Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing /
Le titre de couverture manque

Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a essayé d'obtenir la meilleure copie originale. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués cidessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached / Pages détachées

Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été numérisées.

Additional comments /
Commentaires supplémentaires:

THIT,

UPPER CANADA JOURNAL

or

FOR JANU.LRY AND FLBRUARY, 1553.

ORIGLNL COMLUNICAMONS.

Апт. SXVII.-The IIip, Jinut, considerations on its injuries a disease, deduced from the Ahertom, ly S.J. Stratford M. C. S. Eng. Toroulo. Comtinna from the last Journal. inflomation of me sxabial hrybrine.
In the last Jommal, we endeavoured to present a detail of anatomy of the Hip-joint, contilem that adue aprectation of the rious structures will lead us to a just know ledge oi its diseases-wl an attentive consideration of the artion of the rations mase which operate upon the parte, will at a future period, we do not, be found clearly to jadicate the nature of the accidents; and teach us a facility of relieving them, especially when displacem has oceurred, that will appear very surpising when contrasted wo the commen modes of pruceeding in such cases.-We Who enterea upon the consideration of inflammation of the synovial membrane of the IIip joint, when we endeavoured to point out the indications of Hyperomic action - of serous effusion and of the production of false membrame in the joint-and must now proceed to the consideration of the next stages of the disease.

We have shown that from the effusion of the exudation Corpuscles, we have the formation of false membrane, a variety of areola tissue, this is a marked indication of the law of analogous formations,
there is no doubt that the laws of Amabong formatione in the seremal structures of the bedy, are obseured with doubt and con-fusion.-It is clear however that the bhatema, in which is produced or genorated, all the varsty of cell formations, both nomal and athormal, is a product of the hlow, affused from it, vessel-and the question to be decided appeare to be, whether the white corprocle of the bhod seapring with the bastema, that circtates in each different structure, is the tue exudation corpusclemor if within the blastema escaped from each structure, we have a coll naciens capable of senerating its like in che new formation. The strict conformity of sume morbid products, such as pus, which is the same in every variely of structure, would lead us to believe that the difference consisted in a change of the exudation corpuscle rather than the escape of these cell-muclei, for if such was the case, these must exist in the blood of every individual structure as a primary element pereeptible to the microsespe-this is not consistent with the fact, for the hastema was bat a few moments before, part of the Liquor Sampuinis passine to, and indiscriminately noserinhing all the mormal atmetures of the body without giving rise to any such formation as pers.

There is one hat which may in some degee serve to exphain t t: differeace of Pahologists re-pecting the formation of the puscoppeck trem ibe white ghtholes of the bloed. is that thene, with at goend microncope may he seen to he of various sizes in the mormai comdition, hence in the liduor puris, we shonld expect
 with this corions fact-and so we find them.

Suppore the dineare shontd will progresp. the arterial excitement already spread to the other textures of the foint-these mus pamicipate in the inflammatory action. If it has extemed to the eapsular linament, the amonit of pain is greatly increased, and its nature is considerably changed, it is the dull sickening ache of the fibrous tissues; could we observe the appearance of the ligament it would be scen of a pink colour, like the selerotic coat of the eye, for now its capillary vesscls earry red blood. So also will the cartilages of the Jome participate in the Hypercemic action, the vascular structure from which it receives nourishment, becomes distended with a deaser fluid, that causes the fibrous portion of its structure to swell, fills its cells to their utmost extent, and may be one of the principal causes of the elongation of the thigh in icute inflammation of the Hip Joint. The inflammatory feret is now extreme, the pain also becomes iusufferable, so that the least movement of the joint causes excruciatiug sufiering, and the patient instinctively and rigidly maintains one position, he cannot bear even the least change of his pillow, even the rude walking
of people upon the floor, increases his irritahility if not his actual torture, and he pertinareou-ly lies in all the filthiness of a siek hed. This comdition of things is doublens a provision of mature, to preesrve the most profound rest to the joinh, for in this cave motion would to the greatest harm, it woth incecese the inlinmmatory action, and andist to develop the form tion of matter in the juint, a point when it has happened, from which we shall have to date chamges of the most fcrmidable character, and which in our opinion must ever after be associated with lameness, and deformity.

The disease may now stop, short of the actual development of the pus globule, as I have shown the plastic lymph may have taken on thealthy action, may have become organized, but the joint remains swelled, stiff, and attenled with considerable lameness, which subsides but by slow degrees; should now however the presumptuous Quack, interfere with this process of nature (which I have known to occur) and dare to twist and turn the limb, under pretext of reducing luxation of the joint, 1 need not picture the dreadful intensity of the pati-nt's suffering, or show the enormity of the act, which will in all probability hurry the disease to a fatal termination, whereby perpetual lameness and deformity, if not actual death is the result. This state and comdition of the joint, is not unfrequently camsed by falls upon the trochanter major, whereby the head of the bone is violently driven into the acetabulum-the delicate synovial apparatus of the joint is injored, and more or less inflamatory action of this structure is the result.

Should the progress of the disease continue, the plastic eytoblastema effused into the juint and surrounding tissues, berins to suften, the formation of the pus-ourpusele now happenc, and matter repilly accumulates in the joint. The advent of this perion is generally marked by rigours of thore or less severity which seize the pitient in tokein of the alarm the conatitution tow feels, for the vast imporiatice of this stage of the disease-the Pus thes forme in the juint, is develope from the effusel lymph which has been described as one of the results of congentive action, ia the versels of the synovial membrane, duriner a state of inflammation : this inverad of becomine organised, amd remaining a permanent false membrane in the joint, the effised plasma Snamer or later begins to soften, and we observe corpacies to he formed in the disalved firme, thene floming in the liguor puris, are the puiecrpuseles.-The perfechly formed pus-corpuscles are cells containinr one or more nuclei, sometimes even nucleoli. Thus we miy ohverve a simple and apparently vesicular nucleas, placed excentrically in a transp rent elastic, and round ce!l-wall; at a subsequent period the nucleus seems to have a granular,
amorpizose precipitate around it, without a clear outer circumference; upon an attentive examination we can also observe in the fluid minuas granules less than the loouth of an inch in diameter, while larger corpuseles identical with the muelei of pus-corpuscle are observable. The history of the process would lead to the belief that two or three of the ne mudel amy be grouped together, in all probability and to all appeatmee subation corpuseles, these having taken on a required action and havinu a cell-wall developed aromid them at first pale and tramparent, bur subsequently becoming thickened opaque mod covered with gramules-hence the wrious structures visible by a microseope, observed thoating in the Liquor Puris-the prorress of this process in the development of the pus-corpuscles, is ofen extremely rapid, a few hours sufficing to exhibit a fall grown corpuscle; as soon as the cell-wall is formed the corpuscle grows by endosmotic action, and after a time having ran through its course, it burst,, and hberates the gramules, which are often all that can be found in the pus that has been evacuated from the body after several days.

The joint now soon becomes ereatly distended with pus, so much so, that ulecration of the synovial membrane, and also of the Capsular Ligaments will take place, from the great distension of the part, when the patientexperiences a temporary relief from the pain -by degrees the pus escaping among the muscles of the hip, burrows down in every direction, until it finds its way to the surface; and this may show itself near the groin, or on the back of the hip, while sometimes the abseess will be found to open a long way down the thigh. Coincident with the formation of matter in the joint, we find a change in the character of the constitutional irritation; up to this period the fever han been more or less of the infammatory type, the pulse has been fill and quick, the tongue white and loaded, the skin hot and dry, but now the shivering, which but too plainly marked the baneful change in the nature of the disease, is frequently repeated, it is followed by heat, and flushings, and is succeeded by profuse perspiration; the change indicative of this variety of constitutional irritation, returns withmore or less constancy, while the pulse has an enduring frequency, is small and sharp; a gradual wasting of the body and a progressive debility of the whole frame, distinctly points out to us the nature of the change, which has happened in the character of the disease of the Hip-Joint.

The disciarge from the joint is generally in the first instance normal puss (pus bonum et laudabile) a creamy looking, thick opaque, and homogenous fluid, having a faint yellowish, sometimes a white, or even greenish tinge, it has a peculiar smell when fresh, but looses it on standing, has a sweet mawkish taste, and is
specifically heavier than water-when first evacmated it has an alkaline reaction, but after randing, changes by derrees, so as to exhibit an acid condition: this character of the diecharge continues for a longer or shartor period, in all probability dependent upon the amount and rapidity of softening, of the effused blantema, but by degrees the pis lonses it normal character, it coases to be thick and opapno, bat beomes 1 in and tramsarent, often has an oftensive smell, and not untrequently aphears peculiarty acrid and irritatime. It now appars ceidrnt that a state of tathition is progresing ; the celis in the amorphow blatema, have become to a considerable extenr exhatsted, and now the structures of the joint iteelf are submited to the dimolving molnence of the discharge, are more or lesidestroged, and by such means are removed from the system, so that perhaps destruction of the Syovial membrane has become general, uleeration of the cartilages to a considerable extent may have taken place, and the disease have progressed in the bony structure itself until we find that the neek of the thigh bone, and a very considerable part of the cotyloid cavity has been removed from the joint. Consequent upon this destruction and removal of these portions of the joint, we find a great change to occur, for instead of the head of the thigh bone, placed upon its long neck descending into the deep and firm cavity of the acetabulum, having so secure and stroug a hold as almost to bid defiance to our attempts at removal, and that even after the tough capsular ligament has been entirely cut through, we find what remains of the head and neck of the bone, protruded from the now comparatively shallow cavity in the bones of the pelvis; in fact the very character of the joint has beca changed by the disease, so that the natural action of the maseles which perform it; several movements in a normal condition, are now able to proluce a separation ot the bones; all the natural continuity, between the femur and colyloid cavity being dissolved, dislocation of the hip joint is the consequenee. The direction in which this dislocated extremity of the thigh bone shall be placed, would seem to be dependent upon the position of the limb at the moment of this separation, if the patient lying upon his back in bed, should have flexed the knee, adducted the thigh, and have rotated the toc inwards, so as to have relieved the surface of the joint from all pressure in the first instance, and have subsequently maintained that position inflexibly, as som as the disease shall have so far progressed that the joint shall cease to offer the natural impediments to the retraction of the thigh bone this will be drawn upwards by the action of the erreat muscles, and lodged upon dorsum of the Illiun ; again the position of the patient may have become changed from the weariness of his posture, should he have turned upon his side, and thereby have abducted
the fiexed thish, the bane may be located in the theroid hole; it may be phacedin any ponition in wheh the action of the meneles shall be faroured toy the prosition of the bone at the moment of separation; this may perlaps aceome for the suriking variteties we find in the deformities dependent upon this disease.

This sepatation of the diseased stafues of the joint, would appear t be a provisiom of batare, towards the cure of this comphant ; the diseased stuctures now comparatively cease to be a source of mutual irritation, and the patient often dates the fit vourable changes in the disensed action, from this period of tine. As soon as the distocation of the thish hone upon the dorsum of the Ilium has been produced, considerable shortening of the limb is the resalt, the knee is bent and the foot rotated inwards; that the amount of this inversion (which varies with the circumstances of each case) will depend upon the length of the neck of the thigh bone that remains attached to the shatt: if this be considerable the action of the rotator maceles of the hig arising from the pelvis, and inserted into the trochanter major, will bind the shaft firmly to the pelvis, while the ext inded neek preventing the rotatory action of these muscles, will be lound to preserve the limi in the oue ponition; hat should the neck have been wholly removed by the diseased action, the rotatory movement of the shaft will be permitted; and we may even find a complete evertion of the foot, should the bone when removed from the colyloid cavity, have been phaced in the thyroid hole, the limb will be somewhat lengthened, the thighabducied and the toe turned ontwards-As the patient gains his strength and asumes the erect pusture, the change in the prsition of femur will canse an altemion in the line of the petriv, and as a mee sary come ghence of this condition, a sig-
 of the inclanation of ter peins fron its harmat proition, will he the amonet of this cerrature of the spine. In divincation upwards the pelvis is inceined to the distaned side, to cmatle the shomemed limb to rest upon the gromud, the vertical comdition of the rertehral column is deramged. and thexom in an opposite dire ction is the mecesary result; no sooner has this been aceomptished than the body is chrown too fir on the opposite side, and to gain the true perpendicular, so that the head may rest perlecely on the to, of the colum, and be truly bataneed in the cemre of gravity, that another curve is necesary, bat this is searedy more than haif the dimensions of the former -henee the characieristic sigmoid fextre of the spine. Tais combitos has equaly an , ffect, if the limb is lengthened by beins placed in the thy roil hole, but exactly in the reversed direction.

I have already pointed out, that the formation of matter in
the joint, has been followed by ulearation of the capsular ligament, and the escape of the pus without the shat sack-that it burrows in many directions, malermining the parts about the joint, isolating the maseles from their comection with the homes, cansing extemsive dispase of the bones of the pelves, ar having extended amons the maseles of the hip it will de-troy the faseia, and leave very cxtensive simnes-moreover the disate may stend by utceration, (espectially in yo ang subjeets) throngh the botom of the colyloid cavity, insinute imalf under the lliac muscle within the pelvis, and hat even been known to canse adhesons and disease of the large intestine in its immediate vicinity, so that the matter in the diseased hip-joint has been cracuated through the bowels.

This state of things may have continued for a longer or shorter period, often in youner people the progress of this diseate may be very rapid, may have cansed intense constitutional irritation that was attended with vident delirium or comtinued hectic, accompanied with profuse sweatime; may have so debilitated the patient that the powers of his comstitution sink, and death closes the seene. Bat it on the separation of the diseaved hones, or from some othe: favourable eance, the diseaved action should take a more fortumate turn, the great puralent diacharge begias to suhnide, the simares to heal un, and the patient's constitution to regaill a degree of tone and cianicity, the harbinger of retuming healdh. The bone now hegins to be acenstomed to ite new situation anoter the museles of the hị, exastasis aceus tha eertain extent, ofen very comiderable, it suromads the extremity of the femu:, and after a time accomplintes the formation of a new Cavity, giviag riae to the production of a new jomt- 1 whatsonere part the femur shall he lueated, wherher it be on the darsum of the Illinm, the tha roid tole, or in any other sithation. Some times the shaft of the thigh bone becomes fimly atherent in the new tormation, and fixed in une positim, often not the mat adrantareous, and although it is fully able to bear the weight of the body in its new position, it is not permited the least latitude of motion-it is an anchylosed joint. The Colyloid cavity aho becomes completely filled with a new formation of bone, and the result of the healthy ection, is the total subsidence of the disease, a cure, which under the most favourable circumstances however, is but an alternation between death and deformity.

Such is the course of the inflummation of the synovial membrave of the hip joint, that alier a time has evidently extended to all the other structures, implicating them in changes of the most prave description; doubtless every case will exhibit a shade of difference either in the intensity of its symptoms, or the claracter
of its existing cause. In some cases preeminently acute, the symptoms will be extremely rapid, will erince all the characters of intense inflummatory action, and may arrive at a fatal termination in the short space of a week or ten days; but in the generality of cases the progress of the disease will be much more tardy. It may come on with scarcely an imdication of its approach, by the sudden appearance of swelling of the joint attended with acute pain caused by any active exertion; it may have as suldenly subsided, without any permanent ill effects, to be reexcited however upon the application of any other excitine canse, or the advent of any inflammatory condition of the constitation, which will predispose to such diseases.

In the knee the swelling and effusion, which so rapidly oceurs, in inflammation of the syoviai membrane, is easily recognized, and tudy forms a most chacteritic feature in the complaint, although equally present in this discase when oecurring in the hipjoint, but from the greater depth of the cotyloid cavity, is far less easily recognized, but even here it may be observel upon due and attentive consideration. It must however be confessed that the inflammatory action in this disease will extend so rapidly to the other structures of the juint, asspeedily to obscare this distinctive symptom, as in its progress it invelves the other structures of the joint; while itseli becomes a frequent accompaniment of other discases, developed daring their progress, and this is eyuinlly the case, in inflammation of the Capsular Ligaments of the inith, on which it is a pretty constant attendant.

If is to be observed that the rapidity with which the symptoms of this disease generally progress, are the most distinctive characteristic of inflammation of the synovial membrane-the acute pain ind rapid swelling, serve to mark the distinction from chronic inflammation of the cartilage, and that variety of irritation which proceeds from deposition of tubereular matter in the several structures of the hip-joint; while the charater of the pain, and the constitutional pecularitics, serve to distinguish it from inllammation of the Ligamenteous textures.

To be continued.

Art. XXVIII.-A Practical Treaties on the Art of making and Preserving Microscopical and other Preparations. By Henry Goadby, M.D., F.L.S.

In the preserving fluids that I use, and which are known by my name, the following ingredients ocem, riz. : rock salt, alum, corrosive sublimate, and the white oxyd of arsenie, or arsenious acid.

These materials are never all employed at one time, and they shonld be used judicionsly, to prevem the contingeney of destroying rather than preserving specimens of Natural History.

To this end, I think it de irable to deacribe the properties of the materials reepectively, before giving the necessary formula for the flaids.

Rock (or bay) salt is very preservative, and will maimain the characteristics of all tiseues mimpaired, better than any other agen with which 1 an acquanice, provided the strentik be well regulated; and I make murh greater use of the purely saline, or B fluid, than of any ohbr.

Alum possesen very important conservative properties; it is astringent, coagulates allmmen to some extom, rendering transparent tissues opake in proportion to the volume of almon brought in contact with the un but it distroys the carlomete of lime, converting it into the msoluble sulphate. Tipe aluminous, or $A, 2$, fuid, howewr, is a very valuable composition; and io it I owe many important preparations, which may be fonnd hoth in my own possession, and in the Hmberian Musemm of the Reyal College of Surgeons, of Euglam, and which never cond have been made without its assistauce.

Alum combineswith animal hisues so perfectly, that it cannot be dissolved out of them by lons continued maceration in water. Whenever it is considered neecssary to use the almminous fluids eithry to give form, and support, to an animal, or any part of an animal, or a delicate tissue, by reason of its astringent properiy, or to render diaphanous animals or tissues opalie enough to be risible, the cxcess of alom s hould be washed away with water, and the animal, or whatever it might be, with few exerptions, removod
from the aluminous, and preserved permanently in the B fluid. It should be constantly borne in mind that the effect of fresh volumnes of the aluminous fluid should be cautiously watched, lest the alum produce mischievous results; but with care it may even be used to the full extent of its valuable properties on the sofi parts of an animal enclosed in a shell of carbonic of lime, or othwise possessing that earth, for the muscular, nervous, and other soft tissues, will be much sooner affected by the action of the alum than the denser tissues containing earthy matter. It will hence be seen that the aluminous fluid is not of universal application.

Corrosive sublimate is also astringent, and the coagulator of albumen; the intention of its application is not for the sake of either of these properties, but simply to prevent vegetation growing in the fluids respectively. But inasmuch as albumen takes from corrosive sublimate a portion of is chlorine, and thus converts it into calomel, and as all animal tissues are more or less albuminous, the propriety of using it at all, may well be questioned. In places where the sporules of fungi abotund, as in the store-rooms of large museums, not even the presence of corrosive sublimate can prevent them from groving apon the surface of either of my preserving fluids, if they contain anmal matter of any kind and are in open vessels, i. e., not hermetically sealed; but in a long experience of this fact, I am bound to say, although I have had open jars, dishes, and other vessels containing dissections of animals watting their turn to be mounted permanently as preparations, in which the surace of the fluid has been corered during the summer months with vegetation of considerable substance, and which has continued to increase, and flourish magnificently for weeks, yet, I have never known it 10 descend into the fluid, or affect the dissections (provided they were well covered with fluid) in any way. Indeed either of these fluids will preserve plants, as easily, and certainly, as they preserve animals; and were the fungus to grow into the fluid, it would die, and be preserved, neither have I at any time, during fourteen years experience of preparations made by the use of my fluids, and contained, and sealed down, in the several forms of vessels and cells, also of my invention, ever found a particle of vegeto tion in a single preparation; and during the last six yearsil have
been using the fluids, both for permanest preparations, and stores, without the addition of corrosive sublimate, and always with satisfactory results. I believe, therefore, that the corrosive sublimate may be safeiy left out, although I shall include it in the receipts of the tluids.

Arsenic possesses the power of softening animal tissues to a remarkable extent, and this property has no limit.

A few years ago I was desired by the Examiners in Anatomy, of the University of London, to preserve a body during the summer season for their examinations in the autumn. Desiring to retain the tissues severally in as natural a state as possible, I added arsenic to the B fluid. For some months nothing could exceed the success of this experiment, and if I had changed the fluid and substituted 13 fluid without arsenic, I believe the body would have been permanenly proserved. It was neglected however, in his respect, alhhough I watched it with some solicitude until, after the lapse of rather more than twelve months, I found the entire body (with the exception of the bones) reduced to the condition and appearance of decomposing size, except that it remained perfectly sweet. Ihare made a number of experiments with the like results. I have seen the characters of muscle, tendon, nerve, Sc., gradually disappearing, until nothing but a glairy fluid remained, but was always perfectiy sweet. As arsenic acts upon glass, and glass ressels, by combining with the lead, and for the above reasons, it cannot be employed for preparations that are desired to be permanent. I have made a few such attempts, but they have all ended in failure.

The softening property is that for which 1 cmploy arsenic: either to recover animals that have been hardened, and conngated in alcohol, or to enable me to proceed with elaborate dissections of nerves which must necessarily be tedious. My friend Dr. T. S. Beek of London could never have made such a display of the berves of the uterus-the finest dissection of nerves in the human subject that I believe has cver been made-without the aid of arsenic, which was never allowed to do any misehief, occasionally washed away, then renewed, and so on; and the nerves, under its well regulated influence were as tough as copper wire,

253 Dr. Gondrx, on the Freservation of Animal Substances.

and although very delicate in appearance, would bear pulling and stretching with impunity.

The alluminous fluids I originally designated by the letter Λ, and I called them 1, or 2 , as the same weight of the ingredients were dissolved, either in one quart of water or two quarts; they are thus made.

The A 1 only difiers from the above in having half the quantity of corrosive sublimate, and water. It is very rarely used, being generally too astringent.

B

The corrosive sublimate must never cxeced, under any circumstances, two grains per quart of water; otherwise there will be in time a white precipitate on the preparation that cannot be removed, and which will greatly disfigure it.

When the \mathbf{B} fluid is made according to the above receipt, its specific gravity at a temperature of 60° will be 1,100 , and with it, terrestial and fresh water-animals can be well preserved. In cases where it is desired to preserve the reduess of muscle, it is only necessary to add the nitrate of potash to the preserving fluid: about half an ounce per quart of fluid.

For marine animals the strength of the fiuid must be increased by the addition of salt 101.14 S , otherwise they will be decomposed. A great number of marine animals in the first stages of the preserving process require alum, but it must be cautiously used, and carefully watched, and as soon as it has done all that is required of it, the animal should be well washed in clean water and placed in the B fluid. There is no objection to frequent contact with alum, if necessary, provided the proces bo conducted on the principle here laid down.

[^0]The Arsenical Fluid. -When I employ arsenic for its softening properties, I use it alone, unless the process is likely to occupy much time, and in that case, i combine it with the B fluid, in the following proportions, and call it $C: B$ fluid, as directed above, arsenic 20 grains. Areenic can no more be trusted with earbonate of lime, than alum; and if it be desired to employ it on any rolluscous animal the creature should be removed from its shell prior to its introduction to arsenic. The solutions of arsenic that I have employed differ in strength from 20 grains to 60 grains 10 a pint of water, (imperial measure, 20 ounces) or to the pint of B fluid. It is not casy to dissolve this mineral, and the only plan which I have foumd succes-ful, is to place the quantity of arsenic to be dissolved in a Florence oil flask with half a pint of water, apply a spirit lamp, and boil till the whole be dissolved, it can then be diluted by the addition, either of more water, or preserving fluid. I may mention one singular fact of preservation by this fluid, no less of the animal, than (which is most important) its color.

Lipwards of six years ago my Son collected for me several specimens of the larve of Cossus Ligniperda, the peculiar color of which had never been preserved. In alcoholic flund, of any strength, it turns quite black, which is a common result of the application of spirit for preserving caterpillars; in addition, most insect colors are soluble in alcohol.

The specimens included larre of the first and second year, and one fine sample of a three-year larva about to turn to a chrysalis. Of the former specimens I preserved some in the A2, and the rest in the B nuid, and placed the last in a solution of arsenic. The aluminous fluid has hardened and disfigured the caterpillars nearly as much as spirit would have done; they are softer, and in belter state for disseeting, in the B fluid; but they have lost all their rosy redness of culor in boh fluids, and are partially black.

It was reserved for the arsenic to give me one caterpillar so beautifully preserved that all its characteristic color, even to the most delicate tint, is maintained to this time. I belicee that the interior has not been destroyed by the softening tendency of arsenic
before alluded to, because, if so, I think there would be con siderable deposit in the fluid, which has not occurred; neither in that case would the insect retain its roundness, and fullness, but on the contrary become flaccid by the removal of those tissues (muscles) that give form to the integument. As this caterpillar had been secluded from the operation of light (the fruitful agent for destroying color in animals) for more than twelve months, I determined to try the effect of constant exposure, to which I submitted it for three years in England, and for six months in this country; its beauty is still unimpaired. As it was a sole specimen, and I am not likely to obtain another, I am unwilling to dissect it.

I have been particular in speaking of the successful application of arsenic in the preservation of color in this caterpillar, because I belicve it is of some importance. It is most interesting to collect the larvæ of Lepidopterous and other insects, as far as possible, but they lose much value for the purpose of instruction and for collections, unless their color can be permanently preserved; and I have great hopes that the fluid which has proved so eminently successful in the instance of the caterpillar of the goatmoih, which takes on the described blackness a very few days after death, in every other perserving fluid, may be equally efficacious in the preservation of color, in the other species.

Mode of usiny the Preserving Fluids.-A knowledge of the proper method of using these fluids is essential to success, for in other hands than my own, they have led to the destruction rather than the preservation of specimens. Men have constantly treated my preserving fluids as though they were using spirit, entirely overlooking one very important consideration, namely, the vast difference between their specific gravity and that of alcohol. In the latter, we have a fluid so light that every animal is heavier, and will instantly sink in it ; the conditions are exactly reversed in the former case, where every animai, from an animalcule to an elephant, is lighter, and will float upon either of them.

Neither of my fluids (always excepting the arsenical) can be employed of full strength in the first instance, and anything to be preserved in them should undergo previous maceration in clean
cold water, to which, after a time, preserving fluid may be added until the animal rises to the surface. The fluid and the water must be intimate'y mixed mechanically, or the water will rise through the denser fluid, and retain its integrity for a long time.

The animal will insensibly absorb, and become saturated with the ingredients of the preserving fluid, but in a state of considerable dilution ; the strength of the fluid must now be gradually increased, and intimately mised, until the animal again rise, and in time it will become saturated with this denser fluid. In many instances, it is advisable to licep the animal forcibly at the bottom of the vessel in which it is being preserved by weights, and this is paricularly necessary in hot weather when the preserving process should be expedited with all the speed that is consistent with safety. It is easy to ascertain if the animal be saturated with the fluid by removing the weights, and in that ease, to go on increasing the strength of the fluid: in fine, success depends on carying out the laws of endosmose and exosmose. The diluted fluid used in the first stages should be thrown away, and frequenly renewed, as, being replete with animal lluids, it contains within itself the elements of decomposition, and increases the difficulty of obtaining success. This remark, however, applies less to the aluminous, than to the B fluid, as in the former, the coloring matter, and animal deposits of all hinds so abundantly seen when spirit is used and which ocensions the steady and constant discoloration of that fluid, for, in some cases, many years, and which so generally tends to the disfigurement of preparations in museums is altogether insoluble, from the instant it or they come in contact with alum; and for this very important reason alum may be almost alvays used in the early stage of preservation, the former cautions on this subject being strictly attended to. Preservation of animals by means of these fluids, then, can only be accompiished by the daily addition of fluid until the creature be saturated with the fluid of the full strength indicated. Nor should the solicitude of the operator end immediately at this point, as it will be necessary occasionally to renew the fluid and often to test its strength. To shorien this species of labor, 1 long ago procured a glass jar, or tube, two and a half inches long, and three-fourths of an incin wide, with a flat bottom, to be used as a proof-glass; I then adjusted some speci-
fie gravity bubbles so accurately that they rise very slowly in the fluid, the precise strength of which they are intended to indicate; if the fluid be weaker than exact strength, they fall to the botton, and there remain; if stronger, they quickly rise. They are marked on the top A1, A2, B, S, the latter indicating a saturated solution of rock salt with which it is convenient to increase the daily strength of the \mathbf{B} fluid in the mamer ahready described.

By pouring a litte flaid into the small proof glass, and applying a bubble as the test of strength of the fluid that has been employed, the operator will instantly learn, not the exact strength, (which is unnecessary,) but that the fluid is cither the strength, or weaker or stronger; all the information he needs to guide him in his labors.

Instead of the bubble marked " B" I would substitute two, one indicating 1.100 the other 1.145 and the Italian barometer makers could easily graduate such bubbles. The whole aparatus is enclosed in a japanned tin box 1 inch deep, 12 wide, and $2 \frac{7}{5}$ ths long, which can be carried in the waiscoat pocket, and costs but little.

When either of the foregoing fluids are required for the display of preparations in a public or private collection, they should be well fllered, and for this purpose they may be passed a great number of times through fine flannel rammed into the nozole of a large earthen fumel, or once through a filtering machine, or twice or thrice through good filter paper. If the filtration be properly performed, these fluids are remarkably bright, white, and brilliant, far exceeding in this respect any alcoholic fluids. Rough filtration may be satisfactorily effected by once passing through the thick flamel used for a jelly bag; but if this be not at hand, it is only necessary to allow the fluids to stand quietly in the ressel in which they were made until quite cold, then earefully pouring off the top, the extrancous matter always found in rock salt will gravitate, especially in the aluminous fluid, which has the property of throwing down any thing which disturbes the transparency of water. Neither of my fluids can be retained in open vessels, glass jars, or even stoppered bottles, for any length of time, without additional protection,

In open vessels, the water evaporates, and the salt crystallizes to the total destruction of the specimens included. Salt being highly deliquescent, the volume exposed to atmospheric influence (the upper portion) becomes more or less diluted when the atmospirere contains moisture, and aseends into the neck of the bottle, even around a well ground stopper, by capillary attraction; it gains the upper surface of the stopper and then descends the sides of the bottle, and will lie as a pool on the shelf on which the bottle stands.

As the weather changes, and becomes dry, the salt crystallizes, and thas forms a conduit for the fluid the next rainy day, by which it can greatly, and readily, extend its outposts; and by this means, in time, it will pass completely out of the bottle or other vessel. Bladder will not confine i!, applied to a glass jar on the plan employed for spirit preparations; and the only plan is to cover the jar with a plate of flut glass (patent British plate manufactured by Messrs. Chance of Burmingham, is the best) and seal it down with the patent marine glve, applied to the glass, with a hot iron.

The best, neatest, and readiest mode, in my experience is the plan of my invention, namely: first place in the upper vessel of a small copper glue pot some marine glue cut small; in the lower vessel, where the carpenter would put water, for the careful dissolution of animal glue, put linseed oil, and then apply heat; the temperature of the boiling oil will dissolve the glue the first, second, and even a third time, with care; after this it becomes altered in its proportion, and refractory.

The dissolved glue should be rapidly aplied to the rim of the glass jar (which must be quite dry and free from grease,) with a brush, and the only brush that will stand, I make in this way. I take a piece of rattan cane as long as a cedar drawing pencil, and cut off the cortex carefully from one end of it to the length I desire the brush to to, being particular not to let the knife go into the substance of the cane any more than I can help. I macerate the prepared end of the cane for a short time in water, and then, while yet wet, I pound it with a hammer upon some hard substance (iron or stone) constantly turning it with my hand until all the fibres of the cane be liberated, and my brush

244 Dr. Goadex, on the Preservation of Animal Sulstances.

is complete. I still use a brush of this kind which I have employed for several years extensively, and none other will stand twice using, the hairs come out with the glue, and are in the way of a good joint. A dise of glass shoukd be cut to fit the top of the jar, made clean, and the part that is to be in contact with the jar also dinly coated with the hot glue. The disc should previously have had a small hole drilled through the centre, (about one-eight of an inch in diameter) for a reason that will presently appear.

The two surfaces of glass being apparently! coated with marine glue, but really without contact, the latter must be insured by means of a hot iron which should be carefully passed over the surface of the glue several times till it and the glass become hot, care being taken to licep the iron constantly in motion, and always on the edge of the jar, or of the disc, as in that case the expansion will be equal, and no danger occur even if the iron be red hot; but, it will instantly break if the iron be allowed to linger in one place, or tonch any but the outer portion of the dise, or rim of the jar.

The jar should be thus prepared while empty, and $d r y$, and when complete, the fluid may be poured in, to about one-hall the height of the jar, together with the preparation to be suspended in it. The strings necessary for this purpose may be brought over the edge of the jar, and pressed into the glue on the surface, if soft enough to admit of $i t$; the preparation may now be regulated to the required height in the jar, and the threads of suspension keje in their place by a wet string passed round them on the outside of the jar, several times, and tied. If any fluid chance to be on the surface of the marine glue on the rim of the jar, it shouldbe removed; and when dry, the prepared surface of the dise should be placed on the jar and the two brought together in intimste contact by the hot iron, which as in the former case, must be constantly passed round on the edge, and the disc simultaneously pressed down, until the process be completed. The extraneous glue on the outer edge may be made smooth and neat, by the hot iron.

By means of a syringe, to which a small pipe is affixed, fil up the jar with the preserving fluid, not quite full, however, as
the great expansion of the fluid, (the B. especially) In sudden increase of temperature, may cause the breakage of the top glass; then cut a cork to fit the small hole tightly, insert it, pare it of level with the surface, place upon it a piece of solid marine glue made to adhere to the cork by means of the point of the hot iron, and cover it with another dise of glass about the size of a ten eent piece, or an English six-pence, and the preparation is finished.

It is a good practice to prepare the portion of thread that is to come outside of the jar, the cork, and the surfaces of glass to be coated, with a solution of the marine glue, which may be made by dissolving a piece of glue in an excess of whitewood Naphtha.

Should a stopper become fixed in the neck of a bottle by the crystallization of the salt, it may be easily removed by dissolving the salt by water, and gently tapping the cross piece of the stopper at its extreme ends, (never across its shorter diameter,) with a door key. if the cross piece come off, make it and the remainder of the stopper that is in the neek of the bottle hot with the iron, apply marine glue, and cement them together,-when cold, renew your operations,-the stopper is stronger now than before, and will easily come out, and last longer than one not broken. To keep the fluids in stoppered bottles, and to prevent the possibility of the salt erystallizing on the outside of the stopper, the marine glue may be advantageously employed; or a cement, proposed by Prof. Olmsted, of Yale College, and made by melting resin and lard together by the application of heat, and intimately mixing them. The respective quantities of the materials will depend on whether the cement is required to become hard, or not. If the former, the resin must be in excess; if the later, use more lard. For the purpose that I indicate above, it should be stiff und ropy: remaining just soft enough in hot reather to spread with a pallette knife.

As a final remark 1 would say, that the preservation of anitals, cither in alcoholic, or my fluids, is greatly facilitated by taploying, in the first slages of the process, a large volume of nid.

Crowding animals together in a limited space, and with only a small quantity of fluid. is a fruiffel souree of injury and loss of the majority, if not of all the specimens; when, however, the preseration is complete'y enectel the specimens may be packed very clo-ely texether, in a manll vessel, and as much fluid of the requiret strength as will orcupy the iuterstices is amply sulfurient for trmsportation or stoses, and will last for years, especially if the thaid be lept in, by ruming some marine glue sound the stopper and neet of the boutle with a hot iron, or by using the resinens cement.

- matructions fur making ver priparations of animal scibstancers.

It frequenty happens to the Xaturalist, and the Mieroscopic observer, to meet with animals, or tissues, which, from a variety of circumstances, cannot be retained in any other form than that of a permaneat preparation. They may be smail, and so delicate, that they would be entirely lost if put into a bottle; and in such a case, it is desirable to mount them, without delay. as preparations for the microscope.

If the object be merely a filmy tissue, take a piece of glass of good quality, good surface, and flat; the substance is not material.* Clean it with liquor potassee or dilate sulphuric acid, or use both these fluids, mixing them on the glass; they effervesce, decompose each other, and at that moment, clean the glass; rinse it in clean soft water and dry it with either a clean muslin hankerchief, or a piece of chamois leather; now test it with a drop of water placed on the centre of one side of the glass, and if the water can diffuse itself evenly over the whole surface, the glass is clean; if not, it must be made so. $\dot{\dagger}$

This, which is frequently the most difficult part of the whole process, being accomplished, place the glass in the vessel in which the tissue to be mounted lies in preserving fluid, and float it on to the glass; withdraw the latter carefully from the vessel.

[^1]With a fine (needle) point adjust the tissue to the centre of the glass, and soak up the excess of haid with a camel's hair pencil, leaving enotigh to cover the preparation. Now tahe a piece of thin glass, such as is u-od by a icroncopints, previnusly cut of less widh than the shide or fites on which the tissue lies, and having cleaned it by the mode dinciind, hold it at one end by a pair of finely pointed foreeps, and appis the outer extremity, holding it almost vertically, to such protion of the other glass as to leare the preparation in the eentre of both.

Gradually lower the top glass, and the nuid will run before it unil the preparation be covered, and the top glass finally rests upon the lower one.

A quantity of flaid will yre mmain outside the top glass which must be carefilly taken up with the camel's hair pencil until the s mface of the lower glas-, around the top one, be made quite dry, when the following cenent mast be applied to the clean, dry glasses, to stent in the then, and render the preparation permanent.

Take Egyptian asphaltum and dissolve it in camphene to the consistence of a thick paste ; this proeess is greatly facilitated by the application of moderate lieat. Keep it in a well secured vessel, and label it. Then take japnamer's gold size, which may be obtained at the varnish makers, but generally it is too thin, because new. Inspissate it by the continued application of heat until it acquire the consistence of molasses, then with a muller, upon a marble slab, grind up with the gold-size as much lampblack as you can, until you have formeri a very stiff paste; this should also be well secured and labelled. The properties of these ingredients are as follows:

Asphaltum is hard and britle.
Gold-size is highly tough, and elastic, and retains these properties for many years. By combining elements respectively too hard, and too soft, the one is made to courteract the objectionable properties of the other, and the lamp-black not only assists to give good consistence to the whole, but is desirable from its indestructibility.

Jupanner's gold-size is composed of boiled linseed oil, dry red lead, litharge, copperas, gum animi, and turpentine.

To use the cement, take nearly equal parts of each of the above materials, taking care that the gold-size composition should rather preponderate over the asphalum, than the contrary; mix them intimately on a slab with a small palette knife; if too thick to work well, add a few drops of camphene, lut bevare of making it too thin. Apply the cement, thus made, with camel's bair pencil to the outer margin of the top g!ass; do not use too much for the first coat, but rather by successive layers, applied at different periods, fill with cement the space between the lower and upper glasses of the preparation, until a good solid layer be formed, when the proccss is complete. It is, however, mosi important to isolate the several layers "f "he "llack" amen, for the worpentine contained in a newly applied coating will act upon, and partially dissolve, the old and ciry layer; in this case, the upper surface being exposed to the atmusphere will speedily dry and contract, and acting upon the sofiened cement below the surface, will drive it between the glasses, and spoil the preparation.

Either of the fol'owing compositions may be used for the purpose of scparating the layers of the black cement.

Marine glue, dissoived in an excess of white-wood naphtha, to form a thin solution of the glue. This, which is by far the best application for the purpose, iries nearly as rapidly as it can be used.

Having devoted upwards of thirty years of my life to the dissection of small animals by the aid of the microscope, and in the yeparation of the elementary tissues of all animals, from man downwards, and being desirous of preserving and making permanent the results of my (frequemtly) very tedious labors, my wants, in this respect, were necessarily peculiar. The ordinary form of vessel, then, (and now:) in common use-a botle, was altogether unsuited to my especial necessity; I could not place a bottle under the microscope for the examination of its contents, nor see the preparations without the microscope, the aberration,
resulting from the figure of the bottle, precluding the possibility of defining with precision, the preparations contained within. Thas, the work I had been able to accomplish by suitable optical assistance could not be rendered apparent to my friends, by the use of a microscope; and whether it were an cxposition of the nervous system, or other organic stucture of an insect, or a minutely injected tissue of a frog, or a man, they were alike inaccessible to unassisted vision; moreover, to increase my difficulties they required to be kept as wet preparations. Having been in the constant habit of dissecting under water, in tin pans of various forms and sizes, and always covering these pans with a plate of glass to kecp out dust, se., when they contained unfinished dissections, or an animal simply prepared for dissection, I was struek with the beantiful appearance of an insect, or other entire animal, lying as natiaally as possible, with all its full proportions displayed, retaining its characters in their utmost integrity, and so arranged as to be easy of aceess to the most superficial observer. To my vision, there could not be a more charming sight, than a finished dissection of the nerrous system in situ of any insect, especially of the Blatta Americana-one of which I dissected at ten years of age-while lying in the pan in which the dissection had been performerl; and sorely have I grieved at the sadly changed appearance of the same insect, at the instant I placed it in a boule containing alcoholic fluid ostensibly to preserve it, but actually to complete its disfigurement. Neither could I suspend a delicate preparation in a botlle, in such a manner as to insure its safety. Witia a quantity of air always contamed in the bottle, the fuid is put in motion by the act of taking up the ressel to examine its contents, and the particles of fluid beating against a delicate tissue will inevitably in time break or displace the structure that had cost the patient laber of many tedious hours to dissect and display. Thus, by my own act, not mfrequenty, and by the carclessuess of others, was continually losing my preparations; and this determined me to attempt a form of vessel that should agree, as far as possible in all general particulars, with the pans, in which, I used then, and still contime, to dissect. Believing gless to be the very best material for my purpose, I consulted several operative glass-grinders on the subject; who all declared the work I required conld not be done, and that if it
could be accomplished, the cost would prove prohibitory. Not to be diverted from my purpose, nor disconraged by the statements of the glass-grinders, I deternined to try and work out my plans with my own hands, although I had not received education in any branch of mechanics. Moreover, in connection with my project as a whole, I required a good cement for the glass vessels, and some oher preserving fluid than alcohol. These subjects occupied me more or less for twenty years, during which time the failures were frequently quite disheartening, chiefly as regarded the mechanical part. On one occasion, 1 possessed about three dozen of glass vessels, eacin full of flaid, hermetically sealed, and containing a minute dissection, which had remained permanent for a period of two years. A gas mieroseope had just been invented, and was then on exinibition in Bond street, I, ondon. In an evil hour I submitted my preparations to this instrument; the intense heat of the gases melted my cement, and all my treasured dissections were destroyed before my face-this occurred about eighteen years ago. In the years 1839-10 and 41 , I woried most perseveringly at my glass cells, and vessels, with a view, either to complete the plan, or to give it up: at the latter end of '411 possessed a large collection of preparations all of them contained in vessels similar to those I now use and intend to describe. I submitted them to the inspection of the Society of Arts who, having invited the assistance of a large number of eminent men, awarded me their large gold medal "for his method of putting up anatomical preparations." The medal was awarded in November, '41, and presented on the distribution day in '42." I have felt it necessary in my own justification, to give this history of a plan of mounting zoological or anatomical preparations, now in very extensive use, as I observe the method is recommended and explained in a recent publication without giving me the credit of originating and perfecting it.i

[^2]There are many objects for the microscope, of great zoological or physiological interest, which possess more substance than will allow of their being treated in the way already described, although their characters can be preserved only as wet preparations; for all such, a call, or a glass box, must now be prepared, and the following is the way to proceed.

Firstly, accurately measure the length, breadth, and substance of the preparation to be mounted; select a piece of flat glass of substance agreeing as nearly as possible with the thickness of the preparation and with a glazier's diamond cut off two pieces from one-eighth to three-sixteenths of an inch wide, and of equal length; these are to form the sides of the cell; the ends must be of the same width but not so iong. Although the cell should fit the preparation in regard to depth or thicinness, a good space should always be allowed around the sides and ends, for example: I desire to make a cell for a preparation measuring one inch long, and five-cigiths wide, I should make the cell one and a half inch long, and one inch wide, inside measure; when finished the preparation looks better, is more aceessible to the microscope because the sides of the vessel are not in the way, and, what is most important, therc is more room for preserving fluid, than if the vessel be contracted to the actual size or thereabouts of its contents. The depth shoald be exact for two reasons: one, that thereby the object is retained in the center of the cell, being lightly pressed upon by the top, and bottom glasses; the other, that there being no greater substance of lluid between the object and the microscope than must needs be, a bether defmition of the object is obtained.

When glass is cat with a diamond it always leaves a rugged, neven surface; for example, when broken off, one piece of glass will present a series of projections, which have left correspending cavities in the piece to which it was attached; when placed logether, they lock into each other and the addition of a thin layer of cement will form a perfect joint.

I avail myself of this fact in constructing cells of the lind just described, thus: fig. 1 represents a piece of glass of the exact length and breadth, outside mersure, that the cell is required to be.

The two long pieces, or sides, are firsi cut, and before breaking them of they are marked with the seratel diamond s?
as to include the ends. As the width of the cell is not always sufficient to admit a number of lines, I first make a diagonal mark, then 1 and 2-marely 3 , which is unnecessary. I now eeparate the pieces, discard number 5, and take care to cement them to the bottom glass or slide, in the order in which they are marked, and to insure accuracy in this respect, keep the marked surface upward. As it is necessary to have a bottom glass before we can cement the pieces just cut and marked, I proceed to give some.

DESCRIPTION OF THE SIIDES.

My peculiar wants have necessitated slides of larger size than that proposed for general adoption by the Microscopical Society of London; morcover, I had a collection of uniform preparations on slides of my size, long before that Society had existence. The slide I chiefly use measures when cut 3 inches, by $1 \frac{5}{5}$ the: the glass should be the "patent British plate," before referred to, which being ground and polished on both sides is generally very flat: its substance varies from less than reth to ${ }_{3}^{\prime}$ lh of an inch.

Cutting Board.-To cut the slide expeditionsly and uniformly it is necessary to have a culling board, fig. 2. It consists of a mahogany board 11 inches by $9 \frac{1}{2}$, half an inch thick and recentangular in shape; on one of its long sides, a, is fastened by means of pegs or screws and glue another piece of mahogany, the guide board, $b, 2 \frac{1}{2}$ inches wide and $\frac{1}{4}$ thick; 1 his must be planed so as to be true, as the from is to form a struight edige. By reference to the figure it will be seen that spaces have been cut out of the guide board, the use of which will presently appear. A hat rule or gauge shontd be made of mahogany, 11 inches long and 4 thick; the width to be ascertained as follows: mark out in card board a patern of the slide intended to be used, apply the glazier's diamond to a line indicating one side of the patiem and accurately measure the distance between the diamond and the other side which will give the required width of the gauge. In other words, the gange must be of the width of the pattern, less the "rakc;" (or setting) of the diamond. In addition to gauges, " square is essential; the most useful is of mahogany, one-fourt of an inch thick, with sides $6 \frac{1}{2}$ inches long and solid, i.e., not open.

The glass intended to be cut into slides should be placed on the eutting board, and if none of its sides have a true edge a narrow slip must be cut oflits entire length to form one. The straight side of the glass must now be brought against the gride board to ascertaing if either of the sides, at right angles to the cut side be perfectly square with it; if not it is only necessary to square one side: for this purpose place the side to be squared so that it project a little beyoud that part of the guide board which is cui dway at c, apply the square, and cut of a narrow slip in in a direction contrary to the former cut: thus the two sides of the glass are made true.

Heep the glass still against the guide board and removing the square, apply the gauge; cut the whole length of the glass and you have the widh of the slides. Now turn the squared end of the glass just cut into the space at c, pressing it firmly against the angies of the gride board, (which mast also be made quite true; place the gauge against the guide board in its former position, cut the glass transversely, as shewn by the dotted line, and you have the length of the slide; and in this way cut up the remainder of the slip of glass as far it will yield slides of the proper length.

In like manner the spaces d and e, in the guide board, give the length of other siides, the width of which has been cut previously with other gauges adapted to the purpose. By this arrangement of the cutting board one gauge is alone required to cut the width and length of a slide of any given dimensions. From the forgoing description it will be obvious that the gauges must be first made, the length of the spaces in the guide board determined by their assistance, and they must be cut in it before it be affixed to the cutting board.

Grinding the Glass.-Unless the slides are to be covered with paper, the sharp, rough edges left by the diamond cut should be removed by grinting the glass. This can be accomplished on a perfectly flat stone of sharp grit with water; the process is greatly facilitated by the addition of emery, but a better tool, in my experience, is a plate of soft pewter, or the emery plate.

My pewter plate was formed in a monld made for casting the

254 Dr. Goadry, on the Preservation of Animal $\$$ ubstances.

plates on which to engrave music; its outside measure, therefore, corresponds to the size of a printed page of music, but it is of an inch thick, and weighs 14 lbs . It is important that the surfaces be made quite flat, and every care should be taken to keep them so. Soft pewter is desirable because it contains a much greater quantity of lead than the hard, in which tin preponderates. The metal is used only as the vebicle of the cutting material, which is emery. The latter, in time, beconcs thoronghly impacted in the metal, so that it will cut with the assistance of water alone, and the wear of the plate is too trilling to be estimated. When in use it should always be charged well with "superfine" emery, and water; coarser tears the glass.

In the year 1351, during a long residence in Albany, N.Y., I was enabled, with the kind assistance of my esteemed friend John E. Gavit, Esq., Bank Note Engraver of that City, to carry out a plan that had long ocerpied my mind in relation to forming 2 less weighty, and more efficient tool for grinding glass.

Constantly travelling from city to eity, the wright of my pewter plate, together with several pounds of Emery, was a very serious task upon me, whilst the want of a fixed residence prevented me from instituting any experiments whereby I might bo relieved from the incumbrance alluded to. My desire was to convert emery, by the addition of another substance, into a hard, solid, compact cake of any required dimensions, and for this purpose I belicved shell-lac to be the best material. My friend caught the idea and proffered the assistance of himself and his work-shops for the purpose of seeing what could be donc. Our first experiment was successfinl, but clearly indicating that great improvements could yet be made. We used the ingredients respectively in various proportions; submitted the plates to different degrees of pressure, and lastly, we tried emery of different degrees of fmeness. Without recording our comparative failures, it is enough to say that plates composed of emery, nearly 16 lbs ; shell-lac, somewhat less than 2 lbs ; subjected to a pressure of 5 tons, have answercd the best. We have used in these plates with the greatest success, Flour Emery, number O, and Superfine.

The latter cuts very fast. Of conrse, the emery and shelllac ean only be brought into contact by means of heal, and great
eare is necessary in melting the shell-lac, for, if the temperature be too high, or too suddenly applied, the shell-lac becomes like a mass of liver (decomposed), and you can do nothing with it.

Neither is it the casiest thing imaginable to knead so small a quantity of shell-lac with the large quantity of emery already stated. Success, however, depends upon this operation being well performed.

Subjected to moderate pressure, the plate will cut glass incredibly fast, but at the expense of the plate which will wear nearly through in a few hours.

The plates made under a pressure of 5 tons (in my occupation) have been used constantly and severely for 14 months without any sensible diminution. My desire to submit these plates to the severe iest of time and use, induced me in this, as on many previous occasions to delay publishing any account of them, notwithstanding I once more laid myself oper 10 the piracies of unprincipled and unserupulons men.

These plates are round, some of mine as much as 10 inches in diamater, and from i_{3},the $10 \mathrm{~S}_{3}$ the thick. Although the plates were pressed between two leval metallic surfaces, they yet require grinding to make them true; this is easily accomplished by means of superfine emery and plenty of water, and as in the course of time and use this operation requires to be repeated, it is necessary to have two such plates, and as each plate possesses two surfaces, it is easy to obtain truth by grinding the sides interchangeably.

To use these plates for grinding, it is only necessary to keep the surfaces well wetted with water.

Unlike the pewter plate, the cmery plate can be advantageously employed for grinding sections of bone, teeth, spines of echini, the selerogenous tissues of plants or fossils: in the former instrument the loose, sharp cutting emery becomes impacted in the tissues and never can be removed, but in the latter the emery is too tightly held by the shell-lac and cannot get into any tissue. The only sensible wear is, not of the emery, but in the shell-lac; and thus, occasionally, the plate will
cease to cut, and the surface will be covered with a gummy something which keeps the glass or other material from actual contact with the emery-this is shell-lac.

If you now wash the surfice of the plate evenly with alcohol, or Liquor Potasse which is better, the shell-lae will be dissolved, and his should be well washed off with a copions stream of water-the well cleaned teeth of the emery will now cut sharper than ever.

When my friend had acquired, what the Yankees call "the hang of it" he made a batch of these plates (some 50 or 60) believing them to be important in many mechanical operations no less than to supply his own wants; some of these he intended to sell, and for all that I know to the contrary, they may yet be procured from him by those persons who have not the tools for making them, but would like to possess such appliances.

Hold the glass slide to be ground at an angle of about 45°, that the outer line of the edge may alone touch the plate of metal: grind by a quick, light, circular motion-to and from, round the corners-antil the line be straight and beveled; change the position of the glass to grind the opmsit, outer line in the same manner; now bold the glass vertically, and make the edge smooth. By beveling the outsides of the edge of glass in the first instance they are saved from breaking, which is inevitable without this precaution; it is true that beveling can be done at any time, but it is not easy to grind out the deep irregular holes caused by splitting the edge. In this way, the four sides of the slide are to be ground.

To keep the pewter plate, or emery plate flat, grinding should invariably be couducted all over its surface; but as this is somewhat difficult with small picces of glass on a large surface of metal, I devote one side of my plate for slides alone, and reserve the other for purposes where tie utmost hatness is necessary. Its flatness, however, should be frequently tested with a straight edge, and if elevations appear, they should be reduced by grinding them down. Optical glass grinders and other mechanics, who require a plane grinding surface, have three similar tools; when one of them becomes unirue by use, it is ground with one of the othern,
until they present a like surface, neither of them true. Tool No. 1 being now ground with tool No. 3, the inequalities left by No. 2 are obliterated, and a flat surface is the result. As it would be particularly inconvenient for me to carry with me three plates each weighing 14 lbs . for the sake of keeping one of them true, I resort to another, but equally efficient plan: I take a piece of plate glass of the same length as the pewter plate, the width not being very material, with plenty of emery and water I grind the metal all over its surface with the flut side of the glass until they present a corresponding surface; if the metal be not sufficiently flat, I turn the glass and grind the other side : by this process the flatness of the metal may be insured; with the surfaces of the shell-lac and emery plates the correction, as before described, is very simple.

To abbreviate the time of edging the slides, it is expedient to hold one in each hand and grind then simaltaneously; and although this may be somewhat difficult at first, a little practice will give all the facility and tact necessary for thus grinding two glasses in the time of one.

Cement for the Cells.-The slide being ready, the cell is to be cemented to it, and for this purpose a good, and water-proof cement is necessary. Canada balsam is too brittle; gum mastic is equally brittle and difficult to use, and I could not for some years find anything equal in toughness and durability to my own com-position-gold size and lamp black-and I have now in my possession cells containing wel preparations cemented with it 14 years ago, every portion of which is perfectly sound. It is, however, in every respect, vastly inferior to the marine glue already alluded to. In the year 1842 my attention was directed to this composition by the newspaper accounts of experiments made with it at the Royal dockyards at Woolwich.

I consulted the patentee, Mr. Jeffery, and desired to know if it could be applied as a cement to glass; of this he knew nothing, and gave me some to try, and general directions how to use it. It failed; and for some months continned to fail, until the inventor made some specially for my use at the College of Surgeons, with which I had the most complete success. As made for general use, the marine glue consists of different degrees of
hardness, distinguished by numbers, from one, downwards; the particular composition made for me agreed nearly with the ordinary "No. 4," but as in addition to caoutchone and shell-lacthe staple ingredients of the marine glue-this contained another and most important material, as applied to glass, it was agreed to call it "No. 4, G. K.;" subsequentiy the same valuable ingredient enters into the composition of every form of marine glue, so that "No. 4" is now a sufficient description of it.

Another and very beautiful preparation of the marine glue has been made in the United States, suggested by Dr. P. B. Goddard of Philadelphia.

It consists of caoutchoue dissolved in chloroform by the application of gentle heat to the consistence of a thick mucilagenous paste; then add clean, careinlly selecled tears of gum mastic, until the composition becomes sufficiently liquified to use with a brush, when it should be filtered to free it from the dirt always combined with the gums in question. The gum mastic not only readily dissolves in chloroform, but it is a somewhat curious fact that it should reduce the thick solution of India rubber to the condition of a transparent, lympid fluid; it must not be made ton thin however, for when dry it will be brittle from the excess of mastic. This is a very elegant cement; it can be used with or without heat, and when dry it possesses the great advantage of being perfectly colorless and transparent: I have not employed it for vessels (f much size, but simply for shallow cells.* The patent marine glue requires heat, and I have already described one mode of melting it; the following is the way to cement the cells.

Aparatus used in cementing the Cells.-I employ for this purpose an aparatus that I made many years ago for movating preparations in Canada balsam. It forms an important part of the contents of my " manipulating box," and it is one of the things pirated by the author of the modern work indicated.

A plate of wrought iron $6 \frac{3}{3}$ ths by 23 ths and $\frac{1}{3}$ th thich, ground

[^3]on its upper surface,) fig. $3 a$ is supported by four legs of brass wire (d) $\frac{1}{1}$, the dramater, and 3 inches long in the clear; * they screw into holes at the comers of the iron piate, and their free ends are phaerd in sockets in a mahegany board (b) the size of the iron plate, and ? thick. When in use, the plate becomes so hot that it comot be fouched with the hand, and the legs by condueting the heat, mark the table; to render the entire aparatus more convenicnt, I found it better to add the mahogany board; the holes for the legs are defended with brass plates, and they fit tighty, so that the whole can be moved bodily out of the operator's way. The spirit lanp (c) is 11 inch square and $2 \frac{1}{4}$ high to the top of the brass wiek holder-exclusive of the ground glass cap. Every part of the glass that is to be coated with the marine ghe should firstly be lightly painted with the fluid solution of it before described. Thus prepared, the slide and the four pieces of the cell should be placed on the iron plate, and the heat of the lamp applied beneath.

The position of the lamp, should be frequently changed, to impart an equal temparture to the iron plate, for if there be too great an accumulation of heat at any one point, the glass will instantly break; should the plate beeome unnecessarily hot, lower the wick, or remore the lamp for a short time.

The solid glur may be cut intu long thin slips with a knife or scissors, and applied to the painted surface of the slide and pieces of the eell, until the glass be hot cnough to melt it, when it should be distributed evenly over the glass by means of another piece of glue held in a pair of short, strong foreeps. Then search for, and remove, particles of grit and dirt which are contained more or less in the glne-they are best seen by removing the glass from the iron plate and placing it on a piece of clean, dry, white paper; they can be casily removed by the point of a knife, or a piece of the solid giue. Extrancous particles are frequently broken into fragments between the glasses by the pressure necessary to form a joint, but they should always be remored, as they act mechanically as a wedge, and preclude the possibility of a permanent joint.

[^4]At a certain temperature the glue will bubble and boil, at which point it should be removed from further contact with heat; otherwise it will be decomposed, and all its characteristics destroyed.*

For neatness and uniformity, the cells should be placed in the centre of the slides, and to accomplish this it is best to mark the outline of the slide on paper or card-board with a pen, and then draw a cross, the centre of which is the centre of the slide, its limbs extending the whole length of the long and the short diameter of the figure.

The glass being hot, and the glued surfaces freed from dirt, the several pieces of the cell are to be turned quickly over with a pair of forceps, aud placed upon the slide in the relative position they should occupy.

The slide should now be put on the eard-board figure, each piece of the cell should be pressed down to the slide with two pieces of wood, and rubbed to and fro to express the excess of glue, and make as near approach to contact with the lower glass as is compatible with the thinnest layer of gluc. The four pieces of the cell having been cemented to the slide and to each other, its position can be readily adjusted to the centre, by the aid of the cross figured on the card. Should the glass become a little too cool and the glue set, replace it on the iron plate and complete the adjustment.

Before the glass and the glue become quite cold and hard, it is desirable to remove the superfluous glue which holds most pertinaceously when cold: the best form of instrument for this purpose is the lozenge-shaped tool used by engravers, liceping the point close to the sides of the joint, or a knife-point may be used, taking care not to scratch the glass. As a rule, it must be borne in mind that, whenever a cell consists of more than one , piece of glass, it should be ground flat on the pewter or emers plate, after being glued to the slide before it is fit to be frusted: the slightest inequality, either in the substance of the glass at

[^5]one end, or in the layer of the marine glue, will prevent the possibility of making a good joint hereafter with the top glass or cover.

To clean the glass perfectly, I use a small piece of cotton wool gathered into a knot, held by a pair of strong steel foreeps, and a drop or two of liqnor potassie, or a satmated solation of caustic potash, which softens the marine glue and admits of its removal. Care must be taken not to allow the potash to remain in contact with the joints, as it decomposes the glue, and will render the joints unsound. The glass should be well rinsed in a large quantity of clean water, to remove the potash.

A top glass or cover must now be cut for the cell, and this should be somewhat smaller than the outer diameter of the cell on all sides, to allow room for the cement. The edges of the cover, and surface of the cell, should be painted with the naphtha solution of marine glue; and the cell will then be ready for the reesption of the preserving fluid, and the preparation. It is best to fill the cell over some other vessel to catch the excess of luid that is sure to run over the sides; a small shallow dish or saucer will answer this purpose; and if the cell be supported upon a level something placed in the dish, the better, as the operator will have his hands at liberty.

Having filled the cell with fluid, take a short but strong camel's (or badger's) hair pencil, and rub the fluid into the corners, along the sides of the cell, and even the bottom glass, for this reason : in pouring the fluid into the cell, it remains separated from the glass in every direction by a filmy layer of atmospheric air, which can only be removed, and the fluid and glass brought in contact mechanically, or by the thin gum-water, or saliva, formerly referred to. If a vessel be sealed down without attending to this precaution, the air will de liberated by degrees and form a great number of minute bubbles, glistening in rows upon the sides, in the angles of the cell, and even upon the bottom glass :-ultimately they coalesce, and an air bubble of some size is the result. For the same reason (the displacement of air), the preparation must be placed carefuily in the cell, and if it, possess cavities in the under surface, they should be pressed out
if possible, while the proparation is entering the cell; and this should be managed so that one end of the preparation goes into the vessel first, and the remainder lowered gradually. A good steady stream of fluid should be poured into the eell, the preparation being held down by a camel's hair pencil or foreeps, until all extraneous particles be washed away, and the fluid continue bright and clear. When at rest the flaid in the cell will present a convex surface, bounded on all sides by the painting of marine glue.

Now prepare one surface of the covc:, cither by the tongue or brushing on the fluid as before, and holding it by a pair of forceps at one end of its longest diancter, lower the oher end to the cell, and let it down gradually-the excess of flaid ruming be-fore-until it be in its place; then adjust it aceurately, press down the cover till it touch evenly every part of the bed on which; it is to rest, remove with a brush whaterer flnid may yet remain on the outer edges, and paint then once more with the naphtha solution, including this time the top glass: apply the black cement, and the preparation is finished. Should another layer of black cement be required, allow the first to become quite dry, and isolate it, as before drected, with the napththa sc tion; sǔcecssive layers of the black cement must always be thus separated.

Drilling or cutting circular holes inglass for cells.-A more elegant mode of consiructing a cell, is by drilling a circular hoie through a piece of glass (fig. 4); but when 1 first attempied this plan; (in the years 1839-40,) the cost was prohibitory. At last I employed at the same time, three workmen in London to ascertain the lowest rate of cost at which holes of all sizes could be drilled in glass, in any quantity not less than one gross. Neiher of these men employed the same means; one of them, a German; cut mest beauliful cells, perfectly square inside, but he could not do them for less than 1 s . $6 d$. or 36 cents each.

Another made very indifferent cells at $1 s$. or 24 ceuts each; and the thixd made excellent work it 6, or 12 cents cach. Subsequentiy, another man undertook to do them equally well for half that sum, and ultimately I procured them at the same price, ex-
cellently eut, from Mr. Demmis of I Charles street, St. John's Street Road, London. The following is the plan of proceeding : procure a copper tave (or drili, as it is called) of the diameter you desire your cell to be : I have long since discontinued cells of all sizes, and chicfly use one of 13 the dianeter, cut out of a square of glass 12 inch full, ontside measure.

With my large slides such a cell enables me to preserve great uniformity in my preparations, aflords abundant space for the transmission of light around the object, holds a sufficient quantity of preserving fluid, and the squares can be cut with the same guage used for the slides themselves. The length of the drill may be from 1 inch to 12 long , and made to run true in a lathe. The squares of glass being all of the same size, I cement a number of them together with the marine glue, so as to form a pile of from one inch to two inches high.

Where a lathe is used, it is imporfant to face the pile of squares with something that has been already perforated with a hole the size of the drill to enable the latter to enter at onee upon its work, and prevent the scratching (and spoiling) the first cell. For this purpose, brass perfeetly flat, can be used; but a better thing is a square of plate glass, onc-fourth of an ineh thick, already perforated by the same drill, and it shonid be leept for this purpose alonc.

The copper drill is to be charged with fine cuiting sand and water, and the block, or pile of glass squares applied to it, and gradually pressed up by the tail spindle of the lathe, while the drill should revolve at a moderate, but not a rapid rate. When a number of cells are drilled, they can be easily separated from the block by placing the outer cell downwards on the iron plate and applying the spirit lamp: they can be removed one after the other with great rapidity, untill only undrilled glasses remain, and to these other squares may be added if necessary. To make an oval cell, two round holes (fig. $5, a, b$, must be drilled so as to intersect each other; their proximity to be determined by the length of the oval required. The pieces that remain on each side, c, d, can be cut ofl with the diamond if the glass do not eaceed oneeighth of an inch thick, otherwise a disc of copper, the diameter
of a ten cent piece must be applied to the lathe, charged with sand and water on the edge, and it will speedily make the sides of the cell level.

There is another excellent method of cutting either round or oval cells of anys size, provided the ghess do unt exceed one eighth inch in thichness, for which I am indebted to Sir Charles Babbage, the inventor of the celebrated calculating machine. Mount a glazier's diamond to cut a circle; this can be done in a variety of ways-I have mounted my diamond as shown in fig. 6. a represents a square bar of iron, 8 inches lung, with a male serew at the lower end to fit a plate of iron (i) tapped to receive it, l, b, two arms $4 \sqrt{2}$ inches long, clamped to the upright bar by thumb screws, the other extremity drilled and ground to receive c, which is a spindle, to the lower end of which is rivetted a screved rod $d, 4$ inches long from the centre. c is a box to receive the glazier's diamond when removed from the handle, and kept in its place by a tightening screw; continuous with this box is a square nut, f, perforated with a hole large enough to allow it to swing freely on the screwed arm. g, g, are square screwed nuts, one on each side of the diamond box.

In adjusting the diamond to cut a disc, say three inches diamater, move it along the screwed arm until the point be coirsident with 3 inches as marhed upon the scale (l) which has before been drawn upon the chamois leather which covers the board K ; then bring the nuts close to cither side of the dia. mond box, adjust it to its cutting angle, and then by mears of a wrench in each hand tighten the nuts simultaneously. The glass to be cut may now be placed upon the board; remove the pin h_{5} and lower the spindle (c) till the diamond touch the glass: then holding the screwed arm by one hand, turn it steadily round and it will describe a circle of the size to which the diamond has been previously adjusted.

As the spindle has been ground to fit the two collais through which it works, the motion is smooth and steady. Such a machine would be improved by casting the upright bar and the two arms, b, b, in one piece; the height need not exceed six inches: Having cut a circle on a piece of glass, if the disc be wanted, cut
the glass in three or four places from the circular cut to the outer ediye, and carefully break of the pieces; but if a coll be wanted, the dise must be remoced without injury to the remainder of the glass, which is to lorm the walls of the required cell.

The ent, already made, gives the exact dimensions of the aperture required: now alter the position of the diamond on the screwed arm and cut n circle within the first, adjust again and cut another circle within the last, and so proceed cutting circle within circle as long as the diamond can he adjusted to cui, and the glass will then preseat a series of concentric circles.

Take a centre punch and screw it point upwards in a bench vice; place the centre of the innermost circle on the point of the punch, and get an assistant to hold the glass while the operator takes another centre punch and placing its point upon the glass immediately over the point of the lower punch strike the upper punch lishty with a hammer, not to break, but to pound the glass. lying between the two punches. Presently a small hole will be made; now bring the broken edge of the glass upon the lower punch continuing the pounding motion until the hole be sufficiently enfarged to admit of using the "plane" of the small and light hammer with which the punch has been struck. At this stage of the process, the use of the upper punch should be discontinued, and the operator holding the glass himself, keeping an edge of the hole alvays suppurtiu on the lunes punch while he lightly taps it with the plane of the hammer, not attempting to remove the circles as cut, but rather tracing the hole from the centre to the circumfercuce, (like making a cross in.the glass,) and if it have been cut, not scratclucd, large pieces will: .ll out as soon as they have room enough, and the entire operation be finished in less time than it takes to describe it.

In like manner, an oval cell can be made as easily as a round one. The glass should not be cut into shape to form the outer dimensions of the cell, until the central hole be made, as it is likely to break. Ljpon this plan a hule of any size can easily be cut in a plate of glass of any dimensions. Sir Charles Babbage told me that he once communicated this plan to a glazier, Who. employed it most extensively in punching holes in square:
of glass to form the bottom plates of street gas lamps, for the transmission of the gas pipe.

I have already remarked, that the above plan of cell-making is limited to glass one-cighth of an inch thick; my wants frequently require cells full as deep again; I could cement two or more shallow ones together, and thus build up any required depth, but they look heavy, and I prefer therefore to cut them out of plate glass of the proper thickness. When in London, I could obtain the services of Mr. Denais to cut anything that I required, at any time; but in this country, at this moment, I am altogether thrown upon my own resources. To meet my wants I have contrived a small, portable, and most efficient apparatus, by means of which any lad can cut cells as well as I can, and with this machine my Son has cut for me the best cells I have ever had.
li consists of a, a, (fig. $7, A$, , an iron support with three arms and a square plate at the lower end of it, cast in one piece. b, a vertical bevelled wheel working c, a horizontal beveled wheel by means of the crank d, the latter wheel, having for its axis a spindle e, the lower end of which screws into the brass mount of the copper drill, f, whilst its other end passes through a collar in the upper arm of the iron support and is regulated in its action by the wooden lever g.

Attached to the under surface of the wooden lever is a strong steel spring, ahout one inch wide, the profile of which is shown at B, fig. 7. m is the spring, to be screwed to the lever by the Hat extremities. In the centre of the curved portion there is a slit through which the upper part of the spindle n, previously reduced for that pirpose, passes, and in which it can freely play; it is kept in its place by the button 0 .

The square plate $i,(A$ and C,) is screwed down to the boadd, by four mutheaded serews. h, h, are two thick pieces of wood screwed on to the bottom board j; their inner edges being under cat to form a bevelled groove in which the two pieces of wood marked h, being beveled to the same angle, may freely move.

In the ecntre of the pieces marked h is a slit, through which passes.a nut-headed screw to connect them with the lower boand
and to admit of their adjustment, their inner extremities are cut to form half a square and are intended to receive the block of glass placed diagonally, to be drilled by the machine. The block of glass, l, should be placed exactly in the centre, and it can easily be secured in its position by clamping the side pieces of wood by neans of the nutheaded screws and collars.

With this machine I employ superfine emery and water. It cuts best by a dragging motion; pulling the crank half round with one hand whilst the lever is kept down with the other; and then lifting up the lever and allowing the crank to go the other half round without grinding. By alternately lifting up the lever and pressing it down, the emery works into the cut; whereas if the lever be kept steadily down, either by a weight, or by the hand, and the crank turned constantly round, the drill will be cut away much faster than the glass.

The fixed position of the horizontal beveled wheel, c, would seem to preclude the possibility of elevating the spindle, e, the required height.
'Io obviate this difficulty, a noteh is made in the wheel c, into which a square steel plug $1 \frac{1}{2}$ inch long is driven, which works freely in a corresponding slab made in the spindel; e e:

The same directions apply to cementing the round and oval cellis to the slides as those already given; and when finished they. appearlike fig. 8 , where a represents the slide, δ the cell cemented 10 it , and c the well formed for the reception of the preparation andithe fuid.

Cells cut out of the very thin glass, that which is usually employed for covers rarely answer, for cant of flatness in the glass itself; and yet, a great number of very beautiful and valuable, microseopical preparations, of the animal and vegetable kingdoms can only be preserved in fluid, and by the introdvction of some medium to defend them from pressure between an upper and bower plate of glass. For this purpose I have long employed the marine glue, as the material from which to construct very sallow cells. Suksequently, the same substance has been em: pioyed by others for a like purpose, as Vide Quekett's Treatisa
on the microscope; but the modus operandi, as therein described, differs so essentially from my plan that I think it expedient to give a description of it.

Forneatness sake it is desimable that the cell, whether round or oval, should be placed in the rentre of the slide, and to ensure accuracy in this respect together with rapidity of action I made a tool described in the accompanying figure, 9 .
a Is a flat board of the substance represented in the figure; $b b b$, are three picces of wood raised upon a, and so placed that a space is left, c, from front to back; this is intended to fit the bottom glass, on which a cell is to be made, and should fit the short diameter of the glass so woll that it can only just pass in and out; in other words, room to admit of lateral motion is objectionable. The space is not intended to be as long as the greater diameter of the glass. d, Represents a thinner piece of wood fastened to the sides of the frame $b b$, in the centre of which is a round hole-the size of this hole can only be regulated by the width of the glass. One size slide that I have long used is less than that recommended by the Microscopical Society, and I have drawn the figure to exact dimensions of the apparatus it is intended to represent. The round hole is intended to receive and form a guide for a ronnd copper, brass, or tin tube-copper being the best. The exact position of the perforated cross piece of wood can only be ascertained (as will soon appear) from actual experiment.

Having determined the size of the slip of glass upon which a cell of marine glue is to be formed, it is necessary to determine the diamater of the circle which is to form the interior margin of the cell:

Procure a tube of conper; brass, or tin, about three incher long, the outside diameter of which corresponds with the internal margin above described. Especial care should be taker to have a sufficient space outside the circle and the sides of itheglass slide'to form a good support for the top glass and for the black cement to secure it:

The hole in the cross piece e, must allow the tube to work easily through it, and the cross piece so filted to the frame, that when the glass slide is placed in the space c, the tube placed in the hole in the cross piece will descend upon the cxact centre of the slide, equi-distant from end to end, equi-distant from side to side. The accurate adjustment of the cross piece is somewhat troublesome; for circular cells, it is not very important ; but for oval cells it becomes a necessity.

This apparatis being ready, place the glass slide on the iron plate and apply the spirit lamp; put some marine glue on the glass and as it melts distribute it evenly over the glass to an extent beyond the proposed limits of the cull; the quantity of the glue must depend upon the depth of cell required. If it be wanted very shullow, continue the application of heat to procure the necessary hardness of the glue, but in all cases the glue should be made tolerably hard by inspissation. Remove the glass slide from the iron plate to space c, in the wooden frame, dip the end of the metal tube in water, pass it through the guide aperture in the cross piece, press it firmly upon the glued surface of the glass slide, turn it half round and remove it-a circle will be cut in the hot glue on the glass, the interior of which can be (now) easily removed, the water from the tube assisting.

It is easy to make an oval cell of any dimensions in the long diameter commensurate with the size of the apparatus, in this way: cut some picces of glass the exact width of the space c, $\frac{1}{3} t h$, $\frac{1}{8}$ th, $\frac{3}{8}$ ths, \&c., wide; place one of these in the frame close up to f, now put the glass slide in its place, resting against, not the wood f. but the narrow glass placed there; make the round hole in the hot marine glue with this punch, instantly turn the slide end for end, and punch again, remove it, and with a knife connect the axes of the two circles, clean off the glue from the interior, and the oval is made. If the aperture in the cross pieces be other than exact, the oval wi'l be diagonal in respect to the long diameter of your slide.

Now grind the cell upon the emery plate to the required sabstance-it can be made beautifully flat,--and then by means of a square and knife form the outer lines of the square in which
your round hole is punched, or the ends of your oval cell, as the case may be : my small slides are so narrow that the space beyond the circle in the smaller diameter is only enough to give a required margin for the cover, and cement.

A little piece of cotton wool, dipped in liq: potasse, held in a pair of foreeps, and applied to the interior of the cell, will soften the glue, and it can then be casily removed with a scalpel, small chisel (fith diameter), or lozenge shaped engravers' tool. When finished, the cell is really a beautiful one; I have never had a preparation in this form of cell fuil.

In a former publication devoted to a description of my preserving fluids and glass cells, my silence with regard to one particular form of cell, also of my invention, was misconstrued by a genleman who has, it appears, adopted my cast-off. I allude to a cell made by cutting off a slice of a glass tube.

In the year $154 /$ Leing in Edinburgh, I employed the late Mr. Sanderson, Lapidary of the Pleasance, to make sections of glass tubes for my use, but, as he could not make two sides alike or either of them iure, they failed. Sections of a tube can only be made true by a compound motion of this kind, i. c., they must not only be ground with a circular juotion on a fat sur: face, but revolve on their own axis simultancously.

If such a disc be firmly held by the thumb and finger and submitted to the grinding process already described, the pressure being unequal, it will cut quicker beneath the finger and thumb than elsewhere, and still more beneath the thumb than the finger: change its position and you have the like result, so that holes or holluros must be formed unless the disc can be made to revolxe constantly and uniformly, subject to the same pressure.

With such a surface, it is hopeless to expect to obtain contact with flat glass, and marine grue.

Apparently you have a joint: but if the preparation be subject to the slightest jar at any time, off comes the slice of tube cell ard the preparation is lost. A friend of mine, resident at Albany, being in New York city, purchased 12 injécted pré-
parations just arrived from London. Six of these were mounted in the section of tube cell, the remainder in cells drilled out of flat glass-a round bole in the small square plate. On his arrival at home, his children ansious to see all that had arrived from New York, clutched at the table cover on which the rarities were displayed, down went the 12 slides, and when pieked up, the six drilled holes in the square plates of glass were uninjured, the other six had separated and the costly preparations were entirely lost ; nothing would induce that man to purchase preparations mounted in cells of that form again. Where it necessary, I could give a great number of like illustrations; but I think it must be obvious, that the four eormers of a square glass with a round hole in it must cling with great pertinacity to the lower plate, and that, if it be pussible (as it really is) to cement two pieces of glass together so firmly that no mechanical force can separate them, this should give a better chance of success than a thin rim of glass.

I can only add that amidst my incessant wanderings on this side of the Atlantic, I have more than once, twice or thrice, been horrified 10 see a box containing upwarls of 60 dozen of long cherished and much valued preparations flung out of a waggon, or hurited to the ground from a baggage waggon in a manner peculiar to railway travelling in the Linited States, and such as no one who has once seen it can ever forget, and yet, only twice out of 3 years have my preparations been broken, and on each occasion the ends, only, of bottom glasses were broken off close to the outer maryin of the cell; in no one instance has a cell "come off.

There are many preparations of entire animals no less than dissected portions of them, which can be well displayed only in vessels with flat surfaces, in contradistinction to round or oval bottles; but, from their greater size, they cannot be contained in vessels constructed on the principle of those already described. For all such, I build up a lox of glass, consisting of four sides, the bottom plate (or slide) and the top, or cover-six pieces.in $2!$.

These vessels are confessedly difficult to make; yet they form the most altractive and beautiful exhibitions that can be put into a museum. Tlie trouble I have had with these upright vessels, no less than my great desire to submit them and the preserving fluids, to the only satisfactory test-time, has retarded the publication, on my part, of the several processes herein referred to,

Having settled the length, depth, and width for an upright box, the glass for the sides should be selected of sufficient substance for the bulk and weight of fluid the vessel is destined to contain; and it will frequently happen that the ends (by which I maan the two lengths of least diameter, calling the larger and outer portions the sides, as in the annesed figure, 10,) require to be somewhat thicker than the sides to insure suffisient surface for a joint. The glass should be cat as true and square as possible in the first instance; the two side pieees and the two end pieces should be connected together, respectively, with the marine glue, forming two pairs of glasses. First, bevel all the glasses, on the metal or emery plate, as before directed; and then proceed to make perfectly flat the extreme ends of each pair of glasses ; this, the mast important, is, at the same time the most difficult part of the work, and such as can be accomplished only by practice ; the position of the glass in the hand must be frequently changed, for the pressure of two fingers on one side, opposed to the thumb on the other, will have a tendency to incline the glass to an angle of 45°, whilst the operator believes he is holding it perfectly upright. It frequently saves time to grind till a smooth but inclined surface extend from one outer edge of the pair of glasses to the other, and then change its position in the hand-the probability is, that there will oe the like tendency to form a similar angle, although reversed, and by carefully watching and measuring, the operation may be suspended at:the. point where perfect flatness obtains, and just before the iaclined plane can be formed in the other direction. A small brass. Square will be found of considerable importance in testing the trath of the grinding, but the most severe test is that whichl
always resort to namely, to wet the ground surface of glass as lightly as possible and place on it a plate of plate-glass-the sides of which, for all practical purposes, are parallel: if true and flat, the plate-glass will be seen to tonch every part of the ground surface and form with it a T. Now wipe all the glass just tested quite dry; breathe upon the ground surface, and quickly apply the plate-glass-if true, the moisture of the breath will be equally diffused along its surface, and the contact be so perfect that the ground surface will hang suspended for sciveral seconds from the plate-glass. If the work endure this test, there need be no difficulty in making a permanent joint.

Again use the iron-plate, un-cement and clean the glasses, prepare the ground surfaces of the ends and the flat surfaces of the sides against which the ends are to abut, with the naphtha solution; return all the glass to the iron-plate (if small enough to lie there at the same time) and place marine glue on the painted flat surfaces of the sides; when melted put on the ends, which will form three sides of an open square, then quiekly place the other side on the ends, and carefully remove it from the plate to a piece of wood, or paper-the former, provided with a straight edge (like the cutting board) is the best. While the glass remains hot enough to keep the glue soft, press together and critically adjust the glued surfaces, taking especial care that the sides coincide with the angles of the brass square; it is most important to remove from the glue in the joints any extraneous particles ofdirt. These preliminaries settled, the glass cold, and the glue hard, the operator will have four sides of a box-like a brickmaker's mould-without top or bottom; this he may now proceèd to grind upon the metal or cmery plate, firstly bevelling the edges, by a circular motion-constantly turning the box in his hand to prepare it for the bottom: after this is accornplished, it must pass the ordeal of the former test next the slide or bottom plate of glass must be heated on theiron plate, (it having been previously prepared with the naphtha solution which must also be:applied to the ground surface of the box;) and then after melting the marine glue on the upper surface near the edge for the adhesion of the lower edges of the hollow box, this box is to be

274 Du. Gondnx, on the Prestmation of Animal Sulstances.

applied to the slide and the whole suffered to remain on the heated plate of iron long enongh for the lower portion of the sides of the box to become sufficiently hot to form a joint with the slide, but without melting the joints previously made; if it can be avoided when cold, the upper surface may be ground in the same manner as the bottom, and with like eare, and when finished, the vessel will appear like figure 10.

To give additional support and resistance to the joints, Mr. Dennis, suggested to me the application of triangular bars of glass, which he called "angle pieces" cemented into the corners. In my experience of them they fail, for two reasons-one, because they cannot be ground with sufficient accuracy, and the other, that in cementing them the heat is generally so great as to decompose the glue. I have substituted the following plan with more success: I pour melted glue into the corners, and make the angles of the vessel hot enough to keep the glue fluid, while I cause it to run equally from the bottom to the top of the boxthis plan has not disappointed my expectation of it in any instance.

Lhave made several upright vessels some of them of great dimensions (fifteen inches high, six inches wide, and four inches deep) and extremely elegant in their appearance. A preparation of Physalia pelagica (Portugucse Man of War), fig 11, will give an idea of this form of vessel; the original box is eight inches high by two inches wide, five-eighths deep from, back to front: a represents the front side. $b b$, the end pieces, c, a block of pol: lished plate-glass half an inch thick to which the upright box is cemented, d, a thimer plate of glass forming with c a handsome pedes:nal and heavy support for the upright vessel.*

The joints of the pedestal, and of the box to the thick upper plate, must be made with Canada balsam or the chlornform pre; paration of marine glue for the sake of transparency ; the box must bee made as before directed, with the patent marine glue., then

[^6]
Dar. Goamme, on the Presercation of Animal Substances.

large surfaces of glass are to be cemented together, the iron-plate is iusulicient for the purpoee and another plan must be had recourse to. I have alrealy remarked that a red-hot soldering iron may be applied to the edres of glass with considerable impunity, and I use such in the mambeture of large upright vessels. Fig. 12 represents the several forms of such irons as I have found desirable. Numbers $1,2,3$, and 6 , are rednced one-hall in size; and five is more reduced; 1 and 2 are made of iron rod "the inch spuare, welded to a round iron wire which is inserted into a wooden handle; 2 only dilfers from 1 in having the iron wire bent as shown in the fixue-they are both eleven inclies long, inclusive; 3 is intended to apply the marine glue to the imer angles of the hoxe and upright wesels; an end view is shown at 4 . The wire of this last is difleremty fixed, and its length, ineluding the wooden handle, is fitteen inches; 5 represents a much heavier tool and is designed to retain the heat for a longer time than either of the formar. With a pair of such instruments, large surfaces of glass can be well and expeditiously soldered.

To be concluked in lie next nomber.

\because The Publisher beos to inferm the Subsediber of the Cpper Canada Medical Journal, that the disermeremed to in the ahose ponmuncation, are in the hands of the Artst, and will le fortheomeng at the conclusion of the artele in the next mumber.

Lathtude， 43 deg． 39.4 min ：N：Longilude， 79 des． 21.5 min ：W：

		B．troneter＊＊Correted．				Tentimeratare or the atr． 7				censton of Vapour．			
吴		6，A．M：	＋，	10， P ．	Mbs，	6．A． S	2，1．34．	10，pm	ML	6．A．s．	V	， $\mathrm{P}^{2} \times 1$	mic．s．
								1．7					
c	1	0.317	0.372	0288	0.306			）．	4.26	0.147	0.187		0.167
ld	2	． 318	2	． 268	． 235	－ 0.1	10.4	13.3	3.84	． 135	206	－154	． 167
	3	． 102	0，9	． 0.44	－03931	4.1	10.7	13.8	993	．169	$017{ }^{3}$	461	． 215
4	4	－21	323		． 307	14.5	10.5	6.5	10.63	.214	－263	． 11	33
c		.233	176			13.2	10.7			$\therefore 37$	．241		－．．．
c		121	.266	＝．314	二． 239	13.3	10.7	178	1383	$\because 34$	． $236{ }^{1}$	． 69	236
c	9	．281	二．49！	． 635	二 ．478	18．6．	1 c 3	17.1	1s 3	：75	． 3111	281	． 845
c	\dagger	． 379	$\square .161$	．073	．193	13.2	8.1	7.5	9.78	2\％88	． 159.	． 15	17
be	9	． 161	二 23π	．130	．186	11.4	7.5	4.8	77	159	． 186.	－1＇3	dit
：	110	． 0.59	三－04s	． 06	－．06\％	1.7	9.5	3.7	5.01	． 135	． 179	． 161	． 153
		$=.170$	． 233	：17	－． 191	6.1	$5:$	2.9	$=3.09$	． 160	． 139	124	14
	12	． 171	． 019			1.1	3.2			． 126	． 131		
crl	［13］	． 060	． 022	． 160^{2}	．081	1.4	1.0	18	0.71	115	． 163	． 105	． 132
\dot{c}	14	． 335	． 389	－318，	．343	－ 38	09	3.11	069	－ $10{ }^{\text {a }}$	．${ }^{4}$	． 137	．153
b	$1{ }^{5}$	． 321	：429	． 394	． 35.1	－ 09	31	1．${ }^{\text {a }}$	$0: 3{ }^{\text {a }}$	．107	．150	$\checkmark 120$	158．
a	16	． 273		391	$=.088$	991	4.1	10.9	9.03	－16！	． $173{ }^{2}$	－ 208	：189
	17	． 6.51	． 32^{*}	1^{-}－322	．524	13.9	00	9.	0.19	204	． 145	． 042	．36
c	18）	－．368	． 14		106^{1}	3：7	1.4	0.5	0.94	C093	．166：	． 105	：10\％
b	19	． 032	－ 3.35			0.01				． 113	．178		
b	120	． 3 ＂3	． 15.	． 0608	1724	8．4	1.4	7.7	1.22	．121	． 118	089	．109
c	12	．07s	． 34	． 354		10.3	115	9.3	－10．02	．078	． 0633	， 0200	． 084
a	22	． 462	． 564	． 547	． 525	－ 38	3.8	0.3	232	． 686	． 081	－699	（ 89
c ${ }^{1}$	6s	． 230	． 0^{*+}	．145	． 010	－ 4.9	3.4	8.5	6.36	． 1.47	． 185	1198	．173
\dot{c}	28	． 250	：40t	． 181	$\therefore 996$	1510.0	138	5	12．41；	－274	－ 33	． 175	－418
－	2s	． 006	．071	232	． 059		19	6．U	5.79	． 1.19	． 148	． 166	． 137
4	${ }^{2} 6$	． 202	三． 011			$2-3$	0.4		\cdots	．123	． 122		
c		－．28：1	－．05\％	． 12^{\wedge}	．110	－ 32	31	80	4.39	． 095	． 145		． 130
${ }^{5}$	2	． 651	． 411	． 12	． 361	15.71	0.5	1.3	5.531	．234	．112	.113	． 119
ec	29	． 026	．124	－1\％	．111	3.0	1.2	0.1	054	109	． 127	1235	． 192
a		．035	－$=.037$	．038	． 602	］3．41	3 3	1	$=244$	119	．171	130	11
π	31	.132	．123	． 119	124		61	1.1	2.8	，125	． 292	．112	． 11
䓞 ${ }^{\text {No}}$		20，650j	29.621	29.640	29.613	21.65	30.35	2054	27.01	172	0170	． 156	0.170
\pm（0bs		29.614	20．679	25.501	$29: 5$	5083	35	31.60	32.4				

 pm：

The columin headed＂Mranet＂is an attempt to dictingalsh the character ofeach day às regard the frequency or extent of the llurtuatons of the Magnetic dechationi，indicated by the seffregisterite Ifistruments at Toronto．The ciatsigcation is to some extent arbitrary，and may require future midi－ Acation；but has beea found tolerabity detinite as far as applied．It is as follows：
（a）A marked absence of Masurical disturbance．
（b）Uubgiortant movements，－inot to ba called disturnance．
（c）Mirked disturbance，whether－blewn by frequency or amount of devinion from the norial eurve，but of no great importance．
（d）A greater tegree of disturlance，－lanting more or less the whole day．
（c）Considerable disturbance of the first stass．
The day is reckoned from noon to noon．If two letters are phaced，the first－applics to the itailite the latter to the later part of the tranc．Although the declination is partleclintly referred to，ryat happens that the same terins are int applicable to the changes of the hrizontat force aloo：

Tofonto，January，issi．

Elceation above Lakc Ontario, 103 fcet.

Sum of the Almospharic Current in Mfiles, resolved into the jour Cardinal Darcctions:

Mean veloctty of the wind-0.51 miles per honr.
Max. velocity- 21.3 miles per hour, fron 1 to p.m. on Esth.
Nott windy day-17th: mean velocity-11.14 mites per hour.
least wisdy diy-10th: muan velocity- 2.77 ditto.
Ylour of ateatest meata relocity-nvon: mean velocity-8 38 in.

Mean diurual variation- 3.11 miles.
Companative T.ubre For Decenmen.

兑	Thweraterg.				Dinsw				$\frac{\text { Wan }}{\text { meat }} \text { vetacay }$
	गuan	Max.	Min	Hamge			24.45	1.nhts.	
159	2328	11.0	1	45.4	3	13:	18	not re.	Miles.
1×11	23.57	45.5	1	43.1	7	6.0 \%ob	\%	gistered.	
13.2	25.3 .1	40.3	3	30.5	3	0880	1.		
1843	30.3.3	41.1	2.7	38.4	${ }^{6}$	1.040	8	8.1	
1814	23.75	+5.3	18	49.7	6	imp't	12	4.9	
$18: 5$	21.49	37.6	27	10.3	3	inapm	12	6.7	
1816	477	49.2	5.7	4.3.5	7	1,184	$\stackrel{3}{8}$	6.9	
1817	37.58	50.0	66	43.4 485	7	1.180 2.750	8	63 2.5	4.5.5
1318	-1.4.	49.1	5	48.5	7	(2.750	${ }^{7}$	2.5 6.5	6.33
1819	${ }^{515} 92$	41.3	- 9.7	46.3 53.0	2	0.5s0	13	6.5 1.5	7.40
1850	22.35 21.59	18.3 43.8	3.7 10.3	58.0 54.3	2	(1.035	is	. 7	7.37
18.52	3227	\$1.0	13.9	37.1	7	3.395	10	0.1	6.5
Noa	27.0	45,1	0.03	:15.13	5.1	1.678)	11.2	11.5	6.23

Latalude, 43 deg. 39.4 min. N. Longitude, 79 deg. $21.5 \mathrm{~min} . W$

 Loweat reg. Temperature, - 9.7 , at a.m. on 10$\} \quad 5 \mathrm{~S} .6$
Mran bighest observedtemp. $\left.29^{\circ} 04.\right\}$ Mean daily range:
Menn reotstercdmintmum 11 . 69$\} \quad 14^{\circ} .16$
Greatest daily ranze, $40^{5} .9$, from 2 p.m. on 15 th to a.m. of $\mathbf{1 6 t h}$. Warmest day, 11th. Miran temperature. $\left.32^{\circ} .55\right\}$ Difference, Coltlest day, $26 i t h$ Nean temperature, $; \boldsymbol{j}$. 72$\}$ $28^{0}, 43$

12th, 8h. $23 \mathrm{~m} .$, p.m., brilliant Meteor in South-time of fight fully 2 seconds.
The "Means" are derivcu from six observalions dalls, vir:-at 6 and t, a.m.; and $3,4,10$, wh $12 \mathrm{p}, \mathrm{m}$.

The column headed "Magnet" is an attempt to distinguish the character of earh day as repud the frequeacy or extent of the aluctuatinns of then Magates decinatim. indicated by the self.red tering instruments at Torontn. The claskincation is to some extent arbtrary. nna may require futen modiffcation, but has bren found tolerably detinite as fax as applied. It is as follows:-
(a) A marked absence of Magnetical disturbance.
(b) Unimportant movements,-not to be called disturbance.
(c) Warke ! dis:urbance,-whether shewu by frequency or amount of deviation from the anmal curve.-but of no great importance.
(d) A greater degrec of dis:urbance,-but not of long continuance.
(e) Conalderatic disturbance,-lasting more or less the whole day.
(f) A magnetival disturbance of the first class.
The day is reckoned from noon to noon. If two letters are placed, the frst applies to the widd the laticr to the later part of the trace. ilthough the declination is particalarly referred tal rarely happens that the same terms are not applicable so the chuyges of the porizemal force alion.

Toronto, February, 1852.

Ele ation aboae Lake Ontar: $\mathrm{o}, 108$ fect.

Sum of the Atmospheric Current in miles, resolved into the four Cardinal Dinctions:

North.	West.	South.	Eatt.
217269	1911.13	809.81	1064.17 ;

Mean relocity of the wind- 6.34 miles per hour.
Max. velocity-25.3 miles per hour, from Ha.m. zo noon on 25th.
Most windy day, 24 h h. mean relocity- 13.58 miles per hour.
Least whatly day-10th: mean velocity-1.40 ditto,
Mout windy hour-noon: mean veloclty-8.37 ditto
Least windy hour-9 p.m: mean velocity-3.20 ditto.
Mean diurnal vartation -3.17 miles.

COMPARATIVE TABLE FOR JASU4RY.

'TORONTO, FEDRCARY, ISSJ.

TIIE TORONTO GENERAL HOSPITAL.

Many rumours having declarect the intention of the Government to make some changes in the mamarement of the Toronto Hospital ; it behares us to wated over this movement, to see that the interests of the Medieal proiemion of thin Province do not suf-fer-and now it appears to us, would be a ditting opportunity to consider what may be the rights, privileges and daties of the Medical profession in regard to it. In adverting to the subject we trust to be gruided by a erenuine spirit of liberality and pro-gress-while we are firmly resolved to eschew all personalities or crimination, and in secking the public good, to merge all other feelings.

- In considering this matter, the subject would naturally appear to divide itself into several heads.-1st. as to the condition of the present Hospital,--2nd as to the duties of the Hospital 'Trust, -3rd as regards the apjointucnt of Medical Olficers,-4th as respects the duties of the Miedical Onficers,-yth as to the care and treatment of the Patients, -and 6 th as regards the position of the of the Medical Students who resort to Turonto to obtain a knowledge of the profession.

1st. The condition of the present Hospital building, is extremely bad, both old and inetheient: and although capable of containing 75 beds, it is entirely without due and necessary ventilation, while there is no chance of properly heating the building; it is likewise without any of those accommodations considered necessary during sickness-to say nothing of the modern appliances of comfort and utility, now recognized as indispensable in every well regulated Hospital. The building is so ill arranged that it is with difficulty any thing like a proper separation of the patients can be made, and as it is, the women are obliged to occupy the general corridor or passage as a ward, besides which the building leaks extremely, and the toute ensemble is a perfect picture of ruin and decay, that ill accords with the rapid progress of the good city of Toronto. There is not so muck as an operating theatre, so that if any capital operation has to be
performed, it must be done in oine of the wards, perhaps greatly to the pain, and possibly to the injury of the other patients.

