The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\square
Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

\square
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

\square
Cover itite missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé fe meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleur

\square
Pages damaged/
Pages endommagées

\square
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

\square
Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/
Ce documenê est filmé au taux dé réduction indiqué ci-dessous.

agricultuikal Journal,

AND
TRANSACTIONS
OF THE

(1awer ©imada Anaialtural socictu.

\mathfrak{F}

Farmers have now many advontages in heing able to connect "science with practice" in the conduct of their business, which were unknown fifly years back, or even more recently. At the period we refer to, farmers knew very litte more than the practical part of Agriculture, and that not very perfectly. No manures were made use of except that from the farm-yard, burned clay, lime, and marl; very few works of merit on the subject of Agriculture had been publishel, and we believe a periodicai solely devote 1 to Agriculture had no existence. There was not the same necessity for aifange production of food fify years back that there is now, as the population of the Forld was much less numeruus then than at present. What is our position at this moment? We have numerous publications of the greatest merit on the science and practice of Agriculture coming out constanlly; we heve men of science and practical experience giving us the benefit of their experiments and practice without any expense to us; we have many new varieties of manures obtainable, that have been proved to be very beneficial to crops and grass, and if farmers are not to benefit by all these favourable circumstances and opportunities, it would indeed be extraordinary. It is only very lately the benefits of thorough draining have become known, and we believe it to be decidedly the best of modern improvements. Though farmers may not admit how much they are indebted to those men of wealth, who make experiments at great cost, and report the results to the world, it is not less certain that they
de ive great advantages from these reports, unless they have resolved to close their eyes and underetandings against all instruction, and the most satisfactory evidence. If Agricultural scirnce and practice are not to advance tu perfection, the prospect of being able to pro duce food for a constantly increasing population, is a very gloomy one for contemplation. We do not expect unreasonable results from any improvements in our power to introduce, because we know there are limits to these thin.g. We are convineed, nevertheless, that we have abundant latitude for all our skill and exertion before we are checked by such limits. The field for improvement is ample, and we are not likely to arrive at its boundary during this generation. If we only make all the improvements that are necessary and possible, and that are now known to us, we may rest satisfied with reasonable results, and leave to future generations to work out new experiments and discoveries as they are made. We would remind our friends and subscribers that this Journal is not published with a view to instruct farmers who require no instruction; but, on the contrary, for those who may feel that they want insiruction, and also, for those who take an interest in the prosperity of Agriculture, and would be disposed to encourage its improvement. On these grounils, it is presumed, the Journal will obtain the suppurt of many who are not directly engaged in Agriculture. It is the only publication, with one exception, in this noble Province of the British Empre. that is exclusively devoted to Agriculture, and it
will be strange if it should not have ample support amongst a population so dependent upon Agricuiture. Whatever merit the Journal may have, it is cifficult to believe that any farmer would withhold his suppurt to a publication that can have no object but the advancement of Agrientural improvement, and the general prosperity, even though it would not be deemed by him who would give his suppot worthy of perusal. It is on public and general grounds support is expected. Every experienced farmer can contribute to the usefuluces of the Journal by commumicating his superiur skill and practice in Agriculture, for the instruction of his broller farmers who may not have had equal uppiontunities of learning their business. For such communications alone an griculural Journal might be very beneficial oo the country. If men of experience should find the Journal deficient in practical information and instruction, they can readily improve it by communicating superior information and instruction in the practice of husbandry. This, we conceive, will be the most useful and friendly course to adopt by all who do not find the Journal come up to their standard of perfection.

The following article we copy from a valuable little work, on the "Cultivated Plants of the Farm." Though the whole of it may not be applicable for us in Canada, it contains information that may be useful to the Farmers in any country.
Wheat.-The word Wheat is derived from hpeace, Saxon; weyde, Dutch; hwaitei, MxsoGothic; hweite, Icelandic, from "hwit," albus (Serenius.) It is the grain of which bread is chiefly made.
The generic name of Wheat is Triticum, a word very satisfactorily derived by Varro himself from tritum (Latin,) ground or rubbed, because of the manner in which its grain is prepared for the food of mankind. It belongs to the clais and order Triandia Diggnia of Linnous; and the natural order Graminece of Jussieu.

1. Spring Wheat. Calyx, four-flowered, tumid, smooth, with imbricated awn; supposed to be a native of Siberia. This wheat may be supposed to be nothing more than a permanent variety of

Winter Wheat, obtained by aceidental circmustances.
2. Winter or Lammas Wheat Colyres, fourflowered, ventricose, even, imbricate, with little or no awn ; curs, or spikes long, with the grains: ranged in four rows, and imbricate; the chu!f smooth, ventricose, or bellied and not terminated by awns, or beards. Wheat has, however, oceasionally short awns, but not the length of those in Spring Wheat. Native country unknown; the: root consists of downy tibres. Stems, one or more, erect, straight, from three to five fect high, round, jointed, smooth, leaty. Lenves. linear. pointed, flat, many-ribbed, rough, entire, rather glaucous. Stipulu, jagged, bearded. Spihe, sohtary, two or three inches long, dense, two-ram.en, smoota; joints of the common stalk, bearded. Glumes, smooth. Calyx in the upper part of the spike, with a more elongated point. Corolln of the upper spikelets, frequently more or less awned.
Wheat being exposed to the severity of winter, its roots are most wonderfully disposed to withstand the inclemency of the season. The first, or seminal root, is pushed out at the same time with the germ; and that, together with the meal, nourishes the plant, until it has formed the crown. When this has become sufficiently large, it detaches a number of small fibres, which push themselves obliquely downwards. These are the coronal roots. A small pipe preserves the communication between them and the seminal roots. It makes an essential part of the plant, sud is obscrved to be longer or shorter, according to the depth at whicla the seed has been buried. The crown, however, is always formed just without the surface; and its place is the same, whether the grain has been sown deep or superficially. As the increase and fructification of the plant depend upon the vigorous absorption of the coronal roots, it is no wonder that they should fix themselves so near the surface, where the soil is always the richest. The stalk, straw, or culm, as Linnæus calls it, is three feet high on an average, is jointed, cespitose, or in tufts: seventy-two stalks have been known to proceed from one root. The leaves are smooth, three lines wide, often much more, and on rich grounds of a very dark green colour. The spikes are close, weighty, and several inches in length. The lower flowers are imperfect, as is commonly the case in this order of plants. The glumes, or chaff of the calyx are ovate-lanceolate, and end in a point like a short awn; they each contain, fir the most part, four flowers, but sometimes only three, and often five or six; but one or more frequently fall off without producing any grain. The two glumes, or chaffs of the corolla are equal; but the outer one puts forth an awn a little below the tip, an inch or two inches in length; sometimes, however, there is none: the inner one is hollow, awnless, and two-toothed. Between these, lies the seed, or grain, which is
villose, and the largest ot its congeners. The nectaries are small, fiinged, and siiky.
A very great many hinds and subordinate varieties are eomprehended under this most important and tamiiar species wi wheat, whech have bat ict been sufficiently ins atigated evther by the botanist or the agricultaris:. The chice of dhese, are the White and Red Lammas Wheat; and these saricties will supply our subjects for description.
3. T'riticum compositun, or Many-spiked Wheat. Spikes, cmmpund. Spikelets, crowded. Corolla, awned. Native of Eypti, and cultivated at Naples ame in the South of France. The glemes are sumoth. Auas, three or four inctas logy. Limaces account of the Many-spiked Wheat is, that it is allied to the Sumacr or Spring Wheat, but that the sitike is tome tians as harse, and a hand in leagh, formed of spikelets in two rows, ahterate, approximating from mine to twelve; the fower onss shorter, but the upper ones single. Chuff, smovih, hevied. diwns a hand in length. it is prob:ably a varicty of Triticum hybernum, rather than of Tritictue cesticun, as Liunacus iauaghi.
4. Triticuan tiorgidum, Turgia, or Cone Wheat, and Barluy Wheat. Culys, iour-flowered, tumid. aillose, imbricat d, obiusc, with a short point. Nathe counary makawn. The corolle varies with or without long awns. The silky or villose glumes atone distinguish this from various awned or awnless varieties of Triticum hybernam.
j. Triticum Polonicum, Polish, or Poland Wheat. Culyx, three or four-flowered, pointed, naked, lanceolate like the corolla, which is compressed with a long awn; teeth of the rachis, bearded. Native country unknown. The plant grows large, and jields much flour; but being very e:sily lodged by rain, it is tot mach regarded by the farmer. There is no doubt of its being a distinct species. The strength of the whole phait, its large cars, and leng, narrow, scarcely tumuid glnues, readily distinguish it at frat sight. Linureus defines this Triticum as having a two flowered calyx, the character of Secale; but Haller asserts the presence of one, if not two, imperfect florets.
6. Triticume spella, or Spelt Wheat. Calyx, imperfectly four-flowered, ellipticah, obliquely pointed, shorter than the long-awned corolla. Stram, very stout, alnost solid. Spikes, strong, white. Glumes, very Glaucous. ithe origin of the species is unknown, and the specific charactur is unsatisfactorily stated It is much cultivated in the southera countries of Europe, and is given to hories in Spain, when bariey is scarce. The bread made of it is very dry in quality i, but nokind of four is better for pastry. In the South of France. it is called cipéance blancike, and is sown in the spriag. It ripena in July and August, and requires very strong land. Epelt is supposed to be the Zee of the Greeks, and the Fof of the Rocmans.
7. Triticum monococcum, or Onc-grained Wheat, or St. Peter's Corn. Culyx, angular, strongly toothed, about threr-dlowered; tirst tloret awned. incmediate one imperfect. Native country unathown. It is much caltivated in the mosit mountainons parts of Switzerland, where it remains one whole year on the ground. The neat quadrangular finm of the ripe car as if carved out of ivory, is vary remarkable. The straw is hard and tirm, and makes excellent thatch. It is less subject to smut than common wheat. The flour is of good quality, and much estemed for grucls. The mean of it is brown in colour, and light in quality.

