient to nn.\ciit lateral contrac-

tion. Then /i = O an.l, by eqs. (31 ) and (^35;,

txA=.N,= -j={m- i)P.

2. Torsion,—(a) Let a circular cylinder (hollow or solid) of

length /undergo torsion around its axis (the axis of .ir), and let

/ be the an^le through which one cud is twisted relatively to

the other. A point in a transverse section distant x from the

latter will be twisted through an an^le .r

/

The displacements ?/, i>, tc of the point .v,j/, c in this section

may be expressed in the form

t
,

t
u =1 o, V = — S.V-, to = -{• yx-j .

By eqs. (20) and (21),

A^, =o = A^, = A^3,

and

T, =0, 7, = -\- Gy- , 7; = — Gz- .
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The alfjcbraic sum of the moments of 7",
,

7", with respect

to the axis

r belli*; the distance of the point {.\\ y, s) from the axis.

Hence, tl»e moment J/, I'p (Chap. IX), of the couple

producing torsion

= CJ~Jr\iS r= d-1 ^ (;bi,

(/S beino an element of the area at (x,j',s), I the polar momeni
ol inertia, and ^ the torsion per unit of length of the cylindei,

or the rate of tivist.

The torsional rigidity of a solid c)linder

R being the radius of the cylinder.

(/;i Torsion of a bar of elliptic section.

Tile displacements //, v, 7i' may now be expressed in the

form

II =1 F[y, z), 7> = — f^xz, 70 — Hxy.

,
du _ _ dv __ d7u

' dx dy dz
'

7-,=o, 7-.= C;(^- + .,), r. = c(J-4. (35)

Hence, by the general eqs. (3),

d^u d'u
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Also, the surface stresses arc zero;

as as

and hence, by eqs. (35),

~dz --dy = f^isdz -\- ydy).
ay dz

137)

U«;

This equation must hold true at the surface.

Let the equation to the elliptic section be

as

dy

cy

¥z'

and by eq. (38),

I39t

• (40)

, dn , ... du
cy r'-\-h'z^

dy dz
- eyz{b' - c').

• (41)

7 = dyz satisfies this last equation and also eq. (36), if

0-
b'

b' + c'
U-^)

Again, the algebraic sum of the moments 7",, T^ with re-

spect to the axis of .r,

= G\Kd-\-H)y^ -{d-B)s'\

(43)

I! :
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1

The total moment (71/ o^ the couple producing <-orsion

2GO

nbY
b' -f c-

- <^^
A'^ 1 ..«

.

and the torsional rigidity

- H - ^'
b' + r

« • • (44)

(t") Torsion of a bar of rectangular section.

As in case {b). u must satisfy the equation

dv dz-
(45)

Also, the equations of condition corresponding to eq. (38) are

du

and

dy

du

— He = o when y = ± b, . . . . (46)

— -}- Hy = o when s = ± c; . . . (47)

2b and 2c {b < c) being the sides of the rectangle. The total

moment of torsion, viz.,/'{T^y — T.^c)dS is then found to be

, , tan // y-,. Y . , ,

M=i6b^cG0\\-^^^:2: -^'r^'^-\- • (48)

tan// (2//+ n^l

U b = c, I.e., if the section is a square, eq. (48) becomes

M = .S43462/Gft, (49)

/( = ^b*) being the moment of inertia with respect to the axes,.

(See Chap. IX).

''*'^!fl

i#-l



292 THEORY OF STRUCTURES.

If - is very small, eq. (48) becomes

M = i6/^V6-^(- -.21-). (50)

f»

mn\\

I

ml

The torsional r g'dity of a rectangular section is sometimes ex-

pressed by the lormnla

M _ 5 __^
~^ ~ 18 F^ c

-,G. • • • (51)

For the fu: her treatment of this subject, the student is re-

ferred to St. Venant's edition of Clebsch, and to Thomson and

Tait's Natural Philosophy.

3. lVo?'i' done in the small strain of a body TClapeyron's

Theorem) -M ultiply cqs. (3 ) by u dxdy dz, 7' dx dy dz, zvdxdyds,

and find the triple integral of their sum throughout the whole

of the solid.

The terms involving the components P,. ^ P^ ^ P^ may be dis-

regarded, as the deformations due to their action are generally

inappreciable.

Also,

>dN,

///W""^-^^^-^"^^
du

^fJ\NJii.,. - NJ'iiJ')dydz -fffNr~dxdy dz
dx

NJ, Nx" being the values of N^ at the two^points in which the

line parallel to the axis of x cuts the surface of the body, and

^J 1 ^^x" the corresponding values of «.

Let dS, dS' be the elementary areas of the surface at these

points, and /', I" the cosines of the angles between the normals

to these elements and the axis of x.

The double integral on the right-hand side of the last equa-

tion then becomes

//{N/rn^dS - N,"l"uJ'dS') = SiJVJndS).
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Treating the other terms simiiarly,

o = :?K^/+ T,m + T,ii)u + (r,/+ N,m + T,n)v

4- ( r,/+ T,m 4- iV3«)«/
\dS

Hence, the tvork done = ^2{Xu -f- V^' + Z''^v)dS

= kSffdxdydz
I
^\^%^(yV. + AT, + A^3r

- "^{N.N^ + ^.^, + N^N, - t: - t: - t:)
|

^rrr^ ^ v »
C^. + A^, + ^.r

N,N, + iV,A^, + .V,A^, - T: - T^ - T:
[.

E being the ordinary modulus of elasticity.

'1 B- 'I *

i I

1 V\
61. >i
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294 ThEORY Ot STRUCTURES,

EXAMPLES.

1. At a point within a strained solid there are two conjugate stresses

viz., a tension of 200 lbs. and a thrust of 150 lbs. per square inch, the

common obliquity being 30". Find {a) the principal stresses ; (b) the

maximum shear and the direction and magnitude of the corresponding

resultant stress; {c) the resultant stress upon a plane inclined at 30° to

the axis of greatest principal stress.

Ans.—{a) A tension of 204.65 lbs. and a thrust of 146.95 lbs. per sq. in.

{b) 175.8 lbs. per sq. in. ; 177.95 lbs. in a direction making an

angle of 9° 20' with the axis of greatest principal stress,

(r) 163.3 lbs. per sq. in.

2. A wall with a plumb rear face is to be 30 ft. high and 4 ft. wide at

the top ; the earth slopes up from the inner edge at the angle of 20',

30° being the angle of repose. .Assuming Rankine's theory, determinr

the proper width of the base, the masonry weighing 144 lbs. per cubic

foot, and the earth 1 10 lbs. Ans. 10.04 fi., q being \.

3. A wall 6 ft. wide at the bottom, plumb at the rear, and with a

front batter of 1 in 12, retains water level with the top. Find (a) the

limiting position of the centre of pressure at the base so that the stress

may be nowhere negative.

How (f)) high may the wall be built when subjected to this condition?

(a cubic foot of masonry = 125 lbs.).

Ans. {a) 12 in. from middle point of base; (b) height = 8.9 ft.

4. A wall is built up in layers, the water face being plumb and the

rear stepped. If / be tlie thickness of the «ih layer and y the depth of

water al)ove its lower face, show that width of laver x thickness of laver

= \' \A'' 4- 6,-//^ + nity^ — 2A ; A being the sectional area of the wall

above ihe layer in question, 2 the horizontal distance between the water

fare and the line of action of the resultant weight above the layer, / the

layer's thickness, and ni the ratio of the speciiic weights of the water and

masonry.

5. At a point within a strained solid, the stresses on two planes at

right angles to each other are a thrust of 30-1^2 lbs. and a tension of 60

lbs. per square inch, the obliquities being 45° and 30° respectively.

Determine {a) the principal stresses; (/') the ellipse of stress; (r).thc

intensity of stress upon a plane inclined at 60° to the major axis.

Afts.— ((I) A tension of 61.76 lbs. and a thrust of 39.S0 lbs.

(c) .A thrust of 57.06 lbs.
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6. If the principles of the eUipse of stress are applicable within a

mass of earth, and if at any point of the mass the stress upon a plane is

double its conjugate stress, tlie angle between the two stresses being

:o' 2X', show tliat the angle of repose of the earth is 27" 58'.

7. The total stress at a point upon a plane /•//> is 60 lbs per i:quare

ir.ch, and its obliquity is 30^; the normal component upon a plane CD
at the point O is 40 lbs. per squaie inch; CD is perpendicular to AB.
Find {a) the total stress upon CD, and also its obliquity

; {d) the princi-

pal stresses at O ; {c) the equal conjugate stresses at O.

Ans.—(«)tan-'(|); 50 lbs.

{d} 76.57 lbs. and 15.39 lbs.

(0 34- 3^! lbs, ; obliquity = 41° 42'.

8. Assuming Rankine's theory, find tlie pressure on the vertical face

of a retaining-wall, 30 ft. Iiigh, which retains earth sloping up from the

lop at the angle of repose, viz., 30'.

(Weight of masonry = 128 lbs. per cubic foot.; weight of earth = 120

lbs. per cubic foot.) Ans. 46,764 lbs.

9. At a point within a strained solid the stress on one plane is a ten-

sion of 50 lbs. per square inch with an obliquity of 30", and upon a

second plane is a ci inpression of 150 lbs. per square inch with an ob-

liquity of 45". Find (a) the principal stresses
;
{b) the angle between the

two planes ; (,c) the p'ane upon which the resultant stress is a shear, and

the amount of the shear.

Ans.— {a) pi = 179.98 lbs. (conip.)
; />i = — 46.12 lbs. (tens.).

{/>) 61° 31'.

(t) 91. 1 1 lbs.; ;' = 26° 51'.

10. At a point within a strained solid the stress on one plane is a ten-

sion of 100 lbs. per square inch with an obliquity of 30°, and on a second

plane a compression of 50 lbs. with an obliquity of 6o\ Find (a) the

angle between the planes; (/') the plane upon which the stress is wholly

a shear; {c) the planes ot principal stress.

A/is.~(a) 50° 5'.

(d) 64.6 lbs.; r ^ 31' 16'.

(c) p\ = 106.46 (tens.); /j = - 39.26 (compr.).

11. In the preceding question find the conjugate stresses at the given

point having the common obliquity 45°.

Ans. 92.63 lbs. (tension) and 45.11 lbs. (thrust).

12. At a point within a strained mass the principal stresses at a given

point are in the ratio of 3 to i. Find the ratio of the conjugate stresses

at ilic same point havmg the common obliquity 30°. Als.» find the in-

clination of the axis of greatest principal stress to the horizontal.

Ans. Equal ; 60°.

13. A wall 3 feet thick, of rectangular section and weighing 125 lbs.

per cubic foot, is subjected to a horizontal thrust of 800 lbs. per foot run
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at its tup. What sliould be the height of the wall in order that all the

joints above the base may be frictionally stable? Coefficient of friction

= unity. Ans. 2^ ft.

14. .A wall 12 ft. high, 2 ft. wide at the top. and 3 ft. wide at the bot-

tom, is constructed of masonry weighing 120 lbs. per cubic foot. The
overturning foice on the rear face of the wall, which is plumb, is a hori-

zontal force J' acting at 4 ft. from tliL- base. Find P so that the devia-

tion of the centre of pressure in ihe liasc may not exceed \ ft. Tiu-

centre of pressure being fixed at 2 in. from the middle of the base, show

that I of the section may be removed without altering its stability, and

find the increase in the inclination of the resultatit pressure on the base

to ilie vertical, consequent on the removal.

/Ills. 360 lbs.; tangents of angles are in ratio of 5 to 3.

15. A reservoir wall is 4 ft. wide at top, has a front batter of i in 12. a

rear batter of 2 in 12, and is constructed of masonry weighing 125 lbs.

per cubic foot; the maximum comjjression is not to exceed 10,526,'',, lbs.

per square foot. Find the limiting height of the wall. Ans. 16 ft.

16. A dock-wall, plumb at the rear and having a face with a batter of

I in 24, is 20 ft. high and 9 ft. wide at the base. Counterforts are built

at intervals of 12 ft., projecting 3 ft. fnjm the rear and 6 ft. wide.

Determine the thickness of an equally strong wall without counterforts,

with the same face-batier and also plumb in the rear.

Ans. 10.95 ft.

17. If the walls in the preceding question are founded in earth weigh-

ing 112 lbs. per square foot and having an angle of repose of 32,

find the least depth of foundation in each case, the masonry weighiii!.;

125 lbs. per cubic foot. Ans. 2.72 ft. ; 2.71 It.

18. A vertical retainmg-wall is strengthened by means of vertical

rectangular anchor-plates having their upper and lower edges 18 and 21

ft., respectively, below the surface. Find the holding power per foot oi

width, the earth weighing 130 lbs. per cubic fool and having an angle oi

repose of 30°. Ans. 27,733^ lbs.

19. Determine the limiting depths of foundation for {a) a wall of

rectangular section 20 ft. high ; {b) for a wall of trapezoidal section hav-

ing plumb rear and front faces 4 and 20 ft. high respectively. An^le

of repose of earth =30^; weight of earth = 112 lbs. per cubic fo(jt

;

of masonry = 140 lbs. Ans. (a) 3.22 ft.; (d) 1.93 ft.

20. A wall 20 ft. high and 6 ft. thick retains earth on one side level

with the top, and on the other the earth rises up the wall at its natural

slope, viz., 45°, to the height of 5 ft. Will the wall stand or fall ?

(Weight of masonry per cubic foot = 130 lbs.; of earth = 120 lbs.)

Find the locus of the centres of pressure of successive layers.
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Ans. Overturning; moment = 4128 ft. -lbs ; moment of stability

= 93600^ + 75o(V - dq)

The wall is stable.

3691 2 J ft.-lbs \{q =i\.

21. The upper half of the section of a masonry wall is a rectangle

4 ft. wide, and the lower half a rectangle 6 ft. wide, one face being plumb.

Find the height of the wall so that the stress on the base may nowhere
exceed 10,000 lbs. per square foot when the wall retains water (a) on the

plumb face, {b) on the stepped face.

(Masonry weighs 125 lbs. per cubic foot.)

Ans. {(i) 13.08 ft.; {h) 12.2 ft.

22. A masonry dam h ft. high is a right-angled triangle ABC in sec-

tion, and retains water on the vertical dice AB. Show that the thickness

4//'

/ of the base BC is given bv /" = — -, ffi being the deviation of the
5(64^+1)

centre of pressure in the base from the middle point.

Also show that the thickness will be given by /" = 4/1'

if the

rock upon which tlie wall is built is seamy, and if it is assumed that the

communication between the water in the seams, and ttiat in the reservoir

produces an upward pressure upon tlie base BC, varying uniformly from

that equivalent to the head at B to nil at C. If ^ = jl, show that, in

order that the wail may slide, tlie coefficient of friction must be less than

67 per cent in the first and 81 per cent in the second case.

(Weight of a cubic foot of masonry = 25 x weight of cubic foot of

water.;

23. A wall 30 ft. high is of triangular section ABC, the face AB being

|)!iimb, and water being retained on the side .tC level with the topof the

wall ; the masonry weiglis 125 lbs. per cubic ir.oi. Find the thickness of

the base BC (a) when ^ = | ; (/;) when stress in masonry is not to exceed

10,000 lbs. per square foot ;
(c) when g = '^ and tiie wall also retains earth

oil the sidr . I />' level with the top, the angle of repose being 30°. The
weij.jht of the t-artli per cubic foot = 144 lbs.

Ans. {a) 17.(^9 ft.; {d) 19.72 It.; {c) 8.52 ft.

24. A wall 4 ft. wide at the top, with a fr'>nt batter of i in 8. and a

rear batter of i in 12, is 30 ft. high. Will the wall be stable or unstable

(1) when it retains water level with the top
; (2) when it retains earth ?

(Weight of masonry per cubic foot = 125 lbs.; of earth = 112 lbs.;

.ingle of repose = 30° ,- and q = f .)

Ans. (i) Moment of wt. = 128,863 ft.-lbs. ; overturning moment
= 281,250 ft.-lbs., and wall is therefore unstable.

(2) Moment of wt. = 148,251 lbs.; overturning moment
= 168,000 lbs., and wall is therefore unstable.

25. The faces of a reservoir wall 4 ft. wide at top and 40 ft. high have
the same batter, and water rises on one side to within 6 ft. of the top.

Find the width of base, assuming (a) that the pressure on the horizontal

'H
i' '1
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\m

base is to be nowhere negative; (<^) that the pressure varies uniformly

and at no point cxceeris 5068 lbs. per square foot.

(Weight of masonry = 125 lbs. per cubic foot.)

Alts, (a) 24.32 ft.; (d) 30 ft.

26. The faces AB, AC of a wall are parabolas of equal parameters hav-
ing tiieir vertices at /)' and C\ water rises on one side to the top of the

wall. Determine the thickness of the liorizontal base BC, {a) for a wall

50 ft. high ; {/>) for a wail 100 It. higli, so that the pressure on the biise

may at no point exceed 10,000 lbs. per square foot. Also (c) compare
the volume of such wall wiUi the volume of an equally strong wall of tlie

.same height, but with a section in the form of an isosceles triangle with

its vertex at .1.

(Weight of masonry = 125 lbs. per cubic foot.)

Afis. Ui) 32.44 ft. ; (d) 90.35 ft.

(c-) in case {a) ratio = 7 : V'l 14;

" (^) " =^^130:21.

27. The water-face AC of a wall has a batter of 1 in 10; tlie widtli o(

the wall .ID at the lop is 6 ft. ; ihe rear of the wall DIU' has two slopo,

DE, having a batter of 2 in 10, and 7:7'', a batter of 78 in 100; the maiiomy

weighs 125 lbs. per cubic foot, and the maximum compression must not

exceed 85 lbs. per square inch. Find the safe heights of the twcj por-

tions .^/ifand EC. Ans. 28.5 ft.; 45.7 ft.; total height — 74.2 ft.

28. The section ABCD of a retain ing-wall for a reservoir has a verti-

cal face y/C'and a parabolic water-face AD, with the vertex at D. The
width of the base />>C" = 4 x width of the top AB. If AB = 6 ft., find

the height of the wall, and trace tiie curves of resistance {<i) when iIk;

reservoir is full
;
(A) when empty.

(Cubic foot of masonry = 2 x cubic foot of water.)

A//S. 32 ft. \i ^ = \, and tlien max. compn. := 8000 lbs. per sq. ft.

29. The figure represents the section of the upper portion of a masonry

dam which has to retain water level with the top of

the dam. The face AC is plumb for a depth of 73 ft.

The width of the section is constant and = 22 J ft. f'>r

a depth AB — 40 ft.

Find the maximum stress in the nuisonry at tiii

horizontal bed BF. With the same maximum stress,

show that the width of the liorizontal bed CG, EG br-

ing straight, is 75.386 ft.

(Masonry weighs 130 lbs. per cubic foot.)

Afts. j4,o49j/55 lbs. per sq. ft.

30. A wall of an isosceles triangular section with a base 36 ft. wide

has to retain water level with its top. How high may such a wall be

built consistent with the condition that the stress in the masonry is

nowhere to exceed 10,546! lbs. per square foot ?

(Weight of masonry per cubic foot = 125 lbs.)

Afts. 54 ft., and f = ^5.

B

\

Fig. 237.
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31. When a cylindrical bar is twisted, show that it is subjected to

shears aluiit,' transverse and radial longitudinal sections, or to tensions

and compressions on iielices at 45° to the axis.

33. Find the work done in gradually and uniformly conijjressing a

body of volume V\ to the volume W, p being the final intensity of

pressure and k the modulus of compression. Also show that the

intensity of stress is constant throughout the body.

A P" ' 'l

Ans. i—,—

.

zk

33. A bar is stretched under a force of intensity /. If the l)ar is pre-

vented from contracting, find the lateral stress; also find the extension.

P P "i' — III — 2

/•- 111(111 — I )

*

34. Taking the value of the coefficient of elast^citv \E) and \\\i.' ro-

etricient of rigidity ((/') to be 15,000 and 5750 tons f(M- steel, 13,950 and

5450 tons for wrougiit-iron, and 9500 and 3750 tons for cast-iron, find the

coefficient of elasticity of valiiuie (yv),and also the values of the direct

elasticity {A) and the lateral elasticity (A), assuming the metals to be

is)tropic.

/;/

Ans. Steel 3f
Wrought-iron. . . 3;iJ

Cast-iron 2>'i

35. A body is distorted without compression or expansion ; find

the work done.

Alls. —
III — I

K
1 2777

'o-

io559i

67«5f

A
ifCr

•4V ^

-I

Alls

36. Find the work required to twist a hollow cylinder of external

radius R\, internal radius Rt, and lengtli / tlirougli an angle a.

Ans. /<-'-'(A',^ - T?,/).

4/

Prove that torsion is equivalent to a shear at each point.

37. Show that a simple elongation is equivalent to a cubical dilation

and a \, .ir of shearing or distorting stresses,

38. Find the resultant shearing stress at any point in the surface of

the transverse section of an elliptic cylinder, (Art. 24, Case b.')

Ans. 2O- ,,/ being the perpendicular from the centre
/<v + r
upon the tangent to the ellipse at the given point, and

2b, 2c the major and minor axes.

39. A cylinder undergoes torsion round its axis. Show that the

curves of no traction are concentric circles.

'11
i

M* <t



k CHAPTER V.

/ / FRICTION.

1. Sliding Friction.—Friction is the resistance to motion

which is always dcveh)pc(l when two substances, whether solitl,

liquid, or gaseous, are pressed together ami are compellcil to

move the one over the other. If 7' is the mutual pressure, antl

if F is the force which must act tangentially at the point of

contact to produce motion, the ratio of Fto Ph called the co-

efficient of friction and may be denoted by/". The value of/
does. not depend u])on tiie nature of any single substance, but

upon the nature and conditit^n of the surfaces of contact of a

pair of .-.ubstances. It is not the same, e.g., for iron upon iron

as for iron upon bronze or upon wood ; neither is it the same
when the surfaces are dry as when lubricated.

The laws of friction as enunciated by Coulomb are :

(i) That / is independent of the velocity of rubbing; (2)

that /is independent of the extent of surface in contact; (3)

that /depends only on the nature of the surfaces in contact.

The friction between two surfaces at rest is greater than

when they are in motion, but a slight vibration is often suffi-

cient to change the friction of rest to that of motion.

Morin's elaborate friction experiments completely verified

these laws within certain limits of pressure (from f lb. to 128

lbs. per square inch) and velocity (the maximum velocity being

lo ft. per second), and under the conditions in which they

were made.

A few of his more important results are given in the follow-

ing table :

300
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Material.

Wood on wood

Metal on wood
14 <l (4

Metal on metal
14 4 4 <4

Metal and wood

on each other

or each on itself

Stute of Surfaces.

dry.

dry.

wet

d ry

wet

slightly oily

occasionally lubricated as usual,

constantly lubricated

Ci)fHicient of Krictiuo.

.25 to .5

.2

22

•15

.6

.26

.3

.15

.07 to .08

.05

The apparatus employed In carrying out these experiments

consisted of a box wliich could be loaded at pleasure, and

which was made to slide along a horizontal bed by means of a

cord passing over a pulley and carrj-ing a weight at the end.

The contact-surfaces of the bed ami box were formed of

the materials to be experimented upon. The pull was meas-

ured and recorded by a spring dynamometer.

More recent experiments, however, have .shown that

Coulomb's laws cannot be regarded as universally applicable,

Init that / depends upon the velocity, the pressure, and the

temperature. At very low velocities Morin's results have

been verified (Fleeming Jenkin). At high velocities / rap-

idly diminishes as the velocity increases. Franke, having

carefully examined the results of various series of experi-

ments, especially those of Poir^e, Bochet, and Galton, has

suggested the formula

J ^^ Jo >

V being the velocity and/^, a, coefficients depending upon the

nature and condition of the rubbing surfaces.

For example,

/(, = .29 and a = .04 for cast-iron on steel with dry sur-

faces.

/„ =1 .29 and a = .02 for wrought-iron on wrought-iron with

dry surfaces.

/o = .24 and a = .0285 for wrought-iron on wrought-iron

with slightly damp surfaces.

Ball has shown that at very low pressures / increases as.



Hit

I

302 TIIEOKY 01- STNVCTIRES.

tho pressure diminishes, while Reniiie's experiments indicate

that at verj' high pressures/ rapidly increases with the press-

ure, and tliis is perliaps partly ihie to a depression, or to an

abrasion of the rubbing surfaces.

2. Inclined Plane.— Let a body of weight P slide uni-

formly up an inclined plane under a force Q inclined at an

angle (^ to the plane.

Let /^ be the friction resisting the mo.

tion, A' the pressure on the plane, and a tlu;

plane's inclination.

The two equations of equilibrium are

F = Q cos fi — P sin a

and

R =z — Q sin P -\- P cos a.

F Q cos li — ysin a

A'
~ — Q sin /:>' ~\- /'cos a

= coefficient of friction = f.

Let the resultant of F and R make an angle with the

normal to the phuie. Then

F Q cos ft — P sin a
tan = -- =

~R~ - Q sin (i -f P cos a
Q _ si n (or -f- )

^^ ~P~~ cos{/3-^y

is called the mis^le of friction. It has also been called the

angle of repose, since a body will remain at rest on an inclined

plane so long as its inclination does not exceed the angle of

friction.

If «
Q

/?, then ~-L = tan = /.

The work done in traversing a distance x ^=1 Q cos ft .x. If

Q is variable, the work done —. I Q cos ft . dx

3. Wedge.—The wedge, or key, is often employed to con-

nect members of a structure, and is generally driven into posi-
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tioti by the blow of a hammer. It is also employed to force

out moisture from materials by induc-

ing a pressure thereon.

The fifjure represents a wedge de-

scei'ding vertically under a continuous

pressure /*, thus producing a lateral

motion in the horizontal member C,

which must therefore exert a pressure

Q upon the vertical face AH.
The member // is fixed, and it is

assumed that the motion of the machine

is uniform, so that the wedj^^e and ^'are

in a state of relative equilibrium.

Let A', , A\ be the reactions at the faces DE, DF, respec-

tively, their directions making an angle 0, equal to the angle

of friction, with the normals to the corresponding faces.

Let <^ be the angle between DE and the vertical, ix the

angle between DF and the vertical.

Consider the wedge, and neglect its weight, which is usually

inappreciable as compared with P.

Resolving vertically,

y?, cos (90° - « + 0) -f /?, cos (90° - a'
-I- 0)

= P= R^ sin (a -f 0) -f. R^ sin {a -\- 0). . (i)

Resolving horizontally,

R, sin (90° - a 4- 0) - ^, sin (90° - a' + 0) = O,

or

R, cos {a -\- 0) = R^ cos [a' -\- 0).

Consider the member C, and neglect its weight.

Resolving horizontally,

R, cos (a + 0) = (2 = ;?, cos {a' + 0). .

(2)

.... (3)

Assuming the wedge isosceles, as is usually the case, oc = a',

and hence,

by eq. (2), /?, = R, , and by eq. (i), 2R, sin (a + 0) = P. (4)

^^
! i'.H
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overcome Q, however small it might be, P would require to be

infinitely great. Hence,

«
-f- must be < 90°.

Q
and below this limit p diminishes as (/'> increases.

Similarly, it may be shown from eq. (7) that when Q is the

effort and P the resistance,

<p must be < a,

Q
and that below this limit increases with 0.

Efficiency.—During the uniform motion of the machine, let

any point a descend verticalh' to the point b. The correspond-

ing horizontal displacement is evidently 2bc.

The i.iotive work = P . ab ;

" useful work = Q. 2bc.

Q . 2bc Q
Hence, the efficiency == p -, = ,, . 2 tana

= tan iy cot (<r -\- 0), by eq. (5).

This is a maximum for a given value of 0\vhen

«-45 2'

and the max. efficiency = tan ^45" - ,J
cot [45° + 2J

0v
tan - \ " . • .

2 \ I — sm

I -|- tan
I -{- sin 0*

I
1:

'

(
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This is a maximum when « = 45" -]— . Thus the

max. efficiency = cot 1455"4-f)
tan \45'

-7

I — sin

I -f- •'^•n
0"

4. Screws.—A screw is usually designed to produce a

linear motion or to overcome a resistance in the direction of its

length. It is set in motion by means of a couple acting in a

plane perpendicular to its axis. A reaction is produced be-

tween the screw and nut which m.ust necessarily be equivalciu

to the couple and resistance, the motion being steady.

Take the case of a .svy/^^r^' * -threaded screw. It may hi

assumed that the reaction is concentrated along a helical line,

whose diameter, d, is a mean between the external and internal

diameters of the thread, and that its distribution along this

line is uniform. It will also be supposed that the axes of the

couple and screw are coincident, so that there will be no lateral

pressure on the nut.

Let M be the driving couple.

" Q " " axial resistance to be over-

come.
" r " " reaction at any point a of the

helical line, and let be

angle between its direction

and the normal at a; is

the angle of friction.

" a " " angle between the tangent

at a and the horizontal ; (n

Fig. 240. is called thft pitch-angle.

Since the reaction between the screw and nut must be

equivalent to AI and Q, then

* Square-threaded screws work more accurately than those with a V-thread,

but the efficiency of the latter has been shown to be very little less than that of

the former (Poncelet). On the other hand, the V-ihread is the stronger, much

less metal being removed in cutting it than is the case with a square thread.

Again, with a V-thread there is a tendency to burst the nut, which does not

obtain in i^ screw with a square thread.
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Q = algebraic sum of vertical components of the reac-

tions at all points of the line of contact,

= ^[r cos {a -j- 0)J — cos {a -j- 0)-^X^). (I)

,uid il/ = algebraic sum of the moments with respect to the

axis of the horizontal components of the reactions at all points

of the line of contact,

= i'l^r sni (« 4- 0j ^
= -sin(«+0)^X^). . . (2)

Let the couple consist of two equal and opposite forces, P,

acting at the ends of a lever of length/, so that A/ = Pp.

Hence, by eqs. (i) and (2),

Q O 2

71/
= ^=./"^'^"^+'^)'

and the mechanical advanta(^e

= p = -J
cot (a -f 0). (3)

If = o. jy = f cot a, and the effect of friction may

be allowed for, by assuming the screw frictionless, but with a

pitch-angle equal to a -\- 0.

Again, let the figure represent one complete turn of the

thread developed in the plane of the c

paper. (^
'

' is the corresponding length

of the ti.M 'd ; DE the circumference

Ttii\ CE, p iv,' ,lcl to the axis, the pitch q"

h ; and CDE the pitch-angle a. ^'^- 24i-

The motive work in one revolution = M . 27C z= Pp . 271,

The useful work done in one revolution = Qh.

Qh 2p
Hence, the efficiency = 7, = — cot {a -\- <p)

h

pp. 271 d P . 271

h= —j cot {a -\- (p)=i tan a cot {a -j- 0). (4)

*!f'!

\m

ilt (S'- 'M

,t,, 1

\l '>' m
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m^

\ >iF

This is a maximum when a =. 45° — -, its value then beiny;

\ — tan

I -(- tan

In practice, however, a is generally much smaller, cfficiencx'

being sacrificed to secure a large mechanical advantage, wiiich.

according to eq. (3), increases as a diminishes.

If tt -f- = 90°, ^ = o, so that to overcome (2, however

small it may be, would require an infinite effort P.

.-. a -f < 90°.

Suppose the pitch-angle sufficiently coarse to allow of the

screw being reversed. Q now becomes the effort and P the

resistance. Tlie direction of r falls on the other side of the

normal, and the relation between P and Q is the same as

above, — being substituted for 0.

Thus,

73 = 7 cot {a - 0),

and therefore the mechanical advantage

''\i\. *
If a =1

(f),
— —. o, and to overcome P, however small it

may be, Q would require to be infinite.

.-. in > 0.

If « < 0, reversal of motion is impossible, and the screw

then possesses the property, so important in practice, of serv-

ing to fasten securely together different structural parts, or of

locking machines.
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Again, it may be necessary to take into account the friction

between the nut and its seat, as well as the friction at the end

of the screw. Tiie corresponding moments of friction with

respect to the axis are (Art. 8)

/
c2'C- 'C

3 ^^: d:
and

rQj,

/being the coefficient of friction, d^ , d.^ the external and inter-

nal diameters of the seat, and d' the diameter of the end of

the screw.

5. Endless Screws (Fi;^. 242).—A screw is often made
to work with a toothed wheel, as, for ex-

ample, in raising sluice-gates, when the screw

is also made sufficiently fine to prevent, by

friction alone, the gates from falling back

under their own weight. The theory is very

similar to the preceding. Let the screw drive.

A tooth rises on the thread, and the wheel

turns against a tangential resistance Q, which

is approximately parallel to the axis of the

screw.

Let Fig. 243 represent one complete turn of the thread

developed in the plane of the paper, a
being the pitch-angle as before.

Consider a tooth. It is acted upon
by Q in a direction parallel to the

axis, and by the reaction R between

the thread and tooth, making an angle

(the angle of friction) with the normal

to the thread CD.

Fir., 242.

':
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screw, and this must be equivalent to the moment of the driv-

ing-couple, viz., Pp (Art. 4).

d
.'. Pp - R- sin (a + 0).

Thus the relation between Pand Q is the same as in the pre-

ceding article.

Similarly if the wheel acts as the driver,

g = -tan(«-0).

W ':

6. Rolling Friction.—The friction between a rolling body

and the surface over which it rolls is called rolling friction.

Prof. Osborne Reynolds has give.i the true explanation of the

resistance to rolling in the case of elastic bodies. The roller

produces a deformation of the surfaces in contact, so that the

distance rolled over is greater than the actual distance between

the terminal points. This he verified by experiment, and con-

cluded that the resistance to rolling was due to the sliding of

one surface over the other, and that it would naturally increase

or diminish with the deformation. In proof of this he found,

for example, that the resistance to an iron roller on india-

rubber is Un times as great as the resistance when the roller is

on an iron surface. Hence the harder and smoother the sur-

faces, the less is the rolling friction. The resistance is not

sensibly affected by the use of lubricants, as the advantage of

a smaller coefificient of friction is largely counteracted by the

increased tendency to slip. Other experiments are yec re

quired to show how far the resistance is modified by the

speed.

Generally, as in the case of ordinary roadways, the resist-

ance is chiefly governed by the amount of the deformation of

the surface and by the extent to which its material is crushed.

Let a roller of weight ^^(Fig. 244) be on the point of motion

under the action of .-i horizontal pull R.
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The resultant reaction between the surfaces in contact

must pass through the point of intersection of R and W.
Let it also cut the surface in the point B.

Let d be the horizontal distance between B and W.
" / " vertical " " B " R.

Taking moments about B^

Rp = Wd,
or R<

R = the resistance = W-.
P

Coulomb and Morin inferred,

as the results of a series of ex-

periments, that d is independent of the load upon the roller as

well as of its diameter,* but is dependent upon the nature of

the surfaces in contact.

* Dupuit's experiments led him to the conclusion that d is proportional to

the square root of the diameter, but this requires further verification.

Let H be the coefficient of sliding friction.

The resistance of the roller to sliding is // W, and " rolling " will be insured

if R < n W, i.e., if - < tan 0, which is generally the case so long as tiie direc-
/

tion of R does not fall below the centre of the roller.

Assume that R is applied at the centre. The radius r may be substituted

for/, since «/is very small, and hence

r

n "a A

An equation of the same form applies to a wheel rolling on a hard roadway

over obstacles of small height, and also when rolling on soft ground. In the

latter case, the resistance is proportional to the product oi the weight upon the

wheel into the depth of the rut, and the depth for a small arc is inversely prn-

portional to the radius.

Experiments on the tractional resistance to vehicle^J)n ordinary roads are

few in number and incomplete, so that it is impossible to draw therefrom any

general conclusion.

From the experiments carried out by Easton and Anderson, it would appear

that the value of </ in inches varies from t 6 to 2.6 for wagons on soft ground,

and that the resistance is not sensibly affected by the use of springs Upon
a hard road, in fair condition, the resistance was found to be from i o ^ of

that on the soft ground, the average value of </ being i inch, and wa-- very

sensibly diminished by the use of springs.
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7. Journal-friction.— Experiments indicate that / is rot

the same for curved as for phine surfaces, and in the ordinary

cases of journals turnincf in well-

Uibricated bearint^s tin- vahie ofy" is

probably governed by a combina-

tion of the laws of fluid friction ind

of the sliding; friction of solids.

The bearin<][ part of the journal

is f:jcncrally truly cylindrical and is

terminated by shoulders resting

against the ends of the step in

which the journal turns.

Consider a journal in a semicircular bearing with the cap

removed. When the cap is screwed on, the load u{)on the

journal will be increased by an amount approximately equal

to the tension of the bolts. Let /-'be the load.

Assume that the line of action of the load is vertical and

that it intersects the axis of the shaft. This load is balanced

by the reaction at the surface of contact, but much uncertainty

exists as to the manner in which this reaction is distributed.

There are two extremes, the one corresponding to a normal

pressure of constant intensity at every point of contact, the

other to a normal pressure of an intensity varying from a

maximum at the lowest point A to a minimum at the edge of

the bearing B.

Let / be the length of the bearing, and consider a small

element AS at any point C, the radius OC (= r) making an

angle B with the vertical OA.
First. Let/ be the constant normal intensity of pressure.

P = ^\pAS cos e.l) =pl2{DD') = 2plr.

m
It

Frictional resistance =2{fpASl)= fpi:E{AS)=fpl7rr=fP- .

The frictional resistance probably approximates to this

limit when the journal is new.
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Second. Let p —. /„ cos ^,

so that the intensity is now proportional to the depth CD and

varies from a maxiinunn />„ at A to //// at />. This, perhaps,

represents more accurately the pressure at different points

when the journal is worn.

.-. p=:^{p^Sco^e.i) = 2{p,jScos' e. /)

= 2pjr, /'- cos" O.iit^ =pjr^-

and t\\.Q frictional resistance = ^{fpASl) = 2fpjr — fP-.

7T A
Hence, the frictional resistance lies between _//^ and /J^-

.

2 7t

It may be represented by /</' yw bein^r a coefficient of friction

to be determined in each case by experiment.

The total moment of frictional resistance must necessarily

be equal and opposite to the moment M of the couple twisting

the shaft ; i.e.,

M - ^xPr.

Thus, the total reaction at the surface of contact is equiva-

lent to a single force P tangential to a circle of radius fxr having

its centre at O and called X.\\c friction-circle.

The work absorbed by axle-friction per revolution
i.i:

= M.27t =: 2lX7tPr,

The work absorbed by axle-friction per minute

= 2fxnPrN = }aPv,

N being the number of revolutions and v the velocity per

minute.
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The work absorbed by fn'ctioiial resistance produces an

equivalent amount of heat, which should be dissipated at once

in order to prevent the journal from becoming too hot. This

may be done by giving the journal sufficient hearing surface

(an area equal to the product of the diameter and the length

of the bearing), and by the employment of a suitable unguent.

Suppose that li units of heat per square inch of bearing

surface {Id) are dissipated per minute.

Let / inches be the length and d inches the diameter of

the journal.

hdl = heat-units dissipated = heat-units equivalent to

frictional resistance

pinPdN fxPv

12/ 12/'

/ being Joule's equivalent, or 778 ft.-lbs.

\2jh FN , \2jh Pv
and

pLTt I yw
' Id

'

P

",1

Let —-=/> = pressure per square inch of bearing surface.
(CI'

\2jh
.'. pv = = a constant.

In Morin's experiments d varied from 2 to 4 in., P from

330 lbs. to 2 tons, and v did not exceed 30 ft. per minute; so

that/T' was < 5000, and the coefficient of friction for the given

limits was found to be the same as for sliding friction.

Much greater values of /7' occur in modern practice.

Rankine gives /(t' -\- 20) = 44800 as applicable to locomo-

tives.

Thurston gives /»?' = 60000 as applicable to marine engines

and to stationary steam-engines.

Frictional wear prevents the diminution of / below a certain
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limit iit which the pressure per unit of bearing surface exceeds

.1 vakie/ given by the formula.

\vhere

P = pld = pkd'
;

-^-

In practice k — \{ox slow-moving journals (e.g., joint-pins),

and varies from l^ to 3 for journals in continuous motion. '1 In-

best practice makes the length of the journal equal to four

diameters (i.e., k = 4) for mill-shafting.

Again, if the journal is considered a beam supported at

the ends,

32

q being the maximum permissible stress per square inch, and

C a coefficient depending upon the method of support and

upon the manner of the loading.

k
. a (X

For a given value of P, d diminishes as q increases. Also,

it has been shown that the work absorbed b • friction is

directly proportional to d.

Hence, for both reasons, d should be a minimum and the

sliaft should be made of the strongest and most dural)le

material. In practice the pressure per square inch of bearing

surface may be taken at about 2 tons per square inch for cast-

iron, 3J tons per square inch for wrought-iron, and 6^ tons per

square inch for cast-steel.

It would appear. Iiowever, from the recent experiments of

Tower and others, that the nature of the material might become
of minor importance, while that of a suitable lubricant would be

of paramount importance. They show that the friction of

l-ropcrly lubricated journals follows the laws of fluid friction

miirli more closely than those of solid friction, and that the

s

i

w

%.
«;<)

ill

f!

«(„.,-,:.

> T
-"-^
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lubrication niifjht be made so perfect as to prevent any ab-

solute contact between the journal and its bearing. The
journal would therefort- float in the lubricant, so that there

would be no metallic friction. The loss of power due to fric-

tional resistance, as well as the consequent wear and tear, wouhl

be very considerably diminished, while the load upon the

journal might be increased to almost any extent.

I'ower's experiments also indicate that the friction dimin-

islu's as the temperature rises, a result which had already bee n

expcrimentall)' determined by Hirn. It was also inferred by

Hirn that, if the temperature were kept uniform, the friction

would be approximately proportional to \ :• , and Thurston

has enunciated the law that, with a cool bearing, the friction is

approximately proportional to V'v for all speeds exceeding

100 ft. per minute.

With a speed of 150 ft. per minute and with pressures var\--

ing from 100 to 750 lbs. per square inch, Thurston found ex-

perimentally that /"varied inversely as the square root of the

intensity of the pressure. The same law, but without an\-

limitations as to speed or pressure, had been previously stated

by Hirn.

8. Pivots.—Pivots are usually cylindrical, with the circular

edge of the base removed and sometimes with the whole of

the base rounded. Conical pivots are employed in special

machines in which, e.g., it is important to keep the axis of the

shaft in an invariable position. Spherical pivots are often

used for shafts subject to sudden shocks or to a lateral move-

ment.

(a) Cylindrical Pivots.—If the shafts are to run slowly, the

intensity of pressure (/>) on the step should not be so great as

to squeeze out the lubricant. Reuleaux gives the following

rules

:

The maximum value of / in lbs. per square inch should be

700 for wrought-iron on gun-metal, 470 for cast-iron on gun-

metal, and 1400 for wrought-iron on lignum-vitae.

For rapidly-moving shafts,

11

d VPn,
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n being the number of revolutions per minute, c a coefficieiit

to be dctcrniincd by experiment (= .0045),

and /'the load ujjon the pivot.

Suppose the surface of the step to be

divided into rings, and let one of tliese

rings be bounded by the radii x, x -{ (tv.

In one revolution the work absorbed

by the friction of this ring

= fip . 2n.x . dx . 2nx,

Hence the toial worV absorbed in one revolution

Fig. 246.

4x
3

where

l^^4f^pn\e^x = ^f{d^ - d:) = ^^tP^.^A;,

p^Pl{d^-d^),
4

d d^, d, are the external and internal diameters of the sur-

face in contact.

If the ivholc of the surface is in contact, d^ = O, and the

work absorbed = ^funPd^.

Again, the jnovicnt of friction for the ring

= f.ip.2nx . dx . x = 2iA7tpx* . d. ,

and the total moment

2/x7rpx^dx = ^lATtp —

-^^""(^^ V.V _ ^P d; -d:

uP
If d?, = o, the moment = — d^.

3

Thus, in both cases, the work absorbed by friction = 27t

times the moment of friction.

f:i

l!:'?« i *

if :

II
t \\. mm
W

J

I
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ml



KB!

318 THEORY OF STRUCTURES.
*

Lc^ D be the mean diameter of r surface in contact

_ <^. + <h

%*

Let 2)1 be the width of the surface in contact = ^, — d^.

Then

work absorbed :i; ^i7tP{D-\- —J.

Sometimes sliafts have to run at high speeds and to bear

heavy pressures, as, e.g., in screw-propellers and turbines. In

orilcr that there may be as Httlo vibration as possible,/ must

be as small as practicable, and this is to some extent insured

by using a collar-journal.

Let N be the number of collars, and let d^ , d.^ be the exter-

nal and internal diameters of a collar.

Then work absorbed by friction per revolution per collar

= ^^^ {'^'' — (K) — l>"^nr ~h h — 2;tX moment of friction.
6 ly II, — <i.

According to Reuleaux, the mean diameter of a coUr.r

= -7^-
n being the number of revolutions per minute.

Also, the zvidth of surface in contact — c/, — d^=. .48 ^D,
and the maximum allowable pressure per square inch

_ 46940

n

{b) Wear.—The wear at any point of the elementary ring

must necessarily be proportional to the frirtion ;//*, and also to

the amount of rubbing surface which passes over the point in

a unit of time, i.e., the velocity Ax\ A being the angular ve-

locity of tht> shaft.
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Ilcticc, the wear at o:i\- point is proportional to i^pAx.

(<•) Conical Pivots.—.\s before, suppose

the surface of the stefi to be divided into a

number of elementary riiii^s. Two cases will

be discussed :

lurst. Assume that the normal intensity

of pressure p at the surface of contact is

constant.

Let .r, .r -[- dx be the distances of D and

/:, respectively, from the axis.

The total moment of friction

3J9

Fig. 247.

= r%ipDE.2-rx X = ".^^'"^- r'xwx
11.J sin cK t/.i,

3 sm a

X, , .i-.j being the radii of the top and bottom sections of the

step.

Also, P, the total load on the pivot,

pD£ sin a . 27TX = 27rp
I xax

2 uP X *
f

'

Hence total moment of friction = '-\—-—-.
3 sm a -r, — .r,

Sicond. Assume that the wear is of such a nature that every

point, e.g., I), descends vertically through the same distance.

Thus, the normal wear a sin <*,

I •*! ' t ^'

or /jpAx a sin a,

or px oc sin a.

In the present case a is constant, and hence px = a. con-

stant.
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Thus, total moment of friction

/•"' i^T- 2upxn p^i
,

-= I ixpDh . 2nx . X = —.-— / xax
t/j^a sm a t/xt

}xpxn

sin 01

Also, pDE sin or . 2;r;tr

= 2;r/>-ir / rt'^ = 2npx{x^ — x^).

Hence total moment of friction = MP
2 sin or

(.r. -f- ^,)-

(^) Schielvs Pivots.—The object aimed at in these pivots

j

is to give the step such a form that the wear

and the pressure are the same at all points.

Let 6 be the angle made by the tangent at

j~-^-yD any point of the step with the axis.

Let y be the distance of the point from

the axis. Then

Pj a sin 6;

and hence if/ is constant,

y <x sin B or y coscc 6 = dL const.

is the equation of the generating line of the step. This line is

known as the tractrix and also as the anti-friction curve. If

the tangent at D intersects the axis in 7",

DT ^=y cosec 6* = a const.

The curve may be traced by passing from one point to an-

other and keeping the tangent DT of constant length.

The above equation may be written

ds
y-r = a const. = a,
ay

or

which

equati

Schiele
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or

ds _a dy I Idy \»

Yx^'ydx'^Sj^^ \dxi
'

which may be easily integrated, the result being the analytical

equation to the curve, viz.,

X = a losi^—^--^) + Vd'^^rj^ + a const.

Schiele or anti-friction pivots are suitable for high speeds, but

have not been very generally adopted.

9. Belts and Ropes.—Let the figure represent a pulley

movable about a journal at O, and let a belt (or rope), acted

upon by forces 7^, , T, at the ends, embrace a portion ABC
of the circumference subtending an angle a at the centre.

In order that there may be motion in the direction of the

arrow, T^ must exceed T, by an amount sufficient to overcome

ihc frtctional resistance along the arc of contact and the rcsist-

aiue to bending due to the stiffness of the belt.

J Consider first the frictional resist-

ance, and suppose the belt to be on the

point of slipping.

Any small dement BB' (= ds) of

the belt is acted upon by a pull T tan- ^j
gcntial to the pulley at B, a pull T— dT
tangential to the pulley at B', and by a

reaction equivalent to a normal force Rds

at the middle point of BB' , and a tan-

!j[ential force, or frictional resistance,

\iRds.

Let the angle COB = 8, and the an-

gle BOB' = d6.

Resolving normally.

Fig. 249.

A

9

^'-

f:
c

-N

^

m

(r4_ T-dT)sin—- Rds = o. (I)
I
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Resolving tangentially,

{T - T - dT) cos yu^rt'j = 0, ... (2)

^ being the coefficient of friction.

„ .
(i^ . . , ^^

Now ^Z^* being very small, sin — is approximately —

,

cos — is approximately uniiy, and small quantities of the

second order may be disregarded.

Hence, eqs. (i) and (2) may be written

TiW-Rds^o, ...... (3)

and

dT — /4Rds = (4)

dT
.:dT=piTdH, or -^. =:^ fjidO (5)

Integrating,

.
log.r=yu^+C

C being a constant of integration.

When^ = o, T = T, and hence log,/; = C.

T
.'. log, -Y = /^^'

T
or -y^ = f"^ (6)

When 6 = a, T — T,, and hence

-7^^e^% (7)

e being the number 2.71828, i.e., the base of the Naperian

system of logarithms.

/ I
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If a is increased by ft, the new ratio of tensions will be

^^ times the old ratio; so that if it increases in arithmetical

progression, the ratio of tensions will increase in geometrical

progression. This rapid increase in the ratio of the tensions,

corresponding to a comparatively small increase in the arc of

contact, is utilized in " brakes"

for the purpose of absorbing

surplus energy. For example :

A i^exible brake consisting

of an iron or steel strap, or,

again, of a chain, or of a series

of iron bars faced with wood
and jointed together, embraces

about three-fourths of the cir-

cumference of an iron or wooden

drum. One end of the brake

is secured to a fixed point and the other to the end ^ of a

lever AOB turning about a fulcrum at O. A force applied at

A will cause the brake to clasp the drum and so produce fric-

tion which will gradually bring the drum to rest.

Let CO be the angular velocity of the drum before the brake

is applied.

Let / be the moment of inertia of the drum with respect to

its axis.

Fig. 250.

The kinetic energy of the drum =
Im'

When the brake is applied, the motion being in the direc-

tion of the arrow, let the greater and less tensions at its ends

be r, , 7^3 , respectively.

Let n be the number of revolutions in which the drum is

brought to rest. Then

^/(y' = (r, — T.,)7tdn, (8)

^/ being the diameter of the drum.

Also, if P\s the force applied at A, and if p and q are the

perpendicular distances of O from the directions of P and 7!,,

respectively,

Pp=T,<i . (9)

"t

I

*
5| \
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Again,

T, = T/"-, (10)

a being the angle subtended at the centre by tae arc of contact.

Hence, by cqs. (8), (9), (10),

n =
(//go^

2Pp{e^'^— \)nd'
(n)

If the motion of the drum were in the opposite direction, q
would be the perpendicular distance of O from the direction of

Z , and then Pp = T^q.

Proceeding as before,

n = qloo^c*""

2Pp{f>"'— \)niV

and therefore the number of turns in the second case, before

the drum comes to rest, is ^'** times the number in the first,

which is consequently the preferable arrangement.

The coefficient of friction // varies from .12 for greasy shop

belts on iron pulleys to .5 for new belts and hempen ropes on

wooden drums. In ordinary practice, an average value of yu

for dry belts on iron pulleys is .28, and for wire ropes .24; if

the belts are wet, yw is about .38.

Formulae (6) and (7) are also true for non-circular pulleys.

10. Effective Tension.—The pull available for the trans-

mission of power = T', — 7", = 5. Let HP be the horse-

power transmitted, v the speed of transmission in feet per sec-

ond, a the sectional area of the rope or belt, and s the stress

per square inch in the advaacing portion of the belt.

Then, if 7^, and 7", are in pounds.

HP =
550 550'

and 7, = as.

The working tensile stress per square inch usually adopted

for leather belts varies from 285 lbs. (Morin) to 355 lbs. (ClauJel),

or
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an average value being 300 lbs. In wire ropes, 8500 lbs. per

square inch may be considered an average working tension.

Hempen ropes for the tran«mission of power generally vary

from 4A to 6^ in. in circumference.

II. Effect of High Speed.—When the speed of trans-

mission is great, the effect of centrifugal force must be taken .

into account.

^. .r . f , , 1 ,
wads f' , .

The centrifucral force of the element ds = , tv bems:

the specific weight of the belt or rope, and r the radius of the

pulley.

Eq. (3) above now becomes

Tdd

or

and hence, by eq. (4),

Integrating,

-Rds-



I-
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/ 1/ 3^3. Prony's Dynamometer.—This dynamometer is one of

the commonest forms of friction-brake. The motor whose

power is to be measured turns a wheel E wliich 1 evolves be-

tween the wood block /> and a band of wood blocks ./. To

r

\
\

\

-1)-

A^?
Fig. 251.

the lower block is attached a lever of radius / carrying a

weight /' at the free end. By means of the screws C, D the

blocks may be tightened around the circumference until the

unknown moment of frictional resistance FR is equal to the

known moment Pp.

The weight P, which rests upon the ground when the

screws are slack, is now just balanced.

The wor'c absorbed by friction per minute = 2nRFn = 2nPpn,

n being the number of revolutions per minute.

14. Stiffness of Belts and Ropes.—The belt on reaching

the pulley is bent to the curvature of the periphery, and is

straightened again when it leaves the pulley. Thus, an amount

of work, increasing with the stiffness of the belt, must be ex-

pended to overcome the resistance to bending. As :'ie result

of experiment, this resistance has been expressea in the form

aT
hR , T being the tension of the belt, a its sectional area, R the

radius of the pulley, and b a coefficient to be determined.

According to Redtenbacher, h = 2.36 in, for hempen ropes.
(t I* >« ^ := I 67 " " " "

" " Reuleaux, b — 3.4 " " leather belts.

'

lli

'

i-^!fi» i
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Let the figure represent .-i sheave in a pulley-block turning

in the tlirection (if the arrow about a

journal of radius r.

Let y, be the effort, 1\ the re-

sistance.

The resistance due to the stiff-

ness of the belt may be allowed for

'A*

FT V„T. by adding -^^j to the force 7!,. The

Fir.. 251. frictional resistance at the journal-

surface is P sin or fP, 7^ being the resultant of T^, 7",.

The motion being steady, taking moments about the centre,

m

or

r.^=(r, + ''^^^)/e+/Pr,

T — T A'—A-f-P

If 7, and 7!, are parallel, P = 7, + 7",, and the last equa-

tion becomes

7'.= 7, + '^^^+/^(7.+ 7,).

Let the pulley turn through a small angle d.

The counter-efficiency of the sheave

motive work T',^ 7,

useful work T,H~ T~ '^ R-fr^ b R-/r'

In the case of an endless belt connecting a pair of pulleys

of radius R,, R^, the resistance due to stiffness may be taken

equal to -,-\ 7, + ,, /. 7 being the mean tension I
=

P ^/c, A./ ^2
The resistance due to journal-friction = f^P\p

The useful resistance = 7, — 7, = 5.

h R.
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Hencr, the coutitcr-cfificioncy
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= 1 + (A+:i,)(^J+^>S-

In wire ropes the stress due to bending may be calculated

as follows:

Let X be the radius of a wire. The radius of its axis is

sensibly the same as the radius R of the pulley.

The outer layers of the wire will be stretched, and the inner

shortened, while the axis will remain unchanged in length.

Hence,

X change of length of outer or inner strands unit stress

A'
~

length of axis
~ E

and the unit stress due to bending = E-j^

.

15. Wheel and Axle.—Let the figure rej)resent a wheel

of radius / turning on an axle of radius r, under the action of

the two tangential fores /' and Q, in-

clined to each other at an angle '^.

The resultant A' of /' and must

equilibrate the resultant reaction be-

tween the wheel and axle at the sur-

face of contact.

Let the directions of P and Q
meet in T.

If there were wo friction, the re-

sultant reaction and the resultant R
would necessarilj' pass through O
and T.

Taking friction into account, the

direction of A' will be inclined to TO
Let its direction intersect the circumference of the axle in the

point A. The angle between TA and the normal AO at yi,

the motion being steady, is equal to the angle of friction ; call

it «/>.

Fro. 253.
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Taking moments about O,

Also,

Let/= sin =

Pp — Qp — Rr s\t\ (f)
=^ o (l)

R' = P'J\- Q + 2PQ cos ^ (2)

\/\ + fX'

, /J being the coefficient of friction.

Eq (ij may now be written

Pp- Qp-fRr-o, . .

If /'and Q are parallel in direction,

fi = o and R -P-\-Q.

Let the figure represent a wheel and axle.

(3)

,R.

-^
%^^^

Let P be the effort and Q the weight lifted, the directions

of /^and Q being parallel.

Let [^rbe the weight of the " wheel and axle."

Let R^ and R^ be the vertical reactions at the bearings.

Let/ be the radius of the wheel.

Let q
" " " axle.

Let r " " *' bearings.

Take moments about the axis. Then

Pp - Qq - R,r sin — R^r sin = o. . . (4)

But

Hence,

Effici

and the r

16. T
partly rol

garded, as

Let the

point B tot

^caching tl

(Approach.



But

Hence,

TOOTHEn GEARING.

/e. + A\= W^P^Q,

S3I

(5>

Pp-Qg = { yV-\- P -h Q)r sin =
(
W^+ />+ Q)fr,

or

P{p-fr) = Q{q-\-fr)-^fWr (6)

Efficiency.—In turning through an angle ^,

motive work = PpS,

useful work = Qq^,

.-.efficiency =^^ =
||,

and the ratio -3- is given by eq. (6).

16. Toothed Gearing.—In toothed gearing the friction is

partly rolling and partly sliding, but the former will be disre-

garded, as it is small as compared with the latter.

Fig. 255.

Let the pitch-circles of a pair of teeth in contact at the

point B touch at the point A ; and consider the action before

reaching the line of centres 0,0^, i.e., along the arc of
apt^roach.

m
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The line AB is normal to the surfaces in contact at the

point r>.

Let R be the resultant reaction at B. Its direction, the

motion bei'.g steady, makes an angle 0, equal to the angle of

friction, with AB.
Let ^ he the angle between 0^0.^ and AB.
Let the motive force and force of resistance be respective!}-

equivalent to a force P tangential to the pitch-circle (9, , ard

to a force Q tangential to the pitch-circle O^

.

Let ;•, , r.j be the radii of the two wheels.

The work absorbed by friction in turning through the smal'

arc ds

=^{P-Q)ds (1)

Consider the wheel O^, and take moments about the centre.

Pr, - R\r^ sin (^ - 0) -}- ^ sin 0(, (2)

where AB = x.

Similarly, from the wheel (9,

Qr^ = R\r, sin {0 — <p) — x sin 0|.

Hence,

Q
P

X
sin {B — 0) — - sin

(3)

(4)

sin {B — 0) -|— sin

and therefo.^

P-Q=Q
[I I \

^-4--j^sm0

sin (^ — 0) sin

. . . . (5)

Hence, the work absorbed by friction in the an ds

= (2 . . . (6'

sin (B — 0) sin
r.
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In precisely the same manner it can be shown that, after

leaving the line of centres, i.e., in the arc of recess.

Q sin (6^ + 0) — - sin

X
sin(6'+0)-|-- sin

(7)

and the work absorbed by friction in the arc ds

:=Q-ll-^ . . . . . (S

sin {ii-^(t>) — '- sin

The ratio -73 and the loss of work given by cqs. (4) and (6)

arc respectively greater than the ratio 7^ and \.\\ii loss of tuork

i^ivcn by cqs. (7) and (8), and therefore it is advisable to make
the arc of approach as small as possible.

Again, by eq. (41, motion will b.- impossible if

! mw\

m

X
sin (/V — 0) + - sin = o

;

m
I.e., if cot = cot ^

r sin ^'

and this can only be true if the direction of A^ passes through (9,

.

Simple approximate expressions for the lost zvork and

efficiency may be obtained as follows:

W differs very little from 90°, and x is sm;«ll as compared

with r, and diiTcrs little from the corresponding arc s meas-

ured from A.

Hence the work absorbed by friction in the arc ds

= Q tan 4^- V-^sds = Q^i{^- -f ^-^sds,

4\
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and the work lost in arc of approach 5,

The useful work done in the same interval = Qs^

.

The counter-efficiency (reciprocal of efficiency)

Q^. + Qi-i^-y-)-
/, ,w,

Similarly for the arc of recess s.^
,

the lost work = qJ^~ + -:j^' , . . (i i)

and the counter-efficiency = i + yuf-
-f-

- )-',
. (12)

2;Tr, 27rr^
If ^, = 5„ = pitch = /> = =

, n ,
;/ beinfj the mini

' ^
;/, n.^ ^ ^ ^

bcr of teeth in the driver and the follower, respectively, the ex-

pressions for the lost work given by eqs. (9) and (11) are iiKii-

tical. and those for the counter-efficiency given by eqs. ( 101

and (12) are also identical.

Thus, the zvhole work lost during the action of a paii ot

teeth

= Q^{^^\)f (13;

and the counter-efficiency

= i + /^(^-f')^ (14)

= I + //7r(~ -]-- (15!
v/, ' nj •'

This last equation shows that the efficiency increases with

the number of teeth.
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If the follower is an annular wheel, — — — must be substi-

tuted for —|— in the above equations. Thus, with an an-

nulai wheel the counter-efficiency is diminished and the

efficiency, therefore, increased.

It has been assumed that R and Q are constant, as their

variation from a constant value is probably small. It has also

been assumed that only one pair of teeth are in contact. The
theory, however, holds good when more than one pair arc in

contact, an effort and resistance, corresponding to /-* and Q.

being supposed to act for eacli pair.

17. Bevel-wheels.—Let / , IB represent the develop-

incnts of the axes of the pitch- ^^
circles //, , //, of a pair of bevel-

wheels when the pitch-cones are

spread out flat, (9,, O.^ being the

corresponding centres.

The preceding formulae will ap-

ply to bevel-wheels, the radii being

OJ, OJ, and the pitch being meas-

ured on the circumferences lA. IB.
"

18. Efficiency of Mechanisms.
—Generally speaking, the ratio of

tlic effort P to the resistance Q in a

mechanism may be expressed as a

function of the coefificient o\ fric-

tion /<. Thus,

If, now, the mechanism is moved so that the points of

ipplication of P and tj traverse small distances Jx. Jj- in the

iircctions of the forces,

the efficiency
PAx

I Jj'

F\ n) Jx'
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Ay
But the ratio -t~ depends only upon the geometrical rela-

tions between the different parts of the mechanism, and will

therefore remain the same if it is assumed that ;/ is zero. In

siicli a case the efficiency would be |)erfect, or the motive work

i/'Jx) would be equal to the useful work yQAy), and therefore

I =
I Jv

F{o)Ax

Hence, the efficiency

TABLE OF COEFFICIENTS OF AXLE-FRICTION.

H 11 metal on hell metal
li a-is 11 brass
I'.'.is^ on I ;ui-ir'in

I SI iron on hell-metal
( .ts'-iriin on brass
C'.is'.ircjn on cast-iron
CuNt-iron on ]i^num-vlt£E
Lii,'nuiii-vita; on cast-Iron
LiiT'iuin-vitae on lignumviiae.
Wroiiylu iron on bell-metal ..

Wroiiu'tii-iron on cast-iron..

Wroiij^ht iron on liiciuiin-vita"
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EXAMPLES.

1. In a pair of four-sheuved blocks, it is found that it requires a force

P to raise a wei^dit 5/^', and a force 5/' to raise a weiglit 15/''. Siiow

that the K^'"i^'''' "elation between the force /' and the weight JFto be

raised is given by

P=' W- I".
5

Find the elTiciency when raisin.^ the weights 5/" and 15/".

2. Find the nieclianical advantage when an inch bolt is screwed up

by a 15 in. spanner, the clTective di.imeter of the nul being \\ m., the

diameter at the base of the thread .84 in., and . 1 5 being the cocllicie'it of

friction.

3. A belt, embracing one-half the circumference of a pulley, transmits

10 H. P. ; the pulley makes 30 revolutions per minute and is 7 ft. in

diameter. Neglecting slip, find T\ and Tj ; ^ being .125.

Afis. 1541S ll)s. ; 1041S lbs.

4. A i-in. rope passes over a 6-in. pulley, the diameter of the axis ixing

)i
in. ; the load upon the a.xis = 2 x the rope tension. Find tiic eiricinu y

of the pulley, the coefficient of a.xle-friction being .08 and the coeiricienl

for stiffness .47.

Hence also deduce the efliciencv of a pair of three-sheaved blocks.

5. If the pulleys are 50 ft. c. to c. and if the tight is three times the

slack tension, find the length of the belt, the coefficient of friction being

\ and the diameter of one of the pulleys 12 in.

6. Show that the work transmitted by a belt passing over a pulley

will be a maximum when it travels at the rate of if Jj ft. per sec. Ti
^ 3w

being the slack tension and m the mass of a unit of length of the belt.

The tight tension on a 20-in. belt, embracing one-half the circum-

ference of the pulley, is 1200 lbs. Find the ma.ximiim work the belt will

transmit, the thickness of the belt being .2 in. and its weight .0325 lb.

per cubic inch. (Coefficient of friction = .28.) Atis. 68.75 H. P.

7. In an endless belt jiassing over two pnlleys, the least tension is

150 lbs., tlu- coelHcient of fiiction .28, and the angle subte.ided Ly the

arc of contact 148. Find the greatest tension. The diameter of the

larger wheel is 78 >"., of the smaller 10 in., of the bearings 3 in. Find

the efficiency. A tightening-pulley is made to press on the slack side

of the belt. Assuming that the working tension is to the coetficieni oi

elasticity in the ratio of i to 80, find the increment of the arc of contact
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on the belt-pulley, the lensioii of the slack side, and the force of tiie

tightening-pulley. Ans. 309 lbs.

8. A belt weij^liii.gilb. per lineal foot, connects t\vo42-iii. pulleys, one

making 240 revolutions per minute. Find the liinitiii!; lension for wliicli

work will be transmitted. Also find the tight and ^lack tensions and

ilie elllciency when ilie belt iransniits 5 horse-power. Diameter of a.xic

= 2 in.; coefficient of friction = .28. Ans. 30V lbs.: 1 ^7 lb?. ; 74! lbs.

9. A circular saw makes 1000 revolutions per minute and is driven

by a belt 3 in. wide and \ in. thick, its weight per cubic inch being .03:15

lb. The belt passes over a lo-in. pulley, embracing one-half liii; cu-

ciiinfercnce, and transmits 6 H. P. Find the light and slack tensions,

the coefficient of friction being .28. Ans. 143 1 lbs.; 67.5 lbs.

10. A lloxible band, embracing three-fourths of the circumference <<i

a brake-pulley keyed on a revolving shaft, has one e.xtreniiiy attached to

the end A of the lever A0/>, i\n(\ the other to tlieyf.nv/ p( int O ihetue; n

^/ and />') about which the lever oscillates. The pressure between i ri-

band anil pulley is ellected by a force applied at right angles to the levir

at the end />'. Show that the time in wliich the axle is brought to rest

is about 2 1 times as gieat when revolving in one direction as in the

o|iposite (/ = .2).

11. In a Proiiy-brake test of a Westinghouse engine, the blocks were

fi.xed to a 24-in. fly-wheel with a 6-in. face, and the balance-reading was

48 lbs.; the distance from centre of shaft to centre of balance, measurt'd

horizontally, was 30 in., and the number of revolutions per minute was

624. Find the H. P. Ans. 143.

12. An engine makes 150 revolutions per minute. If the diameter of

the brake-pulley is 45 in. and the pull on the brake is 50 lbs., find the

B. H. P. Ans. 2.67.

13. A small water-motor is tested by a tail dynamometer. The pul-

ley is 18 in. in diameter; the weight is 60 lbs.; the spring registers a

pull of 50 lbs.; the number of revolutions per minute = 500. Find the

B. H. P. Ans. f
14. The power of an engine making ;/ revolutions per minute is

tested by a Prony brake having its arm of length r connected with a

spring-balance which registers a force J^. The arm is vertical and the

weight IV oi the brake is supported by a stif^' spring fixed vertically

below the centre of the wheel. What error \v B. H. P. would be intro-

duced by placing the spring x ft. away from the central position .''

ini'x
Ans. -J, .— ,

/>' being the B. H. P.

15. Find work absorbed by friction per revolution bv a pivot 3 in.

long and carrying 6 tons, its upper face being 6 in. in diameter, coctli-

cient of friction .04, and 2 a being 90°.
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i6. The diameter of a solid cylindrical cast-steel pivot is 2\ in. Find

the diameter of an equally etficieui conical pivot.

17. The pressure upon a 4-in. journal making 50 revolutions per min-

ute is 6 tons, the coefficient of friction being .05. Find the number of

units of heat generated per second; Joule's mechanical equivalent of

heat being 778 ft.-lbs.

18. A water-wheel of 20 ft. diameter and weighing 20,000 lbs. makes
10 revolutions per minute ; the gudgeons are 6 in. in diameter and tlie

coefficient of friction is.i. Find the loss of mechanical effect due to

friction. If the motive power is suddenly cut off, how many revolutions

will the wheel make before coming to rest ? Ans. \\ H. P. ; 10.9.

19. A fly-wheel weighing 8000 lbs. and having a radius of gyration of

10 ft. is disconnected from the engine at the moment it is making 27

revolutions per minute ; it stops after making 17 revolutions. Find the

coefficient of friction, the axle being 12 in. in diameter. Ans. .2325.

20. A railway truck weighing 12 tons is carried on wheels 3 ft. in

diameter ; the journals are 4 in. in diameter, the coefficient of friction

Tj»5. Find the resistance of the truck so far as it arises from the fric-tion

of the journals. Ans, i'j\ lbs.

21. A tramcar wheel is 30 in. in diameter, the a.xle 2^^ in.; the c leffi

cient of axle-friction .08, of rolling friction .09. Find the resistance pei

ton. Ans. 28.37 lbs.

22. A bearing 16 in. in diameter is acted upon by a horizontal force

of 50 tons and a vertical force of 10 tons ; the coefficient of friction is -^'5.

Find the H. P. absorbed by friction per revolution. Ans. .906 H. P.

23. A steel pivot 3 in. in diameter and under a pressure of 5 tons

makes 60 revolutions per minute in a cast-^iron step well lubricated willi

oil. How much work is absorbed by friction, the coefficient of fricticjn

being .08 ?

24. A pair of spur-wheels are 4 in. and 2 in. in diameter ; the flanks

of the teeth are radial ; the larger wheel has 16 teeth ; the arc of ap-

proach = arc of recess = | of the pitch. Show how to form the teeth,

and find their efficiency. (Coefficient of friction = .11.)

25. Find the work lost by the friction of a pair of teeth, the number
of teeth in the wheels being 32 and 16, and the diameter of the 'arger

wheel, which transmits 3 horse-power at 50 revolutions per minute, 3 ft.

26. The driver of a pair of wheels has 120 teeth, and each wheel has

an addendum equal to .28 times the pitch ; the arcs of approach and

recess are each e(inal to the pitch ; the tooth-flanks are radial. (Coeffi-

cient of friction = . 106.) Find the efficiency.

«

: -'8 '
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Fig. 257.

Fig. 358.

CHAPTER VI.

ON THE TRANSVERSE STRENGTH OF REAMS.

I. To determine the Elastic Moment.—Let the i)hine of

the paper be a plane of symmetry

with respect to the beam PQRS.
If the beam is subjected to the

action of external forces in this

phme, PQRS is bent and as-

sumes a curved form P'Q'R'S'.

The upper layer of fibres, Q'R', is

extended, the lower layer, P'S', is compressed, while of the

layers within the beam, those nearer P'S' are compressed and

those nearer Q'R' are extended. Hence, there must be a layer

M'N' between P'S ' and Q'R' which is neither compressed nor

extended. It is called tiie neutral surface (or cylinder), aiul

its axis is perpendicular to the plane of flexure. In the present

treatise it is proposed to deal with flexure in one plane only,

and, in general, it will be found more convenient to refer to

M'N' as the neutral line (or axis), a term only used in refer-

ence to a transverse section.

I a force act upon the beam in the direction of its length.

the lower layer P'S', instead of being compressed, ma>' he

stretched. In such a case there is no neutral surface zvithin

the beam, but tiieoreticallvit still exists some-

where ivitliout the beam.

Let ABCD be an indefinitely small rect-

angular element of the unstrained beam, and

let its length be s. Let A'B'C'D', Fig. 260,

be the element after deformation by the external forces.

340
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Fig. 259.
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P'Q', the neutral line, being neither com-

341

A'.

pressed nor extended, is unchanged in length ,»

and equal to J^Q = s.
^

Let the normals at P' and Q' to the neutral

line meet in the point O ; is the centre of

curvature of P'Q.
Also, as the flexure of the clement is very

small, the normal planes through OP and OQ'
may be assunietl to be perpendicular to all the

layers which traverse the corresponding sec-

tions of the beam, so that they must coincide

with the planes AD' and B'C\ respectively.

The assumptions made in the above are

:

{a) That the beam is symmetrical with

respect to a certain plane,

[li) That the material of the beam is homo-
geneous.

{c) That sections which are plane before bending reniai .

plane after bending.

{d) That the ratio of longitudinal stress to the correspond-

ing strain is the ordinary (i.e.. Young's) modulus of elasticity

notwithstanding the lateral connection of the elementary

layers.

(r) That these elementary layers expand and contract

freely under tensile and compressive forces.

Consider an elementary layer p'q\ of length s\ sectional

area «, , and distant y\ from the neutral surface.

Let OP' =P= OQ'.

From the similar figures OP'Q' and Op'q'

,

Op' P'q'

01D' P'Q'
or

R+y, s

R = - , and therefore ^ =
R

s' — s

\ i

Also, if /, is the stress along the layer /Y,

„ s' — s ,, y, E
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E being the coefficient of elasticity of the material of_,the

beam.

So. if /, , «,,/,, /, , rt, , ^, , . . . are respectively the stress,

sectional area, and distance from the neutral surface, of the

several layers of the element.

*3 — rj'J'j^ai »| — ijfliyti • • •

The total stress along the beam is the algebraic sum of all

these elementary stresses.

E E
= '. 4- ^ + ^ + • • • = -E>^a,y, + rt,J, + ...)= o ^>J)-R> R

Again, the moment of /, about P' = /, j, = ^ ll^y* ;

u «
'a ~hy', — j;a^y^\

M « = Uy^ - -^(t,y*

;

and so on.

Thus, the Elastic Moment for the section A'D' = the alfje-

braic sum of the moments of all the elementary stres.ses in the

different layers about P'

,

-t,y,-\- t^y^+ t,y,+ . . . = -^ (^?, j/,* + ««:>',* + •' •)

= -^^{<^f)'
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Now, 2 (^y) is the moment of inertia of tlic section of the

beam tlirou^h A'/)', with respect to a straight line passing

through tlie neutral line ami pcrp«.ndicular to the plane (tf

flexure, i.e., the plane of the paper. It is usually denoted by

/ or .r/X."", A being tlie sectional area, and ^ the radius of

gyration. Thus,

E E
the ehistic moment = t, ^= 7,-^^'«

A A

But the elastic moment is equal and opposite to the bending

moment {M) due to the external forces, at the same section.

Hence

%r^%Ak' = M.K A

Note.—It is necessary in the above to use the term alge-

braic, as the elementary stresses change in character, and

therefore in sign, on passing from one side of the neutral sur-

face to the other.

Cor. I. Bearing in mind assumption

(^), the figure represents on an exaggerated

scale the transverse section of the beam
at A'D', the upper and lower breadths

of the beam, /i'^" and D'D'\ being re-

spectively contracted and stretched, and

being also arcs of circles having a common
centre at O'.

Let R' be the radius of the arc P'P",

whose length remains unchanged.

Let mE be the lateral coefficient of

Fig. 261. ela.sticity, m ht'wi, a numerical coefficient.

As before, for any layer at a distance^ from P'P'\

\ »l

mE t

K ~ ay-
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Thus, li'it/iin the limits of elasticity, tlic curvature of the hrcatlth

is — that of the loni'th, and docs not sensibly affect the re-
;;/

'

sistance of the beam to beiKliii^. The influence, however,

upon the beiulinjj may l)ecoine sensible if the breadth is very

lar^'e as compareti with the depth, as, e.g., in the case of iron

or steel plates.

Cor. 2. If the resolved i)art of the external forces in the

direction of the length of the beam is ////,

/i

the total longitudinal stress = ,-^((ty) = o, or 2{ay) = o,

showing that P' must be the centre of gravity of the section

through AD. Ilcnce. when the external forces produce no

longitudinal stress in the beam, the neutral line is the locus of

the centres of gravity of all the sections perpendicular to the

length of the beam.

Cor. 3. If /, a, y be, respectively, the stress, sectional area,

and distance of a fibre from the neutral line, then

E E t . . ^

-fray — t, or -^y = - = mtensity of stress =fy, suppose,
A Ad

f E E f
.'.^ = ~, and ^/=A/=^'/.
y R A y

Example i. A timber beam, 6 in. square and 20 ft. long,

rests upon two supports, and is uniformly loaded with a weight

of 100 lbs. per lineal foot. Determine the stress at the centre

at a point distant 2 in. from the neutral line.

Also find the central curvature, E being 1,200,000 lbs.

I—-^— = 108, M — 1000 X 10— 1000 X 5= 5000 ft.-lbs.
12

= 60,000 inch-lbs., and _y = 2 in.
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Ilcncc from the above equations,

1200000 „ ^ /y „
T,— X io8 = 60000 = --108.
A 2

Thus A' = 2160 in. = 180 ft., and /, = n 1 1 ^ lbs. per sq. in.

Ex. 2. A standpipo section, 33 ft. in lenjjth and uei-j[hiii^'

5720 lbs., is placed upon two supports in the same horizontal

plane, 30 ft. apart. The internal diameter of the pipe is 30

in., ami its thickness ^ inch. Determine the additional

uniformly distributetl load which the pipe can carry between

the bearings, so that the stress in the metal may nowhere e,\-

ceed 2 tons per square inch.

Let W be the required load in pounds.

30
The weight of the pipe between the bearings = . 5720

= 5200 lbs.

Thus, the total distributed weight between the beariui^s

= (//'+ 5200 lbs.)

Now M = ^~I,

and the stress in the metal is necessarily greatest at the central

section.

^^-\- 5200 . , ,,M, at the centre, = . 30. 12 inch-lbs.

;

8

/ 22 1

/, = 2 X 2240 lbs., and - = nr't =—.15' -.

W-\- 5200 22 , I

:^ . 30. 12 = 2 . 2240 .- . 15'. - = 72000 X 22,

and hence IV = 30,000 Ib.s.

1-
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Cor. 4. The beam is strained to tiie limit of safety when

either of the extreme layers A'B' , D'C is strained to the limit

of elasticity. In such a case, the least of the values of — for
y

the extreme layers A'H\ DC is the greatest consistent with

the strength of the beam ; and if y^ and c are the corresponding

intensity of stress, and distance from the neutral axis,

R c

EXAMn.F-.—Compare the strengths of two similarly loaded

beams of the same material, of equal lengths and equal sectional

areas, the one being round and the other square.

Let r be tlie radius of the round beam
; /,., the intensity of

the skin stress.

Let rt be a side of the square beam; /,, the intensity of

the skin stress. Then

nr* = rt' ; /, for round bar, = , and for square bar = —

.

Also, since the beams arc similarly loaded, the bending

moments at corresponding points are ecjual.

so that

r ^ a \2

fa 3 ^^r'

2 /22 /88

Thus, under the same load, the round benm is strained to

a (greater extent than the square beam, and the latter is the

strn'T^rtM- III tlic nitio of S <S8 to i 63.
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Cor. 5. Tile neutral surface is neither stretched nor com-

presseci, so that it is not subjected to any longitudinal stress.

Hut it by no means follows that this surface is whoi'y free from

sircss, and it will he subsequently seen that the effect of a

siic.iring force, \\hc\\ it exists, is to stretch and compr;:ss tlie

different particles in diagonal directions making angles of 45''

with the surface.

del' i
Cor. 6. For a rectangular beam, / = — , and r = -

c a \2

If the beam is fixed at one end and loaded at the other

with a weight W, the maximum bending moment = IVl.

If the beam is fixed at one end and loaded uniformly with

a weight wl = W, the maximum bending moment

2

IVl

If the beam rests upon two supports and carries a weight W
IVl

at the centre, the maximum bending moment =. —

.

If the beam rests upon two supports and carries a uniformly

distributed load of wl = W, the maximum bending moment
_u^_ Wl
^ '8 ~ 8''

Hence, in the first case, W = fbd^

6 I
'

" " second "

" " third "

" " fourth " W^ [
'^'-i

.

/

iriltl

» 'v-jE-A'

i h

m^
u-;'
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In general,
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»F=//''6'W '

q being some coefficient depending upon the manner of the

loading.

Now, if the laws of elasticity held true up to the point of

rupture, these equations '.\oiild give tlie breaking 7i>cights (//'j.

corresponding to different ul^ iniate unit stresses (/"), but the

values thus derived differ widely from the results of experi-

ment. It is usual to determine the breaking weight (//') of a

rectangular beam from the formula fF'= ^ T^ where C is a

constant which depends both upon the manner of the loading

and the nature of the material, and is called the coefficient of

rupture.

The modulus of rupture is the value of/" in the ordinary

f
bending-moment formula (J/ = -/) when the load on the

beam is its breaking load.

The preceding equations^ however, may be evidently em-

ployed to determine the breaking weights in the sev ral cases

b)' making-^-r/ = C In this case /is no longer the n/'/ stress,

but ma}' be calUd the coefficient of bending strength.

The v.dues of C for iron, steel, and timber beams, supporteii

xit tile two ends and loaded in the centre, are given in the

Tables at the end of Chapter III.

The corresponding value of/ is obtained from the equation

^^ = C;

or

/=K-

Example.—Determine the central breaking weight of a



EQUALIZATION OJ' STRESS. 349

red-pine beam, lO in. deep, 6 in. wide, and resting upon two
supports 20 ft. apart.

Tiic value of C for red pine is about 5700. Hence,

the breaking weight = W= 5700 — = 14,250 lbs.
20 X 12

^

2. Equalization of Stress.—The stress at any point of a

beam under a transverse load is proportion. il to its distance

from the neutral plane so long as the elastic limit is not i .\-

ceeded. At this limit materials which have no iluctilit\- ^iv'e

way. In materials possessing ductility, the stress ma\- ;^o on

increasing for some distance beyond the elastic limit without

proilucing rupture, but the stress is no longer proportional to

the distance frcMii the neutral plane, its variation being much
slower. This is due to the fact that th.e portion in compres-

sion acquires increased rigidity and so exerts a continually-

increasing resistance (Chap. Ill) almost if not quite up to

the pf)int of rupture, while in the stretched portion a flow of

metal occurs and an approximately constant resistance to the

stress is developed. Thus, there will be a more or less perfect

equalization of stress throughout the section, accompanied h)-

an increase of the elastic limit and of the apparent strength,

the increase depending both upon the form of section and the

ductility.

h'or example, if the tensile elastic limit is the same as the

compressive, the shaded portion of I'^g. 262 gives a graphical

1 I

%

'~'A:

Kk.. 36a. Fig. 263. Fii;. 264.

representation of the total stress in a beam of rectangular

section when the straining is within the elastic limit. ]ie)-ond

this limit, it may be represented as in Fig. 263, and will be



Mi '11
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Clement in the section ab is equally strained. But in<>re

than tiiis. It his been assumed that, takinj^ the effect of

the load as dist-"'"uted uniformly over the section :.•/-'. ;iiul

.1 certain deflection thereb}' produced, the effect «i', /' om

each element of the section ab may be disre^anled in com-

parison with the strains involved in the (.leflectinn which /•*

protluces.

It will probably be difficult at first to ^rasp the fact t'nat

certain measurable effects have been actuall)- ne_i;lectcil. but

that this is so ma)' be seen by supposing the beam in questinn

\o be a pine beam, and the stirrup of iron. Ivxperienci.' proves

tliat with a very moderate load the beam will be iiidcntui at a.

But the theor)- shows that the longitudinal tension at a is

zero and increases to a maximum at ,/.

Thus, so far from the squeezing effect of the load being

distributed uniformly over the section ab, it is concentrated at

a, and hence it is impossible to neglect it.

Engineers have al\\a\'s recognized the existence of this

"surface-loading" effect in practice, and where possible, have

provided a good " bearing" in order to avoid such local

strains: but this cannot always be done—as, for instance,

in the case of rollers uiukr bridge ends. The theory of flex-

ure is therefore manifestly incomplete if it cannot take into

account the actual manner in which the loads arc and must be

applied.

Fig. 266.

It can be shown that the effect of placing a pressure of f^

tons per inch run. say in the form of a loaded roller, on a beam
resting upon a flat surface, as iti Kig. j.()(->, to picvcnt it from

"^

j;n.

:V •

f.'
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bciuling, is to compress every element say along ab with an

intensity given approximately b)- the equation

/-^a-lJ-

where y is the pressure at a distance .r from a, the point of con-

tact, and // — ab. This is the equation to a ciwve be which is

approximately an hyperbola.

When a beam is bent by the a[)[)lication of external forces, a

\cry close approximation to the true Cf)nilitif)n may be obtained

by superposing this surface-loading effect (jn tliat found for

bending.

Take the case of a beam suppoiteil at the ends ami loaded

at tlic centre, and let it be requiretl to find the condition along

al\ l""ig. 267.
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points h and/, which shows that at two points h',f' along (7<^ the

vertical snucc/c produced by the load is of equal intensity to

tn<: liori/.untal squeeze ])roduced by the bending; hence an

element at each of these points is subject to cubical compres-

sion only. From a U) /' the beam is squeezeil vertically, from

/' to h' it is squeezed horizontally, ami from// to h it is stretched

horizontally. The intensities are given at every point by the

difference between the ortlinates of the line of bending lie and

the curve of loading. It v>ill a])pear that one effect of surface-

loading is to make the neutral axis rise up under the load and

pass through the point //, for there is neither compression nor

tension at tliat point.

This can lie \'erified b)- examining the condition of a bent

glass beam b)- polarized light. The neutral axis is pushed up

under the load and there is a black ring passing through the point

/'. If the span is diminished and the load k(;pt constant, it is

clear that ac will become less, while the curve of loading remains

the same, until the line dec ceases to cut the curve ; every

element along ab will then be subjected to horizontal stretch,

and the stretch is greatest at a\ the result obtained by neglect-

ing the surface loading is that only elements from c Xo b are

stretched, the greatest stretch being at b. The position of the
" neutral points " is given by the equation

k 4 "^ i6
/IT I

m

where J is the distance from the top edge, // equals the depth

(lb, m — — na
4, and a = one-half of the span.

For all elements in cib to be stretched, the ratio of span to

depth, viz., —r, must be equal to or less than 4.25. In other

words, for any beam, and any load, if the span is less than 4^^

limes the depth, every element in the normal under the load.

is stretched horizontally.

1;

» ':FJ
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4. Beam acted upon by a Bending Moment in a Plane

which is not a Principal Plane.

l..rt .\'( ^.\', VO)'hc the priiKipiil axes of the plane section

of the beam.

Let the axis MOM of \\w beiulin^ moment M make <in

an^lv '» willi ( 'A'

.1/ ma\' he resolved into two C(»mpoiients, vb..,

M cos a — X and Ai s\\\ ix — y.

These components maj' be dealt with separately and the

lesults superposi-d

Thus, the total stress,/, at any poiiit (.v, r)

V 1' w f= Stress due to A'-f- stress due to V — "
\

—
f,

'1 '
y

I
,

, /, beinjT the moments of inertia with respect to the axes

XOX, ¥('>)', respectively.

If the point {xy) is on the neutral axis, then

Xy . Yx

I + / = °'

or

tan ft
_J Yh

XL J tan a,

fi being the angle between the neutral axis and XOX.
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Also sec Art. ''.. (^liap. VIII. In this article fi is the angle

between the neutral axis and the axis of the couple, i.e.,

t^ =.
ft — <r.

5. Springs. (^0 ^'^"' Springs.- If two forces, each ec|ual

to I' but actinj^f in opposite directions in the same straight line,

are applied to the ends of a straight uniform strip of flat steel

spring, the' spring will assume one of the forms shown below,

known as the ilastn lUrti. This curve is also the form of the

linear arch best suited to withstand a fluid pressure, Chap.

.\1II.

cM

Fir,. 272,

Consider a poiiil // of the spring distant y from the line of

action of P. Then

PJ
Py = Jjendlng moment; ^t ^ = n ,
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K being the radius of curvatme at />, and / the moment oi"

inertia of the section.

If /: and /are both constant.

Ry = a constant

is the equation to the elastic curve.

{b) Spirai Sprin^ij^i (as. e.g., in a watch).—Let tlie figure rep-

resent .1 spiral spring fixed at C and to an arbor at A, and

subjected at every point of its length

to a binding action only.

(^—1—
I \J^) )

Consider the equilibrium of any

portion .//»' of the s[)ring.

'D i he forces at .1 are equivalent to ,i

•^ ^P couple of moment M, and to a force /'

'^"'•*'^- acting in some tlirection AD.
This ct)uple and force must balance the elastic moment

at /.'.

.•. il/-f Pv = /:/ X change of curvature at />,

)' being the distance of /> from the line of action of /-', or

/l„ being the radius of curvature at /> hcjorc winding, and R
that after winding.

Let <h be an elementary length of tile spring at B.

Then, for the whole spring,

or M^ds -\- P'^yds —EI X total change of curvature between

A and C)

.-. Ms + Psy = EI{0 ^X
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V being the length of the spring, y the distance of its C. of G.

from AJ), H the angle through which the spring is wound up,

and ^„ tlie " unwinding duv to the fixture at C. With a hirge

number of coils the distance between the C. of G. and A may

be assumed to be «/7 ant! then/ o.

Also, if the spring is so secured that there is no change of

direction relatively to the barrel,

e„ :^ o, and Afs =^ Eld.

Let the winding up be effected by a couple of moment

Qq = iJ/, Q being a tangential force at the circuniferencc of a

circle of radius q.

The distance through which Q moves (or dijhction of Q)

=^ (Iff z=z y.s. Since iM — -/,
cL c

/being the skin stress, and c the distance of the neutral axis

of the spring from the skin.

Thus, if b is the width i)f a spring of circular or rectangidar

section, c = , and hence

2a/
the deflection = , r^s.

oE

The work done — -Q x deflection = - q^i — —
2 2 (]

'
J

- iliL -11 ^AK. f' '^ '^''

~ 2 Ec' ~ 2 Ec' ~ '2E c'
'

/•^ being the square of the radius of gyration, A the sectioaal

Ilea of the spring, and Fits volume.

k" I

In case of spring of rectangular section — =1 - .

•J

<< (« <( " " circular
I

4
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Again, the spiral spring in Fig. 277 is wholly subjected to

a bending action by means of a twisting couple of moment
M = Qq in a plane perpendicular to the axis of the spring.

Any torsion in the spring itself is now due to the coils not

being perfectly flat.

Fig. 277.

Let R^ = radius of a coil before the couple is applied.
ii T> —- <( u «( i( ifter " '' " ''

/I I \

Q being the angle of twist ; or

Qqs Ms s s

iV being the number of coils before the couple is applied, and
't " " " •< nfter " " " "

The distance through which Q acts, i.e., the " deflection,"

N, " "

and the work done

'"^'^

m _ fv ^
~ 2' ~ 2E 7'

— > -p~ for spring of rectangular section,

•'
. _ <<- 8 £

" " circular

6. Jeams of Uniform Strength.—A beam having the

same maximum unit stress (/) at every section is said to be aSsame niaxi.uuiii unit ^)Lreh:

^vbeam of uniform strength
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At any section of a beam AB{=1) denote the bending

moment by AI, the depth of the beam by y, and its breadth

by l>. Then

/1= M fAk\

c being the distance of the skin from the neutral axis, and A
the area of the section.

Evidently c and k arc each proportional to j/, and A to by.

or

.-. fbf o: M,

nfbf = M,

n being a coefficient whose value depends upon the form of

section.

Four cases will be considered.

Case a. Assume that the breadth b is constant, and let

nfb = —. Then
P

or

y — ± VpAI.

Thus AB may be either the lower edge of the beam, the

ordinates of the upper edge being the different values of y, or

it may be a line of symmetry with respect to the profile, in

y
which case the ordinates are the different values of ± -.

Example i. A cantilever AB loaded at the free end xvith a

ivcigJit W^. .

At a distance x from A,

C
/ = pM = p W\x

B

Theoretically, therefore, the

beam, in elevation, is the area ,jj

A CD, the curve CAD being a Fig. 278.

^sJSN
^11

u
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parabola with its vertex at A and having a parameter

The max. depth -^ 2CB = CD = VplVJ.

The form of this beam is very similar to that adopted for

cranks and for the cast-iron beams of engines. In the latter,

the material is usually concentrated in the flanges, a rib being

reserved along the neutral axis for purposes of coimection.

Again, geometrical conditions of transmission require the

teetli of wheels to be of approximately uniform strength.

A cantilever of approximately uniform strength may be ob-

tained by taking the tangents CE, DF as the upper and lower

edges of the beam instead of the curves CA, DA. The depth

of the beam at ./ is then EF = ^CD = ^ VjWj. Although,

theoretieally, the depth at A is nil, practically the beam must

have sufficient sectional area at A to bear the shear due to \\\ ,

and the depth \ \ pWJ will be found ample for this purpose.

Note.—The dotted lines show the beams of uniform

strength, when the lower edge is the horizontal line AB.
Ex. 2. A cantilever AB carrying a uniformly distributed

load W,.

At a distance x from A,

f=pM=^x'
2/

or

y = ±x
Fig. 279.

The beam, in elevation, is there

fore the area A CD, AC, AD being two straight lines, and the

maximum depth being

CD = 2BC=l^i-'^' =^
The sectional area at A is nil, as both the bending moment

and shear at that point are zero.
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Note.—The dotted lines show the cantilever of uniform

strength when AB is the lower edge.

Ex. 3. A cantilever .//> carrying a zveight IV^ at the free

end A and also a uniformly distributed load IV^,

Fig. 280.

At the distance x from A,

f = pM = p[lV,x + V/f^).

This equation may be written in the form

W ^'

"El,

r
pwii
2W„

= I.