Again, the bad ventilation and injudicious heating of the rooms, engenders and mantains a foulness of the air which amounts almost to positive destruction of the patients enclosed within it, and is extremely damgerous to the Medical Officers, Students, attendants and others whose duty it is frequently to visit the wards. We would ask how in the name of common sense could it be otherwise, with perhaps a dozen persons taking medicines, with nothing but a closed stool to resort to, placed at their bed sides, and at the same time only a common box stove in the room, perhaps heated to a temperature of 120 degrees, without any possibility of that effluvia cscaping, exeept by opening the windows, which of course cannot be permitted in winter-it mast be sure to engender a bad malaria, and remer it deadly powerful; and such is surely the case, for in many of the wards, with the best efforts of ventilation, the odour which remains is but too pereeptible to the senses, the very walls being corrupted by it. It is almost impossible for a patient to escape this noxious influence, as is shown by the constant attacks of the lirisipelas, and other irritating constitutional complaints that indiscriminately effect them, after residing a short tume in the Hospital, but to end this disagrecable matter,-there is no doubt but that the building occupied as a General Hospital in Toronto, is a suare and a delusion, alike to the patient, the Physician, and the medical student. To the poor patient it is a woeful deception, for when admitted perhaps fur some surgical complaint, and having obtained all the relief which the present advanced state of science could aflord him-he suddenly finds that he has contracted a far more deadly constitutional comphint from the Hospital air, and which is even more likely to destroy him; such is almost invariably the ease, for the most simple vaniety of disease admitted into that huilding, is more or hss modilied by that deadly miasm. To the Medical officer it is a constat suarce of amoyance, perbaps he has treated the patient with the most consummate skill and science, and he naturally expects to find the lesitimate result of his appropriate treatment, but as the deadly puison received into the patient's constitution so modifics the result, that it is any thing but what it was intended, and instend of oltaining a cure, he has to combat a far worse mala ly at an enormons disadrantage. To the Stadent doubtless it is an extreme delusion-he pays his money ingood faith to the Hocpital trust, to gain a hnowledge of the rudiments of the art of healing; lie sees his lreceptor adopting a certain line of practice, a practice doubtless the result of a profound knowledge of the principles of lis profession, lie is naturally led to expect certain results, but how is he deccived and disap-
pointed, when he beholds the nature of the complaint itself changed by a deadly invisible agent; in despair he fancies that study and knowledge are valueless, as regards the prosecution of his profession, for here he cannot gain a true knowledge of disease, hence he is very liable to give up his mind to some of the popular medical illusions of the day, or in despair to yield himself to pleasure and dissipation, and to waste those opportmities which in after life he will prize beyond all value. He certainly has one advantage in the present Toronto Hospital, he may study the laws of that poisonous miasma, and we doubt not, that on the diligent Studert it will make an impuession that will never be forgotten. It is thus clear that the whole establishment is a marvellons indication of the want of progress and improvement-it is a disgrace to the city, and ill accords with the march of the other public departments-the very appearance of the old building, set at an acute angle with the main street, plainly indicates the antiquated ideas of the dear old ladies who superintended the erection of the building, and who from some peculiar notions, which it far exceeds our finite comprehension to understand, placed the building north and south, instead of locating it in a line with its neighbours. Then again all the necessary outhouses and conveniences about the hospital, are shabby in the extreme, incomplete, and far below the advanced charactici of the age we live in. If these facts are true, and we are convinced that no individual can make a visit to the place without being struck with their reality, a new hospital is certainly demanded, the interests of suffering humanity requires that the present pestilential building shall be razed from the ground, and a better and more appropiate one erected in its stead. The numerons Medical Students, have a right to require from the fees that they pay, for a better opportunity of gaining a true knowledge of the profession, while the city of Toronto, nay the Province of Canada generally loudly demand at this important seat of medical instruction, that the progress of the Medical Profession should be onwards, which is impossible, without an hospital building, and all the necessary appliances attached to it, in perfect keeping with all the various improvements of the age. That such will be speedily demanded by all classes of the community we have not a shadow of doubth, and are convinced that the hospital trust will be forced onwards in the march of public improvement, although it may be contrary to their careful and tardy disposition.

2nd. This naturally leads us to consider the duties of the Hof pital Trust,-this trust as at present constituted, consists of the Mayor of Toronto, and the President of the Board of Trade ex-Offico, C. Gamble Esq., John King, M. D., and the Rev. H. J. Grasett. M. A., appointed by Government; the Hon. C. Widmer,
M.D., and Lacius O'Brien M. D., appointed by the Corporation of Toronto, these exercise an unlimited control over every department of the Hospital, they not only regulate the expenditure agreeable to the supply, but also have the appointment of all the medical officers and servants in the establishment. That the Hospital Trust should have the power over all the Hospital Funds, and regulate carefully and judiciously the expenditure of the establishment, holding a wholesome check over servants and medical officers, we are willing to believe-but that they should have the power to appoint the medical officers, we most strenuously deny; such power should not rest with any corporate body, fer it is sure to beget a family compact, which is diametrically opposed to the true inturest of the Medical Profession, and is very liable to have a baneful influence over the welfare of the patients, for without some necessary cheek, incompetency and ignoranco will, by favour, often stamd in the place of sterling merit, and undoubted talent.

With regard to the Hospital Funds, if the reports we have heard be true, there is little doubt but that the Trust has cxhibited great care, and judicious management of the funds and estate belonging to the Toronto Hospital, we believe it could not be otherwise under the watchful eyes of the careful and indefatigable veteran Dr. Widmer, and the judicious management of Mr. Brent who have as we are given to understand, so carefully husbanded the resources that they have some $\mathcal{L} 5,000$ on hand. This would be fully sufficient to commence a new Hospital, which we have shown to be absolutely necessary-nay was this fact untrue, the ground on which the old establishment now stands, if properly laid out in building lots, might be made to yield, a quit rent of £lu00 a year, putting it at the lowest notel. The new Hospital might occupy buta small portion of the land, or might be built upon the block of 6 acres owned by the Trust, situated a little further to the westward, these with the other extensive estate owned by the trust in this city, would surely be sufficient to commence an Hospital consonant with the present condition, and future requirements of the good city of Toronto ; besides which it is pretty certain that the Government would aid and assist in so noble a work, the Corporation of the City of Toronto also would not be behind in finding funds, white the good citizens themselves, never deaf to the calls of suffering humanity, would be ready to add their mite, especially when they were convinced that the whole establishment would be an honour to their city, and a striking indication of their philanthropy. The Hospital Trust must wake up, and a new building be erected, for it must never be said that the Roman Catholic portion, are the only progressive part of the community in this respect, and that they, unaided, will build amagnificent Ho-
tel Dicu, which we are assured is at present in contemplation, the land having been already purchased, and the plans marked out for that purpose.
3rd. Another of the duties appertaining to the Hospital Trust, and which we most unhesitatingly condemn, is the appointment of the Medical officers by the Board, as leading to favouritism, and inefficiency. We think it is our duty in the name of the whole of the Medical Profession of this Province, solemnly to protes against it, as a decided infringement of their just rights. What right has any man, or corporate body, to sit in judgment upon the Licensed practitioners of this Province. If any properly educated Medical man, being a British subject, has been found fit and capable of practising the profession in this Province, and having passed the Medical Board, has fultilled the law, and in the eye of the law is perfectly on a par with every licentiate in the Province, except with respect to the date of his License, if so whas right has any Board of Trustees to place their ban upon him, and for want of favour and interest, set him without the pale of the only honours and advantages to which the profession is accessible Jt is as unjust as it is deliterious to the public good. It in certainly adverse to that liberality and progress which the pres ent Government have long professed to advocate and honoer; therefore we have some hopes to see it altered. Rather let every licentiate in his turn have an opportunity of gaining all the honour and improvement which a public Hospital can alone afiord It should be his indisputable right after he has passed the Medical Board, in his turn, when a vacancy should occur, (but in no way interfering with the present incumbents,)to enjoy the prinilege if he is willing and able to accept it.-lt should be a hav, that when a vacancy sball occur among the Medicul Officers of the Hospital, an offer of the appointment should be made to be oldest upon the list of licentiates, should he refuse to acceptit, the next in his turn should have the offer, until one is found wit ling to take the onerous duties upon himself; this would be afur fairer method than the present--should it chance that an incapable should obtain the situation, a due and proper system of check, would soon expose his incapacity, and cause his dismissal or resigf nation. Should iattention, incapacity or inhumanity be exhibited by the Medical Officer in the performance of his duties, he should be called before the Board of the Hospital Trust, and either admonished or declared unworthy of the situation. For although we would deny the Trust the power of the appointments, as adverse to the public interest, still we would maintain that they should hold the necessary checks, and have the power to dismiss or reprimand, for every dereliction of duty. Let it be
remembered, that except the honour of this gratuitous attendance upon the poor, the Medical Officer of the Hospital receives nothing for his mental and bodily labour-to the public it must be a constant source of wonder and surprise, that so much rancour and bad feeling should be displayed between antagonistic medical men, whiie striving for the honour. There is positively no other reward attached to this appointment. than a facile opportmity of studying his profession, and to do this which is his only gain, every facility which it is in the power of a well $b{ }^{\wedge} t$, and well regulated Hospital to afiord him, should be at his command properly guarded by a due system of checks, this would alike be beneficial to the poor patient and advantageous to the medical student-while the Medical Officer's progress must be onwards, he must learn from the opportunities placed at his command, or he will soon be compelled to resign, and make room for others more inclined to profit by the adyantages of their position.

4th. These facts necessarily bring us to the consideration of the duties of the medical officer ; these are preeminently two-fold: to render all the aid in his power to the poor sufferer committed to his charge, and with kindness and attention to communicate all the practical knowledge of disease he is able to the Medical Students, who have entered to the Hospital for instruction. That . these duties may be done with facility, regularity and order, too many medical men should not be attached to the Hospital. Four Medical Officers and two assistants with the house surgeon, in our indgment would be found amply sufficient for an Hospital with one hundred beds. The Medical Officers might divide their duties as Surgeon and Physician. The duties of these medical officers should be to attend the Llospital punctually at the hour of $120^{\prime}=$ clock, according to their turns of duty. Each should be obliged to inscribe his name and the hour of his arrival, in a book kept for the purpose, at the Hospital, and this should be laid before the Board at their monthly meeting; if the Hospital rule has not been punctually attended to, and no sufticient excuse offered for absence or delay, due punishment should surely follow; for it must be remembered that time is of vital importance to the Medical Student, when he has numerous lectures to attend to. The Medical Officer should visit and prescribe for the patients which have been allotted to him in the several wards of the Hospital, he should take or cause to be taken, a full and accurate record of the case of each patient daily, in a book the property of the Hospital, which should be preserved in the Library of the Institution, to be considered public property, and to be freely open to every Licentiate of the Province, or any Medical Student belonging to the Hospital; who may study or transcribe the case
at their pleasure, and at the termination of every case, the result should be duly recorded, and when death shall have unfortunately occured-it should be the duty of the Medical Officer or of one of the assistants to make a decent morbid examination of the body, so as to ascertain the true causc of death, and this should be truly recorded in the same book, while proper drawings and preparations of the diseased parts should be carefully and scientifically preserved, so as to aid in the description; and these should be placed in a museum attacied to the Hospital. If these means were fully and properly carried out, the puubic would soon be able to diseriminate hetween the truly industrious and talented Physician, and the man who only fills the olliee to keep his better out. It would ensure a careful and judicious attention to the patient, and give the best promise to the diligent Student, that his precious time would not be wasted in delay-while the opportunity of study here afforded him, if duly appreciated, would open to him, an inestimable fund of practical knowledge. It should be the duty of the assistant Medical Officers,to see all the out patients and to prescribe for them, taking down their cases in a book kept for the purpose, and when any present themselves, that require admission into the Hospital, it should be their duty to admit them to the charge of the Medical Officers of the week, and should it happen that the Medical Officer, from accident or sickness, does not arrive at the time appointed, the assistant should be required to go round the wards, visit and prescribe for his patients, in his absence, so that no neglect or delay should occur to the patients. The assistant Medical Officers should aiso be required to make all chemical and microscopic esaminations the cases should demand, and these should be recorded in the case book, and demonstrated to the Students. It should be the duty of the house Surgeon to dispense all medicine according to the recorded prescriptions, have full power over all stewards, nurses, labourers, and others belonging to the Hospital, and to see to the internal order and arrangement of the whole cstablishment; it should be his daty to visit the patients twice or more daily, according to the requirements of their complaint, and to administer every assistance in his power, during the adsence of the Medical Officers. He should see to the diet of,'the patients, the due execution of all orders, and the careful attention of the nurses in the administration of the medicines, Sc.

5th. With regard to the proper care and treatment of the patients admitted into the Hospital.-The Hospital is intended as a public charity, to afford gratuitous medical assistance to the poor during sickness, so that the moment they enter the establishment they are the recipients of public bounty, and to a certain extent must be considered as public property; they must cheerfully sub-
mit to all the rules and ordinances of the Hospital, or be hable to instant removal, it is certain that if a proper spirit be impressed upon these regulations, such only will be ordained as shall be for the patient's good, and the public adrantage. If the patient should not be treated with due consideration and attention, have any fault to find with the medical attendants or any of the pupils or servants, a proper representation of the matter should be made to the Board, whe should be empowered to redress all such grievances. A certain number of patients might be admitted who could pay in proportion to their circunstances, but they must in every case be obliged to submit to the rules and regulations of the Hospital; and were not the funds of the Hospital tound able to relieve all the chamants for assistance, the wealhy citizens and merchants of Toronto might be solicited to purchase the admission to one or more beds, by an ammal payment of a certain sum of money; when by their direction so many patients might be admitted, and treated in the Hospital should their cases require it.

6th. As to the position of the Student.-As soon as an individual has paid his fee for admittance to the Hospital practice, he should have all the advantages the establishment could afford him, in the study of disease and the acquisition of the rudiments of his profession. It should be considered that the State, by means of this public Hospital has a duty to perform in affording the Medical Students every legitimate means of properly acquiring a sufficient knowledge of liis profession. The patients should be to him a living book, in which he should be permitted to study under the guidance of his Preceptor, and with due regulations, every plase of injury and disease to which man is hiable. The Student should have an opportunity of performing all the minor operations under proper instructors, and should be prepared to assist, as far as is consonant with his amount of hnowledre, in the duties of the Hospital. It should be obligatory upon every one of the medical officers to the best of their ability, to explain the several cases to the Students, either at the bed-side of the patient or at some subsequent period, and it shonld be required that the Students pay all due attention to their preceptors, and strictly conform to all the rules and orders of the Hospital, for if they cuntrovenc any of them they should be called up before the Buard, and be reprimanded or dismissed, according to the magnitude of the offence.

Such then to our mind are the conditions which would render the Toronto Hospital a source of great public benefit, an undoubted blessing to this community, and to the Province generally. It would afford an establishment an honour to the city of Toronto and worthy the philantrhopy of her citizens. It would do justice to the Medical profession, affording them a just and unprejudiced
opportunity of distinguishing themselves-placing them in a noble field for the study of their profession, and the exercise of their humanity. It would preveat the possibility of the minister of the day, making a trade of the calamities and misfortunes of the poor patients, by selling the office of medical attendants for parliamentary influence, or family affection, whereby it must be often yielded up to ignorance and incapacity, a fact alike contrary to the interest of the profession, the benefit of the Student, and the advantages of the patient; while it would freely afford to the poorest person in the community, a certainty of the best medical and surgical advice and assistance, it would form a sure refuge for the poor during the severity of diseast, when totally incapable of caring for himself, and would produce a noble field for the education of the Professional Students, and training lim up to be alike an honour to the profession, and a benefit to the Province.

Having said thus much with regard to the Toronto Hospital, we do not see why all the hospitals in the province intended for the admittance and treatment of the poor, and receiving Provincial assistance, should not be placed under similar arrangements, and would also think the law should embrace the possibility of the Municipal Council of each county establishing a Public Dispensary or Hospital in each of their chief towns. In all towns and villages in Canada there are many poor who suffer for the want of medical assistance, or have to throw themselves on the charity of the medical profession, it would be a noble trait in our Municipal institutions that they were careful of human life, willing to relieve the miseries, ready to hold out the hand of charity to our suffering fellow creatures, and not let the burden fall entirely upon one class of the community-the Medical Practitioner.

DR. GOADBY'S PAPER ON THE PRESERVATION OF ANLMAL SUBSTANCES. \&c. \&c.

Agrecable with the promise of the former proprictor of the Upper Canada Journal, we have the pleasure to present the subscribers with a part of Dr. Goadby's manuscript on the mode of preparing anatomical and physiological preparations, which we believe will be found extremely interesting and worthy the attention of the amature as well as the Physician.-We extremely regret that the whole of the promised production will not be forthconing in consequence of Dr. Goadby refusing to afford the remainder of the matter, a circumstance that placed the former proprietor of the Journal in a most unpleasant position, forcing him to seek the pro-
tection of a Court of Law, so as to prove to the subseribers that the default in the matter did not rest with himself.

It would appear, that some slight explamation of the matter was due to the subscribers on this occasion. As noticed in a previous number of this Journal, Dr. Goadby in a series of microscopic demonstrations, had greatly interested the Medical Profession in 'Ioronto, several of whom were anxious to possess in print, the Dr's. mode of making and injecting anatomical preparations, also his instruction for the use of the microscope in these matters; the fact was mentioned to Dr. Goadby, and Mr. Plees the printer of the Upper Canada Journal was introduced to him, when Dr. Goadby made the following agreement with Mr. Plees.-Dr. Goadby was to afford matter, and illustrations for 150 pages, and Mr. Plees was to find all material, print and bind the book, giving to Dr. Goadby 100 copies.-Mr. Plees having the privilege to insert the matter in the pages of the Medical Journal, as an original communication. Mr. Plees commenced the work, and printed some 750 copies of a part of it, when Dr. Goadby was assured by some person that he would never receive the promised copies of the work, whercupon Dr. Goadby refused to supply any more matter, and the work could not be proceeded with, so the subscribers to the Medical Journal will thereby be disappointed of a considerable portion of the promised communication.

In offering this explanation, there is no desire to open anew the spirit of private and political rancor which exhibited itself on that occasion : and while we regret that the impulsive character of Dr. Goadby should have been so easily misled, we cannot conclude without declaring that notwithstanding the misunderstanding here evident, we are perfectly ready to acknowledge Dr. Goadby's talent and ability in the peculiar department of science in which he stands precminent, and to declare from our love to that science, should a similar opportunity offer, we should serve the Dr. with the same disinterested zeal which marked our effort during his residence in Toronto.

We have to acknowledge the reccipt of a pamphlet from Dr. Hall, of Mantreal, being a serics of strictures upon the New Medical Bill introduced into the present session of the Provincial Parliament by Dr. La Terriere, the report of the Committee on the said bill, and a series of questions addressed to Medical Practitioners in Canada East and West. The spirit of the Bill is evidently an attack upon the present incorporation of the Protession in Canada East, and will oblige every Miedical Practitioner, whatsoever may be his diplomas or qualifications, to undergo an examination before
the Medical Board, prior to obtaining a License to practice his profession in the Province. There appears something very illiberal, and retrogressive in this attempt, and will doubtless have the effiect of degrading many a Medical man who has thoroughly studied his professicn in other countries, while it places in the hands of the Medical Buard a power to annoy and degrade persons, who may be far their superiors in education, and Medical qualifications; so it will tend to prevent the settlement among us of many superiorly qualified Medical practitioners; at the same time we are fully alive to the dificulties which this bill is intended to remedy, and feel that the indiscriminate admission of Medical practitioners, upon the simple production of a diploma, without due and sufficient guarde, is liable to serious objections and susceptible of great abuse.

The following is the proposed Bill.
bILL.

An Act to amend the Law relative to the pratice of Physic, Surgery and Midwifery in Lower Canada.

Whereas it is inexpedient that any person should obtain a license to practice Physir, Surgery or Midwitery in Lower Canada, without undergoing an examination before the Provincial Medical Board: Be it therefore enacted, \&c.,
That the seventh section of the Act passed in the tenthand eleventh yeats of Her Majesty's Reign, and intituled.-
"An Act lo incorporate the members of the Medical Profession in Louzer Canaja, and to regutate the sludy and prectice of Physic and Surgery thercin'" shall be, and as hereby repealed.

And be it enacted, That for and notwithstanding anything in the said Act, or in the Act amending the same. rassed in the twelfth year of Her Majesty's Reign. and intituled, "An Act to amend the Aet to ircorporate the Medicel Profession in Louet Canada. and to regulate the study and practicc of Physic and Surgery tàcrein," no person shall, :ftur the passing of this Act, receive a liceuse from the P'rovincial Medical Board to practice Physic. Surgery or Alidwifery in Lower Canada, untess he shall have undergone an examination before the said Board, and obtained a certificate of qualification from the said Board; Provided always, that nothing in this Act sfiall apply to females pracising Midwifery in Lower Canada under the prorisions of the Act first above cited; provided also that any person who shall have served in Her Majesty's Army or Navy, being on balf pay, and pooducing his Diploma or Commission in the Service as such to the Provincisl Medacal Board, may obaja a License to practice Pbysic and Surge:y without being bound 10 undergo an examination.

At an early period we propose to return to this subject, and at the present time should feel thankful to any of our readers, if they would inform us what has become of the proposed act of incorporation of the Medical Profession in Canada West; at the present moment, from what with the destruction of the Law and Medical classes of the Toronto University, and the general want of professional confidence; the medical profession is in a state of chaos that certainly requires some basis on which to found a better aspect of affairs. We would respectfully. press upon our Professional brethren a greater unity of action, and more cordial conventional agreement, than at present appears to exist among them, for without such, we cannot expect any beneficial or satisfactory enactments.

SELECAED MATIER.

MEDICINE.

CLINICAL ILLUSTRATIONS OF SUB-ACUTE OVARITIS, WITII REAARKS ON THE DIAGONOSIS OF THAT DISEASE.

After reading ten cases of sub-acute ovaritis, Dr. Tilt gave a ģummary, in which he showed how far they threw light on the canses, symptoms, and terminations of the complaint. Ife then treated more fully of its diagnosis, and observed, in limine, that pain, however intense and well localized in the ovarian region, was not a sufficient ground to admit ovarian inflammation, because the pain might depend on uterine inflammation, or on what Dr. Heetwood Churehill describes as ovarian irritation, considered by Dr. Tilt to be the same disease as the French pathologists term Jumbo-abdominal neuralgia. With regard to the diagnosis of sub-acute ovanitis, Dr. Tilt remarked that it was rendeled dificult by the similarity of the seat of pain in buth complaints; and that, however probable it might seem from the absence of uterine disease, the fixed pain, the appearance of fever, and the tensions or swelling :n the owaian regions; still, a rectal examination could alone gice certainty to the diagnosis. Those (Dr. Tilt adde) of a nervous temperament are most liable to lumbo-abdeminal neuralgia, not brunettes, of a sunguine constitution, as in most of my cases. Pain exists in all, but while, in sub-acute ovaritis, it is uore fised, continues with the same intensity, without regular exacerbation, and is exasperated by any kind of pressure, in lumbo-abdominal meuralgia is is quite the controry; for ahthough there may be at all times a dull, aching sensatien, this is not invariably the case, pain spmetimes oecurring by repeated atacks, and is relieved by wide or even by continued pressure with the united tips of the fingers. Dr. Jilt agrees with Dr. F. Churchill, that ovarian irritation is characterized by a kind of nervous tenderuess, which shriaks fion: the weight of the finger as mach as from severe pressure, and not by the positier pain mentioned in Dr. Tilt's, cases. There ia also, in lumbo-abdominal neuralgia, no swelling, no heat, no pain of the ovaries when these organs are subjected to a rectal examination, whereas there is beat, awelling and pain, in sub-acute ovaritis. The pain is unaccompanied by any sympathetic pain of the breasts, or fever, in lumbo-abdominal neuralgia; nor so in sub-acute ovaritis. The former is so frequent an accompamiment of uterine disease, that many pathologists, both at home and abroad, consider pain in the inguinal region as almost pathognomonic of uterine disease, white sub-acute ovaritis is not so frequently induced by uterine disease. With regard to the treatment, repeated blisters, and opium, are of nost use in lumbo-abdominal neuralgia; but such remedies, valuable in the later stages of the disease, require to be employed after leeches, emolients, \&c., in sub-anute ovaritis. Dr.

Tilt then established the greater frequency of young females to idiopathic peritonitis, and to brides of lymph in the vicinity of the ovaries, and concluded by observing-It seems urgent on us carefully to bear in mind the freqnency of inflammatory products in or about the ovaries; the frequency of intense suffering in the ovarian regions at the meastrual periods; and the great probability of both facts stading one to the other in the relation of cause to effect. We should also remember the greater liability of young. women to idiopathic peritonitis, and incaration from bridles of inflammatory lymph, at the very age whei I have shown that even the sub-acute inflammation of the ovaries is most frequent, and therefore the imperative necessity of watching over the first stages of a complaint, which being too often left to uature, is as frequently productive of serious mischief. Lastly, that sub-acute ovaritis can be distinguished from utcrine affections, as well as from lumbo-abdominal neuralgia; and that at all events no harm can ensue, from the treatment recommended.

A discussion took place, in which Messrs. Ilird, Canton, Dendy, as well as Drs. Murphy, Crisp, and Ogier Ward, took part ; and all admitted the difficulty and interest of the subject. It having been stated by Mr. Canton, that whereas he had frequently been able to ascertain on the dead body the possibility of investigating the condition of the ovaries through the rectum, he did not find that in the narmal anatomical condition of the human body the ovaries were susceptible of being mediately examined by pressure to the ingninal region. Dr. 'Xilt replied, that while admitting the force of Mr. Canton's assertion, when increased to double or triple their usual size by inflammatory congestion, the ovaries were so pushed forward, that by careful pressure in the inguinal region, a small tumour might sometimes be felt, and the diagnosis was susceptible of being rested by a rectal examination. In answer to Drs. Murphy and Dendy's doukts as to whether the cases read by Dr. Tilt were not cases of physiological irritation of ricticis of the oraipe, and whether he could establish the difference between congestion and inflammation of the ovaries. Dr. Tilt said, that unable to do more than general pathologists, he could not fix the precise boundary between ovarian congestion and inflammation, but that when be met with cases where the ovaries were enlarged painful with increase of temperature, and a tendency to fever, and this totally independent of menstruation, he considered this state to be one of inflammation, and as having nothing to do with the physiological action of the ovaries. Ife added, that as numerous observers had met with such cases, it was fair to infer that the same might be still more likely to happen during menstruation, as, in fiet, occurred in some of his cases. Dt. Tilt admitted that the greater liability of women to incarecration of the ilium by Jands of lymph, might be left as a reserved question, although, with Dr. F. Renaud and others, he belicved it to be the case, and he referred Dr. Crisp to the work of Dr. Negrier for a case of death by peritonitis, from the bursting of a very small ovarian cyst. To Dr. Ggier Ward's inquiry, relative to the constithtional symp:oms of sub-acute ovatitis, Dr. Tilt said that they were not of a severe nature, varyigg according to the patient's constitution-slight fever in some, aysteria in others, of pseudo-narcotism or derangement of the biliary furction.

[^7]
CASES OF ACUTE RHEUMATISA ; TREATMENT BY LEMON-JDICE; RAPID CURE.
 (Under the charge of Mr. Huncock.) *

Mr. Iraneock has lately been trying the lemon-juice in acute rheumatism, with two patients, accozding to Dr. Owen Rees's plan, and both recovered in about a week. 'The first patient is a servant girl, of twenty-three years, who was admitted, Dec. 30 , 1551, with acute rheumatic pain in the right wrist, which flew, two days afterwards, to the left, the joints in both cases being red and swollen. The shoulders were subseguently involved, and the parspiration was profuse. The patient took, at first, calomel and Dover's powder, and cooling alkalise draughts. On the second day, she was ordered one ounce of lemonjuice every fourth hour, and went on taking these doses, with an occasional anodyne at night, for ten days, when all the above-mentioned symptoms had disappeared. Mr. Hancock now prescribed quininc and quassia, the patient only complaining of weakness and want of appetite.

The second case sefers to a man of forty years, who was admited June 6,1852 , with a un-rheumatic affection of the knee. While vader treatment, he was suddenly attacked with pain, swelling and redness of tas left wrist. Mr. Hancock ordered half an ounce of lemon-juice three times a day. This dose ras taken for a week, when we were kindly shown the patient, who had regained the full use of the wrist. There were uo heart complication in either case.

SURGERY.

VESICAL CALCULUS IN A LITTLE GIRL, TWO YEARS AND A HALF OLD; ENLARGEMENT OF THE URETHRA BY JNCISION; LITHOTRITY.

(Cinder the care of Mr. Poland.)

The hospitals of a large metropolis must necessarily present a great many stone cases in children, these being prineipally of the male sex; and as such patients are known to brar lithotomy perfecily well, we have frequent opportunities of witnessing operations of this kiad. Lithotrity is but seldom resorted to with boys; still, we recollect one or two cases, witre the results were pretty favourable. As to little girls, it would appear, if we can trust our own statistics, that they are considerably less liable to calculous coneretions than boys, for it happens but very seldon that very young patients of the femate sex, thus affected, are brought into our hospitals. We have, however, of late, noticed two eases of this kind, one treated by Mr. Poland, at Guy's LIospital, and the other by Mr. Ward, at the London Hospital. In both instances it was found necessary to crush the stones; but the preliminary steps were somewhat diferent as will appear from the account below.

Before entering into details, we would just direct the attention to the fact, (to which we have alluded in a former "Mirror,") that the children of the labouring classes are much more liable to stone in the bladder than the offspring of middle or upper secions of society. This circumstance is well known, and it is very natural that we should inquire into the causes of this difference. Herein we shall be greatly assisted by the investigations of Sir Benjamin Brodie on this subject, the results of which are consigned in his Lectures on the Drinary Diseases. Sir lenjamin, after pointing out that when the urine con-
tains a superabundant acid, the red or lithic-acid sand is precipitated, and that in this manner the lithic-acid diathesis is established, goes on to say, "In what are called the better classes of scciety, you will find the deposition of red sand to exist chiefly in adult persons; but in the lower classes, you will see it among children. These circumstances are easily explained. Adult persons who are possessed of mmeh property, for the most part lead a more luxurious and indolent life that their children; while among those of lower condition, the diet of the children is frequently unwholesome, and comparatively little attention is paid to the various derangements of the digestive organs to which they are liable."

The contrast between the upper and lower classes, with respect to calculous concretions, is thus satisfactorily explained; though it still remains to be shown, why one sex, among poor children, should be more frequently affected than the other. With regard to this fact, it might perhaps be stated, that the "red sand" escapes more readily with girls than with boys.

We now turn to Mr. Poland's case, the details of which, as collected by Mr. W. II. Moon, rm as follow:-

Emma R——, aged two years and a hald was admitted into Guy's Iospital in October, 1851 , under the care of Dr. Golding Bird. She is a strumous, stout, florid-looking chiid; her parents and seven brothers and sisters are quite healthy. It appears that this little patient enjoyed good health until she was twelve months old, when she began to suffer from partial incontinence of urine and pain in micturition. These symptoms increased in frequency and severity up to three months before admission, when she became an out-patient under the physician. At that period the signs of disease were incontinence, much mucous and phosphatic deposit in the urine, and great pain on passing water; she also had excoriation of the genitals. The coild hat been under treatment with little or no benefit until ber reception into the hospital.

She now had an attack of varicella, unaccompanied by fever or any particular constitutional derangen:ent, and was also still suffering from her other complaints. Under mild saline medicines the varicella partly subsided, when Mr. Poland was requested to see her respectiog the urinary symptoms. She had then constant pain in the bladder, at times excruciating, causing her to scream and pull herself about; she could not hold her urine, which was constantly dribbing from her; when passing her motions she suffered greatly, and alvine evacuations were always accompanied with more or less prolapsus. There wat much thick mucous deposit in the urine.

Some chloroform was administered, and the ohild sounded, when a calculus was distinctly felt. It was determined not to dilate the urethra, so as to risk the evil of a permonent incontimence, but to extract the stone by incising the uretri upwards, and to the left side, so as to allow the calculus to pass, if of small dimensions, and make it practicable to draw it through the neck of the bladder. Should these measures fail, it was proposed to crush the stone with a strong pair of foreeps at one or more sittings; and if the calculus were found to be of too hard a consistence, it was determined to use a female lithotrite made by Mr. Bigg.*

[^8]On October 31 st the child was put under the influence of cliloroform, and held in the position for lithotomy. There was no water in the bladder, and some lithe prolapsus of the rectum ensued. A short grooved sound was passed into the urethra, and that cabal slit upwards and to the left side, when a strong pair of dressing forcops were rapidly introduced, and a calculus, about the size of a bean, seized without difficuly. Extraction was attempted with some degree of force, and persisted in for a short time, at the size of the stone seened to warrant this course, but these e ituts were unsuccessful. The stone was now with some force crushed, and the frugments broken up by successive applications of the forceps. The debris were extracted in large quantities by the instrument, which was introluced seven or eight times. Mr. Puland then passed an elastic eatheter into the bladder, and the latter was thoroughly washed out. A great deal of the calculous matter being collected, it was fund to consist of uric acid, urate of anmonis, and the phosphate of lime.

The child had a comfortable night, and did not seem to suffer in the least; no untoward symptom arose, and all her fortner complaints subsided.

Six days after the operation, the patient was again put under the influence of chlorgform, and sounded with the dressing forceps, when a small fragment mas detected, crushed, and removed.

From this time she perfectly recovered, suffered no pain whatever, and obtained complete control over her urine, which she sometimes held for more than sia hours, the renal secretion becoming clear and natural.

- A fortnight after the second crushing, the child was again sounded, and the bladder found periectly free from any fragments.

The patient was presented cured at the end of four weeks; two months after her discharge, she was in good health, and had not the slizhtest urinary difficulties.

Mr. Ward's patient is considerably older than the last, being about ten years of age. The symptoms were bere well marked, and Mr. Ward detected a rather large stone by spunding the child whitst she was under, the influcnce of chloroform. It was now resolved gradually to dilate the urethra to an extent sufficient for the passage of the stone. This plan was persevered in for three week, with the assstance of ciloroform; but it was found impossible, when the dilatation had been carried as far as was thonght safe, to extrect the calculus. Mr. Ward was therefore obliged to have recourse to lithotrity, which operation was performed several times with the aid of chloroform and the common polypus foceps. The crushing proved now and then a little troublesome, as the urine would suddenly escape on the introduction of the instruwient. The bladder was several times washed out, and a few fragments passed with the urine, but the greater portion was removed with the forceps. It was now clear that the stone must have been very large, as the tragments on being collected weighed no less than five drachms. They were principally composed of phosphate of lime, and being very light, almost filled a flat ounce phial. This litule patient suffered from incontinence for a few days; but this symptom soon disappeared, and she can now retain her urine very satisfactorily.

It is cvident, from these cases, that lithotrity is by far preferable to forcible dilatation and extraction, when the stone is of large size. A small stone may be easily removed without crushing; but it then becomes a question, whether it is more advisable to incise the meatus, than make gradual dilatation. That
course ought certainly to be chosen which is least likely to produce incontinence, and here the incision would perhaps have the preference; but it should be recollected that the wound is sometimes long in healing, from the irritation of the urine. However this may be, it is satisfactory 10 notice how favourably both the preceding cases have ended, sufficient data being thus obtained regarding lihotrity in young subjects of the female sex.

REMOVAL OF A NEVUS BY THE PLATINUM WIRE, HEATED BXA GALVANIC CURRENT.
 (Under the charge of Mr. Hillon.)

Our readers probably remember the cases of fistula in ano and hamorrhoids, successfully treated by Mr. Marshall, at University College Ilospital, with the platinum wire, made red hot by a galvanic battery. We perceive that Mr. Ilitoon has been trying this plan of cutting and searing at the same time upon a naves of a flat kind, situated in front of the ear of a child two months old. The operation was performed with Cruikshank's battery and a very thin wire, which it was first intended to tie around half the tumour, which was about the size of a crown piece. But the wire ran so easily through it, that the whole was completely removed, and the parts ure now fast cicatrizing. This is rather a quicker measure than the ligature, and just as secure, since liamorrhage is so rare.

AXILLARY ANEURISM; TYING OF THE SU'BCLAVIAN ARTERY; RECOVERY.
 (Under the charge of Mi. Barnard Holl.)

Mr. Molt has just discharged from his wards a patient who was admitted several months ago with axillary aneurism. The case had been sent from the country, with some doubts concerning the nature of the disease. Mr. IIolt tied the subclavian artery on the right side, which measure caused the pulsation to cease, though the fluidity of the contents of the sac persisted for several months. Gonsolidation and absorption at length ensued, and the patient has just been discharged with the full use of his arm, and the almost complete disappearance of the tumour.

puncturing the bladder tirough the rectum for retention of trine or stricture, wilen no instrument can be passed along the urethra.
 - (Under the charge of Mr. Cocki.)

Mr. Cock has been very successful in re-establishing the permeability of the urethra in complete retention or guttation micturition, by puncturing the bladder through the rectum when no instrument could be passed along the uretira. Within the last three wecks two such cises were thus treated, the urethra being afterwarda gradually dilated, so as to admit Nos. 8 and 10 catheters.

The urine flowed for a fers days through the rectum, the urethra thus remaining completely at rest. Micturition was generally satisfactory after ten or twelve days' treament. We noticed a few days ago a third patient similarly affected; the man is forty-two years of age, a fellmonger by trade, and has had stricture of the urethra for the last four years. He was admitted Junuary 16 th, 1852, with partial retention of urine, only a few drops escaping at a time. As no instrument could be passed, the bladder was punctured through the rectum, and great reliet afforded. After the canula had been left for a few days, an instrument was introdnced into the urethra, and the process of dilatation is now going on, micturition becouing at the same time more and more easy. Mr. Cock has had constructed, by Mr. Bigg; of St. Thomas's street, a docble canula, with crauks so fixed to the upper part of the outer one, that the instrument cannot slip out of the bladder and rectum-an accident which should always be aroided, as re-introduction is extremely difficult. Mr. Cock has now operated with success on a great number of cases.

MIDWIFERY.

ON FISSURING AND LACERATION OF TIIE STRUCTURES OF THE PERMEUM AND CERVIX UTERI IN NATURAL LABOUR.

As the result of a long series of observations, Dr. Simpson has drawn the following conclusions:-

1. Fissuring and laceration of the cervix uteri and perineum are not, as is generally conceived, rare lesions during labour; on the contrary, they are very common occurrences; especially in primiparous labours.

1I. These lesions are not, as has been often alledged, necessarily the result of mismanagement, but they occur constantly in practice, despite every modification of management; and in cases also in which no kind of management has been adopted.
III. Evidence of the great frequency of laceration of the anterior stuctures of the perineum is furnished by,-1, Aimost every careful autopsy of women after delivery, whether assisted or not assisted during their labour ; 2. By the contracted or shortened state in which the perineum is almost elways found, then vaginal examinations are made for uterine disease in women who have borne a family; and, 3. By the fissuring or laceration itself being usually traceable (under careful tactile examination), particolarly in the first labours, when that examination is instituted in the interval of pain, immediately before the passage of the child's head, or after its birth.
IV. Lacerations of the perineum may be often felt beginning in the form of slight roughish rents or fissures upon the mucous surface of the perineum, and these may extend either backwards or forwards; and if they extend formards, they at last run over the edge of the perineum, and along its cutaneous surface; the mucous and cutaneous structures of the periccum being thus sometimes lacerated, while its middle cellular, and fascial tissues are comparatively tntire, or at least not so deeply and extensively injured.
V. The proper management and support of the periveum no doubt modifies
and diminishes this form of perineal lesson; but it fails far more frequeutly than is generally supposed in entirely preventing it.
VI. The evidence of the frequency of tissuriug of theos and of the lower or vaginal portion of the cervix uteri is the same in chameter, and consists prin-eipally-1. In the frequency with which slight laceration of the edges of the os, and of the mucous and middle coat of the cervis, is detected in autopsies after after natural labours, and particularly with first children; and, 2. In the permanent marks of its previous occurrence, as cxhibited in those cicatrices and irregularities of the cervix uteri, which anatomists have long empirically, but correctly, laid down as proofs that they, in whose bodies they are found, have been previously mothers.
VII. Fissures and lacerations.of the vaginal portion of the cervix uteri unt unfrequently occur to a very considerable extent, in cases in which the tissues of the cervix hare been remdered rigid by previous inflamation, by carcinoma, on by other morbid causes; and, in such casef, this fissuring or hacration, if limited to the lower or vaginal portion of the cenvix, seems to be accompamid with litte or no danger.- MIonthly Journal of Mel. Science.-Londun Journal of Mcdicine, September, 1851

of the managenent of women after the cessation OF MEASTRUATIOA.

By Dr. E. J. Till.
[The superabundance of blood and nervous energy after the cessation of the menstrual fow may be safely and effectually kept down by the habitual use of small doses of purgatives; and, as they may have to be continued for some length of time, it is best to consult the patient as to what medicine wonld be beat tolerated. The purgative to be used depends upon the constitution of the patient. Perhaps the best is some mild purgative which has beeu found to agte with the patient. Dr. Tilt contimues:]

I frequently prescribe the soap-and-aloes pill of the Edinburgh Pharmscopcia, ordering five or ten grains to be taken with the first mouthful of food at dinuer. Hxmorrhoidal affections I have uever seen coused by this frequent use of aloes, but I have seen them relieved by it ; and as I read in Giacomin's "Treatie of Materia Medica' my own experience on this point is conirmed by that d Avicenne, Stahl, Cullen, and his own, so I thiuk there must be some exaggert tion as to the extraordinary property generally ascribed to this valuable drug which can be associated with hyoscyamus, and is thus said to be less liable to induce piles. Kemp and Hufeland recommend the following powder to te given to those who are advanced in years, and who comphain of a tendency to vertigo:-Guaiacum resin, cream of tartar, of each half a drachm, to be tato at night. This, no doubt, will sometimes be found a usetul lavative; so will be popular remedy called the Cbelsea Pensioner, of which Dr. Paris has given ik following formula in his excellent Pharmacologia :-Or guaiacum resin, ote drachm; of powdered rhubarb, two drachuns; of cream of tartar and of lood of sulphur, an ounce of each; one nutineg finely powdered, and the mhot made into an electuary with one pound of clarified honey; a large spoonfulto be taken at night. I generally adminiter the flour of sulphur alone, or eliwt.
each ounce of it I adda drachn of sesquicarbonate or biborate of soda, and sometimes from five to to ten grains of ipecacuanha powder. One to $t w o$ scruples of these powders taken at night in a little miik, is generally sufficient to act mildly on the bowels, and I cousider such combinations as very valuable when a continued action is required.

Ifeel obliged to class sulphur anonyst purgative remedies because such is its visible action, but I believe that it owes its chief value, in diseases of cessathoi, to another action, much more difficult to understand, and which has long rendered it so valuable both in bemorrhoidal affections, where there is an undue activity of the intestinal capiliaries, and in skin diseases marked by a morbid activity of the cutancous capillaries. Whether sulphur cures by acting on the nerves or on the blood-vessels, or by modifying the composition of the blood itself, is difficult to tell, but it does certainly cure the diseases I have enumerated. It forms part of many popular remedies tor the infirmities of old age, was recommended by Mufeland, and is lauded by Dr. Day in his work 'On the Diseases of Idd Age;' but its utility is not generally known in all derangemente of the menstrual function, at whatever period of life they may occur, and particularly at the change of life, where, if required, its action may be continued with inpunity for months and years,-Provinciab Mred. and Sugr. Journal, October I, 1851.

THERAPEUTICW.

ON THE THERAPEUTIC USES OF INDLAN HEAP.

By Dr. Alcxanden Christisoir.

[Indian hemp, in spite of the strenuous recommendations of Dr. O'Shaughnessy, has been but little used in this country hitherto.]

Dr. O'Shaughnessy used it in the following diseases:- In three cases of rheumetism he found it apparently beneficial. In one of these, it seemed to produce great insensibility, and a state resembling casalepsy; but on this state passing off, the man was found to be thoroughly restored to health. In an epidemic of cholera, it was thought serviceable; but although it seemed to stimulate the circulation, and check diarrhee, it is doubtful whether any ultimate good resulted. In a case of hydrophobia, a soothing effect, with diminution of the spasms, and greater facility in driuking was kept up for four days; tut the patient died. Several cases of tetanus were also treated by him in this way, with apparent success. In one, ascribed to cauterization of the hand by a quack mixture of incandescent charcoal and tobacco, a state of intoxication was excited. by large doses of the extract of hemp, and the spasms were gradually put an end to; but death ensucd in the end from mortifieation of the hand. Another patient consumed 134 grains of the extract, and was ultimately discharged from the hospital cured. A third case, with similar results, is detailed. At the Natire IIospital at Calcutta, Mr. O Brien treated seven cases of tetanus in this way, and in four of them he employed ten-grain doses. The result was, almost iminediate relaxation of the muscles, and interruption of the convulsive tendency. Four of these cases recovered. A case in the practice of Mr. Ricbard O'Shaughnessy is uiso detailed, were the disease was connected with suppurating
of the scrutum. The hemp had no effect for four days, and then the patient became tranquil, with fewer paroxysms, and the appetite good. When the hemp was intermitted, the ssmptoms became aggravated; latterly, the hemp caused much excitement, and was therefore discontinued. The last case was one of infantile convulsions, where very large doses were given, and where the narcotic action greatly relieved the symptoms. The child recovered. This gentleman is confident that the resin is capable of arresting the progress of tetanus, and that, in a large proportion of cases, it will cure the disease.

It would certainly appear from the above facts, that Iudian hemp has proved of service in the treatment of tetanus, as it occurs in India. How far this result bas been obained in Europe, I shall now describe.

That I may not extend my observations to too great a length, I shall limit my remarks to the treatment of tetanus, as observed it cases in private practice, and in the Edinburgh Royal Intirmary.

Professor Miller has provided me with the following remarks:-
"My own experience sreaks loudly in favour of the hemp. I can now record three fortunate cases under its use-all traumatic tetanus-and a case which proved fatal, but where great alleviation of suffering was produced.
" The first of these was a girl, aged seven, admitted to the Roy al Infirmary, October 18, 1844. She had received an extensive injury of the middle finger of the right hand a fortnight previously. Inflammatory swelling and pain became intense, and there was a tendency to spasmodic flexion of the fingers and wrist. On the 23 rd she was observed by the nurse to take a 'kind of tit,' becoming rigid, having difficulty in opening the mouth, and swallowing, and complaining of pain in the jaws. At visit she seemed perfectly well. A brisk purge was ordered, and, lest the case should prove tetanus, ten drops of tincture of hemp were prescribed to be taken every four hours. Next day the symptoms were well marked without any influence from the hemp. The finger was then removed, and the simpiest dressing appipied to the wound. The doee of hemp wns jncreased to 20 drops, and after five doses stie slept; but the following day the symptoms were aggravated. Turpentive enema was ordered, and ice to the spine- 30 drops of cannabis to be given hourly. In the evening there was rigidity, but no spasm ; the hemp to be given every half-hour ; after which she became drowsy, and at twelve next day she was much improved. Aconite was now substituted; but as the spasmotic attacks became more severe, hemp wh again given, with the effect of producing sleep. She continued to improve till the 25 th Novenber, the dose of hemp being gradually reduced; producing, when given, drowiness, or calm sleep; it was soon discontinued, as it then secmed to excite the circulation. Throughout the whole perioi of its use, it effect on the appetite was obvious, the craving for food being at times absolutly voracious. After this no more medicine was given, and recovery was complete.
"The second case, occurring in private practice, was that of a boy, about the same age, who had simple fracture of the thigh, with compound and conminuted fracturt. of the great tor. The treatment aud result were the same.
"The third was a boy, rether older, who had compound fracture of the bones of the arm. Treatment "gain resuled in cure.
"In these cases a few doses gencrally induced sleep, with marked mitigation of the spasms. The period of narcotism dide not exceed two or three hours; the sleep was deep and unbroken, and seemed to be refreshing. It was followed by no headache, or other apparent inconvenience. The inost remarkable effet
observed, was the tolerance of the remedy, whereby a girl, aged seven, took every half hour, and sometimes many hours in succession, doses of hemp sufficient to nareotise an adult."

In these cases Mr. Miller is inclined to give the hemp credit for a chief share in the cure.

In 18.46 the virtues of hemp were tested in a case of tetanus in the Royal Infirmary, in the wards of Dr. Duncan. In 1847 another case presented itself, where hemp was administered. At that time sulphuric ether was much used as an anæsthetic, and it was thought probable that it would be of service in this case. The patient inhaled it at frequent intervals during a whole afternoon, with decided, but ouly temporary relief. After this camabis was given, without its physivlugical action being attained by nearly an ounce and a half of the tincture; it was not persevered with. Ether was again tied, and also opiates with some bencfit. The patient died on the 13 th day.

The tirst of these cases was very accurately observed, and the following report of the case from the journal will be found to have considerable interest:-

James Mackay, a railway labourer, was admitted under the care of Dr. Duncan, October 20th 1846. IIe had received a slight lacerated wound of the hand a week before, and tetanus had commenced on his admission. The wound appeared to be healing. He complained of great general uneasiness, particularly about the neck and spine, of some rigidity of the jaws, which couid only be separated three quarters of an inch, of inability to protrude the tongue, and of commencing spasm of the neek and upper part of the back. He complained also of "a burning abcut the heart." Lilis expression was anxions, with but little "risus." Ifs thirst was great, but swallowing difficult. Ue perspired profusely. The spasms, of short duration, recurred once or twice every minute; pulse, 115 to 120 , soft. Opening medicine was ordered, and at eleven o'elock tincture of hemp was given, repeated in doses of fifteen or twenty dreps with aypreciabie effect. On the 2 1st the boweis were not opened, though a turpentine enema was administered. The spasms were more violent and general, and a touch caused general spasm. He had not slept; 120 to 140 drope had no effect. The doses were increased to sisty or eighty drops avery three quarters of au hour, and croton-nil was given, producing free action on the bowels; and in the erening the spasms abated, but the hemp caused only slight dozing at intervals. The tincture was ordered to be continued, and strong,$\cdots e f-i e a ~ t o ~ b e ~ d r u n k . ~$

On the 22 nd swallowing was easicr, the spasme less vioict:, hut not less frequent; 100 drops were given at half-past clevei, and continued about every half hour till four o'clock, when drowsiness was quite decided; he was not readily roused, even by the spisus which, though as frequent, were not so intense. At mine o'clock drowsiness pased off; copions siocls, coloured as by the meducine, were bronght away by injection; 130 drops were given, and repeated at midnight, at which time he was much relieved, but suffered from cough. Oa the 23d the spasms were again gainiug strength, wo hel p having been given for nine hours. A drachno of the tineture was given and repeated at eleyen, when he becane quier. The doses were continued till evening, when he took miace-collops and beef-tea without difficulty, and the bowels were copiously relieved.

On the 24th, at visit, the spasms were absent, but the chest aymptoms were worse, with general mucous rille, and frothy sputa mixed with blood. Drowsinest bad been kept up by doses of a drachm to a drachm and a half. In the
erening he was much weaker, but quite sensible, with a desire for food. On the 25th he was perfectly free from spasm, but was evidently dyiog from accumulation of mucus in the chest. Very little hemp was given. He died at eight p.m.

In this case six ounces of O'Shaughoessy's tincture of Indian hemp were given in all, being equal to 144 grains of the extract. The extract for the tincture was reputed the best in Edinburgh. The doses at first were evilently too small. The examination of the body was not permitted.

It is a safe conclusion, from these facts, that Indian hemp deserves further trial in the tetanus of Europe, as well as in that of hot climates. I would particularly urge, however, the necessity, in all such trials, of making certain, by experiment on healthy persons, that the preparation to be used is good. For the present there is no other satisfactory tesi of quality.

As to the use of hemp as a calnative and hypnotic in diseases in general, I may mention that, while acting as clinical clerk in the Royal Infrmary, in 1849, I had several opportunities of administering hemp in different diseases as a hypnotic. The object was in general attained, and no evil results followed. I regret there is no record of these cases, as at that time 1 did not pay particular attention to the subject. Hemp is frequently given in other wards of the infirmary for a like purpose. In cases of phthisis and other lingering diseases. where opiates have for a long time been administered, but have ceased to produce sleep, Indian liemp may often be given with advantage; thus, in one case of advanced phthisis, doses of five or ten drops of the tincture were successful -in procuring sleep when other means had failct.

Dr. Christison has administered hemp in many instances. - He gives the following account of two of them:-

A gentleman had suffered from palpitation of the heart for twenty-one years, and at night the attacks were generally most severe. He had used one medicine after another witi the hope of relief, but he did not derive any benefit. Dr. Christison advised him to try Indian hemp. The patient's wife states that he passed the the aight on taking it without suffering from the palpitatian, though still he was perfectly conscions of its presence; and that the attack left him eatirely at $8 \mathrm{a} . \mathrm{m}$., instead of continuing twenty-four hours, as it previously did.

In the other case, a gentleman was afficted with a severe eczema over the whole body, with intense itching. A large dose of solution of the mariate of morphia caused extreme sleepiness, but so much increased the itching that he was kept awake by the necessity of scratching. Twenty-five drops of cansbis zincture gave him six hours' sleep, and he continued to enjoy sleep from four to six hours every night for six weeks without increasing the dose, until the eruption was nearly removed: during all this time the itchiness continued as before when he was awake.

Dr. Curistison has observed that, in the generality of cases, hemp has had the effect of causing sleep without disturbing the function of the stomach or bowels. Given where morphia and hyoseyamus had failed, it has also repeatedly failed to cause sleep; but in one or two cases he has found it to succeed where morphia and ophum disagreed.

An interesting series of cases by Mr. Donovan will be found in the 'Dublis Tournal of Medical and Chemical Science' for 1845 . This gentieman mas convinced of the beneficial effects of hemp, particularly in cases of neuralgi. Mr, Donovan had himself suffered occasionally since early life from neurabic
pain of different parts of the foot, lasting one or two days, or sometimes a week. Immersion in cold water gave entire relicf, but no other treatment did so, till he took five drachms of weak tincture of hemp; in twenty minutes the pain was gone; at the same time, "he bad hardly any conscionsaess of the motion of his limbs when walking-they appeared not to belong to him." On another occasion, he sook six drachms without effect ; but on the third night, after taking twelve grains of weak extract, he was free from pain, and slept four hours; and in several other attacks he derived similar benefit.

A gentleman was attacked on going to bed with ex rucuating pain in the left upper jaw, which kept him awake till morning; atter a short sleep, he awoke in torture, and in the evenirg, upon taking his third dose of fifteen minims of weak tincture of hemp, he slept profoundly till eight next morning, when the pain was much abated. At nigh: he repeated the remedy, with similar results, and next evening he took twenty minims, which deadened the pain; but it soon became as bad as ever. Embrocations of laudanum and camphor spirit were then tried, with anothar dose of twenty minims, and he immediately fell asleep; in the morning the priu was nearly gone, and it soon disappeared.

Another genteman had excruciating sciatica for thirteen weeks; his sufferings caused groans, cries, and tears, and he passed sleepless nights. The only relief he obtained was from firm pressure on the hips, and, for a short time, from laudanum. Two doses of hemp, at short intervals, produced sound sleep for eight hours, anis on awaking he was perfectly relieved. Five doses more so completely subdued the pain that it gave little farther trouble. He experienced a slight but transitory return on entering a cold room.

A number of other cases will be found in Mr. Donovan's paper, in which the hemp, if it did not effect a cure, yet was of great service ia the texatment of the complaints to which he glledes; biti in severai cases no gond followed, and, on the contrary, anpleasant effects were produced. Thus, a lady suffeing from neuralgia of various parts of the body was ordered five drops of strong tincture at night; nest morning she was giday and weak, and, without authority, took five drops more. She became faint and universally cold had some apprehensions of death, and remained disagreeably affected during the whole day; the pain nas not relieved, and the effects of the hemp reappeared at..jutervals for two or three days.

Another patient, who was acenstomed to take hemp, on one occasion had alarming depressing symptoms; he sat, greatly agitated, with his eyes open, and his head reclined on his chest. The respiration was tremulous, with interruptions of sobioing; his whole frame was in an indescribable sinuder, and he seemed to shiser with cold. The pulse was good all the time, and in half an hour he recovered.

Indisn hemp, in different forms, has been recommended, principally by the older writers, for several other purposes, as in the treatment of diarrhea, gonorthoca, and locally as an modyne lotion, or in the form of pouthice for hemorrtoids. For these purposes, I am not aware that it is now used; but there is one affection where it has late been applied with advantage-viz., uterine hemorrhage. Dr. Churchill says ("Discases peculiar to women," Ed., 1849) - We possess two remedies for these excessive diseharges, at the time of the menses going off, which were not known to Fothergill-ergot of rye, and tiecture of Indian hemp. The former has been long known to possess the power of restraiuing uterine hemorrhage after delivery, \&c., but the property of
hemp of restraining uterine hemorrhage has only been known to the profession a year or two. It was accidentally discovered by my friend, Dr. Maguire, of Castleknock, and since then it has been extensively tried by differem medical men in Dublin, and by myself with considerable success. The tincture of the resin is the most efficacions preparation, anci it may be given in doses of from five to fifteen or twenty drops three times a day, in water Its cffects, in many cases, are very marked, often instantancous, but generally complete after three or four doses. In some few cases of ulceration, in which I have tried it on acconut of the hemorrhage, it seemed to be equally beneficial.

These effects seem to the to be allied to the action of hemp on uterine contraction during labour, to the consideration of which subject I shall next proceed.
[The following interesting eases are given by Dr. Chrisison of the powers of Indian hemp on the contractions of the uterus.]

One woman, in her first confinement, had forty minims of the tincture of cannabis one hour before the birth of the child. The os uteri was then the size of a shilling, the parts very tender, with indurations around the os uteri. The pains quickly became very strong; so much so as to burst the membraues, and project the liquor amnii to some distance, and soon the head was born. The uterus subsequently contracted well.

Another, in her first confinement, had one drachm of the tincture, when the os uteri was rigid, and of the size of a balfonown; from this tlan labour became very rapid.

Another, in her first confinement, had also one drachm of the tincture, when the 09 uteri was of the size of a bale-crown. Labour advanced very rapidly, and the child was born in an hour and a half. There were severe after pains.

A fourth had 3 ij. of the tincture, in divided doses, which much accelerated and increased the pains. She had tien chloroform for six hours. I have since been informed, that the severity of the pains was so great as to cause some alarm, and chloroform became necessary to produce insensibility.

Case 1.-Was a natural labour and eighth pregoancy. The first stage was not completed till twenty-four hours after the woman was seized. Ilemp was given four hours before its completion. After the first dose of eight drones, little effect was o° served; but after the second of twelve drops, the duration of the pains was increased, :nd the interval shortened; and it was very obvious that the-intensity of the pains, counting from the secoud pain after the hemp was given, was increased; by the fourth or fifth pain the effect wore off, and hemp was not again given.

Case 2.-This was a second pregnancy. Seventeen drops of hemp were given in the second stage. The second pain, after the hemp was aken, was lengthened, and the interval shortened; this was not the ease with the third pain; but the intensity of the pains was much iucreased and the woman was speedily delivered.

Case 3.-First pregnancy. Uemp was given in the second stage of labour and the chief fact observed was increased intensity of the pains ; the duration of the pains was slighty inereased, and the intervals decidedly shortened, after the second dose of hemp. Twenty drops were first given, and after twenty minutes thirty drops more. 'Tweaty-four hours after, twelve drops were given, and after pains were induced, which the woman said were "quite as bad as when she took in labour first."

Case 4.-First pregnancy. Twenty-five drops of the tincture were given at the completion of the first stage; after this, both the pains and the intervals were shortened, and the intensity of the pains increased. After one or two pains the effect wore off, and thirty drops more were given at the end of half an hour. The third pain after this became very intense; and pain succeeded pain without intermission for several hours. As there was deformity of the pelvis, chloroform was administered, and delivery accouplished by the furceps.

Case 5.-First pregnancy. Hemp was given during the second stage, first thirty drops, and then thirty five drops after half an hour, and the patient was delivered during its action. The effect of the first dose was chiefy shortering the interval at first, and prolongation of the pain; but the effect on the interval was more marked after the second dose. The pains were described by the patient as more intense, and by examination it was ascertained that the head of the foetus was more forcibly propelled.

Case 6.- First preguan.y. Thirty drops of hemp were given in the second stage, and the effect was very decided. Previons to the adminstration of the hemp there had been no progress for an hour, the patient was nervous and excited, and though she complained much of the pains, the contractious of the uterus were felt to he feeble, and the child's head did not move; but on the second pain after the camabis the contractions became very strong, forcing down the head, and the child was expelled ten minutes after the hemp was given. At the same time there was no decided effect on the duration of the pains and intervals.

Case 7.-Sixth pregnancy, with the first stage not completed. Thirtytro drops were given, and the action was well marked; the woman said, the second pain after it was the strongest she ever had. After an hour and a half, forty drops were given, but there was no action on the pains; they became irregular, and the intervals were very long; the case was then allowed to proceed naturally. There seemed to be a tolerance of the remedy; for though 120 dtops had been taken, no physiological effect of any kind was induced.

In these caees, then, it does not-appear that the duration of the pains or of the intervals was materially affected in all; but in cases $1,2,4$, prolongation of the pain and shortening of the interval were most obvious; while in case 5, a shortening of the interval corresponding to each cose of hemp was observed. Shortening of the interval was in general a more conspicuous phenomenon then prolongation of the pain. Upon the whole, however, I am not inclined to lay much weight upon these results. But there can be no doubt that the intensity of the pains was greatly augmented by the hemp, except in the last case, where, after the effects of the first dose passed off, no action followed the repetition of it. This case was an exception to all the others.

It is worthy of remark, that in none of these cases were the ordinary physiologieal effects produced; there was no excitement or intoxicating action, and there did not seem to be the least tendency to sleep in any of them.

In conclusion I may sate what appears to be the most obvicus difference betreen the action of ergot of rye, and that of Indian hemp. First, -While the effect of ergot does not come on for some considerable time, that of hemp, if it is to appear, is observed within two or three minutes. Secondly, 一The accion of ergot is of a lasting character, that of hemp is contined to a few pains shortly after its administration. Thirdly,-The action of hemp is more energetic, and perhaps twore certainly induced, than that of ergot.

There appears little doubt, then, that Indiau hemp may often prove of essential service in promoting utering contraction in tedious labours.

More extended cepperience will show how far these effects may be depended ou, and to what cases hemp is most applicable.

Mode of Administration.-Indian hemp may be administered in several ways. The extract, in the form of pill, produces the most gradual effect, aud the disagreeable taste of the solution is avoided; but its action in this form is very ancertain. The followiug emulsion has been recommended:-A scruple of the extract rubbed in a warm mortar with a drachm of olive oil, to which are added half an ounce of mucilage, and seven ounces and a half of distilled water (Bromfield). But the simplest method is to use the tincture, which should be dropped into a little water, and immediately swallowed. The water may be sweetened with sugar; or an aromatic, as compound tincture of cardansom, may be added. The usual strength of the tincture is three grains of the extract to a drachm of rectified spirit.

The extract may be given in doses of one to six grains; the tincture in doses of ten to thirty drops, for ordinary purposes. Less than thirty drops is of little service in promoting uterine contractions; and greatly larger doses, as much as one or two drachms repeatedly, must be used in the ireatment of tetanus, in which disease there is very great tolerance.-BIFonthly Journal of Med. Science, July \& Aug. 1851.

TANNA, EMPLOYMENT OF.

Dr. Cummings states, as the result of several years' experience, that he has found tanain the most valuable of astringents. Thus, whenever, in dysenters, medicines of this class are indicated, it acts admirably, either given alone or combined with opium. He says, he could refue to more than a thousand cases of dysentery, diarrhoea, cholera infantum, \&c., in which he bas employed it, never with regret, and almost always with advantage; while other practitioners, with whom he has communicated concerning it, express similar opinions. In the sweating, or last stage of phthisis, or low continued typhus, and even in the worst cases, this accompaniment of diseases of debility has been entirely or in part relieved. It is useful in almost all forms of hemorrhage, and most remarkably so in hemoptysis; and when combined with opium and ipecaccean, it forms a medicament very preferable to acetate of lead and other similar substances. Among other fornts of hemorrhage, over which it exerts great power, is that from the bowels resulting from dysentery, and that which occurs-in threatened abortion. In hacmorrhoids, it is of great use as an outward wash. In epistaxis, it may be snuffed up or blown through a quill, and will almost alwass arrest the bleeding. No article in the whole class of astringents acts like it in severe salivation. In aphthe and other diseases of the mouth, in which there are spongy or bleeding gums, it possesses no equal. Used as a gargle in relaxed uvula and tonsils, its efficacy is great. As an antiseptic, for cleaning old fool ulcers, the author has extensively used in the form of a powder, especially when there is disposition to hemorrhage. As an estringent collyrium, it is, in his opinion, preferable to all other substances in the purulent opthalmia of infats. He administers it internally in two-grain doses.-Boston Med. Jourtul; and Brit. and For. Mcdico-Chirurgical Review, Oct., 1851.

gelected matter.
 -: $0:$

PHISLOLOGY.

ON THE PHYSIOLOGY AND PATHOLOGY OF TIIE PIKOSPIAATE AND OXAIATE OF LIME, AND THEIR RELATION TO TUE FORMATION OF CELLS.

By Dr. Wremase Benees, Residem Physician in the German Ilospital, Dation.
[In a small work lately published in Germany; the outhor has established the following results :?

2st. Just as in plants and inferior animals, the phosphate of lime is inlispensably necessary in man for the formation of cells; this formation does not only depend upon the presence of albumen and fat, but likewise upon the presence of phosphate of lime.

2ndly. The want of phosphate of lime, either in plants or animals or men, sauses a defcient formation of cells; and a great many pathologieal states of ti:e system really seem to depend upon a defieiency of phosphate of lime.

3rdy. In accordance with these general laws, we must suppose that we are enabled to cure, or at least to allesiate, by the internal administration of phosphato of lime, diseases marked by cmaciation, formation of ulecrs, in one word, by a deficient formation of cells.
thly I have shown by ing experiments, that such really is the effect of the administration of phosphate of lime;-1hat is to say, 1 have prodnced by the internal administration of phosphate of lime, an undoubted increase of the cell formation. in diseases evidently showing a diminished formation of cells.
sthly. As diseases or affections of this kind, which have come under my observation, I have to mention:-
a. Uleerations of any part of the system, which are based upon general dyscrasia, such as scrofula, and which are not merely local affections.
b. Infantile atrophy, especially the well known atrophic state of children suffering from rickets, and its accompanying symptoms, as diarrhona, \&c.
c. Tuberculous disease, nore especially of the lungs, in its earliest stages.

Gthly. 'There seems to be a remarkable connection between scrofula and deficiency of phosphate of lime. But as it generally ought to be mentioned, that we shall never be able to produce an increase of the formation of cells, muless we administer a wholesome, preferably nitrogenous diet; so it must be considered that the deficiency of phosphate of lime is only a constituent part of these discases;
nad by its more use we are very well enabled to remove symptoms, which depend on its deficiency, but by no means shall we cure thereby the dyscrasia in toto.

The ehief point of the facts on which these conclusions are founded is the great importance of inorganic substances in the formation of organie compounds. Liebig pointed out this fuct with regard to the organic compounds of plants, theso depending in some measure upon the presence of the inorganic constituents of the soil. And hence we must be induced to suppose that a similar relation exists in animals, and even in men. Dr. Beneke even supposes that in these organisations the inorganic are quite as essential as the organic compounds.

In Plants the azotic compounds are not produced withoas the co-nperation of the phosphates. The produce of cells increases proportionately to tho power and quantity of the manure afforded to the soil, and that this power particularly depends upon the presence of phosphates, the other salts really being of no great importance in this respect.

But there are different sorts of phosphates contained in the soil, such as phosphate of soda, phosphate of iime, phosplate of magnesia, and phosphate of iron, Is there any reason to believe one of these seyeral substances to be more important for the production of nitrogenous substances and cells than the others? Facts are not wanting which afford an affirmative nnswer to this question. The single experience that we may considerably increase the produce of nifrugenous substances and cells by manuring the land with ashes of bones, is quite sufficient to prote that the phosphate of lime is of the greatest importance in this respect. A great many analyses of ashes of bones, communicated in the "Annalen für Pharmacie und Chemie von Lieligg und Wohler," by Enderlin, Fresenius, and Will, and the analysis of bones by Berzelius, evidently show that the piosphate of lime is always present in ashes in a certain proportion, according to the nutritive power of the plants and the soil from which they are taken; and that, on the other hand, the proportion of phosphate of magnesia and soda in bones themselves is too small to partake of the influence exerted upon the soil by manuring it with boncs. Rerzelius fonnd in 100 parts of dry bones, 53.04 phosphate of lime; 1.16 phosphate (carbonate ?) of magnesia, and 1.20 soda, with a small quantity of chloride of sodium.

On these facts, then, I have founded the conclusion, that the phosphate of lime is indispensably necessary for the formation of cells in plants.

With regard to the inferior animals, and the part which is performed in their economy by the phosphate of lime, I have only to mention an excelient paper by Dr. Carl Schmidt, "Zur vergleichenden Physologie der wirbeilosen Thieres Braunchweig, 1845." In this paper Dr. Schmidt communicates most interesting experiments, from which it becomes crident, that the phosphate of lime has an intimato relation to the formation of cells. Dr. Schmidt ascertained beyond a doubt, that in the articulata the quantity of phosphate of lime increases or decreascs proportionately to the quantity of chitin, a sort of colourless, transparent tissue, which is not soluble in water, alcohol, ether, and liquor potasse, and forms tha principal constituent part of the skeleton of all the invertebrata. Now; this tissue is the result of an active formation of cells during the period of changing the integuments in these animals, and so it results that the quantity of cells formed is proportionate to the quantity of phosphate of lime present.
Dr. Schmidt himself says :-'These observations really are so striking as fully to
confirm the opinion before advanced; and he further adds as his firm belief, that a certain combination of albumen and phosphate of lime, or better, that a solution of albumen, which is saturated with the phosplate of lime, is particularly enabled to coagulate by the contact of heterogencous substances, and to fora membranes around them-that is to say, walls of primary cells.

Hnving become acquainted with these remarkable facts, I pat forward the question, whether the pinosphate of lime might not have the same relation to the formation of cells in the higher classes of animais, and even in men, as it has been shown to have in inferior animals and plants? I have been fortunate enough to obtain satisfactory and affirmative results.

The way in which I tried to solve the question was a double one-first, I had to prove that wherever we find a formation of cells, the phosphate of lime is present, and vice versâ, that the phosphate of lime is wanting where no formation of cells takes place; secondly, I had to show that the phosphate of line is indispensably necessary for, and that it really influences the formation of cells.

First, I examined thesserum, which was drawn by blisters. It is rather difficult to detect the phosphate in a single drop of the unaltered serum, the quantity of lime really being a very small one. However, in a single drop I detected crystals of the smallest size, by the sdaition of sulphutic ucid, and by continued examinations I found that the crystals presented themselves the more quickly and well marked the sooner the formation of pus-globules took place in the serum, which was left beneath the skin. If I slightly evaporated the serum in a hot-water bath and now mixed a drop of the evaporated serum with sulphuric acid, a rapid formation of crystals generally took place, which undoubtedly showed the phosphate of lime to be present in large quantity. I then examined exudation-matter of wounds and ulcers, and these observations really affurded the greatest interest; they decidelly proved the relation of the phosphate of lime to the formation of cells. It will bo well known to every accurato observer, that during the time of cicatrization of wounds and uleers, two different sorts of exudation genarally take place. First, an exudation appears, which I should like to call " spuri, su" exudation," and which really exhibits nothing but a natural cover for the part affected or wounded, being far different from what we call "spurious granulations;" this exudation is subsequeutly thrown off; afterwards beneath thes covering the real blastema is produced, affording the materials for the tissue which is to be formed, and undergoing the well-known changes to cells, tissue, \&c. Well, then, if we examine microscopically what I have called the spurious exudation, we shall observe it to consist of amorphous, structureless masses; no cells are to be detected; it only seems to consist of molecules; no organization takes place. And even in these masses, by the addition of sulphuric acid, I have never observed the formation of sulphate-of-lime crystals, and consequently no phosphate of lime could be present. If, on the contrary, I examined in the same way the blastema produced beneath the spurious exudation, after the lapse of about twenty-four hours, I not only met with beautiful exudation-cells and pus-globules, but also, by adding a drop of sulphuric acid, could observe a rapid formation of crystals, so as to be led to the conclusion that the phosphate of lime is present in a large quantity, where cells are produced, and that it is wanting where we find nothing but amorphous masses. Lastly, with respect to this point, I have to draw the attention to the muscular tissue itself; and it will become evident, from my obserrations, how small
a quantity of phosphate of lime we are able to detect by the kind of examination alluded to. The muscular tissue is weli known to contain a certain quantity of phosphate of lime; it was the result of Liebig's inquiries, that when the formation of muscular tissue from the constituents of the blood takes place, nearly the whole quantity of alkatine phosphates returns in the blood, and that at the same time a certain quantity of phosphate of lime becomes chemically fixed in the organsthemselves. 'This quantity, then, however small it may be in a muscular fibre, which is so fine, as, by microseopical examination, to show the transverse stripes, I have detected, in the above deseribed way, in a few muscular fibres which I had submitted to the action of sulphuric acid for about twenty-four hours. I observed, after this time, by the microseope, ersstals of sulphate of lime-of course only in very small quantity, but beautifully formed. Especially in this kind of preparation the different stages of erystal-formation aro to be well observed.

After these experiences, the other question remained-whether the phosphate of lime really influences and increases the produce of cells? I have tried to solve this question in a double way, first by experiments, and on the other hand, by practical inquiry.

With respect to the experiments, it is my firm belief that I succeeded in artificially producing cells, which did not show any distinction from pus-globules and what we call exudation-cells.

First, I tried the phosphate of lime in patients who suftered from chronic ulcers, resulting from the scrofulous dinthesis, and exhibiting ${ }^{\circ}$ want of fornation of eclls in the highest degree. These patients had been for a long time under medical treatment, inclusire of my own, but all remedies had been fruithess, such as cod liver cil, ointments of lead and zine, lotions of nitrate of silver, \&e. Being myself quite sure, that no influence of the former kind of treatment conld be still remaining in operation, and even after having left off all treatment for a long time, I then orderd the phosphate of lime to about four or eight, to twenty grains per diem, and after a few days the uleers evidently showed themselves in another state. The suppuation improved; instead of an ichozous secretion, a pus bonum et iaudabile was produced, and after a few days longer the cicatrization began. In children, in particular, 1 obtained very striking results, and there was not the least doubt, that the efiect must be ascribed to the phosphate of lime.

In syphilis I had also tried the phosphate of lime, and even in persons who had for a long time already suffered from secondary uleers, uleers of the bones, \&c., and became emaciated and exiremely weak during that time. These cases likewise showed a most beneficial effect of the phosphate on the formation of cells. It ought to be mentioned, that besides the phosphates, the iodide of mercury was administered, but I have never met with such a rapid cicatrization of syphilitic ulcers, as was the case in these persons, and I could not help thinking that the cure was promoted in a remarkable degree by the internal exhibition of the phosphate.

As to other affections, in which I have tried the phosphate of lime, I have to mention rickets, caries, inflammations, and consecutive abundant suppurations of the cellular tissue, and also fractures of the bones. In all these cases, the administration proved most benciicial, and I would strongly advocate its furliser experimental use. With respect to fractures of the bones, I have to state in paxicular, that the consolidation of the callus took phace in a much shorter pestod than is
generally the ease ; however, too large doses of phesphate of lime must be shumed in those cases, as I have observed an abundant callus, causing a deformity of tho bones, proluced by the daily administration of twenty four grains of the phosphate for a fortnight.

Ifaving stated the principal facts, affording a proof of the relation of the phosphate of lime to the formation of cells, Dr. Bencke proceeds to add, that as the formation of cells is increased by the administration of the phosphate of lime, we may ask-in the diseases shown to be most benelicially influenced by the administration of phosphate of lime-is the phosphate present in the system in a smaller quantity than it ought to be in the normal state? But it is impossible to determine directly the phosphate of lime which is present in the body. One might suppose the question might be solved by making accurate analysis of the blood, but he says :-We cannot avail ourselves of the nalysis of the blood in order to solve the above question; but there is another way which will enable us to do so, and this way is afforded by continued analysis of the urine and the feces. Thereby we shall hnow what quantity of phosphates is thrown out of the system, and by comparing this quantity with the average quantity of phosphates taken with the food, we shall be very well emabled to jutge of a general increase or decrease of the earthy phosphates in the system. Inowever, asit is very likely that the greatest part of the phosphates contained in the excretions of the bowels originate directly from ingesta, and as it is certain, on the contrary, that the greatest part of the earthy phosphates contained in the wint originate from the wear and tear of the tissucs and bones of the system, I have in the first phace only directed my attention to the latter, and I have found the amalysis of the urine to gire a satisfactory answer to the question proposed.

The following now are the results of the analyses which I have performed, and which we may depend upon the more as most of them have been twice repeated. First, the urine which I marked by 0, always contains a very small quantity of Ihosphates; this quantity, however, cannot be detected in the above-described way, but it neter secms to exced the quantity of 0.2000 grain in one ounce of urine. There are many steps between no phosphates at all and of 0.2000 grain; they require a more accurate study in order to shon the preternatural decrease of tho quantity of earthy phosphates in the urine. But as we shall consider here only the bypernormal increase in the quantity of phosphates which are excreted in tho urine in discases, I am compelled to waive this discussion at present. I have only to state that in every case we may consider a urine marked by 0 , as containing 0.2000 grain of earthy phosphates, or less; never more than this in one ounce. With respect to the other descriptions of urine, I should really far exceed the limits of this paper by adducing the results of the single analysis; they can be seen in a pamphlet which I have lutely published in Germany, entitled, "Zur Physiologie und Pathologic des Phosphorsauron und Oxalsauron Falkes," Goettingen, 1850. Here I only beg to state the general results as foliows:-

A urine marked by $\frac{1}{2}$, contained nearls $0.250-0.300$ grain of earthy phosphates in one ounce; a urine n. ked by $1,0.400-0.450 \mathrm{grain} ; \mathrm{a}$ urine marked by $1 \frac{1}{2}$, $0.550-0,600$ grains; a urine marked by $2,0.700-0 . i 50$ grain; a urine marked by 3, 1.000-1.050 grains; and lastly, a urine marked by 3-4, 1.000-1.300 and more grains of earthy phosphates. By referting to these numbers we may easily
approximately caleulate the quantity of earthy phosphates voided in twenty-four hours, and I am sure we shall never be far from the truth.

After these explanations I hare to speak of the different quantities of phosphates which I met with in the urine in different diseases. My observations of courso do not extend to all diseases ; it would scarcely be possible to give such sccounts in a large number of years, notwithstanding I observed a sufficient number of cases with respect to this point for the deduction of somo general results,

First, I have to remark generally, that scarcely any disenso occurs, in the course of which we should not sometimes find an increased quantity of phosphates; that at any rate there exists no disease which does not admit of some hypernormal excretion of phosphates at some one of its perieds; on the other hand, we meet at different periods of disease with quito different quantities of phosphates, as, for instance, it often happens that in the first stages of disease we do not find an increased quantity of phosphates at all, and that at a later period a large quantity is excreted. With respect to this point, and in order to obtain results which can be depended upon, it is therefore indispensably necessary to examine the amount of phosphates almost every day; we shall never arrive at correct views if we do not attend to this rule.

Secondly, it must be stated as a general result, that the quantity of phosphates excreted does not depend as well upon the nature of the disease itself, as upon the individual afflicted; and if in one case of rheumatism we find, for instance, a large amount of phosphates in the urine, we do nut detect any increase nt all, perhaps, in another case. This point really is a very important one; it affords the best proof of the general fact, that we are always wrong in speaking of certain diseases as of individuals, or as of well-defined and marked never-varying alterations of the physiological state of the body, and that we shall never succeed in obtaining positive results, if we do not direct the most accurate attention to the previous history and the former state of the individual who has become aflicted with any diseasein other words, if we do not individualize disease.

It may be concluded from these short remarks, that it is very difficult to give an account of the excretion of phosphates, generally applicable and absolutely right in almost every caso. However, we meet with some pathological states which, generally speaking, very rarely show an increase of the excretion of phosphates; with other affections which always show an increased quantity of phosphates in the urine and even a most anomalous quantity; and with others which are generally distinguished by a slighter, but continued loss of phosphates. To these states and affections I shall now draw attention, and I scarcely know how to give a better explanation of them, than by referring to the numbers above alluded to.

I have met then with uride containing only such a quantity of phosphates as I have marked by 0 or $\frac{1}{3}$ -

1st. In persons who, always showing a good state of health, a normal complexion and colour, and a strong constitution, have accidentally become afficted with discase or injury, as, for instgnce, with syphilis, wounds, contusions, \&c. As I really considered these persons as nearly healthy, at least for so long a time as the affection remained a local one, I am inclined to yiew the quantity of 0.1000-0.2000 grains of earthy phosphates in ono ounce of urime as nearly the normal quantity. It must, however, be remembered, that it is always extremely difficult to speak of
normal states of hoalth, a precise distinction between health and disease being incompatible with our present anount of knowledge, if conceivalle at all.

2nd. In the first stages of acute diseases, as, for instance, of neute rheumatism, pneumonia, pleuritis, peritonitis, \&c. When these diseases happened in persons who did not exhibit any other signs of diseased constititution, and had never been ill before, I did not, either during the whole course of the disease or upon recovery, find an increased quautity of phosphates in the urine. But it was seldom I. met with such persons. When, on the other hand, persons were afficted with acute diseases who never enjoyed good health before, or suffered from dyscrasia of the blood, I almost always met with an abnormal guantity of phosphates in the urine after the acute stage having ceased; there appeared now all the symptoms of the original dyscrasia, and either the reconvalescence was a very slow one, or emaciation, general weakness, \&ic., was still increasing; instead of acute tuberculosis, the symptoms of chronic affection of the lungs appeared; instead of acute rheumatism, chronic rheumatism remained. From these very remarkable differenecs I concluded with certainty, that it was not the disease itself which caused a decrease of the excretion of phosphates, but that this decrease was exclusively dependent upon the acuteness of symptoms, that is to say, the feverish action-a circumstance which I shall refer to in the following parts of this paper. It must also be mentioned, that in some cases of acute disease I met with a quantity of phosphates as marked by $\frac{3}{4}$ or 1 , even during the first periods; in these cases, however, the quantity of phosplates was yery considerable after the acute symin' sems haring eadaed.

3rd. In the first stage of typhus fever. INere I always met with a decrease of the quantity of earthy phosphates in the urine, a result which, ufter a great many analyses, seems to be a characteristic one. With respect to the later periods of typhus, however, the same refers to them as I have stated on acute diseases generally.

4th. In some eases of Bright's disease, as well as in some persons who suffered from stenosis of the orifices of the heart, or from insufficiency of their valvules. But some cases also occurred where an absolute increase of phosphates was met with ; however, in these cases complications or affections of other organs could be observed; and I am imelined to suppose that the dyscrasia of the blood, which leads * to the well-known degeneration of the kidneys, as well as the dyscrasia which results from the above-mentioned diseases of the heart, does not cause by itself any increase of the earthy phosphates in the uriue.

5th. In the first stages of carcinoma (but only in thesc); an observation the more interesting, that Rokitanski alludes to the preternatural development of the bones, or the proportion of phosphate of lime in persons afficted with cancer. I myself, found in a post-mortem cxamination of an individual who died from carcinoma of the lungs, all the cartilages of the riks ossified; which was never the caso in persons who during life passed for a long time increased quantities of phosphates. and had been afflicted, for instance, with tubercalosis.

I have to add, generally, that in all cases where I observed no increase of the phosphates in the urine during the whole course of a disease, I likewise never observed emaciation; that is, want of formation of cells; these persons altogether were of streng constitution, and showed a remarkable deyelopment of the muscles

In these persons blistered suraces healed far more speedily than was the case in persons who passed a hypernormal quantity of phosphates, the average time being three or four days. Of course, in acute disenses emaciation was observed, though no abnormal loss of phoophates could be detectel; the same was the ease with Bright's disease. In these affections, however, many circumstances concur, which suffciently account for the waste of tisoues-cireumstances which do not requiro any further explanation.

To sum up now the results of the first and second part of these commanica. tions, I have shown in the first that, supposing a sufficient quantity of albumen and fat to be present, the produce of cells evidently increases by the adminitration of phosphate of lime; that, on the other band, by this administration we may promote the cure of diseases which show a defficiency of the formation of cells; and that especially in scrofulous affections the administration of phosphate of lianc has often proved most beneficial. On the other hand, in the sceond part, I have established the fact, that in nearly all chronic disetase, where we observe a loss of flesh, emaciation, and general wenkness, a laypernornal quantity of phosphates is always excreted from the economy by the urine, and more especially in those cases where the administration of phosphate of lime proved most beneficial. Yerhaps it might be supposed that these quantities hat been increased by the phosphate of hime take: as a remedy; but this is by no means the case; on the contrary, my observations prove, that even during the administration of phosphate of line, the quantity of earthy phosphates in the urine often decreases, suppming a proper treatment in other respects to be emphoycd. Well, then, the harmony of the results of the above two parts is so striking, that we can scareely admit of any douht in their truth, and the physiological as well as pathological importance of the points alluded to is so apparent, that it dues nut require any further explanation. Wo know that the phosphate of lime is indi-pensably necessary for the production of cells; we know that in a great many diseases the phosphates are excreted from the economy in very abundant guantities by the urine; and we know eren that in theso diseases the formation of eelis is deficient. Shall we have any doubt that by substituting the quantity of phosphates exereted by the urine, or by removing tho cause of their excretion itself, we mast afford a great beacfit to persons who are - afllicted with the diseases alluded to.

There remains one dificult point, wheh Ihave to refer to. In the way which Irclied upon in determiniag the quatitios of phosphates in the urine, I precipitated the phosphate of margnesia, as well as the phosphate of lime. This having been shown microseopically c.ad chemically, the question arose, whether the results which I spoke of with respect to the phosylate of lime would not require an amendment? It is true the proportions between the phosphate of lime and phosphate of magnesia are very different in different urines; hovever, I rarely abserved tho quantity of magnesia to exceed the quantity of lime; on the contrary, it was oftener found less. I therefore concede, without any hesiation, that the exact quantity of phosphate of lime could not bo asce:tained in the manner which I have adopted; bat generally we shall not be fur from the truth in supposing half the quantity of earthy phosphates present to consist of phosphate of lime, this being generally below and very rarely befond the real quantity. I nust repeat with respeet to this point the above given remark, that I have only looked for approximate resulte, and that I believe them sufficient for the conclusions which X hare drawn. All these
relations demand a very accurate revision; nor can I refrain observing that the propurtions between phosphate of lime and phosphate of magnesia in different diseased persons are highly interestiug, so much so as to recommend their most accurnte study andexat analysis. Inexpressing this opinion, I refer, for instance, to a commonication in the "Amnales de Cihmic et de Physique, Juin, 1S49, tom axvi., 3e série," entitled" Hecherches sur les Causes du Gaitre et du Cretidisme, par II. 'I. Grange," but I an comgelled to wave the diseussion for the present, it being rich enough in itself to form the subject of a special treatise.-Lnacet, April 19, June 21, und June 28, 1851, pp. 134, 66S, 699.

MEDICLNE.

EPILEPSY AND INSSINITY IN A LTTTLE BOY; RECOVERY.

(Under the cate of Dr. Mabincton)

It is very natural that in our visits to the hospitals of this metropolis, oue attention shouh be especially directed to the diseases whose nature is but inperfectly known, the cure of which is uncertain, and where the pathological manifestations are of a very changeable character Epilepsy is of this number; and we have more than once had an opportunity of recording cases of this disorder which strongly illustrated some interesting point respecting its nature or treatment, or which tended to arrest astention upon phenomena not frequently observed. We alluded some time ago to the maviacal violence which sometimes accompanies the fits, it is now our intcution to dwell for a few moments on a case wherein insamity was manifested, after epileptic seizures, in a very young subject.

It may safely be asserted, that with children epilepsy is more centric than eccentric, or, in other words, that it depends more on irritation conveyed; to the brain from some portion of the body, as the liver or intestine, than from any derangernent of the e:secphaton itself. It is not difficult to agree in. this respect with the authors who have written on the discase; but when insanity oceurs in a very young cpileptic patient, we find existing theorics insuffecient ; for it is generally held that the mental derangement is the consequence of x epeated attacks through a series of years, that permanent congestion of the brain, and that fatuity, followed by complete aberration of mind, gradually sets in.

These gradual changes are thus described by Dr. Watson :-
" Doubiless, a single paroxysm does often leave the panient in a worse condition than that in which it found him; but this does not become perceptible to ordinary observer until after the alteration has been rendered apparm b, repeated fits and repeated small additions to the permanent inju-ry. Tr. n .sends of the patient remark that his memory is enfeebled in proportion to the number of the attacks; that his mental power and intelligence
decline. Ilis features even assume, by degrees, a peculiar character, and too often he sinks into hopeless fatuity, or confirmed inbecility or insauity. It is this tendency which render cpilepsy so sad and fearful a discase."

Being acquaiuted with these views, we were not a little astonished in sceing in Dr. Babington's wards, a little boy giving evident marks of insanity, and whose derangement was ascribed to epilepsy. It is well known that the latter complaint may attack patients of any age, but among the most common periods, Dr. Bright mentions seven or eight years, being the time of the second dentition; and this is just about the age of our little patient. But besides the irritation of the teeth, other sources of disturbance may also exist with young patients, as stones in the bladder, worms, \&e., so that very careful inguiries respecting these circumstances should always be instituted when we are desired to prescribe for children suffering from epilepsy. The case under consideration runs as follows:-

Thomas C-, aged eight years, a remarkably handsome, stout, heahhylooking, and apparently intelligent child, was admitted into job ward in March, 1851, under the care of Dr. Babington. Me is one of four childrea, who are all in good heallh; the patient himself has hardly ever been ill, jut bis father states that about four months before admission the child suffered from a very severe attack of whooping-cough, and swelling of the cervical glands. He recovered, however, in a short time, and during his comakseence he had an epileptic fit while in bed. This fit commenced with violent screaming; he then jerked his legs up and down, lost his consciousness, \&e. At first, he had but one or two attacks per night, and one in theday; but the frequency of these had gone on incrensing, and just before his admission he had twenty or thirty fits in one night, but not more than four or fise in the day. 'I hese numerous fits probably belonged to that class which has by the French been called "petit mal;" they had laterly, however, increased in severity, and were accompanied by twitching of the right side of the face.

When the patient was first taken by these fits, he was quite sensible after each attack; but as they increased in number and strength, he lost all power of reasoning, and his intellectual faculties gradually went astray. He oceasionally complained of pain in his stomach, but this usually disappeared in a very short time. As the boy continucd to get worse, he was brought to town, and duriug a space of six days, which he spent in London before entering the hospital, he had but very few fits, which circumstance would tend to imply thiat the change of seene and the journey had acted favorably on the nerrous system.

On admission he was found a well-formed boy, with large development of head, especially on the posterior part; dark hair and eyes, and of a very handsome and interesting countemance. Inc is constantlyjumping out of bed, eluding the nurse's watching, and runs up and down the ward. He is always in some mischief, ever talking concerning subjects unfit for his age, and using shocking language, which forms an unpleasaut contrast with the regularity of

Wh features and the beaming intelligence of his looks. He is rery quick at answering, and puts to the physician and those who accompany him the strangest questions, which he repeats with great rapidity, until attention is paid to them. All the functions are normally performed, and there is no cridence of the existence of calculus in the bladder or intestinal worms.

The boy was at first well purged with jalap and rhubarb, and Dr. Babington then commenced a tonic treatment by the agency of sulphate of zine, the dose for the begimning being two grains three times a day in mint water. On the next day the nurse reported that he had four fits in the night, which she thus describes: Me first sits up in bed, then gives utterance to a kind of bark, the legs and arms become rigid, and subsequently courulsed, and after about ten minutes' struggle he falls into a profound sleep.

The doses of sulpate of zine were gradually increased up to six grains shree times a day; the fits did, however, not vary much in number or intensity for several weeks, but after that period, the health being still very good, they gradually diminislied, the propensity for talking and mischief became less, the intelligence cleared up, and about three months after admission there were no more fits, and the little patient left the hospital well in mind and body.

The subject of the preceding case did eertainly not look scrofulous, (epilepsy has by some authors been coupled with the scrofulous diathesis,) nor could the convulsive affection be traced to heredity; we may, therefore, suppose that the patient's naturally very excitable nervous system had been somewhat affected by the severe attack of whooping-cough, soon after the disappearance of which the epileptic seizures had begun. The fact of alienation ormind having subsequently taken place in so young a patient is, however, dificult of explanation. The sulphate of zinc can of course not be regarded as a specific, but the success which accompanied its use in this case will serve as an additional proof that the miuczal tonics act very favourably where any portion of the cerebro-spinal axis is suffering from debility or derangement.

SURGERY.

ulcerated cancer of the breast; treated by dr. James arnott's freezing process.

(Under the charge of Mr. Sinuw.)

Ourattention was attracted, a short time age, towards a patient in the eanece ward, who suffers from an ulcerated carcinoma of the breast. This poor woman is far advanced in age, but the breast was attacked only one year ago. The disease has, however, made such rapid progress, that the seirrhous tumour is now deeply ulecrated, and at times extremely painful. It appears that Dr. Jannes Arnoti's plan of producing insensibility, by freczing the part
with a mixture of ice and common salt, was tried in this case, in order to allay the agonizing pain which the poor woman was suffering. 'This trial was attended with very satisfactory results, and the patient was so much relieved by the procecding, that she soon afterwards requested to have the ice applied agail, and she expresses herself as very grateful for the temporary removal of the severe pain she experienced.

Dr. 'Tyler Smith likewise succecded, some time ago, at St. Mary's Mospital, in relieving excruciating pain by the freezing mixture, in case of cancer of the uterus. It is plain, however, that the apparatus must be somewhat more complicated when the discase has attacked the organ. The fact that the pain accorpanying the carcinoma of the nomb was thus allayed, should certainly not be lost sight of.

Most of our readers probatly know, that Dr. James Arnott advises cqual quantities of ice and common salt to be mixed together, (the former being well pounded, and then placed into a gauze bag, the margins of which are attached to a gatta-pereha ring. By gently touching the part to be rendered insensible, with the bottom of the bag, for a minute or two, the surface becomes suddenly frozen, insensibility follows, and the pain of course disappears. To obviate the tingling sensation which is apt to ensue upon the return of sensibility, ice without salt is to be used, and thas no uneasiness whatever is experienced. We have seen portions of the human frame thus frozen, and always noticed that the insensibility became very great.

Dr. Arnott has proposed that his process should, in certain operations, take the place of chloroform; but it is plain that the insensibility can hardly be carried decp enough for the generality of operative purposes. Where, however, a thin stratum only is to be implicated, it might certainly be used with advantage. To relieve the pain of cancer, it seems, from the preceding case, and others which have been recorded, to descrve attention at the hands of those who have to preseribe the palliatives which are so indispensable in that melancholy affection.

MATERIA MEDICA.

Arenicnt, Aild.- The employment of the cortex of the rhammus frangula, or alder buckthom, has been recommended by Dr, Gumprecht, of Hamburgh, as a raluable and cheap substitute for soine of the aperients now in use. "The fresh cortex is not to be used, as being uncertain or vivent in its effects, that which has been kep, at least a year being preferable. If given in infusion it sometimes causes vomitingt :and the decoction has been found the best and simplest way of preparing it, although the tincture and watery extract are very efficient preparations. The decoction may be prepared with $\frac{z_{3}}{3}$ ss to $\frac{2}{3}$ i. of the cortex to $\frac{3}{3} x i i$. or water, boiled down to $\frac{-}{3}$ vj, the strength depending upon the condition of the patient, duration of the disease, \&e, So, too, the dose of a tablespoonful may be given every two or three hours, or two or three times a day, according to the state of the bewels and system in general.Med. Tincs, Nov. 1, 1851, p. 469.

FORENSIC MEDICINE.

IORSES' AND IIUMAN BLOOD.

At the inquest held upon Eama Styles, who was brutally and mysteriousiy murdered at St. Jchn's Wood, Dr. Arthur IIill Hassall, who was appointed by the coroner to ascertain whether the stains upon the husband's clothes were those of human blood, stated that he closely examined with the microscope two of the stains upon the husband's shirt and trowers; and in order to arrive at an unerring and satisfactory conclusion, hat scraped from a wall some horses' blood, , ad compared it with the blood-stains. Ifaving detected adistinct and positive difference wetween the stains, he then examined the two stains upon the husband's clothes, and found that they were those of horses, and not of human blood. In answer to the coroner, he said he felt no hesitation in arriving at that conchusion. A verdict of " wilfu! marder against some person or persons unknown" was ultimate!y returned. The jury, in a written addendum to their verdict, fechased the identity of the prisoner cond not bo proved, and that the ends of justice were defeated by the prisoner not hariug been brought before the coroner.

CHEMISTRY.

on a new metmod of obtalnivg mppuric acm in considbrable quastity without evapoiation of the URINE.

The method described for obtaining hippuric aeid, consists in adling to fresh cow's urine some hydrochloric acid, in the proportion of half a fluid ounce to a pint of urine. The hippurie acil being very slightly soluble in this acid tiquor, is deposited torecher with some colouring matter, from which it is subsequently purified by dissolving it in water with excess of lime, adding animal charcoal, and heating the mixture for half an hour or more. On adding hydrochloric acid to the filtered liquor, and allowing the mixture to cool slowly, the hippuric acid is deposited in large prismatic erystals. It sometimes requires to be further parified by repeating this process. The acil on being thus prepared, on being analyzed, gave results agreeing with the established formula for hippuric acid, namely, C_{18} IIs $\mathrm{NO}_{5-1-\mathrm{II}} \mathrm{O}$.

ON TUE COMPODNDS OF COTION WITH TIIE ALKAIIES.