For the satie of conciseness, the wheats used in Britain may be rednced to the iked and White varieties, and the Spring and Lamamas kinds. The latter is thought to have been got from the former by aceidental circmmotances, which bave imparted the persistent quality. The awns constitute no permanent distanction in any graminous plant.

The Fed Wheats are more burdy than the White saricties, and produce more largely on poor soils, and in late situations; but they are interior in value, as the colour woulia tinge the fiour, if so far driven as white wheats are in the process of griading. But the flour of red wheats is of very nuc quality. The difierent colours are entircly owing to the scils on which they grow, and it is not a little remarkable, that the gran somer chauges colour than the chatf or straw.

The soil that is best adapted for the growth of whe:t, is a decp loam, inclining to clay, with a dry firm subsoil. It requires a large portion of alume:, and also of caliarcous matter. Puee clays do not yield large quantitics of wheat, but the quality is generally frod.

A certain portion of nitrogen is essential to the production of good wheat, that clement cutering into the composition of the gluten, which will be found to abound in proportion as nitrogen exists in the soil, or can be supplied from the atmosphere. The experiments of Liebig seem to show, that the nitrogen of the atmosphere zill not enter into the subatance of plants, except in the form of ammonia; and bence the efficacy of manures has, of late, been estimated by the quantity of ammonia which they can produce. But this theory requires much experience for the confirmation of it.

Wheat thrives best on clays that have been well wrought, cleaned, hoosened, and pulverised, by the procens of fallowing; for though the plant requires a compact subboih, some land is found so very stiff and adheaive in quality, as to require loocening of the texture to adapt it for the vegetating of seed, and for the tillering of the monta of planta. Lands that appear to be loore on the gurfice will produce wheat, provided the subboil be firm and compact, and at the same time healihy, and not of a repellent nature.
Becides being sown on bare summer fallowe,
wheat follows as a crop on pea and bean grattans with one ploughing, and on potato and turnip fallows, and is also sown after tares, and on grass lands that have lain for two, three, or more years in pasturage.

A brief mention will be made of each process.
Clay-lands will have been duly prepared and cleaned by repcated ploughings, harrowings, and rollings, and the lime and manure applied and ploughed in by the month of September; and during that month, and very early in October, the seed-fiurrowing of the land will commener; and where the extent of clay-lands is great, and where the quality of the soil is wet, and the climate precarious, the whole strength of the farm must be combined for this most important purpose. The first day, ploughing only goes on; on the second, a sower enters, followed by two or three pairs of two-horse harrows, which will finish all the land that is ploughed. As soon as any part of a field is finished by harrowing, the waterfurrows must be carefully cieaned out, and all cre es -cuts drawn by the plough, and cut by the spade, that no water stagnate in any part. This point requires the most serious attention to keep wet lands artificially dry. On the wetter clays, sowing the grain in broadeast is yet found preferable to drilling, owing to the often inconvenient breadth of the ridges, the waxy adhesivenesss of the soil, and the great precariousness of the climate. In such soils, it is often necessary to harrow the ridges, by means of harrows attached to a tree stretching across them, and the horses walking in the furrows. Where the ridges are permanently wide, the tree reaches from the furrow to the top of the ridge on which the horse walks, which prevents the poaching of the side of the ridge by the fect of the animal. In every case of wet clay-lands, the water-furrows and cuts must be made with the least possible delay. A dry seed-time is of very great importance on such lands; and yet in wet seasons, when the crop is thinner on the ground, the ears are always found to be plump and heavy. But this may not compensate for the want of number of plants. At the same time, too dry weather docs not suit for sowing clay-lands, if the clods, from harduess, do not break with the action of the harrows. A medium state is preferable.

Wheat is sown on the heavier turnip soils after the Swedish turnips are removed in autumn, and on the potato-grounds after the crop is raised. In both cases one ploughing is sufficient, with a previous harrowing, to prepare the ground for the drill machine. The lands that can be made to produce these green crops are of a drier nature, and the attention to water-furrows and cuts may be somewhat relaxed; but in many cases they are still necessary. The same may be said of pea and bean grattans, and of tare stubbels; only in case of foulness, the ground may require a scuffing to clean it of weeds before it is ploughed.

On stiff close-bottomed loams, these crops form an excellent preparative for wheat.

In what is called the Norfolk rotation, viz., turnips, barley, clover, wheat; this latter pinnt gets one ploughing from grass, and the seed is usually deposited by the drill machine The decomposition of the roots of the clover is thought to afford very soluble food for the wheat; and the natural lonseness of the land is in many cases remedied by the consolidation produced by an implement called the "land-presser," which follows the ploughs, and presses the scams of the furrows by means of cast-iron cylindrical wheels, grooved to suit the interstices. But lands that require this artificial consolidation are not properly wheat soils, and the firmness had better be produced by the land remaining longer in gras:ìo finer specimen of farming can be seen than the drilled wheats in Norfolk, the rows straight as a line, and not a strayed pickle.

Wheat is, in some cases, sown by dibbling the seed in the ground, by means of prongs making holes in the land, into which the seeds are dropped. Machines are now invented to perform this work very correctly. Much bencfit is supposed to be derived to light lands, by the treading of the feet of the work-people employed in performing the process; but, as before observed, lands that require artificial consolidation are not wheat soils, and may better be emplojed in lighter cropping. ()n all wet or damp soils, dibbling is altogether unsuitable, and drilling also, where wetness and adhesiveness prevail.

Four single times of harrowing are usually sufficient on proper wheat-lands, in order to cover the seed, and two on lighter loams after the drillmachinc. Three bushels of seed to an acre may be stated as an average allowance, and less in early seasons, and on good lands.*

Previous to being sown, the seeds of wheat are now almost universally. stecped in solutions of corrosive substances, in order to destroy the seeds of disease that are supposed to adhere to pickles. Various substances have been recominended, and ate used; the most common are, stale, urine and common salt in a strong solution, made so powerful as to swim an egg. This liquid, or the stale urine, is put into a close tub: a bushel of seed is put into a smaller vessel, with a thin iron bottom thickly pierced with holes, which is sunk in the close tub, when the liquid rises; and on being strained, the light grain float: on the top, and is very carefully skimmed off. After frequent stirrings, the small vessel is raised, when the liquid escapes downwards into the close tub, and the seed, after being well dripped, is thrown on a boarded floor, encrusted with quick lime, carried to the field, and sown immediately.

[^0]How the effect of such a preparation is communicated so as to prevent disense, yet remains a secret; but the fact is settled beyond all dispute.

Wheat should be reaped before it is dead ripe, or the ears bend downwards; the yellowness of the straw below the ears indicates the readiness; and the meal will harden after being cut, and is always finer in quality than when dead ripe. The straw is also more juicy. The crop is best cut by sickle, and tied into sheaves; the straw is too tall, and the ears are too heavy for being mowed, as they fall over the cradle scythe. The expense of cutting an acre of wheat varies from six shillings to ten.

It is very customary to cut wheat crops high above the ground, and to mow and secure the stubble afterwards for the purpose of litter. But it may be preferable to cut the crop low at once, and tie it into sheaves of a moderate size. The crop is then built into ricks, or lodged in barns, thrashed by machine, or flail, and winnowed for use. These processes are all well understood.