Theoretically, therefore, the beam, in elevation, is the area

ACD, the curve CAD being an hyperbola having its centre at

( ^V \H (where AH = W^Ji '^^'^ semi-axes equal to

I and
/pvv:i

The maximum depth CD — \/p[wj-\- MK,-j = 2BC.
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A cantilever of approximately uniform strength may be ob-

tained by taking the tangents CE, />>/' as the upper and lower

edcres of the beam instead of the curves CA, DA. It may be

easily shown tliat the depth of this beam at A is -^—jyCB,

and this will give sufficient sectional area at A to bear the

shear due to W,.

A'oti'.—The dotted lines show the cantilever of uniform

strength, when the lower edge is the line AB.

Ex. 4. A beam AB supported at A and B, and carrying a

load W, at the middle point O.

At a distance x from 0,

/ = pM = /^'(^4

Theoretically, therefore, the

beam, in elevation, is the area

ACBD, the curves CAD, CBD being two equal parabolas,

having their vertices at A and B, respectively, and having

parameters equal to ^{^\\\.

The maxim II in depth — CD — 2CO = \ VpWJ.
A beam of approximately uniform strength may be ob-

tained b\' taking the tangents CE, CG as the upper edges

instead of the curves CA, CB, and the tangents DF, DH as

the lower edges instead of the curves DA, DB.

CD
The depth of the beam at A and B is now EF = GH — — ,

and this depth will give a sectional area at the ends of the beam

W
sufficient to bear the shears at these point, viz., —-'.

Note.—The dotted lines show the beam of uniform strength

when the line AB is the lower edge.

Ex. 5. A beam AB supported at A and B, and carrying a

umjormly distributed load W^.
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At a distance x from the

middle point O,

y = pM - -^-\i -
-J-

This equation may be writ-

ten in the form

S 3

A 8
"

= I.

Theoretically, therefore, the beam, in elevation, is an ellipse

ACBD, having its centre at and axes

AB = l and CD ^m.

The maximum depth is of course the axis CD = 2CO.

Practically, the beam must have a certain depth at A and

B in order to bear the shears due to the reactions at these

W
points, viz.,

—

"^

. If the horizontal tangents at C a.nd at D are

substituted for the curves, the volume of the new beam is to

the volume of the elliptic beam in the ratio of 4 to tt.

Note.—The dotted line shows the beam of uniform strength

when its lower edge is the line AB.
Ex. 6. A beam AB supported at A and /?, and carrying a

load IF, at the middle point O and also a uniformly distributed

load \\\.

At a distance ;tr from O,

This equation may be written in the form

_| r: = I.

\

' I'

h

H

I

m

;i

1

Jl !

,
At »

lit

s*
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Theoretically, therefore, the

beam, in elevation, is the area

ACBD, the curves CAD and

CBD being the arcs of ellipses

having the centres at the points

K and A, respectively, where

0K=^ 0L = 2W:

The maximum depth CD =z20C =-p^ A^ 8
1*

A beam of approximately uniform strength may be obtained

by taking as the upper edge the tangents to the curves at C,

and as the lower edge the tangents to the curves at D.

It may be easily shown that the depth at the ends/i and B
IK + IK

is now CD
2lV,-\-JV,

, and this depth will make allowance for

the shear
IV, + IK

at these points.

Note.—The dotted lines show the beam of uniform strength

when the lower edge is the line AB.
Case d. Assume that the ratio of the breadth (5) to the

depth (j) is constant, i.e., that transverse sections are similar,

y <x b on s/'W,

or the ordinates of the profile of the beam both in plan and

elevation are proportional to the cube roots of the ordinates

of the curve of bending moments.

For concentrated loads the bounding curves are evidently

cubical parabolas.

Case c. Assume that the depth y is constant. Then

b o:. M,

so that the ordinates of the beam in plan are directly propor-

tional to the ordinates of the curve of bending moments.

Case d. Assume that the sectional area yb is constant.

Then
y a M,
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and the ordinates in elevation are directly proportional to the

ordinates of the curve of bendintj moments.

In this beam, the disti ibiition of tiic material is very de-

fective, as the breadth b \~ '

J
must be infinite \vhen_;/ = o,

i.e.. at the points at which the bending moment is nil.

Timber beams of uniform strength are uncommon, as there

is no cccjiiotny in their use, the portions removed to brin<f the

beam to tiie nccessar\' form being of no practical value.

6. Flanged Girders, etc.— Beams subjected to forces, of

which the lines of action are at right angles to the tliiection of

their length, are usually tenned Girders; a Scini-i^i) dcr, or

Cantilever, is a girder with one <i\\^ fixed and the other fiee.

It has been shown that the stress in the diffeiiiit la\-ers of

a beam increases with the tlistance from the iiertral suitace, so

that the most effective distribution of the material i> made by

witlulrawing it from the neighborhood of the neutral surface

and concentrating it in those parts which are liable to be more

severely strained. This consideration has led to the introduction

of Flanged Girders, i.e.. girders consisting of one or /ree flanges

(or tables), united to one or tico icebs, and designated Stngle-

ivebbed or Donble-zoebbed { Tubnlar) accordingly.

aX^ 1
Fig. 284.

T T
Fig. 285.

^
^5P^

Fig. 286. Fig. 287. Fig. 288. Fig. 289. Fig. 290.

The web may be open like lattice-work (Fig. 284), or closed

and continuous (Fig. 285).

The principal sections adopted for flanged girders are

:

The Tee (Figs. 286 and 287), the I or Double-tec (Figs. 288

and 289), the Tubular or Box (Fig. 290).

Classification of Flanged Girders.—Generally speaking,

flanged girders may be divided into two classes, viz.:

i4

' w

III;

( !

J
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I. Girdirs ivitli Horizontal F/aiii^rs.— In these the flanges

cm only convey horizontal stresses, and the shearinjj; force,

which is vertical, must be wholly transmitted to the flanges

through the medium of the web.

If the web is open, or lattice-work, the flanj;e stresses are

transmitted tlnoui;h the lattices.

If the web is continuous, tiie distribution of stress, arisin<4

from the transmission of the shearing force, is indeterminate,

and may lie in certain curves: but the litress at every point is

resolvable into vertical and horizontal components. Thus, the

portion of the web adjoirdng the flanges bears a part of the

horizontal stresses, and aids the flanges to an e.xtent depend-

ent u|)on its thickness.

With a thin web this aid is so trifling in amount that it

may be disregarded without serious error.

II. Girders icitk one or both Fla>igcs Curved.—In these the

shearing stress is borne in part by the flanges, so that the web
has less duty to perform and requires a proportionately less

sectional area.

Equilibriuin of Flanged Girders.—AB is a girder in equi-

librium under the action of external

forces, and has its upper flange com-

pressed and its lower flange ex-

tended. Suppose the girder to be

divided into two segments b)- an

—ti~
iN

B

^M T

Fig. 291.

imaginary vertical plane ALV. Consider the segment AMN.
It is kept in equilibrium by the external forces on the kft of

MN, by the compressive flange stress at A" ( = C), by the

tensile flange stress at M ( — T), and by the vertical and

horizontal web stresses along MN. Tiie horizontal web

stresses may be neglected if the web is thin, while the vertical

web stresses pass through M and A^, and consequently have no

moments about these points.

Let ^ be the effective depth of the girder, i.e., the distance

between the points of application of the resultant flange stresses

in the plane AIN.

Take moments about J/ and A^ successively. Then
Cd = the algebraic sum of the moments about M of
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the external forces upon ANN — tlie bending moment at

MN ^ M.

So. Tti = J/; .-. Cd = N= Tit and C = 7.

Hence, the flange stresses at any vertical section of <i girder

are equal in magnitude but o{)p()site in kind. The flange

stress, whether compressive or tensile, will be denoted by /'".

EXAMI'I.K.—A llanged girder, of which the effective depth

is lo ft., rests upon two supports 8o ft. apart, and carries a uni-

formly distributed load of 2500 lbs. per lineal foot. Determine

the flange stress at 10 ft. from the ciui. and find the area of

the flange at this point, so that the unit stress in the metal

ma)- not exceed 10,000 lbs. per scpiare inch.

The vertical reaction at each support

80 X 2500 = 100,000 lbs.

! I!l

.*. F. 10 = M= looooo X >o — 2500 X 10 X 5 = 875,000 ft.-lbs.

.'.F= 87,500 lbs.

_, . , 87500
The required area = = 8.75 sq. m.

' lOOOO f J ^

Cor. I. Fd=M= |/ = -^/.
R y

Cor. 2. At any vertical section of a girder,

let a,,n^, be t'^e sectional areas of the lower and upper flanges,

respectivel)'

;

/, ,/j,bethe unit stresses in the lower and upper flanges,

respectively. Then

«./> = F=aJ,,

and the sectional areas are inversely proportional to the unit

stresses.

This assumes that F is uniformly distributed over the

areas a^ ,a,, so that the effective depth is the vertical distance

between centres of gravity of these areas. Thus, the flange

stresses at the centres of gravity are taken to be equal to the

i 1 ^'5

M
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mixiiuuin •'( ri'ssi's. .iiiil tin- ii'sistiiinr oIIcumI by tlu' wi-h to

1)1 ihliiu; is (lisri'^.iidoil. I he ciroi «hic !•• tlu- fornuT lu.iy

l)i(.t)iiu' ol impiirt;iiu"i', .iiid it iu.i\ Ix tiuiinl .i(l\ i^.ihlr to m.iki-

tlu" rlTi'ctivc ikplli .1 !.;ii)im'tric iiumii hciuicii tlir ik-ptlis ftnm

oiltsiik- tt> oiitsiilc .iiul Iroin inside lo iiisidi- ol \\\v llaiu'ts.

ri nis, il tlirsi' l.itttT ik'pths arc //. . //„ . tlu' t-!lc'itivc' ikpti

= »//,//, i.Art. 7 K .

I'LXAMI'li: I. .\t a ^ivc'ii \citi*,al section of a llanL;rcl i;iitlri

the sectional .iii.i ol the to|> llani;c is id s(|. in., and the lor

rcspomliiiL; unit stn-ss is Scxk) I1)s. pir xjuare inel;. I''ind the

seetional m\\\ of the hn\if llaiu;e. so tint thi- unit stress in it

ma>- not c.\cceil lO.tKiO lbs. pel' scpiaie iiuli.

//, . loooo -:: /''— to. Soou ; .". '/, S s(|. in. and /'"- So.ooo 11 1^

V.\. 2. \ w Tonuht-iron -'irder weiijhini l)s, per liiu'.tl

ft., of / ft. span and ./ ft. depth, has hoii/.onl.d flanges and

a unifoi ni ei'oss-seelion. I'he \\eii;ht ol tin- weli isi'(|aal to the

\\eit;lit of the ll.uiLies. Show that if the eoelVicicnt of strenj^th

is i)ooo lbs. pel' si|iiaie ineh, the liiuitini; xalui' of / is 54C)0/(' ft.,

/: bciiii; the ratio ^-^i depth to sp.m.

1\I;ixiinuin llam:c stress
S//

Area of each llani;e

Total sectional area =

wl'
-

. , , in.

;

9000 . 8f/

., , in-,
9000 . ha

and

total volume of girder in feet =

Hence,

and

9000. 8f/. 144

47c'/' .480

90(X). 8r/. 144'

/ = 5400-^ = 5400/^.

wl = total weight
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Noti\ The cc^niprcssivc strciis.',tli of cast-iroti is almost six

times iis j^frrat as the IciisiK' stiiii|^flli, and tlicnforc tlu- an-a

of llir tension llan^;;c of a girder of tliis material should i)c

about six times that of the compression llanj^e. ("onsideriui,;,

ht)\\ivi'r, the diflieuity liiere is in obtainini^ sounil castings,

and also the necessity to provide snllieiiiit lateral strenj^th, it

by no means follows, nor is it even probabK', that the ratio of

ultimati: strengths is the best lor the working strenj.^th.s. Some
authorities are of the opinion that girders should be desij^iK:d

with a vii:w to their el.istic stmi^fth, and that therefore the

workinj.; unit stresses in the ease of wronidit-iron and steel

should be ecpial, if this will insine snfrHient latei.il stability,

and in tin' latio of j to I or 3 to i for tast-iroii, whiih w ill !.;ivc

snChcient lateral stabilit)' .uid make allowance for deftctivc

castinj^s.

The formula \V C . is (iften employed to determine the

streni;th ol a cast- or wr(iUL;ht-iron "girder which rests upon two

supports / inches apart, </ beini;" its de|)th \\\ inches, and n the

net sectional area of the; bottom flange in s(|uarc inches. (' is

a constant to be determined b)- experiment. Its avera^^e value

lor itjsf-iroii is J4 or 26, accordiinj^ as the j^drder is cast on its

side or with its bottom flant^e upwards. An avera^^e value- of

(." for :croiiji;/it-iroii is So.

Lor. ;;. A girder with horizontal llan;j^es, of leni;th / and

depth (/, rL\sts upon two supports, and is uniforndy loaded with

a weiijht w per unit of Icntjth.

The bendinj;- moment at a vertical plane distant x from the

centre is

^'1^

Aho, M = Fd = afd, a being the sectional area of either

flange at the plane under consideration, and / the correspond-

ing unit stress.

afd
8

AX-

r
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Let A be the flange sectional area at the centre. Then

Hence

a = A\\
4^-

an expression from which the flange sectional area at any point

of the girder may be obtained when the area at the centre is

known.

Cor. 4. F represents indifferently the sum of the horizontal

elastic forces either above or below the neutral axis, and is

therefore proportional to A, the sectional area of the girder
;

d is the distance between the centres of resultant stress and is

proportional to D, the depth of the girder.

.-. M oi AD^ CAD,

a form frequently adopted for solid rectangular or round gird-

ers, but also applicable to other forms.

Remark.—The efTective length of a girder may be taken to

be the distance from centre to centre of bearings.

The effective depth depends in part upon the character of

the web, but in the calculation of flange stresses the followiivjj

approximate rules are sufficiently accurate for practical pur-

poses :

If the web is continuous and very thin, the effective depth

is the full depth of the girder.

If the web is continuous and too thick to be neglected, the

effective depth is the distance between the inner surfaces of

the flanges.

If the web is open or lattice-work, the effective depth is the

vertical distance between the points of attachment of the

lattices.

If the flanges are cellular, the effective depth is the distance

between the centres of the upper and lower cells.
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7. Examples of Moments of Inertia.—ia) Double-tec Sec-

tion,—Fu'st, suppose the web to be so thin that

it may be disregarded without sensible error.

Let the neutral axis pass tlirough G, the cen- -i

tre of gravity of the section. Ji

Let <?, , rtj be the sectional areas of the lower ^

and upper flanges, respectively, and assume that ''"" '"'^"

each flange is concentrated at its centre line.

Let //, , //, be the distances of these centre lines from G.

Let //. ~|- h^ — d.

Approximately, / — aji^ -\- aji^.

Also, (rt, -|- a^h, = a.,d, and {a^ -f ^J^'^ = '^i^-

•. / — a.
(r,d \ I a^d—

\ ] + ^^-k
—,

—

a^a^d'

Again, if /, , /, are, respectively, the unit stresses in the

metal of the lower and upper flanges,

/. /.,M = J-1
— f.a^d, and also = ,-1 = f^a^d.

h /l

,-E

''1

If a, = a., = a, /, — /„ = /, suppose, and Af = /ad.

Second. Let the web be too thick to be neglected.

As before, let the neutral axis pass through G, the centre

of gravity of the section.

^ Let a, , a.^ be the sectional areas of the lower

° and upper flanges, respectively, and assume that

-Es: 73 each flange is concentrated at its centre line.

Fir.. 292rt.
j^^j. ^^^ ^ ^j,^ 1^^ ji^^ sectional areas of the portions

of the web below and above G, respectively.

Let /<!, , //j be the distances from G of the lower and upper

Hange centre lines.

Let //, + //, = d.

Approximately,

\
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Also, fa, -\- — )//, = [a^ -\
—

^j//, , and this equation, together

witii /i^ -\- /i^ — d, will give the values of h^, h^; hence the

value of / may be determined.

As before, ('I = M = {'L

/V
Let <?, == ^j = A and a^ =-. a^ = — . Then

/'f, = /-'. = r- 'I'ifl ^= U'^ -1--,

Hence,

^'^=7(^+^6
j'\<i'

)f = /(-^ + fh
/being the unit stress in cither flange.

Thus, the web aids the girder to an extent equivalent to the

increase which would be derived by adding one-sixth of the

web area to each flange. If the weight of the material remains

constant, M increases with d. At the same time the thickness

of the web diminishes, its minimum value being limited by cer-

tain practical considerations (Art. 8). Hence it follows that

the distribution of material is most effective when it is concen-

trated as far as possible from the neutral axis (Art. 5).

N.B.—It must be remembered that /, and/, are not the

maximum stresses. If Z, , /, are the thicknesses of the lower

and upper flanges, respectively, then

maximum tension

and

/.
/^ + ¥^

m X 4- \Uaxunum compression = /., ,
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Again, take moments about G. Then

aji, + A —-— = aji^

,

373

or

which gives a relation between the flange and web areas if

/, ,/\ are known.

For example, take /^ = 2^,, Then

a formula which agrees very closely with modern practice in

cast-iron girders.

If/, ^/.. «, = «,.

The principles of construction require a beam or girder

to be designed in such a manner as to be of uniform

strength, i.e., equally strained at every point. An exception,

however, is usually made in the case of timber beams or girders.

The fibres of this material are real fibres and offer the most

effective resistance in the direction of their length, so that if

they are cut, their remaining strength is due only to cohesion

with the surrounding material. Besides, there is no economy

to be gained by removing a lateral portion, as the waste is of

little, if any, practical value.

Example. The lower and upper flanges of the section of a

girder are i in. and i^ in. thick, respectively, and are each 24 in.

wide ; the effective depth of the girder is 48 in., and the web
is^ in. "hick. Determine the position of the neutral axis ; also

find the flange unit stresses when the bending moment at the

given section is 250 ft.-tons. Using the preceding notation,

a, — 24 sq. in., a^ = 36 sq. in., and a^-{- a^ = 24 sq. in.

The centre of gravity of the web is half-way between AB
and CD. Thus,

24/i, -f 24(^, - 24) = 36(48 - /iX

^^»
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192 144
/^, = —- and //, = , denning the position of G.

Again,

192 I 96 . 144 I 72 .

a, = --- .- — — sq. ni. and a. — . = - - sq. in.

../=(.4+ f)(f)V(36+^;)(f)==?^
264

Also,

M =250 ft.-tons = 3000 inch-tons.

It. i

7 267264 7 267264

.•. /, = 2/j tons per sq. in. and /, = U/j| tons per sq. in.

Third. It is often convenient to calculate the moment of

inertia of a built beam symmetrical with respect to the neutral

axis, as follows

:

Let Fig. 293 represent the section of such a beam, com-

posed of equal flanges connected with the web by four equal

angle-irons.

Let the width AF of the flange = a.

" the side BC{= DE) of an angle-iron = b.

" thickness GH{= KL) of an angle-iron =/.
" MN= DE -KL = b-/^c.

aC|

G[^ Mk

S-'

HIHk'

2 2

" /;, be the outside depth of the section.

" h^ " " depth between flanges.

Let h, be the depth between the faces MN, M'N'.
" //,

'* " " " " *' KL, K'L.

1

Fig. 293.

ah:
i = -^-AhMK^ch:^fh:)\.
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In this value of /, the weakening effect due to the rivet-

holes in the tension flange has been disregarded. If it is to be

taken into account, let/> be the diameter of the rivets.

The centre of gravity of the section is now moved towards

the compression flange from its original position througli a

distance

and the moment of inertia of the net section with respect to

G.the axis through the new C. of G. is

I - A'x',-'
12
{K-K\

]

•Ga
]

A' being the net area of the section, and / having the value

given above.

Fourth. The value of / for a double-tee section may be

more accurately determined as follows :

Let the area of the top flange be ^, , and

its depth //,.

Let the area of the bottom flange be A^,

and its depth /;,.

Let the area of the web flange be A^, and

its depth /i.y

Let ^/,-|- A.,-{- A^= ^i, and /!,-f /^,-j- //,=//. Fig. 294.

Let G be the centre of gravity of the section.

" G, " " " " top flange.

" G, " " " •' web.

" G, '• " " " bottom of flange.

Let j\ be the distance of G from the upper edge of the

section.

Let }>j be the distance of G from the lower edge of the

section.

Take moments about G^. Then

{A,i-A,-^A,)GG, = A,.G,G, + A,.G,G,

'riii t

»1
!

ifl-
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or

So.

and

Hen
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GG.=

GG.=

GG,

/^,(/^ + 2//, + /0 + ^^,(/^» + /0
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and
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^A' + ^,(//-^^li')' + ^A'

12

^j^,,S^. A,A,+A,A,^4A,A, )

{ 12 4A )

Note.—If A, is also very small, as in the case of an open
web, then

A A A
yi = /^'

"T" ^"<^ ^ = //"' \ \ approximately.

Cor. 2. Let J'a, J'b be the distances of G from the upper and
lower edges, respectively ; let /, , /, be the corresponding

maximum working unit stresses.

j\,-^j>i,2A^-^A,
From the preceding corollary, jf^ = y^ 2A

or

2A,-\-A, 2J',

A, = A,^^ a/-^^^ = a/^-^-A, ^-^*.
yt 2yi,

' /a 2/;

Hence,

a,^a, + a, = a, + a,+a/-^-\-a,-^±-J^

-j--[A^ + -,-A,



EXAM/'LES OF MOMENTS OF INERTIA. 379

and

h
\ 12A

-\ ^-^—-^7

/r
12

^^\^yr) + '^'^'(^^1 + 7,(6^ .^»+ '2^.")
]

2/*
(2^.+-^,)

%j\A.k2f^-f^Jr^AM,

Fifth. T-section.

Let the area of the flange be yi,, and its

depth /^,.

Let the area of the web be A^ , and its

depth /i^.

Let A.-^- A.,= A, and h,~^h„ — h.

Let G be the centre of gravity of the sec-

tion, G^ of tlie flange, and G^ of the web.
Fig. 295.

Let )\ be tlie distance of G from foot of the web.

Then

'ii(||

! >1

*d^4

i
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aiKl

y^ =

Aj^Miti.

//, 4-//,
,
AJi^ — AJi^ h . AJi^ — AJi+
2(J, + ./,) 2

AM

= - + 'i'*i

2A

K AM
G,G = '-! + /r, - ^', = ;^- and (7,G: := ;', - -^ = '-i^^

2 2W 2 2W

Hence /, with respect to a horizontal line through G,

= A/^[ + A,.G,G'-{-Aji{ + A,.Gfi\
12 12

which reduces to

/ = AJi;' + AJi,' . A.AJi

\2
+ aA

Cor. I. If //, is very small as compared with //, , put

//, = //'
h.

then

yiA ,-f^,) = AJi' 4- ^.(-^- - ^^) = [a, + ^-^) //', nearly.

or

anc

y. = -2 V-

//i2A,-\-A.
)•

1 =
AA'-{-A,[//-^^)' A,A[h' + ^i^

12

Ajr .
A,AJi

+ 4A

or

-^
1 '—';—' "early,

12 4^i

Cor. 2. Let ^^ be the distance of the compressed, or upper,

side from the neutral axis.
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1

Let /a be the distance of the stretched, or lower, side from

the neutral axis.

Let/, be the crushing unit stress, yj tlic tensile unit stress.

From the preceding, /„ = "—'-7-^-
; but h' — y^ +^4

1

,,y^=y^y^y^±^^ and A^^A^^-^^a/^K
2 A,^A, 2y, 2>

Hence, / becomes

J^A^^:-^'. and f^^ = Z.±yt = L.

h' V

yVi^/r.—Although the preceding approximate methods are

often useful, they can only be regarded as tentative and sliould

always be checked by an accurate determination ui the moment
of inertia and of the position of the neutrul axis.

8. To design a Girder of Uniform Strength, of an

!-section with equal Flange Areas, to carry a Given
Load.

Let _;/ be the depth of the girder at a distance x from its

middle point.

Let A be the sectional area of each flange at a distance x

from its middle point.

Let A' be the sectional area of the web at a distance x from

its middle point.

Let M be the bending moment at a distance x from its mid-

dle point.

Let 5 be the shearing force at a distance x from its middle

point. Then

/[A+'^)y = M,

/"being the safe unit stress in tension or compression.

J

i

5^^

',1 ' i 1
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Wclh—Assume that the web tratismits tlic li'liolc of the

shearing force. Tins is not strictly correct if the tlange is

ciirvecl, as the tlan^e then bears a portion of tlic shearini; force.

Ihe error, however, is on the safe side.

'riu'orctically, tiie web should contain no more material than

is absolutely necessar)*.

Let/, be the safe unit stress in shear. Then

A' =^
S

and the sectional area is, therefore, independent of the depth.

A' S
The thickness of the web = — — >—

,

y f^y

but this i-^ often too small to be of any practical use.

r^xperience indicates that the minimum thickness of a plate

which has to stand ordinary wear and tear is about \ or /,y in.,

while if subjected to saline influence its thicl<ness should be

-^ or ^ in. Thus, the weight of the web rapitUy increases with

the deptii, and the (greatest economy will be realized for a cer-

tain definite ratio of the depth to the span.

The thickness of the web in a cast-iron girder usuall>'

varies from i to 2 in.

Ill the case of riveted girders with plate webs of medium
size, all practical recjuirements are effectively met by specif}'ing

that the shearing stress is not to exceed one-half o{ the flange

tensile stress, and that stiffeners are to be introduced at inter-

vals not exceeding tzvicc the depth of the girder when the

thickness of the web is less than one-eightieth of the depth.

Again, it is a common practical rule to stiffen the web of a

plate girder at intervals approximately equal to the depth of

tlie girder, whenever the shearing stress in pounds per sijuare

inch exceeds i2CK)0 h- (i -\ , H being the ratio of the
\ 3000/

depth of the web to its thickness.

Flanges.—First. Assume that the flanges have the same

sectional area from end to end of girder.
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If the effect of tlu U'cl) is lutjlcctcil,

;' =
M

aiul the depth of the beam at any pciiiil is [jroportional to tlie

ordinate of the beiulin^-mouieiit tuive at the same point.

I'or example, let the loatl be unifoindy distributed and of

intensity io\ and let / be the span. Thiii

M =^(^•.").
o

Fill. .lyo.

:::aii.B

and the beam in elevation is the parabola ACIi, havinj^ its

vertex at {T and a central depth CO = y-r> The depths thus

determined are a little greater than the depths more correctly

given by the equation

AT

/(• / +
rl'

Second. Assume that the dei)th y of the girder is constant.

Then

^ +
A' _M_

and, neglecting the effect of the web, the area of the flange at

any point is proportional to the ordinate of the curve of bend-

in;j^ moments at the same point.

Let the load be uniformly distributed and of intensity zv ;

also, let the flange be of the same uniform width b throughout.

The flange, in elevation, is then the parabola ACB, having

its vertex at C and its central thickness CO = x-^,. Such
yyb

ml

\
»

;l

6#^i{
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1^

beams are usually of wrought-iron or steel, and are built up by

means of plates. It is impracticable to cut these plates in such

a manner as to make the curved boundary of the flange a true

parabola (or any other curve). Hence, the flange is generally

construtied as follows:

Draw the curve of bending moments to any given scale.

By altering the scale, the ordinates of the same curve will

represent the flange thicknesses. Divide the span into seg-

men':s of suitable lengths.

From A to i and B to 7 the thickness of the flange is

\a = 7/; from 1 to 2 and 7 to 6 the thickness is 2b = ^e ; from

2 to 3 and 6 to 5 the thickness is 3^ = ^d\ and from 3 to 5 the

thickness is CO.

The more correct value of A\ = -. >-) is somewhat
\ Jy 6 1

less than that now determined, but the error is on the safe

side.

Again, at any section.

E 2/
and hence R a y, the depth.

Thus the curvature diminishes as the depth increases, so

that a girder with horizontal flanges is superior in point of

stiffness to one of the parabolic form. The amount of metal

in the web of the latter is much less than in that of the

former. If great flexibility is required, as in certain dyna-

mometers , the parabolic form is of course the best.

9. Deflection of Girders.—The principles of economy and

strength require a girder to be designed in such a manner that

every part of it is proportioned to the greatest stress to which

it may be subjected. When such a girder is acted upon by

external forces, it is uniformly strained throughout, and in

bending, the neutral axis must necessarily assume the form of

an arc of a circle, provided the limit of elasticity is not ex-

ceeded. It might be supposed that the curve of deflection is

dependent upon the character of the web, and this is doubtless

the case, but experiments indicate that so long as the flange
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unit stresses are unaltered in amount, the influence of the web

may be disregarded without sensible error.

Let /be the unit stress in the beam at a distance y from

tlie neutral axis ; let d be the depth of the beam. Then

/
y

M_E — a constant,

assuming that the neutral axis is an arc of a circle of radius R.

But y a d, and

/ = Ak' a Ad\

Hence /a jj' a d; and if the depth is constant, /is also con-

stant and the beam is of uniform strength.

If the area A is constant,

d a Vll.

Example i. A cantilever bent under the action of exter-

nal forces, so that its neutral axis A '> assumes

the form of an arc of a circle having its centre ^^^^^::^~/

X Draw the verticals OA, BF, and the horizon-
j

'
^

Vals BE, FA.
\

The vertical deviation of /> from the hori- |

zontal, viz., BF, is the maxiniuiv deflection.

Denote it by D. 6

Let radius of circle = K.

Since the deflection is very small, BE is approximately

fjqual to AB { = /), the length of the cantilever.

.-. r = BE' = AE{2R -AE)^ iRD - D' = 2RD,

as D' may be disregarded without much error.

Also, the deflection at any point distant x from A is evi-

x"
dently --^. If /is the stress in the material at a distance _y

from the neutral axis,

I ./

y- R
2DE

or f =
2DEy

rjfii

%\\m
•»

.

I 111 ' n »

M 111
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I

Ex. 2. A girder resting upon two supports at A and B
is bent under the action of external

forces so that its neutral axis ACB
assumes the form of an arc of a circle

having its centre at O.

Draw the vertical OC, meeting the

.B horizontal AB in F.

CF is the maximum deflection ;

denote it by D,

Since D is very small, its square

may be disregarded and the horizontal AB may be supposed

equal to the length ACB {^
— I) of the girder, without much

error. Then

- = AF' = FC{2R - FC) = 2RD - D' = 2RD.

Fig. 299.

Hence,

Aho, since - =

y

D =
SR'

V.

K
V \

p

/
WEy

The deflection at a distance x from F = D —
2R'

Ex. 3. A timber beam of 20 ft. span, is 12 in. deep and 6

in. wide : what uniformly distributed load
( W) will deflect the

beam i in., E being 1,200,000 lbs.?

By EX. 2,

(240)»
I ^D = ^-^

SR

Also,

IV.20

8
-

. 12 RI
-

R — 7200 in.

1200000 <5df' 1200000 6.12'

7200 12 7200 12

W = 4800 lbs.
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Ex. 4. Let s^, f^, d^, and s^, f^, d,, respectively, be the

length, unit stress, and distance from the neutral axis of the

stretched and compressed outside fibres in Examples (i) and

(2).

Let d^-{- d.^ = d — the total depth of the girder.

Hence, from similar figures.

s, R + d, s, R-d,
1 = -R~ ^"^ 1=-R-

Also,

s, — s^ d^ -f- d^ d
I '~ R ~ R'

f._ s,-l d, f^ l-s,
E~ I -R ^""^ R- I

. /, +/. „ 1
-•?

» _ ^. + < _ d_

" E ~ I
'~

R'

R R

Ex. 5. A truss of span 120 ft. and 15 ft. deep is strained

so that the flange tensile and compressive unit stresses are

10,000 and 8000 lbs., respectively. Find the deflection, and

difference of length between the extreme fibres.

lOooo+Sooo _s^— s^ 15

30000000 "" 120 ~ R '

il- -i!

'•%,

i

.*. .f, — jj = .864 in., and R = 25,000 ft.

Hence also D = (i2oy

8 X 25000
= .864 in.

10. Camber.—Owing to the play at the joints, a bridge-

truss, when first erected, will deflect to a much greater extent

i :

I I
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than is indicated by theory, and the material of the truss will

receive a permanent set, which, however, will not prove detri-

mental to the stability of the structure, unless it is increased

by subsequent loads.

If the chords were made straight, they would curve down-

wards, and, although it does not necessarily follow that the

strength of the truss would be sensibly impaired, the appear-

ance would not be pleasing.

In practice it is usual to specify that the truss is to have

such a camber, or upward convexity, that under ordinary loads

the grade line will be true and straight.

The camber may be given to the truss by lengthening the

upper or shortening the lower chord, and the difference of

length should be equally divided amongst all the panels.

The lengths of the web members in a cambered truss are

not the same as if the chords were horizontal, and must be

carefully calculated, otherwise the several parts will not fit

accurately together.

To find an approximate value for the camber, etc.

:

Let d be the depth of the truss.

Let i", , .y, be the lengths of the upper and lower chords,

respectively.

Let y",
,
y"j be the unit stresses in the upper and lower

chords, respectively.

Let ^, , ^j be the distances of the neutral axis from tiie

upper :ind lower chords, respectively.

Let R be the radius of curvature of the neutral axis.

Let / be the .span of the truss.

R -^- and -^ = —
^
— = -7- , approximately,

the chords being assumed to be circular arcs.

Hence, the excess in length, of the upper over the lower

chord.

L
respe

and 1(

of the

tween

He

and

Hen

Note,

truss is <

per 100

II. a

of span

measure

In pn

the work

limited t(

/

A tim

per 30 ft.
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Let -r, , X, be the cambers of the upper and lower chords,

respectively. R -{- d^ iix\6 R — d^ a: the radii of the upper

and lower chords, respectively.

By similar figures, the horizontal distance between the ends

of the upper chord = —^—'l, and the horizontal distance be-

tween the ends of the lower chord = tt-I'R
Hence,

11^± <
\2 R l\ — x^. 2{R -f- d^)f approximately,

and

(

'B~^^) — ^t • ^(-^ ~ ^a)' approximately.

•'• ^' "^ SRV + RJ ^"^ ^, = TT^l I - ^- ).SRV R

Hence, approximately, the camber = ^ — o^ •

A^ote.—The deflection of a well-designed and well-built

truss is often much less than, and should never exceed, i inch

per 100 ft. of span under the maximum load.

II. Stiffness.— If D is the maximum deflection of a girder

W D
of span / under a load W, then yr, or more usually —, is a

measure of the stiffness of the girder.

In practice, the deflection of an iron or a steel girder, under

/ /
the working load, should lie between and 7-—, i.e., it is

limited to i or 2 in. per 100 ft. of span, and rarely exceeds

, or 1.2 in. per 100 ft. of span.
1000 ^

/
A timber beam should not deflect more than —^, or i in.

per 30 ft. of span.

360'

1'.' :.

'fit
''

; I i!
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Let M^ be the bending moment at the most deflected

point. Then

Also,

Z?oc -^ a

M, = \l.

/' MJt^ M,l

R El =P-Er

p being a numerical coefficient (in Art. 9, Ex. \,p — h\ in Ex.

Thus

M.
' pi\irpi

gives the bending moment J/, to which the girder of a speci-

D
fied stiffness -y may be subjected.

Again, if the material is to bear a certain specified unit

stress /, the maximum bending moment M^ to which the

girder may be subjected is given by the equation

f f

c qd

q being a numerical coefficient less than unity, depending upon

the form of the section,

Cceteris paribuj, the ratio of depth to span may be fixed

by making the stiffness and strength of equal importance. Then

J/, = M^ ; and therefore

pl\ 1 1 qd

or

d llpf

J is

1!
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In practice the proper stiffness of a girder is sometimes

/
secured by requiring the central depth to lie between — and

/
Q , its value depending upon the material of which the girder
o

is composed, its sectional form, and the work to be done.

Example.—A cast-iron beam of rectangular section and of

20 ft. span carries a uniformly distributed load of 20 tons ; the

coefficient of working strength is 2 tons per sq. in. ; the stiff-

ness is .001 ; E is 8o(X) tons. Find the dimensions of the beam
viz., b the breadth and d the depth.

20 . 20 / , bd^ bd*M ——r— .12=-/= 2-2- - — ;

8 c 63'

Also,

20

bd" = 1800.

Jil/D\ S.Sooo. bd'

8

Hence,

.20 ,^ A^/M 8.»ooo.M' ,-..,, = M= jj[j)=
—--^ . (.00.)

;

/. bd^ = 27000.

27000 . , , „ .

d=~-x— = 15 m. and ^ = 8 m.
1800 ^

12. Distribution of Shearing Stress.—Let Figs. 300 and

301 represent a slice of a beam bounded by two consecutive sec-

A A'

X

iC|-

I

.dt- ix i.
0'

•*;^ Pig. 300.

tions AB, A'B', transverse to the horizontal neutral axis 00'.

Let the abscissae of these sections with respect to an origin

^

Mi
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in the neutral axis be x and x -\-dx, so that the thickness of

the slice is dx.

In the limit, since dx is indefinitely small, corresponding

linear dimensions in the two sections are the same.

Let / be the moment of inertia of the section AB (or A'B'

in the limit) with respect to the neutral axis.

Let c be the distance of A (or A' in the limit) from the

neutral axis.

Let/,
, /a be the unit stresses at A and A' , respectively.

Consider the portion ACCA' of the slice, CC being

parallel to and at a distance Y from the neutral axis. Since

it is in equilibrium, the algebraic sum of the horizontal forces

acting upon it must be nil. These forces are:

The total horizontal force upon ACC,
•' " " " " A'C'C, and
" **

" shear along the sufface CC

.

The horizontal force upon an element PQ of thickness dy
and at a distance _>/ from the neutral axis

= f^^"dy,

z being the width PQ. Thus the total horizontal force upon

ACC

= :s(|j."^/) = ^^:^{yzdy) =^^jyzdy = ^Ay,

I
A being the area of ACC, and y the distance of

I

gravity of this area from 00'.

Similarly, the total horizontal force upon A'C'C

the centra of

= i^^J'^yzdy = ^-Ay.



Hence,
f--' _ ^i-j z--

"Pon ACCand A'C'C- Jiorizontal shear alo,,.. ^r'

1 being the intensity of this sh.. .section at CC.
^ " ''^"^''' ^"^ zo fhe width of the

Let M and J/ _ ^j/ l

consecutive sections ^^ 2'T Th""^'"^
'"'^"^^"^^ '-^^ ^^'^ two

' ' -'^ • 1 nen

and therefore

Hence,

^^=7/ and M~.dAI=^/i/
c '

'!^=(7-f>.

or

/ ^J' = qwdx,

dx T^i^y^
dM
"•^ to '*Jrce at the section AB = s

or
12

and tlie intensity of the shear .f •
^'«- -•

4 be

t '%'-
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The maximum intensity of shear is at O and its value is

_ 3 5

The value of the average intensity is

sistiny

by tivL

To
betwee

q.^v
=

b . 2C

Ex. 2. A hollozo rectangular section; B and 2c being the

external and B' and 2c' the internal ividth and depth.

At the neutral axis,

q{B - B') =
f I f/

- .")+ ^^- (.' - F')
I

.

Thus, as in Ex. i, the intensity of shear is again greatest at

the neutral plane, i.e., when Y = O.

Ex. 3. Solid circular section 0/ radins c.

.<r = r2j i^c' -fdy = i{c^ - F')».

= 2(f' - V')\ and / = -

q= —-U — Y\

nc^

and the intensity of the shear at any point of AB may be rep-

resented by the horizontal distance of the point from the pa-

rabola AVB, where 01^="^

Also, q, -^ and q^^, = —,
inc* nc

neglect!

Hen

Let .

Let t

the total

Let t

inch, and
the flangi

and its dii

If the

be subject

intensity c

hence

•'• <ima-x. ' Qav. • • 4 • 3* its diamete



DISTRIBUTION OF SHEARING STRESS. 395

Ex. 4. A double-flanged section, each of the flanges con-

sisting oi Jive 8-in. X ^-in. plates riveted to a 24-in. X i-in. web
by ttuo 3-in. X 3-in. X i-in. angles.

To find the intensity of shear at the surface of contact

between the angles and the flange :

^^ = 20 X I3i = 265 ; w; = 6i in. ; / = 8975I,

neglecting the effect of the rivet-holes in the tension flange.

Hence

q=^S
2120

466739

Let 5 = 49 tons. Then q — .2226 ton per square inch.

Let the rivets have a pitch of 4 in., then

the total shear on each rivet = — X 4 X .2226 = 2.8938 tons.
2

Let the coefficient of shearing strength be 4 tons per square

inch, and suppose that the surfaces of the angle-irons and of

the flange are close together ; then

. . ^ 2.8938
area of rivet =—^^- = .7234 sq. in.,

4

and its diameter = .96 in.

If the surfaces are not close together, so that the rivet may
be subjected to a bending action, then, by Ex. 3, the average

intensity of shear in a section =1.4=3 tons per sq. in., and

hence

area
r • ^ 2.8938 ^ ^

of rivet = —^^ = .9646 sq. in.

;

3

its diameter is i.i in.

^il
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13. Beam acted upon by Forces Oblique to Its Direc

tion, but lying in a Plane of Symmetry— In discussiti^r the

Cviuilibriiiin of such a beam the forces may be resolved into

components parallel and perpendicular to the beam, and their

respective effects superposed.

Fig. 304.

Let AB\iG. the beam, P^, P,, P^, . . . the forces, and «,,«,,

vi^ their respective inclinations to the neutral axis.

Divide the beam into any two segments by an imaginary

plane MN perpendicular to the beam, and consider the seg-

ment AMN.
It is kept in equilibrium by the external forces on the left

of MN nwd by the elastic reaction of the segment BMN upon

the segment AMN at the plane MN.
The resultant force along the beam is the algebraic sum of

the components in that direction, of /*,,/*,, P,, ...
,

= P, cos o', + /*, cos a, -f" • • • = -^(-^ cos a).

It may be assumed that this force acts along the neutral

axis, and is uniformly distributed over the section MN.

Thus, if A is the area of the section, ~^^—:;
'- is the in-

A
tensity of stress due to this force.

Again, the components oi P^, P^, P^, , . . , perpendicular to

the beam, are equivalent to a single force and a couple at JSIN.

The single force at MN is the Shearing Force, is per-

pendicular to the beam, and is the algebraic sum of P, sin ^j,

i^a sin flfj, . . .
,

= P^ sin Of,
-f- /'j sin a-, -|- • • • = ^(^ sin a).
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This force develops a nie.iii taii^s^intial unit stress of

—i—^

—

— in MN, and deforms the beam, but so slightly as to

be of little account.

The moment of tiie couple is the algebraic sum of the

moments with respect to Jl/N oi /*, sin tx^ , J\ sin ry, , . . . ,

= J\ sin f*-,/, 4- ^\ •'^'" <^!iA + • • • = ^{^/> sin a),

/,,/»,,,... bcin^f respectively the distances of the points of

application of l\ , J\, . . . trom MN.
Now, 2^{Pp sin a) is the resultant moment of all the external

forces on the left of MN, for the resultant moment of the com-

ponents along the beam is evidently nil. Hence,

and

2i{Pp sin oi) = M=^/z= i'l,

/,. = ^j^{Pp sin a).

is the unit stress in the material of the beam at a distance y
from the neutral axis due to the bending action at il/A'of the

external forces on the segment AMN.
Hence, also, the total \xx\\X. stress in the material in the plane

JAVat a distance J from the neutral axis is

^(/^ cos ot) ^ 2iP cos a) y , ^

• I

the signs depending upon the kitul oi stress.

It will be observed that this formula is composed of tivo

intensities, the one due to a direct pull or thrust, the other due

to a bending action. The latter is proportional to the distance

of the unit area under consideration from the neutral axis. It

is sometimes assumed that the same law of variation of stress

holds true over the real or imaginary joints of masonry and

brickwork structures, e.g., in piers, chimney-stacks, walls,

arches, etc. In such cases the loci of the centres of pressure

correspond to the neutral axis of a beam, and the maximum
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and minimum values of the intensity occur at the edges of the

joint.

Example i. A horizontal beam of length /, depth d, and

sectional area A is supported at the ends, and carries a weight

^Fat its middle point. It is also subjected to the action of a

force H acting in the direction of its length.

First. Let the line of action of //coincide with the axis of

the beam.

The intensity of the stress in the skin at the centre

But coid, and / = Ale" a Ad\

- <xAd— —

,

C 11

n being a coefificient depending upon the form of the section.

I^ the section is a circle, « = 8; V a rectangle, n — 6.

Hence,

, , . /// n W l\
the skm stress = ± -li \i -t- - ^j-,],

/i \ A. £1 a.'

since M Wl

4

If the load W is uniformly distributed, J/ Wl
8

Thus, a very small load on the beam may considerably in

crease the intensity of stress, and this intensity will be still

further increased by the deflection of the beam under its load,

so that, in order to prevent excessive straining, it is often

necessary to introduce more supports than are actually required

to make the beam sufficiently stiff.

Second. If the line of action of H is at a distance // from

the neutral axis, an additional bending moment Hh will be in-

troduced.
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Ex. 2. The inclined beam OA, carrying a uniformly dis-

tributed load of w per unit of length, is supported at A and rests

against a smooth vertical surface at O.

The resultant weight xvl is vertical <

and acts through the centre C of OA ;

the reaction R^ at O is horizontal.

Let the directions of wl and R^ meet

in B. For equilibrium, the reaction R^

at A must also pass through B.

Let the vertical through C meet the

horizontal through A in D.

The triangle ABD is a triangle of forces for the three forces

uhich meet at B.

Fig. 305.

R^_Ap
wl ~ BD

AD I—
T^T-= ~ cot or,

2.DC 2

OL being the angle OAD. Hence

wl
R, = — cot a.

2

Consider asection A/N, perpendicular to the beam, at a di&.

tanco X from O.

The only forces on the left of JAV are R^ and the weight

upon OAL This last is 7C'x, and its resultant acts at the centre

of OA/, i.e., at a distance - from A/N.
1

' I

i k

The component of R^ along the beam

tol cos° a= R, cos a = ;
,

2 sm a

The component of R^ perpendicular to the beam

= R, sni o! = -- cos a.
'

2
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The component of ivx aloii^ the beam =: lox sin a.

The component of Jia'perpendicuhir to the beam = w;ircos i^.

Hence,

the total compression at NM ^=. ——-_ + 7CU" sin « =: c»

;

2 sm a

the sheariiiLT force at MN ivl= — cos /f — Ti'.r cos <!" = o^

;

the bendinij moment at MN =^ x— cos ^r — lox cos ex = M-

and

/.'=§'-±>I/.-

These expressions ina\' be interpreted ^ra[)hii: " v as ah'cady

describeil, c^., ,
^"., bein^- repri-senti^d b\' the ordinates of straight

lines, and J/, , fy by the ordinates of parabolas.

fy , for example, consists of two parts which may be treated

independently. Draw OE and AF
perpendicnlar to OA,m\(S. respectively

equal or proportional to

tvl cos" a

2A
jI cos a

sni a
and

2A sin a +
TV,

A
sm a.

Ftg. ;o6.

Join /:F. The unit stress at any

point of the beam due to direct com-

pression is represented by the ordinate (drawn paraiiel ! cV:

or AF) from that poin*- to EF\

Upon the line GC drawn through the middle point /. i-e:

pendicular to 0^1, take 7^0 = BG', equal or proportional lo

yivP

I 8

'

cos IX. According as the stress due to the bending action

at any point of the beam is compressive or tensile, it is repre-

sented b\- the ordinate (drawn parallel to OE and AF) from

that point to the parabola OGA or OG'A ; G and G\ respec-

tivel}', being the vertices, and GG' a conimcn axis.
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the unit stresses are inThe r,/ "r "" '^••P"' = ^o ft Also
-iglns in the ratio Z "^IX/'

'° '" ^°' ^'^ '"e breat!:,!:

*:,

I



402 THEORY OF STRUCTURES.

i6. To Discuss the Relations between the Correspond-
ing' Sectional Areas, Moments of Inertia, Weights, Bend-
ing Moments, etc., of two Girders which have the same
Sectional Form and are thus related :

The forces upon the one being /'
, P.^, 1\, . . . with abscissa.'

X^, x^, x^f . . . those upon the other are nP^, /i/\, nP^, . . .

with abscissa px^
,
px,

,
px^

.

The spans and corresponding lengths are in the constant

ratio/.

Corresponding sectional breadths are in the constant ratio ^7

Corresponding sectional deptlvs are in the constant ratio /-.

Let A, J be corresponding sectional areas;

S. S

'

M. M'
/./'

s.s'

A\ A''

^, J'

W, W

moments of inertia
;

weights
;

shearing forces
;

bending moments;
flange unit stresses

;

web unit stresses
;

radii of curvature
;

deflections ;

breaking weights.

.*. (a) A a product of a breadth and depth

;

:. A' — Aqr.

(/?) / a product of a breadth and the cube of a depth

;

.-. /' =Iqr\

iv) Q °^ product of a length, breadth, and depth
;

.: Q' = Qn = Qpqrp,

p being the ratio of the specific weights of the materials of the

girders.

If the materials are the same,

/J — I and n — pqr.

(C)

E

ficients of

IS

(>*•) ^isp

Wence, the
tho je of A, /,
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{S) S' — Sn = Spqrii, for, from (;/), n = pqrp.

(e) Mh the product of a force and a length

.-. M' = Mnp — Mp^qrp,

403

(0
. cM cM'
f=-j and f' = ^r-\

'• / ~
c M f

I /
rnp—^ = -ft.

(»?)

5
, ,

S'

s
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Hence, the values of A', I', Q', . , , may be derived from

those oi A, I, Q, . . .hy means of certain constant multipliers.
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404 THEOKY OF STRUCTURES.

Cor. I. Tf the two girders are similar and of the same
material,

p = q =1 r — 1.1, E =^ E' , and p=l.

Hence,

from (;), Q,' = Qix, and the weij^hts vary directly as the

cubes of the linear tiimensions;

Thi

'• (e), M' = i^/'S and the bending moments vary directly

as the foil It !i powers of the linear tli

mensions;

" (C) and (>/), -V = /' =^ : , and the flange unit stresses vary
J ^

directly as the web unit stresses;

("^ ^--

'•
^/), = yu'. and the deflections vary directly as the

squares of the linear dimensions

;

W
" ('^) \Ar — A<'' an^^ ^he breaking weights vary directly as

the squares of the linear dimensions.

Cor. 2. Let the girders he of the same material, of equal

length, of c(|ual rectangular sectional areas, and equally loaded.

Let b, l\ , and </, </, , respectively, be the breadths and

depths of the girders. Then
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Hence, b =

THEORY OH STRUCTURES.

WA
W, - B,

'
B

W,B,

W, - B,
and W - w:

w, - b:

Example.—Apply the preceding results to a cast-iron

girder of rectangular section resting upon two supports 30 ft.

apart. The girder is 12 in. deep and carries a uniformly dis-

tributed load of 30,000 lbs.

Take 4 as a factor of safety ; b, is given by

120000 _ b/i^

where C

Hence,

30,000 lbs., d— 12 in., and / = 360 in.

;

.-. b,= S in-

B, = ^ ^ '^
X 30 X 450 = 5625 lbs.

;

144

W,- B, = 30000 - 5625 = 24,375 lbs.

;

30000.5 . „ .

b - = 6^ in.

;

24375 ^-

B = ^°°^ X 5625 = 6923^ lbs. ;

24375

IV= lV,-\-B= 36,923tV lbs.
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EXAMPLES.

1. An iron bar is bent into the arc of a circle of 500 ft. diameter;

the coefficient of elasticity is 3o,ooo,cxx> lbs. Find tlie inomenlof resist-

ance uf a section of the bai and the nuixinium intensity of stress in the

inclal, (a) when the bar is round and i in. in diameter, (<5) wiien the bar

is square having a side of i inch.

If tlie metal is not to be strained above 10,000 lbs. per sq. in., find (c)

the diameter of the smallest circle into which the bar can be bent.

Ans.-—Ui) '''j5ff in. lbs.; 5000 lbs. {d) 833]^ in.-lbs.; 5000 lbs. (r» 250 ft.

2. A piece of timber 10 ft. lon<.j, 12 in. deep, 8 in. wide, and having a

working strength (jf 1000 lbs. per sq. in., carries a load, including its

own weight, of iv lbs. per lineal foot. Find tiie value of lu, {a) when the

timber acts as a cantilever; (h) when it acts as abeam supported at the

ends. Find (< ) stress in material 3 in. from neutral axis at fixed end of

cantilever and at middle o[ beam.

Ans. -((I) 320 lbs.; (/') 1280 lbs.; (t) 500 lbs. per sq. in.

3. Is it safe for a man weighing 160 lbs. to stand at the centre of a

spruce plank 10 ft. long, 2 in. wide, and 2 in. thick, supported by vertical

ropes at the ends.? The safe working strength of the timber is 1200 lbs.

per sq. in.

Ans. No ; the maximum safe weight at the centre is 53i lbs.

4. Compare the uniformly distributed loads which can be borne by

two beams of r'^ctangular section, the several linear dimen.-iions of the

one being n times the corresponding dimensions of the other. Also

compare the moments of resistance of corresponding sections.

Ans. «" ; «'.

5. A cast-iron beam of rectangult.r section, 12 in. deep, 6 in. wide, and

16 ft. long, carries, in addition to its own weight, a single load P ; the

coefficient of working strength is 2000 lbs. per sq. in. Find the value ot

/• when it is placed {a) at the middle point; {d) at 2^ ft. from one end.

Ans.—{a) 4200 lbs.
; (/;) 9577 J lbs.

6. A round and a square beam of equal length and equally loaded are

to be of equal strength. Find the ratio of the diameter to the side of the

square. Ans. \/^6 : ^33.

407



408 THEORY OF STRUCTUKEH.

7. Compare the relative strcngtlis of two btanisnf the same length and

naterial (a) when the sections are similar and iiiu. areas in tiie ratio

of I to 4; {b) when one section is a circle and the other a square, aside of

the latter being equal to the diameter of the former.

Ans, (a) I to 8 ; (d) 56 to 33.

8. Compare the strength of a cylindrical beam with the strength of

the strongest (a) rectangular and (d) square beam that can be cut from it.

Afis. (a) 112 : 99 ^3"; id) 33 • 14 \/2.

9. A boiler-plate tube 36 ft. long, 30 in. inside diametei, weighs 4200

lbs. and rests upon supports 33 ft. apart. Find the maximum intensity

ol stress in the metal. What additional weight may be suspended from

the centre, assummg that the stress is nowhere to exceed 8000 lbs. per

sq, in.? The tube to be of steel.

A/ts. 741 J lbs. per sq. in.; i8,854,',gj| lbs.

10. Compare the relative strengths of two rectangular beamsof e'|uai

length, the breadth (l>) and depth («') of one being the depth {/>) and

breadth {d) of the other. Afts. li- : b'\

11. A yellow-pine beam 14 in. wide, 15 in. deep, and resting upon sup-

ports 129 in. apart, was just able to bear a weight of 34 tons at the cen-

tre. What weight will a beam of the same material, of 45 in. span and

5 in. square, bear? Ans. \\\ tons.

12. A cast-iron rectangular girder rests upon supports 12 ft. apart

and carries a weight of 2000 lbs. at the centre. If the breadth is one-

half \.\\z depth, find the sectional area of the girder so that the intensity

of stress may nowhere exceed 4000 lbs. per sq. in.

Ans. iS sq. in.; if weight of girder is to be taken into account,

the depth d is given by d* — \.o\2i^d'' — 216 = 0.

13. Find the depth of a wrought-iron girder 6 in. wide which might be

substituted for the cast-iron girder in the preceding question, the coeffi-

cient of strength for the wrought-iron being 8000 lbs. per sq. in.

Ans. 3 in.; if weight of girder is to be included, the depth d is

given by d^ — 54^/ —9 = 0.

14. An oak beam of circular section and 22 ft. long is strained to the

elastic limit (2 ions per sq. in.) by a uniformly distributed load of 2^
tons. Find the diameter of the beam. Wiiat load 2 ft. from one end

would strain the material to same limit? Ans. 7 in.; 2^^^ tons.

1 5. A uniform beam of weight Wi crossing a given span can bear a uni-

formly distributed load JV-x. What load may be placed upon the same

beam it it crosses the span in n equal lengths supported at the joints by

piers whose widths may be disregarded ? Ans. n^{ fVi + IVt) — IVt.
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36.ooo.ouo lbs.
'"-^b«- '^'nd its radius of curvaturr/rbd';,;

17 D t

'^''''" ''^^ '"•

'4 111. /torn one enH i- i

"-o give wavuruern lf^ .,i f

»9. Compare the niomeiif<5 r.(

.20. A stress of , lb. per so in .
-^

' • '
"r

4 .

,
:2.

/ '2in. squareand-oft fw ^ P''°'^"^'^sastrainof • u

-000 lbs. at tho midill,: ,,„,n,

"• deep, was -cceslve y L ,
°

'",
"««- supports. 9 ,„. „„, „„ ,

rry:„Vt:;r„r'v«""-'"-e^^^^^^'"'''' >''"rk done in h»„rfi ' °'' '"• ""k^ 1.28 inWhat were the corre „,rf "''"'S "'« l^eam.
"•

beam >
^°"'-

^"""'S 'nch-stresses at -} „f ,he h ,.

^H, f .0 ,„
* ° depth of the

^ «: The effective length of the C„
'

' * '°"'-

effec.,ve dep.hsof „ ,„Ja. rt tn'^t el^d 'f:"
'""«'= '» ^- "• 'he

'tnd 461 sq. in. at the quarter spans\ ^"^ ^^"""^ «"d 566 sa inof the web are 257 so in .7 '
^^^ corresponding sertL ,^" '

f.,K .. .
•'' "• '"• and 241 sn I'n A "'"s sectional arena

f



410 THEORY OF STRUCTURES.

central flange stresses iiiulcr a uniformly distributed live load of } ton

per lineal foot? (Oih- ton = 2240 lbs.)

Alts. At iiiifrt' -- = 176,708; /, = 4.59 tons per sq. in.;

/ = 394
Dclk'Ctioii — 8.56 in.

h\ quarter span = 140,278 ;/<= 1.367 " " " "

/, = 1.158 " " " ••

Deflection = 6.72 in.

The stresses and deflections are increased by the live load in

the ratio of 5 to 4.

23. A plate girder of 64 ft. span and 8 ft. deep carries a dead load of 2

tons per lineal foot. Aianysoclion the two flanges are of equal area, and

their joint area is equal to that of the web. Find the seciiouul area at

the ci'iitre of the girder, so that the intensity of stre.ss in the metal may
not oxceed 3 tons per sq. in. Tlie (iitlcctiou of ilie girder i.s

i in. at

the centre. Find A' and the radius of curvature.

Ans. 128 sq. in. ; 15,360 fi.; 25,804,800 lbs.

24. Taking liie coefficient of direct elasticity at 1 5,000 tons, the coelR-

cient of lateral elasticity at 60,000 tons, and the limit of elasticity at 10

tons, determine the greatest deviation from the straight line of a wrought-

iron girder of breadth ^v and deplli d. /;'^
Ans.

2\QOOd

25. Find the stress at the skin and also at a point 2 in. from the neu-

tral axis in a piece of 10" x 8" oak, (<i) with the 10
' side vertical ; {l>\ with

the S side vertical. The oak rests upon supports 3 ft. apart and carries

a load of 4900 lbs. at its middle point. Also compare (c) the strength of

the beam with its strength when a diagonal is horizontal.

Ans.—{a) 33of ; x^^i^^ lbs. per sq. in.

(b) 413,7, ; 2o6|i
'•

(f) 4 : 1/41" or 5 : 1^^.

26. Find the uniformly distributed load wliich can be borne by a

rolled T iron beam, 6" X4" x i", 10 ft. long, fixed at one end and free at

the other, the coefficient of strength being 10,000 lbs. per sq. in.

Ans. 438 lbs.

27. One of the tubes of the Britannia bridge has an etiective lengtii of

470 ft., depth of 27^ ft., and deflects I2in. at the centre under a uniformly

distributed load of 1587 tons. Find A" and the central flange stresses, the

sectional areas of the top flange, bottom flange, and web being 648 sq. in..

585 sq. in., and 302 sq. in., respectively.^

Ans. K — 12,910,496 lbs. ; Jt — 5.3 tons per &q. in.;

fc = 4.88 " " " "

38.
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28. Find the moment of resistance to bending, of a steel I-heam, each

flange consisting of a pair of 3-in. x 3 in. x \ in. angle-irons, riveted to

a 12 in. X 'i in. web, the coeflicient of strength being 5 tons per sq. in.

What load will the beam carry at 5 ft. from one end, its span being 20

ft. ? Find tlie central deflection, and also the dcflectiun at tiic loaded

point, E being 15,000 tons.

Ans. 287^ J in.-tons ; (i\\\ tons disregarding weight of beam, or

6jYhYo '""** '^ weight o.' beam is taken into account ; deflection

at centre = | in., at loaded point = ^ in.

29. A shaft 5J in. deep x 5 in. wide x y8 in. long has one end abso-

lutfly li,\ed, while at the other a wheel turns at the rale of 270 revolutions

per minute; a weight of 20 lbs. is concentrated in the rim, iis C. of G.

being 2^ ft. from the axis of the shaft. Find the lUiiximum stress in the

material of the shaft, and also find the maximum deviation of the shaft

from the straight, E being 27,000,000 lbs.

Ans. 4860 lbs. per sq. in. ; .31431 in.

30. The square of the radius of gyration of the equal-flanged section

of a wrought-iron girder of depth d is \.^ti''\ the area of the section

= \d'' ; the span = 50 ft. In addition to its own weij^ht it carries a uni-

formly distributed load of 1 4'^ lbs. per lineal foot; the tnaxinuim intensity

of stress = 10,000 lbs. per sq. in. Find the depth. Also determine the

j/{^«t'j^, /: being 25,000, )o lbs. Ans. 3} i"-; i?,T'

31. The central section of a cast-iron girder is loj in. deep; its web

area isyfz/^' times the area of the topflanyc, and the moment of resistance

of the section is 300,000 in.-lbs.; the tensile and compressive intensities of

stress are 3000 and 7500 lbs. per sq. in., respectively. Find the span and

load so that the girder may have a stiffness = .001, E being 17,000,000

lbs.

Ans. ai = I2,«^ sq. in. ; at = ijj? sq. in. ; rts + a« = 9j| sq. in. ;

span = 136 in.; uniformly distributed load = 21176,"- lbs.

32. A double-flanged cast-iron girder i4in.deepand2oft. between sup-

ports carries a uniformly distributed load of 20 tons. Find suitable di-*

mensions for the section, the tensile and compressive inch-stresses being

2 tons and 5 tons, respectively. Also find the stiffness of the beam, E
being 8000 tons.

Ans. Let thickness of web = i in.; «» = 22||^ sq. in.; a^ = 4tVj
sq. in.; stiffness = .001875.

33. The deflection of a uniformly loaded horizontal beam supported .'t

the ends is not to exceed i in. in 50 feet of span, and the stress in the m.i-

terial is not to exceed 400 lbs. per sq. in. Find the ratio of span to

depth, E being 1,200,000 lbs. per sq. in., and the neutral axis being at

half the depth of the beam. Ans. 20.

34. Two equal weights are placed symmetrically at the points of tri-

section of a beam of uniform section supported at the ends. These weights

„-
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c

c

are then removed and other two equal weights are placed at the quarter

spans. Find the ratio of the two sets of weights so that the maximum
intensity of stress may be the same in each case. Also show that the

stiffness of the beam is the same in each case. Ans. 3 to 4.

35. A cast-iron beam has a cruciform section with equal ribs 2 in.

thick and 4 in. long. If the intensity of longitudinal shear at the neutral

axis is I ton per sq. in., find the total shear which the section can

bear, and also find the moment of resistance, the least coefficient of

working tensile and compressive stress being i ton per sq. in.

Ans. 59.31 tons; 34.4 tons.

36. If a spiral spring is fastened to the barrel so that there is no

change of direction relatively to the barrel, show that the tendency to

unwind is directly proportional to the amount of winding up. (Con-

dition of perfect isochronism.)

37. Show that the modulus 0/ rupture oi any material is 18 tunes the

load which will breaka beam 12 in. long, i in. deep, and i in. wide when
applied at the centre.

38. Find the limiting length of a wrought-iron cylindrical beam 4 in.

in diameter, tiie modulus of rupture being 42,000 lbs. What uniformly

distributed load will break a cylindrical beam of the same material 20 ft.

lung and 4 in. in diameter ? Ans. 64.8 ft. ; 8800 lbs.

39. A red-pine beam 18 ft. long has to support a weight of lo.ooolbs.

at the centre. The section is rectangular and the depth is twice the

breadth. Find the transverse dimensions, the modulus of rupture being

8500 lbs., and 10 being a factor of safety. (Neglect the weight of the

beam.) Ans. b = 9.84 in. ; d =. 19.68 in.

40. A round oak cantilever 10 ft. long is just broken by a load of 600

lbs. suspended from the free end. Find its diameter, the modulus of rup-

ture being 10,000 lbs. (Neglect the weight of tlie beam.)

, Ans. 4.185 in.

"^41. Determine the breaking weight at the centre of a cast-iron beam
of 6 ft. span and 4 in. square, the coefficient of rupture being 30,000 lbs.

Ans. 26,6661 lbs.

''
42. The flooring of a corn warehouse is supported upon yellow-pine

joists 20 ft. in the clear, 8 in. wide, 10 in. deep, and spaced 3 ft. centre

to centre. Find the height to which corn weighing 48^ lbs. per cu.

ft. may be heaped upon the floor, 10 being a factor of safety and 3000

.lbs. t!ie coefficient <^f rupture. Ans. .68 li.

'
43. A yellow-pine beam 14 in. wide, 15 in. deep, and resting upon sup-

ports 126 in. apart, broke down under a uniformly distributed load of

60,97 tens. Find the coefficient of rupture. Ans. 2731.456.



EXAMPLES. 413

44. Find the breaking weight at the centre of a Canadian asli beam
2\ in. wide, %\ in. deep, and of 45 in. span, the coefficient of rupture being

7250. Ans. A9^h^iy^ 't»s.

45. A timber beam 6 in. deep, 3 in. wide, 96 in. between supports, and

weighing 50 lbs. per cu. ft., broke down under a weight of 10,000 lbs.

at the centre. Fmd tlie coefficient of rupture. Ans. 891 1
J.

46. A wrought-iron bar 2 in. wide, 4 in. deep, and 144 in. between sup-

ports, carries a uniformly distributed load IV in addition to its own
weight. Find W, 4 being u factor of safety and 50,000 lbs. the coeffi-

cient of rupture. Ans. 5235^ lbs.

47. Find the length of a beam of Canadian ash 6 in. square which
would break under its own weight when supported at the ends. The
coefficient of rupture = 7000 lbs., and the weight of the timber = 30 lbs.

per cu. ft. Ans. 274.9 ft-

48. The teeth of a cast-iron wheel are 3^ in. long, z\ in. deep, and 7

in. wide. What is the breaking weight of a tooth, tiie coefficient of

rupture being. 5000 ll)s. ? Ans. 50,625 lbs.

49. A wrought-iron bar 4 in. deep, f in. wide, and rigidly fixed at one

end gave way at 32 in. from the load when loaded with 1568 lbs. at the

free end. Find the coefficient of rupture. Ans. 4181^.

50. A cast-iron beam 12 in. wide rests upon supports 18 ft. apart, and

carries a r2-iii. brick wall which is 12} ft. in height and weighs 112 lbs.

per cu. ft. Taking 63,000 as the modulus of rupture for a uniformly

distributed load and 5 as a factor of safety, find the depth of the beam,

(a) neglecting its weight; {h) taking its weight into account.

Also (c) determine the depth of a cedar beam which might he sub-

stituted for the cast-iron beam, taking 11,200 lbs. as the mo-^ulus of

rupture for the cedar. Ans. (a) 6 in. ; {/>) 6^ in.; (c) 14.23 in.

51. A cast-iron girder 27^ in. deep, rests upon supports 26 ft. apart.

Its bottom flange has an area of 48 sq, in. and is 3 in. thick. Find the

breaking weight at the centre, the ultimate tensile strength of the iron

being i j.ooo lbs. per sq. in. (Neglect the effect of the web.)

Ans. 253.846-^3 lbs.

52. A beam of rectangular section, of breadth /; and depth d, is acted

upon by a couple in a plane inclined at 45 to the axis of the section.

Compare the moment of resistance to bending with that about either

axis.
^^^ i^TiL . 2i/lM

53. A 2-in. wrought-iron bar 10 ft. long is held at the ends and is

whirled about a parallel axis at the rate of 50 revolutions per minute.

If the distance between tlic a.xisof the bar and the axis of rotation is

10 ft., find tiie maximum stress to which tlie material is subjected.

Ans. 17148,5 lbs. per sq. in.

IJ«:

1

'»



414 THEORY OF STJiUCTUKES.

54. A block of ice 3 in. wide and 4 in. deep has its ends resting upon
supports 30 in. apart and carries a uniformly distributed load of 4800

lbs. An increase of pressure to the extent of 1 125 lbs. per sq, in. lowers

the freezing point 1° F. Assuming that the ordinary theory of flexure

holds goou, find the temperature of the ice. Arts. 30 V.

55. Find the limiting length of a cantilever of uniform transverse

section,/ being the coetlicient of strength, k the ratio of length to depth,

and w the specific weight of the material.

288/«
Ans. -

'-J
',

wk
the section.

« being a coefficient depending upon the form of

56. If the beam in the preceding question is to be supported at its two

ends, what will its limiting length be ? Ans.

57. Find tlie limiting length of a cedar cantilever of rectangular sec-

tion, /' being 40, 10 = 36 lbs. per cu. ft., andy"= 1800 lbs. per sq. in.

Ans. 60 ft.

58. A steel cantilever 2 in. square has an elastic strength of 15 tons

per sq. in. What must its limiting length be so that there may be no

set? Ans. 23.4 ft.

5Q. Find the limiting length of a wrought-iron beam of circular sec-

tion, k being 64 and the elastic strength 8 tons per sq. in. Wliai will this

length be if a beam of I-section, having equal flange areas and a web

area equal to the joint area of the flanges, is substituted for the circular

section.? Ans. 84 ft. ; 224 ft.

60. A rectangular cast-iron beam having its length, depth, and

breadth in the ratio of 60 to 4 to 1, rests upon supports at the two ends.

Find the dimensions of tl;e beam so that the intensity of stress under its

own weight may viowhere exceed 4500 lbs. per sq. in.

Aii^. / = 1 28 ft. ; d = 81^ ft. ; l>= 2-f2j ft.

61. A beam supported at the ends can just bear its own weight U^to-

W
gether with a single weight — - at the centre. What load may be placed

at the centre of a beam whose transverse section is similar but in'' as

great, its length being n times as great ? If the beam could support only

its own weight, what would be the relation between m and n ?

Ans. H \
- —

; m = —

.

\n 2 I 2

62. The flanges of a rolled joist are each 4 m. wide by ^ in. thick;

the web is 8 in. deep by J inch thick. Find the position of the neutral

axis, ilie maximum intensities of stress per square incii being 10,000 lbs.

in tension and 8000 lbs, in compression. Ans. ^1 = 3 ff

'

4t.
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63. A continuous lattice-girder is supported at four points, each of the

side spans being 140 ft. 11 in. in length, 22 ft. 3 in. in depth, and weigh-

ing .68 ton per lineal foot. On one occasion an excessive load lifted the

end of one of the side spans off tiie abutment. Find the consequent in-

tensity of stress in the bottom flange at the pier, where its sectional

area is 127 sq. in. Ans. 2.3893 tons per sq. in.

64. A railway girder is 101.2 ft. long, 22.25 ^'^- deep, and weighs 3764
lbs. per lineal foot. Find the maximum shearing force and flange stresses

at 25 ft. from one end when a live load of 2500 lbs. per lineal foot crosses

the girder. Ans. 168,078.3163.; 268,1 55.5 lbs.

65. A floor with superimposed load weighs 160 lbs. per sq. ft. and is

carried by tubular girders 17 ft. c. to c. and 42 ft. between bearings.

Find the depth of the girders (neglecting effect of web), the safe inch-

stress in the metal being 9000 lbs., and the sectional area of the tension

flange at the centre 32 sq. in. Ans. 24.99 in.

66. Design a timber cantilever of approximately un'iiorm strength from

the following data: length = 12 ft.; square section; load at free end

= I ton ; coefficient of working strength = \ ton per sq. in. What
must be the dimensions at the fixed and free ends so that the cantilever

might carry an additional uniformly distributed load of 2 tons ?

Ans. Side = 15. i in. at fixed end and = 10 in. at free end;

side = 19.1 in. at fixed end and = ^(19.1 in.) ai free end.

67. Show that the curved piofile of a cantilever of uniform strength

designed to carry a load IV at the free end, is theoretically a cubical

parabola. Also show that by taking the tangents to the profile at the

fixed end as the boundaries of the cantilever, a cantilever of approxi-

mately uniform strength is obtained having a depth at the free end
equal to tiuo-thirds of the depth at the fixed end (breadth to be propor-

tional to depth).

68. Design a wheel-spoke 33 in. in length to he of ap/>roxi/nately nn'i-

form strength, the intensity of stress being 1000 lbs. per sq. in.; the load

at the end of the spoke is a force of 1000 lbs. applied tangentially to the

wheel's periphery, and ihe section of rhe spoke is to be {a) circular, {b)

elliptical the ratio of the depth to the breadth being 2*.

Ans.~(a) Depth at hub = 6.982 in., at periphery = 4.634 in.

{b) =9435 ' =6.29 in.

Breadth" " =3.774 = 2.516 in.

69. A beam of 17 ft. span is loaded with 7, 7, 11, and 11 tons at

points 1,6, II, and 15 ft. from one end. Determine tlie depths at these

points, the beam being of uniform breadth and of approximately uni-

form strength ; the coefficient of working strength = 2 tons per sq. in.,

the depth of the section of maximum resistance to bending = 16 in.

Ans. b = "358,
/.» =

1088

and d\ =

277 X 16'

12C2

670 X 16'

1262

d^ = 1067 X 16'

1262
d^,» = i6»;

I
I'!*

ill
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70. Design a cantilever 10 ft. long, of approximately uniform strength,

to carry a load of 40(X) lbs. at the free end, the coefficient of strength

being 2000 lbs. per sq. in., and the section {a) a rectangle of constant

breadth and 12 in. deep at the fixed end ; (b) a square.

How will the results be modified if it is to carry an additional uni-

formly distributed load of 4800 lbs. }

Ans.—First, (a) h = 10 in., tf at free end = 6 in. ; {d) side

= 1^1440 at fixed end and = f'426f at free end.

Second, {a) b =. xd in., d aX. free end = 6 in.; {b) side = 1^2304

at fixed end and = ^^854 at free end.

71. Design a cantilever 10 ft. long, of constant breadth, and of ap-

proximately uniform strength to carry a uniformly distributed load of 500a

lbs. on the half of the length next the free end, the intensity of s»'ess

being 2000 lbs. per sq. in., and the section a rectangle 12 in. deep at the

fixed end. What must the dimensions be if 1000 lbs. arc concentrated

at 30 in. from fixed end .'

Ans. ^ = 9I in. ; r^ at centre = 6.928 in. ; at free end = o.

b= \o in. ; depth = y.48 in. at ^\ ft. from free end, = 6.708

in. at centre, and = o at free end.

72. A gallery 30 ft. long and 10 ft. wide is supported by four 9 in. by 5

in. cantilevers spaced so as to bear equal portions of the superincumbent

weight. What load per square foot will the gallerv bear, the coefficient of

A'orking strengtii being 700 lbs. per sq. in. } Find the depth of cast-iron

cantilevers 3 in. wide which may be substituted for the above, the coef-

ficient of working strength being 2000 lbs. per sq. in. How should the

•depth vary if the cantilevers are to be of uniform strength }

Ans. 10.5 lbs.; 4^/' = 189; variation of depth for cast-iron canti-

lever is given by 4oo(/^ = 21.1", x being distance from free end.

73. A span (if 60 ft. is crossed by a beam liinged at the points of tri-

section and fixed at the ends; the beam has a constant breadth of 3 in.

and is to be of uniform stre)igth , the intensity of stress is 3 tons per sq.

in. Determine the dimensions of the beam when a load of ^ ton per

lineal foot covers {a) the whole span ; (,b) the centre span.

Ans.—(rt) Depth at support = 4 V'lo in., at centre = i^2o.

{b) ' = V80 " " " = 4/20.

74. In the following examples determine the position of the neutral

axis, the moment of resistance to bending, the resistance to shear, and

the ratio of the maximum to the average intensity of shear, the co-

efficients of strength being 4J tons per sq. in. for tension and compressioa

and 3i tons per sq. in. for shear.

(I) A rectangle 2 in. wide and 6 in. deep.

Ans. At centre
; 54 in. -tons; 28 tons

; 3102.

(I

(I

horizc

(IV|

beinj

(V)

angle-ii

(VI)

diamete

flange 8

(VII)

ternal m,

tically), X

web 10 ir

(VII
IJ

external

{vertically

in- at the
of 10 in. e

(IX) T

Also find

ening effect <

of the niaxin
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section ?
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(X) A trapezoidal section, the top side, bottom side, and depth h
(imlu's) l)einy in tlie ratio of 1 to 2 to 4.

Atts. %h from top side ; tVo^'* '"-tons.

(XI) A section in the form of a rhombus of depth 2< and witli a hori-

zonl.il di.i)j[onaI of lenjfth 2/'. Ans. \bi'' \ ',•'''<; 9 to 8.

(XII) An angle-iron 2 in. x 2 in. x \ in.

Ans. Neniral a.\is divides depth into segments of ^g in. anri \\

in.; WW in.-tons; j'3% ton; 1334 to 1369.

(XIII) A iiollow circular .section of externa! radius C and internal

ritdins C.

H-J"* 33 r«-('« 4 c" + rr' + t
"

Ans.
99
1 12 C • 4 C"' +('(' + C"" 3 L"' + C"»

(XIV) A cruciform section made up of aflat .steel bar 10 in. by \ in.

and fiMii sii'ci aiij^lcs, e.icii 4 in. by 4 in. i)\ i in., all riveted logetlier.

^Ncui.t t weakening, elTccl of rivet-holes.)

Ans. 76.425 in.-ton«; 20.43 tons; 2.208.

75. A girder of 21 ft. span has a section comix)sed of two equal

flanges eacn consisting of two ,.. in. x 5-in. x *-iii. angles riveted to :i

39-in. X 8-in. web; the cover-plates on the flanges are each 12 in. x | in.,

and t'ne rivets in the covers alternate with liiose connecting the angles

and web; the pitch of i .e rivets is 3! in. Find the diameter .ind also find

the n)a.\imum flange sfe.sses. (rO disregarding the weakening efTectof the

rivet-holes in the teiuion flange ; (/') taking this elTect into account

The load upon the ginlir is a uniformlv distribnti-d ioad o|

20.800 lbs. (including weight of girder) and a load of 50,000 lbs. conceii'

trated at each of the points distant 4J ft. from the middle point ol tlie

gilder.

Ans. Diam. of rivets = .48 in. if tight. = .54 in. if subject tofle.xure.

\a\ f\ = /: = 7762 lbs. per sq. in.

(/;) /, =8248 lbs. per sq. in.. /a = 7847 lbs. per sq. in.

76. A beam of triangular sectioi. 12 in. deep and with its base hori-

zontal can bear a total shear of too tons. If the safe maximum intensity

of shear is 4 tons per sq. in., find the width of the base. Ans. b\ in.

J7. .Assumiiii; that the web and flanges of a rolleil beam are rectangular

in section, determine the ratio of the maximum to the average intensitv

ot shear in a section from the following data : the total depth is - tunes

the bremith of each flange. // times the thickness of each flange, and 2«

tunes the M/V/{'«f'jr.\' of the web. Show also that this ratio is \^ or '.^

according as the area of the web is equal to the joint area of the two

flanges or is equal to the area of each flange. How much of the shear

ing force is borne by the web ? How much by the flange ?

3(«' 4- I2« - I2)(« + 6) ^ o .Ans. ratio = - 9,01 ' c \ • 7°% ; 85!^.
2(«' + i8«" — 36W -f 24^

^'
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78. In a rolled beam wilii eijual Caiijjcs. theareaof the web ispropDr-

tional to the «th power of the depth. Find the most economical distribu-

tion of metal between the flanges and web, and the moment of resistance

to bending of tiie section thus designed. Also find the ratio of the aver-

age to the maximum intensity of shear.

Am. Area of each flange : web area :: 2// — 1 : 6 ;

f being the coefricieni of strength, S the total area of

section, and y the (lc|)th.

Max. intensity of shear : av. intensity :: (w -|- i)(4« -f- 1) • 6«.

79. Find the moment of resistance to bending, the resistance to shear,

and the ratio of maxinuim to the average intensity of a shear in tiie

case of a section consisting of two equal flanges, each composed of a

pairof s-in. x 3i-in. x |-in. angle-irons riveted to a Si^-in x |-in. web,

the 5-in. sides of llu- angles being horizontal, and 4J tons per sq. in.

being the coeflicient of strength.

Ans. 1501.06 in. -tons ; 46.21 tons; 3.C58.

80. The floor-beam for a single-track bridge is 15 ft. between bearings,

and eacii of its flanges is composed of a pair of 2|-in. x 2j-in. x jj-in.

angle-irons riveted to a 30-in. x J in. web. The uniformly distributed

load (including weight of beam) upon the beam is 4200 lbs., and a weight

of 1600 lbs. is concentrated at each of '.he rail-crossings, z\ ft. from

the centre. Find (<t) the maximum flange stress, {h) the ratio of the

maxiiiiitni and avenigc intensities of shear ;
(c) the stiffness, E being

27,000,000 lbs.

Ans. (rt) 1 193.7 lbs.; (,h) 2.037; (r) .0000663.

, 2451259

1024
, neglecting effect of rivet-hoks.

81. A beam 36 ft. between bearings is a hollow tube of rectangular sec-

tion and consists of a 24-in. x J-in. top plate, a 24-in x ^.-in. bottom
plate, and two side plates each 35 in. x \ in. The plates are riveted

together at the angles of ilie interior rectangle by means of foui 6-in.

X 4- !i. X \-\\\. angle-irons, the 6-in. side being liorizontal. Determine—
{w. The intensity of shear at the surface between the angle-irons and

the Ufper and lower plates.

(/') The diameter of the rivets, the pitch being 4 in. and assuming an

effective width of 5J in. in shear per rivet.

(r) The total shearing strength of the section, the safe intensity of

shear being 3J tons per sq. in.

{(i) The moment of resistance of the section, the coefficient of strength

being 4J tons per sq. 111.

ie) The uniformly distributed load which the beam will safely carry.

V
i
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Ans.—iti) ,11878 tons per sq. in.

{b) .i)7 in. if rivets iirc tijL;lit. 1.12 in. if liable to flexure.

(c) i09,V/j tons disregarding oflfect of riveting, ic5.,Yi,*),

tons having regard to rivctin^f.

(d) 4085^ In.-tons disregarding effect of riveting, 3830 tons
having regard to riveting.

(<f) 75;JJ tons disregarding efTect of riveting, 70.92 tons

having regard to riveting.

82. A cast-iron channel-beam having a web r2 in. wide and two sides

7 in. deep, the metal being everywhere i in. thick, crosses a span of 14

ft. If the tensile intensity of stress is i ton per sq. in., what uniformly

distributed load will the beam carry (7) with the web at the bottom
; {/))

with the web at the top.' Find {c) the maximum compressive intensity

of stress to which the metal is subjected, and {(/) compare the maximum
and average intensities of shear. Also, {e) what should be the area of

a rectangular section to bear the same total shear ?

Ans. I —\\o^; {a) |J| tons ; {b) JJ| tons.

83. A beam of rectangular section a-.d of a length equal to 20 times the

depth is supported at the ends in a horizontal position, and is subjected

to a thrust H whose line of action coincides with the axis of the beam.
Show that the maximum intensity of stress at the middle point will be

doubled by concentrating at that point a weight fF equal to one-thirtieth

of//.

84. The line of action of the thrust in a compression member is at a

distance from the axis equal to th of the least transverse dimension.
r

Show that the maximum intensity of stress is doubled if the section is

rectangular and r = 6, or if the section is circular and r — %.

85. A straight wrought-iron bar is capable of sustaining as a strut a

weight tt/i,and as a beam a weight 7Vi at the middle point, the deflection

being small as compared with the transverse dimensions. If the bar has

simultaneously to sustain a weight w as a strut and a weight iv' as a

beam, the weight being placed at the middle of the span, show that the

beam will not break if

tv + — w' < Wi.

86. A metal beam is subjected to the action of a bending moment
steadily applied beyond the elastic limit. Assuming that the metal acts

as if it were perfectly plastic, i.e., so that the stress throughout a trans-

verse section is uniform, compare the moment of resistance to bending

of a section of the beam with the moment on the assumption that the

metal continued to fulfil the ordinary laws of elasticity, (<i) the section

being a rectangle ; {h) the section being a circle.
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87. A lattice-girder of icx> ft. span carries 80 tons uniformly distribiued;

the girder is 10 ft. deep and '.he safe woriting stress is 4 tons per sq. in.

If the width of the flange must be 20 in. to carry the load exclusive of

the weight of the girder, what must be the width of the flange when the

weight of the girder is taken into account .'

88. A plat'i-girderof double-lee section and of 80 ft. span is 8 ft. deep
and carries a uniformly distributed load of 80 tons. If the width of the

flange must be 12 in. to carry the load exclusive of the weight of the gir-

der, what must the width be when this weight is taken into account }

89. If the plane of bending does not coincide with the plane of sym-

metry of a beam, show that the neutral axis is parallel to a line joining the

centres of two circles into which the beam would be bent by two com-

ponent couples whose axes are the principal axes of inertia of the section,

each 'ouple being supposed to act alone.

90. The flanges of a girder are of equal sectional area, and their joint

area is equal to tnat of the web. What must be the sectional area to resist

a bending moment of 300 in. -tons, the effective depth being 10 in. and

the limiting inch-stress 4 tons.' Ans. 22J sq. in.

91. The eflective length and depthof a cast-iron girder which failed

under a load of 18 toMS at the centre were 57 in. and 5^ in., respectively
;

the top flange was 2.33 in. by .31 in., the bottom flange 6.67 in. by. 66 in.,

and the web was .266 in. thick. Assuming that the ordinary theory of

flexure held good, what were the maximum intensities of stress in the

flanges at the point of rupture ?

Ans. ft = 12.36 tons per sq. in. ; /c = 44.9 tons per sq. in.

92. A railway bridge is supported upon two main girderseach of span

51 ft. 4 in. ; at the centre the depth is 6 ft. 6 in., the j;ross sectional area

of the top flange 27 sq. in., and of the bottom flange 28 sq. in. Assum-

ing the efficiency of the tension flange is reduced one-fifth by the rivet-

holes, find the maximum flange intensities of stress under a uniformly

distributed load of 43 tons. Also find the uniformly distributed rolling

load which will increase these intensities by two tons.

Ans. .786 ton per sq. w. in compression ; .9475 ton per sq. in. in

tension ; 55^ tons to increase compression ; 59iV?Vs ^o\\% to

increase tension.

93. A lattice-girder of 80 ft. span and 8 ft. deep is designed to carry a

dead loa of » j tons and a live load of 120 tons uniformly distributed ;

at the centre the net . actional area of the bottom flange is 45 sq. in.,

and the gross sectional area of the top flange 56^ sq. in. Find the po-

sition of the neutral axis and the maximum flange intensities of stress.

If the live load travels at 60 miles an hour, what will be the increased

pressure due to centrifugal force?

. I
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Ans. 3.546 ft. from top; 1120 lbs. per sq. in.; 8920.35 lbs. per

594000

Elsq. 111.; lbs.

94. Determine the thickness of the metal in a cast-iron beam ol 12 ft.

span and 8 in. deep which has to carry a uniformly distributed load of

4000 lbs., the section beinjj; («) a hollow square ; (h) a circulir annulus.

The coefficient of working strength = 3000 lbs. per sq. in. .'vlso tind the

limiting safe span of the beam under its own weight.

Ans, Neglecting Weight of beam. («) .317 in.; ih) .599 in. Taking
weight of beam into account, (</) .354 in. , [b) .727 in. Liipiring

span = 39.53 ft. in (a) and = 32.7 ft. in {b).

95. Determine suitable dimensions for a cast-iron beam 20 in. deep,

at a section subjected to a bending moment of 1200 in.-tons ; the coelfi-

clents of strength per .square inch l)eing 2 tons for tension and 8 tons for

compression. Take thickness of web = -^(^ in.

Ans. Sectional area of tension flange = 36 sq. in.; of compression

flange = 2\ sq. m.

96. The thickness of the web of an equal-flanged I-beam is a certain

fraction of the depth. Show that the greatest economy of material is

realized when the irca of the web is equal to the joint area of llic

flanges, and that the moment of resistance to bending is \fAd,f being

the coefficient of strength, A the total sectional area, and //tiie depth.

97. In a double-flanged cast-iron beam the thickness of the web is a

certain fraction of the depth, and the maximum tensile and compressive

intensities of stress are in the ratio of 2 to 5. Sh.ow that the greatest

economy of material is realized when theaieasof the bottom flange, web,

and top flange are in the ratio of 25 to 20 to 4, and that the moment of

resistance to bending is \fAd, where/ = V* niaximuni tensile intensity

of stress.

98. Apply the results in the preceding question to determine the di-

mensions of a cast-iron beam at a section whose moment of resistance is

800 in.-tons and whose depth is 18 in., taking 2 tons per square incli as

the maximum tensile intensity of stress.

Ans. lu = Vi" s^- '"•• ^4' = Vr sq in.; a-i = \\ sq. in.

99. Determincsuitable dimensions for a cast-iron girder of 20 ft. span

{;nd 24 in. deep, carrying a load of 30,000 lbs. at the centre, the

coefficients of working strength in tension and compression being respec-

tively 2000 and 5000 lbs. per square inch.

Ans. fli = i^JI" sq. in. ; A' — 'i\^ sq. in. ; a, = y sq. in.

100. A cast-iron girder of 25 ft. span has a l)ottom flange of 36 sq. in.

sectional area. Find the most economic arrans^ement of material for the

web and top flange which will enable the beam to carry a load of 18,900

lbs. at 10 It. Iiuin oiic end, the tensile and compressive vvori;iiig strengths

being 2000 and 5000 lbs. per sq. in., respectively. Assume that the thick-

ness of the web is a fraction of its depth.
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Ans. Depth = 2ii in.; area of web = 28.8 sq. in. ; area of top

fiaiigc = 5.76 scj. in.

101. A (loublc-Uangctl cast-iron fjirdcr lias a sectional area of .r sq.

in.; tlie web is i in. tiiick and 21 in. deep; llic moment of resistance of

liic section is 100.950 ft. -lbs. ; tlie coellicienls of sirengtli are 2100 lbs.

per square inch in tension and 5250 IIjs. in compression. Find x, the

position of the neutral axis, and the areas of the two tlan},'es.

Ans. a^ = 2yiYtf sq. in. (lu = 5li; ^q. "1.

!02. Determine the moment of resistance to bending of a section

of a beam in which the top flange is composi-d of huo 340-nim. x i^i-inin.

plates and one 340-mm. x lo-mm. plate, and the b(Jttoiii flange of oiit'

j40-mm. X lo-mm, plate and one 340-niin. x iS-mm. I'late, the flanges

being riveted to a 1.4-m. x 7-inm. web jjlate by means of four

loo-mni. X loo-mni. x 8inm angle-irons. The coellicient of strength

= k. per mm.'.

103. Compare the moments of resistance to !)cnding of the section in

the preceding question and of a section in w\\\c\\t/tree 400-mm. x 15-mm.

plates are substituted for the top flange, and one 400-mm. x i5-mm.

plate is substituted for the bottom flange.

104. Floor-beams 4.4 m. between bearings and spaced 2.548 m. c. to c.

hav e a section com[)osed of two equal flanges, each consisting of two

85-inm. X 85-mm. X i2-mm. angle-irons riveted to a 4yo-mm. x 7-mm.

web. A weight of 1 50 k. (due U) longitudinals) and a weight of 1 50 k. (due

to rails, etc. ), i.e., 300 k. in all, arc concentrated at the rail-crossings, and

the ties have also to carry a uniformly distributed load of 400 k. due to

weight of floor-beam, 4000 k. due to weight of platform, and 4000 k. per

square metre of platform due to proo/Aaiid. Find the moment of resist-

ance to bending and the maximum flange intensities of stress.

/Ins. /= .000438584615.

105. The section of a beam is in the form of an isosceles triangle

with its base horizontal. Show that the moment of resistance to

bending of the strongest trapezoidal beam that can be cut from it is

very nearly f^s/M'', b being the width of the base and d the depth of

the triangle.

106. Taking/f,/c as the tensile and compressive intensities of stress,

find the moment of resistance to bending of a section consisting of .1

2o/-in. V 7/-in. top flange, an 8o/-in. x io/-in. bottom flange, and a

trapezoidal web 4/ in. thick at the top. 8/ in. thick at the bottom, and

120/ in. deep. Also compare the maximum and average intensities of

shear.

107. Each of the flanges of a girder is a 350-mm.by lo-mm. plate and

is riveted to a i.8-m. by 8-mm. web by means of two loo-mm. by

loo-mm. by 12-mm. angle-irons. Determine the moment of resistance

to bending, the coefllicient of strength being 6 k. per square millimetre.

h
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(a) disro^ardiiig ihe wcitkcniii({ ctTcct of riveting; (/>) assuming that the

flange-plates are riveted to the angles Ijy 2q mni. rivets.

.Ims. (<i) 10H661.04 km.

108. Tlie cross-tie for a single-track bridge is 4. 1 ni. between bearings,

tlie gauge of liie rails being 1.51 in. ; each of the tianges is composed of a

148 nun. by 8-nini. plate riveted to a 55u-mm. by 8-niin. web by means of

two 70-mni. by 70-mni. by y-mm. angle-irons; a load of j</» k. (weight

of rails, etc.) is concentrated at each rail-crossing. What uniforniiy

distributed load will the tic safely bear, the incial's coetlicient 01 strength

beinjj 6 k. per square millimetre? The load Jictually distributed over the

tie is 19782 k. Find the niaxinuini intensity of stress.

."Ins. J4162 k. ; 4.94 k. per sq. mm.

109. Design a longitudinal of .45 m. depth which is to be supported

at intervals of 3.3 m. and to carry at its middle point a weight of 7000 k.,

the coeflicient of strength being 5 k. per square millimeter.

ylfis. /= 259875, and the /of a section with two equal flanges,

each comp<jse(l of two 70-mm. by 70-mm. by 9-mm. angle-irons

riveted to a 450-mm. by 8-mm. web is 259.536.

