CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

The Institute has attempted to obtain the best original copy availeble for filming. Features of this copy which may be bibllographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of fllming, are checked beiow.

Coloured covers/
Couverture de couieur

Covers damaged/
Couverture endommege
Covers restored and/or laminated/
Couverture restaurde et/ou pailiculte
Cover tirle missing/
Le titre de couverture manqueColoured maps/
Certes geogrephiques en couleurColoured ink li.e. other than blue or biackl/
Encre de couleur li.e. autre que bieue ou noirel
Coloured plates and/or iliustrations/
Plenches at/ou iiiustretions en couiour

Bound with other materiel/
Relis avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
Lareliure serrée peut ceuser de iombre ou de la distorsion le long de le marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible. these have been omitred from filming/
Il se peut que certaines pages blanches ajourdes lors d'une restourstion apparaissent dans le texte. mais, lorsque ceia était possible. ces pages n'ont pas ett filmdes.

L'Instisur a microfilmd le maillour exemplaire qu'il lul a itt possible de se procurer. Les dtrails de cet exemplaire qui sont peut-etre uniques du polnt de vue bibliographique. qui peuvent modifier une image reproduite. ou qui peuvent exiger une modiflcation dens le methode normale de filmage sont Indiquds ci-dessous.

Coioured pages/
Pages de couleur
Pages damaged/
Pages endommages
Pages restored and/or laminated/
Paris. - "estaurbes et/ou pelliculdes
P icios: scoloured. stained or foxed/
iri. \therefore - idrolores. rachetdes ou piqudesPi. - : : stached/
Pages détachéesShowthrough/
Transperence
Quality of print veries/
Qualité inégale de l'impression
includes supplementary material/
Comprend du matériel suppiementaire

Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips. tissues. erc.. have been refilmed so ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata. une pelure. etc., ent été filméas a nouveau de facon à obtenir la meilleure image possible.

Addtional comments:/
Commentaires supplémentaires:

Pagination is as follows: p. [351]-356.
La pagination est comme suit: p. [351]-356.

This item is filmed at the reduction ratio checked below/
Ce document est fiimé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanka to the generosity of:

University of Toronto Archives

The Images appearing here are the best quallty poasibie considering the condition and legibility of the original copy and in keaping with the filming contract specifications.

Original copies in printed paper covers are flimed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back covar when appropriate. All other original copias are flimed beginning on the first page with a printad or iliustratad impresslon, and ending on tha last page with a printad or Illustrated Impression.

Tha last recordad frama on each microficha shali contaln the aymbol \rightarrow Imaaning "CON. TINUED"), or tha symboi ∇ (meaning "END"). whichever appiles.

Maps, piates, charts, ntc., may be filmed at different raduction ratios. Those too large to be entirely included in ona exposure ara filmed baginning in the upper ioft hand cornar, ieft to right and top to bottom, as many frames as raquired. The following diagrams iilustrata the mathod:

L'exemplalre filmd fut reprodult grace ita génorosité da:

University of Toronto Archives
Les Images sulvantes ont tit reprodultas avec io plus grand soln, compta tenu da le condition ot de la nettate de l'axamplaira filmb, ot an conformite avec las conditions du contrat de filmaga.

Les examplalras originaux dont le couvarture en papler ast Imprimie sont fllmbs en commançant par la premlar plat at an tarminant solt par la dernière page qul comporte une amprelnta d'impression ou d'llustration, solt par le second piat, solon le cas. Tous les autres axemplalres originaux sont filmés on commençant par la pramlise page qul comporte une emprolnte d'Impression ou d'llustration et en terminant par la darnidere page qul comporta une tella emprolnte.

Un des symboles sulvants apparaitra sur la dernilare Image de chaque microfiche, selon le cas: in symbola \rightarrow signifia "A SUIVRE", la symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être fllmbs a das taux de réduction différents. Lorsque ie document est trop grand pour stre reprodult on un seul cllché, li ast filmód partir de l'angle supbrlaur gauche, de gauche ddrolte, ot da haut on bas, on prenant la nombre d'Imagas nócessaire. Les dlagrammes sulvants Illustrant la méthode.

MICROCOF RESOUTION TES CHART

(ANSI and ISO TEST CHART No. 2)

UNIVERSITY OF TORONTO STUDIES

PAPERS FROM THE CHEMICAL LABORATORIES

No. 47 : A mechanical model to illustrate the Gas LaWS, by Frank B. Kenrick
(Reprinten prom ther Jorral of Phisicai. Chimistey. Viol. Vill)

THE UNIVERSITY LIBRARY: PUBLISHED BY
TIIE I.IBRARIAN, 1904

COMMITTEE OF MANAGEMENT

Chairman: James Loudon, LL.D.,
President of the U:iversity
Profrssor W. J. Alexander, Ph.D.
Professor Pblham Edgar, Ph.D.
Principal J. Galbraith, M.A.
Profbsjor R. Ramsay Wright, M.A., B.Sc.
Professor Groroe M. Wrong, M.A.
General Editor: H. H. Langton, B.A.,
Librarian of the University

A MECHANICAI, MODEL, TO ILIJUSTRATE THE GAS LAWS

HK FRANK B. KENRICK

The difficulty of getting elementary students to grasp the fundamental ideas of the gas laws, Carnot's cycle, the entropy function, etc., must have confronted every teacher of plysica: chemistry. The student learns all too easily that "peevee equals enartee ", but the apparent simplicity of the relations and the absence of concrete conceptions and numerical examples - to say nothing of absence of interest - combine to crcate a state of vagneness which will often hanper his progress for years. In order to overcome this difficulty the writer has enistrncted simple model which lias worked admirably, not only in giving stadents definite conceptions of Carnot's cycle, etc., but also in awakening their interest in, and aiding them to grasp, the essential idea of the calc"lus.