Hard wheats contain most gluten, which, containing a portion of nitrogen, readily promote the rising of the dough, which is so very necessary for making good light bread. The quantity of this substance varies with soil and climate, from 5 per eent. in some soft wheats, to 30 per cent. in the bardest and most flinty. This presence of gluten fits the Italian wheats so much for rich paste. The soft wheats contain most starch, and are, therefore, the most fitted for brewing or distilling.
The choosing of wheat for seed, is a matter of very great importance. The finest wheat does not always make the best seed; but it depends on the nature of the land on which it grows. The proportions of gluten and starch in wheats vary much, and by those proportions, a perfect vegetation has been found to be very much influenced. These proportions are varied from the original sced by the quality of the soil on which the wheat grows, by its containing more animal manure or vegetable humus: and by increasing the one or the other, we may bring our wheat to have all the propertics of the original seed. Some places in certain districts soon become known for yielding good seed; and to these, recourse must very frequently be had, as wheat is known to degenerate very quickly in other soils.
Wheat is very subject to diseases of different kinds; the most common in Britain being rust, mildew, ergot, the wheat midge, burnt-ear, and smut. Rust and mildew are very similar, and are consequently often ccilfounded, and appear by infecting both the grain and the straw with a vellow ochre, which prevents the growth and the further development of the plant. The disease evidently proceeds from an atmospheric stroke, often pervading whole fields in a zig-zag direction, and following the course of the aerial blast. Against these diseases, no remedy has been found. The ergot is a bony excrescence into which the
seed is transformed, and it is supposed to be caused by the puncture of some insect, introducing a virus which entirely alters the functions of the germ. It has a poisonous quality, and also a mediciual one. The wheat midge is allied to the Hessian fly, which, at one time, caused such wide depredations in America and Camada. It deposits its eggs at the root of the germ in the car, and prevents the filling of the grain, the maggot living on the nutritive juices which should produce the farina. This disease is not very prevalent in Britain. The discase called burnt-car, pepperbrand, and dust-brand, destroys the whole fructification of the plant, and attacks oats and barley, as well as wheat. It is often confunded with sume, but differs in having no fetid smell, and so very little specific gravity, that it is easily blown away by light winds, and (beyond the loss of the grain so turned into a light dust) no detriment arises to the crop, as in the case of smut infecting sound grain, and deteriorating the flour. Moist situations often produce many burnt ears, and are consequently supposed to proceed from the dews lodging in the ears, and producing rottemess. Washing and steeping form no preventatives, as in the case of smut, for the dust does not adhere to any other body. It has been supposed to be a variety of smut, which attacks the external part of the fructification before the skin of the grain is formed. But on this point, nothing beyond supposition exists.

Smut is the most prevalent and the most fatal of all the diseases which infest the wheat plant. It is found in almost every country where "heat is grown, being most prevalent on wet soils and in humid climates. The pickle is transformed into a brownish black powder, very fetid in smell; and it imparts its noxious qualities to the bodies to which it adheres.

Of the numerous and discordant theories, opinions, and conjectures, that have been promulgated on the subject of this affection of the wheat plant, no one has yet progressed beyond the limits of bare supposition; and even the most scientific theory yet entertained, of attributing the disease to the action of the seeds of parasitical fungi, under various botanical appellations, has not enlightened the agricultural world, otherwise than in exhausting patience, and arriving at no conclusion. Experience has long ago most amply shewn, that the disease is infectious: but how this infection is communicated, forms the grand puzzle, as sound and diseased grains are found placed side by side, on the same ear; and somad and diseased ears are found to procced from the same root. This circumstance shows, that the infection does not proceed regularly from the root, or every part of the plant would be affected alike.

The disease is very infections, and is cured, or at least very much modified, by steeping the secds, previous to being sown, in strong solutions of corrosive substances. Jethro Tull relates,
that this fact was aceidentally discovered by the sinking of at ship near Bristol, which was baden with wheat, and which being afterwards sold at a low price, was bought by the poor fiumers in the recighbourhood, and sown by them for want of better, escaped smut, when nearly all the wheat in Eugland was inferted. The steeping of the seed, on being repeated, gave the same results, and has lod to the use of other corrosives. The (flicacy of corrosives has been most satistactorily proved in the case of seeds being purposely rubbed atid infected witl. smut-powder, and then washed, and wheh shewed fewer diseased ears than where washing of the seed was not applied. And this fact has beenatuply settled by a majority of similar results.

This is all that is known in the present state of seivence, as to the carse and prevention of smut. The real mature of the disease has hitherto eluded :he search of the most scientife inquirirs; and the veil whech nature has drawn over many of her works yet remains unbroken. But a hope may be very reasomably entertained, and even very confidently expressed, that the very great advan: ces that have been lately made in scientific knowledge, and the unceasity effionts of genius in endeavouring to explore the secrets of nature, may som render the mystery of smut as clear and intelligible as many other arcema of nature, which half a enitury ago were reckoned equally obscure. But on these sulierete, it world be presumptuous to be sanguine, and uphilosophical to despair.

OBSERVATIONS OF THE WEATHER.

By the lete Rev. W. Jones, of Pluckley.

Mist.-A white mist in the evening, over a meadow with a river, will be drawn uphy the Sun rest morning, and the day will be bight. Five or six fogs successively drawn up, portend rain. Where there are high hills, and the mist which hangs over the lower lands draws towards the hills in the morning, and rolls up to the top, it will be fair ; but if the mist hangs upon the hills, and drags along the woods, there will be rain.

Clouds.-Against much rain, the clouds grow bigger and increase very fast, especial!; before thinder. When the clouds are formed like fleeces, but dense in the middle, and bright toward the edges, with the sky bright, they are signs of frost, with hail, snow, ci rain. If clouds breed high in the air, in thin white trains, like locks of wool, they portend wind, and probably rain. When a general cloudiness covers the sky, and small fragments of clouds fly underneath, they are a sure sign of rain, and probably it will be lasting. Two currents of clouds always portend rain.

Dew.-If the dew lics plentifully on the grass atier a fair day, it is a sign of another. If not, :and there is no wind, rain must follow. A red evening portends fine weather: but if it spread too far upwards from the horizon in the evening, and especially morning, it foretells wind or rain,
or both. When the sky in raing wenter is tinged with sea green, the rain will increase; if with dep bhe it will be showery.

Herrenty Bodies.-A haziness in the air whict fudes the sun's light, and makes the orb appea whitish or ill defined; or at night, if the nmon. and stars grow dim, and a ring cncircles theformer, rain will follow. If the sum? rays appea like Moses' horms, if white at setting, or shorn ot his tays, or goes down into a bank of clouds in the horion, bad weather is to be expected. I:' the moon leoks pale and dim, we expect rain; it red, wind; and if of her matural colour with : clear sky, fair weather. If the moon is rain! throughout, it will clear at the change, and per. haps the rain return a few days atter. If fair throughout, and rain at the change, the fais wather will probably retum on the fourth a fifth day.

Wind.-If the wind veers about much, rain ;pretty sure. If in changing it follows the coursc of the sum, it brings fair weathor; the contrar!. foul. Whistling or bowling of the wind is a surn sign of rain.

Metcors - The Aurom Borealis, after wars days, are generally succeeded by the cooler ais. Shooting stars are supposed to indicate wind.

Animals-Befere rain, swallows fy low: deg. grow sleepy and eat grass; water fowi dive much : fish will not bite; flies are more troublesome. Tomes cranlabout ; moles, ants, bees, and man. insects are very busy; birds fly low for insects: swine slecp, and cattle are uneasy, and even the human body.

Olservations of Dr. Kiruai..

1. When there has been no particuiar stortu about the time of the Spring equinox (March 21), if a stom arise from the east on or before that day; or if a storm from any point of the compass arise near a week after the equinos, then, in cither of these cascs, the succeeding summer is generally dry, four times in five.
2. But if a storm arise from the S. W. or W. S. W. on or just before the Spring equino:, then the Summer following is gentrally wet, five times in six.-Garden Almanac.

The following extract will show the quantity of rain that fell in England in the neighbourhood of London last year:-
"In taking a brief retrospect of the year 1847, we find it to be one of the dryest years on record. In no month did the fall of rain arise to two inches in this locality. In January, March, and June, the fall was below an inch. The fall for the whole year was 14.75 inches, being about ten inches below the average fall of twenty years. The number of wet days during the year was 149, being thirty days below the average. In 1802, the annual fall was 181 inches; in 1807, the whole fall was 18 ivches. Hence 1847 has been
the dryest year of any on record in my possession. The highest temperiture for the year, 88 degrens, oecurred July 1t; the lowent, i:s degrees, Feb. 11; making a tange of temperature 7.5 degrees; mean temperature of the year, 49.78 , neariy the anmual average: The higheet barometer oecurred on the 3rd March (30.56), the lowest (28.5.3) vecurred on the 7 ha Decenber; range, iwo inches. Mean pressure for the ycur, 20.8 Ba , which is nearly the average of the year.