The author first described the process of Mr. Mereer, by which the beautifui fabrics anade known to the public through the Great Exhibition, are produced. When cotton, or au article made of that material, is inmersed in strong eaustic soda in the cold, a certain combination is effected-which is again destrojed by nure water; but the " Mercerized" cotton thus produeed is perwnenently centracted, and rendered more susceptitle of dyes. This wasillustratel by a number of specimens, much shrunk, so that they assumed an appearance of extriordinary fineness, others
puckered in patterns bj partial "Mercerization," and others again printed with colours which surpassed in depth and brilliancy those produced by the same means on the calico in its original state. Dr. Gladstone proceeded to detail experiments by which he had succeeded in obtaining the compound of cotton and soda free from ndhering alkali, through the agency of strong, sometimes absolute alcobol. He found that the proportion of soda which combined with the lignine varied with the strength of the solation employed, but under no circumstances exceeded one at m , the formula of the " sodaed"cotton, being $\mathrm{C}_{24} \mathrm{II}_{20} \mathrm{O}_{20}$, $\mathrm{z} / \mathrm{O} \mathrm{O}$. There was a varying amount of combined water. Some properties of this compound were discussed, and the author then proceeded to state his conviction that there was no sufficient ground for viewing the " Mercerized" cotton as chemically different from the original lignine It is identieal in composition, and the chauge of properties may be accounted for by the change in its physical condition. When viewed under the microscope, the fibres in their ordinary condition appearas flattened twisted ribands; but the moment they are touched by the alknine l.ey they untwist themselves, contract in length, and swell ont, nssuming a rounded solid form; and this circular appearance they retain after the soda is removed by water. This not only explains the shrinking, but the cause of a larger quantity of dye being absorbed, as the substance of the fibre itself is porous. Potash has a similar action to that of suda, giving rise to a compound, the formula for which is $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{20}$, KO .

SURGERY.

anjury to the pelvis, bladder, and unetilba; death; AUTOPSY.

(Under the charge of Mr. Fergusson.)

Among the numerous kinds of injury which come before the hospital surgeon, there are few which present more danger than lesions about the abdomen or pelvis. Such cases, when the accident is severe, almost always terminate fatally; and the line of treatment must necessarily be surrounded with some uncertainty, as it is often extremely difficult to distinguish the actual nature of the lesion which the patient has suffered. Injuries of the urethra are generally fullowed by obstinate stricture; of this we have seen several examples, the latest being a boy, under the care of Mr. Coulson, at St. Mary's Mospital, who was for several years the subject of stricture and occasional retention, this state of things being the result of a laceration of the uretha. The boy has finally died of chorea, and we shall probably at no distant period offer a detailed report of the case.

But when tho bladder is cither contused or ruptured, matters proceed at a more rapid rate, and death soon ensues; but there is a great difference in the number of days daring which'patients live, after the occurrence of a rent in the bladder and extravasation of urine in the abdomen. Some die in a few hours, and others have been known to survive ten days, a fortnight or more. We shall just adduce some of the cases which have of late come to our cognizance. In the first, the injury was of a yery scrious character. The fucts are these :-

William P-, a carman, about thirty years of age, was brought into tho huspital, Dec. 24, 1851, having been run over two hours previously. It appears that while driving his cart through a narrow road, the patient found himself wedged between the wall and the vehicle, the horses having taken fright. The poor man had not time to rescue himself, but was knocked down, the when (the tire of which was six inches wide) passing between his legs, along the perineum, to the upper part of the right thigh, and by a sudden turn crossing over the abdomen. At the time of the accident, the bhdler seems to have been nearly empty, as the patient had passed urine an hour before.

On his admission, he was very low, and complained of great pain over the region of the bladder, and in the loins, especially on the left side, the course of the wheel being distinctly marked by strong ecchymosis. The patient was immediately placed into a warm bath; and as he had not passed any urine since the aceident, an attempt was made to introduce the catheter. The uretha was found much lacerated, and the catheter seemed to deviate from the straight course just before it arrived at the triangular ligament. With the finger passed into the rectum, the point of the instrument could be felt gliding between the gut and the bladder. Mr. Davis, the house-surgeon, finding his efforts fruilless, sent for Mr. Ferguson, at il o'elock, x m.

After having carefully examined the patient, Mr. Fargusson endearoured for a short time to introduce the imstrament, but without suceess. Ife gave it at the same time as his opinion, that there was but little, if any, urine in the bladder, and that the right ramus of the ischium was broken at its junction with the pubis. Ordered fomentaions.

On the next day, there was not much change, and the patient did not seem to suffer much pain, except over the immediate sicinity of the bladder, which viscua did not appear to be distended; the tongue was moist, the pulse quick and fecble. Calome!, eight grains; opium, one grain-to be taken at once. Another attempt was made to pass the instrument, but without success.

On the third day, the patient was found to have had a very bad night; he complained of severe pain over the bladder, and felt a great inclination to pass urine. It was thought that he might perhaps succeed in the warm bath, but be obtained no relief from it; nor were further attempts with the instrument suceessful, The abdomen now became tympanitic, but the pain remained lucated in the region of the bladder.

In the afternonn, as the patient was in much pain, Mr. Fergusson was again sent for, and the catheter tried, but wihout success; and Mr. Fergusson stated that the bladder was not distended, for he had found that on passing his finger into the rectum, he could feel no fulness about the bladder, the latter seeming free and capacious. Extravasation of urine was now suspected. Two incisions were made on the obdomen, and another in the left groin; but no winous fluid escaped. The man continued in this state until about half-past two, A. M., on the fifih day, when the pain became excessive, and a sudden change took place. The nurse called up the honse-surgeon; but before the latter reached the ward, the patient was dend.

The post mortem examination revealed the following lesions:-The intestines were slightly, if at all, inflamed, but the true pelsis was filled with wrine, so that when the viswera were pressed downwards, the fluid welled up considetably. When
the opaque straw-coloured liquid had been taken out, no marks of peritonitis cane into view. Tho bladder was now carefuly examined. It was quite empty and collapsed, and on its posterior portion a ragged opening was observed, which might have admitted the iudex finger. The symphysis pubis was sepintel for the space of about one inch, and tho ramus of the pubis fractured at its junction with that of the ischium. There was likewise a fracture of the ilium running into the acetabulum, and the sarcum was broken and separated from the bone. The urethra had suffered an extensive laceration in front of the membranous portion; from this latter fact it was now clear that the instrment, during the attempts at catheterism, had passed into the perinam.

ON TILE IODIDE OE POTASSIUM IN SYPIILLIS.

[The following remarks upan this subject are made by the Reviewer in tho "British and Foreign Medico-Chirurgical Review."]

Dr. Williams was the real discoverer of this influenee, perhaps the greatest therapeutical discovery of the agr, after that of the amesthetic effects of ether and chloroform. Wis paper was read at the College of lhysicians in 1834, five years belore Ricord began his experiments; and so far from giving it indiscrimibately in all cases, he took the greater pains to investigate its real powers, and pointed cut where it was effencious and where useless; not with hesitation, but with all the open candour of his nature. In his "Elements of Medicine," while showing the marvellons certainty of its action in rupia and the hard periostral notle, he showed that its power was much less in roseola, purpura, and cethyma, but still it was better than mercury; while in lichen, hepra, psoniasis, and intis, he proved with equal clearness, that mercury, either locally or genorally, had more beneficial influence than the iodide. Me pointed out the curious fact, that while the action of the iodide on hard periosteal node was as certain and evident as that of quiniae in ague, when once suppuration had commenced, sarsaparilla was the remedy, the iodide being useless. In soft nole and prurigo, he showed the true power of sarsaparilla; and in syphititic angina and rupia, the invarably good effects ot combining local mercurtal applications with the internal administration of the ioulide.

We witnessed many of his experiments, and for the last twelve years have been guided by his results, without ever having had cause to regret it ; and after tolerably extensive opportunities of treating secondary symptoms, the only moditication we have learnt to make in his practice, is the oceasional use of the protoiodide of mercury in lichen and in some of the aftections of ligaments and synovial nembranes. We almost always give the dose recommended by Dr. Williams, eight grains thre times a day in water or camphor mixture ; and when using the protoiodide of mercury, begin with one grain daily in divided doses, inereasing gradually to three or four grains in the day, made into pills with liquorice, or with catechu, if it acts on the bowels. Opium sppears to destroy its power altogether. Wo never saw any good done by giving a mercurial course bofore the iodide, as many recommend, but often mach harm. On this point and on the relative powers of iodide of potassium and mercury in syphilis, we would refer to a work in which the investigation has been made in the true spinit of science by Dr. Inssing, of Copenhagen. A notice of thas book, and an abstract of some of the important results, will be found in Vol. XX, 1845, pp. 4S2-6.-Drit. and For. Medico-Chirurg. Review, July, 1851, p. 201.

SELECTED MATXER.

ANATOMY AND PHYSIOLOGY.

ON THE IMPREGNATION OF THE OVUM IN THE AMPHIBIA (SECOND SERIES), AND ON THE NATURE OF THE IMPREGNATING INFJUENIECE.

By George Neuport, F.R.S., F.L.S.

The author commences hus paper by stating, that having given direct proof, in his former paper (see Britnsh and Forergn Mednco-Chururgical Review, vol. viii. p. 253,) that the spermatozon is the impregnating agent, and also that the liquor seminis does not effect impregnaton, he now proposes to detail some new experiments wheh bear on the vews he then advanced; and especially with respect to the nature of the imprecrature miluence.

He first detais some additional experiments with solution of carmine, with the object to show, that the result of one exproment mentioned in lis former paper, in whoh he detected a small gramule of carmine within the vitellary membrane, was attributable to the calse he then assigned-accidental injury to the egg; and he states that the results of his present investigations contim him in the view then beld-that no natural perforaton or fissure evists in the envelopes of the egg, either of the Frog or ot the Newt, before or at the time of impregnation; and that the spermatozoon due not penetrate into, but only lies in contact wath, the envelopes.

He next gives the results of some experiments with solution of potass, in confirmation of his former observations: and further shows the effect produced on the egg by immersion in solutions of potass and soda, with different proportions of the salts; and afterwards detaits the results of other experiments made of test some of the more remarkable ones by Spallanzani with regard to the effect of very minute quantities of the impregnating fluid. In these trials the author has proceeded by the mode of direct application of the tiud, and not by immersion of the eggs in large quantities of water with small proportions of seminal flud, the mode followed by Spalianzani. The result of the direct application through contact, once only with each eqg, with the point of a pin wefted with the flaid, was, that this was sometimes suficient to effeet the commencement of segmentation, and consequent partial impregnation; while, if the fluid was allowed to drain off the pin, by continumg the contact for a few seconds, then complete segmentation and full impromation followed, and, other carcumslances being favourable, an embroyo was proluced; and when the head of a pin was employed to apply the fluid, then the usmaliesult was full impregnation; so that these restits confirm those by Spallanzam. The author further states that it appeared to be of no consequence as to which surface of the egg Was touched, the dark surface, light surface, or the side,-the result was the same.

He next proceeds to show, that when the egg is immersed in purc seminal fluid a direclly opposite resull cosues. Segmentation then seldom occurs, and
the embryo is but rarely produced; and further, that the effect then produced on the egge is very simular in appeanane to that of the chemealuction of solution of caustie potass; the yolk becomes shrvelled and decays. These results he thinks are not explained by the views at present entertamed respecting the nature of impregnation. The author then reters to the obeevations made by himself, and also by M. Quartretages, wheh tend to show that no impregnation is effected, even by the contact of the spermatozoon with the egg, when all motion in the spermato\%om has entirely ceased; and he conceives that this fact, when considered with the results now obtaned, leads to a new view of the subject.

The author then apples the vew of the - Conrelation of Forces' to the investigation of the function of mpregnation. Ile thmhs that impregnation is commenced if not entirely completed, by what may possibly prove to be a new condition of foree, in, and pecular to, the mpreanating agent, the spermatozoon, which he designates sperm force, and distinguinhes from the force of growth and development in cells, through which the spermatozoon is proluced. He further distingushes it from the force of muscular contructility, and from that of the nervous system, and states that he regards the whole only as modifications of one common force, and as havine cornelations with the physical forces. In support of this vew the author enters into details, and refers to some late analysis by Dr. Fremehs, to show that the spernatuzoa, like muscle and nerve, not only have a definite structure, but also a definite chemical composition, and that this composition appears to be the same in dilferent classes of animals. He thinks that the spermatozua may thence be reyarded as organs of a special modification of force, and that motion is the visible exponent of this form of force, since the spermatozoa are çuite inefficient to impregnate when their motion has entirely ceased. The author further thinks that it is only by the adoption of views of this kind that the apparently contradictory results obtained are likely to be explained.

In the course of his observations the anthor :tates a remarkable fact, which he has repeatedly verfied, and which be thinks is of umportance-namely, that the first cleavage or division of the yolk, in the ege of he Frog or Toad, corresponds in its lue of direction to the longitudnal axis of the body of the embryo of those animals; and this he proposes to show mone partienlarly hereafter.Proceedings of the Roya! Society, June 19, 1851.

ON TIIE REPRODUCTION OF THE ASCARIS MYSTAX.

By Henry Nelson, M.D.

The author commences with a brief aratomical description of the Ascaris Nysiax, found in the intestinal canal of the domestic cat ; with more especial reference to the organs of generation in the two sexes. Ile traces the gradual formation of the semen; originally thrown off as seminal particles by the ceccal extremity of the tubular testicle, the exterior of each solid particle enlarges to constitute a cell, while the interior retans its consistency and forms a nucleus. The cell then acquires a sranular protectung envelope, and in this state is introduced into the female. The solution of the protective envelope and the great enlargement of the seminal cell follow, and its nacleus is now seen to present a gradual structure. The extermal gramules of the nucleus coalesce to form a membrane, at first exactly resembling a watch-glass in shape, but by the contraction of its margin uitimately torming a curved cocal tube. This is the true spermatic partivle or spermatozoon, and is set free by the rupture of the seminal cell.

The generative apparatus of the female, commencing also in cacal extremeties, is next treated of, and the author draws particular attention to a transpa-
rent, narrow contractile portion, the oviduct intervening between the ovary and uterus, as the part in wheh the ovule encomters the spermatic particles, and is by them fecundated. The ceecal end of the ovary likewise throws off a solid particle, which enlarging forms a germmal vesicle and spot. As the germinal vesicle travels slowly down the tubular ovary, it aequires a thick granular investment or yolk, secreted by the ovarian walls. The ovules now present a fattened triangular shape, are placed sude by side, and form one solid mass. At the commencement ot the oviduct, however, they become detached, separated from each other, and propelied smgly along its interior. Here the gelatinous ovule meets the tubular speunatic particles, and is surrounded on all sides by them. They are at tirst seen to be merely applied against the ovule; but by degrees the margm of the latter presents a rupture, some of the vitelline gramules are displaced, and the spermatic particles become imbedded in the sulstance of the yolk itself.

While the penetration of the spermatic particles is going on, a chorion, secreted by the ovituct, surrounds the ovale, formung a spherical envelope, within which the germmal vestele, the sramar yolk, and the imbedded spermatozoa, are enclosed. The spernatic patucles after penctration are seen to swell, become transpanen, and ulhmately to dissolve. The vitelline granules likewise disappear attogether, or are transtormed imto others of a difierent color; and lastly, the gerninal vesicle is destroyed.

By tracing the changes of the ovtle in unfecundated females of the same species, the author timds the appearance of the vitelline granules to be dependent upon, whule the tormation of the chorion ss wholly independent of the influence exerted by the spermatuc panticies on the ovule.

As soon as the vitelline gramules and germinal vesicle have disappeared, the whole interior of the choron is filled with a clear fluid, in wheh a few granules and the germinal spot are seen to remain. By swelling up, this constitutes the embryont vesicte aud spot. A membrane separates from the interior of the chorion, and contracting on the granulen forms a splerical :olk, in the centre of which is the embryonie vesicle. This is the perfect ovum. The enbsernuent divisions of the embryonic spot, resicle, and yolk, are deserbed; the anthor p articularly pomang out the gyrations of the embryonic vesicle inmedia:ely after division. As soon as the whole interior of the egg has been filled by the subdivisions of the yolk. the external granules coalesce, and form a continuous membrane internal to the chorion, which by gradual depression on one of its sides forms tirst a fleshy cup, and ther, as the membrane of its concavity touches that of its convex surfare, acquires the form of a ring. The ring divides at some point of its circumference, the extremities become pointed, and thus the young Ascaris receives its characteristic shape. The author has frequently repeated his observations with a view to their verification, and has employed the camera heida to render the illusirative figures as accurate as possible.-Proceedings of the Lioyal Society.
[This paper is of peculiar interest. esperially when taten in conrexion with the preceding. In the lirst placs, the very early stage of development at which the spermatic cells are tramserred from the body of the male to that of the female, is a laet which proves, with regard to the Entozoa, as did the similar observations of Mr. H. diocdsir on the Decapod Crustacea, how completely independent is the vitality of thene cells, provided that they are supplied with the condtions necessary for their develupment. The point of greatest novelty, however, is the entraike of the spermatic particles mino the interior of the ovo, of which the author speats with the greatest confidence; While Mr. Newport asserts with equal confidence that no such entrance occurs in the case of the Frog. These two facts-for we are much disposed to place confidence in the accuracy of both observers-do not seem to us so discropant ${ }^{28}$ might at first appear. Our readers will recollect that a simular difference presents itelf in the mode m which the contents of the "sperm-cell" and the
"germ-cell" come into relation in plants; for a complete intermixture takes place by the rupture and emptying of both these cells in the lowest cellular Cryptogamia, and a direct passage of the contents of the spern-cell into the cavity of the germ-cell, in those a hittle higher; whilst in all the superior Cryptogamia, and in the Phanerogramia generally, the spermatic influence (communicated by the phyfozoaire in the former. and by the pollen-tube in the latter) appears to be applied merely to the cxterior of the germ-rell.]

ON THE BLOOD, iN ITS RELATION TO THE EXCRETIONS.

By Dr. (II. Deuce Jones, FR.s.f.fec.

One of the most interesting substances, and certainly the most important one, is carbonce acid, which passes out by respiration. By a very easy and beautiful experiment I can show you its presence in the blood. I have here an aparatus which will produce hydrugen. Ihave a tube full of cansuc potash, which will stop any trace of carbonc acid which can possibly exist. Sulphurio acid is made to act upon ane so as to produce hydrogen; this hydrogen passes through the solution of caustue potash; then passes into another vessel, into which, when filled with the hydrogen, some healthy bloud is put; the hydrogen bubbling through this, passes thoough sone lime-water in other vessels, and if it carries with it any carbunic acid, he lime-water will of course become tubid, You see how rapidly this turbidit) is proluced. ('abbonic acid, then, is a substance which exists in the blood, and is passing out each moment by respiration. The proportion of cerbonic acid to oxygen, in arterial blood, is as 16 of the former $t \mathrm{c} 6$ of the latter; and, in venous bood, 16 carbonic acid to 4 oxygen. This proportion was determined for us by the German chemist, Magnus. He found that the quantity of nitrogen was the same in both kinds of blood. M. Majendie states, that in venous blood, in every hundred volumes, there are seventy-eight volumes of carbonie acid gass, and in arterial blood 66 per cent.

Other substances can be obtained from the blow which are constantly passing out of the body in the urine. The most meresting of these are uric acid and urea, substances which form the peculiar characteristic constituents of the urine. These can be found su small quantites in healthy blood. I have here a beautiful specimen in long cry stals of urea obtained trom the healty binod of an ox, for which I am indeuted to M. Verdeil. It is obtained by drying the serum of the blood, reducug th to the finest powder, mixing it with alcotiol, and then pouring off the alcotulue solutoon, which, in health, always contains small quantittes of urea. In some diseases the quantity of urea in the blood is consi-derable-as for instauce in Bright's disease. In this divease the blood-globules are exceedingly dimmished-the albumen is constantly pa-sing out of the urine; and it is always found that urea is one of the cunstnuents of the serum. It may be obtamed thus:-Here is the serum of a patient who washled in St. Gnorge's Hospital. Here is a portion evapurated to dry ness; a part of the dry residue is treated with absolute alcuhol, the alcoholic solution is evaporated in vacuo to dryness; and the dry residue is disolved in a hittle water; on the addition of nitric acid, nitrate of urea, as you see, immediately erystallises.

Uric acid is also found in the blood in health and in disease, combined with soda. It was dscovered by Dr. Garrod, of Universtiy College; he stales that it exists in increased quantity in the bloud of gouty subjects; and, from my own experiments, I cin confirm the truth of his statement. Dr. Garrod ato says, that he found in Bright's Disease urate of soda in excess in the brod In that disease the kidney is plevented from performing its proper functind; the ingredients of the urine are not separated as they should be, and thut uth and uric acid accumulate in the blood. Uric acid, like urea, can be casily
detected, by taking the serum, or the blood as a whole, evaporating it to dryness, reducing it to the tmest powder, mad treatug it with boiling water; urate of soda will thus be obtaned m solution. The liquid is filtered of frotn the insoluble albumen, and the ctear flum is maved with strong acetic acid, and set aside to crystallise. The unce actd adheres to the sides and bottom of the glass. It may be collected, and will grve the characteristic reactions with nitric acid and ammonia.

Kreatin, which I formerly mentioned as one of the constituents of the flesh, probably exists in the bloon. It exints certamly in the urine, as I shall have to show yon. Hippuric acid, also, which evists in the urine, especially in graminivorons animals, has been fume in the Lhood. It was detected in the blood of an ox, by M. Verdeil Lastly, Dr. Garrod considers that he has found oxalic acid in the blood of a patient in University Collery Hospital.

Thus, then, :here evist in the bloul, not cull the substances wheh pass into the body as food, hut the substances which pass ont in the excrations. I have said that the geat peculiarity of the booul is, that it contams tibrin and the red globules; these substamets caue the bloudtodifer from ath other fluids. The spontancons coagulation and the red colun are caused by the griobules and the fibrin; neither of which exists ready formed in the food, nor ate they ever found in the healthy excretinns. If it wele unt fur these substances, it might almost be said that the blond was nothing but a soimtion of foud passing m, and of substances passing out of the boily; it is then by the furnation of the fibrin and blood-globules that the bood is made a peeuliar substace,-an crganzed liqud, which may live and die like the more soid urgams of whech we aro composed.-Mcdical Tïmes.

MEDICINE.

on the nature and treatment of epilepsy.

The foliowing inte estiug discussion took phace at a recent meeting of the Medical Society of Lundon.]

Dr. Radeliffe then read a paper on this subject. He first drew attention to the temperament ot epuleptus, and showed that this was distinguished by unequivocal marhs of weahness and depression : signs of serofula or some other cachectic disposition, of depressed and teeble corculation, of defective nervous activity, of muscular feebleness, might always be detected, but never the signs of true plethora or of hyper-activity in the nervous or any other system. When epilepsy had shown nselt m persons distugusthed by their gemins and talent, it was in the state of exhauston mduced by the exercise of that genius or talent; when it was associated with msantiv, the convulsive disorder coincided with the intervais of depression, and never wah the periods of quasi-excitement. After describing the phenomean of eptepsy, he proceeded to point out the continuance of the some signs of depression and echauston, and to show that the change which had taken place was always one of a aggravated depression and exhaustion. This he did by a spectal exammaton of the condition of the rascular and nervous system. Inmedtately before and after the fit the pulse was shown to be weak and collapsed, and often irregular and slow, and in the fit itself little or no blood was found to be propelled anto the vessels. This condition of the circulating system entaled a currespondng failure in the uctivity of the several nervous centress. He argued, also, that the brain was inactive, because the epileptuc was sulent, sad, moody, and generally still, Lefore his veizure; completely bereft of sensibulaty, conscionsness, and volition in his ceizure ; and stupid, confused, and evhausted afterwards. He argued also from the true appearances found after death. He noticed the views of Dr. Davey
and Henry Monro in connexion with insanity, as corrohorating this conclusion. He advanced arguments to show that the medulla oblonguta, spinal cord, and smaller ganglionic centres, were in a cone-ponding state of inactivity. Dr. Radelite then insisted upon the abrence of any lexal disorder as a cause of epilepsy, and said that the onily way in which eny such disorder had to do with the ruater, was in agyravatug the pentral dibility and prostation of the system. Unden this head he went on to Lotec ass riews ui Dr. Marshall Hail. He contended that in ephlepsy there was no pront whatever of any increased irritation in the spital cord, any more than in the medulla oblongata atid brain, but that there were abundance of proots of a direct! opposite condition. He doubted that trachelismus and lary ugismu:-, with the consequent cranial and cervical engorgement, had any necessaty comexion with epilepsy. He did this becaue there were distinct contractions in the limbs and sise where, liefore the occurrence of the spasmodic tightening ot the muscles of the neck and larynx, and because the fit ceases when the congestion was at its height-so that he conceived Dr. Hail's theory had two insmperable dititiculies to contend with, the one that the fit had actually begun before it ought, (that is to say, before the congestion had siowed itself.) the wher that it ceased when it ought to have been inost violent, (that is, when the congestion was at its height.) He (Dr. Radeliffe) argued also against the hypothesis of trachelismus and laryngismus, from ts non-applicability to very many cases of epilepsy, in which cases, and in many other convalsive disorders, no such phenomena conld be detected. He said further that this hypothesis did mon accoum for the insensibility of epilepsy, for, in his opinion, this insemsibility (which was much unore frequently of the nature of syacope than coma) was, as a general rule, due to a syncopal condition of the circulation rather than to any venons congestion in the vessels of the brain profuced by the spasmoxite tightening of the inuscles of the neck. The violence of the muscular contranctions or convulsions in epilepsy, Dr. Radcliffe said, was no objection to the existeace of the most positive prostration and depression; on the contriry, thes very phenomenon was the beat proof of the existence of that state. Muscular contraction, physiologically as well as pathologically, was always (he asserted) the sign of some withdrawal of the nervous and other stimult which appertain to the muscles, and never the reault of the communication or imponation of these stimuli; and for the confirmation of this opinion he referred to his published views on muscular physiohegy and pathology, and to the facts which had just been stated in connexion with epilepsy. Upon the treatment, he argued at sonne length agrinst low diet, and in favor of the most nutritous food, with stimulant and corroborative drinis, and against over-esercise in favor of rest rest. Citing many other argumenth, he conceived that the non-existence of vascular or nervous excitement, and the exiatence of a directly opposite condition, was itelf an insuperable objection to bloeding and purging in this malady, and an argument for the necessity of stimulants and tonice, and all means which could cormborate the system. Nercotics, counter-irritants, aud emetics were condernned. The convulsionexciting properties of strychuia were stated to be an argument against rathor than in favour of that drug. He objected also to the trachenomy in the core of epilepsy, on the ground that there were many cases of that malady in which the larynx was not sensibly affected, and in which the umpediment to the respiration was rather owin's to irregular action or spasmodic fixation in the thoracic muscles and diaphragm, than to mere closure of the larynn.

Dr. Davey concurned in the viows advanced by Dr. Kadelife, and Pmentioned, that in the Asylum at Colney Hatch, epileptics, who were unuality adraited in a low state vitality, were best treated by tonics and a judicione and discriminating diet. He related several cases to show that dhis treatment bor been atconded with the best results. In some cases wine and porter wort added to nutritious diet. He oxpressed his kelief that in the treatmemt of all zorroos dieorlers, practitioners had gone too far generally on the antiphlogistie ayderan, ty which be was dure many caes had been rendered incurabla. Kind
treatment, the avoidance. of mevianical re-iraint; afded to proper det and regimen, had been tound the best inpusen of the mind and health, of the great majority of those who come under his care at the Coney lateh Asylum:

Nr. Richardson argreed with the author of the papet, that the attempt to localize the seat of ephepsy, especinty in the lirin, had been a failure: and menioned a number of cass in preof. lie dilered witi Dr. Radchfle as to depression genematy podacing the epilepte mizute, and mentuned a case in paticular where the it came on dhaner everion, is hich had been carried to
 came on after atter the brain beran fo fail mpower. Winh respect to remdies, he hought; as a rute, that sporituous liquors had ham, did ponter sometimes brought the epitepsy on. He eulerized the emplay neth of tata-emenc aid valerian, and the use of assues and countr-irtrant. Shan blondetmogs were also sometimes ahrassable.

Mir. Dendy hought Dr. Radrlifios troatment orposed to his theory. He (Dr. Dendy suggested a combmation of remedirs at ne thl in some cases; such as the abstraction of blood to remove coner- 1 om, whidh might exist locatly, as in cholera, eveu in otherwise heathy statis of the stem, ind then to gave tonics and support momedately. Hi thonght that in all rases ot eptepsy some Jesion of the nervons system must exi-1. Iferonplamed hath hathumations, insanity, and wher subjects bad heremed mp in the disenssion with the with epilepsy.

Dr. Webster agreed whe the amhor in rom-ilerine equlensy as generally a disease of exhausion, and mont frequenty it affected persous of debiltated, broken-down coustutuons. The complain was alon mute apt to oceu in parties endued whith acrotulous dimurss, aperially if their pareats had also suthered from the same attecton: ladeed, hreditary temdenc: exened consuderable influence, and he consdered epilepey very liath on be trammatied 10 offisprings, like some other malade's of that character. lecondias io his (Dr. Webster's) experience, it was more frequem amongst the lawer than the upper ranks, both in this country and in France: whih fer wohl farthet sat, it ofner attacked males than fermales. Thes was crotanty the raä in maity French asyluns which he had recenty meperiod. whore mate rpilepites predominated considembly. Respecing the eanirs offol pminumg eqpileps; he considered terror as one of the inost powerful ; of whichavery sirihing ciampie some time ango came under his observation. It was that of a gonig noman; "ho was frightened by a fellow-servant disguixel as a choot, with a light in has hand, when he suddenly appeared before her at the rat of a dath passage. She became so alarmed as to fall down in a fit of epilepses, which afterwards frequently returned : and an one of the ee violent seizures Dir. Webster attended the patient. This disorder he considered atmont incurable duriug the latter pertods of life, or even madults, especiallv when compheated with insanity. Insiances of recovery mught be oceasionally reported; but they were so tare as to render the prognosis always uifavourable: In early arge, or before purberty, the prospect of recovery was much greater, and he might refer to sweral cases provingthis inference, but it seemed umeressary, as the fact must be well known io practitioners. Dr. Radelifle's observations relative to the treatument of this often temible disease comoded very mach with the principles he (Br. Webster) pould recommend. Respecting blecding there could not prevail two opimons, and to use the lancet was most objectionable. Fien the topical abstraction of blood in youn plethonie sub)jects, requires wreat cauthon, and heen only to reheve local congestion. Wath the minor Dr. Webster entirely agried reganding the use of purgatives, alhough he would not empioy drasic cathatics, as similar remedies occasoned to mach debility. Allusions having been mate to varmous mineral preparations at one time enjoyed consilerable repuation m epilepsy; but now seldom reputed efticacious, he (Dr. Wehster) must mention one recently eraplosed by a sricnd of his own=-namely; Dr. Fornasari, physician to the

Fans lunatic asylum in France, which he had visited last antum. The remedy war valerianate of zine, given in doses from half a grain to one, night and morning, which might be increased to three grains per day. Oecasionally purgatives were also prescribed, and frequent baths, the diet being also carefully regulated. Dr. Formasari speaks favourably of the benefits produced ; and several cases then in the asylum had derived so much relief, that fits which at first recurred ever three, sit, on eight days, had not supervened for more than three months. Suppoited by the abuse authority in tavour of valeranate of cinc, $\mathrm{Dr}_{\text {r }}$. Webster administered it latel! 10 a pation labouring mader ephlepss, and apparently with such adxanage as would nodece hum to recommend employing the same mineral in other examplece bithourin nurnoons dee and generous regimen were often escential tor ephiphe pathents, he thought modesestible food frequently acted in ath imbroms mamer. Imberd. indeed a full meal of improper substances ofien proved an exciting canse; and he could quote one case which caune uader hus own observatun, where a person having eaten freely of tried bacon amd eggs at supper, was seted with so severe a fil, about three ocluck next mornut, that diath followed in consequence. Notwithstanding whe and math hquor, even m large quanthes, had been recommended by several fellows, such stimulatag beverages maght be taken too freely; and he must remark, wheses under sperrat cesumstances, mach porter or ate was by no means so useful as wine diluted whin water, where stimulants were really reduired. (ireat caution, theretore, became necessary when adopting that kind of treatmem. Before sulung down, Dr. Webster ocserved, athcugh he coincided with Mr. Ruthardion in optaon that many lesions of the brain and nervous system did not produce eptieptic newnres, still these affections generally depended upon or indicated organc change, of structure within the ctanium; at least, his individual experience warramed such conclusions respecting the pathology of epilepisy.

Dr. Radeliffe, in answer, said, that the very catended practice of Dr. Davey as to the neeessity of good det with weme and beer in epitepsy; was a strong argument in favour of the view he had advocated. He sad any one would be sensible of the advantages of such a course, who remembering the appearance of epilepties in our own or in foremn hosputals a few years ago, now pand a visit to Coluey Hatch or Hanwell. He would at leat learn that good food and wine and beet did no harm. In answer to Mr. Ruchardson's objection that the epileptuc was not always depressed before the tit, he called up Mr. Fichardson's own admission that he had not watehed that pont particularly. To another objection from the sime gentleman, that Mohomet was epilepte during the most vigorous periox of his life, he answered that Mohomet saw visions in his fist, and that on that account those fits could not be epileptic, masmuch as the coneciousness is suspended in epilepay. He thought it better to reason from recent cases, the particuiars of winch were better known, and from the general history of the disease; which benng done, he (Dr. Radcliffe,) though Mr. Richardson would be obliged to admint that the system of the epileptic was always marked by prostration, and most of all, so marked in the fit aself. In reply to Mr. Deady's defence of blcedng, he thought the utter absence of plethoric excitement and of nervour hyper-ictivity, and the presence of signs directly opposite to these in their nature, together with the absence of any ill effert from the generous treatment pursued at Colney Hatch and olsewhere, were insuperable objections to bleeding in any form. If Mr. Dendy took exception to Dr. Davey's arguments for a good diet and wae and beer from his experience and particular views of the mature of msamty, he must object to the neceseity of bleeding in cpilepsy bemer doduced from what Mr. Dendy had seen in cholera. Nor conld he admat he somudness of the practue of combining remedies of opposite quaitites, as lecal bleeding wath tomics, which practice in his opinion was the relic of the ancient proctice of jumbling all manner of remedies together, in the benevolent hope that one or other of them mught chanot to do good.

ON THE CATARRHAL PNEUMONIA AND LOBAR PNEUMONIA OF CHILDREN.

By MM. Trousseau and Laseguc.

Catarrhal (or lobular) pneumonia is a disease as distinct from simple (lobar), as variola is from erythema. This is seen in their respective moriality. Of twenty children who have been admitted to the hospital clinique, suffering from simple preumonia, in six months all have recovered; of nearly thirty who were attacked with catarrhal pnetmonia, not one survived. Most of the first class of cases exhibited an excessive degree of acuteness which burnt out like a fire of straw; while several of the second, notwithstanding their fatal termination, commenced with very mild symptoms.

Simple pneumonia hardly ever affects a child below two years of age, and rarely those of two or three, but becomes of more and more frequent occurrence as the child approaches adolescence. Its cause aud symptoms resemble those of the adult, with some modifications. After twenty-four or thirty-six hours, the souffle and bronchophony can alone be heard; the crepitant rale; which is often observed in the adult when the patient coughs, even when much souffle is present, is hardly ever heard in the chuld. So atterwards, from day to day, without the crepitation of resolution, the souttle disappears, leaving only a feeble respiration. The progress of the disease is also more rapid than in the adult. In the mild form of the disease, recovery takes place rapidly, and in laige proportion; but in its srave form many cases ure lost by any mode of treatment. M. Trousseau generally bleeds the chifd, gives it an emetic of sulphate of copper, and then a mixture, contaming Kermes mineral and extract of digitalis.

Catarrhal peumonia commences with a calarrh, which rapidly extends to the small bronchi, and thon we l:oar numenoms and small suberepitant rales disseminated over both fouss, and especially poteroriy. These rales may persist for four, six, eight, or fittecon days, withont any souffir becoming manifest; but swoner or later we hear a souffle. the resonance of the cries or the voice, or at least a prolonged respiratory mummr. While these latter sounds, common to simple and catarrhal phomonia are thar nanitestang themselves, we find, by the subcrepitant roles, that the capillary catarrh is stall persisting in the rest of the lung. The disease has evunded from the uncous membrane to the parenchyma of the organ. Febrile artion is less than in ordinary pnenmonia, being predominant at some potsons of the diy. ant entirely ceasing at others; and these alternations of better and worse may comimue for fifteen, twenty, or thiry days; the disease being originally a pulmonary catarrh, and partaking of the obstinary and macerainty of catarrhal complaints. As more and more of the parenchyma becomes impharated, the lever becomes more contimous and imtense, anil the re-piratom more dithenh, until the chiden die exhausted. In other cases, in which her hronchial phlegmasia was very intense from the first, and the lung became mpidly invaded over a great evtent, death takes place with rapudty. The progress of the dasease has usually been more rapidly falal; when it has succeded to measles, chrmie disease of the shin, or laryngitis. All means of treatment that have been tried have proved impotent.

These two aflections may be comquered, crepptis cxcipiendis, with erysipelas and phlegmon. Kryspelas raverses the surface, like the catarrh; and when it persists too lons, it mintes ulecratims of the skin, furuncles, and circumscribed subcutaneous abscess. just as the capilary catarrh induces suppuration of the lobules, little abscesses of the lomes, and cirrunseribed pneumonia. Simple pneumonia, on the other hand, progresses like simple phlegmon, violent in its febrile reaction, but terminaturs abruptly and rapidly.

It must not besupposed, from what has heen said, that catarrhal pneumonia nalmost invariably tatal. Although thas is the case amidst the miasmata of
an hospital, which exert efiects at once so terrible and so difficult to avert, it is not so in private practice. In this, one half the patients may be cured, by repeated vomitho, flying blisters, antimonials, and digitalis; but how terrible are the ravages of a diseasc, which, under the most favourable circumstances, kills one-half its subjects!-L'Union Medicale.

MIDWIFERY.

STATISTICS OF THE LYING-IN INSTITUTION AT MAYENCE. By Dr. F. Kilian.

These statistics embrace 42 years (1806 - 48), during which period 7,739 women have been delivered at the Institution. Some of the particulars of their cases are but imperfectly recorded; but those which have been noted are interesting, as exhibitung the resulis of a very uniform system of practice followed by the successive directors of the establishment. This practice is founded upou the maxims inculcated by boer, of leaving the cases as much as possible to nature, and avoiding all meddlesome interference.

The 7,739 mothers produced 7,833 children (91 twin births, and I triplet), خ, 369 being born alive, 464 still-born, and 147 dying in a few days-that is, 611 still-bory or dying (nearly 1 in 19). The presentations were as follows:

Of the 7559 children offering cranial presentation, 333 were born deadseveral, however, having died prior to the commencement of labour, as atiested by their putridity - leaving 236 (1 in 32), who died during labour, including premature births. In 92 of the 7559 cases, aid was required. Of the 115 breech presentations, there were 16 twin cases; and in 20 the child was premature. Assistance was required in 7 cases.- Of 81 foot presentations, 19 were twin cases, and 23 were premature chikiren. In 2, aid was required for the delivery of the head.-Of the 38 face presentations, in 3 only were the iorceps employed. All were born alive except 2 , in whom traces of putrefaction were presentAmong the 31 cases of arm presentation, 5 were twins, and 22 premature births. All were tuned: 12 being bom alive, 12 still-born, and 7 having died prior to. labour.

Premature Births.-These amounted to 250 (I in 31), the proportion varying much in different years. A far larger proportion occurs in the later half of pregnancy than in private practice, exceeding those of the first half by. 11 to $1:$ the greatest absolute numbers occurring in the seventh and eighth, the least in the fourlh month. There were 13 twin births; 114 children being borr alive, and 149 dead. There were 215 cranial, 20 breech, and 23 foot presentations; 5 being unrecorded.

Prolapsus of the Funis.-Of this, 32 instances are recorded, being, $\mathbf{D r}$. Kilian believes, far fewer than really occurred. Of the 32 children, 11 were born alive, 17 still-bon, and four putrid or non-viable. Interference wha resorted to in seven cases: : in four of which (2 living, 2 still-born) turning, and in 3 (all living) the forceps were emplojed. Of the 25 cases left to nature; 7 were born living, 4 were putrid and non-viable, and 14 were still-bom. In 4 of cases the cord had remained too long pulseless to justify interference, while
in 2 bom living, it did not pulsate during labour, nor until some moments after its completion. Dr. Kilian considers that no general rule can be laid down for the treatment of these cases; but, without declaring so absolutely in favour of this view as Holfman of Wurzburgh does, he believes that the majority of cases should be left to natnre; the possible ill-consequences of our interterence, to the mother as well as to the child, inculcating the necessity of restraining it within the narrowest possible limits.

Operaysons.-The forceps were employed 79 times (1 in 99), 61 of the ehildren being born living and 18 dead. Dr. Kilian atributes the rare use made of this instrument (compared to what is usual in continemal practice) to the lit'le intermeduling which takes place in the carly stage of labour, whether for the purpose of regularizing abnormal activity of pain by depletion and other means, or of exciting it it, when defective, by ergot or stimulating drinks.Turning is recorded as having been performed in 34 cases-a number the author believes to be below the real one. In three of these the motherdied; in on? instance, suddenly, while the hips were passing ; post-mortom expulsive action completing the delivery. Of the 34 chuldren, 15 were born living, and 19 dead-Perforation was resorted to in three cases.

Matranal Mortadity.-Of the 7739 women delivered, 41 (1 in 188) died: 11 of these deaths occurring in women who had undergone operations for delivery, and 30 among those whose cases were left to nature. In 22 cases there was something remarkable in the progress of the labour, or in the placenta. In 14 cases death occurred from peritontis, and in 17 the cause is not stated. In explanation of so small a mortality, the practice of non-interference, so strictly observed, is to be borne in mind; as is the remarkable fact, that during the 4: years of the existence of the establishment, it has nover been visited by an epidemic or puerperal fever. Among the circumstances which may be supposed to favour the exemption from this scourge, is the fact that no clinique for medical students exists, and there is, consequently, far less mental and physical disturbance of the women during labour than in establishments where there is a elinique. Deaths, too, are known by the patients to be rare; and when they do oceur they are carefully concealed from the cognizance of the other inmates; and indeed all sourees of mental disquietude ate sought to be avoided. Attention to cleanliness and ventilation also prevals. It is not, however, meant to be asserted that by these and other precautions ; puerperal fever can always be prevented; and indeed the town of Mayence seems to share the immunity of the hospital, as the oldest practitioners cannot eall to mind the prevalence of an rpidemie of this disease, even when large portions of the contiment had heen ravaged by it. The same immunity prevailed with respect to the cholera of 1832 and 1849. Neve ZZrilschrift fur Geburtskunde.

ON DELAY IN DIVIDING THE FUNIS.

By Dr. Storer.

Dr. Storer odserves that it has been for many years a rule with him to wait until all pulsations have ceased to be felt beforeapplying a ligature to the funis. Eatly in his career he mel with two cases in which profuse bleeding occured from the funis after it was divided, which could not have happened had not the blood continued flowing on the cord. As in the vast majority of cases the pulsution ceases in a few minutes (in one only has he known it continue for twenty-five), it seems best to listen to the dictates of nature, as considerable ragger of injuring some of ths important viscera may arise from too suddenly diverting circulation upon them. It is not unusual to find the funis pulsatiag with great force at birth; and is it not more rational to allow this to subside gradually, than to check it all at once? May not some of the cases of hemor-, shage from the mouth and nose, which have been published, be due to the
pulmonary congestion thus caused? Dr. Channing recently met with a case in which the elild, born apparently quite healthy, died while being dreseed from violent hemorrhage from the mouth, none proseeding from the funis, which had been tied directly after birth.-Amer. Jour. Med. Sc., vol. xxii. p. 82.

FORENSIC MEDICINE.

CASE OF DEATH BY CHLOROFORM-POST-MORTEM EXAMINATION.

The autopsy was conducted by Mr. Paget ; and our readers will easily perceive, by the following details, that the exammation does not yipld any che to the suddenly fatal effects of the inhalations of chloroforn. It would certainly bea great pity if this accident were to render surgeons loath of availing themselves of the advantages of anesthetic agents, for it cumot be denied that operations are now-a-days far more effectual and safe than formerly; and that, independently of the absence of pain, there are a certain number of surgical measures which, with chloroform, may be had recourse to with great ease; but which, without the assistance of this agent, could not be thought of.

From the numerous operations which we have seen, and from the valuable works which have been published on the subject of anasthesia with ether or chloroform, we cannot but thmb that the chance of escaping aceidents would be far better, if those who admmister chloroform would take more time in obtaining insensibility, and allow the chloroform to be mixed with a large quantity of atmospheric air. Patients might inhale the anesthetic agent in the ward, (as is always done at the University College Honpial, among Mr. Erichsen's patients,) and the proper time might thus be allorded. M. Sedillot, of Strasbourg, has lately written on the snijeect, and is firmly of opimon, that, with more time, and a greater waste of chloroform, more security would be obtained.

Dr, Snow, who so frequently administers chlorotorm in this metropolis, has lately read a paper before the Medical Socety of London in which he states:-
"When dogs, cats, or rabbits were made to breathe air containing from three to five per cent of vapour of chlomform till they died-a process which occupied generally from ten to fifteen minutes-the heart continued to act for a minute or so after breathing had ceased, as he had ascertained by means of the stethoscope; and then in sone instances, the animal gave a few gasping inspirations, about the time when the heart was ceasing to act, which had the effect of restoring it to hife. On the other hand, when such anmals were mado to breathe air containing eight per cem., or more of the vapour, death took phace very suddenly, the respiration and the hean's action ceasing together.
He believed that no accident had occurred from the continued exhibition of chloroform vapour, well diluted with (iir, (the italies are our own.) In the fatal cases which had happened, death had taken place suddenly by way of syncope, showing that the heat had been paralyzed by the action of vapour constituting not less than eight or ten per cent. of the air inspired just before deuth........There were two methois of insuring the ditution of vapour of chioroform with atmospheric air, to such an extent that death conld not occur wittout giving sufficient warning to allow of accidents being prevented by ordinary attention and skill. The first and best of these methods was, to exhubit pure chloroform by means of a suitable inhaler; the other method was to dilute the chloroform with rectified spirit of wine, before pouring it on a handkerchief or sponge. Equal parts, by measure, of each, is the proporion whieh Dr. Snow is in the habit of using; and he thinks that the best means to be employed, in case of impending death from chloroform, is ariificial respiretron."

If would also be wise, if, in each lange hospital, some gentleman;
remunerated for his trouble, were exclusively entrusted with the administration of chloroform, (as is the case at St. (jeorge's liospital;) such a person would then naturally gain much practucal experience in the manipulation of the narcotizing agent; and the surgeon conhd, without having his mind worried by apprehensions, give his whoje attention to the operation in hand.

Post-mortem Examination.-Body well formed and muscular; rigor mortis complete in the trumk and limbs. Vene imominate, and vena cava superior, full of blood and probably would have been distended, bat that some bloox had Howed into the cottin from the opening of the external jugular vein. The right auricle and ventricle were full of brool, and would probalily have been more so, but for the escape of blood just alluded to. The leit auricle and ventricle contained very little blood, and the left ventricle was in a complete state of contraction. The heart was of full size ; it appeared in every part natural in its texture, and as if it had possessed full power. All the valves were also healthy. Neither could any disease be traced in any of the large blood-vessels within the chest. The blood, however; was very fluid, and did not coagulate after its escape from the heart and vessels. It had a brownish-purple hue, like that which is generally observed in the spleen; none of it, when thinly spread out, presented the ordinary dark, blach or crimson colour of venous blood.

Both lungs presented old adhesions about their apices and posterior surfaces; but these were of small extent. The pu'monary texture was healthy, but the lungs appeareui more than usually collapsed and dry. The vessels were not overfilled; the mucous membrane of the large bronchi and trachea was turgid, apparently from congestion of its smaller blood-vessels. A similar condition existed in the larynx, above the chorde vocales, but not to such an extont as in any appreciable degree to cause a narrowing of the glotis.

The mucous membrane of the stomach was, over a great extent, especially at the fundus, blotched and suffised, and presented a dark, crimson colour, from the exceeding fuliness of its vems and small blood-vessels; but the coats of this viscus appeared lealthy. It contained a small quantity of thin, brownish fluid, being probably the remains of the last meal. The whole intestinal canal, as far as can be judged fiom an external examination, appeared healthy. The liver, pancreas, and spleen were matural; and the hepatic venous, plexuses, and intra-labular veins, seemed over-filled.

In the kidneys, which were of natural size and texture, the tubular portions were very dark, apparently with intense venous congestion; but the cortical portion was comparatively pale. The vena cava inferior, and its chief branches were more than usually filled with blood.

The skull was matural, except in small portions of the diploe, in which a congested state of the blowl-vessels, corresponding with the disease in the vicinity of the ear, was noticed. The dura mater and lougitudinal sinus presented nothing abnormal ; the cerebral arachnoid membrane was in many parts, and over a wide extent, opaque, and somewhat thickened; and a few ochre yellow small spots also appeared in it. The tissue of the pia mater was infitrated with more than the ordinary quantity of transparent fluid. Between the anterior lobes of the cerebral hemispheres, smail portions of the opposed sarfaces of the arachnoid membrane were adherent; but both this and all the other morbid condirions of the membranes of the brain appeared to be the results of disease which had probably existed long previous to death.

The convolutions of the cerebrum were small, and the furrows between them of wider extent than usual. The surfaces of the optic thalami were uneven and wriskled, as if these portions of the cerebrum had somewhat contracted; but no unnatural appearance presented itself in any other part of the brain or medulla oblongta.

Every possible exertion has used to resuscitate the subject of whose postmortem examination we have just given an account. Dr. Herepath, of Bristol, considers that the electric current, steadily kept up between the mouth and diaphragm, is our sheet-anchor; and we have no doubt that this advice will
be acted upon in the event of another accident with chloroform. We cordally recommend the perusal of Dr. Herapath's maper, both as to his views regarding the cause of death by chloroform, and the resuscitating means to be employed. The following passage should be particularly attended to.
" In resuscitating from au over-dose of chloroform, galvanism is the only chance. Keep up a current of electicity through the fifth nerve, medulla oblongata, phrenic nerves, and diaphragm, as long as respiratory movements can be produced, and det the patient have pleuty of fresh air or oxygen gas. and the case must do well, for the blood will remain fluid for a long time, and circulation will go on as long as respiration continues to be carried on artificially. The blood and the air cells throw off their load, and in proportion as the pueumogastric, medulla oblongata, and motor nerves, slowly resume their functions, so respiration begins to assume a less artificial character; at length the cerebrum aids us, and respiratory movements, both voluntary and involuntary, keep up the functions of life unaided."

But we would also call the attention of surgeons for a few moments to the following extract from a foreign journal. The method therein mentioned, and which has several times been the means of saving life, may perhaps prove serviceable in this country.

- Prof. Rigaud relates the following case in the Albeille Medicale of Nov. 31, 1851 :-He was on the point of removing a tumour from the chest of a female patient. After a few inspirations of chloroform, the pulse stopped suddenty, and the woman did not give any signs of life. The chloroform was at once removed, cod water dashed on the face, and frictions made all over the booly. These means, in about a couple of minutes, produced a few weak pulsations of the heart, which, however ceased almost immediately, and were not accompanied by any respiratory act. Dr. Rigaud now thought of using the method which has been advocated by Dr. Escalier, and passed his index finger along the dorsum of the patient's tongue, raised the epiglotis, and drew the former out of the mouth. This had the effect of producing an inspiration, which circumstance was taker an advantage of to make the patient inhale ammonia. As soon, however, as the tongue was lost hold of, it glided back into the mouth and respiration ceased again. The same mancuvre was now repeated, but this time Dr. Rigaud kept the patient's tongue out of the mouth ; the respiration then set in again, and the woman quickly recovered. The operation was then performed without chloroform, and Dr. Rigaud considers that Escalier's method saved the patient.
(1)

THERAPEUTICS.

ON THE TOPICAL USE OF CHLOROFORM.

By Dr. Rauch.

To obviate the volatile character of chloroform when employed topically, Dr. Rauch combines it with olive oil and some liquor ammonia, forming an emulsive liniment. This is less expensive, relieves sooner, and is not so volatile as chloroform. The ingredients were at first employed in equal parts; but were afterwands used in other proportions, according as to whether a counterirritant effect (when more ammonia and chloroform must be added) were desired or not. It is applied on a woollen cloth, so folded that the inner layes is saturated by the liniment, and the outer kept dry, so as to prevent evaporation. When first applied, it feels cool, then smarts and burns so for ten minutes is hardly to be borne; and then an agreeable coolness, with relief of pain, succeeds. When it causes too much irritation or vesication, it should be removed, or applied to another locality. The skin is made red by it, and often vesicated;
and if a mere rubefaciem is required, it should be applied by friction, or the cloth should remain on only for a short time. When a speedy vesicant effect is required, it is more useful than a sinapsisn or blister, and is easier of application, especially in children, who often fall asleep during its application. Dr. Rauch found it of great use, combined with other means, in cholera; and in relieving the painful affections of the abdomen in children, it is preferable to any anodyne. In the case of superficial burns, a compound of equal parts of chloroform, olive oil, and lime water, has been found highly usefur.-Amer. Jour. Med. Sci.

ON IDODINED OIL.

By M. Guitourt.

M. Guibourt recently read a report of a committee, consinting of himself and MM. Souberain, Gibert, and Ricord, appointed by the Academy, to consider how far a definite combination of iodine with oil might be employed with advantage therapeuticaily. M. Marchal first proposed the employment of this substance in 1848, under the idea that iodine was the active element in codliver oil, and that a preparation containing a large proportion of this substance would prove of advantage. Since then, MM. Persome and Deschamps have each proposed formula for its preparation. M. Personne believes, that small as is the proportion of iodine in cod-liver oil, it is a very important ingredient; and without expecting in all cases to replace cod-liver oil he believes that a larger proportion of iodine, combuned with an assimilable substance, may prove a highly valuable medicinal agent-the oily vehicle enabling it to penetrate into the economy, and abandonng it there gradually as it itself is burnt off during respiration. According to his plan of precedure, five jarts of iodine are disolved in 1000 of sweet almond onl, and a jet of apuous vapour is passed through the mixture until quite decolorised. Five other parts of iodine are now added, and the decoloration similarly performed. No traces of vapour of iocline are perceived; but the vapour of the water which is condensed exhibits strong traces of the presence of hydriodic acid. The oil is washed with a weak alkaline solution, as long as any acid reaction appears, and is then filtered. By adding successive quantities of iodine, double the quantity may be combined, but it is then difficult to avoid obtaining a high-coloured liquid.

In this way an oil may be produced, differing little in taste or appearance from almond oil, so that it can be easily administered alone or in emulsion. When forty grammes of it are swallowed, an hour and a half elapses before it shows its presence in the saliva. It becomes more and more manifest during twelve hours, and then diminishes, being still very sensibie after eighteen or even twenty-four hours, but quite disappearing after thirty. M. Deschamps produces an iodined oil by the agency of alcoho; but the reporter regards it as nowise superior to that prepared more easily by M. Yersonne's method.
M. Gibert has experimented with both these oils. In several cases of chronic impetigo, in which it has been employed internally and extemally, a rapid resolution of the eruption has resulted, more rapid than under the agency of cod-liver oil, which is so much more difficult of administsation. It has failed in several chronic scrofulous engorgements, which had also resisted cod-liver oil. M. Gibert's experiments with the oil have not yet been sufficiently numerous to enable him to estimate its exact value; but he is even now enabled to state that it possesses considerable resolvent power in certain of the chronic eruptions and glandular enlargements. M. Ricord has employed it during a year in a great variety of scrofulous affections, most of which have been mistaken for syphilitic disease. He has derived excellent effects from it in strumous bubo, tubercular epididymitis, and in some cases of scrofulous engorgements of the
joints. In these cases, satisfactory eflects have much more pmoptly followed the use of the iodined than of the col-liver oil. M. Puche, M. Kicords's colleague, has come to a similar conclusion. The dose given has been usually 60 grammes per diem; but this has frequently been increased to 100. It is usually well borne, only exciting purgation exceptionally, when large doses are given. -Bull. de l'Acad.

CHEMIS'TRY.

ON THE FIBRIN OF MUSCLE.

By Prafessor Liebig.

The substance of muscular nibse has been commonly designated as fibrin, and has been considered identical with the fibrin of the blood. This, however, is an error, as Professor Liebis has proved by the following experiments.

When the fibrin of blood is treated with water acidulated with a tenth part of hydroihloric acid, it soon swells and becomes changed into a gelatiniform mass, which is soluble in boiling water ; if nore concentrated acid be added, however, it returns to its primitive volume, again swelling when water is again added. This experiment may be repeated several times, without any notable proportion of the fibrin being dissolved. On the other hand, the substance of muscle very speedily dissolves in water containing hydrochloric acid in the above-named proportion, and this at the ordinary temperature; the solution is somewhat viscid, and is rendered slightly opaque by the presence of fat. When neutralized, it coagulates; and the coagulum dissolves in an excess of alkali, or in lime-water -but not in the latter if it have been first boiled.

The proportion of this fibrin readily soluble in dilute acid, is very different in the several kinds of animal flesh; thus the muscular sustance of the common fowl and of the ox dissolves almost entirely ; that of the sheep leaves a considerable undissolved residue; whilst that of the calf dues not yield nore than half its weight to the dilute acid. Thus insoluble residue is white and elastic, but more gelatiniform and less white than the blood-fibrin swollen up by dilute acid.

The so-called fibrin of muscle is stated by Strecker to have rather the composition of albumen than that of blowl-filbrim, containing less azote than the fatter; but we must own that we distuust all minute differences in these organic analyses. The differences between two of Strecker's analyses of this very substance, for exampie, are as great as between one of them and the composition ordinarily given for albumen, which is itself but an average derived from a number of analyses differing consideraby from each other.

When blood-fibrin is kept in water in a closed vessel, and at a moderate temperature, decomposition scon commences in it; at the end of three weeks it is completely dissolved, and the liquor, which includes some floculi of sulphuret of iron, possesses all the characters of an albuminous solution, and. forms a coagulum by heat, which has the grecise composition of albumen.Annalen der Chemic und Pharmacic.
[These researches are extremely suggestive, and open up the question whether the substance of muscle has that close relationship to the fibrin of the blood which has been commonly assigned to it. For ourselves, we are now disposed to believe that the fibrin of the bleod is a stage of transition towards gelatin, and that its purpose is the nutrition of the simple fibrous tissues alone.].

SELACLED MA'THRR.

ANATOMY AND PHYSIOLOGY.

ON THE PIYSIOIOCICAL FPFECTS OF THE COLCHICUM AUTLMNAJF:

By Dr. J. M. Maclagan, Edinburgh.

One of the most remarkable efferts of enk hinum wasdiscovered by Chelus of Heidelberg. He tound that the wre acid comainal in the urine of those taking colchicam was mearly dombled in the space of twelve days. In one case the urine before tahmy co chemm contaned o.069 per mille of uric ; four days after commencing to take the colcheum the proportion was 0.076 ; on the eighth day, it was $0 \cdot 091$; and on the 1 welfth, it was $0 \cdot 102$. Chelius obtamed the same results th uther mastances.

Dr. Christison evamined the urine of a patient taking colehicum, and he found that in two days the quantity of urea was nearly doubled. In the urine before taking colchium there was no depost of hithate of ammonia. Its density 1020. It contaned abont forty-seven pats of sohd matters in the thousand, and of this quantity twenty parts were urea. The specmens of urine passed on the first and second days after commencme to take colchoum were exactly alike. They were ver: turbin, and theis tubnhty diappeared with a gentle heat; the deposit was evilently lithate of ammona. The density of the first was $1033 \cdot 5$, and that of the secoud was 1034 , which are both very unusually high for urine not dindific. As they were obvously identical in their nature, Dr. Christison only analysed the secomd. It contamed only seventy-nine parts of solid matters in a thousand; and of this quantity thirty-five were urea. Dr. Christison suspected that the quantity of urea was even gleater, for not having added an excess of nitric acid, sume on the natrate of urea might have remained in solution.

Though the kindness of Dr. Halliday Donglas, I had an opportunity of examining the effect of colchecum on the urine of a sailor, who was a patient in the Royal Infirmaty. He was under treatment for secondary syphilis, but was otherwise healthy. I was permitted to gre him a frow doses of colchoum, in order that I might ascertaun the phesolouical artion of that agent on the kidneys, but before donus so I examued his urine. The density was 1025. It contained no deposit, nor was it affected by heat or nitric arid. It contained:

Total solids,		-	-	-				2 T .500
Water,		-	-	-	-	-	972.500	
Urea,		-	-	-	-	-	12.360	
Uric Acid	-	-	-	-	-	-	$0 \cdot 281$	
Inorgario salts,		-	-	-	-	-	$7 \cdot 136$	
Organc matter,		-	-	-	-	-	$7 \cdot 423$	
Tonal,	-	-	-	-	-		000.000	

Here it will be perceived that both the urea and uric acid were slighty
deficient, if we compare it with the saudard of healthy urine, as given by Beequerel. Density 1018.9. Comains:-

'Ioral solids,		-	-	-	-	- :	31-185
Water,	-	-	-	-	-	96S-Si5	
Urea,	-	-	-	-	-	13.5388	
Uric Acid,	-	-	-	-	-	()-391	
luorganic salts,	-	-	-	-	-	$7 \cdot 965$	
Orgatme matte,	-	-	-	-	-	$0 \cdot 201$	
Total,	-	-	-	-	-	ITH1.06)	

On the third, after commencing to tahe colcham, the urime waseamined. It possessed a shyght turbitity, wheh, howe er was dissipated by heat. Detistly 1030. It contained:-

Here, it will be observed, the urea was increased by one-fourth, the urie acid nearly doubled, and the inorganic salts med imseparable orgatuic matters were cousiderably decreased.

The urine was agam examined on the sisth day after commencing o take the colchum, whith following results. Turbidity Jather increased. Density 1034. It contained:-

Total solids,	-	-				-
Water,	-	-				956:510
Urea, ${ }^{\text {dric }}$	-	-	-	-	-	$18 \cdot 341$
Uric Acid,	-	-	-	-	-	${ }^{0} 750$
Inorganic salts, Orsanic matter,		-	-	-	-	7.436 6.83
Total,	-		-	-	-	1000.000

Here, then, the physiulugical attion of colchicmn in increasing the urea and uric acid was well marked.

Having obtained these results frum this case (wheh are unly corroborations of many others,) it was not cousidered justifiable to proceed lurther with the admimstration of colchicum with this pattent.

It has been supposed that under the use of colshicum a remarkable change takes place in the system, -namely, that the ure acid becomes converted into urea; but this has not at all been substantuted, and from the above cases of Chelius, and the amalysts which I have just noticed, we must be led to suppose that no such change oceurs, but that an increase in both these principles is the result.

Dr. Graves states, that the beneficial acton of colchicum is not owing toits producing a more rapid excretion of lithates through the hidneys, but to the remarkable property the plant possesses of altogether putting a stop to the morbid formation of lithates.

Dr. Gairdner says, that he has always found that the increase of urea was accompanied by a corresponding diminution of the urates in the urine. But, from the above experiments I am inclined to believe that both of these sup. positions are erroneous.-Monlhly Journal of Medical Science, Dec. 1851.

SOURCES AND MODE OF PRODUCTION OF HEAT IN THE BODY.

To exphain the production of heat in the body, several theories have been advanced; but it now appeas aluost certain that the correct one is that which refers the generation of heat, primarily and in ge :enal, to certain chemical processes going on in the system; but admits, at the same time, that as these chemical ehanges are carried on in parts whose functions are, to a certain extent, ander the induence of the nervons system, therefore the production of heat is liable to te moditid, either locally or in every part, by the operation of that system.

In explaining the chemical changes effected in the process of respiration, (p. 139), it was stated that the oug gom ot de atmosphere taken into the blood is, most probabty, combined in the sistemic eapaltary vessels the carbon and the hydrogen of disintegrated and absorbed tissues, and with centan elements of food which have not been comrented into thsues. That such a combination, between the oxygen of the atmosphere and the carbon and hydrogen in the blood, is contimally taking phace, is made nearly certain by the tact, that a latger amount of carbon and hydrogen is comstantly being added to the blood from the foot that is required for the ordinary parposes of murition, and that a quantity of oxygen is also constantly being absorbed from the air in the langs, of the disposal of which no account can be given except by regarding it as combining, for the most part, with the execss of carbon and hydrogen, and being evaporated in the form of carbonic acid and water. In othet words, the blood of warm-blooded animals appears to be alway, recoiving from the digestive canal and the lungs more carbon, hydrogen, and oxygen, than are consumed in the repair of the tissues: and to be always emmting cabome acid and water, for which no other source can le ascribed that the combmation of these clements. In the processes of such combination, heat mut be contunally produced in the animal body. The same amonnt of hoat will be evoived in the union of any giten quantities of carbon and oxygen, and of hydrogen and oxygen, wheiter the combination be rapid and evident, as in ordinary combustion, or slow and mperceptible as in the changes which are believed to occur in the livinf body. And since the heat thus arising will be generated wherever the blood is carried, every part of the body will be heated equally ; or so nearly equally that the rapid circulation of the blood will quickly renove any adversities of temperature in ditferent parts.

To establish this theory it needs to be shown that the quantity of carbon and hydrogen which. in a given time, unites in the body with oxygen, is suficient to account for ihe amonnt of heat generated in the animal witho the same time: an' anoum capable of mantaning the tempetature of the body at from 8° to 100°, notwithstanding a large loss by radiation and evaporation.*

An attempt to determme the point was made by Dutong and Despretz. Duloug introduced different mammiferous animals, carnivorous as well as herbivorots, into a receiver, in which the changes produced in the air by respiration, and the volume of the dhtierem products, could be determined at the same time that the amount of heat lost by the amimal could be ascertained. His experiments led him to conclude, amulag other poinis, that supposing all the oxygen, absorbed into the blood tron, the ar m the lungs, were combined with carbon and hydroren in the system, and that as much heat were thus generated as would be developed during the quick combustion is equal quantities of oxygen and carbon, and of oxigen and hydtogen, stall, the whole quantity of heat produced wond amount to only from $\frac{3}{}$ to $\frac{4}{3}$ of that which is developed during the same space of time by carnivorous as well as herbivorous animals. Despretz placed animals in a vessel surrounded with water; an uninterrupted current of air to and from the vessel was maintained, and the volume and

[^9]composition of the air employed were aseetained both beforo and after the experiment (which was continued $1 \frac{1}{2}$ or 2 hours, as well as the increase in the temperature of the surrounding water during it: by this means it was found that the heat which should have been generated, according to the chemical theory of respiration, would account for from 0.76 to 0.91 only of that which the animals really gave out durmg the same time. The failure of these experiments to ascount for all the heat produced threw donbte on the chemical theory of animal heat (as the proposed exphanaton has been called), till Leibig lately shoved that Dulong and Despeth were in error in ther conelusions, from having formed too low an estmate of the heat produced in the combustion of carbon and hydrogen. On repeating their experiments. and using the mote accurate numbers to represent these combustion-heats, Leibig finds neason to believe that the quantity of heat which would be generated, by the union of oxygen absorbed into the blood from the atnosplere with the carbon and hyrogen taken into the system as food, is sutheient to account for the whole of the caloric formed in the animal body.

Many things observed in the economy and habits of animris are explicable by this theory, and are, therefore, evidence for its truth. Thus, as a general rule, in the various classes of ammals, as well as individual examples of each class, the quantity of heat generated in the body is in direct proportion to the activity of the respiratory process. The highest animal temperature, for example, is found in lurds, in whom the function of tespication is most actively performed. In Mammaina, the process of respiration is less active, and the average temperature of the body less, than in birds. In reptiles, both the respiration and the heat are at a much lower standard: whilst in animals below them, in which the function of respiration is at the lowest point, a power of producing heat is, in ordinary curcumstances, hardly discermable. Among these lower amimals, however, the observation of Mr. Newport (xhii. 1837) supply confirmatory evidence. He shows that the larva, in which the respiratory organs are smaller in comparison with the size of the body, has a lower temperature than the perfect insect. Volant insects have the highest temperature, and they have always the largest respiratoy organs and breathe the greatest quantity of air: while among tertestral insects, those also produce the most heat which have the largest respiratory organs and breathe the most air. During sleep, hybernation, and other states of inaction, respiration is slower or suspended, and the temperature is proportimally diminished; while on the other hand, while the msect is most active and respiring most voluminously, its amount of temperature is at its maximum, and corresponds with the quantity 0° respiration. Nether the rapidity of the circuation nor the size of the netvous system, according to Mr. Newport, presents such a constant relation to the evolution of heat.

Similar evidence in favout of this theory of animal heat is furnished by the fact that heat is sometimes evolved by plants, in a quantity which appears to be in direct proportion to the amount of oxygen they at the same time absorb and convert into carbonic acad. For example, thein evolution of heat is most evident during flowermg and the germmation of seeds, the tumes at which the largest anount of cartwhe acid is exhaled.

The quantuty and quality of food consumed by man and animals in the different climates and seasons, also appears to be ailajted to the production of various amounts of heat by the combination of carbon and hydrogen with oxygen. In northem regions, for example, and in the colder seasons of more vouthern climes, the quantity of fook consumed is (speaking very generally) greater than is consumed by the same men or animals in opposite conditions of climate and season. And the foot which appears naturally adapted to the inhabitants of the coldest climates, snch as the several faty and oily substances, abounds in carbon and hydrogen, and is fitted to combine with the large quansities of oxygen which, breathing cold dense air, they absorb from their lungs.

The influcuce of the nerrous system in modifying the production of heat has been aheady referied to. The eaperiments and observatuons which best illustrate it are those showing frot, hat when the supply of nemvous intluence to a part is cut ofl the temperature of that pant tai's below itsondinary derree ; and, secondly, that when death is cansed by severe many to or removal of the nervons ceattes, the temperatue of the body rapdly talls, even though atificial respiation be performed, the circulation mamtaned, and to all appeatance the ordinary chemtal changes of the body be compleely effected. It has been repeatedly noticed that. atter division of the nerves of a fimb, its ternperature falls: and thus dimmution of heat has been remarked sull more plainly in limbs depned ot nervous infuence by paralysis. For example Mr. carle (xili. vol. vii. p. 173) fomad the temperature of the hand of a paratysed arm to be 70° while that of the sound side hat a temperature of $92^{\circ} \mathrm{F}$. On elecrifying the paralysed limb, the temperature rose to 77°. In amother cave, the temperature of the paralysed finger was $56^{\circ} \mathrm{F}$., whle that of the unatected hand was 6 io $^{\circ}$. Sir B. C. Bredee (x in 1811 ated 1812) found, hat it artheral reppiration was kept up in anmats, killed by decaphatum, divison of the medulla oblongata. destructon of the brain, or pri-oung with Worara ponon, the action of the heart cmmoed. and the book underwent the usuat changes in the iungs, as shown by the anatys of the air required, but that the heat of the body was not mamained: on the contrary, being cooled by the aur toved ato the innes, it became cold more rapudy than the beity of anmal m wheh attifictal respiratom was mot hept up. With equal certainty, thouch less dedmaty, the influence of the bervous system on the production ot heat is shown in the rapid and momentary increase of temperature, sometimes general, at other umes quate local, which is oberved in states of tervons exctement in the general increase of warmith of the body, sometimes amoumtme to perspiation, which is excited br passons of the mind ; in the suddela rush of heat to the tace, wheh is not a mere sensation; and in the equally rapid dinimution of temperaure m the depressing pas-rons. But none of these instances sutiices to prove that heat is gemerted by mete bervous anton, independent of any chemical change; allare as well expheable on the suppositun that the influence of the aervous system alters, m some way, the chemeal pocesses foom which the heat is commonty geuerated. There are ample profs that the nervons system, especially in the most highty ormanized animals, does so modity al the functons of organic life; and it appears more reasonable to suppose that it thus infuences the production of heat, ihan to ascribe 10 at any more direct agency.

In the foregoing pages, the illustrations of the power of maintaiming an unitorm temperature have had reterence to the ordinaiy case of min living in a medum colder than his boc;, and therefore losing heat both by radiation and eraporation. The losses in these two ways will bear, in general, an inverse proportion to one another; the small loss of heat in evaporation in cold climates may go far to compensate tor the greater toss by radation; as, on the other hand, the great amount of thad exaporated in hot air may remove nearly as much heat as is commonly lost by both radnation and evaporation in ordinary temperatures. Thus, it is possible that the quantines of heat required for the maintenance of an uniform proper temperature in varions cianates and seasons are not so duflerent as they may, at first thonght, seem: but on these points no accurate intormation ha- been yet ohained. ${ }^{-}$

Neither, as to the mainteasace of the temperature of the body in hot air is more known than that great heat can tor a nue be boras with litie change

[^10]in proper temperature of the body, poovided the air be dry: Sir Charles Blagden and others suppoted a temperature vaying between 198° and $211^{\circ} \mathrm{F}$. in dry air for several minutes; and in a subsequent experiment he remained eight minutes in a temperature of 260.0° Delaroche and Berger (cswii.) observed that the temperature of rabits was rased oniy a few degrees when they were exposed to heat varying from 1220 to $134 .^{\circ}$ But such heats are not tolerable when the air is moist as wellas hot, so as to prevent evaporation from the body. M. C. James (xix. April, 1814) states that in the yapour baths of Nero he was almost suffocated in a temperatme of $11: 2,{ }^{0}$ while in the caves of Testaccio, in which the air is dry, he was but litte discomfonted by a temperature of $176 .^{\circ}$ In the former, evaporation from the skin was impossible; in the latter it was, probably, abundant, and the layer of vapour which would rise from all surface of the body would, by its very slowly conducting power defend it for a time from the full aetion of the external heat.

It remains to attice certain conditions by which the production of heat is modified.

The effects of age are noticeable. M. Edwards fomd the power of gencrating heat to be less in old people; and the same was observed by Dr. Davy (Nlifi. 1844), who, in eight people, between eighty-seven and ninety-five years old, found that, alhough the average temperature of the body was not lower than that of younger persons, yet the power of tesisting cold was less in them-exposure to a low temperature causing a greater reduction of heat than in young persons.

The same rapid diminution of temperature was observed by M. Edwards in the new-born young of most carnivoous and rodent anmals when they were removed from the parent, the temperature of the atmosphere being hetween 50° and $532^{\circ} \mathrm{F}$.; wheneas, while lying close to the body of the mother, their temperature was only 2 to 3 degrees lower than hers. The same law applies to the young birds. lounts sparrows, a week after they were hatched, had a temperatue of $95^{\circ} 97,0^{\circ}$ while m the nest; but when taken from it , their temperature fell in one hour to $661,{ }^{\circ}$ the temperature of the atmosphere being at the time 621.0 It appears from lis investigations that, in respect of the power of generangs heat, some Mammalia are borit in a less developed condition than others: and that the young of dogs, cats, and rabis, for example, are inferior to the young of those animats which are not born blind. The need of external warmth to keep up the temperature of new-horn children is well known; the researches of M. Edwards show that the want of it is, as Ifunter suggested, 2 much more frequent cause of death ia new-born chaldren than is rencrally supposed, and furush a strong argument against the idea that children, by eatly exposure to cold, can som be hardened into resisting its injurious influence.

Active cuercise, as already stated, raises the temperaure of the body. This may be partly ascribed to the fact that every muscular contraction is attended by the development of one or two degrees of heat in the acting muscle; and that the heat is mereased according to the umber and rapidity of these contractions, and may be quekly diflused by the blood circulating from leated muscles. lossibly, abo, some heat may be generated in the varions movements, stretchings, and recoilings of the other hissues, as the arteries, whose elastic walls, alternately dilated and contracted, may give out some heat, just as caoutchouc alternately stretched and recoiling becomes hot. But the heat thus developed cannot be so much as some have suppnsed.

The anflucnce of calernal coserings for the booly must not be amoticed. In warm-blooded animals they are always adipled, among many purposes, to the maintenance of unform temperature ; and man adapts for himself such as are, for the same purpose, fitted to the various climates to which he is exposed by their means, and by his command over food and fire, perhaps as much as by his capacity of developing appropriate amount of heat, he maintains his temperature on all accessible parts of the surface of the eath.

MEDICINE.

- ON APOPLENY AND EPILEPSY; AND ON AN HOSPITAL FOR EPILEPTICS.

By Marshall Itull, M.D., F.R.S.

I propose tracbeotomy. not as a remedy for apolexy, or for epmepsy; but for stertor or paralyuc Laryng:smus and ats effects, in the former matady; and as 2 preventive and secmuy deamst spasmodic Iaryugrsmus and ats effects, viz., Convulsion, and the injury apt to be nalhcted on the cerebrum and the aedalla oblongata, on tho numd and limbs, in the later dure calamty.

In the apoplexia gravior, with latyngeal stertor, tracheotomy affods the chance for life; in the epilepsia gravior, tracheotomy supersedes the laryngismus, and the Convulsion and ats dire effects.

I.ECTIRF, I.

1-In the Cromian Lectures for 1850, I gave an outline of The Diastallic Nerrous System; it those for 1S51, I gave a view of the application of that system to the Pathology ot a Class of Dasases of the Nercous Contres of inorgonic Urigin; I phopose, on the present occasion, to treat of a branch of this Pathology, in the turn, and especially to detal the progress made in its investigation durnag tire presem year.

2-The result of a sutained and almost evelnsire attention to this subject, daring a very considerable period, on my mmd, is the convicton that thove forms of disease of the nervons centres which are of inorganic origin, that is, by far the greater number of these atiections, atise from causes acting on the structures of the Neck, or of the Laryn:x.

3-Apoplexy and Epilepsy are the two most formidable diceasos of the Nervous Centres. Each may be divited imo the milder and the scierer forms. which may be designated the Apoplevia mitior and the Apoplexia gravior, and the Epilepsia mitior and the Epilepsia gravior.

4-Both apoplexy and eplepay may have their origin in orgamic disease of the nervons centres, or of their vascular structure, arterics. rins, or intermediate vessels. Both may be of inorganie origin, and the efiect of one or other of the Emotions or Irritations. Of these, the former act directly, tho latter diastallacally, on the Nech, or on the Largax; or the athection of the laryne may be secondary.

5-I have ventured to designate these affections Trachelismus, or Laryngismus, respectively.

6-1 am as persuaded as I can be of any medical view, that the apoplexia mitior and the epilepsin mitior depend on trachelismas; and that they might be designated apoplevia or epilepsia trachelco. 1 an persuaded that the apoplexia gravior and the epilepsia sravior depend upon laryngemus, and that they, in their turn, murht be desigmated apople ia or ephepsia larynged.

7-Seeing the importance which 1 attach to these dathectionc, you will not, gentlemen, be surprised that I make them the fomdation of the division of the present Leetures. The first will, indeed, treat of Trochehsmus; the sccond, of Laryngismus; with their relations, anatomical, physiological, pahhologneal, and therapeutic.

8-But if laryngismus be the essentiol link between the exciting canses and the apoplexia and epilepsia gravior, it is plain that Trachcolomy, in

[^11]superseding the effcts of this condition, must supersede the graver forms of those diseases, converung them into the milder respectively. But an essentiai part of the epilepsia gravior is general conculsion; laryngismus then is essential to this convulsion; and as tracheotomy supersedes the effects of laryngismus, it must supersede convulsion, with the further train of dire affections, in the epilepsia gravior.

9 -This is the case in effect. If we institute tracheotomy, there can be no general convulsion. The opilepsy is cut short; it presents the phenomena of the epilepsia mitior, those ot the epilepsia gravior beng superseded and prevented.
$10-$ It is partly, chienly, I may say, but not entirely, on these views that I shall venture, in my therd lecture, to propose the institution of an Hospital for the Epileptic.

11-I now return to the subject of the present Lecture, or Trachelismus-a subject which has not hitherto becume an object of medical observation, or taken its place in medical literature.

1. On Trachelismus.

12-It is impossible to contemplate the muscular and vascular structures of the Neck, and their whane poshons, whout being impressed with the great influence which the action of the former must have on the condition of the latter, and especially of the veins of this important remion.

13-And it is impossible not to percerve the momentous effect which these effects of muscular action on the cervical veins must have on the encephalon.

14-I have ion:s wished for the opportunity of making a most careful dissection of the Neck, and of those anatomical relauons between its muscular and venous structures. This opportunity has not yet occurred with all the leisure I desire; but I trust it is only a labour postponed.

15-Meantme it is obvious that, on the contraction of the muscles of the neck, the veins of this region must be compressed. The effect of this compression is, however, very various, according as that contraction is clonic or tonic, or otherwise inordinate.

16 - A single contraction of muscles on a vein must tend to empty it. If this contraction be followed by relaxation, the vein is soon refilled. And if this ahemate contraction and relaxation be rapidly repeated, the circulation along such veins must be accelerated.

17-But if, instead of these clome actions of the muscles, their contraction be tonic,-if in be spasm odic, mordmate, and sustamed,- the veins are emptied, are not refilled, and the circulation at their origins become impeded or utterly intermpled, or even retrograde.

18 -Let us imagme the effect of such an event on the veins and on the blood-chamels intermediate between these and the arteries, in the delicate substance of the cercbrum and medulla oblongata!- the congestion, the ecchymosis, the rupture,-the danger,--to which these must be subjected!

19- We readily comprehend how these effects may manifest themselves. If this interrupted flow of the venous blood obtain in the exterior tissues of the head, we shall observe tedness, purpurescence, intumescence, according to its degree: we see flushing, lividity, and fulness of the face and of the neck. If the interrupted flow occur withm the encephaton, we ooserve symploms of affection of the nervous centres, these symptoms assuming the varied apoplectic or epileptic character, accordmg to the nervous centre specially affected.
$20-$ To me it is wonderful that a heavy burden can be poised on the head without interrupted flow of venous blood, so great as to induce cerebral symptoms. The fact can only be explained by the circumstances that mere poise does not imply either great, or constant, or inordinate action of the muscles. With evey movement that is made, every step that is taken, a new order of muscular actions takes place, and, with this, an accelerated flow of venous blood.

21-Very different is the event in certain cases of inordinate action of the
muscles of the neck. The late Professor Gregory used to mention the case of a man, who, being in a boat, suddenly turned his head so as to look backwards, and fell down apoplectic. I have two pattents, subject to vertigo, whe cannot move the bead sapally to the right and lefi, without experienciug this symptom: althounh the same persons can turn the head and trmak together with equal rapidity, without experiencing that ellect: yet the difference is ouly-the action of the muscles of the neek-or trachchsmus. I have an epileptic patient who camot turn the head extremely to the right, without experiencing a strange feeting of vention and confusion, and the theatening of a seizure. A similar action, turning the head to the leth, produces no suche eflect. The phenomenon is obviously owing to the forcibe e contraction of certan miscles, compressing certain veins: the action is specaal. The patient bing epileptic, these muscles and these veins may be those especially implicated in the paroxisms.

2:--That the tonic contradhetion of the muscles of the neck really induces symptoms of affection of the new vous centres, is further proved by the following fact, tor which 1 am indebted to Mr. Reynolds, formerly a pupil at Vniversity College:-
$23-$ "A girl, nineneen years of age, was adm:ted into University College Hospital for aphonia: and, anongst other things in the treatment. she was ordered to have galvanism appied to the larynx danly, by the electro-magnetic machine.
$24-$ White using this machme, I observed the effect upon the muscles of the neek, and remarked that, when the wheel was turned slowly, and the superticial museles were attermately contracted and relaned, the colour of the face was herghtened, and of a thord hue, and no umpleazant teelings (fuather than those arising from the shocks) were expentenced; but when the wheel was turned rapidiy, \because th a less powerful curtent, and the muscles were maintained, during the rapdly intermitumg action, in a state of almost permanent contaction, the face became of a deep colour the lips and anges of the mouth livid, the eyes suffused, and some feelings of confusion of thought, headache, and dimness of sight, alternatug whit lashing of light, were induced. The latter effects remained after the cessation of the current, for a few minutes, and then disappeared."

25 -In these facts we have the Proof that a slight degree of contraction of the muscles of the neck, induced by the electric curreut, mduces, in its turn, heightenet colour of the face, of a florid hue; and that a greater degree of that contraction induces a deeper colour of the face, the :aps and angles of the mouth being livid, and the ejes suffused, with confusion of thought, headache, dimness of sight, ahemating whithashes of light; these latter temaining for a few minutes alter the cessation of the current, and then disappearing. They present the Demonstration of the nature of trachelismus, and of its effects.

26 -The usual causes of these contractious of the muscles of the neck, and the consequent impeded flow of blood along its veins, are-

1-The Emotions, and
 2-The Irrilations;

and especiaily fright, indignation, anger,-excitement, pleasuable or painful, -amongst the former; and the gastric, the enteric, the hy teric, anongst the Jatter. Tnese causes induce tonic and mordinate attion of the museles of the neck, of which the patient is frequently quite conscious, and wheh he describes as "strings," a sense of "constriction", \&e.; or he experiences "choking fits," with fullness of the face," as was the case with a physicion whose career had been one of the must remakable of the present day.

27-The most constant of these feelings of trachelismus is that of the cravat being too ught, hough it be really not so, the patient constantly or repeatedly endeavoung to loosen it, by drawing it forwards with the fingers.

28 -There is no medical fact more familiar to us than that of the occurrence of seizures fiom the various emotions and irritations. The new and important
question occurs-How do these causes act mproducing these effects? - the answer to which gives-the true palhology of the forms of apoplexy and of epilepsy of inorganic origin.

29-It is phain that they might act by augmenting the action of the heart and acceleratitg the ementation. But there is no known physiological principle by which such an effort can be supposed to implicate the nervons centres especially. If the circulation be thas acelerated, it is arcelerated in every part of the system, at an equal distance from the heat, equally. The nervous centres may share in the general result. But they cannot be affected particularly:

30-The same observations apply to other forms and modes of accelerated and augmented circulation. Volent roming induces no sympoms portending a seizure.

31-It is, in brief, not accelerated and aummented finw of blood to the nervous centres, but impeded flow of blood from those centres, which endangers their function and structure, especially in the predsposed. A:t epitepte, whose case was detailed to me by Mr. George Webster, seethg sume men endeavouring in vain to move a barrel, said-" Let me try;"-made a violemt ellont, and fell into an epileptic paroxysm!

33-But emotion or irritation may act on the museles of the neck onlv, without involving the largns, and thas it is that we see the isolated and distinet eflect of trachelismus.

34-lt is in this maner that shane and anyer induce bushiner and fluching, respectively. It is in this mamer that I have traced the firmer mto epilepsy; and that the latter, as is well-known, is apt to pass into apoplewy or eplepey.

35-It is not less known that an indigestuble meal or a foaded colon equally induce apoplectic or epileptic threatenings or seizures.

36-The emotions aet through the nerves on the museles of the neck directly. The irrtations act on the same muscles disaslically.

3 -The muscular actions thus induced are not the urill-kalanced actions of voluntary motion, but inordinate action, both in the combination of the muscles involved and in the tonic form of that action. Hence the sustained compression of the veins, the appearances of flushing and fubuess of the face and neck, the symptoms of appopiectic or epileptic scizare, \&e.

- 38-I have already, in the Croonian Leetures of last year, presented the argument of the relation of trachelismus to the Class of discases of the nervons centres of inorganic origin and of paroxysmal form. It is my present object to trace the relation of trachclismus more especially to one form and degree ol these maladies exclusivels.

39-It is not to apoplexy and epilepsy, but to the apoplexia milior and the epilepsia mitior, that trachelismus, when uncomplicated with laryı,gismus, has its special relation.

40-As long as the affection is limited to the muscles and veins of the nerk, so long the affection assumes the form of the apoplexia mittor and the epilepsia mitior, but especially the later; when the laryns becomes implicated, the severe forms of this disease are induced, or superinduced.

41-In apoplexia this condition of the muscles and veins of the neck is more continued; in epilepsia it is more forcible, but less conimned; indeed, it is frequently quite transitory. In both, hovever, the patent may become affected with virtigo and confusion, and even foll, and recover immediately.

42-In this state of the question it is interesting to inquire whether other facts and phenomena are observed which may throw a ray of light on this important subject; and I am happy to be able to illustrate my views by a reference to various facts of this kind.

43-One of these is, the effect of a tight cravat applied tound the neck; and in this place i_must borrow several deeply interesting facts from my former Lectures.

41-It was obsenved by Dr. Donald Monroe that soldiens were liable to bo "carried off by apop'eay, in consequence of stricture of the veins of the neck, from being obliged to wear their eravats too light."

45 -Abercrombit quotes a case from Zitailius, of "a boy who had drawn his necheloth remakab y tight, and was whipping his top, stoopug and rising alternately, when, atter a shont time, he feil duwn apoplectic. The neekeloth being antuosed, and blowd dawn fron the jugular veins, he speedily recovered."

46-The following case oceurred in the person of a most intelligent member of our profension. I give it in his own words:-

47-"A few weeks agro, my shirt-collar was mate too tight, and felt rather uncomfortabie, yot not so mueh as to induce me to change or slacken it. On looking into the mouth of a patient, in such a position as to wist ny neek a little, I dropped down in my_surgery as of 1 had been shot, in a moment, as helpless as a dead man. I soon got up, my head was giddy for some time. I changed my shint, and lost all tear of return of the accident. There can be no doubt that it arose from compression of the veins."

45-The influence of a tight collar or cravat is not duly appreciated. It may be slight in a state of repose; but on moring the hedd varionsly, the muscles of the neck expand. This expansion cannot take place oulwardly, it therefore takes place intardly, and so compresses the subjacent veins. It is on this principle, not, I think, generally acknowledged that a moderately tight cravat may prove an unstapected source of danger. Under the intluence of such a cravat or collar, the not umanal actoons of the maseles of the neek become a sort of trachelismus, perhaps more frequentily than is imagined. The eravat, ton, which is not tight gencrally, may become so under the infinence of sleep, of emution, of gastric repletion, or of centain positions.

49-A further illustation of the same subjeet is afforded by the fearful events recorded in the history of Thusegee;-a crime which is perpetrated by the application of a ligatuse round the neek of the victim, inducing instant apoplectic insensibility.

Illustrations of the same fearful kind are afforded by every kind of strangulation; the tirst effect of which is mstant apoplectic insensibility; the second, the epilep-ia gravior: the thid asphysia; in a series of fearful interest.

51-Similar confimations of these views have been presented by experiments on animats:

5\%-One of the most interesting of these was performed, at my request, by Mr. Martin Contes, of Sa sobury; and is desenbed m my former lectures.

53-The subject has been recenty taken up by Dr. Weigg, who is engaged in a most interesting seties of experiments in illutration in the pathology of atiections of the nervons centres. One of them I will briefly detail:
5.1 - leather strap was applied rather tiginty round the neck of a litte dog: from being lively and phayfu!, the animal immediately became dull, turned round apparently to seleet a position, and went to sleep!
5.)-If the collar were drawn stlll more tightly, the larynx became implicated with the most extraordmary phenomenon of the fommation of abondance of epileptic fian. But I most not futher anticipate Dr. Weger's account of his interesting investigation.

56 -In orner to produce the appearances and the symptoms of trachelelismus, the action of the muscles must be, like that of the collar, continuous.

57-1 find that, on applying an aceurate measure round the neck-the sterhometer of Dr. R. Quain, tor example,-and turning the head extiemely to one side, the circumference of the ueck is readnly augmented by half an moh. This effect is produced by the bulging of the contracted museles. This bulging must take place equally towards the centre of the neek, and must encroach on the contents of the vessels, especially the vems, of that regions. Hence, when the contraction is tonic and considerable, impeded flow of the blood from the head, and threalening of apoplexy or epilepsy.

58-The same augmentation of the circumference of the neek induced by closing the laryox and making an etbort, the flow of blood beiug impeded and the veins becoming distended. Hence, when these events occur in an extreme degree, extreme apoplexy or epilepsy; and hence, the relief from tracheotomy.

59 -It is not in voluntary action, but in action the effect of emotion or irritation, that is, abnormal, inordinate, and spasmodic action, that these effects are observed.

60 -It is also in the action of certain museles, especially, I believe, the omo-hyoid, that impeded venous circulation, with its eflects, is induced. I have repeatedly, both in hysteria and in epilepsy, fcll the clonic action of this muscle under the finger; in apoplectic affections, its action being tonic, would be less detectible.

61-In one case of spasmotic affection, clonic contractions were observed, both of the omo-hyoid and of the eleido-mastoid; of the former as distinct as of the latter.

62-The patient complained exceedingly of a sense of choking (the effect of the contraction of the omo-hyond?) and of pain in the posterior part of the neck (the effect of contraction of the muscles of that region?)

63-We have thus the tangible coutraction of the omo-hyoid. But is not contraction of this muscle frequently the cause of the sense of a "cord," of a "spike," and of "choking," so vanously felt in paroxysmal threateniugs!

On Trachelismus in Relation to the Apoplexia Mitior.

64-I am daily consulted by persons who have experienced attacks of slight apoplectic affection; and I have daily the opportunity of tracing the apoplexia gravior to antecedent, but neglected seizures of the same kind.

65-Vertigo, transient confusion of mind, or oblivium, nutation, falling,-are the symptoms which denote this affection. They are frequently attended by flushing of the face, a sense of tightmess or constriction about the neck, the patient frequently endeavouring to loosen a cravat, already perfectly loose. In one case there were "choking fits," with "fulness" of the face; once, falling to the ground; once, transient hemiplesia. In another ease, smalar symptoms were followed by severe apoplexy and iasting hemiplega.

66-In ail these cases, so long as their is no stentor, the seizure may be regarded as the apoplexia mitior; and I think the prognosis, in reference to life, favourable.

On Trachelismus in Relation to the Epilepsia Milior.

67 -But the distinction between the epilepsia mitior and the epilepsia gravior is still more marked.

68-Every kind of spasmodic affection may occur, as strabismus, distortion of the features, clonic actions of the limbs, \&c., with vertigo, obliviun, nutatio, falling even; but if there be no laryngismus, there is no general convulsion, no convulsive dashing to the ground, and, in a word, no epilepsia gravior.

69-Some patients experience the epilepsia mitior, the "petit mal" of the French writers, ony. But no fact is so common as that of the same patient being subject to both the milder and the severer forms of epileptic seizule. In every case, laryngismus colistitutes the fearful boundary which separates the epilepsia nitior from the epilepsia gravior.

70-In the former, the patient may fall; and this fall may be such as to lead to injury. But the state of unconsciousness, unlike that in the epilepsia gravior, is usunlly but for a moment, and the patient recovers and rises. There may be said, indeed, to be two forms of "falling sickness"-one being the result of unconsciousness, the other of convu'sion. The former may occur in the apoplexia or epilepsia mitior; the latter occurs in the epilepsia gravior only, and is the truly formidable malady.

71-The worst event, with regard to the mere falling, is that which occurs
upon the stairs, or in a crowded street. These events I have known to occur. I have not known such an altack to lead to falling with violence, or into the fire, or into the wher.

72-My object is to state the truth, however; and I do not attempt, for the sake of an opinion, or an object, however desirable, to give a colouring to facts which does not belong to them.

To be continucl.

A FEW HINTS IN TREATING URINARY AFFECTIONS.

By Dr. Golding Bird, F.R.S., \&c.

1-Dr. Bird remarks that, Whenever it is desirable to impregnate the urine with a salt, or to excite diuresis by a saline combination, it must be exhibited in solutir.n, so diluted as to contain less than 5 per cent of the temedy, or not more than twenty-five grains in an ontinary draught. The absorption of the drug into the capillaries will be ensured by a copious draught of water, or any diluent, immediately after each dose.

Q-When the urine contains purpurine, or presents other evidence of portal obstruction, the diuretics or other remedies employed should be preceded or accompanied by the administration of mild mercurials-taraxacum, hydrochlorate of ammonia, or other chohtic remedies. By these means, or by local depletion, especially by leeches to the anus, the portal vessels will be unloaded, and a free passage obtained to the general circulation.

3-In cases of valvular disease, or other obstructions existing in the heart and latge vessels, it is next to useless to endeavour to eveite dinetic action, or appeal to the kidneys by remedies intended to be excreted by them. The best dinmetie will, in such cases; be found in whatever tends to diminish the congested state of the vascular system, end to moderate the action of the heatt; as digntahs, colchicum, and other serdites, with mild mercurials.-British and Foreign Medico-Chirurg. Review, July, 1851.

0. The means of testing for urea in albuminous fluids; AND ON THE ORIGIN OF UREA.

By Professor Lelimann.

Uiea may generally be fery easily recomized by its properties, especually by its behavionr towarde nitme and oxahe achs; but when we have to discover very minute quantitieg of this substance in albuminons thuds, it is often very defficult to tetermme its presence with scientitie precision. It is in aleoholie extracts that we must always seek for urea: but before we proceed to search for it. there are several precantionary measures to be adopted, the neerlect of which would render om attempt to discover it tutile. In the first place, in reference to the presence of albuminous substances, if we wish to discover small guantities of mea in albuminous fluids, we must not he satisfied with the removal of the allumen by smple hoiling: since, by the congulation of the albumen, the fobl herome more alkaher, and might, duriar evapoation, induce a decompusition of the urea: mereover, all atbuminoms mathen is mot precipitated by botine, but a portion remains disoolved by the aikali, and is iaken up in the ahooholie evaract. On evaporation. this allomen undergoes as change, which probably co-operates with the alkah in inducung the decomposition of the urea. This may explain how it wa that Nathehat cond onlv recover

of urea. Hence, before biling the albuminous fluid, we must add a few drops of acctic actd, so as to give it a slightly acid reaction, whergby not only is the alkalescence of the flud prevented, but a much more perfecl separation of the coagulable matters is eflected. If the residue of the fluid from which the coagulated matters have been filtered be eatracted with cold alcohol, and the solution rapidly evaporated, so as to cause the chloride of sodium (taken up by the cold alcohol) to separate as much as possible in crystals, on then bringing a drop of the mother-lquad in contact with the nitric of the rhombic octohedna, and the hexagonal tablets, in wheh, it the investigation is to be unquestionable. the acute angles ($=82^{\circ}$) nust be always measured. After the determination of the muate, we may also obtan the oxalate, and submit it to mieroseopic examination. A good crystallemetric determmation yields, however, the same certanty as an efementary analysis, whieh, in these cases, would never, or extremely seldom, be possible.

The investugations of Marchand have thrown much light upon this subject [the seat of the actual formation of uica]. This accurate observer could only recover 0.2 of a gramme of urea from 30 grammes of serum, to which 1 gramme of urea had been added. He shows that, even if the urea were only separated from the blood at the end of each successsive hour, it could not have accumulated in such quantity as to have been discoverable by the present mode of investigation. The following considenation will give us an idea of the small quantity of urea which, according to Marchand's hypothesis, at the most can accumulate in the blood in one hour:-From the experiments of Edward Weber, wheh I have in part confirmed, we may assume that there are, in an adult man, at most 6 of 7 kilogrammes [16 to 19 pounds] of circulating blood. Now, if, in twenty four hours, 30 grammes of urea are discharged, at most only $1 \cdot 25$ grammes could accumulate in one hour in the whole mass of blood; so that only 0.021 could be contained in it. The minute quantity can, however, as we have already shown, only be detected in operating on very large masses of blood, and by the aid of the microscope. Hence it is easy to understand why, during my experiments with an animal diet, while the urine was loaded with urea, none of this substance could be discovered in the blood.