The model described below is, of course, only one of many possible arrangements which are not difficult to invent on paper, but this one has the advantage of having been actually tried and used by students, and this seems a sufficient reason for publishing its description. It can be constructed with abont a day's work by any amateur mechanic.

Fig. 1
It may be objected that the model is more complicated than
the laws it is intended to elucidate. To this it may be answered that if it were not so the students would pass it over as lightly as they do the laws themselves.

The model is set up on the vacunt wall of a laboratory where students may work with it without interference from instructors. The essential part of the apparatus is a circular wuoden pulley $\mathrm{A}, 20 \mathrm{~cm}$ in diameter, to which is fixed rigidly a wooden curve B, the co-ordinates of which are given in Table 1 , and which, together witl the second curve (mentioned below), is exactly counterbalanced by the weight D. The curves are made of $3 / 8$-inch pine and carry double rows of ordinary pins on the edge which act as flanges. The whole is pivoted with brass bearings on a horizontal steel pin. At a suitable point on A is fixed an iron wire (No. 24, B. \& S.) which carries a pan P at its lower end. A tin cross-piece is attached to the wire at a conveuient height from the ground to represent a piston, behind which is a piece of cardbsard bearing a diagram of a cylinder and a millimeter scale. To the right hand end of the curve B a piece of strong thread is fastened, which passes round the curve to a pulley F, similar to A, and thence downwards to the end of the lever G, pivoted at H. This lever is made of a strip of light wood, about 4 meters long, and is braced with wire, as shown in the diagram, and also in the horizontal plane. It is counterbalanced by the weight M and is strong enough to carry a 5 kg weight at T . This weight rests on a toy wagon which may be moved along a flat board between J and K. On the edge of this board, which is in such a position that the centre of gravity of the weight remains in a line with the end of the lever and the fulcrum, is pasted a millimeter scale, numbered from the fulcrum as zero.

The curve B fulfils the condition that the length of the perpendicular from the centre of revolution to the horizontal tangent is inversely proportional to the angle through which the curve is moved. It is part of an infinite spiral, and was obtained graphically as the envelope of a suitable number of tangents. The position of the botton of the cylinder (vol. $=0$) may be found by turning the curve to the position in which the y-axis
(see table) is horizontal. This corresponds to the angle of revoIntion taken as zero, in drawing the curve. The distance of \mathbf{A} from F, about 5 meters, is such that the thread remains practically horizon ${ }^{4}$ 4.

This arrangement gives the relation between pressure, volume, and temperature,

$$
p v=n \mathbf{R} \mathbf{t}
$$

The pressure in grams is the weight on the pan P, plus the whight of the pan which is 100 g . The volume is the distance of E from the bottom of the cylinder, and the absolute temper'ure is the di ace, in millimeters, of a pointer at tlir entre of gravity of the igon T from the fulcrum H. For the dimensions and weigat given, the value of n is 0.000317 g -mol and the linits of volune are in the ratio of 1 to -
T.e work done in compressing the gas isothermally is equal to the work required to raise the weight T, and therefore the scale L (which is 1400 mm from the fulcrimin) gives the value of const. $\log v+$ const. If d is the reading in centimeters on this scale,

$$
\text { wa:t }=5000 \frac{l}{1400} d \mathrm{~g} \cdot \mathrm{~cm} .
$$

The additional restriction imposed on the variability of p, v, and t for adiabatic changes is supplied by the following arrangement. To the wheel \mathbf{A} is fixed a second curve C which fulfils the following condition :

$$
s=\frac{\text { const }}{a^{k}-1},
$$

where s is the horizontal movement of a tangential thread, a the angle of rotation, and k the ratio $\mathrm{C} p / \mathrm{C} v$.