We believe the past year in Canada had wery much the same character for drought and heat as in England. It appears, by late newspapers, that at St. Petershurg, up to the 21 st December, they had no snow on the ground, but hard rost and a clear sky.

COMPOSTS MOST SUITABLE FOR GROWING FLOWERS.

Curnations.-1. Two-thirds fresh loam: one third rotten frame dung, with a little sand.
2. One-half loam; one-half rotten frame dung, with a litrle sand.
3. Five-sixths of No. 1, or No. 2; one-sixth leaf mould, good for Piccotees.
4. One-third loam, one-third peat, one-third two-year old cow dung.
Ranunculuses an! Anemone.-Two-thirds loam, one-third rotten cow dung.

Dahlias and Narcissuses.-Loam well manured.
Hyacinths.-1. One-third sea or river sand; one-third loam; one-fourth rotten cow-dung; one-twelfth leaf mould.
2. Two-sisths grey sand; two-sixths wellrotted cow-dung, one-sisth tauners' bark, quite rotted; one-sisth tree leaves, well rotted.

Pinks.-Two-thirds loam; one-third two-year olr corr-dung.

Tulips.-Good sound loam.
Auriculas.-1. One barrowful of loam; one ditto leaf mould; one ditto old frame dung, one ditto two your old cow-dung; one peck of river sand.
2. Two barrowsful of sandy loam; one ditto leaf mould; one ditto two year old cow-dung.
3. Onc-half rotten cow-dung; one-sixth loam; one-cighth leaf mould; one twelfth sand; one-twenty-fourth decayed willow wood; one-twentyfourth peat; one-twenty-fourth ashes of burnt vegetables.

Polyanthuses.-1. One barrowful of sandy loam; one peek of leaf mould; one ditto old cow-dung.
2 One barrowful of well-rotted cow-dung, or leaf mould; one-half ditto white sand; two ditto good loam.
Heartsease.-Three barrowsful of fresh loam ; one ditto one-year old horse-dung; one peck of sand.-Garlen Almanac.

CULTIVATION OF PARSNIPS, CARROTS, \&e.

Samly soils are eminently calculated for the prcduction of the Carrot. Light sundy loams, are also well suited for that erop.

All soils of a peaty character, well reclamed moor or bogs, aftord great facilities for cultivating the Carrot, for in all such it teels quite at home, and will seldom disappoint the farmer, unless by his own mismamagement. It is almost fruitless to attempt the cultivation of the Carrot, unless the ground is very deeply worked. It should be all treached or subsoiled, at least it inches in depth, and the more the better. Carrots should follow a white grain crop, and be succeeded by another. They stucesed best in drills sufficiently wide to admit the horsc and hand-hee between the rows. When the cutting plough and drill harrow are to be called into reguisition, the drills shouid be from 20 inches to 2 feet apart; but they can be cultivated in drills from 12 to 14 inches apart, and tilled with the spade and the hand-hoe, which is more suited to small farmers.

The ground should receive a very deep, bold tillage, prior to winter; and it is a good plan to apply the manure at that period, as it is then thoroughly incorposated with the soil in spring, and has a tendency to preserve the Carrot from canker, which the application of manure at the time of sowing is often calculated to induce. When this plan is adopted the ground is crossploughed, harrowed, cleansed, properly pulverized, and formed into drills, either with the spade or the plough, in March-for Carrots should not be sown later than the latter end of March, or first week in April. The tops of the drills should be then flattened with the rolleror back of the spade. If the drills are large, the Carrot seed may be sown in diagonal rows across the top of the drills, about 8 or 10 inches apart. If the drills are small, the seed should be sown along the top of the drill in one contiguous row. A chamel should be made with the corner of a hoe or pointed stick, into which the seeds should be carefully sown by the hand. The seed should be previously mixed with sand, and well rubbed in the hand to make the seeds separate.

About 7 or 8 pounds of seed is requisite for an Irish acre, (4 lbs . for a Canadian arpent,) if the seed is clean. After the seed is sown a little of the finest mould should be applied upon the top of it, either by the hand, or with a rake. The drills should then be rolled, to consolidate or compress the surface. The seeds of the Carrot are often covered by the roller alone.

When the manure is applied in spring, it should be very well prepared. After the drills are formed the manure should be spread between the rows, as for potatoes, and covered in the same mauner, and the same plan fullowed as that which I have already pointed out.

When the Carrots are six or eight inches above ground, they should be carefully trimmed with
the hand, and should be left at a distance from each other of from six to eight mehes along the drills; they may be left a little closer when they are sown across the drills. This thinning may be partial at first, for the superfluous plants afford good feeding for pigs; but do not let this tempt you to allow them to remain too long unthinned, so as to rob, or in any way interfere with, the growth of the plants, which are to constitute the crop. Carrots may also be sown upon a flat surface, by making clannels with the corner of a hoe, about fourteen inches apart, ilto which the seed should be sown, and covered with a rake or bush harrow, or a turn of the grass-seed harrow; after which apply the roller.

The white Belgium Carrot is by far the most productive, but the Altringham is more nutitive, weight for weight.

Carrots should be raised with a grape or threeprong fork, about the middle of November, or later if the weather be favourable, and vegetation still more or less active. They may be pitied like potatoes, or built up against the side-wall of a house in an oblique direction, and well thatched. In all cases they should be liberally mixed with sand or dry turf mould, in the pit or wherever they are stored.

The mode of sowing, and subsequent cultivation, \&e., \&c., of the parsnip, is so similar to that of the carrot, that I need not notice it separately. They require, however, to be a little wider between the drills, and between the plants.

The following return just published by the Ilouse of Commons seems to throw light upon the point.

The C'orn Trade.-Some interesting statistical information is given in a Parliamentary return (yesterday printed) of the importation of foreign grain since the passing of the Corn Law Repeal Act (9th and l0th Victoria, cap. 22) on the 26th (f June, 1846. From the 26 th of June to the 5th of November, of wheat and wheat flour there were-5,281,814 quarters imported ($4,609,334$ foreigu, and 672,480 British Colonial), whilst the ruantities entered for home consumption in the United Kingdom in the same period were, 7,229,916 quarters ($6,547,656$ foreign, and 682,260 Britich Colonial); of barley and barley meal in the period there were $1,038,981$ quarters imported ($1,034,868$ foreign, and 4,113 British colonial). The quantity entered for home consumption was 1, 859,348 ($1,155,218$, foreign, and 4, 130 British co'onial). Of oats and oatmeal the quantity imported was, $2,238,088$ ($2,169,240$ forcign, and (is,848 British Colonial). The quantity entered for l:ome consumption, $2,488,799$ ($\mathbf{3}, 369,774$ fur(ign, and 69,025 British Colonial). Of rye and rye meal the quantity imported was 267,832 (267 , 751 foreign, and 76 British Culonial); the (quantity enterfd for home consumption 267,875, (267799 fore:gn, and 76 British Colouial). Of peas
and tean-meal the quantity imported was 496,827 (496,604 foreign, and 223 British colonial); the quantity retained was 570,141 (578,918 foreign, and 223 British colonial). Of Buckwheat and meal the quantity imported was 45,299 , all foreign ; and the quantity entered for home consumption was 45,955 fureign Of bere and bigg the quantity was 491 , which was entered for home consumption. Under the head 'Aggregate of all sorts the quantity (fureign and colonial) imported was $13,845,756$; the quantity retained for home consumption (foreign and colonial) $16,841,282$ quarters. The importations have been reckoned from the 26 th of June, 1846, when the Corn Law Repeal Act came into force, to the 5th of November last."

We append to this a return moved for by Mr. Cayley, which includes tbe month of October, one of enormously large import of graiu, while Sir Charles Wood's statement came down to the 10th of October only.
"Foreign Grain.-An account moved for by Mr. Cayley shows the quantity of grain that ha entered the country under the operation of the Act of 9th and 10th Vietoria, cap. 22, commonly called the Corn Law Repeal Act. It appears that since the passing of that Act, up to the 5th of November last, $7,229,916$ quarters of wheat and wheat flour (chiefly foreign produce), 1,159,348 quarters of barley and barley-nneal, 2,438,769 quarters of oats and oatmeal, 167,875 quarters of rye and rye-meal, 306,304 quarters of peas and peas-meal, 579,141 quarters of beans and bean-meal, $4,313,413$ quarters of Indian corn and meal, 44,995 quarters of buckwheat and meal, and 491 quarters of bere or bigg, were imported and entered for home consumption in the United Kingdom, making a grand aggregate quantity ot all sorts of grain amounting to $16,341,282$ quarters."