If it be now established that the urine is not primarily formed in the kudneys, the question still remains to be answered, whether it is produced in the circulatity blool or in the individual living organs (as, for instance, the muscles), and from what materials it is principally formed. In the piesent state of our knowledge. we may answer, that the urea is formed in the blood, and that it is produced from materias that have become effete, the detritus of tissues, as well as from unserviceable and superfluous nithogenous substances in the bood. No animal tissue presents such vital activity, ir so much used, and is so rapily worn out, as muscular tissue; it is in this tissue that the metamorphosis of mater proceeds most rapid/f and abundanty; and yet in the large quantities of muscular fluid on which Liebig worked, he could detect no trace of urea, although he found substances from which he could produce urea artificially. We must, therefore, assume, that these substances, as ereatme and probably inosmic acid, are decomposed in the blood, by the action of the alkalies and of free oxygen, into urea and other matters to be excreted. Moreover, my experiments, showing that the superfluous nitrogenous food which enters the blood, and the fact that cefleine, glysine (Ilorford), uric acid, and alloxantin (Wohler and Fretichs), swon after licy have been taken, perceptibly increase the anount of urea in the urioe, support the view that itrea is tormed it the hool. It is ampusible to stipprece that this nithogencus
 thme that a process wems nere, akshogus to that exhilited ly the percusion apparatus of the physicists, where a certain number of parts effecting a percussion stre nse to the repulsion of an equal mumber of farts. Hence the conversion of this mater can oreur in uo whe place than in the circulating blood, and, theretuse, it is here that the urea most he formed.

That the urea is formed from nitrogenous matter could not be doubted, even if it did not contain nitrogen (and that in so large a quantity); for it is especially after the use of highly murogenous tood, that we find an augmentation of its quantity in the urine. If, however, we should further inguia,--from what substances it is produced, and what tissues principally contribute to its formation? -we could not, in the present state of our knowledge, give any satisfactory answer to this question. All that we know is, that urea is a very general product of the decomposition of nitrogenous matter, both naturally within the animal body, and artificially in the laboratory of the chemist. We have already said enough to show that urea is so common a prodnct of the decomposition of nitrogenous bodes, that we could hardly any longer enumerate it among true orgraic substances, if we trjed to establish a distinction between organic and inorganic matter. Moreover, when we treat of uric acid, we shail show, that, in all probability, a great part of the urea separated by the kidneys from the blood is the proluct of the decomposition of that acid.-British and Forcign Medico-Chirurg. Review, July, 1851.

SURGERY.

AN ACCOUNT OF TWO CASES OF INTLSTINAL OBSTRLCTION, IN WHICH THE OPERATION FOR THE FORMATION OF AN ARTIFICIAL ANUS WAS PERFORMED: ONE IN THE ASCENDING, THE OTHER IN THE DESCENDING COLON.

By W. J. Cloment, Esy., F.R.C.S., Shreusbury.

Case 1.-The author visited, on the 8 th of October, 1811 , a married woman, aged furty-seven years, who was suffering from obstuction of the bowels of foutcen days' duration, accompanied by great distention of the abdomen, luceough, incessant vomiting, which during the last two days had become fecal; the countenance was amions; the pulse small, rapid, and flutterimg. It appeared that for the previous seven or eight years the patient had suffered from habtual constipation, and had required the constant use of drastic purgatives. The abdomen was tympanitic on percussion everywhere except on the right mguinal and ilac regions, where it was dult. It was evident from the fact that several pints of Huid could be injected into the colon, that the obstruction was not in its descending portion. On the 10th, the symptoms having undergone no abatement, and the pattent's state being evidently hepeless unless rehef could be obtamed by operation, it was proposed by the author, and performed on the same day. The patient was placed on her belly; the incision was made midway between the last rib and the crest of the ifium, extending from close to the spinal column to a line cutting the anterior superior spinous process of the ilhum perpendicuiarly. The colon was found to be distended. It was secured by a couple of ligatures passed through its coats; and a vertical incision being made into it, a large quamity of liquid freees escaped, together with much Hatus. Immediate relief was obtained; the unfavourable symptoms ceased; the fuces were passed more or less freely through the wound, and at the end of six weeks the patient was able to walk a mile. About this time the discharge throngh the artificial anus became gradually less; at the end of seven weeks vomitung and colickly pains returned, but ceased after the expulsion of a mass of plum-stones, when a free exit tor the fæces was again established. The patient lived for more than three years after the operation, enjoying tolerable health, and able to walk a considerable distance, and to attend to her domestic affairs. Aperient midicines were taken regularly, and the passage of fæces was pretty free. Plum-atones were passed at intervals;
the total number collected was 116. The patient's health declined for some months before her death, the appetite decreasing, the strength failing, and emaciation progressing. On examination a very complete stricture was found to exist in the transverse colon, which would not admit even the passage of a bristle. It was about a quater of an inch in length. The coats of the bowel at this point were of a dense, white, cartilaginous structure. The muscular coat of the crecum and ascending colon was much thickened, and there was great distention of the gut behind the stricture. No traces of inflamatory action were to be found in the peritonsal cavity, with the exception of three membranous bands, which extended in a jateral direction, connecting the lower part of the ilium with the crecum and ascending colon.

Case 2.-The driver of a mai. coach, a stout muscular man, aged fortythree, consuited the author in January, 1847, suffering from constipation and external piles. In the month of March the constupation had become more obstinate, and the patient was obliged to give up his occupation. The symptoms were relieved by cupping on the loins, calomel, and oher purgatives. On the $2 d$ of April, rigors, which had occurred once during the month of March, returned, and were followed by vomiting, which contimed for two or three days. Examination of the rectum sheyred the existence of a stricture about six inches from the anus. The attempt to pass rectum bougies of the smallest size failed. An elastic-gum urethra bougie passed the obstruction, and upon withdrawing it, liquid freces and flatus were voided. This operation caused great constitutional disturbance, rendering blood-letting, leeches, and calomel and opium, necessary. The discharge from the bowels was very slight; the vomiting recurred frequently. On the 12 th of May, thee small fleshy bodies, with a little faculent matter, were voided. No fixees passed from the rectum subsequently. During the remainder of the month of May the patient suffered greatly from hiccough, vomitiug, and most troublesome tenesmus. On the 30th, The formation of an artificial auns was proposed, but declined by the patient. On the 18th June, ficculent vomiting began, and returned on the 50 th, and the patient then consented to have the operation performed. Examination of the rectum with the finger had given evidence of a morbid growth within the rectum, which was increasing in bulk. The operation was performed on the 20 th June. No frealent matter having passed the rectum since the 12h of May, the abdomen was enormously distended. The incision was made on the Ieft side, in the same direction as in the former case, but of greater extpnt. The bowel was secured by ligatures, and a free incision made into it, but nothing but flatus escaped. As moderate pessure over the abdomen had no effect in causug a discharge of faces, the patient was placed in bed on his lef: side. The vomiting and hiccough continued; about eight hours after the operation an immense discharge of liynid fiecal matter took place, with so'ne abatement of the symptoms. The author gives a detailed account of the patient's state during seven days following the operation, during which there was considerable constitutional irritation, with much tenderness of abdonen, and retention of urine. The catheter was passed repeatedly, but the secretion of urine was very scanty, the facal discharge continued more or less constant and copious. At the end of the week the improvement was very decided, and continued for ten days-viz, until July 8th, when acute pain in the left side of the abdomen and rigors occurred, followed by enlargement of the glandsin both groms; and sloughing of the skin over the sacrum and tight hip, which had begun four days after the operation, but subsequently had appeared likely to cease, begran again to extend itself, in spite of the partial removal of pressure by means of the water-bed, \&c. It was found, on examination, that the morbid growth occupying the rectum had encreased very much, and it was evident that the difficulty attending the emptying of the bladder was caused by tis pressure. A tumour projected through the sphincter ani a few days before the patient's death, which bled on being touched. The enlarged glands in bolk groins continued to increase in size, and the skin it the left groin began to ulcerate. Death occurred on the 26 th of July. No examination of the body took place.

CASE OF INTESTINAL OBSTRUCTION, FROM DISEASE OF THE rectum, treated successfully by opening the DESCENDING COLON IN THE LEFT GROIN.

By Alfred Baker, Surgeon to the General Hospital, Birming iam.

On the 15th of August, 1849, the author was called to visit Mrs. T——, aged sixty-t wo, who was suffering from severe pain in the umbilical and hypogastric regious, wath retehuse and vomitinc, fullness in the abdomen, thatulence and constipation. The symptoms were at first attributed to her having eaten indigestable food, and were treated with that view. The symptoms for the most part disappeared, but the pain continued from time to time. On the lst of Octuber she had a recurrence of the symptoms, not referable to any obvions cause; and agam on the 11 th. On the 9 th of November, the author was summoned to her, and found many of the signs of intestinal obstruction present, and within reach of the tup of the tinger the rect am was found obstructed by a firm growth, occupying its whole circumferean Attemps were made for a few days, and with pattal success, to unload the bowels, by passing a small arsosophagus-tube moto the stricture, by injections, and the use of purgative medeines. In a few davs, however, constipation returned, and with symptoms of peritomis. These symptoms were subdued, and diarrhoa came un; but this ceased spontaneously, and constipation returned, and increased gradually; and on the 17 th of Janaary, 1850 , perfect obstruction took place. On the 23 rd, the symptoms were so urgent that an operation was proposed and assented to. The deseendang colon was opened in the left lumbar region, an incision beng made transversely acoss the left loin for five inches. After the division of the muscles and fascia, the quantity of fat which presented itself was su great, that it was necesary to cut away part of it. The intestine was attached by four sutures to the skin before openine it. The openng was followed by the escape of a large quantity of semi-tiquid facees. The daily reports of the state of the pattent atter the operation are given by the author. She we.t on tavourably, and on the 18 th of April, it is reported that she got up, threo weehs after the operation; that ler qeneral health is good; and that she has rained Hesh. The lumbar opening is large enough to admit the index-fingel, and the motons pass easily through it. She wore an ivoly plug, athached to a padded steel plate, tastened by a belt; but after a time the plate was found inconvement, and the plur was attached simply to a plate of vulcanized india-rubber. Up to this time, she has remained free from symptoms of intestinal obstruction ; but withn the last few months, has been attacked with symptoms whech moceate that the morhid growth in the pelvis has extended to the abdumen. The anthor then gives his reasons for preferring the operation in the loin, in this case, to that proposed by Iittre, which were-1st. That there was less risk of rekinding inlammation of the peritonxum. Dud. That the presence of femoral hernia, which evisted in this ease, might have given rise to displacement and adhesion of the intestines, so as to interfere with the finding of the large intestme, in an operation of the groin. 3rd. That as the point of obstruction was ascertained, there was no need of any exploratory lucision; and he then points out the general advantages of the operation se'ected. In commenting on the operation at the loin, the anthor adverts to the fact, that the appearance of the anterior layer of the lumbar fascia may induce the supposition that the intestine is arrived at, as it has at times a bluish-green colour, and looks like intestine. But the longitudinal tibres which characterize the large intestine will not be seen; and on making a cateful puncture of the fascia, a protrusion of loose renal fat will take place; and until this fat is reaehed, the operator may be sure that he has not arived at the bowel. In speaking of the tendency which always evists, after these and all similar operations, to contraction of the cicatrix, the author expresses hus belief that this tendency, in the present case, was materially lessened by the habitual use of the plug, which, he says, was a great comfort to the patient, as it enabled her
to go about, and nis with the world, without the fear of the accidental escape of the contents of tire bowel; and he adds that the patient was able herself to adjust the apparatus, and attend to the evachions and to the dressing of the wound, wathout requiring the aid of any second person.

CaSE OF SCIRRHLS OF TILE RECTUM ; FORMATION OF AN ARTIRICIAL ANUS.

By Johz Adam, Esq., Surgeon lo the Iondon Hospital.

The patient was a lady, thirty-five years of are, the mother of children. She had for a considerable time complained of great ditiiculty in passing her motions. Ths was accomplished with pain and much straining, and she was the subject of hermorihuds. She was hereditarily predisposed to cancer. About a year ano, a sirgeon pronounced her case one of cuncer of the rectum, with ulecration. The butels were constipated nine days, and the usual pargatives were administered, and scruple doses of calomel, without effect. Ifer sickness was allayed by opum and stuehing ice. The rectum-tube could not be passed above four inches. Scirrhous rectunt very high up, was presumed to be the cause of the obstruction. Metallic mercury, to the extent of two pounds, was given, a small quatutty of which pasoed suon after. The operation was performed according to Mr. Luke's method (see his case in the last number of the Socnety's Trunsactions). The descending colon and sigmoid flexure were undistended. In the course of a few hours, a large quantity of fluid furces passed, and the relief wats complete. She continued to progress favourably, aid since the operation has been better than she had been for some years. Occastunalh a small quamity of fieces pass per anum, but it is neariy all discharged by the wound ; there is also occasionally a smal quantity of bloody mucus passing per anmm. A leght truss is used to restrain the constant passage of the fieces, and there is a distinct tendency to pass them twice daily: A large quantity of the mercury passed by the wound som after the operation, but a very considerable quantity was retained until a short time aro, and it then passed per anum. The patient was slightly salivated, apparently from the calomel, the mercury being unaltered.

MIDWIFERY.

ON THE LSE OF GAlVANISA IN OBSTETRIC PRACTICE.

By John Jydde Houghton, Esq., Surgeon to the Dispensary, Dudley.

[With the exception of DA. Simpson, those who have published cases of utelue hemorrhage speak in unvarying lerms oi the power of galvanism, and would lead us to lugh to it with contidence in some of the most trying difficulties in olstetrac practice. Dr. Radiurd, of Manchester, speaks in high terms of praise as to its value.]

Case I.-Mirs. M., aged 28, a small, delicate, anemic-looking person, is now, July 13, 1847, at the full term of her eighth pregnancy. I saw leer at 7 A.ms; she has had premonitory pains for a day or two but they are now regular and tolerably strong every three or four minutes; the os uteri is three-fouths dilated; membranes entire, soft parts lax and well lubricated; head just descending through the brim. Pain coniinued regular, with litte progress, until 8 o'clock, when I ruptured the membranes. The pains then gradually diminished in force and frequency, and at a quarter-past 8 had quite left her. Three cioses of ergot of rye, stimulants, bandage, and frictions, failed to produce the slightest pains; the head had descended inio the hollow of the
pelvist I waited until half-past 11 o'elock, when she became very annious about herself, and begged! would, if possible, hasten the delivery. I therefore sent for the galvanic apparatus, and at 12 velock commenced its administration by applying a very feebe current, one pole beirg placed in the vargina, the other on the abdominal wall; she immedtately cried out, "Oh! you are ruming a pin into me." After three or four minates she had a very shoht pain, and atter thee or four minutes more one stronger; the pains continned inereasing in foree and frequency for about twenty mmutes, when she was delivered of a small, but healthy child.

The pains produced by the galsanism evactly resembled those of natural labour; and, but for the presence of the apparatus. one would have sind she was competmer her labor: in a natural and tavouable mamer. The poles were $k e p t$ constantly applied. The uterus soon contracted firmty, and expelled placenta. The mother and child did quite well.

Previously to her present preguancy, Mrs. M. had several abortions from ufceration of the cervix uteri, which had yelded to the usual treatment. From thas time she enjoyed befter health than she had done for years. She got stout, lost the aneme look, and remamed quite free from uterine symptoms, which had long troubled her.

Cass: II.-On the 2ad of July, 1848, at 4 A.m., she was again in labour at her full time. I was prevented from attendng her mysef; and she was attended by Mr. W. W Tinsley, now of the shetheld General Intirmary, whom I acquainted with the facts of her previous labour. The following is that genteman's accomt of the labom, slightly coudensed:-"She had been in pain all night, and the pains now came va every twe minutec, not strong, and sometimes not quite so often. The membranes were ruptured before I saw ber; soft parts relaced, cool, and moist; os uteri high up, soft, and dilatable, bu hatle dalated; head presenting in the tirst cramal position. In au hour, litte propress being made in the dhatation or descent of the head, I gave her a dose of ergot of rye, which only produced vomiting: in mother hour she seemed much the satne; and with my ham on the abdomen 1 could feel that the uterus did not contrat with the paias, which continued gradually decreasing, although they never left her entitely. The bandage, friction, \&e., were now tried without efect. This state continuug, as I haew that gatvanism had been ased with eifect before, it was again applied. An attendant placed one pole over the fundus on the abdominal wall, and 1 applied the other at the outlet of the vagina, at the same time watching the progress of the head. At first we could not rean ate the power, but at length we got a continuous stream, which vas graduaily increased as far as she could bear, for that only seemed sufficient to produce contraction. In less than ten minutes she complained of the pains getting stronger, and indeed the effect was obvious, for the paias soon became expulsive; the head beran f, adrance, and in abont a quarter of an hour made its appearance at the outet. The poles were now removed, and a natural pain was sufficient to expel the head, and soon afterwards the body. The placenta came away in a few minntes, amd the uterus contrarted firmiy, Her convalescence was qute favourable. During the progress I sometmes moved the pole from the vagma to the sacrom, but the effect seemed to be the: 'ne. The chief pain was caused by the pole over the fuadus. The galvanism did not seem to produce natural ahernating pains. but rather one gradually increasug contraction, which hardly left her until the chid was born. The time which elapsed from the firat appication of the poes until the bith of the child did not exceed one quarter of an homr."

Case 111.- MIs. I. was taken in labour Septernber 5. 1847. I saw her at half-past nine, p. m , when I found the os uteri dhated to the size of half-ncrown, solt, and dalatable; head oresentang naturally ; pams regular, bet fece ble; the pains contmued frequent and fecble until half-pat one, at which tiane the child was born. As the bead was passug the oulet a copinuegush of blood took place, and blood continued to flow riolently alter the birth of the child. I at once removed the placent wilhout difficulty; the flooding, howe-
-ver, continued; pressure with the hand caused the uterus to contract, by which the bleeding was restrained; alight drain still continued; at times thenterua relaxed under the hand, when the blood immediately returned. Shortly an alarming gush took place, followed by pallor, restlessness, yomiting, and fainting ; ordinary means had been already tried, and, now cold water was dashed freety on the abdomen, without producing any permanent effect. The uterus zoaid nol contract effectually, and the bleeding continued. I now sent for the galvanic apparatus, and during three quarters of an hour which elapsed until its arrival, 1 kept firn pressure on the uterus with my own hand;, by which meons the flooding was restrained. The organ, however, showed a consiant disposilion to relax, and consequently the blecding to return. The state of the patient had become very alarining ; the poles were apphed without delay; and they scon produced firm and permanent contraction, and complete suppression of the bleeding For a short time I kept my own hand firmly on the uterus, that no unobserved relaxation and internal flooding might occur. Shortly atterwards I destred an assistant (who had much mudifery experience) to feel if the contraction contmued; the moment he laid his hand on the atdomen he looked quite astonished, and said he had never felt so tirm a uterus. Her recovery was gradual, and wihnout accident or drawback, more than that which resulted from loss of blood. I have since attended lier in an easy and natural tabour, in which there was no aceident or complication.

To be continued.

HOW TO MAKE A SPONGE TENT.

By Dr. Edacard Kigby.
[Spenking oi the best mears of dilating the os meri, Dr. Righy says]
A well-made sponge tent is a most effectual means for dilatuig the os uteri to a considerable event, whi but a moderate degree of force, and but trilling pain ; indeed, zome patients npprar to suffer nothing more than a senstion of pressure from it. But a well-made sponge tent is a great desideratum, and I believe that the medical man must make them hanself it he wishes to insure them of the requisite quality; for $1 t$ is very difficult or impossible to get them made so firmly, that they can be introduced without breaking, and yet be captble of expanding to the necessary amount.

A piece of iolerably fine spmuge, previously well dried, slould be soaked in mistira neacio, and rolled up into a cylindrical form, somewhat in the shape of a small rigar, tapermg to a print at one end. The other, or thick end, must be rolled round a middlug-sized awl, partly for the purpose of leaving a central perforation into which the end of the instrumat which carries it is to be ingerted, and partly to fix it, while a picce of stout cord is womad tighly and closely round it from the thick end up to the point. By this means, the sponge is powerfully compressed moto the cylindrical inrm above mentoned, and, if well dried, becomes as hard as a pirce of vood, and retains its compressed state perfectly when the cord is removed. Any little projechens or roughness may.be trimmed off with a sharp knife; and, lastly, the tent is to be dipped several times in melted tallow rendered harder by the admixture of a little white way, until it has become thickly co ted. A prece of string or tape is fastened to the jower or thicker end to assist in removing it from the os uteri wien expanded. The hrat of the part som melts the mactunns covering, nad thus enabice the tent to slike up in is own grease as it gradually melts, whenotherwise it migh have bren dificult to mindure "t. The secritions of the part slowly pervade the spouge, and disentve the hardened gum with which it has been soaked, aid the smage zradually expands as it returns to 's full size.

Twelve hours is usually a sufficient periued to effect this in; and the de gree of dimintion produced will gude us ns to the intrmaction of a latger ceat on the removal of the first.-ilifed. Times, Dec, 6, 1851.

SELECTED MATTER.

ANATOMY AND PHYSIOLOGY.

CASE OF GANGRENE OF THE LUNG.

Dr. Hailty read an extract from a letter wiving an acenunt of an incerestin ${ }_{5}$ mase of gangruse of the leil lung, which occurred at the Merchant Seamen's Hospital at H.ag Kong, under the care of Dr. W. A. Harland, of that hospital : -"An Ame can sallor was bought up to the hospital in such a condition as almost to preclude all hope of has surviving beyond a few days. On the second day atter hes almission he fell out of bed, and on being raised up again he comphaned of severe pain under the left mamma. Dr. Hartand immediately examined the part, and found a swelling of considerable size, and witi distinct Huctuation. With some hesitation he made a small incision, and finding an escape of pas only, he enlarged the opening to about an inch and a half in length, when apwards of half a pint of extremely foted pus, with small shreds of gangrened lung, were evacuated, the discharge being seddenly stopped by a mass of the dead lung iself protruding through the orilice. By gentle traction with the forceps he was enabled to withdraw this to the extent of nearly two inches: but fiehug it not yeld any further, and afraid of bemorrhage if he cut at, he applied a poutice, which was renewed every three of four hours, and at each duessing palled out the lusig a litte more as the opening mereased in -ine Dy uleerative absorpton. On the third day after the incision was made, the protroding mass becane so troublesone and offenswe, beades exhibiting ane spearance of sponanems separation, that Dr. Harinad removed it by the kme; whenorthage ocenarel, and the opening appeated to be filled up by tie pericardum, (as by a valve, whech gradually became thickened and atherent all sound to the pariete of the chest. The detached piece of lung would scarcely ${ }^{5}$ mite a pui measure, aml weighed nealy a pound. The man rapidy recovered, and about three months afterwards shipped again as a seaman, in is vessel bound to New York." Dr. Harland subsequenty wites-. Last month (E ec. 185h,) I was agrecably surpised by a vish from my oh pathent, wiu) came to show me that he was alive, and puite stong and hearty agan. It appears that in conspuuence of the ulcenation havur exposed a pait of one rib, sin, dischage eontinated to coze from the wound fir some months after he teft mo., and on withe acconnt he went into one of the hospatals on his arraval home at New York. Uader medheal treatment tor a shon time the wound som healed, and ho case exented considerable interest, almost all the pinconsi medicul men there havias voited and examined him. From New York he went to gea agran, and then to the mones m Califora: . whese he worked as a gold-digges fot abwe a year, and at last to Hong Kong, whero he arrived last momb. He told me he coald work as well as ever, and had never been trobled with comgh since he cett me ; the only difiereace he could nerceive was, that the thengint that he was rather shomiet-breathed than before, if he had to exest himeth strongly for any teugh ot time. A marked difference, too, is at once perceptabie in the relatave dumensons of the two sules of the chest. He went back is Catornat a few days igo, (Jian. 29, 185a.)" Dr. Halley recretted that mone patuendars were not adled in regard to the subseqent physient and ansenhatory signs, biat hoped at a future time to lay them before the Society; at the same time he thought the case so renarkable and unique as 12 be well worthy of their athention, eren ia its present form.

NEW STETHOSCOPE.

Mr. B. W. Richardson exhibited to the Society a new form of stethoscope which he had recently invented. With reference to conveyance of suund, tuis stehoscope did not differ from other kinds, but it was much more protable and convenient. The improvement lay in the ear-piece, which was jonaed to the lube by means of a very simple hinge-joint, on the principle of the joint used in the enema symuge, so that the ear-piece could be folded down upon the tube when not in use, (like the top of a round table,) and could then be carried in the breast pocket without causing the slightest inconvenience. The jont was ala so mamared that the instrmment could be used with the ear-piece standuys an difieten angles, an advantage of some importance. Fwo other stethoveppes were likewise shown, in which the ear-piece moved down upon the tube; but these, though simple in construction, were not so complete as the one above descibed. The stethoscope was made by Weiss and Son, and was of modelate cost.

MEDICINE.

ON APPOPLEXY AND EPILEPSY; AND ON AN HOSPITAL FOR EPILEPTICS.

By Marshall Ha'l, M.D., F.R.S.

1 propose tracheotomy, not as a remedy for appoplexy or for epilepsy; but for stertor or paralytuc Laryngismus and its effects, in the former matady; and as a preventive and secunty agamst spasmodic Lay yogismus and its effects, viz., convelsion. and the injury apt to be mflicted on the cerebrum, and the medula oblongata, onthe mand and hmbs, in the latter dire calamity.

In the apoplexia gravior, with laryngeal stertor, iracheotomy affros the chance for hite; in the epilepsia gravior, tracheviony supersedes the laty ngasans, and the convulsion and is dine effects.
d. Ectuas: 1 .

On Largugismus.
7.3-I, miryngismas has scarcely taken a more prominent place in medical observations anl writury than truehelismas. The term has hitherto beea applied and limited to a form of infintile convalsive affectiom. It oushi to be cxieaded and applied to all affections of lice Larghe of a secondary and hanctional chacter, and bot depeadent on alteration ia the stachare of tho bayy y itseli.

Ta-As in the cuse of thehismus, I propose th tace the affection through its diferent forms, back to ats various origin, and onwand to its most dire and damgerous conasquences.

75-irathensmas is, I believe, always spasmodic. laygagismus is sometimes of a spasmodic, sometimes of a paraly'ic character.

76 -The beatiful experiments of i, egallois give us the type of the praly'uc form of this athetuon. 'The revorrom laryngeal nerves being divided, the ruma glotidis colapess partially and induces paralytic laryurismus.

77-A smilar eflees is jroduced whenever the inituence of the cerebrum or of voition is withdraw fom this orran.

Fis-Eve: in the patial subtraction of this induence in deep slecp we observe a first degree of haryngismus in the snoring or stemor of this state of the cercham.

79-As in the case of the muscles of the neck in sraceal, volitom being withdrawn, dirimer sleet, from the museles which preserve the heryox open, the conssictors rentrate, fom tonic of spinal action; and as the veins are compressed in the former case, so, in this, the lary ux is partally closed and a. sight stertor is minaced.

80-The most familiar instance of sparmodic laryngismus is olserved on allowing a drop of water or a crumb of bread incautiously to drop into the rima glottdis; or in the still more formatable case of choking.

81-One gentleman experiences a spasnodie laryngismus on attempting to take a draught of cold water.
8.3-From these slighter forms of largngismus I pass on to the severer morbid forms of this atiection observed in apoplexy and epilepsy.

833 -In the milder eases of these affections, no affection of the laryax, or none of any degree of severity is perceptible. It is when the severer forms of these maladies take place, that the paralytic (or apoplectic) and the spasmodic fams of haryusismus preseat themselves.

84 -The occurrenee of paralytic or of spasmodic laryngismus denotes the sererity of the matady. But the re-action of this condition of the laryon, in augmentur that severity of the disease, is of a still mre formidable character,

85-The inluence of laryngismus and of the obstructed respiration on the veins and integumemts of the neck and face, and of the encephaton, is of the most dangerons character. On it a destended coudition of the veine, parparescence, and intunescence of the face and neck, and coma, a ike depend; the proof of which is atiorded by the observed effects of tracheotony.

8ij-The apoplectic allections may be divided, as 1 howe already stated, into those of the midder and into those of the severer foms: the tormer of these depends on thachelismus; the latte: on laryngismus. i3y tactheotomy the apopleva gratior is changed into the apoplesar mitior!-and even his may speedy subside. This conclusion is one of great practacal, as well as patholugical, imporance.

Si-Analogons remarks may be made upon the spasmolie laryari-mus. Epilepsy aloo a sumes two forms: the first, that of the epilepsia mitor ; the second, that of the epilepsia gravior. Aslong as lisere is only trachelismus, the cac a-mones the lorm of epilepsia mitior only. If layngismus supervenes, the case becornes epilepsia gravior;-consulsion and it dive eflects supervene. Tracheotomy restores the patient to the condation of the epilepsat mitior!

Sx-This spasmodie laryngismas is the effect either ot direct or of diastaltic action by or throngh the melulla oblonga'a. It is direct when in is the oftect of emaion, and when it is excited by the condition of the circulation in the mednha oblongata induced loy trachelismus. It is diatatic when it is the eflect of deatal, gastric, enteric, or uterine intitatom.

83-That spasmodic laryagiamas shond be the essemal coidition of espralsion and ill its dire cowefuences, and that trachentomy shouht render such events imp)rsible,-are surely couchaions of the drpest menest, bah to the patho ogist and the physician. I shall shortiy alduce practical pronf of these interences ant conchasions foon theory,-interences and conclusions not adduced by any of tie great obsrreos.

90- To prevent somvelsim, is, fiequatiy, to save life, to preserve the intellect, to avert paraljsis; in a word, to achicue a vard, over the wotst fom of that malady which the ancients desiznated $\times{ }^{\prime} 5^{\prime}$ aťon, the Hecutean disease, the morbas sacer, \&e.. from its feafu imm mity: the victory has heen achised by physiology, and eapecially by tae diseorery of the Diastal, ic Nercous System!

91-Laryngismus, in its spasmodic form, is. tike trachelismus, dublless, frequently the immediate effect of the emotions or the irritations. But, in both its spasmodic and its paralyic forms, it is freasently also the etfect of trachelismas itself:-

92-Whea trachelismus has induced cerebral congestion, and when this congestion has attained a certain degres of iotensity, a degree of stertor or of paralytic laryngismas supervenes, inth an augmented degree of the sumo congestion in its tun;

93-When trachelismus has induced congestion of the medulla oblongata, laryngismus, convuision, torticollis, bitten tongue, convulsive dashing to the Hoor, are the terrific consequences!

94-All these events I have observed and traced in patients with great care and attention. The chain of facts becomes, indeed, matter of pure observation!

95--The patient may be affected with the slightest apoplectic symptoms only. Or these may pass variously into deep apoplexy, with the most formidable stertor, with apoplectic laryngismus; or into epilepsy, with frighful convulsion, the result of spasmodic laryngismes.

On the Larmgismus in relation to Apoplexia Gravior.

96-What is stertor?
97-The closure of the eyelids during sleep is accomplished by a posilice power; for in cases of extreme debility or exhaustion, in which all the nervous centres participate, this closure-is incomplete.

98-The orbicularis, during sleep and espectally in comatose affections, is, in reality, conthacted by the influence of tome or spinal action, ummoditied by volition. This phenomenon presents the type of other phenomena belonging to the same class,-of the state of the muscles of the neck in the trachelismus of sleep, and of the museles of the laryns and of the sthmus faucium in the laryngismus of sleep. It is in this mamer that sle日p, and especially heavy sleep, so frequently passes into apoplectic or epileptic aifection!

99-Volition being withdrawn, in beavy sleep and in coma, from those musles whose olfice it is to preserve the larynx freely patent, patial closure, and paralytic larangismus, or sterlor, is the consequence.

100-But thas laryngismus brings with it impeded respiration, and with this a still more impeded venons circolation in the neck, and an augmented apoplectic condition of the cerebral nervous centre. This condinon of the baryns, of the respnation, and of the cerval venous circuhation, $1 s$, in reathy, one ot the causes, if not the principal cause, ot the fatal resuit in apoplecice and other comatose affections. M. Andrel observes-"Le stentor de la respration est en gencral un signe d'un tres facheux angure; et i) est rare que le individus gui le aresentent d'une maniere prononcee echappent a une mort prochaine." "C"est vemablement par la gene de la inspiration que succombent le sujets frappes d'hemorihagie cerebrale, dans le cas ou l'attaque est forte et ou ils meurent promptement. ${ }^{\circ}$ *

101-But this fact, and indeed all that has been said relative to the influence of apoplectic laryngismus, are confirmed by the following cases of Mr. Sampson, formerly of Saisbury, now of Chester-street, Belgrave Square, and of Mr. Cane of Lixbridge, cases, the results of whech are amongst the grealest achievenon!s of the Medical Art.

102-Mr. Sampson's case is extracted from the Transactions of the Royal Medical and Chirurgical Society, vol. wx, p. 45. Why Mr. Cane's case, which I recently presented to that learned body, was refused a place in those Transachons, it would puzale any one, without imputing the most unwouthy motives, to explain. Mr. Sampson's skill saved the patien's life. Mr. Cane's prompt and energetic procedute not only saved the patient's life, but prescrved him afterwards fiom dire attacks of Epilrpsy !-an event centainly of no orditary character in itself, and the fulfi'ment of a predichon of mine made many years ago.

103-I give Mr. Sampson's case without abridgment:-

104-" Abraham Harris, aged 31, was brought to my house on the 31st of March last, in a state of complete insensibility from intoxication, the pupils largely duated, the breathing stertorous, and ali voluntary motion having been lust for at least four hours before I saw him. The account given by those who came with him was, that he had attended a convivial meeting in the course of the day, at which he had drunk freely both of beer and brandy; bis companions admitted that he had taken more than a pint of the latter; but it has since been ascertained that his glass was repeatedly filled up, without his knowledge, wath white brandy instead of water, so that it is impossible to calculate what puantity of spirit he had actually taken.

105-I immediately used the stomach-pumn, and drew off between three und four pints of fluid, a great part of which appeared to consist of brandy; after which, lepid water with ipecacuanha diffused in it, was several times injected nto the stomach, and after a while withdrawn again, with a view to excite vomiting, and thus rouse the energies of the brain. Finding, however, that neans failed, a strong solution of salt and water, and afterwands the sulphate it rinc, were repeatedly tried, without any better result; he became, if mossible, more comatose, the countenance turgid, the breathing more and more tifficult; the pulse grew fainter, and was at last scarcely perceptible; at the ame t.me, the whole surface ot the body was cold and clammy, and he was asensible to every kind of stimulus. As he was some miles from his home, I tad him removed to the Infirmary, and called a consultation of the other nedical attendants, who arrived in the course of half an hour; but as, in ddition to the above symptoms, he had lost the power of swallowing, and very appearance indicated the razid approach of death, nothing was ordered or him but a turpentine injection, there being no ground to justify a reasonable sope of recovery.

106 - 6 At this period, it occurred to me, whilst standing by his bed side, hat the comatose state in which he lay might not arise from apoplexy, but rom torpor of the brain, in consequence of that organ being supplied with blood rot duly oxygenated; for the shrill tone and extreme difficulty of respiration howed the existence of a collapse of the glottis, with imperfect transmission of ir into the lungs, which might be accounted for by a paralyzed state of the 'ighth pair of nerves and recurrent branches. With this view of the case, I gam appealed to my colleagues, and strongly urged that a trial should be given w the operation of tracheotomy; ior 1 could not but hope that, if mechanical espiration were carried on for a ane, the blood taght regain its proper timulant propenties, and restore the energies of the brain and nervous system. Ipon their consenting to give him this chance, the operation was peafomed, "thout loss of time, by Mr. Andrews, under whose care, as surgeon for the veek, the patient was now placed.

107-"The trachea was no soonen opened than the distension of the veins bout the head and neck subsided, the volent etlonts of the extia-respiratory auscles ceased, and in about half an hour reguler and casy respiration through ae wound was completely established; at the same time the pupils became lighty sensible to the stimulus of light, and the pulse returned to the wist.The immediate result of the operation being thus far satisfactory, nothing emained to be done but to give directions for the frequent removal of the nacus which appeared at the wound, and to keep the surfaces of the incision sunder until the intergments and muscular layers had become agglutiuated to ach other: this latter object was eflected by means of a prece of strong pring wire, with a bow at each end of it, which, being introituced on a bent tate, was allowed to expand, and the opening in the trachea was thus prevented rom being covered by the muscles, even during the effots of deghintion.

108-"He continued perfectly quiet during the night, but had no return f consciousness until the following morning, when he gave us to understimd,
signs, that he suffered from headache and soreness in the pit of the stomach; here was tendency to sickness, and the tongue was coated with a peculiar
whitenens, as if rubbed over with chalk. Moderate purgatives, followed ly mild alhnline medicines, zoon removed these symptoms, and a fetw leeches were applied to the throat for the purpose of checking 100 high a degeee of inflammation; after which no further treatment was required; but the womm being healed in about three weeks, he was discharged cured, and has contimued up to this time in the enjoyment of perfect health."

109-To Mr. Cane's caso I shall have to refer hereatter, in its relation to the treatment of epilcpsy; for, as I have already stated, it posaesses a domble and an extraordinary cham to our attemion and admiration. 1 give it in Atr. Cane's own words, as addressed to myself:-

> " Uxurdge, May 17, 18:2.
110. "My dear Sir.-I was called suddenly to attend A. B3. ayed twemyfour, on Feb. 1, 1851. I was told that he had been taken ont of a caral-boat the day before, appatently in a dying-state. On entering the house, I found the patient in convulsone, whth a mot turgid face, with extravasated blood on the conjunctive, which were of a perfectly livid colour, with cold extrenuties, and a pulse impereepible at the wrist, his heart acting most feebly. Reepiration was impeded to such an extent, that I concluded that the whole mas of his blood was beconing lapidly of a venous chanater, and quekly losing the properties necessary to support life. The phaysma myodes and the sternomastoidei were in powerfut action, but most so on the right side, throwing the chin, which was kept in constam mutuon by apasm, netry to the shoulder on the left. Inspiraton was only accomplished by seldon and short catches. The veins of the head and neck were everywhere visible and y eally dstended. I was told by the by-standers that he had been in the same state for monte en hours, with some intermissions, but without any retum of senstbility. 1 looked upon this as a case comenencing with spasm of the hrynx and museles of the neek in general-the insensibility beisg produced in the first instance by abstruction to the return of blood from the brain by this state of spasm, and kept up and brought to a state of coma by spasm of the arytumoid museles preventing free access of air to the lungs, or even enough to atterialize the beot sufficiently to support ufe. With respect to the exciting cause of the spasm, I could learn nothing at the time; but if acidity in the stomarh, or dyepepsia, will, (as it frequenty- does) produce cramps in the legs, how readily can we undersind how the same thing may happen with the muscles of the larynx, patieularly when we remember the origin and distribution on the gastric and securent laryngeal branches of the pneumogastric nerves.
111. "Feeling contiaced that the patient must shortly expire, and that the root of the evil was in the closure of the laryax, I at once procected to open the trachea-a matier of ho small dificuly on acconnt of the twisted sate of the neck, the engerged state of the vessels, and the comstant action of the muscles. However, I felt it must be done, and I directly nade an incision from the upper border of the stermum, extending in the nedium line upwads tor about iwo inenes. Atter separating the edge of the sterno-hyoded museles, a Jarge and much distended vein protruded forwards (the middle thyroid,) which in its engorged state, was so troublesone, that I at once put two line ligatures round it at each extremity of the wound, and removed the part between them. After tris, the rings of the trachea were soon reached and divided, and the cui puds of the rings were then seized with a tenaculum, and small pirces tenoved from each.
11.2. "The immediate effect of the entrance of the air into the chest was to relieve all spasm. I was enabled to place the man's head staight, and in a remarkably short space of time the turgescence of the head was relieved. The face assumed a mottled appearance at firt, then became red, and, in the course of ten minute:, pale; but, during these changes, the palse had agan become perceptibe at the wrist, and means were used to induce crevanom in the lews and feet.
113. "1 proceeded in convert the oftilet a female catcheter inta hooks, whicin were placed in the wound, and fastened behind the neck so as to keep the trachea open. This I was ubliged to do, from being thrown in the way of tue $\cdot, 1, \cdot$ with only my ;ocket instruments at hand.

11t. "By the tian I had done this, the patient was sufficiently sensible to try to speak, and i was able to tell him what had been done, and to induce hitu to be quiet. In an hour I left hisn, and shortly after returned with a canula, when I phaced in the trachea, dawme the wound with the integaments torether whin strips of plaster, matil it exachy fitted the silver tube. Thes two digatures were blought out at the upper and lower extremities of the inction.
115. 6 On my next visit, on the following day, the pulse was about 90 , and he was, in every respect, dobler well : and on my placing my dinger on the montis of the eamba, he was able to tell me that he had been the subject of cia'eny for suren or ensht years, and that lately the attacks had been mure herga at and more volent, and that he did rot thate he had passed two days tog tion, duting the last iwo years, whont an attack.

Hi.. "He has lome wod hom the first day, the heratures coming away on the fouth and titit days and the wond unimis by the tirst intenton, and cosing round the canah.

H\%. "He temained umer my care until the 15th of the month, witiont any letum of his ths. He thea went with his boat into staffodshre, and has ne yet hetunted; but I hear that he has remaned quite well up to this ume.:

1iS. No onte can read the accounts riven by Mr. Sampson and by Mr. Came, ot the immedate effect of the operanon of hacheotum; on the cirenation on he neck, whthou feehars of the deepret materes.
119. Dr Sanpson observi-.. The Irathea was no somer opened, than the distemmot the wems abont the heat and neck subsided."
$1: 0$. Mr. Cane states that-- the veins of the hew and neck were every-
 entaner o! an iato the chest was to renteve atl spasm;" and that-" the fate atounted a mothed appeanace at timet, then becane sed, and, in the course of fen hanutes, pate."
$i \geqslant l$. I beave these facts to $m y$ readers attentive consideration. I wite for the candid lover of ou profession and of truth.

- To Dr. Mas inall Hall."
(To be con!inued in our next.)

on Fitty begeneration in its relation both to softening ON THE BRAN AND APOPLEXY.

By Willian Froien ick Barlux, Esiq, Resident Modical Officer of the Westminster Hospital.

[Fatty degeneration of the ateries is one of the most mputant points to be noticed in ie ation to the tamollissement of the bain.]

Anong the facts which might the adduced to show that obstruction of the large vesech can give rise to ramoliissemen, two cases, oberved and recorded by Mr. Vincent, wherein that affection suceeded to the tying of the carotid attery, may be well mentioned. The fequent coneursence of degeneration of atteries and apoplectic elfusion has tong been known. It is amarked by Mr. Guiliver that, "in a man who died of lifis disease, the coats of the arteries of the brain, even of the smalest branches, were studded with and made fragile by fatty patches." Professor Rokitansky, whose observations rest upon immense experience, alludes especially to fatty degeneration of the middle coats of arteries in cases of this affection, and says of the well-known changes of those vessels:-"Hence it may be inferred that the more minute arteries, and
even the capillaries of the brain, ate in a similar condition; especially as thn former are sometimes found ossified, and the brain filled as if with silver wires.: But microscopical research was wanting to place the state of the minute vesselt beyond dispute; and I must refer to the observations of Mr. Paget, who nol long, since published an important paper ' On Fatty Degeneration of the Small Blood-vessels of the drain, and its relation to Apoplexy." "It cannot (he observes) but be that this affection should constitute a predisposition to apoplexy, whether occurring in its simplest form or in connection with cerebral softening." Rokitansky, speaking of disease of the vessels (and assuming, as I suppose, the implication of the minute ones), observes:-"Such 5 . stafe of the coats appears to some extent necessary as a cause of apoplexy; for it is often observed that the deepest congestions, whatever their nature, but especially those intense mechanical ones which giv- rise to cyanosis, do nt produce apoplexy." It is, doubtless, in those cases wherein fatty degeneration of the smaller vessels of the brain exists that the impeded return of blool from the organ, so much insisted on by Dr. Mashall Hall is peculiarly dangerous. Ane it would be of much moment to know whether some of those causes of epi lepsy which pass into, and end mortally by, apoplexy, are not thus fatal becaust of the small cerebral channels being so diseased as not to be able to resist tha distension which the convalsion brings. Let it be always remembered that whatever may be the bad effects of degeneration of the easily discernabl vessels, it is as nothing compared with that of the mmute oncs: from henc escape those disastrous eflusions which either paralyse or strike with apop'exy That fatty degeneration which is here referred to means, not a simple addtio of fat merely, but implies the damage or destruction of the tissues proper to thr affected vessels. No longer are they safe channels for the blood to coursthrough ; their condtion is such that hemorrhage may curprise at any mnment or softening insidiously begin. But let us turn to Mr. Paget's clear descriptio of it:-"When the fatty degeneration has made much progress, changes in th structure, and, not rareiy, changes in the shape also of the affected vessels mabe observed. The chief change of structure appears to consist in a gradua wasting of the more developed proper structures of the vessels. Growin: fainter in apparently the same proportion as the disease makes pmaress, the various nuclei or fibres are at length altogether lost. and biood-vessels of eve, 1-150th of an inch in diameter appear like tubes of homogeneons pelluci membrane, thick-set with the fatty particles. The structures of the vessel: are not merely obscured by the abnoimal deposits: they waste and totaly disappear."

What is the state of the minute vessels in cases of capillary apoplexy where! in patches of harnorrhage are numerously interspersed throughout the softene tissue? Fatty degeneration of the minute vessels would, in all probability, bi found in many of them, and especially in the immediate ncightoorhood of thit effusions. Dr. Hughes Bennett, in his "Pathological ard IIstorical Researchel on Inflammation of the Nervous Centres," speaks repeatedly of exudationgranules coating the vessels of the soft portions of the brain; but Mr. Page: has remarked that Dr. Bennet's "attention heirg directed primarily to tha changes of the structure of the brain itself, and to the products of inflammation, in it, he appears not to have mmutely examined the state of the blood-vesselsin, the diseased parts. Some of the appearances produced by fatty degeneration are represented by him (in the Edinburgh Medical and Surgical Journal, vol. lviii. pl. v. fg. 56, and very accurately in vol. lix. pl. i. fig. 5); but he refers them to the vessels becoming coated extemally with exudation-granules, the products of inflammation." I need not say what a point of magnitude is started here in reference to atheory of causes of thi ramollissement. A very elaborate writer on this affectioi, M. Durand-Fardel (as cited by Dr. Hughes Bennett) has gone the extent of saying that "softenmg eomnected with sanguineous infiltration, is a proof of inflammation." But the observations of Mr. Paget, to go no farther, would imply this statement to be erroneous.

Rokitansky says that "there is no single cause that will account for the'frel quent repitition of attacks of apoplexy in many individuals, and its simultaneout appearance at several different spots in the brain, but the presence of diseas: of the vessels This also partially explains its happening symmetrically! in corresponding portions of the brain at the same or nearly the sam, period."

But now I come to a point which tonches the diagnosis of cerebral affections. A knowledge of the constitutional tendency is, it is superfluous to state, of th highest consequence in the investigation of disease. We judge often of wha a particular part of the body may be doing, by what the whole brdy seem disposed to do; much, as in the moral world, we interpret acts by what wis know of the character. Now, in the study of diseases of the brain, the pathop logical lendency often demands the closest inquiry, as the mberculous affectiont of that organ well show. Obscure head-symptoms orcasionally come befo: our notice, which may portend nothing of moment, or threaten apoplexy. If apoplesy shall be proved, as I doubt not it will be, an extremely common com sequence of fatty degeneration, any clue to the probable progression of th) latter in the cerebral vessels will be plainly of value. And may we not find : in the arcus senilis, which Mr. Canton has proved to be one form of such degeneration, and often associated with other kunds of $1 t$? In several cases of apoplectic effusion, which I have lately met with, the arcus senilis has been very palpable; and, so far as my observation at present leads me, I should, in certain eases, wherein it seems doubtful whether apoplexy be foreshadowed or not, lay considerable stress on the presence or aisence of this jare, and the rather if a heart were suspected with reason to bo dlseased, or signs of the degeneration of the kidneys were evident. I believe too, that the arcus will be found, to some extent, diagnostic of ramollissement, especia ly of that form of it which slowly progresses, and withotit any well-marked symptoms of inflammation. Whether it be so or not demands enquiry at any rate.

The arcus has already been found of utility in the investigation of heartdisease; and this makes it the more reasonable to believe that it will be of service in exploring affections of the brain.

Mr. Canton found, very early in his inguiry, that the areus senilis, and fatty degeneration of the heart, evisted together, and so frequently as to show that the one might be a clue to the piesence of the cther. f Dr. Williams and Dr.

[^12]Qunin have both tried the are of the cornea as a diagnostic sign, and bear strong testimony to its use in the investigation of heart affections. That use will. cateris purthus, be found the greatest where it appears consuderable before its time ; but its amount has yet to be determined by inguiry. Sometimes tho are is seen so soon that it may properly be termed an arcus juvenhis-an expression which has been aheady used.
A great part of the interest comected with the whole subject of fatty degeneration lies in tes unversality, just as in diuger conssits in its liablity to damage, perhaps prematuely, parts necessary to life. See, too, how many phenomena, amd what varying consequences, th may produce! Now it encircles the comea, now stops the heart, now leads to apoplexy, and now (may we not surely say?) 10 soltemurg of the brain Mark, moneoven, its evtreme commonness. Is it not better welh to stady it than some morbid affecton of hare occurrence and strange anatomy? Its relithon to many obseure diseases of the nervous system will be found great. I doubt not; and we cannot but beticve this, seeing that there is no organ, no part wheh it affects, that dues not muthence very commonly. Nor will it be the key ouly to mbirmitues of body, tut to weaknesses and aberrations of the mud. By involving opposte parts at once, it makes immment more han one knd of dissolution. It may sumuthaneously mpair the irrtablitv of the heart, and dimage severely the minute blood-chamels of the bram ; and could a pathologist brag betore his eges the exact condtion of the tyo organs, he would perhaps be enabled to say whien would be the more hkely to destroythe sudden arrestanon of the heat's action or the applectre sezure. All its effects upon the museular system alone have not been urated as yet. May it not damage the anteshanal contracthty, and so lead to one form of obstinate constipation, and one more especially prevatent in old age?

In sipeaking of faty degeneration, I have, of course, home in mind the wide ditference betreen the deposition of fat on a pat or about it, and that serions chauge wheh necessarnly mplies both damaged structure and umpaired achou. In Dr. Quan's repreventations, hardly less fultot instruction than their origmals, this difference is admirably drawn. The pathological consequences of that tatty deposit wheh takes phace at the "expense and detriment" of the heart's substance ate seen at a glance, for fat is uot irutable like muscular fibre, nor will it, like it, tespond to stimuli and propel the bood. "The heart is a muscle," as Dr. Latham phrases it, "and its fuuctions flow from ths attributes as a muscle ;" and this may advantageonsly remembered by my one who is at a loss to discover why so much sur, as he may term it, should be made respectung the conversion of its nbres into fat.-Med. Gazelte, Juhy 11, 1S51.

MIDWIFERY.

a memoir on the pathology and treatment of leuCORRHCA, basEd UPON THE MICROSCOPAL ANATOMY OF THE OS AND CERVIX UTERI.

By W. Tyler Smith, M.D., Physecian-Accoucheur of St. Mary's Hospilal.

The author first directed attention to the minute anatomy of the os and cervix uteri ; and here, at the outset, he was desirous of expressing his warmest thanks and obligations to Dr. Arthur Hassall for his valuable assistance in the microscopical part of the investrgation, and without which he could not successfully have prosecuted his researches. The mucous membrane of the os and cervix uteri, like the mucous membrane of other parts, consisted of epithelium, primary or basement membrane, and fibrous tissue bloolvessels and nerves. But as there were some sprecial characteristic pertaining to this tissue, ho
proposed, for the convenience of description, to examine, first, the mucous membrame of the os uteri and the external portion of the cervix ; and, secoudly, the mucous liming of the cervical eavity or canal. The epithetial layer of the former of these situations was lesselated or squamons, and so arraigned as to form a membrane of sone thickness: by maceration, it could be easily detached, and it was then found closely to resemble the epithelial coverngs of the ragina, with which it wats continoous. Beneath this epithelisl layer was the bdeement membrane, covering numerons villi or papillw, which studded the whole surface. Each villus contamed a looped bloodvessel, which passtag to the end of the villus, returned 10 its base, and inoseulated with other bloodvessels of the contguous vill. These villibad been metaken for mucous follicles, usually described as coverng the surface of the os uteri; but the microscope finiled to discover any distinet follicular stracture in this situation. When a thin section of the surtace of the os uteria was examined by a low power, the points of the villi could be seen as dak spots throuqh the ejithelial layer. A carefui examinatom exthibited these spots as slighty depressed in the centre, yet neverheless alightly elevated in their margim, mipple-shaped, and containing red point,, which were the terminations of the looped bloodvessels. The appearances were produced by the villi being obsemed by their epithetal coverng. The thek layer of scaly epithelium, and the vilh with their looped vessels, wete the principal anatomeal features of the mucous membrame of the os and external part or the cervis uteri; and mese structures played an important pat on the pathological changes which oecorred m the lower segment of the uterus in leucorthata. Between the margin of the haps of the os uten and the commencement of the penifiform roga, whin the prectucts oi the cervical canal, a small tract of smonth surface was usually found, which to the maked eye sepmed of more debeate strowture than the beighbouring pants, and witen examined by the microscope was fond to be composed of cylinder epithehum arranged anter the mamer of epithelium covering the villi of the intestmal canal. The cylinder epmhelinu covered in this situation villi two or three times larger than the vilfi upon the surfare of the os uteri-so large, indecd, as to be visible to the naked eye when viewed by transmitted light. Withus the cavity of celvix uter, the mucons membrane contaned four columns of ruge, or folds. arranged in an obhene, curved, or transverse direction; and between these colnmms were four longitudinal grooves. The two sulei m the medrum line, anteniorly and porteriorly, were the most distinet; and of these, the suicis of the poiterior co umns was the most strongly marked. In the normal state, the fansvense ruge, with the fossid between them, were filled with vised, semi-transparem muens; ;om when this was brushed away, a reticulated appearance, caused by numerons recondary ruga, was visible. The author gave a very minute deycription of these four cugous columns, and the furrows between them, which was illustrated by shme very beautiful dawings of the cervical camal, displaying the ragous columms and fosse of the natural size, and magnificent tine and enghteen dameters. The latter power showed a laree mumber of mucons fo-sise and follicles, crowding the depressions between the rogous elevations also. The anthor mentioned that a healthy virgin cervix, of nornal sime, contained at least ten thousand mucous folleles. This asatomicai arangemem secured a vast extent of superlicial surface, which was still further inereased by the presence of villisimilar to those foumd in the lower part of the cervix: they were fond in considerable numbers on the large rugse and otter parts of the macons membane in this situation. By this disposat of the mucons membrane of the canal of tie cervix, a very large exteut of giandular surface was obtained for the purposes of secretion. In effect, the cervis Was an open gland; and in the opinion of the author, it was in this part of the etero-varmal tract that the principal seat of leucorrhca would be found to exist. There was an arralogy here which should not be lost sight of. bearing as it did, on the patholosy and treatment of leucorrhea, which was, the great similarity which existed between the skin and the mucous membrane of the vagina and
'he external pari of the os and cervix uteri. The resemblance, in these situainons, was certain'y much nearer to the cutaneous structure than to the mucous suembrane of mure internal parts. These analogies were strongly confirmed by what was observel of the pathological conditions to which these parts were hable, and by the effeet ot the rapeutical applications. The author dwelt on the tact that the epthelum of the os uteri and eaternal portion of the cervix was constantly squamous, and that the epthelium inmediately within the os uteri was ey hindrical but not colitued, but that in the rugous protion of the cervical canal the eylindrical epithelium became coliated. The mucous secreted by the glandular portoo of the cervia was alhalne, viscid, and transparent; it adhered to the erypts and ruga, so as to fiil the canal of the cervix. It consisted chitly of muscus-corpuscles, oil-gobules, and vecasionally dentated epithelium, all entangled in a thick, tenacius plas:aa; it was remakable for nte temacity; whule the mocous found in the lower pert of the canal was thinner in appearance. There was an essential chemical cifference between the vagital mutous and the secretion of the iuternor of the canal of the cervix; the first was anways acid, and the latter invaniably alkaline. Mr. Whitehead, of Manchester, had notired thes fact, and the observations of the author confirmed his views. The acid of the vaginal sectetion was more than sufficient to neutralize the alkaline secretion of the cervix, and when any secretion fiom the cervical canal entered the ragina it became curdled from the coagulation of its albumen. It was woithy of note, that that part of the mueous membrane of the uterus and vagima whech resembled the chin was the only part which, the the skin, fornisted an acid secretoon. The vaginal mucus was a simpla lubricainry fluid. But the 'terine cervical mucus had other uses lesides that of luirication; in the realthy condtion, in the imtervals of the catamenia, it bleched up the passage rom the vagma to the fundus; 1 thus defended the cavity of the uterus from fremal agencles, and from to alhahne character afforded a suitaile medium fr the passage of spermatoona into the uterus.

Having stated his vews on the structure of the utero-vaginal mucoes tnembrane, the author expressed his opmion that the ylandular portion of the cervis utern was the chat source of the discharge in leucorrhua. Leucorthea, on ats must simple and uncomplicated form, was the result of an increased activity of the glandular portion of the cervi.. A follicular organ, which should only take an actuve conditom at centain intervals, became constanty engaged ma secretoon. Instead of the dacharge of the plug of mucous at the catanemial period. an meesant discharge was set up. At hret the discharge was butan umusual quatuly ot the elements of the healhy portuon of the cervis. The quanty ancreases, and becomes a serous dran of the constitution, and the glandular cervex in some cases becomes so exetalle, that any musual stmuluc, even memtal emutions, provohes an augmentation. The cuthor next reterred to the conditoons under which the epthelium of the os and exienal part of the cervix uter and upper portion of the vagma mught be partally or entirely removed. The nucous membiane then presented an intensly red colour, from the presence of the nahed villia, and an appearance of toughicss 0 . elcoriation presented itself. He thought that among the causes which produced this axpect of ulceration were eruptuedsorders, similar to herpes or eczema, which strongly marked the analogy between this tract of macous surface and the skin. He had observed cases m whech an occanomal harpetic erupton upon the os uten always produced herpes proputalis m the husband. But the most frequent cause of denudatom arose frum the alhaline mucous discharge of the cervix irrtating the acid surface of the os uteri, and causing the rapid shedding of the eputhelium round the marcu of the os. A meroseopiral examination was grven of the various discharges met with in these affectoms, in mathug which The anthor was awsted by Dr. Handfield Jones and Dr. Havsall. In cervical leucorrhara the discharge consisted in quantues of mucu-corpuscles, and in severe cases pus-carpuseles and blood-disec, with fatty mather, involved in a. transparent plasma. The epithelial debris is constanty present, but in
limited quantity. In vaginal leucorrhea, including the secretions of the external portion sf the os and cervir uteri, the plasma is opaque, and contains myriads of epithelaal partucles in all stages of development, with pus and blood globules when the vilh are affeeted. When a circurnscribed ulcer is visible upon the os uteri to the naked eye, after death, such as occurs in eruptive alfectons of the os and cervis, and is exanned by the microscope, with a low power, it is found to consist of a base from which the villi are entirely removed, or in which only the seatered debris of villi remam; and surrounding thas base there is a fringe of enlarged villi, partally or entirely denuded of epithelium. The character of the so-called ulceration of the os uteri was detailed, and the nature of the discharges described. The author then observed that if any division of leucorrhea were made, two prinsipal forms must be recognised-
I. The mucous variety, secreted by the follicular canal of the cervis.
II. The epilhclial variety, in which the discharge was vaginal.

With respect to the so-called ulcerations of the os and cervix, two hinds of morbid change would be observed-
I. Epithehal abrasion, by far the most common, in which the epithelium alone was deficient.

ON THE USE OF galyanism in obstetric practice.

Concluded from our last.
[In a fourth case, pair.s cummenced on the morning of the 8 th of May, 1851, at 2 o'clock; at 9 , cloch the os uteri was fully dilated; at noon it remained in the same statc, the membranes were ruptured, and two doses of ergot given, which slightly increased the pains, but the effect soon passed off. At phaif-past six in the evening she remained in the same state,- the head low down, the pains slight and infrequent. Galvanism was now resorted to, but the result was by no means so deeded as in the former, though there can be no doubt that it much hastened the completon of the labour.]

I shall add a resume of all the cases I can find in which galvanism has been used in midwifery practice.

Mr. Donangron--I. Internal hemorrhage during the labour; the pains had subsided; os very rigid, size half a crown; uterus quite lax; there were all the symptoms of exhaiastion from flooduns present. Laudanum was given; the bandage applied; and then half a drachin of secale cornutum administered. This produced pains; the head bore down on the os, but between the pains the merns was very lax. Galvauism was apphed. In a short mne "tonic contractions of the uterus had been called nto play." It was removed, and "strong ontracions took place at once." Aifter using at for twenty minutes, it was tinally left off. "So firm a state of twuc contraction having been induced, that we considered it sate toleave the woman," ordmay nourishment, \&e., \&c. The flonding ceased ; pains soon commenced, and labour was completed in four hiours atterwarls. The following day she was going on well, but died of an "obscure peritoneal atfection" some days atter.
2. A. B.; nimht pregnancy ; full time. A copions gush of blood took place at $12, \mathrm{p}$. m. Mr. Durringtonsaw her at 2, a. m .; she was faint ; pulse feeble; no hemorrhage or labour pains; the uterus was lax. "The firmest tonic contractums were indurd the momeal galvansm was uppted." "No more flooding occurred."
3. Placenta provia; flooding without obvious cause between seventh and eighth month. She was seen at hle elghth month; shght jlooding goung on ; os the sze of a pemy piece; mentranes enture; slyht pains. The membranes Were ruptured, aud the galsuism apphed; "gool st rong uterine action sel in at onfe." The hemorthage was very shaht, and dud not return; the child was lorm in three hours after. The nee of galvanism had to be resumed, as the pains subsuled a hatie.
4. A case of twins, at seventh month; first child born; no pains for an hour after : they then commenced very slightly; in four honrs they wert very slight, and recurred only every half hour. Galvanism was used, "lihe effect was mmediate, strong labour pains coming on, and continuing while the current wus complete." The child was born in a quarter of an hour.
5. Induction of premature labour at eighth month. "The uterns hardened under the application, and she felt labour pain, but this lasted only while the shock was continued.

Mr. Clarer.-Two cases of uterine inaction, in which galvamom was used with succes and safety to both mothes and child. (Mentioned in the DubIn Hospital Gazette, March 1, 1845.)

Mr. Cleveland.-Atony in previous labours; pains commenced on Sunday, and continued until Wednesday evening, when they abated, but did not cease. Ergot, \&c., failed to proiuce pans; symptoms of exhaustion then set in. Electro-galvanism was applied. "A very decided effect zoas soon produced." "Regular, strong, and frequent pains came on; and in a quarter of an hour a livng child and the placenta were expelled with the least degree of hemorrhage I ever wilnessed. Immediate and firm contraction of uterus followed.

The following cases, by Mr. Demsey, I have extracted from Dr. Goldng Burd's lectures:-

1. Hemorrbage after the bith of child in a natural labour. Ergot, cold, frection, introducing the hand, and extracting placenta, failed to produce action. After five minutes" application of galvanism, "energetic contructions ensued, "apiying the uterus., In a minute or tavo uterus was folt firmly coniracted," and al "danger at end." "The patient quick'y recovered."
2. Profuse flooding with each pain for six hours; patient much exhausted; cessation of pain for three-quarters of an hour. No fatal pulsation could be heard; os size of crown-piece, soft, dilatable ; placenta presenting, and beyond this the head; application of poles seven minutes, when pains commenced; upplecation suspended ten minutes; no indicalion of pain. Repeated applicalions and suspensions-first for ten minutes and then for five minutes-for forlyffive winutes, when the child was born. Renewal of apphcation was necessary for the expulsion of the placenta.
3. Almost identical with last.

4, 5, 6, 7. Galvanism, for post-placental hemorrhage; "the loss ceased almost immediately on passing a current through the uterus."
8. Lingering labour, from atony ; labour protracted nearly thirty hours; pelvis capacious, woll formed ; pains extremely feeble, and at long intervals; tainting at short mervals; no pains for nearly three hours; os dilated; fotal ieartheard. On first application, slight pains; repeated after an interval of five nunutes, pains decided and energetic ; galvanism applied every five mmutes; - hild born in forty-five minutes. Eggot, \&c., had been previounly used in vain.
9. Hemorrhage in miscarriage, without uteriue action. Pregnancy at the thard mounh ; flooding (from fright) of three days duration: os rignd and unyieldmg ; no pains at all; a portion of placenta feli protruding ; constant dram going on ; acetate of lead, ice, and cold lotions, imeffectual affer seven hours tral; four doses of galhe acid then produced no effect ; ergot every twenty mmutes whout benefit. Galvansm was nww used; no effect for twe nity-cieht muntes, the contractions then became quick and forcible, and the ovem was cxpelled in suxly-cighe minutes. Convalercence was speedy.
10. Induchon of premature labutr at the seventh month: punchare of ruembranes; no pans in furty-eisht homs. Galvamem was then weed thus: sive mmutes' applucation and ten minntes' interval ; atter the thad applicaton, shgeth, tramstent, granding pains came on. Suspension tor half-an-hour ; cesston of the pans; apphe chon resumed "very ten muntos tor fortv mantae: pains became strong amd rexular; it was now di-contmuet, that the parso rradually increased, and expelled the head.

Dr. Radpord.-1. Hemorrhage at eighth month. Uterus flaceid and inactive. Rupturing the membranes, and other ordinary means, failed to produce acton. "From the momont the circle was completed, uterine pain was exicted, and a bearing down effort was produced." Tonic contraction took place; the flooding uas arrested, and did not recur, and the labour was completely favourable.
2. A fourth labour: after full diatation and rupture of the membranes, the pains ceased; constant discharge of biood for six hours; the uterus could be felt flaceid through the abdominal parietes. Galvanism was now tried; a slight power was at first used, and gradually increased; the poles were applied on various parts of the abdomen. The beneficial influence of the agent was soon apparent; the alonic state of the uterus was soon changed; the parretes became firmer; pains, at first grinding and slight, became powerfully expulsuve, and the child was born one hour after the commencement of the operation. The uterus contrarted firmly; the discharge of blood ceased as soon as the uterus began to contract, and there was no further floodmg.

Dr. Radford observes: "The powerful and sanitary influence of galvanism was most decidedly obtained in this case, and the great advantage of this case is, that its effects may be carried to any degree, from at first only exciting the uterus so to contract that its diameter may be dimmished, and that its tissues come to be applied to the surtace of the child. This, however, may be so inereased as to effect the expulsion of child and placenta.

Dr. Smpson's eight cases are recorded with unusual accuracy, and, apparently, every care was taken to avoid any erroneous or fallacious result being produced, and, in order to insure this, he noted first the duration of paim, and then the duration of the interval,-

1st. Before the application of the wire.
2nd. After the application of the wire, but before the circle was complete.
3rd. Whilst the wires were applied, and the circle cqmplete.
4th. After the removal of the wires.
He thus, it seems, took the best means to ascertain accurately the extent to which uterine action was excited, and to avoid a fallacy which might be caused by the influence of emotion, \&c.

I shall not enumerate Dr. Simpson's cases at length, as I have done those previously recorded, because I have a resume of them in his own words, in which, of course, the result are truly stated; and as my business is with the results simply, thore is not any necessity for my giving them in detarl. The others were so given that I might use as much as possible the words of the authors, and thus insure accuracy.
"In one instance the pains were more frequent in their recurrence, but shorter in their duration, during the application of galvanism. In five other cases, the employment of galvanism neither increased the average frequency of the pains nor the ir average duration. In one case the pains ceased while the galvanism was applied; and returned on its removal ; in the instance which I have last detailed the uterine action ceased while the galvanism was applied, and ded not return upon the withdrawal of the galvanic action, nor for twentyfour hours subsequently. There was no reason whatever at the time to expect this as a probable occurrence, independently of galvanism. But even admittugs, for the sake of argument, that the cessation of the uterine action was not the result of the galvanic influence used, still the fact is amply sufficient to show that the galvanic current had not, at least, the power either of increasing the pains, or of continuing and maintaining them when they offered to fail. It may be proper to add, that during the gatranic action I did not find (in any of the experiments) between the clonic uterine contractions or pains, any evidence whatever of unusual tonic contractions of the uterus, as shown either by any degree of hardness of the general uterine tumour, or by any degree of tension m the pressure oi the bag of membranes, or the child's head, against the cervix uteri."

Thus the results of the foregoing thirty-two cases, in which galvanism has been used in obstetric practice, have been cited, and it appears that its effects were-

> Decided in 24 eases.
> Equivocal in 1 "
> Negative in 7 "

So that in 75 per cent. the effects of the agent were clearly manifest :-In eignt cases, for hemorrhage betore expulsion of the ovum; in six cases for hemorrhage after expulsion of the ovum; in eight cases, for atony of the uterus; and in two, for induction of permature labour.

The cases recorded have occurred in the practice of eight observers. Of these, seven bear unvarying testumony to ats powers, whilst one altogether doubts it. Indeed, all the cases in which the results were equivocal or nugatory were obsesved by him; and he has not observed a single case in which the result was satisfactory.

Hence, the facts seem to be m such strange contrast that one is almost forced to the conclusion that in Dr. Simpsun's cases some undetected source of fallacy must have existed; and Dr. Goldng Bird seems to entertain a somewhat similar opmion, for in his " Lectures on Galvanısm" he says: "I cannot for one moment admit the validity of his (Dr. Simpson's) opimon when opposed to the facts of Dr. Radiord, Dr. Lever, and others; but would endeavour to show the mode in wheh these opposite statempnts appear to admit of reconciliation. This is founded on the opposite effect of currents, according as they follow the course of the centripetal or centrifugal nerves. Now in the magneto-electric coil, in wheh currents are excited by repeatedly breaking contact by a vibrating bar, we have two currents moving in opposite directions, to each of which the patient who is subject to the experment becomes submitted. Now, these currents are of an equal strengh, and if the most energetic, that on breaking contact, be passed in the direction of the vis nervosa, it will produce painful contracuons, wheh, the moment $1 t$ passes in the opposite direction, will become relaxed; for a direct current terads to proluce contraction, an inverse current, paralysis. Hence, I should urge the acc oucheur not to employ the apparatus in which both these currents are produced, but simply the single current machine. In using this I would suggent the positive conductor to be placed over the lumbo-sacral region, and the other to be carried over the abdominal surface, with a gentle frictom. It this way powertul uterine contractions may be easily excited."

I em not sufficiently master of the subject to offer any opinion as to the theoretical truth of this explanation; but, as referrugr to the case in question, it must fall as $a n_{2}$ explanation of the want of success in Di. Simpson's cases, for Dr. Smpson says that "he used an mstrument simitar to the one used by Dr. Radford, and made by the same makers." Hence it aught to have produced the same sort of carrents, whatever they were, and the same results.-Dublin Quarterly Journol of Med. Sclence, Feb. 1852.
[There can be no doub that galvanism may be considered as a most important addition to our list of remedies in cases of flooding, either before or after delivery, or in cases of atony of the uterus, though the results are more important in cases of flooding than in simple atony. Speaking of the ergot of rye, Mr. Houghton remarks, that in the last 330 cases of labour he has attended, he has given the ergot in 38: its effects were decided in 26 ; equivocal in 6 ; and nil in 7 . Although this is a mere statement from a few cases, yet it shows that the ergot failed or was equivocal m just one third of the cases; while galvanism was quite successful iu three-fouths of the cases in which it was employed. Should Pulvermacher's hydro-electric chain batterirs pove effectual, it will be a most convenient method of applying galvanism in obstetric pactice.]

NEW GALVANIC APPARATUS.-DR. PULVERMACHER'S HYDROELECTRIC CHAIN.

[Dr. Pulvemacher's modification of Volta's pile has attracted so much attention that the following account of its value, by D_{r}. Goldng Bred, cannot but be interesting.]

Everybody is aware that the apparatus contrived by Volta consisted of plates of metals, differing in their respectuve aftinittes tor oxygen, alternated with pieces of cloth dipped in a salue solution. Thus, in the most common modification of this pile, a plate of copper is placed on the table, on this a plate of zize, and then a plece of flamel or cloth, dipped in a solution of common salt; and on this a second pile of copper, and so on. The theory of the apparatus is so well known, that it is unnecessary to say more than that, under the chemical action of the saline flud on the zinc, the combined electric fluids existing normally in both the metals employed, are separated,--the positive electucty beng found in the zinc, and the postive on the copper surface. Woilaston's ana Cruikshank's are but moditications of the same contrivance,-cells filled with the saline fluud replacing the mostened cloth or flamel. The cumbrous nature of those contrivances, the ume required to excite them, the rapidity with which the intensity of the electric current diminishes, as well as the tact and management requared to apply the current they evolve, have always presented most serious obstacles to their adoption momedical practice. On this account they have been almost completely replaced by the different machines for furnishing a current of induced electrictly. These, it is true, possess many advantages, and become most important appliances in the treatment of disease, as has been repeatedly pointed out by myself and others. Still we have often felt the want of an apparatus by wheh a unform and uninterrupted current of yoltaic electricity could be at our command at a short notice, and without involving the necessity of any mampulative test in its application. The hydroelectric chain completely fulfils these dessderata.

The apparatus I have used was phaced in my hands daring last winter by Dr. Pulvennaeher humself. He is a sclentific man, and well acquainted with physical science generally, nor is he, I presume, responsible for the manner in which his invention has been extolled, ias a sort of univessal panacea, by the London agent in the public advertisements. Each element of this batery consists of a small piece of wood, around which are wound two wires, nearly, but not quite in contact, one of these wirrs consinnmg of zine, the other of gided copper. These represent the plates in Volta's pile : each terminates in a ring, by which it is connected with the wires of the next link or member of the chain -the zinc of one being united with the copper of the other, and so on. When oue of these links is immersed in a fluid capable of exciting a chemical action on the zinc, enough is retained by capillary amraction between the fold of wire to disturb the electre equilibrium of the metals, and to throw the negative and posituve fluids into a state of current. The eventing thand recommended by DI. Pulvermacher is common vinegar, and if one of his chains be immersed in that fluid for a minute, and then liffed out, so that all not retaned by capilarity may drain off, it will be at once fit for use.

The electricity excited by this apparatus is necessarly small in quantity, as the amount of electricity evolved must be in a ratno wath the mensity of the chemical actions exerted on the oxidisable metal; yet its tension is tolerably hgh. It is mdeed sufficient, both in quantity and tenson, for the derelopement of phystological phenomena. The following experments will illustrate these propertes, a chain of fitity alterations being employed :-

1. A thin piece of platinum wire being attaohed to the terminal links, they were immersed in waler acidulated with sulphuric acid, and very distinct
evolutions of exeedming minute bubbles of oxygan and hydrogen were evolved from the two wres. The dilute acal lemg repiaced by a solution of ivdide 0 * potassium muxed with starch, adme was ahmost ammediately set free at the wire where the positive curient entered the tluid. The quantity of these electrolytes decomposed was exeedangly small, as the electrolythe power of the evolved current would of course bear relation to the ameunt of effective chemical acton groing on in the links of the chain.
2. The pjatnum wres were then connected with an astatic galvanometer; the wires were mmedrately devated under the inluence ol the current, but the latter was not sufficent to retam the needles at right angles to their nomna position. The astatic galyanometer was then replaced by an ordinary one, having a con of thaty fulds of ware, and carrymg a magnetic needle, five inches long. The current was barely able to produce a permanent deviation from the marnetic meridan of tive degrees. This teebse action on the magnetic needle is explaned by the small quantity of electracty circulating through the chain.
3. The chan being held in a vertical position by one end, the terminal link Was allowed to touch for an instant the lower plate of a condenser, six mehes in diameter, in commection with the gold-leat eeletrometer. On lifting off the upper plate the gold leaves separated to an extent of a couple of inches. When only half of the chain was brought in contact with the electrometer, considerable divergence also occurred, This expeninent well illustrates the comparative high tension of the evolved electricity.
4. The first and last link of the chan being placed in cups of water, and a finger of each hand heing immersed respectively into the two cups, a smart shock was expertenoed in each tingel. This shock was repeated every time one finger was rassed out of the tlud and redipped. But no shock was folt all the tume the tinger remained immersed, as the electricity passed in a continnous stream through the body from one end of the chain to the other; the physiological phenomenon of "shock" being provaced only at the moment the current first entered the body. This is of course the same with all voltaic apparatus which yield an uninterrupted current.

These experments ate suffictent to demonstrate the electrogenic power of Pulvermacher's apparatus, and to pont out that the current evolved is small in quantity, but of moderately high tension.

When a contmuance ot sensible shocks is requared, an ingenious apparatus, vontrived by the mventor of the chain, may be used. This consists of a small nelix of thin wre fixed in a glass tube; one end of this wire passes through a cork in the tube, and ends in a hook; the other end is free, and is barely in contact with a metalle plate (also furnshed with a hook), which cloaes the other opening of the tube. On connecting a chain of fifty elements to each ot the hooks of this apparatus, the first and last links being grasped in the hands, a rapid succession of rather violent shocks will pass through the arms. These oceur in consequence of the slight moton communicated to the chain by the hands, being sufficient to make the helix vibrate, and thus rapidly approach and recede from the plate at one end of the tube.

It must not be supposed, however, that sensible shocks are required tt develope physiological phenomena or therapeutic effects. We are chiefly indebted to the laborious researches of Dr. Marshall IIall for teaching us the vast amount of therapentical intluence developed by a contimuous current o: voltanc electricity. I cannot indeed, too strongly impress upon those who have to treat a casa of old paralysis (unconnected with spasm) the vast importance of allowing a current of voltaic electricity to traverse the palsied limbs persif ently for half an hour or more daly for weeks and months, nor to be disappointed at not witnessing any immediate good results. Nutrition of the limb is certairis thus mereased, its waste and emaciation prevented, at least to some extent, and the probabilities of cure are much increased. Pulvermacher's chain, when once excited by immersion in vinegar, soon begins to evolve a currunt of decreasing intensity; but so long as even a small quantity of fluid remains
unevaporated between the folds of the wire, evidence of the circulation of electricity can be made out by the electrometer. A moment's re-emersion in vinegar will at once resture the enerigy of the currem.
The advantige of thes apparatus to the medical man consists in its giving him a means of ohbuning a current of electresty, of amply sufficient tension and quantaty for all physiological porposes, at a moment's notice. He can, moreover, diminish or imerease the tension by makiug use of a greater or smaller number of links. He can maks the current conturon or imterrupied, painful on pamless, at will,-and he has, moreover, an apparatus so ea-ily managed as to require ne espectal tact for its appheation. On the other hand, it must be recollected that the current evolved has no pecular properties, and that it will effect nothing more than that evolved ty any oher means. It is indeed, deepIy to be regretted that so convement a source of electricity runs the nisk of losuy favour in the sight of edueated men generally, and of our protession in particular, by being mudicwously pulfed in the publuc prims, by alvertisements slaiming for it a mednal mfluence it in no wise possesses.-Lancet, October 25, 1851.
[The following ingenious and novel mode of applying galranism as a remedtal agent to the human budy has been brought forward by M. Pulvermarcher. The apparatus was placed in the Great Exhbbtion.]

The apparatus is in the form of a chain battery, which may be worn continually on or around the affected part; and it duffers from the other forms we have already noticed in aflording a weak and almost pamless current, which weasions hatle or the inconventence to the wearer. The construction of the chain battery is thus described by the nventor. "In order to produce a large surface within a small space, and with hatte material, positive and negative wires (of ainc and brass) are conled round a small lengthened piece of wood in such a matter that they run parallel to each other at very small distances, but without immediale contact. At each extremy of the wooden core, the end of one of the wires is bent into a gitt eye (the other end being fixed into the wood) sothat at one extremity of the wood, the eye from the positive wire, at the other extremity that from the negative wire, project beyond the core; the whole forming the metallic part of a galvanic element, with space between the wires for the fluids. A number of such elements haned together on the principle of the yoltaic pile, therefore, constitutes the metallic part and arrangement of a battery, permanently connected, flexible in all directons, of considerable surface (quantity) in proportion to 1ts size, and of an intensity, only limited by the number of elements enployed. These batteres, although so small and light, are capable of producing powerful effects, as we have ourselves exnerienced, and we have no doutht that all the statements made by the inventor in his prospectus are correct. Thus a powerful shock can be obtained by a battery of 120 elements charged with distilled vinegar; and when the two halves of the battery are connected by an mterruptugg cyluder, consisting of a spring fixed tha small glass tube, so that every motion of the mstrument breaks and renews connexion, producing a vibutary current, the effect is almost insupportable, and approaches in chatacter to the more powerful electro-magnectic machine. The inventor states that a battery of eighteen of the elements decomposes acidulated water, while one of 1.50 produces vistble sparks with the internupted clock-work. Another curivus eflect is prodnced by these bateeries, when the cleck-work apparatus just mentivned is added to the apparatus, that of exciting ratherlpowertul muscular contractons, unaccompaned by any considerable amount of pain. We have petsonally tried the apparatus, and can vouch tor the accuracy of the statement that, whle musular contactions were excited, hate pam or other inconvenience was produced. The evoning flud may he eather water, togeher with the prespration, the mildest form in wheh it can be
applied, wheh produces a "constant mild irritation, felt as a slight itching, and the production of small pimples; or vinegar, when charged with which, the battery produces a burning sensation at and near the poles. When the interrupted current is required, as in paralysed limbs, the small glass tube or interrupting cylinder may be inserted in any part of the chain, by which slight but sensibie shochs are produced by every movement of the body.-Med. Times, August 2, 1851.

ON TIE INFLUENCE OF VARIATION OF ELECTRIC TENSION AS A CAUSE OF DISEASE.

By Williain Craig, Esq., Ayr.

[Mr. Craig thus recapitulates the heads of the arguments he has advanced in a very interesting paper upon this subject.]

1st. That heat and electricity are identical, as the one can be converted into the other.

Znd. That a large volume of electricity surrounds every primary constituent of matter, espectally that form of matter which constitutes the gaseous bodies.

3rd. That ammal heat is suppoited by the eectncity liberated from the primary constituents of mattel duing the processes of respiration, digestion, and assimilation.

4th. That elec-ieity is evolved during these processes on the same princaple as that which is evolved during the action of a galvanic arrangement.

5th. That electricity and nervous power are analogous, if not identical; as the section of the one can be successfully substituted for the other.*

6th. That the majonty of diseases are caused by either the sudden abstraction or slow abduction of electricity from the body.

7th. That a low slate of electric tension on the surface of the earth, produced enther by the operation or evaporation or some occult movement in the great internal currents of the earth, is the remote cause of epidemic and pestilential diseases.

8th. That occasional and ordinary diseases are produced by the sudden abstraction or slow abduction of electricity trom the body, or jts undue elimination during the vital processes.

9 .h. That since electricity is so essential to the integrity of the vital operations, it is indispensible that measure be taken to promote its evolution and prevent over-radiation.

10th. That electricity is the source of vitality in vegetable life.
11th. That electricity is attracted by the fibres of tho roots of the plants; and by the instrumentality of the e.ectric fluid does the plant extract its constituents from the soil.

12th. That vegetables of rapid growth require a large supply of electricity to secure theit perfection and completion; and the potatoe is a plat of this kind.

13th. That the disease in the potatoe was produced by want of nutrition.
14th. That the want of nutrition arose fiom from defective electric ageney.
15th. That the cause of the deficiency of this agency was those abstracting influences which produced low tension of electricity.-Mcd. Gazette, October 10, 1851.

[^13]
SELECTED MATTER.

MEDICINE.

DISEASES AFFECTING THE SYSTEM GENERALLY.

ART. 1.-ON THE DIAGNOSIS OF FEVERS.

[The investigations which have zen calried on within the last few yeare, have led physicians to consuler that the symptoms and post-mortera-lesions of continued fever are not alributable to any variations- in its character, buit to the presence of two or three diseases allied as to community of character, bat separated by peculiar and distinctive marks, and which being mixed up in various proportions, tive to each epidemse a peculiarity according to the predominance of the existing disease. We must first evamine whether this disease (continued fever) can be separated from the affections with which it has so far been confomded. The disease here alluded to has received many names, as "Seven-day Fever," "Brans Remittent Fever," the "Mild Yellow Fever," \&c. Perhaps as good a name as any, as indicating the main feature, is the one generally used, viz., the "Relapsimg Fever." Let us select the main symptoms, suggesting the fundamental differencies between this and ther fevers.]

Relapsing Fever affects all ages and both sexes, and perhaps in an equal ratio.-In its onset there does not appear to be anything distinctive, unless the addenness of the accesson, and the severity of the early muscular and articular pains, lead to a suspreton of the real affection. But after two or three days, the symptoms, although not absolutely distinctive, become more marked; the feverishuess is consuderable ; the muscular pains and headache severe ; and on the second or thid day there are, for the most part, inore or less severe pain and tenderness about the epigastrium, and vomiting ; there is, however, no other abdominal tenderness; and darrhora is genemally alnemt. The heat of kin is atemated both wath-igors and sweatugg, so that the resemblance to an irregular intermittent has been noted by severtl writers. On the thisd or fourth day, the symptoms are at their heisht; and a typeal eace, that is, a case preseuting the main diarnostie symptoms. and no others, can ter generally known by the slightness of the head-symptons, the chet being headache, and in a mall proportion of eases (about \& per cent.), delirime, by the aboence of chestsymptoms, and by the presence of epgrastre and spentr tenderness, and romiting, engrafted on a severe py rexial state; that is to sity, a state characterised by great restlessuess and sleeplessuess, a host wim, the temperatare of which may rise to 107°, a white tongue, therst, and a palio whien sis seldon below 100, in more than haif the cases mow than 190, and in a considerable number is still higher than tans, yet whose rapidty and sharpness are not indicative of commensurate danger. In a cortain number of cases, as mone particularly noticed below, on the thind or fourth day, a peculiar tint of skira becomes perceptible; to use Dr. Comach's expression, there is a slight "bronzingr" which is most marked in the fare; this appears to be the commencement of an approachiner atlack of jamiter, which becomes more fully declared on the fifth or-sixth day of divedes ; the vomiting is now often severe, the matters vomited being bilious; or snmetimes even colle-ground like, or being absolutely hae the black vomit of yellow fever. Thas jaundice is not utributable to any obstruction in the ductus communis choledochus, as bile
pasaes freely, and even copionsly, with the stools, and as after death the gallduet is pervions. In these yellow cases there is generally tenderness over the liver, wheh may be atso enhared. The spleen is also otten enlarged. It the pathent be now beed, the beow is often buited, aud the serum ts sometumes yelow, sonetimes mastally arect.

Aday or two attel thes, when every symptom appears homrly becoming graver, when the rentiesoures and anderal dintress have reached their higher: point, there cances, in the majurth of eases, though not in all, a most remarkable series of symptoms, followed by as remakable an intermission of all symptoms, athl an apparent resturatum to heallh. This period has received the name of "Crnss," athough it would have been vety desirable it some other term than this, to which so many meanings have heen given, had been chosen. For the most part, at thes perod, the patem falls into a profuse sweat, whish
 The chemaral quahtes of thas sweat hase not yet heen determined; bat it has like the partal sweats wheh have previon-ly eceured, a very sour and pecular smell. When the sweat has pasod ofl, an extraordinay change is sound to have taken phace; the lu,t skim has teron,r cool ; the quiek and strong pule is terelle and dow ; the fedings of distress ath discomfort hase disapperard; and in severe cases ate turceded by a state of eveerswe languo: and feeblenese, as the persua had tu en reducell y some immense hemorthage. Ather rathy from the. pertect comsationeres serme th have commenced, and the yellow hage hegus io draplear, and in faar or tive days may have aitogether vanished. This so called "ersin," is hot always accompanied by sweating, a diselharge of some other hind may oceur in its place, such as diarrhaz, eppitaxsis, diurests, or even sometimes menorhagia.

There seems no doubt that the apparent eml of the disease may be the actual one; but at a certan number ot cases another phase overurs. After six or seven days of mprovement, ath (tating the mean) on the thinteenth, fourteenth, or fiteemh day of the disease, the feven sudumby returns. This second attack, the so called "relapse," exactly resemblen, except it may be in point of severity, the primary attach; the shivering, the severe muccular and artioular pains, the restlessness, discomfort, and sleeplessness, the burning skin, the rapid pubse, present themselves over again, If Jaundice has not been present in the first accession, th may appear on the second or third day of the meond accession. After four or tive days, the symptoms begin to improve, the feverishess abates, and, about the twemtieth day of the disease, the patient is realiy convalescent. In an uncertain number of caves, this second accessionis rerminated by a " crisis" similar to that of the first.

The disease may thus terminate, either gradually or suddenly, and in the greater number of cases it does really so end. In some cases, however, he second accession is not only terminated by a crisis, but this crivis is succeeded at an interval of four or nive days by anther acerssion, which may again be followed by a crisis, intermission, and a fourth aceesion. No less than five of these accessions and relapses, have been known to oceur.

Various sequences follow this fever. of which the most remarkable are a form of ophthalmuts (well deserbed by Machenzie), rheumatic-lihe paine, parotitis (wheh nay also oceur durng the fever), amasacia, and furunculi.

The dusease, whose man features we have thus imperfectly indicated, although comparatively unhnown ten yoars ago, has been so attentively atudied by Britush prachtioners, that we cire, perhips, better able to determine tho mode of succession and the variation inthe symptoms, by means of numerjoal analysis, than in the case of any other fever.
[With regard to the mortahy, it is stated that in uncomplicated cabes coarcely any die. Sudden collapse may come on, and in some severe cates the patient dies from unreal poisonng. In cther cases, compleations, thonasio or abdominal, lead to a fatal result. In 1843, the fatal cases averaged from 7 to 6 per cent. 1846, 6.38 per cent. A vely marked feature in relapsing
fevor is the frequency of abortion in pregnamt women, though this is nor iuvariable.]

The post-mortem appearances in this fever need be desctibed no farther than to saty, that athough m many cases there is congestion of, and in some instances extravasation of blood into and beneath, the mucous membrane of the ztomach, and in a less degree of the intestines, yet Peyer's patches remain without deposition and ulceration. The spleen is generally enlarged, andt. according to Jenner, this oceurs more frequentiy and to a greater extent than in any uther form of fever. Ruberson observed also some kind of deposit in the xpleen, which he could not nentuly with the typhoid exudation, but which, like it, underwent a process of sotiening.

This detailnf symptoms must be suticient to convince any one of the difforence betwee this add other forms of fever. To take only the most striking symptom, the relapse, it appears that this is hardly known except in this disease. In "many humdred" eases (1600 to 2000) of typhns, Henderson has nover known a relapse; and Jemner, in his extensive tield of operation, has alsn never yet seen such an occurrence in typhus. In the fever, or variety of fever, termed typhoid, or Dothnententis, relapie, as noted by Stewart and Jenner, will ocenr, bat it is exceedmgly rare. The majurity of the so called relapses in typhus and typhoid fevers, are simply sudden superventions of some complication, or a sudden exacerbation of some previousiy existins complicarion, as pneumonia, pleur:sy, ka. In $114 \overline{5}$ cases of typhus, treated by Perry, in Glasgow, there were uineteen of thece so called relapses, which were all traced to some local millammatory action. But putting the relapse aside, the course of the remaining symptoms is completely dissimilar to that oi other favers; and the absence of the cataneons eruptions common to other forms is also a strong proof of ther non-udenthy. When to these facts we add the invariable absence of the amatomeal sign of Dothinenteritis, viz. the affection of Peyer's patches, the argument agamst the identity of relapsing fever, and the disease deseribed by Louis, becomes most absomte ; and thugh the anatomical signs of exanthematic ty phus are not so definite, still there are perceptiDe differences in this case also.

It is therefore not surprising, that the Seoth physicians, who have described the epidenics of 1813 and 1817 , should have so mahimously decided on the specific nature of this fever; and the evidence in favour of this vietr, will, we think, appear to every one sulficiently exact.

But, in addition, another most convincing argument in favour of the same opinion has been receatly brought torward by Dr. Jenner, which proves that. eases of other forms of fever do not wive rise to relapsing fever, and that exposure to relapsing fever grves rise only to similar disease, and not to another form of fever.

Before passing from the subject of relapaing fever, we may remark, that it ean probably return several tmes m the same sabject, and even at intervals of zome few months only. In this, also, it shows a renarkable variation from the other Engli. , fevers.

Relapsagg fever appears to predispose to typhus fever, and to be also predisposed to, by typhus. Steele remarks, indeed, that patients who had formeriy suffered imm typhas, "enjoyed the immunity from this disense;" but. this is contrary to the dhect and positure evidence of many other observers.

Contagion; in some instances at least, is admitted by all, eveept Dr. Craigio, Tho thinks that "ahhough it is, perhaps, contagious, this is rather a presumption than a well-fumded inference." The observations of Douglas and Jemner, however, seem concinsive on this point.
Litike other fevers, this disease is influenced in an extraordinary degree by the sanitary condition of the population attached by it. This has been traced out in Glasgow, with care, by Daval Simith. Wardell says, this fever "wa! Kapportantly connected with destitution."

Having thus separated Relapsing Fever fram the disease, which it has
been customary, in this country, of late years, to call "continued fever," and havng shown that the opinion of those who have considered it "a fever, sui generis," is jestified by its strongly-marked and peculiar symptoms, by its post-mortem characters, and by its not arising (as more fully explained elsewhere) from the causes of the other continued fevers, we are prepared to enter on a further inquiry, the object of which we may present in the following ques-tion:-
II. Is the disease, which, with relapsing fever occasionally added to it, formed the affection termed in this country "conlinued fever," a sungle disease, or have two or more affections been included here also under a single term?
[Dr. Jemer entered systematically into this inquiry in the London Fever Hospital. It has been long known here, that cases of fever with deposit in and under Peyer's patches, and in the mesenteric glands, were common; and 60 were cases of fever without any trace of this deposit. Dr. Jenner patiently accumulated nearly 200 acurate reports. He first separated the cases of relapsing fever, and then instituted a rigorous comparison of the rest.]

It is necessary, however, to state his method more fully, as it appears to us the only one which can possibly solve the question, and it is a model of close observaton and logical induction. From the great number of histories of fever-patients he possesed, he selected the fatal cases which had been examined, and the diagnosis of which, therefore, had been confirmed. He found tiat he had sixty-six such cases and post-mortem examinations. of these sixty-sid, twenty-three had the intestinal and mesenteric lesion, which Lonis says is the anatomical sign of typhoid fever and forty-three were without this appearance. Now, if Lonis' doutrine be correct, that no case is typheid fever unless it presenis this appearance, it was to be seen, whether the fortythree cases in which the intestual lesion did not occur, differed so much in symptoms and other poit-montem appearances, from those in wheh it did occor, as to reader it imposible to suppose that they were the same disease; or whether. contrary to Louis' opinion, the symptoms were so similar as to lead to the belief that the presence or absence of mestinal lesion was a matter of little consequence. Accordiugly Di. Jemer took these two groups and compared them througtout, and found that white the symptoms and post-mortem appearances of the twenty-1hree cases were exactly the same as those described by Ious in hes great work, the symptoms and pori-mortera appearances of tho other fonty-three eases were entirsly different, so fitioremt. indeed. as to render their separaion from the other canes a matterot abolute meeresity, if any eertainy was to be introduced into the de cription of theme diva-n, and into their treament. The diseate wheh aftected the twent-there patients, he called utter Louis, typhoid fever, and to the other atiertim he save the name of typhus. Betwea these two diveaves, no trasation firms couth the ghseved. The resath ammed at by Jemer agree remankably wah these of Gechand, Stewan, and othess.