1 10. Find the moment of resistance of a section composed of two

equal Hanges, each consisting of two 600-mm. x 7-mm. plates riveted

to a i2oo-mm. x 8-mm web plate by means of two loo-mm. x loo-mm.

X i2-mm, angle-irons; two 70-mm. x 70-mm. x 9-mm. angles are also

riveted to the lower faces of the flanges, the ends of the horizontal arms

being 24 mm. from the outside edges of the flanges; the total depth of

the secti(jn = 3.228 m., and the interval between the two web plates,

which is opf/t, is 2 m.; coelRcient of strength = 6 k. per mm.-'.

Ans. / = .093929232444 and moment = 349179.3018 km.

HI. A longitudinal 2.548 m. between bearings consists of two equal

flanges, each composed of two 70-mm. x 70-mm. x 9-mm. angle-irons

riveted to a 350-mm. x 7-nim. web plate. Find the flange intensity of

stress under a maximum load of 7000 k. at the centre.

.
•'

y. /= .000139284508; stress = 5.6 k. per mm.'.

112. A cross-tie resting upon supports at the ends and 2.26 m. between

bearings is composed of two equal flanges, consisting of two 7o-n)m.

X 70-mm. X 9-mm. angle-irons riveted at the top to a 450-mm. x 7-mm.
web plate and at the bottom to a 3C)o-mm. x 7-mm. web plate, the

interval between the web plates, which is open, being 2.55 m. ; the tie is

designed to carry a uniformly distributed load of 676 k. per lineal metre

of its length, and also a load of 1 1644.8 k. at each of the points distant

.375 m. from the .)earing. Find the position of the neutral axis and the

maximum flange stresses.

Ans. 1.516 m. from top flange; /= .023194564198; maximum
B. M. = 481 5. 8161 km. ; maximum tensile stress = .37 k. per

mm.' ; maximum compressive stress = .314 k. per mm.'.
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ii8. The longitudinals of the bridge in the last question consist of

two pairs of 70-mm. x 70-mm. x 9-mm. angle-irons riveted to a 4 m.

X 7 mm. web ; the cross-ties are 3.2 m. centre to centre. Determine the

maximum intensity of stress due to a load of 7000 k. concentrated on the

longitudinal half way between the cross-ties, assuming that it is an inde-

pendent girder. What would the stress be if the ties were 3 m. centre to

centre .' I
Ans. — = .00095458 ; 5.866 k. per mm."; 5.4994 k. per mm."

119. Tlie section for the Estressol bridge cros'^-»ies is the same as that

for the Grande Baise (Ex. 1 17) bridge ties ; the load at each rail-crossing

is 335 k.. and the uniformly distributed load is 18,062 k. Find the max-
imum intensity of stress in the flanges, assuming that the ties are

merely supported at the ends. Ans. 5.26 k. per mm."

120. Ill a rolled joist the sum of the two flange areas and tlie web
area is a constant quantity. Find the pronortion between them which

will give a joist of maximum strength, tl diickness of the web being

fixed by practical considerations. Afis. Flange area = | web area.

121. An aqueduct for a span of 20 ft. consists of a cast-iron channel-

beam 30 in. wide and 20 in. deep. Find the thickness of the metal so

that the water may safely rise to the top of the channel, the safe coeffi-

cient of strength being i ton per square inch. Find the safe limiting

span of the channel under its own weight.

122. A rolled beam with equal flanges and a web whose section is

equal to tlie joint section of the flanges has a span of 24 ft. and carries a

•veiglitof 8 tons at the centre. If the stiffness is .001 and if the coefficient

of strength per square inch is 5 tons, find the depth of the beam and the

web ;ind flanije sectional arens. F = 1 5,000 tons.

Ans. 24 in.: area of flange = 3.66 sq. in.; of web = 7.33 sq. in.

123. A wrought-iron beam of I-section, 20 ft. between supports,

carries a uniformly distributed load of 4000 Ib^ and deflects .1 in.; the

effective depth =8 in.; /i = 30,000,000 lbs.; wcl) area — joint area of

the equal flanges. Find the total sectional area. Also find the width of

a rectangular sectiiMi 8 in. deep which might be substituted for tin-

above. ^.-^.v. /= 288; area = 27 sq. in.; width = 6J in.

124. A cast-iron beam of an inverted T-section has a uniform depth

of 20 in. and is 22 ft. between supports; the flange is 12 in. wide and 1.2

in. thick ; the web i<? i in. thick ; the lo.id upon the hf.im is 450 lbs. per

lineal foot ; A' = 17.000,000 lbs. Find the deflection of the centre, the

moment of resistance to bending, the maximum i-nsile and compressive

intensities of stres.;, ind the position of the neutral axis. Why is the

flange placed downwards?
Am. .122 in.; 326,700 in. -lbs.; 1492 lbs. and 3274 lbs. per sq. in.;

5.062 in. from flange surface.
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125. Find the sectional area of a wrought-iron beam of T-section

which may be substituted for the cast-iron beam in the precedinjj ques-

tion, the depth being the same and the roefficients of strength per

square inch being 3 tons in compression and 5 tons in tension. Why
should the flange be uppermost ? What should the total sectional area

be if the flange and web are of equal area ?

126. A cast-iron girder 139 in. between supports and 10 in. deep had

a top flange 2J in. x \ in., a bottom flange 10 in. x \\ in., and a web J in.

thick. The girder failed under loads of i7i tons placed at the two
points distant 3I ft. from each support. What were the central flanjre

stresses at the moment of rupture } What was the central deflection

when the load at each point was 7i tons ? {E — 18,000,000 lbs. ; weight

of girder = 3368 lbs.; ton = 2240 lbs.)

Ans. 182251.9 lbs. = total flange stress; unit flange sr ysscs

= 14,580, and 41,657 lbs. persq. in.; deflection = .35".

127. A cylindrical beam of 2 in. diameter, 60 in. in length, and weigh-

ing \ lb. per cubic inch, deflects -^ in. under a weight of 3000 \>j^. at the

centre. Find ^. W«j. £= 21,645,511 lbs.

! ;

q



CHAPTER VII.

ON THE transversa: strength of reams.—Con/mu^tt.

I. General Equations.—The girder O.l of length / carries

a load of which the intensity varies continuously and is / at a

point AT distant x from O.

M^ M+dM

/ \' Ki V K^

ptixV ^S+dS
Fig. 310.

Consider the conditions of equilibrium of a slice of the

girder bounded by the vertical planes KL, K'L' , of which the

abscissae are x, x -\- dx, respectively.

The load between these planes may, without sensible error,

be supposed to be uniformly distributed, and its resultant pdx
therefore acts along the centre line VV.

The forces acting upon the slice at the plane KL are equiv-

alent to an upward shearing force S, and a right-handed couple

of which the moment is M, while the forces acting upon the

slice at the plane K'L' are equivalent to a downxvard shearing

force i" -{ dS, and a left-handed couple of which the moment
is M+ dM.

Since there is to be equilibrium,

S—{S-\-dS)—pdx=- the algebraic sum of the vertical forces=o.

(«)

428
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And, M-{MA- dM) + S~ + (5+ rt'^)^ = the alge^

braic sum of the moments of the forces with respect to V or

V =0.

dM „
.-. — 5 = 0.

dx
{b)

The term —'-— \z disregarded, being indefinitely small as
2

compared with the remaining terms.

I'-quations {a) and {h) are the general equations applicable

to girders carrying loads of which the intensity is constant or

varies continuously. Their integration is easy, and introducs

two arbitrary constants which are to be determined in each

particular case.

Cor. I. From equations {a) and {b),

(TM _dS
dx* dx

= -A

Let p = n>/{x), w being a constant, and f{x) some functiork

of X. Then
dM
dx «^0

and

M = c^+ c^x — tu^f'J*y{x)dx\

c^ an '
^, being the constants of integration, and o and x the

\imits.

Example.—Let the girder rest upon two supports and

carry a uniformly distributed load of intensity w^. Then

dM
dx

and

— C^ — I "xv^dx z=z C^ — W^X,

M = c^ -\- c^x — w,

U .i

li
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But M is zero when ^ = o and also when x = I, Hence

f, = O and <:, = —

.

' '

2

Therefore,

and

2 2 *

5 = -r = W.X.
dx 2

'

C'i'r. 2. The bending moment is a maximum at the point

defined by -~r' = O = S, i.e., at a point at which the shearing
ax

force vanishes.

In the preceding example, the position of the maximum

bending moment is given by J) = o = — u\x, or x = -,

and its corresponding value is

wj I w, P wj,'

2 2 24 8

w I
The shearing force is greatest and equal to —^ when;r=o.

Cor. 3, Suppose that the load, instead of varying contin-

jg , 1^., uously, consists of a number of finite weights

Fig. III.

at isolated points.

By reason of the discontinuity of the load-

ing, the general equations can only be inte-

grated between consecutive points.

Lt-t A' , ^V^ . , be any two such points, of abscissae x^ , x^^^
,

respectively.

Between these points equations {a) and (d) become

dS , dM ^
-7- =: o, and —r = o.
ax ax

5 = a constant = 5,. , suppose, between N^ and iV^+i

.
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Hence, ~j = S^, and M = S^x -\- c, between N, and

Nr^, , c being a constant of integration.

Let M = M, when x = x,. Then

c = Mr — SrXr , and M — SXx — x^ \- M^

Also, if M = Mr^^ when x = ;r^^
,

,

Mr^, = 5,a-,.+ ,
- Av) -f il/,.

The terminal conditions will give additional equations, by
means of which the solution may be completed:

Example.—The girder OA, of length /. rests upon two
supports at 0, A, and carries weights P^, /\, at points B, C,

B C :A

Pi ^'P,

Fig. 31a.

1
^5

dividing the girder into three segments, 0/J, BC, CA, of which

tlie lengths are r, s, /, respectively.

I

\l

If

The reaction i?, at = fjii+ '!+_Zjf

.

i'

The reaction R, at A = :5!1+ -^jil+^i)

.

Between O and B, S is constant = Sr suppose, = R,

.-. M- S^x.

there being no constant of integration, a.^ M = o when x = o.

Also, when x = r, M = 5,./'.
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Hctvvccn B and L , S is constant = S, suppose, = ^, — Z',.

c' being the constant of integration.

But Af = SyT when x — r.

.'. c' = (.S; - 5,)r, and M = S^ -\- {S,. - S,)r.

Also, when x = r -\- s, M = S,s -{- S,r.

Between 6 and A, Sis constant = S, suppose,=R^—P^— /\

and hence

M = S,x + c",

c" being the constant of integration.

But M = S^-\- S,r when x = r -\- s.

and

.*. c" = S,s -{- S^r — S,(r -j- s\

M = SfX -\- S,s -X- S,r — 5<(r -f s).

Hence, at A, o = S,t -\- S,s + S^r.

Cor. 4. The equation =5 indicates that the shearing

force at a vertical section of a girder is the increment of the

bending moment at that section per unit of length, and is an

important relation in calculating the number of rivets required

for flange and web connections.

2. On the Interpretation of the General Equations.

—

The bending moment M at any transverse section of a girder

EI
may be obtained from the equation M := -^^ R being the



^E^H-XIJON OJ. BEAMS.
radius of curvature of fi

'
^^^

consideration. " "' "" "™'"' -- =«' the section under
Let OA, \\\ Figs ^15 on.4

neutral axis of a bent girder
^'^' "^'''""^ ''* P^'-^'^" of the

p -A

Yl

F.G. 3,3 W

^•. and .iMi:r^7;r;. r-r:''''
"- ''- - '-e «.. or

.

Let .r, , be the co-ordinates !f
'^"'''""-^"^^ "» the axis of,."^" °' ^">- P°i"t /' in the neutrai

l'^is.heradiu,,ofcnrvatureat/^,,he„

^=±-7 dx'

I'H-te'
= ± COS 6y

the sign being 4- or - -,^^ i-

F'g- 313 or as'in Fig. 3^ andTh" ''u
^"'^^ ^ ^-t as in

tangent at P and OX ^"'"S: the angle between the

Now,^ is the tangent of the angle which ^h .
at Z' to the neutral avi, ,

^ '^"S^^"* ^'"^neutral ax.s makes with OX^ and the angle U .1very small. Thus'^- ,

"^ angle is always

; '^ '^ ^'" ""' -^". -C squares and
^...er powers or|.„a,.e

disregarded Without seriousHence, «-"wuc serious error.

^ ^/^»"' approximately,
and the bending.,„on.ent

equation beco.es

^^ = ± i?/

i

!

.1

r/^-»'
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The integration of this equation introduces two arbitral y
constants, of which the values are to be determined from given
conditions. At the point or points of support, for example,
the neutral axis may be horizontal or may slope at a given
angle.

Let (V be the slope at P. Since B is generally very small,

and hence

B = tan 6, approximately,

ax' dx

or
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as M, S, and /r, i.e., the bending moment, shearing force, and

load. Thus, the mutual relations between curves drawn to

represent the deflection, slope, and hemiitig uioment must be the

same, mutatis mutandis, as those between the curves of bending

moment, shearing force, and load.

For example, divide the effective bending-moment area into

a number of elementary areas by drawing vertical lines at con-

venient distances apart, and suppose these elementary areas to

represent weights. Two reciprocal figures connecting j/, ^, and

M may now be drawn exactly as described in Cl;ap. I, and it

at once follows that

—

(a) Any two sides of the funicular polygon, or, in the limit

(when the widths of the elementary areas are indefinitely

diminished), any two tangents to the funicular or deflection

curve, meet in a point which is vertically below the centre of

gravity of the corresponding effective moment area.

{b) The segments \H, ;/// into which the line of weights is

divided by drawing OH parallel to the closing line CD, give the

slopes (= ^Mdx) at the supports.

N.B.—In the case of a semi-girder, the last side of a

polygon is the closing line, and \n gives the total change of

slope.

{c) If the polar distance is made equal to EI, the intercept

between the closing line and the funicular or deflection curve

measures the deflection.

3. Examples of the Form assumed by the Neutral

Axis of a Loaded Beam.
Example I. A semi-girder fixed at one end O so that the

neutral axis at that point is horizontal carries a weight W at

the other end A. At .uiy point {x, y) of the neutral axis

Integrating,

d\

(A)

(^.-O-f.,EI-^=lV[lx

r, being a constant of integration. But

the girder is fixed at O, so that the inclination of the neutral

Fio. 315,

r^
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axis to the Iiori/.on at this point is zero, and thus, when x

, IS u, iiul Ihciefoio <• -" o.

I frnif,

o,

< "•(^'
^)

(H'

Intr^raliii^,

^'-'(^-Oi-

<•, bciiii; .1 constant of integration. Unt j' - o when .r
• - o.

anil thiivl'oio <, -^ o.

1 Ilmkc,

^:/,. = „•(/;-;;) (C)

Kquation {W) i;ivi"s the vahu' (^f '
; . i.e., the s/,>/>,; at any

(/I '

point i>f which the abscissa is a.

I^luatiiMi {(') (Iclincs tlic curve assunu-il by the n. utial axis,
anit i;i\cs the vahie of r. i.e.. the ,/,/,r//,>n, cornsiiondini; to
any abscissa a.

Let «r, he the sU)pe, ami </, the tieileclion at A.
From i^H),

tan o, =
^ ^ ^ ;

an».l from (^C),

"^ ="
3 A /*
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F.X. 2. A Hcdii-^inlcr rtxcd at oiir end O carries a iinif«)rmly

(listriltiilfd load nf intensity w.

At any point /' (.r, y) of the

nriitial axis,

^i<i''Z ^(/ -.')

IV

,ix

= ^(i* - 2ix -\- x'), . (A)
Fio. 3i«.

Inli^^i.ilin^',

4-<.':(/v-/.+n-,..

< , l)cinj,j a constant of intci^r.ition.

Jiut : :-; o wliin X — o, and therefore r, — o. Hence,

Intc^Matin^.

/=•/.=:(/<-<+:;)+..

i", bcin^ a constant of integration.

Jiut y ~ o when x — o, and therefore <", = O. Hence,

/i/v
w / ..,v X . x^

I' -h
\2'

(C)

Let rr, be the slope and r/, th< deflection at A. Hence, from

B).

and from (C),

tan (>i..

EI

I W
I EI
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l",.\. J. A M^mi-|;irik I I'lxctl at onr ciul carrii'« a utiifonul)'

(list) ihtitrd load «)f iiitiiisity ;i*, and also a single wt.-i^lit ITat titr

free ciul. This is tmrel)' a iiuuliiiiation of i'^xainpleH i and 2,

ami tlu' n'siihin;4 «'t|ii.nions .m-

:

'.7""''

/•;/

./)•

//.I

MV- I
'*,!/ 0' (A)

Also, if , / is the slope aiul /) the tlelleclion at the free cud,

—

\ from y\^),

tan A =
j.j^

^- -I- ^^ j
^ tan *i, + tan a^

;

; .k1 from (,C'\

Cor.—The slope (/«^^ and tieflection {<f) of an arbitrarily

loavled semi-jj;iriier may be tietermined in the manner de-

scribed in Art. 2.

Let /'" be the area of the bendinj^-moment cnrve. Its

centre of jjfravity is at the same horizontal distance .r from the

vertical tluoiij^h A as the point T in which the tangent at A
iutersccts (^A'.

•• HI

In Ex. 3. e.|j:..

<r = an<:lc A TX = -.

and

J ^ 3 2 '

tx — / + -- / = Eld.2364
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IVoti'.— If tlu' Ht'mi-^jinlt'r in tin- thrre |»r<'C(MHnR cxiiiTiplrH

Is i)iil\' l^iirtiiillv lixnl ,tt i), so tli.it lln' lUMitr.il .ixis inslcul of

bi:iii^; lioii/.otit.il at tin- sii|,|iort. sloprs at an an^lc '^ tlun

1
'fv

. . ...
wluMi .1' (>, . tan ^, .iikI tlic constant of intri'ration,

(,, Is also /;/tan fK Tluis, the left hand siiU- of lmjs. (M) a:ul

(C), rcspcclivcl)', lifionic

/•/[! tan ^A .md /{/(j^ ^ tan <0-

r.X. 4. Thf ^ii«lir OA rt•^ts upon two snppoils at <>,

//, and carrirs a wriijht IV at the „

centre.
Op-c—,

, .^
File neutral axis is evidently

syniinitrii.d with respect t<» the Iy

middle point ^ , and at any point

P (.V, J') iHtiiurn O and C,

P i

W
Fio. 117,

(A)

Inteijratinfj,

'^'dx 4-*^ ^''"

f, bein^ a constant of integration.

Hut the tangent to the neutral axis at C must be horizontal,

/ (iy wr
so that when .r = , , =0, and therefore f, = — .-

.

2 ax 10

Ileixce,

Integrating,

dx ~ 4 16
*— AY ;- = "4r' ;>- (H)

-hly =^^x - ,6-^ + ^..

c^ being a constant of integration.
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But J = o when x = o, and therefore c^ =- o. H<;nce

- Eh - -x"
12 i6

(C)

Cor.— Let (t^ be the slope at O, and d^ the deflection at the

centre. Then,

I Wl
from (B), tan a, = -> -^J I ^"<J ^xom (C), d^ = -

i6 i:/

I wr
4S 75"/

B
Ex. The trirder OA

Fig. 318.

rests

upon supports at O, Ay and carries

a uniformly distributed load of in-

tensity 7C.

At any point P (-r, y) of the

neutral axis,

hi -- = -—-X
dx' 2 2

(A)

Integrating,

dy re/ , 7ca-

dx 4 6 ' "

c^ being a constant of integration.

But -f-dx

Hence,

dy I wP
But -f- = o when x = -y and therefore f, = .

dx 2
'

24

-£/t = --'--'^'-"'-.
. . . (B)

f/^ 4 6 24 ^ '

Integrating,

hly — —X
•^

12

%vx^ zvl

-Tr^-f<^i»24 24

c^ being a constant of integration.

But J'
= o when x = o, and therefore c„ = o.

Hence

xvl- Ely = - -x' -^ 12

TfA"* Tt'/

'

X. .

24 24
(C)
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Let 'f, be the slope at O, and </, the deflection at tlie centre.

Tlicn,

from (B), tan a^ = -- -.-.y ; and from (C), </„ = —r- >^7r.
^ ' 24/i/ \ /» » ^y^ £y

Ex. 6. /\ jjirder rests upon luo supports anil carries a liTTt!"

formly distributed load of intensity 7t', together with a single

weiyht W at the centre. This is merely a combination of

Examples 4 and 5, and the resulting eipiatiotis are:

EI -J-, = — .1' H X
dx' 2 '2

7l'X

and

- El-^ =
dx

- Eh =

W W wl
ILx^ _ r + ~x'
4 16 ' 4

W W li'l

\2 16 ' 12

"(T

'2^ ~ 24
-.r.

(A)

(I^)

(C)

Also, if A is the slo])e at the origin, and D the central

deflection, we have, from (li),

tan A = -jr-f \
~pr-

-f-EI\ 16 24
tan «, + tan a,

;

and from (C),

I iwr 5 \

Cor.—The slope and deflection of an arbitrarily loaded

girder resting upon two supports may be determined in the

manner described in Art. 2.

Let C be the lowest point of the deflection curve. The
tangents at C and O will intersect in a point T which is ver-

tically below the centre of gravity of the bcnding-moment

area corresponding to OC.

Denote this area bj- /'"ami the horizontal distance of centre

1
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of j^iavity from OY hy x. Let tr be the angle between OT
and CT produced. Then

F d
£7 = " = I'

d being the maximum deflection.

In Ex. 6, e.g., the girder being symmetrically loaded,

F= 5- - and I^x = —^ - - A | - = EId.242382 16 32' 24 82

E.\. 7. Suppose that the end O of the girder in Ex. 5

Q D ''^ fixed. The fixture introduces

I

di left-handed couple at 0\ let its

•X moment be J/,.

Let the reactions at O and A
be R^, /?, , respectively.

At any point P {x, y) of the

M^i
--—

1

-"A
P

Fig. 319.

neutral axis,

d^y i<X

->
>/, (1)

d'y
But J/, i.e., — EI-r—.y is zero when x = I.

wV
-.R,l '''')...•.« ^2^

Integrating eq. (i),

-^/X = ^.
x' tcx'

dx "•2 G
-^^^'•^• (3)

Tliete is no constant of mtegration, as ,- = o when x = o.

Integrating eq. (3),

X* wx*
-F/y = Rr^-^-M,- (4)

There is no constant of integration, as x and y vanish to-

j^vther.
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But _;' also vanishes when ;r = /, so that

'6 24 '

445

(5)

Hence, by eqs. (2) and (5),

ivP 5 3M, = -Q-, K, = g w/, and so R, — ^w/. . (6)
8 8

Thus, the btiuiing-mornvnt, slope, and deflection equation*'

are, respectively,

.<iy 5

dx'

-Elf- = KU"
dx 1 o

-£/;, ,= -7t'/a- --*'--— = J/, . . . (7)

7£'

8

7c'/'
-4-'

'•*', .... ^0/

-£/,. =>/--!;-•- ^'-r- (9)

CV^r. I. The bending moment is «/7at points given by

»^ 5 , ^^' . ^^

AF P.--'^^'l

Fir.. 320,

i.e., when ;i: = - or /. Take f9F= -
. f,

4 4 ^

Since -7-7 = o, F is a point of inflexion.
dx' '

f
Q

If the girder is cut through at this point,

and a hinge introduced suflficiently

strong to transmit the shear (= Itc/),

the stability of the girder will not be impaired.

Hence, the girder may be considered as made up of two

independent portions, viz.

:

/
(a) A cantilever OF oi length -, carrying a uniformly dis-

4
tributed load of intensity 7v, together with a weight f 7t'/ at /•'.
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The maximum bending moment on OF is at O, and is

3 . 1 . wl I wr
~

8
'"'^4 + 4 8 " 8

3/
{b) A girder FA of length -, carrying a uniformly distrib-

uted load of intensity w.

The maximum bending moment on FA is at the middle

point JJ, and is == - I / I =^
8 H / 128

This result may also be obtained from eq. (7) by putting

dj!

1x
— o. Whence

and therefore

O = \ivl— wx, or ^ = f/,

The shearing force and bending moment at different points

of the girder may be represented graphically as follows:

The shearing force at any point of which the abscissa is x is

5 = \wl — xvx.

Take OB and AC, respectively equal or proportional to \zvl

and fic/; join BC The line BC cuts OA in D, where OD = f/.

The shearing force at any point is represented by the ordinate

between th.it point and the line BC.

The bending moment at the point {x,y) is

M - \ivlx x^ ^.828
Take OG, DE, and OF, respectively equal or proportional

zvl'^ 9 ,
/

to -77-, :_,-,ivr, and --. The bending moment at any point is
8 ' 128 4

represented by the ordinate between that point and the parab-

ola passing through G, F, and A, having its vertex at F and

its axis vertical.
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dy

445

Cor. 2. The deflection is a maximum when -r — o, i.e.. when
ax

IVr5 , , IV .

or at the point gi/en by j: = -^(15 — V 33).

Substituting this value of x in cq. (9), the corresponding
vakie of J may be obtained.

Ex. 8. If both ends of the girder in lix. (7) arc fixed, the

reaction at each support is evidently ~
, and the equation of

moments becomes

— ^/-y , = X J/,
t/x' 2 2 '

Integrating,

- /:/'? = -.V -
7V

dx
x' - Mx.

(0

(2)

dy
No constant of integration is required, as -7- =: o when a* = o

dx

-j- is also zero when x = c (alsii when x =. -

dx \ 2

4 '

'

and hence

M, =
12

Integrating eq. (2),

EJy = '"L^-'^y-'^x^

(3)

14)12 24 24

There is no constant of integration, a.-; x and / vanish together.

The central deflection I i.e., when x = -
] = -„ —7.

\ 2 / 384 /if

t 'A

r-rl
, i4
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If the load, instead of b ng uniformly distributed, is a

wci^dit /F concentrated at tlu <'ntrc, then, for <;//d- //«//" of the

girder,

— /i/ .i =: X — M..
dx' 2 ' • . . (5>

Intej^rating,

EI ,-= — .v' — J/,, ('':̂)i

IMiere is no constant of integration, as ' = o when x =
/.I-

is also evidentl)' zero when .v = , and hence

o.

i6
1 -.

'

or il/. =
Wl

• •

Integrating eii. (6),

EIy
W
12

m:\ = W . JF/

12 1

6

(8)

There is no constant of integration, as .r and y vanish together.

The central deflection =
192 EI'

4. Supports not in same Horizontal Plane.—In the

preccdini; examples it has been assumed that the ends of the

girder are in the same horizontal plane. Su[)pose that one end,

e.g.. .'/. falls below O by an amount \\ , j', being small as com-

l)areil with /.

The abscissiv of points in the neutral axis are not sensibly

eiiaugi'd. but the conditions of integration are altered. Con-

sitler ICx. 4.

liiticiiii O and C,

— El ,^ — —X. (0
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Integrating,

(2)

i: being a constant of intcjjration.

Intcgratin}^' a^ain,

W
(3)

Tlicre is no constant tliic to the last integration, as x and y
vanish together.

JU'tuurn C and .1.

<;> - «•- ^'^ -»- J = -.-</-,n. . . (4)

Integrating twice.

Ef
ix

W
4
yl- xf i

r,.

and

\V
I'^h' =

,
3 (/ - '^-f + ^r^ + c.

(5)

l6)

r.j, r, being constants of integration.

The tangent at ("is no lunger horizontal, but makes a defi-

nite angle ^ with the horizon, so that '. is now tan H when
itx

1 th'
X = -. Also, the values of ' and y at 6, viz., tan H and d, as

2 (IX

given by eqs. (2) and (3), must be identical with those given by

eqs (5) and (6), w hile the value j\ at y/, i.-. given by eq. (6)

when X == /, is equal toj'^. Therefore

W IV
-. I' + r, = - EI tan ^ =: - ^ /' 4- c,

,

16''
1 '

"

IV I \V I

90 ' '2 96 ' '2 '

and
A/r, =<•,/+<„

nii.;t
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I leiice,

THEORY Ot STNUCTUKES.

fully iIcfiniii^Lr both halves of the iicutr.,1 axis

A-ain, in Kx. 6 it is no lon-cr true that '% =o when
. (l.V

4: = -, but the conditions of inte-natio n are v -- o \vllen -v = o.

and V = when .1- = /. These, to-ct)
'//'

'A^lUcy u)i)i . _: o wiien

-v = o, are also the conditions in iCx. 7. tii\
similarly treated

5. To Discuss
of a Girder
and carries a Weight i* at a Point /^d

a-

ler cases ijiay be

he Fortn assumed by the Neutral A
which rests upon Supports at o and

xis

Let 0/JA be the neutral axis ..| thr (|cflectet| aki]

istant I from if.

k

. B

•II

t-t.

ic reactions at O and ./ i^fa

Fir.. 321. = ./.

J and /'y. res|j^"|:

Let /.'f, the iitH&tifHii at r.

Let a be the slope of the neutral axis at /?.
""'

>c portions OB, BA must be treated separately, as i^i,
Tl

weight at />' causes discontinuity in the eipiation of
first, at any point (.r, v) of rV

moments.

. (0

Integrating,

(\ being a constant of integration.
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dy
But ^ = tan a when x — r, and tlicrcfore

ax

I - rr'
El tan tv =. P—7— - H- r,

/ 2

llcnce,

-./(i-u,.,^P^^(--Q,
Integrating,

I — r Ix" r
Eliy — X tan a) = /^' j- \

(2)

!4 • (3)

There is no constant of integration, as x and y vanish to-

gether.

Also, y ~ d when x = r.

•. — tUiii — r tan a) = — I
I -rr'

/ 3" '

(4)

In the same manner, if A is taken as the origin, and .///

treated as above, equations similar to (i), (2), (3), and (4)

will he obtaineil, and may be at once written down by sub-

r I -r
stituting in these equations n — tn for /»', P ^ for P -.— , I— r

for r, and r for I ~ r.

Thus, the equation corresponding to (4) is

- EI \d -yl-r) tan {n - a)\ = - /^^- ^^-^- (5)

Subtracting (5) from (4),

Ell tan az=-r{l- r){l - 2r)
;

and from (4),

Eld ^.
Pr\l^~_ry_

. . (6)

(7)
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Thus, eqs. (2) and (3) become

Pr— 111 , = y~X' —
dx 2 i

and

,1y PI -r
.^

. .

^^ dx = 2
-7-^ - 6 7 ^-^ - ''X2' - 0. . . (8)

(.9;

the hitter being tlic equation to tlie portion Oil of the neutral
axis, and the lornier t;iving its slope at any point.

:VV.i7, at any point \x,y) of IIA,

,/'y I — r

Intej^rating,

El'^'- = P'-~ - -'-(x- rf -I- c
(IX / 'y -> ^ '^ ~ '»»

./ -jrx^ P.

I 2
~

2

t, bf.'ing a constant of integration.

Hut --= tan a when x = r.
itX

,J — rr' Pr
... / ____ .__ 4- ^, = _ /,/ tan «=---(/_ r){l - 2r),

and

Hence,

€,=. - /V-̂
-r(2/-r).

„ ,</y PI - r ^ P Pr

Integrating,

-i5:/y = ^
/'/-r Z'

6 /
'-6(^-'')'-6 7^^-''X2^-'')^+^*'

r, being a constant of integration.

Hut y —- d when x =^ r.

i
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P I — r P r

45 i

= - Eld =

a\k1 f, = o. Hence,
3 / "•

P l—r P P r
- Ely = -^ ~j-x' - -^ {X - r) '

_ ^^ -(/ - rX2/ - r)^. ( 1 2)

w liich is the ecjuiition to the portion HA of the neutral axis,

e(|. Ill) ^ivin^ its slope at any point.

In the fij^ure r <, -, <uk1 the maximum deflection of the

girder will evidently lie between B and /I, at a point given by

dy
putting -T^ = o in eq. (ii), which easily reduces to

X' _ 2lx -\ =^ - = O,

and therefore

;r = /-
v/

/•- r'

IS the abscissa of the most deflected point. The corresponding

deflection is found by substituting this value of x in eq. (l2).

/
If r > -, the maximum deflection lies between O and 7?, at

dy
a point determined by putting y- = o in eq. (8), which then

dx
easily reduces to

from which

o = x' —
r{2l - r)

3 '

' = \J
r{2l — r)
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Substituting this value of x in eq. (9),

the maximum defiection
lEi I \ 3—;•

Example.—P = 15,000 lbs., / = 100 ft., r = 90 ft.

The distance of most deflected point from O

^-/90 X 1 10~ ' ' ~ = 57-44 ft.,

and the maximum deflection

_ 15000 JO /90 X I i o\g 500000
~ lEf ^ 100 V 3 J

-—^v-(33)'.£/

6. To Discuss the Form of the Neutral Axis of a Girder
OA which rests upon Supports at O and A and carries
several Weights P,

, P,, P3 , . . . , at points i, 2, 3, . . . , of
which the Distances from O are i\,r,,r,, . .. ^ respectively.

"---Il_^
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and to \A,

^ Ely = -^ ^-px' - -^{x - r.y - ^ "jil - r,){2l- ^',)x.

Consideiing /*,, the equation to O2 is

- £/^ = § -=px^ - § 'p - r,)(2/ - r,)x;

and to 2A,

- ^^y =
-6 ^-T^'^' - §(^ - '-'/^ - -6 'P - '^^^^- ^> •

and so on for P^, P^, etc.

The total deflection Fat any point [x, F) is the sum of the

deflections due to the several loads.

Tal;e, e.g., a point between 3 and 4, and \e\. d^, d^, d^, . . .

be the deflections of this point, due to P,, P^, P^, . . . , respec-

tively. Then

PJ-r, Pr
Eld, = ^ -j-^x^ - -'

-y(/ - r.)(2/ - r)x - -Xx - rO";

-Eld. = -?

Eld. =

'~EId. = -,

and so on. Hence,

6
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Again, the position of the most deflected point is found by
,. dY

making ^y- = o in the equation to that portion of the neutral

axis between two of the weights in which the said point Hes.
The result is a quadratic equation, and the value of x derived
therefrom may be substituted in eq. (A), which then gives the
maximum deflection.

Example.—A girder of loo ft. span supports two weights
of 20,000 lbs. and 30,000 lbs. at points distant respectively 20 ft.

and 60 ft. from one end.

The most deflected point must evidently lie between the
two weights, and the equation to the corresponding portion of
the neutral axis is

-EIY = 20000.
^(20000 X 80 + 30000 X 40) - -^{x - 2oy

- 6^(20000 X 20 X 80 X 180+ 30000 X 60 X 40 X 140)

14000 3 lOOOO,
= —v~^ r~v^ — 20)' — 26400000;!?.

F is a maximum when

dV— ~ O = I4000.r' — ioooo(;«r - 20)' — 26400000,

or

or

x' -f IOO;f — 7600 = O,

X = 50.497 ft.

Remark.—Instead of assuming -^ = z\zEI^, , it would beR dx'

, Ef ,1R
more accurate to take ^- = ± ^Ycos ^~ (Art. 2), and the

first integration would make the left-hand side of the slope
equation ± EI sin ^ instead of ± EI tan B.
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7. Moment of Inertia variable.—In the preceding exam-

ples the moment of inertia / lias been assumed to be constant.

From the general equations,

c being proportional to the depth of the girder at a transverse

section distant x from the origin.

Hence, for beams of uniform strength, the value of c in

terms of x may be substituted in the last equation, which may
then be integrated.

Again, let Fig. 323 represent a cantilever of length /, spe-

cific weight w, circular section,

and with a parabolic profile, the

vertex of the parabola being at A.

Let 2b be the depth of the

cantilever at the fixed end.

Let the cantilever also carry a

uniformly distributed load of in-

tensity /. ^'°- 3^3.

Consider a transverse section of radius ^ at a distance x
from the fix-^d end.

Let X, y be the co-ordinates of the neutral axis at the same

section. Then

'
^ 2^ ' 4 dx'

But z" =zj{l- x).
rt.

7T b^ d'v WTT b^ />

or

Integrating,

dx"" 6 /

TcEb' d'^y zvTtb'^

"6 7
(/•

^
' 24 I' dx'

ttE b' dy W'Tb'*! x'*\ px
T r dx "^ ~6

/'
v"^ ~ 2"H' T- fn
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Tlictc is no constant of integration, as
'^'' = o when ;r = o.

Integrating again,

4
/'^'~

r, AT^ 67+ 4 (2)

There is no constant of integration, as x and y vanish to-
gether. Thus, equation (i) gives the slope at any point, and
equation (2) defines the neutral axis.

The slope at the free end ix = l)= ^-f- -4- ^\

The deflection " " «' - /' (~.,\^\- EFAlj'+ nb'J-

8. Springs Fixed at One End and Loaded at the other
with a Weight W.

Data.—l^cngth = /; breadth = d, and depth = ./ at fixed
support

;
F= volume of spring; /= maximum coefficient of

strength
; J = maximum deflection.

Case a. Simple rectangular spring.

|srr^---____ By Ex. I, Art. 3.

I1
smce

Fig. 324.

Also,

^^i^F/' 2//'

I EI ~ I Ed' '

W7_^_2/ _ 12 W^/
"/

(I)

/ dd'

61 ' zEd 9 E ~ gE'

Hence,

F = 9
WAE
' r

1 he work done = = ^
2 iSE

(2)

(3)
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Case b. Spriui^ of conslant depth but triangular in plan.

Let b^ be the breadth at a distance x from the fixed end.

Then .

/\ I — X

and /at the same point

bj' \ l-x
12 12 /

bd\
Fig. 325.

dx'

U
= £/<'--) =

\2Wl

Integrating twice,

and

dy

dx

vzWl

Ebdrj»^.

ewi
Ebd

x"

.-. A = ewr _ fP
HW ~~Ed'

WA =

Also,

Hence,

/. V

The work done

bd-'fff fbdl PV
6/ Ed~ 6E

2,WAE

lE-

r
WA _pV
'~r~~6E'

(4)

(5)

(6)
if

N.B.—The results i to 6 are the same if the springs are

compound ; i.e., if the rectangular spring is composed of n

simple rectangular springs laid one above the other, and if the

triangular spring is composed of n triangular spring's laid one

above the other.
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Case c. Spring of constant zvidth but parabolic in elevation.

Let dj, be the depth at a distance x from the fixed end.

Then

^ ;w

Fig. 326.

\d]- I '

and / at the same point =

bii:__bd' ll- x\^

12
~~

'hP fl- x\i

12 A / /•

dx' En ^^~

Integrating twice,

^ = '^~
bd^ ' ^(^ - ^)'- 2/V - ;r) + 1/«

[,

and hence

A- ^W P 4//'

£ bd'~ lEd- (7)

Also, ^^ = ^4^-^/:,.,,.i/v.
0/ 3 Ed g E lE

.'. V.
3 WAE

1 he work done = =-:;'^—=r-.
2 6 E

9. Girder Encastre at the Ends.—The girder BCDEFG
rests upon supports at the ends, is held in position by blocks
forced between the ends and the abutments, and carries a uni-
formly distributed load of intensity w.
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It is required to determine the pressure that must be devel-

oped between tiie blocks and tiie girder so that the straiglit

portion between vertical sections at points O and A of the

R

S^^

U'.l

^Q^^4^J^

'('^^j-ii^i^.

Fig. 337.

neutral axis may be in the same condition as if the girder were

fixed 2i\. these sections.

Let / be the length of OA.
Let R be the reaction at the surface BC, and r its distance

from O.

Let H be the reaction between the block and the end CD,

and h its distance from O.

Let P be the weight of the segment on the left of the ver-

tical section 0, and/ its distance from O.

Then for the equilibrium of the segment on the left of the

section at O,

ivl ivl^
R-{---P=0, and Rr-Pp-Hh-~'2 ^

12
o.

and

// = (^-tO
Pp-

12

h
- = the required pressure.

Again, take O as the origin, OA as the axis of x, and a

vertical through O as the axis of y.

At any point (-f
, y) of the neutral axis,

dx^ 2
—

-. (See Ex. 8.)
2 12 ^ ^

^%

m
fi *

j
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A'^

10. On the Work done in bending a Beam.—Let
A'B'C'D' be an originally rectangular ele-

'^r^ II ^1^- ment of a beam strained under the action of

P; '
11 /Q external forces.

Di /C
Let the surfaces A'D', B'C mod in 0\

O is the centre of curvature of the arc P'Q' of

the neutral axis.

Let OP' = R= OQ.

Let the length of the arc P'Q = dx.

Consider any elementary ^hxcp'q' , of length

dx\ of sectional area a, and distant y from the

neutral axis.

Let / be the stress in p'q'

.

The work done in stretching/'^,'

= *-[ilx' -dX

dx' p'q' R-^y
, ^ ^ dx'-dx „ y

^^"^ d]c=-p'Q'='-R-^ ""^ ^ = ^^-^r-^^'^^'
\E

The work done in stretching/''^' = - jv^dxay*,

and the work done in deforming the prism A'B'C'D'

= ^(-^I dxaf )
= '-f..dx2(ay) = ^~ dx.

Hence, the total work between two sections of abscissae

R''
1./ j-j ty ^j

I M
But "d = TTv; therefore the work between the given limits
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This expression is necessarily equal to the work of the ex-

ternal forces between tlie same limits, and is also the semi vis-

viva acquired by the beam in chan^^ing from its natural state

of equilibrium.

Cor.—If the proof load P is concentrated at one point of a

beam, and if (/ is the proof deflection, the nsilience = —d.

If a proof load of intensity zv is uniformly distributed over

the beam, and if y is the deflection at any point, the resili-

I /•
ence = ~

f
ivydx, the integration extending throughout the

whole length of the beam.

The case of the single weight, however, is the most useful

in practice.

II. On the Transverse Vibrations of a Beam resting

upon Two Supports in the same Horizontal Plane.

It is assumed

—

{a) That the beam is homogeneous and of uniform sectional

area.

{b) That the axis {neutral) remains unaltered in length.

{c) That the vibrations are small.

{d) That the particles of the beam vibrate in the vertical

planes in which they are primarily situated. In reality, these

particles have a slight angular motion about tlie horizontal axis

through the centre of gravity of the section, but for the sake

of simplicity the effect of this motion is disregarded.

s
Ma M+aM

/ Bl bH

G— u A-X

+ s+a.s
V) dx

Fig. 329.

Let OA be the beam.

Take O as the origin, the neutral line OA as the axis of x,

and the vertical (9Kas the axis oi y.

Consider an element of the beam, bounded by the vertical

V
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planes nC, /rr, of u'liich the abscissa,' are ^ and ^ + ,/^
respectively. ' '

Let 7f be the intensity of the load per unit of length • hence
7i>dr IS the load upon the given element, and acts vJrfcallv
through its centre.

Let ^- be the shearing force at 7,'; S -]- c/S the shearin-
force at /j'

.

'^

^

Let A/ be the bending moment at />'; J/+,/J/ the bend-
ing moment at /)"'.

Also, the resistance of the clement to acceleration = ~ '^'-^

Hence, at any time /,

^-«''^-

\/f^
+ ^V - {S+ dS) ~ zvdx = o.

or

^> _ /r dS
df ii>dx~^ = ^-

(0

CC,
Again, taking moments about the middle point of BB' or

dx dxM-{M + d3I) + S~ + {S-\.dS)~ o,

or

dM
_

dx
~

(2)

But J/=_,BY-^-^. Therefore

^- - ^^;73, and -r- = - EI A-dx' dx ix'

Hence, from (i),

(3)
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'I'liis <.'(|u;iti()n doi-s not .idniit of ;i finite integration, but

ma)' he inle^Mati'd in tin- fornn of a partial differential ecjuation.

12. Continuous Girders. VVlnii a girder ovi rhan<,fs its

bearings, or is supported at more thru tvo points, it assumes a

wavy form aiul is said to be continiio,(s. The convex portions

are in the same condition as a loaded girder resting upon a

.single support, the u[)per layers of the girder btM"ng extended

and the lower compressed. The concave portions are in the

same condition as a loaded girder sMp,)ortetl at two j^oints, the

upper layers being conu.ressetl and the lower extended. At
certain points, called points of contrary flexure, or points 0/ in-

flexion, the curvature changes sign and the flange stresses are

necessarily zero. Hence, apart from other practical considera-

tions, the flanges might be wholly severed at these points with-

out endangering the stability of the girder.

13. The Theorem of Three Moments.—It is required to

determine a relation between the bending moments at any three

consecutive points of support of a loaded continuous girder of

several spans.

Rr-l Rr

Oi

R

Rr+1
A

Fig. 330.

Let O, X, V be the {r — i)th, rth, and (r-f- i)th supports,

respectively.

Let OX^l,,XV=l,.+ ,.

Case A. Let w^ be the load per unit of length on OX,

Wy^i the load per unit of length on XV.
Let Rr-it Rry -^r + 1 bc the rcactlous at 0,X, F, respectively.

Let M^.„ M^, M^^, be the bending moments at O, X, V,

respectively.

Let Of be the angle which the tangent to the girder at X
makes with OV.

Consider the segment OX, and refer it to the rectangular

axes Ox, Oy.

m

M-

n--frA
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The equation of moments at any point {x, y) is

d^y x"

At X,x~ /,, and M= M^.

.'.Rr_J,-Wr~-YM,., = M,, (2)

Similarly, the segment XV gives

Combining (2) and (3),

= MXlr + lr+^\ (4)

Integrating (i),

^^ix""^'-'^~'^'^6'^^'-'''^''' ' •
(5)

c being a constant of integration.

When X =--: /.

dy
'-' ix

tan a.

p r

Integrating (5),

- Ely = R^_,^ - w, ~ + J/,., --+ ex. . (7)

There is no constant of integration, as x and y vanish together.

Also, jj/ = o when x = /,..

/ 3

o - K.:'^ - w/£-{.M^J'^ + .4,

or

,= -R,J-^-^zv/£-M,.../~. . . . (8)
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Substituting this value of c in eq. (6),

— E/tana = R^.,-^ — w^-~ 4- M'^.^-. . . . (9)

(10)

Similarly, the segment -A'F gives

•«.

Adding eqs. (9) and (10), transposing, and simplifying, ' 't^l

R-r-i^r ~T' Ry + 1^ r + I
^

= h^ri; + i^cv+A+, - ^M^j,

-

|J^/,+.. (II)

Finally, combining eqs. (4) and (11), •

MrJr + 2MXlr + /.+.) + ^.+/.+> = " liw^r' + «^.+. /V+i)- {^^)

If the girder is supported at n points, there are n — 2 equa-

tions connecting the corresponding bending moments, and two

additional equations result from the conditions of support at

the ends. For example, if the ends merely rest upon the sup-

dy
ports M^—O and M„ = O ; if an end is fixed, -7- = o at that

point.

The point of maximum bending moment, the points of

inflexion, and the point of maximum deflection in any span 'are

dM ,^ dy
found by makmg -j- — o, M= o, and -j- = o, respectively.

Thus, for the span OX,

dM
dx

= o = Ry.^ — w,jr;

R I T^
.'. X — —^, and maximum B.M. = ^ + J/,,.,

;

M = = Rr-iX — ZVr- -\- My.^ ,

I
I

a quadratic giving x ;
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dy X* x^

a cubic from which x may be found by trial. The maximum
deflection is obtained by substituting the value of x in eq. (7)

;

£ being given by eq. (8).

Case B. Let the loads upon OX, XV, respectively, consist oi

a number of weights P, , P, , P, , . . . , distant pi,p^,p3, • . - from

O, and (2, , Gs . (23 > • • • . distant q^, q,, g^, . . . from V. Refer

the neutral axis OAX to the rectangular axes Ox, Oy.

It may be assumed that the total effect of all the weights

is the al<5ebraic sum of the effects of the weights taken sepa-

rately.

Consider the effect of P, at A,

The equation of moments at any point {x, y) of the neutral

axis bcHvccn O and A is

- EI-/:^=Rr-.x-^M,., (I)
dx

Integrating,

- ^/^ = RrJ- + M^_ ,x-\-c,, . (2)

r, being a constant of integration.

Integrating again,

- E/y = ^,_.^ + M,.~ + c,x. . (3)

There is no constant of integration, as a- and y vanish together.

The equation of moments at any point {x,y) between A and

X\^

-El'^^, = Rr-.x-Pix-p)+M,.,. . (4)
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Integrating,

. (5)

Integrating again,

- Ely = R,J^ - -^{x - p,Y + M^J- + c,x+ c, . (6)

dy
Now, at the point A, the values of -7- and j/, as given by

eqs. (5) and (6), are identical with those given by eqs. (2) and

(3) ; also, in equation (6),/ = o when x — l^.

Hence,

K-ri- + M,.,p, + ^, = R,.P^ + M_,p, 4- c,
,

sit *^

and

o = rJ'^ - §(4 - p.r + ii/.-4- + ^,4+

'

so that

c, = 0,

and

= c,= - rJ'^ + ^(4 - p,r - Mj, • • « • (7)

Let a be the slope at X\ then, by eqs. (5) and (7),

- EI tan a = rJ/- - ^f{K - A)X2/,- +/.) + M^J^-, (8)

Similarly, the segment XV gives

m

- EIt3,r\ {n - a) = R,.+,-^ + M,
r+l

r+I (9^



4^8 THEORY OF STRUCTURES.

Adding eqs. (8) and (9), and transposing,

-|j/,.,/,-|j/,+/,^.. (10)

Again, taking moments about X,

R^J, - PiK-p:)^M,., = M^ = ^,+/,+, + J/,+,, (I I)

whence

- J/,+.4+. + /'.W-A). (12)

and finally, by eqs. (10) and (12),

KM^j, + -^MXK + /,+.) + ^>/.+.4+, - - p:j{ir' -pn- (13)

The effect of each weight may be discussed in the same
manner, and hence the relation between J/^_, , J/^, and J/,.+,

may be expressed in the form

i/,. ,/, + 2MXlr + 4+.) + ^A-+:4+. - ^^{i; - f)

-:2^{l\^,-q^), (14)

Cor. I. The relation between M^_j, M^, M^^, for a uni-

formly distributed load may be easily deduced from eq. (14).

For example, let a uniformly distributed load of intensity ta^

cover a length 2^ (</,.) of the span OX, and let 3 be the distance

of its centre from O. Then

zv^.2az.

2^(/; -f) =y^''^!^^xc -/) = ~=ii; -z^- «').

which reduces to
w,l,

when ^ = ^? = -.

4 2
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Cor. 2. Considering the rth span and taking moments
about the rth support,

M being the moment of the load on the span, and the reaction,

or shear,

-P _ ^ ,
^. M,.^,

- ^''-' - 4 ^ /, 4
•

Hence, the shear at the (r — i)th support for the rth span

= the reaction at the same support, supposing the span

an independent girder, i.e., cut at its supports,

-\- the difference of the forces, or reactions, equivalent

to the moments at the supports.

Again, let M^ be the moment of the load on the segment

X with respect to the point {x, y).

Hence, the total moment about {x,y)

= R,_,x - M^-\- Mr-,

IM \
^
M,._,^,

, ,

M,

= the moment at the same point supposing the span

an independent girder,

-j- the reactions equivalent to the moments M^-i , M^ ,

multiplied respectively by the segments l^ — x and x.

In Fig. 331, (?-<¥ being the rth span, let O^X be the curve

Fig. 331.

of bending moments, supposing OX an independent girder, i.e.,

cut at and X. On the same scale as this curve is drawn,

take the verticals OE and XF to represent Mr_^ and M^ , re-
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spectively, and join EF. The curve OBX corresponds to the

portion V-rx — M^j of the above equation, and the Hne EF

to the remainder, i.e., -y—'l4— x) -{- -r-r. The actual bend-

ing moment at any point of OX is represented by the algebraic

sum of the ordinates of the curve and line at the same point,

which will be the intercept between them, since they represent

bending moments of opposite kinds.

Let A be the effective moment area, or the algebraic sum of

the areas for the load and for the moments at O and X, and

let X be the horizontal distance of its centre of gravity

from O.

Let Ar be the area for the load, i.e., the area of the curve

OBX, and let z^ be the horizontal distance of its centre of

gravity from O. Then

Ax = A,z, + j/,..f + - {Af^ - M,.,y;
2 3

= A^,-}-^M,.j; + ijK/;.

This result will be referred to in a subsequent article.

14. Applications.—Example i. Swing-bridges of two
spans revolving about a single support at the pivot pier.

This is a case of a girder of two spans, 0X{= /,), XV{= /,),

resting upon supports at O and V, and continuous over a

pier at X.

The bending moments at O and V are

X V both nil.

^ Let J/ be the bending moment at .Af".

For a uniformly distributed load,

T —r~
Fig. 333.

2J/(/. -f /,) = _ i(«;/.' +VA or M=--
8 /. + /, '

w^ being the intensity of the load on OX, w^ that on XV.
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'

For an arbitrarily distributed load,

2M{1, J^Q=- A-B, or M=- ^4-^,

where /i = 2^^(/; -/) and B = 2^^{l,' - q').

Let K^, R,, R3 be the reactions at O, A^, V, respectively.

For a uniformly distributed load,

p ^e^/.
,

^/ __ - ^^'/.'

+

a'-^jj: +

3

^'//

For an arbitrarily distributed load,

;. _ ^Q{K - q)
,

^^/ _ yg^ - ^) I ^ + ^^"^
k '^ k /, 2 4^/, + /,)-

If w^ = O, Oi- if P and hence A = o, then ^, is negative.

So if w, = O, or if Q and hence i) = o, then R^ is nega-

tive.

Hence, if either of the spans is unloaded, the reaction at

the abutment end of the unloaded span is negative and that

end is subjected to a hammering action. This evil may be

obviated :

{(i) By loading the spans sufficiently to make R^ and ^3

zero or positive.

This result is attained for i?,

if ixvJ: + Aw.l^K > wA\ or if

2^^^Y^
> '-

^J^y
and for R,

if 4«'/.C + 3^A' > ^^A\ or if 22(^^ >\^lWy
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(b) By using a latchinj^ apparatus to keep the ends from

rising.

{c) By employing suitable machinery to exert an upward

pressure, at least equal to the corresponding negative reaction

upon each end, which is thus wholly prevented from leaving its

seat.

Cor. I. When the load is uniformly distributed, the dis-

tance X of the point of inflection in OX from O is given by

XV x^ iRM = o = R.x ^— , and therefore x = — -

.

2 w,

Similarly, the distance of the point of inflection in XV from

2R.

If /. = /, = /, then

And if w, = w, = w, then

7w, w„

i6
--/, ^3 =

- w,+ yw,

i6
/.

M=-izi'/\ R, = -^w/=R,, R,= 2w/-R,-R, \iuL

In the latter case = f/ = —
2V,

* W„
, and thus a hinge may

be introduced in each span at a distance from the centre pier

equal to one fourth of the span, without impairing the stability

of the girder. Hence, also, the continuous girder of two equal

spans may be considered as consisting of two independent

girders, each of length |/, resting upon end supports, and of

/
two cantilevers each of length —

.

Ex. 2. Swing-bridges with two points of support at the

m^.

R4

h
Tmi

Fig. 333.

pivot pier, as, e.g., when they are carried upon rollers running

in a circular path.

:l
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This is a case of a continuous girder of three spans.

Let /, , /j , /, be the lengths of the spaces, «f, , «^, , w, the

corresponding intensities of the loads, which are assumed to

be uniformly distributed.

Let /?, , R^, R^, R^ be the reactions at the supports;

J/,, J/,, Jf,, M^ the corresponding bending moments. Then

il/./, + 2J/,(/. + /J + J/./,= -i(«;.C + tc'.C); . (I)

MJ,-\-2MII,-\-Q + MJ,^-\{wJ: + wJ:). . (2)

Let the ends of the girders rest upon the supports, and

assume, a§ is usually the case in practice, that the centre span

is unloaded, i.e., that w, — O. Then

M, =o and M, = o.

From (i) and (2),

#/,/,+ 2^3(4+ A) = - iv;- . .

- 2zvJ,U + /,) + tvJX

and

Hence,

^^ -
4(4//, + 3/,' + 4^A + 4/y.)

'

• • •

and

M.
4(V.A + 3^ + 4//= + 44/3)'

(3)

(4)

(5)

(6)

Taking moments about the second support,

RA = '^^-^M.
•

4(4A4 + 3C -h 4IA 4- 444)

Taking moments about the third support,

^^(6//4 + 6/3V. 4- 6/,'C + 8/3V.4) + ^^/.V,

4(4/.4 + 34' 4- 444 4- 444)

(7)

(8)
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lit

Thus R^ and R^ are both positive for all uniform distribu-

tions of load over the side spans, and no hammering action

can take place at the ends.

Again, if the span on the left is unloaded, i.e., if w^ = o.

A/j is positive and M, fwgative; and if the span on the »ight is

unloaded, i.e., if w, = o, 71/, is negative and M^ positive.

Thus, at the piers, tlie flanges of the girder will be sub-

jected to stresses which are alternately tensile and compressive,

and must be designed accordingly. The same result is also

true for arbitrarily distributed loads.

Ex. 3. The weights on five wheels passing over a continuous

girder of two spans, each of 50 ft., taken in order, are as fol-

lows : 15,000 lbs., 24,000 lbs., 24,000 lbs., 24,000 lbs., 24,000 lbs.

The jistances of the wheels, centre to centre, taken in the

same order, are 90 ni., 56 in., 856 in., 56 in. Let it be required

to place the wheels in such a position as to give the maximum
bending moment at the centre pier.

The pier must evidently He between the third and fourth

wheels.

Let X be the distance, in inches, of the weight of 15,000 lbs.

from the nearest abutment. The remaining two weights on

the span are respectively x -\- <^ and x -j- 146 in. from the

same abutment.

The two weifThts on the other span are 142— ;ir and \gZ—x
in., respectively, from the nearest abutment.

Hence, by Case B, Art. 13, if M is the bending moment at

the centre pier,

-4i/X 600= ^.r(6oo«-;.')4-^-^(;r H- 90) 1
600'- (;r+ 90)'

}

+ ^-3^(^+i46)|6oo'-(;r+i46)'|

+ ^X(i42-^)16oo'-(i42-^)'|

+ ^-^X(i98-;r){6oo'-(i98-;ry(.
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dM
Making ^ = o for maximum value of M, and simplifying^

I5;r' + 27648^ = 2518848,

and therefore

X = 87.39 '"• = 7-8 + ft'

«— I n

Thus, the B. M. at the centre pier is a maximum when the

first wheel is 7.28 ft. from the nearest abutment.

The maximum B. M. in inch-pounds is obtained by substi-

tuting X = 87.39 '"• ''^ the above equation.

15. Maximum Bending Moments at the Points of Sup>
port of Continuous Girders of n equal Spans.

Let the figure represent a continuous girder of « spans, i,

2, 3, . . . « — I being the n — i intermediate supports.

O 12 3 r—i r r-(-i

"1

Case I. Assume all the spans to be of the same length /,

and let ^v^, zv,, . . . w„.^ , zu„ be the intensities of loads uni-

formly distributed over the ist, 2d, ...(«— i)th and «th spans,

respectively.

By the Theorem of Three Moments,

P
4;«, + w, = - -{w, -\-w,);. . . . (i)

AAAAAAAAA r

w, -f 4W, + ^«3 = - -{w, + w,) ;

4

Wj+ 4W, -{-m^ = (w, + "^4)

• • •

ft • • •

(2>

(3)

w, 4- 4m, + w, = — -{zv, + w.) (4)

^* + 4'«6 + »«.= - 7(«'» + «'•) • • • • (5>
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p
Vin-y, 4- 4W«-. + W«-i = - -IW,,-, -|- Wn-x) ; («-2)

mn-2 4- 4'''«-.
4

;«„ and ;;/„ are both zero, as the girder is supposed to be rest-

ing upon the abutnnents at o and n.

From these (« — i) equations, the bending moments ;//,

,

;//, , . . . w„., may be found in terms of the distributed loads.

Ehminating w, from 2 and 3,

w, - 1 5 w, - 4///, = -
. 1 («', + ^O - 4(«', + 2^«)|. . • (^,)
4

Ehminating ;«, from 4 and x^

,

/'

w,+56;«,+ 15;;/,= - -
1
{iv,-\-zv,)-4{'w,-\-zv,)+iS{zt>,+w,)\. {x,)

Ehminating m^ from 5 and x^,

m, — 209;/?, — 56»«,

= - -lK+ «^,)-4K+«'4)+i5KH-2^6)-56K4-tt/,)|. (;t:,)

Finally, by successively eliminating Wj, ;«, , . . . ;«„_a,

= -7 )K + w'.) - 4K + 2^4)+ 15K + «'.)-•••
4

the upper or lower sign being taken for the terms within the

brackets according as n is odd even. icients

^n—i > ^«— 2 » ^n—3 »
being given by the law,

««-2 = 4^«-3 — ^«-

3

»

4

»
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a, = 4rt, - rt, = 209

;

rt« = 4'?. - '^ = 5<>

:

rt, = 4'^i - ". " 15;

rt, = 4rt, t= 4

;

rt, = I.

Commencing with cquationi< « — 3 and // — 2, and proceed-

ing as before,

(.^ a„^,{w, + «;,) - ««_3(7e', + w,) -f <i«-4(m'.+ zf,)

the upper or lower sign being taken for the terms within the

brackets according as n is odd or even.

Solving the two equations j and 2,

w,(«'«-i— 0= — -\^H-ta„-,w,-^{a„_,(r„^, — a„.,an-3 i)w.

— (rt„_,rt„_3— rt„_,rt„.^— 3)7t', 4- . . . T(3'^/-. + rt„_^— rt„_3)7c;„_,

and

± ni„_la\,_, — i) =

Hence, since %v^,w^, . . . w„ are positive integers, the value of

m„ will be greatest when tu^ , za,, w^, zv,, w^, . . . are greatest

and zv^, zv^, zv^, . . . are least ; and the value of vi„_., will be

greatest when zu„ , w„_, , tf„_3, zi>„-^, . . . are greatest, and 7f„_j

,

«^«-4> w„_6, . . . are least. In other words, the bending moments
at the 1st and (« — i)th intermediate supports have their maxi-

*^'!

I-

.'<
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mum values when the two spans adjacent to the support in

question, and then every alternate span, are loaded, and the re-

maining spans unloaded.

% , w/, , . . . /«„_, may now be easily determined.
Thus, by eq. (i),

= - - 1 (ze/, + w,) - -^«_,«„_,w.

+ («„_,««-2 — «„_,«„_3 — I )W,— ...
J

+ (rt^_. - I -4«„-.«„-a+ 4««-i««_3 4 4)«',+ . . .

I

.

But a„_i = 4rt„_, — rt„_3.

and is greatest when w, , zv., , zy, , w, , . . . are greatest and lu^

,

7C\ , tu^ , zv^ , . . . are least.

Similarly, by eqs. (i) and (2),

l\ P
;«, = - -(w, + «;,) + -

. 4{w, + w,) + 15^,

+ (i i««-.a„_4 + 44)^^3 + • • .

I
,
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and is greatest when tc, , ^f, , w« , w, , w, , . . . are greatest and

zc, , w^ , 7C, , 7C', , . . . arc least.

Thus, the general principle may be enunciated, that " in a

horizontal continuous girder of n equal spans, with its ends

vesting upon two abutments, the bending moment at an inter-

mediate support is greatest when the two spans adjacent to

such support, and the alternate spans counting in both direc-

tions, carry uniformly distributed loads, the remainder of the

spans being unloaded."

Case II. The principle deduced in Case I also holds true

when the loads are distributed in any arbitrary manner.

Consider the effect of a weight zv in the rth span concen-

trated at a point distant/ from the (r — i)th support.

By the Theorem of Three Moments,

4w/, -!-;«, = c: (i)

m, -f 4;//, + W3 = o\ ,.,... {2)

vi^ 4- 4W3 + vi^ = o ; . • •• (3)

A
111,..^ -\- ^lUy.^ -\- viy = — zu -AP — t>^) = —A, suppose

; (^ — i)

.w,..,-|-4w/,.+ w^^, = 'J--l\r-{l-ff\

... /
zo -{I — p){2l — p)=z— B, suppose ; (r)

m, + 4w,^, + ;;.v+2 = o ; . . . . (r + i)

'««-3 + 4^''«-^ + '««-. = 0; • • • . (« - 2)

'««-. + 4w„., = o. . • • • (;/ - I)
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By equations (i), (2), (3), ... (r - 2),

r I

VI. — — — ;//„ = — in. —
4 ' 15

m, = ,.. = T -—in,., = ± —\
56

the upper or lower sijfii being taken according as r is even or
odd.

By equations {?i — i), (n — 2), (// — 3), ...(/- 4. i),

w.,

== =F
''^y+2

,

w^H /y^^— ± ": — + .

<^l-r-I ''»-» n.

The coefficients ^? are given by the same law as for the co-

f'i icients a in Case I. Thus,

;n,..2— m^., and /;/^,, = m^.

Substituting these values of m^.^ and ;//^+, in the {r — i)th

and rth eouations,

;//,., (4 — --'] + ;//, = — A— ni,_J) + ;«^

md

where

«^., + WJ4
a

II -f+2

— B = ///^_, -f- ;//^,

/
'''''--2

J ^,,-r
/>> = 4 — and ^ = 4 !-^

Hence, solving the last two equations,

Ac - B
III,., = —

a.

m - A
-, and in. = -.

Oc — I be — I

nn-r
The ratios -^ and -^^^ are each less than unity, and

hence b and c are each < 4 and > 3.
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It may now easily be shown that Ac — B and Jib — A arc-

each positive. Hence, ;«^., and m^ are both of the same sign.

The bending moment /«, at any intermediate support on

the left of /- — I is given by

It/, — A—- niy , it <7 and r are t' e one even and the other odd,

or

ni^ — — - ;«^_, if q and r are both even or both odd.

Thus the bending moment at the ^ih support is increased

in the former case and diminished in the latter.

If r/ is on the right of r,

m^ — -\- ---^^ w,. if q and r are both even or both odd>

or

»tg = — ""'^--w^ if q and r are the one even and the other odd,
a H —r+2

and the bending moment on the ^th support is increased in the

former case aiul diminished in the latter.

Thus, the general principle may be enunciated, that, "in a

horizontal continuous girder of n equal spans, with its ends

resting upon two abutments, the bending moment at an inter-

mediate support is greatest when the two spans adjacent to

such support, and the alternate spans counting in both direc-

tions, are loaded, the remainder of the spans being unloaded."

Case III. The same general principle still holds true when
the two end spans are of different lengths.

E.g., let the length of the first span be k/, k being a

numerical coefificicnt, and let 2(1 -|- k) = x.

Eq. (1) now becomes

w,.tr -I- ;.v, — o.



482 rilEOKY OF STRUCTURES.

Proceed inc[ as before,

K " ""
K ~ '^'

i\ t:
- -t- • •

•

'

the coefficients /;, , Z;,^, /;,, , . . . being given by the same law as

before, viz..

l\ = I

;
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tinuous from end to end. The total dead load upon the girders

may be taken at one ton (of 2000 lbs.) per lineal foot.

Denote the supports, taken in ore r, by the letters rt, b^ c, li,

f,J\g, h, and let it be required to finil the maximum bending

moment at d when the bridge is subjected to an additional

proof load of l^ tons per lineal foot.

The spans ah, cd, dc, fgoi each girder carry i^ tons per

lineal foot.

The spans be, ef, gh of each girder carry \ ton per lineal foot.

Denoting the bending moments at a, b, c, d, c\f,g, h, re-

spectively, by w, , ///, , . . . m^, the intermediate spans by /, the

end spans by kl, and remembering that ;//, = o = jn^, we have

2w# +') + '«. = - -M' • li + i)

;

4

»i, + 4W, + m, = - -(i -f i^)

;

4

w, + 4W« 4- in, = - ^(i^ + i|)

;

m,
I*

-\r Ant, 4- m, - - -(i^^ + i)

^, + 4W, -f w,
/'

a+ii)

m. -\-2mik^ i)=-T(ii+^.i)

But k = iV^ = \, very nearly.

/* 23
(I)

w. 4- 4W, -\-ni,-- C 7

4 2
(2)

St4
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l" 5.
w, + 4w« + m^ =

4 2

I' 7

/« 7

2»2, + 7w,

From eqs. (i), (2), (3),

gym^ -\- 26»/j =

From eqs. (4), (5), (6),

26;«, -f- 97Wj =

4
4''

/' 347
4' 8*

^ 279

(3)

(4)

(5)

(6>

4 4

Hence, m,, the maximum required,

/' 19151

4 8 X 8733
= — 605.5 ft.-tons.

16. General Theorem of Three Moments.—The most

general form of theorem of three moments may be deduced as

follows

:

Oj O2 0,

XI

1^

I

-iF
I

Fig. 334.

Let O, X, V, the {r — i)th, rth, and (r+ i)th supports of a

continuous girder of several spans, be depressed the vertical

distances «, (= 0^0), d^ {=0,X), and </, (= 0,V), respectively,

below the proper level 0^0,0, of the girder.
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r/, , </, , d^ arc necessarily very small quantities.

Let OCXDY'tiG the deflection curve, and let the tangent at

X meet the verticals through O and V in E and F, and the

tangents at O and V in J", and T',

.

Let 6^ be the change of curvature from O to X {= OT^E).
" e^ •' " " " " •' V to xi^= Fry).

Let A^, /I, be the effective moment areas for the spans OX,
XV, respectively.

Let x^ be the distance (measured horizontally) of the centre

of gravity of A^ from O.

Let x^ be the distance (measured horizontally) of the centre

of gravity of A^ from F.

Let 0,E =y,, O^F = y^.

By Art. 2,

A,x^
y, — d, = xfi, - Er

£ut

d^—y^ = xji^- - A^
EI '

Ir
, or T+r"=r + 7~"-

^'s

Again, by Art. 13, Cor. 2,

/i,4r, = A^r+ i^.-.C+ WJr
and

^,r, = ^,^,«,^, + Wrl*r+l + i-/J/r+./Vlf

-^,, Afjfi being the areas of the bending-moment curves for

the spans OX, XV, respectively, on the assumption that they

are independent girders, or cut at O, X, and V, and 2,., ^^-n
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being the horizontal distances of the centres of gravity of these

areas from O and V. Hence,

J/,_,/, + iMXlr + /.^,) + ^.+/.+.

yV<?/^.—If O, X, or F is above 0^0^, then d^, , d^, or ^, is

negative.

Cor.—The forms of the Theorem of Three Moments given in

Cases A and B, Art. 13, may be immediately deduced from the

last equation.

Cask A.

d, = o = d, = d,;

A. = ^^l., Ir

3 8
^r=-;

•"r+i — ~
2te;^j.,/'

8
/ » — ^

Zr

Case B.

d, = o = d, = d,;

A,= \P^!^\. Z. =
3 '

_ 4+1 + g
'>+i 3

'r *r+i /. "r+i

17. Advantages and Disadvantages of Continuous
Girders.—The advantages claimed for continuous girders are

facility of erection, a saving in the flange material, and the re-

moval of a portion of the weight from the centre of a span to-
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wards the piers. Circumstances, however, may modify these

advantages, and even render them completely valueless. The
flange stresses are governed by the position of the points of in-

flexion, v/hich, under a moving load, will fluctuate through a

distance dependent upon the number of intermediate supports

ant! upon the nature of the loading. In bridges in which the

ratio of the dead load to the live load is small the fluctuation is

considerable, so that for a sensible length of the main girders,

a passing train will subject local members to stresses which are

alternately positive and negative. This necessitates a local

increase of material, as each member must be designed to bear

a much higher stress than if it were strained in one way only.

Again, the web of a continuous girder, even under a uni-

forml}' distributed dead load, is theoretically heavier than if

each span were independent, and its weight is still further in-

creased when it has to resist the complex stresses induced by

a moving load.

Hence, in such bridges the slight saving, if there be any,

cannot be said to counterbalance the extra labor of calculation

and workmanship.

In girders subjected to a dead load only, and in bridges in

which the ratio of the dead load to the live load is large, the

saving becomes more marked, and increases with the number
of intermediate supports, being theoretically a maximum when
the number is infinite. This maximum economy may be ap-

proximated to in practice by making the end spans about four-

fifths the intermediate spans.

In the calculations relating to the Theorem of Three Mo-
ments, it has been assumed that the quantity EI is constant,

while in reality E, even for mild steel, may vary 10 or 15 per

cent from a mean value, and / may vary still more. It does,

not appear, however, that this variation has any appreciable

effect if the depth of the girder or truss changes ^raa^z/«//j/, but

the effect may become very marked with a rapid change of

depth, as, e.g., in the case of swing-bridges of the triangular

type.

The graphical method of treatment may still be employed

by substituting, for the actual curve of moments, a reduced
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curve, formed by changing the Icngtlis of the ordinates in the

ratio of the value of EI i\\. a datum section to EI.

It is often found economical to increase the de^th of tlie

girder over the piers, which introduces a local stiffness and

moves the points of inflexion farther from the supports. A
point of inflexion may be made to travel a short distance by
raising or depressing one of the supports.

In order to itisure the full advantage of continuity the ut-

most care and skill are required both in design and workman-

ship. Allowance has to be made for the excessive expansion

and contraction due to changes of temperature, and the piers

and abutments must be of the strongest and best description

so that there shall be no settlement. Indeed, the difficulties

and uncertainties to be dealt with in the construction of con-

tinuous girders are of such a serious if not insurmountable

character that American engineers have almost entirely dis-

carded their use except for draw-spans.

Much, in fact, is mere guesswork, and it is usual in prac-

tice to be guided by experience, which confines the points of

inflexion within certain safe limits.

Under these circumstances it may prove desirable to fix

the points of inflexion absolutely, and the advantages of doing

so are {a) that the calculation of the web stresses becomes

easy and definite, instead of being complicated and even in-

determinate; {h) that reversed stresses (for which pin-trusses

are less adapted than riveted trusses) are almost entirely

avoided ; {c) that the stresses are not sensibly affected by

slight inequalities in the levels of the supports ; {d) that the

straining due to a change of temperature takes place under

more favorable conditions.

The fixing m?iy be thus effected:

{a) A hinge may be introduced at the selected point.

The benefit of doing so is very obvious when circumstances

require a wide centre span and two short side spans.

{b) If the web is open, i.e., lattice-work, the point of inflex-

ion in the upper flange may be fixed by cutting the flange at

the selected point and lowering one of the supports so as to

produce a slight opening between the severed parts. The
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position of the point of inflexion in the lower flange is then

defined by the condition that the algebraic sum of the hori-

zontal components of the stresses in the diagonals intersected

by a line joining the two points of inflexion is zero.

It must be remembered, however, that this fixing of the

points of inflexion, or the cutting of the chords, destroys the

property of continuity, and, indeed, is ^'le essential distinction

between a continuous girder and a cantilever.

I*\)ur methods may be followed in the erection of a contin-

uous c^irder, viz.

:

1. It may be built on the ground and lifted into place.

2. It may be built on the ground and rolled endwise over

the piers. As the bridge is pushed forward, the forward end

acts as a cantilever for the whole length of a span, until the

next pier is reached. 1 his method of erection is common in

France.

3. It may be built in position on a scaffold.

4. Each span may be erected separately, and continuity pro-

duced by securely jointing consecutive ends, having drawn to-

gether the upper flanges. A more effective distribution of the

material is often made by leaving a little space between the

flanges and forming a wedge-shaped joint.

' Mi'
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EXAMPLES.

1. Two angle-irons, each z in. x i in. x \ in., were placed upon sup-

ports 12 ft. 9 in. apart, the transverse out.side distance between the bars

beinjj 9i in,, and were prevented from tiirnin^^ inwards by a thin plate

upon the upper faces. The bars were tested under uniformly distributed

loads, and each was found to have deflected 2,\ in. when the load over

the two was 1008 lbs. Kind li and the position of the neutral axis.

Alts. I ~ iVV 4 ! ^- = 17.226,139 lbs.; neutral axis \\ in. from

upper face.

2. Both bars in the preceding question failed together when the

total load consisted of 104 cwts. (cwt. = 112 lbs.) uniformly distributed,

and 3 cwts, at the centre. Find the maximum stress in the m'.'tal.

Ans. Compressive unit stress = 20,323 lbs.;

Ten3ile unit stress = 39,577 lbs,

3. Show that the moments of resistance of an elliptic section and of

the strongest rectangular section that can be cut out of the sanie are in

the ratio of 99 ^ 3 to 112, and that the areas of the sections are in the

ratio of 35 to 14 ^2.

4. Show that the moments of resistance of an isosceles triangular

section and of the strongest rectangular section that can be cut out of

the same are in the ratio of 27 to 16, and that the areas of the two

sections are in the ratio of 9 to 4.

5. An angle-iron, 3 in. x 3 in. x \ in., was placed upon supports

12 ft. 9 in. apart, and deflected i^ in. under a load of 8 cwts. uniformly

distributed and 2 cwts. at the centre. Find E and the position of the

neutral axis.

Ans, E — r6,o79,6i r lbs.; neutral axis ||| in. from upper face.

6. The effective length and central depth of a cast-iron girder resting

upon two supports were rcpectively 11 ft. 7 in. and 10 in.; the bottom

flange was 10 in. wide and i
'': in. thick; the top flaiv^e was 2^ in. wide

and I in. thick; the thickness of the web was f in. The girder was

tested by being loaded at points 3J ft. from each end, and failed when
the load at each point was 17^ tons. What were the total central

flange stresses at the moment of rupture?

What was the central deflection when the load at each point was 7^

tons? {E = 18,000,000 lbs., and the weight of the girder - 3368 lbs.)

Ans. 164,747.4 lbs. ; .368 in.
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7. A tubular girder rests upon supporiLJ 36 ft. apart. At 6 ft. from

one end the Manures arc each 27 in. wide and 2% in. thick, the net area u(

tile tension thmgc being 60 in., while tiie web ccjnsists of two ,'(f-in.

plates, 36 in. deep and 18 in. apart. Neglecting; the effect of the angle-

irons uniting the web plates to tiie flanges, determine the moment of

resistance.

The girder has to carry a uniformly distributed dead load of 56 tons,

a uniformly distributed live load of 54 tons, and a local load at the

given section of loo tons. What are the corresponding flange stresses

per square inch?

Hf)w many J-in. rivets are required at tlic given section to unite the

angle- irons to the flanges?

Ans. 238.13 X coefT. of strength ; 3.3186 tons; 3.896 tons.

8. A yellow-pine beam, 14 in. wide and 15 in. deep, was placed upon

supports 10 ft. 9 in. apart, and diflected
j(

in. under a load of 20 tons at

the centre. Find JC, neglecting the weight of the beam.

.Ins. E — 1,272,1 12 lbs.

9. Wh;il were the intensities of the normal and tangential lUrcsscs at

2 ft. from a support and 2\ in. frotn neutral plane, upon a plane inclined

at 30" to tiie axis of the beam in the preceding question?

Alls. 132.83 and 218.91 lbs.

10. A beam is supported at the ends and bends under its own weight.

Show that the upward force at the centre which will exactly neutralize

the bending action is equal to f or J of the weight of the beam (w),

according as the ends Vixcfree ox fixed.

Find the neutralizing forces at the quarter spans.

Ans. Ends free ^igif at each or ,Vb''<^
'^^ ^^^ o^ ^.he points of

division.

Ends fixed -g^w at eac/i or fw at one of the points of

division.

11. A beam 8 in. wide and weighing 50 lbs. per cubic foot rests upon

supports 30 ft. apart. Find its depth so that it may deflect
'i

in. under

its own weight. (/J" — 1,200,000 lbs.) Ans. 9.185 in.

12. A rectangular girder of given length (/) and breadth (d) rests

upon two supports and carries a weight /* at the centre. Kind its depth

so that the elongation of the lowest fibres may be ,4*5^ of the original

length.

Ans^00/'/

dJi

13. A yellow-pine beam. 14 in. wide, 15 in. deep, and weighing 32 lbs.

per cubic foot, was placed upon supports 10 ft. 6 in. apart. Under

uniformly distributed loads of 59,734 lbs. and of 127,606 lbs. the central
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deflections were respectively .18 in. and .29 in. Find the mean value

of /;.

Also determine the additional weight at the centre which will increase

the lirst deflection by ,V of an inch. Ans. 2,552,980 lbs., 24,121 lbs.

14. In the preceding question find for the load of 59.734 lbs. the

maximum intensities of thrust, tension, and shear at a point half-way

between the neutral axis and the outside skin in a transverse section at

one of the points of trisection of the beam. Also find the inclinations

of the planes of principal stress at the point.

Ans. 1609.255, 169.562, 1 19.364 lbs. ; = 3° 48!'.

15. A pitch pine beam, 14 in. wide, 15 in. deep, and weighing 45 lbs.

per cubic foot, is placed upon supports 10 ft. 9 in. apart, and carries a

load of 20 tons at the centre. Find the deflection and curvature, E
being i,rococo lbs. What stiffness does this give .''

,

What amount of uniformly distributed load will produce the same
deflection? Ans. jj^; 32 tons.

16. In the preceding question find the maximum intensities of thrust,

tension, and shear at points (ci) half-way between the neutral axis and

the outside skin, {p) at one third of the depth of the beam, in a trans-

verse section at one of the quarter spans. Also find the inclinations of

the planes of principal stress at these points.

Ans.— {a) 951.853, 292.969, 329.442 lbs.; 6=9° 34^'.

(b) 658.774, 171. 108, 243.833 lbs.; = 15^ 50I'.

17. A piece of greenheart, 142 in. between supports, 9 in. deep, and

5 in. wide, was tested by being loaded at two points, distant 23 in. from

the centre, with equal weights. Under weights at each point of 4480

lbs., 11.200 lbs., and 17,920 lbs. the central deflections were .13 in., .37

in., .67 in., respectively. Find the mean coefiicient of elasticity. The

biam broke under a load of 32,368 lbs. at each point. Fi/;d the

coeflicient of bending strength.

18. A sample cast-iron girder for the Waterloo Corn Warehouses,

Liverpool, 20 ft. ^\ in. in length and 21 in. in depth (total) at the centre,

was placed upon supports 18 ft. i^ in. apart, and tested under a

uniformly distributed load. The top flange was 5 in. x i^ in., the

bottom flange was 18 in. x 2 in., and the web was \\ in. thick. The
girder deflected .15 in., .2 in., .25 in., and .28 in. under loads (including

weight of girder) of 63,763 lbs., 88,571 lbs., 107,468 lbs., and 119,746 lbs.,

rcspectivelv. and broke during a sharp frost under a load of 390,282 lbs.

Find the mean coefficient of elasticity and the central flange stresses at

the moment of rupture.

Ans. 7=3309.122; E— 17,4^7,327 lbs.; 20,121 lbs., 47,168 lbs.

19. A steel rectangular girder, 2 in. wide, 4 in. deep, is placed upon
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supports 20 ft. apart. If E is 35,000.000 lbs., find the weight which, if

placed at the centre, will cause the be;ini to deflect i in.

Alls. 12965?^ lbs.

20. A timber joist weighing 48 lbs per cubic foot, 2 in. wide x 12 in.

deep X 14 ft. long, deflected .825 in. under a load of 887 lbs. at the

centre. Find E. Ans. 397,880 lbs.

21. A beam of span / is uniformly loaded. Compare its strength and

stitlness {a\ when merely resting upon supports at the ends; {b) when
fixed at one end and resting upon a support at the other ; (<) when fixed

at both ends. In case (c) two hinges are introduced at points distant y
from the centre ; show that the strength of the beam is economized to

/
the best effect when^ = , and that the stiffness is a maximum when

25:

t : t Lh
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i

25. A uniformly loaded beam with both ends absolutely fixed is

hinged at the quarter-spans. Show that the slope is suddenly doubled

on passing a hinge.

26. A liorizoinal beam with both ends absolutely fixed is loaded with

a weight W at a point dividing the span into two segments a and b.

IV I ab
Show tliat the deflection at the point is '

-

work done in bending the beam.

3^7 \a ->r h

Ans.
GEI

and find the

ab y
'^a + b j

27 Determine the isosceles section of maximum strength whicii can

be cut out of a circular section of given di.;meter, and compare the

strengths of the two sections.

28. A 3-in. X 3-in. X i-in. angle-iron, with both ends fixed and a clear

span of 20 ft., carries a uniformly distributed load of 500 lbs. which causes

it to deflect .03909 in. Find E. What single load at the centre will

produce the same deflection ? Find the work done due to bending in

each case. A/is. A' = 20,775,415 lbs.; 250 lbs.

29 A steel plate beam of uniform section and 30 ft. span has botii

ends fixed and is freely hinged at the points of trisection. Determine

the neutral axis (,t) for a uniformly distributed load of 6000 lbs,; (/A tor

a single load of 10,000 lbs. concentrated, _/frj/, 7J ft. aud, second, 15 ft.

from a support.

ioo-5.r+ -j;Ans. (rt) 3'de span,;- = -

centre span,j' =

EI

1750000 25-^/
+ -^ 1000 — aojr" + X
lEI\

•)

(b) First. Loaded span between support and weight,

500/ lo.r'

Loaded span between weight and hinge,

y = -^f 28l250.r - 703125 ]•

Unloaded side span horizontal; centre span

straight between hinges.

2^00Xl X2\ 5000000

5ooo.r/
Second. Side span,.v= pT y>

X —

centre span,^ =

I
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30. A uniformly loaded beam, wiili both ends absolutely fixed, is

hinged at a point dividing the span into segments a and b. Draw curves

of shearing force and bending moment, and compare the strength and

stillness of the beam when the hinge is (a) at the middle point ; {b) at

a point of irisection ; {c) at a quarter-span. Also, deternune the slope of

the segments of these points.

w 5rt* + Mb^ + 3<J*

8
'Ans. R\ =

_wa a* + 4ab^ + 3<J'

.

^, = :;:: i_T

M' : M" : Af
a' + b'

14 : 14 : 1

1

^. _ w 3<i* 4- Sa*b + sb*
•"-8 ^-Tb'

•

wa 3rt« + Aa'b + b*
.

Slopes in (a) = — — -
;E c b

D' :

in {b) =

and =

D' ;/>'":: 6. 25 : 3.29: 2.66.

Ill
E c%\

for segment a.

I / 23
-~ for segment b;
162

in {c) = Ll±E c 176

E c

for segment a, and

= — — — for segment b.

E c 891
^

31. A horizontal beam rests upon two supports and is loaded with a

weight ^f' at a point dividing the span into segments a and b. Find

the deflection at this point and the worl< done in bending the beam.

Ans.
W a'^b''

3 EI{a + ^) 6EI
W^ a'b'' I W ^ „ . \—— • ; = — X deflection .

bLI a -ir o\ 2 j

32. A wrought-iron beam of rectangular section and 20 ft. span is

16 in. deep, 4 in. wide, and is loaded with a proof load at the centre. If

.the proof strength is 7 tons per square inch, find the proof deflection and

the resilience, E being 12,000 tons (i ton = 2240 lbs. i.

Ans. .029 ft. ; 650 ft.-lbs.

33. Design a wooden cantilever 12 ft. long, of circular section and
uniform strength, to carry a uniformly distributed load of 2 tons, the

coefficieiu of working strength being i ton per square inch. Also, find

the deflection of the free end.

Ans. Taking fixed end as origin and z being radius in inches at

distance x ft. from origin, then lu' = 14(12 — x)"^.

Deflection at end = V • in.

34. A girder fixed at both ends carries {^n 4- 1) weights W^ concen-

trated at points dividing the length of the girder into 2« 4- 2 equal

divisions. Find the total central deflection. , « 4- i Wl}
"792 lEf

Ans.
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I I 35. A girder 30 m. long has both ends Hxed and carries a uniformly

distributed load of 5800 Ic. per lineal metre. Find the deflection and

the work of flexure. 567675000000
Ans. — iim.

36. A steel beam of circular section is to cross a span of 15 ft. and

to carry a load of 10 tons at 5 ft. from one end. Find ;ts diameier, the

stiffness being such that the ratio of viaxiinum dejiection to span is

.00125. £=
1 3,000 tons. Ans 10.3 m.

37. Determine the dimensions of a beam of rectangular section

which might be substituted for the round beam in the preceding ques-

tion, the stiffness remaining tiie same and the coefficient of working

strength being 7^ tons per square inch. Ans. dtp = 320.

38. The flange of a girder consists of a pair of angle-irons and of a

plate which extends over the middle portion of the girder for a ceruiiii

required distance. Show that the greatest economy of material is

secured when the length of the plate is f of the span and the sectional

areas of the plate and angle-irons are as 4 to 5 (the girder being

uniformly' loaded).

39. The flange of a uniformly loaded girder is to consist of two

plates, each of which extends over the middle portion of the girder for

a certain required distance, and of a pair of angle-irons. Show that

the greatest economy of material is realized when the lengths of the

plates and angle-irons are in the ratio of 12 : 18 : 23, and when the areas

of the plates are in the ratio of 4 : 5.

What should be the relative lengths of the plates if they are of equal

sectional area ? Ans. I : 1^2 |( V2 + I).

40. An elastic beam rests upon supports at its ends, and a weight

placed at a point A produces a certain deflection (di at a point B.

Show that if the weight is transferred to B the same deflection (d) is

produced at A.

41. A uniform beam is supported by four equidistant props, of which

two are terminal. Show that the two points of inflexion in the middle

segment are in the same horizontal plane as the props.

42. Find the slope and deflection at the free end of the following

cantilevers when bending under their own weight, / being the length,

2d the depth at the fixed end, iv the specific weight, and £ the coefficient

of elasticity

:

(a) Of constant thickness / and with profile in the form of a trapezoid

with ilic non-parallel sides equal and of depth 2a at the free end.

{d) Of circular section and with profile in the form of an isosceles

triangle.
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{c) Of constant thickness and with profile in the form of a parabola

symmetrical with respect to the axis and having its vertex at the free

end.

{b)
I wl^

6 '¥e'
{c) --

zwP

TsEd'3 ii(>* O ,5-/i 5£'^»

43. Deduce the slope and deflection at the free end—
{(i) When the depth 2a in (a) of the preceding question is «//, i.e.,

when the profile is an isosceles triangle.

(f) Due to a uniformly distributed load of intensity fi over the

cantilever (a). Hence, also, deduce the slope and deflection when the

depth 2a is «//.

(/) Due to a weight JV at the free end of (a).

{g) Due to a uniiormly distributed load of intensity p upon the

cantilever (t).

VVP JV/*
Ans.—{d)

ie)

2Eb''' \Eb'''

4 Et{b - ay ( •" a

4 Et{b —a)*\

3 /^
4 Etb"

'

(lb — a)(b — a)
\

2b^ ^
2a log- +

a (2b^-\- sab — a''){b — a)
)

f

90"

3 ^Vl IVP
^f' A A-,/ • '. p,.: .

ig)

4 Eat 2 Etyli - ay

P P 3 P^*

locr — )

b- a

lb — a

2 Eb^t ' 10 Eb't

44. A cantilever of length /, specific weight w, and square in section,

a side of the section being 2b at the fixed and 2a at the free end, bends

under its own weight. Find the slope and deflection of the neutral axis

at the free end. Hence, also, deduce corresponding results when the

cantilever is a regular pyramid.

(b + a)wP (b + 2a)wl* wP wl*
Ans.

SEbi'4Eb' 8Eb^ 4Eb^

45. If tjie section of the cantilever in the preceding question, instead

of being square, is a regular figure with a;y number of equal sides, show
that the neutral axis is a parabola with its vertex at the point of fixture.

46. The section of a cantilever of length / is an ellipse, the major axis

(vertical) being twice the minor axis. Find the deflection at the end

\m

fm
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under a single wrijj[lil U'./ bcinj^ tlic coclliciciit of workini^ Hlrniglli

and A" ilu' iiH'iricient of elasticity. / 297 /V \1
•''"'•

\7000 /•;•//' j
•

47 A (iist-iron beam of an inverted T-section rests np(jn sujipDrts

22 ft. ;ipait ; tlie web is I in. thick and 20 in. deep; tbe Hange is 1.2 in.

lliit k and 12 in. wide; tin- licain carries a iinifornily distributed load of

99,000 lbs. Kind tlie niaxiniuni dellection, /'." being 17,920,000 ll)s.

.l/ts. .822 in. (/ = 1608. f)5).

48. Find the ni;i.xinuini dellection of a cast-iron cantilever 2 in. wide

X 3 in. deep x 120 in. long under its own weight, A' being 17.920,000 lbs.

.his. yi in.

49. A girder of uniform stri'iii^(/i, of length /, breadth />, and di|)ili d
rests upon two supports and carries a uniformly distributed load of7i' lbs.

per unit of length, wiiicb produces an inch-stress of/ lbs. at every p(jint

n — 2 f\l li \i

of the material. Show tiiat tiie cetitral liellectioii is ~ I i.

I'. \ 3«'

when /' is constant and ^Z variable. Find the deflection when d is con-

stant and b variable. //-

/Ins.

50. .A semi-girder of un/fonii s/rr/ii;///, of length /. breadth /', and
deptlw/, carries a weight //'at the free end which i)roduces an uich-

strcss of/ lbs. at every point of the material. l'rt)ve that the lua.xiniuin

4 (//)'/ '''' \* .

deflection is
—

'7, L ... when /' is constant and li variable, and that
3 ^- \^'"/

it is twice as great as it would be if the section were unifortn throughout

and e(]u;>! to that at the support.

What would be the ma.ximum deflection if the semi-girder wi-re

su.l)je(jted to a uniformly distributed load of w lbs. per unit of length .'

"-'-^1/ y

5r. Tbe neutral axis of a symmetrically loaded girder, whose .iioment

of inertia is constant, assumes the form of an elliptic or circular arc.

Show that the bending moment at any point of the deflected girder is

inversely proportional to the cube of the vertical distance between the

pt)int and the centre t)f the ellipse or circle.

52. A vertical row of water-tight sheet piling, 12 ft. high, is

suppt)rted by a series of ui)rights placed 6 ft. centre to centre and
securely li.xed at the base. Find the greatest deviation of an upriglit

from the vertical when the water rises to the top of the piling. What
will the maximum deviation be when the water is 6 ft. from the top .'

7CfM'' 3110400
Ans. — „ - = —7; ;

30A/ A/

7.'/' 7C'/>c-
,

.r =
!l8720
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53. A vcriical row of wiiUi li^lit slicct pilinpf, 30 ft. hi^'l", is siijipfnied

hv ;i scries u{ iipi ij^lil.i placfd S It. (-(Milic to cciilrc and securely fixed at

till- l)asc, wliijj' tile iippt-r ends are kepi in the vi^tical by struts slopitij.j

at 45 '. If tin: water rises to the loj) of tlu; pilinj;, find {a) tlic tlirust 011 a

strut; (f>) tile iiiaxiiMutn intensity of stress in an upright ;
(r) tlie amount

and position of '.'ic maximum deviation of an uiiri^lil from the vertical,

Ahs. 450004/2 Ihs.; max. li. M. = -, and max. intensity r)f

'5 Vs

stress
I ( Tt'//'

=":// 10'

// 30

'5 4 ;

/

.