We extract the following observations from an article on the glass of Bohemia :-
"This beautiful article is manufactured in va. rious parts of Germany, chiefly iu Bohemia, and always in the woody, mountainous districts. The materials .om which the glass is formed consis chiefly of the same as those used in England; the manufacturers themselves seem to believe that there is no difference except in the proportions o: the materials, and in the fiel, which is exclusivel wood, and produces, by a little attention, a more constant and intense heat than can be produce by any coal; the feeding the furnace with the latter material, they say, always creates a chang in the temperature detrimental to the quid abort and never sufficiently intense. The woode mountains of Bohemia are entirely inhabited b a population, whose industry, morals, hospitaliti and kindliness of manners, do honour, not onf to this rich and beautiful kingdom, but to the whole human race. Clean to a proverb in the ${ }^{\text {a }}$
houses and persons, hospitable and amiable in their manners, simple in their habits, cheerful and devoted in their religion, they form, perhaps, the happiest community in the world. In passing through the country, a stranger would never find out that he was in a manufacturing district, but might fancy timself in the green vallegs of a partly pastoral, partly agricultural, people.Thickly inhabited, the beautiful little cottages, clustered into villages, or scattered along the glens, or sides of the hills, are embowered with fruit trees, and encircled with shrubs and fowers, which each cottager cultivates with a zeal peculiar to his race; on every side rich fields of grain or pasture stretch out like a vast enamelled carpet between the hills which are clothed in dense forests of spruce, fir, pine, and beceh, filled with deer, roe, and capelcalzie; they extend in every direction, far beyond the reach of the eye, one vast cloud of verdure. The fabriques, or factories, are placed generally in the middle of one of these villages, the extent of which can only be known by going from house to house; so closely is each hid in its own fruit-bower, and so surrounded by shrubs and flowers, that the eye can oniy pick up the buildings by their blue smoke, or get a glimpse of them ciere and there as you advance; thus some of the villages are elongated to three miles, forming a most delicious walk along its grassy road, gencrally accompanied by a stream, always overhung by a profusion of wild flowers, the mountain-ash, and weeping birch; many of the former only to be found in our gardens."

CHRISTMAS PRIZE CATTLE SHOW.

Smithfield Market, Monday, Dec. 13

The animadversion of The Times last year, combined with the judgment of reflecting persons, as to the practice of gorging animals intended for exhibition at the Annual Prize Show, have not been without effect in producing an abatement of what had become positively offensive to the sight, as well as involving a preposterous waste of trouble and expense. The great "tat" question is now subsiding into reasonable limits. On this subject it will be remembered, that the Smithfield article of 1846 contained the following remarks, which it will not be irrelevant to quote in the present place-" It has been whispered that the recent articles in The Times have been the subject of carnest deliberation among the members of the committee, and that while the powerful arguments of that Journal on one side of the question are admitted, on the other hand it is asked-are theoretical opinions to weigh against the judgment and experience of practical men? Whether anything of a positive nature has resulted from those deliberations is as yet uncertain, but it is not inprobable that the strictures in The Times will, are another year, have produced some effect upon the character of the show." Whatever influence

The Times may have had in leading to an improvement in this respect, it is certain that this year's exhibition is much less objectionable on the score of excessive obesity than any preceding one for a long time past. The fact is gratifying in s^{\prime} far as it indicates that the owners, feeders, and breeders of cattle are accessible to reason, even on topics on which they might, not unwarrantably, concelve themselves to be the best judges. But, though the work of improvenent has commenced, it must be yet carried on to a considerably greater extent. Admitting that it is a legitimate right on the part of noblemen, gentlemen, graziers, and others interested in such matters, to exercise their own discretion in the trial of experiments with a view of bringing animals into the most perfect condition at the cheapest rate; what is contended for, on the other hand, is that no such result has been produced by the course they have pursued. What they really have produced have been enormous masses of fat, not at a cheap, but at a dear rate; while the greater portion of the fat itself has been only fit for the tallow-chandlers, and they even complain of it as making bad tallow. Undoubtedly weight and worth are objects cutitled to the first consideration, for the standard of profit is the greatest quantity of the best quality at the carliest maturity. But lewe these objects not been frequentiy lost sight of in a desire to produce mountains of unnatural flesh, for that flesh must be umatural which is forced by a departure from all the operations of nature herself? What is required is a due admixture of fat and lean, combined with symmetry of form, and this at the lowest cost. When this purpose is accomplished, little will be left to be attained. Having touched only incidentally upon symmetry, it must not, on that account, be thought too little importance is attached to that branch of the subject. On the contrary, it is one of the principal points of the whole question, for the beauty of an animal is a material argument in favor of the skill and judgment of the breeder, and implies that it has other more solid and valuable qualities. If it were a question whether the Sinithfield Club Cattle Show has answered the expectations to which its cona: enemement gave rise, some difference of opinion might exist as to that point, but that upon the whole it has been productive of good may be taken as a position universally granted. By exciting a spirit of emulation it has stimulated the energies of breeders to vie with each other in rearing cattle by new, ingenious, and useful methods. The strictures that have been made upon its general character of late years have not been designed to injure it in public estimation, but they have sprung from an earnest wish to see an institution of a chiefly admirable tendency dive ted of everything in the shapt of objection, and this could be done only by adverting to its abuse or defects.

Some observations were made during the cattle show, not reflecting on the impartial distribution
of the prizes, but expressive of surprise at the coincidence, from year to year, of the preference given to the Leicestershire sheep, to the exclusion of those of Oxfordshire and Glocestershire, many of the latter of which have often, and particularly the present year, exhibited great merit. No imputation was cast upon the uprightness of the judges; but the fact was mentioned as rather singular, for which reason it is repeated here. There may be nothing in it, but the question was pointedly asked-Are not the majority of the judges selected from Leicestershire or some of the adjacent counties?

Another matter was aiso spoken of, which, on account of its novelty, deserves a word of notice. It seems that amongst the judges appointed to award the prizes there is not a single buicher. In the opinion of some, butchers ought not to be excluded, as the judgment of the more intelligent individuals of that body would be entitled to weight; while others think the butchers would be too apt to look at substance only, and make form and symmetry but subordinate considerations.

The show for the present year was somewhat inferior in numbers to the last, but the beasts were of a more equal average in point of quality. Times.

ON THE NECESSITY OF A MORE ENLIGIITENEI ANDEXTFPDEDSYSTEM OF AGRICULTVIRAL EDUCATION.

TO THE EDITOR OF THE MIARK-LANE EXIRESS.
Sir,-The importance of the subject to which I would direct the most serious attention of the agricultural community is, $I \mathrm{am}$ sure, a sufficient apology for intruding my observations on your notice.
Education, properly directed, has such an immense influence, not only on individuais, but on classes, and the nation at large, that I am impelled by a sense of duty to our country, to drag the subject before the unwilling attention of the farmer.

Though there are fere exceptions in eulightened quarters, yet the notion is too prevaleat among some farmers that the so-called education which they themselves received when young is guil sufficient for the rising generation. Such men are content that while the other classes of the country are recciving an education in some measure suited to their intended pursuits in life, that their children shall be allowed to enter into the sreat arena of life in a great measure defenceless compared with the mailed and armed antagonists with whom they will have to cope; they are content that with an inferio- amount of knowledge their childre:a shall be ler to contend with those who will bring a superiority of science with at least an equality of practice. The results of such lameritable oversight or ignorance will be that the original cultivators of the soil will be as
effectually driven from their ancient possessions as were our barbarous ancestors by the strategy and shill of the legions of the victorious Romans.
It is to prevent the inevitable effects of such short-sightedness that I would endeavour to inform the minds and arouse the fears of the present generation of farmers, in order that thei: offypring may at least have some opportunity given them to prepare in a suitable mamer for the difficulties which they will hereafter encounter. It is not in the order of things that for the future the farmer can successfully proceed without increasing his knowledge of science. The farmer's pursuits are closely connected with Nature's operations; yet how often is he found, from ignorance of her laws, engaged in an equal contest against her! The most varied phenomena influence in turn the produce of his farm or the amount of his profits. While full many a farmer rests in happy ignorance of their existence, the most active chemical affinities are at work in his soil, in his manure, in his crops ;-The carth which he cuitivates contains within itself the marks of its origin, which indicate the operations and chagges which it has undergone, but to him they exist as dous the landscape of nature to the eyes of the blind. Of the structure and functions of the different organs of the plants which he cultivates, or of the animals which be feeds, he entertains ideas most mysteriously confused; and, in fact, though Nature is working around him and for him, yet he is often totally unacyuainted with the powers and extent of her operations.