If l is the length of the perpendicular from the centre of revolution to the horizontal tangent, then

$$
l=\frac{d s}{d a}=\text { const }^{\prime} a^{-k}
$$

and ensequently it was possible to obtain thiscurve, graplically, exactiy as in the case of the one already described. The co-
ordinates of the curve for $k=2$ are given in Table 11.' The tangential thread ${ }^{2}$ actnates the lever R and the pointer Q, made of a very light, thin glass tube properly counterbalanced, to the end of which is attacled a plumb line N, N of fine cotton terminating in a small weight. Since R is at a distance of about flve meters from C and Q, it is clear that the horizontal movements of the plumb line N represent the alteration of temperature for an adiabatic change of volume, v, or,

$$
t v^{k-1}=\text { const. }
$$

Since the pivot of Q is exactly over the zero of absolute temperature, H, the proper value may be given to the above constant for any adiabatic line by moving the connecting point S (a small piece of sheet rubber with a hole in it) up or down the glass pointer till N is opposite the pointer on the temperature wagon. To carry ont an adiabatic expansion, therefore, it is simply necessary to set the pointer for the initial state by adjustment of the point S, and then to keep the temperature wagon opposite N during the alterations of presure. It is necessary, of course, after setting up the model, to adjust the length of the fiber Z, so that at infinite volume the adiabatic pointer will be at zero. This can be done by adjusting the fiber to any length, taking two pairs of readings of temperature and volume, and calculating what correction in length will satisfy the above equation.

The co-ordinates of the curves B and C are given in the following tables. The values are expressed in centimeters. For both curves the centre of revolution is $x=10, y=12.5$ and the tangent for vol. $=0$ is parallel to the y-axis.

[^0]Tablif I. (Curve B)

x	y	x	y
10.8	8.7	4.5	17.7
10.0	8.45	5.4	19.4
9.1	8.4	6.7	21.0
8.15	8.5	8.5	22.4
7.25	8.75	11.1	23.7
6.40	9.2	14.0	24.5
5.5	9.95	18.1	24.9
4.8	10.9	23.3	24.3
4.25	11.9	30.0	22.2
3.9	13.0	38.5	17.5
3.8	14.3	49.5	8.4
4.0	16.0	57.5	0.0

Table II. (Curve C)

x	y	x	y
10.2	12.0	17.7	18.7
10.0	11.87	21.0	18.5
9.7	11.8	23.5	18.1
9.3	11.9	27.0	17.1
8.9	12.2	30.2	16.0
8.6	12.7	38.6	11.9
8.4	13.6	49.0	5.5
8.7	14.7	55.5	0.4
9.8	16.2	-	-
11.2	17.2	-	-
12.6	17.9	-	-
15.0	18.5		

In conclusion, a few examples of the problems illustrated by the model may not be out of place. ${ }^{\text {a }}$

A Carnot's cycle process was carried out between the absolute temperatures 483° and 360°, and a number of points were plotted in pressure-volume co-ordinates on millimeter paper. The various areas were cut out, weighed, and compared with a square of paper of known size. The work gained during the cycle was calculated by the following methods :

[^1](1) Weight of area enclosed by the two isothermals and two adiabatics,
0.2320 g , corresponding to $1850 \mathrm{~g}-\mathrm{cm}$.
(2) Weights of areas representing work done during iso-
thermal expansions at 483° and $360,^{\circ}$, respectively,
0.8965 g , corresponding to $7156 \mathrm{~g} \cdot \mathrm{~cm}$ -
and 0.6697 g , " " 5346 "
Difference $1810 \mathrm{~g}-\mathrm{cm}$.
(3)
$$
T^{\prime \prime}-T^{\prime \prime} Q_{1}=\frac{483-360}{483} 7156=\ldots \ldots \ldots . .1822 \mathrm{~g} \cdot \mathrm{~cm} .
$$
$0.000317 \mathrm{R}\left(483 \log _{n} \frac{28.0}{16.2}-360 \log _{n} \frac{37.0}{21.4}\right)=1636 \mathrm{~g}-\mathrm{cm}$.
The work done during the isothermal expansion at 483°, calculated dirctly from zeeight of wagon $(4855 \mathrm{~g}) \times$ distance raised (determined from movement of pointer, 4.13 cm , on scale L in figure) was :
$4855-\frac{-483}{1400} \cdot 4.13=6916 \mathrm{~g}-\mathrm{cm}$ (compare value above, $7156 \mathrm{~g}-\mathrm{cm}$.)
The equality of the amounts of work done during the two adiabatic expansions is illustrated by the weights of the corresponding areas of paper:
$$
0.3993 \mathrm{~g} \text { and } 0.4045 \mathrm{~g} .
$$

The values of the constant R, calculated from varions points, taken at random, from the above-mentioned curves, are

853 Io, 85 190, 837 Io, $85150,84740$.
The constancy of $p v^{k}$ is illustrated by the values calculated for three points on one of the adiabatics :

$$
21250,21100,20820 .
$$

It will be noticed that the model is not perfect; bit the same may be said of gases.

> University of Toronto, Chemical Laboratory, April, sgo4.

$$
\sqrt{r}
$$

[^0]: - The value 2 was chosen rather than an actual value for some known gas, both to simplify the calculations and also to avoid the extreme slenderness of the p, v-diagram of an actual Carnot's cycle.
 ${ }^{2}$ Owing to the necessary lightness of the pointer and plumb line, the "sag " even of the finest cotton introduces an error. For this reason fine glass fibers were used for working the adiabatic pointer and found quite satisfactory. They can be attached to pieces of cotton, at the two ends, by strips of gunmed paper.

[^1]: 1 The numbers and calculations were supplied by two second year students, Messrs. T. B. Allen and R. A. Daly.