If we collate the chief works whieh have luen written on the two diseases by tome wholave had a fill persarion of their di-tiactuess, we tind that typhus and typhoid tevers are said to ditlier:
i. In the age of the patients they affect. Typhas aftects all ayre young and odd; aphond, chielly prersons under ionty; it will affect odider persons, but with diticulyy.
2. In their modes of attack. Typhus being sudden, typheid insidions, at x general rule.
3. In their iurctoma. Typhas fever is of much storter duration than typhoid, as has been noted by Gerbird, Stewat, and buther. The avemge durnion of Jemer's futal cases of typhus was fouteen days; of Reides (133 cases) hirteer: days; of the typhoid cascs, tweaty-two days. In the cases of recovery the difference is juil as well marked. The average of 25.5 yphoid cases nutied by Jackson in Massachusetts was twenty-two diys. Hills :umure, in ho
same locality, was thirty-nine days. Jenners average is from twenty-one to thirty days. The average of non-fatal cases of typhus appears to be much less than this. Jeuner states that after twenty-one days, locial lesions sufficient to cause death were always discovered in typhus, that is to say, that after this date, death did not occur from the fever alone, as may be the case before the twentyfirst day. He states the average duration to be from fourteen to twenty-one days; but not iufrequently, in very mild cases, it terminates before the fourteeuth day, in the same way as mild cases of scarlatima will cease before the average time arrives at which the fever is usually held to terminate.
4. In the kind of crupion. Nothiug can be more distinct than the repeated scanty crops of rose-spots in typhotd fever, with their bright colour, their disappearance under pressure, and their duration of tirce or four days, compared with the permanent, dark red, or mulberry cotoured, ineffaceable copious rash of typhus. Mistakes sometimes arise, however, trom the typhus eruptiou being seen on the second or third day of its appearance, at which time it disappears under pressure, as was noticed ionty years ago by Wedemeyer, in his account of exanthematic typhas.
5. In the colour of the shin, the expression of the face, and in manner. Typhus patients often present in its highest devree those characters which the odd writers otien termed "opuression" and "prostration;" the tace is darkly and generally flushed, the complexioa muddy, (patheularly after the sisth tay,) the manner stuph and contured, and the eyes umathigent. On the comtany, in typhod fever the complexion does not iget modly, except th a very stighit degree; consequently the flu-h of the cheeks, whea present, is bright and pinkish, and not daik red, and it is often chtumscribed to the cheeks, and then is strongly contrasted with the surroundmor pale shm. The mamer, aloo, is often natural, or even a litle sharp, prowhdel there be to detirnm. The diferences are marked, even in the shothest cases of typhus the muddiness and flushing may be insignificam conyared wathe serore cases. In relapsing fever, the complexion is clear, or has a hight jehow or "bronzed look." (Cormack.) It is very conveivable that the perular complenion of typhus has not always obtained the attention it merit, on account of the confusion of cases typhoid and relapsing tever, in which this complexan is no seen.
6. In the severily and cours of the head sympons. Ifcalache in an almost constant symptom ia eath. Ahborth there in eotasterabde vatiaton ta indwidaal cases, yet on throwing laree number werther, it beeomes apparent that buth ia typhus and typhoid fevers, the h aduche thas a dremamed duation. In typhus it ceases usually on the tembh day, and atway, on the fenatemite day; in typhoid fever, abom fome or six doys liter, and may hast thl near the a dof the taird week. Detirium commeners ear, zer in yphas than in typhon', by several days. In Jemer's latal easer, it was more active m typumi ; the patients were more vivacions, and demed of have thair beds. Somatence, alhough frequenty absent in both, is move common and carlies in typhus than typhoid. The peculiar symptom which heic leen appopnindely called " comarigit," and in which, as jomer defines it, "the pationt lies with his eyes open, evidently awake, bat indifrem or insem ible to all grong on around him," occurred in one-fith of his fatal case of ty, hate, but mame of the typhend patients.
T. In the degrec of less of mascular jorer. Typhus patients amostahways take carier to their bed, and are ure comptety prowated at an carlice date than typhoid cases. This is well imutruted he jewer's cares, as hutic typhus and y yphoid cases were lying side ly side in the stime wards.
8. In the frequoncy of pistsesis, which is very tare indeed on typhus, rather conmon in typhord, (one-thad of Jemer's araiable fatid cases; heariy half of Louas'.)
9. In the conaition of the curs. In typlus fever the conjunctive are generally injected, and the pupiks contracted; in typhond fever, the conjuctive are pale, aid the pupils larger than natual.
10. In the state of the tonguc, which is drier, browuer, and larger in typhus; is more frequently small, fissured, red, or partially covered with a pale-brown fur in typhoid.
11. In the chest symptons. Sonorous rhonchi are very frequent in typhoid; rare, comparatively, in typhus. Dulness of the depending portions of the lungs, (a little above the basis,) depending on hypostatic congestion, is common in typhus, rare in typhoid.
12. In the state of the pulse, which is much more varible in typhoid than in typhus fever.
13. In the abdominal symp'oms. The abdomen is painful on pressure, in about three-fourths of typhors patients: is almost always quate painless in typhus, or if painful, the is sight and transient. Gurgling exists in perhaps a fourth of the typhoid cases; in one forteth of the typhus. The abdomen is distended and resonan, more or less in almost all cases of typhoid; it is, with scarcely an excepthou, natural in shape, or even a litte concave, in typhus. Diarthara exists as a rule in typhod, as an exception a typhus. Intestind hamorrhage occurs in one thad of fatal ases of typhoid: in wo case of typhus without dysentery. The discharges from the boivels are diferent in the two diseases; in typhoid they are loose, watery, fawn or dark brown colour, alkalme from fixed alkalies, and coniain a large proportion of soluble salts, and a small quantity of albumen. In yphus they ate generally sohd, ofted acid, or if alkaline, are so probably from ammouia, and in most cases do not appear alterod from health, unless medicmes have been aken. Ahhough diarhoa; meteorism, and abdominal tembene-s are the rute in typhoid fever, it mast not be supposed that they are always pre-ent. In some of the worst cases, the lirst abdominal symphans may be amounced by pentomie, consequent on perforation. But when vast numbers are colleved, the we exeephonal cases are lost in the large propution of those in wheh these symptoms exists in greater or less intensity.
14. In the occurrence of epiphenomena and of stqucnecs. Slovghing from pressuic is equally common wh both ciseases; bu elysipelas, phlebitis, and locas infammations and ulceratons are much mone common m typhoid fever. So also iubercuar depostan in the langs is deededty more frequent as a sequence of this disease that of 1 phos.
15. In the con'muanre of the erup'ion of er death. The spots of typhu last uneftaceably after death; the rose spons of typhas cannot be found.
16. In the dura ion of calareric rigud y which cease more quickly in typhus than typhoid eases, aceordmer bo lemmers meresting observations.
17. In the more rapid dssole ton (o) 10 speak) of the tissues in typhus than in typhoid. As an instanco of this, it appears from deaner's researcines that the epmheliam detatehes itselt very ripidly moleed from the basement membrane, a fael which is well seen when a microscope section of the kidneys of typhoid and typhus patients are evamined, or when the surface of the osophagens is observed. To the same ebass of faets must be referred the abnormal facility with which, in typhas patients, tho pia mater and arachaoid separate from the surface of the brain.
18. In the frequency of the oceurrence of he morrhage into the arachnoid in lypus, which oecurred in one-enght of lemacr's fatal cases, while it was no found in one of his typhoid cases, nor in any of Loun's or Chomel's cases. The amount of intracervical seronty wato decidedly areater in typhus.
19. In the frequency of wherut ad murous membimes in ityphoid fever, and he ravily of ulceration in iyphus. In typhoid fever nicerat ons in the pharyar exist in about one-thad ot the cases; hat in typhas such lesion is never foud, or is excessively rare. In typhoin, ulecration of the laryns and or the oesophagus oecnrs once in every lith case; whphus, ulecration of he laryax happeas once in every 2 bin case; ulceration of the arophagas very seldom indeed. In typhoid the grall-bladder and the urinary hadiler oceasomally participate in this ulcerative tendeney; in typhas they are never atacked, or very rarely
indeed. So also the mucous membrane of the large intestine suffers frequently (in seven of 20 cases, Jenner,) in typhoid; but scarcely ever in typhus, unless there be concurrent dysentery, which is a composite disease, and distinguished without difieulty.
20. In the concurrence of a peculiar exudation into and under the patches of Pcyer, and the mesenteric glands in typhoid fever. This is constant in all cases which present the symptoms of typhoid fever; it is never absent, although its amome varies greatly in intensity. After the publication of Lons' work, Andral, Chomel, and others, observed cases which they thought were typhoid fever, without the anatomical sign ; but these cases did not bear examination, and subsequent experience has proved that his lesion is constant. It never occurs in typhus fever.
21. In the greater softness and flabbiness of the musculer lissue of line heart, in typhus than in typhoid.
2.2. In the frequency of iobular and lobar pneumonia in lyphod ferer, and the rarity of those local inflummations in lyphus. In typhus consoldation, or perhaps we should rather say, cammication of the depending potions of the lungs from congestion, is more comunon, but true indammation is rare.
23. In the more frequent ocurrence of pletrisy in typhod fiver, (40 per cent. of fatal cases, Jemer, than in typhus (55 per cent. of fatal cases.)
21. In the degree of sofiness of the splezn, which is greater in typhoid than in typhus.
$\varrho_{\overline{5}}$ In morfality, that of typhoid being deededly greater than typhus.
In addition to thoze differeners, there is some evidence of diferent constitutions of the blood; but as the the datare not very exact, we pass them over.

It is also possible that other diflerenees may hereafter be meheated; thus comparative observations have not been made on the urine wath sulicient care a the relative temperature of the two tevers, and other points of the lake kind, have yet to be considered.

Such is the statement of diferencies which we have been able to glean from the writugs on the subgect. Ahhough some of the distinctions may appear slight and trivial, yet others are not so. Thus among symptoms, the absolute diversty of the eruptions and state of the skm, the difirences in the daration of the discase, in the mode of onset, and in the pronounced abdominal sympoms of one, with the absence of these in the other, are very marked. So also amone post-mortem lesions, the enterm-mesenteric disease, the tendency to ulceratons of mucous membranes, and to local imiamaions, of ty phond fever, are strongly contrasted wath the atsener of pronounced local changes in ty phus, and with the epthehal weparation, aparently from pror injury to suacture, which is so marked in that divease. So gleat are these differences, that we do not hesitate to atirm, if any one will take two confessidl\} ditunct. yet somewhat kindred diseases, such as measpls amd scaviei ferer, and wall compare them in the way we have compared these continued terers, he will not find a Stronger case made out for their separation, tham for that of typhus and typhod fevers.

Jenner concludes his comparison in the following way:-
"Al the commencement of thes analysis, 1 propoced in camane whether typhoid fever and typhus fever differed foon each otier in the same way as smallpox and scarlet fever ditered from each ohber; and for the purpose of comparison, I haid down cetain aremeds, as those on whel we fombled our belief in the non-identity of the two list naned dise:ases. Those grounds were:-
${ }^{\text {" }} 1 \mathrm{st}$. In the rast majority of cases the general symptoms difur; i. e, of smallpox and searlet fever.
"This holds equally true with respect to the seneral symptoms of typhoid and typhus fevers.
" 2 d . The eruptions, the diagnostic characters, if present, are nover idenscal, i. e. m smallpox and searlet fever.

"The particulars detailed in the foregoing papers prove that this is as itrue of the eruptions of typhus and typhoid fever, as those of smallpox and searlet fever.

"3d. The anatomical character of smallpox is never seen in scarlet fever.
"Just in the same way, the anatomical character of typhoid fever, i. e. lesion of Peyer's patches and the mesenteric glands, is never seen in typhus fever.
"Ath. Both, i. e. smallpox ant searlet fever, being contagious diseases, the one by no combination of adividual peculiarities, atmosplieric variation, epidemic constututions, can give rise to the other."
III. Are these defferences alucazs well founded, or is it not possible that, existing in well maved cuses, hey may yel noi be cons, ant; but may disappear in some transifion ceses?

The assetors of the non-ddentity state that they have never-been able to findeany transition forms. Jeater, in London, darmg the last four years, has seen 2000 cases all of which could be relerred to-one or the other form of fever without difficulty. Gerhatd and Battelt, and the other writers on the sameside, assent the same thing.

Similar evidence is to be fom in that vast mass of instructive matter, vhich the zeal of the elitor of the "Dubin Medical Journal," has collected. In the history of the terrble hish levers of $1846-47$ and 45 , contained in that excellent periodual, we fand the most undoabted evidence, that exanthematic typhus and relapsmg tever were the two weat sontres, ath that typhoid fever, dysentaty and scurvey were heac and there intermixed. Frequently; whenhe witers have bcen lithe aware of it, they have given the strongest proofs of the exisithee of several metcharent loms of fever.

It should be also remembed that the pusinve evidence in favour of the
 who has pudd a tencion to ble subject has adopted the sane conclusion. And that he difiercaces hetween the twodistedes are not dependent on any variely of epideme consthumb pesent mone jear, and not in another, is proved by the lergth of tume over whet the ubeqthtoms run; Stewart's, Shathuck's nad Jenmer's paper make up andesecrite perad of ubatration of nearly fiften years, durng which time ercy one who has athended in the point has recognised these dhetmehons. In linetea, anso, Gethat's olservations were made sixteen years ago; and every gear smev that time las mote famly eonvined him and other Ameragan obetryer of hem acouracy-

When to thes shorgargmen, thathe positue evidence is wah one probably ummponam excepton) at: on one s.de,-amd when, in addation to the fach that Priagle and Huxhatn, who were so fambar with fe vers, distinguished :wo forms, when it is ahant ceman wr re the typ has and 2 phond of our own day-, ad that Armstrong also, m re latery, bas observed ath descibed two ievers, and that sinte bous hixed the symptoms and the punt-mortom lessions of typhond tever, the evidence in thvour of the correctass of his wemss and consequent.y of the speratic daterefe between it and other ferers, bas been
 If we admt ithese several formes of tever, the divi apaties beween the obtervathons of haferent countres hiodepear, order is matodue dinto this intricate
 lines,-w'e are stronsty umpe Ihed to admat at onee the hath of lemnors conchsions, and to separate typus, typhond, and relatomg fever, as completely as we do smal'govand scartet trver.

To tat leasons we nave above addneed for adopting the doctring of a divessty of fever, we are able to add one more, vio, the fict that fever of one iomu always gives rife, as far as ubervation at present goes, to a similar dis. case, and to no olher. It was noticed by llenderson; in Endinbargi, tiat typhus did not arise from intercourse with persons affected wiha relapsing fever.

His conclusion is, "that in not a single instance has the typhus fever presented itself in circumstances that warrant the opinion that it must have been produced by the contagion of the epidemic fever. (O p. cit. p. 218.) The same question has been elaborately argued by Jemer. Typhoid fever produces a like disease, but not typhens or relapsing fever; and each of these two latter diseases produces its own kind, but no other.

We may, therefore, state our answer to the proposed question in the following terms:-The facts adduced in evidence of the specific differences of typhus and typhoid fever are sufficient, if ha. y be hereatter proved universal; there is no evidence for the idemity of the three diseases, which can be at all compared, in point of precision and extent to that which goes to prove their non-identity; amd it is, therefore, excesively probable, strange as it may seem, that the progress of mquiry will soon enable un to decide positively that in the feer of Great Britain, diseases the most diverse have been home together by the enthralling yoke of a simple name.-Dirt. und For. Mcel. Chirurg. Revieu, July 1851.

SURGERY.

calculus in the bladder of a girt.- dilatation of tine - vretird.-hithotrity.-Extraction by several operaTIONS OF THE FRAGMENTS,-RECOVERY.
A pale, sallow-looking, intelligent, and ansious girl, aged 10, came under my care in Decenber lasi, with symphoms of swe in the hadder. Frequent micturition durine the day, with great and acute pain; tenesmus, with oceasional involuntary passage of face; and incembinctuce of urine dating the night, and oceasionally during the day, wern anneng the most prominent. Her mother stated that the child had always leem very delieate, had had two or three athachs of inflammation of the hars, ama hat ihout two years and a half before she brought her to the hospital, had complaned of great pain in passing water, and by degrees lost control orer the bladdet.

A calculus was detected by the female sound, which gave evidence of the stone being very large. The urine was lound luaded with mucus, of a light specific gravity, destitute of albumen, but containing a large number of the crystals of the trople phosphate. The skin was hot; the palse quick and irritable; the tongue loaded, and the bowels rather constipated. She was phaceio on milk diet and a chop. A mucilaginous alkaline mixture, and an occasional dose of castor oil with five minims of tincture of opium, and a warm bath every morning, were prescribed.

This treatment was pursued for a week after her admission, with much relief to the general and local symptoms.

Dilatation by Weiss's two-bladed dilator was now commenced, and the indrument was used three times; the first time being kept in the urehira one hour and a half; the second, on the day following, the same length of time; and the third, two days after, about half an hour on!y, as it gave rise to considerable pain At the next dilatation, after the interval of three days, the threebladed instrument was used, and was had recourse to every second or third day for the space of a fortnight, chloroform having been exhibited each time before its introduction into the bladder, and itsaction on the system having been kept up for about ten minutes, so that when the child recovered, the instrument was removed, and she no longer complained of the pain, which had been very serere on the first occasion, when the anæsthesia had not been induced. i dey or two after the last dilatation is was observed, that at the lower and fromt part of the urethra there was a slight slit. After the several applications of the
instrument, and when the child had fully rallied from the effects of the chloro-: form, she was placed in a warm bath. After the dilator had been thus used, and fifteen days subsequent to the commencement of this treatment, the index finger could be introduced into the bladder, and it was imarined that the urethra tras sufficiently ditated to admit of the removal of the calculus. It was seized, consequently, with a pair of polypus forceps; but, after three careful attempts, could not be extracted in consequence of its great bulk. A good deal of constitutional disturbance supervened on the attempt at temoval, and nothing further was done ull it had subsided. Twelve days afterwards the patient was placed on tho operatmy table, and, when under the mfluener of chlorolorm, a common lithortre was intoduced into the bladder, but owing to the wrethra having been so much diated previvusly, the mine came away after the introdachon of the instrument, and it was foum from the contracted condition of the bladder, and the daticulty of moving about the lithotite, impracticable to seize the calculus. The hithotite was witherdwn, and a pair of shong, smali lithoton:y torceps introduced; the stone was seifed, biohen up mon-everal tragments, a few of which were semoved. The semainder were erentually taken out at intervals of a week, four operations being required, and chlorotom being used at all, and the bladder mmednately after Leng wathed out with warm water. The treatment adopted atter and preceding the removal of the fiarments, consisted of warm bahh, diment drinks, and diuretics. Incontinence of urine contmued day and night for three weeks, at the end of which time the diumal incontinence had subsided, but the nocturnal continued. The chitd was sent out of the hospual tharteen weeks after its admissiun, much mproved in health the symptoms of calculus having entirely disappeared. She was brought to me as an out-patient about a month afterwards, and 1 prescribed for her the same medicme she had been tahing for sume time while under treatment in the hospual, sarsaparilla and mitric acid. The incontinence at night time, her mother informed me, was now only occasional.

The stone, when dried, weighed five drachms, was compnsed of the fusible calculus, and a little organic matter; and gave no tace of lithic acid; and occupied the third of a wite-mouthed ounce phial.

CALCULUS in The bladder of a girl.-DILATATION OF THE URETURA.-LITHOTRITY,-SLIGHT INCISION SUBSICQUENTLY. - extraction of the fragments at different thmes. -recovery.
Case 2.-A workhouse girl, of ruddy complexion, red hair, and apparently in good health, came under the care of Mr. Adams, on the 20th of last January. She suffered fiom trequent metuntion, followed by gieat pain, accompanied by occasional and sudden stoppage of the llow of uiate. She had never passed blood; but the water was loaded with mucus and a thick reddihh sediment. Previously to her admission she had been treated ior mitammation of the kidneys, blisters having been appaed to the lumbar region wilh temporary henefit.

She had had scantet fever four years agy: : and her mother thated, that it was only six weeks before the child came into the hospital; that she conplained of pain atter passing het urine, and a sudden and frequent desire to do so.

Dilakation of the urethra by Weiss's three-bladed instrument was had recourse to about a week atter the patient came into the hospital, and was repeated every fourth or fifth day. After five applications of the instrument (the three last having been made while the child was under the influence of chloroform) the pont of the index fuger could be introduced into the bladder; but, on the calculus beng seized with a pair of lithotomy forecps, it was found impossible. from its large size, to extract it. The child was placed on the operating-table, and chlorotorn given; the stone was seized by a pair of strong
forceps, and several fragments broken off. The bladder was afterwards well washed out with warm water. A goond deal of hæmorrhrge followed, and it was deemed expedient to defer chrushing the entire stone to a future period. Great pan in the side and stomach cane on during the evening, and in the urethra during the passage of the urine; and there was complete incontinence duting the night. A warn bath, a dose of castor-oil, and a mucilaginous mixture, with sola, was ordered. Uuder this theatment, the pain in the side and stomach gradually deelined, and the incontinance of urine during the night became less. A week atter the first operation a second attempt was made, and some small iragment extracted. The entre calculus was ultimately removed at three subsequent operations, a grod deal of beeding atending and succeeding each. At the last operation, the largest fragment (whech could not be broken with the foreeps by which it had been seized) was taken away, the urethra baving been slightiy mesed on its lett and from part prio: to eatraction. This last potion of the stone appeared to form its main bulh, and contained a nucleus of lithate of ammonia. The remainder of the caleulus was composed of lithic acid, with a circumference of the triple phosphate.

Iucontinence of urine lasted six days only; and the child left the hospita! in the maddle of April, having been under treatinent about three months.

calculus in the bladder of a womin-mincision of the URETMRA.-RECOVERY.

A weaveress, aged 48 , the mather of twelve children, came under the care of Mr. Adams in the middle on April. She complained of great beaning-down pain, frequent destre to micturate, the urine passing with great difficulty and in small quantaty, and being occasionally tingerd with blood. At times she could not urinate except in a recumbent pusition. The urine was highly offensive aud ammomacal. The symptoms of stone in the bladder had been oi sisteen nonthe' duration, and were preseded by cessation of the menstrual discharge for nine weeks. Atter this, she had fever for three weeks, and then a miscarriage.

One or two attempts were made at dilatation, but owing to the subsequen: pain,-which was exerunating,-were not turther peristed in. The symptoms, on admission, gradually mereased mintensity, notwithstanding the recumben: position, opiates, warm baths, etc. About ten days after her admission, the patient wes placed under the influence of chloroform; the calculus was seized with a pair of strong foreeps, and drawn to the neek of the bladder; an incision of the later and the urethra was made downwards and outwards on the left side, parallel to the descending ramus of the pubis. The calculus was then drawn forwards, and enaracted atter a hitle carefinl traction had been exerted.
liamediate reltef followed the operation. Perfect incontinence of urine lasted fonr or five days, at the end of which time she could hold a hitle, and at the eight day could retam at for three quarters of an hour. On the twelth day she could hold it for an hour an a half. The incontinence gradually declined, and when she left the hospital, on the thirty-fifth day after her admission, she lad perfect control over the bladder; the urme, which had been thick and loaded with mucus, was nearly clear.

The calculus was made up entirely of the triple phosphate, and was equal in size to a large chesnut.

Remurks.-Experience appears to show, that the removal of a calculus from the femaie bladder, after the neck of the Jatter and the canal of the urethra have been gradually dilated by forceps constructed for the purpose, aponge tents or otherwise, is a preferable proceeding to its zemoval after the urethra has been incised. It also demoustrates, tnat dilatation can be carried to an extent which, in the absence of well-authenticated facts, would appear
almost incredible. The most remarkable case among those recoraded, with which I am acquainted, is one related in the first volume of the "MedicoChirurgical 'Iransaction."' It occurred in the practice of Mr. Oaks, of Cambridge. The patient was eleven years old. Sponge tents, gradually increased in size with string attached, were introduced into the urethra, opium, preceded by purging, being administered. The sponge was used morning and evening, and for three suceessive days. The urethra was sufficiently dijated, on the thard day, to allow of the calculus being withdrawn. It is stated, that the sione measured in circumference, at its major axis, 3 inches; in its minor, $3 \frac{1}{s}$ inches. The calculus was seized in its long axis, and therefore the urethra must have been distended by the calculus and the thickness of the forceps to a circle of at least 3 ? . Incontinence of urine lasted only three days.

This plan of reatuent by dilatation is mimitation of that made use of in the hatural effons to get id ol a calculus fiom the female bladder, the stone itself acting as the datung power; and numerous remarkable instances are on record of calculi thus vonded, without any subsequent incontinence of uine. In far the greater number of cases, however, in which the calculi have been large, incontmence of urnte, which was a marked antecedent symptom, has persisted; this, probably, arising from uleeration at the neck of the bladder, in consequence of the pressure of the forergn body. Thus, there is in the London llospital Museum a calculus which was removed from a woman by the late Mr. Headughon. Its anterior extremity was found sticking in the urethra, and the entire stone was temoved easily by traction of the two ind ax fingets. It measured $3 \frac{1}{8}$ mehes long, 2 inches broad, $1 \frac{7}{8}$ inch thick, if inches round its larger, and 5 , meites in its smaller circumerence. Incontinence of urine lasted thl death. The fact of incapability of retaining the urine uablly following the natural method of expulsion, when the caleulus has been large, suggests the propriety of upetating "ithout any unnecessary delay, in order to avond this incomvenient and datressing sequence.

In the treatment of the firs case, il was contemplated to remove the calculus entire, but, as the uretha had given way slightly at lower and anterior part after the last dititation, it was deemed prudent to desist from futher extension; of the canal; and to crush the stone, and remove it piecemeal, which was easily affected at differemi upetations. It might have been surmised, that the presence of the fragments in the bladder would have given rise to such an amount of irritation as to call for their removal at one operation. This was not found to be the case ; and it was considered that the argregate amount of irritation was not so great as would in all probability have taken place had all the fragments been liken away at one operation-a proceeding which would have involved tanch time, and in which, fiom the frequent appheation of the instrument, for extraction, an amount of injury might have been induced, which would not, in all probability, have been well tolerated.

In no case did the choolorm appear of more eminent service; for, without thisagent, the pain induced, and the restlessness of the patient in consequence, would have rendered the process of dilitation, and the subsequent operations for extracting the fragments, imuch more dilicult than they were found to be.

The second case is mteresting, masmuch as the operation for removal of the calculus consisted partly of the dilatation of the urethra, and partly of incision. In consequence of dilatation having been had recourse to in the first instance, the incision subsequently practised was but slight and limited in extent, and incontinence of urine continued only a few days.

In the thind case, the symptoms were of that aggravated character, both locally and coustitutionally, that it was considered imprudent to wait during the time requisite for the sradual dilatation of the urethra; and an incision of that canal was mate. This imcision was as limited in evtent as possible, the stone having been previously brought to the neck of the bladder, and the latter having been rendered tense prior to the incision of it and of the uethra.

CALCULUS IN THE BLADDER OF A BOY.-LITHOTOMY WITH KEY'S STRAIGHT STAFF AND SCALPEL.-RECOVERY.

A child, aged four, not aprarently out of health, came under my care at the end of March.

The symtoms of calculus, according to the mother's account, had only lasted a fortmight. There was great pan in passng the urine, preceeded by tenestmus and the occasional passage of faces, etc.

The child had been delicate in health surce its brth, and had pneumonia when five months odd, lasting five weeks. A calculus, apparently small, was detected in the bladder. Fle was kept quiet in bed for about a fontnight, on a generous diet without stimulus, and oddesed a warm rath every morning; and the bowels were regulated by castor oil. The severity of the symptoms having decined under this treatment, the operation for extraction was performed. The child was placed on the operatug-table, and a curved sound was introduced into the bladder. The calculus was at once detected. (On several former oceasions it could not be made ont, owing 10 ats small size.) The curved sound was then widhdrawn, the bladder mjectel, and Key's stafi introduced. The patient was then placed in the ordinary position, and the operation conducted in the manner recommended by Mr. Key. The staff was held by an assistant, with the handle slightly inclined towards the left side. The exiernal incision of the usual extent was then made with Key's sealpel, unth the groove in the staff was opened ; the point of the scalpel being kept steadily against the groove, the handle of the stail was taken hold of by the lett hand, and the instrument depressed, the right hand being kept fixed. By a simuitaneous movement of both hauds, the grove of the director and the edre of the knifo were turned obliquely towards the left side. The lett hand keepinc the staft fixed. the scalpel was passed along the groove mito the bladder; amdowing to the blado of the knife having becn kept at a very acute angle with the staff., while being carried into the bladder, a very small inctsion of the prostate was made. The knife was then widhdrawn along the drector, the staff was taken in the righ: hand, and the fore-finger of the left passed along the drector through the opening of the prostate; the director was withdrawn and exchanged for the forceps, which was passed along the finger moto the bladder. The calculus was scized and withdrawn; it was about the size of a horse-bean.

The boy went on well till the 8th day, when the womd looked rather pouting and sloughy on the surface ; the tongue was loadel, skin hot, and pulse quick. These symptoms subsided, atter a warm bath aud the free action of the bowels. The urine beran to tlow by the urethra on the ninth day, and. perinceal wound had cicatrised seven weeks after the opetation.

MIDWIFERY.

REPORTS OF PRACTICE ILLLSTRATIVE OF TIIE DIAGNOSIS, treatment, and pathology of ovarlan tumors.

By Frederick Bird, M.D.

In addition to the aid afforded to the diagnosis of ovarian tumours oy percussion, that furnished by the respiratory movements is olten of much value. If visual examination of the abdumen be carefully made whale the patient is in the recumbent posture, it may be obseived, that on the completion of each expiration, the outline of the tumou, especiatly at its fundus, can be traced with more or less facility, being more evident in thon persons, and aways more temarkable when the abdomen is viewed in prufile. In those who have becone thin, the altenuated parietes of the abdomen fall upon and appear to compress
the diseased growth beneath, leaving a curved depression or suleus at the epigastric and lateral regions, describing often very accurately the avoid figure of the tumour. During inspiration, the hollow viscera of the abdomen are pressed downwards by the descemding diaphragm, and for a time replace the epigastric depression observed on expiration, by marked and prominent fuluess. When the tumor do not much exceed the size of the uterus at the full term of gestation, and the patient is ematiated, as muder such advanced state of disease she generally is, this method of examination is of much advanage. It is only in instances of extieme abdominal distention, or concomitant obesity, that it fuils to be of practical utility.

Shape, thes determined by percussion and respiration, may be confirmed by further inspecton. The abdomen presents an unequal distension, principally affecting its central regions, and leaving the lateral boundaries much less affected than in other diseases with which ovarian tumour is sometimes confonded. The lumbar regions are never mucb distended, and often preeent a remarkable flatneos when compared with the evident distension of the central portions, espectally of the untilical space, and its protruded centre, which, full and prominent, gives to the abdoninal enlargement a defined and cirtumseribed form, and assists materially in the dic gnosis between ovarian tumor and other diseases of the abdomen characterised by the formation of fluid. For in ascites, with which ovarian disease is perbaps mont commonly confound d, the umbilical region is not more prominem, but often less distended than other parts, and generally presents a somewhar flattened appearance: while the dis-inilari:y to ovarian distention is still further shown by the fulatss and hulging of the lateral regions. And thus, if a more exat cxamination be made by mearurement, it will be found that a line drawn from the superior spinous process of the ilium to the false ribs would sestecty be curved in ovarian tumour; while in equal distension from ascites the corve would be coasiderable. As an extencion of this means of messigation, it may be obstried, that the ecntral antero-posterior measurements, taken in the recumbent posture, will bear a diffrent ratio to other measurcuents in each of the two diseases. Thus, if the space berween the unbilieus and corresponding potion of the spinal column be taken, and nest, that between the foticis iambar vertebra and opposite point in the mfsian line anteriorly, the ratio in suct measurements will show great disparily, while, in ascites, they will scarcely differ.

As ovarian tumours, whether of the more simp'e and fluid forme, or of the condensed and compound type, are formed primarily of a containing sac, rendered tense by accumulated eystic secretion, the results of manipulatory examnation or palpation, seldom vary materially, but commonly evidence uniformhardness, combined with elasticity; there is not the ungielding hardness of a fibrous growth, but a resilient harduess. When the tumor coniste chic fly of one large cyst, the elasticity is equal in all parts ; but, in tie case of more compond growths, where condensed masses of scemdary cysts are atached to the walls of the primary sac, the sensation of clasticity is lost over the parts corresponding to the seat of such formations, and becomes repheced by inclantic hardness. In the frequent presence of fuctuation, as the physical result of contained fuid, an important diagnostic mark and source of error are encountered. Fluctunion may or may not be present in ovarian tumour, and may not be observable even when large accumulations of fluid exist. When present, it generally differs materially from that furnished by ascites,-the cause of this difference beiog
probably the same as that which explains the absence of evident fluctuation in ovmian tamour, even when fluid in large quantities is present,-the fact of such being contained within an investing cyst, and not, as in ascites, in the general cavity of the abdomen; for, excluding the class of fibrous tumour of the ovary in which fluctuq?ion is necessarily absent, there occur a large number or cases in which it is not to be detected. Thus in ovarian tumour of the multilocular type, in which the subdivision of the primal sac is effected either by very numerous secondary cysts, by the existence of septa, or copious deposition of bony or cartilaginous matter, fluctuation is often not discovered, ahhough the total quantity of fuid contained within the tumon may be very large; cases moreover occur in which this sign is also lost from great thickness of the containing eyst; and alsn, sometimes, from extreme distension. Under certain conditions of unuanal accumutation of fiuid, in a cyst the parietes of which have faited to enlarge proportionally with the rapidity of the secretion within, fluctuation cannot be detected. Also, in certain instances in which the secretion is remarkably viscid, fluctuation may be absent.

Bufore entering upon the description of fluctuation as a sign of ovarian tumour, it may be well to allude briefly to a physical sign often mistaken for fuctuation-impulse. The observance of a simple rale wall suffice to distinguish between thrm. The error lias, however, often been conmitted, and has sometimes led to unfortunate results in practice; such has been particularly the case in instances of colloid tmone of the ovary, in wheh impulse can always be readily produced, but not fluctuation. I may allude to an example in the case of a poor woman wion applied to me on account of great abdominal distension from ovarisn tumour; it had formed with remarhable ratidity, as colloid ovarian tumours, so far as I have seen, always do, and she was in great suffering. The diaguosis was easy, but little could be done to give relief to the symptoms. She was anxious to be tapped, but, of conrse, her desire could not be acceded to. Manipulation of the abdomen detected marked impulse throughout the whole tumour, but there was uo flactuation. Shorily afterwards she became a patient of a neighbouring dispensary; the medical officers in attendance smiled at the opinion of the absence of fuid; a trocar was iutroduced in three different places, but no fluid pasied. She soon died, but not from the punctures, and the autopsy revealed an euormous tumour of the ovary of the colloid class. The rule to which I have adverted is a very simple me, and will be best understood by first describing the method in which the abdonen should be examined for flactuation in cases of ovarian tumour. The patient ling on the back, the legs slightly raised, the respiration tranquil, and the stomach empty, the hands of the examiner should be placed flrstly on either side of the upper part of the abdominal enlargement, or in other words in the hypochondiae regions, taking especial care that the hands are not only phaced parallell to each other, but also at exactly correuponding opposite points of the abdonen; keeping one hand flatly on the abdomen, the fingers of the otber should be entployed in striking gently against the exactly opposite point of the parictes; it the sensstion of fluctuation be then conveyed to the other hand, it is sufficent; it othernise, more powerful and sharper tapping or ssriking thould be made; if no fluctuation be then felt. Ict the bands change offices, but not their position, and the one hand will often feel the wave that was not conveyed to the other. If both hands equally feel fluctuation, it may at once be inferred, that at that part of the tumour at least fluid alone exists ; but, if one band only perceive fluctuation,
then the part covered by the opposite hand is the seat of some secondary eyst, or condensel or sclid structure. Step by step the hands altemately percussing and perceiving, are to be slowly carried to the iliac regions unil all the lateral boundaries have been carefully examined. If fluctuation has been overywhere and equally felt by either hand, the conclusion may be arrived at, that the ovarian tumour, if it be such, cousists chiefly of one large cyst or is what is termed unilocular ; if, on the contrary, the fuctuation has not been felt at certion points, although distinet at others, the parts at which it faited to be deteted should be separately examined as to their inclastic barduess and dulthess on percussion, and thus their precise characser be deterained, whether, as conkensed or solid formations withith and attached to the parem sac, or as collatral disease or displacement of healhy structures externally to it. It has already been stated, that it is very rare to find any visens, with the exeeption of the trinary bladder, interpoeed between the cunour and the abdominal parietes; but it has in a few instances happened that a portion of intestine has passed in front of the ovarian sumour, and in such cases would, equally with solid growth, destroy the evidence of fluetuation at such parts; the dagnosis could even then be but little obseured, since marked resouance on percussion would, in the former case, take the place of dulluess in the latter. The same method of examination should next be employed in the antero-posterior, by placing one hand far back in the lombar region, and strking with the other at a corresponding point in front; and this should be similarly performed on either side. By such means, fuctuation will be derected, and thas evidence the presence of floid, while the absence of that sign in certain points will detemine the association of secondary eysts or solid growths. The charater of the fluctuation is also not without value, so far, at least, as the dignosis between ovarian tomour and aseites is concerned; in the former case being, if not interrupted by spoonary formations, sharp, quick, and distinet; while, in the latter, it is more dull, diffused over a greater space, and not so quickly induced. The fluctiation in the majority of instances of ovarian tumors is suffienenty distine to prevent its heng mistaken for the iupulse before alluded to, which is usually observed in a sumll class of cases in which the concents of the cyst are semi-solid, or gelatinous, as in the example of colloid disease. When flud is presem in large quantity, the flateration is easily caused and distinctly fett; but, carefully observed it will be remarked, that a certain interval of time elapses from the monest when the one hand of the examiner percusses, before the wave so produced is fett by the opposite hand; the interval is necessarily extremely brief, bur is yet distinctly appreciable. It is otherwise in the instance of semi-solid aceomalations; for, although in such cases the iapulse caused by pereussion is so manifest as often to be mistaken for fuctuation, yet, tested by the same rule, its precise charater can be determined. The impulse caused by striking with one hand is instantly communicated to the other. The interval observed in fluctuation has no existence in impulse. The application of this fact is not only of importance in determining the contents of ovarian cysts, but also in distinguishing bet ween ovarian disease and ascites, is which the interval is, prubably from the interposition of the floating viscers, rendered still more evident. Percussi n may be said to perfecł the diagnosis; the ovoid ouline deternained by its agency in ovarian tumour, has no relation with ascites, while the uniforn dullness elicited in the formes gives place to unequal dullaess in the latter, interrupted by local nesonance in whatever part the hollow and foating intestine may displace the effused . fuid

Resonance on percuasion about the umbilical region in often observed in ancites,in ovarias tumour, never. Unlike ovarian tumour, also, change in position will vary the relative position of the dulluess and resomance clicited ly percussion; while ulso the shape of the distended abdomen will, under the same conditions, often present some variation, accordingly as the erect, supiue, or lateral position may be assumed. As a common rule, it may be added, that floctuation is more obvions in ascites when the patient is in the erect, in ovararian tumour when ia the recumbent, posture.

Exclusive of the evidence afforded by the physical signs, the diagnosis of ovarian tumor from ascites is still further assisted by the previous bistory, and by the association of some form of organic disease sufficient to give rise to diropsical effusion. 'ithe absence of urgent syptoms in the carlier progress of ovarian tumor has been already alluded to, and their dependence, even when present, upon some co-existing disease, demonstrated by Cases 12, 13; for it is only when accumulated secretion in ovarian tumors has become excessive, that syptoms of extreme suffering supervene.

Less in importance, because less constant, are the indications afforded by vaginal examination. In many cases, certainly in the majority, valuable evidences of the existence of ovarian tamour are presented by the examination of the pelvic cavisy ; bus there are othersin which no departure from the natural condition and relative position of parts can be dincted; and it is, perhaps, a nearer approximation to a fixed rule to asome, that ovarian tumour comuonly gives rise to some change in the condition of the pelvie visera than to partieularise the form of such change. In the greater number of instances of carian tumour of large size, the ngma is thongated, and the uterus drawn up, its us inclining more to one side tiam the other, or it may be purbed bebiod the pubis, or lodged postriorly bencah the sacral promontory; such variations being for the nost part dependent upon the uncertain lengh of the pediele, and, to sone extent, upus subsequent adhesions and the particular ogan affected. In other cases, the vagina is found qreatly shortened; the tuerus prolaped, or even procident; and thus, beyond the fact of the pelvic visecra being generally displaced in some manere, no common sule can be inferred. Such displacements, however, are of far greater utility in the specin! diagnois of ovarian tumor, and aval moch when the question of treament by extirpati a arises--an subject to wheh refer-wee has hercafter to be made. In ancites no di-placement of the petvic visera in obstrved; and to this differential sign may be added, the frequent premence of flatulent distension in various parts of the int stina! thbe in ascites, reactily dereced by ascobation or examimation by the hand. Somo assistance may also be derived from the state of the me momems of the ato men,
 shining, whle, in an regual degree of intumesenter from ovarian umome, the skin may still preseat its usual appearatec ; in the former, the abdeminal walls have to sustain unaided the pressure of the fluid; in the latter, the strote, fibrous, and unyieldiug eyst contains and supports the burden. In aceitice effusion, aloo, even when very great, there is seldom any ondargement or distension of the superficial veins. In the case of large ovarian tumors, particularly those of chronic growth, the veins ramifying over the surinee of the abdomen are much increasod in size, forming large tortuous trouks often becoming prominent, and lying upon, rather than m, the deep sulci, which the finger passing over readily detects.

Let it be remarked, that the diagnostic signs now deseribed are offer obscured by the complication of ascites with ovarian disease. In the greaternumber of such instances, the peritonaal effussion occurs as the consequence of pressure produced by the sumor, either by its impaction in the pelvic brim, or some other means of interruption to the abdominal circulation,-sometimes, however, resulting from causes distinet from disease of the ovary. It is not common to fiad so large a quantity of ascitic 䏠d present as to prevent the delection of the ovarian tumor by careful manipulation; the sudden and forcible depression of the fing ris during an expiration, will cause them to press upon and feel the hard cyst beneath, althugh separated an inch or more by iatergosed fluid. In certain instances, ascites may be said to facilinate the desention of tumour of the ovary; for, when the abdominal walls are not very tense ${ }_{\mathrm{n}}$ and are relaxed by a favourable pnition of the patient, the tumor tay be made to move from side to side, and its presence accurately determined. The geneal configuzation of the abdominal disten:ion is still that of uncompheated ovaridu tumour; for, although the lateral regions may be more distended, yet the characteristic prominence of the central portions is evident, especially in the erect pasture. The results of vaginal eximination are no: alterated by the co-existence of peritoncal effusion.

A valuable addition to the diagnostic indictions, when ascites en-exists, is that arising foom the conditions under which flactuation may be detected. It thas been previously observed, that the obdomen should, in such exnmination, be percussed while the hands are phaced parallen to each other; and of this rule be carefully followed, it will happen, that fluctuation camot be distinctly felf, although, from other evidences, there can te no doubr of the complication with asictes. Bua if the hands be then enployed, so as to percuss in tangentallines of the are fors:ed by the abdominal imemescence, fuctuation will be felt. Thus, a band placed on the umbilicus while percussion is made on the lateral region, will detect the wave of fluid, which could not be felt when the hands were placed opposite to each other,-a fact dependent upon the interraption of the tumos of she waves of fuid in diamerrical lines.

PHYSIOLOGY.

ON TILE BLLE.

By Dr. II. Bence Jones, F R.S., §c.

[The bile has lone been a subject of the greatest specuation on the part of physiologists, and there is scarcely any theory which has been advanced on the properties of the bile which lias not been defended by some writers. Dr. Jones compares it more to a kind of soap thana anythang else, and proceeds to enquire:]

What is the physiological action of the bile? The most opposite and the most important actions have been sutributed to it. It has been said in promote digestion, and to stop digestion. Some say that it neurralises free acid, thas iessening irritation; others, that it iacreases the peristaltic action of the boweli, thus increasing irritation. It has bern said to be partly absorbedinto the gystem to support respication, by furnishing a highly carbonaceous bndy. Some bave
said that it promotes the absorption of fatty substances; and by others it has been said to have no action upon the faty at all. 'Io solve these questions was the difficulty. Experiments were tried by tying the common duct through which the bile passed; but this is not the way to arrive at a satisfactory result. If the bile is not suffered to pass, a stoppage is put to the function of the liver ; the whole order of the syatem is thrown out, and general dieorder produced. In 1844 a new inode of experimenting was begun by Schwann, who collected the bile without allowing it to pass into the intestines, by means of an opening similar to that which I mentioned in the case of pancreatic duct. The action of the liver thus went on aq usual, and all the functions of the body were performed, without inpedinent. 'I'welve dogs lived from sixty-four to eighty days without any bile passing into the intestines: one dog, thus experimented upon, hed four months ; and another, belonging, I believe, to M. Bernard, lived a yeat in this state. It was found that dogs thus treated ate much, and digested badly, partly on account of tise unnataral fistulous opening. They did not lose much weight at first; but after a little time they lost their appetite, became thin, aud ultimately died. The bowels acted as regularly and perfectly as if the bile had passed in the usual manner. Professor Nasse had a dog that lived from the 12 th of August to the 24th of January. The quantity of bile varied with different kinds of food between 31 and 370 grains daily, with from 16.44 to 19.19 per cent. of solid constituents. Less was secreted when the dog was ill. The dog ate much; digested badly; did not lase weight at first; afterwads lost its appetite, and then became thin. M. Biondlot had a dog that fiourished for three months. The bowels acted twice daily.*

Even in human subjects, it has been found that when a flatulous opening has been made, owing to perfect obstruction of the common duce, by inflammatory action, the bowels have continued to act when the bile did not pass, thowing that bile is by no means indispensible for their action.

Many experiments were tried with dogs, as to the quantity of bile secreted. The influence of medicine was also tried; and it is interesting to us to know that the action of mercury was decidedly to increase the quantity of bile secreted, ds hus long been held by medical men. It animals can live for a year, enjoy tolerable health, and digest their food, without any bile passing into the intestines, the imporinnce of bile, and its necessity, for the purposes of digestion, have been exagerated.

The saction of bile out of the body on tive different constitutions of food, tends to precively the same results as we have seen obtained by experiments in the body. Bile, when mixed with nentral fat or with oil, is fount to have no chemical action whatever. It makes a sort ef emulsion only, not quite so good as that produced by the pancreatic fluid. I added to solutions both of pancreatic ivice and bile equal quantities of water and oil, and then left them, after agitation for some time, to see which produced the most enduring emulsion. You see them herc; both have caused the fatty matter to be minutely divided; but I think the pancreatic fluid has disided it and kept it divided the best. When fresh out of the body bite has no action on starch; it does not siange it into

[^14]sugar, as we saw the saliva did When, however, it is allowed to decompose, it has a slight action upon starch; but not more than all animai substances have. It has no action on cante-sugar until after it has stoud for a considerable lengit of time, and then the cane-sugar is converted into acid. Wing grape sugar, if left for any length of time, it forms lactic acid; but so do all other animal substances when in contact with sugar. It has no action, even when acidulated on casein, or on the alouminous substances which constitute nor feod.

It has been said that the liver purifies the blood, by removing a large quantity of carbonaceous substance from it. To determine this by absolute expeitanent was a mather of geat difficulty; but Schaidt has cudeavoured to. solve this que-tion by experiments on forty cats, thirteen geese, many sheep and rabbits, in wheth he made fitulus opetings into the gall-ducts for the purpose of collecting all the bile and determaing the proportion betueen the quatitity of cartionic ata thrown out by the luags and the quantity of carbon in the bile. He passed a the ino the gull-duet, and could measure how much gall came out per liour; abal he could deternine the compositio of the bile by burning it and collectiog the caromic acid. He made, at the same time, comparatise experiments on the reppiratim, sume of wheh I shath have to detail to you in a future lecure; and he cane to the conclusion that not more than from on -temb to nae-tortieth of the cartoon whach pases out of the body passes by the liver, and that theretore the liver has wo considerable action in freeing the blowl from carbonic acid or carbun. He foucd that eight-sin:hs or nime-tenths of the carbonaceas mater remains in the circuation, and does not pass out by the bile at all, but whirowa out through the lungs; a small portion, howevet, mast escape in the urate, brobably tut much less than passes out in the bile. But I am unable so gove gou the phoprtion of carbon in the urine and bile daily excreted, from wam of experiments.

What, then, in concla-iun, is the use of the bile? I have show you that it is an aikatine fand, and a buily resumbliag soap. If somp is brough into contact with an actu, zu know what happos: the athali wh the soap and the acid combine, asd the ache of the somp is set free and precipitated. So, also, is it in the bile. It I tahe human bite, atod mix it whath, (as gon see in the experiment with salptheric acti.) a grectisa white precipitate is formed. Let
 of the stomath. Thes 1 can do of adding dilute hydrochtoric acid to a pertion. of hite, or better still by wixang some of the clatar floid whand from the eonzents of the stomach, widhe i shoned you in my heture on the gasiri- juice; by beth a precipatace will be immedately predued. The alkati which exinsin the bile goes to the acit; it butaralizes so far, the acid reaction: comiang from the somach; and it predipitates the illsoluable acids, which give rive to choloidynic acid, mal exem to that still more insoluble substance, dysyyn, in its passage through the intestimal canal. It appears on me, thes, tha: one great zetion of the bite is to furnish an akaline fluid, whele, whe: mixied wint tie acia aecretion that has servect the purase of diveolving the albumen; will urutraize it, and lesea its aceidiy, so as to prevent it from producing irnianian and increased action of the inzestimal cathal. That the somach can netuaty her much stronger acid that the towels is knawn to must medical men. That the neid thes not pass rapodly ont of the somath 1 am convinced by the following experiment:-To mandule man I gave 162 grains of dry, pure tartaric anil dissolved in two ounces oin nater. Lio paia was felt for thre bleurs; no fooi
was taken during this time; and, without doubt, all the tartaric acid would in thene three hours have been absorbed, or would have passed out to the stomach. At the end of this time a pain in the bowels began to be felt, and at the end of the fourth hour there was very considerable pain, coming on in paroxyeme. At the lapse of about five hours, if they had been allowed to act, they would have acted fron the acid taken. A repetition of the experiment, with 84 grains, gave precisely the same results. When the acid entered the bowels, pain began to be felt, and, if bile in plenty had been poured out, the acid would have been neutralized, in part at least; the alkali would have combined with the acid; the insoluble bile acid would have been formed as a percipitate, and been thrown out of the body. If this be so, s!uggishness of the liver, a deficiency of alkali poured into the duodenum, becomes a reasonable cause ef excessive acidity of the intestines; the gastric acid required to dissolve the albuminous food, if sufficient bile is not formed, will pass into the intestines, and produce irritation and increased action. The physician has long held, that want of action of the liver gives rise to acidity, and that alterative medicines correct this state.

But the very great size which the liver attains in the foctus appears to indicate that it performs some additional action independent of food and of digestion. This additionai action has been said, by German physiologiste, to be the reparation and the formation of blood globules; but this is by no means proved. It sems to me much more probable that it is for the purpose of neutralizing the acid, and probably also, for the purpose of removing, when requisite, some of the carbonacenus substances; in certain states compensating for the action of the lungs, though, in ordinary statec, removing much leas carbou than has been said. The bile gives water, moreover, to dilute the chyle; ia tends to the svbdivision, in some degree, of the fat and oil of our food. It acts upon the free acid of the intestine; and some of it may be possibly absorbed, and pass into the circulation again, as Professor Liebig originally conjectured. It is not nearly so important as to the gastric juice, which dissolves the albuminous part of our food, or the pancreatic fluid, and the salivary fluid, which convert all the insoluble starch, as I bave shown you, into soluble sugar. Lastly, the importance of the bile in forming sugar from fat, is one of those facts that cannot be overrated. By this discovery of M. Bernard's, very important knowledge relating to the physiology and pathology of man will be obtained during the next few years; at least there can be little doubt, that the disease know as diabetes, if not closely connected with this production of sugar in the liver, must at least be influenced by it to a considerable extent.-eiMdical Time, July 5, 1851.

SELECTED MATTER.

MEDICINE.

SURGERY.

CASES OF IIERNIA.
By Bransby B. Cooper, Esy., F.R.S.

Whatever may be the experience of a surgeon in the treatment of bernia ${ }_{\text {j }}$ Ithink he will be obliged to admit that he has seldom seen two cases exactly resembling each other; there is almost always some difference in the symptoms, agme peculiarity in the-form of the tumour, or some anomaly in the conconitant circumstances; so that; when at length compelled to resort to the operation;, it is generally set about rather as a step of exploration than with confidence as to the physical conditions of the case being perfectly understood: Although the anatomy of the outlets of the abdomen is wall-known, the course of hernial-protiusions frequently deviates from that of the natural channels, so that it is often difficult to ascertain by which outlet the viscus ins passed from the abdemen. The difficulties arising from anomalous circumstances attendant upon casesof hernia, are often productive of ao much trouble and anxicty to the practitioner, and interfere so materially in forming the diagnosis, that I have thought the tollosing cases may prove useful, as they are illustrative of some of the points most likely to mislead and confound the judgment.

Mr. Porter, of Dublin, related a case of strangilated herina to me, in which he had lately operated. Upon opening the hernial sac, and dividing the stricture, be was unable to return the protruded intestine into the abdomen. He sent his patient to bed, covering the intestine with linen dipped in warm water, to maintain as nearly as possible the natural temperature of the protruded bowel. Notwithstanding the stricture had been frecly divided, all the sympoms of strangulation remained unabated, and in three days the patient died. In a post-mortein cxamination it was found that the ascending colon had protruded beneath Poupari's ligament in:o the crural sheath, passing over the ilium, which was so firmly compressed just at the point of its entrance into the cacum that the ileo-colic valve was completely closed, and symptoms of strangulation weté produced in consequence of the contents of the small intestines uni being able to pass into the colon. Upon three or four occasions I met with a similar difficulty in returning the protruded intestine, after all the steps of the operation had been successfully passed through, up to the division of the stricture. This difficuky probably arose from the disteusion of the viscera within the abdomen. In one case I fo:md it quite impossible :o return the bowel, and 1 made a slight puncture into it, with the ooject of setting any gazeous matter at liberty, but I failed in producing the intended effect, as the mucous membrane closed the aperture, which I dared not enlarge. The patient died of peritonitis and I made up my inind never to try such an experiment again. In a similar diff-
euft case, I bad the patient put to bed, after trying ineffectually to reduce the bernia, and covered the protruded bowel wish a large thin poultice. In a few hours the patient had a motion; the bowel was then easily returned, and he recovered. I consider this treatinent far safer and more likely to be successful than long-continued attempts at reduction by taxis, puncturing, or ang other violent means.

Anomalies of from in hernix will often produce serious difficulties in the diagnosis. A bubonocele occurring in an individual in whom the external ring is abnornally small, may, for iustance, develope itself not only ip the inguinal canal, but also upwards and outwards as high as the anterior superior spinous process of the ilium, so as to prevent à most unusual appearance for a hernia! protrusion.

A servant of Dr. B.bington was admitted into Guy's ${ }^{\tilde{K}}$ Hospital, with a large tumour occupying the whole space between the anterior superior spinous process and the symphysis pubis, overlapping Pouparts ligament, assuming the appearance of a large femoral hernia; indeed, it was a somewhat doubtful point whether it was femoral or obligue inguinal hernia. The patient was suffering from symptoms of obstruction rather than of straugulation; he was put into a hot bath, and Mr. Morgaa succeeded in reducing the hernia, using considerable force in the taxis. The patient perfectly recovered.

I have mentioned that Mr. Morgan reduced the hernia by somewhat forcible zaxis. This genteman was in the habit of employing considerable force in the reduction of ternix; and athough 1 must say that I should not myself adopt this practice, I confess that I have seen Mr. Morgan succeed in returning the investine in eascesin which the amount of toree ordinarily employed would have completely failed. Sir Astley Cooper also rather leaned to this comparatively xiolent treatmeat. Some time ago Sir Alexander Crighton told me that in Russia it is an almost universal practice to force hernix back by the taxis; and although by such measures they oceasionally rupture the intestine, the general success is very considerable. Personally, however, I should never recomanend sucia a practice, and shouldalways prefer resorting to the operation in cases where a moderate amouat of force is insufficient to secure the return of the protruded bowel.

A woman, aged seventy-two, the mother of several children, was admitted into Guys Hospital, with severe symptons of strangulated hernia, which had conmenced taree days before. She had had a rupture for several years. Whien she was examined a tumour was found in the left inguinal region; it had all the appearance of a bubonseele, and the finger could be placed on the spine of the pubis umder the iumur, which circumstance might ia itself aluost have been enasidered a conclusive proof of its being an inguinal hernia. Upon close examination, however, the tumour could be felt issuing from the saphenous opening of the fascia lata, slowing its femoral origio; the anomalous appearance of the heruia was, bnwever, manifest to all who saw it. The operation was immediately proposed in this case; but the patient would not submit to it until the next day, when I operated; the sac could not be emptied without beiug laid open, when a large quantity of omentuan was found in it, with a knuckle of intesine behiad, entangled in the omentum. This was probably the reason why it was necessary to open the sac. Upon passing my finger to the stricture, I could feel the epignstric artery beatiag forcibly immediately across it. In con-
sequenace of thit I was enabled to divide the stricture without woanding the artery, which I could not have done had I bot felt the vensel pulsating. After dividing the stricture, I easily returned the intestine; a portion of the omentugu way removed, and the patient was put to bed. It was two days after ibe operation before any motion passed, but the patient recovered without a bad symptom.

On the 30th of October, 1846, a womañ, aged forty, (mother of fight childrea) wat admitted into the hospital with acute symptoms of strangulased femoral hernia. She had had hernia for four years; it had frequently come down, but she had always been ablè to return it. On the 28 th instant, the hernia suddenly descended as she was coming down stairs. She was immediately seized with vomiting and a sensation of tightness across the serobiculus cordis. The tumour was peculiar in form; instead of being of the usual shape of a femoral hernia, it was much elongated outwards, sunning under and parallel with Poupart's ligament, reaching almost as far as the anterior supetior spinous process of the ilium. The elongated portion was extremely moveable, and felt as if it were immediately ander the skin, but it could not be pressed towards the crural ring. It was difficult to believe that the coverings of the hernia could have so proloaged themselves, and it was, indeed, doubtful if there were not some adventizious swelling unconnected with the hernia. As the symptoms were very urgent I proposed to perform the operation imuediately. The paticnt consented, and I commenced with a vertical incision in the seat of common femoral hernia. I made a second incision at right angles to the first. On dividing the skin and superficial fascia, 1 exposed the internal abdominal fascia, (the fascia propris of Sir Astley.) The incision was continued outwards over the prolongation of the swelling. I divided the fascia in the same direction as I had previousiy diviled the skin. The hernial sac was thus exposed; and it was continuous with the whole of the swelling. I next divided the stricture, and the sac became immediately quite flaccid. In consequence of the anomalous form of the tumour, I determined, however, upon opening the sac, in order to ascertain the nature and condition of its contents. I found in it a knuckle of intestine, elongated in the direction corresponding to the tumour; st was quite healthy and fit to be returned into the cavity of the abdomen. A few hours after the operation, the patient had a free evacuation, without the use of a purgative. This patient also apeedily recovered.

October 15th, 1851.-I was called to a case of bernia by Mr. Thornton, of Museum-strect. The patient was housekeeper to a lady in St. James's-place. She was fify years of age, and when I saw her had been suffering for three dasi from strangulated hernia. She was very sick, but there was no other urgent symptom; no pain nor swelling of the abdomen; the countenance not distressed; and the pulse, full, soft, and compressible. Upon examining the tumour I found it large and flaceid, extending down the thigh. It had the appearance, and was about the size of a calf's bladder, partly filled with fuid. By pressing the fingers deeply into the tumour, a substance very similar to intestine or omentum could be felt. This could be traced under Poupart's ligament. I could not succeed iu reducing the swelling by the taxis. The patient stated that the hernia, which had existed for about five years, was sometimes twice as prominent. There was a second tumour, of small size, above Poupart's ligamen:This was pendulous, and of the size of the end of the little finger. It had the
appearance of a ventral hernia, protruding between the separated tendinous fibres of the extended abdominal obligue muscle. I ordered a large dose of opium, ice to be applied to the tumour, and a castor-oil enema to be given. The next day the sickuess was less urgent, and there was no aggravation of the other symptoms. I, however, recommended the operation, but to this the patient would not consent. On the following day she still remained much the same; but as there had been uo relief to the bowels, I urged that the operation should be performed immediately. As the patient now began to feel that her situation was critical, she agreed to submit to it. I commenced my incision from the upper tumour, continumg it downwards below Poupart's ligament, as far as about the centre of the lower swelling, cutting through the skin and super-ficial-fascia, exposing the free edge of Poupart's ligament, as well as the protrusion of the upper tumour through the tendon of the external obligue muscle, as I had expected. I next proceeded to explore the upper swelling, and for that purpose open th the sac. I could see nothing but omentum. I then divided the opening through which it had passed, and Poupart's ligament; this showed thet the upper swelling was merely a portion of the lower, as they were now rendered quite continuous. I opened the sac of the femoral tumour, and found a large quantity of omentum, and, lying behind it, a knackle of four or five inches of intestine. I then divided the stricture, and as the intestine, with the exception of slight congestion, was quite healthy, I returned it into the cavity of the abdomen, leaving the omentum within the sac; the edges of the wound were brought together by suture, and the woman put to bed. She said she was relieved from all sensation of constriction. On the $\mathbf{1 6 t h}$, she had a free evacustion of the bowels, the sickness had subsided, snd the pulse was quite natural. On the 17 th , purging came on, she was very much tlushed, and symptoms, which were almost those of mania rather then delirium, supervened.* This might perhaps have arisen from an hereditary tendency, her mother having died mad. Ihave observed, in other cases, that delirium followed upon omentum being left in the sac; hut in those the omentum sloughed, which did not happen in this case. After the 17 th the patient went on improving ; the wound bealed rapidly, almost entirely by first intention; and on the 27 th I left her quite cured.

Anomalies in the form of hernia may, as I have said already, render it very difficult to diagnose with accuracy the nature and direction of the protrusion, but anomaty of form is not the only source of difficulty; the circumstances concomitant with the hernial protrusion are sometimes sufficient to mislead the judgnent very materially. I have selected the following cases to show how far accompanying symptons may interfere with the diagnosis of hernia.

In May, i838, Mr. Callaway was sent for to a case of inguinal hernia, on the right side of a lady, aged 36. The hernia had descended only the day before, but it had existed for nine years. The symptoms being urgent, Mr. Callaway determined upon operating immediately. On opening the sac he introduced his finger througi the internal ring, and returned the protruded intestine, which was quite heslthy. As soon as the intestine was returned, a fuid egcaped by the opening in so large a quantity that it was thought at first that the bladder had formed the protrusion, and had been wounded; it was soon, however, seen that this was not the case, for the fluid coagulated on the snonge uned in wiping it away, and when a portion was collected in a wine-glass it neparated into a clot, which precipitated, and a merum which remained on the
top: it also coagulated by the application of heat. These circumstances seemed to show that it was an ovarian cyst which bad been opened. Soon after the operation the bowels were relieved, and the patient recovered.

In the last case I have mentioned hernia of the urinary bladder; this is not a common occurrence; I have seen but one case, of which I have published a description. [Vide "Lectures on Surgery," p. 476.] In this case the bladder protruded through the external ring, and then passed partly downwards into scrotum, and partly upwards into the inguinal canal, so as to gire it a very anomalous appearance. The interference with micturition, and the absence of any evidences of intestinal obstruction led to the formation of a correct diagnosis in this ease.

In June, 1846, a country practitioner related to me the particulars of the following cave:--He was called in to see a female who was suffering from all the symptoms of strangulated femoral hernia, which bad existed for three days. Upon applying the taxis the tumour was found to be fluctuating and very tetder to the touch. The patient stated that she had bad a rigor a few days before. The surgeon therefore came to the conclusiun that the swelling was an abscess; he consequently opened it, and let out a considerable quantity of pus. The symptoms of hernin were not, however, relieved, and continucd, indeed, until the patient died. In the post-mortem examination a hernial sac was found lying behind the abseess ; it contained strangulated intestine. 'This case offered very considerable difficulties, and it shews the necessity for invariably exploring a tumour existing in the seat of hernia, if there exist concomitantly with other symptoms indications of insuperable visceral obstruction.

In Saptember, 1546 , i rean was brought into Guy's Inespital, suffering from what were supposed to be symptoms of strangulated hernia. A largé scrotal hernia was found, which had been down for three days. The patient stated that he had had the rupture twenty gears, but that he could always reduce about two thirds of it himself, leaving, hose:er, a cumour in the serotum. When the man was brought into the ward, I remarked the extraordinary blueness of his face. I found his pulse very feeble and the extremities cold. I ordered a hot bath and a castor-oil enema, and three grains of opium, as scon as he came out of the bath. After the bath I again sass bim ; his extremities were still cold ; pulse not to be felt ; the pomiting, distress of countenance, and blueness remained unchanged. Ordered wine and brandy. In an hour after his admission he died. I did not pronose the operation, as when the man was brought joto the hospital he was in articulo mortis.

The day after his death, I examined the body. I proceeded as if going to operate for strangulated hervia. I did not lay open the whole length of the sac, but merely cut down to the neck to liberate the constriction, if any existed. I could not, however, find any. I then proceeded to examine the contents of the sac. I found in it black intestine in large quantity; unfolding this an adventitious cord of jymph was found, whicli was quite firm and fibrous; it encircled a large knuckle of intestine, producing the strangulation. Had I operated in this case, I believe I should not have discovered this adventitious constricting band, but have been satisfied with removing any constrjetion about the neck of the iumour, as is usually recommended in large herniee. This case is in this respect yery instructive; it shows that in all anomalous cases we ought to examine into the state of the boviel, even although we may subsequenily
deiermine not to return it into the abdomen. The adventitious band of lymph was of very long stauding, and, I have no doubt, had formed within the abdomen and had come down into the scrotum with the protruded intestine.

The patient's account of his own case, in which he stated that he could only return part of the tumour, was proved to have been quite correct, as he was the sub ject of a hydrocele, which of course could not be returned into the abdomen with the hernia.

A genteman, aged forty, a patient of Mr. 'Toulmin, was seized with symptoms of stramylated hemia. Upon one or two occasions before, he had had sympons of the same kiud, with a fulluess in the rght inguinal region, which gave way to the application of the taxis. A truss could not, however, be applied in this case, as the testicles had not descended into the scrotum.

Oa the 19th July, 1547 , symptums of strangulation agan appeared, accompanied as betore by awelling in the right inguinal region. The tumour was partially reduced by the taxis, but the synpzoms remaned unabated. I was then called in, and after careful examination of the patient, proposed to lay open the right inguinal canal. I perfiurmad the operation on the evening of the 23 rd instaut. No strangulated intestine was found, bat what was supposed to be the spermatic cord was seen lying in the eana. The patient was not relieved in any respect by the operation; the constipation and other symptoms remained, and on the $2+$ th he died.

The body was examined after death; upon opening the cavity of the abdomen, the intestimes ware fuand to be deep in coleur, and glued together by recently effused lymph; the testes were at the external rings. The left internal ring would easily admit the little finger iato the inguial canal, which contained nuthing aimormai. Upon laying open the right ingumal canal up to the abdominal cavity, the appendis caci was found passing through the internal ring into the canal, and terminating by a bulbous extremity which adhered to the :estis; the spermatie cord passed behind, and was covered by the appendix caci. About eighteen ineites of the ilium, several portions of which were empty and constricted, forming mamerous intricate convolutions, furmed a mass, which was firmly adheremt to the rectum, and filled the pelvis; upon separating this mass, pus flowed out.

It was quite evident that this patient had been the subject of peritonitis, creating adhesions which had interfered with the action of the implicated portions of bowel, and produced the insuperable obstruction which had been attributed to the tumour in the right inguinal region.

October Glh, 1551, I was sent for to Watford, to operate on a patient who had had a small femoral hermia for three years. Four days before, a fresh portion of intestive had come down, inmediately upon which all the symptoms of strangulation had come on. I attempted to return the tumour by the taxis, but failed; I therefore proposed to operate at once. The moment I had divided the internal abdominal fascia, the tumour became flaccid, but I could not empty the sac, which I consequently determined upon opening; in attempting to do this the whole hernial protrusion slipped up into the abdomen, en bloc. I made every effort to bring it down again, but could not succeed; and as the patient was relieved from the pain and sickness, and the expression of the countenance was much improved, whilst the pulse became stronger and nore regular, I felt some confidence in the hope that, in passing up, the intestine had liberated
itself. The patient died, however, on the fourth day, the bowels not having been relieved, and there can be no doubt tbat the knuckle of intestine was returned into the abdomen in its constricted state; that, in fact, the external was converted into internal strangulated hernia. The friends of this patient would not permit a post-mortem examination.

The following case I think worthy of notice, from the difficulty there mas in detecting the existence of any external tumour-in fact, in diagnosing whether the patient was the subject of an external or au internal hernia :-

On February 17th, 1852, Mr. Ward, of Watford, sent for me to see a patient, a lady about forty-five, who had suffered for four days with urgent symptome of strangulated hernia, but he could not detect any external tumour. Mg attention being excited, I proceeded to examine the patient with increased care, and at last suspected I felt a small, circumscribed hardness in the left thigh, in the seat of femoral hernia; the patient experienced greater pain on pressure in that part than on the corresponding side, and I determined, under the impression reaulting from these facts, to propose the operation at once. She consented; and upon laying open the femoral sheath, I discovered a small rounded protrușion, not larger than a marble; I then opened the sac, divided the stricture, and returned the small knuckle of intestine into the abdomen. I immediately gare the patient a grain and a half of opium. All her symptoms were alleviated; she had two evacuations the next day, and recovered without a bad symptom.

The next case affords a subject for reasoning in quite a different manner to the last. In this we observe symptoms of hernia, with an evident hernial tumour. but the nature of those sjmptoms showed the impropriety of surgical interfer: eace; whilst the last case demanded exploration, although the physical conditione tended to forbid it.

August $27 \mathrm{th}, 1850$, I had a patient at Guy's Hospital, a young man, the subject of an inguinal hernia on the ieft side; the tumuur was small, tense, and painful, but he had not been sick, bor had any other symptom of strangulated hernia, beyond constipation, attended with a general tenderness over the left iliac region. The state of his pulse and expression of countenance led me to suspect that he was the subject of peritonitis, and I therefore determined to try constitutional means before I proposed any operation. I ordered the patient to be put into a hot-bath, twenty leeches to be applied in the left illiac region, ice to the tumour, and gave him a grain and a half of calomel and half a graitiof opium every three hours. On the 28th the pain in the abdomen was mách relieved, the tenderness of the tumour nearly gone, and it had becom sunall and quite soft; a purgative enema was administered in the evening, and juring the night he had free evacuation. From this period he recovercd, but wai kept in the hospital in the recumbent pusture; ice was applied to the tumour ; and in the course of a week or ten days the hernia was reduced, a truss applied, and the patient got quite well.

The case with which I shall conclude this series of cases of hernia, is one in which the rupture occurred in an individual of hæmorrhagic diathesis, a circamstance which gave rise to some peculiar and anomalous symptoms :-

James C-, aged twenty-nine, by occupation a cab-driver, came into the hosnital in December, 1850. He was a man of very intemperate habits. Ten days before, he had been admitted under Mr. Cock, suffering from symptome of strangulated bernia. At ibat time be had a warm bath, took opium, and had
ice applied to the tumour; after which Mr. Cock sncceeded in reducing the hernia, and the patient left the hospital quite relieved.

Upon his second admission under myself, he stated that he had been raptured about four years. The hernis had been down about six hours, and the symptoms of strangulation were very urgent. Taxis, warm bath, full doses of opium, and ice to the part, were all tried, but the hernia could not be reduced. The treatment was persevered in without effect for twenty hours. It was then determined that the operation should be performed without any further delay. The operation was attended by an unusual diffused hemorrhage; the sac was oponed, and about eight inches of small intestine found protruding. This was of a dark red colour, and congested. It was returned with cousiderable difficulty. The next moruing, sy mptons of peritonitis showed themselves, and in spite of treatment with calomel and opium, leeches and poultices, it continued to increase, until the patient sunk, about forty-erght hours atter the operation. After death the body was examined. There was considerable ecchymosis around the leech-bites upon the abdomen, the superficial veins all over the body were distisct and prominent, and dark blood was escaped from the mouth and nose. Upon cutting into the lungs, they were found curiously mottled, as in pulmonary appoplexy. Bloody serum was found in the cavities of the pleura and pericardium ; about two pints of clotted blood were found in the cavity of the abdomen, leading Dr. Lloyd to suspect that the epigastric artery had been wounded ; the artery and vein were injected, but they were fuand to be intact ; kidneys healthy; liver pale. From the appearance of the tissues generally, and from the statement of his friends, that in his lifetime the slightest cut was attended with severe blecding, and that his fesh became easily bruised and became black and blue, it was evident that this patient was the subjest of hœmorrhagic diathesis.

PATHOLOGY.

on the diseases and climate of california. By James Blake, M.D., F.R.S.

During the mouths of October and Yovember, 1850, the principal diseases were dysentery and diarrhoa: 85 per cent. of the cases I attended, during these unnibs, were of that nature. The dysentry was of a very untractable character, wearing the patient down by frequent bloody discharges. and even when checked being constantly reproduced. It was very fatal; in the abseuce of any positive data, I believe about 30 per cent. of those attacked died. The great mortality was not so much owiog to the virtulence of the disease itself as to the peculiarly unfavourable circumstances in which those attacked by it were placed. By far the larger part of the sick, probably 90 per cent., consisted of emigrants who had just crossed the plains, having accumplished a journey which, at all times fatiguing, was in the year 1850 attended with the most trying circumstances. By far the greater number of emigrants who arrived here in autumn had not only been broken down by fatigue, but had been forced to subaist on a short allowance of food, and that frequently of a bad quality. Under these circumstances, it is not surprising that the first opportunity that was afforded them for satisfying their appetites should have been an occasion fos
overloading the stomach and thus producing diarrhoca. The sudden change from the dry, braciug atmosphere of the interior of the continent and the mountains, to the comparatively heavy, warm air of the valley, exerting a most depressing effect on the system. On this point I can myself testify; for, although without any apparant sickness, yet for the first three weeks after my artival in the country, from crossing the plains, I was so prostrated that I could lie on my bed durng the whole day, without the slightest energy, either physical ormental, and many of my friends were affected in the same way. Disease, II believe, is often brought on by men attempting to work while in this state of protrastion. The diet, also, was a fruitful source of disease, not ouly as regards its quantity, but even its quality. The ouly fresh meat to be had was beef, and this was generally fried, or rather boiled in rancid lard; the fluur was to a great extent damaged, and the butter and salt meat wete all more or less rancid. I state these facts to show that, althought diarriau and dy sentery prevailed here to so great an exten', and so fatally, during the fall of 1850 , the causes of its ravages are to be looked for prompally in the unfavourahle circumstances in which the population was placed rather than to any malarious influence. But not only were these circumstances truitful sources of disease, but they presented an almost insurmountable obstacle to recovers, even when the more violent sypioms had been subdued. There was no such thitug here as that valuable hygienic remedy called nursing. From the toast water of the sick room your patient had to go back to the beef, salmon, and rancid grease, of the boarding: house. There were none of those light and valuable edibles which gradually lead the invalid by a safe path back to lins ordinary diet. Relapse after relapse occurred, and it wanted but little assistance from the diarrlueic influence which generally precedes the appearance of cholera, to produde a state of gastrocuteric diseases among four fitho of the newly arrived population.

In this state of the general health, the cholera made its appearance about the beginning of November, and never did it fall on a population so unprepared to yield to its revages. Although it is impossible to obtainin any accurate data as to the number of its victims, yet I am confident that, during the few days at which it was at its height, not less than one per cent. of the population was daily carried off by it. There was nothing peculiar to the disease as it occurred in this country; its apparent viruitnce can be accounted for by the previous state of those attacked. The tables appended, showing the returns from the State Iospital in this city, prove that, even during the sommer and autumn months, there is very little tendency to gastrocnteric disease, at least when the exciting causes above alluded to are absent.

The diseases more particularly characteristic of the winter months are typhus fever, rheumatism, erysipelas, and pneumonia. The cases of typhus that came under my care were of a mild form, although generally lasting from fourteen to twenty-one days. In none of the cases which I treated did any unfavourable symptoms present themselves. The treatment was pureiy expectant, with the exception of quinine and bark, and stimulants towards the latter period of the disease. In two instances the red-coloured spots were noticed on the sixth day of the disease. From the returns of the State Hospital, it would appear that this disease was prevalent during the autumial months of last y ear, and the mortality was 39.7 per cent., a decidedly large mortality. Only three cases wêfe admitted frem the city, the others being brought from the country.

The cases of pneumonia showed themselves soun after the first rains, and could generally be traced to exposure to wet and cold : they were very amenable to treatment. But three cases came under my care, and in every case the patient made a rapid recov r_{y}, :he time of ireatment averaging nine days.

Rhemmation was one of the most common diseases during the winter monthy of ' 50 and ' 51 , attacking principaily those who bad been previvusly affected by diarrho:t and dysentery; and in these it gencrally presented itself with very troublesome, and in fact alarming symptons. The disease was generally of a low type, and in every case that cane under my eare was atcompatied by inflammation in the muscles, or at least in the aponeoroses; this inflamation was the principal and must distressing symptoni. In two of these cases suppuretion took place; in one subject, in the calf of the leg, under the gluteus maximus and under the trapezius; and, in the other, in the calf of the leg. In three other cases that I treated, these swellings were present in the calf of the leg, and although I was led strongly to suspect that pus had furmed, yet they recovered without any ahseess being opened. Pericarditis existed in three cases, but, notwithstanding the undavourable cheracter of the general disease, this complication did not present itedf in a severe furm. One of the casus terminated fatally, that in which matter had formed so cxtensively. I believe the case would have been saved had it remaned under me eare; I was, howher, superseded by an herb doctur, whose first care was to bind up the abscess as tightly as possible to prevent the discharge from weakening the patient. The treatment adopted the administration of colchicum noml quinine, and sumetimes sulphate of iron; recovery was slow ; the average time of treatment being from forty-one days. I had an opportunity of secing sone other cases in which the same symptums showed themselves. Rheumatic affections are wet so commonamongethe mining population as we migit be led to expect, from the expusure to which they are suhject, working, as ton many of them do, for hurs at a time in the wats, and also frequently exposed to rain. But very few cases o.t this disease hate been admitted into the hospital during the past year, and this is protably owing to the absence of diartiona and dysentery, which seem to exert a peculiar influence in predisposing the system to rheunatism.

Erysipelas is a disease which has been extronely fatal in the cumntry during the last twelve months; but it has existed to a preater extent in the mountains than in the valleg. During the course of last vinter, five case cance utater my care; in all of these, the head was the ouly part inuliod, with the exception of one in which the inflammation spread to the shoulder and chest; three of these cases occurred in the same house, and the first ctoe that showed itself was in a man wbo had been living in another honse in the commer, where there was a case of the disease. The most striking peculiaritirs of these cases sere the iuflamation of the nueous membranes communcating with the natural openings, and the absence of that amount of general and cerebral disturbance which so oftenrenders erysipelas of the head a formidable distase. In every case, the mucous membrane of the mouth and fauces nere inflamed; in four casas there were uiceration and discharge of fetid pus from the nostrils; in three cases, the palpebral conjunctiva was severely affected; and in four of the eases there was a discharge of pus from the ears. And yet, notwithstandiug these symptoms, the cases in which they presented themselves were attended with as little cerebral and general disturbance as any I have ever seell, in which the head
was involved. The fever never rose high, nor was repletion required in any case, Λ dose blue pill sad castar oil, and then quinine, combined with small doses of blue pill and rhubarb, was the treatment usually adopted. The only case that terminated fatally was a man of intemperate habits, who died from a complication of the disease with pneumonia. The average duration of the treatment was nine days. This disease is of frequent occurrence in the mountains, and I have seen many cases of it duting summer. The localities where it mostly prevails are the deep vallegs in the mountain districts, which are shut in on ali sides by high hills, where the extremes of temperature are great, and the air has a tendency to become stagnant. In some of these places it has proved extremely fatal, the mortality being more than fifty per cent. This large mortality is to be accounted for partly by the intemperate habits of the subject attacked by it, but also in a great measure, I believe, from the too general use of calomel, and from not giving quinine and tonics at an early period. In two of the cases that came under my care, gradual conjunctunctivitis remained as a sequela of the disease, and I have seen some very severe cases of this affection that have been produced by it.

Diseases of the air passages are extremdly rare. A mild form of catarrh showed itself apparently in an epidemic in February, 1851, and the same effection is occasinnally :net with during the winter months; but I have not yet seen a case of acute bronchitis, and the experience of many of my friends in the city is to the same effect. This is probably owing to the absence of cold dry winds during the winter months. Very few cases of phthisis are met with, considering the citcumstances in which so large a portion of the population is placed, and which in other climates could not fail to develope the latent germs of this disease which exist in so many indwiduals. Speaking from my own limised experience, it is more amenable to treatment here than in any other country in which I have pracised. Two cases of the disease in an early stage have come under my care, occurring to individuals who had a strong constitutional tendency to it ; in each case, hemoptypsis to some extent had occurred, and that partial solidification of the lung, indicated by the prolonged rough expiratory murmur, evidently existed. One of these cases was apparently quite recovered, the individual having enjoyed good health for some months. The other case is improving, having gained sis pounds in weight during the last month; cod-liver oil, with quinine and iodide of iron, has been the remedy used. It is an interesting fact that in neither of these cases was any marked symptom of bronchial irritation present and I beliere the exciting cause of the disease had, in eash case, been improper diet, or living too long on salt meat, which prebably was rannid. A better diet was ordered, and strictly adhered to; and it is the advantages derived from this, and also from the complete absence of any source of bronchial itritation, that have rendered the disease so amenable to ireatment. Many cases prove fatal, as well here as elsewhere; but I believe that the climate of this country presents advantages such as are not to be found in any other part of the civilized world, for the treatment of pl:thisis in its earlier stages.

The diseases arising from malaria might be expected to be very prevaleot in the valley of the Sacramento, containing, as it doss, thousands of acres of lands subject to annual overflow, and from which there is no escape for the water except by the slow process of evaporation under the rays of an intensely bot sun; yet, notwithstanding this, cases of intermittent and remittent fever are compasas.
tively rare in this part of the valley. A few mild cases of intermittent feves occurred in the seighbourhood of the city last spring, but they appeared to be coutined to low localities which were situated in the immediate vicinity of stagpant water. I have heard of but two cases of congestive fever, and both of them on low bottons near the American River, about three miles from the city. As a general rule, the city is exempt from any of the more violent forms of malarious disease; a few mild cases of intermittent and remittent fevers occure, but they are comparatively rare. The whole number of cases admitted into the hospital in this city, which originated in Sacramento, was twelve during the last summer and autunan. But, although the influence of malaria does not show itself by producing any of the more marked forms of disease by which its presence is usually manifested, yet we have constant indications of its existence, by the character it impresses on almost every form of disease occurring in this locality. It would appear that, when in the usual state of health, there are very few indigiduals in the community who are susceptible to its influence, but when the resisting powers become neakened by any form of disease, the malarious influence then makes itself felt, modifying to a greater or less extent a very large amount of the cases of other diseases. This infinence it is often difficult to detect ; it is ut manifest by any marked symptoms of intermission or even remission, but cat only be suspected from the apparant obstinacy of the disease, and from the effects of treatment. Dysentery, diarrhoca, erysipelas, rheumatism, chronic gastritis, and even pyrosis, cases in which the remedy might appear to be strongly counter-indicated, were benefited by the use of quinine, and, in fact, wolid not yield without it. This modified existence of malaria, in a locality were the ele ments from which it is generated surround us on every side, is probably to be accounted for by the dryness of the atmosphere during the hottest months in the year; to the moderate temperature that generally prevails, when the amount of humidity in the atmosphere would favour its propogation or diffusion; to the presalence of constant breezes during the summer months; and to the coolness of the nights, which conduce to refreshing nud invigorating sleep.

As regards the number of cases of bilious remittent reported to have been admitted into the hospital, I believe they were for the most part cases of the mildest form of remittent fever. I understand from many medical gentlemen who practised bere during the summer, that they did not see a single case of bilious remittent, and the short time the patients remained in the hospital (on an average eight days)* would indicate a very mild form of remittent fever. From the most accurate information I could acquire (for no records are kept, the greater number of the cases come in from the upper patt of the valley, more particularly above Marysville. Scrofulous diseases are rarely met with, and I believe the climate will be found to offer the most farourable couditions for the prevention and cure of this class of diseases.

Diseases of the skin are rare; eczema is the only one I have met with. Onychia is common among the mining population, and slight wounds on the hands are very apt to ;rove troublesome; this is probably owing to the nature of the diet, for even when wholsesome article can be obtained, they are generallis -spoiloj 'ッ boiling them in rancid grease. The quantity of rancid grease and salt mear: : 1.7 in this country with apparant impunity offers but a poor confirmation of w is of Liebig, of the injurious partially decomposed substances on the animas economy.

Disease3 of the nervous system are not very common, although I believe forming a larger propartion in comparizon to the whole amount of disease than in the Arlantic States. A very large number of cases of insunity have.occurred, thirty-eight insane patients having been received into the hospital from May to December. This prevalence of insanity is undoubtedly owing to moral more than to physical causes, alhough the extreme dryness of the atmosphere during the sumurer undoubtedly renders the nervous system peculiarly excitable. There is one fact with which I have been struck whilst travelling in the mountains during the last summer; viz., the rare occurrence of coup-de-soleil. It might be supposed that the miners would be peculiarly liable to this disease, exposed as they are for hours to the burning rays of the sun, and frequenty with their fect in ice-cold water; yet I have never seen or heard of an instance of sun-stroke, although the rays of the suan are certainly more powerful here than most of the Atlantic States.

The climate in the mining regions very much resembles that of the ralley, and it is necessary to ascend some distance in the mountains before any marked difference is noted, even in the temperature. I bave no correct data on this point, but the state of vegetation would indicate that there cannot be much differenee in the temperatore. When I left Phacerville (abont sisty miles south of Sacramento) about three weeks since, or in the middte of February, the young shoots of the buckeye were three inches long. The masmeeta (a species of erica) was in full bloom. The humming birds were building their nests, and I belicve vegetation was quite as forward, and, ;erhaps, more forward than in the valley. This was at an elevation of two or three thousand feet above the vally.

The mining regions are geurally extremely healhy, with the exeeption of those localities whel are situated in deep valleys surromaded on every side bs high hills. Here the extreme of tempenature is sery great. As a general thing, the nighs in summer are colm, and the geteat ratiation that takes place under a perfectly clear sky rapially cools the layer of air in direct contact with the ground. This cold air can be felt ru:ning town every gally and ravine leadiog no these deep hollows, and if there is not any large upening by which it can ain off, it aceumulates and fills the air with a body of donse, stignam air, the mperature of which descends very low betore marting. la such phaces, typhus feser and erysipelas were very prevalent doring last summer, and were also very fatal. With this exepuion, the mouman regions are very healhy; and it is a striking fuet, in confrmation of this, that exposure can be borne here to almost any extent with impanity. Daring ten months in the year, the shelter of a tre is all that is required. When travelling in the tuountains, I always slept in the open air, exeept when it rained, and I never experienced the slightest inconvenience from so doing; nor have 1 ever seen any iustance in which bad resulls followed, exeept in wet weather. This is very differem from what we are taught to believe as regards exposure to the night iar in the Athamie States, with hor much reason I cannot pretend to say, never having tried the experiment. The geacral hequth of the commanity is, I believe, of a higher character than in any other part of the Union; the complexion here generally assumes that ruday tint which is considered, and I think justly, as the most nequivocal sign of a. high state of heath in individuals of the Anglo-Saxon race. A residence of a few months in the country is almost always accompanied by a marked increase in weight, and there can be no doubt but that the climate is conducire to ferilility
in the female. Although I may expose myself to the charge of enthusiasm as regards the climate of this country, yet I am but expressing my candid opivion when I state that I believe California will be found more conducive to the highest physical and intellectual developement of Anglo-Saxon race than any other part of the globe. There is not a day in the year in which the powers of the mind or the body are enervated by heat or numbed by cold. And when the agricultural resources of the country shall become developed, and the swamp land reclaimed and brought under cultavation, I believe that every external influence, detrimental to the preservation of health, will be reduced to a minimum.

Amer. Juurn. Medl. Sci.

MEDICINE.

on the catarrial pneumonla and lobar pnedmona of CIIIDREN.

By MIM. Trousseau and Lasegue,

Catarrhal (or lobular) pneumonia is a disease as distinet from simple (lobar) as variola is from erythema. This is seen in their respective mortality. Of twenty children who bave been admited into the hospital clinique suffering from simple pacumonia, in six months all have recovered; of nearly thiry who were atiacked with catarrhal pmeumonia, not one survived. Most of the first elass of cases exhibited an exeessive degree of acnteness, which burnt out like a fire of straw; while several of the second, nothwithstanding their fatal termination, commenced with very mild symptoms.

Simple pneunonia hardly ever affects a child below two years of age, and rasely thoze of two or three, but becones of more and more frequent occarrease as the child approaches adolescence. Its cause and sympoms resemble those of the adult, with some modifications. After twenty-four or thirsy-six hours, the soufle and bronchophony can alone be heard ; the crepitant rate, which is ofen observed in the adolt when the patient coughs, eren when much souffe is present, is hardty ever heard in the chite. So afterwarde, from day to day, sithout the crepitation of resolution, the soufte disappears, leaving only a feeble tespiration. The pragress of the disease is also more rapid than in the adult. In the mild form of the disease, recovery takes place rapidly, and in large proportion; but in its grave form, many cases are lost by any moce of treatment. M. Trousseau generally bleeds the child, gives it an emetic of sulphate of copper, and then a mixture contaniug Kerme's mincral and extract of digitalis.

Catarthal paennonia commences with a catarrh, which rapidy extends to the small brourfi, and then we hear numerous and small suberepitam rates disseminated over both luases, and especially posteriorly. These sales may persist for four, sis, eight, or fiffeen days, without any souffle becoming manifest; but sooder or liter we lear a soufil, the resonance of the crics or the voice, or at least a prolonged respiratory murmur. While these latter sounds, common to simple and catarrial pneumonia, are thus manifesting themselves, we find by the suberepitant rates that the enpillary catarrh is still persisting in the rest of the lung. The disease has extended from the mucous membrane to the parenchyma of the organ. Feirite action is less than in ordinary pmeumonia, being predomi-
nant at some portions of the day and entirely ceasing at others; and these alterations of better and worse may continue for fifteen, iwenty, or thirty days; the disease being originally a pulmonary catarrh, and partaking of the obatinacy and uncertainty of catarthal complaints. As more and more of the pareachymin becomes implicated, the fever beeones more continuous and intense, and the respiration more difficult, until the children die exhausted. In other casei, in which the bronchial phlegmasia was very intense from the first, and the lung became rapidly invaded over a great extent, death takes place with rapidity, The progress of the disease has usually been more rapidly fatal when it has succeeded to measles, chronic disease of the skin, or laryngitis. All means of treatment that have been tried have proved impotent.

These two affections may be compared, excentis ercipiendis, with erysipelas and phlegmon. Erysipelas traverses the surface, like the catarrh; and when it persists too long, it induces ulcerations of the skin, furucles, and cirrumscribed subcutaneous abscess, just as the capillary catarrh induces suppuration of the lobules, little abscesses of the langs, and circumscribed pneumonias. Simple pneumonia, on the other hand, progresses like simple phlegmon, violent la its febrile reaction, but ierminating abruptly and rapidly.

It must not be supposed, from what has been said, that catarrhal pneumonia is almost invariably fatal. Although this is the case amidst the miasmata of an hospital, which exert effects at once so terrible and so difficult to avert, it is not so in private practice. In this, one-half the patients may be cured by repeated somiting, flying blisters, antimonials, and digitalis; but how terrible sre the ravages of a disease which, under the most favourable circumstances, kills onehalf its subjects!-Brit. and For. Med. Chir. Rev.

senile gangrene treated by local bleeding. By Mr. Coulcy of Winslow.

On Monday, May 17, 1852, I (being in the 74th year of my age) was attacked with an uneasy sensation in the second toe of my rigbt foot, occasionally paining me like the sting of a nettle. Upon examinatlon, the whole of the toe, to the first metatarsal joint, appeared of a red and inflamed colour, slightly tender to the touch, and somewhat enlarged. An application of diluted tincture of iodine produced no sensible effect. A second dressing of the same was applied on the 18th. On the 20 th, the whole toe was considerably enlarged, vesication had taken place all along its dorsum, and the colour of the toe was assunsing 8 dark purple hue. The iodine was disiontinued, and ceratum album with a spirituous lotion ware substituted, with the use of Markwick's epithem, until the 23rd, when the fourth and fifth toes became inflaned like unto the second, at its commeucement, with a slight swelling without pain, but some irritation. From the fatal results I had witnessed of various cases during an apprenticeship and practice of fifty-nine years, and which cases had commenced in a similar wannet to my own, I felt convinced (as no injory had been inflicted) that the disense was "senile unortification," and at once resolved to deviate from the long-continued practice of trusting for a cure to the use of cataplasme, opium, \&c. (which rarels arrested the disease in its incipient stage, and seldon succeeded after sphacelus had taken place,) by trying the effect of local blocdletting. I therefore extracted eight ounces and two drachins of biood from the suphena minor vein inmediately
below the ankle-joint. The direct beneficial effect produced was truely surprising; the redness of the fourth and fifth toes was almost removed, and the dark shining appearance of the second considerably improved in colour, and the swelling diminished. i'he same dressings were continued till the 28 th, when a relapse took place, the fourth and fifth toes became inflamed to an equal extent with the third, the second toe was also increased in size, and the colour darker; also the great toe showed decided sigms that the disease was spreading to that prart of the foot. I again took away eight ounces of tlood, and this from the saphema major vein, situated over the middle of the first metatarsal bone. similar result to the first bleeding was shown, the same mode of dressings was continued to the 2 nd of June, when all the symptoms of the disease recurred, but not in so agyravated a degree. Five tuore ounces of blood were extracted from the same vein, three inches above the ankle-joint, with equally good effect, toaking a total loss of 20 ounces of blood frow the foot in the space of ten days.

The inflamed parts were now dressed with spt. terebinthner, previous to the application of white cerate and epichem, but not agreeing, at common bread-atudwater poultice was tried. However, not finding any material alteration, the calaplasma fermenti, P.L., was the next remedy on the 12th of June, which was continued for six days with advantage, when, although no uleeration existed, the ung., resinas was applied over the surface of the whole foot as a warm dressing up to the present time : and now i hope a permanent cure is effected.

Daring the first formight of the above period, the salitie mixture with the volatile alkali were freely taken, and since then quin. sulph. gr. v., bis die. Port wue and spirituous stimuli have been commed to this day, without increasing the number of pulsations beyond $6 \boldsymbol{E}$, and that onls in the afternoon occasionally, Athough particularly engoined by my medical friends to adopt positive and constant rest to my foot, I have persisted in the ase of a leg rest and exercise in a garden chair: my general health being very geol, I considered fresh air and exrrcise essemial to iss maimtenance.- Prov. Med. Jour.

('ASE OE DISEISE OF THE AORTA, AND HYPERTROPHY OF THE: LeET VENTRICLE OF The meart.

with benarks.
By John Tropham, M.D., London., Physician to the South Stallordshire General Hospitai, Wolverhampton.

M. N——, thirty-one years of age, is employed as a labourer in the coal mines, and trom the mature of his occupation is continadly exposed to mechnuical injury, from the falling-in of portions of the roof of the subterranean galleries in which he waths, and has from time to time received severe connsions about the thoran from this canse. IHe refers his present stomations to the consequeness of a tall of coat upon his chest fitteen weeks preciasusly to thy tirs: seeine him, as ever since thut accident he has compl ined of diffeculy of breath-
 requiring great maseular exertion occasioniag palpitation of the hast. Duling
 the abote symponas. He is amaried man, of ternperate habits; has never hatad

occurred cthree years, ago, when be suffered from hemoptysis to a conswierable extent, the blood expectorated being of a dark colour.

Physical signs.-The thorax is well-formed generally, but there is an evident vatling over the region occupied by the heart. A measurement of the chest made in the situation of the fifth and. sixth ribs, demoustrates that the lett exceeds the right side of the thorax in its dimensions by abous threc-fuurths of an inch. (The patient is right-handed.) On the right side of the chest, in the region corresponding to the articulation of the second and third ribs, there is a pulvation synchronous with that of the heart; and a similar phenomenon is priceptible in front of the neck, between the sternal articulation of the cavitics There is dulloess on percussion, extending from the left nipple downwarts to the l., wer margin of the last true rib, and laterally to the lef margio of the stemum. ()ver all this space, the performance of the act of percussion occasions prain to the patient. The right side of the chest is naturally reasonant, except over a portion of about an inch square, situated over the sternal attachomet: of the becond and third ribs. In this locality the fingers discover a pulsation co-incicent with that of the heart ; the motion comanicated in, however, double, the second impulse being longer in duration than the preceding one. A distant fremissement accompanies the second of these pulsations. Upon placing the head over the cardiac regicia, a strong beaving impulse is felt. Auscultation practiced over the front of the thorax demonstrates the respiratory sounds to be natural, save in the situations mentioned as existing on either side; for in the-e places there is an absence of respiratory murmur. The first sound of the hent is unusually dull, and the second is accompanied by a slight blowing nurmur, so protracted, however, as to rendes this longer by one-half than the first sound. There is no vascular murmur observable in the back of the thorax, save a slight bruit de souflet to the left of the first dorsal vertebra. The murmur described as existing to the right of the sternum, is andible in both carotid arteries, amp most so in that of the right side; it is aiso beard between the sterno-clavicular articulation.

I had the patient admitted into the wardy of the institution at which he had applied for relief (the Wolverhampton Dispensary) on the 26th of July, 1848: but he left at his own request at the expiration of three days. The diagnosiv then made was aneurism of thotatic aorta, with hypettrophy of left ventricle. He came to see me at intervals until the 21 st October, 1848, during which perind there was little change observable in the physical sigus, save that the inequality in the duration of the two cardiac sounds had to a great extent disappeared. He was enjoined to avoid all active pursuits as far as possible, with all excesses in diet, and was ordered a mixture containing tincture of digitalis and sutphate of magnestia.

From October the 21st, 1848, until the time of his decease, May 16th, 1851, he was entirely lost sight of, and the above history and observatione are copied from notes made by me the time.

Post-mortem appearances.-An exammation of the contents of the thorax was made on the night of the patient's death. The ieft ventricte of the heart was found to be greatly enfarged, the corresponding cavity on the opposite side remaining of the matural dimension. The wall of the dilated ventricle was exactly ore inch in thickness, measured near the septum ventriculorum; and the weight of the entire heart anounted to two pounds twelve ounces. The divisinn
thetween two of the aortic sigmoid valves was destroyed, and the two fused, as it were, into one, si that an irregular, buttonhole-looking orifice remsined. The other valves of the heart were healthy. The aorta was greatly dilated from immediately above the situation of the semilunar valves to the giving off of the brachio-cephatic trunk. An ineh above the aortic valves, on the posterior aspect of the vessel, there was an aneurismal pouch, about the size and shape of a chesnut. There was no rupture of any of the conts of the aorta, but itsinner suffuce was studded with cartilaginous-looking notules. The particardium was met adherent, bat trites of former inf ummation of that membrane were shown by the presence of two white patches situated upon its visceral hayer, upon the left ventricle, the larger of these being two inches in length. They were not rised above the surface of the heart. Each of the lurgs exhibited marks of raten-ive recent inflmmation, the patient having succumbed to an attack of puenmonia after a short illases.

Remarks.- It must ever add to its interest upon our minds, when, after having l.ust sight of a cave of disease for many months, or even for years, the subject of it is again unexpectedly presented to our observation, and the notes and remarks registered, and made upon previous oceasions, are rendered capable of being comparen, and the accuracy of the views then takell, verified, as was enabled to be dose in the instance under consideration.