Vs Vs
and its ainoi.nl

deflection is a max. wlien

_ 7.'/^ 32

750 1^5

54. The piliu},' in tlie precedinj^ example is strenj^tiicned f)y a second

series of struts slopiiifj; at 45' from iIk; points of maximum deviation.

Kind the nornial reactions upon an upright and the bending moment at

Its foot.

What will be the reactions and bending moment if the second row of

sums starts from llie middh; of the uprights.'

/his. .oo7547('//'^ ; .12770/1'' ; .920277*;'//'; i\\^7t'/i'' ; IJjjw/^'''; j,ll7c>//*.

5;. A continuous girder of three spans, the outside spans ijcing

e(|ual, is unif(jrmly loaded. What must be the ratio of the lengths of

the centre and a side span so that the neutral axis may be iiori/onlal

over the intermediate supports? Ans. i/3 : \ T.

56. What should the ratio be if the centre span is hinged (a) at the

cenlio; (/^) at the points of trisection ? Ahs.— (a) l : i ;
((5i 3 : 2 1^2.

57. Four weights, each of 6 tons, follow each other at fixed distant es

of 5 ft. over a contiiuious girder of two spans, each equal to 50 ft. If the

second and third supports are i in. and li in., respectively, vertically

below the first support, find the maximum H. M. at the intermediate

su|)port. ^ / „ f'-^ \ r
Ans. .9855 - --— fi.-tons.

\ 40000 /

58. A continuous girder of two equal 50-ft. spans is fixed at one of

the end supports. The girder carries a uniformly distributed load of

1000 lbs. per lineal f ot. Find the reactions and bending moments at

the points of support. How much must the Intermediate su]i])ori be

lowered so that it may bear n(jne (jf the load? How mucli slionhl tiie

free end be then lowered to bring upon the supports the same loads as at

the first ?

Ans. Reactions = 23, 2i4f, 57.142^, 19,6425 lbs.;

Bending moments = 178,571:', 267, ,"-57' ft. -lbs;
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59. Four loads, each of 12 tons and spaced 5, 4, and 5 ft. apart, travel

in order over a continuous j^irder of two spans, tlio one of 30 and the other

of 20 ft. Place the wheels so as to throw a niaxinnim B. M. upon the

centre support, and find the corresponding reactions.

Draw a diagram of R. M., and find the maximum deflection of each

span.

60. The loads upon the wheels of a truck, locomotive, and tender,

counting in order from the front, are 7, 7, 10, 10, lo, 10, 8, 8, 8, 8 tons,

the intervals being 5, 5, 5, 5, 5, 9, 5, 4, 5 ft. The loads travel over a

continuous girder of two 50-ft. spans Ali, EC. Place the locomotive,

etc., (rt) on the span AB so as to give a, maximum B. M. at B; {b) so as

to give an absolute maximum B. M. at B.

61. A continuous girder of two spans y^^, ^C has its two ends .<4

and Cfixed to the abutments. The load upon AB is a weight P distant

p from A, and that upon BC & weight Q distant q from C. The length

of AB = A, of BC = /«. The bending moments at A, B, C are ^f^ , Mi,
A/3, respectively. The areas of the bending-moment curves for the

spans AB, BC assumed to be independent girders are Ai, At, respect-

ively. Show that

Mill + iW,(/, + /a) + M\l2 = - 2{Ax + A-i).

and Mi(li + li) = — 2(Ai/> + Aiq).

If /, = /a = /, show that J/» is a maximum if

2l{Pp - Qq) = 3(/'/« - Qq-^-).

62. A continuous girder of two spans AB, BC rests upon supports at

A, B. A uniformly distributed load EF travels over the girder. G\ is

the centre of gravity of the portion BE upon AB, and Gi that of the

portioii^/^ upon BC. If the bending moment at ^ is a maximum, show
that

AE.EB AG,
CF . FB ~ CGt

'

63. An eight-wheel locomotive travels over a continuous girder of

two loo-ft. spans; the truck-wheels are 6 ft. centre to centre, the load

upon each pair being 8000 lbs. ; the driving-wheels are 8^ ft. centre to

centre, the load upon each pair being 16.000 lbs. ; the distance centre to

centre between the front drivers and the nearest truck-wheels is also

8J ft. Place the locomotive so as to throw a maximum B. M. upon the

centre support, and find the corresponding reactions.

64. If an end of a continuous girder of any number of spans is fixed,

show that the relation between the moment of fixture (J/i) and the

wP
ber Jing moment (Af,) at the consecutive support, is 2Afi + Afa = ——

,

4

or 2Afi + Afi = — ~^2[Pp{l— p)(2l — p)], according as the load upon

;
il
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the span (/) between the fixed end and the consecutive support is of

uniform intensity or consists of a number of weij^hts A, A, /'s, . . .

concentrated at points distant /i ,/i
, /a, . . . from the fixed end.

65. A continuous girder of two si)iins Ali, HC, carrying a load of

uniform intensity, has one end A fixed, and tiie other end rests upon the

support at C, If the bending moments at A and B are equal, show that

the spans are in the ratio of V3 to ^'2, and find the reactions at the

iupports, Wx being the load upon AB, and Wt that upon BC.
Ans. At A reaction = i IV,

.

" B " =in\ +iiv,.
" C " =ilV,.

66. A viaduct over the Garonne at Bordeaux consists of seven spans,

viz., two end spans, each of 57.375 m., and five intermediate spans, each

of 77.06 m. ; the main girders are continuous from end to end, and are

each subjected toa doad load of 3050 k. per lineal metre. Determine the

absolute maximum bending monient at the third support from one end.

Also find the corresponding reactions, the points of inflexion, and the

maximum deflection in the first and second spans.

67. A continuous girder consists of two spans, each 50 ft. in length

;

the eflective depth of the girder is 8 ft. If one of the end bearings

settles to the extent of i in., find the maximum increase in the flange

and shearing stress caused thereby, and show by a diagram the change

in the distribution of the stresses throughout the girder. (Assume the

section of ihe girder to be uniform, and take E = 25,000,000 lbs.)

A/is. Increase of maximum B. M. = W^f , — '
1

\2l67i/ /

" shearing force = H^<
w being weight per unit of length, and / the moment of inertia.

68. A girder carrying a uniformly distributed load is continuous over

four supports, and consists of a centre span (/a) and two equal side

spans (/i). Find the ratio of A to /a , so that the neutral axis at the

intermediate supports may be horizontal. Also find the value of the

ratio when a hinge is introduced {a) at the middle point of the centre

span ; {b) at the points of trisection of the centre span ; (c) at the middle

points of the half lengths of the centre span.

A ^L-i ^'_' ^-1 ^-3

69. In a certain Howe truss bridge of eight panels, the timber cross-

ties are directly supported by the lower chords, and are placed suffi-

ciently close to distribute the load in an approximately uniform manner

over the whole length of these chords, thus producing an additional

stress due to flexure. Assuming that the chords may be regarded as

girders supported at the ends and continuous over seven intermediate

IM
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supports coincident witli the panel points, and that these panel points

arc in a truly horizontal line, determine {a) the bending moment.s and

reactions at the panel points ; (b) the maximum intermediate bcndmg
moments and (t) the points of inflection, c<jrresponding to a load of w
per unit oi length, / being the length of a panel.

Ahs,— ((j) At 1st support ; 2(1 support; 3d support;

B. M. = o ; -AV^'/^ -aVH""".
Reaction = A', = \l\'^ol \ A', = t\\u>l \ A'a = l\%wl ;

At 4th support
; 5th supixjit.

Reaction = R\ ~ l\\ivl\ A't, — jJggXf/,

(d) Maximum intermediate B M = ——-r74.'/''in istspan,

5 '04 5 ,3 • „^ 6600.5 ri A=
r388,^'"^

m.d;=-^-g3-«./^m3d;

6208.5 ,, .

:= ivt m 4.tll.

(388)»
^

(c) Pomts of inflexion in the four spans are given by

2A'i 306, ,. 7t'

w 300 2

A", (2/ + .r) + A".// + x) + /^,.v - '

(2/ + .1)'' = 0;

7?, (3/ + -r) + A'.(2/ + x) + R^ii + x) + R,x - -(3/ + .v)' = o.

70. A continuous girder of two equal spans isyf.r^r^at one of the end

supports. The girder carries a uniformly distributed load of intensity

7t'. If the length of each span is /, find the reactions and moment of

fixture. How much must the intermediate support be lowered so that

it may bear none of the load ? How much should the free-end support

then be lowered to bring upon the supports the same loads as before .'

fl 16 13 WP 4 ivl* 4 7C>i*
Ans. —wl, —wl, ~wl\ ; ^^ ;

-^ -,- -.

28 14 28 14 48 hi 24 EI

71, Each of the main girders of the Torksey Bridge is continuous

and consists of two equal spans, each 130 ft. long. The girders are

double-webbed ; the thickness of each web plate is \ in. at the centre

and f in. at the abutments and centre pier; the total depth of the gir-

ders is 10 ft., and the depth from centre to centre of the flanges is 9 ft.

4| in. Find {a) the reactions at the supports, and also {b) the points of

inflexion, when 200 tons of live load cover one span the total dead load

upon each span being 180 tons uniformly distributed. The top flange is
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i

eel tilat ; W-sgrost sectionril aie.i at the centre ot each span is 51 sq in
,

and the corresponding ;/(•/ sectional area of the boitom flange is 55 sq.

in. DetPiinini! (c) the flan^je stresses and (tt) llic position ol the nouir.tl

axis. (/ = 373.500.) Also (<•) dclermine the reactions whvn, Jirs/.JJ and,

second, Care lowered i in. (E= 16.900 tons.)

Afts.—ia) 155. 350, 55 tons.

{/>) 106 ,'j and 79j| ft. from end support.

(t) 6.7 and 7.3 tons per sq. in. in loaded span; 1,13 and
1.22 tons per sq. in. in unloaded span.

(</) 58.3 ill. from centre line of top flange.

{e) First. A'. = 155 +^ y



^
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74. Qo\ti^ii\z gi aphkally, the shearing forces and bending moments
along the span liC of the bridge in the preceding question when the

bridge is closed, with their values when the bridge is open. What pro-

vision should be made to meet the change in tlie kind of stress?

75. Each of the main girders of a railway bridge resting upon two

end supports and five intermediate supports is lixod at the centre sup-

port, is 3 ft. deep throughout, and is designed to carry a uniformly dis-

tributed dead load of \ ton and a live load of i ton per lineal foot. The
end spans are each 51 ft. 8 in. and the intermediate spans each 50 ft. in

the clear. Find the reactions at the supports. The girders are single-

webbed and double-flanged ; the flanges ai-e 12 in. wide and equal in

sectional area, the areas for the intermediate spans being 13 sq. in. and

17 sq. in. at the centre and piers respectively. Find the corresponding

moments of resistance and flange stresses, the web being | in. thick.

Ans. Reaction at I St and 7th supports = isiJgSJJ ; at 2dand 5th

supports = 43'^ 2 ?i{il at 3d and 5th supports = 35it3j'a :

at 4th support = l^ii^^o, ions.

hx. piers -= 693 and flange stresses are 3.59 tons per sq. in.

at 2d support, 2.45 at 3d, and 2.83 at 4th.

At centre --= 549 and flange stresses in istspan 3.2 tons

per sq. in., in 2d = 1.3, and in 3d = 1.78.

76. A continuous beam of four equal spans carries a uniformly dis-

tributed load of w intensity per unit of length. The second su- on is

depressed a certain distance </ below the horizontal, and the re n at

the 2d support is twice that at the ist. Show that the reactio . the

1st, 2d, 3d. 4th, and 5th supports are in the ratio of the numbers 15, 30,

36, 34, and 13; find d. With this same value of d find the reactions when
one end \^ fixed.

77. A continuous girder of two equal spans (/) is uniformly loaded.

Show that the ends will just touch their supports if the centre support

.s ra.sed —

•

78. If di , di . da , di are respectively the deflections of the ist, 2d, 3d,

and 4th panel points in question 69, show that the bending moment at

the middle panel point (JA) is given by

6FJ
-93JA = ^-(69</4 - 88^/3 -h 2\d'i - 6^0 + K}wl\



EXAMPLES, 505

79. A girder supported at the ciuls is 30 ft, in the clear and carries

two stationary loads, viz., 7 ions concentrated at 6 ft. and 12 Umis at 18

ft. from tile left support. Find the position and anujunt of tlie maxi-

mum deflection, and also the work uf flexure. The girder is hiiilt up of

plates and an>,di'-iron^ and is 34 in. deep. If the inoiiient of resistance

due to the we!) is neglected, and if the iuiensity of ilic lonjL^itudiiial stress

is not to exceed 5 tons per sq. in., what should he the flange sectional

area corresponding to the maxiinuni bending moment.

Ans. Max. deflection = fjj.i' — ii(.r — 6)' — ^-V-v, where
.1= I 5. 34 ft.

„- , 67161.6,
Work = ft.-tons.

Sect, area = 10.32 sq. in.

80. Determine the work of flexure and the necessary flange sectional

area at the centre if the girder in the preceding question is subjected

to a uniformly distributed load of 40 tons, instead of the isolated loads.

540000
Ans. Work = -y.y- ft.-tons; sect, area = 15 sq. in.

Si. («) The bridge over the Garonne at Langon carries a double

track, is about 695 ft. in length, and consists of three spans, ///>', /j'C', CA
The i\v(i main girders are continuous and rest upon the abutments at

A and 1) and upon piers at /)' and C". The ctTective length of each of

the spans AB, CD is 208 ft. (^ in., and of the centre span BC 243 ft. The
permanent load upon a mam girder is 1277 ll«s. per lineal foot, and the

proof load is 2688 lbs. per lineal foot. I^nd ihe reactions at the sup-

ports (I) when the proof load covers the span Ali\ (2) when the proof

load covers the span BC \ (3) when the proof load cover the spans AB
and BC \ (4) when the proof load covers the whole girder.

Draw shearing-force and bending-moinent diagrams for each case.

(b) At the piers the web is \ in. thick and 18 ft. in depth, and each

flange is made up of four plates \ in. thick and 3 ft. wide. Determine

the flange stresses for cases (i) and (3).

{c) The angle-irons connecting the flanges with the web at the pier

are riveted to the former with i^-in. rivets and to the latter with i-in.

rivets. How many of each kind are required in one line per lineal foot

on both sides of the pier at />', 8000 lbs. per square inch being safe

shearing stress.'

(rt?) The effective height of the pier at B is 41 ft., its mean thickness

is I4. ft. 9 in., its width is 42 ft. 9 in., and it weighs 125 lbs. per cubic

foot. If there is no surcliarge on the bridge, and if the coefBcient of

friction between the sliding surfaces at the top of the pier is taken at

.15, show that the overturning moment due to the dilatation of the

girders is about y'j of the amount of stability of the pier.

i

s\

IP
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(<?) V'\n(Mh& points of inflexion and also the maxiviiim deflections in

Case 3.

What practical advantage is derived from the calculation of the

deflection ?

Ans.—{a) Case i. /v'l = 398184.8; A'a = 621651.6;

A*3 = 272200.8; /v'4 = 1 1 1230.7 lbs.;

M-i = — 13794181.9; Ah = — 4565418.4 ft.-lbs.

Case 2. A\ = 142200.2 = yv'« lbs.;

A\ = 605801.8 = A'a lbs.;

A/'i = —
1 493632 1.6 ft.-lbs. = Ma.

Case 3. A\ = 306837; A\ = 1039591.3;

A\ = 639147.8 ; A\ = 70875.7 lbs.;

A/i = — 22208200.2 ; J/a = — 1 2979436.7 ft.-lbs.

Case 4. A\ = 316222.6 = J\\ lbs.;

A'i — 992227.3 = Aa lbs.;

iJ/.j = — 2025131.6 = J/3 ft.-lbs.

(d) I = 2130816; in case i./a = 8545.2 lbs. per sq. in.

/a = 282S. 1

incase s,/^ =- 13757-5 " '

/a = 8040.5 '

(Weakening effect of rivet-holes in tension flange is

neglected.)

(f) II ptr lineal foot; 11.5 per lineal foot.

{(i) Moment of stability = 23833291 {gi ft.-lbs.;

overturning moment = 1965323.4 ft.-lbs.;

ratio = 12.12.

(e) Poiit's of inflexion : in AB. 154.7 ft. from A;\v\ BC.
at a distance .r from B given by .i" — 279. i.r-f 9045.5
= o ; in CD, at 1 1 1 ft. from D.

Max. deflections :

InAB, 7T,(»652*4.v' — 5ii39.5.v» -f 5i72oo498o.r),

where -v is given by 660^,.i'— 1 586620.9.1 "-f 5172004980 = o;

In BC, --(i65.2.r« — 3418.5.1' -f- 1 1 104110.5.1" -f 46023583.1),
El

where x is given by .1' — 393. 2.r'' -f 33606.1- -f 69645 = o.

82. A beam AB of span / tarrying a luiiformiy distributed load of

intensity w is li.xed at A and merely supported at />'. Thf end B is

l<iwered by an amount ~r-r~i- I'^i^d the reactions. How much must U

be lowered so that the whole of the weight may be borne at A ?

A-iS. I,\7i7at A, /j7<:'/at /> : .; -^,
o E/
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83, Solve the preceding question supposing the fixture at A to be

imperfect, the neutral axis maiving with the horizontal an angle whose

I w/' 7 wl^
tangent is -g -gj. Ans. Iwl, \wl; ^ -^.

84. A wrought iron girder of I-section, 2 ft. deep, with flanges of equal

area and having tlieir joint area equal to that of the web, viz., 48 sq. in.,

carries ^ ton per lineal foot, is 100 ft. long, consists of five equal spans,

and is continuous over six supports. Find the reactions when the t/i/rd

support is lowered i in. How much must this support be lowered so

that the reaction may be ;/// at {a) the ist support; (/') tlic 3d; (r) the

5tli } How much must the support be raised so that ilic reaction mav
be ;/// at {<i) the 2d ; (f) the 4th ; and ( /) the 61I1 support .•* E = 16,500

tons.

Aus. R^ = 2ll\ /,•,= i55t
; y?, = 3t<V;

A'o = 4j''j tons.K, = I4i;!; R,

(a) It in.; U>)VA in.; ('•) 2;?^ in.

(./) laVfin.; {O 2,^7 in.; (/) 61 in.

85. If the three supports of any two equal consecutive spans of a

continuous girder of any number of spans arc depressed below the

horizontal, show that the relation between the three bending moments
at the supports will be uiiaflected if the depression of the centre support

is a mean between the depressions of the other two supports.

86. A girder consists of two spans Ali, BC, each of length /, and is

continuous over a centre pier />'. A uniform load of length za (< /) and

of intensity w travels over .-//>'. Find the reactions at the supports for

any given position of the load, and show that the bending moment at

"«'/ / a" \

the centre pier is a maximum and equal to „ i — -rji

3 t 3V ^

I

87. A continuous girder rests upon three supports and consists of

two unequal spans . //>' ( = A), BC (= A). A uniform load of intensity tc

travels over AH, and at a given instant covers a length AD (= /) rjf the

span. If A\, /v'3 are ihc reactions at ./ and C, respectively, show that

centre of the load is at a distance

3 S 3

from A

when the

A',/, + AV;^ = w;-( /.^ -
J-;-/,

+ ^
'y-

Draw a diagram showing the shearing force in front of the moving

load as it crosses the girder.

88. If the live load in the preceding question may cover both spans,

show that the shearing force at any point D is a maximum when .ID
and />'C" are loaded and BD unloaded.

Illustrate this force graphically, taking into account the dead load

upon the girder.
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89. A continuous-girder bridge has a centre span of 300 ft. and two

side spans, each of 200 ft. The dead load upon each of the main girders

is 1250 lbs. per lineal foot. In one of the side spans there is also an

additional load of 2500 lbs. per lineal foot upon each girder. Find the

reactions and points of inflexion. How much must the third support

from the loaded end be lowered so that the pressure upon it may be just

zero?
Ans. Let W = weight on loaded span = 750,000 lbs.

R, = -,VA JV lbs. ; A', = \ gf I IV lbs.;

A\ = iW- '^ lbs. ; A\ = iVsV JV lbs.

JA = _ I'-iVs" /^^ ft.-lbs.; J/3 = - Y/fi^ IV ft. -lbs.

Distance of point of inflexion in loaded span from nearest

end support = 162J'} ft.

Distance of point of inflexion in unloaded end span from

nearest end support = 14501 ^^•

Distance of point of inflexion in intermediate span from

end support in unloaded span is the value of .r in the

t(|u.iti()n a' -JYi""-!' + *-"Vo""'' = '^^

3d support must be lowered a distance =
56350000 ly

S4 £/
90. A continuous girder AC consists of two equal spans A/>, BC, each

of length /, and carries a uniformly distributed load of intensity Wi upon
.//)', and of intensity 7C'i upon JiC. Determine the bending moments at

the supports, the maximum intermediate bending moments, and the re-

actions (a) when both ends of the girder are fixed ; {/>) when oneenil ^/

is fixed and the other free.

Afis. Denoting the reactions and bending moments at A, B, C
by Bi , Jfi , A\ , J/a , A'3 , J/3 . respectively :

/» /.-

(rt) J/i = - (— 57i', + 7U.i) ; J/.J = (7<'i -f W.i)\
48

4»
57f'.j); J/,

= - -I- J/3 ; A,
2a/a

A'

"

„,„.,-. in AB = — -I- J/, , in BC

-(9W1 — a'a); Bi= -(wi+a/j);
10 2

-^3 = — (— w, + gwi).

r r
{b) Ml = -(37£/, — wa); J/a = — -r-(w, -f- 2Wi);

20 20

Mi = o\ Mmax. in AB A"," A3»— -+- J/, , in BC= —

•

2Wi 21Vi

Ri = —(i6wi — ywt); A', = -5-(i3«'' + 19^^11)

;

20 20

B»
28
(— 7i/, -f I27t/j).
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91. In the preceding question, if w, = Wj = w, find the points of in-

flexion and the maximum deflection in each case and for each span.

Am —(a) Points of inflexion for AB or BC are given by

6.r' - 6x/ + r = 0.

Max. deflection for AH or BC is given by

wx'- Ely = {2/x-x^ -/''),
24

in which the value of x is found from

2x^ — 2)tx + P = 0.

{b) Points of inflexion in AB are given by

14.V' — 13^-/ + 2/» = o, and in i5C by x= \\l.

Max. deflection for AB is given by

7-^%
7VX'

-EIy=--{x2,ix-6n

and

28.r' — 39/.r + 12/' = o.

Max. deflection for BC is given by

- Ely = ^|(i l/.v» - 7.r' - 4/').

and
28^' — 33.r'' + 4/' = o.

92. A continuous girder .4C consists of two equal spans /iv?, BC of

15 m. each. Determine the bending moments at the supports, the maxi-

mum intermediate bending moments, and the reactions {a) when the

load upon each span is 3000k. per metre; (/^) when the load per metre is

3000 k. upon AB and 1000 k. upon BC. Call Afx , J/a, Mt the bending

moments and A'l , A'a , A's the reactions at A, B, C, respectively, and con-

sider three cases, viz., when both ends of the girder are free, when both

ends are fixed, and when one end is free and the other fixed.

Ans.—Case I

:

(a) Afi = o = M3 ; M-, — — 84375 km. ; Afmax. in AB or BC
= 47460.9375 km.

B, = Bz = i6875>{- ; B, = 56250/(-.

(d) J/i = o = J/a ; Afi = — 56250 km. ; Mmax. in AB
= 58593.75 km., in BC = 7031.25 km.

A*! = 18750 k. ; A'a = 37500 k.; Bt = 3750 k.

Case 1 1

:

(a) Ml = Aft = .1/, = — 56250 km.; M^ax. in AB or BC
= 28125 km.

A'. = ^'- = A', 22500 k.
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{/<) ,1/, - — r)(;<.ji; km,; .)/•, - - <7Six> km.; ,1/a --- — ')37!;

km. .!/»,,,,. in .//.'
3.).i";<^ 4.175 km. in /'<

= G4.j5.31 JS km.;

A'l — -'4375 k.i A'j = 3(.x)iu> k.; A'j . 5025 U.

Caso III

(./) .1/1 — 4S.;i.tif km.; .]/•, - - 7:3:1 i,' km.; ,J/.i =- o,

.1/,,,,,,. HI ./A'--. J.|537liii{ km., in /.'(
' 5:o.SS|lf,Ji Um.;

.A', : .'oS^.-y k.; A\ - 5I4J.S^ k.; A',, I7<'7-'^? k.

(/) .1/, :r -f.j.'Ss5 km.; .]/,- -.joi7S| km.; ,1/;, u.

.1/,,,.,, ill ./A' - - 3:573 1V.1
km., ill A'(".- iU)J3,V(i

km. ;

A', : :4U)7! k.; A\ 31071^ k.. A', ^48:1^ k.

t)3. SIkuv tli.it .1 imilormlv loiKJcd .ind coiitiiuioiis i;ii(l<Tot two I'lpiii!

.sp.iMS. witli htitli ends lixfil. is j.o.S limes, is still .is il tlir imkIs wrii- lu-c

and mcu'lv r<'sti'd on liu- siiiiporls.

t).|. ,\ siMi;li" \vcii;lit travi-ls o\cr tlu" span ./A'ol .1 i;ird<'r of two ccpi.d

sp.ms. ./A'. /''('. ("ontiiiuoiis o\it .i trnlii' pier />'. .Show tli.it tln' HMCtion

./A'
^ ,

.11 ( is a maximum wluMi tlu- distaiut" of till" wciulit Irom ./is if llic

\ }

ends ./ .111(1 ( irst upon tiioir siippoils. ami wlicn tlu- distant r is f,.l/> il

liu- two t>nds air li.xrd. I'ind llic c> .rospondmj; Ucmliii); moiiunts al

tho lontral piiT.

/•/ 2

A US. -7 :
/•/.

64/3 -V

05. A uinlor witli botii «Mids ti.xod caiiios twoi'ipial IdikIs //'.it points

dividini; I lu' i^inliM into .soninonts ././', (. IK-tcrmim' tlu' reactions and

bonding moinonts at tlic supports.

3<'/'''
-f- /';i + ('<//'<• + },/>', -\- :<" + ^''('' + ''/'i'\

{.I t- /' + < r'
'

_.:.»' + fi''V' + 3.^/'' + /'' (>ii\- + (hi/>r + 3A-

(,f •<- /' f-
<)' •

:,;•', 4- :.'.'•< \- A ' + ./A'

(,f f A + .
)'

,,:./,'^ + :</A- f </'V' f />''(

t.f + A -f- <r'

.///.f. A', ^ //'

A'. = //•

J/, = //

J/. = //"

96. A bridjjo .J ft. in tin* rloar is formed of two cantilevers wliic'i

meet in tiie centre of the span and are connected bv a i)olt capable ol

tr.msmitting .1 vertical pressure from the one to the other. .\ weiyiit

//' IS placed at .1 distance A from one of the abutments. Find the ]>res-

sure tr.insmitted from one cantilever to the other, and draw the curve

of beiuliiii; moments for the load'-d. cantilever.

/ A'^ A»\ / P A»
Ins. h\ rrir'i- 3 ,4- : 1: A', = //'h - -'

.,
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V7. Tlif wcij^lits 7. 7, 10. ro, lo. 10, S, (S, H. 8 Ioiih, taken in order p.isrt

over a <'i>nliinii)iis ^;ii'<ler of Iwo s|>.iiis, cnli of i;o ft. and lixed at liolli

cnils, tlie Miccessive intervals Ih-iii^^ S,
t,. v 5. v 9. 5. 4. 5 ''• I'laic the

wh«'els so as to ^ive I lie niaxinitiiii h(Ml(lin^ nioineiit al llie < eiitic sup-

port, and liiid its value.

////.v. I'*irsi. wlie(!l 25.cS^f;(; ft. fruni m-arest al)iilinent
;

M.ix. II. M. jo'i.^j ft, Ions.

';S, 'I'lie l)ridj.;(' ov<M t lie ( iiaiidc IJaisir ((insists of two e(|ii;d spans o(

l<;.iSni.; each ol the main ^irdeis is ((intinnoiis and rests upon almt-

iiients at the ends. I''ind the position of the points ol inlhwion, tin;

hetidin^ moment at the centie snpport, the m.iximiiin intei mediate

ixiidin^ moment, and the maximnm llan^e sticss i,i) under the dead

load of 1700 U. per lineal metre; (Ai under the same dead loa<l io^(;ther

with an additi(nial |iroof load of J(kn> k. per lineal metro on one span.

The depth of the nird<'r y^^H m., ami / -- .093929232444.

.Ills, iit) \.\^'>S m.froni the .ihiilmenis ; X3308.5 kilo^jrammctrcH

(km.); •!''>,?<'> I :,'n km.; 1.4315 k. per srp mm.
(/>) 16. rS in. from almtment on loaded sidi^ ; 11,876 m.

from ahutmeii't on unloaded side; 132313.5 km.;

101991. ')5625 km.; 2. 27350 k. per s(|. mm.

99. TIk: l']slre.ssol viaduct ronsists of four spans of 25 m, ; the main

jjirders are eontinuoiis and their ends rest upon ahuimciils ; the dt^ad

luail upon each girder is I7<h) k, jier lineal metre, determine the

position of points of inflexion in eaeli span, the reactions imd hendin^j

moments at tlu; supports when an additional load of 2'X)o k. p(;r lineal

nu'tro crosses (</) the ist span; (//) the ist and 2d spans; {( ) all the

spans.

Also, find tlu> ahsoliiti' m.iximiim hciidini,' momentH at the inler-

nicdiate siippoi ts.

Alls. Call.ti,.tj .1 a . .ii the disiaiK es of points of inflexifJii in

1st, 2(1, 3d. and .(til spans from tlw; ist, 2d, 41I1, and

51I1 su|)p(jrts. rt!spoctiveiy ; A'l , A'j, /\':i, A'l, /i'* the

icarlions ; /lA f - o), Mt, Mi, AU, ,]/,, (-- o; the

bonditif^ inomenls.

(rt) -r, = 20.72 m.

.la is ^(iven by i7oo.rj'' — 4240175.1'^ + 395089!! = o;

.1-3 by 1700.1 !i' — 477675.r;, 4- 238839^ o ; .1, = 19.38 ni.

A'l ~ 38348,:', k.; A'.i = 81 ir,o'' k. ; A\, -^ 34107^ k.;

A', = 499105 k.; A'f, = 164731' 4 k.

/1/.j= 197544,-, km.; /I/3 - 53571V' km.;

Mi— 477^>'i.l kin.
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{p) xx = 19556 ni. ; 37oo.ia' — lojooo-Vj + 50357 if =0;
1700.1^- — 4io7i^'.i-» + 205357^ =0; xt = 20.168 m,

A\ = 361 781 k.; A'., = 10782 1? k.; A'» = 62964)f k.;

A\ = 45892? k. ; A'5 = 17142? k.

M-i= 258928^ km.; Ma = 120535J km.;

A/i= 102678^ km.

(c) Xx = 19.64 m, ; .Vj and .in are given by

»4-»'- 375-1-1- 1875-^0-

J/a= .1/4 = 247767^ km. ; J/a = 1651781 km.
Abs. max. B. M. at 2d support (= max. H. M. at 4th sup-

port) occurs when ist, 2d, and 4th spans are loaded,

and = 264508 j
I km.

Abs. max. B. M. at 3d support occurs when 2d and 3d

spans are loaded and = 2098211* km.

TOO. In the piecedinjjf question find the abcohite maximum flange

unit stress at the piers, / being .093929232444. Ans. 4.5 k. per sq. mm.

loi. The Osse iron viaduct consists of seven spans, viz.. two end

spans of 28.8 m. and five intermediate spans of 38 m. ; each main girder

is continuous and canies a dead load of i.if k. per lineal metre. Find

the bending moments at tiie suppor's when a proof load of 2250 k. per

lineal metre for each girder covers all the spans; and also find the

absolute maximum bending mordent at the fourth support. Is the

following section of sufficient strength .'—two equal flanges, each com-
posed of a 6oo-mm. x 8-mm. pla«:e riveted by means of two loo-mm.

X loo-mm. X 12-mm. angles to a 6oo-mm. x lo-mm. vertical web plate

and two 80-mm. x 80-mm. x ii-mm. angles riveted to each horizontal

plate with the ends of the horizontal arms 15 mm. from the edges of

the plates; the whole depth of the section being 4.016 m., and the dis-

tance between the web plates, which is open, being 2.8 m. If insuf-

ficient, how would you strengthen it.^

Ans. M-, = 416.518 km.; M3 = 452,790 km.; Aft = 443,722 km.

Max. B. M. = 542,199 km. / = .14074440467.

.-. - = .07009183,

and max. fiange stress = —— = 7.73 k. per sq mm.

This is much too large. The section may be strengthened

by adding two 6oo-mm. x 8-nim. plates to each flange.

/ is thus increased by .0783425536, and the flange unit

stress becomes 5 k. per sq. mm.



CHAITER VIII.

PILLAKS.

I. Classification.—The manner in wiiich a material fails

under pressure depends not merely upon its nature but also

upon its dimensions and form. A short pillar, e.^., a cubical

block, will bear a weight that will almost crush it into powder,

while a thin plank or a metal coin subjected to enormous com-

pression will be only condensed thereby. In designing struts

or posts for bridges and other structures, it must be borne in

mind that such members have to resist buckling and betiding in

addition to a direct pressure, and that the tendency to buckle

or bend increases with the ratio of the length of a pillar to its

least transverse dimension.

Hodgkinson, guided by the results of his experiments,

divided all pillars with truly flat and firmly bedded ends into

three classes, viz.

:

(A) Short rjlars, of which the ratio of the length to the

diameter is less than 4 or 5 ; these fail under a direct pressure.

(li) JMedinm Pillars, of which the ratio of the length to the

diameter exceeds 5, and is less than 30 if of cast-iron or tim-

ber, and less than 60 if of wroughi-iron ; these fail partly by

crushini', and partly by flexure.

(C) J-Otig Pillars, of wiiich the ratio of the length to thc-

dia .leter exceeds 30 if of cast-iron or timber, and 60 if of

vvrought-i'on ; these fail wholly by flexuri'.

;>. Further Deductions from Hodgkinson's Experi-

ments.—A pillar with both ends rough from the foundry so

tliat a load can be applied only at a few isolated points, and a

pillar with a rounded end so that the load can be applied only

513
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along the axis, are each one-third *)f the strength of a pillar of

class H, and {xovc\ one-third \.o txvo-thirds of the strength of a

pillar of class C, the pillars being of the same dimLnsions.

The strength of a pillar with one end flat and the other

round is an arithmetical mean between the strengths of two

pillars of the same dimensions, the one having both ends flat

and the other both ends round.

Disks at the ends of pillars only slightly increase their

strength, but facilitate the formation of connections.

An enlargement of the middle section of a pillar sometimes

increases its strength in a small degree, as in the case of solid

cast-iron pillars with rounded ends which are made stronger

by about onc-scirnth ; hollow cast-iron piliars are not affected.

The strength of a disk-enoed pillar is increased by about one-

ei^i^hth or one-ninth when the middle diameter is lengthened by

50 per cent., but for slight enlargements the increase is imper-

ceptible.

The strength of hollow cast-iron pillars is not affected by a

slight variation in the thickness of the metal, as a thin shell is

much harder than a thick one. The excess above or deficiency

below the average thickness should not exceed 25 per cent.

3. Form.—According to Hodgkinson, the relative strengths

of long cast-iron pillars of equal weight and length may be

tabulated as follows

:

{a) Pillars with flat ends.

The strength of a solid round pillar being 100,
" " " square " is 93

;

" " " triangular " is 1 10.

(/;) Pillars with round ends, i.e., ends for hinging or pin

connections.

The strength of a hollow cylindrical pillar being 100,
" "an H-shaped " is 74.6;
" " a -j—shaped " is 44.2.

The strengths of a long solid round pillar with flat ends,

and a long hollow cylindrical pillar with round ends, are ap-

proximately in the ratio of 2.3 to i.

The stiffest kind of wrought-iron strut is a built tube, the
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section coiisistin^f of a cell or of cells, which may be circular,

rectangular, triangular, or of any convenient form.

In experimenting upon holiovv tubes, Ilodgkinson found

that, other conditions remaining the same, the circular was the

strongest, and was followed in order of strength by the square

in four compartments iTi ; the rectangle in tzvo compartments,

I I I ; the rectangle, ; and the square.

The addition of a diaphragm across the middle of the rect-

angle doubled its resistance to crippling.

4. Modes of Failure.—The manner in which the crush-

ing of short pillars takes place depends upon the material, and

the failure may be due to splitting, bulging, or buckling.

(a) Splitting into fragments is characteristic of such crys-

tallme, fibrous, or granular substances as glass, timber,

stone, brick, and cast-iron.

The compressive strength of these substances is

much greater than their tensile strength, and when they

fail they do so suddenly.

A hard vitreous material, e.g., glass or vitrified

brick, splits into a number of prisms (Fig. 335).

A fibrous material, e.g., timber, and granular materials, e.g.,

cast-iron and many kinds of stone and

brick, shear or slide along planes oblique

to the direction of the thrust, and form

one or more wedges or pyramids (Figs.

336, 337. 338).

Sometimes a granular or a crystalline substance will sud-

denly give way and be reduced to powder.

(b) Bulgingy i.e., a lateral spreading out, is characteristic of

blocks of fibrous materials, e.g., wrought-iron, copper, lead, and

timber, and fracture occurs in \\\c form of longitudinal cracks.

All substances, however, even ihe most crystalline, will

bulge slightly before they fail, if they possess some degree of

toughness.

(c) Buckling is characteristic of fibrous materials, and the

resistance of a pillar 'o buckling is always less than its resist-

ance to direct crushing, and is independent of length.

Thin malleabk' plates usually fail by the bending, pucker-

yy
Fig. 336. Fig. 337. Fig. 338.

'f'
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ing, wrinkling, or crumpling up of the fibres, and the same
phenomena may be observed in the case of timber and of long

bars.

Long plate tubes, when compressed longitudinally, fi-st

bend and eventually fail by the buckling of a short length on

the concave side.

The ultimate resistance to buckling of a well-made and

well-shaped tube is about 27,cxx) lbs. per square inch section of

metal, which may be increased to 33,000 or 36,000 lbs. per

square inch by dividing the tube into two or more compart-

ments.

A rectangular wrought-iron or steel tube offers the greatest

resistance to buckling when the mass of the material is con-

centrated at the angles, while the sides consist of thin plates

or lattice-work sufificiently strong to prevent the bending of

the angles.

Timber offers about twice the resistance to crushing when

dry that it does when wet, '^s the presence of moisture dimin-

ishes the lateral adhesion of the fibres.

5. Uniform Stress.—Let a short pillar be subjected to a

pressure of W lbs. uniformly distributed over its

end and acting in the direction of its axis.

Let 6' be the transverse sectional area of the pil-

lar.

W
Let/ = -— be the intensity of stress per unit

of area of any transverse section AB.
Let A'B' be any other section of area S' , in-

clined to the axis at an angle B. The intensity of stress per

W W
unit of area of A'B' = —- = - sin B =. p sin 6^, which may be

resolved into a component p sin' B normal to A'B' , and a com

The last

w

l»

Fig. 339.

Sin 2B
ponent/* sin B cos B, i.e.,/

,
parallel to A'B'

.

intensity is evidently a maximum when B = 45°, so that the

plane along which the resistance to shearing is least, and there-

fore along which the fracture of a homogeneous material would

tend to take place, makes an angle of 45° with the axis.
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None of the nuitcrials of construction are truly' homo-
geneous, and in the case of casl-ir(jn tlie irreguUirity of tlie

texture and the liardness of llie skin cause the angle between

the plane of shear and the direction of the thrust to vary

from 32'"' to 42°. Brick chimneys sometimes fail by the shear-

ing of the mortar, the upper portion sliding over an oblicjue

plane.

Hodgkinson's experiments upon blocks of different mate-

rials led him to infer that the true crushing strength of a ma-

terial is obtained when the ratio of length to diameter is at

least i^; for a less ratio the resistance to compression is un-

duly increased by the friction at the surfaces between which

the block is crushed.

6. Uniformly Varying Stress.—The load upon a pillar is

rarely, if ever, uniformly distrib-

uted, but it is practically suflficient

to assume that the pressure in

any transverse section varies uni-

formly.

Any variable external force ap-

plied normally to a plane surface

AA of area 5 may be graphically

represented by a cylinder AABB,
the end BB being the locus of the

extremities of ordinates erected

upon A A, each ordinate being pro-

portional to the intensity of press-

ure at the point on which it is

erected.

Let P be the total force upon AA, and let the line of its

resultant intellect AA in C; C is the centre of pressure of A A,

and the ordinate CC necessarily passes through the centre of

gravity of the cylinder.

Again, the resultant internal stress developed in AA is P.

and may of course be graphically represented by the same
Qy]\\\CiQ.x AABB.

Assume that the pressure upon AA varies uniformly; the

surface BB is then a plane inclined at a certain angle to AA.
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^^W

Take O, the centre of ti^'uie of ////, as the origin, and AA
as the plane of x, y.

Let OY, the axis of y, be parallel to

that line HE of tlu pliine llll which is

parallel to the plane A A.

'rhrou<;h HE draw a plane DD p.n-

allel to ///I, and form the cylinder

A API),

The two cylinders AAIUI and AADD
are evidently equal in volume, and OE,

the averaj^e ordinate, represents the mean
pressure over AA ; let it be denoted

= / = PR = PQ + QR = PQ^OE=ax-\-p,,

a beint; a constant dependint; upon the variation.

A'ofi:—The sign of x is negative for points on the left of O,

and the pressure at a point corresponding to A' is/*,, — dx.

Let x„,y„ be the co-ordinates of the centre of pressure 6".

Let AS be an elementary area at any point A\

Then />JS is the press ; e upon J.S\ and 2:{/)JS) is the

total pressure upon the surface AA, 2i being the symbol of

summation.

Hence,

x,:^{pJS) = 2(/,xASl and y„:^{pAS) = 2{/>y^S).

But />=/„ + .w.

••• .v,:^\[A + ^rx)AS\ = 2{{p^x-\-ax^)^Sl-

and

A^^\^A-^'rx)JS\ = ^\{pj-{-axy)JS\.
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Now is the ccntru of figure of ////, ami tlicrcfore S(xJS)
and 2:{ I'JS) arc each zero.

AUi), 2i'(J.S't — S, 2:i{.i''JS) is the iiiontint of inertia (/) of

A A with respi.ci to 0\\ and ^'(.ij'J.S) is \.\\\z product of inertia

(A') about the axis t^/f.

.•. A„A>^ - til — XJ' . • « • •

and

j„/*,5 = ^?A' = j/„/'.

U/

(2^

CVr. I. In any symmetrical

section _y„ is zero, and .i„ is the

deviation of the centre of pres-

sure C from the centre of fig-

ure ().

Let X, be the distance from

O of the extreme points /] of

the section.

The greatest stress in AA is/„ + '^^-^i =/. • suppose.

Butrt = ^^-,by eq. (I).

Fl... 34J.

, :r, -I

-•-r-*-—
'C

• • A -i 7— = Ai»

or

r

I + ^^5
(3)

i:

It is generally advisable, especially in masonry structures,

to limit x„ by the condition that the stress shall be nowhere

negative, i.e., 'a tension. Now the minimum stress is/>„ — ax^,

so that to fulfil this condition.

in

p, > or = ax^ . But p, = ax, -\-p, ; .-. /, < or = 2/,.

'I
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Hence, by eq. (3),

A ^ I
^^— < or = »

2y„
^

. A\X,I+-/5

and therefore

J
-^ or = I ; I.e., .r„ < or = j-^.

Cor. 2. The uniformly varying stress is equivalent to a

single force P along the axis, and a couple of moment

Pxco^ p I -v; + j>: ^as'r^K .

Cor. 3. The line CO is said to be conjugate to OY.

If the angle COX = 0, then cot 6^ = ^ = ^.

7. Hodgkinson's Formulae for the Ultimate Strength of

Long and Medium Pillars.—When a /o//^ pillar is subjected to

a crushing force it first yields sideways, and eventually breaks

in a manner apparently similar to the fracture of a beam under

a trans\erse load. This similarity, however, is modified by the

fact that an initial longitudinal compression is induced in the

pillar by the superimposed load.

Hodgkinson deduced, experimentally, that the strength of

lona; solid round iron and square timber pillars, with flat and

firmly bedded ends, is given by aa expression of the form

V IV==A
d*

W being the breaking weight in tons of 2240 lbs.

;

d " " diameter or side of the pillar in ?«f^«/

/ " " length of the pillar in feet

;

n and m being numerical indices
;
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A being a ronstant varying with the material and with the

sectional form of the pillar.

For iron pillars « = 3.6 and m = 1.7
*' timber pillars « = 4 and ;// = 2

" cast-iron A = 44.16
" wrought-iron A = 1 33.75
" dry Dantzic oak A = 10.95
" dry red deal A = 7.81
" dry French oak A — 6.9

I

The strength of /ofi^ hollow round cast-iron pillars was

found to be given by

U W^= 44.34 j;^

as

d being the external and d^ the internal diameter, both in

inches.

Thus, the strength of a hollozv cast-iron pillar is approxi-

mately equal to the difference between the strengths of two

.f(7//i/ cast-iron pillars whose diameters are equal to the external

and internal diameters of the hollow pillar.

The strength of viediiim pillars may be obtained by the

formula

W = WfS ^

as derived

W being the breaking weight in tons of 2240 lbs.

;

\U it (« it (. it ii it it

from the formula for long pillars ;

/ being the ultimate crushing strength in tons per square inch ;

.S being the sectio'ial area of the pillar in square inches.

Again, if the ends of a cast-iron pillar are rounded, the

above formulae may U- still employed to determine its strength,

A being 14.9 for a solid and 13 for a /tollow pillar.

ii't

f
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8. Gordon's Formula for the Ultimate Strength of a
Pillar.—The method iliscussed in the preceding articles, being

^ practically very inconvenient, is not generally used,

and the present article will treat of Professor Gordon's

formula, which has a better theoretical basis and is

easier of application.

The effect of a weight IF upon a pillar of length /

ami sectional are.i ^" may be divided into tzco parts :

{a) A direct thrust, which produces a uniform com-

. W
pression of mtensity -^ = /*, •

(/;) A bending moment, which causes the pillar to

yield in the direction of its least dimension {h).

Let y be the greatest deviation of the pillar from

the vertical.

The bending moment M at the point of maximum stress

may be represented b\' Wy.

Let /, be the stress in the extreme layers due to this bend*

ing moment.

Now M=^-'I ',ipj)h\

c being the distance of the layer under consideration from

the neutral axis. .7 a constaJit depending upon the sectional

form, and b the dimension perpendicular to the plane of flexure.

Wy
bW•*• t^Pibli' = Wy, and /..a

But^'oc r-. (Art. 9, Chap. VL)i

^ wr wr r
,

r
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a being some constant to be determined by experiment.

Hence, the total stress in tlu; most strained fibre is

/ =A+A=a(i+^4)'

or

5^3

:l

which is Gordon's formula.

L -If the weij^ht upon the pillar causes the stress in any
transverse section to vary juiiforinly, the direct thrust in the

h

extrem e layers is ..-\i H r— ) instead of ^r,r, (Cor. I, Art.

6,) .to being the greatest deviation of the line of resultant

thrust from tl:. axis of the pillar.

Let h be the radius ofgyration of the cress-section. Then

5/t'^ = /,

and the expression for the direct thrust may be written

Wl
,

x.h\

ii' + .J-

Hence, Gordon's formula becomes

W
c-=A

/

9. Values of » and /.—The following table, giving the

values of the constants a and/ in Gordon's formula, has been

i'lMl
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prepared by taking an average of the best known results, and

is applicable to round and square pillars xvith square ends.

For cast-iron solid rectangular pillars

" round "

" " hollow rectangular "

round "

For wrought-iyon solid rectangular pillars

,

" round "

" " thick hollow round "

For Mild-steel solid rectangular pillars

" " " round "

" " hollow round "

F<>: j/;v';/i,'--j/'(r/ solid rectangular pillars.. .

" " " round " ...

" " hollow round " ..

.

Yox pine-timber solid rectangular pillars...

.

" round " ....

For dry oak limber

/ ill lbs.
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80,000 lbs.

67,300 lbs.

63.080 lbs,

80,000 lbs.

28,480.4 lbs,

8,252:8 Ibg.

0,G|.>.2lb8.

3,07fi.'.l lbs.

10 r.'J 60

Fig. 344.

ICO

II. Application of Gordon's Formula to Pillars of other

Sectional Forms.
In any section whatever, the least transverse dimension fur

calculation (i.e., //) is to be measured in the plane of greatest

flexure.

Thus, it may be taken as tlic least diameter of the rectan.tilc

circumscribing tee (Fig. 345), chauml {¥\g. 346), and cruciforvt

(Fig. 347) sections, and as the perpendicular from the angle to the

opposite side of a triangle circumscribing aug/c'{¥ig. 348) sections.

[D
Fig. 345. Fig. 346. Fic. 347. Fig. 348.

From a series of experiments upon wrought-iron pillars of

I

these sections, /"was found to be 42,500 lbs., and <?,

900

and a

^'^ cast-iron struts of a cruciform section /_ 80,000 lbs.

400'

I

I

i1
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TIicsc results arc only approximately true, and apply to

pillar. .'(1 at both ends.

12. Rankine's Modification of Gordon's Formula.—The
factor a in (iordon's fornuila is by no means constant, and not

only varies with the nature of tiie material, with the lenj^th of

the pillar, with the condition of its ends, etc., but also with th"

sectional form of the pillar. The variation (.hu: to this latter

cause ma}' bi- eliminated, and the formula rendered somewhat

more exact, b)- introducin^t:; the least radius ofgyration instead

of the least transverse dimension.

If k is the least radius of gyration,

k' =
mass

vtblt in ,„

7w/i n

w and // being constants which depend upon the sectional

form. Thus, Gordon's formula for pillars with square ends

may be written

W
~S

A = /

in which rt, is independent of the sectional form, all variations

of the latter being included in !<\ This modified form of

Gordon's formula was first suggested by Rankine.

4rr, is substituted for rt, if the pillar has two pin ends, and

-a, or 2rt, is substituted for «, if the pillar has one pin end and

one square end.

Rankine gives

for wrought iron,

for cast-iron,

for dry timber,

/= 36000 lbs., —=36000;

/ = 80000 lbs., = 6400

;

/= 7200 lbs., =3000;
a.
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111 good American practice the safe working unit stress in

bridge compression members is determined by the formula

Safe working unit stress =
/'

1 + ^^,

/' being 8000 ll)s. for wrought-iron and lo.ocx) lbs. for steel,

and - being 40,000 tor two square ends, 30,000 for one square

and oik; pin end, and 20,000 for two pin ends.

Another formula often cm})loyed is,

/ //\ f
Working stress in lbs. per sq. in. X (4 -j- ) = ~~T

—
JT^ >

H being the ratio of length to least breadth, where, in the case

of wrought-iron,

38,500 lbs. and - = 5820 for two square ends;

/'

/' = 37,800 " " - — 1900 " two pin ends

38,500 " " ~ = 3000 " one square and one pin end.

The /acior of safety, viz., 4 -j , increases with H, and par-

tially provides for the corresponding decrease in the strength

to resist side blows.

Examplp:s.—According to Rankine the ultimate compres-

sive strength of wrought-iron struts, in pounds per square

inch, is

W
= A = 36000

i-h
I /'•

36000 k'

u

hS
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If the section is a solid rectangle, k^ — , and hence

36CXX)

' jOOO /t'

If the section is a solid circle, k" = ^, and hence

A =
1 +

36000

I

2250/5"

If the section is a thin annulus, X' = ^, nearly, and hence

A = 36000

1 +
I /'•

4500 ^^

/.
Cor.— If J is small, IV = fS.

If ^.s large, fr=:^^^^,.

Comparing the last result with eq. (5), Case 4, Art. 16,

I _4i5"T''

which gives a theoretical value of a^ , the actual value being

somewhat different.

^i.„*-^tS^Values of k' for Different Sections.

/ /i'

{a) Solid rectangle : k^ — ^ = -, h being the least dimen-

sion.

{b) Holloiv rectangle : le = -^ = --\^
^/^ _//// ]> ^^ -^^ being

the greatest and least outside dimensions, and b' , h' the great-

est and least inside dimensions, respectively.
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VALUES OF k^ FOR DIFFERENT SECTIONS.

Let t be the thickness of the metal. Then

b' =z b — 2t and //' = // — 2/,

529

and hence

k' = -
I fi/t^ _ (I, -2f){/t -jty _ te ib-\-h

12 hh — \b — 2t){h — 2t) ~ 12 b-\-ir

approximately, when t is small compared with h, i.e., for a thin

holloio rectangle.

For a square cell, X-' = -> .

/ h^
{c) Solid triangle : k' = -r, = --, h being the height.

{d) Hollow triangle : k' = „- = - — fy'r ' ^' ^^ being the

base and height of the outside triangle, and b', h' the base and

•* ~ iS*'-^^"'*'"' i8\ b"" r

/

Hence, for a thin triangular cell, k^ — —

.

/ h^
{e) Solid cylinder : >t* = - = —p, h being the diameter.

(/) Hollow cylinder : k^ = 7- = "yl^'^'' + ^^^^\ /' and // being

the external and internal diameters, respectively.

Hence, for a thin cylindrical cell, k^ = — , approximately.

ExAMTl.E.—Gordon's formula for hollozv cylindrical cast-

iron pillars is

W / /

^ "^
500 /t'

^ ^ 40CX) ife*

?'1

.it

:

'5

ii

r^
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The relation /, = —
-p may be assumed to hold for

J
J

' 4000 /t'

hollow square struts and also for struts of a cruciform section.

Ex. I. For a hollow square having its diagonal equal to

the internal diameter of the hollow cylinder, i.e., h\

f
k* = ^ ^' = —-, and p, = 75

.

6 12 ^'
3 I

lOOO//*

Ex. 2. If the side of the square is equal to the external

diameter, i.e., h, then

k* =z-—
^ and /,

/

1 + 3 /'

2000 //*

{g) Cruciform section, the ai - being equal:

n

^ bh'
,
hb' b'

/ = — H ; S=2bh- b\
12 '12 12

Fir,. 349.

,, I bh'-\-/ib'-b' //'

.'• ^ = — —,
TT.
— = — , nearly.

24' ^12 2bh — b'

Hence, the formula for a cast-iron pillar of cruciform section

may be written

W ^ f_ f
I +

I l^

4000 k' 500/^°

(//) Angle-iron of unequal ribs, the greater being b and the

less //

/fe' =
1 /;7/'

12/^"+ //'
approximately,
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Hence, if ^ = //, I.e., if the ribs are equal, k* — —

.

24

(1) Channcliron, the dimensions being as in Fig. 350

~ "• "'" 4(2/// -f"^/)'

H<

12

= lA^-!^^ -
-'''"-~-\

T

i

f«

1 77+4(2/./+^) r"'"^^^'-

Also, Sz=ht ^ 2ht.

Kio. 350.

• • ^ ~ ( 12(2/// -t- /'O 4(2/// + btf )

Let the area of the two flanges = ^/ = 2///, and let the

area of the web = B = bt. Then

-"'I
A AB

2{A^B)^^{A+B)
--1

(k) H-tron, breadth of flanges being d, length of web A, and

thickness of metal / :

d'f
,

///' /^V
, ,, ,

, ,7=2—4- — =2 -, nearly ; 5=2^/ + ///.
12 ' 12 12

-^ '

• ,6- - -'- -*'
//

122/7/+/// 12 ^+i?'

yj being the area of the flansres, and B the area of the web.

(/) Circular segment, of r.idius r and length rH '.

/&• = r' 1

I sin ^
4 sin"

2^2^

Hence, lor a semicircle, since ft = tt,

k^ z=z r'X- , f
= - -

, nearly.
( 2 t' ) 10 ^
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r'

(m) Barloxv rail: X-' = - , nearly.
7

(«) 'l\vo Barlow rails, riveted base to base: ^' = ,393r*,

nearly.

14. American Iron Columns.—In 1880 Mr. G. liouscaren

read before the American Society of Civil Eiii^ineers a paper

containing the results of a series of experiments made for the

Cincinnati Southern Railroad upon Ke)stone, square, IMuunix,

and American liridge Co.'s columns.

Br3 ,« ,zn

keystone

Fig. 351.

SQUARE

Fig. 35a.

PHOENIX

Fig. 333.

AM. BRIDGE CO.

FlO. 3J4.

These experiments show, as those of Hodgkinson and

others have also shown, that the strength of iron and steel

columns is not only dependent on the ratio of length to diam-

eter, and on the form of the cross-section, but also on the

proportions of parts, details of design and workmanship, and

on the quality of the material of which the columns are con-

structed.

Further, they seem to lead to the conclusions that Gordon's

formula is more correct as modified by Rankine, and that, in

the case of columns hinged at both ends, Rankine's formula,

with a^ assumed at double the value it has when the formula is

applied to columns with flat ends, is practically correct.

The subjoined table gives the values of the constants

rt, and / as deduced from Bouscaren's experiments by Prof.

W. H. Burr.

In 1 88 1 Messrs. Clarke, Reeves & Co. presented to the

American Society of Civil Engineers a paper containing the

results of experiments upon twenty Phoenix columns, which

appeared to show that neither Gordon's nor Rankine's formula

expressed the true strength of a column of the Phoenix type.

In the discussion that followed the reading of this paper, how-

ever, it was demonstrated that, within the range of the experi-

ments, the strength of intermediate lengths and sections of
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For keystunc columns with tlat ends—swelled

" " " " " " —straight (open or

closed)

" •' " " " —open (swelled straight)

" " " " pin ends—swelled

For square coluinnb with flat ends

" pin ends

For Phrenix columns with flat ends

" " " " round ends

" " " " pin ends

For American Bridge Co.'s columns with flat ends

" round ends

pin ends

/ in tbi.

36,(xjo

y), 500

38,300

3*>.3uu

39.(100

3<),0(X3

42,000

43,0(X}

43,cxx>

30,000

36,000

36,000

«I

x

1 HHIll)

I

1 N » 00
1

I tIKIU

1

8AI)UU
I

17000
I _

iiuooo

1 II A U il

I

IttTOO
^1

4HUU'U
1

1 1 &

1

II I it d'o

Phcenix columns can be obtained either from Rankine's for-

mula by slightly chan<j;ing the constants, or from very simple

new formulae.

I

Mr. W. G. Bouscaren showed that by making «, =
W

lOOOOO

and /= 38000, the calculated values of -^^ agree very nearly

with the actual experimental results.

Mr. D. J. Whittemore gave the following (only applicable

for lengths varying from 5 to 45 diameters) as expressing the

probable ultimate strength of these columns :

fTlbs. = (1200 - //)30 + ^?^^°°?,

H being the ratio of length to diainoter.

Mr. C. E. Emery stated that the ultimate strength in each

case is approximately represented by the formula

^F lbs. = 3il^± 3095?^,

Z;^ being the ratio of length to diameter.

il
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Taking the different values of H as abscissae, and of W as

ordinates, this is the equation of an hyperbola. It agrees very

accurately with the experimental results from 20 diameters

upwards ; at 1 5 diameters the calculated values of W arc-

greater than those given by the experiments ; for a less num-
ber of diameters the experimental results are the higher, but

the variations are slight, and are provided for in the factor of

safety.

The following very simple formulae, due to Prof. W. H.

Burr, give results agreeing closely with those obtained in the

experiments

:

For values of t < jO, the ultimate strength in pounds per

square inch

sj'k-
— 64700 — 4600

For values of r between 30 and 140, the ultimate strength

in pounds per square inch
.7

= 39640 — 46^,

ra<Jius of gyration.

15. Long: Thin Pillar.—Let ACB be the bent axis of a

thin pillar of length /, having two pin ends and carry-

ing a load W at B.

Let d be the greatest deviation of the axis from the

vertical. Then

Wd— bending moment = t,^» (I)

D being the curvature of the pillar and / the moment
R
of inertia of the most strained transverse section.

This equation is only true on the assumptions that

—

(i) initially, the pillar is perfectly straight

;

(2) initially, the line of action of the load coincides with the

axis of the pillar

;

Fig. 355.
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(3) the material of the pillar is homogeneous.

These assumptions cannot be fulfilled in practice, and varia-

tions from theoretical accuracy may, perhaps, be provided for

by supposing that the line of action of the load is at a small

distance x from the axis of the pillar. The bending-moment

equation then becomes

W{d-^x) = -p=-X^r, (2)

/, being the skin stress due to bending at a distance c from the

neutral axis.

Again, assuming that the bent axis is in the form of an arc

of a circle,

R= r (3)

.'.W{d-^x)=9>Erf,=^fT, .... (4)

and consequently

where

/'=^^. (6)

If the line of action of the load [T coincided with the axis

of the pillar, then x would be nil.

Hence, by eq. (5), so long as the load is less than /', d = o,

and the failure of the pillar would be due to direct crush-

ing. If the load is equal to P, t/ would become 'determinate

[= -j and the pillar woukl icinaiii in a state of neutral equi-

librium at any inclination to the vertical.

It is impossible that \V should exceed P, as </ would then

be negative ; and tlureforc a load gteater than /* would cause

the pillar to bend over laterally until it broke.

ifSI

Kt
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%Er
Thus, P ~ .J- must be the theoretical maximum compres-

sive strength of the pillar.

Again, let A be the area of the section under consideration ;

" / be the total intensity of the skin stress at the
section

;

" / be the intensity of the direct stress due to W

~ A •

" /, be the intensity of the stress due to P
_ P
~A'

Then

P=f±A = ^±md-^x)j,. ... (7)

the sign of /, being positive iur the compressed side of the

pillar and negative for the side in tension.

/./-"'(i ±(./-f ;i-)7^)=/(i±(^+;r)|,), . (8)

k being the radius of gyration.

Let h be the least transverse dim ision of the section in

the plane of flexure. Then

c (X h and k also oc /u

c n

n being a cocfificicnt depending upon the form of the section.

For a rectangle, // = 6 ; for a circle, y/ = 8 ; also,

.
, _ Px

^-T ^ — p _ lY'

•••/>=/( ±CT /;)=/( ±z47t)- • fe)
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Thus, however small x may be,/ continually increases as

the difference between /, and / diminishes. The pillar will

therefore fail for some value of p less than the theoretical

niaxinuini. This is in accordance with experience, as it is

found that a small load causes a moderate flexure in a lony

pillar, and that this flexure gradually increases with the load

until fracture takes place.

In no case should p exceed the clastic limit, as in such

case a set would be produced and the deviation x would be

increased.

If the tensile strength of the material of the pillar is small,

as in the case of cast-iron, failure may arise from the tearing of

the stretched layers.

Cor. I. The above also applies to the case of a pillar with

one end fixed and the other free, but the value of P is

2 AY
then —^ .

Cor. 2. According to Euler (see following article), the

more correct value of P is /</:/.j, ^ being i, 2, i, or 4, accord-

ing as the pillar has two pin ends, one fixed end and one end

guided in the direction of the thrust, one fixed and one free

end, or two fixed ends.

P evidently oc -jf a £Ap a EAijj .

Hence, (<?) the strength of a long pillar is proportional to

the coefficient of elasticity ; (d) the strengths of similar pillars

are as the sectional areas.

Again, /, a ^ a el.

But mi /.
-/ a /, oc d.

Hence IV is approximately constant, and the weight which
produces moderate flexure is approximately equal to the break-

ing weight.

EXAMi'LK.— Find the crushing load of a solid mild-steel

pillar 3 in. in diameter and 10 ft. long, with two pin ends.

^

*i

91

ii

1
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Also find the deviation {x) of the line of action of a load of

20,000 lbs. from the axis of the pillar, so that the maximum
intetisity of stress may not exceed 10,000 lbs. per square inch.

liy Gordon's formula and the table, page 524,

the crushing load = 6y2007r . |

' + tAd(^
lOV
y
= 85292.3 lbs.

Again, the theoretical maximum compressive strength P

8/:/ 8 X 28000000 7r(3)*

r (i2or 64
= 61875 lbs.

/. 61875

P- IV-/,-/- 41^75

99
67'

Hence

20000/ , 09
'^^ = i?:iV+67

8H
Long Columns of Uniform Section. (Euler's Theory.)

Case 1. Columns with both ends hinged.

—The column OA of length / is bent

under a thrust P and takes the curved

form OMA.
Take O as the origin, the vertical

thrcnigh O as the axis of x, and the hori-

zontal tlirough as the axis o[ y.

Consider a section at any point M
{x,y). If there is equilibrium and if the

line of action of /' coincides with the

17 ' axis of the column, the equation of mo-
FiG. 356. ments at J/ is

d^Y

or

dy
<ix'

-w = - ^>'- (I)
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dy

539

Multiplying each side of the equation by ^— and integrating

(!)•= a iP'-f) (2>

b being a constant of integration.

= = adx.
Vb'

Integrating,

sin-{i\=„x + c.

or

y=^b sin {ax -\- c\ .... (3)

c being a constant of integration.

When X = o, y is also o, and hence b = o or c = o.

If ^ = o, J is always o, and lateral flexure is impossible.

Take t = o. Then

^ = ^ sin ax

Also, when x = OA = OA/A, nearly, =z /,y = 0.

.'.0 = 6 sin a/,

(4>

or

nTC = a/^^slw
and hence

P^tCEIji. (5)

Now the least value of P evidently corresponds to w = i,

and hence the viiniiuum thrust wliich will bend the c<>lunii>

laterally is

i

m

p=f.rj,-.
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Cor. I. If the column is made to pass through A'' points

dividing the vertical OA into N -\- i equal div )ns, then

y =zo when x =

and therefore, by eq. (4),

O — ^ sin

N+V

al

.V+i'
or

al

N-\- I

— nn,

and hence

P=n'/i/Ji{N-^l)\
Fui. 357.

As before, the least value of P corresponds to « = i, and

7T'

is the least force which will bend the column laterally.

Hence, the strength of the column is increased in the ratio

of 4, 9, 16, etc., by causing it to pass through points which divide

its length into 2, 3, 4, etc., equal parts, respectively.

Cor. 2. The value of d may be approximately determined

as follows :

Let (Is = length of element at M.
Let ^ = inclination to vertical of tangent at M.
Then

and the

fix
pressure upon ds = P cos ^ = J^y''

dx

compression of ds = ,. -t/s = -f^-idx,
/:.{ hA

A being the sectional area of the column.

Hence, the total diminution of the length of the column

-I.

p p
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Again, the length of the column

l''f ,

'f"^"
. \j • ,= / i

' ~r ^'^^ (ixjax, approximately,

Hence, if L is the initial length of the column, i.e., the

length before compression,

and consequently

*'=4^(^?0 -> —
'A'

\\

I

Cask 2. Columns with one tndJixid and the other constrained

to lie in the same vertical.

Assume that the lateral deviation is prevented y-

by means of a horizontal force // at the top of a [A

column. Then

- El'2, ^Py- //(/ -X).. . . (I) '

^"^

A particular solution of this is

o = />' - //(/ - x).

Let y=y-\-U. y
Fig. 358.

£y_d^u
• dx'~dx''

I

'
(
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It ih sufficiently approximate to write

ETP- 2n*
/•

543

(6)

Case 3. Columns unt/i one endfixed and the other free.

A rigid arm AB is connected with the

free end A of a column, and a vertical b

force /'applied at B bends the column

laterally, until its axis assumes the curved "p

form OMA.
Let AB = (/, A C = />, and let / be the

Iciif^th of the column, — OC, nearly.

The inclination of AB to the horizon

is so small that the difference in len<^th

between AB aiul its iiori/.ontal projection

may be disrcLjarded. 'Ihe moment equa-

t/o/i tjt any point M {x, j>) is

d*V
EI ,K = P{p^q-y).

^
dx

d'y

dx' '''if + </ - J')-

Multiplying each side by 2-7- and integrating,

i> being a constant of integration.

lint , .
= o when y — o, and hence b := Q.

m ^':2(/4?7)j'-/{,

nf
if^

r2(/'-f '/)/-/
rz ==. udx.

(a

I'S'^

I
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Integrating,

THEORY OF STRUCTURES.

COS -' ^pf—^ = aj; + tf,

c being a constant of integration, or

p-\-q - y
COS {ax -{- c), . . (3)

But y = o when x =z o, and hence i- = o.

. .

——^ = cos ax.
P-^<]

(4)

Also, y ~ p when a: = /.

P^<1
= COSrt/.

(5)

If <7 is very small or nu', the term - may be disregarded,

and then

O = cos a/.

,
', ai — n — \ I i' T

'•••••• (6)

n being a whole odd number.

The least value of /'corresponds to// = i, and the minimum
pressure which will cause the column to bend laterally is

(7)

Ccor. I. By eq. (5) the deviation of the top of the column
from the vertical is

AC=p=g I — cos a/

cos a/ (8)
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Cor, 2. Let the fofcc applied at /> be oblique and let lU

vertical and horizontal components be /' and //, respectivel).

The moment equation now becomes

A particular solution of this is

o^P{p^q-y')^H{l-x) (ro>

Let y — y' -\- u.

Substituting in eq. (9),

hi . ,- - Pu,
ax

or

tPit
. jj
= — a' It (11)

The solution of this equation is

u = b sin [ax -\-c) =-y — y',

and c being constants of integration.

//
.-.^ = / -f- ^ -f -^(/ - 4:) -f- ^ sin {ax+ c). (12)

r/v
When X = o,y and '- are each = o ; and when x^=. l^y=.q.

Hence, 0= p + q-\- pl-yb sin c\

o = — -p-\-ao cos c ;

O = / \- h sm {al -\- c) \

4

II

>

lli

s

0h
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three equations giving b, c, and p, and therefore fully deter-

-mining J/.

Cask 4. Column ivitk both ends fixed.

Let ix be the end moment of fixture. Then

d'y

or

d'y

where b =

dx
- = _- d'y -]- d'b = a\b -y), . . (i)

dy
Multiplying each side 01 the equation by 2-,- and

integrating,

{2h~f)^-d,

d being a constant of integration.

dy
J3ut ,- — O when y — O, and hence ^ = O.

dx

,.(|)=,,^,,_,_y).

or

dy

Integrating,

^2by — y

b-y

= adx.

cos

or

J- ^ax-\-c.

-7— = cos («4r -j- c\

(2)

'f • • • • (3)

c being a constant of integration.
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But y =iO when x = o and when ;»: = /. Hence

I = cos c and i = cos {al -f- c).

and therefore <: = o and al = 2«;r,

« being a whole number. Hence,

54;

V^" ''''''

or

.TT"

P=n^ . ^Ij^. . (4)

The least vakie of P corresponds to « = i, and the mini-

mum thrust which will cause the column to bend laterally is

P = /^EJ
7f

(5)

17. Remarks.—From the preceding it appears that the

maximum theoretical compressive strength of a column per

unit of area may be expressed in the form

In' .ft
/--.- = XE-.- 75 = XEk'jf,A A r

k being the radius of gyration, and \ a coefficient whose value

is I, 2, \, or 4, according as the column has two hitigcd ends,

one end fixed and the other guided in the direction of thrust, one

endfixed and the other free, or two fixed ends.

This formula is easy of application, but Hodgkinson's

experiments show that the value of P as derived therefrom is

too large. This may be partly due to the assumption that the

elasticity of the material is perfect.

The factors of safety to be used with this formula vary

from 4 to 8 for iron and steel and from 4 to 15 for timber.

The objection to the use of flat bars as compression mem-
bers has sometimes been overestimated.

Consider, e.g., the case of a fiat bar hinged at both ends.

V

I

3

M:

I I
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Let the coefficient of elasticity of the material be 25,cxx>,-

000 lbs.

Let the working stress per square inch be 8000 lbs.

The bar will not bend laterally under pressure so long as

the unit stress < hk^j.j, and

8000 < 25000000- ,j ,'12/' or
d < 50-7.

Hence, the length of a flat bar in compression seems to be

comparatively limited. If, however, both ends are securely

fixed, the strength is quadrupled and the admissible length of

bar is doubled, while it may be still further increased by fixing

the bar at intermediate points as indicated in Corollary i, page

540. This shows the marked advantage to be gained by rivet-

ing together the diagonals of lattice-girders at the points where

they cross each other.

P
The value oi f —. —r (Art. 15) must not exceed the elastic

limit. It is difficult to define with any degree of accuracy the

elastic limit of cast-iron and timber. It is claimed, indeed, that

the latter has no elastic limit, properly so called, but that a

permanent set is produced by every elastic change of form. It

may be assumed, however, that the elasticity of these materials

is practically unaffected so long as they are not loaded to more

than one half of the ultimate crushing load.

Hence, taking

E — 29,000,000 lbs. and / :

E = 29,000,000 *' " /

:

E = 29,000,000 " " /
E= 17,000,000

" " /
£ = 1,500,000

" " /

20,000 lbs. for wrought-iron,

33,600 '• " soft steel,

56,000 •' " hard steel,

40,000 " '• cast-iron,

3,600 " " dry timber,

the pillars will not bend laterally unless the ratio of -. or —^ d 2r
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{d being the shortest side of a rectangular section and r the

radius of a circular section) exceeds the values given in the

following table :

Material, Value of -

Wrought-iron 34.5

Sofl sleel 26.6

Hard steel 20.

3

Cast-iron 18.7

Dry timber 18.5

Wroiight-iron 48.8

Sofl steel 37.7

Hard steel 28.8

Cast-iron 26.4

Dry limber 26.1

Wrought-iron 17.2

Soft steel 13.3

Hard steel 10.

1

Cast-iron 9.3

Dry timber 9.2

Wroiisht-iron 69

Soft steel 33.3

Hard steel 40.7

Cast-iron t"? 4

Dry timber 37

Value of —

.

Formula.

/ — — — Lk'—

P n''

f= =^i,:k^

It Baker has deduced by experiment the following formulae

for the strength of wrought-iron and steel pillars of from 10 to

30 diameters in length and with fixed ends, the tensile strength

of the metals ranging from 20 to 60 tons (2240 lbs.) per square

inch :

Let / be the tensile strength of the iron or steel, and H the

ratio of length to diameter.

Then the ultimate compressive resistance, in pounds per

square iiich,

for solid round pillars — (.4

for thin tubes = (.44

for tubes with stiffening ribs = (.44

for girder sections = (.4

.oo4^)(/4- 18);

.oo2//)(/+ 18);

.004//)!/+ 18).

"ij-
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18. Weyrauch's Theory of the Resistance to Buckling.

—In order to make allow.nice for buckling, Weyrauch pro-

poses tlie two t't)llowin^ methods:

MktIIoI) 1. Let /'", he tlu- iiecessar)' sectional area, and ^i,

the admissible unit stress foi' a strut subjecteil to loails vary-

\\Y^ from .1 maximum com[)ressioii />', to a minimum com-

pression li.^.

Let 7'
' be tlie necessary sectional area, and // the ailmissible

unit stress for a strut subjected to loads which var)' between a

gi\en maximum tension and a given maximum compression,

7)" beiuLj the numerically absolute maximum load, and /)" the

maximum load of the opposite kind.

According to Art. 7, Chai). Ill, if there is no tendency to

buckling, and putting m —
u

" , "

u
, dwdv'

tor of safety.

F.
/?. B,

+-;;:)

lac-

(0

and

F'= ,T-
5' B'

V I

.B"^'
in

ir

(2)

If there is a tendency to buckling, let / be the length of

the strut, F its required sectional area, and T the mean unit

stress at llie moment of buckling.

Then, according to the theory of long struts,

^r^ ^^J J^f
(3)

6 being a coefficient depending upon the method adopted for

securing the end.;, E the coefficient of elasticity, and / the

least moment of inertia of the section.

Also, let / be the statical compressive strength of the ma-
terial of the strut, and take f = j^T. Then

__/ _tFr _Fl\
^ ~ r ~ JfJ ~ ^ (4)
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and

F=^:=

THEORY OF STRUCTURES.

B'

b'
v'[\ -

Td77\, if B" is a compression.

B'

(9)

If yw < I, equations (i) and (2) give larger sectional areas

than equations (7), (8), and (9), so that the latter are to be ap-

plied only when h > I.

Method U. General formula; applicable to all values of fx

may be obtained by following the same line of reasoning as

that adopted in the proof of Gordon's formula. It is there

assumed that the total unit stress in the most strained fibre is

/ l'\
pA\ -{- (t fJ, Pi being the stress due to direct compression, and

p,aj.^ that due to the bending action.

So, instead of employing equations (i) and (2) when /a < i,

and equations (7), (S), and (9) when // > i, formulae including

/^// cases may be obtained by substituting for the compressive

forces in equations (i) and (2) their values multiplied by i -\- M-

Thus, equation (1) becomes

^= )'~^^^% ={i+mW.. (10)

and equation (2) becomes

F= —T
7v7 :, if B is a compression, (11)

''' V
- '"'

(TT-U)B'}

or

F=
I -L \R"\ ' *^ ^" '® ^ compression. (12)

,/ ,{i±_M)B'\
v'[i-m —g,

)

Equation? (7), (8), (9), respectively, give larger values of F
than the corresponding equations (10), (11), and (12).
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Note.—For wrought-iron bars it may be assumed, as in Arts.

'5, 6, Chap. Ill, that z\ = v' = 700 k. per sq. cm., and ;«, = m'

The value of tr is given by formula (5), but is unreliable, and

varies in practice from 10,000 to 36,000 for struts with fixed

ends.

When the ends are fixed, 8 = 4;r', according to theory.

Hence,

R
<T = 4n^ -.

Therefore, if ^ = 2,000,000 k. per sq. cm., and t = 3300 k.

per sq. cm., d = 23,926, or in round numbers 23,900 ; 24,000

is the value usually adopted by Weyrauch.

Example.—The load upon a wrought-iron column 360 cm.

long varies between a compression of 50,000 k. and a compres-

sion of 25,000 k. Calculate the sectional area of the column,

assuming it to he first solid and .y^£^(7«d^ hollow, allowance being

made for buckling.

First. By eq. (i),

/^.

50000 400

700(1 +*xfim)
= nr

r being the radius of the section.

Also, / = nr
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Let r, = 9 cm. uiul ^j = 7.92 ciu. Tlicn

n (,;•• _ r/) = 57.43 sq. cm.

ALso, / = i'-; - ^^)
/7

/ !['
I

;-,;^ Hi-rM

Hence, b>- ec[. (4),

;<

360 X 3^
X

4000 1437264
= .15.

Thus, in tlie latter case, since /< < i. tliere is no tendency

to buckiinij^.

It" tlu' ana is ilctcrniined b\' ctiuation (10), its value becomes

1.
1 5 X •^'7*' = 65 s(i. cm.

19. Flexure of Columns.- In Art, 16 the moment equa-

tion has been expressed in tlu: form

ax

and this is sufficiently accurate if the deviation of the axis of tiie

strut from the vertical is so small that f, J may be neglected.

without sensible error.

The more correct equation is

_ ^/ = M,

p being the radius of curvature.

Consider, e.g., the strut in Art. 16, Case I. Then

a'y
P \ dd dS , ^

hr p ds dy



//.AArA'A <;/'• COf.UAfJVS. 555

ft \ii.-'v.v^ the incHiiaiioii ot the taiifjfiit at iJ/ to the axis of ^,

and (is ail element of the bent strut at M.

Integrating,

.*. — d'ydy = sin Hilfi.

ay—- = cos 6^ — cos 6^, (i)

0^ being the value of ^ at a strut end.

Let sin -- = pt and sin - = M sin 0. Then

ay = 2fi''{\ — sin' 0),

or

2n
r = -— cos 0.

a (2>

Let Y be the maximum deviation of the axis of the strut

from the vertical, i.e., the value of y when f^ = o or = c.

Then

2 sm —
2/4 2

<^ rz
. . (3)

Agai n,

df^ =: pdO =
ar0

a l/i _ f4' sm

Hence, if /be the length of the strut.

Hu

n

til
r

t

|li

' is

i'li

HI

/ =
^^0

rt^ v I — z^' sm
= -^m(0).a

7v(0) being an elliptic integral of the ^rst kind.

(4)

Let P' be the /east thrust which will make the strut bend.

As shown in Art. i6,

7T'

a' EI~ P

ili
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and, by eq. (4), the corresponding value of the modulus ^ is

given by

f'M = T-

Let the actual thrust on the strut be

P = tep'; . . .

(5)

(6)

«' being a coefficient > unity.

The corresponding value of the modulus is given by

(7)

By reference to Legendre's Tables it is found that a large

increase in the value of m< i>e., of sin ~ or ^0. is necessary in

order to produce even a small increase in the value of /v(0)

and therefore of nI = \/ n> )• Hence, as soon as the thrust

y exceeds the least thrust which will bend the column, viz.,

P', 6^ rapidly increases.

The total maximum intensity of stress in the skin of the

strut at the most deflected point

P Mz P PYz , ,
2_ .

>" "2 V ^^' (8)

z being the distance of the skin from the neutral axis, and /

being equal to -.-.

The last term of this equation includes the product fE,

which is very larc^e, and also the factor sin -
, which increases

with 0^ so that the ultimate strength of the material is rapidly

approached, and, in fact, rupture usually takes place before X\\c

column has assumed the position of equilibrium defined by the

slope 6^ at the ends.
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If there were no limit to the ncxiiie, the column would

take its position of ccjuilibrium onl)' after a number of oscilla-

tions about this position, and the maximum .stress in the

material would be necessarily greater than that given by

eq. (8).

Again,

I (I - 2/i' sin' 0)^/0
ax — lis cos B — ; , :_-.

^ VI — /v' sin'

Let A' be the vertical distance between the strut ends. Then

2 /'•'I — 2/<' sin'
z= I

——
T-. '. '''0

'Uo ^^ - M's\n'

IT

I- t

= -
J

/
'

2 V{i - /<' sin'' 0)V0 - /
Vi ~ m' sin" 0^

^{2/^(0' /v(<A)};

E^{(f>) being an elliptic integral of the second kind.

Hence, the diminution in the length of the strut

= L-X=^\\F,{iti)-El^)\.

20. Flexure of Columns (Findlay).—In a paper on the

flexure of columns read before the Canadian Society of Civil

Engineers (Vol. IV, Part I), Findlay expresses the moment
equation in the form

d'^y d*y
p, and -— being the values of p and -^ when M = o.

I

i«

I

ll

El

il"

1.i!J

u Pi

t< ",

I >
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l.'in^iui Jittih.- \i is iissiinud that the line of action of the

thiust y is at a distance </ from tlio axis of the strut. Then

or

/-/
/. . (2)

</.r' r/.i'

./»(>' + ^/)=-^^„/. (.>)

where </' — ,... /-total stress at tl>e distance :: from the
hi

lu ulial axis, and / - stress due to direct tluiist ^
- ,-j. ^<> l''*i'^

tile stress due to Ihndint^- :^
f)
~ f.

It is aiso <tssiii/hi/ that tiie form of the axis of the cohinin

before it is acted upon by the thrust /', is a i/trir of sims

defined by tlie equ.iiion

nx
y, = J cos y

,

(4)

the origin being half-way between the ends of the strut, and J

being the maximum tuitial deviation of the axis from the ver-

tical, i.e., the value of \\ when x = o.

iPy, Jtt' nx
... ^T = -^ cos -^,

and hence, by eq. (3),

""^^l = - a\y ^d)- J^. cos -^. . . . (5)

A solution of this equation is

nx
, cos ax

, ^

y + d^d -^ + ^
cos —

-7

COS

a'r

'

'-^''
(6)
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Now is .ilways siiiiill for siicli v.iliics of J as would con-

stitute a safe workiii}^ load, .ind I lie re fori-

ill it'
I'

cos — I -^ , approximately,

so th.it e(|. (6) |jccoMi«.!S

y \
,/ - ./i:us>iA\i ^J I-

J co.s ^(^1 ^, j ,

<»i

/ aW'\ nxl <i'r\

y \
,i - (i ^us (i.\y\

I ^j\ J co^, ^^1 i ^, j, appiox. (7)

Let K l)e the inaxiinuiu value of/, i.e., the value o{ y when
X =^ O. TIliMl

•--'^-i^Jt-. ...(«;

Hence, by ecj. (3), the total maximum iiili-nsity of stress

whepj ^ — - 4 J 'I'ld c ~ - .

Eq. (9) is a quadratic from which y may be found in terms

of />. /\s a first approximation,/) niiy be substituted for / in

the last term oi the portion within brackets, the error being in

the direction of safety.

Fixed Ends. -Let M^ be the moment of fixture.

E(|. (3) now becomes

d'y dy, ^,, .. . ,, M, J ... M.

dx
^'i^ = -..(/+'/)-f) = -<.'U+^+9). (.0)

i:i'

W-:

%< \%

Il^

ii;'

!:;
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AssiiMiiii;^; a^.iin tli.it the initial foini ol the axis is a eurvc

of siins. the sohitioii of thr last (Minalioii is

nx

M, 1/.

[n-'!:]
los (/A

cos

a/ \ ^
cos

(>'/'
(II),

Initially

J cc>

rrx

nul , is c(iual to when .r =^ - or — .

(f.\ <ix

il cncc,

n

-4= -("+"')
^^ sill

<>/ a •i > »

»

cos
;r

or

.U. 2J
J./V'^

I 2 — TT

(12)

Ag.iiii, the v.iitie of r at the point x ~- o is

/'
v.-iri ••:;>- 4-4. -f-^;;^';

^
U.V)'

Also, if /•,./", .110 the total iiiaxiiiiuiu intensities of stress at

the eiul and at the most liellectid point, then

and

^Vl/=
--"•("+ '') = otc..

/!^-/=_„.(K+.+ ^') = e.c.;

(14)

(15)

two equations from whicli /may be foumi as before.

The followiiii; conclusions are drawn from the above invcs-

tii^ation

FtrsL Tile (jctual strength of a column depends ^rt'r//j' upon
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Ictiovvii facts as to (limcnsiMiis, m.itcrial, rli., and partly upon

(U\iiii iitdl ciiciimslann' ..

Sctoiiii. I'".xi)(riimjiits upon tla; crippliiij^ or (Icstiiietion of

cohmins cannot be expected to j^ive coheicnt residis when

ap|)lie(l to tin: dctcnninatioii of the constants in such an eipia-

tion as No. (9).

I'liirii. It is a (|U( .tion whether /> should he mach; the

elastic limit of the material and the woikinj^^ load a derinile

fraction of the corri;spondin^' value of f derived from e(|. (9),

or whether/* sho\dd be the allowable skin vvorkin}_j stress, and

the working stress / be found by means of the same e(|uation.

The former seems to be the more logical assumption.

Fourth. It would appear that the str( iijjth of hin}.fed cr)l-

umns is likely to 1)0 much more varial;le tisan the strength of

columns with fixed ends, as it <l(pends upon two variable

elements d a\\(\ J, while the end fixture eliminates^/.

Noti\—The Tables on tin: followinj^f p'lK^' K've the nuinerical

values of elli|)tic inte^aals of the first and second kind, and arc

useful in applying the results of Art. 18.

^1

I
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FIRST ELLIPTIC INTEGRAL, />(0).

*
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EXAMPLES.

r. A Phcenix column in four si-.mncnis, each wei^liintf 17 ll)s. per

lineal yard, carries a load of 6S,ooo il)s. What is the compressive unit

stress? Alts. 10,000 lbs. per sq. in.

2. The sectional area of a pillar is 144 sq. in., and the pillar carries

a load of 4000 lbs. Find the normal and tanfj;ential intensities of stress

on a plane inclined at 20" t( the axis. ^liis. 3.25 lbs.'; 8.93 lbs.

3. A short hollow scjuare column lias to support a load of 120,000 lbs.,

the allowable stress beinij; 15,000 lbs. per square inch. Find the thick-

ness of the metal, an external side of the column beinj,' 6 in.

.Ins. .36 in.

4. A solid cast-iron pillar 9 ft. in heiji;ht and .'. in. in diameter sup-

ports a load of 55,000 lbs. Find the normal and shearing intensity of

stress per square inch in a plane section inclined at 30' to the axis.

If the ends of the pillar are flat and firmly bedded, determine its

breaking weiglit, botii by Hodgkinson's and by (jordon's formula.

Alls. 1093:} lbs. ; ICS94.375 lbs. ; 141 i tons by H. ; i59toTisbyG.

5. A cylindrical pillar 6 in. in diameter supports a load of 400 lbs.,

of which tlie centre of gravity is \ in. from the axis. [)eterniir>e the

greatest and least intensities of stress upon any transverse section of

tiio pillar. .Ins. 255^ lbs. ; 2
J

'^^ lbs.

6. Compare the breaking weights of round cast-iron, wrought-iron,

and mild-steel pillars with flat and firmly bedded ends, each being 9 ft.

in length and 6 in. in diameter.

Alls. 1,250,197 lbs. ; 890,109 lbs. ; 1,543,572 lbs.

7. A hollow cast-iron pillar with an external diameter of 9 in. is to

b^ substituted for the solid pillar in the preceding question. Determine

the thickness of the metal. Ans. \ in.

8. Determi.ie the breaking weight of a solid round pillar with both

ends firmly secured, 10 ft. in length and 2 in. in diameter, (i) if of

cast-iron ; (2) if of wrought-iron
; (3) if of steel (mild).

Ans. 25142.8 lbs.; 43516.48 lbs. ; 54.36 Ihs.

9. A hollow cast-iron pillar 12 ft. in iieight has to support a steady

load of 33,000 lbs.; its internal diameter is 5^ in. Find the thickness

of the metal, the factor of safety being 6. Ans. .28 in.

10. A solid wrought-iron pillar is to be substituted for the pillar in

the preceding question. Find its diameter. Ans. 3^ in.

I

^^1

I
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11. What is the breaking weight of a hollow cast-iron pillar 9 ft. in

length and 6 in. square, the metal being i in. thick ?

Ans. 970873.6 lbs.

12. Compare the breaking weight of a solid square pillar of wrought-

iron 20 ft. long and 6 in. square with that of a solid rectangular pillar

of the same material, the section being 9 in. by 4 in.

Ans. 845,217 lbs.; 589,090 lbs.

13. Compare the breaking weights, as derived from Hodgkinson's and

Gordon's formula;, of a solid round cast-iron pillar 20 ft. in length and

10 in. in diameter, (1) both ends being securely fixed ; (2) both ends

being imperfectly fi.\ed.

Ans.— (i) 951.4 Lons by H.; 1150.05 tons by G.

(2) 414.04 tons uy 11.; 415 tons by G.

14. Determine by Hodgkinson's formula the diameter of a solid

wrought-iron pillar equal in length and strength to that in the preceding

question. Ans. 7.35 in.

15. A solid or hollow pillar of cast-iron, wrought-iron, or mild steel

is to be designed to carry a steady load of 30,000 lbs. Determine the

necessary diameter in each case, 6 being a factor of safety. (The pillar

is to be 12 ft. high, and the metal of the hollow pillar is to te f in.

thick.) Ans.—Solid: 3.42 in.; 3.25 in.; 2.8 in.

Hollow : 4.5 in ; 4.75 in.; 3.5 in.

16. Determine the load in the preceding question that will produce

a maximum stress of 9000 lbs. per square inch in the solid steel pillar.

17. A pillar of diameter D supports a given load ; if N pillars, each

of diameter d, are substituted for this single pillar, shov/ that d must lie

between —7 and —-.

TV* N^
Is it more economical to employ few or many pillars of given height

to support a given load ?

18. A solid round pillar of mild steel, 16 ft. high, supports a steady

load of 20,000 lbs. If the factor of safety is 6, what is its diameter }

Ans. 3 in.

19. Find the diameter of each of four pillars of the same material

which may be substituted for the single pillar in the preceding question.

Ans. 2.04 in.

20. What is the breaking weight of a cast-iron stanchion of a regular

cruciform section and 15 ft. in height, the arms being 24 in. by i in. }

Ans. 2,811,215 lbs.

21. Each of the pillars supporting the lowest floor of a refinery is

16.5 ft. high, is of a regular cruciform section, and carries a load of
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240,000 lbs. ; the totiil length of an arm is 14 In. Determine its thick-

ness, the factor of safety being 10. Aiis. 2.1598 in.

22. Find the breaking stress per square inch of a 4-in. x 4-in. solid

wrought-iron pillar for lengths of 5, 10, 15, and 20 ft., the two ends

being absolutely fixed.

Ans. 33.488 lbs.; 27,692 lbs.; 21,492 lbs.; 16,363 'bs.

23. Find the diameter of a wooden column 20 ft. long, to support a

load of 10,000 lbs., 10 being a factor of safety and both ends of ilic

column being absolutely fixed. Atis. 8,55 in.

24. The external and internal diameters of a hollow cast-iron column

12 ft. in length are D and \D, respectively; the load upon the column
is 25,000 lbs. If the factor of safety is 4, find I), (a) when both ends of

the column are absolutely fixed ; (b) when both t'nds are hinged.

Ans. (a) 4.3 in.; {d) 5.4 in.

25. Determine the breaking weight of an oak pillar 9 ft. high, 11 in.

wide, and 5 in. thick. Ans. 138,160 lbs.

26. What weight will be safely borne by a pillar of dry oak subject

to vibration, 10 ft. high and 6 in. square, 10 being a factor of safety ?

Ans. 9969 lbs.

27. The web members of a Warren girder are bars of rectangular

biction and 10 ft. in length. One of the bars has to carry loads varying

between a steady minimum tension of 20.2 tons and a maximum tension

of 40.4 tons, and another to carry loads varying between a maximum
compression of 8.7 tons and a maximum tension of 14.4 tons. Find the

sectional area in each case, allowance being made for buckling in the

latter.

28. Determine the sectional area of a double-tee strut which is to

carry a load varying between a maximum tension of 80,000 lbs. and a

maximum compression of 60,000 lbs. Each flange consists of two 6-

in, X 6-in. x f-in. angle-ircms riveted to a 12-in. x f in. web plate.

The length of the strut is to be (a) 6 ft.; (d) 12 ft.

29. A steel strut 10 ft. long consists of two tees back to back, each

4 in. X4in. x |in. Taking/ = 60,000 lbs., rti = ^uU^ ^P'^RC 526), and 6

as a factor of safety, find the working load (a) when the strut has two
pin ends; (d) when it has two fixed ends. (E = 29,000,000 lbs.)