And why all this? Because he has never yet had the eyes given him rightly to observe. Ile has never been made acquainted with the means which practice in science has pointed out as the best means of observing and detecting trath. Mis mind has never undergone that intellectual discipiane which not only strengthens its subject, and gives power in the search after truth, but which also most efficaciously assists in the detection and overthrow of error. He has not been armed so strong in the truths which science has discovered. as to be able to cope with the power by which ignorance is so obstinately defended. Truth and error are often with him the same, for want of the means of distinguishing them : and effects are constantly referred to causes, to which they have not the most remete relation. In fact, in how many instances are his views narrow, his ideas limited, his knowledge small, his ignorance unbounded!

Miy remarks may; by many, be thought too severe; but though generally throughout the country there are many bright examples to the contrary, and while many counties are distinguished by the eminent agricultunists they have produced, yet I am pursuaded, from my own experience, of the general application of my remarks.

It is now ucarly ten jears siuce I began in my public lectures to call the attention of the farmer to the necessity of a more enlightened plan of
education, and the views I then and since have continually inculeated bave been carefully put in practice in our own school. It is a mark of the advance which this gunation is mo . $\because \mathrm{ing}$, that many other establignments have since us i -n. who have directed their attention to an improved agrenitural education; but what are these among so many? While antiguated plans for the dissemination of uscful information continue to be acted upon by far the greater majority of country schoois, and until a better sjstem be extended to them, the advantages of science must necessiarily be limited to a few. And the thinking farmer should bear in mind, that so long as he continues to be content with the miscalled education which most schools afford, so long will he find few masters who will make much innovation in their plans by the introduction of more improved methods, and 2 more extended series of studies.

The sciences of chemistry, botany, and geology; unfold to the mind so many new views, impart so much information, and are in every way so well adapted to assist the farmer in improving his practice, and forming a rational system of agriculture, that they can no longer with safety be neglected as a part of the education of the rising generation of agriculturists. And whenever we find the farmer insisting that his son be made acquainted with these sciences, we shall soon find a reformation in the provincial schools of this country.

But even though knowledge be increased, and opportunities be given, and seed be sown, and a return be expected, yet if the harvest be not gathered in, the labour will be wholly in vain. It therefore would not be amiss for some of our enlightened and generous landlords to cmploy their arit? ${ }^{2}$ metical and mathematical capabilitics, in the pleasing task of calculating the amount of which the tenant farmer is anrually defrauded by the anlimited prescration of game.

Though last not least, the education of the agricultural labource is a matter of the highest importance. It will not be denied, that if he were to receive an education adapted to the practical operations he subsequently will be called upon to perform, the farmer himself would be greatly benefitted by the increase of inselligenct and skill his workmen would undoubtedly possess. It is therefore to be hoped that the mants of this class of the community will not be overlooked, but that the light of science and of truth, whist it illuminates the palace and mansion, may be permitted to dissipate the gloom and darkness of the cottage. In conclusion I trust public attention will become strongly aroused upon the subject of education; that information and knowledge of a proper kind will be more widely disseminated; that "practice with science" (that phantom of the imagimation, so often heard of, and so seldom seen) may in reality become a denizen of our land; and that the energies and talents of all may in their proper spheres be directed to the
inprovement of the industrial resources of the country, to the increase of the physical conforts of the people, and to the intellectual and moral advancement of the nation.

Agricultural and Scientific School,
Kenuington, December 20, 1847.

FARMERS'CLUB.

Extract from "Suggestions foe the formation of a Farmers' Cliub, for the Improvemext of the phactice of Agricultube, in the Neigmounhodd of Reamig."-While the present age is famous for the improvements it has seen introduced in every branch of science and manufacture, in no point of view perhaps is England more conspicuous than in the advancement now inaking in agricolture. In every county. and almost every parish, are to be seen men raising themselves to eminence by the superior cultivation of their farms; men who by a more judicious rotation of crops-by a better selection of iuplements-by a more rigid economy of manure -by draining, by subsoiling, and by shed-feeding, have gained a march in adrance of the old lines of prejudice, and have set up the standard of improvement and invited their neighbours to their ain. And where is there a nobier field of emulation, or more honourable prize to be ron, than in advancing the gencral practice of agriculture: Through a higher system of farming, the landlord sces the value of his property enhancedfrom more perfect tillage and application of manures the tenant-famer finds his crops increase in quantity and in certainty, rendering him more independent of seasons and of prices for his re-turns-while from the extralabour employed and better payment for increased skill, the labourer in his turn gains a better market for his exertions, and consequent comfort and independence to himself and fainily, the surest antidotes to his prevailing vices, and safe-guards for his good conduct. By mutual co-operation, the different ranks and classes assist and urge on one another. each link in the community profits by the exertious of the other, cach has a mutual connection with and dependence on the other's welfare, which is essential to the harmony of society and the advancement of the general good. Whyy, then, are these bright examples so slowly followed? Why is the march of agricultural improvement so proverbially backward? is not the reason to be found partly in the isolation of the farmer, who, living apart from his neighbours, has not tho same opportunity as the artisan of witnessing and inquiring into the ceperiments that are madepartly that these very experiments require years to test them in thei- application to different climates and soils?"-Readins Mercury.

CORNWALL AGRICULTURAL ASSOCIATION.
At a meeting of this Association, which took place at Truro the week before last, Mr. Karkeek, of 'Truro, gave the following useful information. Me stated that -Mr. Trethewy, Mr. Tresawna, and himself, went out to Messrs. Davey's firm, for the purpose of seeing the method of feeding cattle lately introduced there. The farm was taken in by the Messrs. Davey but a few years since, from the common at Tywarnhayle. The plan consists of feeding cattle in loose boses, on a compound of linseed and rye meal, prepared as follows :-23 lbs. of crushed linseed is gradually mixed with 21 gallons of boiling water, in a copper; after which, 84lbs. of rye meal and a handful of salt is added; the mixture, having been well stirred, is cast into moulds, forming cakes 7 lbs . each. The quantities of ingredients above mentioned will make thirty-six cakes, and the whole can be manufactured by a man and two girls in about one hour. One of these cakes, with $\frac{3}{3} \mathrm{cwt}$. of Swede turnips, and a bushel of straw and hay chaff (which last is also mised with liuseed mucilage), is given to an ox in six meals per day. The method of preparing the linseed and chaff is by dissolving 12 lbs . of bruised linseed in 240 lbs . of boiling water; this is poured on straw, chaff, and hay, equal to fifty bushels, in a shallow cisrern ; whilst one person gradually pours the builing mucilage over the chaff, another person turns and beats it with a beater till the liquid be perfectly absorbed. The expense of feeding an ox 1.: the manner here described is one shilling per day. The consumption of the compound is gradually increased in quantity. Some feeders give from 14 to 21 lbs. per day, being nearly in the same quantities that linseed is given. The advantages derived from the use of the compound over the oil cale are very considerable. The oil cake costs, on an average, from $£ 10$ to $£ 12$ per ton; whilst the linseed compound san be manufactured with either pea, bean, barley, Indian corn, or rye meal, at from 60 s . to $\mathbf{3} 0 \mathrm{~s}$. per ton. Again, from the various trials :nich have been made by practical farmers, of ne feeding qualitics of the two articles, the advantages are in farour of the compound, weight for weight. The utensils required for manufacturing the compound are a 30 or 40 gallon copper, a hand-mill for crushing the linseed, (cost 50s.), a half-hogshead or two, half a dozen moulds, a hand cup, a three-pronged fork, and a wooden rammer, the whole of which may be purchased for 30s. Mr. Karkeek next described the Messrs. Davey's system'of box-feeding. Their hoxes are about nine feet square, sunk three fect (two feet is said to be quite sufficient) below the surface in one continuous excavation, and having sliding bars between the bores, and a sliding trough placed in the boxes for holding food and water. The bars and troughs are made to slide upwards, as the manure accumulates underweath. Messrs. Davey's cattle had been placed
in the boxes and fed in this manner for six weeks, up to Saturday, Dec. 4 ; and there was scarcely the slightest effuvia arising from the dung. From the constant treading of the cattle, the dung becomes so consolidated, that at the end of three months, when it is removed, it is generally cut with a hay knife into solid cakes about two feet square. The Messrs. Davey having tried the system only six weeks, cannot speak of its practical value ; but from reports of practical farmers of the highest respectability, there is reason te believe that cattle may be easily fattened in this manner in four months; besides which there is the advantage of making a rich and valuable manure. Mr. Karkeek went on to say that, having some doubts respecting this method of feediug, he wrote to Mr. James Daubuz, of Offington, near Worthing, who had pursued the system for some time. Mr. Daubuz's reply was-"I purchased eight Devon oxen at Barnet fair, on the 11th of September, 1846, at a cost, including expenses, of $£ 98$. The cattle were examined by a Cornish friend of mine, who pronounced them to be a very indifferent lot; they were in very moderate condition. They had the run of the stubbles till the 1lth November, when they were put into the boxes and fed on the linseed compound, manufactured from linsced, tail-barley, and tail-peas; commencing only with half a cake per day for each ox, and finishing with three cakes-averaging two cakes per day. They consumed in this manner, up to the 1 th of March,
Tail-barley, $7 \frac{1}{2}$ qrs., at 24s................. 900
Tail-peas, 71 qrs., at $36 s ~ 13100$
Linseed, 3 qrs., at 56s...................... 88 o
$£ 3018 \quad 0$
Besides one bushel of steamed hay, half
a cwt. of chaff, and one bushel of
white carrots or Swedes, each per
day.
1020
£41 0
They averaged on their sale, $\mathbf{£ 2 1} 6 \mathrm{~s}$. $\mathbf{3} \frac{1 \mathrm{~d}}{} \mathrm{~d}$, the total being $£ 170$ 10s. 4d." Mr. Karkeek went on to observe that in using "compounds" of this kind, there was the additional adrantage of being enabled to consume profitasly on the farm, a large quantity of offal corn which would otherwise be forced into the market depreciating the value of good corn. Mr. Daubuz, for instance, fed the eight bullocks entirely on offal bariey and pcas. In conclusion, Mr. Kerkeek stated that Messrs. Davey had been growing their own flax on some of the land lately reclaimed by them from St . Agnes common. The fields were four acres, and put into linseed and clover in April last. The crop of flax was a fair average, and that of clover was abundant. But, leaving growing of flax altogether out of the question (although there could be no doubt that it might be profitably cultivated since it was found indigenous in the country), there could not be a question of the importance
of preparing a cheap material for the manufacture of beef and mutton, whether by cultivating linseed in this country, or by importing it, for the purpose of being formed into a compound with some of the farmers' home productions.