The comphant under which the patient laboured was probably referred to its true cause by the sufferer himself-that of mechnnical injury, coupled with a life passed in laborious exertion. A very parallel instance is thus related in the graphic words of Dr. Latham:
"A man passing through Spa-fields one night was unmerefully beaten and phundered; and thrown into a ditch, and left to die. Die, however, he did not, but lay there he knew not how long; for he was inscusible. The next day he was found, an! taken home. He was disabled by the bruises he had received and by palpitution of the heart and dyancea, which he had never complained of before, and was never again able to return to his ordinary occupation. After some monthe he was admitted into St. Bartholomew's Iloppital, dropsical, and bearing all the symptoms which denote hypertrophy and dilatation of the heart. He soon died, and his heart was found of a size which was almost incredible. All its mascular substance was enormously smplified, and all its cavities enormonsly dilated; its precardium, and lining membranes, and valves, free from disease. ("Leetures on Diseases of the Heart," wol. ii. p. 205.)

It hats been proved, in various in-tances, that excessive muscular exertion is capable of oceasiming injury th the mechanism of the heart. Thus in Dr. Lathan's admrable work, is a case commanicated by Dr. Bénce Jines, in which one of the sep;a of the aortic valves " was torn a way from its attachments, and thus two of its ipuches were rediuced to a single irregular one." When acting an house-surge:on th the University College Hospital, London, an instance, occasioned in a similar mhner to the above, was shown to me by Mr. Mercer, of Deal; and the precise mature of the disorder has since been ascertained and described by ny triend Dr. R. Quain, under whose care the man afterwards was placed. He lived for tearly two years, (this was in 1843), and after his de aih, Br. Quain had an opportunty of examining the organs contained within the thorax when it was fonnd that "nill the cavitiey of the heart were enlarged and filled with blood. The arch of the aorta was gomewhat dilated; the beart
weighed twenty-two ounces. The chief disease was foum at the entrance of the dorta: here it was noticed that the conjointed attachnents of two of the valves to the aorta had been separated from the wall of that vessel, and thus those valves were allowed to drop below the level of the third, which retai. .dits comexions." When I saw the patient, the character of the lesion was plainly evident from the loud regurgitant aortic murmur which existed, and which was strongly audible, even along the course of the femarol arteries. This case, with other similar ones, was submitted by Dr. Quain to the Pathological Society of London, October 20th, 1846; and they are all recorded in the Monthly Journal of Medical Science for December of that year.

The weight of the heart in the case now under comsideration, in phace of beiag eight ounces and a balf, as is stated by Dr. Clendining to be the average in persons aged between thirty and fifty years, amonned to two pounds awelve ounces. It is to be regretted that a misroseopical examination of the morbid deposit observed in the aorta was not made: but owing to some carlessuess, the parts were mislaid before I had time to institute such an investigation.

In respect to the physieal signo observable during life, these were such as to admit of no doubt as to the nature and seat of the disease. The localization of these sigus on the right of the sternm, at the seat of articulation of the second and third ribs, was sufficient to indicate that the eseending aorte was the part implicated. Besides the dullaess on percussion and the inpulse, the prencace of two morbid sounds, nether of which existed prominently over the heart itself, (though there were most unequivocal signs of great disease of that organ,) showed that the origin of these must be referred to something extraneons to the to the great organ of the circulation. The natural resonance on percussion of the right side of the thorax (save over the situation above indicated,) went to prove that there was no tutberculization of the long, sitece in that case the dullness 'would probably have extemied up into the acromial angle, the proper stellioscopic coruer, as it is called by Dr. C. J. D. Wiliams ("Library of Practical' Medicine," vol. iii. p 176.) The necroysy demonstrated that there were no tubereles deposited in the longs, and thus added another the the jances renuing to show that polmonary tuberclesis and aneurism are now tri quent enomomiratio. The hemoptysis which had oceurred three geats presiously must be atuibuted to some other canse than the disease now drecribed; perhaps to that givét by the patient-viz, unasun bodily toil, vecasioning ruphere of' some of the pulnıorary tissues.

PHYSIOLOGY.

ON THE REPRODUCTION AND SUPPOSED EXISTFSCE OF STXCU. ORGANS IN THE CYYPTOGAMOUS PI.INTS.

By Irtikar Mensfley li.L.S.

Having been prevented by the pres-ure of other engagements fromi tomphinger with the acquest which the Asociation did me the honor to ande hat yem, - hat I,sibiuld assist Prof. Lindty and Dr. Lankester in preparing a $\mathrm{L} \cdot$. por on Vegetable Plyy.iology, i beg to present a fragmemary comabotion on tha sunjert, telating to a branch of the seience to which my attention has be en mesery
strongly attractec, in the pursuit of my own investigations. I was the more induced to devote the short time at my disposal to drawing up a summary of the state of my knowledge of the reproduction of the higher flowerless plants, by the the iuportance of the diseoveries which bave recently been made in this department, tending completely to change the general views which have hitherto been cutertained by mont botamists as to the extent to which senuality exists in the vegetable kingdom, and in combection with other new facts relating to the Thallophytes, to indicate that the existence of two sexes is universal.

Under the name of the higher Flowerless Plants, I include all those classes which are distinguished on the one hand from the Thallophytes or Cellular plants by the presence of a distinct stem bearing leaves, and on the other hand from the Monocotyledons and Dicotyledons by the absence of the organs constituting a true flower; they are, the Ilepatica, Musci, Equisetacere, Filices, Levenotiace, Isoetacere, and Marsileocese or Rhizocarpere.

On no subject has more diculusion been maintained than on the existence of u- e s anong the Cryprogamons families. The discovery of the two kinds of orgats, the antherdit and pistillida, in the Mosses and Ilepatica, and of the peculiar organs containing anatogous spiral filaments in the Charace, were for a long time the chief facts brought forward by those who supported the sexual hypothesis; and in the endeavour to carry out the view into the other tribes, a similar mature to that of the antheridia was attributed to most varied structures in the ferns and other plants. These attempts to find distinct sexual organs were in some instances pursued with so little judgment, that the opinion had of late years fallen in some degree into discredit, and swo circunstances contributed stil! firther to strengthen the doubts that were eatertained. The first was the exact analozy, pointed out by Prof. Von Monl, between the mode of development of the spares of the Cryptogamia and the pollengrains of the flowering plants, which interferred very importamily ${ }^{\text {in }}$ prevent any eomparison between the suoratgia and ovaries, and apparently determined the analogy of the former to be with autheri. Tha setemd was the dicovery by Prof. Nageli, of organs produciag spiral filanents, therefore anabogo to the anthe idia of the mosses, on the germ fron l, or pro eembry, developed from the spores of the ferns.

At the same time, the facts observed in Piluburiz were altogether eqivocal. Mr. V.llentiae trace the developatent of the larger spores, exhibiting in germination an evid=nt analogy to ovales, from cells closely resembling the parentcells of putten and spres; while Prof. Schleden stated that he observed a fercilizuion of these supposed oviles by the smaller spores resembling pollen-grains, ant thit we ned to remove the ground for attributitg a fertilizing influence to the spiral filanents contanted in the so-called antherdia of the Cryptogams.

In this state the question remained until 1848, when Count Suminsk published his novervations on the germination of ferns, showing that the resedrehes of Nageli hud been imperfect, and that two kiuds of organs are produced upon the pro-embro of the ferns; one kind analogous to the antherdin, and the other to the pistillidia of mosie; ; from the latter of which the true fern stem is produced, like the seta and capiule from the sume organ in the mosses; further stating that he had actually obierved a process of fertilization. Soon after this, M. G. Thuret discovered autheridia like those of the ferns of the Equisetacex; Nageli had previously published, in opposition to Schleiden's observations, an account of the production of spiral filaments from the small spores of Piluliaria, and fiaally M. Mettenius discovered them in the small
spores of Isoetes. Thus they were shown to exist in all the fanisilies abore enumerated, with the exception of the Lycopodiacese, in which they have rteently been atated to exist by M. Hofmeaster. Before entering into a detailed account of their discoveries, it may be mentioned, that, benides their well-known occurence in the Characes, which most authors consider as Thallophyter, antheridia are stated by Nageli to exist in the Floridex, among the Algx; and peculiar bodies to which the same nature has been attributed, were recently discovered by M. Itzigsohn in the lichens; a discovery confirmed by Mears. Tulanse, who state that analogous bodies exist in many fungi Our knowleage of these latter points is, however, far less definite than that concerning the higher tribes, and I shall not include them in the followsng summary.

One of the most remarkable circumstances concerning the antheridia of the leaf-bearing cryptoganis is the very varied nature of the time and place of their development ; so great indeed is this, that it is only their essential strecture, and the production of the moving spiral filaments in particular, which warranis the assumption of their identity of function in the different families. In order to make these observation clearly comprehensible, it will be necessary to describe the characters exhibited in the germination of the spores in each tribe, as it is only by this means that the important peculiarities of each care can be made evident. It will be most convenient to give a separate sketeh of all that is know of the process of reproduction in each family, taking these eqparately and in succession; after this we shall be in a pusition to compare them legether, and trace out their differences and analogies; the advantage of recalling all the essential facts to memory, will, I trust, serve as an apology for the introduction of much that is already familiar to Botanists.

Mosses.-The antheridia of the mosses occur in the axils of tie leaves or collected into the bead, enclosed by numerous variously modifiti it aves, at the sumnit of the stem. They are produced either on the same headis as the pistiljidia, or in distinct heads on the same individuals, such mosses be ing called moncecious; or the heads are found only on distinct individual, etch mossen being termed diccious. The structure of the antheridium is excetdingly simple; it consisty of an ejengate, cylindrical or club-shaped sac, the walls of which are composed of a single layer of citle, united to form a delicate toembrane. Within this sac are developed vast numbers of n inute cellules, completely filling it, and, the sac bursting at its apex az a certain p,riod, these vesictes within appear to absorb water, and swell so as to burst the ske of the antheridium, and often adhering together, they collectively appest to to ru 4 asses larger than the cavity foom which they have emerged. Through the transparet: walls may be seen a delicate fllament with a thickened extremity, coiled upis the interior of each vesicle. Often before the extrusion, but aiways shortly after, a movement of this filament is to be observed when the ol ject is viewed in water under the microscope. The filament is seen to be wheeling reund and round rapidly within the cellule, the motion being rendered very evident by the distinctness of the thickened extremity of the filament, which rppears to be coursing round the walls of the cellule in a circle. According to Unger, this filament breaks out of its parent cellule in Sphagnum, and then appears an a spisal filament moving freely in water, in fact, as one of the so-called spermatozos.

The pistillidia of the mnsses are the rudiments of the fruit or capsules. When young, they appear as dack-shapen bodies with long necks, composcd of a simple cellular membrane. The long !!eck presents an open caual like a style,
leading to the enlarged cavity below, at the base of which, according to Mr. Valentine, is found a cell projecting free into the open space. This single eell is the germ of the future capsule; at a certain period it becomes divided into two by a borizonal partition, the upper one of these two again divides, and so on rutil the single cell is developed into a cellular filament, the young seta; the upper cellis are subsequently developed into the urn and its appendagee, and as this rises, it earries away with it, as the calyptra, the original membrane of the pistillidium, which separates by a circumscissile fissure from the lower part, the future faginuula. These observations of Valentine are not exactly borue out by those of Shimper in some of the detail points. According to this author, the lower part of the pistillidium (the germen of Dr. Brown) begins to swell at a cettain time, when a capsule is to be produced, becoming filled with a quantity of what he terms "green granulations." As soon as the thickness has secome about that of the future seta, the cell-development in the horizontal direction ceases, and its activity is directed chiefly to the upper part, which begins to elongate rapidly in the direction of the main axis. This elongation causes a sudden tear off at the base, or a little above it, of the cell-membrane enveloping the young fruit, and the upper part is carried onwards as the calpytra; the lower part when any is left, remains as a little tubular process surrounding the seta. While the young fruit is being raised up by the growth of the seta, the portion of the receptacle upon which the pistillidium is borne, becomes developed into a kind of collar, and at length into a sheath (the vaginula) surrounding the base of the seta which is articulated into it there.
M. Infmeister again describes the details much in the same way as Mr. Valentine. He states that there exists at the point where the 'style' and ' germen' of the pistillidium join; a cell, developed before the canal of the style has become opened. In those pistillidia which produce capsules this cell begins at a certain period to exhibit very active increase; it becomes rapidy divided and subdivided by alternately directed oblique partitors into a some what spindleshaped hody formed of a row of large cells. Meanwhile the celis at the base of the germen are also rapidly multiplied, and the lower part of the pistillidium is greatly increased in size. The spindle-shaped body continues to increase in length by the subdivision of its uppermost cell by oblique transverse walls, and the opposition whici is offered by the upper concave surface of the cavity of the germen, causes the lower conical extremity of the spindle-shaped body to penetrate into the mass of cellular trssue at the base of the germen, a process which resembles the penctration of the embryo into the endosperm in the embryo-sac of certain flowering plants. The base of the spindle-shaped body, which is in fact the rutiment of the fruit, at length reaches the base of the pistillidim, and penctrates even some distance into the tissue of the stem upon which this is seated. The growth of the upper part gning on unceasingly, the walls of the germen are torn by a circular fissure and the upper half is carried upwards, bearing the calyptra, the lower part forms the vaginule. The upper cell of tie spiudle-shaped body then becomes developed into the capsule, and the calyptra often beens:ing origiually connected with this, as the base of the seta does with the end of the stem, it in such eases undergoes further develnpement during the time it has been carried up by the growing fruit.

The view now enictained by Schinper, Hofmeister, and others, of the reproduction of the mosues is, that the antheridia are truly male organs, and that they exert, by means of the spiral filaments, a fertilizating infuence upon the
pistillidia, it being assumed that those bodies, or the fluid which they are bnthed in, penetrate down the canai of the style or neck-like portion of the pistillidium to reach the minute cell, the supposed embryonal cell, situated in the globular portion or 'germen' of the pistillidium, and thus render it capable of becoming developed into a perfect fruit.

No such process of fertilization has actually been observed in the mosses, and therefore all the evidence is at present merely circumstantial ; but this is very atrong. In the first place it is stated as an undoubted fact by Schimper and Bruch, that in the diœcions mosses, those on which the antherida and pistillidia occur in separate planto, fruit is never produced on the so-called male plants, snd never on the so-called female unless the males occur in the vicinity; scveral exaraples are cited in the work of Sehimper above referred to; when the sexes occur alone, the increase of the plant is wholly dependent on the propagation by gemma or inovations.

By the discovery of the antheridia and pistillida in the other higher Ctyptogams, the arguments from analogy greatly strengthen the hypotheais of the sexuality of mosses.

Further obsevation is required, then, for the direct proof of the occurrence of a proeess of fertilization in the mosses; but the facts now before us all tend to prove their sexuality if we argue from analogy, and the probabilities deduced from the negative evidence above riferred to in regard to the diaccious species.

It is unnecessary to give any account of the well-known structure of the moss expsules; yet in order to render the compatison with the phenomena of the life of the mosses with those of the other leafy Criptogams complete, it may be worth while to allude to the germination of the spores. The spore is a single cell, with a double coat, like a pollen-grain; this germinates by the protrusion of the inuer coat in the form of a filamentons or rather tubular process, which grows out and becomes subdivided by septa so as in form a confervoid filament. The lateral branches bud out from some of the cells, sone elongating into secondary filaments, others at once undergoing a morr active developement, and by the multiplication of their ceils, assuming the condition of conical cellular masses, upon which the forms of moss leaves may toon be detected; these cellular masses becoming buds from which the regular leafy stems arise.

Hepatice.-The genera comprehended in this family present a wonderful valicty of structure in the reproductive organs, but in almost all of them the existence of the two kinds of organs called pistillidia and antheridia have long been demonstrated, and in most cases the developement of the sporangia from the so called pistillidia has been traced. In those genera in which the plats most resumble the mosses in the vegetative portion, as in .Jungermanimic, the pistillidia are very like those of the mosses; this is also the case in Marchantia; but in Pellia, Anthoceros, and other genera, the rudiment of the sporangium beare a striking resenblance to the so-called ovales of the Ferns, Rhizocarpe, \&c., occurring upon the expanded fronds very much in the same way as those bodies do upor the pro-embryo of the said familids. It would occupy two much space to enter into a minute detail of the various conditions that are met with. It is sufficient to say that in all cases the physiological stages are analogous to those of the mosses; since the pistillidia produced upon the fronds or leafbearing stems developed directly from the spores, go on to produse a sporangium alone, in which the new spores are develoved, without the intervention of the
stage of axistence presented ty the pro-embryo of the Ferns and Equivetaca, where the piatillidia and and antherida nccur upon a temporary frond, and the former give origin to the regular stem and leaves of the plant.

Ferns.-This class formed for a long time the great stumbling-block to those who sought to demonstrate the existence of sexuality in the Cryptognmous plan.s. 'The young capsules wete genernlly considered to be the aualoguts of the pistillidia of the mosses, and the young abortive capobles which trequenty ocear among the fertile ones were supposed by sone suthors to ropresent the antheridia. Mr. Grifith, shortly before his death, noticed a stumeture whish he was inclued to regard as the analogue of the antheridiuna in wertain of the ramemta upon the petioles.

In the year 1844, Prof. Nageli published an account of his observatoms on the germination of certain ferte, and mmounced the disoters af moving spital flaments closely resembling tiose of the Chare, on certain celablar structures developed upon the pro-embryo or cellular body first growned the the spore. It is rot worth while to enter into an analysis of his obsirnatures, as they have since been clearly shown to have been very imperfect; it is sufficient to state that be only described one hind of organ, and from his duseription it is evident that he coufounded the two kinds since discovered, iegnting them as different stages of one structure. The announcement of this divovery stemed to destroy all ground for the assumption of distinct sexes, wot ouly in the ferns but in the other Cryptogams, since it was argued that the exnstence of these cellular organe, producing moving spiral flaments, the so-called spermatozoa, upon the germinating fromds, proved that they were mot to be regatden as in aty way connected with the reproductive process.

But an essay jublished by the Count Suminshi in 1848, totally changed the face of the question, and opt:ad a wide fielu for speculation and insestigation on this subject, just as it was beginning to tall inos dotasor. Count Suminski's paper gives a minute history of the course of de velopeneot of the ferns from the germination of the spore to the production of the icgulan fronds, and he mund this development to exbibit phenomena as curious as they were unexpected. The cellnhar organs seen by Nageli were shown to he of twoperfectly distinct kinds, and moreover to present charact: rs which gase great plausibility to the hyponesis that they reprevented reprodustive organs; move, ver, thisauthor exiressly stated that he had obtained absolute prout we sexuality bs observing an actual process of fertilization to take place in the su-called ovnles, through the ageney of the spiral filaments or spermatozoa.

The main prints of his paper may be bricfly summed up as fullows. The fern spore at first produces a filamentons process, in the end of which celldevelopment goes on until it is conserted into a Marchamia-like fiom of small size and excerdingly delicate texture, ponsessing hair-like radide-hais on its under side. On this under side become devtloped, in variable bumbers, certain cellular ergans of t wo distinct kinds. The first, which he terms anthe ridia, are the more nomerous, and consint of somewhat globular cells, stated on and arising from single cells of the celiular marchantia-jike frond. The globular cell produces in its interior a number of minute vesicles, in each of which is developled a spiral filament, coiled up io the interior. At a certain eporit the glubulas cells burst and divelarges the vesicles, and the spiral filsmemts moning withiu the vesicles at lengit make their way nut of them and swhm atoout in the water, displaying a spiral or helinenl form, and consisting of a delicate filatment with a
thickened cavate extremity; this, the su-called head, being said by Count Suminski to be a hollow vesicle, and to be furnished with six or eight cilin, by mesus of which the apparently voluntary movement of the fitament is supposed to be effected.

The second kind of organ, the so-called "ovules," are fewer in number and present different characters in different stages. At first they appear as litte round cavities in the cellular tissue of the pro-embryo, lyiag near its centre and opening on the under side: In the botton of the cavity is seen a litule globular cell, the so-called embryo-sac. It is stated by Count Suminski that while the ovule is in this state one or more of the spiral filaments make their way into the cavity, coming in contact with central globules cell. The four cells bounding the mouth of the orifice grow out from the gencral surface into a bluat cone-like process, formed of four parallet cells arranged in a squarish form and leaving au intercellular canal leadiug down to the cavity below. Thene four cellis become divided by cross septra, and grow out until the so-called ovale exhibits exterwally a cethindrical form, composed of four tiers of cells, the upyermost of which gradually converge and cloce up the orifice of the caual leading down between the:n. Monawhile the vesicula head of one of the spiral flaments has penetrated into the kiobular ceavie or enibryo-sic, enlarged in size and undergone multii lication, and in the course of time displays itself as the embryo, producing
 in considering the iomport of these phenometsa, the author asemes the analogy here :o be with the procens if fireilizatron in flowering phats as described by
 the sifermatozoa as repreven-ing the production of the phaneroganous embrgo

The promutation of the st sacements naturally atrited great attention, and since they appared ar have receiven at verai comtributions to the history of the revenathe stacturs. seme condmatory, to a certain degree, of Suminoki's views, whers alageiber cippoed to thein

In the early purt of tsi9, ite Wigand pablished a series of rescarches on this subject, it which he wobje cted the as: ertions of Sumianki to a strict practical eriticisu; the comelusions he atrived at were attugether opeosed to that author's views reppecting the supposed formation of the organs, and he never oherered the entratice of the spiral filaments into the cavity of the so called ovule.

About the suthe time M. Thurett ; mblished anacement of nome observations on the antheridia of ferns. In these he merely contirned and corrected the state:mente of Nagel: respecting the antiaeridia, ant dit not norice the socalled ovules.

Towarda the close of the same year, Hofmeister confirmed part of Sumiaski's statements and opposed others. He sated that he had observed distinctly the production of the plate (or rather the termianal bud for the sew axis,) in the interior of the soscalled "evule," but believed the supposed origin of it from the etal wise spiral filament to be a delusion. He regards the globular cell at the baste of the canal of the "ovile" as itself the rudiunat of the stem, of embrymal vesicle (the embryo originating from a frec cell protured in this), analogors to chot produced in the pistillidia of the anosses. He also describes the develoy metas of the ovule differently, suying that the catat and critice art
upened only at a late period by the separation of the contiguous mass of the four rows of cells.

About the same time appeared an elaborate paper on the same subject by Dr. Ilermamn Sehacht, whose results were almost identical. He foond the young terminal bud to be developed in the cavity of one of the so-called ovules, which were developed exactly in the same way as the pistillidia of the mosses. He stated also that the cavity of the " ovule" is not opes: at first, and he declares against the protabitity of the entrance of a spiral filamemt into it, neverhaving observed this, much less a conversion of one into an embryo.

In the essay of Dr. Mettenins already referred to, an account of the developenent of the so-called ovales is given. His observatoms did not decide whether the canal of the "asule," which he regurds as an inereellular space, exists at first, or ouly subsequenty, when it is entirely closed above. Some inportant points oceur in reference to the contents of the canal.

The contents of the c mal in a mature condition consist of a contimuma mass homogeneous, tough membrane, in which fine granules, and here and there large corpusies, are embeded. It reaches down to the globular cell or 'embryo sac, and is in contact with this. This mass fills the camal or diminighes in diameter from the blind end of the canal down to the 'enhryo-sac; ; in other cases it possesses the form represented by Sumisski, having a clavate enlargement at the blind end of the canal, and passing into a iwisted filamem below. In this latter shape it man frenatents; be pressed out of isolated 'orules' under the microscope, ath then a thin tanspareni membrane-like hayer was several tines observed on its surfice. In other cases the contents constisted of nucleated vesieles, which energed separately or comsected together.

The embryo-sac consists of a globular cell comaming a nueleus, and this author believes that the commencement of the developmen of the embryo consists in the division of this into two, wheh go on avidut to protuce the cellular stracture of the first irond.

With regard to the contents of the canal the author says,-
"Although I ean give no intormation on many points, as in regard to the origin of the contents of the camal of the 'ovale', set my observations on the developement of the 'ovale' do nat allow the to cen-ider then, wih Su:ataki, as spiral filuments in the comre of stution; just as hate have i been able to convince myself of the exictetere of the process of inpregation ceverihed by that author. It rather app 'rs the the the possibility of the corrance of the spisal timments amd the improg nation camot fast mand the tearing open of the blind emi ,ot the candin the perfectly-formed ovale, as after the opening of the so-called cauna of the style th the pistilldia ta the meosece."

Another communication has heca furnihed by Dr. Merektin, the orgina) of which I have not seen, bat depend on analyses of it publashed in :he Bumanische Zeituug,' and the 'Flori' for 1S51, and further in a leter from Dr. Merckin to M. Schacht, which appeared in the 'Linnea' at the close of last year.

He differs in a iew subordmate particulars from M. Selacht in reference to the developement and structure of the mrothallium or pro-etabryo, nud of the antheridia abd spiral fiauents; bus these to not require espacial a emtion. excepe in reference to the vesicular ead of the spiral flameat decriteel by Sehach:, whinh Mert blian regards as a remant of the parent veside, from wheh
the filsment bad not become quite freed. The observations referring to the si-called ovule and the supposed process of impresuation are very ituportant ; they are as follows:
"1. The epiral gilaments swarm round the 'ovule' in numbers, frequently returning to one und the same organ.
"2. Ibeye can penetrate into the 'ovule." This was seen only three times in the conrse of a whole year, and under different cireamstances; twice a spiral filament was sern to enter a still widely open yong ' ovole, then come to a state of rest, and atter sobe titue assume the appearaner of a shapeless mass of mucilage : the third cave of fenetration occurred in a fylly-developed 'ovale, through its canal; it therefore does not seem to afford evidence of the inport of the epiral filane:t, but certainly of the porsibility of the peretration.
" 3. In the tubular portion of the 'ovule; alnust in every ese, peculiar clab-shaped, arambar macalaginoms inaments occur at a definite epoch, these filuments, lik. the sutal filanents, acquiring a brown colour with iodine. These muc!laginous bodies s metmes shibit a twisted aspret, an opake nuclens, or a menbranons laver, prontiaties which seem to indicate the existence of an organization.
"4. These club-chaped flaments are swoilen at the lower capitate extremity, and bave been found ia contact with the 'embryo-sac' or globular cell whic! forms the rediment of the future frond.
" 5. The -phirad filaments which cease to move nad fall mpon the prothalliuns. are nietamorphosed, become granular and swell un."

Hence :her ath har dedaces the following erotelusions:
*- That 'berir clavate filiform anasers in the imerior of the 'ovule' are transGormed piral filathents, which at an earl; :rriod, white the ovule was open ha: protrated into it; wheh leads to the probality that-

"Tbey prubatis convibute to the origin or development of the young frui frome (r rabrsa). In what way this happens the author knows not, and

An impontan print m :his esisy is the view the anhor taken of the whote grocess of develapan of in this case. He regards it as not analagons to the im-
 ment of a frond from one celi of the prophillium, which be considers to be merels one of :! e changes of the individan fiant ; witle all the other authors whe have written on the sutiject, with the exception of Wigand, call the frat frosad. with iss bud and ront, ans cmhry, and regurd it as a new individual, or at all events a distinct member of the sories of form constituting collectively the representatives af the strecies.

Finatly, IInfatiste:, in his notice of this essay in the "Finen, declates that the developement of the so-called 'embryo' or first frond comanences, not by the sabaivisima of thes globular bellor embryo-sac, but by the development of a fret cell or 'embryo vesicle' in this, like what necurs in the embryo-sanc of the Phanerogainia; and he nscerts that this is the first stage of the development fro:n the globular cell in all the vascular Cryptogams, including that found in the pistillithia of the minser.

Equiselacers. - The first diacovery of the anmisgy between the developinents from the spore in germiuation, in the Frras and Equisetaca, is due to M. G. Thuret, who siw the spores of the latter produce a cellulat pro-embyth
somewhat like that of the ferns, and in this were develuped autheridia of analous structure, emitting cellules comtaining many spiral filaments.

This amouncement was confirmed by M. Midle, whose ubservations pxtend do over some months, during which time no 'ovule' was produced, but he saw what appeared to be the rudiment of one. Dr. Mettenins states that he has met with decaying 'ovales' precisely like those of the ferns, upon the proembryo of an equisetum, and thas the evidence is completed, so far as the osecurence of the kinds of orgats is concerned.

PRACTLCAL REMARKS ON DISEASE OF THE HEARA, AND THE

 DROPSY FOLLOWING IT.
By flecander Kilyour, M.D., one of the Physicians to the Aberdeen Infirmary.

In the thirty-uinth Number of this Jurnal, or that for September, 1843, I published some short "Notes on Diseaves of the Lleatt," in which I stated as the result of my experience-but submitting my opinion with every defierence to that of others- that the "buit de suufflet" is of value as a sign to us, when permanemty present, that disuse dowsexist somewhere in the hemt, peritardiam, or large vessele, but that it is no sure guide to the special site of the lesion.

It was my conviction that authors, and purticularly young authors, who meditated much on their cases at home, and were so ready to explain everything on mechanical principles, were apt to refine a litile too macis, and lay too great.stress on a diagnosis from the abnormal sounds, call them by what name they may, alone.

Nearly seven years' longer experience, in which I have seea many additional cases of heart disease in hospital and private pructice, bas nat brought me to materially alter that opinion. I allow that we may onten make a-pretty good guess at to the seat of the disease, but that is utarly all. "Guesses at trub," however, are often interesting and exen instructive; and as an easy made of impresing on my students in the clinizal class the nama views, or guesses, as to the reat of the morbid somads of the heart, and probable condition of the paris bansing them, I have prepared a dagram. I have reason to think is has been convemera, for 1 have been applied to for copies of it by several of my medieal brethren. There are non many-few, perhaps, bat those who make hears diseases their hoiby in their chosets or in phacice-i inat cat ahways carry in their minds, or bring to heir recullection, the atats amd causes of the abmurmal sunads of the heart as given by the writers on these diseasers.

When so wuch has been writen on the treatment of the diseases of the hent, it may the something like going orer a more than twice-told tale to offer any remarks on that subject. I shatl, however, be brief, wed the wam of movelty will perhaps be aroned for by the fact, that 1 speak trom the resuhtis of considerable teperience, and that 1 offer these blectasions to the yomg practitaner chiefly.
If any one were to ath ine, "What can you do to eare distase of tha heart "" 1 would honestyy abswer at oner, "Nonhing." Bur if atay one sere 80 àkh, "What ena you do to wath off the eymptoms or feelings that too often beteme concomitans of hat distase ?"-1 would say that, next or quit abeso of mind and b.dy, and equable tempreature, and moderite or rather !ow livisp, I kiow menhing equal to the ane of stall dones of celchicum wine veak saline purgea,
and insertion a ction oter the region of the heat. It will wot do to trust to these when the severe sequelae of heart distaze--distressing dysynca, hamoptysis, or d:opsy - have more:han onere ocenred; but 1 know no means equal to them in warding off these fater. I coudd mention neveral instances where this treatment has proved anost benficial. ()ae canc hav been repeatedly under my notice. It was a female, a sercans, bast the middic period of life, who applied first for a sly, at atack of aba-area, arising from heart disease. The effusion was soon removed, and she was sellt out of hospital with a setom in the side. She kept it open for some time; but, thinking herself well, withdres it. In a feu days after she returned, begging that it minht be re-opened, -which was done; and paing, experience has more than onee taught this woman, in the course of eight years, the nectsity of keeping up a discharge form a seton, renened when lecessary, and aidang its influctuce by the oceasional use of the Hoove medicines.

It has often been doubted whether blood should be abstracted in cases of advanced heatt disease in elderly persons, when labouring under a sudden paruxy su of voleint dyspncet, giving the fe eling of ahmost inmediate suffocation. No doubt, mustard poutices over the heart, and the immersion of the feet and legs in hot waier holding some mustard in it, will give sonse relief; but no means will he found equal to abstractiog a small quantity-from two to four ounces-of blood from the arm.

In the treatmeant of cardiac dropsy, every practitioner has his favourite temedy, taken from the clas: chiefly of diurcties or purgatives, or both of the former, I have found the following combination the most efficient. It pumps the patient out, so to speak, snt:etimes in a few hours; and it often will do wo in repeated attacks of the anasarsa.

At lest there comes an attack in which this and other diuretics cease to act, and we must then fall back on purgatives. (If we latter, unquestiunably the most powerful is chaterinm. But there surely must be a very great diversity in the streugth of this medicine. Some practitioners, from the ciays of Sydraham. and long before him, downwards, appear to have given it in the dose of two grains, or even mort; but I have found a single gill, according to the following formula, generally very powerful:-

R Elaterii, gr. j. Extracti Colocynthidis Coup., Эij. se. Extracti Ifyoserami, gr. xij. M. Divide in pilulas xij. Capia unam nocte maneque.

The great objection to the elaterium is the intense sickness, even in this small dose, produced by it. Do the large doses produce loss sickness than the smaller? It may be so; but, in the few instances in which I have tried large doses, the sicknens was not less. Is there any mode by which this sickening property in this valuable medicine could be removed? The same effect way found by the ancients in the welo-known and much used, but undeservedy now alnost discarded, hallebore; and for the sickness occasioned by it we find it recommended (xide" Oribasius, lib. viii, cup. v.) that, amougat other remedies, the fatient should be entertained with a funng little story, or be tossed, like Sancho Panzy, in a blatuet. Something more efficirnt that the form r, and leas disturbing than the latter, would be a desideratum.

It is the opinion of some that the eloteriun acta as a diuretic, as well as
a bydragogue catharitic. Iremember, when in consultation with Dr. Adams, of Banchory, in a case of cardiae dropey, having my attention called by lim to a formula, where the elatenum was combned with a dwaretic, which he had seen prescribed with very grat success. I detected it at once as a fomma given m Ferriar's valunble "Medical Ilistories," It acts most powerfully by stool and urine (being composed of several of the most powerlul of the directics, along with the elnorimm); but I always found it to canse mumband violent sickness.

Re Extracti E:aterii, gr. ij. Spiritus Fheris Nitoosi, Zij. Tinctura
 Capiat dracam'a unum ex aque pauxillo, ter, guarterve in die.

The comhination of a bitter purgative with a saline one composed of the regetable alkalit and a vegetable acid, is in my, experience much more efficiet. than any single purgative, or than a bitter with a salt formed of a mineral acid.

The old compoun. 1 powder of jalap is a well-known instance of a mixture of this kind, and is still one of our best purgatives in all dropsies where this class of mediciuf nay be suitable. Ferriar used, as did also Home, a combination of half an ounce of the titartrate of putase with two grains of gamboge. The infusion of senna with bitartrate of potass is also en old-fashioned and valuable remedy; but the involubility of the salt is an mpediment to the efficiency of this formula. The senna iufusion with tartrate of potass, or with the tartrate of potass and soda, is not liable to the sane objection; and the advantage of the frequent use of this combination in cardiac disease having a tendency to dropsy, or in the dropsy itself attending that complaint, has been in my hands, and those of my brethren to whom I have recommended it, so unequivocal, that I can speak for it in the highest terms.

The preparations of mercury have proven, no doubr, very successful in the freatment of this form of dropsy, and consequently many practitioners give them x preference. Without wishing at all to detract from the meriss of this valuable agent, I must confess that, in chronic diseases of the heart, I have the same objection to it, and founded on the same grounds, as was that to the celebrated Dr. Fell, or, to use the more classic: words of Martial, -

> "Non amo te, Sabidi, nec possum dicere quare; Hoc tantum pussum dicere, zon amo te."

Ido not like the mercury, and cannot speak from experience of its efficacy in cardiac dropsy.

There comes a time in the treatment of this complaint when not only diuretics in all forms, but even purgatives cease to remove or even keep in check the anasatca. And this brings me to speak of another mode of treatment, which often proves palliative for a time,-viz., puncturing thr lowering extremities, and thereby draining off the fluid.

This is not a new mode of treang the disease, though it has at various times fallen into ummerited opglect, and perhaps at the present time more so than any ohher. Freind, in his "Historia Medicine," refers to the passage in Etius which reats of this method of curng dropsy. Etius is quoting from Aclepiades, and says that "an iucision is to be made in the internal part of the leg, about four finger's breadth above the ankle, and that it is to be of the same depth as in venesection. A small quantity of blood fiows first, and then there is a continuous discharge of water; and, withouz inflammation, the
wound remains open until the whole dropsy has sun off, no internal medicine beiltg used." * * *

Mead commences his natice of the treatment of dropsy ("Munita," p. 130: Lond., 1771) with an accomen of this operation. He directs an incision to be made, two thagers' breadth above the ankle, down to the cellular metnbranc, and no further; and he orders the leg to be fomented with a decoction of emollient herbs, to which some spirits of wine and camphor have been addec. He tells us that he has often found this mode of treatment, not ouly in this disease (anasarca), but also in ascites, of great service, and sometimes curative, the water rumaing out for many days to an extemt to exceed all belief. He carefully cautions us to support the patients strength under a serous discharge fiom thi, or any other wound. He then gives a case, apparently hopeless, of anasarea, combined with ascites, whete, by a sound mate in this manner in esch leg, fullowed by a combination of bitters, squills, and such purgatives as elaterian, calomel, and jalap, the patient recovered, and died five years afterwaris of another disease.

As to mother topical menns of treament in this disease-viz., the application of bisters to the anssarcous legs, with the view of draining off the serum-I would have scarcely thought it necessary to speak, believiug that almost none, now-a-days, would adopt this practice; but lately I met a very intelligent commry pracitioner, who told me that be occasionally had recourse to this application. Sydenham has condemaed the practice, and branded it asa favorite applicarion of enupiries; and he states that "blisters entirely extuguish the natural heat, already almost overpowered by the water and deficieney of the anmal spirits, and bring on a gangrene-too common in such cases." Sydenhan's authority (and, by the way, he also condems acupuncture) is great; but I have seen a small vesicle, which had formed on one of the lower limbs, burst and drain off the whole serum from a person affected with extensive anasarca. The case alluded to is one of inserest otherwise, though more properly suited to an aricle on remal drup-y. The patient, a lady, had the most albuminou urine I ever examined. Every remedy for dropsy had been tried by her taedical attendant but mertur, and in was only left to me to sugest that, before the patient died, this medicine, which I had onver sten mone dangerons in this form of dropoy, as has been asserted by writers, than in any ohber, should be cautionly tricd. This was dont. Two dias atierwards the vesiek abowe alluded to showed itself and burst, and our patient, much to our surprise, recovered, and is will in grod health-seven years atter the above attack. What mature does may not always be suecerssful in the hands of art; and the excitims uff a vesication, by means of a blister, is much more likely to be tollowed by dangerous, than by curative, effeets in :Illanaseous linbe, from whatever canthe Gropsical effusiou any have arisen.

MIDWIFERY,

AND THR DISEASES OF WOMEN.

on the distribution of the nerves of the uterus.

By Dr. T. Show Beck.

Defore describing the distribution of the nerves of the interus, vagina, and nud neighbouring organy, it is necessary briefly to recal the constitution of the sympatheticuervous system, as attention to this is essential to the full understandiug of the eubject.

The sympathetic nervous eystern is deseribed as consisting of thre parts:

1. The two gangliated cords which extend down each side of the vertebrai column. 2. A series of plexuses in front of the vertebral collumn, as the cardiac plexus, the sclar plexus, the aortic plexus, the hypograstric plexua, \&s., frow which branches are gett to the diferent viscera. 3. Small ganglia, dispersed through the cranium, as the ophthalmic ganglia, the otic ganglia, the spheno-maxillary ganglia, the submaxillary ganglia, \&c.

This systen of ueryes id also said to be comected with the spinal nerves by two roots-a white root and a grey root-and to be composed of an admixzure of tubiular nervous fibree and gelatinous nervous fibrea. This description, liowser, gives a very imperfect idea of the coustitution of the sympathetie nervous हैstem.
rassing aver the carions opinions hioch have been expressed respecting piat of the anatomy, as being foreign to the present object, and as requiring too muct space, I will sietch the structure of the syrupathetic dervous aystem, as I believe it to be.

The narves distributed over the body, to which the name sympathetic is appled, are coarojed of two kinds of nervous fibres very distinct from each wher: the tubalar nervous tibre, and the gelatinous nervous fibre. The tubular berwod fibee is derived from the brain and apisal cord, and, in whatever part of the body it is foum, can alwaya be traced to one of these organs. The gelar tiacus nervous fibre has its origin in the vario:29 guglia of the sympathetie, whether these ganglia the siluated at the sides of the vertebre, on the posterior roots of the sipinal nerves, in front of the vertebre, dispersed through the cranium, or elecwhere situated in the body. The bratehes of nerves which have been colleil roots of the sympathetic syytem, are,
(a) The white branch, which is a branch from the spinal nerve. It is composed of two parts, one half from the posterior, and the other balf from the anterior root of the spial nerve; then p assea iawardy io the sympathetic ganglia, and becomes associated with the gelatinous nervous fibre proceeding from it, and these are together distributed to the different viscera.
(b) The grey branch, which arises from the ganglion, sovn subdivides, sud is linaliy distribated to the parts in the neigbbourhood. It is a brasch of the ussully-called sympathetic system.

- Hence there are two distinet ayateme of nerves; the oae formed by the
gelatinous nervoas fibre, which, together with the ganglia from which they arise, constitutes the true sympathetic aystem; the other, composed of the tubular pervous fibre, which, with the brain and spinal cord, forus the cerebro-ppinal agatem. The gelatinous netvous fibre being chiefly distributed to the viscera, in found in greatest quantity neat these organs; the tubular nervous fibre, being concerned in sensation and motion, exists in greatest amount in the skiv, muscles, \&c. These two systems, disuociated together in varying proportiona in the middle part of their course, constitute the sympathetic system as it in generally described. Yet these two systems (although associated in the middle part of their course) are totally distinct fromi each other at their origin and at their termination. At their origin, where the fubular fibre arises separately from the braio and guinal cord, whilst the gelatinous fibre arises only from the sympathetic ganglia. At their termination, where the tubular fibre separates from the gelativous fibre, and each is separately distributed to the elements of the organ they yre destined to supply. Minute microscopic nesves being found, which conciat solely of the gelatinous nervous fibre.

The plexuses, then, in front of the vertebral column, and which furninh nerves to the various viscera, are composed of this association of the tro eystems of nerves, and to this class belong the aortic plexuses with their prolongation into the pelvis-the hypogastric plexue, the composition and distribution of which it is our special objeet to examine.

The superior aortic plexus, lying between the superior and inferior mesenteric arteries, is conposed of an assemblage of ganglia, giving origin to the gelatinous fibre and branches of spinal nerves derived from the lumbar and lower dorsal nerves, with sone communicating branclies from the solar plexus. Fron this association of the tro nervous fibres, or nervous systems, branclies are sent along the inferior mesenteric and lamorrhoidal atteries to the descending colon and rectum, and branches are prolonged downwards, to form the inferior zortic plexus, which, at the margin of the pelvis, scparates into two disizions, each of which rectives the name of the hypogastric noter o: plexus. These plexuses pass round each side of the pelvis to reach the sides of the uterus, and there dividing and subdividing into minate branches, are finally distributed to the lower part of the organ. The midile part of the vterus is further supplied by a distinct branch which pnsaes off from the upper part of the hypogastric plexus, and entering the broad lifanment, so reaches the organ; whilst the upper past of the uterus is supplied by branches which come from the renal plexus, and, in company with the sprmatic artery, descends to the ovary, furnishes branches to it, and fallly is distributed to the upper patt it the uterus.

Thus the uterus is supplied, in the inferior ami minde part, by branches of g"latione fibre, the twe sumpabetic neryous system, den.ved foom the ganglia of the st:perior nortic plexus and lumbar ganglia, with zome communicting brenches from the solar plexus; and branches of spiaal nerves, cerebro-spioal n. ropus systen, derived from the lumbur and loter dorsal nerves. Nerves derived from the same suorces are aiso distriouted to the descending colon and rectum. The upper part of the uterus being supplied by gelatinous nerveus limre-t derived from the selar plesus, and by spinal nerves derived from the silanchuic aerveg, which are branches of the upper doreal nerves. From the Sohr plexus, i. c., from gelatinous fibres from the sepuituar ganglia and dorexl gangif, and branches of the dorsal spiual nerres, brateches are ulso cietrituted tio \% stomach, binall iatestines, liver, kidne!s, \&e.

As the hypogastric nerve on each wide pastea to the side of the uterun, it uenda down branches from the lower border, which, joiping with branchey from the sacral nerver, forms a complicated plexus on the side of the vagipathe peivic plexus. Small ganglix of the sympathetic are found to this:plexus, but it is chicfly composed ot the cerebre-spinal nerves, and it thin it differe essentially from the hypogastric plexus. From the pelvic plexus comparitively large uerves are distributed to the vagina; and considerable sized nerves are ent to the bladder; whilst small branches are furnished is the lower part of the rectum.

The nervous supply of the vagina, bladder, and lower part of the rectum difers in these points from the nerves distributed in the uterus. In the sourse from which they are derived: those to the uterus, arise from the lumbar netver and gelatinous or हympathetic nerves coming from the superior aortic plaxus and from the solar plexus; those to the vagina, bladder, and lower part of the rectum, take their origin from the sacral nerves, and the syapathetic fibres from the ganglia of the pelvic plexus, with some branches from the hypogattric plexus. In the composition : those to the uterus being composed of a large amount of aympathetic fibres, and a small amount of cercbro-spinal fibrea: those to the sagina, bladder, \&c., by a large amount of cerebro-fpinal fibre, and a smaller amount of sympathetic fibre.

The muscles and skin of the perincum stad lower end of the rectum are supplied entirely by branches from the sacral nerves-the pudic nerve. Thus, as we proceed upward, from the skin of the muscles of the periuscum to the vagina, and thence to the uterus, we meet with less and less of the eerebroapinal system or tubular nervous fibre; and more and wore of the sy mpathetic ayate, or the gelatioous urvous fibre. And, as a consequence, the effects of disease or injury to the tissues are less and less felt, as we pass from the ekin to the uterus; and the actions of the ergans are thore and more, though not entirely, withdrawn from the infuence of the will.

Briefly, then, to recapitulate the anatomy of the nerves of the uterus, we Ond the following arrangenent:-

1. The lower and middle portions of the uterus are supplica by the syapathetic from the superior aortic pleaus and the lumbar ganglia, and by cerebropiaal nerves from the branches of the lamber and lower dorsal nerves.
2. The ovaries and upper part of the uterus are supplied by the sympathetic from the solar plexus and thoracic gangia; and by spinal neries, from the intercostal nerves, by means of the splanchaic nerves.
3. The vagina and blader are supplied by branches from the sympathetic from the ganglia in the pelvic plexus, also from the superior sortic and lumbsr ganglia, through the medium of the hypegastric plexus; and by spial uerves from the branches of the saeral plexus.
4. The muscles, skia, \&e., of the perinæum, are supplied by branches from the sacralplexus.-Medical Times, Norember 23, 1850.
[In his romarks upon this subject when treating of the phyaiology of the uterua, Dr. Beck observes:]

On considering the contraction of the uterus, I have always thought that the apt simile of the late Professor Meid, applied to another part of the netvous ayatem, well illustrated the subject: "The thovements of a horse are independent of the rider upon his back; in other word, the rider does not furnish the conditions necessary to the movements of the horse; but every one knows how much these movements may be influenced by the hand and heel of the rider." To apply this to the present subject, the contractions of the uterus are independent of the cerebro-spinal system, though every one knows how mach these contrations may be influenced by the actions of this systen. According to these views we have to consider-

1. The movements of the uterua; peristailic in furm, and effected through the agency of the true sympathetic systetii.
2. The influenees which effect this movencnt-
a. Through the braid, as in volition and emation
b. Through the spinn cord, as in reflex action.
3. The mavements of the Uterus; peristaltic in furm, and affected hrough the true sympathetic.- Although I do not mean to say that direct irritation, aeting upon a portion of inorganic museles, will not cause the poimt irritated to contract, independent of the innuence of the tervous sy stem, yet the vermicular or Fave-like contractions of the utcrus, which spread from one part irritated over the whole organ, appear to require the influenee of the eympathetic asstem for their proper accomplishment. "In organs parily or whally supphied bj ganglionic nerves, as the heart the bladder, intestinco, aconphagas, \&c., the motion produced is of a peristallic hird, sptading gencrally in a vermicuatr maner to a dita:ace from the patt irritated, na continuing fir sone tine after the irritation has eeased. The uterus is emienth aduacd with this furm of coatraction."

That the contraciond of the heart and inetstince ant independent of the

 orgass have leon removed from tioc houly; but that the contractions of the eteras at the full perion of anegnatery, or wisen indaced by other means, are
 the expuinen of the chath, is more diffecuh to be shown. Atthongh I eamot g"
 action of the uterns we regard as casentialy protinaltic and independent of nervous kinatation," art I agree with the opininu:s in the formang quotations from the same:- -"That the uturs is suse ; itible of being (xeited to confartion by reflected stimulation no mare prote that its ordinary actions are dependent on the spinat cord, than the imfurtice of romuti exeitents upon the acticu of the leart and ainacmary camal ;roves that hese actors are essentially tefox in their batme. In fact, it does uot appear to us at all difficale to whox, that the what uce of the nervons as stem, on the utcru4 is precisciy of the same character with the infiuence of any stinulus directly applied winnt organ. and is wety diferent from the oridinary forms of f at x action, at scen in the musculire gyeter of animal life. Thus it eppears, that when uterine coatraction is exceted diruogl the oersous syetem, it is sot by a nex add powerfal azency taking the flace of
the feebler porsurs of the organ itself, but by the application of a new stimulua, which causce remote irritation to have the same effet as one of a direct: or intnediate kind; so that the peristaltic contractions of the uteruathre realy ite only mode of expelling its contents."-As, however, much diference of opinion sill exista, whether the contractions of the uterus are dependent or not for their enmencement and contiaunce upon the cerebro-spisal system, I will give hereafte: the evidence in support of both opinions.
2. The Influences which agict the Movements of the Uterus,-(a) Through the Brain- Voltion.-The influence of the will upon the contractions of the uterus is sufficiently well knowe. Athough the will has no distinct power over the utcrus to cnuse it to contract or to stop these contractions when once establinhed, and although the contractions will cominue when the power of the will is temprarily suapended, as during coma or complete asiasthetic agents, yet every practical accoucheur must have seen cases where the influence of the will was obvious in itcreasing the contractions of the uterus when defaient in foree, or in retarding these contractions when violent, or when they are exceedingly painful. Increasing the contractions, as when, from dread of instrumental interference, the patient exerts her will, and, adding to the efficacy of thr previous languid contractions, effects the expulsion of the child without the aid of the accouchour. Retarding the contractions, when, from the drend of the suffering they produce, the patient cxerts her volition to keep them away as much as possible-in the language of the ljing-in-room, "keeping back her pains," Cuses not unsimilar to the following are also not unficquent. A lady who has had two or three children, is suddenly taken in lavour, and the accoucheur being from home, has to be sent for; when she vulaterily restrains the foree of the contractions, to retard for a while the birth of the child. As anon as the accoucher arrives the contractions are allowed to take their course, and the labour is quickly over, the patient telling the accoucheur that she "kept back the pains until he came to her assistance." The influence of the will is also said to effect the contractions of the uterus, when tie patient woluntarily closes the glotils, and, drawing inwards the walls of the abdomen, is said to "bear down." It is undoubted that the force of the contractions is inereased by this means, but it must be remembered that two influences afe in action ; the influence of the will, which voluntarily closes the glotis with a defnite object in view, being trausmitted to the uterus; and the infaence of the local pressure of the uterus by the surrounding viscera, and which appears to be the more powerful of the two. It is thus the combined actions of the will and local irriation which produce the increased contractions of the uterus in this instance, aud not the single influence of volition.

Emotion. -The infiuence of emotion upon the contractions of the uterus is too well known to require much illustration. The effect of the sudden introduction of a stranger into the lying-in-room, or the sudden conmunication of bad news, in stopping for a time the contractions of the uterus, has been frequently noticed. Whilst the cheering influence of hope, confidence in attendants, and checrful conversation, and the depressing influence of despair, want of confidence, sudden dislike to attendants, or melaneboly conversation, are all well known to the practical accoucheur. To these may be added the emotion of tla, nother on hearing the child's cry, or at the sight of her infart, infproducing the complete contractions of the uterus. There is, howeser, änother cläss of immotions which have been generally, though I believe erroneously, attributed to the influence of the reflici action of the apinal cerd. I
allude to the influence which is produced on the contraction of the uterus, by auddenly plunging the hand into cold water, dashing cold water upon the face, taking a large draught of cold water, \&e. In these canes the increased contractions of the uterns sppear to depend on the influcnce produced on the aystem by the sudden rpplication of the cold, and not, as is supposed, upon the refiex action of the coni, it being difficult to perccive through what aredia this latter insuence can sct.
(b) Through the Spinal Cord-Iteflex Action.-The influence of refiex action of the spinal cord in increasing, and oecasionally exciting the contraction of the uterus, has been abundantly recogtized by moit writere or the subject, and we shall sec, when considering the pathology, that these reflex actions ate the chief means by which the disenaes of the uterus are made evident to the patient, and recognized by the practitioner. The contractions of the uterus are influenced through this means, by gently rubbing the abdominal surface at the commencement of a pain; by applying the hand presiously cooled hy inmeraion in cold water, to the aame part; by dashing cold water on the upper part of the thighs, or abdomen; by the application of warm flannels to the atudomen; by the alternate application of cold and warmith to the abdouinal surface, when it has become eccustomed to the continued action of either, 80 as no longer to to excited by their single application; by the injection of cold or stimulating fuids ints the rectum; or by the introduction of the finger of the accoucheur to the upper part of the vagina. When the finger passes to the uterus, it then becomes a local irritant, and the increased contractions ate induced pincipally by this meang, acting through the medium of ganglia of the sympathetic; yet there can be no doubt that some reflex influence is combined with that of the local irritation.

Combined Actin.-It not unfrequently happens that two of these mones of influeacing the contraction of the uterus are in operation at the name time, and produce more effect than either singly applied. For example volition aad local irritation are combined in the instance alteady ndduced, when the patient voluntarily cluses the glot:is, and contracts the abdominal museles, by which means the uterus is subjected to local pressure from the sorrounding vis.ecra, and influenced by the eame volition which closes the glotis and contracte the abdominal walls. It is a question, however, which I am not prepared so determine, whether reffex action is or is not added to this combined influence. That reflex action may be excited by the compression of the nerves of the abciomioal muscles, in ther contraction against the viscera, and so influence the uterus through the lumbar plexus, is pousible; but I am not prepared to say how fat the powet of the will then in action may interfere with this reflex power.

Fimotion and Reflex Action are combined when the child is applied to the nipple, and contraction of the uterus follows. Herc, I have no doubt, the chief effect is produced by the emotion of secing and feeling the child, together with the "aingular feeling" which the child produces by suckiag the nipule. At the samo time, it is iuposible to withold the belief that some reflex action, maj also be induced through the inter-costal nerves acting along the splanchnic, and thance down the spermatic pleuxs to the upper third of the uterus. But as this reflex action can only excite one third of the organ, it is evident that the effect it will produce must be comparatively trifliug. In the same manner I would oxplain the effect of a draught of cold water taken into the stomach, the chir! effect being produced by the general emotion of the body, ạnd a partial redicz action through the ampe media as in the last exampl!e.

Emotion and Lacal Irvitation.-As íz" taking a pain;" during labour, after the pathent hiss once felt the increased pain caused by the presence of the fillgers on the upper part of the vagina. Here the emotion, caused by a remembrance of the increased pain induced, is added to the reflex action consequent upon the local irritation of the nerves a' the upper part of the vagina.

The media through which the actions of the brain and spinal cord infuence the contractions of the uterus ate sufficiently evilent on a reference to the distribusion of the nerves of the ulerus. There can be no doubt that it is chiefly urought the branches of the lumbar plexus which pass inwards as the white communicating cords beconse mingled vish the fibres of the truc sympsthetic, ond reach the uterus the hypogastric plexus; and partly by the brauches of the iuter-costal nerves, transmitted to the organ by the splaninic nerves and apermatic piesus, as already explaiaed. It has been stated, though on insafficient grounds, that the endownent of these nerves from the cerebro-spinal syatem becomes affected by their association with the fibres of the sympathetic; and consequently that the infuence of the brain and spinal cord cannot be eo readily transmitted by them. To give the quotation at length: "No anatomist, oo far as wo are aware, has traced any branches of the sacral nerves into the uterns itself: although it is unquestionable that branches of several nerves of the cerebro-spinal system pass into the plexuses of the sympathetic, and are in this way distributed to the organ. It may be said that the distinction is unimportaut; but we cannot regral it as being so, for it is obvious that the endowments of the cerebro-spianl fibres, which enter other parts of the sympathenic system, are greatly fffected by their associations with it, neither sensory innpressions nor sotor impulses being as readily conseyed by these fibres as they are by the on!inary cerebro-spinal nerves."- Brit. and For. Medico Chirurg, Reviev, p. 6.

As important difference is here drawn in tine endowments of the nerves, end consequently in the influenees which they transmit, between the branches of spial therves which pass directly from the sacral plexus to the uterus itself, and those which reach the orgat through the medinm of the sympathetic. I am, however, utable to perceive any foundation for this opinion. It is said that wotor inpuises are not so readily conveyed by the cerebro-spinal fibres whish euter iuto the sympathetic system as they are by the ondinary eptebro-spinal uerves. Certainly we have not the same motor power over the organs supplied by the symparhetic system as we have ozer the voluntary muscles. But it is nowhere shown, that I am aware of, that this depends on an alteration of the endowments of the cerebro-spinal fibres, and not on the anatomical condition of the organs themselves. We can easily understand that the voluntary striated muscle would be much more obedient to the moter impulses from the brain than the iuorganic non-striated museular fibre, although the media by which this impulse was transmitted rem ined the same in both cases.

It is alan stated, that the transunission of sensory impressions is interfered xith by the presence of ganglia upon the hus ves which transmit theye inpressions, ssaiguing to the ganglia the office of "cutting off sensation." Ag, in the tranamission of motor intuences, it is nowhere shown, so far as I am aware, that this diminished sensory impression dues not depend upon the saatomical sondition of the organs which furnish this impression, and nut uppa the presence of the ganglia in the course of the nerves. We can readily believe it, pgssible that the ultimate distribution of the cerebro-spinal filaments upon anorgan, chietly aupplisd by the sympachetic nervous system, may be different from;the dintribution which is followed in an organ imonediately undes the influence of the grain, and shiely
supplied by the cerebro-splnal sibres; and that thle anatomical condition may inflaence the tranamisaion of sensory impressions. It is certainly contrary to the view which ansigns to the ganglia the office of "cutting off sensation," to tind one of these ganglia always seated on the posteriar or sensitivo roots of the spinal nerves. In this situation, $i t$ in no way interferes with "senscry in.pression" transmitted from all parts of the body. Why, then, should it be cousidered to do so when seated in the abdomen?

In considering this question, we ought not to overlook, that the amount of cerebro-spinal filaments distributed to an organ supplied by what is ordinarily called the sympathetic system, is considerably smaller than that which is furnished to au organ supplied by the ordinary cerebro-spinal nerves. And as the degree of sensory impression trasmitted from an organ, and the amount of motor influence which can be excrted over an organ, bears a close relation to the amount of cerebro-spinal filaments furnished to the pari, so we have another reason for the fact under consideration, without attributing to the sy mpathetic ganglia the office of altering the endowments of the cerebro-spinal filaments with which they aro conmingled. Daring some of the diseases of the organs supplifd by the sympathetic, or during the healthy actions of the uterus in patturition, the sensory impressions are transmitted with sufficicut acuteness in the severe pains which are experienced. It cannot be considered that the ganglia exercise the office of "cutting off sensation" at these times; why, then, should it be considered that their office is altered during health?

But to pursue this subject furthe: would lead to an examination of the comparative anatomy of the nerrous system in the lower classes of animalh, which forms no part of the present inquiry, but which I hope to take up on another opportunity.

To recapitulate what has been stated. The motor powers of the utcrus conist solely of the peristaltic contractions of the organ, which are dependent for their full production upon the verves and ganglin of the true sympathetic; get these peristaltic contractions may be influenced by the brain, as in volition or emotion; by the spinal coad, as in reflex action; or by a varying combination of these infuences. The media through which those influences act upon the uterus, being the branches of spinal nerves sent innards to the viscera. This, however, introduces the guestion which has been deferred, viz. Are the contractions of the uterus dependent or not upon the cercbro-spinal systent for their continuance? -Mfd. Times January 25, 1851, p. 89.

THE CAUSE OF THE CONTRACTIONS OF THE UTERUS.

By Dr. T. Snow Bcck

[There seem to be two distinct opinions held upon this subject. 13t. That the contraction of the uterus dependa upon the infuence of the cerebro fopinal system. 2nd. That they are independent of the cerebro-apinal system, aithougbithey may be influenced by it.

On reviewing the evidences in favorr of the first opinion, viz., their deperdence upon tue cerebro-spinal system, we have-]
(A) The experimente, which show-

- (ay That the division of the epinal chord in the dorsal or cervical region will only cut off the influence of the brain, i. e, volition and emotion from the actiond of the vierid.
(b) That the lower purtions of the apinil cord remaining entire; the refex ietions of the cord will not be withdrawn from the uterus.
(c) That with this condition the uterine contractionn were arrested! hence,
(d) That the "shock" of the operation was sufficient to arrest the uterine eontractiona ducing the few hours which the animal lived.
(t) That by irritating the utcrus and apinal ecred by galvanism, or irritating the lumbiar portion of the cord by the ituroduction of a stifette, the uterine contractions were partially recalled.
(f) That in the gainea-pig, integrity of the luaber pastion of the epinal eord, and destruction of the sacral portion, did noi preveat the contractione of the uterus, nor the process of parturition being accomplistred.
(B) The cases of disease, which show-
(a) That disease of the cervical or uiper dorsal regions of the spinal cord, cufficient to produce paralysis, frevents the painz of lathour being felt.
(b) That, notwitistanding thic, the con tractions of the utesus procecded. regulariy in their course, and apparently unaltered in force.
(c) That in these cases the iufluence of the brain alone would be cut off; the lower fortion of the apinal cotd remaining entire, the teflex action-will not be destroyed.
(d) That disease, seated probally in the lower part of the cord, or eauids equin, sufficient to proluce paralysis of the lower exiremities, does not prevent the pains of labour being felt, nor interfere with the urerine contractions.
(C) The experiments and cases of disease together shon-
(a) That in every case the reflex acticn of the spinal cord was present; hence
(b) That they supply not tine least evidence "that the contractions of the uterus are dependent on the cerebro-spinal system:" hence
(c) That the solution of this probleni must be sought by other means.Mod. Times, Fib. 1851, p. 178.

GASE OF DIFFICULT LABOUR IN CONSEQUENCE OF TWINS JOINED RY THE BREAST.

By Dr. Charles Stuart, Chirnside Berwickshire.

[This was a case in which Dr. Stuart found the heaci preseming in the first eranial position and every other feature of the labour apparently very tavourable, though he found ibat the atrength of the pains was remathably decreased on the patiente lying down, although the pains oat hitr moving abcut in the erect porition vere very violent.]

The craniuna aidvanced with extreme flowness, considering the atrong natuie of the paina; and it was only after the mist severe straninug that the hend began to preess on the prinimeum, and after a very tedious passage was horn about seven oclock p.e. The paine frevinus to this were of the most frightifil description, and they were now, if it wiere possible, increased. Some apparenily insurtnnuntable obitacle seeming at this stage to oppose the furtlier exit of the infant, I tried by every meanti in my power to discover the cause of delay, but from the eztrecte tightinesis or the pratis it wne impossible io ascertain is nature. I dieneided, from the enommua straitiong, that the uterus wauld apeedily ruptore,

previously I would have considered a most unwarrantable degree, and succetded in delivering the shouldere, when for the first thine I discovered anothething unusual. I continued, lowever, my traction as the only hope of getting the woman delivertd; and after using the greatest force, I was in no small degree abtonished when another head came down with the face considerably fantened. This secoud head lay twisted round upon the back of the first delivered infant. After further perseveance, I succeeded in extracting two males, still-born, and intinately joined from the sternum to the umbilicus, into which an umbilical cord, common to bath, was inserted. The placema sieedily followed, and was not larger than is usually seen in cases of twins. The umbilical cord was rather thicker than usual. About an hour elap-ed from the time the head was born till the delivery was completed. The pains during that period were of the most agonizing asd alarming character, and made me regret exceedingly having no chloroform. After a careful examination of the external parts, I was very glad to find no periuend laceration, which I feared very tunch from the passage o such a mass. The t wins were at the full time, and ifteen inches long. The band of connection extended from the upper part of the sternum to the utnbilicus, and was seven inches broad and thre long; and the diameter of the twins, when laid together, was six and a-half inches. They were perfectly and fulty formed in other respects, but the head that presented tirit was the larger of the two. I failed in obtaining permission to make any anare particular examination.

When we consider the breadits of the comecting band between the iwo children in the above case, we see more clearly how the head of the stemend chitd could assume the prosition that it did, amd to what an extent the comecting band must have been streteled to have allowed of its being glaced at the back of the shoulders of the other child when delivered.

My traticut is a weman or sienter flgure, but well formed, and of good constitution. Duriug har pregiancy she enjoyed excellent health, which in some measure strengthened her for the extrene trial she had to undergo, and which she endured with the greater fortitude.

Slie hat made a most excelient recovery, and is now quite strong.
No douby the long delay before the herd was born, in a great degree sayed her from the danger of perineal laceration, as there was anyle time for complete dilatation, which was so essential for the safe passage of sucha mass as had to follow.-Morthly Juurnal of Med. Science, Junuary, $1851, p$: 5.

ON THE STATE OF TIBE NERVES DURING PREGNANCY.

By Dr. Snow Beck

[Dr. Beck states the following facts in muphort of the opinion that the nerves are not.increayed in size during pregnancy. He says:]

These facts are obtained from a serics of dissections, which show that po enlatgement of the nerves has taken place, and that a special provision exiyts for their distribution over the gravid uterus without any augnemtation of their aige.

The dissecuion censists of-1. The dissection of a gravid uterus in the full period of preguancy, taken from the body of a well-proportioned bealthy woomin who had died from hee northage within two hours.after the birth of ine chif 9. The disyection of the urerus of a woman who had previously borne ciaidrep; sure being paken to select one as near to the asature and as weli-proportioned fo she fogmerg to avoid, at far as ponible, any difference which migit depend
on individusl peculiarity. 3. The digsection of a virgin uterus, taken from the body of a youtig lady, who had died from phthisis pulnonalis, aged twenty-fivo years. 4. "The verification upun recent specimens of the results of the previous dissections. 5. The dissections of the virgin uterus by Dr. Robert Lee.

These dissection being all made after the same method, i. e., by the removal of the fibro-cellular neurilemma, whea compared together incontestably show tiat the nerves are of the aus size in all; or, in other words, that the nerves have undergone no alterations in size, either from age or preguancy; Upon this point, I an glad to have the digsections of Dr. Lee to appeal to, as proving that the nerves of the virgin uterus are as large as the nerves of the-gravid utcrua at the full period of pregnancy, especially when it is remmembered, that these dissections were made to prove that the nerves of the virgin vierus were smaller than those of the gravid uterus. The meaus by which this demonstration wat at tempted bave been already pointed out.

An objection has been made to this series of dissections, viz., that they are not sufficienly numerons to prove :hat no alteration takes place in the nerves from pregnaticy. To those who are unaccustomect to the labour of minute disaection, this object may appear to have some weight; but when 1 know that it took me nearly twelve momhs working some hours every day, to make ove disuection with that care requisite to make it any value, I am peefectly wibing to leave the anking of further dissections, in order to remove unnecessary objections, to thote who are not satisfied with the present demonstration, begging them at the same time, to remember, that one dissection carefully unde, can be denended on for the results of ohtained; but tuenty dissections, hastily made, and without due care, are worse that valueless for the eludication of the point at issue. They are valueless because they to not prove any hing satisfactorily; they are werie that valueless, because they lead to much loss of time, iny prorokiug aselean discussions.

An a priari objection has been raised to these proofs on the grounds, that the nerves of the virgin uterus, being as large as the nerves of the gravidi uireus, showa that mome cha:ge must have taken piace ctherwise " they would, if unchanged in ctructure, apparr attenatied to an extreme degree," when streteled over the iacrensed superticies of the gravid organ. Dr. Tyler Sminh writes, (Oa Parturition and Obsieries, p. 71,) "Thuse who maintain that the nerves do pot increase in size during gestation, must show how, tot only that there is no soeh inerease in the gravid, as compared with the virgin uterus, but they are bound to thow that the nerves relatively diminish in breath during pregnastey; for, When we consider the extent of superficies of the fuity developed gravid organ, it It inuti be evident to the meanest capacity, tiat as the nerves of the virgin utersis remainiag atationary as regards size, hre merely streiched upon, drawn our, or unfolded over and in the enormously incressed gravid organ, chey ought proportionally to appear ay much diminished as the growing issues of the uterne are.increased in size:" Dr. 'f. Smith, however, appears to forget, that in order to make this a valid surangement, it is secessary to show that the nerves of the virgin uterus are on!y of such a length as to allow their distribution to the virgin organ. Hati he recilly inspected the proparations of Dr. Lee as much as in his writinge he would wish to make it appear, he would have perceived that in the virgin tierus the nerves, whell even only partially dissected, on the bojy of the grgan, can be drawn out to a surpriving leaget,--very much longer shan is foąuiate to supply the virgia uterul:

Rightly considered, anatomy allords, one of the best a priori arguinents againat the enlargement of the ncrves during pregnancy. First it discloses a marked folded arrangement of the nerves, both in immediate neighbourhood of the uterus, and on the body of the organ; and, secondly it shows a peculiar dissribution of the nerves of this organ, wherely these nerves can be distributed over the. uterus, when considerably enlarged, with greater folicity than at first sight would appear. This peculiar mode of distribution consits of the lowes third oi the uterus being supplicd by bratches from the lower prot of the hypogastric plexus; t'e middle third of the urgan, by a distinct branch from the upper part of the hypogastric plexus, whichentering the brond ligament, reathes the utetus without any conmunication with the nerves fower down than the pelvis; whilst the upper third derives its branches from the renal plexus, these come down with the spermatic artery, and, atter supplying the ovary, are distributed to the upper part of the uteru?. In consequence of this mode of diatribution the enlarged gravid organ, when it riges in the abdomen, is brought marer to the organ of the nerves disiributed to it, and cons quently, they (the nerves) csn the epread over the enharged organ with greater facility than if the nerves had been nole'y derived from the lower part of the hypogastric phexus.

Now, when the marked folded arrangement, alrady noticed, is auded to this unusual mode of supply, we perceive that nature has furni-hed ample meane, whereby the nerves can be distributed over the enormousiy increased gravid organ withoat their undergoing any augmentation in size; and has theseby furnished one of the best a priori arguments against the ealargement of the nerves during pregnancy. An examination of the preperations themselves, at present in my own possession, will make this mech more evident than any mode of expressing it upon paper can posoibly do.

The only a priori reas .n which, it appears to me, cain be assigned that the nerves should enlarge during pregnancy, arises from the great increase in the whole of the tissues of the organ. But this nithdraws the ohjection to the possibility of the nerves being disturbed to the greatly enlarged utcrus, and places it upon a very different question, viz., the necessity for the enlargement of the nerves with the increased growth of the organ; or, in the language of a reviewer, "it certainly does scen to us anything but uareasomable to suppose that, with the enormons developemeat of the muscular and other structures, the vest increas, of the supply of food, and the elevation in the entire functional activity of the wonderful organ, there sheuld be a necessity for an angmentation of its nervous suppy." Yet to admit this, except upon positive evidence, would be as unghilosophic as to deny it, except upon evidence equally strong. Any argamems drawn from the supposed functions of the egmpathetic cannot be considired of mach weight secing, that with all our labours in that direction, wo know, as, yee, very little obout it. Even should we admit the supposition, that the funstious of the esmpathetic "would be to regilate, through their accordance with its. functional activity," this dees not of necessity, require the nerves to be enlarged, in order to exercise this inBuence on the artarial coats.-Mfed. Fimes, Jonuary 4, 1853,in 9

.SURGERY.

FON-UNION AFTER OPERATION FOR FISTULA IN ANO, OCCUR-ring prior to admission into guy's hospital.

[In this case the patient had suffered from fistula for six monthe past ; it a Hout, fabby, and somewhat unhealithy looking young man, but states haviug en: joyed good healh hitherto. Six months since an abscesa appeared in the periueum, which gradually, increased to the size of an egg, when it was opened and three ounces of exceedingly offecsive pus was evacuated. The fistulous, opeuing never properly healed; neither have the nargias of the wound united.].

Oa examining the part, the anterior portion of the sphineter and recturn had reen divided in a direction directly forwards towards the perineum, and:still seatins ao, but litule, if any, unim having taken place between the divided edges. There ure also:two fistulous sinuses-one extending on either side of nad nearly round, the atas ; whilst the other passes for some distance towards the rectum, where the probe can be distinetly felt through the mucous membrane.-He way ordered caster-oil mixture twice a day, which-acted freely on the bowely.

Mr. Hitoon examined the rectum with his speculum aui, but was unable to discower any evidence of a comamication bet ween the extergal opening and the tectua, cither by means of probe, or by injecting water with nayringe through the external aperture-most; if not ull, of which rturned by the bame orifica. On December ioth the operation was perforned by introdacing ${ }^{\text {w }}$ grooved direstor, atid fiat dividing: by meatis of the sharp-pointed bistoury, that part of the fistular ranong up by the side of, though, as far as ceuld be toschetained, not coamunicating with the rectum; after which, the fistulous catial maning around the ama moder the integunent was treated in a similar mamer. Oited lint was now plased between the cuges of the wound, and the patient wa's ordered to keep perfectly quiet ia the recumbent posture.

11th.-He felt very uacemfortable; his bowels had not been moved, and thete sata uo evidence of any constitutional distartance.

12, h. -The bowel; have been moved, but without eausing him muel. pain
14th.- The wound discharges hat lithe, is granulating slowly and seepux

 suffece in order to stimulate it slightity.

16 ti. - There is not so much distharge as previoudy, and the fisula is fil!ing upas tavourably as zan be expected.

24th.- The divided parts are devidedy uniting, and be expresses himaself ay feling iunch better. From this tine he conianed daily iaproving up to Dec. soth, when his furlough being expired he was compelhed to leave the hompital to return to his regiment. The wound at this date had healed ecaidideraby, and there beemed every probabitity of the uperation being attended with success.

In this case you will observe that the fistula was situatedi in front of the nous, and betwen it and the scrotun: The patient fiad undergose one openation fur haying.open the canalaprior to his aduission, the result of whicli was unfortuante, to union haviag followed,--an event happily not of very frequeut occurrance. The termination, however, suggests to us one important factvix., never to perform the operation without having previously-ascertained whethes there are any other co-exituing ditease which may intefere with ite saceeve:
and on investigating the different cauges of these cases of or non-union, they may be divided into the local and constitutionsl. On the present occasion, we shillooly advert to the local; but do not furget the non-union after the ofieration for fistula in one is frequently associated with disease of the hepatice and pulmonary organs. Of the local causes, a communication with the urethra may be nemtioned amongst some of the frst. This is a complication of the greateat inportance to investigate and make out prior to performing an operation. Many cates have come under my notice in which the operation for fistula in ano hat failed for want of this precaution being duly attended to. One case came under my cure in which a commanication of this sort existed, - the result of an ulcerhtion in the urethra behind a stricture; the complication had not been suspécted and the perinxum had been divided into the rectum, so as to lay open the firtulous track, the consequence of which was that tho union followed, and the patient enuld never retain his faces after; but by passing the estheter, and keeping one constantly in his bladder, the opening in the urethra was closed, and the patiens nofar recovered.

Another case of this kind came under my care last May, where the fistulous opening communicated both with the urethra and the rectum : having tnade this out, I declined performing any operation, but recommented he should keep on his back, and that a catheter should be kept constantly in the bladder, so that nrine should never be passed eacepting through the catheter. My patient persevered in this plan of treatment, but was unable to keep the catheter in isis bladder, in consequence of the irritation caused by it. The frequent introduction. of the instrument has been attended with decided benefit; notwithstanding, there is every reason to believe that he is the subject of phthisis,-but on hearing from; bim a few days nince, he says he is much better in every respect, although a few drops of urine occasionally escape through the opesing in the perinaum, which is of a pin-hole size, and some urine still passes into the recium at each period of micturition.

The non-union in this case with the soldier did not depend either on any eommunication with the urethra or on any pulmonic complication, as indicsted by the absence of all eymptoms of these organs being pffected, when taken in conjunction with the patient's previous history ahilst the healthy state of his chest was ascertained by a stethoscopic examination, the nen-mion, howevrr appears probably to base been the result of a too extpusive division of the prriacum into the rectua at the first operation. Sach an extensive division of soft parts it is important if possible to avoid, in order to preveat an unpleasnnt termination, like that in the present casc. If the fistula extende bigh up into the rectun-say for instance, three inches-I would not advise jou to divide the entire extent of the canal, but to operate on a swaller scale,-that is to say, after passing a director along the sinus, to divide that portion of the canal lying external to the corve of the sphincter muscle: after which the remainder of the track will probably heal up of its own accord; but if on the other hand, the fistula does not extend more than an inch and a balf up the rectum, the whole extent may be divided without any fear of such an untoward result. This exten-sive division is not generally considered a cause of fature in these operations. I am fully persuaded, however, that it cecacionally is eo; and it seems to be a: very probable explanation of the soldier's casc,- 一an opinion which is ennfirmed by the present condinion of the parts. Another cause of non-union is when neveral-mmall fistule communicate with each other. In the present case there-
wede two, both of which were laid open during the lant operntion; although, when theic are quite superficial, the injection of a solution of nitrate of silver, black waih, or sulphate of sinc, will often be found sufficient to heal them. I am unable to couplete the case as the final result is unkuown. It is, however, orie of grexat practical inferest, from suggesting some important consideration in reference to the operation, tending to show us one cause of failure, as. well as how the treatment must be modified by existiug circumstances; especially by the bength of the fistula, and its depth in the soft parts about the rectum.
[The second cyse of fistula in ano occurred in a patient of a robust and plethoric habit. Lle was a shoemaker of temperate habits, and enjoyed general good healit.]

Abrout fifieen yeara since, he became the subject of fistula in ann, for which he under went an operstion; and the fistula is said to have healed up, but there is no evidence of a cicatrix. From that time he has experienced an occasional aching pain around the anua, especially after going to stool. About three months since he first noticed a swelling in what he considered to be the position of the former fistula. This gradually increased in size and gave rise to some anount of constitutional disturbance until five weeks since, when it opened of its of́n accord, aud discharged an exceedingly offensive purulent matter; since which it has remained open and continued discharging up to the period of adminsion ; but, as fur as he can judge neither gas nor feculent matter have ever paased through the fistula.

Ten days ago another swelling formed on the opposite buttock, which burat about four or five days after, discharged very freely at the time, and then gradually it healed up. On examination, there is a fistulous opening on the left side of the rnus, distant about one isch from it along which a probe can be passed for some distance, though not into the rectum; and after repeated attempts is was found inporsible to ascertain, by means of the probe, whether the fistula did or did not communicate with the rectum; this difficulty, as regards diagnosis wan overcome by injecting water somewhat forcibly into the external opening, the speculum ani having been previously introduced up the rectum, when by cartfully examining the walls of the rectum through the deficient portion of the instrument os it was turned round, water was at length observed to pag into the posterior part of the rectum, t!rough a very small aperture, which by the sid of the apeculum, was rendered distinctly visible. The patient is quite free from inconvenience during defreation, but complains of an aching pain around the anus afteriwarde, as also of general weakness and yains in his loins. His bowels are habitually constipated. Appetite very good, sleeps well; there is no evidence of phthisis or any other disease.

20tin. He was ordered to keep in bed in the recumbent posture, and to take castor oil mixture twice a day.

26th. 'ilhe fistula still discharges freely. Uis bowela are kept open every day.-Ordered a full dose of castor oil to-morrow morning, 60 as to clear out the bowels effectually prior to the operation.

2ith. The patient having been dainn to the edge of the bed, where le was. plised upon the bud with his pelvis well raised, Mr. II l:on procesded to lay open the fístula into the rectum, whollows: - The spectum ani ans first introduced, wip the rectum, with the slide opposite to the interas! apening; a grooved direetor was. then passed through the external oponing as far as it would proceed aiong the fistula, and a groovod probe, bent at an acutc angle for the parpose, was futrodoced iato thiy internal opening by the aid of the speculum, and direceted
downwards and outwardo until the two instruments were close to each other. By meátú ôt" a sharrp-pointed bistory, which was paṣed along the grooye in thọ directur, the sofi parts, inciluding the sphincter mugele, were divided, and the lower part of the fistula was laid open: the estremities of the two probe were this exposed, when the upper portion of the instula was obseryed to eftend off in an angular manner, though perfeotly continuous with the lower laitt of the fistur louz canal. The upper portion was then divided with the bistoury from above to below, thus completing the division of the soft, parts between the two outlete. The upper pirt of the fistuha formed a very narrow canal, the walis of which were distincily visible after the operation by the aid of the specolam, and yielded.as sensation of thickness and hardness of the touch, as if of a caritiaginous, character. A piece of lim was placed between the edges of the wound, and a cold sponge was applied externally : there was no important hemorrhage after the operation. The patient hy down in his bed, and was ordered to keen perfectly quiet.

28th. The patient has slept well during the uight, and feely yery comfortable.

30th. Hé wà suffering considerable febrile disturbance; tongue furred, hot akin, quick pulse, and te! very thrsity. There was n. evidence of shiver: ing, and the nound looked tolerably healthy. On the right side of the anus, there is a red spot, as if a small abscess was forming, but at present there is mo. evidence of suppuration.-He was ordered poultice to the part, to keep in the, recumbent position, and take a dose of eastor oil. These egyiptoms, hanever, quickly passed off, and ail trace of the superficinl absecese disarppeated. The wound healed up by grambations of a halthy charater. He conatiued to do well in every other respeet; so that, on Jatuary 11 h , he was conabled to leave the bospital cured.
 that he has alway; beer sulyect to oceasiunal pain and uneasiote of abut the rectum from tion tian. Juighag from thir, as weth ao fio a the thichened condition of the walls in the upier purion of the fistulums sians, - evilently shoning that that pait was not of recont date. I num diopesed, to thiak that the fiosulas was not conphtely divided at the first opera ion; thus accuanting for his
 When the abseces was opewed, as hay alfongy besw stated that the disciagrge
 this-is generally the case when an abseeso furms is any situation acar the intestinal walls. This highty offasive charatuer of the pus, so emmonly wherved in these cases, s3 no proof wha:eser that the abocess comanaicates with the rectum,

 teaches us beyoad all douke that it may acequire this preculisr olour from its aituation alone, especially shen near the cxeam or colon, or rectum: this fae have proved by freque, dissections made for tho epocial ; prpose of aseertainiag, whether any copmatication existud between the absess and the intestinaleynal It appears to depend on the imbibition, or rather on the pasige of those gases coththon to the intestines, throngh the delicate wall of gut, aceording to the The? of endosinose or exosmose : the gas bing once in the áberss, acts ujou the pus globules, and thas engenders in che abecess, acts upon the pus giobinles, gad phas a conitituous process of decomposition, whicla ultimately leads to a highly fetid gondition of the pua, and the formatisn of more gnses. The kiowledey that an
abseess does not necessarily communicate with the intertines, even although the feetor of its contents would seem to indicate it, is a fuet which may frequently prove a source of congratulation to yourself, as well as of satisfaction to your patient, especially when the abacess is in the lumbar or iliac regions.

The indications for treatment in the ce cases are to keep the patient in the recumbent posture for two or three days prior to the operation, the chief object being to get the parts in a more healthy condition, as not usifrequeutly, either from the irritation caused by standing or walking, the parts become hot, awollen, and somewhat inflanued; and if the operation was pertiormed at once, without n due consideration of these circumstances, the chances of suceess would be very much diministred.

This I am particularly ansious to impress upon your minds, as you will find it contribute materially to your success in practice. Oleaginous purgatives should be exhibited for two or three days previously, and a full dose of castor oil on the morning of the intended operation, so as thoroughly to evacuate the bowels, and thus to do away with the necessity of an evacution for several days afterwards. The next thing to be done is to divide the sphincter and soft parts into the rectum, and so to lay open the fistulous track: whether this should be done through the extent would, as has been previously stated, depend on the length of the canal.

On applying our remarks to the case now under consideration, we observe that the external opening was distant about one inch from the anal aperture; and the first thing to be done was to endeavour to pass a probe from one aperture to the other,-that is, from the external opering through the fistulous canal into the rectum, so as to make certain whether the fistula did or did not conmunicate with the rectum : this could not be acconglished; and it did not at first seem impribable that the case was mertly one of blind external fistula, having no communieation with the rectum ; whilst several points in his history-especially in his never having passed any gas or fieces through the fistula-seemed to favour such an opizion: but did this justify us in arriving at (h) tonclusion that no communication existed between the rectum?-Certainly not : the passage of faces might easily have bern prevented by the character and direction of the internol opening. All doubt, however, on this point was speedily cleared up by injecting water with a syringe into the (x'crual opeoing, care beiug taken at the time to prevent it from rocurning immediately by the same orifice: by these means the existence of the opening into the rectum was easly detected, and, by the aid of the spreculum, its cact p.sitiun, swall size, and peculiar character, were rendered distinctly wisible. The injection of water is a test by which you can at the same time determins whether more than one opening exists in the gut. In the present case there was ouly one opeuing, through which the water quickly passed,-demonstrating all that was requirch, withunt causiug any pain to the patient; clearly showing its advautagt s over the probe, which will not nufrequently be found to fail. The canse of failure with the probe in the present instance was quite apparant after the operation, and deperded on the canal taking an irregular course ; the upper pontion appearing, as it nere, to branch off at a right angle from the lower.

The internal opening of the fistula in this case was in that position where it is most frequently met with,—via. about out inch ahove the internal sphinctes; this was pointed ont by Ribes and othrrs, and has been more recenty confirmed by surgeong this country. Its exact position can now be more casily made out by meanof the speculum. and injecting water into the external openiog. If
you cannot see in what part of the rectum the water first makes its appearance, which sometimes occurs in consequence of the trarslucency of the water, some colored liquid should be substituted for it, when the ascape through the internal opening will be immediately obscrucd. But even afte: we had discovered the exact position of the two openings in this case, and proved that they communicated, as shewn by the passage of the water, still it was impossible to pass a probe from the one to the other; and the question then arose-What shall be done? as it sas important fur the success of the operation that the entire length of the fistula should be disided. This difficulty was overcome by passing a director through the external opening, and up the canal as high as it would go; when a probe previously curved on purpose nearly to an acute angle, was introduced through the internal oponing, which aas rendered visible by the speculum, and passed down the fistula until it came nearly in contact with the director; the probe was then steadied by the hand of an assistant, and the spincter and soft parts between the lower part of the canal and the rectum were divided, im. mediately after which the up per or intestinal portion, which was quite superficial, and occupied bythe grooved probe, was served in a similar manner. The walls of the fistula near its upper and lower openings were quite of a different character, those on the upper half being thick, hard, and almost cartilaginous, and lined by a thin, delicate, smooth, pesudo-mucous rembrane; whilst those of the lower half were thinner, evidently of more recent date, and the lining membrane presented a minutely granular appearance.

If the fistula does not happen to extend deeper than one inch and a balf up the rectum, you should always endeavour to divide its entire length, especially the intestinal end of it,-otherwise, in many cases, i t semains open; and, when the rest of the sinus has healed, it allows a small quantity of feculent matter to enter, which becomes a source of irritation, leads to the formation of another abscess, and subsequently to another fistula; so that, unless this is discovered and laid open, yat will not place the patient in a condition to expect a favourable termination, and at the same time deprive yourself of the conscientious satisfaction of knowing that you have done your duty towards him.

After the operation, provided there be no lomorrhage, you may withdraw the speculum : a small piece of oiled lint should then be inserted between the edges of the wound, so as to cause the parts to heal up from the bottom by granulation. This was done in the case related. The patient is now nearly recovered, and there is every reason to beilieve that he will rontinue well, without any return of the fistula.

The intention of the opcration for fistula in ano in dividing the sphincter is to allow the inner wall of the fistula to come in contact with the outer,-a circumstance which the sphincter, when entire, always tends to prevent. Within a short time after their approximation, the iwo walls granulate and become adherent, whilst the sphincter is subsequently repaired by the white fibrous tissue. If the precaution is not taken to introduce a piece of lint, the divided edges of the wound will be likely to unite by adhesion, without the fistula having become obliterated. Prior to perforraing this operation, I would always advise you to examine the rectum carefully, to ascertain if any large artery lies in your intended line of incision. Such a discovery as this would alter your method of operation, so as to avoid wounding it, if possible; and, in concluding my remarts on this operation, I am anxious to impress unon your memory that, although, in most cases, you should endeavour to lay open the entire extem , the fistula, by. cutting through all the soft parts between the :wo openings, still that, under
occasional circumstances, certain modifications in the operation must be adopted : and the two conditions in which these modifications are especially called for are-

1st. When the fistula extends high up into the rectum : by dividing its entire length you will run the risk of dangerous hæmorrhage at the time, and of subsequent non-union. Under these circumstances you must be satisfied with dividing the sphincter and lower part of the fistula, after which the upper portion will most probably heal up of itself. The second condition under which the operation must be modified is when the fistula has a very extensive track in the soft parts external to the anus: thus, for instance, extending forwards towards the perincum, or latterlly towards the buttocks; whilst its intestinal epening will, in all probability, be only just above the sphincter ani. Under these circumstances, do not divide the whole length of the sinus; but, having passed your director through the canal, as in the ordinary operation, cu: into the director external to the ephincter, divide it and the intestinal end of the fistula, after which the remainder of the fistulous track-that is to eay, the external portion which has not been laid upen-will most probably heal up. In case, however, it should not do so, some stimulating injection-as black wash, nitrate of silver, or sulphate of zinc, in solution-may be thrown into it, for the purpose of favouring the process of granulation or adhesion. I have performed this modification of the usual operation in two cases: in one it was attended with apeedy and complete success; the second case I lost sight of ton soon to enable me to express a decided opinion; but so long, as I had an opportunity of observing it, it promised to do well. Some difference of opinion prevails respecting the primary cause of fistula in ano; it is the opinion with some surgeons that it originates primarily in an ulecr in the mucous membrane of the rectum, leading to inflammation and abscess external to the mucous membrane, which soon after opens into the intestine; and this permits the entrance of fæcal matter into the abscess; this again gives rise to the formation of another abscess, which burrows down in the cellular tissue external to the rectum, and at last leads to the completion of fistula. But it does not appear to me that this is the correct explanation of the primary case, inasmuch as facts, and analogy between this disease and diseases occurring in other parts similarly situated, do not tend to this conclusion. In the first place, we know that persons are very frequently the subjecte of ulcer in the rectum without its ever being fullowed by absess, and that the ulcer may exist for months without giving rise to it ; whilst the co-existence of abicess with ulcer of the rectum is a rare occurrence. These facts are important at a negative evidence, tending to show that this is not the primary cause. But there is another light in which it must be regarded : the internal aperture of the fistula is in general, if not always, exceedngly small. Now if the original cause was an ulcer in the mucous membrane of the rectum, it is not at all likely that the internal opening would be about the size of a pin's head or perbapa double that size. Another argument is, that we cannot discover any analogy between this supposed cause of fistula and ulcers occurring in other parts of the body similarly situated. Thus, for instance, an ulcer in the nose is not followed by abscets in the walls of the nose; nither is an alcer in the pharynx followed by abscess in that part. The same remark holds good when applied to the urethra; an ulcer in the urethra is not followed by abscess near its walls, unless extravasation of urine takes place previously. Indecd there is no canal in the body in which a precisely analagous and supposed condition is observed. Again the kind of fistula generally called the blind external fistula-viz., when no com-
munication exists between it and the rectum-is a variety of the disease itself tanding strongly to disprove this idea: so that judging from these facts, I think we may safely infer that an uleer is not necessarily the primury cause of the abscess near the rectum which gives rise to fistula; and that, when the two exist at the same time, it must be regerded rather as a concidence, then that they bare a direct relation to each other. The more probable cause of fistula, perhaps, stands in some relatinu to any infamanatory condition of the walls of hemorrhoidal veins, owing to the circulation through them having been retarded for many hours, produced by standing ur sitting for a long time on a hard seat, or by riding on horseback, or as I have known it to oceur, from :itting on the daup ground —Med. Guxtre, Felruary 7, 1851, p. 222.

PATHOLOGY.

STATE OF THE blood and blood-vessels in inflammation.

(From a Review of the worhs of Messrs. Paget, Jones, and Simon, in the British and Eorelgn MedicoChifurgical theview.
"The very difficulty of exactly defising the process of inflamation may be our guide to the most hopeful method of investigatiug i.. When we see such gradual transitions, from the normal process of uutrition to the disease of inflamation, that we cannot draw a defiaition line between them, we may be sure that the main laws of physiology are the laws alike of the disease and of the healthy process; that the same forces are engaged in both; and that, though interfered with by the conditions of the disease, they are not supplanted or annulled,
"Now, such transitions from the normal processes to that of inflammaticn are not rare. We may trace them, for example, in the gradual passages fromi the active exercise of the brain, or of retina, to irs 'irritation' when overworked and thence to its complete inflammation and inpairment of structure, after long exposure to what had been a natural stimulus, ir to what, in a less degree, wight be so. Or on the introduction of medecines, such as certain diurcties, into the blood, we may trace gradations from the normal increase of the functions of the kidneys, under what is regarded as no morbid stimulus, to their intensest infiammations. Or, again, in the application of abnormal stimulי's, such as that of a heat gieater than the natural temperature of the body, where shall we mark the line at which inflammation begius to supervene on healih? We may, indeed say that stagnofion of blood, or effusion of liquor sanguinis, sball be the condition sine qua non. inflammation; we mas call whatever falls short of these, 'active congestion, 'irritation,' or by any other name ; but in practice, such distinctions. are often impossible, and sometimes untrue; and in stady, the terms are convenient or the sake of brevity rather than of clearness."
[The conditions necessary to healthy nutrition are as follow :-1st. A regular and not far distant supply of blood. 2nd. A right state and composition of that blood. 3rd. Λ certain influence of the nervous force. 4th. A normal state of the parta in which nutricion is to be effected. All these are usually altered in inflammation. 1. Of the supply of blood. Now what changes take place in the condition of the walls of the blood-vessels in a part where the inflammatory sta:e hat developed itself?]

The effects of various kinds of artificial stimuli upon the calibre of the blood yessels, has been the subject of examination by a great number of experimen-
talists; and there is a very general accordance in the results. Mr. Paget has made much use of slight mechatical stimuli.
"If one is watcherg the movement of blood in a companion artery and vein the point of a fine needle be drann atross them three or four times, without appearemly injaring them or the membane over them, they will both presently gradually contract and choe. Ghen, after hohliur themselves in the contracted state for a :ew minates, theg will begin again to open and gradually dilating, will acquire a larger size than they had betore the stimulus was applied.
"Simple as this observation is, it involves sone cardinat facts in our pathology. It illustrates, first, the cuntractile poner of both arteries and veins; and, by the maner of their contraction is like that of parts with simple or organic muscular fibres. And one may notice bere the illustration of the stoppage of heenorrnage from small vessels. In one cut we may divide a bundred such vesula as those on the surface of a stump, and they may cease to bleed in a few seconds: doubtless, the very stimulus of the kuife, while dividing them, has cande their walls contract and close.
"But, again, the expetanent shows the vessels re-opening and becoming wider than they were before, either yielding more to the pressure of the blood which previonsly they resisted with more strength, or clse dilating, as of their own force, with that which Mr. Hunter called actise dilatation, and compared with the act of dilatation of the os uteri. In whichever way the dilatation is effected, whethar it be active or passive, the vessels will not at once contract again under the same stimulus as before affected them. The weedle may be now drawn across them much oftener and more fore:bly, but no contraction ensues, or only a trivial one, which is quickly succeeded by dilatation. Yet, with a stronger atimulus, such as that of great heat, they willagain contract and close. And such a contraction excited by a cautury may last more than a day, before the vessels again open and permit the flor of blood through them. So that in this we have an illustratiou of the secoudary hemorrhages from vessels; which, after their first closure, have not been sealed by the coagulating blood, or the exudation of lymph, -as well as an illustration of the effect of the cantery or of hot water in again ehecking such hemorrhages, and more permanently closing up the vessels."

The influence of various agents upon the arteries in the web of the frog's foot has been carefnlly studitd by Mr. Warton Jones, and the following are his general results:
"1. Constriction may slowly take place, and be slowly succeeded by the normal width. This I have found to be the effect of the action of the sulphate of atropa. A solution of this substance, in the proportion of three or four grains to the ounce of water, applied to the web, causes constriction of the arteries, in about the same time that it causes dilatation of the puphl when dropped into the eye. In other words, it causes contraction of the circular fibres of the muscular cont of the arteries in about the some time that it causes contraction of the radiating fibres of the iris. As in the case of the aris, the arteries slowly recover from the action of the atrcpa.
" 2 Constriction may quickly take place, and be soon succceded by the normal width, or a width not much exceeding the normal. This has been found to be the effect of the moderate application of cold, mechanical irritation, and galvanic irritation. When a drop of cold water is applied to the web, the arteries are seen to become coustricted, but they soon resume their previous atate. Slight pressure on the web, with a blunt point, for example, in the sitation of an artery, excites constriction of i, but by and by the vessel becomes
dilated, as before. When the web is subjected to the influence of a single pair of plates, constriction of the arteries is induced, succeeded by dilatation, as in the preceeding cases.
"3. Constiction either does not take place at all, or, when it doef, it very rapidly gives place to great dilatation. This is the effect of such agents as the Sollowing:-a solution of sulphate of copper (gr. xvj- 3 j) with wine of opium (K_{j}) dropped on the web, I have generally found to cause primary dilatation of the arteries. A strong solution of common salt I have found to have a sinilar effect, ouly, perhaps momentary constriction has more frequently preceeded the dilitation. Battley's liguor opii sedatives usually first excites constriction of the arteries, but dilatation quickly supervenes. A drop of spirit of wine immediately causes constriction, but this is soon followed by dilatation of the arteries.
"4. A dilatation, preceeded or not by momentary constriction, may slowly yield to constriction, which remains permanent. This is the effect of sulphate of copper in a concentrated solution. When a point of bluestone is rnbbed on the web, in the neighbourhood of, or over an artery, the ressel slowly but steadily becomes completely coustricted, and remains so."
[The dilation is, however, by no means uniform, but presents all the varieties of form which we are accustomed to recognize in aneurisms or aneurismal dilatations of great arteries, and]

Besides their increase in calibre, we find that the vessels of inflamed parts are dilated in length; they consequently become more tortuous, and their pulsations are stronger than natural, each impulse increasing their tortuosity. This change may be well seen in the vessels of the conjunctiva; in which part, according to Mr. Warton Jones, the small arteries may te recognized by their pulsations, these being manifested by increased bendings as the pulse waves pass through them. It is felt in the violent throbbing, which is frequently one of the most painful seesations of an inflamed part.