Also, find the deviation of the axis of the load from the axis of the

strut so that the maximum stress in the metal may not exceed 10,000

lbs. per square inch.

Ans.— (a) 25,019 lbs. ; (fi) 50,019 lbs.

Deviation — .513 in. in {ii) and .158 in. in {b).

30. A solid wrought-iron strut 20 ft. high and 4 in. in diameter has

one end fixed and the other perfectly free. Find the deviation 01 the

'
i-'j

i'

.. iJ.!

V "

X

\^ Ml
Mi
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line «>>l action of a load of 10,000 lbs. from the axis, so that the stress

may not exceed 10,000 lbs. per square iiidi, E bcin^ 27,000,000 lbs.

Alts. .88 in. if P = /r: i.8m. if y' = ^A7^.-,

31. A hollow cast-iron column with two pin ends is 24 ft. higli and

has a mean diameter of 12 in. ; it carries a load of 80,000 lbs. Find the

proper thickness of the metal, 10 being a factor of safety. If llie

deviation of the line of action of the load from the axis is 1 in., find

the maximum stress per square inch in the metal, K being 17,000,000

lbs. Ans. 1.28 in.; 2236 lbs. per sq. in.

32. Find the crushing load of a solid wrought-iron pillar 3 in. in

diameter, 10 ft. high, and ti.\ed at both ends. Calculate the deviation

which will produce a maximum stress in the metal of 9000 lbs. per

square inch under loads of {a) 15,000 lbs.; (/>) 30,000 lbs.; E being

29,000,000 lbs. Ans. 148,775 lbs. (</) 1. 158 in. ; (/;) .38 in.

33. Solve the preceding question on the assumption that the column

has two pin ends. Avs. 66,218 lbs.
;

(li) .985 in.; {b) .261 in.

34. A pier consists of N rows of posts equidistant from each other,

N being even ; d is the distance from centre to centre of the outside

rows; rris the gross vertical load upon the pier; // is the greatest

horizontal thrust, and acts upon the pier at a height y above the base.

Assuming the principle of a uniformly varying stress, the portion of the

load borne by the ;/-th row of posts measured from the centre line is

\V_

N
y, and N, and determine the best value for d.

35. Prove that the flexural rigidity of a straight I/eam, of sectional

area A, under a thrust P per unit of area, is EA^^i i — 7,). and that the

beam will bend if its length, when unstrained, exceeds

+ -LZ . Find the value of the coeflicient a in terms of d, //,
2 A' — I

^^f-(-£)
AJi'^ being the moment of inertia of the section, and £ the cuefiicient of

elasticity of the material.

36. Find the safe load on a rolled tee-iron strut 6 in. x 4 in. x i in.,

10 ft. long, fixed at one end, free at the other.

37. In Art. 19, show how equations (3) and (6) will be modified if the

line of action of P is distant a + fi from one end and ex — fi from the

other end of the column's axis. Also, if the coelBcient of elasticity, E,

is variable and equal to ;;/ ± n- at a point distant ^ from the axis, r being
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the muxiniuin value f)f urul /// and n coetFicients, show that

I' + — must be substituted for^ in eq. (3).
tn r

38. In one of Christie's experiments an au^le-bar 2 in. X 2 in. x ,*^ in.,

with hinged ends, for whicli , had the value 154, deflected .01 in. for an

d A
increase in the load of 3000 iDs. Show that 5- + ,,

= .0048 in.
o Tl'

39. A lonjT column with pin ends is bent laterally until the anj^ular

deviation (Oo) at the ends is 4°. Find the total maximum intensity of

stress, the section of the column being (<t) a circle ; (/') a sciuarc

K = 29,000,000 lbs., and the stress due to direct thrust = 1500 lbs. jjcr

square inch. Ans.—(a) 3 '5i5 lbs.; {b) 26,715 lbs.

40. With the same maximum stress as in the last question, find

the angular deviation at the ends so that the stress due lo direct thrust

may be 10,000 lbs. per square inch. Ans.— {a) \' 5'; {b) i 33'.

41. Show that the load required to produce an angular deviation of

14" at the two pill ends of a long column is only one per cent greater

than that which just produces Jlexure,

5

rl
I

>
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CHAPTER IX.

TORSION,

1. Torsion is the force with which a thread, wire, or pris-

inatic bar tends to recover its original state after having been

twisted, and is produced when the external forces which act

upon the bar are reducible to two equal and opposite couples

(die ends of the bar being free), or to a single couple (one end

of the bar being fixed), in planes perpenilicular to the axis of

the bar. The effect upon the bar is to make any transverse

section turn through an angle in its own plane, and to cause

originally straight fibres, as DE, to assume helicoidal forms, as

FG or DC. This induces longitudinal stresses in the fibres.

Fig. 360. Fig. 361.

and transverse sections become warped. It is found suf-

ficiently accurate, however, in the case of cylindrical and regu-

lar polygonal prisms, to assume that a transverse section which

is plane before twisting remains plane while being twisted.

In order that the bar may not be bent, its axis must coincide

with the axis of the twisting couple.

2. Coulomb's Laws.—The angle turned through by one

transverse section relatively to another at a unit distance from

it, is called the Angle of Torsion, and Coulomb deduced from
568
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experiments upon wires, that this an^Ic is directly proportional

to tiae moment of tlie twisting couple, and inversely propor

tional to the fourth power of the diameter.

Thus, if u force /', at the end of a lever of radius/), twists a

cylindrical bar of length L and radius R, and if d is the circu-

lar measure of the angle of torsion, then

^ a /y>. and also <x -—

,

A
Pp

so that ^ = C -7,^, C being a constant depending only upon the

nature of the material.

Let T be the total angle of torsion, in circular measure,

i.e., the angle turned through by one end of the bar relatively

to the other. Then

L A"
•

3. Torsional Strength of Shafts (see Art. 23, Chap.

IV).—Consider a portion of the shaft bounded

by the planes CE ami MN, Fig. 361. It is kept / v,^a ^v^

in equilibrium by the couple {P, —P\ and by

the elastic resistance at the section ]\IN. Hence,

this e astic resistance must be equivalent to a

couple equal and opposite to {P, —P). Fig. 362.

Let Fig. 362 be the transverse section at MN, on an en-

enlarged scale, and let abb'a' be any elementary area (= ^^-J,)

{P,—P) of the surface bounded by the radii OA, OB, and by
the concentric arcs aa\ bb'

.

Let x^ be the distance of AA
,
from O.

It is assumed, and is approximately true, that the resist-

ance of any element abb'a' to torsion is directly proportional

to the angle of torsion (^), to its distance from the axis (;ir,),

and to its area (AA^, and also that it acts at right angles to

the radial line of the element, i.e., to OA or OB.

Thus, the resistance of abb'a' to torsion = GOx^^A^, G be-

ing a constant to be determined by experiment.

The corresponding moment of resistance about the axis =

H

^

GOx^^JA,. Similarly, if x^, x^, x^ are the distances
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from the axis of any other elements, JJ, , AA^, J/1,, . . .,

respectively, tlie corresponding moments of resistance are

GH.i:/JA.,, iJt^.x\'JA Hence, the total moment of resist-

ance of the section

z^G6{x,'AA,+x:dA,-\-..,\

= GH^{x'JA) -^. GBI,

/beinj4 the moment of inertia with respect to the axis.

Hut this moment of resistance \^M) is equal and opposite to

the moment of the couple {1\— P) Hence,

M^GiiI=Pp.
*

'
- ' ""- -—"~-«

The twisting moment will of course vary with a variable

resistance, and the last equation gives its mean value.

Tiie shaft, however, must be designed (see Cor. 4) for the

maximum couple to which it may be subjected, and the moment
of tins couple (= J/,) may be expressed in terms of the mean

by the equation

M, = iiM, l^^—. .

yM being a coefficient to be determined in each case. In a series

of experiments with different engines, Milton found that //

varied from 1.3 to 2.1, but doubtless the variation is often be-

tween still wider limits.

Cor. I. Let /be the stress at the point farthest from the

axis. For a solid round shaft, of diameter /),

7=^. and f^Ce^.
32

-^ 2

.% M=Pp = Gei= -^/D' = .\cfifD\

Let 7"° be the total torsion in degrees. Then

I ;rr°
(7 =

L 180'
and
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and hence

^ ~ L 180 2'

or

L O 7t ^^

Taking the following mean values of G and/:

Material. G f
Cast-iron 6,300,cxx) 5,600

Wrought-iron 10,500,000 7,200

Steel 12,000,000 1 1,200

" = 9.8 r° for cast iron, = 12.77'° for wrought-iron, = 9.3
r°

for steel.

Thus, the twist is 1° each 9.8 diameters in length for cast-

iron, each 12.7 diameters in length for wrought-iron, and each

9.3 diameters in lengtii for steel. This is often much too large,

and in practice the twist is usually limited to ^° per lineal foot

of length. For a Jiolhni) round shaft, D being the external and

D^ the internal diameter,

/=p(Z?^-AO, and /=^^f.

•*• ^=PP= -^f J)—- = -196/ —77-^.

, If the thickness (7") of the hollow shaft is small compared

with D,

D' - D: = D* - {D - 2Ty = 8D'T, approximately,

and

.!/=/'/ = 1.5 7Z)» 77.

;il<

n
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The use of compressed steel admits of shafts being made

hollow. For a solid square shaft, H being the side of the square,

/ = 6'

M
and/, the stress at the end of a diagonal, = GB—-r

% 2

^ H 6

and

= ^fW = .2i6fH\

il/ _ 6M
GI GH'

\ 'i>

In these results it is assumed that GOl —{ )

2/ V2/-

is constant at different points of the cross-section, which, ho'v-

ever, is only true for circular sections.

In non-circular sections the stress is more generally greatest

at points in the bounding surface which are nearest to the axis

and least at those points which are farthest from the axis.

St. Venant, who first called attention to this fact, gave the fol-

lowing, amongst others, as the results of his investigations.

D',oignating by tnittj' the torsional rigidity I == -^j of a shaft

with circular section, the torsional rigidit)- of a shaft of equal

ac-
/ 2n lb

sectional area is .8863, .8863 X \ Ji^~jZ\'> -7255, or \ -,

cording as the section is a square, a rectangle with sides in

the ratio //to I, an equilateral triangle, or an ellipse whose
major and minor axes are 2a and 2b, respectively.

Cor. 2. The torsional stress per unit of area at a distance x
from the axis is G^x.

Hence, if 6* =: i and x — \, G\s the force that will twist a
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unit of area at a unit of distance from the axis through an angle

unity.

Cauchy found analytically that in an isotropic body G is

two-fifths of the coefficient of direct elasticity.

Experiments indicate that G is about three-eighths or one-

third of the coefficient of direct elasticit}-.

Gnf^R'
Cor. 3. For a solid cylinder, Pp = , R being the radius,

Pp
and therefore R' oc ,,7;. If tht; shaft is to have a certain speci-

al v

Pp
fii'd stiffness, i.e., if (^ is fixed, /l' a „, and for a given twisting

moment R* a -^. Now G is nearly the same for wrought-iron
G

and steel, so that there is little if any advantage to be gained

by tlie use of the latter.

After passing the elastic limit, the stress varies much more
slowly than as the distance from the axis, and there will be a

partial equalization of stress, the apparent torsional strength

being increased.

Lor. 4. In any transverse section of a solid cylindrical shaft,

the maximum unit stress

, ^n D 16 M,

M^ beijig the moment of the maximum twisting couple.

This relation is true so long as the stress does not exceed

the elastic limit, and agrees with the practical rule that the

diameter of a cylindrical shaft subjected to torsional forces is

proportional to the cube root of the twisting couple.

The rule is usually expressed in the form

M,z^KD\ so that K=^.
'

16

""Vohier's experiments show that the value of / depends,

to some extent, upon its fluctuation under the variable twist-

i?h;i
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ing moment. Ordinarily it should not exceed 7200 lbs. per square

inch for wrought-iron, in which case K— ^\\^ X -{ — I4I4-

{Note.— If P, is the torsional breaking weight,

- If - 2j-'

is the coefficient of torsional rupture?)

Cor. 5. Let Whc the work transmitted to a shaft of D in.

diameter, in foot-pounds per minute, A^ being the correspond-

ing number of revolutions. Then
nr

12IV = inch-pounds transmitted = zttA/N = 27t —'N

— 211 TV,

A<

since M = mean twisting moment = —^. Hence,

W
^7V

-KD'

Let HP he the horse-power transmitted per minute. Then
W = 33000 HP. Also for zorought-iron K = ij'!|A'- x ^^K

u 490 HP . , .-

Hence jx-^^ -—— = 1 , and if yw — 1.43,

D-VHJP_

N

a formula agreeing with the best practice in the case of

wrought-iron shafts subjected to torsional forces only. Such
shafts should, therefore, carry no pulleys.

Cor. 6. The resilience of a cylindrical axle is the product of

one half of the greatest moment of torsion into the correspond-

ing angle of torsion.

Cor. 7. It often happens in practice that a shaft (or beam)
is subjected to a bending as well as to a torsional action.



DISTANCE BETWEEN THE PEA KINGS OF SHAFTING. 575

The combiiictl bending eiiid twisting moments are equiv-

alent (Art. 9, Chip. IV) to the moment

M, = M, + )/M: -f- iM,' = M, (« + S/n' + i).

where M^, = uMi, M;, being the bending and Mt the twisting

moment at the given section.

Hence, remembering tliat the maximum twisting moment
iJ/, is equal to ;wy]/< , we have for a wrought-iron shaft,

If ;/ = .36 -j- , this becomes

D =. A\

:

'IIP

a formula agreeing with the best practice in the case of trans-

mission with bending, as, e.g., in the crank-shafts of marine

engines.

It often happens that n has a still laiger value, as, e.g., in

the case of head shafts properly supported against springing.

The usual formula is then

^=5<J
HP

corresponding to n = .72 -(- .

4. Distance between Bearings.—The distance between

the bearings of a line of shafting is limited by the considera-

tion that the stiffness of the shaft must be such as will enable

it to resist excessive bending under its own weight and under

any other loads (e.g., pulleys, wheels, etc.) applied to it.

For this reason, the ratio of the maximum deviation of the

axis of the shaft from the straight to the corresponding dis-

tance between bearings should not exceed a certain fraction

whose value has been variously estimated by different writers.

Let / be the distance in feet between bearings, ^ the

diameter of the shaft in inches, w the weight of the ma-

1 mi^

n- •'I
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terial of the shaft per cubic foot, and let the applied load be

equivalent to a load per lineal unit of length in times that

of the shaft. Assume a stiffness of y^^, and that the axis of

the shaft is truly in line at the bearings. The maximum de-

flection of the shaft is given by the formula (Art. 3, Ex. 8,

Chap. VII)

_ I (w-f- i)(weight of shaft)/° 1728
^-384 i^I

\ , . .nd^ I , 6^ /\ 1728

D _ I _(/«+ 0^ ^'

•'•7 "Fob" ""2^ Z"

or

^_ 3 / Edl_
)

Example.—For vvrought-iron, E = 30,000,000 lbs. and
w = 480 lbs.

7 ^ / d'

\ m-\- I

If the applied load, instead of being uniformly distributed

is concentrated at the centre, the maximum deflection

_ ^ . l_
{m + ^)(weight of shaft)/^ . 1728

192 EI •

and hence

'=/.
Ed'

ioow{m + i)
*

a /~~d*~'
Example.—For wrought-iron /= 8.5V/—-—

.

V ^« + i
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5. Efficiency of Shafting.—Let it require the whole of

the driviiiLj moment to overcome the friction in the case of a

shaft of diameter 1/ and lengtli L. The efficiency cf . shaft of

/
the same diameter and length /= i — j-

.

But
fnd'
16

, _, , r f • . wnd"^ ^d
\Pp) = moment of friction = /< L-

4 2

^ZVTcd'
L.

'%

IV being the specific weight of the material of the shaft, and yu

the coefficient of friction. Hence,

I w t

wl
and the efificiency = i — 2}x-^.

6. Cylindrical Spiral Spring.—Let the figure represent

a cylindrical spiral spring of length 5", supporting

a weight W. Consider a section of the spring at

any point B.

At this point there is a shear W^and a torque

W}\ y being the distance of B from the axis of

the spring, i.e., the radius of the coil.

Tne effect of W may generally be neglected

as compared with the effect of the moment Wy,

and it may be therefore assumed that the spring

is under torsion at every point. Let there be n

colls. Then

Hence,

5= 2nyn, approx.

'11

r being the radius of the spring.
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The elongation of the spring

2WfS Syf 2nfnf

The work done = OS = —
Gnr* AG

A weight hung at the lower end tends to turn as well as

lengthen the spring, and this is due to a slight bending action.

According to Hartnell,/= 60,000 lbs. per square inch for

•|-in. steel, / = 50,000 lbs. per square inch for ^-in. steel, and

G varies from 13,000,000 lbs. for ^-in. steel to 11.000,000 lbs.

for f-in. steel.

Also for wire less than f in. in diameter,

W = 48ooor'

y
and the deflection = JVnf

288000^*'

Example.—A wrought-iron shaft in a rolling-mHl makes 95

revolutions per minute and transmits 120 H. P., which is sup-

plied from a waterfall by means of a turbine. Determine the

diameter of the shaft (i) if the maximum stress in the metal

is not to exceed 9000 lbs. per square inch ; (2) if the angle of

torsion is not to exceed ^° per lineal foot.

As a matter of fact, the diameter of the shaft is 3f in. at

the bearings and 4 in. in the intermediate lengths. What are

the corresponding maximum inch-stresses in the metal?

Let the twisting couple be represented by force P at the

end of an arm p. Then

.\P/> =

First,

P X 27ip X 95 = 120 X 33,000 ft.-lbs

120 X 33000

27t X 95

126000 X 12

126000, „ 126000 . „
ft.-lbs. = X 12 m. -lbs.

19 '9

19
i> = ^" = 25^.^Z'-;

and hence

16

D= 3.56 in

16 X 7



EXAMPLE.

^ 126000 „ G^nD'
Second, X \2 = Pp — .

19
'^

32

Tt I I

But Q -- — - X — X —-
; take G = 10,500,000. Then

579

126000 X 12 _ 10500000 22 I I I 22

19 32 7 180 13 12 7

Hence,

Z>* =689.45, and D=. 5.12 in.

Third, the maximum stresses in the real shaft at the bear-

ings and in the intermediate lengths are respectively given by

and

126000 stress 22 , „,,—^ X 12 = ^g- X y X (3})',

126000 stress 22 , .

--7^ X .2 = ~g- X y X (4)'.

From the former, the maximum stress = 7682 lbs. persq. inch.

" latter, " " " =6330 " (< (< ((

X fil

III

'V, :ji
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EXAMPLES.

1. A Steel shaft 4 in. in diameter is subjected to a twisting couple

which produces a circumferential stress of 15.000 lbs. What is the stress

(shear) at a point i in. from the centre of the shaft.?

Determine the twisting couple. Ans. 7500 lbs. ; 188,571^' lbs.

2. A v/eight of 2| tons at the end of a i-ft. lever twists asunder a

steel shaft \\ in. in diameter. Find the breaking weight at the end of a

2-ft. lever, and also the modulus of rupture.

Ans. I ^ tons; 23,510 lbs.

3. A couple of N ft.-tons twists asunder a shaft of diameter d. Find

the couple which will twist asunder a shaft of the same material and

diameter Mi. Ans. ^N.

4. Compare the couples required to twist two shafts of the same

material through the same angle, the one shaft being / ft. long and

d in. in diameter, the other 2/ ft. long and 2d in, in diameter.

Compare the couples, the diameter of the latter shaft being —

,

Ans. I to 8 ; 32 to I

,

5. A shaft 1 5 ft. long and 4i in. in diameter is twisted through an angle

of 2° under a couple of 2000 ft. -lbs. Find the couple which will twist

a shaft of the same material 20 ft. long and "j^ in. in diameter through

an angle of 2^°. Ans. 12,288 ft. lbs.

6, A round cast-iron shaft 15 ft. in length is acted upon by a weight

of 2000 lbs. applied at the circumference of a wheel on the shaft ; the

diameter of the wheel is 2 ft. Find the diameter of the shaft so that the

total angle of torsion may not exceed 2 . ^Ins. 3.76 in.

7, A wrought-iron shaft is subjected to a twisting couple of 12,000 ft.-

Ibs, ; the length of the shaft between the sections at which the power is

received and given off is 30 ft,; the total admissible twist is 4°, Find

the diameter of the shaft, /< (page 570J being f , and G 10,000,000 lbs.

Ans. 5.8 in,

8, A wrought-iron shaft 20 ft. long and 5 in. in diameter is twisted

through an angle of 2°. Find the maximum stress in the material, G
being 10,500,000 ft. -lbs. Ans. 3819.2 lbs, per .sq. in.
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9. A crane chain exerts a pull of 6000 lbs. langentially to the drum
upon which it is wrapped. Find the diameter of a wrought-iron axle

which will transmit the resulting couple, the eflective radius of the drum
being 7i in. ; the safe working stress per square inch being 7200 lbs.

Ans. 3.17 in.

10. Find the diameter and the total angle of torsion of a 12-fi.

wrought-iron shaft driven l)y a water-wheel of 20 H. P.. making 25
revolutions per minute, G being 10,000,000 lbs., and the working stress

7200 lbs. per square inch. Ans. 3.29 in.; 3°. 6.

11. A turbine makes 114 revolutions per minute, and transmits 92
H. P. through the medium of a shaft 8 ft. 6 in. in length. What must be
the diameter of the sliaft so that the total angle of torsion may not ex-

2"

coed --, G being 10,500,000 lbs.? Ans. 4.7 in.

Determine the side of a square pine shaft that might be substituted

for the iron shaft.

12. A steel shaft 20 ft. in length and 3 in. in diameter makes 200

revolutions per minute and transmits 50 H. P. Through what angle is

the shaft twisted ?

A wrought-iron shaft of the same length is to do the same work at

the same speed. Find its diameter so that the stress at the circumference

may not exceed ^ of that at the circumference of the steel shaft.

AnSi 2°. 6; 3.556 In.

13. A vertical cast-iron axle in the Saltaire works makes 92 revolu-

tions per minute and transmits 300 H. P.; its diameter is 10 in. Find

the angle of torsion, Ans. .0144° per lineal foot.

14. In a spinning-mill a cast-iron shaft 8} in. in diameter makes 27

revolutions per minute; the angle of torsion is not to exceed — per

lineal foot. Find the work transmitted. Ans. 62.19 H. P.

15. A square wooden shaft 8 ft. in length is acted upon by a force of

200 lbs., applied at the circumference of an 8 ft. -wheel on the shaft.

Find the length of the side of the shaft, so that the total torsion may
not exceed 2° {G — 400,000). What should be the diameter of'a round

shaft of equal strength and of tlie same material ?

Ans, 4.46 in. ; 4.74 in.

16. A shaft transmits a given H. P. at A'' revolutions per minute with-

out bending. Find the weight of the shaft in pounds per lineal foot.

/H.P.\i
Ans. 32.9(^-^j .

', H

w
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17. The working stress in a steel shaft subjected to a twisting couple

of 1000 in.-tons is limited tu 11,200 lbs. per square inch. Find its diam-

eter; also find the diameter of the steel shaft which will transmit 5000

H. P. at 66 revolutions per minute, // being }. Ans. 10 in. ; 6.88 in.

18. A wrought-iron shaft is twisted by a couple of 10 ft.-tons. Find

its diameter {a) if the torsion is not to exceed 1° per lineal foot, (3) if the

safe working stress is 7200 lbs. per square inch. G = 10,000,000 ll)s.

Afis.—(a) 3.7 in. ; {/>) 5.7 in.

19. A steel shaft 2 in. in diameter makes 100 revolutions per minute

and transmits 25 H. P. Find the maximum working stress and the tor-

sion per lineal foot, G bemg 10,000,000 lbs. Also find the diameter of a

shaft of the same material which will transmit 100 H. P. with the same
maximum working stress. Ans. io,o22^\ lbs. ; .0574", 3. 17 in.

20. The crank of a horizontal engine is 3 ft. 6 in. and the connecting-

rod 9 ft. long. At half-stroke the pressure in the connecting-rod is 500

lbs. What is the corresponding twisting mument on the crank-shaft ?

Ans, 1716J ft. -lbs.

21. If the horizontal pressure upon the piston end of the connecting

rod in the previous question is constant, find the maximum twisting mo-
ment on the crank-shaft.

.f . r.
sin 6 cos 9 \ „ . .

'I sm -\
—

z^
)

, being given by
\ i/«'^ — sin'^O/

Ans. Pi
|/«'^ — si

w'cos'O -f. w^Csin" cos" (/ — 1) + «''sin*0(i -f- sin'G) — sin'O =
where « = Ys* = V-

N.B.— If sin'O is neglected as compared with «',

cos fj\

+the maximum moment — PsinOli

6 being very nearly 72°.

n

22. Show that a hollow shaft is both stiffer and stronger than a solid

shaft of the same weight and length.

23. Find the percentage of weight saved by using a hollow instead of

a solid siiaft.

200
Ans. If of equal stiffness = —5 .

If of equal strength = 100 i i - a/^'^'"" - ) I

,

m being the ratio of the external to the internal diameter

of hollow shaft.

24. A hollow cast-iron shaft of 12 in. external diameter is twisted by

a couple of 27,000 ft. -lbs. Find the proper thickness of the metal so that

the stress may not exceed 5000 lbs. per square inch. Ans. .619 in.
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25. The external diameter of a hollow shaft is/ times the internal.

Compare its torsional stren^ali with that of a solid shaft of the same ma-

terial and weight.
Ans.

p V/>' ~ I

p' + I

26. If the solid shaft is 10 in. in diameter, and the internal diameter

of the hollow shaft is 5 inches, find the external diameter and compare

the torsional strengths. /i,is, 5 -^5 in. ; Vs to 3.

27. A hollow steel shaft has an external diameter d and an internal

diameter — . Compare its torsional strength with that of {ii) a solid

steel shaft of diameter d; (/>) a solid wrought-iron shaft of diameter </;

the safe working stresses of steel and iron being 5 tons and 3^ tons re-

spectively, .iz/.v.— (<i) }8; (/>) It
28. What twisting moment can Ijc transmitted by a iiuilow stet-l shaft

of 8 in. internal and 10 in. external diameter, the working stress being

5 tons per square inch.' Ans. 579? in. -tuns.

29. If /i is the safe torsional working stress of a shaft, and /a is the

safe working stress when the siiaft acts as a beam, show that the »or-

sional resistance of the shaft is to its bending resistance in the ratio of

2/1 to /a.

30. The wrought-iron screvv shaft of a steamship is driven by a pair

of cranks set at right angles and 21.7 in. in leni,fth ; the horizontal pull

upon each crank-pin is 176,400 lbs., and the effective length of the shaft

is 866 in. Find the diameter of the shaft so that (i) the circumferential

stress may not exceed 9000 lbs. per square inch; (2) the angle of torsion

1°

may not exceed — per lineal foot; G being 10,000,000 lbs. The actual

diameter of the shaft is 14.9 in. What is the actual torsion ?

Ans.—{\) 14.53 in. ; (2) 14.89 in.; (3) total torsion = $-.545.

31. The ultimate tensile strength of the iron being 60,000 lbs. per

square inch, find the actual ultimate strength under unlimited repetitions

of stress. Ans, 59,361 lbs. (Unwin's formula).

32. What is the torsion in the preceding question when one of the

cranks passes a dead point ?

33. A steel shaft 300 feet in length makes 200 revolutions per minute

and transmits 10 H. P. Determine its diameter so that the greatest

stress in the material may be the same as the stress at the circumference

of an iron shaft i in. in diameter and transmitting 500 ft. -lbs.

Ans. .807 in. (= f in.)

34. Determine the coefficient of torsional rupture for the shaft in

Question 33, 10 being the factor of safety.

35. A wrought-iron shaft in a rolling-mill is 220 feet in length, makes

95 revolutions per minute, and transmits 120 H. P. to the rolls ; the main

body of the shaft is 4 in. in diameter, and it revolves in gudgeons 3J in.

\
"'I

m

1<
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in rliameter. Find ll;c (^TtatL-st siicar stress in tin.- siiaft proper itid in

the portion of tlie sliaft at the pucl>j;eons. Ans, 6330.2 lbs.; 7508 lbs,

36. Power is tai<en from a shaft by means of a pulley 24 indies in

diameter which is i<eved on to the shaft at a point dividinjj; tlie distance

Ijctween two consecutive supports into segments of 20 and 80 in. ; the

tanj^ential lotcc at tlie circumference of tlie pulley is 5500 lbs. If the

sliaft is of cast-iron, determine its diameter, taking into account the

bendinji action to which it is subjected. Atts. 5.65 in.

37. Show that the resilience of a twisted shaft is proportional to its

weight.
^ _^ .^. /"Volume

;;/ 4.
Ahs, Resilience

38. If a round bar of any material is subjected to a twisting couple,

show that its maximum resilience is two-thirds the maximum resilience

of the material.

39. Dt'tcrmine the diameter of a wrought-iron shaft for a screw

steanier, and the 1 rsion per lineal foot; the indicated H. P. = 1000, the

number of revolutions jier minute = 150, the lengtii of the shaft from

thrust bearing to screw = 75 ft., and the safe working stress = 7200 lbs.

per square inch. Ans. 6.67 in. ; 10.5.

40. In a spinning-mill a cast-iron shaft 84 ft. long makes 50 revolu-

tions per minute and transmits 270 H. P. Find its diameter (i) if the

stress in the metal is not to exceed 5000 lbs. per square inch ; (2) if the

angle of torsion per lineal foot is not to e.xceed ---.

Also (3) in the first case find the total tcirsion.

Ans. (i) 7.02 in.; (2) 10.23 in. ; (.3^ M" 048.

41. A circular shaft is twisted beyond the limit of elasticity. If the

equalization of stress is perfect, show that for a given maximum stress the

twisting couple is greater than it would bo if the elasticity were perfect,

in the ratio of 4 to 3.

42. Determine (a) the profile of a shaft of length / which at every

point is so proportioned as to be just able to bear the power it has to

transmit plus the power required to overcome the friction beyond the

point under consideration. Find {b) the efficiency of such a shaft, and

0) the efficiency of a shaft made up of a series of n divisions, each of

uniform diameter.

Ans. (a) The radius/ of any section distant .r from the driving end
X

is J/
= re '^^

, r being the radius of the driving end and

L the length of a shaft of uniform diameter, such that

the whole driving moment is required to overcome its

own friction.

{b)e ^; {c) i-i)-

iie^mt^mfm
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43. A siccl >liafl I. II lies a 5-ft. pulk-y iniflway bclwecti the supports

and makes 6 levoliii ions per mimile the taiint'iiiial force on tlic pullev

bein^j 500 lbs. Takini,' tlie coetririent of workiiijj; stienntli at 11,200 lbs.

per square iiuli, tind ii» (liaineicr of the shaft .iiid tlie proper distance

between ti .; bearings.

44. A steel slialt 4 inches in diameter and weifjhinj.;49o lbs. per cubic

loot makes 100 revolutions per minute. If thewoikin^f stress in the

metal is 1 1,200 lbs. per square inch, find the twisting couple and the dis-

tance to which the work can be transmitted , tiie coetFn lent of fricticMi

bein^; .05. and the elRciency of tlie shaft !j.

Alls. 140.800 in. -lbs. , 8228^ ft,

45. If the shaft is of steel, and if the loss due t(j friction is 20 per cent,

find the distance to which work may be transmitted, // beiny .05.

Ans. 6582? ft.

46. A wrouy;iit-iroti siiaft 220 ft. between bearinjjs and 4 in. in diam-

cier can safely transmit 120 \\. 1*. at the rate of 95 revolutions per

minute. What is the efficiency of the shaft ? (// = ^'^.) Aiis. .976.

47. Tiie etliciency of a wtcMij^ht-iron shaft is i ; tiie working stress in

the metal is 7200 lbs. perscpiare inch ; the coeflicient of frictic^n is. 125.

How far can the work be traiismitt(;d ? Ans. 4320 ft.

48. A sprini>; is fcjrmed of steel wire; the mean diameter of the coils

is I inch ; the WGrkiiij.^ stress of the wire is 50,000 lt)s. per square inch
;

the elongation under a weijj[ht of ig,'!, lbs. is 2 inches; the coefficient <jf

transverse elasticity is 12,000,000 lbs. Find the diameter of the wire and

the number of coils.

49. Find the weight of a helical spring which is to bear a safe load ot 6

tons with a deflection of i incli, G being 12,000,000 lbs., and/ 60 000 lbs.

50. Find the time of oscillation of a spring, the normal displacement

under a given load being A. /j
Ans. ffV T •

51. Find the deflection under the weight /-f^ of a conical helical spring

{a) of circular section ; (li) of rectangular section, the radii of the extreme

coils being y\ and ja , and the radial distance from tlie axis to a point of

the spring at an angular distance from the commencement of the spiral

Vi — R
. , ., V

. (« = number of cons.)

I ny*W
\ Gr'

being given by the relation

Ans. («)

yi-y^

Gi'
-

, if 71 =0 and Vj =;

b' + //' IV
{b) I .%nn{y^ + /,)(j, ' + y^) -

j,-j^
--

;

b and h being the sides of the rectangular section.

52. The eflSciency of an axle is ^ ; the working stress in the shaft is

9000 lbs. per square inch ; the coeflicient of friction is .10, How far may

work be transmitted ?

Ii
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The above fiffut'es show the distortion produiril hy twiHtliiK a 1%*^" irun bar.
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CHAPTER X.

STRENGTH OF CYLINDRICAL AND SPHERICAL BOILERS.

Fig. 364.

Thin Hollow Cylinders ; Boilers ; Pipes.

Let r be the radius of the cylinder.

Let / be the tliickness ot the metal.

Let / be the fluid pressure upon each unit

of surface.

Let / be the tensile or compressive unit

stress, according as p is an internal or exter-

nal pressure.

Assume (i) that the metal is homogeneous and free from

initial strain
;

(2) that / is small a^; compared with r
;

(3) that the pressures are uniformly distributed

over the internal and external surfaces
;

(4) that the ends are kept perfectly flat and rigid ;

(5) that the stress in the metal is uniformly dis-

tributed over the thickness.

The last assumption is equivalent to supposing that it is

the mean circumferential stress which is governed by the

strength of the metal, while in reality it is the internal or maxi-

mum circumferential stress which is so governed.

Tlie figure represents a cross-section of the cylinder of

thickness unity.

A section made by any diametral plane, as AB, must de-

velop a total resistance of 2tf, and this must be equal and

opposite to the resultant of the fluid pressure upon each half,

i.e., to 2pr. Hence,

2tf = 2pr, or tf = pr. (I)

586
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» This formula may be employed to determine the burstings

proof, or working pressure in a cylindrical or approxim.itely

cylindrical boiler, provided that/", instead of being the tensile

or compressive unit stress, is some suitable coefficient which

has been determined by experiment. If t) is the efficiency of

a riveted joint, the formula

Vtf^pr

may be employed to determine the working pressure in a cylin-

drical or approximately cylindrical boiler.

In ordinary practice the values of // and /are given by the

following table

:

Material.
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Generally, r — r' is very small, and the relation (3) may be

written

ft^r{p-p').

2. Thick Hollow Cylinder.— If / is large, the stress is no

longer uniformly distributed over the thickness. Suppose that

the assumptions (i) and (3) of Art. i still hold, also that the

cylinder ends are free, and that the annulus forming the section

of the cylinder is composed of an infinite number of concentric

rings. Under these conditions the straining of the cylinder

cannot affect its cylindrical form. Hence, right sections of the

cylinder in the unstrained state remain planes after the strain-

ing, so that the longitudinal strain at every point must be the

same. Two methods will be discussed.

First Method.—Let dx be the thickness of one of the

rings of radius x, and let dq be the intensity of the circum-

ferential stress.

pr — p'r' = difference between the total pressures from

within and without = total circumferential stress = / dg.

If it be assumed that the thickness (= r' — r) remains un-

changed under the pressure, then the circumferential extension

of each of the concentric rings must be equal to the same con-

stant quantity A, and therefore

(/o = Edx ,

E being the coeflficient of elasticity. Hence,

pr —p'r' =

Let / be the tensile unit stress. Then f = E if tlie

elastic limit is not exceeded, and therefore

pr — p'r' = fr lo
fc><

,
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or

f^.^)

.-. -= I +r

pr—p'r' \{pr — p'r'^''i,pr-pyV
"^ 2\ fr /

'

fr ' 2\ fr

\( p is small as compared with/"; and hence,

approx. (4)

r ~ r ~ fr

In most cases which occur in practice/' is so small as com-

pared with / that it may be disregarded.

Hence, making/' zero in equation (5),

-r-fV + 2f)'
(6)

Formulae (5) and (6) may be employed even if the elastic

limit is exceeded, if f is considered a coefncient of strength

to be determined by experience.

Cor.—Rankine, in his Applied Mechanics, obtains by

another method,

'''_ / /+ / /f±J
r-V/-/+2/~V/-/'

if/' be neglected. Hence,

:-=(-H^)'o-r

f ' 8/»

p ^
p'

. ,= I + ^ + :;
y-3 . approxmiately,

\[ p is small as compared with/, and therefore

m

I'
1

. fea

M
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ail equation identical with (6).

Sl-:ct)NI) MK'riloi).—Consider a rint; bounded by the radii

x\ X -\- iLv, at an\- point.

Let (/ be the normal (i.e., radial) intensity of stress.

Let /be the intensity of stress tanL;cntial to the ring.

" s " *'
" " " perpendicular to the plane

of the ring.

Let a, /3, y be the corresponding strains.

Let li and mli be respectively the coefficients of direct and

lateral elasticity.

Then, since E,f, s are principal stresses (Chap. IV),

a E mE ' li
li

f+Q
//,'/:" /: /// /;

(I)

But y is constant. Also, since the ends are free, the total

pressure on a transverse section is nil, and hence it might be

inferred that s is zero at every point, .\dopting this value of s.

By eq. (i),

Arain,

f-\- (/ = a. constant = c.

ci{qx) = fdx = xdq -f- qdx.

• • • (2)

\l)

By eqs. (2) and (3).

xdq -j- 2qdx = cdx.

d{x\j)

Integrating
t>»

cxa

ex-

ix.

X'L<2 = -r-\-

c' being a constant of integration.

When .1' = r, the internal radius, g = p.
'* X = r', the external radius, q =/>'.

(4)
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Hence, by eq. (4),

cr* cr'
*

and therefore

fp- r'^P
c — 2—-..

/ r" »i"d ^" = —
r — /•

(/ - P'Yr'
,1 „' n
r — r

Hence, by ec|. (4),

r'p - r'V p - p' r'r'

<}
r ~ r

/ a"

and, by eq. (j),

,v' /-•' - r""

i' ..'j„' '•«r'p-ry_ p-p;^ r'r_

. . (5>

3. Spherical Shells.— IaI the cl.it;i be the same as before.

'I'lie section niiulc by anv diametral plane must develop a total

resistance ul znrtj. Then

or

\nrtf - nrp,

2tf^pr (I)

Hence, a spherical shell is tivicc as stronfj as a cylindrical

shell of the satne (Hanieter and thickness of metal, so that the

stronijjest parts of i;i,'v-<7/^/(v/ boilers arc: tile ends.

Cor. I. Let the shell be subjected to an external pressure

p' as well as to an internal pressure/. Then

2it — tf— nrp'' — nr' y.

.'.f{r' -^r)t=^r'p~-~r'y (2)

/"is a tension or a pressure accordin<j as r'p ^ r"'p'.

Generally, r' — r is very small, and the relation (2) may be
written

ft = -Kp-P% .
. (3>

I !

M
%
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Cor. 2. For a thick hollow sphere, Rankine obtains

P^^fzr.
r" - r'

r" -f 2r
, approximately. (4)

4. Practical Remarks.—A common rule requires that the

working pressure in fresh-water boilers should not exceed one-

sixth of the bursting; pressure, and in the case of marine boilers

that it should not exceed one-seventh.

An English Jioard of Trade rule is that the tensile working

stress in the boiler-plate is not to exceed 6000 lbs. per square

inch of gross section, and French law fixes this limit at 4250
lbs. per square inch.

The thickness to be given to the wrought-iron plates of a

cylindrical boiler is, according to French law,

/ = .oo2)Gnr -\- .1 in.;

according to Prussian law,

t ^ (^
""3" _ i);. _|_ I iji. — ,ooinr -f- -I in-, approximately,

r being the radius in inches, and n the excess of the internal

above the external pressure in atmospheres.

The thickness given to cast-iron cylindrical boiler-tubes is,

according to French law, five times the thickness of equivalent

wrought-iron tubes; according to Prussian law,

f — ^^.'^"' _ i);- _|„ ^ in. — ,o\nr -f- iV i"-. approximately.

Steam-boilers before being used should be subjected to a

hydrostatic test varying from i^ to 3 times the pressure at

whicli they are to be worked.

Fairbairn conducted an extensive series of experiments

upon the collapsing strength of riveted plate-iron flues, by

enclosing the flues in larger cylinders and subjecting them to

hydraulic pressure. From these experiments he deduced the

following formula for a tvronglit-iron cylindrical flue or tube:

Collapsing pressure

in pounds per square inch of surface
!=.=

^2.19

403150^,
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/ being the thickness and r the radius in inches, and / the length

in feet.

This formula cannot be relied upon in extreme cases and

when the thickness of the tube is less than \ in.

Note.— In [)ractice, /-' may be generally used instead of /•"''.

The experiments also showed that the strength (jf an elliptical

tube is, almost the same as that of a circular tube of which the

radius is the radius of curvature at the ends of the minor axis.

Hence, if a and b are the major and minor axes of the elHpse>

the above formula becomes

b r-"^

/= 403150-.^.

By riveting angle- or T-irons around a tube, its length is

virtually diminished and its strength is therefore increased, as

it varies inversely as the length.

The thickness of tubes subjected to external pressure is,

according to French law, twice the thickne.ss of tubes subjected

to interior pressure, but under otherwise similar conditions
;

according to Prussian law the thickness of heating pipes is

and

/ = .ooGjii Vn -f- .05 in., if of sheet-iron,

t = .01^/ Vn -{- .07 in., if of brass.

According to Reuleaux, the thickness (/) of a round flat

plate of radius r, subjected to a normal pressure, uniformly dis-

tributed and of intensity/, is given by the formula

h\//' °^ HV 2p_

according as the plate is merely supported around the rim or

is rigidly fixed around the rim, as, e.g., the end plates of a

cylindrical boiler
; /, as before, is the coefificient of strength.

The corresponding deflections of the plate are

m -^ m pt

E'

I '

I

i/il
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EXAMPLES.

1. What should be the thickni'ss of tlie plates of a cylindrical boiler

6 ft. in dianu'ter and worked to a pressure of 50 lbs. per square inch, in

order that the workinjj; tensile stress may not exceed 1.67 tons per square

inch of gross section? Ans. 42 in.

2. A cylindrical boiler with hemis|)herical ends is 4 ft. in diameter

and 22 ft. in Icnj^tli. Determine the thickness of the plates for a steam

-

pressure of 4 atmospheres.

3. What is the collapsing pressure of a flue 10 ft. long, 36 in. in

diameter, and composed of i-in. plates.' Also of a flue 30 ft. long, 48 in.

in diainclcr, .iiul \ in. thick.' Ans. 490.84 lbs.; 91.59 lbs.

4. Determine the thickness of a 2-in. locomotive hre-tube to support

an external pressure of 5 atmospheres.

5. .A copper steam-pipe is 4 in. in diameter and \ in. thick. Find the

working pressme, the safe coefficient of strength for copper beiiii; 1000

lbs. per square incii. Ans. 125 lbs. per square inch.

6. .\ 7-ft. boiler of ,'fl-in. plates was burst at a longitudinal double-

riveted joint by a pressure of 310 lbs. per square inch. Find the cf)ef-

ticient of ultimate strength. Ans. 29,760 lbs.

7. .A 50 in. cylindrical boiler of j**,, in. plates is made of wrought-

iron whose safe coefficient of strength is 4000 lbs. per square inch. Find

the working pressure. Ans. 50 lbs. per s(|uare inch.

8. -^ loin. cast-iron water-pipe is subjected to a pressure of 250 lbs.

per square inch. Find its thickness, the coefficient of working strength

being 2000 lbs. per square inch. Ans. ij in.

9. .-X steel spherical shell 36 in. in diameter and | in. thick is sub-

jected to an internal fluid pressure of 300 lbs. per square inch. Find its

coefficient of strength. Ans. 7200 lbs.

10. A thin, hollow, spherical, elastic envelope, whose internal

radius is R. was subjected to a fluid pressure which caused it to expand

gradually until its radius became A'l . Determiiic the work done.

1 1. The plates of a cylindrical boiler 5 ft. in diameter are ^ in. thick.

Find to what pressure the boiler may be worked so that the tensile stress

in the plates may not exceed i^ tons per square inch of gross section.

il

ii-

111



/iXAA/r/.KS. 595

12. Show lliat the assuiiipli.ni t)f u iiiiiforin (iistribiilion of slnss in

thi- lliickiifss of a i\ HiKlrical (jr splicricul boili-r is only a(hiiissil)lc when
tlic thickness is very siiiull.

13. A metal cyUiultT of iiucrnal rarliiis ;• and oxteiiial radius ;/;• is

subjected to an internal piessun- <)f /> tons per square inc h. Show that

the total work done in stretching tlu- cylinder circunilerenlially is

,. -,_ ft. tons per square foot of surface, A" being tlie metal's co-

ullu ient uf elasticity.

14. The cast-iron cylinder of an hydraulic press has an external

dianu-ier twice the internal, and is suhjccied to an inierual pressure of

/iions per scpiare inch. I'ind the princi|)al stresses at tiie oiiterand inner

ciicuinferences. Also, if the pressure is 3 tons per stpiare inch, and il the

internal diameter is 10 in., lind the work done in stretching the cylinder

circuniferentially, /'.'being 8000 tons.

Ans. At inner circumference, </ =p, a thrust, and/= —
i|/, a tension.

At outer circumference, r/ = o,
'

an(l/= — i'/, a tension.

Work = 126 ft.-lbs. per squaie foot of surface.

1 5. The chamber of a 27-ton breech-loader has an external diameter

of 40 in. and an internal diameter of 14 in. Under a powder pressure of

18 tons per square inch, find the principal stresses at tlic outer and inner

circumferences, and also the work done; Zi being 13,000 tons.

Ans. At inner, y = 18 tons, C(jm|)ressi()n ; ai outer, y = o.

At inner, /= — 23.,'(, tons, tensiijn ; at outer, /"= — s^'g tons,

. nsion.

Work -—
I ;\ ft. -tuns per s(|. ft. of surface.

16. What should he liie thickness of a 9-in. cylinder (a) which has

to withstand a pressure of 8000 lbs. per square inch, the maximum allow-

able tensile stress being 24.000 lbs. per square inch ; {l>) which has to

withstand a pressure of 6000 lbs. per squ, e inch ; the maximum allow-

able tensile stress being 10,000 lbs. per square inch?

.Ins.— {a) 1.86 in. ; {b) 4^ in.

17. Show that the radial (<r) and hoop (fS) strains in thick hollow

cylinders and spheres are connected by the relation a = -
filix)

<ix

18. Prove that the relation in Ex. 17 is satisfied by the values ob-

tained for/ and q in the Second Method of Art. 2, Chap. X.

59. A thick hollow sphere of internal radius r and external radius

nr is sunjected to an internal pressure p and an external pressure p

.

Determine the principal stresses at a distance -> from the centre.

Ans. q
_py-p p

//"— 1
' «» - I

'• ^ ~ «•
I

— /' u

U 1'

%
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20. Assuming tlial llic amnilus fDiiniiig tlie section of a cylindrical

i)()ilt;r is loniposcd of a nuiiiljcr of infinitely thin rings, show that the

pressure at the circumference of a ring of radius r is —:— per unit of

surface, and that the circumferential stress is - +
, A and />' de-

noting arbitrary constants, and ;;/ being the coedlciont of lateral con-

traction. Find the values of A and B.po and p\ being respectively the

internal and external pressures.

21. Show that in the case of a spherical boiler the pressure and cir-

cumferential stress are respectively—;— and - + ^ ^T^r:—;• Find

A and B.

22. Solve Questions r. 2, 6, 7, 8, 9, and 11 on the supposition that t is

not small as compared with ;•.

23. Taking /' = 4ooo lbs. per square inch and /f = 30,000,000 lbs,,

Find the thickness and deflection of the end plates of the boiler in Ques-

tion 7.

r !



CHAPTER XI.

HRIIKiliS.

1. Classification.— liritl^^cs may be tlivided into four gen-

cral classes, viz.: (A) Bridges with liori/oiital girders; (Hi C.iii-

tilever bridges (Art. 15); (C) Suspension bridges (Cliap. Xlli;

(D) Arched bridges (Chap. XIII). The present chapter treats

of britlges in Chisses A and H only.

2. Comparative Advantages of Curved and Horizontal

Flanges in Girders for Bridges of Class A.—The depth is

sometimes varied for the sake of appearance, and it is also

claimed that an eC(jnomy of material is effected by giving the

chord a slope, as, e.g., in the case of the Sault Hridge (,\rt. 19).

Such a truss is intermediate between a truss with horizontal

flanges and one of the parabolic form. The curved or para-

bolic form is not well suited to plate construction, and a dimi-

nution in depth lessens the resistance of the girder to tlistor-

tion. Again, if the bottom flange is curved, the bracing for

the lower part of the girder is restricted within narrow limits,

and the girder itself must be independent, so that in a bridge

of several spans any advantage which might be derivable from

continuity is necessarily lost. Generally speaking, the best and

most economical form of girder is that in which the depth is

uniform through'^ut, and in which the necessary thickness of

flange at any point is obtained by increasing the number of

plates.

3. Depth of Girder or Truss (Class A).—The depth usu-

ally varies from onc-fiftecntJi to onc-scvcnth (and even more) of

the span. It is generally found advisable to give large girders

597
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an increased depth, and they should, therefore, be designed to

have a specified strt i/gf/i- \. the span is more tlian tzvclve times

the deptli, tlie deflection ijeconies a serious consideration, and

the girder should be designed to have a specified stiffness. The
depth should not be more than about i^ times the width of

the bridge, and is therefore limited to 24 ft. for a single and to

40 It. for a double-track bridge.

4. Position of Platform—The platform may be supported

either at the top or bottom flanges, or in some intermediate

position. In favor of tlie last it is claimed that the main girders

may be braced together below the platform (I'ig. 305), wiiile

the upper portions serve as parapets or guards, and also that

the vil)ration communicated by .1 passing train is diminished.

The position, however, is not conducive to rigidity, and a large

amount of metal is required to form the connections.

Fig. 365. Fig. 366.

The method of supporting the platform on the top flanges

(Fig. 366) renders the whole depth of tlie girtler available for

bracing, and is best adapted to girders of shallow deptii.

Heavy cross-girders may be entirely dispensed with in the case

of a single-track bridge, and the load most effectively distrib-

uted, by laying the rails directly upon the flanges and vertically

above the neutral line. Provision may be made for side spaces

by employing sufficiently long cross TJiJcrs, or by means of

short cantilevers fixed to the flanges, the advantage of the
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former arrangeirient being that it increases the resistance to

lateral flexure-, and gives the platiorm more elasticity.

Figs. 367, 368, 369 show the cross-girders attached to the

bottom flanges, and the desirability of this mode of support

increases with the depth of the main girders, of which the cen-

tres of gravity should be as low as possible. If the cross-girders

are suspended by hangers or bolts below the flanges (^Fig. 369),

the depth, and therefore the resistance to flexure, is increased.

Fig. 368. Fig. 369.

In order to stiffen the main girders, braces and veriicals,

consisting of angle- or tee iron, are introduced and connected

with the cross-girders by gusset pieces, etc. ; also, for the same
purpose, the cross girders may be prolonged on each side, and

the ciul joined to. the top flanges by suitable bars.

Wiien the depth of the main girders is more than about

5 ft., the top flanges should be braced togethei. But the

minimum clear headway over the rails is 16 ft., so that some
other method should be adopted for the support of the plat-

form when the depth of the main girders is more than 5 ft.

and less than 16 ft.

Assume that the depth of the platform below the flanges is

2 ft., and that the depth of the transverse bracing at the top is

I ft. ; the total limiting depths are 7 ft. and 19 ft., and if I to 8

is taken as a mean ratio of the depth to the span, the corre-

sponding limiting spans are 56 ft. and 152 ft.

1
'^

"1 CI

\ I-'

#iO
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5. Comparative Advantages of Two, Three, and Four
Main Girders.—A bridge is generally constructed with two

main girders, but if it is crossed by a double track a third is

occasionally ackh'd, and someti.nes each track is carried by two

independent girders.

The employment of four independent girders possesses the

one great advantage of facilitating the maintenance of the

bridge, as one-half may be closed for repairs without interrupt-

ing the traffic. On the other hand, the rails at the approaches

must deviate from the main Hnes in order to enter the bridge,

so that the width of the bridge is much increased, and far

more material is required in its construction.

Few, if any, reasons can be urged in favor of the introduc-

tion of a third intermediate girder, since it presents all the

objectionable features of the last system without any corre-

sponding recommendation.

The two-girder system is to be preferred, as the rails, by
such an arrangement, may be continued over the bridge with-

out deviation at the approaches, and a large amount of ma-

terial is economized, even taking into consideration the in-

creased weight of long cross-girders.

6. Bridge Loads.— In order to determine the stresses in

the different members of a bridge truss, or main girder, it is

necessary to ascertain the amount and character of the load to

which the bridge may be subjected. The load is partly dead,

partly live, and depends upon the type of truss, the span, the

number of tracks, and a variety of other conditions.

The dead load increases with the span, and embraces the

weight of the main girders (or trusses), cross-girders, platform,

rails, ballast, and accumulations of snow.

As to the live load see Art. 19.

7. Trellis or Lattice Girders.—The ( idinary trellis or

lattice girder consists of a pair of horizontal chords and two
series of diagonals inclined in opposite directions (Fig. 370).

The system of trellis is said to be single, double, or treble, ac-

cording to the number of diagonals met by the same vertical

section.
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Vertical stiffeiicrs, united to the chords and diagonals, may
be introduced at regular intervals.

Fi(i. 370.

F'g='- 37 1 » 372, 373. 374 show appropriate sections for the

top chord ; the bottom chord may be formed of fished and
riveted plates, or of links and pins.

niir "n ir
—\7-l

rniir r
L

Fig. 371. Fig. 372. Fig. 373. Fig. 374.

The verticals and diagonals may be of an L, T, I, H, i-i, or

other suitable section, but the diagonals, except in the case of

a single system of trellis, are usually flat bars, riveted together

at the points of intersection.

An objection to this class of girder is the number of the

joints

The stres.ses in the diagonals are determined on the assump-

tion that the shearing force at any \ crtical section is equally

distributed between the diagonals met by that section, which

is equivalent to the substitution of a mean stress for the differ-

ent stres.ses in the several bars.

E.g., let IV be the perinanent load concentrated at each apex

in Fig. 370.

Let B be the inclination of the diagonals to the vertical.

The reaction at /? — y\w, and the shearing force at the

section MN = "j^zv — 4ze' = 3^^.

This shearing force must be transmitted through the diag-

onals.

Hence, the stress in ab due to the permanent load

= sec ff =z -w sec (r.

4 8
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Again, let iv' be the live load concentrated at an apex.

The greatest shear at inn due to the live load occurs when

every apex between a and 7 is loaded.

This shear = corresponding reaction at i = \%iv' , and the

stress in ab due to the live load

= i X Wiv sec e = i||i4>'' sec B.

Hence, the total maximum stress in ab = {^zv -f- ffw') sec (f.

The greatest stress of a kind opposite to that due to the

dead load is produced in ab when the live load tv' is concen-

trated at every apex between I and /;.

The shear to be transmitted is then 2\iv due to the dead load,

and — \\zv' due to the live load, and the resultant stress in ab

= |-(2i7e/ - f^^') sec e =z {^za - ^^zv') sec 0.

This stress may be negative, and must be provided for by

introducing a counter-brace or by proportioning the bar to

bear both the greatest tensile and the greatest compressive

stress to which it may be subjected.

The stress in any other bar may be obtained as above.

The chord stresses are greatest when the live load covers

the whole of the girder, and may be obtained by the method

of moments, or in the manner described in the succeeding

articles.

In the above it is assumed that the members of the girder

are riveted together. If they are connected by pins, each of

the diagonal systems may be treated as being independent.

Thus, the system i 2 ab ^ 4 ^6 j transmits to the supports

the stresses due to loads at a, 3, and 5.

The shear due to the dead load, transmitted through ab,.

3 'W= reaction at i — load ai a — -zv — w = ~
.

2 2

!

Hence, the stress in ab due to the dead load = — sec d.
2

The stress in ab due to the live load is greatest when zv' is

concentrated at each of the points 3 and 5,
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The maximum shear due to live load transmitted through a^

= Wiv' = w,
and the corresponding stress in ab = ^w' sec 0.

Hence, the total maximum stress in ad

(i+H sec 0,

as compared with {^lif -\- ffic^') sec obtained on the first as-

sumption.

8. Warren Girder.—The Warren girder consists of two

horizontal chords and a series of diagonal braces forming a

single triangulation, or zigzag, Fig. 375.

Fig. 375.

The principles which regulate the construction of trellis

girders arc equally applicable to those of the Warren type.

The cross-girders (floor-beams) are spaced so as to occur at

the apex of each triangle.

When the platform is supported at the top chords, the re-

sistance of the structure to lateral flexure may be increased by

horizontal bracing between the cross-girders and by diagonal

bracing between the main girders.

When the platform is supported on the bottom chords,

additional cross-girders may be suspended from the apices in

the upper chords, which also have the effect of adding to the

rigidity of the main girders.

Let w be the dead load concentrated at an apex or joint.

<i „g.' << (i live " " " " " " *'

" / " " span of the girder.

" k " " depth
" s " " length of each diagonal brace.

" " " inclination of each diagonal brace to the ver-

tical.

•* N-\- I he the number of joints.

1 i 4
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sec#=^, tan(* =4
Two cases will be considered.

Case I. All tin joints loaded.

Chord Stresses. ~'V\\Kisii stresses are greatest when the live

load covers tiic whole ot the girder.

Let S„ be the shearing force at a vertical section between
the joints n and n -\^ \.

Let //„ be the horizontal chord stress between t

n — I and // + i-

The total load due to both dead and live loads

= (w-f- w')(iV- I).

The reaction at each abutment due to this total load

J<

I'l

I ':
I

w -f- tv'

(iV-i).

The shearing forces in the different bays are

XV -\- zv'

\ — —:;— (A^ - i), between o and i ;

^^ = ^^ (^-3). "
I " 2;

^ W -\- w'

,

S^= - —(N-s), " 2 " 3;

i:

and

xi^ -\- iv' . ^^-^3= -f— (A^-7), " 3 " 4;

S„=-±---\N-2n-.).

The corresponding diagonal stresses are

S, sec (f, 5, sec 6* S^ sec ft
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The last stresses multiplied by sin ^ give the increments of

the chord stresses at each joint. Tlius,

//, = tension in 02 = 5„ tan ^

'nij^xv' I _iv -\- iv' I N — \

1! 13

//, = compression in 13 = S^ tan ^-f- 6", tan d

IV -j- 7t'' / .V — I w ^ iv' I X — 3
^"

2 X- "A^
~ "^ "2"".

li N

__ ttz-f- zv' I 2{N ~ 2)

H\ = tension in 24 = //, -j- 5, tan 6-\- S, tan 6

_ zv -\~ zv' I liN — 3)

H^ = compression in 3 5 = Z^, + 5, tan ^ -|~ -^s tan

_ zv -f zv' I 4{N — 4)
^~ 2 /& 7\^ '

I

and H„ = horizontal stress in chord, between the joints

zv -\- zv' / H(N—n)
,

« — I and n -+- I = —
-, 77— , beinir a tension for a

'

2 k N ^

bay in the bottom chord, and a compression fo. a bay in the

top chord.

Norc—The same -esults may be obtained by the method
of moments ; e.<-^., fir d the chord stress between the joints

n — I and ri -{- i.

Let a vertical; plane divide the girder a little on the tight

of u.

The portion of the girder on the left of the secant plane is

kept in equilibrium by the reaction at the left abutment, the

horizontal stresses in the chords, and the stress in the diagonal

from « to ;/ -j- i.

Take moments about the joint n. Then
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H„k
ID _4- II)' I tit

w -\- w , N — n
- In N

:. //„ = etc.

Diagonal Stresses due to Dead Load.

Let dn be the stress in tlie diagonal n, n \- i, due to the

dead load.

The shearing forces in the different bays due to the dead

load are

IV IV
-(-:V— i), between o and i ; \N --

3), between i and 2 ;

W TV
~{N-S), " 2 " 4; -^{N- 7),

" 3
•' 4;

and
w
-{N — 2n — i), between // and n -{- l.

The corresponding diagonal stresses are

a compression -dV — i) sec a = -{N — i)-: = a„ inoi ;

7V W S
a tension -{N — 3) sec — {N— 3), = d, in 1

2

2 ^ A'

a compression —{N— 5) sec = (N — $)t = «^, in 23 ;

2 2 fS

and the stress in the «th diagonal between n and «-|- i is

zv s
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being a tension or a compression according as the brace slopes

down or up towards the centre.

Diagonal Stresses due to IAve Load.—The live load produces

the greatest stress in any diagonal («, n -\- i), of the same kind

as that due to the dead load, when it covers the longer of the

segments into which the diagonal divides the girder. Repre-

sent this maximum stress by /^„.

The live load produces the greatest stress in any diagonal

(«, // -f- i), of a kind opposite to that due to the dead load, when
it covers the shorter of the segments into which the diagonal

divides the girder. Represent this maximum stress by D,l.

The shearing force at any section due to the live load, as it

crosses the girder, is the reaction at the end of .the unloaded

segment, and the corresponding diagonal stress is the product

s
of this shearing force by sec 6*, or j.

The values of the different diagonal stresses are :

Z?„ = compression in o i when all the joints arc loaded

_ s_ w' A'(.^V— i)

~'k'2 N~'

Z?, = tension in i 2 when all the joints except one are loaded

_ szv' {N - \ ){N-2)
~ k 2 N

D^ = compression in 2 3 when all the joints except i and 2 are

s w' {N — 2){N — 3)
loaded

k 2 N

D^ = tension in 34 when all the joints except i, 2, and 3 are

loaded = |^'^^-y-
-'I

k 1 N

I II

Z?„ = stress in «, « -f- i when all the joints except I, 2, 3, . . •

sw\N-n\N-n-x)
and n are loaded = r "~ ^ ^r '

k 2 N

Z>/ = stress in o i before the load comes upon the girder = o.

tn

Hi
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s w
/?,'= compression in i 2 when the joint i is loaded = v ^i

S 70

D.I — tension in 2 3 when the joints i and 2 are loaded ^
, ^3.

Z?/ = compression in 34 when the joints 1, 2, and 3 are loaded

D„' = stress in tt,n-\-\, when the joints 1,2,... and n are loaded

s 7i'' n{n -f- i)

* ^ kN 2""

•

The total maximum stress in the ;/th diagonal of the sajiii"

kind as that due to the dead load = (l„ -\- D,, .

The resultant stress in the «th aiagonal when the load

covers the shorter segment — d^ — D,'

.

This resultant stress is of the same kind as that due to the

dead load so long as d„ > />,/, and need not be considered since

dn + D„ is the maximum stress of that kind.

If /^„ > d,^^ it is necessary to provide for a stress in the

given diagonal of a kind opposite to that due to d^ -\- D„, and

equal in amount to /)„' — d„.

This is effected by counterbracing or by proportioning the

bar to bear both the stresses ^„ -\- D„ and DJ — d„.

Case II. Only Joints denoted by even numbers loaded.

7 \ N-2 N

N-1

Fig 377.

Chord Stresses.—The stresses are greatest when the live load

covers the whole of the girder.
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,^(^V-.)_= (m/ -f- zt;

The reaction at each abutment due to this total load

= ——--(iV - 2).

To find //, , take moments about i. Then

//,.='iii^^^_4.

To find //,, take moments about 2.

w -I- w'
/// = -=f-(A^ - 2)2 ^,.

To find //j, take moments about 3.

.X ^/// = —^(^ - 2)3 ^ - («; + w')-^.

To find //"«, take moments about 4.

•je; _j_ 7£/ / /

i'//' = -^(^V - 2)4 ^ - («. + «'')2 ^.

To find //„, take moments nbout «, and /irsf let « be even.

Then

A^.,/' =
w-\-w'

t A' -2)W
7V^

(W+ W') T^-1 (« - 2) ^ (« - 4) + . . . + 6 + 4 + 2(

= (w + w')^^(
/ j (TV— 2)n n{n — 2)

and

H^ = w -\-w' I n{N — n)

A k N

' if

Si

. 11
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Next, let n be odd. Then

it' 4- ic' /

.V

- (tt^ + w') ;(// - 2) + (// - 4) + . .
. + 5 + 3 -t- i

r

/ HiV - 2)// (// - 1/

V
and

?e; -f- w' / (iV— 2)// — {n — i)'

"
4 X.'

.V

N

Note.— If is even,

w -f- tf' /
//r , tlic stress in the middle bay, = ,— , TV.

If — is odd,
2

//a^, the stress in the middle bay, = zv-\-7v' I N' -^
\6 k N '

Diagonal Stresses due to the Dead Load.—The shearing forces

zv
in the different bays due to the dead load are -(iV — 2) between

w w
O and 2, '-{N — 6) between 2 and 4, ~yN — 10) between 4 and

6, etc.

The corresponding diagonal stresses are

S IV
d/\n o \ = r -(N — 2) = d/m 12\

s zv
ff, in 2 3 = ^ -{N- 4) = d, in 34;

s zv.

< in 4 5 = ^ ^(^- 10) -^ < in 56;

etc., etc., etc.
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Thus the stresses in tlie diagonals which meet at an unloadcil

joint are cijual in nia^niitude but ()i)po.sit(' in kiml.

Diagonal Stresses due to the Live Z,<;*^/.— These are found

as in Case I, and

A = /;. , d: = yV

;

N
If — is odd, there is a sinijle stress at the foot of each of

2

these columns.

The maximum resultant stress due to both dead and live

loads is obtained as before.

E.g., the maximum resultant stress in 3 4 when the longer

segment is loaded

= ^, + A = ^. + A,

and the maximum resultant stress in 34 when the shorter seg-

ment is loaded

= d,- d: = z>, - A'.

/
Note.—B is generally 60°, in which case j = 2 „.

9. Howe Truss.—Fig. 378 is a skeleton diagram of a

Howe truss.

Fig. 378.

The truss may be of timber, of iron, or of timber and iron

combined.

The chords of a timber truss usually consist of three or

more parallel members, placed a little distance apart so as to

allow iron suspenders with screwed ends to pass between them
(Figs. 379 and 380).

%

•\
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Each member i.> made up of a number of lengths scarfed

or fisl'ictl together (Fis^s. 381 and 382),

The main braces, shown by the lull diagonal lines in Fig.

378, are composed of two or more members.

The counter-braces, which are introduced to withstand the

effect of a live load, and are sliown by the dotted diagonal

liiics in Fig. 378, are cither single or are composed of two or

more members. They are set between the main braces, and

are bolted to the latter at the points of intersection.

The main braces and counters abut against solid hard-wood

or hollow c.ist-iron angle-blocks (Fig. 380). They are designed

to withstand' compressive forces only, and are kept in place ' y
tightennig up the nuts at the heads of the suspenders.

'ffi
I- ^

Fig. 379. Fig. 3t'-i.

T
.

'—
^n

' V Si'
—I?

—

tf ' S"

Fu,. 582.

r^ (^

Fig. :<Si.
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same data are assumed as for the Warren girder, except that

A' is now the number of panels.

Chord Slrvssis.—These stresses are greatest when the live

h)ad covers the whole of the girder.

Let //„ be the chord stress in tlie //th panel.

The total load due to both dead and live loads

= (ec \- zv\N — i).

The reaction at each abutment due to this total load

IV -(- iv'

(iV-i).

Let a plane MM' divide the truss as in Fig. 378. The por-

tion of the truss on the left of t' secant plane is kept in

equilibrium by the load upon that portion, the reaction at the

left abutment, the chortl stresses in the ;/th panels, and the

tension in the //th suspender,

First, let the load be on the top chord and take moments
about the foot of the wth suspender. Then

_ 7C' -\- zi>' n{N — n)

= 2 N '

or

//.. =
n, -\-xit' J n{N — n)

"2"' J N •

Next, let the load be on the bottom chord and take

moments about the head of the ;/th suspender. Then

H,.k
zc> -f •:£'' //{N -It)

^

— / ^ --
, as before.

Thus, //„ is the same for corresponding panels, whether

the load is on the top or bottom chord.

Diagonal Stresses due to the Dead Load,— Let F„ be the
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shearing force in the «th panel, or the tension on tlie n\.\\ sus-

pender due to the dead load.

First, let the load be on the top chord. Then

w IN — I \

V„' = -^(A^- ,) - mv = Tc{-~- - «).

Next, let the load be on the bottom chord. Then

V,: = '^(.V - I) - (;/ - 1)7.- = zci^^-^-t).

The corresponding diagonal stresses are

U„ = ^.c
N - I — nj,

and

s IN+i \

Diagonal Stresses due to the Live Load.—Let V,l' be the

shearing force in the n\\\ panel, or tension on the //th s'l^pen-

der, when the live load covers the longer segment.

First, let the load be on the toj) chord.

The greatest stress in the ;/th brace, of the same kind as that

produced by the dead load, occurs when all the panel points

on the right of y]/i]/' are loaded. With such load, F„", the

shearing force on the left of MM' , = the reaction at o

= -iN-u-i) ^^-,

and the corresponding diagonal stress, D„,

s

k
= iK"='r''kjV-u-,f-''k 2 N '

Hence, the resultant tension on the «th suspender due to

both dead and live loads = V„ = V,,' + F„"

IN-\ \
,

^v' .^, N - n
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and the resultant maximum compression on the «th brace due

to both dead and live loads

Y-
--./) + '^(iV-//- 1)^^'

I

= d„ + D„.

The live load tends to produce the greatest stress in the

nth counter when it covers the shorter se^^ment up to and in-

cluding the //th panel point. Even then then* v ill be no stress

in the counter unless the effect of the live load exceeds that

of the dead load in the (;/ -f- i)th brace.

The shearin;^ force on the right of MM' — the reaction at N
w' ti{n -\- i)

~2 W~'
Hence,

r^ , , ,. ,. ,
s w' n{n + i)

D„, the correspondmg diagonal stress, = - - ——

—

-^

and the resultant stress in the counter = D,' — d.H-ri

s\2v'7l{,l-r-\) ^V-3 \)

Nextf let the load be on the bottom chord. Then

and

r."=i;^-«)^+-',

D„ = j,—{N-n)- N
Hence,

V. = I : + F." =.(^ - «) + %(N - «)^+i.
and

dn^-D„=. ]:\^\-^~ - «j + ~iN- n) ^ J,

Also, the stress in the «th counter is

w N - I

-")|
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I

Note—A common value of ^ is 45', when sec 8 ~ ~ =z 1.414,

/
and tan ^ =

iV/t

The end panels and posts, shown by the dotted lines in

Fig. 378. may be omitted when the platform is suspended from

the lower chords.

10. Single and Double Intersection Trusses.— Fig.

385 rc[)resents the simplest form of single-intersection (or

Fk;. 385.

Pratt) truss ; i.e., a truss in which a diagonal crosses one panel

only. It may be constriicteil entirely of iron or steel, or may
have the chords and verticals of wood. The verticals are in

compression and the diagonals in tension. The angle-blocks

are therefore placed above the top and below the bottom

chord. Counter-braces, shown by the dotted diagonals, are in-

troduced to withstand the effect of a live load.

If the truss is inv^^'ted it becomes one of the Howe type,

and the stresses in the several members of both trusses may
be found in precisely the same manner.

Fig. 386 represents a double intersection (or Whipple)

A (2 A' -k Cr 6 I X

truss, i.e., a truss in which a diagonal crosses two panels. It

may be constructed entirely of iron or steel. It is of the //«-

connected iy^c, ixud the two diagonal systems maybe treated

independently.

Let ti' be the inclination of AJ> to the vertical.

" ^ " "
" " Ai, CI), ... to the vertical.

Chord Stresses.—^Tliese stresses are greatest when the live

load covers the whole of the girder.

The reaction at A from the system AHCD . . . = 4{w-{-zv')
;

u
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w, w' being the dead and live loads concentrated at the panel

points C, 2, /:, 4, . , .

The shearing forces in the different bays are :

4(zi' -j-tf') in AC, from the system ABCD

lixo -\- w') in AC, " •' " A I 2 2

3{2c> + zo') in C2, " " " ABCD

|(zc; + zv') in 2E, " «' " ^123
2{za + zt>') in £4, " " " ABCD

|(zc; + 7t'') in 4G, " " " A I 2 ^

i(zv -{- zu') in G6, " " " /ii?CZ>

i{zv + tc') in 6/, " " " ^123
The corresponding diagonal stresses are

:

4{za -\- 7£/') sec 6^' in AB; i^{zv-\-w') sec 6 in A i

3(w -|- zv') sec ^ in CD; 2^[zv + w') sec 6^ in 23 ; etc.

Hence, the top chord stresses are

:

C, in AC = 4{zv + zu') tan d' -f ^^{w -\- zv') tan d
;

C, in C2 = C, + 3(w + w') tan 6"

= 4{zv -f t£/') tan 6' + 6|(z£; -f ze;') tan 6
;

C3 in 2ii = C + 2^(zc' -|- w') tan 6

— 4{zv 4- ze/') tan 0' + 9(w -|- zv') tan 6^ ; etc.

The bottom chord stresses are

:

T, in B\ =4(K<-f w') tan B'
\

T, in I i9 = r, + 3A(te/+ ^t/) tan ^

= 4{zv -\- zv') tan H' + 3^(w + «;') tan 6/ = C,

.

So, T^ = C^, T^ = C^, etc., etc.

Again, the stress in any diagonal 4 5 of the system A i 2 . .

.

due to the dead load = \^w sec H.

The live load produces the greatest stress in 4 5, of the same

M

..M
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kind as that due to the dead load, when it is concentrated at

all panel points of the system /i i 2 3 ... on the riy^ht of 4.

The r';action at A is then V"M'', and the corresponding

diaffonal stress = ^-^-w' sec ^.

Hence the maximum resultant stress in 45 = ^"v -\-^$w')

sec S.

The live load tends to produce the i;reatest stress in any

counter 5 8 when it is concentrated at all the panel points of

the system ^ i 2 3 ... on the left of 8.

The reaction at the right abutment is then \w\ and the

corresponding stress in the counter = \'w' sec ^. Thus, the

resultant stress in the counter = (^w'— ^w) sec B, \w sec B being

the stress in 6 7 due to the dead load.

Similarly, the stresses in any other diagonal and counter

may be found.

The Pratt truss composed entirely of iron and with some

of the details of the Whipple truss is sometimes called a

Murphy-Whipple truss. The Linville truss is a Whipple truss

made of wrought-iron, the verticals being tubular columns.

11. Post and Quadrangular Trusses.—The peculiarity of

the Post truss (Fig. 387) is that the

struts are inclined at an angle of

about 22° 30' to the vertical, with a

'''G- 387- view to an economy of material.

The ties cross two panels at an angle of 45° with the vertical.

In the quadrangular truss A
(Fig. 388) the bottom chord has //
adtlitional points of support half-

way between the panel points.

The Bollman, Fink, and other bridge-trusses have been

referred to in a previous chapter.

12. Bowstring Girder or Truss.—The bowstring girder

in its simplest form is represented by Fig. 389, and is an excel-

lent structure in point of strength and economy.

The top chord is curved, and cither springs from shoes

(sockets) which are held together by a horizontal tie, or has its

ends riveted to those of the tie.

The strongest bow is one composed of iron or steel cylin-

Fig. 388.
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drical tubes, but any suitable section may be adopted, and the

inverted trough "tfers special facilities for the attachment of

verticals and diagonals.

The tie is constructed on the same principles as those em-

ployed for other iron girders, but in its best form it consists of

tl;it bars set on edge and connected with the shoes by gibs ami

cotters.

The platform is suspended from the bow by means of ver-

tical bars which are usually of an I section, and are set with

the greatest breadth transverse, so as to increase the resistance

to lateral flexure. In large bridges the webs of verticals and

diagonals may be lattice-work.

If the load upon the girder is uniformly distributed and

stationary, verticals only are required for its suspension, and

the neutral axis of the bow should be a i);uabola. An irregu-

larly distributed load, such as that due to a passing train, tends

to change the shape of the bow, and diagonals are introduced

to resist this tendency.

A circular arc is often used instead of a parabola.

To determine the stresses in the different members, assum-

ing that the axis ABC of the top chord is a parabola:

Let 70 be the dead load per lineal foot.

w "
live " " " "

span of the girder.

greatest depth BD of the girder.

Chord Stresses.—These stresses are greatest when the live

Joad covers the whole of the girder.

The total load due to both dead and live loads = {xv -f- w'^L

The reaction at each abutment due to this total load

10
-f- iv'

^.

'V

L

; <
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Let H be the horizontal thrust at the crown.

" T " " " tension in the tie.

Imagine the girder to be cut by a vertical jjlane a Httle on

the right of BD. The portion AlU) is kept in equilibrium by

the reaction at A, the weight upon AD, and the forces H
and T.

Take moments about B and D. Then

and

w -I- iv'

Let H' be the thrust along the chord at any point P.

Let X be the horizontal distance of P from B.

The portion PB is kept m equilibrium by the thrust H at

B, the thrust //' at i", and the weight {'W-\-iv')x between P
and B. Hence,

//' sec^ i = H" = H'-\- (7f+ JC')V,

i being the inclination of the tangent at P to the horizontal,

and

the thrust at ^ = l~^^0W + V '

Diagonal Stresses due to Live Load.—Assume that the load is

concentrated at the panel points, and let it move from A
towards C.

If the diagonals slope as in Fig. 390, they are all ties, and

the live load produces the greatest stress in any one of them,

as QS, when all the panel points from A up to and including

Q are loaded.
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Let X, y be the horizDiital aiul vertical co-ordiiuites, respec-

tively, of any point on the parabohi witli respect to B as

origin

The equation of the parabohi is

4^'
,

(I)

' !

Let the tangent at the apex /'meet DB produced in L,

and />^C produced in /;'.

Draw the horizontal line PM.
From the properties of the parabola, LM = 2l)M.

Let /'J/= .land lUT = y.

From the similar triangles /.J//\ind LDR,

LM
MP

LP
or

X X -f ~QE

'

4.V'

Also,

^
2y 8.t-

CE _ 1-2X
QE~l-\-2x (2)

Draw £'/^ perpendicular to QS produced, and imagine the

girder to be cut by a vertical plane a little on the rigiit of PQ.

The portion of the girder between PQ and C is kept in

equilibrium by the reaction A' at C, the thrust in the bow at P,

the tension in the tie at Q, and the stress in the tli;.gonal QS.

Denote the stress by D„ , and let the panel OQ be the «th.

Let 6 be the inclination of QS to the horizontal.

Take moments about E. Then

or

IKEF---: Rx CE,

CE
(3)
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Let A'" be the total number of panels. Then

/ . /
-T%. is a panel length, and w'tt is a panel weight.

/ /

Also, X =i H-zv — ', and henceN 2

/ — 2x _ Cli __N — n

7+2I- ~ Qli ^ "«""•

R, the reaction at C when the n panel points preceding T
are loaded,

_ w' n{ji + I

)

Thus, equation (3) becomea

w N — n
Z?„ -—/(«+!)—^—cosec ft .... (4)

Again, by equation (i),

^-sr=4^z,r' = 4^("+J-i

and

{N-n- !)(«+ i)

iV«

Qs {Qr'-\-sTy
COSeC^=;^;^ = ~^.j. .

Hence, finally,

D ='^
" 8 ^ iV N— n — I

(5)

This formula evidently applies to all the diagonals between D
and C.
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Simil.irly, it ui.iy be casil) shown that the stress in .m)'

dia};onal bctwx-cii J) .uul -<•/ is j;ivcn by an (jxprcssion of pre-

cisely the same form.

Hence, the value of />*, in equation (5') is general for the

whole j^irdcr.

A load moving from ( towards .-/ requires diagonals in-

clined in an opposite ilii ciion to tiiose shown in Fig. 390.

Stri'ssis in tin Verticals due to the Live Load.—Let V\ be the

stress in the n\.\\ vertical l\} due to the live li»ad. This stress

is evidently a compression, and is a maximum when all the

panel points from A up to .md including O .ne loaded.

Imagine the girder to be cut b}' a plane S'S" very near VO.

Fig. 390. The portion of the girdei between .S'vS"' and C is kepi

in equilibrium by the reaction A'' at 6, the thrust in the bow

at /', the tension in the tie at O, and the compression F„ in

the vertical.

Take moments about li. Then

V„QH ---- A" X 67:, or r.. ^ R'
N n

n

u

and R' , the reaction at C when the (// — i) pam 1 points from A
, , ,• ^ 1 , ,

w'nin — i)
up to and including O are loaded, = --7

A^'

Hence,

_ 7u' (n — i)(A^— n)

N (6)

a general formula for all the verticals.

Let v„ be the tension in the ;/th vertical due to the dead

load. The resultant stress in it when the live load covers AO
is v„ — V„, and if negative, this is the maximum compression

to which PQ is subjected.

If v„ — l'„ is positive, the vertical PQ isnever in compression.

The maximum tc ision in a vertical occurs when the live

/
load covers the whole of the girder and = w' -J- the tension

due to the dead load.

Note.—The same results arc obtained when A' is odd.
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13. Bowstring Girder with Isosceles Bracing.

Pitra^onal Strfssisdm to the Dead Load. — Utulcr a dead load

the bow is equilibratetl aiul the tic is subjected to a uniform

tensile stress equal in amount to the horizontal thrust at the

crown. The braces merely serve to transmit the load to the

bow and are all ties.

Let T', , 7\ be the tensile stresses in the two diaj^onals

nteetinjj at any panel point Q. Let ^, , ^^.^ be the inclinations

of the diaj^onals to the horizontal.

Let W be the panel weight suspended from Q.

Till- stress in the tie on each side of Q is the same, and

therefore 'J\, T.^, and ITare necessarily in equilibrium.

Hence,

T 11/ ^"'^ ^»
1 r 11/ ^^^ ^

sm W, -i-H,} sin 1^, r ^,)

Diagonal Stresses due to the Live Load.— Let X be the num-

ber of //f///" panels.

2/
1 he length of a panel = -jj ; the weight at a panel point

,2/

Let the load move from A towards C. All the braces in-

clined like f7/*are ties, and all those inclined like QP are struts.

The live load produces the greatest stress in OP when it

covers the girder between A and O.

Denote this stress by D„ ; OG is the «th half-panel.

As before,

D„EF= R X CE (I)
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The load upoi\ AO = nw -.,, and hence R = ~Tr ' ^ y~ •

The ratio of CH to HF is ilenotcd by the same expression

as in the preceding article. Thus,

r 16/t' n*

N- n- I

(2)

The h've load produces the greatest stress in OM when it

covers the girder up to and including P.

Denote the stress hy I)„ ; DG is now the «th half panel.

Let A'' be the reaction at 6.

As before.

D„' = R'~jf. co^cc e, (3)

i^ being the angle MOD.

The weight upon AD — {n— iV"^.

and hence

/

w' .//' — I

N'

It may be easily shown, as in the preceding article, that

\6k''

Nt\{NCE N-H—\
, ^ ..[_

-pr^ — ;

, and cosec o = N rn^OE « -(- I ' ^nk{N — II

-«)«}']'

• D '
w' In— \N— n — I

1 6 A" -|

8 k n N N-n - (4)

Hence, when the load moves from A towards C eq. (2)

gives the diagonal stress when n is even, and eq. (4) gives the

stress when n is odd.

If the load moves from C towards A, the stresses are re-

versed in kind, so that the braces have to be designed to act

both as struts and ties.
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Note.— H\' iiiviMtin^ l"'ig. 391. a bowstrinjj girder is obtained

with the horizontal chord in compression and the bow in

tension.

14. Bowstring Suspension Bridge (I.tiiticulnr Tr/tss\.—
This bridge is a combination o( tiie orchnary .md inverted

bowstrings. 'I'he most important ex.im|)lc is that erected at

Saltash, Cornw.dl, which has a clear span of 445 feet. The
bow is a wroughl-iron tube of an elliptical section stiffened

at intervals b) diaphragms, and the tii' is a pair of chains.

A girdiT of this class may be made to resist the action of a

passing load either b)- the stiffness of the bow or by diagonal

bracing.

B

In Fig. y)2, let />'/>> -- X-, /."/> = k'.

Let //be thehori/.onlai thrust at />', and 7" the horizontal pull

at /) , when the live k)ad covers the whole of the girder. Then

First, let / = /'. Then

7C' -I- 7£'' /'

"^T6~" /•'

which is one half of the corresponding stress in a bowstring

girder of span / and depth /•.

One half of the total load is supported by the bow and one

half is transmitted through the verticals to the tie. Hence,

/
the stress in each vertical = irC^i^' + w"),

w" being the portion of the dead weight per lineal foot borne

by the verticals, and iV the number of panels.
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The diagonals arc str.iiiiccl only under a passing load.

Let /V be a vertical thiouj^li /:, the point of intersection

of any two diagonals in the same panel, and let the load move
fron) A towards O.

By drawing the tangent at /* and proceeding as in Art. 13,

the expression for the diagonal stress in QS becomes, as before,

w' nin- \)l-2x
^n=.,l-^;jz^--co^^c^ (I)

Similarly, the stress in the vertical QQ' is

,, / . tv' ,ii{n -- \)l — 2x
K = w"~,,-]- -/--Tj^-^j-^ (2)

Next, let ^ and X*' be unequal.

Let IV he the weight of the bow, W the weight of the tie.

Then, under these loads.

W I IV ' I w
¥">^' "'' W'

k

k" ' (3)

The verticals are not strained unless the platftnin is attached

to them along the common chord A/)(). In such a case, the

weight of the platform is to be included in W '

The tangents at /' .tnd /'' evidently meet AO proiluced in

the same point O' , for liO' is independent of /' or k' . Ilcnce,

the stresses in the vertical ; and diagonals due to the passing

load may be obtained as before.

15. Cantilever Trusses.—A cantilever is a structure sup

ported at one end only, and a briilge of which such a structure

forms part nuiy be called a cantilever bridge. Two cantilevers

BRIDOE OVERST. LAWRENCE AT NIAGARA,

Fi(.. 393

may project from the supports so as to meet, or a gap may be

left between them which may be bridged by an independent

H



628 TIIKOKV OF SIKUCTUh'KS.

gilder resting upon or hinj^cd to the ends of the c.intilevcrs.

The form of the cantilever is subject to considerable variation.

^5^
SUKKUR BRIDGE

Ki(.. 104.

FOMTH BRIDGE.

Ki(,. !os.

Fi^s. 396 to 401 represent thr simplest forms of a cantilevei

frame. If the member AB has to support a uniformly dis-

Fi(i. 396. Fiu. J97.

Fig <98.

SK\S^^
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lines in F-'lj^^s. 398 and 399. Should a live load travel over

Aiiy eacii .-ii.i)' must be ilcsij^iieil to be.w with safety the

maximum stress to wliieli it. ma)' i)e subjected.

I'i^s. 400 and 401 siunv cantilever trusses with parallel

chords. If the truss is of the douljle-intersection t)pe, ]*"ig.

401, the stresses in the inemheis termin.ilin;^ in /•' beconu- in-

determinate. They ma)' be iiiaile deleiininate by iiUroduein^

a sliort link HD, l""i<^. 40J. Thus, if, in 1)11 produced. IHi be

taken to represent the resultant stress aloni; the link, and if

tlie paralleloLjram 11K be completed. hK will represint the

stress alon;4 />'/:', antl />'// thai aloni; III'.

This link device has been eniplo^eil to ecjualize the [)re>sure

on the turn-table TT of a su ing-bridge (Fig. 403). An " equal-

izer" or " rocker-link" IID, Fig. 404, conveys the stresses trans-

milted through the members of the truss terminating in D to

the centre posts HT.

Theoreticall}', therefore, the pressure over TT will be evenly

distributed, whiitever the loading may be, if the ilirecliv;; of

HI) bisects the angle y7>'7\uul if friction is neglecteil.

The joint between the central span and the cantilever re-

quires the most careful consieleration and .should fult'il the

following conditions

:

{a) The two caiUilevers should be free to expand and aow-

tract under changes of temperature.

[Jy)
Th.e central sj)an should have a longitudinal sup|)ort

which will enable it to withstand the effect of the braking (if a

train or the liressure of a winid blownu ontritudma iiy

(t) The d-e wmil-pressnre on the central span should bear

equally on the two cantilevers.

{li) The connectit)ns at both ends should have sufficient

lateral rigiditx' to check undue lateral vibration. Conditions

(tf) and (t) would be fulfilled b\' supporting the central >pau

like an ordinary bridge-truss upon a rocker bolted down at onr

end and upon <i rocker resting on expansion rollers at the

otiier. This, however, would not satisf\- cbiidiiion (/'). It is

preferable to supjiort the span by means of rolK is or links .it

both ends, and to st-cure it to one cantilever onl)' ou the

central line of the bridge willi <i large vertical [)in, adapted to

I

%
\\:
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transmit all the lateral shearing force. A similar pin at the

other entl, free to move in an elongateil lu)lc, or some ecjiiiva-

lent arrantj^ement. as, e.g., a sleeve-joint bearing laterally .iiul

with rollers in the sjat, is a satisfactory method of transmitting

the shearing force at that end also. (If there is an end post, it

may be matle to act like a hinge so as to allow for expansion,

etc.) The points of contrary flexure of the whole bridge under

wind-pressure are thus fixed, and all uncertainty as to wind-

stresses removed.

Where other sp.ms have to be built adjacent to a large can-

tilever span, it should not be hastily assumed that it is neces-

s.iril)' best to counterbalance the c.mtilever by a contiguous

cantilever in the opposite direction. If it is possible to obtain

good founilations and if piers are not e.xpensive, it* might be

cheaper to build a number of short indepenilent side spans and

to secure the cantilever to an indepeiulent anchorage. If this

is done, care must be taken to give the abutment sufficient sta-

bility to take up the unbalanced thrust along the lower boom
of the cantilever.

Suppose that the cantilever is anchored back by means of

a single back-stay.

Let 11= weight necessary to resist the pull of the b;ick-

sta\' :

// = depth of eiiil post of c.mtilevei-
;

s = horizoiit.il liistance between loot of post and
anclior.ige

;

il/ — bending moment at abutuu'tit - IVs.

If it i>^ now assumed that the sectional areas of the post

and back-sta)- an; proportioned to the stresses they have- to bear

(which is never the case in practice), the quantity of material in

these members must be proporticMial to

h h hz

which is a minimum when z ~ V2/1. k

If a ho'lzotUal member is introduced between the feet of
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the back-stay and the post, the quantity of material becomes

proportional to

rC ft *.* fC

which is a minimum when .: = h, i.e., when the back-stay slopes

at an .int;le of 45". By making the anj^lc between the back-

stay aiul tile horizontal a little less than 45", a certain amount
of material may be saved in the joints of the back-stays and

also in the anchors, which more than compensates for the in-

creased weight of the anchors themselves.

iNotC' -In these calculations it is also assumed that the top

chord is horizontal, and that the feet of the post and back stay

are in the same horizontal pkine. Tb.is is rarely the case in

practice.)

Accordinj^ to the above the weight of materi.il necessary

for the back-sta\' \stiin'ctly proportional to the bending moment
at the abutment and /'//T'<7-.y<'/j/ proportional to tlie tlepth of the

cantilever, other things l)eing equal. A double cantilever has,

in general, no anchorage of any great importance.

If the sp.m is very great, a cantilever bridge usually re-

quires less material than any other rigid structure of equal

strength, even though anchorage may have to be provided.

If two large spans are to be built, a double cantilever, requir-

ing no anchorage, may effect a ver)- considerable saving in

material, although a ilouble pier, of sufficient width for stability

under all conditions of loading, will be necessarj-

Again, where false-works are costly or impossible, the

property of the cantilever, that it can be made to support

itself during erection, gives it an immense advantage. If the

design of the cantilever is such that it can be built out rapidly

.md cheaply, it will often be the most economical fr.inie in the

end, even if the total quantity of material is not so small .is

that required for some other type of bridge. In all engineering

work, quantity of material is only oiu- of the elements of cost,

and this should be carefullj' borne in mind when designing a

cantilever bridge, because a want of regard to the method of

^f
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erection may easily add to its cost an amount much grt ter

than can be saved by economizing^ material.

In ordinary brid<;e-trii:>ses liie amount of the web metal is

greatest at the ends and least at the centre, while the amount
of the chord metal is least at the ends and greatest at the

centre. Thus, the assumption ol a uiiiforml)' ilistributed dead

load for such briilj^cs is, "generally speaUinij, swfliciently ac-

curate for practical purposes. In the case of cantilever

brid;.jes, however, the circumstances are entirely different. In

these the amount of the metal both in the web and in the

chords is greatest at the support and least at the end. I')r

example, the weight of the cantilevers (exclusive of the weight

of platform, viz., ^ ton per lineal foot) for the Indus Britlge,

per lineal foot, v.iries frt)m 6^ tons at the supports to i ton at

the outer ends. Hence, the hy|K>tlic>is of a uniformly dis-

tributed dead load for such structures cannot hold good.

The weight of a cantilever for a given span may be approxi-

mately calculated in the following manner:

Determine the stresses in the several members, panel by

panel

—

(A) For a load consisting of

(i) a given unit weight, say lOO tons, at the outer end ;

(2) the corresponding dead weight.

(B) For a load consisting of

(1) the specified live load
;

(2) the corresponding panel dead weight.

Thus, the whole weight of a panel will be the sum of the

weitdits deiluced in (Ai and (B), and the total weight of the

cantilever will be the sum of the several panel weights.

This process evidently gives at the same time the weights

of cantilevers of one, two, three, etc., panel Irngths, the loads

remaining the same.

The panel dead weights referred to in (A) and (B) muit, ir

the first place, be assumed. This can be doiu' with a large de-

grct; of accural:)', as the deatl weight must necessarily ^'/vr^///<?//)'

increase towards the support, and any error in a particulai*

panel may be easil}' rectified by sub >i<iuent c.dculations.
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Again, the preceding remarks indicate a method of finding

the most economical cantilever length in any given ase.