ROYAL POLYTECHNIC INSTITUTION.

F. II. Ilolmes, Esq., delivered some interesting lectures on agricultural chemistry at this interesting exhibition. This lecture treated on the organic constituents of plants and soils, the relative proportions contained in certain lands growing wheat, and proving that woody fibre, starch, and sugar, were all compounds in different proportions of water and carbon or charcoal; exhibiting numerous appropriate experimentsillustrative of his subject. He explained that the source from which plante derived hydrogen was water that fell on their soils in the form of rain; the average amount of rain-water which fell on an acre of land in a year was said to be $4,500,0001 \mathrm{l}$. This was more than sufficient to supply the whole of the oxygen and hydrogen required by the largest crop of wheat. Oxygen, the lecturer remarked, formed a very important part of the atmosphere, as it had to do with the germinating of seeds, and therefore no suil could be fruitful which had entered into its composition any matter calculated to absorb the oxygen. The lecture was much applauded throughout by a highly respectable audicace. Independent of this useful lecture, the other interesting experiments for which this place of intellectual amusement is celebrated, were exhibited. The electric telegraph was constantly worked and explained-the chromatrope, divirg hell, dissolving views, \&c., are alone worth a visit.

PLANTS AND ANIMALS.

From a discourse by John Daver, Esn., M.D., F. R. S., Inspector General of Army Ilospitals, Hon. Member of the General Agricultural Society of Barbadoes, \&c. read at their third halfyearly meeting, and published at the request of the Society.

Plants and animals have in common the disrinctive property of reproduction, a power exercised by means either of a bud, slip, seed, or ovum; - the seed of one beiv 5 analagous to the ovum of the other; whilst the bud or slip-manner of generation are comsnon to both, and constitute one of their most remarkable links. Having a common mode of origin, so lave they of growth; as the animal grows, not like the mineral from accretion from without, but by disposition from sithin, so likewise does the plant. Both plants and aninals are nourished and owe their growth to foreign matter introduced from without; and both cease to grow-both waste and ultimately perish, if the foreign matter constituting their food be withdrawn. To both warmhh, light, air, moist-
ure, are in certain degrees essential to their well being: and, to both, in other degrees, these are injurious. Whilst there are thus certain resemblances between plants and animals, there are also marked and characteristic differences. The two most remarkable are intimately connected with the subject under consideration-the kind ot fiod required by each-and the kind of organs belonging to each for its reception. A mouth and stomach appear to be essential to the animal, in which the food taken is prepared, more orless, for distribution, and nourishment. In the plant the preparation appears to be external-in the soil; from whence the nutritive fluid is absorbed by the delicate roots, and by them conseyed for distribution where required. As to food, animals are dependent for their support on one another, or on vegetables. Plants on the contrary are not so dependent ; they durive the ir support from the soil and from the atmosphere :-and, whilst animals, in the act of supporting themselves, convert organic into inorganic matter,-vegetables in their growth have the opposite effect,- they create or form organic frominorganic materials,- are in brief organizers, for the sustenance of animal life. Let us take an example;-A single serd of Guineau Corn, weighing about a quarter of a grain, planted in an artificial soil, composed of several earths, and contained a little phosphate of lime, and salts of the regetable and volatile alkali, under favourable circumstances, with sufficiency of moisture from rain, will rapidly vegetate,-give rise to a plant many feet in height, and in less than six months yield a ripe head of corn, weighing in its dry state, 1,685 grains, and containing 3, 537 grains of seed; for such I have found to be the weight of a head of average size,-and such the number of seed it contained; the weight of the seed alone was 1,460 grs. What a vast increase is here! And if we examine the parts of the plant, its roots, its stem, its leaves its seed, we shall find them composed of substances differing altogether from the materials which had constituted the food of the plint,-a difference depending on a new combination of elements, from, in bricf, inorganic to urganic compounds.

There is another point of difference, and a very interesting one, between plants an animals,-the cffect they have on the atmosphere-comparing the leaves of the one with the lungs of the other. Auimals inhale common air, consisting of azote and oxysen; a portion of the latter disappears, and its place is supplicd by earbonic acid,-which is a compound of carbon and oxygen,-and which is cxpired; and, conscquently, in respiration, animais are consumers of carbon;-and, its consumption is attended with the production of animal heat. Vegetables, on the contrary; absorb or tale in carhonic acid, and exhale oxygen by their leaves, and consequently are accumulators of carbon; and it may be, have the effect in evolving oxygen, of occasioning a reduction of temperature, or of creating a cooling process, the opposite of
that of the animal-heation process. Should this he proved to be the case, it will be another example of wise and most happy adaptation.

I have speken of vegetables, as organizers, or the producers of organic compounds, for the supprrt of animal life:- taking another view, animals may be considered as performing a part as cesential to vegetable hfe, that of disorganizers; what is excrementuous from them being so reduced, as to have the character rather of inorganic than of organic compounds, whether it be carbonic acid, with which they contaminate the air in reipiration-their gascous exerement:-or their liquid and consistent, derived from the other excreted organs and passages of the body. These matters which are destructive to animals, and not only to the animals that void them, but to animals generally, may be held to be the highest kind and most appropriate food of plants. And the more we reflect on this, the more we are convinced of its truth, the more we must admire the:connection and mutual dependence. The animal enriching the air for the use of the plant; - the plant purifying the air for the use of the animal; and the same in regard to the soil,-afford a lesson to man of a very instructive kind,-most beneficial when carried practically into effect,-most injurious when neglected,-in one iustance insuring fertility, and I may add salubrity,-in the other the production of sterility and disease. (To lie continued).

The Journal of Agriculture, and the Transaction of the Highland and Agricullural Socicty of Scotlund. William Blackwood and Sons, E.-inburgh and London.
We give the following asit is extracted from the works of Prof. Baussingault:-

Experimental researches on the feeding properties of green fodder.-It is gencrally admitted that todders consumed when green are much more nourishing than when they are dried; in other words, it is believed that a hundred pounds of clover, lucern or meadow grass, have a far greater nutritive value than the hay obtained from a hundred pounds of each of these elements. However, in carefully perusing what has been written on this subject, I have found nothing to justify that opinion. Indeed, two good observers, Messrs. Perrault and Jotempts, have assertained that, to feed sheep, it will require 3lbs. 3oz. of hay, clover, or lucern to replace, 81 bs . 130z. of the same fodder green; under the influence of either of these rations, there is a sufficiently satisfactory growth of wool and fiesh. On the other hand, those agsiculturists have practically ascertained that, in the winnowing, including the fermentation in the hay loft, and all the accidental losses, 100 lbs , of clover or lucern are reduced to 23 lbs of hay. From these results we draw this conclusion, that in giving to a sheep, 3lbs. 30\%. of dry lucern, we administer to him exactly, in point of value, the
 slbs. $8 \frac{1}{3}$ oz. of green forid more than is required when the ration is composed of the undried plant; and if a hundred pounds of closer or lucern, newly mowed, are requisite to feed an animal, it will require, to feed it in the same degret. the hay obtained from 163 pounds of the same fodder.