On the whole, then, we may conclude, that the dilatation of the vessels, especially of the arteries, with a weakening of the resisting power of their walls, is one of the most constant phenomena of the inflammatory state.
[A change in the rate of movement of the blood affects the supply of blood to the tissues of an inflamed part. There is here also a want of agresment as to the cause and consequances of the retardation, which all believe to be present. There is first unduubtedly, a state of active congestion induced by the application of an irzitant, and iadeed we may easily imagine this to be the state of many internal organs, when actively discharging their functious. The passage of this state of active congestion into the normal condition, is indicated by the relaxation of the current of hood with a gradual contraction of the vessels, and]

Tre transition to the inflammatory state is marked by a further retardation of the current, without any diminution, but (it may be) with even an increase, in the diameter of the vessels. This may be observed as the consecutive result of the application of stimuli to the bat's wing; but for the sake of bringing all the ihenomena into view at once, Mr. Paget recommends the infliction of such an injury as passing a fine red-hot needle through the membrane.
"The first effect of such an injury (in addition to the charring and searing. of the membrane, the obliteration of its blood-vessels, and the puckering of the portisn of it adjacent to the burn) is to produce contraction of the immediately adjacent atteries and veins. They may remain closed, or, as I have already described, after beang long closed, may again open, and become wider than they were before. This dilataion follows more certainly, and perhaps without any
previous contractiou in the arteries and veins at a little distance from the burn. In these there speedily ensues such a state of 'determination of blood, as I have already described: in arteries and veins alike the stream is full and rapid; and the greater accumulation, as well as the closer crowding of the red corpuscles, makes the vessels appear very deep coloured. The contrsst of two diagrams, showing the natural and stimulated conditions, illustrates :his difference sufficiently well. The vessela of the one, nearly twice as large as those of the other, darker, and more turgid with blood; and, in the one, numercus capillaries which are not visible in the other. But diagrams cannot show the changes in the mode of movement. Close by the burn, the blood which has been flowing rapidly begins to meve more slowly, or with an uncertain stream,-stopping, or sometimes ebbing, and then again flowing on, but, on the whole, becoming gradually nlower. Thus it may, at length, become completely stagoant; and then, in the vessels in which it is at rest, it seems to diffuse and change its colour, so that its crowded corpuscles give the vessels a brilliant carmine appearance, by which, just as well as by the stillness of the blood, they may always be distinguished.

SURGERY.

CASES OF MMPERFECT DESCENT OF THE TESTICLE, CONNECted with strangulatel hernia.

st. bartholomew's hoshital.
Encysted Hernia in the right Ingunal Canal; Abnormal Siluation of the right Testicle; Slrangulation; Operation; Recovery.
(Under the care af MTr. Slcey.)
The groin is, in both sexes, a region in which operations should always be conducted with great caution, for the various tumours which make their appearance in the ingainal portion of the frame very often present great outward resemblance, with the most important differences as to their actual nature. We are acquainted with hospital surgeons who never open a bubo without making the z_{z} patient cough, and applying the hand or stethoscope to the swelling. This may perhaps be looked upun as exaggerated prudence, but it is better to err on the safe side.
We need not rem.nd our readers that some of the best operators have opened aneurisms in the groin which were thought to be abscesses. These unfortunate accidents have been sufficiently recorded; but we may cursorily mention, that we sometimes see hospital patients affected with swelling in the groid, or in the scrotum, with whom it is extremely difficult to determine of what atruciures the tumour is really composed. We have always found . it the most prudent course was to explore, when the symptoms were very severe, and to wait when no urgent signs are being manifested.

Among the anomalies which may be noticed in the groin, there is one which should always be torne in mind-viz. the incomplete descent of the testis into the scrotum. It would at tirst sight appear as if this abnormal state could bardly escape attention, as it is easy coough to asceriain whether the scrotum contain two testes, or only one; and yet such oversights do occur. It is especially when the abnormal situation of the testicle is counected with stranguated bernia, that the mistake is likely to be made. The attention is, in such
cases, exclusively and anxionsly fixed on the reduction of the hernia, and the serntim remains unnoticed. It wonk be well to recollect that the testis, when it is not found in the scrotum, may be looked for in any portion of the inguinal canal, and that it has ano happered that the osan does not have the abdomiual cavity at all. The testicle may hkewise t he a very umusual course, as happened in the case which we are going to telate, for here it had lodged under the integuments of the thigh.

Strange to say, a case of a someshat onalagous kind was, a few days after the reception of the first, admitted into the same hospital, under the care of Mr. Lloyd; there was here, also, retarded descent of the testicle, hernia, and strangulation. We are happy to say that hoth cases did well; and tre proceed to describe the first, from the notes of Mr. Smith, house-surguon to the hospital.

Join ! - - a tali, overgown, strumous-looking lad. aged fifteen, applied for admission on the 1st of March, 1552 , at half-paat 11 p . m., complaining of great pain in the right inguinal region, constipation of the bowels of four days and a halt duration, and frequent vomiting of a green fluid. His conntenance was pale and anxions; and on cxamibation of the abdomen, the attention wad at once arrested by the pecaliar appearance of the orgaus of generation. The left testicle occupied its usual situation in the wrotum; but on the right side of the raphe the scrotum was undeveloped. On this latter side, quite distinct from the scrotum, and descending from the external abtominal ring, was an elongated oral ewelling, the surface of which was fortued by the ordinar; iutegument of the thigh, presenting anne of the rogose appearatce natural to the scrotum.Within this swelling, which the patient said had cxisted about five years, the right testicle was distinetly felt, seemingly somewhat smaller than the left.The patient had always considered this tuhour to be a rupture, and seemed quite unconscious of the malformation. On squeczing the swelling, however, he experienced a sensation exac:ly simar to the onc produced by pressure on the left testicle. There was also a tumour in the course of the inguinal canal on the right side, excessively tender, but tirm and ungielding. The external abdominal ring could be felt large and free, the tumour in the inguinal canal not having desce:ded through it. The whole of the abdomen was intolerant of pressure.

The patient being questioned as to the history of the case, said that he had always been healthy, and was occupied in cartying out milk. Ilis bosels had frequently been confued, and he once suffered from constipation for four dags, but without any sickness. Me cominued in g od health nit to four days and a ha! before admission, when, having been engaged in his usual occupation, be suddenly experienced severe pain in the gruin. The bowels hat acted during the morning. From that time up to the evening before be came to the hospital, the patient kept his bed, suffering from pain, constipation, and, during the last iwenty-four hours, from vomiting. He had aken some ambibilious pills, which did not operate; and a docior was then called in to sere him. The latter said it was a rupture. Me attempted to return the oval swelliug de scribed above (he testicle): and as it secmed to cotne down again, tcla the lad to put his hand on it, and hold it up; and gave hom, in the meamine, come castor-oil. In the evening, after another attompt io reduce the swelling, which was of course equally unsuccessftu, the boy was adised to cuare to the hospital.

On examining all the features of the case, on the pationt's admission, it was supposed, from the absence of the right testicle in its normal position, coupled with the fsat of the tumour in the thigh having existct five jears, and present-
ing to the touch the ordinary ferl of tine testicle, that this was one of those cases in which this organ, failiry to descend at the proper period, had deviated from its ordinary course, and formed fur itself a pouch unds the iategument of the thigh. It was further corjectured that the tutuour ia the inguinal canal consisted of a knockle of intestine, stranguiated at the internal ring.

Taking into consideration the date of the strangulation, the frequent voniting, the anxiety of countenatee depressin a of the eystom, nat the great local tenderness, probably caused by the ef erts to rcdue the supposed hernia, it was thought advisable, after finding wo good result from the warm batb, at utice to have recourse to an operation.

The patient was put under the infleace of chloroform on lis bed, and the operation commenced by an cxeision over tice external absummal ring, about :wo inches in length. The serefal layers were cautiousiy divided down to the aing througb which the liernial sac petradd. On paling the sac upwards, at was found to be continued down to the testiche, forming the swelling in the thigh. The tinget could be passed readily into the canal, in wiich could be felt a portion of very firm intestine : and the strictare was fuund to exist, as supposed, at the internai ring. Considering the iength of time the intestine had been strangulated, it was deemed advisable to open the sac, whence a cousiderable çuautity pf sanious fluid escaped. The portion of iutestine now exposed was of a dark claret colour; and behind the sae the spermatic cord could be distactly seen and felt. There was no communication downards through the sac to the testicle. After some differsty, a director was slipped between the intestine and the stricture, which later was divided with a prube-puinted bistoury. The gut was then readily returned. One vessel required a ligature. The wound was closed, and the patient made comfortab!e ta bed. Betiose fully recovering from the effects of the chloroform, he fill into a stumber, which lasted nearly an lour, when be was found relieved of much of his pesin. The pulee was 76 , of mocerate volume, and the ansiety of countenanse had quite subsided.
Two hours and half ater the cperetion tie bowlo acted irecily, (a dark brown
 acted, possibly from the purgative medicines administered previous to his admiss:on. One grain of opium was now given.
Second day.- The patient wert to slecp again directly after the last visit, and only woke three times, when the bniscls arted. There has beenno sickness. He still complains of griping pains; the abocinen is tetuler and tymanitic, toogue red and rather dry in tie centre ; palse 88, not at all sharp. Ordered ren ninims of tincture of opium at onee, and to be repeated every third hour. He continued to sleep a grod deal during the day, and in the evening took some little nourishment. Ile eomplains of no pain, but the abdomen is still intolerant of pressure ; tongue rather ciry; bnetls open two or three times curing the day: no sickness : pulse 96 , witi rather more power.
Third day.- The boy passed a comfortable night: the abdomen is less tender, and pain is felt chiefly in the situation of the right testicle, which latter is inflamed, this state of things having probably been producel by the cfiorts that had been made to return it into the abdomen; tuggue clenn and moist; the bowels have not acted during the night; pulse S , soft and compressible. lie was oracered to discontinue the opium, and to apply two leeches to the right, aboormaily placed testicle. When eeen the last thing at night, he was quise eary; the bowels had acted, and the pain in the sesticle had beon relieved by the leeches.

Fourth day-The patient has slept well : he looks brighter about the eje and expresses himself as feeliag better; his pulse is quiet, and he has lees tenderness of the abdomen, The bandage and pad were removed from the groin, and the sutures taken out ; the wound looked exceedingly well, and had partly closed. From this time the progress was favourable, excepting a small collection of matter which fortaed over the testicle lying on the thigh. This abscess wat opened, and twenty-tive days after the operation the patient was discharged, with complete cicatrization of the wround, and protected by a truss.

One is naturally led to ask, after reviewing the facts of this case, by what agency the testiele foudd its way under the integuments of the thigh. Probably from some faultabout the gubernaculum, which filled in this instance to lead the organ ss usually into the scrotum. The deviation was probably then regulated by the more or less laxity in the parts about the externai ring. We need not say one word touching the efforts made previous to the patient's entrance into the hospital to return the mal-placed testicle into the abdomen; it-was an oversight, the recording of which will ate as a warning to others.

We would in the last place refer to the necessity, when patients apply for i truss, of examining the parts very carefully, and not depending on their simple statements. Suppose this boy led parchased a truss at a chemist's, as is often done; the mentioning of a swelling in the grein would have been sufficient, the truss applied on the undescended testis, aud the patient consigned to a seifes of evils, which might have led to a very unpleasant termination. It is probablo that the actual hervia with which he became subsequently affected never pro. daced enough protrusion to attract bis attenion. In Mr. Lloyd's patient, with whom the testicle was likewise abnormally placed, the disposition was different, for the oigan had not descended lower than the inguinal canal. Here follows she case, from the notes of Mr. Stretton, Mr. Lloyd's house-surgeon.

Inguinal Hernia on the right side : Imperfret Descent of the Testicle on the Testicide on the same side; Strangulaion; Formation of a Watery Cyst; Operatoin; Recovery.
(Under the care of Mr. Hloyd.)
William D—— aged therty-scven, and a baker by trade was admitted ioto Bently ward, March 11th, 18j2, under the care of Mir. Lloyd. The patieat't countenance was pale and anainus, and be complained of much pain in the abdömen : the stiau was coct; pulue 22, c. r.odcrate volume; tongue clead, and bowels said to have been freely oien on the evening before admission. While
 been suddenly seized with copious vomiting.

On exaraination, a large swelitug sas found in the right groin, measuring about seven inches in length and four in width; its surface was uneven and tenge except at one point, near the anterior suptrior spithous process of the ilium. Here was cituated a smaller tumour, aboat the size of a walnut, and giving the hand the señsation yielded by a bag of Ruid. "his sw cllitg, acording to the patient:s tatements, used to remain unclianged in size whict the scmia, before the present attaek, was returned iato the aldumin. The cxternal ring is free, but the right testis is not in the scrotum, and is supfosed to lie in the inguinh caual with the herniated intestine. This latter circumstance nas not thoroughly akcertained, as the slightest manipulation gave the paticnt caquisite pain, radiating eill giver the abdomen.

The man said on being questioned, that he had been subject to hernis for the last fifteen years, that he had always worn a tress, mad had never had any difficulty in returning the intestine until the morning of his admission. On that day, while in the street, he had sudenly been seized with a pain in the right groin, and violent sickness and :upon examining that region, he found that the tumour had escaped from under the pad of the truss, and was much larger than unual. A surgeon was immediately consulted, who employed the taxis for tau hours without success, and then advised the patient to seek adnission into this hospital.

Immediately after the pstient's reception, ciloroform was administered, and mentle atteupts cere made, when he was fully uarcotized, to reduce the hernia; but these proving unsuccessful, the opieration was at once performed.

After the urual incisions, the testicle was found in front of, and close to the external ring; the sac was much congested, and the stricture situated at its geck, just at the internal ring. It mas now thought necessary to open the sac, Which brought into view a large coil of intestine of a dark-red colour. This was, easily returned as soon as the stricture was divided, and the wound was carefully closed up over the undescended testicle. Nir. Lloyd now panctured the small swelling situated over the crista ilii; it at once collapsed, discharging a transparent citorn-coloured fleid. The patient was conveyed to bed, and sook five grains of calomel aud one of opians.

The progress was pretty favourable until next day in the sfternoon, when the man complained of considerable pain in the chest ; his respiration vas hurried; the skin hot and dry; tongue moist ; paise 120 , small and jerking, and abdominal tesderness considerably increased. There had been copious pultaceous evacuations. Mr. Lloyd ordered twenty-four leeches to be applied to the abdomen, and two grains of calomel with half a grain of opium to be given every sixth heur.

It was found on the nert day that the iecches had censidemably relieved the pain; the patient had slegt well and was altoge ther in a more favournble conaition. The sutures were remned in the eveaing of thin, the third day, and the mound looked very heathy: The further feateres ot the case do not call for any opecial description, for matters proceeded in the usual wry, and the patient was discharged in good condition ahout five weeks after admastion.

As, very probably, the entrate into the scrotum is chatated in both the foregoing cases on the side where the testis has fained to deatend, it nould be useless, during operations of the above-cecribed hind, to atterntt giving tha srested testicle its notmal situatiun. The patiento mont thus continue to semain in the state in which they were foman, at has as far as the position of the testicle is concerned; but they now have the inmonse auamage of knowing the eal state of things, and will be able to take the pruper precautions, in order to shiold the delicate and useful organ froan i:juty. Luded, a special protective apparatus stould, "e venture to suggest, be contrned tur patients of this kind.

When it is considered how obnosious to injury is the testis in both the situations which it holds in the two peeceeding easts, one in inchued to pay new tribute of admiration to the arrangenent of parts in the human organism. The serotum, with its power of rugose coneraction, the tunica vaginails, cerer lubricated, and allowing the organ to accommodate italf to the most varicd positiotu \$e., appear in great contrast with the situation of the testis in the instances just related-one at the upper part of the thigh, the other in the groin. It
might justly be said that the testis would be, perhaps, more protected by remaining in the abdomen, n which cavity they are ludged befure birth; but it will be seen at a glance, that all the derangencuts occuaing in the abdominal viscera would then have adrect influtwe on these organs, and that by being shat ont from the periforacal casity, ti.cy hase an incupfrictitcaistence, favourable to the performance of their functions.

The patient of dir. Llugd is said to lave worn a truss; we suspect it wai one producing very gentle pressure, as it is not easy to understand how the apparatus might, withont inflisitg fain or injury, have pressed both on the hermial sac and the testicle. It is probable that the latter organ, by the facility with which it glides, even in an abnomal stuation, eluded the pad of the truss. We are inclined to think that the eyst by the crista ilii was caused by pressure from the steel of the truss, and cannot conclude without adverting to the long efforts at the taxis which are sometimes made in private practice. In the above case, for instance, if the patient's statements are correct, these efforts were continued for tro hours; this is decidedly too much, and the evil was so much, the greater in the present case, that the testicle was included in the mass which was for such a long time suhjected to the manipulations of the taxis.

Cases of non-descent of the testicle are by no means so very rare as in sometimes thrught; we saw, short time ago, a man, among Mr. Curling's patients, at the London Hospital, with whom the same inperfection existed. Here also there were inguinal hernia and strangulation, but the herniated mans was returved without operation.

hing's coliege: hospital.

Trephining of the Tibia in Tuo Cuscs; in one fur Alscess in the interinr of the Bone. and in the other for Murvosis tancumatid "aik any trgumentary solution of continuity
(Under the care of Mr. Menry Lec.)
Abscess of bone is a pathological event whth which Mr. Let's name has of late been connected. The fact of these abscesses existing for a long time without involving the dense pertion of the bone, and without tierefore any tegumen: tary manifestations, is :on a litile strange, because it presents us with an exception to a well known law; we mean, of course, the tendency of any morbid process which takes its origin in some internal locality to make its way to the curface.

Mr. Lee has lately had under his care one of these cases of abscess of bone. The existance of this lesion was ciagnosed from the peculiar symptoms which shall be detailed below; and the use of the trephine gave considerable relief. But besides this instance of mogenic action whhin bolle, Nir. Lee has had under his care another case where the trephine proved very useful, and in which the entire thickness of the tibia towards the middle of its shaft became necrosed, without any abscess being folmed, or any solution of continuity of the skin, sinuses, or fictolous tracts. This secerd case cfiers a good instance of the services which may be rendered by a pooti and sound diageosis; for the derection or suspicion of the kied of Icsion which had take! place naturally led to the applicatior of the means best calculated to benefit the patient. We subjoin; in a few words, the description of both these cases.

A married woman, about twenty-five years of age, applied to Mr. Lee, at.
this hospital, as far bach ns 1849 , for pain aud ureasiness in the left knee-joint. The latter was then tumeticd, awd cathaty to the ligament of the patella a swelling of a ycilding and s.ft consistence was netict d. There wab great pan in the articulation, especiany when the paticht attenfoted to walk, or when the joint was being flexed; but she suffued most whan narm in bed, and had slept badly for some time past. The woman stated that she had been treated for syphilis in this isstitution three jears previous to her present application, and had taken mercury several times.

Mr. Lee, hearing from this patient that she was unwilling to seek for admission into the house, ordered a splint to be applied, so as to heep the joint at rest, and preseribed iodide of potassium.

Rapid improvement now took place, the joint could be more freely bandled, and it was perceived that the head of the tibia was the part prinepally affected. But the patient had soon a relapse, as she left off the medicine inmediately she was slightly relieved; a return to the iodide would set matters right again, but the pain always returned on the omission of the nedicine. The woman thus continued for about three years, when her patience became exhausted, and she requested to be admitted into the hospital. Mr. Lee explained to her when she had been received (in the beginning of May 1852, that trephiuing the tibia might give her great relief, and she willingly submitted to the operation. Ine thought that the tension probably existing in the bone might be removed by the operation, and the pain greatly diminished.

The head of tibia on the left side was somewhat larger than on the right and the pain on pressure was principally situated toward the insertion of the ligament of the patella. The shaft of the bone was unaffected, but the swelling on the external aspect of the joint still existed, and an enlargement on the iuner side of the head of the tibia could be easily mate ont. It might thus be inferred that the epiphysis of the bone was the chief purtion involved in this evidently tertiary syphilitic affection.

On the 29th of May, 1852, Mr. Lee proceeded, whist the patient was insensible with cloroform, to make a T-shaped incision over the internal tuberosity of the tibia; and when the bone was exposed, he separated the periosteum with the? handle of the knife, and applied the trephinc. Ihe latter had a deep crown, and was extremely smail in diameter, measuring no more than ene-third of an inch in that direction. The instrument was easily worked almost to the -pposite side of the head of the bone; the cancellous structure was found very soft, and a few particles of white matter escaped with the blond which was issuing in very moderate quantity. The object being thus accomplished, water dressing was applied, and the patient removed.

The effect of this operation was soon made apparent, and the woman stated that she had not felt so easy for years. For sevenal weeks after the trephining the freedom from the pain which the patient had formerly experienced was maintained, the knee became occasionally stiff and uncomfortable, and the ewelling on the outer part of the joint re-appeared, after having quite subsided; but small doses of iodide of potassium with citrate of iron, and an opiate at night, had a very beneficial effeet. The patient now began to leave iber bed, and left the hospital one month after the operation, her health radidly improving and the knee free from pain.

Two months afterbiards, (about three months after the trephining,) she presented herself again, and it was assertaised that she could now walk with
grent comfort, and had not had any return of the peculiar paiu which for yeare had beeu causing her so mueh distress.

Trephining of the Tibia fur Necrosis, tucunurcted with amy tegumentary solution oj continuity,

(Cuder the carc of Mr. Lee.)

This patient, about twenty-four years of age, was admitted, May 21, complaining of severe pain in the left tibia. She had been suffering in the leg for the last twelve months, ond had been under trhatment at Guy's Hospital, where setive antiphlogistic means had been used at first. She remained in that inatitution for twenty-two weeks, underwent various kinds of treatment, and afte: staying at home for some time, without medical aid, she arplied to this hospital.

The left tibia was evidently eularged through its two lower thirds, there was redness of skin and paia, which latter was sometimes so severe as to drive the patient from her bed. The skin wae not broken, and there was nothing in the woman's history to point to syphlis or hereditary taint. For about five weeks the treatment consisted principaly in emollient applications, rest, and' tonics; but the tegumentary inflamation, which had somewhat subsided. soon re-appeared, and the leg became cedematous. Mr. Lee, therefore, resolved upon trephining the boue, as he telt coufdent that the irritation was seated in its interior.

On the 1 st of July the patient mas narcotized with chloroform, and Mr: Lee applied a small trephine on the most projecting portion of the affected tibia after the skin had been reflected. The walls of the bone were found considerably thickened, and much force was required to perforate them with the instru-, ment. When the latter had brought away a circular piece of bone, the cavity: thus formed was felt to be rough at the fancus. It was therefore plain that caries and necrosis were going on within, and that the plate of bone just perforated was the newly formed shell. Mr. Leee determined, under these circumstances, to ren:ove some more of the shell, so as to get easy access to the diseased po:tions of the bone.

The trephine was consequenty applied in thrce more places, forming, withthe first hole, a long square, and the bone was cut through with the saw along the lines of junction. A pretty large piece of new shell was thus removed; which, in ite thincest portion, was half' an inch think. A rough and plainly necrosed piere of bone was now brought into view, and taken away in the same: manner as had been used for the outer shell. But at this stage of the operationit was found that the morbid process had extended to the opposite side of the tibia; both the elevator and the trephine were now used, and Mr. Lee succeded in removing all the dead bone that could be felt and seen. The wound was dressed in the usual way, and the patieut carried away after an operation which', was necessarily protrscted.

The patient's symptoms became now very favourble, the redness of the ekin disappearing, the pain left her, and she slept soundly. For the next few weeks a certain amount of osseous detritus and portions of the outer shell were successively detached, but in about two month's time the cavity left by the operation was almost filled up, and the patient discharged in a very satisfactory: condition.

We beg to direct attention to the first of the above cases, both on account of the peculiarity of the tertiary lesion of bone, and the good result which:
attended Mr. Leces treatment. It is interesting to norice how regulanly the jodide of potassium zemoved the pain; and this fact would go tar to make many surgeons doubt whether this pain depends reully on distention, for it does not appear very plain how the iudite cuadrethedy the presoure, escept it were in checking further secretions. In tension is not the whole secret of the pain, and it is extremely likely tat the inflamation and mostid chages going on in the bone, which are both excited by the presente tithe virus, lave no small share in the production of pain. The very shath whansit of mather evacuated by means of the trephine, would in some degree sirctint on thissouposition.

The above-described operations muit le lushed hata as al an extraordinary. sind; and though the symptoms may have beta very obstinate, and have withstood all ordinary remedies, the surgeon is not sure of the condition in which he will find the parts when he introduces his trephinc. The most encouraging circumstance is, however, that were esen the pain mercly nervous and no abscess found, the patient would not br the worse off far the operation. We must nevertheless confess, that when we saw M". Lee apply the trephine in the first of the above cases, $i=1$ which the morbid changes had token place in the head of the tibia, we felt a little apprehensive as to the fate of the joint, and we are nowhappy to find that the articulation did not materially suffer.

The second case is especially valuable in a diagnostic point of view, and proves that considerable alterations may take place in a bone situated close to the surface, without the formation of abscess cpening externally. Surgeons are so thoroughly accustomed to see caries and necrosis concected with a train of abscesses and consequent fistulous tracts, that cases of this kind should be remembered, they aid us in our diagnosis when called upon to treat long-continued pain in bone.
I.ONDON HOSIITAT.

Inguinal Hernia; Imperfect Descent of the Testicle; Strangulation; Reduction without Operation.
(Under the care of Mr. Curliner.)
Norman U—, aged twenty-six, of a pretty healthy aspect, light hair and eyes, and a shoemaker by trade, was admitied Sep. 1, 1552 , under the care of Mr. Curling, with very severe symptoms of strangulated inguinal hernia.

It was elicited from the patient, that inguinal hernia of the-left side had existed since he was five years of age, and that he had never worn a truss. His bealth has always been extremely good and he stated incidently that he had riever taken any medecine in his life, (with the exception, very probably, of the indespensible and unavoidable teaspoonful of caster-oil soon after birth.) IIe had never found any difficulty in returning the greater portion of the hernia when it happened to assume upon some exertion, a greater bulk than usual; but the size of the tumour was generally equal to a small fist. Thus the patient had reached bis twenty-sixih year without suffering very great inconvenience from the state of his left groin, but he had, for the last few years, perceived that his scrotum contained but the right testicle, and that the left was situated in the inguinal canal.

About a fortnight before his admission the tumour suddenly increased to double its ordinary size; the had much trouble in returning it, succeeded but partially, and was seized with much pain in the abdomen, and obstinate conctipation. At last he affected reduction by his own efforts, and bad several alvine evacutions without the aid of any medicine.

This attack oceurred on the evening, before admission in an aggrivated form without any straining effort, or irregularity that he could remen:ber. The tumour now increased to an cnormous siz, the pain in the abdomen was extremely severe, and the vomiting incessant. Uader these cirumstrances, a neighbouring surgeon was sent for, who endeavoured to retura the hernial protrusion, but could not succeed. It was then thought advisable to transfer the patien to this hospital.

On admission, a turnour, abont the size of a double fist, was noticed in the left groin; the swelling was very printu?, the bowels constipated, and the vomating almost constant. On manipulating the tumour, the left testicle, which could rot be felt in the scrotum, was traced in the ingrinal canal, In comparing the left organ with the right, it was found that the former had not reached half the size of the latter, and that it did nut possess the resisting structure of the normal testicle.

The poor man sas placed into a marm bath, and when the parts were completely reloxed gechele effrts at the taxis were male. These proved successfut and a great portion of the bernisted mass was returned juto the abdomen. A purgative injection was subscquently given, and this brought away a copious evacuation. The sy mptans immediatej, improved and the patient has progressed very favourably since that perizd. The left testicle lying in front of the exterogl ring; it feels, as above statcd, vary small, and the hernial tumour, which is now about the size of a small clongatcd cyst, seems to contain a trifling portion of the intestive and some omentum.

CHARNG-CROSS hosprtal.
Medullury Tumunt of large sizi, sithuack in tico fight Luguinal Region; Partial Removal; Dcuth; Autopsy.
(Unuler the care of Mr. Hancoch.)
The outard charater andinianate structure of thatours have been of late carefully described, atud the labours of sucis wea as Muiler, Ruhitansky, Paget, and others, have certainly readered the diagrouis of abnormal growths less diffcult than it focmerly was; But in spitc of this e..ceilent teaching, tumours are met with in practice, the actual nature of which is not casy to determine. Of course the surgeon follows in his iavestigation the nomenclature and divisions which are corrent in our times; he first classes the tumour to be diagnosed. among the malignant or intoccut growths, and afterwaris ascertains to which subdivision of the former or the latter it belongs. Dut when from outwardcharacters, and the history of the case, he has thus (with the ussistance of a microscopical examination of the mattut duposited on the exploring needle) given it a name, there comes still the question of remoral or nou-interference. And this applies both to malignant and ionocent tumours. As to the former, an operation may be furbiduen by a varicty of cireunstances ; and so may it be with the latfer, for an imbecent tumour may be so situated as to rcnder its removal hazardous; or it may have attained too large a size to be interfered with; or it may, lastly, bave so encroached upun certain organs and cavitien, that both the latter may suffer by an attempt at removal.

In the case before us, the removal of tumour was determineci upon, as there existed some features which rendered its malignant nature doubtrul, and
as it was considered that the growth was lying externally to the abdominal parietey. It will be seen by the following details that both the external characters and the use of the exploring needle were well calculated to lead the surgeon astray.

Juhn K - , aged twenty-seven, of dark complexion, and having led on irregular life, was admitted Auguat the 8 th, 1852, under the care of Mr. Hanenck, with a turuour completely filling the rigint inguinal region, ana of the size of an adul: head. It appears that about twelve years before ndenissioti; the patient first perceived a andill tumour, about the size of a nat, at about the centre of a line drawu from the auterior superior process of the ilium to the umbilicas. Thit tumour he could easily take up with his fingers and thumb, and, as it were, retmove it from the muscular parietes. The patient paid litile attention to this growth, and for nearly eleveu years it increased almost mperceptibly to ahout the size of a small orange. Even at that time the tumour could be moved about without any difficulty; but from this period to his admission into Horst monger (Gual (wheace he was subsequently removed to Charing-cross IIospital,) a period of about tweive monthy, the tumour rapidly increased in size, and became a source of great incunveuience, though the patient suffered little or no pain, and allowed the growth to be handled without complaining.

While in prison he centiuued th this stase for about three month, enoying tulerdble health, the tumour increasing in size at the rate of about a guarter of an inch in circumference a month, as evidenced by measurement. The tumour becane now a auoree of great anncyance, as it rendered walking difficult, and pain was complained of. The liswer portion of the growth became every week more pointel, and the whole tumour assumed a somewhat conical form. Towards the lower portion some flucruation was now detected, and an exploring needle was introduced, when about a dessert-spoonful of kerum exudea. The upper and outer purtions were also tried with the needle, but here the parts were more solid, as ouly a drop or iwo of blood escaped.

Mr. Wikinson, surgeon to the prinon, to whan we are indebted for these details, considered, after this puncturing, that the tumour was composed of a vamber of cyate, that some of these containeal serum, and that the other portions were steatomatous. Mr. Wilhinsm womld have had no hesitation in exterpating the tan ur, had he not been preventid by centain pitsun regulations, as he cousidert the thnenr subcutaneun, andexternal to the muscular parietes.

The pationts leeahh semaitic goud up to his release from prison, wo wheh day be was received at Charing-cruns Muspialal.

The tumur wa, then found ocouping, as we stated above, the whole inguimitegion, fron the crest of the iliun so the pulis, it was larger than an aduts head, gave bo pain un pressure, wao clastic and yielded on the lower part, but nodulatei and more resisting in the upper, gud large veins were courning in the integumenty eovering it. The paticht"; countenabe was rather anxious but his general hath scemed yretty god. Alter he had been a few dayn in the hompital, Mr. Hanc ex ande a pancture into the lumer part of the tunamer with an exploring-needte, and gase exat to a suall guabtity of serutn, the latter was cxamined by Mir. Camon, and found to contain nothing but the urual constituents of that flud; the exploring-necule becing ubed a scwolld time with the batme seante, the thanaur was looked upun as a multil.ecular one, and Mr. Hancock, yitided to the request of the patient, consented to remove it.

On the $25 t h$ of sugust the man was placed under the infuence of chloroform, and ir Lancock abade a longitudinal incinion torough the integumenta
coreriog the tumour. After a little dismection a tough texture came into view, on dividing which a large quantity of clote and fibrinous concretions arrested the operation. A portion of the internal oblique muscle was now perceived, and at Mr. Hancock removed the clots and fibrinous masses, he found that he had penetrated into the abdomen. It now became evident that the tumour was mainly composed of these soft meterialo, that it had destroyed the abdominal parietes. It was therefore thought prudent to carry the operation no further; the lipa of the wound were brought together by sutures, and the man carried to bed. He rallicd pretty well for a few days, but it wasevident thas the eloughing and partial hemorrhage which were going on in the groin, were telling very unfavourably upon his frame. He died about a week after the operation.

On a post-mortem examination, it was ascertained that the fumour had originated in the walls of the abdomen, and had taken probably at the time it increased rapicly, a direction both towards the groin and abdominal cavity. The decompusition of parts and sloughing wete considerable, the clots fibritous massen, and proper substance of the tumour, had broken down to such an extent as to leave more a cavity than a sweiling. It was however found that the parietes of the abdomen had been, in that region, quite dastroyed, that the tumour lay on the omentum, and was attached to the cecum and transversc colon. The adhesions were, however, easily broken down, and when the viectra were examined it was discovered that they were nut insulved in the disense. No morbid alteration was noticed in muty of the lasger unselo patsing over the brinn of the pelvis, and no tumour or deposit was made out in the principal cavatics of the body. Some of the substance forming the bulk of the growth was exanint under the micruscope, and found to contain mumercus catcercus cells.

The decepive characier which wappresented by this tumourutere:-1st, the fact of its having origitally been moveable and dirtiactly lodged in the subcutaneous tissue; 2 nd, the very slow dechopoment of the growth (execpt fir
 which escaped upon puacturing the loucr jortion of the thater ; 4th, the exetlent ntate of healh which the putient cajoyed up to the time of the opcration; 5th the non-appearance of that tetadey to uktation which malignat sumeurs almost always show.

Now the firt of these characters, it may be that the swolling ves uriginally of a bimple kind, but that it took on, at a late period, (when its increase becante very tapid.) a malignant nature. The esiflamation of the se cond character in the sane as that of the first, theugh it still r. mains a very ntrining exee ption, that a meduliary tumour should have taken a rapid develognetit for a twelvemont, without giving sise to any pain.

The sernum whil: we mentioned in the thini phace, was certinily very puz-
 tumours have teen khown to the the cir origin from the sutcutanions tissue of
 perhaps be iuferted that ite vescin havisg teeone vers this, had giorn was, that
 ctheis furgus tamatoder, and that the scrum ob:ancu had mers y separated from the ciots.

As to the good state of hathen wich we momionod in the forth place it, ment be lochedupol an an exception, though pathems are sonectiacs met will who do not exhbit the ca.curons cachexin for along time. Tuching tle ctadency to ulecration, wheh was here abstut, (fith character,) it would geem
that the pressure, which genarnlly gives rise to it, was exerted towards the abdomen. The complete destruction of the walla of this cavity is certainly a feature which points very strongly to malignancy, but the existance of this deatruction could hardly be suspected, as there arose no symtoms of ary abdominal disturbance.

If we mistake not, our readers will rise from the perusal of this case with the conriction that the greatest care and attention do not shield from occasional error and that, as a rule, we ought to advocate and advise the early removal of tumours although they may not create very great inconvenience. This remark applies to growthe both of an innocent and of a malignant kind.

MEDICINE.

DEGENERATION OF DIFFERENT PARTS OF THE SYSTEM.

By Jangs P'ager, l'sq.,--(From a Review of Mr. Paget's Lectures on Inflammation, in the British and Foreign Medico Chlrurgical lleview.)
The history of the degenerations of lymph constitutes one of the most important parts of the whole pathologs of iuflammation. As Mr. Paget has justly remarked, degeneration is a part of the reguiar series of nutritive operations. fur, "to degenesa'r and die, is as normal as to be developed and live, the expansion of grostu, atad the full strength of manhood, are not more natural than the decay and feetleness of a timely old age, - Hot thore natural, because not more in accordance with constant laws, as observed in ordinary conditions.
"The study of development has alanss, bosever, had procedence in the choice of all the best workers in physiological scieace, and that of degeneration has been scarcely at all pursued. What hutle has been dune in this department, has had reference soidy to the human bods; and "almost the only essays, at agenersl illustration of the sulject have issurd in the ridiculous notion, that as the body grows old, so it retrogrades into a luner station in the scale of the animal creation." The study of the changes of natural degeneration in ohd age is important, as affording a basis for the iuterpretation of mathy phetomina, which are to be regarded as morbid rather in their prematureness than in their essential nature; and these are grouped by Mr. Paget under the following heads:-

1st. Wusting or wilhering, as in the ordinary emaciation of old age, seme parts being entirely removed by absorptinn, whist ohers are only decieased in size, and lose the succulency of earlier age.

2d. Futty degcucration, as shown in the teadency to the accumulation of fat in many tissucs, copecially the boues; the arcus sentiis of the cornea has been shown by Mir. Cantun to possess tiais character; and the fatty degeneration of the arteries of the aged is well known to be a mot ordiary occurrence.
33. Calcareous degcnerations, as shown an the grablually increasitg proportion of earthy mater in the bunes, in the ussuicution of parts that remained cartileginous during the periud of vigour, abilat the teadency to earthy deporsits in the arteries and other parts.

4th. Pigmentad degenerations, as shown in the gradual accumulation of black pigmental mater in the lungs, the mucous mondrame of the almentary canal, and even in the coats of arteries.

5th. Thichenit, of primany membranes, as seen in ti, tubules of the iestes, the inner membrane of the blood-iessuis, and the wahs of the cartulage-celia.

The following are enumerated by Mr. Paget as the characters in which true degenerations are distiuguished from disease.
" 1st, and before all others, it should be a change naturally and nsually occurring in one or more parts of the body, at the approach of the natural termination of life, or, if not then beginning, yet then regulurly increasing.
"2. It ahould be a change in which the new material is or lower chemicai composition, i. e., is less remote from the inorganic matter than that of which it takes the place. Thus e. g , fat is lower than any nitrogetnous organic compound, and gelatine lower than albumen, and earthy matter lower than all these.
": In etructure, the form should be less developed than that of which it takes the place: it should be either more like inorganic matter or less advaneed beyond the form of the mere granule or the simplest cell. Thus the approach to crystalline form in the earthy matter of bones, and the erystals in cortain old vegitable cells, are characteristic of degeneration; and so are the granules of pigment and of many granular degenctations, and the globules of oil that may replace mascular fibres or the contents of gland-cells.
"4. In functi. ; the part should have less power in its degenerate than in its natural state.
" 6 . In its nutrition it should be the seat of less frequent and less actire change, and without capacity of growth or of development."

There are many things which show that the assumption of these characters is to be ascribed, rather to a defect, than to a perversion of the wital force c: of the condition of nurrition :
" Thus (a) these are all apt to occur in a part of which the funetions are abrogated: a motionless limb wastes or becomes fatty as surely as an old oue dess. (b) They often occur, too, in parts that fail to attain the development for ahich they seemed to be iutended. Thus, e. g., fatty degencration usually ensues in the cells of unfruitful Graafan resicles. (c) They bear aloo a certain general analogy to the changes that ensue in some of the materials that are habitually excreted from the body; in the construction of which watcials one eeturs to have an instance of the gradual supervention of the ordinary or imitable frocess of chemistry. (d) Again, they display living parts twerating the presence and incorperation of inosq..ni, or dead nasior, hat being commonly intiluated about degenerate celh an: methithates, addearthy mant: with it, cven in the erystaline form. (c)Atad lastis, and perhaps most clearly, the organs of degetierations from defective, rather than from perverted, conditions of nurrition, appears in the fact that abe, at leat, (bamely degencrationi), of them may be procuced artificially.

The degencratiou of tymph may commence at any period after its formation; and that which mon obviously cietermines it, is the continued suspension of the cundrions of nutition. We shall tist speak of its fibriunous element. Ia the firsi place, this may waste or whitioer, becomug firmer and drier passag into the state which kuckitansky has called "horny ;" the fibriu in thest caces shows no narks of develop wemt into i- i-sue, hut retman as ordinary strov:ure, being only drier and more compact. Secondly, fibrin is subject to a degeneration, which is comparable to the fatty degeneration of ordiuary tissus: this is an cxirenely frequent occurrence, preschting itself in the fibrinous effieiors prured out in the louer forns of influmation' ror in those of cechectic inuividualo. The softening and disintegration of the clots witinin the heat, which Mr. Gulliver bas deseribed, correspend closely with the like procestit
in inflammatory lymph. The thole substance is seen to be dotted with granales, which are known to be oil particles by their peculiar shining, black-edged appearance : and the fibrin, no longer rendered transparent by acetic acid, loses its toughness and rlasticity. It appears 10 be usually by such a degeneration, that fibrinous matter, which has firmly coagulated, sufteus and becomes capable of absorption:
"I suppose it may be considered as a general truth, that the elements of a tissue cannot be absorbed so long as they retain their healthy state. Therc is no power of any absorbent vessels that can disintegrase or decompose a healthy portion of the body: for absorption there must be not only an absorbing power, but also a previous or concurrent change, as it were a consent, in the part to be absorbed; so that it may be reduced (or rather may reduce itself.) tuto minutest particles, or may be dissolved. And this change is probably one of degeneration, not death, in the part; for dead matter $1 s$ rather discharged from the body than absorbed.
"Now there are gome facts which indicate the probability that the fatty degeneration is that which commonly precedes the natural absorption of many normal parts; or rather, that, in the change which they undergo before absorption, fatty matter is one of the products, and that the principal evident difference between the atrophy of a part which is manifested by its wasting, and the atrophy which is manifested by fatty degeneration, is, that the fatty matter, which is absorbed in the former case, is retained in the latter. However thrs may be, it is certain that the disimegration and fatty degeneration of the fibria products of i:flammation bring them into a state most favourable for absorption. indeed, one may see in fibrin thus changed many things wheh in regard to the the fitness for absorption, make it parrellel with chyle. Oi such absorption of fibrin we may find many instances. In rheumatic iritis we may believe the lymph to be fibrinous; but we cee its complete absorption tahing place; and the recent observations of Dr. Kirkes on the rarity of adhesions of the pericardium in comparison with the friquency of pericarditis, may be in the satit manner explain d. In rheumatic pericardais me may be sure fibrin is effused aud the observed friction-sound has, in at least one case, proved its coagulation jet in this case, when death oceurred four mouths afterwards, scarce a trace of fibrin was found in the pericardium : it has been absorbed, wod the degencration I have been deseribing was probably the preparation for its absorption.

Thirdly, examples of the calcareous degeneration of fibria are shoun th the ordmary formation of phlebolithes from clots of bload, and in the calcarcous deposits which are found imbedded in the fibrinous vegetations of the valves of the beart. This form of argenctation, however, is much more freque it in purulent fluide, and in later developments of lymph. Fourthly, pignental degentrations are often seen in the fibrinous lymph affused in peritonitis, which pregents shades of gray and black, that are due to the presence of pigmemary grangranules.

A similar series of degenerations is seen in the corpuscular elements of Jymph. Jirst, their sithering is seen in certain elements of a dull ochre-ycl-low-coloured, and half dry material contained inlymphatic glands that have undergone chrobicand nearly stationary scrofulous enlargenemts. In this substance are found abundant collapsed and shrivelled cells, which might be supposed to be dried pus-cells, or corpuseles of chrohic tuberculous matter, Were it not that some of them present an aprroach to the character of fibre-cells isto which it is certain that neither pus nor tubercule-cells are ever developed

The corpuscles found in the pus of ehronic abscesses, are believed by Mr.Paget, from their likeness to the foregoing, to be rather withered lymph-corpuscles, than true pus-cells. Second, the lymph-cells are changed by fatty degeneration into granule-cells, or exudation corpuseles; which, as Reinhardt has shown may also be derived by a similar process from the primary cells of almost all other, both normal and abnormal, structures. This form of degeneration is particularly apt to occur in the products of iuflammation in the nervous centres and in the lungs, but it is by no means confined to these organs; and it may take place alike in the early forms of lymph-cells, and after they have already elongated and attenuated themselves into fibre-cells, and also after they have degenerated into pus-cells. The following are, briefly, the stagesof this transition, which corresponds exactly with that so commonly obsestable in the cells of the liver and the kidney:
"The lymph-cells, wisch may have at first quite normal characters, such as I have assigned to 'primordial cells,' present a gradual incaease of shining black-edge' particles, like minute onl-drops, wheh aceumalate in the cell-cavity, and increrse in number and sometimes in size also, till they nearly fill it. The The fatty nature of these particles is proved by their sumbility in ether : and their accumulation is attended with a gradual enlargement of the coll, which also assumbs a more oval form. Moreover, while the fatty matter accnmulates the rest of the contents of the cell, becomes very clear, so that all the interepaces between the particles are very transparent; and coincidently with all these changes, the nucleus; if any had been formed, gradually fades and disappeas."

This kind of degeneration, as in the ease of the fibrinous clement, appears to be preparatory to absorption, as probably happens in the "cleariug up" of the solidified lung after an attack of pneumonia. The calcareons degeneray tion of the lymph-cells is not so often seen, but sumetimes presents itself coincidently with the preceeding; of the pigmentary degeneration we have a verg common example in the colouring of the cells of bronchial mucus already referred to.

The most frequent of all the degenerations of lymph, however, is into pus, this change ensuing in nearly all cases in which the lymph is placed in conditions unfavourable for its devolopment. That such a change does take place, there can now be no doubr, since every gradation can be seen, from the nost characteristic form of lymph-cell to that of pus-cell; and it is very questionable whether pus is ever, what it was so long undonbted!y regarded, an original or primary product of inflammation. "We"cannot," as Mr. Paget observes, "always discern a prelimuary lymph stage: but neither can we always distinguish lymph-cells from pus-cells, nor can we see in how short a time the transformation may be accomplished." Other rudimental cells, besides those of the lymph, may be so altered as to take on the appearance of pus-cells; thus in many of the snpposed cases of pus in the blood, the bodies taken for pus-cells were certaialy only altered white corpuscles. When it occurs as a product of infammation, however the pus-cell may be pretty safely regarded as an ill formed or degenerate lymph-cell; and the variety of form which it will present will partly depend on the previous quality and grade of development of the lymphcell, and partly on the further degenerations which may have taken place, aftet the characters of the pas-cell have been acquired. The following is Mr. Paget's account of the typical conditions of the pus-cell; and of the priacipal degenerations which it may undergo:
"In specimens of what might be called 'good' pus, we may find three prit.

Nipal forms There are-1st, some corpuscles presenting the peculiar and well known granulated or writ kled appearance of pus-cells, but from which water will raise up no cell-wall; 2, from others, like these at first sight, water will rive a cell wall, and will show that the former kind consists of only such a substance as forms the contents of these. 3d, in others even when no water is atled, a cell wall is visible, and within there are granulated contents, with a More ar less ditinct mucleus imbedded in them. In all these forms, moreover, the addiom of acetic acid u-udly displays a single or bipartite or tripartit nud+it. Now, it may be that these represent three different stages of the pusrell, either developing, or more probably, degeneratiog; but ithink it is much mre likely that the ae forms are the results of the puralent degeneration begining in tymer cells at different stages of their development. There is so remarkable a correspondence between these three varicties of pus- corpuseles, and the three chicf furms which I described as observable in the development of the primordial cell of lymph, that one canout but suspect that the three forms in the purbizesert correponding and similar degenerations frum the thre forms in the lymph.
"When onee formed, the pus-cells, if they are retained in the body, have no conrse but to degentate further; it is characteristic of their being alrealy degererate, that they can neither increase nor develupe themselves. The varions rarpuscles found iu pus, besides those l have already mentioned, must find the ir interpretation, in these degencrations; for the pus-cells are prone to all the deg nerations that I described as oecurring in the lymph-cells.
"a. They may wifher as in the scabling of pustular eruptions, or in long retained and half dried strumous abscesses.
" b, Or they muy be bruken up, whether befure or after passing into the fat'y degeneration, which is one of the most common changes, and in which they are tranformalinto granuldeceins. It is this breahing up iuto minute paricles which probably, precedes the final absorption of pus.
" c. Or hastly both the eells and the fluid part of the pus may alike yield faty and calerreous matter. and this may either remain diflused in fluid, or suay dry in a firm and mortar-like snbstance.
"It is to such dageterations as these, in various degrees and combinations and sariously modified by citcumstances, that we must ascribe the diverse appearance of the contents of chronic abscesses and the substances left after their healing."

But the same kimds of degeneration may occur in the products of inflammation itter they have advatecd further towards complete orgauzation. Thus adhesions not unfrequently degtherate by wasting, seldom or never by a passing into the fatis state; but roy commonly by becoming calcified, the product haviug sometimes an approach to the character of true \&one, but much more frequenty having the carthy matter deposited in an amorphous form, as if, as Invekitanky has remarked, it was a residue of the transformation of the more organized tissue whose soluble parts have been absorbed after decomposition and lastly by developing pigmentary matter, which is sometimes seen in adhesions of the pleura, but much more commonly in those of the iris.

Sueh, then, according to Mr. Paget, are the principal forms of degeneration exhibite 1 by the more or less developed products of inflammation. We consider that he has done good service in thas attempting to classify them, and to puint out the direction for further enquiry. The whole subject of degenerations may te regarded, in fact, as of eveu more pathological importance than that of de-
relopment, and deserves the fullest investigation for it is the pasential character of by far the greater number of morbid processes, that the nutrative material is applied to sone purpose different from its regular destination: an! that the product is, in relation to the normal one, of a degrnerate kian. And even where an attempt is nade (so to speak) to develope a mormal structure, as in the organization of lymph thrown out for the repair of injurims (whether produced by external causes, or by the morbid actions of tissue itself), that strueture umil it is fully adopted into the system and made completely a part of i, is peculiarly prone to undergo degeneration. Now it has been from dwelling upon this very frequent destiny of fibrinous exudations, and from passing by the cases in which they do remain as constituted parts of the organism, that Vr Simon has been led to the nution that fibrin is itself a degenerating product. It may be that the last named instances are the exception rather than the rule; but this is because, in all ordinary cases in which these exudations ate thrown out, causes of deneneration are operating. It is in those simplest cases in which the reparation proceeds with the least amount of those disturbing influeners which send to produce degeneratico,-as, for example, in the reunion of the two ends of a tendon after sabcutaneous division,- that the osganization of the fibrin gees on most after the fashion of ordinary wutrition, and with the most complete refult; and we seem, therefore, clearly entited to affirm, that of all the elements of the hlood, the fibrin is that which is the most prone to become organized, and is that which affords the ordinary pabulum for the development of the tissuss.-Brit. and Fion. Med. Chirurg. Review, $A_{\text {pril, }} 1851, p$. 487.

NATURE OF TILE FIBRIN OF THE BLOOD, AND ITN RELITION TO DISEASES.

(Erom a Review of Mr. Smon's lectures on the subject, by the Ieditor of the Mrat. aud For. Sheit Chirurg. leview.)
[One of the most important opinions in pathology lately acvaneed, is that of Mr. Simon and Dr. Zimmerman, viz., that "the Fibrin of the Blood is not to be regarded as itg most organizable portion, but as an element resulting from the derangement of the tissues, and destined to speedy climination from the circulating curren," in opposition to the opinion commonly receised among physiologists, viz., "that Fibrin is that ingredient of the blood, which, in the a*eending scale of development, stands next for appropriation into the living textures of the body, and which represents the ripeness, perfection and untritiveness of the blood." The reasons Mr. Simon advances in opposition to the commonly reeeived doctrine that fibrin is the most organizable and nutritive part of the blood, are as follows:-]
"Eirst, I Gind that tibria is undiminished by bleeding, however, frequently repeated; nay, that it often or even usually increases under this debil,tating treatment; its highest figure given in Andral's book (10.2) was at a fourth bleeding: and Sehermer found it was high as 12.7 at the thrd venesection in a case of pneumouia. I find that under many other circumstances of exhaustion and weakness and inanition, during the progress of starvation, during disaase9 essentially anemic, during violent fatigue, and the like, its proportion las been found at least as high, perhaps higher, than in the inflammatory process. And as in these resyects I tind its proceeding to be in direct cantrast to tha: of the red globules (which we know to be potential elements in the blood, and whel are at once reduced by bleeding or starvation, so also do I find a similar conarast in another striking particular. Messrs. Andral and Gavart, en the course of their extensive researches in the comparative phisiology of h blood
asectuined that an improvement in the breed of an animal tended almays to ancrase the proporion of its colurred blood-corpuseles; they found that the same inprovement tended likewise to diminish the proportion of its fibrin. And Ifind further indications of the same inverse ratio between the filrinoustiess and the perfection of the ol.oul, ia the fact. - That there is little cr no fibrin in the blood of the fatus, nowe in the egn, none in the chyme, and less in the blood of the carnivora (who feed on it) than in that of the hertinora.

Some of these facts detived from very different sources, appear quite inexplicable on the theory that fibrin is cosential to the progressive devclopment of the tissues; and the upposite infreace sems unatidable, that it must be considered an excrementitious product, derived from the saste of the tissues or the oxydation of the bluod, and in progress of climination from the sys:em. This conclusion, carried into the domaito of pathology, wenhld head us to suppose that an augmented propurif: of fibrin in the bloud (whether vecurring in sctive disease, or within the limits of apparent healh) cas be tahen as an indication of increased labour and wa te in certain clmants of the bendy, hat of an increased development in the resources and motrition of the blood. And on the same groumds it would appear that a super fibrintation of the Llood, in neute infiammatory discates, munt be regarded as a ce usequence and affect of those diseases, not as their cause, and not as a primaty affection."

Again when speahing on a sub-equent occasom, of the ultuior develop ment of fibrin, Mr Simon remarks:
"It appears, then, that fibrin may remain statimery, and be nourished. or it may degenerate, and decay: this much is certain. But, mas it advance? may it be developed into any higher form? into any tisure - Nitwithetanding the prevalence of a very general opinion to the contrary, I belicue I may venture to question its possession of this poser, and may say, that lemertain extre me doubt whether, of itself, it ever shows the slightest di-position to cell-formation, or to any process of self-de velopment.
"Uutortunately, our opportunities of watching its solitary behaviour are very few; for, in almost every instatec that can be thought of, allowen (which is probably the real regeneratur of the ti,suc-) is likewise present; and that great developinental activity, so often and $s 0$ glowingly a acribed to fibrin, mas, with at least cqual probability, be con i.lered the work of this associted albumen, for (on this lattry assumption) the firrin cond merely be considered to furnish an inert mechanical support. Fur think, if fibrin were that reatless olement of growth and vital expmasion obich onfe have fancied it, what a world of activity there would be in an aneurismal sac! A large aneurism, filled with laminated clot, bas almost as much fibrin in it as the whole body put together; and yet it shows, on microcopical examination, uo evidence of activity or of growth. At its circumference its pressure way have irritated surrouding parts, and may have provoked inflanmatory cffaion from them, but in the interior all is stationary and quiet. Towards the easity, where the formation is most recent, lie the blood-corpuscles in a net-work of fibrin-the former in such number, that the latter can but very imperfictly be seen, but in passing outwards, as the corpuscles seem more and more wasted; the filrin begins to show more distinctl, always adapting its meshes to the material within them so that innumerable blood-cells are seen, each in its separate setting of fiorin: in geting still nearer to the circumference of the sac, the arrangement becomes confused from the closer consolidation of the fibrin; but in no part of the structure have I been able to see any trace whatever of new organization.

There is a similar reluctance to the initiation of organic development in those other intra-vascular clots which form in tied arteries. They utadergo changes referable to their blood-corpuscles, and tike becune pale and contracted; but their fibrin may rumain fur many aceke, or perhaps permancotly, unatered, except for some increase of colnsity. I have seen it atier the lapse of six weeks, alowing only a vague appearatuce of lungitudiaal atriation, with no essential change of phy sical cliaracter, atid without the slightest trase of new development in its substance."

And afer alluding to Dt. Zwichy's observations on the metamorphosis of arterial clots into fibrous tissue, which he considers as depeading on "suase uew influence being imparted to the clot by the prolongation of blood-vessels into it substance, mach more than on any specific faculiy of organic develogment residing in the fibrin itself;" he continues:
"I do that wish it to be understood as, in my opinion, a provel and certain thing, that fibriu is iususceptible of utherior develophatht; but If find, as get, a want of sufficient evidence to establish its posaisoiva of this power; and in the examination, buth of intra-sancular cots and of iuhammary cxudations, I find several facts which appareutly militate against such a conclusion. In all such products, the tibin hits shewa itself either stationary or retrugressive; either lying as first deposited, or contracting mure and more densely ; or altering, only to undergo degradation. So far as wy knowledge atends of adhesive inflatsmation, and of the several reparative processes, I see no evidence that fibrin takes a more important part in them than that of holding the true albuminous blastema withia its meshes, and thus oceasiunally serving as a provisional matrix and scaffaljing for the development of cells, fibres and blpod-vensels, and I cannot but suspect that those who have aseribed to fibrin so large a share in the process of growth, have bevo somewhat under the iufluence of that prejudice to which I alluded in a furmer lecture, and have promited this material to so high a ranis in their patholozy, merely becasee of its physica! tendency to settle in.a solid form."
[These opinions of Mr. Simon are answsernas fullows by the Editur of the - British and Foreign Medico-Chirurgieal Review.']

1. \odot Fibrin is undiminished by blecding; nay, it often, or even usually increases undar this debilitating treatment." This only proven that the procest, whatever be its nature, on which the generation of fibrin de pends, is not checked by lose of blood, a fact which affords no indication whatucr that the florin is a product of disintegration. If the fibrin be, as we believe, that clement of the Hood which is most directly and constantly required for the mantenance of the nutritive operations, it is easily conceitable that the Ali-wise Creator should have placed this process out of the reach of those accidents which affect the proportion of other less important clements of the blood; just as the action of the heart is entirely withdrawn from the control of the haman will, and the regpiratory movenents are provided for by an iastrumentality over which it can exert but a subordinate influence. Let it be remembeted that if fibrin be (as we believe) albumen undergoing vitalization, its material will ulways be ready, no long as there is any albumen in the blood; and if (as seems uot improbabie) the very act of circulation through the living tissucs is one means whereby the vitalizing influence is excrted, this will be perpetually going oo, so long as the circulation continues.

It must be borne in mind, too, that a new supply of fibrin, as well ss of albumen, is iutroduced into the blood after every act of digeution; for there it
diatact evidence that fibriu is generated (at the expense of albumen) during the pascage of the chyle thoough the Incteals; and if the researches of M. C. Beruard are correct the liver exerts a similar elaburative agency upon the albuminous matter which has been received into the blood of the sena purta. Further, in all the eases alluded to by Mr. Simot, ، scry active iuflammation was somewhere going on in the systen; and thus, acwording to the current dowinee, an unusually active production of fibrin was tahi.g place at the expernse of the albumen o: the biood. If not generated from this material, but restiling (as Mr. Simon thinks) from the disitutegration of the tis ous s, hou is it that in at attreck of pueamona, or of acute rhematisu, in which there is to rectoon to suppuse that any extraordaary dosintegration of tinstes tahes place, the proportion of fibrin in the blood twounts up to three, four, or five times its normal average?
2. "During diseases essentially anmaic, during vindent fatigne, and the like, the proportion of tibrin has becu found at least as hi,h, pr rhaps higher, than in inflamation." We very much question whether, in any of these cases, the increase in the proportion of fibrin took place withont the presence of the in. flammatory conditon. Every one knows that itilammatory complaims are peculiarly liable to oceur wien the system is imperfectly nouri-hed : and Audral distinctly states, that in the three dogs which he submitted to experinem, two of them being wholly deprived of ford, atod the third partially st, the elenatiun in the proportion of fibrin from 23.22 , and 16 parts, i.t the thre e individuats respectively, to 45,4 , and 33 , parts, was cuincident with inflammatury changes in the stomach. Further, as in these diseases "essentially antuic;" there is no reason to suppose that a peculiarly rapid cisintegration of the tisetues is going ch, we cannot see how the increase of fibrin in the blood of patients sufferiug under them, is in the least degree contirmatory of Mr. Sianons doutrite. That the deficiency of nutment material does not prevent the geacration of fibin cot of what the blood contans, may be explaned as we have just shenn, in a manher very different from that which Mr. Simon woud have us adepit.
3. The argument founded upon the comparative amount of fibrin in different breeds of animals, as determined by the whervations of dudral and Gavarret, can scarcely be admitted to have much weighi, when it is recollected, that the breeds here sputen of were heriocurous animate, to which it is natural to possess more fibman fewer cutpustes than the caroisora, and that they were clomesticated aninals, in regard to which the phrae "impruw nent of trecd" often means sonething very different from an increase of the getheral sigour. We can fancy that a stall-fed cow, gieiding her eighteen quarts of milh daily, woud be regarded by the tarmer as a much more baluble animal that a haty monntain cow affording not one third of that quantits: but the latter i, well known to be the one possessing the greatest anount of vigour, and to te the le ast susceptible of disease. It is, in tact, the otiject of the bretier, to produce a state of artificial plethora; and in this condition, as is well known, is characterized in man by an increase in the proportion of red corpuseles, without any corresponding increase, or even with a diminution, it that of the fibrin of the blood. If we extend our observations on compacative physiology a little further, we find that the red corpuscles, which Mr. Simon affirms to be "petential elements" of the blood, are altogether absent in the lowest huown atimal of the vertibrated subkingdom (we allude to the curious little amphiosus or latict,) and that scarcely any approach to them is presented through the whole invertebrated series, uotwithstanding that among some of these there is an extraurdinary amount of vital activity; consequently we vaunot help luohing upon their
presence as connected with some function which it is to be specially, if not exclusively, performed by the vertebrata. On the other hand, the prenence of fibrin is universal; and its proportion in the blood is found to bear a close relation to the formative activity, in cases in which this is subject to periodical variations. Thus Mr. Newport found, that in the larva of the ibsect, at the period immediately preceeding the exuviation of the skin and the formation of a new integument, the blood is extremely coagulable; whereas for some little time after this process has bcen performent, the blood is so deficient in coagulability, that it does not (as at other times) close the orifices of wounded vessels,-as if in consequence of the temporary exhaustion of the phastic material by the new production of the tegumentary tissuc. In the pupa state, during which the formative activity is the greatest, and the disintegration of the living tissues must be teduced to its niminum by the romplete inactivity of the animal the coagulability of the blood is great. But the imago state, in which little or no further growth or developinent takes place, and in which, on the other hand, the activity of movement might be expected to produce an unusual disintegration the plastic element seems to be almost entirely withdrawn.

4 "Further indicatiogs of the same inverse ratio between the fibrinousnets and perfection of the blood," are found by Mr. Simon in the facts, "that there is little or mo fibrin in the blood of the fectus, none in the egg, none in the chyme, and less in the blood of the carnivora (who feed on it) than in that of the herbivora." We are at a loss to see what possible argument can be drawn from any of these facts, except the first; and of this-the absence of fibrin in the blood of the foctus-we must take leave to express a doubt. Mr. Simon does not cite his authority for the statement; and it is entirely opposed to all we know of the coudition of the blood in other organisms, in which formative actions are going on energetically-as in the larree of insects, which may be regarded as embryos fitted to maintain an independent existence, and to procure and ingest their own food. The albumen of the egg does not stand in the relation of blood, but in that of food, to the chick; this food has to be assimilated by the nutrient organs before it can be converted into sulid tissue; indeed, it would seem to be the special purpose of the germinal membrane to convert this raw material into the plastic circulating fluid. To advance the absence of fibrin in the egg, there: fore, is an argument for its nnn-essentiality in the blood, is just as unsatisfactory un argument as it would be to say, that because fibrin is not to be found in bread or milk, its presence in the blood has no relation to the nourishment of the tissues.

Mr. Sitnon does, indeed, make a near approximation to this absurdity, in advancing the absence of fibrin in the chyme as one of his "indications." But what does he say to the presence of fibrin in the chyle; to its progressive increase in proportion as the chyle advances along the lacteals, and more especially after its passage through the mesenteric glands; and this under circumstances which almost exclude the possibility of attributing its first presence and subsequensincrease to the introduction of any disintegrating material,--to anything, in short, hut to that assimilating operation which prepares the chyle for the part which the blood is to perform, and gradually converts it into a liquid which is fit to circulate through the sanguiferous system? We are eqnally astonished that Mr. Simon should think that the difference in the proportion of fibrin in the carnivora and herbivora, taken in connection with the nature of their food, fumishes any support to his views. Surely he must know full well, that the fibrin of muscular fech io reduced back to the state of albumea in the digessive
procesa, and that there is no difference between chyme formed from animal food and that produced by the digestion of vegetable substancee, except that which depeuds upon the different proportions of its protein compounds, ite olemginous matters, its acchatine and other constituents. So long as the food supplies albuminous matter in adequate amount, so long the oportion of fibrin in the blood is capable of being sustained; and, ay we have just now remarked, we can wee no reazun why it should not be sustained, until all the albumen of the blood is exhausted. What is the explanstion of the larger proportion of fibrin in the blowd of herbivora :han in that of carnivora, we do not pretend to ayy: but Mr. Simon's theory does not help him to accounting for it, since he will scarcely maintain that the disiptegrating processes are more rapid in the former group than in the latter,-the very contrary, indeed, appearing to the fact. It ia to be remembered, however, that little reliance can be placed upon the numercial ptopertion of this or any other of the elements of the blood, in estimating the share which it takes in the formative processes. If the current doctrine be correct, there is a continual production of fibrin, and as constant removal of it from the circulating current by the formative operations taking place throughout the body; and the amount which circulates in the blood may be considered as a sort of "floating balance," which affords no indication of the magnitude of the two ate sof transactions which It setves ro accommodate.

Such are the meritr, in our apprehension, of the principal arguments assigned by Mr. Simon for abandoning the orthodox doctrine, and enbracing the heresy newly imported from Germany. We trust that we are as mueh inclined as Mr. Simnus to exchange old errors for new truih, provided the latter can be brought to our understandings; but we must be satisfied it is truth, before we abandon for it the doctrines that have been current among physiologists and pathologints ever since they hegan to reason correctly on such subjects. Of the objections which he raises to the current notions, on the basis affurded by the history of the ulterior development of fibrib, we shall not now stop to point out the fallacies. -1Bril. and For. Mcd. Chirnris. Review, April. 1801, p. 472.

MALIGNANT TUMOURS OR CANCERS.

By George Murray Iumphry, Esq., Doioning College, Surgcon to Addenbrohe's Hospilal, Canbradse.
[The word "destructive," if applied to these tumours, would probably explain their nature and tendencies better than the one usually employed. They are destructive, not only destroying the tissues in their inmediate neighbourhood, but also by the new tissue deposited being peculiarly liable to decay, causing breaches or chasms which may increase to a very great extent. These, then, are the leading features of ihese growits; first, degencration of the maturat tinsues around it; and secondly, the tendency to decay of the tumour itself. There ia oo doubt in the investigation of this class of grow'bs the microscope is a very valuxble means of assisting us; nevertheless, the many difficultiea and sources of error necessarily intertwined with the use of this instrument, should warn us against too implicit a reliance on the results which it has hitherto afforded us in morbid anatomy. It cannot be relied upon till the observer bas bestowed much attention and time to its use. Tiuse may cause it to be regarded as another and surer test, bat at present the science is too much in its infancy to enable us to dogmatise upon the information it afords, without giviug legitiuste weight to other considerations.]

It ie commonly agreed that the greater number of cavceron growthe conniat of a fibrous stroma, disposed in meshes which contain nuclented celle, nuclei, and gradulen, together with a thin serons or gelatinous fluid. The proportions in which these three elements are cambined, rary greatly in the different apecies of cancer. In the scirrhous or hard catace, for instance, the fibrons atructure predominates: in the encephaloid or soft cancer the cells are more abundant; and the colloid or gelatiniform cancer in composed in great measure of jelly-lihe fluid. Neither of these elcmenty examined separately are found to exhibit any decidedly distinctive characters, the peculiarity of the cancerous growth consisting not eo much in the materials of which it is composed, as in the mode of their arrangement.
[The fibrous basis of cancer seems to resemble closely the common areolar or fibrous tissue, being composed of the peculiar compressed wavy filament:, iutermixed often with well developed filaments of elastic tissue. In some cases, however, this fibrous basis does not possess so distiret a structure.?

The cell clement of cancer has naturally proved an object of much interest, inasmuch as the essence of the disease would seem to be almost concentrated in it, the rapid growth and self destructive or decaying tendencies of cancer being to a great extent proportionate to, if not dependent on, the quantity of cells developed in the meshes of the fibrous stroma. Pathologists hoped, herefore, to find sone distinctive stractural peculiarities attaching to these cells whereby the nature of the disease might be recoguised at once and with cortainty. This expectation has not however at present been confirmed by obeervation: it is the opinion of those best qualifid to judge, that cancer cells do not present any decidedly characteristic peculiarities, that they vary in appearance a good deal, that in each of their different forms they resemble some of the primary cells of other ti-sues, and that in the form, which from its frequent oecurrente in specimens of well-marked malignant diseave might be taken as the type, they are not to be distinguisthed from the eclls of cirtilage or the cells composing tie deeper layers of epithelium. Indeed some of the structures which present in a sufficiendy well-marked manner tine pac:ical thens of malimaney, do not appear to contain the cancer cell at all as an ordinary constituent; such are some of the varities of cancer of the shin and catectr of the muscular coat of the intestinal canal.

The cells commonly found in cancers, which may be seen in the fluid scraped from a section of the monhid mas", ama to which the name "cancer-cells" has been apphivd, are larger than hood-globides, of abont the same size or rather larger than pus-ghbules, compored of a tolerably well-delined cell-wall, with me, wo, or more macle, in which nucleoli tuay he often seen. The cellwall is rendered tramparent or disedved by acetic acid, the nucte being unaffected. The cells vary a good deal in shape, being round or oval, or elongated at one or both emsinao a capdate or spincle form, or they may send out processes from variow parts of their circumbermee. It is the general opinion, that they do not, at kast ordinarily, abance beyoud the cell-stage of orgaization, that they are not trm-itonal to aty olfor form of structure, but that having stfaimed to a ce-anin $4 \mathrm{z}^{\circ}$ they are disintegratel, and their constituent atoms are returged to the ficil from which they were derinel; or b! a process of endogenous growth they may beone the preats of other sec.ndary celis formed in their interior : that is to sal, thr nuctei and nucledi colarging and converted into eflls may fill up the intcriof of the prent, and at the pelind of its dissolutiou may becone st thee and utcerge like changes in their turn, the inaterials
for the growth of their nuclei being furnished by imbibition through their walle. Some authora have described the cells to itcrase by fissiparoun gemmation, and Dr. Bennett speaks much of the ir occasionally undergoing a retrograding process; the nuclei disappearing instend of enlarging, the cell-wall slininking, collapsing, becoming infilerated or intermixed with cill, and ultimately resolved into fragtuenta and granules. He finds the gellowish masses often seen in cancerous tumours to consist in a great mea-ure of cells thus altered.

With regard to the nature of the se cancer-cells, and their physiological relations to the fibrous element and to the natural tissues of the part nffected it is not easy to form an opinion. By some authors they have been looked upon as independent existences, like entozon or fungi, growing in the body and propagating themselves to distant parts through the menium of the blood by eporulet, which find their way into the circulating current, either though the delicate walls of the capillaries, or through opening in the stnall vessely. It seems to me on the whole most probable that they are the resuit of some peculiar influence exerted upon the natritive elements of the blood effused amoug the tissucs by an altered or morbid state of the nutrition of the part, being in this-respect, to a certain extent, analogous to pus-cells, whith the y also resemble, in their capacity to undergo further organization; nud in their being interminal, not transitional, stage of develupment. The two morbid products cuffer, honever, in the inportant particalar that the cancer -cells possers the property of seif-multiphication, absorbing and assimilating the elements of the blood, whereas the pus-cells are dependent for their incr ave on the continuance of the inflatmatory procass causing fresh cxadations, endut with similar temblucies to those from which they sprang themsèves. Thate are some circumstances such as the accumulations of pos in certain cavitits or abocesite, which remder to probable that even the pus-erlls exfrt a certain assimilative i..fatace upon the fluid or even the solid lymph afited in the ir imendiate prosimity, but they do so only in a slight degree, ated with a fince scarcels emparable to that of the cancer-cell. This point of differcuce betacen the probluts of inflamation and the elements of ca'cer, is of great importance, and constitues whe of the most marked featurce of their distinction.

Besiips the cella jast mentioned, there are comanonly found doating in the same fluid nuclei and grandes, witi perhaps other cells, such as those which are in proess of development into tissue, pus-cells, \&c. Oily matter, in the form of minute globules dispersed thr ugh the mass, is also a verg usual constitutent; and there are commonly found wany elements not belonging to the cancer it eff but to the stancture in whin it is preduced, such as striated mosenlar fibre, fat, ghar:alar tisue, Ec. The bhoil-vessels are often of large size, and very momerous; they are gomatly alatite.j to be derived from-an increased growth of the vessels naturally supplisiog the affected part.

It nhould be obarvid bat, ef the tso chief elements of eanecr, that they are not only internixe d in wis dan, rati proportions, but that they du notinvariably consint. In some fry instate, the chlls alone are present, being infttrated among the imbt of ti.ce athutal ofg on, or they may be intermaned with
 the subinet of matigamit di-tace, or in whem bine catuccons diathesis is strong. So on the other had ceses now fad wen wer in which a tumour, eonsisting
 hing, therffore, a tibrots qumbr, mos ex.n, it the tiestructive and inveterate gualitios of malignatnt divease. As a general ruls, the rapidi y of gewth and
the tendency to decay in a tumour are preportionate to the guantity of celly developed in it, they are greater in encephnlomm,less marked in scirrhus, and leant marked of all in those specimens of stirrhus where the fibrous element conatitutes the entire mass.

The relation which the cancerous elements bear to the natural tiesuep, and their effeets upon them, are poins of so much interest, that we must again rrveat to them. It is evident that at first the nqtural and morbid structures are tosay the least, very closely cunnected together. Most Pathologists agree that the cancerous matter is infiltrated among the original elementary parts of the parent tissues, and occupies bearly all their interstices; that in procese of time the elementa of the tissues become compressed. appear to be blended with the deposit into a homogenious mase, and gradually become atrophied and disappenr. Indeed the connection betucen the natural and the morhid structure is in some cases so intinuate, the one being scarcely diatinguishable from the other, as vecessarily to suggest the idea that there may have been not metcIy a blending but an actual transformation of the healthy into the cancerous tissue. Thes is particularly true in some of the glaudular organs. In the liver for instance, the first indication of the discase is commonly affurded by a mottied appearance, resulting from as sigit diseolouration of some of the lobulex; they retain their proper sbape and size, and the ir distinctness from the neighbourng lobules, but they are of white coloar; and the natural components of the lobules are replaced by, if not transformed into, the elements of cancer. As the disease increases, adjacent lobules are sffected, their structure is more completely altered, their individuality lobt, and they are fused into one mass.

When once the caucerous change has commenced it is almot sure to spread. The assimilative cacrgies of the marbid product are so intense the: the neighbouring tissues sield under its superior force, their own antritive powers are as it were prostrated, and they soon disappear in the same mantier ac the part first affected. Before being thas comphetely destroyed they are found in many instances to undergo certain alterations, such as atrophy or fatty degeneration, which indicate that their mutrition is impaired and that they sre rexdy to fall an easy pey to the destructive infine:ice which is encroaching upon the:n. Whether these alterations are cutirely the result of that infuence operating on them, though at a distance, or whether they are in patt alon the reault of some inhereat d.ficiency, which is the common cause both of the carlcer and the atrophy, 1 camot say, bot an inelined to think the latter is the ease. At uny rate it is a common ding to find bones affieted with cancer in some parts, and atrophied or greasy at others; the mammary gland, which is the seat of scirchus, in some of its lobules is ofton shruthen, or loaded with fat in others; sometimes you see, as in the specimen shown you on a former cicasion, a small scirrhus lunp under the nipple imieddea in a mase of fut, which occupies the eent and retains the shape of the mammary glind. In like uanuer, when a muscle is affected wit!) cancer, the fitres comignous to the morbid product, are often ohserved to be in a state of more or leas advanced fatty dege seration; their tranverae markings are indistinct or invisible, their nueki imperfect, and they are prevaded with oil. Further, although the general wassing of the hody, so commoniy accompanying the progress of cancer, may be occasioned by prin, dineharge amb various accident:al causer, it must be allowed that the dispoportionate quantity of fat often found in anch casta, both under the thiu and about the iutctash orgius, - ithat far having a remartable deep gel-
low colour-is attributable to some peculiar condition of the nutritive functions dependent on or associated with cancer.

It seems to be the general result that the figher or more organized tissuea -the striped muscuar, and the glandular-are commonly affeered with atrophy and degeneration in connection with catcer, aad the more simple and less organized tissues-the unstriped mascular, the cehalar, and fibrous-beiug less amenable to the destructive iafluence of cancer, are often hypertrophied or thickened by its first impression. We frequently find the two effecte simultaneous in the same organ; the glandular elenent wasting, becoming fatty, or replaced by cancer cells, while the fibrous element is increased to many times its natural thickness. You will not fuiget that the later also does, after a time, yield to the destructice infuences ot the disease, beiag impregnated with cancerecellis, or infected with the general tendency to docay and uiceration.

When you cut open a cancurcus tubercule, zou wil often find that, at or near the middie, it is sonteued or converted into a more or less diftluent pulp; and if such a part be examintd murectusely it is sten to have lost all regular otructure and to be composed of fragments winch appear to be the disorganized remnauts of cells and tissuc. The softenieg depends, probatlj, upon a failure. of the nutritive powers taking place to such an extent that the component atoms are no louger held in the structural relations iuto which they had been thrown, and in whith they hau been maintaned by the sital and nutritive forces of the growth. It commences saturally at we part tirst formed, viz., the centre of the tubercule, and is simitar to tat bofteming that tanceplace occasionally in simple tumours, or more fecequcit!? in scrofulus duposits and tuberculef. and is similar also to the softening and distutegration of the natural structurce often induced by infanmation. Though occurng in cancers, for the most pat as a regular or natural process, it may be indeced by any cause which prematurely impairs their vital energue, such as an attack of indanmation or a blow: Strauge and paradorical it scems that these same products siould powsess such irresistable assimilative influeace over the surrouading tissues, and sinould be so uasble to maintain their own ezistence, so liable to de, cay and dissolution.

The softening may commence at onc or more points and sometimes leads to the formation of several small cavities in various parts of tic mass, containing n turbid fluid which often looks like pus and may contain pus corpuseles. Indeed the process frequently resembies and is associated with suppuration: the sinaller cavities coalescing into a large one wheh afproacies the starface like an abcesa, busts through the skin, the softening commences on the supericial side, and takee phace earlier than when it is deep-seated. This breaking up of the morbid mase is hisually attended by some infanation of the surrounding tissues with effuaion of lymph uniting then logether and rendering them a more easy prey to the ravagea of the disease. At the same time the adjacent lympatic giauls are commonly observed to becoure iuflamed, and to participate in the malady, if they have pot done so. It is by no means uncommon for inflammation in the surrounding tissues to precede the softening of the cancer; indeed it sonetines is contemporabeous with the eariest appearatice of tic disease, and attends it through all its progrest so assiduously that some pathologists have regarded cancer to bo oonly one of the muliform results of inflamation. The cavity or ulcer commencing in the manuer just described continues to increase by the progresuive motiening and disintegration of the neighbouring cancerous tissue, so that particle after particle is seperated and forms a colnponent in the discliagge; the disease still adrancing in the circumicereuce while the dissoiution of the mass
is thus going on at the centre. In this way hage caverns are sonnetimes formed and large parts of the body destroyed. Sometines the work of demolition proceeds at a greater rate mortification succeeds to ulceration, and considerable masses are detached. Now and then, in consequence perhaps of a slight inflamatory attack, the mass appears to slough away and leave a clean surface behind; but the hopes of a cure thus excited are almost always doomed to be disappointed by the reappearaence of the disease in the side of the chasm from which the slough has seperated.-Provincial Medical and Snrgical Jonural, Ficb. $19,1851, p 85$.

ASHTMAL.

By Dr. R. B. Tomp, l.l.S.S.

What is Asthma?-I shall answer this question by stating first that it cannot be properly called a disease of the lungs-in other words its primary seat is not in the lungs: it may be defined to be a constitutional disease, which manifests itself by paroxysms of difficult breathing, with intervals of various duration, in which the patient is completely or nearly in a healthy condition.

Let us look at the more prominent points in the clinical history of asthma, and inquire how far we may found upon them an explanation of its pathology.

The way in which the uncomplicated asthmatic attack commences is generally this. A patient, we will say, goes to bed quite well; soon after he finds a difficulty of breathing come on; he camot lie down; he camnot go to sleep; the dyspma.a increases, and the attack becomes confirmed: or, what is very often the case, he goes to sleep quite well; and wakes in an hour or two with the attack oa him. When onee formed, the asthmatic paroxysm continues for some time, and passes off generally with some cough and expectoration but sometimes without either. The time of is duration is very variable: sometimes it lasts only a few hours, sometines many days.

When suffering from the attack, the patient cannot lic down. All asthmatics show an instinctive repugnance to the horizoutal posture while the attack is on, and even in the intervals of the attacks they like to lie high, and seldom lie quite flat: generally thoy are content with sitting up in bed or on a chair, or they may sometimes move abour the room. The coachman of a neighbour of mine some years ago suffered so much from a paroxysm of asthma, which resisted all treatment, that he was obliged to stand leaning forward on x table for three days; and in this crect posture he passed the whole of this time: at last he became so exhasusted that he was obluged to sit down from shecr inability to support himself. The erect or semi-erect posture is no doubt preferred because it enables the muscles of respiration to act with greater freedom, and with more mechanical power.

These attacks are very much infuenced by weather, particularly cold and demp, and by locality, as high or low, humid or dry, relaxing or bracing: and therc is a remarkable capriciousness in these respects, some persons liking a low, damp, smoky situation, some a high, dry, and clear; that which is fatal to one case will be the very best thing to another, and one person will be well where another cannot live. Sometimes persons living in London, and wishing to sry the neighbourhood, will ask you, "Shall I go to Clapham, or aball I go to Highgate-will a high or a low situation be the best for me?"' Now this if a question that it is impossible to answer with certainty: for very often that
which would seem the worst will turn out the best. I have known asthmatics better on the banks of the Thames than anywhere else; on the other hand I have known some greatly relieved by going to a high situation. Dr. Watcon has some interesting remarks on this subject in his valuable lecture on asthma, and relates some curious cases in illustration of the uncertain influence of locality in checking or promoting the asthmatic paroxysm.

Then, sometimes we find shat asthma is brought on by certain specific irritating agents. We a!l know of hay-asthma: that if certain individuals venture within the range of a hay field. they are seized with sneezing; coryza, profuse lacrymation; and other symptoms of irritation of the mucous membrane, accompanied with a distinct asthmatic paro:ysm. Similar symptoms are broinght on in other people (but such persons are much fewer) by the volatile eflluvium of ipecacuan, or by the presence of very fine particles of dust floating ja the atmosphere.

In azthrua the respiratory efiorts are greatly exaggerated, in consequence of the sensation of the want of breath-the besoin de respirer of the French; a eenation which any one may easily experitace in his own person by simp!y puttiag his face into water for a few seconds. Uuder the infuence of this a stroug feeling of the want of breath, large quantities of air are drawn in, and so great is the effort of ingpiration that the noise wheh it occasionsmay be heard for a considerable distance. What results? The air-cells ofthe lunge become dilated; and the whole lung experiences a proportionate enlargement, and the externul configuration of the chest is altered.

The state of lung which is prounced by astima, is that which has been culled by Laenuec emphysema-x a nanc not hajpily cioosen, as it implies what really does not exist, namely the infiltration of the lung with air, the existance of the air in extravesicular tissuc. If the asthoatic attacks continue for any great length of time, and are severe, we find further iajury of the lungs taking place; the walls of the air-ceils suffer in their mutrition, and some of them, already dilated to their utmost extellt, give way; threc or four, or more, become fused into one, and form large irregular cavities, which are distributed among the healthy pulduonary tissue.

But, besides these changes in the lungs, the repetition oi the asthmatic paroxysms leads with equal certainty to morbid changes in the heart. From-the obetruction that is offered to the circulation through the lungs an undue amount of work is thrown on the right ventricle, which of course becomes more or lese hypertrophied; at the same time the mesines of the pulmonary capillaries becotae eularged, and no doubt experitace some change in their vital properties whereby the circulation in them is retarded. This affords an adidional means of obyuruction through the lungs, and therefure an additional cause for hypertrophy of the right side of the heart, but as the backward pressure of the blood on the heart becomes increased, the right ventricle becomes not only bypertrophied, but dilated, and the dilation extends in a retrograde course to the auricle, and thence to the large veins, as that in the advanced stages of this disease it is not uncommon to find venous regurgitation, and more or less congetion throughout the whole syatem. In the early stages, however, none of thene conditions exist. You may have the most exquisite asthmatic dyapncea without its leaving any perceptable deviation from the healthy standeṛ eitoer in the heart or lnngs, or at most no sore than may perfectly recover itself when the paroryom passes off. This is tnore likely to oicur in children, because their timues have a greater power of recurery from their-greater activity of nutrition.

Such cases as these would alone be sufficient to prove that asthma is a disease essentially iddefendent of any organic lesions of heart or lungs, though frequently accompanied wy them, nggravatel by them when they exist, and always inducing them if it is of sufficients lot, continuance. And it is remarkable how soon these lesions may be thus iucuced, how short a continuance of athma will be sufficient to give rise to exident signs of organic change in the heart and lungs.
[In this case, though the patient on'y had asthma three month, and for the greater part of the time not everc:?, yet he is alrealy found with a barrelshaped and unusually resonant chest, dilated thoracic parietes, and the heart so displaced and diated in its right cavicies as to buat in the a egion of the serobiculus cordis. Dr. Todd continues:]

I look upon this hast sigu as che of the most characteristic symptons of asthma, and I consicice is pressine in ans cuse where 1 suspect asthma as a clear configuration of the corrcetress of these suspicions. la accordance with this view, in examining a paticni whom I suspect to be asthmatic, one of my first steps is to apply my fager to his scrobulus cordis; if I find no beating of the heart there, my conclusion is a contagent begative; but if i find it beating there ard not in its natural position under the nipule, my conclusion is a certain affirmative.

If you trace up the disease to the point of its first appearance, yon will generally find that the first atteck came on ether without any assignable cause, or after some indiscretion as to diet-or after some impprudent exposure to weather; the patient went to bed well, and in every respect in his usual health, and woke up asthmatic-but once havigg made its appearance, it renders its victim ever after liable to its recurrence.

A remarkable circumstance is, that it is often inherited; the father or mother have had it, or it may have lept urcer a generation,-the grandfather may have been asthmatic, and the intervening generation not so. Once that the asthma has fairly established itself in any individual, it may be brought on by any slight cause, even the :nost trivial disturbance will be suficient to excite it,-ctaiarrh, icuigestion, irtegular hours, nental excitemect, violent exercise, change of temperature, change of place-any one of these may bring on an attack. Now, if you inquire natrowly, you will generally find at the root of the disease some fault in the prinary assimulation: you will find that the patient has learncd to avoid certain things; that he is not at liberty like other men; there are some things of which he dare nct partake, or, it he dogs, it is done at the price of an attack. And you will likewise find, on locking into the patients secretions that they are altered, that the urine is lithic, phosphatic, (most frequently the former), or presents some deviation from the healthy standard. Very often too, you rith fud the athack ushered in by a pecuiar concition of the urine, either such as I have just mentioned, or urine resembling nerrous hysterical urine, abundant, clear, and pale, and of very low specific gravity.

Now all these points, -the periodical recurrence of the attacks, the perfect or nearly perfect health in the interral, the absence of ary organic change, she associated humoral disturbances,-a!l bear in the most interesting way on the pathology of this malady. They tend to establish a remarkable analogy between asthma, gout, and oome other diseases. As in asthra, gout comes os quite suddenly-there is no warning: a man may go to bed, quite or neanly well, and he will wake up early, th the morning with a fit of gout on his great 2oe. There is another disensc, rpilepas, in which we have exactly the asuie
phenomenon; n patieni uith or without warning, talls donn foaming, livid and convulsed; the garosysm goes off, and leaves him in his ordinary good health and he may go on for gears and not have ano-her. Again we know that a fit of the gout leaves no organic leison if it occurs once or twice: but if it is often repeated, it leaves permanent injury ia the jounts that it attacks. We may observe the rame with respstt to cpilepsy. If a paicait has sufferd only one or two attacks, you will fud no change in his brain; but if he has had several you will. The disease esidently consists esetratidity of sometbing atached to the benin, and not existing in it. The sathe too of astima, the orgnilic changes are all secondary, and a few attioks leave no trace behind them.

All this leads us to suppace that the parion an of asthat has something in common with the paronyan of gout and the parozysm of epilensy. Of the two, I prefer to take the amagy to gout, occause we have more definite and coherent idess about gout, and we are th. re act uatated with its fact pathology. The theory at present most in farour vibia res.rd togeut is that it is a disense of asaimilation, and this defective or vitiated asninilation gives rise to some materia morbis. When this matter is eliminated twan the system, ihe attack passes off; when it accumulates, ibe attack cones on. Ianshma, defective assimilative power is a frequent coincident. Gout, too, and sheu:natisa, and all humoral diseases resemble asthma in being inherited.

When the materies morbi of asthana has been generated, its effect is to irritate the nervons system, not gererally but ccrtain parts of it, those parts being the nerves cuncerned in the function of ruspiration-viz., the pueumogastrick; and the nerves that supply the expiratory muscles, either at their peripheral extremities, or that of their central tenmisasi.a in the medulla oblongata and spinal cord; extreme diffieulty of breathing is the result, and as a consequence of this, ultimate disease of the luags.

Thus the occurrence of asthma in paroxysms would be sccounted for tanch in the same way you would cxplais the eccarrence of gout in paroxysms; and in the intervals between the atracks, the patient being of asthmatic conatitution, so to speak, is easily thrown iuto the paroxysm of asthma by causen which would but slightly influence other men-as cold, impure air, mechanical irritation of the respiratary passages,-just as gouty men may readily be thrown into the gouty paroxysm by causes comparatively trivial.

This seems to me to be the most reasonable exposition of the pathology of asthma.

Now we often hear physicians of great and deserved repute speaking of spacmodic:asthma. I need not tell you that the bronchi possesses a mascular coat, consisting of the circuler fibres of the unstriped, for it has long been pros ved not:only by microscopical observation, but by the most satisfactory experiments. It is in these circular mascular fiores of the brouchi that many pathologists localize the spasm, to which they ascribe all the phenomena of asthma.

The first link in the chain of efforts of the linmediate exciting cause of ambras would be, according to them, spasm of the bronchial tubes, then dyspeea. Undoubtedly a state of spasm of the bronchial tubes would produce a geeat deal of dyspona; but what I want to point out to you, is, that this state of spasm or the baronchial tubes ought rather to be regarded an one of the accocapanimente, one of the phenomina of asthma, than its cause. The feeling of beeathlesiesa, or, in other words, a peculiar state of certain nerves and of a certhinsmervons centre, the centre of reapiration, is the first lisk in the chain of
usthmatic phenomens. The spasm of the bronchi follows sooner or later npon: this and often it follows so quickly upon it as to appear to come simultaneoudy with it : does it ever precede it? l doubt this.

Undoubtedly you may have severe asthma without severe apam of the bronchial tubes. I remember a well marked instance of this in a gentleman whom I attended for chronic disease, cancer as I thought, of the liver. For nearly a week beforehis death he suffered from the most frightfully distressing asthma, which nothing could control, and which lasted without interruption till he died I examined his chest repeatedly at all parts, and could hear nothing but the most perfect, luad and peuriie breathing, which is quite inconsistent with a state of spasm.

Again: section of the vagi nervea of anmals produces phenomena exactly like those of asthma. Whatever be the cause of the dyspncea in these cases, it is clear it camot be bronchial spasm, as the muscles of the bronchi would be paralysed after section of their nerves.

There is-one thing that I have obsrved, which has an innortant bearing on this subject; that in that particular form of spasmodic disease which I-have no doubt in your future practice you will have many opportunities of witnessing laryngisnus stridulus, the crowning inspiration of chitdren, there is a ronchus all over the chest, simulanious with the convulsive atiack. The moment the convulsion comes on, when the eyes become fixed, and the child begins to inspire with difficulty, if you put your ear to the chest you will hear a ronchus pervading the whole lang. The moment the recovery takes place, the ronchus ceaser. And it is very interesting to notice that you may observe the very same thing in the ordinary covulsion of children, in which the larnyx is not prominently. engaged ; and I suppose no one would pretend to locate these diseases any where bnt in the nervous system.

Hence the conclusion that I draw is this, that the spasm is the accompaniment, and not the cause of the difficult breathing that accompanies or followe upon the neryous changes, just as it does in laryingismus and in the ordinary convulsions of infants.

So much for the pathology of asthma; as to the reatment of this diseave our attention must be directed,-1. To obtain relief to the paroxysms, and,-2. 'To improve the patient's constitution in the intervals of the paroxysm.

First, in the asthmatic paroxysm you must inguire into the immediate exciting cause, and endeavour to remove it. With this view an emetic, by emptying the stomach, will be often found useful; or if the quality, not the quantity of the contents of the alimentary canal is the source of the evil, an alkali, will be found beneficial. Stimulants are sometimes of essential service, especially when the long-continued circulation of imperfectly arterialised blood has deadened the sensiblities, and so for lowered the powers as to render the expectoration of mucus difficult; one of the best stimulants is sulphuric ether, of perhaps the chloric is even better, from its tasteand smell being so agreeable. Ether, in combination with opium, will often be found of great service. But perhaps sedatives constitute the class of remedies that has met most favour in the treatuent of asthma, and epecially the different members of the order, Solanaceac;-as ligoscyannus, bellacionoa, tobacco ; but beiore anà above all; both in the frequency of its employment and its real value, stramonium. "his medicibe mixy be given in various forms,- as an extract of the seeds, in doses of from gr . \neq to gr . ijj., or in the form of a tincture, in froin ten minims to half-drathe doser ; but more frequently it insmoked, and for thie purpose the whole plant
leaves and atems, are used; it is dried and cut into small pieces, and smoked in a pipe, or the leaves alone are dried, and rolled up in the form of a cigar.

- I here show you some of these cigars, which have been put into my hands by Mr. Savory, of Bond Street ; but I must tell you that these are not, strictly speaking, strumonuium cigars; being made, not of the Datura Stramonium, but of the kindred species, the Datura Tatula, which is said to be even more efficacious than the more generally used species.

Lastly, we fimi a valuable remedy for the asthmatic paroxysm in cloroform we know how in other cases it influences all those functions which are ministered to by nervous influence, and in its efficacy in asthma we have an interesting physiological experiment, and an iupportant lasson with regard to the true pathology of the disease. But in the admimiotration of chloroform I would give you this two fold cantion:-first to give it gradually and cautionsly, and not in a full dose; not to produce insensibility, especially if there be anything like blueness on the surface, because, though rentedisl to the asthua, it will tend to increase those very consequences which are most to be feared from the circulation of veinous blood. Seconaly, to impress upon your patient that he must never give it to himself, nor without the presence of a medical man. This case was related in the papers the other day:-A person who was in the hubit of curing his attacks of asthma by inhaling chloroform, when administering it to bimself one day, and when in a state of half subjection to its influence to produce the full effect placed his handkerchief on the table, and buried his mouth in it; his insenciblity became deeper and deeper, till at last he was too far gone to be able to raise his head. He theretore continued inspiring it, his coma became more and more grofound, and a short time after he was found in that position quite dead.

Secondly, the treatment of the intervals between the paroxysms should be directed to improve the digestive powers of the patient and the tone of his nervous system; the diet should be very carefully regulated both as to nature and quantity ; atd this is of all things the most imporiant to occupy the attellof the medical attendant. The ailmentary canal and the secretions geneally ahoild be kept in a healthy condition; exercise, the hours of rest, and in fact eacry thing that bears on the general health, should be systematically and rigidily superintended; and I am sure that treatment of this sort will always be found of substantial advantage. Another thing having the same object is cold or tepid effusion, either by sponging or hy shower-bath; but cold, while very servicable to those who can bear it, is often too much for many people, in whom oo reaction take place, the coldness continues and drowsiness is producd. Such aymptoins should always be looked upon as contra-indications to the use of cold sfution.

Now before I conclude, I will say a word on the relation of emphysema and asibma. Are these two diseases related to one another as cause and effect? and, if so, which is the cause, and which the consequence? To determine this let us see what emphysena is, It is a state in which the lungs are rendered more capicioua, in which the relation of the ultimate element of the lungs are ia some measure deranged, and the pulmonary capillaries altered. Now is this state of increased capacity a state capable of producing such a dyspocea as we ree in asthma? I cannot think that it is, athough this increased capacity is attended with other conditions tending to diminish the efficient aeration of the blood, and, therefore, to the production of dyspnca. But it will not explain the periodicity of the attack : emphysema, is constant asthma paroxysmal. Ou
the other hand, asthma is clearly an efficient canve of emphysema; the asthmetie condition is jut such as prodnce those phasical changes that constitute emphysema. It is confirmatory of this veew, that emphysema comes on gradually, and that it bears proportion to the length of duration and severity of the asthma: If a person has had a few attecko of asthans he has no emphysena; if he has had many, be bas; the a thana precedes, tie evphysema followe.