Take, e.g., an opening spanned by two equal cantilevers and

an intermediate girder. Having selected the type of bridge to

be employeil for the intermediate span, estimate, either from

existing bridges or otherwise, the weights of indepeiitlent

bridges of the same type and of different spans. Sketch a

skeleton diagram of the cantilever, extending over one-half of

the whole span, and apply to it the processes referred to in (A)

and (H).

If A is the length of the cantilever and /' that of a panel,

the following table, in which the intermediate span incre; scs

by two panel lengths at a time, may be prepared :

?,a

2P
AP
bP
8/'

eic.

5 H'-' f

at>J z
B~
^ St/;

a f

/. - 2/'

/. - 4/'

/. - ()P

L - %P
eic.

u ii.

>.ch:

— — _ '— u

£ ?; o c
i-, cJ i'

.

IT C (^£.5-

bi rt

> a

5- 2.
3 Ot/l

Weight in col. 3 = omJ/ti// <>f the weight of the intermediate

girder

\- onc-lialf <t{ the live load it carries if uni-

formly distributed. (The proportion will

be greater tlian one-half for arbitrarily

distributed loads, and may be easily de-

termined ill the usual manner.)

Col. 5 gives the weights obtaineil .is in A.

Col. 6 = col. 5 X
weight on end of cantilever

100

Col. 7 gives the weights obtained as in />'.

Col. 8 = col. 2 -f- col. 6 -f- col. 7.

It is important to bear in mind tiiat an increase in the weight

of the central .span necessitates a corresponding increase in the
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vcights of the cantilevers. Hence, in order that the weight of

the structure may be a minimum, the best material with the

highest practicable working unit stress should be employed for

the centre span.

The table must of course be modified to meet the require-

ments of different sites. Thus, if anchorage is needed, a column

may be added for the weights of the back-stays, etc.

l6. Curve of Cantilever Boom.—Consider a cantilever

with one horizontal boom OA, .uul let x,y be the co-ordinates

of any point P in the other boom, O being the origin of co-or-

Fui. 405. Fio. 406.

dinates and A the abutment end of the cantilever.

Let W^be the portion of the weight of an independent span

supported at O.

Let w be the intensity of the load at the vertical seclloii

through /'.

Assume (i) that there are no diagonal strains, and, hence,

that the web consists of \'erlie.U members only

;

(2) that the stress H in the horizontal booui is

constant, and therefore the bending moment
A\. P=. Hy\

(3) that the whole load is transmitted through the

vertical members of the web.

Let k be such a factor that kTl is the weight of a member
of length /, subjected to a stress T.

{Not,: — If / is in feet and T in tons, then k for steel is about

.0003, allowance being made for loss of section or increase of

weight at connections.)

ta consists of two parts, viz., a constant part p, due to the

weight of the platform, wind-bracing, etc., which is assumed to
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be uniformly tlistributed ; and a varUibU- part, due to the

wciglit of tlic cantilever, which may be obtained as follows:

Weight of element dx of horizontal boom = klldx.

" " web corresponiling to dx — kivydx.

*' element of curved boom corresponding to dx

Hence the variable intensity of weight

= kH -h kwy -f kH (^'^
;'-)

,

and

h\*
w=f-{- kll^ kwy 4- kll

[^J^

Again, \\ M is the bending inomeni and 5 the shearing

fojce ut the vertical section through /^ then

d'M dS ^iPv

fl^' ffr dx'

Integrating twice,

Hy:=A + Bx-^{p-^r 2kH)-^ + kU^,

A find B being constants of integration.

I i

Thus, A —Q and U=. W.
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Hy = Wx 4- (/ -I- 2kHf^ + kH^

is the equation to the curve of the boom, and re])iesents an

elhpse witli its major axis vertical, and with the lengtlis of the

,

{p-\-2kH\^
two axes in a ratio equal to I — , .. ) .

The ilepth of the longest cantilever is determined by the

vertical tangent at the end of the minor axis, and corresponds

to the value of y ^^iven by making , = o in the preceding

equation, which gives y = ~.

For a given value of //the curve of the boom is independ-

ent ol the span. Again, for a given length of cantilever with

a boom of this elliptic form, a value of // may be found which

will make the total weight a minimum, and which will there-

fore give the most economical depth. Such an investigation,

however, can onl)' be of interest to mathematicians, as the

hypu'tiieses are far from being even approximately true in

practice, and the resulting depth would be obviously too great.

Assumption (i) on page 634 no longer holds when a live

load has to be considered. Diagonal bracings must then be

introduced, which become heavier as the depth increases, in

conse(|uence of their increased length. The diagonal bracings

are also largely affected by the length of the panels. If the

panels are short, and if a great depth of cantilever, diminishing

rapidly away from the abutment, is used, the angles of the

diagonal bracing, near the abutment, will be unfavorable to

economy. This difTiculty may be avoided by adopting a

double system of triangulation over the deeper part of the

cantilrvcr onl)', or even a treble system for some distance in

a large span. The objections justly urged against multiple

systems of triangulation in trusses lose most of their force in

large cantilevers. In the first place, the method of erection

by building out insures that each diagonal shall take its proper

share of the dead load ; and in the second place, it should be
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remembered that only in lar^c spans n)ul(l a double system

have aiiythin^^ to recommend it, and then only near the abut-

ment where the stresses ar( greatest : in such cases tlie moving

h)ad only produces a small portion of the entiii stress in the

web. In practice, a compromise has to be made between dif-

ferent reipiirements, and tlie depth juust be kept within such

limits as will admit of reasonable proportions inother respects,

while the diagonal ties or struts may be allowed to var>' in in-

clination, to >()me extent, from one panel to another.

AjjaiiK in hxiii^ the panel length, care mti t be taken that

there is no undue excess of platform weij^ht, as this will pro-

tluce ?. corresponding increase in the weight of the canidever.

An excessive depth of cantilever generally causes an in-

crease in the cost of erection.

Botii theory and practice, however, indicate that it will be

more advantageous to choose a greater depth for a cantdever

than for an onlinary girder bridge.

An ordinary proportion for a large girder bridge would be

one-ninth to one seventh of the span, and if for the girder were

substituted two cantilevers meeting in the middle of the span,

the depth might with advantage be considerably increased

beyond lhi> pioportion at the abutment, it ii be reducetl to ;///

where the cantilevers meet. When a central span is introduced,

resting upon the ends of the two cantilevers, the concentrated

load on the enil gives an additional niason tor still further in-

creasing the depth at the abutnuiit proportionally to the Ungtii

of the cantilivir. The greatest economical (kpth ha-; probably

been reached in the Indus bridge, in which the depth at the

abutment ~ .54 X length of cantilever. Probably the propor-

tion of one-third of the length of the cantilever would be

ample, except where the anchorage causes a considerable ])art

of the whole weight, but each case must be considered on its

own merits. The reduction of deflection obtained by increas-

ing the depth is also an appreciable consideration.

If a depth be chosen not widely different from that which

makes the quantity of material a minimum, the weight will be

only slightly increased, while it is possible that great structural

advantages may be gained in other direction.s. In recommend-
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i

ing a great depth for a cantilever at its abutment, it is assumecJ

that the depth will be continuously reduced from the abutment

outwards. If the load were continuously distributed, it is by

I'o means certain that ^ cantilever of uniform depth would re-

quire more material than one of varying depth, but it has

already been pointed out to what extent the weight of the

structure itself necessarily varies, and if the concentrated load

at the end were separately considered, the economical truss

would be a simple triangular frame of very great depth. From
economic considerations, it would be well to reduce the depth

of the cantilever at the outer end to nil, but in many cases it

is thought advisable to maintain a deptii at this point equal to

that at the end of the central span, so that the latter maj' be

built out without false-works, under the same s}stem of erection

as is pursued in the case of the cantilever. Tlie post at the

ends ot the central span and cantilever is sometimes hinged to

allow for expansion.

17. Deflection.—A serious objection urged against can-

tilever bridges is the excessive and irregular deflection to which

they are sometimes subject. They usually deflect luore than

ordinary truss-bridges, and the deflection is proportionately

increased under suddenly applied loads. In the endeavor to

recover its normal position, the cantilever springs back with

increased force and, owing to the small resistance offered by

the weight and stiffness at the outer end, there may result,

especially in light bridges, a kicking movement. It must, how-

ever, be borne in mind that the deflection, of which the impor-

tance in connection with iron bridges has always been recog-

nized, is not in Itself necessarily an evil, except in so far as it is

an indication or a cause of over-strain.

18. The Statical Deflection, due to a quiescent load,

must be distinguished from what might be called the dynamical

deflection, i.e., the additional deflection due to a load in motion.

The former should not exceed the deflection corresponding to

the statical stresses for which the bridge is designed. The
amount of the dynamical deflection depends both upon the

nature of the loads and upon the manner in which they are

applied, nor are ihere sufificient data to determine its value
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even approximately. It certainly largely increases the statical

stresses and produces other ill effects of which little is known.

Hitherto, the question as to the deflection of framed struc-

tures has received but meagre attention, and formulae deduced

for solid girders have been employed with misleading results.

It would seem to be more scientific and correct to treat each

member separately and to consider its individual deformation.

19. Rollers.—One end of a bridge usually rests upon nests

of turned wrought-iron or steel friction rollers running between

planed surfaces. The diameter of a roller should not be less

than 2 inches, and the pressure upon it in pounds per lineal

inch should not exceed 5CX) Vd if made of wrought-iron, or

600 \'d if made of steel, d being the diameter in inches.

20. Live Load.—It is a common practice with many en-

gineers to specify the live load for a bridge as consisting oi a

number of arbitrary concentrated weights which are more or

less equivalent to the loads thrown upon the locomotive and

car axles.

Figs. 407, 408, and 409 are examples of such practice.

(T) %• (^°0\^°vV »'• (?) M"(7)80)<(7) 64-(7) yio^'CT)A'G) \

Fig. 407.

C^) »•• (?)''''(?y(?)(?) 8f (7) .-»'(?) i8-(7) 5/(7) osy^ \

CI C CI CI

Fig. 408.

^(7) 07- (/)«»'(v<f\><(^) el)-(r)58-(7) 08-(;r)58-(r) 108X0 /

Fig. 409.

With such a live load, the determination of the position of

the locomotive and cars which will give a maximum shear and

a maximum bending moment at any section is much facilitated

by the principles enunciated in Art. 8, Chap. II.
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If the chords are parallel, and if 5 is the maximum shear

tranjmitted through a diagonal incHned at an angle B to the

vertical, the maximum stress in that diagonal = Ssec B, and

the corresponding stress transmitted to a chord through the

diagonal

= 5 sec ^sin '^ = ^tan 0.

A modification is necessary when the chords are not paral-

lel. Consider, e.g., a truss with a horizontal bottom chord

and a top chord composed of inclined members. Retain the

same notation as in the article referred to, and let Z>, , Z), be

the stresses corresponding to X.\\q first and ^tr^W distributions,

respectively, in a diagonal met by a vertical section between

the rth and (r -j- i)th weights. Also, let the member of the

upper chord cut by the same section be produced to meet the

horizontal chord produced in the point C.

Let AC = h, and let / be the perpcMidicular from C upon

the diagonal in question.

Taking moments about C,

D,p = KJi - zi'Xh -f- / - rt.) - zi>,{h -^l - a,)

iv,{h -f / - a,),

and

Dj> — kji - n\{li -\- 1 — a, — x) — 7v,{h -\- I — a^ — x) — . . .

— zv,.{h -\-l — a,. — x^ — ?tv+i(// + / — c?,.+., — -r) — . . ,

- iv,^^lh 4- / - a,.^, - x).

It is assumed, for simplicity, that no weights leave or ad-

vance upon the bridge.
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according as

Rh — zvlh 4. / — <7,) — w^h + / — i^) — ... — w,{h -\- l—a^ '=

RJi — %i\{h -\- 1 — a^ — x) — 7c'5(// -\- I -- a^ — x) — . . .

— IVrill -\- l—ctr — x) — i^',.+,{h + / — a^+, — x) — . . .

- ^f,.+,(/! + / - (h-^, 4- x\
or

>
^/(^+ /^ ^ '^'(^'l + ^^.+ • • • 4- 2^r + ^^.+ . + • • • ^'^r+v)

where R^'{1 -\- h) = algebraic sum of the moments, with respect

to C, of the weights transferred,

= ZO,.+ i{^i -\-/ — (rr+,) + . . . + ZO.^^i/i 4- / — iir+g)

and

R,-R,^jlK-

Hence,

according as

A I A,

;»r

/?/(/+ /^) =.r(?F„+7)+^f^,^/.

Take, e.g., the truss represented by the accompanying dia-

gram (Sault Ste. Marie Bridge), the Hve load being that shown

by Fig. 407, i.e., tlie loading from a Standard Consolidation

engine with four drivers and one leading wheel.

Fig. 411.

Span = 239 ft.

Length of centre verticals = 40 ft.; of end verticals = 27 ft.

tJ
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Ajjplying the principles referred to in the preceding it is

found tliat the distributions of live load, concentrated at the

panel points, which will give the maximum stresses in the

several members, may be tabulated as below

:

Distribu-
tions.

Case I

" 2

:: %::::.
" 7
" 8

Dead weight

End
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Or, grapJtically, upon the vtrtical through B (Fig. 412) take

BM to represent 7500 lbs., and join AM. Let the vertical

through a^ meet AM in /;, , and the horizontal through AM
in t,. Then aj\ represents the portion of 7500 lbs. borne at

B, and <^,c, the portion borne at A.

Also, take BiV io represent I2,0(X) lbs.
;
join AN, CN. Let

the verticals through «, , a^, a^ meet AN, CN in Aj, 63, f\, and

the horizontal through N in t,, f^, c^. Then rta^Jia, rfj^^a, ^J:4<54

fi—Jc.

Fig. 412.

represent the portions of each 12.000 lbs. borne at B, wliile

b^c^, b^c^ represent the portions borne at A, and b^c^ the portion

borne at C.

Finally, take BO to represent 10,625 lbs., and join CO. Let

the verticals through a^, a^ meet CO in b^, b^, and the horizon-

tal through (9 in fj, f,. Then aj)^, aj)^ are the portions of each

10,625 lbs. borne at B, while b^c^, b^c^ are the portions borne at

C. Thus the total weight at B
— a J), + «A + aA + BN-\- ajb, + a,b^ + aJ),.

It is open to grave question whether the extremely nice

calculations required by the assumption of arbitrary weight

calculations are not unnecessary except for floor systems. The
constantly increasing locomotive and car weights and the

variety in type of locomotive v/ould seem to render such cal-

culations, based as they are upon one particular distribution of

load, of no effect.

On the other hand, if it is assumed that the standard live

load consists of a uniform load of, say, 3000 lbs. to 3600 lbs.

per lineal foot, with a single weight of, say, 25,000 lbs. to

35,000 lbs. for each truss, at the head or at any other specified

n
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point, i.e., rolling on the uniform load, the calculations would

be much simplified and the resulting stresses would be at least

as approximately accurate.

Let E be the single concentrated load, T the panel train

load, and D the panel dead load.

Consider a truss of N panels with a single diagonal system,

Fig. 413, and let E be at the rth panel point.

N-1 NS
Fig. 413.

The shear immediately in front of E due to E

the shear at same point due to T

__ T
{
N-r- \){N-r)

~~ N 2 »

the shear at same point due to D
_ D N{N - 2r + I)

~ N
'

2

Diagonal Stresses.—The maximum diagonal stresses may
now be easily tabulated as follows :

TABLE I.

1
.2
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Col. I designates the several diagonals.

Col. 2 gives the multiplier N — r iox different values of r.

Col. 3 gives the maximum vertical shears due to E trans-

mitted through the several diagonals. This shear for any

given diagonal is the product of the corresponding multiplier

E
in col. 2 and -77-.

Cols. 4 and 5, 9 and lO give similar quantities for the live

and dead loads.

Col. 6 gives the sums of the shears in cols. 3 and 5, i.e., it

gives the total maximum vertical shears due to live load.

Col. 8 gives the maximum diagonal stresses due to live

load. For any specified diagonal it is the product of the cor-

responding shear in col. 7 and the secant of the angle between

the vertical and the diagonal in question.

Col. 1 1 in like manner gives the maximum diagonal stress

due to deaa load.

Col. 12 gives the total maximum diagonal stresses due to

both live and dead loads.

Another column might be added giving the sectional areas

of the diagonals.

In the above table the diagonal stresses due to the live and

dead loads are sepamtely determined, as different coefficients

of strength are sometimes specified for the two kinds of load.

With a suitable compound coefificient of strength, cols. 6, 8,

and II may be replaced by a column giving the sums of the

corresponding shears in cols. 3, 5, and 10, These sums, multi-

plied by secant ^, give the maximum diagonal stresses.

Stresses in the Verticals.—The maximum stress in any ver-

tical, say at the rth panel point, is evidently the vertical com-

ponent of the maximum diagonal stress in the rth panel, i.e., it

is the maximum vertical shear in the rth panel.

To be more accurate, this amount should be diminished by

the portion of the weight of the lower chord borne at the foot

of the vertical in question.

Chord Stresses.— Take the load at each panel point
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TARLE OF MAXIMUM STRKSSES IN TENSION CHORD.

Member.
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tliridi^h the two systems of diagonals when tlie 25,000 lbs. is

at tlie first panel point.

TAHI.E OF MAXIMUM STRESSES IN VERTICALS.

The maximum stress in an end vertical evidently occurs

when the 25,000 lbs. is concentrated at its foot.

7', = 25000 -j- 10800 — 35iSoo Ib.s. (tensioni

;

T', = 19250 -I- 5400 — 24C50 " (compression);

%\ = 10725 + O = 10725 " "

V, — 7600 -- 5400 = 2200 "

Chord Stresses.—Load at each panel point

= 1+7-4-/? = 35525.

II

TABLE OF MAXIMUM STRESSES
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TABLE OF MAXIMUM STRESSES IN DIAGONALS.

M-

Member.
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21. Wind-pressure.—Nuin<jious experiments to deter-

mine the pressure and velocity of the wind have been nuuie

by means of feathers, cloud-shadows, anemometers of variu.is

kinds, wind-gauges, pendulum, tube, and spiing instruments.

Tile results, either through errors of observation, errors of con-

struction, or for other occult reasons, are almost wholly u '.re-

liable and give the engineer no accurate information upon

which to base his calculations as to the effect of wind upon a

structure. Theoretical investigations on the subject are equally

unsatisfactory. The formula; expressing the relations between

the speed of the anemometer, the velocity of the wind and its

pressure, are of a purely empirical character, and are only

applicable to a specific series of recorded observations.

Smeation inferred from Rouse's experiments that the aver-

age pressure in pounds per square foot = (velocity in miles per

hour)' ^ 200, or

200

According to Dines the formula should be

P = 71
7a

2000

The Wind-Pressure Commission (Eng.) recommended the

formula

P =
100

as giving with tolerable accuracy the maximum pressure.

Stokes considers that the actual wind velocities should be

2.4 4
about — = - of the values recorded by anemometers, so

3 5

that a velocity of 64 miles per hour recorded as coi lesponding

to a maximum pressure of 40.6 lbs. per square foot (the aver-

age o{ five observed pressu»-es) would be reduced to 51.2 miles

per hour. The average pressure corresponding to 51.2 miles
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per hour would be 13.1 lbs. per square foot according to

Smeaton's rule and only 9.18 lbs. according to Dines.

Again, certain experiments at Greenwich indicated that

the pressure was increased by the stiffness of the copper wire

connecting the recording pencil with the pressure plate, and a

flexible brass chain was therefore substituted for the wire.

Thus modified, a pressure of 29 lbs. per square foot was regis-

tered as corresponding to a velocity of 64 miles per hour,

whereas with the copper wire a pressure of 49^^ lbs. per square

foot had been registered with a velocity of only 53 miles per

hour.

These facts tend to show that the actual pressure is much
less than that given by a recording instrument, and that the

very high pressures, as, e.g., 80 lbs. per square foot and even

more, must be due to gusts or squalls having a purely local

effect. This opinion seems to be confirmed by Sir B. Baker's

experiments at the Forth Bridge, which also indicate that the

pressure per square foot diminishes as the area acted upon

increases. No engineering structure could withstand a press-

ure of 80 lbs. per square foot of surface, and a pressure of 28

lbs. to 32 lbs. would overturn carriages, drive trains from the

track, and stop all trafific.

It is, of course, well known that wind-forces sufficiently

powerful to uproot huge trees and to demolish the strongest

buildings are occasionally developed by whirlwinds, tornadoes,

and cyclones, but these must be classed as acta Dei and ca.i

scarcely be considered by an engineer in his calculations.

Numerous observations as to the effect of w ind upon struc-

tures in different localities must yet be made before any useful

and reliable rules can be enunciated. In the case of existinti

bridges the elongation of the wind-braces during a storm can

easily be measured within -jyVo ^^ '^'i inch. Investigations

should be made as to the action of the wind upon surfaces of

different forms and upon sheltered surfaces, as, e.f ., upon the

surfaces behind the windward face in bridge-trusses. Again,

it is quite possible, if not probable, that many of the recorded

upsets have been due to a combined lifting and side action,

reqi iring a much less flank-pressure than would be necessary
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if there were no upward force, and hence further hght should

be obtained on this point.

Under any circumstances, the wind-stresses should be as

small as possible, compatible with safety, seeing how largely

they influence the sections of the several members, especially

in bridges of long span.

22. Empirical Regulations.

Wind-Pressure Commission Rules.—For railway bridges and

viaducts assume a maximum pressure of 56 lbs. per square foot

upon an area to be estimated as follows :

A. In close-^\xAitx bridges or viaducts the area

= area of windward face of girder

-|- area of train surface above the top of the same gir-

der.

B. In (7/<?«-girder bridges or viaducts the area for the wind-

ivard girder

= area of windward face, assumed close, between rails

and top of train

-|- calculated area of windward surface above the top

of the train

-f- calculated area of windward surface heloxo the rails.

For the leeward girder or girders the area

= calculated area of surface of one girder above the

top of the train and below the level of the rails,

the pressure being 28, 42, or 56 lbs. per square

foot, according as this area < \S, > \S and <\S,

or >|5, where 5 is the total area within the out-

line of the girder. The assumed factor of safety

is to 1)0 4.

American Specifications.—{ci) The lateral bracing /;/ tJiC

plane of tae roadway is to be designed so as to bear a pressure

of 30 lbs. per square foot upon the vertical surface of one

truss and upon the surface of a train averaging 12 sq. ft. per

lineal foot, i.e., 360 lbs. per lineal foot ; this latter is to be re-

garded as a live load. The lateral bracing in the plane of the

other chord is to be designee! so as to bear a pressure of 50 lbs.

per square foot upon tzotee the vertical surface of one truss.

{b) The portal, vcrtic.d, and horizontal bracing is to be
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proportioned for a prcssme of 30 lbs. per square foot upon

i'u'icc the vertical surface of one truss and upon the surface of

a train averagin<^ 10 sq. ft. i^er lineal foot, i.e., 300 lbs. per

lineal foot, the latter being treated as a live load.

{c) Live load in plane of roadwa)' due to wind-pressure

= 300 lbs. per lineal foot.

Fixed load in plane of roadway due to wind-pressure

= 150 lbs. per lineal foot.

Fixed load in plane of other chord due to v^'ind-pressure

= 150 lbs. per lineal foot.

Lateral Bracing.—Consider a truss-bridge with parallel

chords and panels of length/. Let ^i be the area of the ver-

tical surface of one truss.

According to {a), the lateral bracing in the plane of the

roadway is subjected to (i) a panel live load of 360/ lbs. and

(2) a panel fixed load of t,oA lbs., wliile in the plane of the

otiier chord it is subjected to a panel fixed load of

50 X 2^ = 100A lbs.

Thus, if the figure represent the bracing in the plane of the

roadway of a ten-panel truss, and if the wind blow upon the

3o:a
A

^1 30:A 30;A 30A 30;a 30;A
I

+ + + *• „ +
30^A 36(j^P 3e(^P 360 P 360 P 360 P 36^ P

30 A B

Fig. 416.

side AB, the inaxinmm horizontal force for which any diagonal,

e.g. CD, is to be designed is

= 45^] lbs. due to the horizontal force of ^oA lbs. at

each panel point

-|- 756/) lbs. due to the horizontal force of 360/' lbs. at

each panel point between C and B.

The dotted lines show the bracing required when the wine

blcivs on the opposite side.

It is sometimes maintained that the wind-forces in the
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plane of the upper chords of a through-bridge or the lower

chords of a deck-bridge are transmitted to the floor-bracing

through the posts. This can hardly be correct in the case of

long posts, as they do not possess sufficient stiffness. It has.

however, been pointed out by Mr. W. B. Dawson that, in

through-bridges, the cumulative effect of the wind-pressure at

the ends of the bridge might produce a serious bending action

in the end posts. This action would have to be resisted by
additional plating on the end posts below the portals, or by an

increase of their sectional area.

Under wind-pressure the floor-beams act as posts ; hence,

if tne wind-bracing is attached to the top or compression flangr

of a floor-beam, the flange's sectional area must be propor-

tionately increased. If the bracing is attached to the lower

or tension flange, the stresses in the latter will be diminished.

23. Chords.—The wind-pressure transmitted through the

floor-bracing increases the stresses in the several members, or

panel lengths, of the leeward chord, the greatest increments

being due to a horizontal force of (360/' -|- 30/i) lbs. at each of

the panel points in AB. The corresponding chord stresses in

the ten-panel truss-bridge referred to above are :

C.

c.

c.

c.

c

= 0;

4K36o/> + 30^) tan lbs.

;

C, + 3^(360/ + 30^) tan B

C, + 2K360/ + 3oyi) tan d

C,-^ 1^(360/) 4- 30yJ) tan B

8(360/ + 10A) tan B lbs.

;

10^(360/' -|- 10A) tan 6 lbs.

;

12(360/ + 30^) tan B lbs.

go°-—6 being the angle between a diagonal and a chord.

Again, the wind-pressure tends to capsize a train and throws

y
an additional pressure of Py, lbs. per lineal foot upon the lee-

ward rail, /* being the pressure in pounds per lineal foot on the

train surface, y the vertical distance between the line of action

of P and the top of the rails, and G the gauge of the rails.
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Thus, the total pressure on leeward rail

=
(

w y\
-1 -j- P^j lbs. per lineal foot,

and the total pressure on windward rail

(w _y\= \z ~ ^7^) lbs, per lineal foot,

w being the weight of the train in pounds per lineal foot.

Hence, the total vertical pressure at a panel point of the
leeward truss

= "^p ^ppf-c = {tp -;-/^"I) lbs.,

S being the distance between the trusses.

24. Stringers.—Each length of stringer between consecu-

tive floor-beams may be regarded as an independent girder

resting upon supports at the ends, and should be designed to

bear with safety the absolute maximum bending moment to

which it may be subjected by the live load. If the beams are

not too tar apart, the absolute maximum bending moment will

be at the cenue when a driver is at that point. Again, in the

case of the Sault Ste. Marie Bridge, it may be easily shown

that the maximum bending moment is produced when the four

pairs of drivers are bettveen the floor-beams.

Let/ = distance of first driver from nearest point of support.

The reaction at this support

=. ifo oii( 824 - 4r) = 1^(206 - y).

The bending moment is evidently a maximum at the second

or third driver, and at the second driver

= iL|iL(2o6 — j)(56 \-y) — \ 2000 X 56 ;
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at the third driver

= ip(2o6— j)(io8+^)— 12000(52-1- 108).

In the first case it is an absolute maximum when y = 75"
;

" " second " " " " '• " j/ = 49"

;

its value in each case being 2,188, i66§ in. -lbs.

Hence, the bending moment is an absolute maximum and
equal to 2,i88,i66| in.-lbs., at two points distant 75 in. from

each point of support.

Also, if /, is the moment of inertia of the section of the

stringer at these points, <:, the distance of the neutral axis from

the outside skin, and /, the coefficient of strength, then

2 /
-(2188166^) =/, - for the inner stringer,
3 ^1

and

-(2188166I) =/, - for the outer stringer.
3 ^1

The continuity of the stringers adds considerably to their

strength.

25. Maximum Allowable Stress.— Denoting by A and B,

respectively, the numerically greatest and least stresses to

which a member is to be subjected, the following rules will give

results which are in accordance with the best practice

:

I, Members subjected to Tensile Stresses only.

For tvrought-iron, maximum stress per square inch

= loooo lbs. = 8000^1 -1- -^
J
lbs. = ^3.81 -|- 1.9 J ) tons.

For steel, maximum stress pei square inch

= 12000 lbs. = 10000(^1 -h -jj lbs. = (5.08 -|^ 2.54-jj tons.

!
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II. Mcvibcrs subjected both to Tensile and Compressive Stresses.

For wrought-iron, maximum stress per square inch

= 8ooof I - ^v^j lbs. =
(^3

81 — ^'9^1 <^o"s.

For steel, maximum stress i)er square inch

= loocx)^! — -4) lbs. = ^5.08 — 2.54
-^j

tons.

III. Members subjected to Compressive Stresses only.

Denote the ratio C)i the length (/) to the least radius of

gyration {k) by r.

f
The maxnnum stress per square inch = —-j-—^,

lbs.,
I "T" (it

/being 8000 lbs. for wrought-iron and 10,000 lbs. for steel, and

- being 40,000. 30,000, or 20,000, according as the member has
a

two square (fixed) ends, one square and one pin end, or two

pin ends.

Again, the maximum stress per square inch for steel struts

with two pin ends = (loooo— 6orj'yi -j- ^~j lbs.;

" " square ends — ( 1 0000 - 40r) f i 4 J lbs.;

" " pin ends = (s - 4^ (^ +
;;f

) tons;

" " square ends = (5 - gr-)(^i + -j") ^ons.

In the last two expressions r < 40. These expressions may
be also employed in the case of alternating stresses, but the

factor must then be changed to (^i + -—j-j.
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26. Camber.—Owing to the play at the joints, a girder or

truss will deflect to a much greater extent than is indicated by
theory, and the material will receive a permanent set, which,

however, will not prove detrimental to the stability of the

structure unless it is increased by subsequent loads. If the

chords were initially made straight, they would curve down-
wards; and although it does not necessarily follow that the

strength of the truss would be sensibly impaired, the appear-

ance would not be pleasing.

In practice it is often specified that the girder or truss is to

have such a camber or upward convexity that under ordinary

loads the grade line .ill be true and straight ; or, again, that a

camber shall be given to the span by making the panel lengths

of the top chord greater than those of the bottom chord by

.125 in. for every 10 ft.

The lengths of the web members in a cambered truss are

not the same as if the chords were horizontal, and must be care-

fully calculated so as to insure that the several parts will fit

together.

To find an Approximate Value for the Camber, etc.

Let d be the depth of the truss.

Let s^ , s, be the lengths of the upper and lower chords, re-

spectively.

Let /, , /, be the unit stresses in upper and lower chords,

respectively.

Let d^ , d, be the distances of the neutral axis from the

upper and lower chords, respectively.

Let R be the radius of curvature of the neutral axis.

Let / be the span of the truss.

Then

^^^^ and R
i-s, /,

" = -^, approx.,

the chords being assumed to be circular arcs.

Hence, the excess in length of the upper over the lower

chord
/ d
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Let ,r, , .r, be the cambers of the upper and lower chords,

respectively ; R -f- </, and R — d^ are the radii of the upper

and lower chords, respectively.

By similar triangles,

the horizontal distance between

tile enils of the upper chord \ R l\

the horizontal distance between

the ends of the lower ch

-'tween
\
_R — ^K,

lord \
~ "A*

Hence,

and

^

—

1\ = x^ . 2\R -\- flf,), approximately,

I 1?
—

'^] ~ ^'
'
^^^ ~ ^^»^' approximately.

27. Rivet-connection between Flanges and Web.

—

The web is generally riveted to angle-irons forming part of

the flanges.

The increment of the flange stress transmitted through

the web from point to point tends to make the angle-irons slide

over the flange surfaces.

Denote the increment by F, and let // be the effective depth

of the girder or truss.

Then, if .S" be the shearing force at any point,

F/i = the increment of the bending moment per unit

of length

= (^)= 5 in the case of a close web,

and Fh = the increment of the bending mom^int

= (JM) = Sa in the case of an open web

;

a being the distance between the two consecutive apices or

panel points within which S lies.
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Hence, if iV be the number of rivets /»tr unit of leni»th for

the close web, or tlie number between the two consecutive

apices for the open web,

N /, — F = Y for the close web,

and

=
-J-

for the open web,

d being the diameter of a rivet, and f, the safe coefficient of

shearing strentjth.

28. Eye-bars and Pins.—Eye-bars connected with pins

have been commonly employed in the construction of suspen-

sion cables, the tension chords of ordinary trusses and canti-

levers, and the diagonals of u'eb systems. The requisite sec-

tional area is obtained by placing a number of bars -'de by

side on the same pin, and, if necessary, by s..lting two or more

tiers of bars one above another.

j^

Fib. 417.

&=^^
XX

^^—^'
Fig. 418.

"QT

Fig. 419.

The figures represent groups of eye-bars as they oftert

occur in practice.

If two sets of 2« bars pull upon the pin in opposite direc-

tions, as in Figs. 418 and 419, the bending moment on the pin

will be 7iPp, P being the pull upon each bar, and p the distance

between the centre lines of two consecutive bars.
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Hence,

theony of stkuctukes.

nPp =
f/,

/bcin^; the stress in the material of the pin at a distance c from

tile neutral axis, and / the moment of inertia.

In ^iiemral, the bending action upon a pin connecting a

number of vertical, horizontal, and inclined bars may be de-

termined as follows :

Consiilcr one-half of the pin only.

Let /
', Ki^. 420, be the resultant stress in the vertical bars.

•It is necessarily equal in majfiiituile but opposite in din-c-

tion to the vertical component of the resultant of the stresses

I

_l'i-J

-tv
H

->H

Fig. 430,

in the inclined bars. Let v be the distance between the lines

of action of these two resultants. The corresponding bending

action upon the pin is that due to a couple of which the mo-

ment is Vv.

Let h be the distance between the lines of action of the

equal resultants H of the iiorizontal stresses upon each side of

the pin. The corresponding bending action upon the pin is

that due to a couple of which the moment is Hh.

Hence, the maximum bending action is that due to a couple

of which the moment is the resultant of the two moments Vv

and Hh, viz.,

\/{Vvy-\-{Hh)\

Eye-bars.—In England it has been the practice to roll bars

having enlarged ends, and to forge the eyes under hydraulic
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Fig. 421.

preiisurc with suitable sliapcd dies. In America both liammcr-

for^cd and hydraulic-for^jcd cyc-bars arc made, the hitter hcing

called ti'fidltss eye-bars. Careful mathematical and experimen-

tal itivestigatioiis have been carried out to determine the proper

dimensions of the link-head and pin, but owin^f to tiu' very

complex character of the stresses developed in the metal around

the eye, an accurate mathematical solution is impossible.

Let d be the widtli and /

the thickness of the shank of " ^

the eye-bar represented in Fig.

421. Let S be the width of

the metal at the sides of tlie

eye, and // the width at the Q\ pt

end. Let D be the diameter

of the pin.

The proportions of the head

are governed by the general condition that each and every part

should be at least as strong as tlie shank.

When the bar is subjected to a tensile stress the pin is

tightly embraced, and failure may arise from any one of the

following causes :

{a) The pin may be shorn through.

Hence, if the pin is in double shear, its sectional area should

be at least one-half X.\\dX of the shank.

It may happen tiiat the pin is bent, but that fracture is pre-

vented by the closing up of the pieces between the pin-head

anu nut ; the efificiency,iio\vever,of the connection is destroyed,

as the bars are no longer free to turn on the pin.

In practice, D h)x flat bars varies from |^to \d, but usually

lies between \d and \d.

Tlie diameter of the pin for the end of a round bar is gen-

erally made equal to i^ times the diameter of the bar.

The pin should be turned so as to fit the eye accurately,

but the best practice allows a difference of from ^ to yj^ of

an inch in the diameters of the pin and eye.

(^) The link may tear across MN.
On iccount of the perforation of the head, the direct pull

on the shank is bent out of the straight and distributed over
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the sections S. There is no reason for the assumption that

the disfibution is uniform, and it is obviously probable that

the intensity of stress is greatest in the metal next the hole.

Hence, the sectional area of the metal across MN mwsX. be at

least equal to that of the shank, and in practice is always
greater.

S usually varies from .55^/ to .62 5^/.

The sectional area through the sides of the eye in the head of

a round bar varies from \\ times to twice that of the bar.

{o T!ic pin may he torn through the hcail.

Theoretically, the sectional area of the metal across PQ
should be one half that of the shank. The metal in front of

the pin, houevcr, may be likened to a uniformly loaded girder

with both ends fixed, and is subjected to a bending as well as.

to a shearing action. Hence, the ininimum value of H has been
fixed at |c/, and if H is made equal to d, both kinds of action
will be amply provided for.

{d) The bearing surface may be insufficient.

If such be tlie case, the intensity of the pressure upon the
bearing surface is excessive, the eye becomes oval, the metal is

upset, and a fracture takes place. Or again, as the hole elon-

gates, the metal in the sections 5 next the hole will be drawn
out, and a crack will commence, extending outwards until frac-

ture is produced.

In practice, adequate bearing surface may be obtained by
thickening the head so as to confine the maximum intensity of

the pressure within a given limit.

{e) The head may be torn through the shoulder at XV.
Hence, XY is made equal to d.

The radius of curvature R of the shoulder varies from i-^d

to 7.6</.

d 2
Note.—The thickness of the shank should be -.or -d at

4 7
least.

The following table gives the eye-bar proportions common
in American practice

:
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Value
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30. F.ivets.—A rivet is an iron or steel shank, slightly

tapered at one end (the tail), and surmounted at the other by

a cup ov pan-shaped head (Fig. 422). It is used to join steel or

iron plates, bars, etc. For this purpose the rivet is generally

heated to a cherry-red, the shank or spindle is passed through

Fic 422. Fig. 423. Fig. 424.

2=1

Fig. 425. Fig. 426.

the hole prepared for it, and the tail is made into a buttott, or

point. The hollow cup-tool gives to the point a nearly hemi-

spherical shape, and forms what is called a snap-rivet (Fig.

423). Snap-rivets, partly for the sake of appearance, are com-

monly used in girder-work, but they are not so tight as conical-

pointed rivets {staff-x'woXs), which are hammered into shape

until almost cold (Fig. 424).

When a smooth surface is required, the rivets are counter-sunk

(Fig. 425). The counter-sinking is drilled and may extend

through the plate, or a shoulder may be left at the inner edge.

Cold-riveting is adopted for the small rivets in boiler work

and also wherever heating is impracticable, but tightly-driven

turned bolts ;> sometimes substituted for the rivets. In all

such cases the material of the rivets or bolts should be of su-

perior quality.

Loose rivets are easily discovered by tapping, and, if very

loose, should be at once replaced. It must be borne in mind,

however, that expansions and contractions of a complicated

character invariably accompany hot-riveting, and it cannot be

supposed that the rivets will be perfectly tight. Indeed, it is

doubtful whether a rivet has any hold in a straight drilled hole,

except at the ends.

Riveting is accompHshed either by hand or machine, the latter

being far the more elTective. A machine will squeeze a rivet,

at almost any temperature, into a most irregular hole, but the

exigencies of practical conditions often prevent its use, except

for ordinary work, and its advantages can rarely be obtained
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where they would be most appreciated, as, e.g., in the riveting

up of connections.

31. Dimensions of Rivets.—The diameter (a) of a rivet

in ordinary girder-work varies from | in. to i inch, and rarely

exceeds i^ in.

The thickness (/) of a platf in ordinary girder-work should

never be less than \ in., and a thickness of f in., or even ^^ in.,

is preferable.

Let T be the total thickness through which a rivet passes.

According to Fairbairn,

When t <\ in., d should be about 2/.

When / > i in., d should be about \\t.

According to Unwin,

When / varies from \ in. to i in. and passes through

tivo thicknesses of plate, d lies between \t -[- y^g and

i^+l-
T

When the rivets join several plates, </ = — -f-
—

.

8 8

According to French practice.

Diameter of head = \\d.

Length of rivet from head = Z" -j- \\d.

According to Rankinc,

Length of rivet from head = 7"
-f 2\d.

The rise of the head = \d.

The diameter of the rivet-hole is made larger than that of

the shank by from ^ig- to \ in., so as to allow for the expansion

of the latter when hot.

There seems to be no objection to the use of long rivets,

provided they are properly heated and secured.

32. Strength of Punched and Drilled Plates.—Experi-

ment shows that the tenacity of iron and steel plates is con-

siderably diminished by punching. This deterioration in

tenacity seems to be due to a molecular change in a narrow

annulus of the metal around the hole. The removal of the

annulus largely neutralizes the effect of the punching, and,

hence, the holes are sometimes punched \ in. less in diameter

than the rivets and are subsequently rimered or drilled out to

the full size. The original strength may also be almost
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entirely restored by annealing, and, generally, in steel work,

either this process is adopted or the annulus referred to above

is removed.

I'linchiiig docs not sensibly affect the strength of Landore-

Sieniens uiianncalcd plates, and only slightly diminishes the

strength of thin steel plates, but causes a considerable loss of

tenacity in thick steel plates ; the loss, however, is less than

for iron plates.

The harder the mjterJal the greater is the lo.ss of tenacity.

Iron seems to suffer more from punching when the holes

are near the edge than when removed to some distance from

it, while mild steel suffers less when the hole is one diameter

from the edge than wIkmi it is so far that there is no bulging at

the edge.

The injury caused by punching may be avoided by drilling

the holes. In important girder-work and whenever great

accuracy of workmanship is required, a uniform pitch may be

insured and the full strength of the metal retained by the use

of multiple drills. Drilling is a necessity for first-class work

when the diameter of the holes is less than the thickness of

the plate, and also when several plates are piled. It is impos-

sible to punch plates, bars, angles, etc., in spite of all ex-

pedients, in such a manner that the holes in any two exactlj'

correspond, and the irregularity becomes intensified in a pile,

the passage of the rivet often being completely blocked. A
drift, or runer, is then driven through the hole by main force,

cracking and bending the plates in its passage, and separating

them one from another.

The holes may be punched for ordinary work, and in plates

of which the thickness is less than the diameter of the rivets.

Whenever the metal is of an inferior quality, the holes should

be drilled.

33. Riveted Joints.— In lap joints (Figs. 427 and 430) the

plates overlap and are riveted together by one or more rows

cf rivets which are said to be in single shear, as each rivet has

to be sheared through one section only.

In fish (or buti) joints (Figs. 428 and 429) the rivets are

in double shear, i.e., must be each sheared through two sections.
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Thus they are not subjected to the one-sided pull to which

rivets in single shear are liable.

PtG. 437. Fig, 438. Fig. 439. Fig. 430.

In ^s/t joints the ends of the plates meet, and the plates

are riveted to a single cover (Fig. 428), or to two covers (Fig.

429), by means of one or more rows of rivets on each side of the

joint.

A fish joint is properly termed a du/f joint when the plates

are in compression. The plates should butt evenly against one

another, although they seldom do so in practice. Indeed, the

mere process of riveting draws the plates slightly apart, leav-

ing a gap which is often concealed by caulking. A much
better method is to fill up the space with some such hard sub-

stance as cast-zinc, but the best method, if the work will allow

of the increased cost, is to form 'd juj/ipj'ovii, i.e., to plane the

eyes of the plates carefully, and then bring them into close

contact, when a short cover with one or two rows of rivets will

suffice to hold them in position.

The riveting is said to be single, double, triple, etc., according

as the joint is secured by one, two, three, or more rows of rivets.
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Figs. 433 to 435 show forms of joint usually adopted for

bridge-work. In boiler-work the rivets arc necessarily very

chxse together, and if the strength of the solid plate be assumed

to be loo, the strength of a single-riveted joint hardly exceeds

50, while double-riveting will only increase it to 60 or 70. Fair-

o§o|go

Ficj. 433. Fig. 434. Fig. 435.

ill^

'SI

m

bairn proposed to make the joint and unpunched plate equally

strong by increasing the thickness of the punched portion of

the plate, but this is somewhat difificult in practice.

The stresses developed in a riveted joint are of a most com-

plex character and can hardly be subjected to exact mathe-

matical analysis. For example, the distribution of stress will

be necessarily irregular {a) if the pull upon the joint is one-

sided ; {b) when local action exists, or the plates stretch, or in-

ternal strains are in the metal before punching ; {c) if there is a

lack of symmetry in the arrangement of the rivets, so that one

rivet is more severely strained than another; (^) when the

workmanship is defective.

The joint may fail in any one of the following ways :

(i) The rivets may shear.

(2) The rivets may be forced into and crush the plate.

(3) The rivets may be torn out of the plate.

(4) The plate may tear in a direction transverse to that of

the stress.

The resistance to rupture should be the same in each of the

four cases, and always as great as possible.

The shearing and tensile strengths of plate-iron are very

nearly equal. Thus, iron with a tenacity of 20 tons per square

inch has a shearing strength of 18 to 20 tons per square inch.

Rivet-iron is usually somewhat stronger than plate-iron.

Again, the shearing strength of steel per square inch varies
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from about 24 tons for steel, with a tenacity of about 30 tons,

to about 33 tons for steel, with a tenacity of about 50 tons : an

average value for rivet-steel with a tenacity of 30 tons being

24 tons.

Hence, if 4 be a factor of safety, the working coefificients

become

For wrought-iron \

For steel

5 tons per square inch in shear, and

5
" " " " '• tension.

6 tons per square inch in shear, and

7i " " " " " tension

Allowance, however, must be made for irregularity in the dis-

tribution of stress and for defective workmanship, and in

riveting wrought-iron plates together it is a common practice

to make the aggregate section of the rivets at least equal to

and sometimes 20 per cent greater than the net section of the

plate through the rivet-holes.

Hence, the working coefficients are reduced to

4 or 4^ tons per square inch for wrought-iron.

and

5 or 5i " " <( <(
steel,

according to the character of the joint.

There is very little reliable information respecting the in-

dentation of plates by rivets and bolts, and it is most uncertain

to what extent the tenacity of the plates is affected by such

indentation. Further experiments are required to show the

effect of the crushing pressure upon the bearing area (i.e., the

diameter of the rivet multiplied by the thickness of the plate),

altiiough a few indicate that the shearing strength of the rivet

diminishes after the intensity of the bearing pressure exceeds

a certain maximum limit.

34. Theoretical Deductions.

Let 5 be the total stress at a riveted joint

;

f\ifi^fi^f\> be the safe tensile, shearing, compressive,

and bearing unit stresses, respectively
;

/ be the thickness of a plate, and xv its width
,
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N be the total number of rivets on one side of a joint

;

n be the total number of rivets in one row;

p be the pitch of the rivets, i.e., the distance centre to

centre

;

d be the diameter of the rivets ;

X be the distance between the centre line of the nearest

row of rivets and the edge of the plate.

Value of X.— It has been found that the minimum safe

value of X is d, and this in most cases gives a sufficient overlap

(= 2x), while X = |// is a maximum limit which amply pro-

vides for the bending and shearing to which the joint may be

subjected*. Thus the overlap will vary from 2^/ to ^d.

X may be supposed to consist of a length x,, to resist the

shearing action, and a length x„ to resist the bending action.

It is impossible to determine theoretically the exact value of

X,, as the straining at the joint is very complex, but the metal

in front of each rivet (the rivets at the ends of the joint ex-

cepted) may be likened to a uniformly loaded beam of length

d
d, depth x^ , and breadth /, with both ends fixed. Its

f I / \
''

moment of resistance is therefore ^/ Lt'^ — ~
J > / being the

maximum unit stress due to the bending. Also, if P is the

load upon the rivet, the mean of the bending moments at the

P

,

end and centre is ^d.
o

Hence, approximately,

! ! d = ^t\x.
8

or
3 ^^

_dV
''' 2)'

It will be assumed that the shearing strength of the rivet

is equal to the strength of a beam to resist cross-breaking.

Single-rivcted lap and single-cover joints (Figs. 427 and 428).

nd'
/, = (/- d)tf = dtf. (I)
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4

8 /

^ ^/ r» 2/ ~ 4
^''

(2)

J

••• ^5 = r +24
I / d

7 . (3)

As already pointed out, these joints are weakened by the

bending action developed, and possibly also by the concentia-

tion of the stress towartls the inner faces of the plates.

Single-riveted douhlc-covcrjoints (Fig. 429).

nd'
2^L = {p-d)tf,=dtf,', (4)

nd' ^

• • ^v .

nd'

4
7' • • • • • (5)

3 d r^ 2) - 2 T-A-

d
.

I 11 d>

' 2 ' 4 Y 2 /
(6)

These joints are much stronger than joints with sinii^/e

covers. Also, equation (4) shows that the bearing unit stress

in a double-cover joint is twice as great {theoretically) as in a

single-cover joint (eq. i), so that rivets of a larger diameter

may be employed in the latter than is possible in the former,

d
for corresponding values of -.
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Chain-rivctcdjoints (^^'^^ 431).

/(w - nd)t == S = /.A^r//,........(;)

5 = A^ /, when there is one cover only; . . (8)
4

S= N -^^f^ when there are tivo covers. ... (9)

This class of joint is employed for the flanj^es of bridge

birders, the plates being piled as in Figs. 436, 437, 438, and n

^eing usually 3, 4, or 5.

In Fig. 437 the plates are grouped so as to breakJoint, aii<

pinions differ as to whether this arrangement is superior to

^ full butt shown in Fig. 438. The advantages of the latter

^
f-^ ,~^ 1^ r^ r~s !~\

X

Fig. 436.

1

-c^ r\ r\ cs d-

'^ "^ "^ ^ KJ KJ \J \J ^ ) \J \U \J
*

Fig. 437.

W \J—CI—o

—

\J \J
—\J \J

Fig. 438.

•e that the plates may be cut in uniform lengths, and the

-langes built up with a degree of accuracy which cannot be

otherwise attained, while the short and awkward pieces accom-

janying broken joints are dispensed with.

A good practical rule, and one saving much labor and ex-

3ense, is to make the lengths of the plates, bars, etc., multiples

of the pitch, and to design the covers, connections, etc., so as

:o interfere with the pitch as little as possible.

The distance between two consecutive joints of a group

;Fig. 437) is generally made equal to tivicc the pitch.

An excellent plan for lap and single-cover joints is to

arrange the rivets as shown in Figs. 431 to 435.

The strength of the plate at the joint is only weakened by

dc rivet-hole, for the plate cannot tear at its weakest section^
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i.e., along the central row of rivets {aa), until the rivets be.
tvveen it and the ed^jc are shorn in two.

Let there be /// rows of rivets, i 1,22,

3 3. • • -d'^'K. 439)-

The total number of rivets is evi-

dently ;//'.

Let /, , </, , (/a. '7, , • • • be the unit ten-

sile stresses in tiie plate along the lines i i,

2 2, 3 3 respectively. Then

00 '

O
I ! !

TtlP

3 2
Fig. 439.

S = {iij- ii)tf^ = —. wy; , for the line i i

;

= {w- 2d)tq, = — (w' _ ly; ,
w u 22;

4

II

na

4

niP

3 3:

= {w-4d)tq, = —-{m'-6Y,, " " 44;
4

m
.: S = {w — d)tf, = (w — 2d)— 1(7.= . . .m — \

Assume that f, — q^. Then w — (;«' -f- \)d.

Hence, by substituting this value of zv in the first of the

above relations, - = — ^. Since q,,q.. are each less than

/, , the assumption is justifiable.

35. Covers.—In tension joints the strength of the covers

must not be less than that of the plates to be united. Hence,

a single cover should be at least as thick as a single plate ; and

if there are two covers, each should be at least half as thick.

When two covers are used in a tension pile it often

happens that a joint occurs in the top or bottom plate, so that

the greater portion of the stress in that plate may have to be

%i:
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borne by the nearest cover. It is, therefop.., considered ad vis.

able to make its thickness five-eightlis that of the plate.

The number of the joints should be reduced to a minimum,
as the introduction of covers adds a larjje percentage to the

dead weight of the pile.

Covers might be wholly dispensed with in pcrfcct-jiiinp

joints, and a great economy of material effected, if the dif-

ficulty of forming such joints and the increased cost did not

render them impracticable. Hence, it may be said that covers

are required for all compression joints, and that they must be as

strong as the plates ; for, unless the plates butt closely, the

whole of the thrust will be transmitted through the covers.

In some of the best examples of bridge construction the ten-

sion and compression joints are identical.

36. Efficiency of Riveted Joints.*—The efficiency of a

riveted joint is the ratio of the maximum stress which can be

transmitted to the plates through the joint to the strength of

the solid plates.

Denote this maximum efficiency by t}.

Let / be the pitch of the rivets
;

d " diameter of the rivets
;

t ** thickness of the plates
;

/i
" tenacity of the solid plate

;

m/t
" *•

'• " riveted plate

;

/, ** shearing strength of the rivets
;

JV *' number of rivets in a pitch length
;

e " ratio of the strength of a rivet in double

shear to its strength in single shear.

Then

7, = eflficienc/ as regards the plates = — •.

—

~
PUt

_ m{p — d)
(I)

eN'^d^f,

Tf, = efficiency as regards the rivets = -7— . (2)

___^ P^
* From an article by Professor Nicolson in the Engineer, Oct. 9, 1888.



EFFICIENCY OF RIVETED JOINTS. 677

The efficiency of the joint is, of course, the smaller of these

two values; and tlie joint is one of maximum efficiency when

rf^ — ij^ — tf ; that is, when

m p-d ^ __4__,
/ Pf/i'

'

or
TT

{p - d)tmft - cN - d'f. (3)

In this expression the quantities ;;/ /, , ^V, and e are con-

stants for anyyiven joint, being of necessity known, or liaving

been fixed beforehand ; and the equation thus expresses one

condition governing; the relations of the three variables />, d,

and t to each other. It is obvious, however, that, in order to

determine the values of any two of these variables in terms of

the third, another relation between them must be postulated.

In short, in designing a joint, the value of one of the three

ratios ~, -, and must be fixed.
d' t t

Cask I. Suppose that the ratio -. has a certain value.

This is very frequently the quantity predetermined ; but it is

most usually done by fixing the value of ?/, t} very obviously

P . r (A
involving -,; m fact tf = m\^i — -j.

Equation (3) may be written

or

--TT d' /,
, J

(4)

If the ratio - be denoted by k, then

d 4 mft
(5)
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„ . m{p - d)
But since v = —^^—

:

^.

^ =^^ (6)

Therefore, substituting in (5),

—^—=^eN-k-^y, (7)m — Tf 4 inft
'

and, "iltimately,

k =—---/—— (8)eNn f, in — yj
^^

The process of designing a joint of maximum efflciency for

a boiler of given diameter and pressure of steam, when t;

(or the ratio ~j is fixed, is then as follows: Settle the number

of rivets per pitch (i.e., N); the value to be allowed for e (de-

pending on the nature of the shearing stress un the rivets):

and the values of m,/t, and /,. Then i' is known from equa-

tion (8).

But / may be found from the relation,

pressure X diamr'ir = ?; X 2f/t,

or

pressure X diameter , ,'--
£¥.

'^^

d
Hence, since X' = - is known, d may be found ; and since

—. = • is known, p is also fixed.
a m — 1}

Case II. When , the ratio of rivet pitch to plate thick-

ness, is given, equation (5) must be otherwise manipulated.

P



EFFICIENCY OF RIVETED JOINTS. 679

Multiplying it by -, and substituting for d its value kt, we

"have

,=£^4,.4 + £,,
4 P »i/t P

Putting this in the form of a quadratic equation in /t,

(10)

^ eNn f " cNn / /

4 ^>Kfi P- = o. (II)

For brevity, substituting A for --rf- , T for -y-
, and R for -

,

and solving the quadratic,

k=-—±\ VAT + 4A TR. . . . (12)

The method of designing the joint is, then, as follows :

A, T, ;uul R being known, k may be found by substitutiiv^^

their vahies in equation (12), the positive sign of the second

term being taken.

Now,

V = ^'{i
-f)

= ^n[i -
J)

= m{i - ^j ;

and since both k and R are now known, the thickness of

plate (/) may be found, as in Case I, by equation (9). The
values of the diameter and pitch of rivets follow at once from

the known values of k and R.

This method of designing a joint appears to be the most

rational of the three. For the greatest pitch for which a joint

will remain steam-tight depends mainly on the relation of pitch

of rivets to thickness of plates; although it is also affected by

the relative size of rivets and of rivet-heads.

Case III. If — , or i', be predetermined, the value of tf

must first be obtained, in order that the plate thickness may

I I

li:

.
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be found by means of equation (9). Now, t)

be put into the form

md

p — d
m-—-— may

/» = m — rf

and if this value is substituted for/ in equation (4),

vid

m
IcNtt /, \

= I k - ,. H- I \d.
\ 4 vift ' /

From this is finally deduced

tf = m
cNnkf

cNnkf, 4- 4w/; (13)

The plate thickness may now be found by equation (9)

;

the diameter of rivet from d ~ kt, and the pitch from

ind ,,,... , ,

p = . in the above mvestij^ations no account lias been
^ m — //

taken of the effect of the bearing pressure on the rivets or

plate.

li /, be the allowable bearing pressure per projected square

inch of rivet surface, the following relation must obtain :

{p-d)tmf,^Ndtf,. . . . . (14)

This may be written

/ = {p - d)mft

Nd '' (15;

Then ifX be estimated by this equation, and if it should be

greater than 43 tons per square inch in a lap joint, or 45 to 50

tons in a butt joint, such joint will fail by the rivets shearing

before the full strength of the plate is exerted, as Kennedy's

experiments show that with these values of /,, tlic- rivets do

not attain their natural ultimate shearing strei^gth (viz.,/,), but

fail at shearing stresses much below this.
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Again, the maximum allowable ratio of - (i.e., k) as the

preliminary datum for the design of a joint, may be fixed by
using the expression

-i-'-t 06)

deduced from the obvious relation—similar to (14)^

4

(Unwin suggests the relation ^ = f V^.)

In designing the joint by any of the methods given above,

any value obtained for k greater than that supplied .by (16)

should be rejected.

Note.—The following Tables of the Weights of Bridges
have been prepared from data supplied by the engineers of the

bridges in question.
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TABLE OF LOADS FOR HIGHWAY BRIDGES.

Span in Feet.

loo and under
I0() to 200
200 to 300
300 to 400
above 400

City Jiixl Su)>urb.in
Hri(l({es lialdc to

Heavy Traffic.

Hiiilyes in Manu-
facturint; District-..

Ballasted Kiiad.

loo lbs, per sq. ft.

80 '

70
60 " "

50 " " "

90 Ihs. per sq. ft.

60 " "

50 " "

50 " "

50 " "

Uridjjes in Country
Districts.

Unballasted Uuads.

70 lbs, pqr sq. ft.

60 " " "
50 '

45 " " "

45 " " '
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EXAMPLES.

I. A brid^i;e of A^ equal spans crosses a span of /. ft.; the weights in

tons pqr lineal foot uf the main girders of the platfurin, perni.ineiit. way,

etc., and of the live load, are Wi , 101 , ica , respectively. Show that

w,
/..I _

where A = w-i{pk + r) + tuA pl^- 4- y) and A' = //• + r,

k being the ratio of span to (K'lJth, and p, (/, > numerical coellicients.

Hence also determine the limiting span of a girder.

If X is the cost of a pier and if Y is the cost per ton of the super-

structure, find the value of A' which will make the total cost per lineal

fool a minimum, anrl prove that this is approximately the case wIhmi tbc

spans are so arranged that the cost of one span of the bridge stru( tmc
is equal to the cost of a pier

X, approx.

/J;w. A span < -rj— ^. Cost is a minimum when A'— Z/j
pk ^ 1

and the minimum cost of the span = ^Vf 1 — "
; j

=

2. A car of weight W for a i"iuge of 4 ft. 8i in. is 33 ft. long, 6 ft. deep,

and its bottom is 2 ft. 6 in. abi^vi' the rails. Find the additional weight

thrown upon the leeward rail when the wind blows upon a side of the

car with a pressure of 20 lbs. per square foot. Also find the minimum
pressure that will blow the car over. .Ins. 4625.84 lbs. ; .428 W.

3. A lattice-girder 200 ft. long and 20 ft. deeo, with two systems of

right-angled triangles, carries a dead load of 800 lbs. per lini'id fool.

Determine the greatf.-st stresses in tlie diagonals and chordsof the I'ourt'i

bay from one end when a live load of 1200 lbs. per lineal foot passes over

the girder.

Ans. \{ riveted: Diagonal stress = 37,2004/2 lbs.

;

Chord stress = 450,000 lbs. _
\i pin-comurted: Diagonal stress — 44,.^oo \' 1 and 29,600 s/2 lbs.;

Chord stress = 460,000 lbs. in compression,

and - 440,000 lbs. ill tension.
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4. A latticc-pirder 80 ft, long and 8 ft. deep carries a uniformly dis-

tributed ioail of 144,CKK) lbs. Find ibe flan},'e inch-stresses at tiie centre,

tlie sectional area of the top flange being 56^ sq. in. gross, and of the

bottom flange 45 sq. in. net.

What sliould be the camber of the girder, and what extra lenpfth

siioidd be given to the top llaii^'e, so that the bottom flange of the loadi.l

girder may be truly liorizontal ? (A' = 29,c)oo,cxxj lbs.;

Ans. 3185.8 lbs.; 4000 lbs.

Xx = .29735 in.; 4", = .2987 in. ; s, - v, ::=
^',';Vr, ft.

5. A lattice-girder 80 ft. long and 10 ft. deep, with four systems of

rigiit-angled triangles, carries a dead load of 1000 lbs. per lineal fool.

Determine the greatest stresses in tlie diagonals met by a vertical ])lanc

in the .u-.'tut/t l>ay from one end when a live load of 2500 lbs. per lineal

foot passes over the girder. Design the flanges, which are to consist of

plates riveted together.

The lattice-bars are riveted to angle-irons. Find the number of ^-iri.

rivets required to connect the angle-irons with the flanges in the first

bay, 10,000 lbs. per square inch being the safe shearing strength of the

rivets.

Ans. Mrn'i'ft-d : Diagonal stress = 10,664 ,'b|/2 lbs.

\{ pin-connecteil : " = 9062^^2; 625oy'2; I S,468JV"2;

11,8751/2 lbs

22 rivets (2ii\).

6. The bracing of a lattice-girder consists of a single o^stem of tri-

angles in which one of the sides is a strut and the other a tie inclined to

the horizontal at angles of <r and /i respectively ; in order to give the

strut sufficient rigidity its section is made i' times that indicated by

theory, the coefficient X' being > unity. Show that the amount of ma-

terial in the struts and ties is a minimum when

tan (f = / I an fi.

7. A lattice-girder of 40 ft. sjiaii, 5 ft. depth, and with horizontal

chords has a web composed (jf two systems of right-angled triangles and

is designed to support a dead and a live load, each of i ton per lineal

foot upon the bottom chord. Determine the maximum stresses in tin;

members of the third bay from one end met by a vertical plane.

Aus, If riveted

:

Diagonal stress = VfJ' ^1 tons
;

Chord stress = 33^ tons.

!f pin-connected: Diagonal stress = ?jjf^2 and \%^2 tons;

Chord stress = 32.I tons in tension ;

35 tons in compression.

8. A lattice-truss of 100 ft. span and 10 ft. deptli has a web composed

of four systems of right-angled triangles. The maximum stress in tlu
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III ;

tons

;

diiigonal joininji; the sixili apex in tlie iipix-r rliord to the fourth apex in

the lower is 1^) tons. Fiiul the (load load, the live load bciiif^ I ton per

lineal foot, assimiin^ the truss to he (<») riveted. ((*) pin-connected.

Ans. ((O .554 ton ; {b) 1.062 tons.

9. A lattice-girder of 40 ft. span has a web composed of two svstetns

of triangles (base = 10 ft.) and is desij^ned to cany a live load of 1600

lbs. [)er lineal foot and a dead load of 1200 lbs. per lineal foot. I)efin-

in^ the stress-length of a member to be the product of its leiij;tli into

tiie stress to which it is subjected find the depth of the truss so iliat its

/t^Ar/ stress-length may be a minimum. Ans. 18.25 It.

10. Determine the maximum stresses in the members of a l.ittice-

tniss of 40 ft. span and 4 ft. depth, with two systems of trianL;l( s (base

= 8 ft.), («) when riveted together ; \b) when i)iii-connectc(l. Dead load

= \ ton per lineal foot, live load = \ ton per lineal foot.

2(1 ; 3d ; 41)1 ; jtli.

5.35I/2'; 4-05 i^-; 2.85^2";

Same.

4.74/2 S \ \.l)/2

18; 27;

194; 28i;

11. The platform of a single-track bridge is supported upon the top
chords of two Warren girders ; each girder is 100 ft. long, and its brac-

ins; is formed of ten equilateral triangles (base 10 ft.); the dead weight

of the bridge is 900 lbs. per lineal foot.; the greatest total stress in the

seventh sloping member from one end when a train crosses the bridge

is 41,394.8 lbs. Determine the weight of the live load per lineal foot.

Prepare a table showing the greatest stress in each bar and bay when a
single load of 15,000 lbs. crosses the girder.

^ 'a 'a '4

Fig. 440.

Stresses in diagonals

:

Ans. Bays— ist

;

{a) Diags. t\^2;
Tens. did. 6J;

Comp. chd.

(^) Dia.^s. \ '^^^Z-

Tens. did. 6;

Comp.clid. 7i ;

3.4V2 i ' .j 1.2V2 &
\

2.3V-2

33;

34-];

( 2.31/2 S

36

tons;

277if lbs. per lin. ft.

Stresses in compression chord

Stresses in tension chord :

di = di = 4j ^^3 ; ds =zdi = 4 V'S '<

dt = d, = 3i -1/3 ; </, = da =34/3;

d» = dio= 2j 1^3 tons.

f , = 2i vT: c, = 6 VJ;j» = 8J i/3";

Ci = io^y'3 ; ro = I i^Vi tons.

A = 4i Vj: '-^ =%\/~l\h= io\)/y,

ti = 12 1/3 tons.
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12. A Warren girder with its bracing formed of nine equilateral tri-

angles (base: = 10 ft,) is 90 ft. long, and its dead weight is 500 lbs. per

liiual foot. Determine the maximum stresses in each member wlien

a live load of 1350 lbs. per lineal foot, preceded by a concentrated

load of 18,000 lbs., crosses the girder, assuming that every joint is loaded.

The diagonals and verticals are riveted to angle-irons forming part of

the fianges.

How many J-in. rivets are required foi the connection of the several

members meeting at the third apex in the upper chord } (23, 6, and 13.)

How many are required in the first bay of each choid to prevent longi-

tudinal slip.-* (15 in tension chord and 18 in compression chord.)

Ans. '/^!^^fM^^z/K/K/K
'I'a'j '« 's '0 '7 '< 'j'lj

Fig. 441.

Tension chord stresses

:

U = U
89250 217500

ITT-, f 3 = ^4 = -—
;

y _ / _ 308750. . _f _ 3f>30oo

380250

1/3

ti = /lO lbs.

Compression chord stresses:
1 58000

C\ = -^-^.— : c-x

Ci

V3

376250

V3

267750 340500
;^— I f3 = _ •

V3 V3

lbs.

_ ... u J 178500 , 159500 . 14250
Stresses m slopmg members: tti = =r-; rf, = ,^; di = ;

1^3 ^3 i^}

123750 107000 91000
''4 = — V" ~

; "6 = —7^-
; iln .^^

^A =

4/3

75750

V3
' /h =(In

4/3

61250
d, = -

^3

47500

V3''

34500 22250 10750

1^3 *^3 V3
lbs. The stresses dio,di\, dxt, are

max. stresses of an opposite kind

to those due to dead load.

Verticals : Max. load on each vertical = 20, 500 lbs.

13. If a force of 5000 lbs. strike the bottom ct:ord of the girder in the

preceding question at i) ft. from one end and in a direction inclined at

;o° to the horizontal, determine its efTect upon the several menlbers.
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14. A Wcirren fjirder for a sipi;Ie-lrack railway bridge consists of

ei^iit equilateral triangles and has to cross a span of 96 ft. ; the platform

!i> on the bottom chord ; the loads per lineal foot for wliich the truss is to

be designed are 2250 lbs. due to engine, 1 500 lbs. due to train, and 450 lbs.

due to bridge. Determine the maxiniuin stresses (both tensile and com-

pressive) in the members met by vertical planes immediately on the right of

the second, third, and fourth apices in the compression chord. Also,

find how many |-in. rivets are required to connect the diagonals met by

these planes with the chords and to prevent any tendency to longitudinal

slip between the support and tlie tirst apex, and between the first and

second apices in the tension chord.

15. The accompanying figure represents the half-truss for a bridge of

80 ft. span. Show how to determine the stresses

in the s( veral members. Depth at centre = 12 ft.;

ati/= 12 ft.; at /i = 6ft.

Fig. 442.

16. A Warren girder composed of eight equilateral triangles has its

upper chord in compression and has every joint loaded with a woi<:ht of

2 tons, the loads being transmitted 10 the joints in the lowor chord by

means of vertical struts. The span = 80 ft. Find the stresses in all the

members.

Ans. Bays in compression chord : ist = ; \' t,
: 2(1 = i 3 i^^ ;

3d - iS.; 4/3: 4tli = 21 i/3 tons.

Bays in tension chord : ist = 9^, 4/3 ; 2d = 16 4/3

;

3d = 20 4/3 ; 4th = 21^4/3 tons-

Stresses in verticals : In each vertical = 2 tons.

Stresses in diagonals : ist = 10 4/3 ; 2d = Sji 4/3

3d = 7i 4/3 ; 4tli = 6 4^3 -

5th = 4f f/3 ;
6th = 3^ ^3 ;

7th =24/3; 8th =1 4/3 tons.

17. A Warren girder, with the platform on tiie lower boom, carries a

load of 20 tons at the centre. Find the stress in each member, and also

find the weight at each joint of lower boom which will give the same
stresses in the centre bays.

There are six bays in the lower chord.

Ans. Stress in each diagonal = ^ 4^3 tons.

Tens, chord : stress in ist bay = ^^ 4^3 ; 2d = 10 4/3 ; 3d — *j° 4/3

tons.

Comp. chord : stress in ist bay =^ 4^3 ; 2d = V 4/3 ; 3d = 20 4/3

tons.

Weiglit at each joint =5|^ tons.
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1 8. The accompanying truss of 240 ft. span and 30 ft. deep is to be de-

signed for a panel engine load of 24,000 lbs., a panel train load of 18,000

lbs., and a panel bridj^e load of 12,000

lbs, Determine graphically the maximum
stresses in the members met by the ver-

tical MN. Also, draw a stress diagram

N for the whole truss when it is covered

Fig. 443. with a uniformly distributed live load of

180,000 lbs.

19. Loads of 3J, 6,6, 6, and 6 tons follow each other in orderover a ten-

panel truss at distances of 8, 5 J, 4.}, and 4i ft. apart. Determine the posi-

tion of the loads which will give the maximum diagonal and chord

stresses in the third and fourth panels. Span = 120 ft.

20. Determine the moment of resistance of a floor-beam for the Sault

Ste. Marie Bridge from the following dat;i; Floor-beams, 16' 6" long

and 23' loj" apart; the dead weight of the flooring, stringers, etc.

= 800 lbs. per lineal foot of floor-beam ; the live load as given in P'ig.

407, Art. 20, page 639 ; the load is transmitted to the floor-beam by four

lines of stringers so spaced as to throw two-thirds of the load upon the

inner pair, which are 3 ft. C. to C.

21. In a truss-bridge the panels are 17 ft. and the floor-beams 13 ft.

in length. Loads of 8, f2, 12, 12, 12, 10, 10, 10, and 10 tons follow each

other in orderover the bridge at the distances of ^\, 4i, 4^, 4^, 7^, 5 J, 6^^,

and 5i ft. apart. Determine the moment of resistance of the beam,

taking the load due to the platform, etc., to be 500 lbs. per lineal foot.

22. If the bridge in the preceding question is of the riveted type with

a single diagonal system, and with verticals at the panel points, the num-
ber of the panels being ten, find how many i-in. rivets are required in

the third panel from one end to connect the web with the chords, assum-

ing the panel live load to be 30,000 lbs. and the panel dead load to be

10,000 lbs.

23. With the loading given by Fig. 409, Art. 20, page 639, design a

floor-beam for a single-track bridge with panels 22 ft. long, the weight of

the platform being 450 lbs. per square yard, and of each longitudinal 200

lbs. per lineal yard.

24. Prepare a table giving the stresses of the several members of a

double-intersection through-truss of 154 ft. span, 20 ft. depth, and with

eleven panels. The panel engine, live, and bridge loads are 56,000,

35,000. and 16,800 lbs., respectively.

25. Prepare a table giving the stresses in the several members of a

double-intersection deck-truss of 342 ft. span, 33 ft. depth, and with

eighteen panels. (Double-track bridge.) The panel engine, train

(or live), and dead loads are 96,000, 54,000, and 36.200 lbs., respectively.

26. Prepare a table giving the stresses in the several members of a
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through-truss for a double-track bridge of 342 ft. span, 40 ft. depth, and

with nineteen panels. The panel engine, live, and dead loads are 96,000,

53,000, and 43,200 lbs., respectively (double-intersection).

Cl CI Cs CA C3 ro 07 C8 i'v

Ans.

Chord
Panel.

/, = /,
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27,500 lbs., for bridge = i3,20olbs.; coefficient of workingstrength =8000
lbs. per square inch for both compression and tension.

29. A six-panel sinj^le-intersection Pratt truss is uniformly loaded.
Assumin<,f the same coefficient of strength both for compression and
tension, sIkjw that the economy of material will be greatest when the

diagonals are inclined at 32° 36' to the vertical. (Load on upper chords.)

30. A double-intersection truss for a single-track through-bridge of

204 ft. SjJUM is 29 ft. de(;p. 20 It. wide, and has twelve panels. Find the
stresses produced in the members of the leeward truss by a panel wind-
pressure of 5000 lbs. acting 8 ft. above base of rails (5-ft. gauge).

Ahs. Sloping members : 1st = 27500 sec a; 2d = 12500 sec «;

3d = loooo sec (i\ 4th = 7500 sec (i\

5th = 5000 sec a; 6th = 2500 sec /J;

7th = o.

Tension chord : 1st panel = 27500 tan « = 2d ; 3d = 40000 tan a\

4th = 40000 tan a -f loooo tan (i;

5tli = 40000 tan a 4- 17500 tan (i;

6th - 40000 tan a 4- 22500 tan ji.

Compression chord : ist = 40000 tan a 4- loooo tan fi\

2d = 40000 tan a 4- 17500 tan (i ;

3d = 40000 tan (I + 22500 tan /S;

4th = 40000 tan a 4- 25000 tan (i\

5th = 40000 tan a 4- 25000 tan fi.

Verticals: ist = 5000; 2d = 7500; 3d = 5000;

4th = 2500 ;
5th = o.

tan « = \\ ; tan (i =
j)f,.

31. In the preceding question find the maximum stresses in the

members of the fourth panel met by a vertical plane; engine panel load

= 85,000 lbs., train panel load = 40,800 lbs., bridge panel load = 22,500

lbs.

Afis. Stresses in tension chord = 465,795.11 lbs.; in compression

chord = 647,01 1.2 lbs.; in sloping members = 204,800.66 lbs.

and 155597.14 lbs.

32. Each of the two Pratt single-intersection five-panel trusses for a

single-track bridge is 55 ft. centre to centre of end pins and 11 ft. 6 in.

deep. Timber floor-beams are laid upon the upper chords 2J ft. centre

to centre ; the width between the chords — 10 ft. Find the proper

scantling of the floor-beams for the loading given in Fig. 407, page 639.

Also determine the maxiivium chord and diagonal stresses in the centre

panel due to the same live load.

33. Prepare a table giving the stresses in the several members of a

double-intersection deck-truss of 342 ft. span, 40 ft. depth, and with
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A C

B

nineteen panels. (Double-track bridge.) The panel engine, train (or

live), and dead loads arc </j,oo'j, 53,ocKi, and 4j,2oo lbs., respectivelv.

34. Prepare a table giving the stresses in the several members of a
deck-truss for a double-track bridge of 342 ft. span, 33 ft. depth, and
with eighteen panels. The panel engine, live, and dead loads are 96,000

54,000, and 36,000 lbs., respectively.

35. The two trusses for a 16 ft. roadway are each 100 ft. in the clear

17 ft. 3 in. deep, and of the type repre-

sented in the figure ; under a live load of

1 120 lbs. per lineal foot the greatest total
,

stress in AB is 35,400 lbs. Determine the

permanent load. Fig. 445.

The diagonals and verticals are riveted to angle-irons forming

part of the fliaiiges. How many f-in. rivets are required for the con-

nection of AH and BC at /*'.'' Also, how many are required between

A and C to resist the tendency of the angle-irons to slip longitudinally?

Working-shear stress = 10,000 lbs. per square inch.

Ans. 708.6 lbs.; 8; 4; 7.

36. The compression chord of a bowstring truss is a circular arc of

80 ft. span and 10 ft. rise; the bracing is of the isosceles type, the bases

of the isosceles triangles dividing the tension chord into ciglit equal

lengths. Determine the maximum stresses in the members met by a

vertical plane 28 ft. from one end. The live and dead loads are each

i ton per lineal foot.

37. Design a parabolic bowstring truss of So ft. span and 10 ft. rise

for a dead load of \ ton and a live load of i ton per lineal foot. The

joints between the web and the tension chord are to divide the latter

into eight equal divisions.

38. The compression chord of a bowstring truss is a circular arc.

The depth of the truss is 14 ft. at the centre and 5 ft. at each end ; the

span = 100 ft. ; the load upon the truss = 840 lbs. per lineal foot. Find

the Ftresses in all the members. Determine also the maximum stresses

in the members nu:t by a vertical 25 ft. from one end when a live load

of 1000 lbs. per lineal foot crosses the girder. What counter-braces are

required }

39. A Pratt truss with sloping end posts has a length of 150 ft. centre-

to centre, and a height of 30 ft. centre to centre, with panels 15 ft. long,

the dead load is 3000 lbs. per lineal foot, and the live load 1200 lbs.

Determine the maximum stresses in the end posts, in the third post from

one end, in the middle of the bottom chord, and in the members of the

third panel met by a vertical plane.

40. Design a cro<s-tie for a double-track open-web bridge, the ties

I

i

\i

11
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being 18 ft. 5 in. centre to centre, and the live load for the floor system

being 8000 lbs. per lineal foot.

41. A bowstring roof-truss of 50 ft. span, 15 ft. rise, and five panels is

to be designed to resist a wind blowing horizontally with a pressure of

40 lbs. per square foot. The depth of the truss at the :entre is 10 ft.

Determine, graphically, the stiosscs in the several members of the truss,

assuming that the roof rests on rollers at the windward support.

42. A bowstring truss of 120 ft. span and 15 ft. rise is of the isosceles

braced type, the bases of the isosceles triangles dividing th" tension

chord into twelve equal divisions ; the dead and live loads are | ton and

I ton per lineal foot, respectively. Find the maximum stresses in the

members met by vertical planes immediately on the right of the second

and fourth joints in the tension chord.

43. The figure is a sl<eleton diagram of the Sault Ste. Marie Bridge

(C. P. R.). Span = 239 ft. ; there are ten panels, each of 23.9 ft., say 24

AO^fflS-

STO.ouo i;;.'.,ooo Jio.ooo iw.cxjo isi.ac

Fig. 446.

ft. ; the length of the end verticals = 27 ft., of the centre verticals = 40

ft., w:dth on truss centrts = 17*^ ft. The bridge is designed to bear the

loading given by Fig. 407, page 639. Sliow that

—

{it) The stresses in every panel length of each chord are greatest when
the third driver is at a panel point ; and find the value of the several

stresses.

(b) The stresses in the verticals a and the diagonals b are greatest

when the third driver is at a panel point ; and find their values.

(f) The stresses in the remaining members of the truss are greatest

when the second driver is at a panel point ; and find their values.

{d) The maximum stresses in the verticals </vary from a tension of

64,000 lbs. to a compression of 1 1,000 lbs.

{/) The stress in the counter-brace c is nil.

Ans, The values ofthestresses in the several members are marked

on the diagram. They are deduced from the iistributions

given in the table on page 642, and are correct within a very

small percentage.

44. The figure represents a counterbalanced swing-bridge, 16 ft. deep

e and wholly supported upon the turn-table at A
//yy/iK fasV? and B\ the dead weight is 650 lbs. per lineal foot

'"''*"'^

67H' -^
'i
°23^° "^ bridge ; the counterpoise is hung from C and D.

Fig. 447*? Find its weight, assuming {a) that the whole of it

is transmitted to B
;
{b) that a portion of it is transmitted to A through
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a member BE, sufficient to make the reactions at A and ^ equal. Also,

determine the stresses in the several members of the truss.

Ans. Counterpoise in case (a) = 26, 162^ lbs.

;

ill case (b) = 22,186^^ lbs.

Stress transmitted through JiJi in case {d)= 24,012 lbs.

45. The figure represents a counterbalanced s\\iiig-bridj,'e ; the dead

load upon the bridge 13650 lbs. per lineal

foot ; the counterpoise is suspended from

CD. Find its value, the joint at E being

so designed that the whole of the load

upon the bridge is always transmitted i.-,g. ,,,.

through the main posts E.4, EB, and is evenly distributed l)etween the

points of support at A and B.

Ans. 20,694.3 lbs.

46. Find the stresses in the several members of the truss in tiic pre-

ceding question {a) when the bridge is open
; (/') when the bridge is

closed and is subjected to a live load of 3000 lbs. i)cr lineal foot.

Height of truss at E— 16 ft., at /'= 8 ft.

47. Prepare a table giving the stresses in the several members of a

c\ a ch a eg . single-intersection throiigh-tiiiss of

154 ft. span, :o ft. depth, and with

eleven panels. The panel engine,

live, and dead (or bridge) loads are

mfiV/.-t !»'(•»

ll li <3 t,

n^

'.', t..

Fig. 449-

27,500, 17,600, and .'^470 lbs., respectively

A/is

DiaK.
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50. Tin: figure represents one half of one of the piers of the Bouble

Viaduct. The spans are crossed by two lattice-gir-
g~"

(lers, 14' 9" deep and havini; a deck platform. The
height of the pier is 183' 9" and is made up of eleven

panels of equal depth. Width of pier at top = 13'

li", at bottom = 67' 7". VV'ith wind-pressure at

55.3 lbs. per square foot, the total pressure on the

girder, train, and pier have been calculated to be 20,

16.2, and 20 tons, acting at points 196.2, 210.3, and

92.85 ft., respectively, above the base. The dead

weight upon each half pier is 222^ tons, of which 60

tons is weight 01 half span, 120 tons the weight of

the half pier, and 42^ tons the weight of the train.

Assuming that the wind-pressure on the pier is a

horizontal force of 2 tons at each panel point on the

windward side, and that the weight of the pier may
be considered as a weight of 6 tons at each panel

point, determine

—

(a) The overturning moment. Fig. 451.

{b) The total horizontal for^^e at the top of the pier due to the wind.

{c) The tension in each of the vertical anchorage ties at .b'and 7" due

to the wind-pressure.

{d) Tiie vertical and horizontal reactions at T.

Show that the greatest compressive stress occurs in the member RT,
an.i that it amounts to 422 tons.

Draw a stress diagram giving the stresses in all the members, indi-

cating which are in tension and which in compression. Width of pier

at A = 20 ft., at ^ = 23i ft., at C = 36A ft.

What will be the effect of braking the train wh^n running at 30 miles

an hour, so as to bring it to rest within a distance of 220 ft, ? Width
of pier in direction of bridge = 9^ ft. at top and = 20 ft. at bottom.

Ans.—{a) 9188 ft.-tons; (h) 39.9 tons; (c) 24^ tons, {d) Hori-

zontal reaction = 59.9 tons • vertical reaction = 247 tons.

51. The accompanying figure represents a portion of a cantilever truss,

A the horizontal distances of the points A, H, C
._ c from the free end being iy , It, h, respectively.

W \ / \ A^ The boom ABC is inclined at an angle 'f, and the

\ / oo"m A'I'/f atan angle fi, to the horizon. Find

\/' the defleccions at the end of the cantilever due to

X Y z {a) an increase kAIi in the length of Ali; (2) an
Fig. 452. increase kiB V in the length of />' V; (3) a decrease

itXV in the length of X )'; (4) a decrease k^BX in the length of BX
kd.AB

ii

Ans.—(\) BX sin ABX'
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I;:

, , , ( /jfJ'cos /tf , , )

(3)

X-a-V KA

(4)/t

//A' sin yy.VK"

//^V COS a - /a(cot ^^K - cot ABX) \ .

sill y/yy-v

In the preceding question, if X-. =/{•» = yfa = -(u = /t, and if /? ^^' is

parallel to BX. and AX to ^ K, show that tiie angle between IVX and
X V after deformation

= 2/{'(cot y/iy^v + cot /y K.V).

Hence also, if the truss is of uniform depth </, show that the " deviation "

of the boom per unit of length is constant and equal to --•

52. Six bars have to be arranged upon a steel pin ; each bar is i in.

wide and is subjected to a stress of 64,000 lbs. Should the bars be ar-

61i,000'« ^
TJ

^^X—>- Ol.mA) lbs.

^ > ei.uoo

Fig. 433.—Method i.

84,000—^
•4,000 <-^
M,000< ^

n

04,000

>-C4,000

^ > 04,000

—=J—».«4,000

Fig, 454.—Method 2.

ranged according to method i or method 2 ? Why ? Determine the di-

ameter of the pin.

53. The accompanying sketch represents one of the pin connections
in a certain bridge which was recently overthrown. The two innermost
bars are web members inclined to the horizon at an angle whose cosine

48,000 ll)s,i 1','I.M 1
«,flOO \hs<t< |.,-

I

: iK'-y^2.100 lbs.

i

I

lU.- -\ 42,100 lbs.

Fig. 455.

is .815. The thickness of the bars and the maximum stresses to which
they are severally subjected are shown on the diagram. Is the 3-in.

wrought-iron pin sufficiently strong?



CHAPTER XII.

SUSPENSION-BRIDGES.

1. Cables.—The modern suspension-bridge consists of two

or more cables from which the platform is suspended by iron

or steel rods. The cables pass over lofty supports (piers), and

are secured to anchorages upon which thcj exert a direct pull.

Cliain or link cables are the most common in England and

Europe, and consist of iron or steel links set on edge and

pinned together. Formerly the links were made by welding

the heads to a flat bar, but they are now invariably rolled in

one piece, and the proportional dimensions of the head, which

in the old bridges are very imperfect, have been much im-

proved.

Hoop-iron cables have been used in a few cases, but the

practice is now abandoned, on account of the difificulty attend-

ing the manufacture of endless hoop-iron.

Wire-rope cables arc the most common in America, and

form the strongest ties in proportion to their weight. They
consist of a number of parallel wire ropes or strands, compactly

bound together in a cylindrical bundle by a wire wound round

the outside. There are usually seven strands, one forming a

core round which are pierced the remaining six. It was found

impossible to employ a seven-strand cable in the construction

of the East River Bridge, New York, as the individual strands

would have been far too bulky to manipulate. The same ob-

jection held against a thirteen-strand cable (thirteen is the next

number giving an approximately cylindrical shape), and it was

finally decided to make the cable with nineteen strands. Seven

of these are pressed together so as to form a centre core, around

which are placed the remaining twelve, the whole being con-

tinuously wrapped with wire.

703
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In laying up a cable great care is requireci to distribute the

tension uniformly amongst the wires. This may be effected

either by giving each wire the same deflection or by using

straight wire, i.e., wire whicli when umolled upon the floor

from a coil remains str.light and shows no tendency to spring

back. The distribution of stress is practically uniform in un-

twisted wire ropes. Such ropes are spun from the wires and

strands without giving any twist to individual wires.

The back-sta>- is the portion of the cable extending from an

anchorage to the nearest pier.

The elevation of the cables should be sufficient to allow for

settling, which chiefly arises from the deflection due to the load

and from changes of temperature.

The cables may be protected from atmospheric influence

by giving them a thorough coating of j)aint, oil, or varnish, but

wherever they are subject to saline influence, zinc seems to be

the only certain safeguard.

2. Anchorage, Anchorage Chains, Saddles.—The an-

chorage, or abutment, is a heavy mass of masonry or natural

rock to which the end of a cable is made fast, and which re-

sists by its dead weight the pull upon the cable.

Fir,. 456. Fio. 458.

The cable traverses the anchorage as in Figs. 456 to 458,

and passes through a strong, heavy cast-iron anchor-plate, and,

if made of wire rope, has its end effectively secured by turning

it round a dead-eye and splicing it to itself. Much care, how-

ever, is required to prevent a wire-rope cable from rusting on

account of the great extent of its surface, and it is considered

advisable that the wire portion of the cable should always ter-

minate at the entrance to the anchorage and there be attached

to a massive chain of bars, which is continued to the anchor-

plate or plates and secured by bolts, wedges, or keys.
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In order to reduce as much as possible the depth to which

it is necessary to sink tiie aiichor-[)lates, the anchor-chains are

frequently curved as in I'ig. 45S. Tliis ^'ives rise to an oblique

force, and the masonry in the part of the abutment subjected

to such force should be laid with its beds perpendicular to the

line of thrust.

The anchor-chains are made of compound links consistin^^

alternately of an odd and an even number of bars. The friction

of the link-heads on the knuckle-plates considerably lessens

the stress in a chain, and it is therefore usual to diminish its

sectional area gradually from the entrance E to the anchor.

This is effected in the Nia<;ara Suspension Bridge by varying

the section of the bars, and in tho East River Ikidge by vary-

ing both the section and the number of the bars.

The necessity of preserving the anchor-chains from rust is

of such importance that many engineers consider it most

essential that the passages and channels containing the chains

and fastenings should be accessible for periodical examination,

painting, and repairs. This is umiecessary if the chains are

first chemically cleaned and then embedded in gooil hydraulic

cement, as they will thus be perfectly protected from all at-

mospheric influence.

The direction of an anchorchain is changed by means of a

saddle or knuckle-plate, which should be capable of sliding to

•n extent sufficient to allow for the expansion and contraction

of the chain. This may be accomplished without the aid of

rollers by bedding the saddle upon a four- or five-inch thickness

of asphalted felt.

The chain, where it passes over the piers, rests on saddles,

the object of which is to furnish

bearings with easy vertical curves.

Either the saddle maybe constructed

as in Fig. 459, so as to allow the

cable to slip over it with compara-

tively little friction, or the chain may be secured to the saddle,

and the saddle supported upon rollers which work over a per-

fectly true and horizontal bed formed by a saddle-plate fixed

to the pier.

'^^0^sk::'MW'>'^'

\^
Fic. 459.

\
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3. Suspenders.—The suspenders are the vertical or in.

cHned rods which carry the platform.

Pig. 4fe. Pig. 461. Fig. 462. Pig. 463.

In Fig. 460 the suspender rest.s in the groove of a cast-

iron yoke which straddles the cable. Fig. 461 shows the

suspender bolted to u wrought-iron or steel ng which em-

braces the cable. When there are more than two cables in

the same vertical plane, various methods are adopted to insure

the uniform distribution of Ine load amongst the .set. In I'^ig.

462, for example, the suspender is fastened to the centre of a

small wrought-iron lever PQ^ and the ends of the lever are

connected with the cables by the equally strained rods PR
and QS. In the Chelsea bridge the distribution is made by

means of an irregularly shaped plate (Fig. 463), one angle of

which is supported by a joint-pin, while a pin also passes

through another angle and rests upon one of the chains.

The suspenders carry the ends of the cross-girders (floor-

beams), and are spaced from 5 to 20 ft. apart. They should

be provided with wrought-iron screw-boxes for j irposes of

adjustment.

4. Curve of Cable.—Case A. An arbitranly loaded flexible

cable takes the shape of one o. the catenaries, but the trtic

catenary is the curve in which a cable of uniform section and

material hangs under its own weight only.

Let A be the lowest point of the cable, and take the ver-

tical through A as the axis of j.

Take the horizontal through O as the axis of x, the origin

O being chosen so that

p.AO = H=mp (i)

p being the weight of a unit of length of the cible, and H the

horizontal pull at A,
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m or AO is the parameter, or modulus, of the catenary, and

OG is the directrix.

Let X, y be the co-ordinates of any point P, the length of

the arc AP being s.

Draw the tangent PT and the ordinate PN.
The triangle PNT is evidently a triangle of forces for the

portion /iP, /'iV representing the weight of AP {viz., ps), PT

the tangential pull T at P, and NT the horizontal pull If at

A.

" dx^ TN H- m' •

which gives the differential equation to the catenary.

It may be easily integrated as follows

:

(2)

dx

or

-y/'+{§=y/'^^=i^^ + '«% . (3)

ds dx

\fs^ + vC »i

m

m

being a constant of integration.

When X — o, s = o, and therefore log m = c.

H ence.

log
s -[-- i/j» -I-

;//•

m in'
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or
m

or

m " "
S =:-{e'n-e '")

(4)

Again,

i/y si- - -

dx m 2^ "

and hence,

fn - -'-

y = -(^' '» + ^ '«) (5)

The constant of integration is zero, since y = m when
;r = o.

The last equation is the equation to the catenary, while eq.

(4) gives the length of the arc AP.
By equations (4) and (5),

y = ^' + w' (6)

Draw NM perpendicular to PT, and let the angle PTN —
PNM = e. Then

PM = PNs\ne = y-^.^^=s, ... (7)
Vs -\- m

and ^

MN = PNQose=y—J!l==m,, . . (8)

Q dy s
since tan C = -f- = _.

ax m

Thus, the triangle PMN possesses the property that the

side PM is equal to the length of the arc AP, and the side

MN is equal to the modulus m (= AO).

The area APNO

ydx = —{e <» — ^ "
»•) = ;/Ay = 2 X triangle PMN,
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The radius of curvature, ft, at P

7C9

— = = = t^JTy
ay y m (9)

dx" m'

PG being perpendicular to PT.
At A, y =. m, and the radius of curvature is also m. (10)

Again,

T
ps

PT_
NP = cosec 6 =-,

s

.-. T = py', (II)

f/=pm=pf)^', (12)

p^ being the radius of curvature at A.

These catenary formuLne arc of little if any use in the design

and construction of suspension-bridges, as they are based upon

the assumption of a purely theoretical load which never occurs

in practice, viz., the weight of a chain of uniform section and

density.

Case B. Let the platform be suspended from chains com-

posed of a number of links, and let IV be the whole weight be-

tween the lowest point O of the chain and the upper end Po(
any given link. I.^ the direction of this link intersect that of

the horizontal pull (//) at O in £. Drop the perpendicular P.V.

Y, li
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The triangle PNE is evidently a triangle of forces ; and if the

angle PEN = B,

PN W
tan B = NE ~ H'

and hence

tan B oiW.

Thus, by treating each link separately, commencing with the

lowest, the exact curve of the chain may be easily traced.

Generally speaking, the distribution of the load may be
assumed to be approximately uniform per horizontal unit of

length, the load being suspended from a number of points

along each chain or cable by means of rods. The curve of the

cable will then be a parabola.

Let w be the intensity of the load per horizontal unit of

length.

Let X, y be the co-ordinates of any point P of the cable

with respect to the horizontal OX and the vertical OY zs, axes

of X and y, respectively.

Let B be the inclination of the tangent at P to the horizon-

tal. The portion OP of the cable is kept in equilibrium by
the horizontal puU H at O, by the tangential pull T at P, and
by the load wx upon OP, which acts vertically through the

middle point E of ON, PiV being the ordinate at P.

Hence, the tangent at P must also pass through E, and
PEN is a triangle of forces. Hence,

H 2H— = -, or X' = — y,wx y w (0

the equation to a parabola with its vertex at O, its axis vertical,

2H
and Its parameter equal to

Again,

w

PE
H "~ EN ~ cos B'



PARAMETER, ETC. 7n

and hence

r cos 6^ = ^ = wx
2y' (2)

and the horizontalpull at every point of the cable is the same as

that at the lowest point.

Also,

w^
T = sec u =

2y 2y

-v' I y^ I x'

The radius of curvature at P

(.+fr ('+=4y
2y ( w\

so that the radius at O is

H

zv'

or
H=wp„.

5. Parameter, etc.—Let /;,, //, be the elevations of A
and B, respectively, above the horizontal line COD, Fig. 465.

Let OD = rt, , OC = rt,, and let a^-\- a^= a = CD.

By equation (i). Art. 4, Case H,

/2H_ rt. «o a, +rt. a

Vh, Vh, vh.A^^h, Vh,-\-Vh,

Denote the parameter by P. Then

Also,

„ 2y wx 2x Py

*
J
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li >. , ^, be the values of 6^ at /i and B, respectively,

tan 6/, = 2 a/^- and tan ^, = 2 a/—.

Note,—\{ //, = //, = h,

and hence

^. = «, = -, 7' = ^,

4//
tan e.=^— = tan 6^,.

6. Length of Arc of Cable.—Let OP = s, Fig. 465.

Since tan & = -jj,

or

sec" (^dO = -jTi^^ =. -jjds cos 6,

H lid
as = —

IV cos" ^*

Hence,

= ~/;:^^ = ^J^^" ^^^^ ^ + log.(tan ^+ sec ^){.

Again,

w
tan ^ = -fyXf

and

sec ^V
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Note.—An approximate value of the length of the arc may
be obtained as follows

:

ds^ = dx' + df = dx'
]

I 4- D'}=-(-+^)-

.'. ds = dx\\ -\- - -jjrjj approximately.

Integrating between O and P,

s = OP = x-\-
I 7V*X*

6 N' ^ ix'

7. Weight of Cable.—The ultimate tenacity of iron wire

is 90,000 lbs. per square inch, while that of steel rises to

200,000 lbs., and even more. The strength and gauge of cable

wire may be insured by specifying that the wire is to have a

certain ultimate tenacity and clastic limit, and that a given

number of hneal feet of wire is to weigh one pound. Each of

the wires for the cables of the East River Bridge was to have

an ultimate tenacity of 3400 lbs., an elastic limit of 1600 lbs.,

and 14 lineal feet of the wire were to weigh one pound. A very

uniform wire, having a coefficient of elasticity of 29,000,000 lbs.,

has been the result, and the process of straightening has raised

the ultimate tenacity and elastic limit nearly 8 per cent.

Let W, be the weight of a length a^ (= OD) of a cable of

sufficient sectional area to bear safely the horizontal tension H.

Let JK, be the weight of the length J, ( = OA) of the cable

of a sectional area sufficient to bear safely the tension 7", at A.

Let /be the safe inch-stress.

Let q be the specific weight of the cable material.

Then

and

W^. = y a,q

W, = j—s,q.

'I
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or

rr,= rr.(i+^^^'), nearly.

A saving may be effected by proportioning any given section

to the pull across that section.

At any point {x, y) the pull = //"sec 6, and the correspond-

// sec «
ing sectional area =

If seed
f

-. The weight per unit of length

/
q, and the total weight of the length J, (= OA) is

s t-'" f ^ dx f ^'^

a.
But ;»:' = -i-y.

.-. W. =
Hq

f 1+2^4 .^ +

Hence,

and also

/( Xdx

2 W^, = ['T. + W,

The weight of a cubic inch of steel averages .283 lb.

The weight of a cubic inch of wrought-iron averages .2781b.
LJ

The volume in inches of the cable of weight W^=. \2a^-j .
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W,
^=.283 lb. or .278 lb.,

according as the cable is made of steel or iron.

Let the safe inch-stress of steel wire be taken at 33,960 lbs,,

of the best cable-iron at 14,958 lbs., and of the best chain-link^

at 9972 lbs. Then

W, = Ha, X .283 X^^ = -^ for steel cables ;

W, = Ha, X .278 X ~^ = ^^-^ for iron cables;

W, = Ha, X .278 X = —^' for link cables.
'

' ' 9972 3000

Note.—About one-eighth may be added to the net weight of

a chain-cable for eyes and fastenings.

8. Deflection of a Cable due to an Elementary Change
in its Length.

By the corollary of Art. 6 the total length (5) of the cable

AOBXs

,
2//.'

,
2/t*

Now a, and a, are constant ; A, — //, is also constant, and

therefore dk, = d/i,. Hence,

^\a. aJ

If the alteration in length is due to a change of /° in the

temperature,

dS = etS,

e being the coeflficient of linear expansion and =
goo V. 180

per degree Fahr. for wrought-iroii.

' :«
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In England the effective range of temperature is about 60°

Fahr., while in otlier countries it is usual to provide for a range

of from 100° to 150° F.

If the alteration is due to a pull of intensity /per unit of

area,

dS =. j^S,

E being the coefficient of elasticity of the cable material.

If //, = h^ ^ /i,

a 16/1
a, = a. = -

, and dS = ei/i.'2'
3 rt

9. Curve of Cable from which the load is suspended by a

series of sloping rods.

/y

TOE
Fi(i. 466.

Let O be the l<nvest point of such a cable. Let the tangent

at O, and a line through O parallel to the suspenders, be the

axes of X and j', respective!)'.

Let ti>' be the intensity of the oblique load. Consider a

portion 6?/' of the cable, and let the co-ordinates of 7' with

respect to O.Y, O V be x and j.

Draw the ordinate PN, and let the tangent at P mevt ON
in £.

As before, PNE is a triangle of forces, and E is the middle

point of ON. Then

7o'x PN 2y . 2H
H ~ NE or

IV
ry^

the equation to a parabola with its axis parallel \.o OY and its

2H
focus at a point 5, where Ji^SO = w
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Cor. I. Let the axis meet the tan^jent at in T\ and let

its inclination to OX be /.

Let A be the vertex, and ON' a perpendicular to the axi-s.

Then

SO = ST' = SA +AT' = SA + AN'.

Hut 4AS. .IN' = ON" = A' T" tan' i = 4AN" tan' t.

.-. AS = ^iiV' tan' /, and SO ^ /i6\i + cot' /) ^ '^"^

sui t

i'ence, the parameter = 4. 15 - 4SO sin' ;.

Cor. 2. Let /' be the obhque load upon the cable between

O and P.

Let Q be the total thrust upon the platform at E.

" w " " load per horizontal unit of length.

'*
</

" " rate of increase of thrust along platform.

•• / •' " length of P£.
Then

tv
w' ~ -:

—

. , and <7 = 7i' cot /

;

sm

«

^

// =
IV X = 2W'. SO = 2AS-r^-. = 2AS-^.',
2y sm I sm ?

X y

a'
/' = y -l-

'•^ + ^y cos f

.

4

Ci^r. 3. Let s be the length of OP, and let ^ be the inclina-

tion of /'^ to (9 K. Then

= —'"1-^
i
tan (90° - (f) sec (90° - 6^)

21V (

+ log,
I
tan v90° — 6^) + sec (90° - ^)f - tan (90°- i) sec (90°— «)

- log, 1 tan (90°- + -^^'c (90 - /)
I

I

//sin'/( ^ ^ ,. ... cot ^+ cosec 6*

)

= - -r- \r:i\.B cosec ^ — cot / cosec / -4- log,—^—r , .

\ .

2zi< \ cot t -f- cosec I )

i

Wl
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It may be easily shown, as in the Note to Art. 6, that ap-

proximately

. ,
2 y sin' i

J = ^ 4- V cos / H
.-'

i^ '\' y cos ^

10. Pressure upon Piers, etc.

Let 1\ be the tension in the main cable at A.

" r, " «* '• *• " back-stay at A.
** a, ft be the inclinations to the horizontal of the tangents

at A to the main cable and back-stay, respectively.

The total vertical pressure upon the pier at A

= 7, sin oc -\- T,?\n ft = P.

The total resultant horizontal force at A

— r, cos « '^ TjCos ft = Q.

If the cable is secured to a saddle which is free to move

horizontally on the top of the pier (Fig. 467),

Q ^ the frictional resistance to the tendency to motion,

or G = /*,/',

Mi being the corresponding coefficient of friction.

Fig. 467.

Let D, Fig. 468, be the total height of the pier, and let W
be its weight.

Let FG be the base of the pier, and K the limiting position

of the centre of pressure.
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L»;t />. tf be the distance of /' and VV, rcs|HctiveIy, from A'.

Then

for stability of position Q ^ jy ,

and for stability 0/Jriition, when the pier is of masonry,

jTT'u/ = '^*^' coefficient of friction of tlie masonry.

If )U, is sufficiently small to be disregarded. Q is approxi-

mately ;///, and 7', cos or = TjCOS /i — //. I lie pressure upon

the pier is now wholly vertical and is = /Ataii a -\- tan /i).

When the cable slides over smooth rounded saddles (Fi^.

459), the tensions T^ and T, are approximate!) the same.

Thus,

P= TX^'m n -f- sin fi) and Q = /'.(cos a — cos /3).

If a = fi, Q — o, and the pressure upon tlie pier is wholly

vertical, its amount bein,n 2/^, sin «.

The piers are made of timber, iron, steel, or masonry, and

allow of great scope in architectural design.

The cable should in no case be rigidly attached to the pier,

unless the lower end of the latter is free to revolve through a

small angle about a horizontal axis.

II. Auxiliary or Stiffening Truss.- The object of a stifT-

ening truss (Fig. 469) is to distribute a p.issing load over the

cable in such a manner that it cannot he distorted. The pull

upon each suspender must therefore be the same, and this vir-

tually assumes that the effect of the extensibility of the cable

and suspenders upon the figure of the stiffening truss may be

disregarded.

if ^

•

ir4 ''
I

]^J:l
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The ends O and ./ must be anchored, or held down by

pins, but shuuki be tree to move horizontally.

Let there be ;/ su>i)enders dividing the span into (« -(- i)

equal ^ej^ments of Icni^th a.

Let /-• be the total weight transmitted to the cable, and ^

the distance of its centre of gravity from the vertical through O.

Let 7' be the pull upon each suspender.

Taking moments about t\

Pz = T{a + 2rt + 3'' + • • • + "'0 = y>^ 7 '-" ^~2 '

I being the length of OA.

Also, if / is the intensity ofpull per unit of span,

r
tlzzzuT, and hence Pz =^ i- .

2

Let there be a central suspender of length s. Tlicre will,

therefore, be suspended s on each side of the centre.

The parameter of the parabola = ,- .

Hence, the total length of all the suspenders

If there is no central suspender, i.e., if // is even,

the total length r- (« - \)\s + -
^^ ^ J.

Denote the total length of suspenders by /.. Then

22
the stress-length ~ TL --

. PL.
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Let w be the uniform intensity of the dead load.

Cask I . JVu bruise partially loaded.

Let iv' be the niiixiniuni uniform intensity of the live load,

and let this load advance from A and cover a length AB.
Let Oli = X, and let A*, , A', be the pressures at O and A,

respectively.

For equilibrium,

R,-}-R,-\-tI-zv/-zvy-x):^o;
. . . (i)

Rj-{-i--ti'2-''^{^-^r -o. . . . (2)

Also, since the whole of the weight is to be transmitted

through the suspenders,

From cqs. (i), (2), and 13),

(3)

7U X
-R. = --j{l-x)=.R, (4)

which shows that the reactions at O and .4 are equal in mag-

nitude but opposite in kind. They are evidently greatest when

X = -, i.e., when the live load covers half the bridge, and the

common value is then
w7
'8 •

Tlie shearingforce at any point between C^and B distant x'

from O

= /?, -h (/' - 7£;);ir' = tt^' ~—(y - ^), . . . (5)

W X
Itwhich becomes —r-,{l — x) = — R^ — R^ when x' equal x.

Thus the shear at the head of the live lo.ui is equal in magni-

tude to the n action at each end, and is an absolute maximum

VI

m
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when the live load covers half the briil^e. The web of the

w'l
truss must therefore be designed to bear a shear of ^ at the

centre and ends.

Again, the bending moment at any point between O and B
distant x from

_ A.^ + 2 '^ ~ 2 /
{X''-X.:'\ . . (6)

X
2'which is greatest when x' — ^, i.e., at the centre of OB, its

w' I —

s 7
"w' I — X

.^ „,, , , ,.

value then beiii^^ - -,- >-.i- . Thus, the bending moment is

d 2

an absolute inaxtnium when -f^lx' — x^) = O, i.e., when x = _/,

zv'

and its value is then — , /'.

54

The bendiiiL^ moment at any point between B and A dis-

tant x' from O

= R,x' + ^-^> - ""-{y - ^' = 7 7(^' - ^W- x% (7)

which is greatest when f-,\{x' — x){I — x')\ = O, i.e., when

/ -\- X
^' _ —L_ o,- at the centre of AB, its value then being

w X

8
-(/ _ xS,\ Thus, the bending moment is an absolute inaxi-

d I

mum when r\x{l - xf\ = O, i.e., when x — -.and its value is

IV
then + /'.

54

Hence, ///^' maxiumvi bending moments of the unloaded and

loaded divisions of the truss are equal in magnitude but of>posite

in direction, and occur at the points of trisection'i I), C) of OA
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when the live load covers one-third (/iC) and two-thirds {AD) of

the bridge, respectively.

Each chord must evidently be designed to resist both

tension and compression, and in order to avoid unnecessary

nicety of calculation, the section of the truss may be kept uni-

form throughout the middle half of its length.

Case II. A single concentrated load W at any point B of
the truss. PFnow takes the place of the live load of intensity

w'.

The remainder of the notation and the method of pro-

cedure being precisely the same as before, the corresponding

equations are

R,-\-R,-\-{t-'w)l- W= o (i')

^/+
t — wP-W{l-x) = o (2')

t — w =
W

• • • «

-^. = T>-1 = ^«'

(3')

(4')

which shows that the reactions at O and A are equal in mag-

nitude but opposite in kind. They are greatest when x — o

and when x = I, i.e., when W is either at O or at A, and the

W
common value is then --.

2

The shearing force at any point between C^and B distant x'

from O

W / A= R^+{t-w)x' = ~i^x'-x-\-~), . (50

W
-7

which is a maximum when x' = x, and its value is then

The web must therefore be designed to bear a shear of

W
throughout the whole length of the truss.

tir
i

ii
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Again, the bending moment at any point between O and

B distant x' from O

First, let x <-. The bending moment is positive and is a

maximum when x' — x, its value then being

W

iVf-^T^, let X >-. The bending moment is then negative ^nd

is a maximum when ^' = ^ — - , its value then being

2/ ^ 2 /

The bending moment at any point between B and A tlis.

tant x' from 6?

r" W Ix' \

= R,x' 4- (/ - w) --- - W^(4:' - ;ir) = -j{x' -/)[^-x), (;')

which is a maximum when

^^,i(v-/)(^:-.)|=o,

i.e., when ^r' = x + -, and its value is then — -^~^[^ —
2

1

Note.—The stiffening truss is most effective in its action, but

adds considerably to the wcii^ht and cost of the whole struc-

ture. Provision has to be made both for the extra truss and

for the extra material required in the cable to carry this extra

load.
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Stiffenin}^ Truss hiiigcii at the (Ttv//;-*-.— Provision m;i\- be

made foi counteracting the .'.training; due to changes of tem-

perature by hinging the truss at the cc.Urc E.

Let a iiv." load of intensit\' iv' lulvancc trom A.

First, let the live load cover a Imgth AB =. x (> —1.

Let A', , A'.^ be the pressure at O, A, ixspcctively.

The equations of equilibrium are

A', + /?, + (/ — iv)l — xv'x = o ; . . . . (i)

• • (2)

/ /' w' I /V
K-+{t-w}-^ - --(^--j =0;

8

/e,-, + (/ - nf^-
w ...

(3)

r.i

t
'

I.

Eqs. (2) and (3) being obtained by taking moments about E.

Hence,

w
t — w = — yji/' — 4^.t- f 2^') ; ... (4)

I

I w
R. =

3
7i/"-4/'V+34r«); .... (5)

I w

Next, let the live load cover the length BO \ < "")•

(6)

Let AB = X as before, and let A,', A,, t' be the new values

of R, , A\, /, rcspectivclx.

The equations of equilibrium arc now

/?,' f a; 4- (/' - - w)i w'ii - X) = 0; . . (7)

... (8)
/ /• w'

% 2
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I r
^,',+(/'-tcOy =0; • ••!••

and hence,

ii>'

(9)

/' - w = 2 ., (/ - xy [=-(/-«;- w')] ; . (10)
*

I w
^/ = --7-(/*-4/^-f-3^')(=-^.); . (M)

r: =
I 7U

---^{/-xy{=-K). . . (12)

Diagram of Maximum Shearing Force.—The shear at an>'

point distant z from A in the unloaded portion BO when the

live load covers AH

(13)= R^J^{t-zv){l-z)

= - \R^'J^{t' -W-Zv'){l-2)\

= -
\
A'.' + (/' - «/)(/ - z) - w\l - z)

\

= miiiiix the shear at the same point when Af> is

unloadi'ci AWiX the live load covers BO.

For a given value of z the inaxiinuni shear, positive or

negative, at any point of OB, is found by making (see eq. (13) )

dR, + (/ - z)d{t -w) = o,

or

w'
7(-

W
2/4- Zx) - ^i(/ - 3){- 4/+ 4^) = 0,

x = l
4z — 2/

(14)



AUXILIARY OR STIFFENlAG TRUSS.

Hence, by eqs. (4), (5), (13), (14),

the maximum shear = ± \w'x
2X

I- x'

727

(15)

Fig. 470.

and may be represented by the ordinate
*{J

{^positive or negativi) of the curve mupq.

For example, at the points defined by

^= /, f/, lA

the shears are greatest when

^= K K iA

and their values are, respectively,

T{w'/, T/o^c'/, o.

Again, the shear at any point distant 2 from A in the

/oacie(i portion HE when the live load covers AB

= /?, _^ (/ _ w){l-z) - w\x - 5) ... . (,6)

= /?.+(/- 7<^ - W'){1 ~ Z)-\- W\l - X)

= - |/?/ + (/' - «/)(/- ^) - wV--x)\

= minus the shear at the j^w^ point when AB is

unloaded and the live load covers BO.

Hence, by eqs. (4), (5), (16),

I w
the shear = T - -n{l — AZ){1 — x)\ ('7)

increasing for a given value of z with I — x, and, therefore, a

maximum when x ~ z. Thus,

I w
the maximum shear = ^ - -jj{l — ^){l — ^r)*, . (18)

and occurs immediately in front of the load when it covers

AB, and immediately behind the load when it covers BO. It

ii
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ni.iy be represented by the ordinate {positive or negative) of

the curve orsq.

For example, at the points defined by

c^x^l, I/, 1/. f/, K
tlic maximum shears given by eq. (i8) are, respectively,

Di(\i^raii/ oj Maximum Iniuimg Moment. I'lie bending

moment <it any point in BO distant z from A when the live

load covers Al<

= ^,(7 - z)-\-{t- wf—Y^ (ly)

= -
I

r:{i -z)^ (/' -w- w')'—j-^
I

= -
I

a:,v-.^)4-(/' w)
{i-~zr ii-zf

W

= Minus the bending •iu)ment i\\ \\\\: ^\]\y pPJHf W
the live loail covers BO.

Hence, by eqs. (4), ^5), (19), the bending moment

= ± -2 7(/' - V-»^ + 3^'W -^) T I j(^' - ^^^ + ^^%^ -^t

For a given value of 2 this is a maximum and equal to

W' si - zl — 2Z
,

2lz
± — —-^^ ;— when X =

2 (/ - 2Z) l-\- 2Z'

Thus, the maximum bending nioment may be rep

by the ordinate {positive or negative) of ,1 curve.

For example, at the points defined bj

ttJ(l

^ = /, iA M
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the bending moments are greatest when x =

their values being, respectively,

O. TTlb«''A "fjh^'P, Tjh^'l\ O.

Fig. 471.

The ahsohite iiinximiim bending moment may be found as

mllows

:

For a given value of x the bending moment (see eq. (19) ) is

9 fl}j^Kifj}uin when

/e. -I- (/ - w){/ - «) = O,

or

/ e = A
/ — w

Hence, the maxifuuiii bending moment

~ "^
2 / - W - ^ 8 /' - 4/^ -f 24:' •

It will he an abs(jlute maximum for a value of x found by put-

ting its differential with respect to x equal to ;«/.

This differential easily reduces to

3^' g/,r* + erx - /• = o.

X = |/ is an approximate solution of this equation, and the cor

teHpiMiding maximum bending moment iIt'^'^'-

The preceding calculations show f/itit at every point in its

li)i(^tli the truss umv /'< subjected to equal ninxiniunt shears and

iffual rnaxitnuui /uiuiimi moments of opposite si^ns.

Again, it may be easily shown, in a similar manner, that

1 V

i

11
lis
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when a single weight W travels over the truss,

the maximum positive shear at a distance z from .4

the maximum negative shear

\V
either = ., (/' - 5/^+ 42»)

or
I W

= -
-y (3/ - 4^)

;

and the maximum bending moment

W
= ± -^-(/ - 2){l - 2e).

12. Suspension-bridge Loads.—The heaviest distributed

load to which a highway bridge may be subjected is that ilue

to a dense crowd of people, and is fixed by modern F'rcnch

practice at 82 lbs. per square foot. Probably, however, it is

unsafe to estimate the load at less than from 100 to 140 lbs. per

square foot, while allowance has also to be made for the con-

centration upon a single wheel of as much as 36,0(X> lbs., and

perhaps more.

A moderate force repeatedly applied will, if the interval

between the blows corresponds to the vibration interval of the

chain, rapidly produce an excessive oscillation (Chap. Ill,

Cor. 2. Art. 24). Thus, a procession marching in step across

a suspension-bridge may strain it far more intensely than a

dead load, and will set up a synchronous vibration which may
])rovc absolutely dangerous. For a like reason the wind

usually sets up a wave-motion from end to end of a bridge.

The factor of safety for the dead load of a suspension-biidge

should not be less than 2\ or 3, and for the live load it is

advisable to make it 6. With respect to this point it may be

remarked that the efificiency of a cable does not depend so

much upon its ultimate strength as upon its limit of elasticity,
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and so long as the latter is not cxcfi-tlcd the cable remains un-

injured. Kor example, the hrcakiiii^ uuiji/it (»f one of the 1 5-ii\ch

cables of tfic East Ri\<r Ikiilgc is estiniateil to be 12.000 tons,

its //;//// 0/ elasticity being 81 18 tons ; so that with i^ only as a

factor (if safety, the stress wouUI still fall below the elastic

limit and have no injurious effect. The continual application

of such a load would doubtless ultimately lead to the destruc-

tion of the bridge.

The dip of the cable of a suspension-bridge usually varies

from -,V t" tV ^^ ^'^^' ^P'"i' «^"<J '^ rarely as much as ,'y, except

for small spans. Although a greater rati' if dip to span would

give increased economy and an increased limit iii<^ span, the

passage of a live load would be accompanied b) .1 greater ilis-

tortion of the chains ami a larger oscillatory movement.

Steadiness is therefore secured at the cost of econoniy by

adopting a coinparati\rl>' flat curve for the chains.

13. Modifications of the Simple Suspension-bridge.—

The disau vantages coimected with susptnsion-brid^ts are very

great. The position of the platform is restricted, massive

anchorages and piers are getierally 1 quired, and an)' change in

the distribution of the loatl produces a sensible deformation in

the structure. Owing to the want of rigitlity, a considerable

vertical and horizontal oscillatory motion may be caused, and

many efforts have been made to modif)' the bridge in such a

manner as to neutrali/A' the tendency to oscillation.

{a) The simplest improvement is that shown in Fig. 472,

where the point of the cable most liable to deformation is

attached to the piers by short straight chains AB.

Fig. 473.

{b) A series of inclined stays, or iron ropes, radiating from

the pier-saddles, may be made to support the platform at a

number of equidistant points (Fig. 473). Such ropes were used

in the Niagara Bridge, and still more recently in the East River

I'- i
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Bridge. The lower ends of the ropes arc generally made fast

to the top or bottom chord of the bridge-truss, so that the cor-

responding chord stress is increased and the neutral axis pro-

portionately displaced. To remedy this, it has been proposed

to connect the ropes witli a horizontal tie coincident in position

with the neutral axis. Again, the cables of the Niagara and

Fig. 473.

East River bridges do not hang in vertical planes, but are in-

clined inwards, the distance between them being greatest at

the piers and least at the centre of the span. This drawing in

adds greatly to the lateral stability, which may be still further

increased by a series of horizontal ties.

(c) In Fig. 474 two cables in the same vertical plane are

diagonally braced together. In principle this method is similar

Fig. 474.

to that adopted in the stiffening truss (discussed in Art. 1 1), but

is probably less efficient on account of the flexible character of

the cables, although a slight economy of material might doubt-

less be realized. The braces act both as struts and ties, and

the stres.ses to which they are subjected may be easily calcu

lated.

{d) In Fig. 475 a single chain is diagonally braced to the

platform. The weight of the bridge must be sufficient to insure

Fig. 475.

that no suspender will be subjected to a thrust, or the efficiency

of the arrangement is destroyed. An objection to this as well
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as to the preceding method is that the variation in the curva-

ture of the chain under changes of temperature tends to loosen

and strain the joints.

The principle has been adopted (Fig. 476) with greater per-

fection in the construction of a foot-bridge at Frankfort. The

Fig. 476.

girder is cut at the centre, the chain is hinged, and the rigidity

is obtained by means of vertical and inclined braces which act

both as struts and ties.

(^) In Fig. 477 the girder is supported at several points by

,!l

I

!

Fig. 477.

straight chains running directly to the pier-saddles, and the

chains are kept in place by being hung from a curved chain by
vertical rods.

(/) It has been proposed to employ a stiff inverted arched

rib of wrought-iron instead of the flexible cable. All straining

action may be eliminated by hinging the rib at the centre and

piers, and the theory of the stresses developed in this tension

rib is preci-sely similar to that of the arched rib, except that

the stresses are reversed in kind.

{g) The platform of every suspension-bridge should be

braced horizontally. The floor-beams are sometimes laid on

the skew in order that the two ends of a beam may be sus-

pended from points which do not oscillate concordantly, and

also to distribute the load over a greater length of cable.

MS t

iil:

hi 5

' :?!
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EXAMPLES.

1. The span of a suspension-biidj^fc is 200 ft., the dip of the chains is

80 ft., and the \vci<T;ht of the roadway is 1 ton per foot run. Find ttie ten-

sions at the middle and ends of each chain. Aits. 31^ tons; 5^.94 tons.

2. Assumin*^ tliat a steel rope (or a single wire) will bear a tension of

15 tons per square inch, show that it will ."afely bear its own weight over

a span of about one mile, the dip being one-fourteenth of the span.

Ans. Max. tension = 33,074 lbs.

3. Show that a steel rope of the best quality, with a dip of one-sevenili

of the span, will not break until the span exceeds 7 miles, the ultimate

strength of the rope being 60 tons per square inch, (i ton = 2240 lbs.)

Ans. Max. tension = 59.545 tons per square inch.

4. The river span of a suspension-bridge is 930 ft. and weighs 5976
tons, of which 1439 tons are borne by stays radiating from the summit
of each pier, while the remaining weight is distributed between four

15-in. stcci-wire cables, producing in each at the piers a tension of 2064

tons. Find the dip of the cables. Atts. 63.884 ft.

The estimated maximum traffic upon the river span is 131 1 tons

uniformly distributed. Determine the increased stress in the cables.

Ans. 596.4 tons.

To what extent might the tratfic be safely increased, the limit of

elasticity of a cable being 81 16 tons, and its breaking stress 12,300 tons ?

ylns. To 13,303 tons uniformly distributed.

5. If the span = /, the total uniform load = ff'', and the dip = —

,

12

show that the maximum tension = 1.58 H^, the minimum tension

= 1.5 IV, the length of the chain = 1.018/, and find the increase of dip

corresponding to an elongation of i in. in the chain.

6. A cable weighing / lbs. per lineal foot of length is stretched be-

tween supports ill the same horizontal line and 20 ft. apart. If the max-

imum deflection is ^ ft., determine the greatest and least tensions.

Ans. Parameter vi = 100 ft.; max. tension = 100^p\ min. ten-

sion = ioo/>.

7. A light suspension-bridge carries a foot-path 8 ft. wide over a

viver 90 ft. wide by me;ins of eight equidistant suspending rods, the dij)

being Foft. E.ich c;ible consists of nine straigin links. Find their several

lengths. If the load upon the platform is '20 lbs. per square foot, and
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if (me-sLxth of the load is borne by the piers, find the sectional areas of

the several links, allowinf; 10,000 lbs. per square inch.

A}ts. Lentrths in ft., 10; 10.049; 10.198; 10.44; lo.??-

Tensions in lbs., 45,000; 45ooV'ioi ; 45004/104; 45001^109;

4500*'' I 16.

Areas in ^q. in., 4.5; 4.522; 4.59; 4.698, 4..S47.

8. A suspension-brid<>e of 240 ft. span and 20 ft. dip lias 4.S sns

penders on each side ; the dead weight = 3000 lbs. per lineal foot ; the

live l<jad = 2000 lbs. per lineal foot. P'ind the maxinuini pull on a sus-

pender, the maximum bending moment and the maj.imum shear on the

slillening truss. Also, findthe elongation in the chain due to the live load.

Alts. Max. pull = 12,500 lbs. ; max. shear = 30,000 lbs.; max.

B. M. = i,o66,666t ft.-lbs. ; elongation = 89,600,000 -^ E^[, ,/

being sectional area of a cable, and E the coetlicient of elas-

ticity.

9. A foot-path 8 ft. wide is to be carried over a river 100 ft. wide by

two cables of uniform sectional area and hp.ving a dip of 10 ft. Assum-

ing the load on the platform to be 112 lbs. per square foot, find the

greatest pull on the cables, their sectional area, length, and weight.

(Safe stress = 8960 lbs. per square inch ; specific weight of cable = 480

lbs. per cubic foot.)

Ans. H = — - r=: 56,000 lbs.; area =6.73 sq. in.;

V29
length = io2f ft.; weight = 2302.65 lbs.

10. Find the depression in the cables in the last question due to an

increment of length under a change of 60° F. from tiie mean temperature.

(Coefficient of expansion =1 -^ 144000.) Alls. .0802 ft.

1 1. Each side of the platform of a suspension-bridge for a span of 100

ft. is carried by nine equidistant suspenders. Design a stiffening truss fur

a live load of 1000 lbs. per lineal foot, and determine the pull upon the

suspenders due to the live l:)ad when the load produces (i) an absolute

maxiiimin shear ; (2) an absolute maxiinuin bending inoiiwnt.

Ans. Max. shear = 6250 lbs.; max. B.M. --• 92,592^^1' ft.-lbs.: pull

on suspender = (i) 2777I lbs., (2) = 1851II lbs. or 3703IL' lbs.

12. In a suspension-bridge (recently blown down) each cable was de-

signed to carry a total load of 84 tons (including its own weight). The
distance between the piers = 1270 ft.; the deflection of the cable = 91 tt.

Find {a) the length of the cable; {b) the puli on the cable at ihr piers

and at the lowest point; (r) trie amounts by which thes: pulls air change'd

by a variation of 40 F. from the mean temperature ; (d ) the tension in

the back-stays, assuming them to be approximately straight and inclined

to the vertical at the angle whose tangent is ^,

i

,"



736 THEORY OF STKLCTLA'ES.

L
04

Atis.— {ii) 12^7.4 It,; (d) H = = 1461'^ tons; {c) depression due

•936
to change of tctnp. 936 ft. and amount of change in // = ''''

. //

= I.

friction.

tons, in T= 1.45 tons; {(^) 394.55 tons, neglecting par

13. The platform of the bridge in the preceding question was hung
from the cables by means of 4^0 suspenders (240 on each side). Find

the pull on eacii suspender and the total lengtli of the suspenders, the

lowest point of a cable being 14 ft. above the platform.

A/is. .35 ton ; 10,565^^} ft.

14. A suspension-bridge has a dip of 10 ft. and a span of 300 ft. Find

the increase of dip due to a change of 100" F. from the mean tempera-

ture, the coefficient of expansion being .00125 per 180° F.

Ans. 1. 17 ft.

Also, find the corresponding flange stress in the stiffening truss,

which is i2i ft. deep, the coellicient of elasticity being 8000 tons.

Alls. 6.24 tons.

15. The ends of a cable are attached to saddles free to move horizon-

tally. U Ja is the horizontal movement of each saddle due to the ex-

pansion of the cables in the side spans, and if ^S is the e.\>.ension of the

chain between the two saddles, show that the increment of the dip {/i) is

approximately

-jJS+Ja
(^^^^

--

16. The platform of a suspension bridge of 150 ft. span is suspended

from the two cables by 88 vertical rods (44 on each side) ; the dip of the

cables is 15 ft.; there are two stiffening trusses ; the dead weight is 2240

lbs. per lineal foot, of which one-half is divided equally between the two

piers. Find the stresses at the middle and ends of the cables when a

uniformly distributed load of 78,750 li)s. covers one half of the bridge.

Also, find the maximum shears and bending moments to which the stiff-

ening trusses are subjected when a live load of 1050 lbs. per lineal foot

crosses the bridge.

e

Ans. Pall on suspender = 2803*2 1*^^.; // = _ 7'= 154,2185 lbs.

Max. shear on each truss at centre and due to 78,750 lbs.

= 9^4.3^ ^'''- — that due to 1050 lbs. per lineal foot.

Max. l'>. M. due to 78.750 lbs. is at centre of loaded and un-

loaded halves and = i84.570j'(r ft. -lbs.

Abs. max. B.M. due to 1050 lbs. per lineal foot is at points

of trisection and = 218,750 ft. -lbs.
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17. Solve the preceding question when the trusses are hinged at the

centre.

5
Ans. Pull on suspender = 2803IJ lbs.; H

V29
' r— r54.2i8Jlbs.

Max. shear due to 78,750 lbs. = 9843J lbs. at centre of

span and at end of loaded half of bridge ; ma.x. shears

due to 1050 lbs. per lineal foot =13.125, 5906J, 4921 J,

8305-1*2^, and 9843^ lbs. at ends of the half truss and at

the points dividing tlie half span into four equal seg-

ments.

Max. B. M. due to 78,750 lbs. is at centre of half truss and
= i84,57o,'',Y ft.-lbs. Max. B. M. due to 1050 lbs, per lineal

foot= i76,iyoj-;;rj, 221,4841, and 153,8081?, ft.-lbs. at points

dividing the half truss into four equal segments.

18. Show that the total extension of a cable of uniform sectional area

A under a uniformly distributed load of intensity w is

ivP / 16 (P

?,EAd\
"^

3

(P\

I being the span and d the dip.

19. The dead weight of a suspension-bridge of 1600 ft. span is \ ton

per lineal foot; the dip = . Find the greatest and least pulls upon

one of the chains. The ends of the chains are attached to saddles on

rollers on the top of piers 50 ft. high, and the baclc-stays are anchort^d

50 ft. from the foot of each pier. Find the load upon the piers and tiie

pull upon the anciiorage.

Ans, 255 tons ; 243J tons ; 637^ tons ; 344.6 tons.

20. A bridge 444 ft. long consists of a central span of 180 ft. and two

side spans each of 132 ft. ; each side of the platform is suspended by

vertical rods from two iron-wire cables; each pair of cables passes over

two masonry abutments and two piers, the former being 24 ft. and the

latter 39 ft. above the surface of the ground ; the lowest point of the

cables in each span is 19 ft. abo"e the ground surface ; at the abutments

the cables are connected with straight wrought-iron chains, by means of

which they are attached to anchorages at a horizontal distance of 66 ft.

from the foot of each abutment ; the dead weight of the bridge is 3500

lbs. per lineal foot, and the bridge is covered with a proof load of 450c

lbs. per lineal foot. Determine

—

{a) The stresses in the cables at the points of support and at the

lowest points.

{b) The dimensions and weights of the cables (i) if of uniform sec-

Iti^^i .
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lion throughout; (2) if each section is proportioned to the pull across it.

(Unit stress = 14.95^ l^**- P'^'' stlU'ire inch.)

(c) The alteration in the length of the cables and the corresponding;

depression of the platform at the centre of each span, due (i) toaclians^c

of do' F. from the mean temperature ; (2) to the total load, E beinj^j

30,000,000 lbs.

(</) The pressure and bending moment at the foot of pier.

{e) The mass of masonry in the anchorage necessary to resist tin

tendency to overturning and to horizontal dispiacemeni.

Data.—Weight of masonry per cubic foot — 128 lbs. ; safe compres-

sive stress per square foot = 12,000 lbs. ; coefficient of friction =76;
deviation of centre of pressure in base of pier from centre of figure = \

X thiclvness of base.

1

1

Ahs.—(.1) Side span, T^—:^^ = i¥i = 387,200 lbs. = T.i—=r- ,

V509 V146
/,

and Ti being the tensions in a cable at summits ol

low and high piers, respectively ; centre span, T"— -

= 405,000 lbs. = //, T being tension at summit of higii

pier.

{6) Side span : Length = 1352'^ ft. ; sect, area at summit
of liigh pier = 26.54 sq. m.; weight if of uniform section

= 11,991 lbs., if proportioned to pull = 11,406 los.

Centre span : Length = 185!^ ft. ; sect, area at suninut

of pier = 29.6 sq. in.; weiglit if of uniform sectKjn

= 18,378 lbs., if proportioned to pull = 17.3"^ H^-^-

(c) (i) .0594 ft. for side span and .0775 ft. for centre sijan ;

(2) .0675 " .0874

(^) High pier: Overturning moment — 942,400 x 39 (t.-

Ibs.; bearing area at sumniit = 118^ sq. li. ; tliiclviiess

= 8 ft. ; uniform width = 14I ft. ; thickness of base

= 36.6 ft. ; weight of pier = 1,651,270.4 lbs. ; total pres-

sure on base = 2,679,270.4 lbs.

(e) Weight to resist upward pull = 29,333^ lbs. ; weight

to resist horizontal displacement = 509,474 lbs.

21. In the preceding question, if the piers are wrouglit-iron oscillat-

ing columns, and if equilibrium, under an unequally distributed load, is

maintained by connecting the heads of the columns with each other and

with the abutments by iron-wire stays, determine tlie proper dimensions

of the stays, assuming them approximately straight. Assume that the

proof load covers (a) a side span ; (d) two side spans; (c) the centre span,

Ans.— (a) Pull on stays in centre span = 840,050 lbs.

(^) " " " " " " = double that in (a).

(c) " ' side span = 948,466 lbs.
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22. A flouting landing-stage is held in position by a number f<f 4-

lii. steel-wire cables anchored to the shore, a shoreward movement being

prevented by rigid iron booms, pivoted at the ends and stretching from

shore to stage. The difference of level between the shore and stage at-

tachments of the cables is 50 ft., and the horizontal distance between

these points is 150 ft. The horizontal pull upon each cable is 1360 lbs.

Find the length of the cable, and the tensions at the points of attacli-

ment. (Weight of cable = 490 lbs. per cubic foot ; form of cable a com-

mon catenary.) Aui. H2.82 ft.; 1 2. .i67. 2 lbs. and 10,132 lbs.



CHAPTER XTII.

ARCHES AND ARCHED RIBS.

I. An arch may be constructed of masonry, brickwork,

timber, or metal.

Rt~.
>. ;\R»

Fig. 478.

In the figure ABCD represents the profile of an arch. The
under surface AD is called the soffit or intrados. The upper

surface BC is sometimes improperly called the extrados. The
highest point A!" of the soffit is the crown or key of the arch.

The springmgs or sketvbacks are the surfaces AB, DC from

which the arch springs, and the haunches are the portions of

the arch half-way between the springings and the crown.

Upon each of the arch faces stands a spandril wall, and the

space between these two external spandrils may be occupied

by a series of internal spandrils spaced at definite distances

apart, or may be filled up to a certain level with masonry (i.e.,

backing) and above that with ordinary ballast or other rough

material {\.e., filling).

A masonry arch consists of courses of wedge-shaped blocks

with the bed-joints perpendicular, or nearly so, to the soffit,

740
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The blocks arc called voussoirs, and the voussoirs at the crown

are the keystones of the arch.

A brick arch is usually built in a number of rinjjjs.

Consider the portion of the arch bounded by the vertical

plane KE at the key and by the plane AB.
It is kept in equilibrium by the reaction A' at KE, the reac-

tion R^ at AB, and the weight K, of the portion under con-

sideration and its superincumbent load.

Let 5 and T be the points of application of A', and R,

respectively.

Let the directions of R^ and R intersect in a point. The
direction of K, must also pass through the sa.ne point.

Taking moments about 5,

Rp. = Y,y„

/, and J, being the perpendicular distances of the directions of

R and F, from S, respectively.

Similarly, the portion KECD of the arch gives the equation

;!

II

Kp. = y.y..

K, being the weight to which it is subjected, and /,, y^ the

perpendicular distances of the directions of R and \\ from the

point of application Fof the reaction at the plane DC,
If the arch and the loading arc symmetrical with respect

to the plane KE,

Y,— F, , y^ ~ y-i, and therefore /, =/,.

Hence the direction of R will be horizontal, which might have

been inferred by reason of the symmetry.

The magnitudes of the reactions are indeterminate, as the

positions of the points of application (5, T, V) are arbitrary,

and can only be fixed by a knowledge of the law of the varia-

tion of the stress in the material at the bounding planes AB,
KE.

2. Equilibrated Polygon and Line of Resistance.—
Suppose an arch divided into a number of elementary portions
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kc\ k'c" . . . (e.g., the voub.soirs of a masonry arcli) by a series

of joints Xv, X'V . . .

Fio. 479. Fio. 4Bo.

Let JF, , IV.^, ... be the loads directly supported by the

several portions. These loads generally consist of the weight

of a portion (e.g., /v') -|- the weight of the superincumbent

mass + the load upon the overlying roadway ; the lines of

action of the loads are, therefore, nearly always vertical.

Flach elementary portion may be considered as acted upon

and kept in equilibrium by //irt't' forces, viz., the external load

and the pressures at the joints. If the pressure and its point

of application at any given joint have been determined, the

pressures and the corresponding points of application at the

other joints may also be found.

For, let I 2 34 . . . be the line of loads, so that i 2 = W^,

23= IV,, . . •

Assume that the pressure P and its point of application r

at any given joint ke are known.

Draw o i to represent P in direction and magnitude.

Then 02 evidently represents the resultant of P and W^ in

direction and magnitude, and this resultant must be equal and

opposite to the pressure /*, at the joint k'e'.

Hence, a line n'li drawn through ;/, the intersection oi P
and W,, parallel to 20, is the direction of the pressure Z',, and

intersects k'e' in the point of application r' of P,

Again, o 3 represents the resultant of P, and W, in direc-

tion and magnitude, and this resultant must be equal and

opposite to the pressure /*, at the joint k"e"

.

The line n"n' drawn through n', the intersection of /*, and
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Let the pressure /-* and its point of application at the

joint KE be ijiven.

Take O as the origin, the line OA in the direction of /\is

the axis of x, and the vertical throuijh as the axis of y, and

let ^ be the angle between the tv/o axes.

Let the lines of action of /-* and JF intersect in G. The
line of action of their resultant will intersect MN in the centre

of resistance O^.

Let X, Y be the co-ordinates of O^.

Let 5 be the depth of an elementary slice of thickness dx,

parallel to OK at any abscissa x. Its weight = wzdx sin d.

Then

W.OG =Jwzdx sin ii.x= W{X- A G).

^ P AG AG .
, . ,

But jp = ^j = , snice the triangle AGO^ is evidently a

triangle of forces for the forces acting upon the mass under
consideration.

Also,

W =z
I wzdx . sin Q.

:. fwzxdx . sin = IVX - IV~V=X fwz sin edx - PY.
^0 IV Jo

Thiz is the equation to the line of resistance.

Ta!;ing the differential of tlii'^ equation,

wz'X sin OdX = Xcvz' sin BdX f WdX - PdY,

z' being the depth corresponding to the abscissa X.

sin AGO,dV _ VV _A0^
'• dX '~ P ~ AG sin AOXi

tan^r;(0 . if 6^=00°

Thus the tangents to the curve of pressures and to the

curve of centres of pressure at any given point coincide, and

the curves must therefore also coincide.
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Fig. 482.

3. Conditions of Equilibrium.—Let the figure represent

a portion of an arcli ot thickness unity, between any two bed-

joints (real or imaginary) MN, PQ.
Let W^be its weight together with that of the superincum-

bent load. Let the direction of

the reaction R' at the joint MN
intersect MN in ;;/ and the direc-

tion of W'm n. For equiHbrium,

the reaction R" at the joint PQ^\
must also pass through n. Let its "^^ /-

direction intersect PQ in O. In

order that the equilibrium may be

stable, three conditions must be

fulfilled, viz.

:

First. The point O must lie between P and Q, so that there

may be no tendencj' to turn about the edges P and Q.

Second. There must be no sliding along PQ, and therefore

the angle between the direction of R" and the normal to PQ
must not exceed the angle of friction of the material of which

the arch is composed.

N.B.—The angle of friction for stone upon stone is about

30°.

Third. The maximum intensity of stress at any point in PQ
must not exceed the safe resistance of the material.

Further, the stress should not change in character, in the

case of masonry and brick arches, but should be a compression

at every point, as these materials are not suited to withstand

tensile forces.

The best position for O would be the middle point of PQ,
as the pressure would then be uniformly distributed over the

area PQ. It is, however, impracticable to insure such a dis-

tribution, and it has been sometimes assumed that the stress

varies uniformly.

With this assumption, let TV be the normal component of R"

.

Let /be the maximum compressive stress, i.e., the stress at

the most compressed edge, e.g., P.

Let OS = q . PQ, S being the middle point of PQ, and q a

coefficient whose value is to be determined.
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PQ

N= y.PO = if.PQ{\-q);

MPO>'-f,

N- f-PQ
1+6^'

3

stress varies uniformly iromfvX Pto nil dit Q,

and in the limit when PO = —^-, i.e., when the intensity of

^=i and N-
f^PQ

(See Art. i6, Chap. IV.)

Similarly, if Q is the most compressed edge, the limiting

position of O, the centre of resistance or pressure, is at a point

PQ
a defined by QO' = -^.

Hence, as there should be no tendency on the part of the

joints to open at either edge, it is inferred that PO or QO'

PO
should be > —^, i.e., that the point O should lie within the

middle third of the joint.

Experience, however, shows that the " middle-third

"

theory cannot be accepted as a solution of the problem of

arch stability, and that its chief use is to indicate the proper

dimensions of the abutments. Joint cracks are to be found in

more than 90$^ of the arches actually constructed, and cases

may be instanced in which the joints have opened so widely

that the whole of the thrust is transmitted through the edges.

In Telford's masonry arch over the Severn, of 150 ft. span,

Baker discovered that there had been a settlement (15 in.)

sufficient to induce a slight reverse curvature at the crown of

the soffit. Again, the position of the centre of pressure at a

joint is indeterminate, and it is therefore impossible as well as

useless to make any calculations as to the maximum intensity

•of .St jss due to the pressure at the
.
joint. What seems to
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horizontal is about 30° in semicircular and 45° in elliptic

arches.

The position of the joint in any given arch may be tenta-

tively found as follows

:

Let /be any joint in the surface i 2.

Let JF be the weight upon the arch between /and i.

Let X be the horizontal distance between J and the centre

of ij^ravity of W.

Let y be the vertical distance between J and 4.

It will also be assumed that the thrust at 4 is horizontal.

If the curve of pressure be now supposed to pass through

/, the corresponding value of the horizontal thrust II is given

by

//F= \VX.

By means of this equation, values of h may be calculated

for a number of joints in the neighborhood of the haunch, and

the greatest of these values will be the horizontal thrust //"for

the joint x. This is evident, as the curve of pressure for i

smaller value of h must necessarily fall bcloiv 4xy.

When this happens, the joints will tend to open at the

lower edge of the joint i 4 and at the upper edges of the joints

at x and at 2 3, so that the arch may sink at the crown and

spread, unless the abutments and the lower portions of the

arch are massive enough to counteract this tendency.

If the curve of pressure fall (rdozr 4,vj', an amount of back-

ing suf^ficient to transmit the thrust to the abutments must be

provided. The same result may be attained by a uniform in-

crease in the thickness of the arch ring, or by a gradual increase

from the crown to the abutments.

For example, the upper sur-

face (extrados) of the ring for iiii

arch with a semicircular soffit

AKB, having its centre at 0, may

be delineated in the following

manner:

Let x define the joint of rup-FlG. 4S4.

ture in the .sjftit ; then AOx = 30°
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In Ox produced take xx' = 2 X KD, KD being the thick-

ness at the crown.

The arc Dx' of a circle struck from a centre in DO pro-

duced may be taken as a part of the upper boundary of the

ring, and the remainder may be completed by the tangent at

x' to the arc Dx'.

5. Minimum Thickness of Abutment.—Let T be the

resultant thrust at the horizontal joint BC of a V >t

rectangular abutment ABCD.
Let y be the distance of its point of applica- ^^

^'

^^, \\

tion from B.
\

Let // and V be the horizontal and vertical 1

components of T. h

Let w be the specific weight of the material 1

in the abutment.
j

Let //. be the height AB of the abutment. '*^-

Let / be the width AD of the abutment.

In order that there may be no tendency to turn about the

toe D, the moment of the weight of the abutment with respect

to D plus the moment of V with respect to D must be greater

than the moment of // with respect to D. Or,

or

,
V ^ /2H . 2V . v

This relation must hold good whatever the height of the

abutment may be ; and if /i is made equal to 00
,

t>\i —•'V

which defines a minimum limit for the thickness of the abut-

ment.

I

ill
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6. Empirical Formulae.—In practice the thickness t at

the crown is often found in terms of s, the span, or in ternis of

p, the radius of curvature at the crowi', from the formula;

t := c \'s, or / = s'cp,

/, i, and 9 being all in feet, and c being a constant.

According to Dupuit, t — .36 \/s for a full arch

;

/ = .?7 \ s for a segmental arch.

According to Rankine, = V^.i 2/j for a single arch ;

/ = i^. 17/J for an arch of a series.

7. Examples of Linear Arches, or Curves of Pressure.

{a) Linear Arch in the Form of a Parabola.—Suppose that

the cable in Art. 4, Ciiap. XII, Case B, is exactly inverted.

and that it is stiffened in such a manner as to resist distortion.

Suppose also that the load still remains a uniformly distributeil

weight of intensity ^v per horizontal unic of length. A thrust

will now be developed at every point of the inverted cable

equal to the tension at the corresponding point of the original

cable. Thus the inverted parabola is a linear avch suitable for

a real arch which has to support a load of intensity tv per

horizontal unit of length.

The horizontal thrust at the crown =. H= wp,

p being the radius of curvature at the crown.

{b) Linear Arch in the Form of a Catenary. Transformed

Catenary.— If the cable in Art. 4, Chap. XIT. Case A, is in-

verted and stiffened as before, a linear

arch is obtained suitable for a real

arch which has to support a load dis-

tributed in such a manner that the

weight upon any portion AP is pro-

portional to the length of AP, and is

in fact — ps. The area OAPN = nis.

Thus, a lamina of thickness unity

and specific weight w, bounded by the curve AP, the directrix

ON, and the verticals AO, PN, weighs wms, and may be taken

Fjg. 486.
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Substituting in the last equation the value oi y given by eq. (i),

(31

which is the equation to the transformed catenary.

With this form of linear arch the depths M over the crown

and Kover the springings, for a span 2x, may be assumed, and

the corresponding value of in determined from eq. (3).

It is convenient, in calculating ;/;, to write eq. (3) in the form

X

m ^H^^I^z+yJ/--

The slope i' at P' is given by

(4)

tan i' =
dY_ M(v„
iix 2in^

III m I

c -e ) =
Ms
m

s being the length AP of the catenary proper, correspondiiiij

to the length A'P' of the transformed catenary.

The area OA'P'N= rYdx = ^[f"-e '')=Ms.

The triangle P'TN is a triangle of forces for the portion

A'P'.

The triangle PTN is a triangle of forces for the portion AP.

(The tangents at Pand P' must evidently intersect ON in

the same point T.)

Let H' be the horizontal thrust at A', H being tliat at A,

Let P' be the weight upon A'P', P being that upon AP.

Let R' be the thrust at P'

.

Then

P^ _ area OA 'P'N_ Ms_ _ M
~P ~ "area^y^/W "" ms ~~

In
'
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and hence

EXAMPLES OF LINEAR ARCHES.

P' = —/*= —loms = xvMs\
in m

in
H' = P' cot i' = tuMs-jj- = zc7«' = //;

R'=H'sect' = tv/n'\/ I

APs' —
H r- = w t'wi' + i^rj'

m
The radius of curvature p' it tlte ciovvn = -rj .

.'. H' = zvMfj' — H = zvp,

and the radius of the " catenary proper " is M times the radius

of the transformed catenary.

The term ** equilibrated arch " has generally been applied

to a linear arch with a horizontal extrados.

{c) Circular and Elliptic Linear Arches.—A linear arch

which has to support an external

normal pressure of uniform inten-

sity should be circular.

Consider an indefinitely small

element CD, which may be as-

sumed to be approximately

straight.

Let the direction of the result-

ant pressure upon CD, viz., p . CD, make an angle with OB.

Let CE, DE be the vertical and horizontal projections of

CD. . .

The angle DCE = 6.

The horizontal component of p . CD = p . CD cos B — p . CE=
This is distributed over the vertical projection CE.

.'. the horizontal intensity of pressure =/ . CE -^ CE = p.

Similarly, it may be shown that the vertical intensity of

pressure = p.
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Thus, at any point of the arch,

the horizontal intensity of pressure

= vertical intensity = normal intensity =^.

Again, the total horizontal pressure on one-half of the arch

= i^(/ . CE) = />2{C£) =pr = H,

and the total vertical pressure on one-half of the arch

= 2{p . D£) = p2{DE) =pr = P.

Hence, at any point of the arch the tangential thrust = />r.

Next, upon the semicircle as base, erect a semi-cyliiuier.

Cut the latter by an inclined plane drawn through a line in the

Pic. 488.

plane of the base parallel to OA. The intersection of the cut-

ting plane and the semi-cylinder is the semi-ellipse B'AB', in

which the vertical lines are unchanged in length, while the

lengths of the horizontal lines are c times the lengths of the

corresponding lines in the semicircle, c being the secant of the

angle made by the cutting plane with the base. A semi-

elliptic arch is thus obtained, and the forces to which it is sub-

jected are parallel projections of the forces acting upon the

semicircular arch.

These new forces are in equilibrium (see Corollary).

Let P' = the total vertical pressure upon one-half of the

arch

;

H' = the total horizontal pressure upon one-half of the

arch

;
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A -vert.calfntensity
of pressure = J^,.

A' -horizontal intensity of pressure!"!^inen
^^^

.

<-r c • • . . (2)

Hence, by eq.
(3),

*
*

^"^^

' '"» oy eqs.

or the vertical and hndzonfo. •

Anytwore«an.u.
""^^ -^ "-pectively
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or, the total thrusts along an elliptic arch at the extremities of

a pair of conjugate radii arc in the ratio of the radii to which

tliey are rc.s[)cctively parallel.

The preceding results show that an elliptic linear arch is

suitable for a load distributed in such a manner that the vertical

and horizontal intensities (eqs. (2) and (4)) at any point of tlu

arch are unequal, but are uniform in direction and magnitude

Corollary.— It can be easily shown that the projected forces

acting upon the elliptic arch are in equilibrium.

The equations of equilibrium for the forces acting upon the

circular arch may be written

7" being the thrust along the arch at the point xy, and X. Y
the forces acting upon the arch parallel to the axes of x and

y, respectively.

If V , X\ V be the corresponding projected forces,

= -r, Xds = cX'ds\ Yds=Y'ds'
ds' ds

Hence, the above equations may be written

and

or

an(

i\-r:,cdx'] -\-cX'ds' =0,

d^yb') + Y'ds'^o

^(r^J 4- X'ds'=.o,
ds

d(-!') 4- Y'ds'

Hence, the forces T' , X\ and Y' are also in equilibrlum.
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Ww
^^0.

{(i) Hydrostatic Arc/i.—Let the fi^^ure represent a portion

of ii linear arch suited to support a load

wliich will induce in it a normal pressure at

every point. The pressure beiiif^' normal

has no tangential component, and the

thrust {T) alonjT the arch must therefore be

everywhere the same.

Consider any indefinitely small element

CD.

It is kept in equilibrium by the equal

thrusts (7") at the extremities C and D, and by the pressure

p. CD. The intensity of pressure/ being assumed uniform

for the element C/A the line of action of the pressure />. 67^

bisects CJ) at right angles.

Let the normals at C and D meet in O^ , the centre of

curvature.

Take 0,C= 0,D = p, and the angle CO,D - 2^6.

Resolving along the bisector of the angle CO^D,

Fio. 48g.

or

and hence,

2Ts\\\ d6 =^p.CD^pfi. 2je,

2TJ0=^pp.2AB\

T = Pp = di constant. (I)

Thus, a series of curves may be obtained in which p varies

inversely asp, and the hydrostatic arch is that curve for which

the pressure p at any poinf is directly proportional to the depth

of the point bclozv a given horizontal plane.

Denote the depth by^, and let w be the specific weight of

the substance to which the pressure/ is due. Then

and
p = wy,

T — Pp = zvyp = a constant. . .

The curve may be delineated by means of the equation

yp = const

(2)

(3)

(4)
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It may be shown, precisely as in Case (c), that the horizontal

intensity oi pressure (/^)

= the vertical intensity i^p^ = p. (5)

Take as the origin of co-ordinates the point O vertically

above the crown of the arch, in the given horizontal plane.

Let the horizontal line through O be the axis of x.

" " vertical " " " " " " " y.

Any portion AM of the arch is kept in equilibrium by the

O equal thrusts {T) at A and M,
and by the resultant load P upon

AM^ which must necessarily act

in a direction bisecting the angle

ANM.
Fig. 490. Complete the parallelogram

AM, and take SN = NM to represent T.

The diagonal NL will therefore represent P.

Let 6 be the inclination of the tangent at M to the hori-

zontal.

The vertical load upon AM = vertical component of P

= LK — T s\n B = pp sin B = zvyp sin = wy^p^ sin G, . (6)

y^, p„ being the values oi y, p, respectively, at A.

The horizontal load uponyi./1/= horizontal component oi P

= NK=SN-KS= T- Tcosd= 2r(sin-j

0\'

= 2pp l^sin -j =2tvyp\sm -j = 2wy,p,[s'm -j .

Again, the vertical load upon AM

= / ^
P(^-'^' = w / ydx = wy^Pa sin 6;

the horizontal load upon AM

= f^pdy = wf^ydy = j(y — y,^) = 2wy,p, [sin -

(7)

(^)

(9)
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Equation (8) also shows that the area bounded by the curve

AM, the verticals through M and A, and the horizontal

through is equal to y^p^ sfn 0, and is therefore proportional

to sin 6. At the points defined by ^ = 90"^ the tangents to

the arch are vertical, and the portion of the arch between these

tangents is alone available for supporting a load. The vertical

and horizontal loads upon one-half the arch are each equal to

Corollary.—The relation given in eq. (i) holds true in any

arch for elements upon which the pressure is wholly normal.

This has been already proved for the parabola and catenary,

in cases (a) and {b).

At the point A' of the elliptic arch,

OB""
P-

c'r'

OA'
—— = cr.

Hence, the horizontal thrust at A'

P= Py9 = -p = P<^r=z cH.

{e) Geostatic Arch.—"WiQ gcostatic is a parallel projection of

the hydrostatic arch.

The vertical forces and the lengths of vertical lines are

unchanged.

The horizontal forces and lengths of hori-

zontal lines are changed in a given ratio

cX.o\. l^-_3L
Let BA be the half-geostatic curve de- fig. 491.

rived from the half-hydrostatic curve BA.
The vertical load on AB'

=z P' = P = thrust along arch at B'.

The horizontal load on xiB'

= H = cH — thrust along arch at A.

The new vertical intensity

P' P Py P= A'- OB' OB

(I)

(2)

(3)
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The new horizontal intensity

H^ _ci
OA ~ OA
H' cH

• (4)

Thus, the geostatic arch is suited to support a load so dis-

tributed as to produce at any point a pair of conjugate press-

ures; pressures, in fact, similar to those developed accordin;^

to the theory of earthwork.

Let R^, R^ be the radii of curvature of the geostatic arch

at the points A, B' , respectively, and let r, , r, be the ratlii 01

curvature at the corresponding points A, R oi the hydrostatic

arch.

The load is wholly normal at A and B'. Thus,

H' = p/R, = ^R, = cH= cpr,

.

Also,

R. = c\.

F = pJR^ = cpR, = P= pr,

cR„ = r„

. . (5)

. . (6)

. . (7)

. . (8)

(/) General Case.—Let the figure represent any linear

arch suited to support a load which is sym-

metrically distributed with respect to the

crown A, and which produces at every point

of the arch a pair of conjugate pressures,

the one horizontal and the other vertical.

Take as the axis of ^ the vertical through

the crown, and as the axis of x the liori-

FiG. 49a. zontal through an origin (9 at a given dis-

tance from A.

Any portion AM oi the arch is kept in equilibrium by tlic

horizontal thrust //at A, the tangential thrust T at M, and

the resultant load upon AM,\s\\\c\\ must necessarily act throut^^h

the point of intersection A^ of the lines of action of //and T.

Since the load at A is wholly vertical, H is given by

H, =p,P,, (0
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/>„ and Po being, respectively, the vertical intensity of pressure

and the radius of curvature at A.

Let MN^ T, and take NS = //..

Complete the parallelogram SM; the diagonal NL is the

resultant load upon AM \\\ direction and magnitude.

The vertical {KL) and the horizontal iKN) projections of

NL are, therefore, respectively, the vertical and horizontal

loads upon AJSI.

Denote the vertical load by F, the horizontal \iy H. Then

Tsin B=zKL ^=iV-*^ (2)

and

H=KN=SN- SK=H,- Fcot B, . . (3)

being the angle between MN and the horizon.

/, the vertical intensity of pressure, = -T^ (4)

p_c , the horizontal intensity of pressure

dy
^(f^cot^) (5)

Example.—A semicircular arch of radius r, with a hori-

zontal extrados at a vertical distance R from the centre.

The angle between the radius to J/ and the vertical = G.

being the speci

.'. ,r = r sin ^, y =. R — r cos 6,

dx -= r cos BdB, dy = r sin BdB. ,

p^ = zcy = 7t{R — r cos 0), . . .

weight of the load. Hence,

. . (I)

. . (2)

. . (3)

V= zi'J^\R - r cos B)r cos BdB

= wr\R sin B
r sin 2B

) (4)

T

m
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Equations (3) and (4) give H ; for

/, ^ v}{R -r), . .

and hence

H, =^ 2vr{R -r)

/j; , the horizontal intensity of pressure,

r 6 — sin 6 cos 6

(5)

(6)

= -^{Vco,e) = ^[R-'-
dy sin B

— rcosi'j. (7)

Rankine gives the following method of determining whether

a linear arch may be adopted as the intrados of a real arch.

At the crown « of a linear arch ab measure on the normal a

length ac, so that c may fall within the limits required for

stability (e.g., within the middle third).

At c two equal and opposite forces, of the same magnitude

as the horizontal thrust H at a, and acting at right angles to

ac, may be introduced without altering the equilibrium.

Thus the thrust at a is replaced by an equal thrust at c, and

a right-handed couple of moment H , ac.

Similarly, the tangential thrust 7" at any point d of ab

may be replaced by an equal and parallel thrust at e, and a

couple of moment T . de.

The arch will be stable if the length of de, which is normal

to ab at d, is fixed by the condition T . de — H . ac, and if the

line which is the locus of e falls within a certain area (e.g.,

within the middle third of the arch ring.

8. Arched Ribs in Iron, Steel, or Timber.—In the fol-

lowing articles, the term arched rib is applied to arches con-

structed of iron, steel, or timber. The coefficients of elasticity

are known quantities which are severally found to lie between

certain not very wide limits, and their values maybe introduced

into the calculations with the result of giving to them greater

accuracy. There are other considerations, however, involved

in tlie problem of the stability of arched ribs which still render

its solution more or less indeterminate.

It has been shown that the curve of pressure, or linear arch.
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is a funicular polygon of the extraneous forces which act upon
the real arch. It is, therefore, also the bending-tnoment curvcy

drawn to a definite scale, for a similarly loaded horizontal

girder of the same span, whose axis is the springing line.

When the arched rib carries a given symmetrically dis-

tributed load, it will be assumed that the linear arch coincides

with the axis of the rib, and that the thrust at any normal

cross-section is axial and uniformly distributed.

The total stress at any point is made up of a number of

subsidiary stresses, of which the most important are : (i) a

direct thrust ; (2) a stress due to flexure
; (3) a stress due to a

change of temperature. Each of these may be investigated

separately, and the results superposed.

9. Bending Moment (itf) and Thrust (T) at any Point

of an Arched Rib under a Vertical Load.—Let ABC be the

axis of the rib.

Let D and E be points on the same vertical line, E being

D'D---Z^

Fig. 493.

on the axis of the rib and D en the linear arch for any given

distribution of load.

Resolve the reaction at A into its vertical and horizontal

components, and denote the latter by H.

Since all the forces, excepting H, are vertical, the difference

between the moments at D and E = H . DE.
But moment at Z> = o. Hence,

moment at E = M= H . DE.

Let the normal at E meet the linear arch in D'. Then, if

T is the thrust along the axis at E,

D'E
T cos BED' — H— Tjyp, approximately,

or

H.DE= T.D'E = M.
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10. Rib with Hinged Ends ; Invariability of Span.—
Let ABC be the axis of a rib supported at the ends on pins or

,^-^^.S_B

Fig. 494.

on cylindrical bearings. The resultant thrusts at A and C
must necessarily pass through the centres of rotation. The
vertical components of the thrusts are equal to the corrr-

sponding reactions at the ends of a girder of the same span

and similarly loaded, and H is given by the last equation in

the preceding article when DE has been found.

Let ADC be the linear arch for any arbitrary distribution

of the load, and let it intersect the axis of the rib at 5. The

curvature of the more heavily loaded portion AES will be

flattened, while that of the remainder will be sharpened.

The bending moment at any point E of the axis tends to

change the inclination of the rib at that point.

Let the vertical through E intersect the linear arch in D
and the horizontal through A in F.

Let d be the inclination of the tangent at E to the hori-

zontal.

Let / be the moment of inertia of the section of the rib

at E.

Let ds be an el^^ment of the axis at E.

Mds H.DE.ds
Change of inclination aX E = dO = -7^ EI
If this change of curvature were effected by causing th.c

whole curve on the left of E to turn about E through an angle

dd, the horizontal displacement of A would be

EF.d6=z
H.DE.EF.ds

EI
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This is evidently equal to the horizontal displacennent of

E, and the algebraic sum of the horizontal displacements of all

points along the axis is

M.DE .EF.ds=/M.DE.EF.dsEI = 0, (0

since the length AC is assumed to be invariable.

Thus, the actual linear arch must fulfil the condition ex-

pressed by eq. (i), which may be written

J
'DE.EF.ds = 0, (2)

since H and E are constant.

If the rib is of uniform section, /is also constant, and eq. (2)

becomes

/^ (3)
DE . EF .ds =0

Also, since DE is the difference between DF And EF,

f{DF ~ EF)EF. ds=o ^JdF. EF. ds-jEF'ds (4)

Remark.—Eq. i expresses the fact that the span remains

invariable when a series of bending moments, H . DE., act at

points along the rib. These, however, are accompanied by a

thrust along the arch, and the axis of the rib varies in length

with the variation of thrust.

Let H^ be the horizontal thrust for that symmetrical loading

which makes the linear arch coincide with the axis of the rib.

Let J'o be the corresponding thrust along the rib at E.

The shortening of the element ds at E of unit section

-Vj.

Example i. Let the axis of a rib of uniform section and

hinged at both ends be a semicircle of radius r.

Let a single weight W be placed at a point upon the rib

whose horizontal distance from O, the centre of the span, is a.
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The " linear arch " (or bending-moment curve) consists of

two straight lines DA, DC.

Fig. 495.

Draw any vertical line intersecting the axis, the linear

arch, and the springing line ACin B', D', F', respectively.

Let OF' = X, and let dx be the horizontal projection upon

AC of the element ds at £'.

Then

J- = cosec E'dF' — -FTfT, ,dx E'F *

or

£'F'ds = rdx (i)

Applying condition (4),

y" D'F'rdx +fD'F'rdx =f E'F'rdx,

or

y D'F'dx +fD'F'dx =f E'F'dx,

or area of triangle ADC = area of semicircle.

And if z be the vertical distance of D from AC,

zr
2

'
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or

nr
js = — = one-half of length of rib. ... (2)

Ttr
.-. D£ = DF-£F=-'- Vr' -a' (3)

Hence, if A be the horizontal thrust on the arch duo to IV,

3 2

/t.D£ = M= W"^^^ (4)

Similarly, if there are a number of weights W,, W^, W^, . . .

upon the rib, and if //,, //,, h^, . . . are the corresponding hori-

zontal thrusts, the total horizontal thrust H will be the sum of

these separate thrusts, i.e..

H=h, + h,+ (5)

It will be observed that the apices (Z>, , D^, D^, . . .) of the

several linear arches (triangles) lie in a horizontal line at the

vertical distance — from the springing line.

Ex. 2. An arched rib hinged at the ends and loaded with

weights W„ IV„ W^, . . .

nh,

^P

/
Fig. 496. Fig. 497.

Let I 2 3 4 . . . « be the line of loads, W^ being represented

by I 2, IVj by 2 3, W^ by 3 4, etc., and let the segments \x.

mssssim
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nx, respectively, represent the vertical reactions at A and C.

Take the horizontal length xP to represent H, and draw the

radial lines P\, P2, P^, . . .

The equilibrium polygon y^^,^'-^, . . . must be the funicu-

lar polygon of the forces with respect to the pole P, and there-

fore the directions of the resultant thrusts from A to A",, /;, to

£^, £^ to /:,, . . . are respectively parallel to Pi, P2, P^, . .

The tangential (axial) thrust and shear at any point / of

the rib, e.g., between E^ and E^ , may be easily found by draw-

ing Pt parallel to tlie tangent at/, and 3/ perpendicular to Pt.

The direct tangential thrust is evidently represented by Pt,

and tlie normal shear at the same point by 3A The latter is

borne by the web.

Up is a point .L which a weight is concentrated, e.g., Ji^,

draw Pt't" parallel to the tangent at E^, and $t', 6t" perpen-

dicular to Pt't".

Pt' represents the axial thrust immediately on the left of

£^ , and 5/' the corresponding normal shear, while Pt" repre-

sents the axial thrust immediately on the right of £, , and 6/"

the corresponding normal shear.

A vertical line through P can only meet the line of loads

at hifiniLy.

Thus, it would require the loads at A and C to be infinitely

great in order that the thrusts at these points might be vertical.

Practically, no linear arch will even approximately coincide

with the axis of a rib rising vertically at the springings, and

hence neither a semicircular nor a semi-elliptical axis is to be

recommended.

Ex. 3. Let the axis of the rib be a circular arc of span 21

and radius r, subtending an angle 2a at the centre N.

Let the angles between the radii NE, NE' and the vertical

be (:i and B, respectively.

The element ds at E' = rdB.

Also, E'F' = r(cos - cos a); AF -l-rsmO',

D'F'-^^^~~il r sin B).
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\\ I /

N
Fig. 498.

Applying condition (4),

r'(cos B — cos ayrdO£
=X= / . (/— r sin ^)r(cos 6 — cos a)rd6

+ Xr^^^'-
r sin ^r(cos — cos a)rdO,

-which easily reduces to

r|a'(cos 2a -|- 2) — f sin 2a\

= jr^—% \ ^'(^*" 01 — a cos a)-\— (cos 2a — cos 2/?)

— rl cos a(cos 01 — cos /?) — /a(sin § — ft cos a) > ,

an equation giving z or Z)/^ Also,

Z)£ = DF - EF,

and the corresponding horizontal thrust may be found, as

before, by the equation

h.DE= W

t

f il
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Note.—W a° = 90^

5 _ 2^ //" - a'\

2 ~ r -a'\ 2 /'

nr .

or 2 = — as in Ex. i.
2

Ex. 4. Let the axis be a parabola of span 2/ and ••ise k.

(Fig. 498, Ex. 3). From the properties of the parabola,

and

or, approximately,

ds = dx\\ -f- 27r^').

Applying condition (4),

j\{x - ^,)V^(l -f 2^V)

which easily redu.es to

I , I /'4-«72>t' \ 2 k\., .

,, , , „

)

^V + 6 -^It^ - V -
75

7.(^^ + /V+ ^*)
j-

_ /16 32 ^\

an equation giving z or Z>F.

;Vi?/^.—If the arch is very flat, so that ds may be considered
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1

as approximately equal to dx, the term 2j^x* in the above

equation may be disregarded, and it may be easily shown that

( I r + a*\ .16

or
32 kr

z = —
5 5/' - «•'

II. Rib with Ends absolutely Fixed.—Let ABC be the

axis of the rib. The fixture of the ends introduces two un-

D

Fig. 499.

known moments at these points, and since H is also unknown,

three conditions must be satisfied before the strength of the

rib can be calculated.

Represent the linear arch by the dotted lines KL ; the

points K, L may fall above or below the points A, C.

Let a vertical line DEF intersect the linear arch in Z>, the

axis of the rib in E, and the horizontal through A in F.

Mds
As in Art. 10, change of inclination at E, or dd, = -pj-

But the total change of inclination of the rib between A and

C must be nil, as the ends are fixed.

-Mds/mas n

which may be written

H.DE.ds
EI ' (I)

/ -j-ds = o, (2)

since H and E are constant.

\

?ut.=
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If the section of the rib is uniform, / is constant and eq.

(2) becomes

/DE . lis = o. (3)

Again, the total horizontal displacement between A and C
will be nil if the abutments arc immovable. If they yield, the

amount of the yielding must be determined in each case, and

may be denoted by an expression of the form i^H, yw being

some coefficient.

As in Art. 10, the total horizontal displacement

H.DE.EF.Js
~ J EI

•••/
H.DE.EF.ds

EI
o or = /<//. ... (4)

But H and E are constant.

i^DE.EF.ds
.'.

I
V = o or =/</:. ... (^5)

If the section of the rib is uniform, /is also constant, and

hence

/ DE . EF . lis — o or = i^El. (6)

and since DE is the difference between DF awA EF, this last

may be written

JdF. EF. lis ~ J'eF' . lis == o or = ;//;/. 17)

Again, the total vertical displacement between A and C
must be ////.

The vertical displacement of E (see Art. 10)

= AF.iie=,
M.AF.ds

El '
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Hence, the total vertical displacement

f^H.DE.AF
-^j JS = 0,

773

(8)

which may be written

nDE.AF
-7 "^=''' (9)

1

since //"and E are constant. If the section of the rib is also

constant,

CdE . AF . ih =0=J'dF . A

F

. ./j ^fEF.AF. ds. ( io>

Eqs. (2), (5), and (9) are the three ciiu.itioiis of condition.

In eq. (9) W/*' must be measured from same abutment

throughout the summation.

The integration extends from A to C.

Example 1. Let the .i.\is of the rib be a circular arc of

span 2/, subteniling an angle 2(^ at the centre A'^

Let a weight //' be concentrated on the rib at a point E

A' .
>^- D

A ^v
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Draw any ordinate E'F' intersecting the linear arch in U,
Let the radius NE' make an angle ^ with the vertical.

Then

E'F' = r(cos — cos a).

z-y^
AF' = / - r sin 6/, and D'F' =(l-r sin 6)-—^-'+ «

if F' is on the left of F;

^-y.AF' = l-^rs\ne and D'F' = {I - r sm 6)-—^ -\. y^

\i F' is on the right of F.

Also, ds — rdO,

Applying condition (2),

+ |''|(/-rsin#)^^+y,|rf^

= r / (cos ^ — cos ()i)dO (i)

Applying condition (5)- and assuming a* = o,

Acos ^ - cos «)
I

(/ - r sin ^)^^' + J, [
^^

- Acos 8 - cos «){(/- r sin ^)^^^ + -y,
I+

= r / (cos 6* — cos nty dd. (2)
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Applying condition (9),

X
dff+ /'(/+ r sin ^

I

(/- . sin efj^+y,
I

= rj (cos (f — cos aX^ " '' sin 0)dff

+ rf"{cos e - cos a){l -\- r sin e)de. (3)

Equations (i), (2), (3) may be easily integrated, and the iC-

sulting equations will give the values of ^, , z, and_j/,

.

The corresponding horizontal thrust, //, may now be ob-

tained from the equation h . DE =.M= h{z — EF).

Note.—If the axis is a semicircle, and if W^is at the crown,

a = o, a = 90°, /? = O,

and eqs. (i), (2), (3) reduce to

z{7t - 2)-\-y,-\-y^ = 2r\

z(,7t-2)-\- y\^ - i) -yj^ + i) = 2r.

;r — 2
, 4-f- 27r — ;r'

z = r- , and j/, = j, = r-4~ 7T 4— TT

Ex. 2. Let the axis be a parabola of span 2/ and rise ^
(Fig. 500 in Ex. i).

As in Ex. 3, Art. 10,

I. i-S

I

f

:

^^ i:

I
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Also,

and

THEORY OF STRUCTURES.

D'F' =;/, + (/_ xyj—^^ on the right of DF,

-J'a=
j,,^ 4. (/ __ x)-— - - on the left of DP,

AF'=^lT .V.

The equations of condition become

*y a

-H r k[i - f){i^ x)[i + 2^px^)dx.
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These equations may be at once integrated, and the result-

ing equations will give the values of^,
, j, , z.

If the arch is very flat, so that y/j may be taken to be ap-

projcimately the same as dx, it may be easily shown that

and s = -k.
5

12. Effect of a Change of Temperature.—The variation

in the span 2/ of an arch for a change of t° from the mean
temperature is approximately = 2etl, e being the coefficient of

expansion.

Hence, if Hi is the horizontal force induced by a change oi

temperature, the condition that the length ^6 is invariable is

expressed by the equation

V-DE.EF.ds__, ^ 2e// = o.

If the rib is of uniform section, / is constant ; and since

E is also constant, the equation may be written

~ CdE . EF. ds ± 2€tl = o.
E/t-'

Example i. Let the axis ^j&C of a rib of uniform section

-^n^-tC

be the arc of a circle of radius r subtending an angle 2ac at the.

centre.

First, let the rib be hinged at both ends.
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It is evident that the straight line AC\% the "linear arch."
Then,

fDE . EF. ds =^fEF'ds = r* f\cos 8 - cos afdd

= r'|a(2
-f- cos 2a) — | sin 2a|.

Also, /= r sin Of.

iVI?/^.—If the axis is a semicircle, a = 90°, and

^— ±2e//=o.

Second, let the rib be/';jr^drat both ends.

The " linear arch" is now a straight line A'C at a distance

«(= Z>/^) from ^t' given by the equation

/ DE .ds — o.

,\ fDF.ds^jEF.dSy

zfds ^r" C (cos # — cos a)dB,

az = r(sih a — a cos a).

or

or

Also,

JdE .EF.ds =f{DF . EF-^^EFys = sjEFds '^fEF^ds

= 2zr\sm a — acosa)'^ r'{a{2 + cos 2a) — | sin 2a |.

.-. ^1 2^'rXsin a — a cos a) — r*\a{2 + cos 2a) — f sin 2a{ i

and / = r sin or.

± 2etl — o.

Ex. 2. Let the axis ^^£'6' of a rib of uniform section be a
parabola of span 2/ and rise k, (See Fig. 501 in Ex. i.)
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First, let the rib be hinged at both ends.

The straight line AC is the linear arch. Then

779

CdE . EF. ds = CeF' (i + 2^ x^dx

and hence,

Second, let the rib be fixed at both ends.

The linear arch is the line A'C at a distance z {=^ DF)
from A C given by the equation

JdE .ds = o= C{DF r^ EF)ds,

or

DF/*=/EF. ds.

or

/.2k'
,

2 k'\ 2 ( 2k\

Also,

/ =PDE.EF.ds- DF.EF.ds -fEF*ds

=./^^.^-/-^^-^Ki+^5P)~&'+^5T)
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Hence,
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Ht^n ( 2k*\ 4k( 2 Jt \)

Remark.—The coefficient of expansion per degree of Fah-

renheit is .0000062 and .0000067 for cast- and wrought-iron

beams, respectively. Hence, the corresponding total expansion

or contraction in a length of 100 ft., for a range of 60° F. from

the mean temperature, is .0372 ft. (== -^-^") and .0402 ft. (= \").

In practice the actual variation of length rarely exceeds one-

half oi these amounts, which is chiefly owing to structural con-

straint.

13. Deflection of an Arched Rib.

Fig. 502.

Let the abutments be immovable.

Let ABC be the axis of the rib in its normal position.

Let ADC represent the position of the axis when the rib is

loaded.

Let BDF be the ordinate at the centre of the span ; join

AB, AD.
Then

DF' zz^AIT - AF" = AB'^'''^^^- AF',
Varc ABJ

But
arc AB — arc AD f

f being the intensity of stress due to the change in the length

of the axis.

.-. DF' = AB'[i - i^- AF' = BF'- AB'^2^-
[^J |

.
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1

AB'
I
2^- - [Q) I

= BF*- DF' = {BF- DF){BF-\- DF)

= 2BF{BD), approximately.

(^1 is also sufficiently small to be disregarded. Hence,

AB* f f^ -\- P f
BD, the deflection, = -^F "W ——I— p > approximately.

14. Elementary Deformation of an Arched Rib*

The arched rib represented by Fig. 503 springs from two
abutments and is under a vertical load. The neutral axis PQ
is the locus of the centres of gravity of all the cross-sectidns of

the rib, and may be regarded as a linear arch, to which the

conditions governing the equilibrium of the rib are equally ap-

plicable.

Let AA' be any crosr-section of the rib. The segment

AA'P is kept in equilibrium by the external forces which act

upon it. and by the molecular action at A A'.

The external forces are reducible to a single force at dTand

to a couple of which the moment M is the algebraic sum of

the moments with respect to C of all the forces on the right

of C
The single force at C may be resolved into a component T

along the nen'^ral axis, and a component Sin the plane AA'.
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The latter has very little effect upon the curvature of the neu.
tral axis, and may be disregarded as compared with M.

iH'/ore deformation let the consecutive cross-sectfons ?ili'

and AA' meet in A'; A' is the centre of curvature of the arc

CC of the neutral axis.

After deformation it may be assumed that the plane AA'
remains unchanged, but that the plane BB' takes the position

B"B"'. Let AA' and B"B'' meet in R' ; R' is the centre of

curvature of the arc CC after deformation.

Let abc be any layer at a distance a from C.

Let CC = ^s, CR = R, CR' = A^', and let Ja be the sec-

tional area of the layer abc.

By similar figures,

ac

Is R'

.. be =:.ac — ab =. As

The tensile stress in abc

R'-\-z ^ ab R-}-3
and ^ = -^.

\R' r)'

= E . Aa-7 =. £
ab

Aa
As . z

ab \R' rI

= £.Aa
R' R— ^ J

, very nearly.

The moment of this stress with respect to C

= £. Aa.js'
R' R

Hence, the moment of resistance at AA'

-/E.Aaz\^--^ = E I ¥Aa .s*,

the integral extending over the whole of the section.

(I)
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Again, the effect of the force T is to lengthen or shorten

the element CC, so that the plane liH' will receive a motion

of translation, but the position of R' is practically unaltered.

Corollary 1. Let ./ be the area of the section AA'.

The total unit stress in the layer ahc

= P
T Ms
A ^ /"' (2)

the sign being ^//« or minus according as il/ acts towards or

from the edge of the rib under consideration.

From this expression may be deduced (i) the position of

the point at which the intensity of the stress is a maximum for

any given distribution of the load; (2) the distribution of the

load that makes the intensity an absolute maximum
; (3) the

value of the intensity.

Cor. 2. Let zv be the total intensity of the vertical load per

horizontal unit of length.

Let zv^ be the portion of zv which produces only a direct

compression.

Let H be the horizontal thrust of the arch.

Let /* be t! ^ total load between the crown and AA' which

produces compression.

Refer the rib to the horizontal OX and the vertical OPY
as the axes of x and y, respectively.

Let X, y be the co-ordinates of C.

Then

P=H^^\ but dP = zu,dx,
ax

zv^ = //
dy •••••• (3)

also,

T=//
ds_

dx
• ••••• . (4)
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15. General Equiations.

Let / be the spun of tlie circli.

Let .r, y be the co-ordinates of the point C before Ak:{ox\x\\\.

tion.

Let x\ y' be the co-ordinates of the point C after deforma-

tion.

Let ^ be the angle between tangent at Cand OX before

deformation.

Let H' be the angle between tangent at C and OX after

deformation.

Let ds be the length of the element CC before deforma-

tion.

Let ds be the length of the element CC «//rr deformation.

d^' I d6 I

Effeet of flexure. ^ =
-^ and ^ ^ -^.

M I dB' de dB' - dd
" EI" R R~~ ds' ds ~ ds

Let i be the change of slope at C. Then

, very nearly.

di = dd — dO' = -—- = -— -- d^,
EI EIdx

'^ J Eldx
dx, • . (5)

«"(, being the change of slope at P, and a quantity whose value

has yet to be determined.

Again, the general equations of equilibrium at the plane

AA' are

d'M dS
dx (6)

for the portion w^ , Cor. 2, Art. 14, produces compression only

and no shear.

.... = ^-/'.,^+^(| *) (7)
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6'„ being the siill uiulctci'iniiicd vertical component of the shear

at I\ and . " tlu' slope .it P. Also,
axa

M = M. .y S... - SjSydx^ + H[y -y.- ^'^;^, (8)

M^ being the still undetermined bending moment at P.

liquations (5), (6), (7), and (8) contain the four undeter-

mined constants //, 5„ , il/„ , /„

.

Let M^ , 5, , and t\ be the values of A/, S, and ;, respectively,

at (?.

Eqjiations of Condition.—In practice the ends of the rib are

either fixed o r free.

If they are fixed, ?"„ = o ; if they are free, M„ = o. In either

case the number of undetermined constants reduces to three.

If the abutments are immovable, ,r, — I = o. If the abut-

ments yield, .i", — /must be found by experiment. Let x. — /

= t-iH, fi being some coefficient. They^nV equation of condi-

tion is

x^ — I =0, or X, — I = nH. .... (9)

Again, Q is immovable in a vertical direction, and the

second equation of condition is

y.-yo = o- (10)

Again, if the end Q is fixed, /, = o ; and if free, M^ — o ; and

the third equation of condition is

J, = o, or J/, = o (11)

Substituting in equations (7) and (8) the values of the three

constants as determined by these conditions, the shearing force

and bending moment may be found at any section of the rib.

Again,

cos 0' = cos (H — i) = cos 6^ -j- / sin 0;

sin /V' =: sin {B — /) = sin — i cos B.
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dx' dx dy dy' dy .dx

ds ds ds ds ds ds

Hence, approximately,

-tM --*) = ^ v7 a"d -riy' -y)=: - i -r.

(12)

ds ds ds^ ds

Thus, if X and Y are respectively the horizontal and verti-

cal displacements,

dX .dy
^ dV dx

-^~ — t-r and -7- = — i-j-,
ds ds ds ds

or

dX dV
dy dx

• « • (T3)

16. Effect of T and of a Change of t in the Temperature.

ds
T\

' = 4' - m)

Also, if there is a change from the mean of t° in the tem-

perature, the length dsii — -^j must be multiplied by

(i ± et), € being the coeflficient of linear expansion.

.'. ds' = ds[i - ^-^i ± et)

= dsil — -jTj. ± et\, approximately. (14)

By equations (12),

dx' =^{dx-^i.dyij^-={dx^i.dy)\\ -JTa^^I

and

dy' - {dy - i-'i'^\f^ = ("';' - i'dx)\\ -
y^^ ± et).
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.': dX — d{x' —x) = idy — {-^ q= ety

and

/ T \

dV= d{y — j) = —idx— \Tr7i T ^t)dy, approximately,

Hence,

X^x'-^ = f^i%dx - J"{£^ T e^dx . (15)

and

y=y-y=- f''d- - fi^A ^ '& ('«)

Note.—A nearer approximation than is given by the pre-

ceding results may be obtained as follows:

Let X -\- dx, y -\- dy hQ the co-ordinates of a point very

near C before deformation.

Let x' 4" dx'
, y -f- dy' be the co-ordinates of a point very

near C after deformation.

Then

ds^z^dx'^df and ds'^ z=z dx"" -\- dyf\

.'. ds'' - ds' = dx" - dx' + dy" - dy'\

or

{ds'-ds){ds' + ds) = {dx'-dx){dx'+ dx)+ {dy'-dy\dy + dy).

.'. {ds' — ds)ds = {dx' — dx)dx + {dy' — dy)dy, approximately.

.-. dx' -d:i^ {d-' - dsi^£ - {dy' - dy)^

and

, , , , ds dx , , , . (dx

dy' -dy = {ds' - ds)^^^ - {dx - dx)-^-.

Hence, by equations (12) and (14),

dy Tlds\\ (ds\'

dx EA\ixl V/.r/

!i.|
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and

}' - y =

dy - dy ^ - ^dx -
--(-^J

^^^dx ± eA^ ^dx.

These equations are to be used instead of equations (15)

and (16), the remainder of the calculations being computed

precisely as before.

The following problems are, in the main, the same as those

given in Art. 180 of Rankine's Civil Engineering, 13th edition-

17. Rib of Uniform Stiffness.—Let the depth and sectional

form of the rib be uniform, and let its breadth at each point

vary as the secant of the inclination of the tangent at the point

to the horizontal.

Let Aj, /, be the sectional area and moment of inertia at

the crown.

Let A, / he the sectional area and moment of inertia at any

point C, Fig. 503.

Then

ds
A = A,secB= A.-j-

dx (•;;

Also, since the moments of inertia of similar figures var\

as the breadth and as the cube of the depth, and since the

depth in the present case is constant,

/ = / sec 6* = /.

ds

dx (18)

Again, -j =
;ysec e _H
A, sec ~ A,

, and the intensity of the thrust

is constant throughout.
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Hence, equations (5), (15), and (16), respectively, become

^ = ^°-2:a/'^^^'

x' — X = / i' , dx
t/o lix

II
-jfj;-^±etx;

(19)

(^20)

y -y /'^^^'^-(z^^^'V-^")- •

(-'^

Equation (19) shows that the deflection at each point of the

rib is the same as that at corresponding points of a straight

horizontal beam of a uniform section equal to that of the rib

at the crown, and acted upon by the same bending moments.

Ribs of uniform stiffness are not usual in practice, but the

formulae deduced in the present article may be applied without

sensible error to flat segmental ribs of uniform section.

18. Parabolic Rib of Uniform Deptli and Stiffness, with

Rolling Load ; the Ends fixed in Direction ; the Abut-
ments immovable.

D E

Fig. 504.

Let the axis of ;r be a tangent to the neutral curve at its

summit.

Let k be the rise of the curve.

Let X, y be the co-ordinates at any point C with respect

to O.

Then

=f(5-^)' (-)

and

dy

dx

\> _ %kfl \ dy, _ 4/(' dy, 4k dy _Sk
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Let w be the dead load per horizontal unit of length.

" w' " " live " " << " " "

Let the live load cover a length DE, — rl, of the span.

Denote by (A) formulae relating to the unloaded division

OE, and by (B) formulc-E relating to the loaded division DE.
Equations (7) and (8), respectively, become

(A) S=S,Jr^-^-w)x; (24)

(B) 5 = 5„ + \-j- - ZCJ.V - %v'\x - (I - r)l\. . . (25)

VA) M=M,-\.S,x+{^-^-w)^; (26)

(B) J/ = J/, + V+(«-^_,,,):|_^|^_(i_r)/|«. (27)

Since the ends are fixed,

h=o = i, (28)

Hence, by equations (19) and (26),

(A) ^= __|j/^^+5_+^___«,j- |; . (29)

and by equations (19) and (27),

-%^\^-{i-ry\'Y (30)

When X — l,i — ?, = o, and therefore, by the last equation,

o=M,-^S--i-{-j:,~-wy^--^ry\ . . . (31)
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dt>

791

Again, let « = ^. Then

But,=o, and g = ^.

.^J . 8/^ P ^ U n rx
tirJ^ ~ - -n I Vdx =^ - ~ idx\ (32)

By the conditions of the problem, x' - x and / - j; are
each zero at Q. Hence, equations (20) and (21), respectively
become

o=~J^tdx.

(33)

(34)

Substitute in eqs. (33) and (34) the value of t given by eq.
(30), and mtegiate between the limits o and /. Then

o = I

20 f

and ,

which may be written

4 \ / / 20 -Jr.

I 3f H \EI
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and

o-i/. + 5„- +
/

,

[UH \f
\-

12
— zvr

12
• • • • (36)

Hence, by eqs. (31), (35), (36),

S, = - - + w'/r ( - D 47//; (37)

M^=
12 3 '(-l^)

-\--kH\ (38)

H =
.|f+<i.-iV+M4?.4'}

H'+^:A.)
• • • • (39)

When X z=z L M = J/., and 5 = 5.