This then is the conchusicn I come to, -that asthma is primarily humoral; that it is caused by a poison or morbid mater acting on that portion of the nervous system which miansters :o the function of respiration; that it leade to dilitation of the lungs and the walls of the chest, to emphysema, and ultimately being no lunger created, the patient ceases to be asthmatic, just as a peroon ceases to be fouty or copieptic; and that, etasing to be asthmatic the patient may retuaiu, or may not remain cmphyst matous, according to the severity and duration of his previous attacks.-LIfedical Gazette, December 13, 185̈0, p. 999.

NECK.

iby Mr. P. Radflas.

This always presents great difficuhties when the tumnours are of large size, only slightly painful, and Ructuate indistinct?. If a complete and accurate history of the case camot be obtained, more than a general diagnosis may be impossible; but when the precise position of the tumour at its commencement can be made out, when its relations to the laryun and irachea, and its nobility in regard to them and the surrounding parts when it was of small size, can be atcertained, together with the rapidity and manuer of its growth, there will be little difficulty in arriving at a satisfactory conclusion.

A tumour developed in the substance of the thyroid body presents itself in the front of the neck, is usuaty larger on one side tian the other, is firmly connected with the larym and trachea, moves free!y with the laryns in deglatition, and when it is displaced laterally by manipulation. The other features vary, with the nature of the tumour.

In ordinary lronchocele (hypertrophy) the swelling is soft projecting, elastic ; withour fluctuation, pain or tenderness on pressure ; it occurs usually in early lifis, in the female sex, and in particular districts of country ; it is simple in itts nature throughout, and presents no tendancy to degeneration or change of structure, jt in no way interferes with respiration deglutition, nor does it affect the patiente health or comfort until it becomes of very large size, when difficulty of respiration and deglutition, with frequent headaches, occasion the greatest distrespand may end with the death of the sufferer.

In cystic disease of the thyroil the nature of the tumour decomes manifest, sooner or later by the presence of fluctuation in one or more cysts, by a glairy, serous, or sero-sanguineous fluin cecapeing rapidly along a grooved needle whep introduced, the fluid containing no cellular formations when examiced mictoi-: copically, or having such a structure as is inconsistant with the idea of the exif: tenee of cancer, - by the formation of the tumour taking plaee at or after the midde of life,-by its slow and painless growth, and by the slight inconvenitence it occations as long as its size is not very great.

In Cancerous disease of the thyroil (usually scyrrhus) the patient beiug between forty-five and sixty-five years of age, is of great and uniform density and generally paiuful; it is developed rapidly, and may attain a large size in the course of a few months; it accompanies the laryux in its movements, shortly limits their extent by attaching the organ to the surrounding parts; it occasions great difficulty of deglutition atd respiration from an early period to hoarseness, cough, and spasmodic action of the museles of the larynx, and pains come on and increase in their intensity, -the distress and anxiety of the patient, his sallow complexion and emaciation, marking him out as the subject of a steadily advancing and destructive malady.

In medullary cancer of the thyroid the surface of the tumour may be even and tense, or indistinct fluctuation may be perceived, the other characters depending on the steady infiltration of the surrounding textures, distinguishes the disease from other tumours of the eame part.

Enchondromatous tumours are to be recognized by their great density, the slowness of their growth, and the absence of any sigas of the extension of the affection to the surrounding parts, and of general evidence of the existence of maliguant disease.

The diagnosis of tumours of the nech, not connected with the thyroid bedy, is to be established by refurence to the general characters which distuinguish them in other situations, every particular of their history and mode of growth having been carefully ascertained as essential points, and sufficient care being exercised in the presence of a quantity of coagulable fluid, in the interior of a cancerous tumour, Jead to the belief that it is of a cystic character.

I shall complete this paper by a short consideration of the important ques-sion,- Whether or not fibrc is an essential clement in the structure of cancer?

Much difference of opinion still exists as to what are the parts of a cancerous growth which are essential to it. Professor Bennett states that fibres, cells, and a viscous fluid, are the three essential elements of a cancerous formation, Labert regards the cancer-cell as the only distinctive, constant, and essential element, the predominance of one or other of the accidental and secondary elements determining the varieties of form and appearance; yet he regards the fibres as next in point of importance and frequency, and speaks of them in encephaloma as pale, fine, and in a small quantity. Muller says that the fibres of encephaloma are indistinct, and that the fusiform cells are arrested in their development into fibres; whilst Vogel states, that in encephaloma fibrous structures are wholly absent. As has been before remarked, it is excessively difficult to state whether the fibres which are found in many tumours are really cancerous, or whether they belong to the proper structure of the organ in which the tumour has been developed; and consequently, careful examinations of cancerous formations in organs which contain no fibrous tissue in their healthy state, become of extreme importance in leading to a true determination of the mode of developement and actual position of the fibrous element in cancer.

From the esamination of cancer of the brain, and of numerous cases of encephaluma, I am led to believe that fibres are by no means invariably to be found in such gowths, and that their fibrous element-is accessary and non-essential. If this be so, the existence of fibrous tissue in most cancerous stractures remains to be accounted for in either of two ways,-viz., by hypertrophy of the normal fibrous tiasue of the part, or by a new development of fibre from
the recently-diffased blastema,-a develapment commonced and completed ur-

 ent on the absence of tibres in the rimina! and le, hilhy thature of the organ.-
 the Dagnosis of lumums of the beck. ('undinald fom the last number.)

ON THE SPECIFIC GRAVITY OF CERERRUL S[DSTANCE, AND ON ATROPHY OF THE BRAN.

 By Ju:n Churi: Fuctindi, M. J. Lemton, Pbysician t.) the Devon County Lamate A-ybur.Ititherto, in pathological dencrifnion of the cerebral substance, the terma softening and induration have been ased in the move borse mat uavertain maners

 These decided changes are found whera hatied patamo only of the organ are affected: Unt when these phationgi al changrempheate the whole of the brain, death takes piace before they hate proceded so far as to leave very semible aud appteciable alterstions of strecture.
N. Guisham, in his recent wotk on "Les Parentepathies," rematk on this: subject-"In taking our seuses for guades we are liatle to deccise ourselves. That wheh we call ranoblissenent is othy a pathohgionl state arrived at ito: 'summum', of disorganization; but does not this disorganization already exist in the intimate structure of the primitive fitues before having alsaned that visible point of sofmess which consitutes visible samolliscment ${ }^{\prime \prime}$

The brain of a patient who has died of debrinm tremens, of the deliriom of fever, or of some forms of insanity, is iot cobiously different from that of a man who has been cut cfi in the midst of hahb by some sudien aceident; yet we are unavoidably impelled by our casualty to reter the death win the former instatees to some chayge in ibe bratn, which the perfection of our senes prevents us from coserving. Pehaps this change is in great measure chemicals; and observations now pending, tady succeed m fiang the cause of several morbid conditions of the nervous system on alac quatity and state of combination of the phosphorus comtained in it.

Perhaps this change is for the most part molecular. Tine fusctions of the. brain may only be perfected witn a cortain de fante arrangenent exists but कere its reasels, centis, and tavules, favourable to the regulated passage of the contents of the one ino the other, ana to the developeneat and ins minange of elecon trical affoites. This arrangement may be disartanged without adiditon to of abstractiou from, the material of the organ, as in the sudden loss, of all function-
from concussion. Frefuent concussion alters the molecular arrangements in the sxles of 1 e ebative engites prosatang britulencss franglet with the most perious comegtences, but giting the exerted sigh that the fough metal has lost its tempre. S, a blow on the head w. 1 hat a man abituat leming aty change as yet diewverathe either hy the do mint or mictovopist, perhap this mystery will hereater be maveiled to the latter.

I do not believe that the brain is nothing more than a galvanie battery "perfectionated," but the two late so many p.ints in common, that for a long time prot a legitmate abalogy has been citana between :hem. Pursuing thas anal gy, we fid that the worhing of a g tivanatiobatery may be iopared by the ligad in the enlis bee ming neutralized, by the disarragement of the piates, or by interpestion of aty substance hoving freble puwers of conduction; on the other bant, the fumetion of the hran may be inpared or internuted by at alteration of the nutraive flati; by a suden stanch which may disarange the vesicles and iumbes; or, thirdl, io the interposition of intre materal between its active molecules. It is to this last eondition in particular that I an anxious to directatemion.

The interposing matcrial may ion albamionas, or fatty, or serous. An albuminons deposit petveding the batin appars.o be the condition known as hypertroply of that organ. This condition is rare. Out of 2 ± 0 autopsies of insane patients, I have only met with one.

The depositions of fat'y material in the brain is a subject of derp importance andinterest. In axaminisg circunseriocd softeriogs weder the mieresoope, I have alnont invarishly fonod a great increase of fat-ghobules; but as yet I have been umable to satity my welf whether, in any changes pervading the Whole organ, the fatty material is i:ereased.

The deposition of seron; fluid throughout the substance of the organ, is a freguent condition, and is I think, constart in cases of general paraly-is, dementa, and all form of chronic meotal divease aceonamicd by loss of power. Those cases, however, which are occasioned and accompanicd by epilepsy, form an cxception.

I have long felt the want of some trustworthy measure of the relative amount of the sold ated fluid constituents of the hrain. The best morbid anatomists lave been in the habit of deseribing the brain as denser, or softer, or more watery thannaturah, win about as mach accuracy ss ase say the day is codd, when we feier to our own sensathons, and not to the indications of the thermometer. We know that these later sensations often Affur in different indiriduals, to the amont of a great-coat or two a ad we nay expeet that the unassiated senses will not always be very accuate in the former case. If, when examininga diseased bran we could always have a hedhy brain before us, as a standard of comparison, we might by the resistance opposed to the knife cr to therfuger, form a fair approximation to the truth; but facilities for this comparative exmmination are not often attainable.

For several years past I have sought to meet in some degree the afficuly, by enichovors to ascertain the specifie gravity of healthy and diseased brain; andit-my antu:al report, which I presented this ime last year, I gave a tabular statement of thiry-iwo case, in which the spreitic gravity of the ecreorum and cerebellum, the weight of the brain, and the capacity of the cranial cavity, had been accurately ascertained. I appated bereunto a.similar table of thirts ather cases which I have examined during the current yerr.

In commencing these investigations, the unfitness of the hydrostatic balance for the rough purposes of the poas-mortem roon, led me to think of and adopt the simple expedient thus described in my report: "The sperific gravity of the cerebrum and cerebellum is ascertaned by inmersing a portion of each in a jar of water wherein a sufficient quantity of sulphate of magnesia has been dissolved to raist the density of the fluid to the point required, adding water or a strong solution of the salt until the cerebral masa hangs suspended in the fluid, without any tendency to float or sink; and then, by testing with the hydrometer, the specific gravity is thus found with great delicacy and facility, a difference of half a degree in the density of the fluid being indicated by the rise or fall of the substance imanersed. The soluble salt is chosen for its possessing no stringent or condensing action upon the tissues. In these eight cases (of general paralysis) the average specific gravity of the cerebrum was $1039 \frac{1}{2}$; the highest, 1042 ; the lowest, 1038. The avarage of the cerebellum was 1042 ; the highest, 1045 ; the lowest, 1037. This is below the specific gravity of healthy cerebral substance, which may he taken at 1046 . The only notice I find of the specific gravity of the brain is in the chemical analysis of M. John, quoted in Mr. Soly's work, and is stated at 1048. Upon these grounds I submit my right to assuase, that in general paralysis the density of the brain is diminished."

It is not improbable that this new methorl of investigating the condition of the cerebrum may lead to important results. Some parts of the organ have a greater density than others; the figures, however, refer to large pieces of brain containing a fair proportion of vesicular and tubular substance. The cerebellum has generally a higher specific gravity than the cerebrum. In only two out of sixty-two cases has it been lower. In many instances I tonk the specific grevity of the whole organ, but tinding that it was impossible to free su large a mase from air bubbles, I disearded the result as untustworthy.

A low specific gravity does not necessarily indicate a diminution of cohesion or the cummencement of ramollissement, although it points in that direction. A brain might acquire a low specific gravity from an increased quantity of fatglobules in its tissues, while retaining its sormal consistance. I believe however that fat tends to accumulate only in softening brain, so that possibly this course of error may not exist ; bit it is neverti.eless a point of the utmost importance to determine. how much of the diminished specific gravity in brain-tissue is to be attributed to the effusion of serum, and how nuch to the accumulation of fatty matter. This question may be resolved by treating the substance with ether, and by evaporation. I am convinced that in circumscribed softening of the brain (true ramollissement) the low spec,fif gravity is to a great extert owing to the amount of fatty matter deposited. In the last case on the preceding table, the specific gravity of the cerebrum generally was 1041, while that of the softened parts was 1035 ; and, on examination, this pultaceous substance wie found pervaded with an immense quautity of fatty matter. The pursuit of these sources of fallacy will open up a new ground for investigation.

Is the serum effused into softening brain imbibed into the vessels, or does it remain interstitial? M. Guislain, states that " these cells of the fundamental tissues of the grey substance present themselves ten times larger than their normal state. In ramolissement the serum escaped from the vessels penetrates the interior of these cellules and provokes their distension. It is a true imbibition." After diligent search with a frat-rate instrument, I have been unable to observe
these intmerse vesictes: and I think that the loss of cohesion in the brain sub. stance would also indicate that for the most part the effused serum remains interatitia!.

Ihave foum that in sme dieases which oceasion a loss of epecific gravity
 for an intersitial aropils. The ahhional huid which makes the brain light probably goes to make up for interntial arrcphy, but it does not wholly make up for it, and the brain shrinks from is ionse-ciase. This fact is pretty evident of serous eff sion into ihe meshes of the pin mater but prove it more satisfactorily by ploging the foramias with clay, re-ndjusting and lating on the calvarium, with the dura mater attached, and ascertaining the precise guantity of water at 60^{2} Fahr. which the empry craninn thus $\boldsymbol{j}^{\text {rppated will contain, und }}$ by comoaring this measurement whin the weiph of the brain.

In the diseacs accompuied by low specilic gravity, the absolute weight of the ibrain, as compared with the copacity of the craniun, is diminished to a gocater degre than cata be accomuta for ty loes of specilic weigit; and on the other hand, in epitepsy, apoplexy, and cerebritis, the weight of the brxin, as thus compared with capacity ot the cranuan, exceeds the standaid of health.

I'robe or Sharpay has kindly pointed out to me, that to perfect these comparisons, it is desirable to ace rain the quantity of water which the brain will diphate ; this compared with quanity which the cranium will hold, will show the amoant of actual atrophy. Thisplan I now adopt.

I have in this place restricted myself to observations on the brain, reserv. ing to a future occasion some remarks on the specific gravity of other organs. The simple and easily applied hydrostatic test I have described is ex'romely weful in pointing out the early stages of fatty degeneration of the heart liver and kidney; and with a handful of Epoon or Glauber knlts; or even of singar, and an hydrometer, the morbid anatmmist need never be at a loss to decide whether or not this interesting change has taken place in any of these organs.

The cases in the preceding table wpre all of chrenic character; the specio fic gravity of the cerebram ranged from 1056 to-1046. The inble 1 published lasi year contained a fiw acute cases, and the specific gravity of the cerebrum. ranged from 1036 to 1052.

In the present table the average specific gravity of the cerebrum in 1040.9 ; that of the cercbellum, 1043. In three cases of gebrinl paralysis, the closing sympons being convolsions and comi, the specific: gravity of the cerebrum was 1040. In two other cases of the shme disense, the closing aymptoms being E-adual faliure of the powers of life the specitic gravity was :036 and 1039 , Similar facts in epileptic cases would appear to indicste that the appecific gravity of the braity is higher when life bas terminnted in coma or asphy xia than when it has ended in syycope or asthenis. No. 930, an epiletic pntient, d'ed auddenly. of syncope from disease of the mitral valves, wud the apecitic gravi:y of the cerebrim was only 1037. In other cases of epilepsy, with final syinptoms compounded of asphyxia and coma, the speciti: gravity has never been below 1040, and has reached 1049.

In the preceding thirty cases, the average capacity of the cranial cavity for water at 60° Fahr: was $48: 2$ anid ounces (npoth;); the average weight o: $^{\circ}$ the bruin was 43.8 ounces (uvoirds.)

These invectigations are as yet too young to fructify into trustworthy
deductions; hut I thank they will establish the existance of two kinds of cerebral ntrophy-amely, positive atroply, sad intcrstaial or relative atrophy.
 an actual shrinking of the brain, and by relative atoophy an iatorstitial change, wherein the active cerebral molecules suffer dimimation, and inert natorialis are depo-ited. It will be wali to vestriat the term ramollisifment to the circuanreriberd and decifled sofinnitig to whicin it was in the first instante apphed. -Lundon Lancet Feb. 1853.

PRACTICAL REMARKS ON TIL DISLASES OF THE EXE.

 By Dr. Jamss Dizon. Eq. F. R. C. S., Surgeon to the tomdon Ophthatmit Lospital. On Seb-Conjenctival Dislogation es mie Lews.
 causes of this. Prognosis af ruptared sthine not nccesstrity hippeless; trcutment.
That the seletorit and chorsod shotid the extensiedy ruptured the corjance tive remaining uainjured, and that the jens, slinging ont through the remt, should become lodged betheath the wnbroken conjunciata, would a prior appear a most improbable occurrence. Such accidents, however sometimes come umier the notice of ophthalnic surgeons.

The errlifat history of the kind with which I am acquinted, is that briefly related by Edmonson, in his "Treatise on the varieties and eonsegnences of Ophthaluin," 太c. A•Kenzie, in the first edition of his well known work, described a case, and in a laser edition, illestrated it by a sketch, taken ohornly after the ingury. 'I'wo other cases were seen ing bina; and Hant, Middemore, Van Onsenoort, Francke, Walker, Desmarres, Rivaud-handrean, Barcier, Pope, France, and Chatinick, have descrioed with more or lest detuil similar cases which have fallen under their motice.

I never myself had an opportunity of witnessing sub-coriunctiva! displacement of the lens until within the last year, during wheh pericd two cases have occurred at the Ophthatmic Inospitat, Msorfields.

1. The firet palient received a blow-nith a fist, which ruptured the scleroiia above the cornea, and forced out the fols under the conjunctiva at the same spot. The ifis was not torn; but after the lens had been removed, and all irritation had mubmided, the pupil remained drawn up towards the wound, and vision-was limited to mere percipion of light.
2. The of cond patient was struck on the eye with a picce of wood he was chopping. The rupture took place to the inner side of the cornen. The iris was in the snare condition as in the preceding case, and vision inpaired to alunost. the same degree.

It was hardly to be expected that an eye, after undergoing such extensive injory as rupture of choroid and selerotic, with loss of leins, shonla still retain much sight ; and yet a case came under my own observation, in which the organ not only sustained this anouns of injury, but loss of the rehule iris also, without the function of the retain being destroyed. I did nat see the patient until eight thoithe after the accident, the precise nature of which could only be deduced. from the existing state of the eye. i description of the case way read before the Medico-Chirurgical Society, but was too short to be offered for publication in
their Transactions. I therefore aubjoin the account, showing the appearnces presented when the patient came under my care.

Maria MP——aged torty-wine, received a blow with a fist on the left eye. The lids became much swolten, and she suffer de great pain fur some weeks; bit she had no medical advice untal she applied to me eight months after the acceident. The cornea was then bright and clear, but all behind was dark, and no iris visible. On rasing the upper lid I noticed a very faiut bluish mark, about three lines long, just above the upper edge of the cornea. It seemed as if the sclerotic had been divided there, and afterwards repaired by substance rather less opaque than the original struciure. Three or cour litte dots, like particles of black pigment, appeared beneah the conjunctiva, close to the mark in the aclerotic.

The pationt kept ber hand over the injured eye, finding that otherwise the light dazzeled it and so interfered with her making good use of the sound one: By means of a convex glass I threw light into the eye, to discover what had become of the iris. 1 could then see into the posterior chamber, and distinctly perceive the surface of the retina : but no vestige of the iris could be discovered. I held a lighted candle before the eye to ascertain the condition of the lens. A single upright image, seflected from the cornea, showed that the iris was also wanting. Vision was limited to the preception of large objects. She could distinguish the form of a sheet of paper, but could not see letters printed on it. I made her look through a magnifying glass: to her surprise she could then make outsome of the larger capitals. I added to the glass a card, perforated by n small hole, and she saw every objcet distinctiy, and read a "brevier" type. By thesetwo expedients I had temporarily supplied the lost parts of the organ, the glass acting as a crystaline lens, while the perforated card screened the retina in the mamer of an iris.

It appears probable, therefore, that the blow she received had ruptured the coasts of her eye-perhaps the conjunctive also- and at the same time, had conpletely torn the iris from its ciliary attachment; both lens and iris escaping through the wound, and the rent in the sclerotic afterwards healing up.

The most curious feature in the case is this-that after so extensive an injury the function of the retina was preserved, while the vitreous humour had been so far retained that the figure of the globe was but slightly altered, and its bulk not appreciably diminished.

Some of those who saw this patient, although unable in account in any other way than I had done for the manifest loss both of lens and iris, had difficulty in reconciling my expressed opinion of the nature of the accident with the very isint traces ofinjury visible in the sclerotic. But an excelleat illustration of the extent to which a breach in the coats of an eye may be effaced wass afforded by case 1, related above, in which the lens was disclosed under the congnenctiva, and removed from that situation by one of ony colleagues; and yet eight months aftet the accident the position of the wound in the sclerotic sould scarcely be traced, except by a few minute dots of black pigment which had had been carricd out with the leab, and bezome ledged under the eunjunctiva. The appearance of this man's aclerotic resembled so clozely that of my patient, Matia ME-—, even to the acattered dots of pigment, that to give a drawing to his eye mould, in this respect be almast to copy hers.

From the recorded cases of eub-conjunctival dislocation of the lena, it
would appear that the point where the sclervicic usually gives way is either above the cornea, or to its inner side. Anong twenty-six patieuts, I do wot find one instance in which the sclerotic has been torn below the cornea or to its outer side; nor have I my self ever observed suin to be the case when rupture of the sclerotic, without displacement of the lecio, has occurred. Now, as the selerotic is equally thick and strong at all the ;eints of any ciccle drawn concentrically to the circumfercuce of the ct, mita, the rupture, if it vere produced by direct violence, would as often occur at onc siie of the ejeball as on auother. But it seems that the sclerotic alway gives sioy cader the extroue bending of its fibres, which takes place at the puint nearly opposite to that which receises the blow; and this is commoniy infficted on the outer, or the lower side of the globe, the inner and upper sides being protected by the prominence of the nose and superciliary ndge.

The prognosis of ruptured globe, with displacencat of the lers, and partial or total separation of the iris trum its attacheents-even if unatteaded with laceration of the retina, or large extravasatiuns of blood-a:sst of course be unfasourabie; and yet the histo, of recorded cases of this aceident shows it to be by no means of so invariably destrucave a hitad as to deter the surgeon from all hope of doing good. Bat he must hot trust two much to "energetic treatment;" for those cases seem to have doue hest chemually where there was the least umount of interference with the reparative cifits of Nature, but where the one essential-perfect repose of the ingured organ-was secured.

The striking be aefit attending the use of atereury in ibiopathic inflammatious of the eye, has led many persons to beiliere that it mast be as effectual in combating infammation restling from sidetcec. Lut those who in the latter case, employ bleeding ant mercurializing, seem to overiook the fact, that when the coats of an eye ball have been divided, Nature's first attempt towards repairing the mischief consists in increasing hut lessenius, the flow of blood to the part. The breach can only be filles up by the orgaiaation of matenial deposited there by the blood: to bring the paient uader the influence of mercury diminishes the iendency of such material to become orgatized, ata thas counteracts the very efforts Nature is making to repair the breach. As to "moderating the determination of binod to the part," inasmuch as we have no means of precisely knowing how much blood is thecessary to furnish an adequate guantity of reparative material, we may, by bleeding, the depriving Nature of her very material for cure. The blood of one patient io rich in reparatice mater, the blood of another is poor. What means have wi of appreciating the exact quantity of this matter which, in any given patient, is being carricd to the wounded eye?

All that the surgeon can do when called in to cases of ruptured globe, is to inform himself, as well as he is athe, of the habit of the paticut, and endeavour to keep his powers as near the standard of very good healih as possible. As regards local treatuent, the duty of the surgeon consists in maintaiuing the wounded part in perfect repose, both in respece of ::xation and light. For this purpose it is not sufficient to bandage only the ege which has beea wounded. Both eyes must be kept covered, or the movements of the sound one, will of course be accompanied by corresponding movements of the other. \& weck or ten days is not 200 long a time for keeping the lids uninterruptedly closed, without examiniag the injured eye. Premature motion, and exposure to light, are almot sare to be followed by irritation and pain.
t need hardly add, that in cases of sub-conjunctival displacement of the lens; that body is to be removed. by carefully dividing the conjunctiva covering it. Should the iris have been detached from its connexionf, and hang out of. the wound, it should be snipped off close to the surface of the gloke. These, and all other manipulations which taty be found necessary, should of course be performed as muen as potsible without pressure on the eye-ball; and this evil may be best avoided by letting an assistant hold the lids asunder with specula. By some sargeons it has been recommended to delay the removal of the displaced lens for a few days, to allow time for the breach in the sclerotic to close. This delay would manifestly be improper if the lens were to be the cause of paia. In that case it must be removed at once.

That the state of patient's bowels should be attended to ;-that, if restess. he should be soothed with such narcotics as experience may have proved suitable to him, or as the surgeon's judgment may suggest;-that the amount of food should be regulated by the vigour of the patient's circulation; and stimulante dither given or withleid on the same gromds: al! these are points which must be left to the good sense of the surgeon, since no fixed rules can be laid down to applicable to the treatment of all cases.-London Lancet, Feb., 1833.

OA TEMTORARY ALBUMINCRIA: MORE PARTICULARLY OCCUR-
RLNG TN THE COURSE OF CERTANFEBRLE OR OTHER ACUTE
DISEASES.
By Dr. J. W. Bizbie,-Physician io the New Town Dispensary, Edinburgh, \&c.
[Dr. Begoie dirides his subject into three parts:-Desquamative Albuminuria. under which head he classes the urine in erysipelas, Asiatic cholera, and scarlatina; Inflammatory Albumineria, under which he places the urine in the dropsy following scarlatina; and Critical Albuminuria, in which he considers. the urine in pneumonia and certain cases of typhus. in speaking of the firat head, he states his beiief that in every case of scarlatina, a small amount of albumen would be found on careful examination. This is generally foud. three or four days after the commencement of desquamation. In examining the urine, both the nitric acid and heat tests should be employed: It should be carefully made for a few days before, and until the process of desquamation. is fairly completed. Dr. Begbie believes that after it has once disappeared it will not return. 7

The Microscopic character of the urine, with which the albumen is invariably associated, is the presence of a considerable amount of epithelial, derived from the different parts of the urinary apparatus. Sometimes the entire epithelial lining of the small tubes of the kidney was present, though certainly not: frequently. I do not remember to have seen in the urine of simple scarlatins the albuminous or fibrinous casts of the amall tubes of the kidney, the appear: ance of which is so common in the urine of the dropsical affection. Beaidet epithelinm, the urine generally contained amorophous urate of ammonia, some: times crystalline uric acid; and occasionally, though very rarely, the urine, though examined very soon after micturition, contained crystals of the ammon: inco-magnesian phosphate. In all such there existed a greater than usush mount of epithelium and mucous sediment. It is not uncommon to fiad,oco. tahedral crystals of oxalate of lime in the urine at the amme stage of the dinease.

The pathological inport which the existence of albumen in the urine denotes, is a point on which difference of opinion must still be expected to exist neeing not only how very different are the facts recurded in regard to the occurreince of albumen, but how varying the estimation of the importaace be which is awarded to its presence. White many believe its manifestation to be accidental, and of no importance, thcre are others who conceive it, if at any time accompanied with dropsy, to be its certain prelude. Both of these opinions I have attempted to show arc erroneotis, and, at least so far as my own observations go, founded on incorreet data. What then is the cause of albumen in the urine in simple scarlatina, and "hat its pathological import? I conceive it to be as essential a symptom of the disense as is desquamation of the cuticle-to be ansociated to a certain extent with that desquamation-to be, in faet, the result of a desiquanative process, which the muceus membranes in this disease, equally with the skin, a ie subject to. Granted then, that this desquamation occurs, when such a clange is taking phace in the epithelial membrane lining the minute tubes of the kidney, the office of the ce!!s composing which is to eliminate from the blood the matters, solid or fluid, which in the normal exercise of the renal function compose the usine, it surely is not surprising that the albumen from the former should, to a slight amount, cuter into the latter. Such I believe to be the cause of its occurrence; nor can I regard its presence as indicatiog any pathological condition, further than the separation of epithelia! cells and their passage in the curieut of the urine. No symptoms referable to any such condition occur, no febrile reaction, no lumbar pain, no nou-elimination of urine, no suppression of its wartery parts not even any diminution in its quantity, and with the exception alone of the presence of albumen, no marked alteration in any of its sensible qualities. I have said that this albuminous condition of the urine in scarlatina is associated with the cuticular desquamation, it is so in the time of its occurrence, and so it is also as regards its amount, for I have noticed the albumen in the urine to be greatest in amount and to continue longest, in those cases in which the desquamation had taken place to the greatest extent. In those cases of the urine of which no coagulability has taken place-for my more recent experience has shown me a few auch-there has been no marked desquamation, and no direct evidence of any epithelian eeparation, as shown by examination of the urine. We know that in many cases of scarlatina, especially in those where the eruption, though wellmarked has not been brilliaut, extensive, or lasting, it is not unccumon for the desquamatic process not to take place at a!t, at most to a comparatively very slight extent. Such are the eases in whith the coagulability of the urine will perhaps not occur. I say perhlups, for in some such I bave, notwithatanding, found it. I am still, therefore, disposed to regard the temporary albuminuria of ecarlation as probably as frequent in its occuremes, aind of the same inportance as a symptom, as the desquamation of the caticle.
[In speaking of the urine in Asiatic Cholera, Dr. Begbie remarks upon the suppression of urive as a marked symptom of a return to the proper quantity of that sceretion, wing a favourable change in the disease, in many caies of death from cholera, death seems to have been produced from the poison in the blood, producing coma--such ns is ordinarily the case where suppression of uiive-bas occurred:

In Erysipelas, though the urine is frequently foum sibuminous during convalesence, yet it is not so certainly so, as in scarlatia.

Inflammatory Albuminuria.--Under this head Dr. Begbie refers to one example-the dropsical disease following scarlation-as follows :]

Every one who has paid attention to the condition of the wrine in this most interesting affection, must have noticed the great diswiniarity subsisting between its external and other characters, and those of the urine in simple scarlatina; mbile in the later. the amomi of urine pased except during the continuance of febrile sympems, is undinibithed, one of the moyt certais forerumers, as it is always he monst invariable necompaniment of ciropy, is the excessive reduction of the quanity of urim. This unise when further examined, is fousd to contain a harge amount of albmen; while under the mieroscope, frequently blood, not unfrequenty exadation corpuseles or compomed granular cells, always much epithelium, and the fibrinous casts of the remal tubes are recognised. The symptoms which accotapany these changes in the urive are generaliy woli-markei, the thent yrowinem, sque the dropsy, heing a very uneasy, often severe, lumbar pain, and marked febrile excitement, But independent of these general symptoms, it will I think be admitted, that the characters presented by this uriar, while they difier from those of the urine in simple scarlatina, indicate alon the existence of a much more serious change in the secreting mucous membrate of the kidney, than a merely desquamative one. r_{n} order however, to arrive it a correct opimion in regard to the pathological importance of the change undergone in the kisa...y during the dropsical dieease, it is necessary to bear in mind both the symptoms presented by the patient, and the hints afforded by the charactecs of the altered urine. These taken together give evidence of general fribrite excitement, and of renal con: gestion, inflammation, and exndrion. Ihave examined the urine in many such cases, and have found the alouminous condition much more lasting than in the simple cases, -indeed observations and experience show now preity plainls that the long continued albuminuriz of dropsical scarlatina, may and often docs lead imperceptably-insidously it may be-to orgaic remal disense. In many instances I have found the inflammatory symptoms alluded to, speedily and entirely disappear. I have not scen many cases of the dropsy following scar: latina, which I had wathed irm the commencement of the primary disease, but I have scen a fers, and in all such the Iropsical and agoravated symptomi appeared at the time the temporary albuminuria mas going on, and were evideatly the result of exposure to cold. This :ariety of albuminuria, then, which I have called inflammatory, may or may not be temporary; it is to be feared that not unfrequently neglected, or even unskilfully treated, the affection it accompanies, iays the foundation of permanent renal disease. In most cases however, it is fortunately otherwise, white in nearly all it may bo looked upon as, under judicious management, a curable disorder.
[Critical Aibuminurin.-Several trustworihy observers have noticed the frequent oceurrence of albumiuuria in preumoria, and, says Dr. Begbie,]

To this albuminatia I inve given the title of gitical Albuminuris, because may data being correct, and my conclusions jusurnfable, it is to be regerded as an evicience of a critical action, and commencement of a change undergone by a diseased part, hefore is retarn to a healiby state. But I can.further illastrate this subject ly a refersmen to the changes which oceur in typhut
fever. I bave found albuniuuria by no menns an uncommon aticndant on the convaleacence from typhus; not bowever, neals so invariable in its oceurrence as in scarlatina, or even so common as in pneumonia; so frequent however, as to lead me to examine all cases in which it occurred, and that with very great care. The result has been, that no ono of any such cases has, either at the time, or during a considerable period of obsewation afterwarde, afforded the evidence of any organic change in the kiduess, to accuant for the abomeo in the urine.

The albumionria in the case of typhus appears to me of special interest asoccurring mach more frequent!, if act eatirely, in certain cibes of typhus. It is in those cases in which we know, or have roann to su-pect, that the deposits, have taken place in internal org ns, and we had abomen in the urine. Two or three obervations of a somewhat dificrent nature have lece me to this conclusion; for example, I have futund the urite albuminous in cases of abdom. inal typhes,--that is, in those cases in which we generally find severe diatrhax ns a symptom during life, and deposit in the intestinal glands as the most prominent lesion after death. In several cases of this lind, which proved fatal, 1 have found albumen in the urise for days before death; and in others, which happily recooered, I have as frequently noticed its occurrence. In both those instances the albumen appeared for the most part, at an advanced period of the disease, at least after the particular symptoms had continued for some time; while in the former, the albuminuria continued up to teath; in the latter, in some it disappeared as convaleseence was fairly established, and in obhers it lasted for a longer period. The amonat of albumen in these cases, and the other characters with which the coagulability was associated, mere exactly as I have described them in the example of pneumonia; and finding the abbuminuria to bear a relation to the deposits in iaternal organs in typhas, I have been led to regard the kidneys as the cmanctories by which the morbid matter so deposited to a certain extent is at least removed from the system, -and so doing, to regard the temporary albuminuria of typhus as a critical albuminuria. It is I think, no objection to this view that deposits, such as those referred to, remain in organs for a lengthened period ; for firstly, I do not thisk that we can presend to limit the period of their removal or disappearance; and I am inclined to believe that when they do so disuppear, the urine will very probably contain the ingreaients I have noticed; and secondly, the calceous masses found in the spleen, and other organs, accented as the earthy remains of the deposits spoken of, certainly attests the removal by some channel or other, of the anitisal matter of which; in their original condition, these deposits were partly composed. This is an interesting subject, and invites further inquiry. - Morthly Journal of Medical Science, October, 1852, $p, 321$.

ON THE INFLUENCE EXERTLD BY CHRONIC DISEASES UPON THE COMPOSITION OF TIE BLOOD.

By MMI. Becquerel, and Rodier.
A paper recently read at the Acadènie des Science, details the results of MM. Becquerel and Rodier's latest ioer atolegical researches.-1. The majority of chronic diseases and various anti-h. fenic circumstances inc. . t an increase or diminution in the three principal elcments of the blond-the globules, the fibrine,
and the albumen, and this cither sephrately or simultancous! - 9 . ' 1 'he globulea undergo diminution in the course of most chronic diseases of long duration, and especially in organic diseases of the heart, the chronic form of Brigh's disesse, chlorosis, marsh cachexia,bemerrhages, henornhoidal flux excessive blood-letiong the last stages of tubercular disease, and the canceruus diathesis. 'The same result is observed in those whose food is not sufficient in quantity or reqarative power,or who are exposed to insufficient aëration, humidity darkness \&c.- 3 . 'The plbumen of the serum of the blood is diminished in quantity in the third stage of heart disease, great symptomatic ancmia, the cancerous diathesis, and insufficient alimen-tation.-4. The tibrine is maintained at its normal propurtion, and sometimes increased, in acute scorbutus. It is diminished in chronic scorbutus, as also in the scorbutic condition eymptomatic of certain chronic diseases, which is most often and most markedly observed in organic disenses of the heart.-5. In all the above mentioned circumstances, the quantity of water contained in the blood becomes very considerably increased.-6. A diminution of the proportion of globules is especially accompanied by the following phenomena: a colourless state of the skin, patpitations, dyspnoca, a brut de soufflet heard at the dase of the heart during its first sound, an intermittent bruit de sonfflet in the carotids, and a continuous bruit in the jugulars.-7. The diminution of the proportion of albumen, even though not very considerable, when it takes place in an acute manner, rapidly gives rise to the production of dropsy, but it requires to be much more considerable when not appeăring in the acute form. Considered in a general manner, dropsy is the symptomatic eharacteristic of a diminished proportion of the albumen of the blood.-8. A diminished proportion of fibrine is manifested by the production of cutaneous or mucous hemorrbuges.- 9 . In anamin symptomatic of considerable hemorrhage or insufficient alimentation, the charge iu the blood is characterised by a diminution of its density, su increase of the water, diminution of globules, a maintenance of the normal proportion, or sometimes a sight diminution of the albumen, and a normal proportion of fibrine.-19. In chlorosis, which is an entirely distinct affection from anæemia there may be no changes in the blood whatever. When suchare present, they consist in a diminution of the proportion of globules, an iucrease of that of the water, and the normal quantity or an increase of the fiorine.-11. In the acute form of Bright's disease, the fibrine continues normal, and the albumen is diminished. In the chronic form there is a diminution of globules and albumen, and sometimes of fibrine.- 12 Most of the dropsies regarded as essential depend upon a dimiaution of the proportion of albumen and usually originates in a material cause, consisting in a degeneration of the solid or fluid parts of the cconomy.-13. Ira diseases of the heart, the blood becomes more and more changed, as they approach the fatal termination. The changes consist in the simultaneous diminution of globules, fibrine, and albumen, and an increase of water.-14. In acute scorbutus, the principles of the blood do not undergo any appreciable modification. In the chronic form the fibrine is notably diminished, while the globules are sometimes considerably increased. In both forms, the increase of the proportion of soda of the blood explains all the circumstances; but it has not yet been demonstrated.-15. The above modifications should influence our theraputical management of these morbid conditions, as each element of the blood is susceptible of special modificstions. Thus when the proportion of
albumen is diminisheal, we preseribe cinchona, and a totic strengthening diet. A diminution of fibrine and nu incrense of the soda of the blood are to be met by good diet, vegetable acids, and appropriate hygiene; and by the hygienic measures and the exhibition of iron, we combat the diminution of globules. --'゙Union Medical-Medicu-Cururgical Review July, 1852, p. 256.

ON SOME OF TIIL PRINCIPAL LETECTS RESCLTING FROM THE detachaidet or fibrinold deposits from the interior of the henrt, dind their mixture with the clrcelaTING BLOO1).

By Dr. William Senhouse Kirkes.

[The following observations on the above subjects were communicated by Dr. Burrows, to the Royal Medical and Chirurgical Society.]

As an introduction to the Subject, the author observed that it was a clearly established fact, that the fibrinous prinoiple of the blood might under cettain circumstances, separate from the circulating fluid, and be deposited within the vascular system, especially on the valves of the heart. The forms of fibrinous concretions to which the following observations especially applied, were, first the masses usually described as Laemnec's globular excrescense; and secondly, the granular or warty growths adhering to the valves, wod presenting innumerable varieties, from mere granules to large irregular fungous or cauliflower excrescences projecting into the cavities of the heart. These growths, when once formed, whaterer might be their origin, were full of peril, and would often remain so, long after the circumstances which give rise to them had passed away. When of large size, or loosely adherent, they might at any time be detached from the valves and conveyed with the circulating blood, until arrested within some arterial canal, which might this become completely plugged up, and the supply of blood to an important part be suddenly cut off, from which serious if not fatal results would ensue; or smaller masses might be detached, and pass on into arteries of much less size, or even into the capillaries whence congestion, followed by staguation and coagulation of the blood, and all the consequent changes such coagulated bloodi is liable to undergo in the living body, would necensarily follow. Many singular morbid appearances observed in internal organs, and not well accounted for, were probably brought about in this manner. Again the masses of tibrine might soften, break up, and discharge the finely granular material refulting from their disintegration into the circulating blood, and, contaminating this fuid,might excite symptoms very similar to those observed in phlebitia, typhua and other analogous blood diseases. Thus the fibrinous material detacted from the valves, or any other part of the interior of the heart, might be the cause of serious secondary mischief. The parts of the vascular system in which these transmitted masses of fibrine might be found, would in a great measure, depend whether they were detached from the right or left cavities of the heart. Thus, if from the left, they would pass into the aorta and its subdivisions, and would be arrested in any of the systemic arteries or their ramifcations, and especially into those organs which receive large quantities of blood direct from the left side of the heart, as the brain, apleen and kidneys; on the contrary, if eicaping from the right carities, the langs would necessarily become
the primary, if not the exclusive seat of theit ultimate deposition. A divibions of the subject being thus maturally formed, the author proposes to consider the subject, first, as to the remote effects resulting from the separation of fibrinous deposits from the valves or cavities of the left side, and secondly, as to the couresponding cffects produced by the detachment of like deposits from the vaives or cavities of the tight side of the heart. The author then proceeded to efucidate the first branh of the sulject, in which masses of some magnitude were detached from the hat sil., all arrested in an arterial chamel of notable size. This pathological fat was illustrated by three cases, in many respects identical; for in each, death appeared to ensue from snftening of the brain consequent on obstruetion in one of the procipal cerebral arteries, by a mass of fibrinous materid, apparcaty detacha from the growths on the left valves. The first case was that of a female, aged thity-four, of pale and delicate aspect. She had sulfered from rheumatic pailus, and there was a loud systolic murmur heard over the cutire cardiac resu. White under treatment for these symptoms, she suddenly fell batk as if cainting. She was found speechless, with partial hemiplegia of the left side, but there was no loss of consciousness ; the hemiplegia inctased, involved the fate and limbs, and gradually became complete in regara to mution, but setiaticta rumained unimpared. These symptoms lasted five days, when she quictly died. The post-mortem examination developed much congestivn of the pia mater, amunting in some places to ecchymosis. The right curpus striatum was softened to an extreme degreebeing reduced to a dirty gresish-white pulp. In the posterior lobe of the right cerebral hemisphore, was a situilar sput of pale softening. The right middle cerebral artery, just at ins commementent, was plugged up by a small nodule of fiem whitish, fibianus-luching substathe, not adbering to the wall, but rendering the canal aluwst impervious. The sessets of the brain were gezerally healthy, eacept a jchuw spot or two in the coats of thoce at the base of the braio. The beart was enlarged; sevcral broad whitc patches externally. The right valves were halhhy, so also were the aurtal; but the mitral valse was much diseased, the auricular surface bing best with large warty excrescences of adherent blowd-stained fibrine. The right common iliac artery, about an inch above the origin of its exteriad bratich, was blocked up by a firm, pale, laminated coaguium, which extcoded into the internal iliac. The pletrec were adherent in places; liver and intestinal caual hathy ; spleen large, pale, and soft, and contaned a yelluwish-white, cheesy substaticc. The kidncys were paic, rough and granular; within the cortex of the right were several large masses of yellow deposit, surtounded by patches of redness. Death had resulted in this case from the softening of a large portion of the right side of the brain, which the author cunsidered to have arisen frum an iaporfert supply of blood, coneequent on the midale cercbral artery of the same side being obstructed by a plag of fibrine. The author then discussed the sufficitney of such an obstruction to produce the effects ascribed to it, atad he bruaght forward many examples shoning that atrophy and disorganization usually resulted from any cir matapice; which materially impeded, or entircly cut cff, the supply of blond in a part. The author then directed attention to che probable source of the fibrinous plag found in the middle cerebral artery. The suddeuness of the cerebral symptome seedered it probable that the blocking up of the artery was equally suddẹ, wind
not the result of gradual congulation of the blood wihin the ressel. The absence of all local mischicf in the eoats of the artery at the point of obstruction, as well as ciseshere, pointed to some other than lecal origin for the clot; and the author, at the time of the eamanation, formed the opinion, that a part of the fibrinous deposit on the mitral valve had become detached, and carried by the stream of blood, until arrested at the angle whence the middle cerebral proceeded. This explanation suited equally for the plug found in the common iliac ; for it was quite conceivable that portions of the loosely adherent fibrine might be easils detached by the stream of blood washing over the mitral valve, and when once admitted into the circulating current, they nould only be arrested by arriving at a vessel too emall to alluw their transit along its canal. Two other cases were described by the author, possessing many interesting points of resemblance: one, a female, sged twenty-four; the ollier, a male of the same age. Both were adnitted into the hospital with hemiplegia of the left side; pach had heart disease, indicated by a long eystolic murmur. The post-mortem examinations revealed the following morbid: anpeatances common to both:-

Softening of a limited portion of the brain, producing dealh by hemiplegia; obliteration of the cerebral artery supplying the sufteted part; coagula in one of the iliac arteries; fibrinous deposits in the kidncys and spleen; and the presence of fibrinous warty excrescences on the valves of the left side of the heart. So many and such rare features of resemblance could not fail to demonstrate a very close connexion between the several morbid appearances so exactly reproduced in each case. The author believed that these three cases antigfactorily established the two following conclusions-lst; that softening'of a portion of the brain, with attendant loss of function, might result from öbstruction of a main cerebral artery by the lodgment of a plog of fibrine within jta catal; 2ndly, that the foreign substance thus obstructing the vessel was probably not formed there, but was derived directly from warty grow the situated in the let: valves of the heart. The author thought it not improbable, although on the absence of direct proof it was but supposition, till further invesigation confirmed these facts, that many cases of partial and temporary paralysis ouddenly ènsuing in oue or more limbs of young persons, especially if nccoimpanied tith signs of caŕdiac disease, might be due to interruption of a proper supply of nutriment to the brain by the temporary plugging up of a principal cerebral artery by fibrine, detached from a diseased valve on the left side of the heart. Uther arterial branches, besides those of the base of the brain, might arrest these fibrinous deposits derived from the valves of the heart. In case ind 2 , coagula were found in the iliac and femormal arteries; and in case 3 , in the renal. The author thought that many specimens found in museums, and supposed to illustrate the spontañous coagulation of the blood, or the deposition of fibrine within a limited portion of an arterial trunk, were probably to be referred to the same cardiac origin, and he illustrated the point by reference to a preparation in the museum of St. Bartholomew's Hospital. The second subject of jăquiry cönaiated of àn exámination into the effects produced by smaller portioss of fibrine detached in a similar manner, but arrested in the minute arterial franché, or éren in the capillaries. The author thought that the singular massea bfytion fibrinout sübitance found in the spleen and kidneys, and other organs
and hitherto described as " cnpillary phlebitis," "metestasis," or "filrinoun des posits," were derived from this cause. Out of twenty-one cases in which the author had observed these deposits in the epleeu and k:dneys, or other parts deriving blood directly from the left side of the heart, in mincteen there was disease of the valves, or oit the interior of the left side of the heart. In fourtes of these there were fibrinous growths on the surlace of the left valves; in the renaining five there was simple mention of valvuiar distase. The guthor thought that the taere fact of so large a number of eares of so-called "capillary phiebitis" being associa:ed with the presence of fiorinous deposit on the valves of the heart, suggested a very close relation between the two morbid statec. The auther then entered upon the third branch of this part of the sulject, concerving the series of effects which might result from the introduction of fibrinous partieles into the citculating blood, mavifesting phenomena indicative of the existence of a morbid poison in that fluid. A case was related of a youth, aged fourteen, admitted into the hospital with obscure typhoid symptoms, the autface body of the being covered with petchix. Delirium, with much febrih prostration, foilowed; ine becallue eubsequetaily conatoge, and died. Uponsmeramination of the body, the surface was found covered with petechia. The pis mater was infiltrated with what seemed recently effused blood. The surface of the brain thus presented a blotehy appearance, amid these apots wen gellow-coloured patches of various sizes; some were of a greenish yellow hue, and bad the appearance of being smeared over with pus. The brain was unduly congested, and eceiymosis was near the surface; the cerebral arteries and siauses healthy ; several petchial spots on the surface of the heart, as well as in the cavities; and on the auricular surface of the mital valve some white fibrinow vegetatious, very soft and friable; a like ceposit on the nortic valves, with evidence of ulceration; several large yellowish blotehrs extended deep into the substanco of the cortex. The intestinal mucous surface was covered with petchial apotif which were opparent also on the mucous suembrane of the bladder, pharynz, esophagus, stomach, larrijx, and trachea. The author considered the inystery of this case cleared up by the post-mortern examination. The atrask had been ushered in iny a severe pain in the right groin, which was rheumatic ; the encued rheumatic inflammation of the mitral and aortic valves, with ulceration of tho later, and deposition of fibrine. From these deposits portions had probabily separated during life, and were transuitted with the Glood to all patts of the body, and being arrested in the capillary networs and smaller arteries, produced the various petchial and buff-coloured spots above described.

The second part of the paper related to the effects which might resulf from the detachment of fibrinous deposits from the right valves of the heart. Refcrenct was made by the author to a paper on the Formation of Coagula in the Pulwonary Artery, by Mr. Paget, published in the 'Transactiens of the Society', as well a to a epecimen in the museum of St. Bartholomew's Hospital, in which there wt deposition of fibriue on each of the pulmonary valves, with old cuagula filling many branches of the pulmonary artery. In this case several large solid, fiurinous masses were found in the substance of the lungs, presenting appeuraces not unlike portions of old pulmonary apoplexy. Lastly, the author recapitulated the principle points which be was desirous of establishing, viz.,-1st. ithet fibrinous concretions in the valves of the heait admit of teing readily detatcied duriog life. 2nd. That if detatched and transmitted in large maises, thej
may auddenly block up a large artery, and thus cut off the supply of blond to an innportant part; if in smaller masses, they might be arrested by vessels of analler size, and give rise to vari mo thorbid appearances in internal organs; or the particular mingled with the bood might be but the dehris of soiteved fibrine, yet with power to produce atmisote astate of the blood, and briuging on typhoid or phlebitic symproms. 3rdly. That the cffects prodnced and the orgun affeted wouldbe in a great measure determined by the side of the beart from which the fibrinous interial hal been detached; if from the right sid, the lungs would bear the brunt of the secondary mischief; but if, as was most commonly the case, the left valves were the source, the mischief would be more widely spread, and might fall o: any part, but especiatly on those organi which vere largely and directly nuppliend with blond from the left side of the heart, as the brain, spleen or kidneys - Lancet June 5, 1842, p. 542.

CASE OF DEATII FROM TIE FORMATION OF FIBR NOUS CONCERTHN IN THE Deakt.

By Dr. Walier Curstage, Sudalleurorin.

TThe patient in this case was aged 6 t . He was attack with erysipelas of the head and face, combined with symptoms of congestion of the liver. From these he gradually recovered, though the system did notseem to regain strength, and the hearitis action was very feeble. Five week after the first attack he cnught a slight cold, and a mild repetition of the a j sipelas, and bepetic derangement appeared.]

These symptoms, thowever, were checked as speedily as before; the appetite returned and digestion seemed to be earily accomplished; and yet, with all these favourable appearances, his strength failed the action of the heart and regpiratory movenvents gradually giew feebler, and at length without any sign of pulmonary, cerebral, or abdominal disease, thene asthenc symptoms oluwly terminated in denth, just eleven weeks after the first commencenent of the erysipelatous attnck.

Poit-martem.-With the exception of a slight enhargement of the liver, we could find no organ exhibiting structural change. The lunzs were perfectly healihy. Upon opening the heart, however, we diseover what in my opiusion, fully accounts for the gradual disolution; a fibrinous mass filled both its right cavities, and sent up large and long branches into the pulmonary artery and ita ramifications. The concretion was firm and white, and had an attatchment to the walls of the heart.

Remarks.-I have but few remarks to make on this interesting case, and I ahould probably never have thought of publishing it at all, had not my attention been made before the Medical Society of London, by Mr. B. W. Risherdson, "On the Fibrinous Element of the Blood," and which have been reported in the columns of ! The Lancet." I find that in a payer read by Mr. Richardson in November last, he thus observed: "Lastly, is case of asthema, where fibrinous conceteions exist in the heart, the very cessation of the act of life may be owing to their presence and gradial increase, the central organ of the circulation becoming literally choked by them." In January, again, the same author briefly alluded to this subject, and produced a pathological specimen which atrongly
supported his views; and, lastly in the month of March, on exhibiting another heart in which a fibrnous clot was found, he gave more enlarged views on the matter, and threw out the idea, that during those diseases whieh are known to be attended with an abnornal quantity of fibrine in the blood, it may be that some of the overplus of fiurine is deposited on the elevated structure of the moving heart; and he cencluded by saying that, "In all inflamatory cases marked by great super-fiormation of the blood, and which end by what is called sinking, it would be interesting to learn bow far similar concretions in the heart may be concerned in bringing about the sinking state."

Now, without xishing to meution the many theoretical points which Mr. Michardson and other physiologists enter into with reference to the formation of fibrine, \&c., \&c., I canaut but observc, that the case which I tave related above affords strakiug testimony as to the currectuess of the opinions from which I have just quoted. My patient had suffered from erysipelas, a disease in which the blood is always super-fibrinized: he sank in the most gradual manner, and the autopsy revcalcil no cause for the sinking, except (what was surely sufficient) a large fitrinous concretion in the heart.

Of course the narration of a single case does not go far to establish any new opioion, but pet: aps it may excite others to zurn their attention to the same subject. I have been pzzled, over and over again, at seeing patients gradually sink into death, after some slight disorder, with no evident disease that could account for such a serious result. Now if any explanation so simple as that given by Mr. Richardson should prove after further research, to account for some of these occurrences, a great step in the practice of medicine will certainly have been made.-Mcd Times Gazette, $S_{\epsilon p}$. 11, 1852, p. 259.

on fibrinocs derosits on the lining membrane of veins By Hinry Lce, Esq.

Simple inflammaton of the veius-that to to say, inflamaation commencing m the coast of vemas-is regaded by the author as a very rare disease. The haterat hamg of veris enpeciady woud appear to be as intle susceptible of rattammation as any stacture in the body. The large nu:nter of instances of phlebitus met with in sugglail worsis, owauring in insis practice, are regarded by the aunor as dependug upon and as beug exaited ti, a vitiated condition of the blood. This ophamon ts prucenpally supportad by the two fullowing facts: first, that in every case oi so-calied culdumnatost of the reins, the blood will be found to have coaguated ut the Vesselin; and secondly that where such coagulatoon dues not take piace, no inlhmmation will te produced. Continental writers of the tuguest rupumion, have andeed mentoued the concentric layens of lymph whan are secteled as the resuit of inflamation in the anterior of veina and Englisa wraters, wituse names carry with them the greatest authority, have desenbed the adiesions of tue opposed siles of the veins by lymph secteled from the caphiaries under a state of inl.ummation. The advocates of this view have paituculariy refered to an experimeni by M. Gendran in uheh he mentions zhat by introducing artiang substunces utu the anteries and veins, he obtained Jarge deposits of lymph upun therr atterior. The author on the contrary, having found that hiffammation of the coass of the veas only occurred in cases where the blood has previous:y coargu'.eved an mem, was maced to believe that the deposit forad in the verns might be derved directly from the bload. M.

Gendrin's experiment was therefore repeated, precaulions being taken to exclude all blood from the vessels; and it was found that under these circumstances no lymph was effused in the vein. The lung membrane of the veins does not contain any bioud-vessels of its onn nor does it required any, being in direct contact with the blow. It appeas reasumbie to suppose, that under such circumstances it would aut seciete ly mpha, and the eaperiments and observations of the author lead him to this concluston. The liants membrate of a tsin, the outer coats of which are inflamed, may underyo varions changes, or may be disintegrated, and cast of into the cavily of the vessels. Lymph and pus may then be seereted into the interior of the canal; but his can only: occur in the latter stage of the disease. The readmess with which some morbid poisons produce coagulation of the blood, and the conslancy with which such coasulatiun (udicated by the cord-like inderation of the veseen) is fouad to plecede the other sympitoms of iuflammation, leadto the conclusiun, that a vitated condition of the blond is the common cause of phlebits, Luder such circumstances, although the irrtation produced is caused by the morbid matter detained in the vein; yet the inflammation is at first manifest in the surrounding parts. The cellular tissue becomes distended with serum; the cellutar coat of the vein then becomes thickened, red and inflamed; and finaly, the changes which have been noticed extend to the liniug membrane. The eflects of inflammation thus are shown to extend to, and not fiom, the internal sufface of vems. N. Cruveilher indeed regards the congulation of bloul in a vessel as the effect of inflammation previously existing: But the author has satisfied himself, that if blood be prevented from stagnating in a vein, no change wil be thereby produced in its lining membrane. The inflammation is not therefore propagared by continuity of surface, as has been generally supposed, bat by the stagnation, in different pats of the vitated bival. Cuagulation of the blood would 3herefore appear to te the cause, and not the eflect of inflamuation of veins. This view is juther suppoted by the fact, that simple althesive inflammation of a vein will not produce coagulation of its contents. A preparation was exhibited, showing the effects of a ligature upon a vein tweny=four hours before death. No coagulation of the blood, nor deposits of fibrine on the lining membrane, had in this case taken place. The coats of the vein were thrown into folds, and a whate biand marked the situation of the ligature : but the projecting folds of the lining membrame presented their namaial, smouth, polisherl, and Jubricated appearance. Hediliy venuws bluod will remain fluis fue dass, when confined in a wein ly a ligature. In this respect hete is a contrast wetween a vein and an artery. In the latter case, the internal coats are divided, and the blood coming into contact with the divided edges, immediately codgulates. In the veii, on the contrary, the lining membrane is sut divided, therefore the blood remains in contact only wath the natual lining of the ressel. Cases in which a simall quantity of pus has been intruduced ino a vena affords the strongent contrast to those in which the coats have been mechanically initated. In the Jather case no coajulum will form, or caly sufficient to unite any lesion there may be of the li.i. - membranc. In the former on the contrary; extensive fibrinous pluss; ; occupy the vessels. These will somelimes octupy the whole diamete. ${ }^{5}$ vein, and become firmly athached to its sides; at other times the outer t .jirs only will become firmly coagulated, and the central ones will remain in a semi-flaid condition. It will sometimes happen that the centrat potions will be removed, leaving the guter layers athached to the walls of the vessel. The circulation may then be continae 1 through an adventitious eylinder of fibrine. Cases oceasionally occur, in which a delicale velvety layer only is deposited on the huing membrane, which remains unaltered in appearance in ofher parts. The coagula which form in veius will, under such circumstances, lose, in diferent situations, much of their colouring mather; and it will be observed thai the lining inembrane of the vein is coloured (from
imbibition) in exact proportion to the amount of colouring matter comtained in the duffereut pans of tae coagula. It will occasomally happen, that portions of the deeolorzed tibrm wh become organzed and manate.y comected wath the niles of the veling, as itlustrated in a ireparation exhibted to the suctity. Such lajers of fibru appear constanty to have veen mistaken for lymph, the product of aflam:nation. The extreme reathess with which the bluad cousulates foom the contact ot puruten mather. aflorts a most unpontan provision for the security of the geteral system. It appears to depend upon a deventy whin which the blool is enlowed tor its sef preservation. Tais taculy, athourgh luthento unacknowledged by physiologists, doubless exists and is comparable to the preservatue senshlify wath wheh every other part of a living heng is endowed. When purulent flud is monduced mo a sen, it the coagola are firmly formed, a local niflammaton will atone ensue; but, it the morhad natter extends aloug the vessels, a higa degree of constitutomal nriation wil fullow, and the symptoms will oceastomally be.r a strking reemblane to those of typhens fever. In cases as they present themselves th pratice, these two sets of symptoms aro constantly present at the tune; but they may be produced separately by a very simple experment : if, for mintance, purulent flud be metruduced separately into a veil, and allowedio reman undsturbed, local millammation unly wil bo set up, whet whlt terminate in the formatom an abseess ar uad the vein. Tho contents of the ven wal then become sotiened, and expelled externnlly, tozether whth the contents of the abseess But, if the murbad matter be forced forward, in the course of the circulation, no tocal inflammation will occur, but the symptoms will indicate enther the presence of seconaasy inflammation in some intertial pat, or ot a peneral contamination of the bloul. If the view taken of the orgm of mitamation of the vems be correct, it will be evident, that any treatment, to be etiectual, must have reference to the first periods of the disease; and that those remedies will most effectually guard the syitem agamst the contammanm (so much dreaded in tha class of cases) which will tavour the sequestration of whited blood, and tend to localize the drease. The remedios which have been employed to sutudee the local inflimmation, appear but too often to have done so at the expense of the general system ; for, although the local symons have become less promument, fatal mischuel has appeared in other parts. In severe cases, those rearedies only can be safely employed which tend to preserve the power of the blood, and espacially thove which increase ats coagulatung power, as to enable ato separate that portion which has become inferled from the sreneral circulation. Bark and opium, logether with a nutricious det are the means wheh appear to favour theee actions upon the due periormance of which the safety of the patient depends; whle bleeding and calomei, however useful they may be in a case of sumple inflummation of the coats of a vein, appear madmisstie when the discase,as generally happens, originates in its consents.—Med. T:mes, and Gazellc May 15, 1552 p. 503.

ON THE TOPICAI TREATMENT OF ACUTE INFLAMMATION OF the larynx and trachea.

By Dr. Ebden Watson.

Profenor of the Institute of Medicines in Andersor. University, \&c., Olasgnw.
(Dr. Watson first endeavours to exphain the modus operandi of a so'ution of nitrate of silver on at inflamed mucous membrane. He says:

There is a hute experiment, sunple, and easily repeated, which is familiar to all who have paid attention to the recent advances made in our knowledge of the inflammatory process, and which presents us with an excellent occasici for obeerving the action of the solution of nitrate of silver, in the differont stages: and degrees of that morbid atate. I refer to the excitement of inflamation ia
the web of a froy's feot stretehed out uader a mieroscope. When, for example, a red-hot needle is pased through the web, the fulluwing are the phenomena observed:-A spot in the cente of the indamed patis sphacelated, destoyed by the passage of the needle though it; a circie round the epot is usually found in a state of complete congention, the sescels being diated, athe the corposeles almost perfectly stanionery within them, and in the pat lejoad this chicle tho vessels are not so much dibated, and the stasis of ther cumtents bat so complete. The stream is seen passing stowly away in the colideral circulation of the unaffected patts of the web.

Now these two circles represent two degrees of inhammation, which it is important to distinguish whetever they occur, and, pethapo, especia'ly when the seat of morbid action is the mucous membane of the lango or thachea. That pat of the web of the frog's foct in which the stasis was complete represents the most intense, or sthemie degree; the other, in which the stasis was not so complete, epresents what is usually called the sub-acte, and ferhapa chronic, vaiseties. And the effects of the suluition of caustic on each of these parts are makedly ond impontanty difierent. In the part which is most intensely intlamed, the sotation, in the diect atio of its strength, increases the stasis of the blood within the vessels. The latter seem to be unable to dilate futher, and aie, therefore, linte changed, but the nitate of silver acts through the coals upon the blood which they conam by causing its partial coagulation, and, likewise, by whdrawng water from the selum for the aysuts of the nitrate which berins partly to form if the solution is strong. In that pant of the wetb, on the other hand, which had been less intensely inflamed, the stimulant solation causes renewed and increased ditation of the blowd-vessels; and the retarded curent moves on in them more freely than before; a sure being thus epeedily affeeted if the exciting catuse of the inflammation has ceazed to act.

That preeisely similar degrees of inflammation oecur in the mucous membrane of the laryux and trachea with those junt desenbed as artificially produced in the flog's foot, I need hardly attempt to jrove, for it will be at ouce admitued that there are three kinds of acute lay yigitis; one, in which no false membrane is formed; a second, in which a false membrane is formed, but in which the pharyns, is wrell as. he laryux; is afferted, viz, the diptherite of French writers; aad, lastly, that intense local inflammation of the layyux and trachea; accompanied by exudation; to which in this country we generally restict the term "croup."

1. The first kind varies in its intensity finm the most trivial catarrhal uritation, to a severe inlummation of the whule thickuess of the mucous membrane lining of the windpipe. It very olten commences about the fauces and passes dusinwards, causing congh more or less croury in its chanacter, difficulty of bleathing, and horseness of voice: It is accompanied by fever of sreater or less intensity, and its chief physical signs are, in increased loudness of the respratory sounds in the laynx and trachea, with occasionally a whishing sound, from the absence of the natural mucus of the part, and from patial spasm of the glotis. This kind of laryugitis is more frequently complicated with bronchial inllammation than with pueumonia, and as the patient sinks fiom non-aesation of the blood, the most prominent symptons of the laryngeal affection gradually give way, and it is often difficuli atter death to detect more than a elight redness of the bronchial mucuus membrane. The inflammation sometimes, however, terminates in erdema sloudis, and but rately in the enudiation of a false membrune:

I have mentionel the chief features of tais kind of laryngitis, first because it is very common in its slighlest degree, and is by no meaus rare, even in ats utmost severity; and secondly, because it 15 not usually a very sthenic disease or, to speals more correctly, it does not present so very high a type of inflammation as that which is characterized by lymphatic effusion, and is, therefore,
an exampie of that degree of this morbid process comparable to the oftsids circle in the inflamed potion of the foog's tyot. The pioof of this lies in the absence of exudation. -the usual complication beina bronchitis, not preumonia, -the longer duration of the disease, and its frequemt termination in selous effusion into the glotis, or by passing int the chronce form of larmgitis.

It will be expected, then, that the solution of caustic shonld act well in such cases, and so it does; but pehaps, in none is a g.eater amomm ofdiscrimination necessaty in the aulaptation of the strength of the sulution to the severity of the inflammation which may be present, as well as in choice of the proper time for commencing the topical measures. For it must not be thought thet I advocate restriction to any one remedy, local or genetal, in the treatment of this disease. In the severes forms of the affection especially, depletion of some kind will at first be necessary to check the violence of the inflamimation, and na emetic will be useful in restoring the moisture of tre mucous surface. It is after the use of both these remedies that the topical application is alone admissible, nor can theven then be employed to the exclusion of other means. In childrea it will be especially necessary to repeat the emetic severat times during the progress of the case, and ian very few will the judicious practitioner refrai:a from the use of comter-irritation to the outside of the throat while he is proceeding with the topical treatment internally. It is, however, with the fatter that I have specially to do at present, and therefore to the management of it I shall, in a grea: measure, confine my remarks.

Contrary to what might, a priori, be expected, the result of those experiments I before alluded 10 is, that the more intense the degree of iuflarnmation of the laryngeal lining, the weaker ought to be the solution of silver applied 10 it. In those cases in which the intensity of the inflammation has never been great, or in which, as is more likely to happen, the primary violence of the disease has been subdued by other treatment, a stronger solution may be used with advantage. Its first effect, when thus judiciousty applied, will be to coagulato the albuminous film upon the surface of the membrane which has been stripped of its epithelum and thus to cover and protect it. Another, and almost simultansous effect, is to stimulate the basement membrane to form new epthelium, and to secrete new mucus, and thus the artificial film of coagulated albumen is by-and-by replaced by a more natural covering, and the serface is lubicatod by its appropriate moisture. If, then, a renewal of the morbid process could be preventel, a cure would already have been accomplished, but this is seldom or never the case. The good effects of the lopical application wear oil in a fer hours, and the former abnormal phenomena may even in that time have rọappeared in nearly equal severty. The treatment must therefore be coutinued -the touching of the larynx must be repeated frequenty for some days, and indeed until all the symptoms of laryngitis have completely disappeared.

In some severe cases of this kind, especially in aduits, there is great danjer of a chronic thickenng of the laryugeal mucous membrane being left Fehind, and of the voice being thus permanently impaired. It may, therefore, in such cases be a very good precaution to give a fitte mercury sowards the tend of the acute attack; but whenever the mouth begins to be affected, the topical application of solution of caustic must be stopped; for the laryngea Jining, especially at its upper part, is then far too vascular and irritable to beit the touching, and its only effect woutd be to cause still greater excitement of the part. It is for this reason chiefly, and because I put considerable faith in the topical remedy that I should recommend the mercurialization to be postponed unul the lermination of the acute stage. After the mercury has had the required effect, it is often a good plan to repeat the topical treatment for a time, whor its efficiency will he found very great in restoring the tone of the voice, and fitting the patient to bear a change of his apartment in the first place, and, eve: Jong, removal to the country.
tubes. The exulation, which in these cases oceurs after a short stage of intense erysipe latous redaess, sometimes in comsderabie thationes. It is, theretore; in may respects dhtfent fiven the muse lucat, tirmly atherng, lymphatic exudation of true cronp.

Itis serms in be a common aff ction on the Continent, especially in Paris, and alse in Now Y ork aceorderg to Di. Hutace Gaeen, whotet's that a solution of cautic acts ad niably as a tophad aphection an such cases. It seldem, however, oceurs in this conntiy, at whentato the caty, exeept as an occastonal, and happily rare, form of epidemic.
3. True exu have crup is dheneter a ditherent disease. It appears in very sthenic comlitions of the genchat system; the thon is ararably rich in fibrine and erpaseles, and the exalative wheli foms th the larynx and trachea
 over, a purely local aftection, semins at wate on the laynx or trachea, and confining its chief vidence to one ut buth of these orsans. It is, besdes, more-frequenly-complica'ed with pueumonia than with bronchnts-another proof that the dearee of inflammation puesent is very utense; and to be compared with that which exists in the weth of the fruers lout around the panciure of the
 cases of croup; justifies this comparison, ad couthrms- the impontant mference that suah treatme it is uasait ble fur tas degree ot malammanon present in thon; for [have alvays fonal the sympons of congestion in the laryngeal linimersan's as puil anl difisolty of breathas, intreased by the appheation of even a week solution of nitrate of silier, and the very det of applyner the solution is hurtful in these cases; the spume generaliy bungs away part or the false mombrane upon it, and leaves the dulicate and harhy vascuar tissue beneath exposed; and often bleeding. Pain, anxiety, and [tear, meteased exudation, and sonntimes ulecration, are thus produed; the origthat disease beng thereby aggravated.

To show that I have not been too easily led to these conclusions, and to give force and puint to what I bslieve to bea very unportant statement, I shall relate the two following e.ser, whels I venture to thak menestme in many points of view, aut wheh I have, therefose, selected trom my case-book. One of themillustrates the arthon of the topeal appheation on an atult case, and the other in that of a child.

Case 1.-Tine subject of this case was a geatheman past the mudde period oflife, and betore the illuess wheh I am guhar to describe, panticularly strong and healthy:

One evening of the winter befure last, he was suduenly serzed whth dufficult respiration, iishtness in the throat, hatroh, dry, whisthing courgh, and high fever. All the symytoms of croup, i.ded, became very soon but too well marked; and, a tew hours after the appacnt commencement ot the attack, the following were the physical sigus whith presented themselves:-The number of respirations in the minute was mucis mereased, and yet the feelner ot oppression on the chest remained mabated, so meomplete was the mitation of the langs; indeed the respiratory murmur was but teebly heard in the upper parts of the chest, while the bronchat sounds were dy y and snomang in the tr character. In the tracheat the inspiration was coug, and accompaned by the harsh sound of the air passing along the dry and narrowed tube. A tille higher up, and chiefly at the commencement of inspiration, the gluths was heard vabrating soas to oceasion a stridulous soumd.

When the patient spoke he sufferel great pain, atad increased feeling of andiety. His voice was feeble and bruken, being at tumes deeper, and then suddenly slighter, than his ordinary tone.

There could, thereiore, bo no doubt that this was an instance of acute tracheal croup, accompanied by exudation. It was treated as such, by emetics,
purgatives, hot baths, blecding, antimony, and calomel, with a blister on tho trachea, and in the evemug I commenced to apply a solution of twenty grains of nitrate of silver in an ounce of water to the intuior of the affected org in ; but each appheation gave great pan and uncasiness, and inereased the sense of suflication. The violent fits of coughing wheh were thus produced undoubtedly occasoned the sepatation of small portions of the false membrane, but that was no inprovement, since the surface thas exposed was tender, unprotected, and often bleedurg. I neal followed Dr. Huate Green's example, and increased the strength of the solution twoifld. This, however, ouly made maters worse, and indeed the patient himself vegan to diead the rept tition of the proceeding. Still my taith m the remedy was not completely exhausted; I determined, before abaudoning the topical tueatmem athogether, to use a week solution of the nitrate of sitver; 1 therefore diated it to ien grailus, and ultimately to five grains, in one ounce of water, and yet I was unsuccessfiul. It was, indeed, too apparent to me that the laryns was not ma a state to bear enher the stimutant solution, or the presence, for however shont a time, of the sponge by which it was applied; I therefure gave up the topical treatment entirely at this time, and used more ordinary measures. The patient was still further depleted, and more decidedly mercurahzed. He was likeviso frequemly blistered during the next month, by the end of which time he was much improved, but still had a good deal of hard, whistling cough, dyspuce when he moved about, and great pain when he spoke, referred to the glotidean iegion. The tone of voice was weak, but not unusually hoarse.

The most careful exanination of the chest still showed that the lungs were free fiom disease. The respiratory sounds in the trachea were loud, hash, and dry, and were accompanied by a pretty cotstant rale, as if there were one or more valvales of exadation matter still adhering to the walls of the trachea. The vibration of the gloths in breahhing aud coughing was not so free as formerly, indicating a degree of odema of the organ.

On opening the mouth, the fauces were seen to be red and swollen, and the epiglotus was felt by the finger covered with soft and doughy mucous membrane.

After careful consideration of all these circumstances, it was determined, in consultation wath my fu'her, that two caustic issues shouad be opened, one on each side of the thy roid cartilage; that the iodide of potassium should be administered in decoctoon of sarsiparilla; and that I should again apply the caustic soluten to the interior of the !ayyux and trachea, now that the inflammation had passed the acute stage. Linder this 1 lan of treatment the patient made daily advances towards health, and was soon able to take exercise out of doors wearing a respirator.

The elfects of lopical treatment during this latter period were as manifestly benefical as formerly they had been hurfifl. The strength of the solution rras at first only ten grains to the ounce of water, but was gradually increased 10:a' scruple in the same quanuly. After each application the patient found that in: a short time his brealhing was freer, his cough less frequent, and his voice stronger; but this improvement at first lasted only about forty-eight hours, at: the end of which period the application was always renewed with the grod. effect of sustaining the improvement. By-and-by, however, the intervals weres lengthened with impunity; the gemleman spent the summer at the coast, and is now perfectly well.
itnink it worth mentioning, in conclusion, that I still see this gentemant occasionally for a feelug of diyness in the thont, which nothing but the stimulent application seems to relieve. This appears to be a very common state ofs matters after the caustic solution has been applied to the throat for any lenglh: ot ume. Hence I now and again see a number of my oid lay yogeal patients Who have been cured of all theri symptoms with the exception of this feelinf
of dryness, and it is often both intense and annoying. I believe the most of the n would disregard it, were it hut for the fear of a relapse intother former state, and ! thereliore encourage them to forgei it if possible, and to use such means as rujefacient limments externally, or some simple gargle. Still it must be confessed that no remedy for this hrayreeable feetmg is so effectual as the solution of caustic, and if at be not too shong, and af the mervals of its application be not iujudicously shon, I do not thank its continued use in the cautious manner just indicated wind do any ingury to the mucous membrane.

But to return from tais digression; the case whel I have narrated proves, as clearly as any single case can prove, mat the topal treatment is unsuitable duting the acute stage of evadative ctonp: and, were at not for the inconvenient length to which it would protract my paper, I could relate many others, the subjects of which were chldhen, and which all go to corroborate the above co colusion. I have in these eases mvariably seen good reason to siop the topical treatment if ithad begua to use 1 early an the disease, because I found that it retarded, if it did not prevent, taen lavoubable progress. One of the most marked of the cases to whach I aliule was the followng, and I relate its chief features here, because it is the last case of acute exudative croup in which I have used, or imend to use, the solution of caustic.

Case 2 .-Tine patient was a girl, four or five years old, attended by my friend, Dr. Peter Stewart, of Eglington-street.

This litte patient was suddenly seized with symptoms of acute croup, about the middie of last winter. Dr. Stewart was mmediately called in, and at once instituted the must judtcious measures to check, if possible, the untoward progress of the malady. Among other things he apphed a solution of caustic to the pharyux and upper pait of the larynx.

Uufortunately: however, as sometimes will and must happen, under the best treaturent, the patient's state raphlly became worse, and Dr. Stewat $1 e-$ quested a consultation whth my father; and a doubt occurng to the former that possibly he might uot have passed the probang far intu the laryux, he likewise asked me to see his patient and apply the soltion of caustre for ham.

The child had been about foity hours ill when I saw her, and was evidently in a most dangerous cotulition. The exudation was very abundant in the trachea, as evinced by the sharpness of the respuatory sounds neard over it, and by the faiminess of the vesicular mumnur in the lungs; the gloits, however, vibrated during coughing and speaking, and was therefore, free of edematous swelling. The palse was gaick but not feeble; the suface of the body was hot and moist, and the face was of a dingy ine, ihe hps being almost livid.

I introduced the probang, the sponge of which had been moistened with a solution of twenty grains of causte-in an ounce of water, so easily through the rima glottidis, that I feel quite convinced that Dr. Stewart, who is in the danly habit of using this plan of treatment in many other cases, espectally in hoopingcough, had hikewise reached the seat of disease, and that there had been a farr trial of the topical treatment in this case from the commencement. I repeated the application thrice during my first visit, and Dr. Stewart renewed it again in the evening. At my second vist, next mornmg, I used a stronger solution, viz., one of forty grans to the ounce of water. After cach application the child seemed a little easier, perhaps from the passage beng partially cleared by the sponge and by the child's own efforts, but she always became worse in a very short time; and althongh all the ordmary means had been used during the whole progress of the case, besides the topical measure, stall the child's state was evidently becoming very hopeless: The pulse was more rapid, but not as feeble as might have been expected, and the colour of the shin wassmuch mote dingy-indeed it was a'most lived. The child ded that erenang; and Ir regret to add, that no inspection of the body was permitted.

In this case the falure of the topical treatment was far ton marised to oreur in any oue's practee without exchaty very sentons rethectoms regardug its emptoyment in the disease of whem th was an example, and it leed me to look
 experments as that when I turmedy reated. The resuts of the e observanums and rellectoms have been to cominee m of the that matubableness of the areatmemt in quertom to arme carrs of exwlate croup.

But I may here be met wath the objecton, that it, in my cases of croup,
 Horace Green's cases. Tias mplesson, however, will not, on exammation, be found to be so correct as many may be mentaed to thank. Nor is it, in my opinion, detractung from Di. Gieen's merit to houd that it consists in havieg eifectually arrected attemton to the greued satyect of topical appleations to the interior of the largux rather than m receommendug that treatment in cases of croup.

Dr. Horace Green illustrates has hathe work on rroup by thirteen cases. IIe may posshby reter to onters harousthont the work, but these are the only exampies tolly rehated, so that they can be judged ot modependenty by the reader; hence they are caretuliy numbered sut as to permin of casy reference. Of these thateen cases, two ate quoted thom alr. liyland work on the lay yn, chiefly tor the sake of the account siven ty that authot of the morbid appearances atter death. In these, of comse, lie topual heatment was not used, so that the cases whech hltustate this theatment given by Dr. Green are reduced to eleven. Nor am 1 connduced hat these were all eases of true exudative croup; nay, 1 think it is centam they ane not; for No. V. was a mere hoarseness, and No. VII. was a spasmodic athection of the glotis wheh camo and went without any symptom of cioup at all. Nos. II., VII., and X., were appare..ty cases of achie edena giolluths, leaving only si. cases, the symptoms of whet resemble those of coup. Even some of these six have more the characters of dhphtheritis than of croup; and su one of them (No. XIII) the anfection tollowed meas!es. In only :our of the six cases was the disease fully deveioped, and of them one-hadi died. But, supposing that all the eleven cases related in this book were teally cases of croup, more or less severe, I do not think the mortahty among them, vio. thee deaths in eleven eases, was less than it generatiy is in the ordmary run of croupy cases occurfiug in the better ranks of hte, and treated in the usual way; and thereiote it follows that Dr. Green's expenence, so tar as we have it in lis work on croup, does not show that his suceess in the treathent of cases of that disease was increased by has using the topacal appications to the mitror of the laryux; for he very properly used othel measues as well, and the result has been a mortality not at all less than th the had neglected the topncal treatmem altozether. I consider it no small corroberation of my opimon, in regad on this point, that MI. Tronsseau states in the 'Unon Medeate' for Jsōi, Au. 100, as one reason tor his superior success of late year; in the treatment of severe cases of croup, that he has discontinued the application of a strong soimtion of causitc to the laryax and trachea, which he used formerly to unist upon.

The termuation of acute milammation ot the laryngeal mucous membrane, whether that indlammation lad been of the smple or of the eaudatuve type, in cederna of its loose subjacem tissue, is an event so eemarkable ans! impoltant that I have reserved cintil now the ferr remarks which I wish to make.on its topical treatment. I believe that tue vecurence of the lesion referred to is by means infrequent, and that it is always attended with unminent danger to the patient's life. The rapidity with whicin the inflammatory stage sometimes terminates in this manuer is sufiicuenty remarkable to have struck every one who has observed cases of the kind. In some of these it is the resultof constitutunal debilty; however that may have been produced; while in othern it
seems referrible to a peculiaity in the mature of the morbid proress iseelf. In the former olass of cases it genematy abse duing tae progress of some exhausting diserase, such ats ty ptits teier, or towards the end of exadative croup, itself, when it is always a formidable and often a fatal complication. And even when it oecurs as at mate patary liveace, the inthamatom of the mucous membraue appent, 1, be beatued in hatensity lay the very occurrente of tha gervas eflaston, athongh it hal previous's been even of the exudative type. From what has been fon nery stated, heh, reazang the action of a soluthon of canstic apphed to a subacutery intianed mucous me mbrame, it might, a priert, be expected to prodace a benetictal eflect on the cutematmes glotis; and this expectation has been temataby holithed in my expertence, as the following instance will sufficiently exemphify.

Case 3.-A yung chat, of equt montio old, had eevere hemorrhace from the gams after division of them over the incisor teen, and m the exhausted state which followed, he canght cold, atod- heeame athected with the ordinary symptoras of cronp, wheh were chectly conbathed by at emetic, comier-irritatou over the throat and clest, and by tepeate 1 small doses of catomel. But very soon the chief, naty, onfy sy, hom berame that of impeded respiration. The chici!'s effints during inspuntin, the dry, whathing sound whin a accompanied it in the trachea, the neaty total abence of vesicular murmur in the lungs, and the shot expmatory sumde, taken along whth the previous state of the hute palient, rendered at evileat that alema glotads had occurred; and if to this it be added that the pulse was feeble, the patient pale and exhausted, and that he coahd hardly be made to receive nouistiment,-his extreme danger will not be questioned.

I iutroluced the probang down to the glotis, but not tiroagh the rima, owing to the swelling of its margins. The strength of the soluton used was thirty grains to the ounce of water, and it was applied three or four times at short miteryals. The efiect was soon appatem. Some coughing, and the expelsion of tough maco-albuminous mater dirst followed, and then the child became quiet ; the breathing was freer, athough, of course, there was still considerable obstruction at the glotis. In a few hours, his obsturetion seemed to be incteasing, and the application of the caustir solution was again renewed in the same way, and writh equally favourable results. The calomel was contimued, and a warm water cuema was administered, after the action of which the child took the breast; and slert for a short time. The future proaress of the case was marhed by a gradual but steady improvement. The calomel was soon stopped, the bowels were duly regulateil, and the topical applicants were persevered in daity for two or threes neeks, by the end of which time all obstruction to the breathing, os well as the congh, and even a degree of hoarseness which bad lattely been observed, had completely disappeared; and the chuld's general health rapidy improved.
[hn another ease of an infaut, only two months old, to which Dr. W. was called, the symptoms atfint appeared only those of a slight cold, but which graduallyassumed a frightiful degree of intensity. Dr. Watson tonched the glottis with a strong solution of caustic, which asisisted in expelling a quantity of ropy mucous and relieved the renpiation. After a pargance enema, and a tepid bath, the touching was repeated with mamlest mprovement: onls fouit or five repetitions were necessary, and the chad was well in a few days." Dr. Wation then continues:]

On teviewing the whole stbject, then, the following are the principal conctusions to which my ubservations, experimental and chuical, have conducted me:-

1st. The solution of the nitrate of silver, when applied to an inflamed mucous membrane, acts differenty, according to the intensity of theinflammaNon that may be present ; in the asthenc varieties it operates as a stimulani of
the capillaries of the part, and likewise of tis secreting apparatus, while in the sthenic variety it incteases the congertion of the nembiane, cniefly by diminishing the thucity of the bluod in its vessels.

2inl. In acute lary nexiti-, in whimh there is no faler membrane, and probably in diphthernis, in which there is in alouminous exudatuon, the local apphication of solution of caustic, vaying in strength inversely in propertion to the mensity of the inllammation, may be employed with more or less speedy benefit.

3rd. Du-ing the volence of true exulative croup, the sumuran application to the pat affected s munnous, but when the disedse beyms to yied to antiphlogisthe and olter treatment, it maty assist in the cure.

4th. E.lema gluthde, wheither oteuribis as a primary disease, or as a complication of uther mabid state-, is always sperdily relieved, and in some cases effectually cared, by the application of strong soiutions of the nitrate of silver to the cedematous organ.

Aud 5th. It follows as a corollary, derived partly from the formoing conclusions, and partiy from the results of my experience of the topteal treatment communicatel to 'The Dublen Quarterly Jumetral' it Novenber, 1850, that the solution of canstue acts bemetretaliy in ouly oue, viz., in the asthenic vaipety of laryngeal mitlammatun: for it mathers not whether such has been the original character of the aflection (acute but not asthenic cates), or whether it has becone so under the combined influpser of time and general treatemen (chronic cases).—Dublin Quarterly Journal, August, iS52. p. 48.

on fatty enlargement of tie liver.

By Prof, Bennett.

Fatty liver is now well known to depend on the secretion of a large quantity of oil, which is stored up in the hepatic cells. These cells are under such circumstances frequently enlarged, and contain oil varjing in amount from a few g'anules to a large mass, which occupies the whole of their cavities. Not unfrequently livers, which to the naked ege appear hrallhy enough, may sill be demonstrated with the microscope to contain an unusual number of fat granuler, and there can be little doubt that considerable vatiations may exist in this respect quite compatible with a state of health. Almost all stall-fed animals that do not labour, pussess a large amount of fat in their hepatic cells. Is is only where the organ is much ealarged, altered in culour, and presses upon neighbouring viscera, that its fatty degeneration can be said to interfere with the vital processes.

In man, fatty degeneration of the liver has qeen observed to be very common in two kinds of cases-l st, in drunkards; 2nd, in persons labouring under phthisis pulmot:alis. Drunkards are continually taking alcholic liquids, which abound in carbon, and which being too large in amount to be excreted from the lungs as carbonic acid, and from the liver as tile, is stored up in the latter organ in the form of fat. In phthisis pulmonalis, the excretory power of the lungs is diminished, and the excess of carbon in the tissues and food is thrown upon the liver to be excreted. Under these circumstances, it is converted into fat and stored up in that organ.

The manner in which the livers of geese are prepared in Strasbuag, is by following a process some what similar. They are confined in close cages, in a Leated atmósphere, and largely supplied with food. Want of excercise and hent,
diminish the respiratory functions, and cause that of the liver to be disordered, and the result is enhargement of the organ from accumblation of fat. In the case before 16 , such exactly seems to be the canse of the disease. A man is kept arationary watehing a stean-ergine, in an clevated temperature, whilst he is zonsuming his usual food, and paceeding in aleholic drinks.

Thhis view, however. has been objected to on the following grounds:-1 st, That the connection between fanty liver and disase of the lungs is not general ; 2d, 'luat there is no evidence that a laty liver does ant excrete bile an usual; and 3 d . That as a consideralile portion of bile is absorbed into the blood to be exernted from the lunge, the liver must be considered as preprring material for thege organs. Hence it is argued that it would be a strange compensation if the funicibus of the liver were to be increased, while that of the lang is diminished by disease (Budd.) But if fatty liver be not always cotijuined with diseased lung, it will be found associated with some circumstance which diminishey the function of that organ, in relation to the work it is called upon to: perform; for instance, the separation of carbon from the alcoholic fluidv taken by the drunkard: Ayain, want of exercise from various diseases, and eapeeially phthisis, whilst, in order to support the strength, wine and rutritious diet are given liberally, may frequently be seen to be the cause of fatty liver. Further, although it ie granted that the liver may in health prepare carbonaceons matters for pulmonary excreition, it must be clear that if the lungs cannot accomplioh this function, such matters must be thrown back or retained in the liver, and constitnte a powerful cause of fatty degeneration of that organ. On the whole, therefore, we must regard excess of carbonaceons matters in the system, and the diminution of pulmonary action, as the chief cause of derangement in the functions of the liver; a view which has the merit of pointing out to us as remedies a dininished diet, a temperate climate, appropriate exercise, and an endeavour. to proniote the functions of the lungs and skin.

There is anomer structural alierasion of the liver, which, from the colour and general appearance so like bees" wax it assumes, has been called "waxy," and sometimes "brawny," liver. 'This disease has been confounded with fatty liver, althouglt an exanination of its minuse structure will show that the heparic cells present a very different character. Instead of being enlarged and billed more or leas with oil glubules, they are colourless, shruaken, and for the mont part destitute of enments, while the nucleus has disappeared. The lesion seene to me to be a furiher stage of the fat:y dageneration, in which the oily matter-is aboorbed, and the cell-walls ate left behind and aggregated tugether; but further résearcheses are, requised to determine this point.-تMuthly Journal of Menicul Scieryce, August, 18562,1 . 164.

ON CIRRHOSIS OF THF LIVER.

13y I'rorbasor Banisitt.

This morbid change in the liver consists of hypestrophy of the fibroun ela ement betueen the lobiles of the urgan and its subsequent contraction, whereby its voluite is dininished, and the secreting ceth compreseed and atrophied. As a further result the larg' nous trunks are also cowpretsed, and their com-
mencing ramificatisus so congested that effinioninto, or dropay of, the peritoneal eavity is induced. The nuturg liver is an incipient condition of cirthasia, in which the poren system of vesels in the org'n is enogested. In both conditions, the hepatic cells are more or dess latty and arophiad. The fitty degeneration ia numagy liver may be seen to commence at the circumference of the loboles, wherens in the advaced stage of cirrhosis, all the co lhsare thore or less diseased, some loaded wihb fat, and othert with gellow pigment. Notwithstathding the great organic changes which are frequeatly observed in this diseare, danger is sat so mach to be ap prehended arom interruptions in the functions of the liver, as from the ascites indaced by the cometriction of the barge abdowimal veins, which, by distending the abdumen sad compressing the lunge and liver, so interfires wifh those inportam organs, that death is orencismed.

The creatment in cirrhovis must be purely palliative, and directed to diminishiug the ascites, by means of diureties and diaphoretics. The question of drawing of the floid by pracentesis is one which may arise, in caze the swelling is very grear, and the entorrasment to the p.lmonary and renal organg, extreane. Even then, although temporary relict may be obtained by the operation, thure is everv reasion to believe that, in the maj.ority of cases, life is in no way proloigrad.-M Monthly Jourtul of Med. Science Aus., 185こ, p. 166.

NEW METHOD OF PERFORMAG TRACUEOTOMY.

By Dr. C. Gerion.

For the performance of 'Iracheotomy, Dr. Gereon has contrived an instrument conssting of three moveable branches, which join at the end, so as to form a sharp point, and can be keprated by means of a vice at the other extremity of the cone. By turning the vice from left to tight, the brataches diverge and from a cone, of which the base is turned towards the wound, aud which thus resists the tendency of the cartilages to expmit from the aperture.

In operating, an incision of two or three centrimetres (four-fifths of an inch to one and one-fith) is made through the skin, the veins are put aside, and the incision, gradualy diminishing in length, is cominurd until the space between t wo offine carsilagions ringe can be distinctly fete with the uail of the fore-finger. The trachea is then fixed; and the instrument is glided aloug the nail of the fore:finger, and is made to penetrate into the space between the ringz for about three or four millimètres (about one-seventh or one-ninth of an inch). An expansion about a quatter of an inch from the point, prevents the instru:nent from peuetrating too deeply. The instrument being held steadily, the hande of the vice is now turned, and the branches of the instrment caused to diverge. When the opening is sufficiently wide to allow the canula to pass between the branches of the instrument, it is introduced into the tachea. The loss of hood is inconsiderable; and the air escapes with so much force, that it would expel every drop which might be inclined to enter the bronchi.-Loudon Journal of uredicine, Octuber, 1852, p. 932.

[^0]: - The imperial quart of 40 ounces is intennied to be understood throughout the paper, and the weight, avoirdupoise.

[^1]: *The best glass for this purpose is the " patent Britisn plate," manufactured by Messrs. Chance at Birnningham.
 \dagger It sometmmes harpens that neither acid, nor potash can clean a piece of glav. sufficiently well to enable it to endure the test proposed; in such a case watery solv. tion of gum arabic may be used, or what is still better-the human saliva will clean instantly.

[^2]: - The preparations here ailuded to were subsequently purshased from me for fixh aterling, or $\$ 2500$, by pivate subscription, headed by H. R. 1. Prince Aibert, and presented by the subscribers to the Hunterian Coilection, in the Roynl College of Surgeons, where they now remain.

 They were also rewarded by the late Sir Roben: Peel, at that time Fisst Lord of the Treasury, who presenied me with a check, on the Royal bounty fund, for $\mathbf{5 1 5 0 -}$ $\$ 750$.

 I Since the above was written, a second adidition has bern published of the book alluded to. and the author, Mr. J. T. Quekett, has therein achnowledged my chim as the aole inventor of the phan.

[^3]: *Sinee writing the above, I find that the preparations for which I used at 12 month before have not stood, I cannot, therefore, recommend it.

[^4]: - The height of the sprit limp miat determine the length of the legs.

[^5]: - This is the peculiar decomposition of the shell-lac before described.

[^6]: *The miond ef grinding a box of the height here mentioned, does not in any, respect -differ from that which has been described. Here tine end pieces are considerably elong Gated, and'miat firstly be made true in the direction of theit longet axis-the top botom is not.to.be ground nntill the hollow box be perfect.

[^7]: - We have geven but a short abstract of Dr. Till's interesting paper, as it will shortly be published entire in The Lancet.

[^8]: - This instrument is similar to the common male lithotrite, with its shaft shortend to six inches, and the angles of the jaws set at 1.10 deg., instead of the usual angle, io as to faciltate its introduction into the female bladder There as a slight modification in the beak.

[^9]: - Some heat will also be generated in the combination of sulphurgan't phosphoros with oxygen, to whsch reference has been made (p. 136) : bui the amount thus produced has not been eitimated, and need not he considered in the exposition of a theory wheh can, at present, be stated in only the most general terms.

[^10]: * Vierordt has made estimates of the heat givon out, per mmute. from the lungs in warming the inspired air, and in combubtion whh the riapouted water; at would be emouth to heat (at the mesi) $96-34$ grams of water from 32 to 212 ' (cx. p. 236). At this iate the loss by evaporation from the skin and lungs together may be roughly estumated at enough to heat nearly 4,000 grains of water from 32 to 212°.

[^11]: - As there are cases of epilensy frequently presenting themselves to the practiäoner in this place we desire to furnish them with Dr. Hall's elaborate views on the disease.

[^12]: - Probably the most unvarying form of symmetrical degeneration is that instanced by the arcus stems.
 f "I have in no instance found this senile are, when well developed, uraccompanied by fatty degeneration of the heart."-Lancet, May 11 th 1850 . Dr. Latham, in his lectures on the Diseases of the Heart, vol ii. p. 166. points out the difficulty of diagnosing a fatty change of the organ, and insists on the mportance of altending to the "constitutional peculiarity;" it is an indication of this that the arcus will be proved of value, in helpens us to be "able during life to conjecture a tat heart with such strength of probablity that we almost know it." See Dr. Ormerod's Observations on Fatty Degenerations of the Heart, for some remarks in refetence to its dhagnosis and history.Medical Grazette, 1849.

 By Dr. Wilde. Mr. Lawrence has noticed the arc (instead wherenfa most complete circle often happens) at thirty three years of age; Mr. White Cooper, at twenty-e!ght. Mr. Canton has seen it beginning at sixteen (See Part ii. of Mr. Canton's observations). Dr. Quain tells me that he has observed it well marked at seventeen. Mr. Gulliver says of fatty degeneration of the arteries-" though most common in old age. It was twice seen in subjects not past twenty-one, and once in a boy of sixteen." It would be of great interest to examme the small vessels of the brain in eases of carly apoplexy. Its most usual time of occurrence has been theated of by Dr Quain, who has unalysed a large number of cafes in his "Observations on Cerebral Apoplexy, at different period of life."

[^13]: - This conclusion 1s, in our judgment, not justatied by facts. Nervons power cannot be transmited by anythmy but nerve. Electricity may be transmitted by a variety of conductors, organic or morganic, and of these, nerve is one of the worst. Anima's which evolve electuctity are provided wath distinct organs for this purpose. By nervous power, malk, urine, and bile are secrated into blood. Electricity, in any form, cannot produce these or smmar results. They resemble each other in traversug their respective conductors with equal rapndity; but this is net sufficient to establish their identity.-Ed. Gaz.

[^14]: * At the mecting of the Erench Academy. on the asrd of June this year, M. Blondlot gave the history and post-mortem of a dog that tived for five years without bile passing into the intestines.