Hence, by eqs. (25) i.nd (27),

^x = \ +
(HJi'H — Z£/ / — w'r/.

and

J/, = ^. +V+ /8/t// V' ze/ r

Substituting in these equations the values of 5,, M^, given

above, we have

and

S,=

J/.=

zvl

zvl^

12

w'rl

- iv'r

(-- +ii+
N 4^/

(40)

\2 3 ' 4/
+ -^/Z". . . (41)

To find the (greatest intensity of stress, etc.—The intensity of

. J- . T H
the stress due to direct compression — -- =— .
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The intensity of the stress in the outside layers of the rib

due to bending is the same as that in the outside layers of a

horizontal beam of uniform section //, acted upon by the same

moments as act on the rib, for the deflections of tiie beam and

rib are equal at every point (cq. (19) ). Also, since the rib is

fixed at both ends, the bending moment due to that portion of

the load which produces flexure is a inaximnm at the loaded

end, i.e., at Q. Hence, the maximum intensity of .stress (/>,)

H a
occurs at Q, and/, = --r- ± i^/,7', ~, being the distance of the

-^1
.
'1

layers from the neutral axis.

H and y>/, are both functions of r, and therefore /», is an ab-

solute maximum when

But

and

dr

djf

dr

I dH z,dl\L

A dr ^ /. dr

ijw'l' r\i- ry

4 '+'4
4Ak'

dr
^ ' ^ I dr

Hence,/, is an absolute maximum when

o-wTr{\ -ry-

(42)

(43)

V44)

4,+!^45 A
AAJi-

T7
I

The roots of this equation are

r — I

and

/

r- ±
2^4 A,k\

± I

(45)
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r = I makes j- zero, so that the maximum value of p.

corresponds to one of the remaining roots.

Thus,

the
A.,z,

and

max. thrust = -T-\H
-\--Y^

Ma =P' . . (46)

the max. tension = ^-(- //+ -f^M}j = /,", (47)

the values of //and J/, being found by substituting in eqs.

(39) and (41)

I
—

2 A ,z^k

or ! (48)

' 2 A^zji

according as the stress is a thrust or a tension.

If eq. (47) gives a negative result, there is no tension at any

point of the rib.

Note.—The moment of inertia may be expressed in the form

I=qz:A,,

^ being a coefficient depending upon the /orw of the section.

Hence,

I / rr , ^l\
the maximum intensity of stress = 'T'li " H i« • K9j

Corollary i.— If the depth of the rib is small as compared

with k, the fraction j will be a small quantity, and the maxi-

mum intensity of stress will approximately correspond to r = |.
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The denominator in eq. (39) muy be taken to be k, and it may
be easily shown that the valuci- ot/,', /," are

6Vr. 2. If the numerator in eqs. (48) is greater than the

denominator, tlien r must be unity. Hence, by eq. (39) and

^ -
8 <^/C' ^ 4 <^^"

^5-)

and by eqs. (38) and (41),

=-w
15 w + w' .sr,''' 5 e/ ^/,

(717 ± 4 <^ i'
(53)

Thus, /,',//' can be found by substituting these values of

If and J/, in eqs. (46) and (47).

19. Parabolic Rib of Uniform Stiffness, hinged at the

Ends.
Let the rib be similar to that of the preceding article.

Since the ends are hinged, M\, ^ o = il/, , while t is an un-

determined constant.

The following equations apply:

,0 A zy

(A) S=S,-]-[-^r-wlx; (54)

0^) S=S„-{-[-jT - ii-jx - w'\x - (I - r)l\ : . (55)
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(A) M:

M

= <>> + f-^-..)f': (56)

= 5„. + (^-..)^'-^U-(i-.)/r. (57)

I I ,x' lUH \x']
^ = ^.-^7|^s„-+i-7r--j-6-;-; (58)

I , ,x'
,

lUH \x' zv' ^ ^,, )

? = «

Assume that the horizontal and vertical displacements of

the loaded end arc /it/.

Substitute in eqs. (20) and (21) the value of i given by eq.

(59). Integrate and reduce, neglecting the term involving the

temperature. Then

o = ?,

= t

^P"il+l"7^-^"i65

^,^«6 + i7^-'^)2-4-^^24}- • • •
^^'^

From (57), since J/, — o,

0= 5„+(^-^r- - w/J- -"'/j. • • • (62)

Equations (60), (61), and (62) are the equations of condi-

tion.

Subtract (61) from (60). Then

I (^ r
,
lUH \l

hi, ( "12 ' \ /' /4

which may be written

o = \ + ( /r -
-jf^

- -'4- - -) - 3//
j_ ,T,. (63)

40
zi'V'C''

\244 60/

)
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Subtract (63) from (62). Then

° = 1-7^ -
^JS

- "^ ^2 -
2 + 5'^ + 3//,,; li^

(64)

Hence,

/'|«. + '^(5r'-5.-' + 20|
/^ = --^ j-~ -. . . . (65)

Eliminating S^ between (61) and (62),

Also, by (55),

6^, = -So 4- \~Tr — wj/ — wV/ = — />, suppose. (67)

Eliminating 5„ between (62) and (67),

-^ = ., = e-f-4^-.v(.-0. . . . (as,

Eqs. (62), (65), (66), and (68) give the values of H, S,,S,,

and i,.

Again, the maximum bending moment M' occurs at a

point given by , -^ o in (57), i.e.,

o = S„ + {^r -^^)^-'^'\^-(i -r)/}. . (69)

Subtract (69) from (67). Then

- />. = <>; = (^ - w){/-:,) - w\l~x).

fii'

'
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Hence, the distance from the loaded end of the point at

which the bending moment is greatest is

/-^ =
Ik) -\- w' —

• • • • . (70)

Substitute this value of -v in (57), and, for convenience, put

,
8/('//

Then

'"'=4'-0+
,!'-«!/. P

\ m' 2 \ w/ ' /

= / (5. + ^^-^l - -r'l] - -
1 5„-f {zv'-m)l- w'rl\

P^fta' — m w'\

+ "tA 2 2
/•m

But by {62), o = 5„ H — / rV.

.-. M'

=

/(o) - A- p) + q- '^-) = ^.
^ ^ m ' m\ 2 / 2m

Hence, LI' , the ma imum bending moment^

2I w -\-tu -.7-

J

(71)

As before, the greatest stress (a thrust)

= i.(^+^^')=^'' (72)

and the value of r which makes // an absolute maximum is

given by -j- = o. But by (71), M' involves r'" in the numera-
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tor and r" in llic denominator, so that t^ = o will be an
dr

equation involving r'\

One of its roots is r = i, which generally gives a viinitmnn

value of /,'. Dividing by r — i, tlic equation reduces to oni'

of the thirti'cntli order, but is still far too complex for use. it

is found, however, that ^ = i gives a close approximation \o \\\q

absolute maximum thrust.

With this value of r, and, for convenience, putting

1 +
15 /, I

8 A, k1.^
= «.

By (65).

By (62),

By (68),

By {66),

By (70).

_5. = /^ = -|i..+ -j— +--[.

" 24^/ ( \ ' 2 / // 16 )

l-x =
7v\n — I to

(74)

(75)

(76)

. . (77)

By (71),

^'=, 8ii^^ + -2i—-+4f
/ , 2C>'\fl — I ,

10'

\ ' 2 / « '2

• • • (78)

I

Note.— If the rib is merely supported at the ends but not

fi;^ed, the horizontal displacement of the loaded end may be
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represented by ////"(Art. 1 1). Thus the term — iiH must be
added to the right-hand side of cq. (15).

20. Parabolic Rib of Uniform Stiffness, hinged at the
Crown and also at the Ends.—In this case M=o at the

crown, which introduces a foiirth equation of condition.

By (57).

which may be written

= 5,, -t,V-u>'/{r^. /-+ !). (79)

EHminating 5„ between (79) and (62),

SJt/7 — zv = w'{— 2r' -\- 4r — i]

H ence,

^ ^ o;y^ - ^'{2r' - 4r + l)\.

By 179).

By (68),

By (66),

^. = —{3r" -4^+1).

w7

24^/,
(I - 4r ~\- 4r' - r*).

By ' o) and (82),

tf

/-x =
(r - I)'

By(7i)-

2ti''(r— -y

M'
w'i

~T6
{r-if

(80)

(81)

(82)

(83)

(84)

(80
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When r =.\,

8>CA'

I zv'r
'»

- 384 i^/.

'

and J/' =
64-

801

! . (86)

These results agree with those of (73) to (78), if ;/ = I.

In general, when n = i

,

%v-\- — (5r' — 5r' -f 2r') = w — zv\2r'' — 4/- + i),

by (65) and (80). Hunce,

2r' — 5r* + 9^' + 8^ + 2 = o = (2r — i)(r — i)'(/'' — 2),

and the roots are r = ^, r = i,r= ± 1^2.

Hence, n — r only renders the expressions in (86) identical

with tiie corresponding expressions of the preceding article

when n = \ or i.

Again, the intensity of thrust is greatest at the outer flange

of the loaded and the inner flange of the unloaded half of the

rib, and is

_ /' i J, 7(7'
, I / W

r)i-

111

%

The intensity of tension is greatest at the inner flange of the

loaded and the outer flange of the unloaded half of the rib,

and is

I* iS.w' I / , iv'

= va: i /, t - iv' + 7

The greatest total horizontal thrust occurs when r =z i, and

its value is

u-
(w -\- w')
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21. Maximum Deflection of an Arched Rib.—The deflcc-

tion must necessarily be a maximum at a point given by i = o.

Solve for x and substitute in (i6) to find the deflection^' — jf,

the deflection is an absolute maximum when -, [^y' ~- y) — o.

The resulting equation involves r to a high power, and is too

intricate to be of use. It has been found by trial, however,

that in all ordinary cases the absolute maximum deflection

occurs at the middle of the rib, wheri the live load covers its

/
whole length, i.e., when x = , and r = i.

2

Cask I. Rib of Art. i8. For convenience, put I -\- - ,' ,= j.^
' 4 Ak

Then, by (39),

U s ^ 8 5 /L'»

• (87)

By (38) and (41),

- J/„ = —{zv + zvi-^- :r ^ ^'^12^ ' ' S ^ 4s k

By (36) and (38),

= ''M,. . (88)

\= — 6—. (89)

By {30), (38), (89),

«= -^7(^/0^ -3^^«7 + 2i1/„^). . . . (90}

Hence, the maximum deflection

- J.tdx^- y I \x - 3y+ 2jr]dx = - -^j^

r w -\- w' s — \ i €t r
,
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The central deflection </, of a uniform straight hori^onial

beam of tlie same span, of the same section as the rib at the

crown, and with its ends fixed, is

, /' w -h
«;'

, .

^' = 384"^7r
^^'^

Hence, neglecting the term involving the temperature,

d. = ^< (93)

Cask II. Rib of Art. 19.

By 65),

" =U^ (94)

By (66) and (62),

t'~ T^\^V + "W ) = - ^v • • • (95)
° 2\EI^ ' ' n 12EI ^^•"

By ^30), (94). '-ind (95),

SIP x^ ,x^'\ ,,.
^ = z/.lr2-2- + 3/v ^96)

Hence, the maximum deflection

If t ends of the beam in Case I are free, its central de-

flection

5 iyi^+J^')_,,
-

384 EI ~ ^' *

.•.^/ = -^'<' (98)

Thus, the deflection of the arched rib in both cases is less

than tlvat of tbt beam. *

I
rm

it

i$

i : If
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22. Arched Rib of Uniform Stiffness fixed at the Ends
and connected at the Crown with a Horizontal Distribut-

ing Girder.—The load is transmitted to the rib by vertical

struts so that the vertical displacements of corresponding^

points of the rib and girder are the same. The horizontal

thrust in the loaded is not necessarily equal to that in the un-

loaded division of the rib, but the excess of the thrust in the

loaded division will be borne by the distributing girder, if the

rib and girder are connected in such a manner that the hori-

zontal displacement of each at the crown is the same.

The formulae of Art. i8 are applicable in the present case

with the modification that /, is to include the moment of

inertia of the girder.

The maximum thrust and tension in the rib are given by

equations (64) and (65).

Let z' be the depth of the girder, A' its sectional area.

H M z'
The greatest thrust in the girder = ——;—— -j—^-. (99)

The greatest tension in the girder =

A,-\-A' ' 2EI,

M,z'

2EI,
. (100)

1/ and M, being given by equations (66) and i^f)., respectively.

The girder must have its ends so supported as to be capable

of transmitting a thrust.

23. Stresses in Spandril Posts and Diagonals.—Fig. 505

represents an arch in which the spandril consists of a series of

vertical posts and diagonal braces.

Fig. 505.

Let the axis of the curved rib be a parabola. The arch is

then equilibrated under a uniformly distributed load, and the

diagonals will be only called into play under a passing load.
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Let X, y be the co-ordinates of any point F of the parabola

with respect to the vertex C. Then

7y = ^x

Let the tangent at F meet CB in L, and the horizontal BE
in G.

Let BC = k'. Then

BL = BC-CL = BC-CN=k' - y.

Let A'' be the total number of panels.

Consider any diagonal ED between the «th and (« -\- i)th

posts.

Let w' be the greatest panel live load.

The greatest compression in ED occurs when the passing

load is concentrated at the first n — i panel points.

Imagine a vertical section a little on the left of EF.

The portion of the frame on the right of this section is

kept in equilibrium by the reaction R at P, and by the stresses

in the three members met by the secant plane.

Taking moments about G,

D.GE cos e = R.AG,

D being the stress in DE, and the angle DEF.
Now,

„ _ w' n{n — i)

Also,

x-\-GB __ k' -fj/

GB
~

and hence,

GE =^ GB ^ X =

Hence,

"
k' -y '

k'x -f- xy

N

GB k'x — xy

and (;^ = ^+ ^:£i:/Z
2 2y

_. tv n{n — 1) /y 4- k X — xy ^D — '———-' '^—^,—
^

•- sec B.
2 N k X -\- xy

The stresses in the counter-braces (shown by dotted lines in

the figure) may be obtained in the same manner.

\

\

u

11

ii' 1^
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The greatest thrust in EF = w' -\- w.

The greatest tension in EF — Z>cos fi — w, w being the

dead load upon EF.

If the List expression is negative, EF is never in tension.

24. Clerk Maxwell's Method of determining the Re-
sultant Thrusts at the Supports of a Framed Arch.—Let

^s be the ciiange in the length s of any member of the frame

under the action of a force P, and let ii be the sectional area of

the member. Then

P
ha

the sign depending upon the character of the stress.

Assume that all the members except the one under con-

sideration are perfectly rigid, and let J/ be the alteration in

the span / corresponding to ^s. The ratio -- is equal to a

constant ///, which depends only upon the geometrical form of

the frame.

/. Al =. m . As = ± mP
Ea'

Again, P may be supposed to consist of two parts, viz.,/,

due to a horizontal force H between the springings, and /, due

to a vertical force V applied at one springing, while the other

is firmly secured to keep the frame from turning.

By the principle of virtual velocities,

H
J/= —- = ;«.
As

A
Similarly, -^ is equal to some constant n, which depends

only upon t\\Q form of the frame.

P = f,-\-A = mH+nV.

.'. J/ = ± {m'H -\- mn V)^ .
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Hence, the total change in / for eill the members is

807

2J/ = ± 2("'^.) ± 4"'^i;)-

If tlie abutments yield, let ^'J/ = /<//, a< being some co-

efficient to be determined by experiment. Then

H = ^^^"<a]

If the abutments are immovable, ^dl is zero, and

(C)

H=- . . . . (D)

V is the same as the corresponding reaction at the end of a

girder of the same span and similarly loaded. The required

thrust is the resultant of H and V, and the stress in each

member may be computed graphically or by the method of

moments. In any particular case proceed as follows

:

(i) Prepare tables of the values of m and // for each member.

(2) Assume a cross-section for each member, based on a

probable assumed value for the resultant of V and H.

(3) Prepare a table of the value of w"^ for each member,

and form the sum 2
("'iJ-

(4) Determine, separately, the horizontal thrust between

the springings due to the loads at the different joints. Thus,

let v^ , 7', be the vertical reactions at the right and left supports

due to any one of these loads. Form the sum 2[mnV-j^\,

using 7\ for all the members on the right of the load and v^ for

all those on its left. The corresponding thrust m.iy then be

I

m->{.

m
Ill

fi
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found by cq. (C) or eq. (D), and the total thrust H is the sum
of the thrusts due to all the weights taken separately.

(5) Repeat the process for each combination of live and

dead load so as to find the maximum stresses to which any

member may be subjected.

(6) If the assumed cross-sections are not suited to thes;?

maximum stresses, make fresh assumptions and repeat the

whole calculation.

The same method may be applied to determine the result-

ant tensions at the supports of a framed suspension-bridge.

Note.—The formulae for a parabolic rib may be applied

without material error to a rib in the form of a se<i;ment of a

circle. More exact formulae may be obtained for the latter in

a manner precisely similar to that described in Arts. 18-22,

but the integrations will be much simplified by using polar co-

ordinates, the centre of the circle being the pole.
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EXAMPLES.

1. Assuming that an arch may be divided into elementary portions

by imaginary joint planes parallel to the direction of the load upon the

arch, finfl the limiting span of an arch with u horizontal upper surface

and a parabolic soffit (latus rectum = 40 ft.), the depili over the crown
beiny 6 ft. and the specific weight of the load 120 lbs. per cubic fool;

the thrust at the crown is horizontal (= P) and 4 ft. above the soffit.

2. A masonry arch of 90 ft. span and 30 ft. rise, with a parabolic in-

trados and a horizontal extrados, springs from abutments with vertical

faces and 10 ft. thick, the outside faces being carried up to meet the

extrados. The depth of the keystone is 3 ft. The centre of resistance

at the springing is the middle of the joint, and at the crown 12 in. below

the extrados. The specific weight of the masonry may be taken at 150

lbs. per cubic foot. Determine (a) the resultant pressure in the vertical

joint at the crown ; {i>) the resultant pressure in the horizontal joint at

the springing ;
(f)the maximum stress in the vertical joint aligning with

the inside of an abutment.

3. The intrados of an arch of 100 ft. span and 20 ft. rise is the segment

of a circle. The arch ring has a uniform thickness of 3 ft. and weighs

140 lbs. per cubic foot ; the superincumbent load may be taken at 480

lbs. per lineal foot of the ring. Determine the mutual pressures at lite

key and springing, their points of application being 2 ft. and ij ft., re-

spectively, from the intrados. Also find the curve 01 tiie centres of pres-

sure.

4. The soffit of an arch of 30 ft. span and 10 ft. rise is a transformed

catenary. The masonry rises 10 ft. over the crown, and the specific

weight of the load upon the arch may be taken at 120 lbs. per cubic foot.

Determine the direction and amount of the thrust at the springing.

5. A concrete arch has a clear spring of 75 ft. and a rise of 7 J ft. ; the

heiglit of masonry over crown = 5 ft. ; the weight of the concrete = 144

lbs. per cubic foot. Determine the transformed catenary, tiie amount
and direction of the thrust at the springing, and the curvatures at the

crown and springing.

Ans. m = 23.9 ; thrust = 91,354 lbs. ; slope at springing = 25!°

;

radius of curvature = 114.2 ft. at crown and =248.7 ft. at

springing.

6. Determine the transformed catenary for an arch of 60 ft. span and

t5 ft. rise, the masonry rising 6 ft. over the crown and weighing 120 lbs.

per cubic foot. Also find the amount and direction of the thrust at the

abutments.

i

V'

(! ;^ i
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7. Determine the transformed catciKuy for an arch of 30 ft. span and

7i ft. rise, the height of masonry over tiie crown bciiij,' 41 ft. ; weighl ut

the masonry = 125 lbs. per cubic foot. .Also liiul the thrust at ilie spring-

ing and tlie curvature at tlie crown and the springing.

8. In a paraboUc arcii of 50 ft. span and 10 ft. rise, iiinged at botii

ends, a weight of 1 ton is concentrated at a point whose horizontal dis-

tance from tlie crown is 10 ft. Find the total thrust alorg the axis oi

the rib on each side of the given point, allowing for a change of 60 from

the mean temperature (6 = .0000694).

9. A parabolic arched ill) of 100 ft. span and 20 ft. rise i.s fixed at the

springings. The uniformly distributed load upon one-half of the arch

is 100 tons, and upon the other 200 tons. Find tlie bending moment
and sluaring force at 25 ft. from each end.

10. An arched rib with parabolic axis, of 100 ft. span and I2i ft. rise,

is loaded with I ton at the centre and i ton at 20 ft. from the ceiitn-,

measured horizontally. Determine the thrusts and shears along the rib

at the latter point, and show how they will be affected by ail mgc of

100^ F. from the mean ; the coetTicient of linear expansion being .oor25

for 180' F.

11. A parabolic arched rib hinged at the ends, of 64 ft. span and t6

ft. rise, is loaded with i ton at each of the points of division of eight

equal horizontal fli\ isi()' Find the horizontal thrust on ili' rib, allowing

for a change of 60" F. fr<-in the mean temperature. Also tind the maxi-

mum flange stresses, the rib being of double-tee section and 12 in. deep

throughout. (Coefficient of linear expansion per i" F. = I •»- 144000.)

12. The axis of an arched rib of 50 ft, span, 10 ft. rise, and ninged at

both ends is a parabola. Draw the linear arch when the rib is loaded

with two weights each equal to 2 tons concentrated at two points 10 ft.

from the centre of the span. If the rib is of double-tee section and 24

in. deep, find the maximum flange stresses.

If the arch is loaded so as to produce a stress of lo.cxxj lbs. per square

inch in the metal, show that the rib will deflect .029 ft., E being 25,000,000

lbs.

13. A steel parabolic arched rib of 50 ft. span and ro ft. rise is hinged

at both ends and loaded at the centre with a weight of 12 tons. Find

the horizont.il thrust on the rib when the temperature varies 60° F. from

the mean, and also find the maximum Hange stresses, the rib being of

double-tee section and 12 in. deep.

14. A semicircular rib, pivoted at the crown and springings, is loaded

uniformly |)er horizontal unit of length. Determine the position and

magnitude of the maximum bending moments, and show that the hori-

zontal thrust on the rib is one-fourth of the total load.

15. Draw the linear arch for a semicircular rib of uniform section



MM

/• \.t.\f/'f HS. 8n

under a load uniformly distributed jicr horizontal unil of k-iigih (//jwlu-u

liiii>>cd at Imtli ends ; (b) when liinged at both ends and at the centre ; (i)

when fixed at both ends.

|6. A semi-elliptic rib (axes in and zi>) is pivoted at tlie spriMginjis.

Kind the po>iiion and magnitude of liie maximum bending momeni, tlic

load being .unif<;rmly distributed per horizontal unit of length.

1 low will the result be affected if the rib is also pivoted at the crown ?

17. Draw the equilibrium polygon for a parabolic arch of 100 ft.

span and 2u il. rise when ic.ided wiili W( .i^hls of 3, 2, 4, and 2 tons, re-

spectively, at the end of the third, si xih, eghih. and ninth division from

the left support, of ten equal horizontal oivisii^iis. (Neglect the weight

ol the rib.)

Ii the rib cc)nsist of a web and of two flani;es 2i ft. from centre Ut

centre, determine the maxinmm flange stress.

18. Find the flange stresses at the ends of the rib, in the pre dinn

(liusii(jn, and also at the points at which the weights are concentrated,

wlieii both ends are absolutely fixed.

19. A semicircular rib of 28 ft. span carries a weight of \ ton at 4 It.

(measured horizontally) from the centre. Find the thrust and shear at

the centre of the rib and at the point at which the weight is concen-

trated.

20. The axis of an arched rib hinged at both ends, for a span of 50 ft.

and a rise of 10 ft., is a parabola. Draw the equilibrium polygon when
the arch is loaded with two equal weiglils of 2 tons concentrated at two

points 10 ft. from tlie centre of the span. Also determine the maximum
flange stress in the rib, which is a double-tee section 2 fl, deep.

21. The load upon a parabolic ribof 50 ft. si)an and 15 ft. rise, hinged

at both ends, consists of weights of i, 2, and 3 tons at points 15, 25, and

40 ft., respectively, from one end. Find the axial thrusts and the shears

at these points.

Ahs. Horizontal thrust = 9.6 tons.

Axial thni.sts : above i ton = 9.3 tons ;

below I " =97
above 3 tons = 8.3 "

below 3 " = lo.i "

Shears : above i ton = 3. i tons ;

below 1
" ^2.2 "

above 3 ions = 5
"

below 3 " = 2.6 "

22. Draw the linear arch and determine the maximum flange stresses

for an arched rib of Soft, span, 16 ft. rise, and loaded with five weights

each of 2 tons at the end of the first, second, third, fourth, and fifth

division, of eight equal horizontal divisions. The rib is of double-tee

It'

hhi
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section and 30 in. deep. Also find the shears and the axial thrusts at

the fifth point of division.

23. A wrought-iron parabolic iib of 96 ft. span and 16 ft. rise is

iiinged at the two abutments; it is of a double-tee section uniform

throughout, and 24 in. deep from centre to centre of the flanges. I)eit'r

mine the compression at the centre, and also the position and amount

of the maximum bending moment 00 when a load of 48 tons is cotucii

trated at the centre ; {b) when a load of 96 tons is uniformly distributed

per horizontal unit of length.

Ueterminc the deflection of the rib in each case.

24. Design a parabolic arched rib of 100 ft. span and 20 It. rise, hingcij

at both ends and at the middle joint ; dead load =40 tons uniformly

distributed per horizontal unit of length, and live load = i ton per hori-

zontal foot.

25. Show how the calculations in the preceding question are atTccted

when both ends arc absolutely fixed.

26. In the framed arch represented by the figure, the span is 120 ft.,

fTK/\/y!V^iAAAA /\ A ^'""^ '^''**'' '^ ^'' ^''*'' ^'''P'-^ "^ ^^^ Uyx^?^ at the

^^P*'^'^ "^^^>LY^ crown 5 ft., the fixed load at each top joitit

Fio. 506. 10 tons, and the moving load 10 tons. De-

termine the maximum stress in each member with any distribution of

load. Show that, approximately, the amount of metal required for the

arch : the amount required for a bowstring lattice-girder of the same

span and 17 ft. deep at the centre : the amount required for a girder of

the same span and 12 ft. deep :: 100 : 155 : 175.

27. The steel parabolic ribs for one of the Harlem River bridges has a

clear opening of 510 ft., a rise of 90 ft., a depth of 13 ft., and arc spacer!

14 ft. centre to centre. The dead weight per lineal foot is estimated at

33,000 lbs. and the live load at 8000 ll)s. ; a variation in temperature of

75" F. from the mean is also to be allowed for. Determine the maxi-

mum bending moment (assuniing / constant), and the maximum defiec-

tion. E = 26,000,000 lbs. Show how to deduce the jilay ?t the hinges.

28. A cast-iron arch (see figure) whose cross-.sectioris are rectangular

D't'o' \^ and uniformly 3 in. wide, has a straight horizon-

tal extrados, and is hinged at the centre and ai

the abutments. Calculate the normal intensity of

stress al the top and bottom edges D, A' of the

Fig. 507. vertical section, distant 5 ft. from the centre (.)f

the span, due to a vertical load of 20 tons concentrated at a point dis-

tant 5 ft. 4 in. horizontally finin />'. Also find the maximum intensitv

of the shearing stress on the same section, and state the point af. which

it occurs. {AB — 21 ft. 4 in.).
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1. A cliain of 2;// — 1 equal rods (facli of \vei),'lil Jt'}, linked at the

cuds, IS suspcndfd from iwo points in the same horizontal plane. I'rove

(<{) that the hurizuntul component of the stress at each joint is constant,

(/') that the vertical comp(jnent at the junction of the ;/th and (« + i)th

(reckoned from one end) is /('(/;/ — i — fi). Jui'i (') t'l-'it the tangent of

the inclination of the «th rod to the liorizon is proportional to ;// — ;/.

2. Sketch the reciprocal diaj^ram of a frame consisting of four equal

rods, placed so as to form a j)arailelo^'ram with angles of 30°, and braced

by two diagonals crossing each other without joint, the rods being pinned

at the corners of the figure only. The frame is free from external

forces, but in such constraint that the longer diagonal is under a tension

of 2 tons.

3. A horizontal girder of length / rests upon end supports and carries

A' weights, each equal to W. If ,1 is the distance between consecutive

weights, place the weights so as to throw a maximum bending moment
on the girder. Find this moment.

Ahs. If A' is even, distance of first weight from support

= 2
~
-V^

~ -j-
''''^ '"^''- "• ^- = "76"

I

—
7

^'^"
\

If A'^ is odd, distance of first weight from support

/ it U'Xl U'a= (A''- I), and max. B. M. = rr-fA'^ — i).

4. Two weights /' and O ( < /') are carried by a horizontal girder of

length / resting upon supports at »he ends, the distance between the

weights being a. Place the weights so as to throw a maximum bending

moment on the girdt'r and find the value of this moment.

Alts. Distance of P from support =

Max. R. M. =_\P/ + (J(/
-

PI + Q(l - a)

2{P + *

n)\

:(/' + n</

813
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H
n

m
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I

•

f»



8 14 J/y.S C7:V. /. . / A-J:0 1 '.V JiX.I MPLKS.

5. A locomotive has two pairs of 6-ft.. driving-wiieels aiui S-ft. coup-

ling-rods 6 in. deep, of \vroiiiL;lu iron, capable of wiilisianding a work-

inj4 load of 20,000 lbs, per square iiicli. Tlu- cranks are 12 in. in lcnfj;tli.

I'lnd the speed corresponding to tlie greatest centrifugal force.

Alls. 90.6 miles per hour.

6. A casl-iron lly- wheel of 36 s(j, i;i. section and 120 in. mean
diameter makes 60 revolutions jjir minute, l-'ind, appro.ximai-.'lv. ihe

mean eneri;y of rotation. Also lind the number of revolutions per

minute alter losing tioo ft. -lbs. of energy.

Ans. 54,4.:4 ft.-lbs.
; 59.

7. A fly-wheel with a rim of uniform axial thickness weighs 1000 !bs.,

has a 60-in. external and a 48-in. internal dianiLter, and makes 60 revo-

lutions per minute. Tiie greatest fluctuation of energy is looo ft. lbs.

Kind the variation in speed.

^Ins, y.36 rev(jlutions n r minute.

8. A revolving weigiit W is at a distance / (rotn the axis of rotation,

and is to be balanced by two weights each P\ Irom the axis, the one being

a on the right and the other b on the left of ilie weight to be balanced.

Find the weights.

, r a
Ans. II

r, (- //

9. Each piston of a locomotive weighs 300 lbs. What balance

weights will completely f)alance one piston so that th.crc may be no
couple and no horiz(jntal force.' Stroke = 24 in.; dLatance C. to C. of

cylinders = 42 ins.; radial distance of balance weights = 39 in.; dis-

tance between centres of gravity of balance weights = 57 inches.

.1//S. 1 2.! 5 lb.-,.; So.
1
5 lbs.

10. .\ uniform circular plate weigliing 4 lbs, and i ft. in diameter is

hung in a horizontal plane by three i)arallel cords from the celling, and

when set into small torsional oscillation is found to have a period of

three seconds. A body weighing 6 lbs. is laifl on it, and the period is

then found Xo be five seconds. Find the inoiucnt of inertia of the bodv.

11. A weight of 10 lbs. at the end of a spiral spring stretches it 3

inches. The :i ring is then stretched an additional 3 inches , nd suddeiilv

released. Find the time of a complete oscillation.

.rl/is. .555 sec.

12. The weight of the piston of an indicator and its attadu'cl jmrt^ is

equivalent to .1 lb. on the piston. The pencil moves six times as fast

as tlie piston. The area of the piston is ,5 sq. in. Find the period of

oscillation with a ux)-lh, storing.

/4«r. ,00586 sec.
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13. A \V(Mj{i)t of I toil dt'|)ressi's its supports .01 It. Negltciiiij; ilic

weight of tlie supports, find ilie time of a compleic oscillation.

Ans. .1111 sec.

14. A circular disk of cast-iron (s. g. =7.1) 10 in. in diameter and

I in. thick acts as a pulley for a cord carryiiij; 10 lbs. on one end and $

lbs. on the other. Find the an}4ular velocity of rotation of the pulley

and the linear velocities 01 the \veii;his 50 seconds after starting from

rest, disre^;arding the fluctuation of the shaft and its inertia.

////A. 770; 320 (t. per sec.

15. A member of a truss is subjected to tensile stresses varvin}; from

a maximum of i5o,o«.x.' lbs. to a miiiimuin of 50,000 lbs. Find llie proper

sectional area of the member, ist, if of steel, 2(1, if of wrought-iron, the

factor of safety being 3.

Am. 7.523 sq. in.; 17.5 sq. in.

16. The diagonid of a truss is subjected to stresses varying from a

maximum of i2o,x)o lbs. in tension to a minimum of 80,000 lbs. in com-

pression. Find the proper .sectional area of the diagonal, 1st, if of steel,

2d, if oi wrought-iron, 3 being the factor of safety.

Ans. 8 sq. in.; i,'j.4i sq. in.

17. The fly-wheel of an engine makes 80 revolutions per minute and

the reciprocal of the coefRcient of fluctuation of the velocity is not to

exceed 40. Dei ermine the least moment of energy required, the fluctu-

ation oi energy per second being 8000 lbs. If the weight of the wheel is

4000 lbs., fmd the radius ol gyration.

.hn. 4500 ; 6 ft.

18. If « is the resistance to distortion and k the reMsiance to ddata-

tion, the elongation unfler a uniform stress /> is/i( +
/ /.

) ""'' *^'ic lat-

\ch p{y — ,1. Also, find A in terms of k and «.eral contractions arc e;

19, The front face of a wall is plumb, and the rear face, which retains

water level with the top ')l the wall, has a batter. The density of the

wall is twice that of the water. If the width of the base is A' times the

width of the top. find the deviation of the centre of pressure in the base

from the middle of the base, and if this deviation is g of the thickness

of the base, show that the height of the wall is (/V -f 1)* times the width

of the top, and find the maximum intensity of pressure in the base.

20. A vertical rectangulir retaining-wall of hei'jht /i has a row of

rectangular counterforts. The width of a <:ouiiterfort is equal to the

disianc<- between luo consecutive i oimti rfori:,. Find the thickness of

a rectangular wall givinir the --ame moment of stability. If V^ is the

volume of the counterforied wall, l\ the volume of the equivalent uni-

i

iP'} \

k

f

!m.
»
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form wall, and Vi the difference between the volumes of thi; portions

of the wall with and without counterforts, show that V^' — Fi" = V^'.

21. A vertical rectangular anchor-plate of deptli // ft. has its hori-

zontal centre line s ft. below tlie ground surface, which is horizontal.

Find the maximum holding power of the plate per foot of width.

Ans. ' " ' ^" ,0 being the angle of repose of the earth and
COS'' </»

7i> its specific weight.

22. The from and rear faces of a wall retaining water level with the

top have a batter ai i in 12. Tiie height of tiie wall is 12 feet. Find

the thickness of the wall, (a) if g is .23, (/>) if the stress at the base is

nownere to exceed 12.000 lbs. per square foot. Weight of masonry

= '25 lbs. per cubic foot.

Ana. (a) 7.078 ft., {b) 5.547 ft.

23. A rope is wounrl three times round a post, one end being held

tight by a force of 10 lbs. Find the pull at the other end wliich will

produce slip. {H = i.) Am: 1000 lbs.

24. A strmg of wood blocks embraces the 24-in. pulley of an engine,

one end of the string being attached to a load of 112 lbs. and the other

to a spring-balance which indicates 12 lbs. when the {)ulley is making 60

revols. per mnuiie. Find the work given out at the brake and the

coefficient of friction between the blocks and pulley.

Afis. 1. 143 H. P.; .355.

25. A Fronde water-brake has recesses of 6 in. internal and 18 in.

external diameter, the axis of the recesses being at 45" to the plane of

the disk. The disk makes 8*. -vols, per minute. The resistance to

motion is balanced by 50 lbs. ..'. the end of a 48-in. lever. Find the

H. P. developed and the velocity of the water in feet per second in the

direction of the recess axis. Ans. 3.05 H. P.; 11.4 ft.

26. A Reynolds water-brake has recesses of 9 in. internal and 18 in.

external diameter. Find the velocity in feet per second with which the

water must circulate so as to absorb 15 H. P. at 200 revols. per minute,

the axis of the recesses being at 45' to the plane of the disk.

Ans. 7.13 ft.

27. The radii of the pulleys of a differential pulley-block are 6 in.

and 5I in. Kiini ihe etficiency when a pull of 200 lbs. in the hauling-

chain is required to raise a weight of 1 ton.

28. The conpling-rod of a locomotive is 10 ft. in length, the crank

radius is i ft. in length, and the driving-wheels are 6 ft. in diameter.

What must be the depth of the rod if the stress in it is not to exceed 5

tons per square inch at 70 miles an hour ? Am. 5.17 in.
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29. The horizontal section of a crane-hook is a rectangle 3.5 in. in

width, the thickness of the hook f)ein^ 1.3 inches. The stress in a hori-

zontal section is not to exceed 6 tons per square inch. Find the niaxi-

nuini load wliicl-i can be raised, the iiorizontal distance between the

centre of the section and the line of action of the load l)eing 2.5 inches.

Ans. S-6i4 tons.

30. An iron bar is rectangular in section, its widtii being 3 in. and us

thickness i in. The tensile streni;lh of ilic metal is 50,000 lbs. per

square inch. Find tiie total tensile force which will break the bar, the

line of action of the pull being % in. distant from tlu- a.\is of the bar.

Ans. 85.714? lbs.

31. A 2-in. helical spring with 30 coils is made of \-\n. steel wire.

Find the deflection under ,1 load ')f 1 lb., the coelFicieni of distortion

being 10,000,000 lbs. Ans. .04915 in.

32. A horizontal beam of weight /' rests at the ends in recesses. A
weight IV suspended from the centre (jf the l)eaiu by a siring 3 ft. in

length makes 60 revolutions per minute. I'ind the minimum value of

P so that the beam may not rise up out of the recesses.

Ans. .,Vn/'.

33. Determine the dimensions of the strongest section in the form of

(a) a rectangle with vertical sides, (<^) an isosceles triangle with horizon-

tal base, that can Dc cut out of an elliptical section having a vertical

major axis of length 2/ and a minor axis of lengtli 2y.

Ans. {a) depth of reel. — p^i\ width of rect. = q.

(h) depth of triangle = \p\ base of tri;ingle .— ^V7.

34. The area of the compression flange of a cast-iron beam is 17

square inches. The thickness of the web is a certain fraction of the

deptli. The unit stresses are in the ratio of 2 to 5. Find the areas c»

web and tension flange which will give a section of maximum strength.

Ans. 12 sq. m.; 3.2 s(|. in.

35. In a cast-iron beam the area of the web X'^ five times the area of

the tension flange, t'.ie depth of the beam is 9 in., and the unit stresses

are 2 tons per square inch in tension and 4 tons per .square inch in com-

pression. The maximum moment of resistance is 162 in.-tons. Find

the flange and web areas.

Ans. Area of tension flange = 2 sq. in., of web = 10 sq. in., of

compression flange = 9 sq. in.

36. In the preceding example find the length of the beam .so that its

stiffness migiit not exceed .001. .Mso find the net weii',hl on the beam

and the work of flexure. Ans. 8 ft.; 8.72 tons ; ,0016 in.-toui..

t

hi,;. »
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37. A horizontal beam of depth d, breadth d. and lengtli 12 ft. rests

upon supports at the ends. A weij^ht H'l at the centre deflects tin-

beam .1 in. when the side of length o is vertical. An additional weight

of 1250 lbs. is required to produce the same deflection when the side of

length U is vertical. If </= 2d and if K = 1,200,000 lbs., find the sec-

tional area of the beam and the maximum skin str-ss.

Ans. 72 s(j. in.; 277J lbs. per sq. in.

38. A horizontal girder s4B. of length /, and fixed at A and />', carries

a load P aXSL point C'. If AC = a, find the maximum deflection.

3i:/(3/ - 2rt)'

39. A horizontal girder ///)', of length /. is fixed at A, and rests upoii

its support at //. It carries a weight /' at a point C, and AC = a. Find

the position ol the most di-flccted point, and show that the bending

moment at C is greatest when d =z / x .634.

^l/is. Di.stanee of most deflected point from point of fixture

='«'
40. A horizontal continuous girder of three equal spans, resting upon

supi)()rts at ./, />', C, />, tarries a uniformly distributed load. Show that

the bending moments at tlie intermerliatc supports will be unafTectt-d

when the supports Ji\ C, J) are depressed below the horizontal, provided

that the amounts of the depressions are in the ratios of r to 2 to 3.

41. The horizontal girder ./A'C is fixed at // and rests upon supports

at />' and C, A/i being equal to />'C. If the depression of C' is « times

that of //, and if A'l , A'a , A'a are the rea( tions at A, li, C, respectively,

shQW that A', (48 — 17;/) + A',(8 — //) = A',i8o — 23;/).

42. The horizontal girder A/iCis fixed at A and rests upon supports

at A' and C. If A/i is ;/ times A'C, show that the bending moments at //

and />' are in the ratio of «' + 2n'' - 1 to //' + 2.

43. Show that the work done in deflecting, within the elastic limits,

a uniform rectangular bar, supported at the ends and loaded in the

middle, is equal to the volume of the bar multiplied by -^ .-</ being

the maximum stress in the bar.

44. The vertical sections of a cantilever ARC, of length /, and fixed

at the end BC are circular. The profile is a cubical parabola with it-;

vertex at //. Show that, under its own weight, the slope at the free emi

of tin: neutral axis is seven-tenths of the maximum deflection divideii

hv the length.

45. A continuous girder AliCD is fixed at </, rests upon suppuiis

at li, C, and /J, and carries a uniformly distributed load. If the rear-
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lions ai A, B, L, D are equal show ihat the ratio of the length of CD to

AB must be greater than unity and less than |. Also, if CD is equal to

five-fourths of ,-//•• show that AR : PC : CZ? : : 4 : 7 : 5.

46. A continuous girder ///JC*/-'/',' of four spans, each of length /. rests

upon supports at A, 7?, C, D, and A\ and carries a uniformly flistributed

load of intensity w. Ry how much must the supports at B, C. and 1)

be lowered, so that the reactions ai the five supports may be equal ?

Ans. B and D must be lowered by an amouut "--—
. and C

40 AY

by an amount
4 w/*

47. A horizontal girder AB of length /, and fixed at A and at B, car-

ries two weights /' and (J. concentrated at points t'and I) respectively.

\i AC — X and BI) = 1', show that the bending moment at C is greater

or less than the bending moment at I) according as

I

rx '(3/ -2X)%(2Y 'd/ - 2 K ).

48. Show that the work done in bending a horizontal beam is the

same whether it has two ends fixed, or one end fixed and one resting

upon its support, or two ends resting upon suppf)rts, if the load inten-

sities in tlie several cases iire in the ratio of 2|/6 to j to 2.

49. A continuous girder of three spans, the side spans being equal,

carries a uniformly distril)Uted load of intensity 7V. Find the error in

the H. M.at tlic intermediate support, if an error J is made in tlie length

(it) of the centre span, (/>} of a side span. If the three spans are each of

length /, sliow that this error is .oyu-J/ in the first case and .iiwJ/ in

the second case.

50. A horizontal girder ABC is fixed at ^1, rests upon supports at //

and C", and carries a uniformly distributed load 2li'. If an error J is

made (i) in AB, (2) in />C, find the consecjuent errors in the B. Ms. at A
and B, and if AB = BC, show that these errors are-

s% 12 18 t6

' 196 196 < ^
I lg6 ,g5

51. A horizontal girder At is fixed at A, rests upon the support at C,

carries a uniformly distributed load of mtensity w, and is liint^ed al B,

dividing tlie girder into the segments /J^ — « and BC — h. Find (1) the

reactions at A and C, (2) the moment of fixture, (3) the deflection at //.

Ans (I) rv(-')^ w wa
(2) -~-(a + b)\ (3)

wix^ la I) \

52. Tlie horizontal girdei ABC is fixed at A, rests upon supports at

B and 6, and carries weights \Vi and IV'x concentrated at liie middle

11
..!J
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points of AP and /iC, respectively. Finfl ilic reactions and the bending

moments at// and Ji. If AH = JiC -aw if W» = 3 /-Fi, show that ilio

momcni of fixture is nil, that the bendr moment at Z/ is — f //'i^//),

and iliat tlie reactions at A, Ji, and C" are A//'i, ^^U\, and % H',, le-

spectiveiy.

How iniicli must // he lowered so that the reaction at />' may be

nil? {•"ind the corrcspondinji n-actions at .-/ and C. Mow nuuh njusl

C now be lowered so that the reactions may be the sumc as before?

A/i'/2SlV> +43'f'A ^//''
. A/i'(2S I

768 128
(ii7W^'. + 47»'>).

AD—5^(1 1 W^ >r %\VV;)\ 4 X depression of li.
I2o

53. A hollow cast-iron column of 19 in. external and 16 in. internal

diameter has rounded ends, is 80 feet in length, and is stayed laterally

at intervals of 20 ft. Find the least force which will cause the column

to bend.

Atts. 2,182,300 lbs., /ii)cing 16,000,000 lbs.

54. Find the breaking weight of a wrought-iron column 3 in, in

diameter, 160 in. in length, and hinged at both ends.

Also. fiiKl the deviation for which the stress in the njetal will not

exceed 10,000 lbs. per sq. inch when the load upon the column is 4o,o<xj

lbs.

Ans. 1 17,720 lbs. ; .99 in.

55. A seven-panel single-intersection truss for a single-track biiilge

has a length of 105 ft. and a depth of 20 ft., the load being on the lower

chord. Find the stresses in the several members {a) when the apex live

load is 12 tons, {b) when the live load is produced l)y concentrated loads

of 8, 8, 20, 20, 8, 8, 8, 8, and a uniformly distributed load of 1.5 tons pir

lineal ft., following each other in ortler over the bridge at the distances

of 55, 9, 8, 9,5, 5, 5.5, 5, and 3 ft. apart.

56. The 3-in. piunger for the cast-steel cylinder of an intensifier is

connected with a piston which works in a 48-in. cylinder under a press-

ure equivalent to a 120 ft. head of water. Finfl the proper thickness of

the metal of the intensifier, allowing a maximum stress of 20,000 lbs. per

s(|. in.

Ans. 2.46 in.

57. The barrel of a gun consists of two rings A and li. the bore of

the gun and the diameters of the inner and outer rings being in the ratio

of 1:2:4. The ring// is shniidx upon />', producing a pressure if
5

tons per sq. in. at the surface of contact. If the firing of the gun pro
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duces ail internal pressure of 20 tons per sq. in., find the stresses induced

in the gun.

Ans. — lyi tons, + tons; — 15 tons, — 6 tons.

58. The barrel of. a gun is made up of three rings ,/, /»', C\ the bore

of the gun and the dianiclers of tlie three riiii^s being ii< the ratio of

2:4:5:6. The riny /»' is shnuik upon ./ and tiie linp; (. upon />', the

resulting pressures at the suifaces of contact l)eing 4 ions per s(j. in. If

the firing of the gun produces a;i internal pressure of 2u ions per scj. in.,

find the stresses inducerl in tlie gun.

59. A riil)ber tire weighing 2 lbs. |ier foot is strcK h<-d ov<'r the cir-

cunjfercncf; of a wiieel 3 ft. in diatneter, the tangential pull in the rubber

being 10 lbs. Find the radial pressure exerted by the tire on thedrcnm-
ference of the wheel, per inch of lengtii, when the wheel is at rest and

the speed at which the wheel must rtvolve to make the tire cease to

exert any radial pressure.

60. A countershaft, 10 ft. between bearings, carries two 24-in. pulleys,

the one 2 ft. and the other 5 ft. from a l)earing. .Assuming that the tight

is twice the slack tension, determiiu- (^i) the ecjuiv.ilent twisting moment
on the shaft, (b) the diameter of the shaft, [O the angle of t<<rsion when
one pulley receives and the other transmits 50 H. P. at 80 revolutions

per minute, the belts being horizontal and on op|)osite sides of the shaft.

^liis. (a) 3281. .:5 ft.-ll)s. ;

{b) 7.13 m.,/ being lu.ooo lbs. ;

{c) 2.06 minutes, u being 12,000,000 lbs.



APPENDIX I.

RECIPROCAL DIAGRAMS OF STRESS.

(Chapter I.)

An examination of the Frame and Stress iJiagrums, Figs. 4 ;mr| 5,

page 3, shows—
(i) That if tht! tines fejiresentinp external forces on parts of the frame

diagram meet in a point, the curreguundlng Mncb in the stress (Jtugrani

will form a closed polyguti.

(2) That if the lines representing parts of the frame diagram form a

closed polygon, the corresponding lines in the stress diagram will meet

in a point.
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(3) That if lines meet at a point in the stress diagram the corre-

-sponding lines in the frame diagram are contiguous, and form either

non-closing or closed polygons.

(4) 'I'liiii of all the stress diagrams which can be drawn for a given

frainc under given loads, there is only one which satisfies the three re-

ciprocal relationships expressed in (i), (2), and (3), ami it is called the

jieciprocal I)iayr;irn of Stress.

As a consequence of these reiaiionsliips, Bow devised a system of

notation whicli greatly facilitates the construction of the stress diagram.

Lines are drawn to represent the external forces at the joints at

wliicli tliey act. A letter is then assigned to each enclosed area of the

frame, and also to each space between the lines of action of the external

forces. Thus each line in the frame diagram is defined by the two let-

ters in the two spaces separated by the line in question. The corre-

sponding line in the reciprocal figure is parallel to this line, and is simi-

larlv named.

(I
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Tins method is clearly illustrated by the loaded roof frame. Fig. i,

and the rocipriKal stress diagram, Fi^. 2.

Ayain, let tlic friiinc, V\^. 3, be subjected to inclined loads at the
joints. The reactions due to these loads may be found as follows :

Produce the lines of action of ilie li>ads to meet the sprinj^in^' line.

Resolve liie loads .V(^ OP, PO, Oh', and KS mto their vertical and
h(jrizontal components, the former being represented by N'O', O'P',

P'O', <y/r. and K'S.

Take any pole O" and join it with O', J' , O', A'', S.

Construct the funiciilai p.)lyK<>u 123456 .uid draw ()" )' parallel to

the closing line i 6. Then S \' and J A' are the actual reactions at the

supports, and the reciprocal diagram 4. can be ensily constructed, aa
already described.
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In this fi(»ure the points //, /, /, A', /., and ^1/ coincide, and there can

be no stress in ///, JJ.Jh', KL, or LM.
In certain trusses the stresses at two or more joints, called lock-

joints, are indcicrniinate, and the rci iprocal fif^ure cannut he flircciiy

drawn. A further condition is rcquiri"'., and it is soti\climes assumed,

as in the truss on pa^e 48, that the siics»c-s it) two i)l the members
mooting at a lock-joint arc equal. A simple and independent imiliod

may be illustrated by nuans of the truss shown in Kij,'. 5. Taking; an>

pole O" . Fig. 6 is the semi-funicular polygon of the loads on the roof,

and the bending moment at any point is m»'asured by the intercept

between the closing line 19' and the line i 2 3 ... 9 (Art, 6, Chapter II).

Let J\ be the force in OY;
" X be the vertical distance between O V and the truss apex.

Then /'i-f = the bending moment at the apex

= 99' X O" v.

TakeO"K = .r;

then Fi — 99 ,

and tlx refore 99' is the stress in the member OY.
Let f\ be the force in C7 K.

Then h\ — bending moment at apex of space G

= ;;' X r>' Y
= 55' X X.

Therefore /-„ = j x 55',

and thus the stress in Cf K is twice the intercept 55'.

in Fig. 7 take YO = 99 and i'(i 1= 2 x 55'. The reciprocal diagram,

can now be easilv construi icd

As a final example, take the rational truss, Fig. 8, with two lock-

joints. In this truss th«; rise is about one fifth of the span; the struts

/•C/ and 6*/' are normal to the rafters, and about one tenth of the span
in length. The members //// and /?C', C/^ and /)E JA' and A'/-

meei on a circular arc drawn through the inner end of the strut /(/ ancJ

through the ends of the rafter.

Let X be the distance between the member A/Z and the apex of the

truss.

Let the truss be fixed at the left support and rest on rollers at the
right support.

Consider the effect of a normal wind-pressure.

At the points of intersection of the springing line with the lines of

action of the loads, resolve the loads into vertical and horizontal com-
ponents, and repreient the former by a'6', Fc', c'd' . . . i'j. Take the pole

!> %\

%
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O'' at a distance from the load line a'j equal to the vertical distance

between the ridge and MZ, Draw the funicular polygon i 2 3 . . . rj for

the vertical components of the loads and draw O''Z parallel to the closing

line s\. Then.yZ is the reaction at the right support, and is of course

A- -^-i-i-r

1
\

!

i i
i'i /

—>-—"!.'

^-
/

Fig. 10

vertical. Hence if the vertical through th^ truss apex intersects the

closing I'ne \s in 'n and sr produced in «, vtn is the total stress in MZ,
and thus the position of the point M in Fig. 10 is defined. The diagram

can now be completed in the usual manner.
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THICK CYLINDERS.

(Chap. X., Art. 2.)

The radial pressure diminishes from the inner to the outer surface,

and may be represented by tlie ordinate of some curve ff>ff\, in wiiich

''o/o, rf and r\f\ define the intensities of stress /,, p, and pi, at the

I

outer surface of radius ro, at any radius rand at the inner surface of

radius r\.

Then,

2 X area rirafofi = the total resistance to separation between the

two halves of the cylinder = 2(^1^1 —pori^),

and

area r\rtfaf\ = p\ri — Ptto.

So,

area rtrffi = piri — pr — — I f . dr.

the sign being negative as^ and /are of opposite sign.

Hence,

Tr'P'^^-f' 0)

827
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Again,

P= -^ + —^ =<^^ + Ci, (2)

and

^ P+f P-f „ ^

Thus the pair of stresses p and / may be regarded as consisting of a

pair of equal stresses of tlie same icind and of intensity Cif = —"tz
j ,,„fj

a pair of equal stresses of opposite kind and of intensity C-\ = ^ ~ \

First. Assume that only the stresses ± Ci act, and that d = ^-i^ = o
2

Then / = —/,

and

Therefore,

r .d/ + 2/.(& = o or /r" = a constant = a.

Hence,

C.='-i-^=-/=-p (4)

Second. Assume that only the stresses G act and that G = o = ^^^-^.
2

Then p=z/,

and

d d df

Therefore,

and

/ = a constant = ^ = Ci (5)

Third. Assume that the two pairs of stresses act together and that

their effects are superposed. Then

/ = G -^ G = G - ^ (6)

-and

/=G-G = G+^ (7)
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But p = po when r = ro and p = pi when r = rt.

Therefore,

a

and
a

/>i = Ci ——a .

Hence,

or

a = ~^iPo-pO (8)

and
p^r^p^-^

<-i — r^i „ a vy^

Also, by Eq. 7.

and therefore

V -̂A(^.- + -V .

(,„^
ro^ — ri"

and

A(^o' + r.^> - 2/.r.'
/»- .v=7? ^'^^

If/o = o,

/=,-r^T?(' + 7^) ^'3)

/.=-a:":^ (u)

and

/„
= -2.T->' ('^^

The results (11) and (12) are used in the design of gun-barrels and

the results (14) and (15) in the design of the cylinders for hydraulic

presses, accumulators, etc. From (14) and (15) the important condition

is deduced that \{f is the ultimate intensity of stress which the materinl

=/• "a 1

—1) is the maximum intensity of pressure to

which the cylinder can he subjected (assuming p^ — o) and is always

less than/ whatever the thickness of the cylinder may be.

'
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Allowance for the weight of a beam, 403.
Alternating stresses, 152.

American iron columns, 532.
Anchorage, 704.

Angle of repose, 237.
" " torsion, 568.

Angular momentum, 177.

Anti-friction curve, 320.
" pivots, 320.

Arch, 470.
Arch abutment, maximum thickness of,

649.
Arch, conditions of equilibrium of, 745.

" formulae for thickness of, 750.
" linear, 743, 750, 760.

Arched ribs, 740, 762.
" " deflection of, 780, 802.

Arched ribs, effeci of change of tem-
perature on, 770, 786.

Arched ribs, elementary deformation of,

781.

Arched ribs, general equations of equi-

librium of, 784
Arched ribs, t^raphical determination of

stresses in, 677.
Arched rib ut uniform stiffness, 788,

789, 795, 3oo, 804.

Arched ribs with fixer jnds, 771.
•' with hinged ends, 764.

Arched ribs with axis in form of circu-

lar arc, 769, 773.
Arched ribs with parabolic axis, 760,

775-
Arched ribs with semicircular axis, 765,

775-
Arches, middle-tiiird theory of, 746.

Auxiliary truss, -p;.

Hack-stays, 16, 7-.'.j.

Baker's formulae lor strength of pillar:;,

549-
lia;aiicing, 198.

Beam acted upon by oblique forces. 396.
Beam, transverse strength of, 340, 429.
Beam, transverse vibration of loaded,

461.
Beams, equilibrium of, 93.

oi uniform strength, 358-365.
Hearing surface, 314, 315.
Belts, 321.

" effect of high speed in, 325.
" effective tension of, 324.
" slip of, 326.
" stiffness of, 327.

Bending moment, 96, 118, 434.
Bending moment in plane which is not
a principal plane, 354.

Bending moment, relation between, and
shearing stress, loS.

lievtl-wht-els, 335.
Boilers, 586.

Bollman truss, 56, 618.
Bowstring truss, 61, 6t8.
Brace, i, 25.

Brakes, 323.
Brsaking-down point, 149,
Breaking stress, 147.

weights, 348. 399.
Breaking weights of iron girders, 369,

370.
Pjieaking weiglus, tables of, 212.
H:nk\v()ik, 149.
Bridge, bowstring suspension, 626.

loads, 600.
" trusses, 17, 52.
' " chords of, 625.

depth of, 597.
Bridge trusses, maximum allowable

stress in, 657.
Bridge trusses, stiffness of, 598." " stringers of, 656.
Briiigcs, 597.

" position of platform of, 598.
Buckling of pillars, 513, 515.

831

i •!!!}

H



«32 INDEX.

<<

Cable with sloping suspenders, 717.
Cables, 703.

" curves of, 706,
" deflection of, 714.
" length of arc of, 712.
" parameter of, 711,
" weight of, 713.

Camber, 388, 659.
CaiUi'ever, 365.

curve of boom of, 634.
" deflection of, 638.
"

dep'.h of, 637.
" weight of, 632.

Cast-iron, 147.
Catenary, 34, 706, 750.

Cement, 150.

Centres of gravity, 11.

Centre of resistance, i, 743.
Centrifugal force, i8i.

Centripetal force, 182.

Clapeyron's theorem, 2g2.
Coefficient of cubic elasticity, 255.

" elasticity, 141, 143.
" fluidity, 162.
" hardness. 164.
" lateral elasticity, 144.
" rigidity, 254, 285.

" " rup'are, 248.
" " torsional rupture, 574.
" " transverse elasticity, 285.

Collar-beams, 25.

Columns, see Pillars, 513, 538.
flexure of, 554, 557.

Compound strain, 236.

Compression, 141.

Conjugate stresses, 247.
Continuous girders, 463.
Continuous girders, advantages and dis-

advantages of, 486.

Continuous girders, maximum bending
moment in, 465.

Coulomb's laws, 568.

Counterbrace, 60.

Counter-efficiency, 328.
Counterforts, 270,

Covers of riveted joints, 665.
Cranes, 13.

bent, 31.
" derrick, 16.

jib, 13.

pit, 15.

Crank effort, 207,

Cubic elasticity, 255.
" strain, 283.

Dead load. 143, 600.

Deflection, curve of, 434.
of girders, 384-386, 638.

Deformation, 140, 251, 254.

Dock walls, 270.

Dynamometer, Prony's, 327.

Earth foundations, 258,

Earthwork, 255.
" pre sure of, 257.

Earthwork, Rankine's theory applied to

retaining walls, 264.

Efficiency of mechanisms, 335.
" of riveted joints, 666.

Elastic curve, 355.
" moment, 96, 340.

Elasticity, 140.
" coefficient of, 141, 143.

"cubic, 2';5.

" lateral, 144.
" «... transverse, 285.
"

limit of, 145.

ElHpse of stress, 241.

Ellipsoid of stress, 2S1.

Empirical rules for wind-pressure, 663,
Encastr6 girders, 458.
Energy, 207.

" curves of, 207.
" fluctuation of, 207.
" kinetic, 167, i6g, 170.
" potential, 167.

Envelope of moments, 121.

Equalization of stress, 349.
Equalizer, 629.
Equilibrated polygon, 740.
Equilibrium of beams, 428.
Equilibrium of beams, general equations

of, 428.
Equilibrium of flanged girders, 366.

Euler's theory of the strength of pillars,

537-
Examples, 69-92, 132-139, 216-234,

294-298, 337-339. 407-427. 490-512,

563-567. 500-585, 594-596, 689-702,

734-739- 809-S12.
Expansion of solids, 215.

Extension of prismatic bar, 289.

Extrados, 740.

Eyebars, 661.
"

steel, 665.

Factor of safety, 150.

Fatigue, 152.

Finlc truss, 54.

Flanged girders, 365.
" " equilibrium of, 366.

stiffness of, 384.
Flanges, 365, 597.

" curved, 366.
" horizontal. 366.

Flexure of columns, see Pillars, 554,

557.
Flow of solids, 162.
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Fluctuation of stress, 151.

Fluid pressure, 162.

Force polygon, 3, 7, 119.

Foundations, earth, 258.
" limiting depth of, 258.
"

of walls, 270.

Fracture, 141.

Framed arch, stresses in, 804.

Framed arch. Clerk Maxwell's method
of determining stresses in a, 806.

Frames, i, 2.

" incomplete, 27, 61,

Friction, 300.

angle of, 237.
" coefficient ,of, 300, 313.
" journal, 310.
" rolling, 310.

Funicular curve, 10.

polygon, 3, 7, 117, 119.

Gins, 17.

Girder of uniform strength, 3S1.

Gordon's formulae for pillars, 522.

Hinged girders, 127-131.
Hodgkinson's formulae for the strength

of pillars, 513, 517-521.
Hooke'b law, 142.

Howe truss, 58, 611.

Impact, 184.

Impulse, 176.

Incomplete frames, 27.

Inertia, 198.
" moment of, 12, 342.
" pressure due to, 200.

Inflection, point of, 453-463.
Internal stress, 235.

Isotropic bodies, 283.

Joint of rupture, 747,

Keystone, 741.

Lateral bracing, 654.

Lattice girder, 600.

Launhardt's formula, 153.

Lenticular truss, 626.

Limit of elasiiciiy, 145.

Line of loads. 5.

" " resistance, 273-276, 741, 750.
" " rupture, 265.

Linear arch, 743, 753-760.
Loads, live, iii, 115, 119, 600,639,641,

730.
Loads, stationary (dead), 118, 600.

Long pillars, 535.

Mansard roof, 6.

Masonry, 149.

Mechanical advantage, 294.

Middle third theory "f arches, 746.

Modulus of elasticity, 141.
" " rupture, 348.
" " transverse elasticity, 254.

Moment of forces, 116
" " iner'i I, 12, 342.
' examples of, 371-81.

Moment of inertia, variable section of,

455.
Moment of inflexibility, 96,

" " resistance, 96.

Momentum, 176.

Mortar, 150.

Neutral axis, 340.
" " of a loaded beam, 435-454.
" " surface, 340.

Oblique resistance, 169.

Oscillatory motion, 190, 195.

Panel points, 52.

Panels, 54.

Piers, 65.

Pillars, 513-
Euler's formulae for, 527.

" failure of, 515.
" flexure of, 515.
" formulae for American, 527-532.
" Gordon's formulae for, 522.

Pillars, Hodgkinson's formulae for, 517-
521.

Pillars, Rankine's formula for, 526.

Pillars with stress uniformly distributed,

516.

Pillars with uniformly varying stress,

517-
Pins, 661.

Piston velocity, curves of, 205.

Pivots, 316.
" conical, 319
" cylindrica., 316.
" Schiele's (anti-friction), 320.

Plasticity, 141.

Poisson's ratio, 142.

Pole, 7.

Polygon of forces, 3, 7.
'* " pressure, 743.

Pratt truss, 60.

Primitive strength, 153.

Principals, 33, 34.

Prony's dynamometer, 327.
Proof strain, 171.

" stress 171. I

Purchase 304.
Purlins, 33, 34.

Radius of gyration, 174, 528-531.
Rate of twist, 289.

k -1
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Redundant bars, 48.

Reservoir walls, 271.

Resilience, 171.

Reiainitig walls, 260.

Retaining walls, conditions of equiib-

riurn of, 260.

Retaining walls, Rankine's theory ap-

plied 10, 264.

Rivet connection between flange and
web, b6o.

Riveted joints, CoS.
" " covers of, 675.

design of, 678.
" " efficiency of, 679.
" " failure of, 670.
'• " stresses in, 670.
" " theory of, 671-675.

Riveting, 666.

Rivets, 666.
" dimensions of, 667.

Rocker-link, 629.

Rollers, 35, 639.
Roof trusses, 17.

" " distributionof loadson, 39,
" " types of, 33.
' " weights of, 37.

Ropes, 321.

Saddles, 704.

Schiele's pivots, 320.

Screws, 306.
" endless, 309.

Sections, method of, 62
Set, 145.

Shafting, distance between bearings of,

575-
Shafting, efficiency of, 577.

internal stress in, 237.
stiffness of, 573.
torsional strength of, 288-291.

Shear, 141.
" maximum, 121, 237.

Shearing forcp, 95.
" " examples of, 97, 108.

Shearing force and bending moment,
relation betvveen, 108.

Shearing stress, 198.
' " distribution of, 391.

Shear-legs, 17.

Similar girders, 401-404.
Skew -backs, 34, 740.

Soffit, 740,
Spandril, 740.
Spjcific weight, 143.

Spherical shells, 591*
Spritigings, 740.
Springs, 355, 456-458.

" simple rectangular, 456.

Springs, spiral, 477.
Springs of constant depth, but triangu-

lar in plan, 457.
Springs of constant width, but parabolic

in elevation, 457.
Statical breaking strength, 153.
Steel, 148.

Stiffening truss, 719.
" hinged at centre, 735.

Stiffness, 190, 387, 389.
Strain, 140, 251.

Straining cill, id.

Stress, 141, 251
" and strain, relation between, 281.
" general equations of, 277.
" principal, 241.
" " planes of, 237.

Stresses, conjugate, 248, 250.

Stress-strain curves, 147-149.
"

line, 144.

Strut, 1.

St. Venant's torsion results, 572.
Surface loading, 350.
Suspenders, 706,

Suspension-bridges, 703.
"

loads on, 730.
Suspension-bridges, modifications of,

731-

Suspension-bridges, pressure upon piers

of. 718.

Swing-bridges, 470-472.

Tables of breaking weights and coeffi-

cients of bending strength of timber,

212, 213.

Tabb of coefficients of axle friction,

336.

Table of coefficients in Gordon's for-

mula, 524.
Table of coefficients in Rankine's mod-

ification of Gordon's formula, 526.

Tables of diagonal and chord stresses,

644-650.
Tables of efficiencies, 587.

" " elliptic integrals, 562.
" " expansion of solids, 215.
" " eyebar dimensions, 665.
" " factors of safety, 214.

Tables of loads for highway bridges,

687.

Tables of strengths, elasticities, and
weights of iron and steel, 210.

Table of strengths, elasticities, and
weights of various alloys, 211.

Tables of weights of modern bridges,

682-687.

Table of weights and crushing strength

of rocks, 214
Table of weights of roof coverings, 67.
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Table of weights of roof frames, 67.

Tension, 1. .

Theorem of iliree moments, 463-470.
Thick hollow cylinder, 588.

Timber, 149,

l ursion, 141, 568.
" St. Venani's results, 572.

Torsional coclTicient of elasticity, 145.
"

resilience, 574.
I'orsional strength of shafts, 288, 289,

571. 572.

Transverse strength, 141.

Transverse vibration of a loaded beam,
461.

Trellis girder, 600.

Tresca's theory of flow of solids, 162.

Tripods, 17.

Truss, 2.

" composite, 31.
" king-post, 21.
" queen-post, 25.
" roof, 32.
" triangular, 19.

Trussed beams, 53.

Twist, 141.

Unwin's formula, 159.

Values of k*, 174, 528-531.
Vibration strength, 153.

Voussoir, 741.

Warren truss, 57.

Web thickness, 382.
Wedge, 303
Weights of roof r(,verings, 67.

" fr.imes, 67.

Weyrauch's fnmiula, 153.

Wcyrauch's tlu-ory < ( buckling of pillars,

55'>.

Wheel and a.xli-, 329.

Whipple truss, (is.

Wind pressure! 38, 67, 629, O51, 653.
Wind-pressure, American specifications

of, 652.

Wind-Pressure Commission rules, 653.

Wind-pressure, empirical regulations,

653-
WUhler's law, 150.

Work, 167.
" effective, 178.
" external, 168.
" internal, 168.
" useful, 178.
" waste, 178.

Work done in bending a beam, 460.

Work done in small deformation of a
body, 292.

Work of journal friction, 314.

Working load, 150.
" strength, 150.
" stress, 150.

Wrought-iron, 148.

Yield-point, 149.
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AGRICULTURE.
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Armsby's Manual of Cattle Feeding 12mo, |1 75

Downing's Fruit aud Fruit Trees 8vo, 5 00

Kemp's Laudscape Gardeuiug 12mo, 2 50

Stockbridge's Rocks aud Soils 8vo, 2 50
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" Treatise on the Diseases of the Dog Svo, 3 50
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12mo, 2 00
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Chase's Screw Propellers Svo, 3 00

Winthrop's Abridgment of Military Law 12mo, 2 50

De Brack's Cavalry Outpost Duties. (Can.). . . .ISmo, morocco, 2 00

Cronkhite's Gunnery for Non-com. Officers ISmo, morocco, 2 00

Dyer's Light Artillery 12mo, 3 00

Sharpe's Subsisting Armies 18mo, 1 25

18mo, morocco, 150

Powell's Army Officer's Examiner 12mo, 4 00

Hoff's Naval Tactics 8vo, 150

.Bruff's Ordnance and Gunnery Svo, 6 00
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Turman's Practical Assaying 8vo, 3 00

Wilson's Cyanide Processes 12mo, 1 50
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Ricketts's Assaying and Assay Schemes Svo, 3 00

* Mitchell's Practical Assaying. (Crookes.) Svo, 10 00

Thurston's Alloys, Brasses, and Bronzes Svo, 2 50

Kunhardt's Ore Dressing Svo, 1 50

O'Driscoll's Treatment of Gold Ores Svo, 3 00
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Practical, Theoretical, and Descriptive.

Michie and Harlow's Practical Astronomy Svo, 3 00

White's Theoretical and Descriptive Astronomy 12mo, 2 00

Doolittle's Practical Astronomy Svo, 4 00

Craig's Azimuth 4to, 3 50

vGore's Elements of Geotlesy 8vn, 2 50
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BOTANY.

Gardening fob Ladies, Etc.

"Westermaier's General Botany. (Schneider. ) 870,

Thome's Structural Botany 18mo,

Baldwin's Orchids of New England „ 8vo,

Loudon's Gardening for Ladies. (Downing.) 13mo,

BRIDGES, R00P5, Etc.

Cantilever—Highway—Subpension.

Boiler's Highway Bridges 8vo,

* " The Thames River Bridge 4to, paper,

Burr's Stresses in Bridges 8vo,

Merriman & Jacoby's Text-book of Roofs and Bridges. Part

L, Stresses 8vo,

Merriman & Jacoby's Text-book of Roofs and Bridges. Part

IT., Graphic Statics , 8vo,

Merriman & Jacoby's Text-book of Roofs and Bridges. Part

III., Bridge Design 8vo,

Merriman & Jacoby's Text- book of Roofs and Bridges, Part

IV., Continuous, Draw, Cantilever, Suspension, and

Arched Bridges (/?i preparation).

Crehore's Mechanics of the Girder 8vo,

Du Bois's Strains in Framed Structures 4to,

Greene's Roof Trusses 8vo,

" Bridge Trusses 8vo,

" Arches in "Wood, etc 8vo,

Waddell's Iron Highway Bridges 8vo,

Wood's Construction o* Bridges and Roofs 8vo,

Foster's Wooden Trestle Bridges 4to,

* Morison's The Memphis Bridge Oblong 4to,

Johnson's Modern Framed Structures? 4to,

CHEMISTRY.
Qualitative—Quantitative—Organic—Inorganic, Etc.

Fresenias's Qualitative Chemical Analysis. (Johnson.) 8vo, 4 0(y

" Quantitative Chemical Analysis. (Allen.) 8vo, 6 00

•• " " '• (Bolton.) 8vo, 1 50

4
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Crafts's Qualitative Analysis. (Scbaeffer.) 12mo,

Perkins's Qualitrtive Analysis 13njo,

Tliorpe's Quautilutive Chemical Analysis 18mo,

Classen's Analysis by Electrolysis. (Herrick.) 8vo,

Stockbridge's llocks and Soils 8vo,

O'Brine's Laboratory Guide to Chemical Analysis 8vo,

Mixter's Elementary Text-book of Chemistry 13mo,

Wulling's Inorganic Phar. and Med. Chemistry 12mo,

Mandel's Bio-chemical Laboratory .18mo,

Auste.i's Notes for Chemical Students 12mo,

Schimpf's Volumetric Analysis 12mo,

Hammarsteu's Physiological Chemistry (Maudel.) 8vo,

Miller's Chemical Physics 8vo,

Pinner's Organic Chemist'y. (Austen.) 12mo,

Kolbe's Inorganic Chemistry 12mo,

Rlcketts and Russell's Notes on Inorgnnic Chemistry (Non-

metallic) Oblong 8vo, morocco,

Drechsel's Chemical lieactions. (Merrill.) 12mo,

Adriauce's Laboratory Calculations 12mo,

Troilius's Chemistry of Iron 8vo,

Allen's Tables for Iron Analysis 8vo,

Nichols's Water Supply (Chemical and Sanitary) 8vo,

Mason's " " 8vo,

Spencer's Sugar Miiiiufacturer's Handbook. 13mo, morocco flaps,

Wiechmaun's Sugar Analysis, 8vo,

" Chemical Lecture Notes 12mo,

DRAWING.
Elementary—Geometrical—TopoonApnicAL.

Hill's Shades and Shadows and Perspective 8vo,

Mahaa's Industrial Drawing. (Thompson.) 2 vols., 8vo,

MacCord's Kinematics 8vo,

" Mechanical Drawing 8vo,

" Descriptive Geometry 8vo,

Reed's Topographical Drawing. (II. A.) 4to,

Smith's Topographical Drawing. (Macmillan.) 8vo,

Warren's Free-hand Dniwiug 12nio,
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Warceu's Drafting Instrumeuts 12mo,

'• Projection Drawing 12nio,

" Linear Perspective 12mo,

" Plane Prol)lenis , 12ino,

" Primary Geometry 12mo,

" Descriptive Geometry 2 vols., 8vo,

" Problems and Theorems 8vo,

" Macbl;io Construction ,^ 2 vols., 8vo,

" Stereotomy—Stone Cutting 8vo,

'• Higher Linear Perspective 8vi',

" Shades and Shadows 8vo,

Wlielpley's Letter Engraving 12mo,

ELECTRICITY AND MAGNETISM.
Illumination—Batteries—Physics.

* Dredge's Electric Illuminations. . . .2 vols., 4to, half morocco,

" " " Vol.11 4to,

Niaudet's Electric Batteries. (Fishback.) 12mo,

Anthony and Brackett's Text-book of Physics 8vo,

Cosmic Law of Thermal Repulsion 18mo,

Thurston's Stationary Steam Engines for Electric Lighting Pur-

poses 12mo,

Michie's Wave Motion Relating to Sound and Light, 8vo,

Barker's Deep-sea Soundings 8vo,

Holman's Pscision of Measurements 8vo,

Tillman's Heat 8vo,

Gilbert's De-nmgnete. (Mottelay.) Svo,

Benjamin's Voltaic Cell 8vo,

Reagan's Steam and Electrical Locomotives 12mo

ENGINEERING.

Civil—Mechanical—Sanitary, Etc.

* Trautwine's Cross-section Sheet,

* " Civil Engineer's Pocket-book. ..12mo, mor. llaps,

* " Excavations and Embankments 8vo,

* " Laying Out Curves 12mo, morocco,

Hudson's Excavation Tables. Vol. II 8vo,

6
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Searles's Field Engineering ISrao, i)\orocco Haps, |3 00

" liailroad Spiriil 12mo, morocco tliips, 1 50

Godwin's Railroad Engineer's Field-l)ook.l2mo,pocltet-bk. form, 2 50

Butts's E^ j:;.cer's Field-bools ISmo, morocco, 2 50

Gore's Elements of Goodesy 8vo, 2 50

Wellington's Location of llailways 8vo, 5 00

* Dredge's Penu. Ilailroad Construction, etc. . . Folio, half mor., 20 00

Smith's Cable Tramways 4to, 2 50

" Wire Manufacture and Uses 4tOj 3 00

Mahan's Civil Engineering. (Wood.) 8vo, 5 00

Wheeler's Civil Engineering 8vo, 4 00

Mosely's Mechanical Engineering. (Mahan.) 8vo, 5 00

Johnson's Theory and Practice of Surveying 8vo, 4 00

" Stadia Reduction Diagram. .Sheet, 22i X 28 Hui^hes, 50

* Drinker's Tunnelling 4to, half morocco, 25 00

Eissler's Explosives—Nitroglycerine and Dynamite 8vo, 4 00

Foster's Wooden Trestle Bridges 4to, 5 00

Ruflfner's Non-tidal Rivers 8vo, 1 25

Greene's Roof Trusses 8vo, 1 25

Bridge Trusses 8vo, 2 50

" Arches in Wood, etc 8vo, 2 50

Church's Mechanics of Engineering—Solids and Fluids. .. .8vo, 6 00

" Notes and Examples in Mechanics 8vo, 2 00

Howe's Retaining Walls (New Edition. ) , 12mo, 1 25

Wegmann's Construction of Masonry Dams 4to, 5 00

Thurston's Materials of Construction 8vo, 5 00

Baker's Masonry Construction 8vo, 5 00

" Surveying Instruments 12mo, 3 00

Warren's Stereotomy—Stone Cutting 8vo, 2 50

Nichols's Water Supply (Chemical and Sanitary) 3vo, 2 50

Mason's " " " " " 8vo, 5 00

Gerhard's Sanitary House Inspection 16mo, 1 00

Kirkwood's Lead Pipe for Service Pipe 8vo, 1 50

Wolff's Windmill as a Prime Mover Svo, 3 00

Howard's Transition Curve Field-book 12mo, morocco flap, 1 50

Crandall's The Transition Curve 12mo, morocco, 1 50

7
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CrandiiU's Earthwork Tables 8vo, ifl 50

Pattern's Civil Engineering Svo, 7 50

" Foundations 8vo, 5 00

Carpenter's Experimental Engineering 8vo, 00

"Webb's Engineering Instruments 12mo, morocco, 1 00

Black's U. 8. Public Works 4to, 5 00

Merriman and Brook's Handbook for Surveyors. . . .12mo, mor., 3 00

Merriman's Retaining Walls and Masonry Darns 8vo, 2 00

" Geodetic Surveying 8vo, 2 00

Kiersted's Sewage Disposal 12mo, 1 25

Siebert and Biggin's Modern Stone Cutting and Masonry. . .8vo, 1 50

Kent's Mechanical Engineer's Pocket-book 12mo, morocco, 5 00

HYDRAULICS.

Wateii-wheels—Windmills—Service Pipe—Dkainage, Etc.

Weisbach's Hydraulics. (Du Bois.) Svo, 5 00

Merriman's Treatise on Hydraulics Svo, 4 00

Ganguillet& Kutter'sFlow of Water. (HeringA Trautwine.).8vo, 4 00

Nichols's Water Supply (Chemical and Sanitary) Svo, 2 50

Wolff's Windmill as a Prime Mover Svo, .'] 00

Ferrel's Treatise on the Winds, Cyclones, and Tornadoes. , .Svo, 4 00

Kirkwood's Lead Pipe for Service Pipe Svo, 1 50

Ruffner's Improvement for Non-tidal Rivers Svo, 1 25

Wilson's Irrigation Engineering Svo, 4 00

Bovey's Treatise on Hydraulics Svo, 4 00

Wegmann's Water Supply of the City of New York . . . .. ..4to, 10 00

Hazen's Filtration of P'/olic Water Supply Svo, 2 00

Mason's Water Supply—Chemical and Sanitary Svo, 5 00

Wood's Theory of Turbines Svo. 2 50

MANUFACTURES.

Aniline—Boilers—ExPLt)sivEs—Iron—Sugar—Watches—
Woollens, Etc.

Metcalfe's Cost of Manufactures Svo, 5 00

Metcalf's Steel (Manual for Steel Users) 12mo, 2 00

Allen's Tables for Iron Analysis Svo, 3 00

8
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"West's American Foundry Pmctice 12nu),

Moulder's Text-book 12nio,

Spencer's Siiji;ar Manufacturer's Handbook. . . .ISnio, mor. flap,

Wiechinann's Sugar Analysis 8vo,

Beaumont's Woollen and Worsted Manufacture 12mo,

•lleisig's Guide to Piece Dyeing 8v(),

Eissler's ExploHives, Nitroglycerine and Dynamite 8vo,

Ueinniiin's Aniline Colors. (Crookes.). ... 8vo,

Ford's Boiler Making for Boiler Makers 18mo,

Thurston's Manual of Steam Boilers 8vo,

Bontli'.s Clock and Watch Maker's Manual 12nio,

Holly's Saw Filinj? 18mo,

Svedelius's I' lulbook for Charcoal Burners 12mo,

Tlie Lathe and Its Uses 8vo,

Woodbury's Fire Protection of Mills 8vo,

Bolland's The Iron Founder 12mo,

" " " " Supplement 12mo,

" Encyclopoedia of Founding Terms. , . . 12mo,

Bouvier's Handbook on Oil Painting 12mo,

Steven's House Painting ISmo,

MATERIALS OF ENQINEERING.

Strength—Elasticity—Rksistance, Etc.

Thurston's Materials of Engineering 3 vols., 8vo,

Vol. I., Non-metallic 8vo,

Vol. II. , Iron and Steel 8vo,

Vol. HI., Alloys, Brasses, and Bronzes 8vo,

Tiuirston's Materials of Construction 8vo,

Jjaker's Masonry Construction 8vo,

Lanza's Applied Mechanics 8vo,

" Strength of Wooden Columns 8vo, paper,

V/ood's Resistance of Materials 8vo,

Wcyrauch's Strength of Iron and Steel. (Du Bois.) 8vo,

vBurr's Elasticity and Resistance of Materials 8vo,

JVIeiTiman's Mechanics of Materials 8vo,

Church's Mechanic's of Engineering—Solids and Fluids 8vo,

9
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Beiinislee and Kent's Strength of Wrought Iron 8vo, i|l 8

Hiiifitld's TniMsversc Striiius 8vo, 5 00

Dij Hois's Striiius in Framed Structures 4to, 10 00

Morrill's Stones for Uuilding and Det'oriitlou Hyo, "> 00

Bovey's Sirengih of Miilerials (svo, 7 50

Spalding's Koiuls and Piivenients I'Jrni). 2 00

l{()oU\v('irs Uoads and I'avemenls in France I'Jino, 1 'J,*)

Hyrne's Highway Construction svo, ,> DO

Pulton's Treatise on Fouudatiuus iSvo. 5 00

MATHEMATICS.

Calculus—Geometky—Tkiuonomethy, Etc.

Rico and .Tolmsou's Dillerential Calculus Svo, 3 50

" Abiidgiucnt of DilTurenlial Calculus.... 8v(), 1 50

" DilTerenlial and Integral Calculus,

3 vols, in 1, ICnio, 3 50

Johnson's Integral Calculus 12nu), 1 50

Curve Tracing 13mo, 1 00

" DiiTereiitial Eq.uations—Ordimiry and Partial Svo, 3 50

" Least S(iuares 12nio, 1 50

Oaig's Linear Dillerential Equations Svo, 5 00

Merriman and Woodward's Higher Mathematics Svo, 5 00

Bass's Dilleiential Calculus 12mo,

Halsted's Synthetic Geometry Svo, 1 50

" Elements of Geometry ^..Svo, 1 75

Chapman's Theory of Equations 13mo, 1 50

Merriman's Method of Least £ ;uares Svo, 3 00

Compton's Logarithndc Computations 12iuo, 1 50

Davis's Introduction to the Logic of Algebra 8vo, 1 50

Warren's Primary Geometry 12mo, 75

Plane Problems 13mo, 125
" Descriptive Geometry 2 vols., Svo, 3 50

" Problems and Theorems Svo, 3 50

*' Higher Linear Perspective Svo, 3 50

" Free-hand Drawing 12mo, 100
" Drafting Instruments ICmo, 125

10



Wanon's PiojocUou Drawing 12tno, fl TO*

Liiiuiir Perspective lOiiio, 1 00

" Pliiiie Problems Vinuu 1 25

Seiules's Eleinents of Geometry Hvo, 150

Brigg's Pliine Atuilylioul Geometry I'Jmo, 1 00

Wood's Co-onllimte Geometry 8vo, 2 (10

Trigonometry 12mo. 1 ()(>

Miilmii'tt Descrlplive Geometry (Stone ('iittiiig) Svo, 1 50

Woolf's Descriptive Geometry Royiil Hvo, 3 OU

Ludlow's Trigonometry with Tiibles. (IJiiss.) «V(>, 8 00

" Logiirlthmie and Oilier Tables. (Hiiss.) Svo, 2 00

Baker's Elliptic Fiincti(ms 8vo, 1 50

Parker's Quadrature of the Circle 8vo, 2 50

Totteii's Metrology 8vo, 2 50

Balliinl's Pyramid Proi)lcm Hvo. 1 50

Barnard's Pyrauud Problem 8vo, 1 50

MECHANICS-MACHINERY.

Text-books and Puactical Wouks.

Dana's Elementary Mechanics 12mo, 1 50

Wood's " " 12mo, 135
" " " Supplement and Key 1 35

Analytical Mechanics 8vo, 3 00

Michie's Analytical Mechanics '^vo, 4 00

Merriman's Mechanic3 of Materials 8vo, 4 00

Church's Mechanics of Engineering 8vo, 6 00

" Notes and Examples in Mechanics 8vo, 3 00

3Io8ely's Mechanical Engineering. (Mahan.) 8vo, 5 00

Weisbach's Mechanics of Engineering. Vol. III., Part I.,

Sec. I. (Klein.) 8vo, 5 00

Weisbach's Mechanics of Engineering. Vol. III., Part I.

Sec.II. (Klein.) 8vo, 5 00

Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.)..8vo, 5 00

Steam Engines. (Du Bois.) 8vo, 5 00

Lanza's Applied Mechanics 8vo, 7 50>

11



Orehoio'8 Mechanics of tbo Girder , 8vo,

MucCord'H Klncinfttlc8 , «vo,

Thurston's Friction and Lost Work «vo,

" The Aiilnml as ii Miichinc 12mo,

HiiH's Car Lubriciition 12mo
Warren's Maihinu Construction 3 vols., 8vo,

Cljordal's Letters to Mechanics 13nio,

The Luthc and Its Uses
. , gyo

Cromwell's Toothed Gearing , 12nio,
" Belts and Pulleys 13mo,

Du Bois's Mechanics, Vol. L, Kinematics 8vo,

Vol. IL, Statics 8vo,

Vol. IIL, Kinetics 8vo,

Dredge's Trans. E.\hibit8 Building, World Exposition,

4to, half morocco,

Flather's Dynamometers 12uio,

Rope Driving 12mo,

Richards's Compressed Air 12mo,

Smil.'i's Press- working of Metals 8vo

Holly's Saw Filing IHmo,

Fitzgenild's Boston Machinist 18nio

Baldwin's Steam Heating for Buildings 12mo,

Metcalfe's Cost of Manufactures 8vo,

Benjamin's Wrinkles and Recipes 12mo

Dingey's Machinery Pattern Making 12mo,

10 00



Tliuiston's Iron and StMl 8vo, |8 nO

Alloys 8vo. 2 50

Trollius'H Chemistry of Iron ivo, 3 00

Kunlmrdt's Oro Dressing in Jlurope 8vo, 1 50

"Wpyriiiicii's St reugtli of Iron and Steel. (DiiBois.) 8vo, 1 50

Bcardslce and Kent's Strengtli of Wrougljt Iron Svo, 1 50

Compton's First Lessons in Motiil Worliing 12ino, 1 iiO

West's American Foundry Practice 12mo, 2 50

" Moulder's Text-book 12rao, 3 50

MINERALOGY AND MINING.

Mine Accidents—Ventilation—Ore Diiessino, Etc.

Dana's Descriptive Miaeriilogy, (E. 8.) 8vo, half morocco,

" Mineralogy and Petrograpliy. (J. D.) 12mo,

" Text-book of Mineralogy. (E. S.) 8vo,

" Minerals and How to Study Them. fE. S.) 12mo,

" American Localities of Minerals 8vo,

Brush and Dana's Determinative Mineralogy 8vo,

Rosenhusch's Microscopical Physiography of Minerals and

Rocks. (Iddings.) 8vo,

Hussiik's Hock forming Minerals. (Smith.) 8vo,

Williams's Llthology 8vo,

Chester's Catalogue of >Iinerals 8vo,

'

' Dictionary of the Names of Minerals 8vo,

Egleston's Catalogue of Minerals and Synonyms 8vo,

Goodycar's Coal Mines of the Western Coast 12mo,

Kunhardt's Ore Dressing in Europe 8vo,

Sawyer's Accidents in Mines 8vo,

Wilson's Mine Ventilation 16mo,

Boyd's Resources of South Western Virginia 8vo,

" Map of South Western Virginia Pocket-book form,

Stockbridge's Rocks and Soils 8vo,

Eissler's Explosives—Nitroglycerine and Dynamite 8vo,

18
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•Drinker's Tuuuolling, Explosives, Compoumls, and Rock Drills.

^4to, half morocco, |25

Beard's Voiitilatloii of Mines , Vimo, 3

Iblseng's Mtuiiinl of Mining 8vo, 4

STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.

STATioNAUY—lVrAuiNK—Locomotive—Gas Engines, Etc

Weislmch's 8tonm Engine. (Du Bois.) 8vo, 5

Thurston's Engine iind Boiler Tiiiils Svo, 5

" Philosophy of the Steiim Engine 12ino,

Stationary Sloiini Engines 13mo, 1

Boiler Explosion ISmo, 1

Steiiin-l)«Mler Construction and Operation 8vo,

Retlection on the Motive Power of Heat. (Carnot.)

13mo, 2

Thurston's Manual of the Steam Engine. Part I., Structure

and Theory Svo, 7

Thurston's Manual of the Steam Engine. Part II., Design,

Construction, and Operation 8vo,

2 parts,

ROnlgen's Tliorniodynamics. (Pu Bois. ) Svo,

Peabody's Thermodynamics of the St. am Engine Svo,

" Valve Gears for the Steam Engine Svo,

" Tables of Saturated Steam Svo,

Wood's Thermodynamics, ITeat Motors, etc Svo,

Pupin and Osterberg's Tliermodynamics 12mo,

Kneass's Practice and Theory of the Injector Svo,

Reagan's Steam and Electrical Locoinotivcs 19mo,

Mnyer's !^Iodern Locomotive Construction -Uo,

"NVhitliam's Steam-engine Design Svo,

Coiistruclivc Steam Engineering Svo,

Ilemeiiway's Indicator Practice ]2mo,

Pray's Twenty Years with the Indicator Royal Svo,

Spangler's Valve Gears Svo,

* Maw's Marine Engines Folio, half morocco, IS

'Trowbridge's Stationary Steam Engines 4to, boards,

14
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Poni's Holler Milking for Holler Milkers 18ino, $1 00

"Wilson's Steam Hoilora. (Fluliier.) I'Jiuo, "J 50

Bftldwiii's Steiim Ilenliiig for HulUliiigs I'jino, ^ 50

HoaiMoy 's Wiirm-blust Kuniuoo 8vi), 1 50

Sinoliiir's Locomotive Humuiig lOmo, 2 00

Clerk's Gas Kiigine 13mo, 4 00

TABLES, WEIUHT.S. AND MEASURES.

Foil Enoinkkiis, Mkcuanios, AorfAiuKs—Mktuu' Tauf.ks, Ktc.

I'miulall's lliiilwiiy iiml Kiirtliwork Tables 8vo, 1 50

Johnson's Stadia and Jiarlliwork Tables 8vo, 1 25

Hixby's Grapliieal Computing Tables Sheet, 35

Compton's Logarithms I'Jmo, 1 50

Ludlow's Logarithmic and Otiier Tables. (Hass.) 13mo, 2 00

Thurston's t\mversion Tables 8vo, 1 00

Egleston's Weights and Measures 18mo, 75

Totten's Metrology 8vo, 3 50

Fisher's Table of Cubic Yards Cardboard, 85

Hudson's Excavation Tables. Vol. II 8vo, 1 00

VENTILATION.

Stkam IIratinu—HousK Insi'kotion—Mink VKNTii.AnoN.

Beard's Vent ilatioi\ of Mines 13nio, 3 50

Baldwin's Steam Heating 13nio, 3 50

Reid's Ventilation of American Dwellings 13mo, 1 50

Mott's The Air Wo Hreathe, and Ventilation ICmo, 1 00

Gerhard's Sanitary House Inspceticu Square 16mo, 1 00

Wilson's Mine Ventilation lOmo, 1 35

Carpenter's Heating and Ventihiling of Buildings 8vo, i3 00

niSCELLANEOUS PUBLICATIONS

Alcotl's Gems, Sentiment, liangmigc Gill edges, 5 00

Bailey's The New Tale of a Tub 8vo, 75

Ballanl's Solution of the Pyramid Problem 8vo, 1 50

JJaruard's The Melrological System of the Great Pyramid. .8vo, 1 50

15
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• Wiley's Yosemite, Alaska, and Yellowstone 4to,

Emmon's Geological Guide-book of the Rocky Mountains. .8vo,

Ferrel's Treatise on the Winds 8vo,

Perkins's Cornell University Oblong 4to,

Ricketts's History of Rensselaer Polytechnic Institute 8vo,

Mott's The Fallacy of the Present Theory of Sound. .Sq. 16mo,

Rothcrham's The New Testament Critically Emphathized.

12mo,

Totten's An Important Question in Metrology Svo,

Whitehouse's Lake Moeris Paper,
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