It may be easily understood that this mode of proceeding is too inditect properly to resolve the question we have in view. The discussion presented by MM. Perrault and Jotempts merely proves what no one thinks of denying, viz :- that the most advantageous way of using the produce of artificial meadows, is to have it consumed as much as possible while green, so as to avoid the expense, the loss, and all the casualties of haymaking. But this discussion does not in the least establish that the nutritive power of green fordor, is diminished by the simple fact of its being dried; the physiological question is thus left ...touched. For many years I have made various experiments to resolveit. For that purpose I paid the greatest attention to the changes in the weight of thirty-two horses, on which iny researches were made, from the alternate substitutions of dry and green folder. The results have been at one time in favour of, at another against, the green diet; and, after very numerous weighings, I found that I was a little advanced as when I tirst began my experiments.

These contradictory results can be explained by the imperfection of the incthod I had adopted. It is quite evident that the hay with which the horses were fed, having been obtaincd, in the previous year, did not answer, as regards the quality, to that which would have been furvished by the green clover with which it was compared; and as for this last fodder, there was constantly a great uncertainty in the real weight of the ration given, in consequence of the greater or smaller proportion of water it contained. Some experiments which I have made on the drying of clover, show, indeed, how much that proporticn varies according to the age of the plant, the nature of the soil. and especially, according to the meteorological conditions during which the cutting had taken place. This may be illustrated by examples taken on second year clover :-
May 19th, First cutting before
flowering, 1000 lbs of hay gave 212 lbs . of water June 3d, First cutting in flower; 1000 lbs. of hay gare............ 288lbs. of water June 5th. (another district) first cutting in flower l000lbs. of hay gave..........................
July 28th, Second cutting in
flower 1000 lbs of hay gave...... 290lbs. of water
August, Second cutting-very
much in flower-very woody;
10001bs. of hay gave............ 360lbs. of water
We may add, that, during the drying, the clover experienced a considerable loss from the leaves
and flowers falling, and not being picked up, during the making The loss affects exactly the most substantial parts.

In order to guard against the causes of error Ihave just mentioned, and to ubtain comparable results, I have conducted the experiment in such a manner, that the dry fodder consumed represents precisely the day we should obtain from the same quantity of green; but as it is then necessary continually to make hay-an operation which becomes very tedious when performed on a considerable quantity of clover-1 experimented on a single animal, a heifer about ten months old.

The heifer was weighed when fasting. She was given a ration of green fodder, a little smaller than she ordinary consumed, in order that the fodder should be entirely eaten during the twentyfour hours; then, at the very moment that the green ration was put into the manger, another, exactly the same in weight and quality, was selected, and immediately dried, taking every precaution to prevent the loss of the parts loosened during the drying. This dried ration was put aside, marked No. 1. On the second day the same operation was repeated, keeping still for drying a quantity of fodder exactly equal to that to be eaten green; and that dry ration was put aside as No. 2, and so on.

The heifer was thus fed on green food during ten days; on the eleventh day; in the morning, she was weighed, and then was put on dry fodder. She received successively the hay kept in bags No. 1, No. 2, No. 3, \&c., so that during the ten following days the heifer took exactly the same allowance and the same quantity of food she had received during the ten preceding days; the only difference between the two diets being that arising from the presence or absence of water in the plants. At the end of the dry feeding the animal was weighed. It may be, therefore, seen that the whole experiment lasted twenty days:-

RESULTS OF THE OBSERVATIONS.

rinst series.
Original wigh of the heifer cwt. lbs oz.
After the prass diet $5 \quad 36 \quad 4$
Loss occasioned by the green diet............... 0610
$\begin{array}{llll}- \text { After the diet of the same fodder, dry } & 5 & 40 & 8\end{array}$
Gain occasioned by the dry diet....... 0 IO 14
SECOND SERIES.
Original weight of the heifer............ 63
After the green diet....................... 5104
Loss occasioned by the green dict... $0 \quad 11$
After the diet of the same fodder, dry 68
Gain occasioned by the dry diet....... 0 35
TIILRD SERIES.
Original weight of the heifer............. 6 5t
After the green diet.......................... 666
Gain occasioned by the green diet.... 0
-ifter the diet of the same fodder, dry 6 S 6
Gain occasioned by tire dry diet........ $0 \quad 23$
hefore coming to a conclusion, it will be necessary to know what was the extent of the accidental variations in the weight of the anmal experimented upon. Numerous sucecessive weighings made cach day, at the same hour, have shown that the greatest difference amounted to 13 lbs . 3 oz . Therefore, a difference of that amount could not with certainty be attributed to the influence of feeding, since it is within the limit of the accidental variations of weight.

It may be remarked, that the ascertained gains, in consequence of the substitution of the dry fur the green rations, have been 10lbs. 14oz., 15liss.. 80%., 231 lbs . 3oz.-results that might allow us to presume that the same quamity of fudder when dry is more nutritice, but from so few experiments it would be premature to draw such a conclusion. What these experiments seem to establish with some certainty is, that a given weight of dry fodder, is not less prufitable for feeding than the quantity of green fodder which it is derived from.

White Cakrots v. Swede Turinps.-A gentleman at Great Maylestead has this year grown, upon three acres of very poor land, the enormons quantity of four thousand bushels of white carrots; the land, as before observed, was very poor, so much so that it was not thought worth cultivating; it was allowed to seed itself with grass and other seeds, sto as to furm a meadow, but the stock rejected it; it was two or three years ago broken up, and last year sown with white carrots, and the produce was as above stated. Five beasts were selected from the yard and tied up, two of the fattest and the best were fed with Swedes, the other three were fed with the carrots. It soon became very evident that those fed with carrots were going on the fastest, and, from their present appearance, are quite a month forwarder than thost fed with turmips, notwithstanding the turnip-fed ones were the best when tied up. Essex Standard.

Metropolitin Sewage Manure Company.The consent of the Commissioners of Sewers, as required by the Act of Parliament, has been formally given to the proposed works of this company, which will be commencea forthwith, with every prospect of their being so far completed in the course of next summer as to permit of the application of the sewage to the immediate neighbourhood of the station at Stanley Bridge.Sun.

NEW DE-ODORIZING PROCESS.-lis. Young, a chemist of Manchester, has discovered that a waste product from the manufacture of chlorine, consisting chiefly of a solution of chloride of manganese, destroys the odour of nightsoil and other decomposing matters without impairing their fertility. The liquid is produced in very large quantitice, and has hitherto been thrown away.-Liverpool Allion.

Agritultural $\mathfrak{1 a n n a l}$

AND

TRANSACTIONS
OF THE
LOWER CANADA AGRICUITURAL SOCLETY.

MONTLREAL, MARCH, 1848.

It should not be any longer a matter of doubt that there is a moral obligation upon the inhahitants of every country to provide for the judicious cultivation of the land where the climate and soil are favourable for it. The Creator has placed the means of comfortable existence at the disposal of his creatures, and in proportion, as man inproves these means, will be the amount of his comfort:, and enjoyments. It is scarcely necessary to offer any arguments to prove that nearly the whole amount of the necessaries and comforts that can be possessed by the human family, are derived, directly and indirectly, from the land, and that they cannot exceed what the products of the and will furnish. The forests and mines of Canada may augment her products, but only in a very small proportion to what she might derive fron her Agriculture under an improved system. Our manufactures, however extensive they may become, will depend for support upon Canadian rustomers, and this custom will be in proportion to the prosperous state of Agriculture. One depends upon the other, but Agriculture is the first and principal means that must set the whole machinery in active and prosperous motion, and hence how manifestly it becomes the duty and interest of all to give every possille support and encouragement to Agricultural improvement, as the only means that can give permanent support to commerce, manufactures, and all other business and professions, and for the payment of revenue. However unwilling to come to this conclusion, we may make up our minds that no interest in Canada can be permanently prosperous, if our Agriculture is not
in an improving and healliby condition. If these facts were to receive the consideration they deserve, this coumry would soon exhibit a decided change for the better, as all would find themselves interested in producing the change. It is in vain to expect any general union for advancing the improvement and prosperity of Agrirulture, unless it can be made to appear beyond all doubt, that such improvement would be advantagcous to the whole community. If to any country on earth Agriculture is all imporiant, it must be so to Canada, and to all her inhabitants, in town and country, because its products must give the chief support to trade, commerce, manufactures, and the means for paying revenue and taxes. Some may dispute our propositions, but we do not imagine they can be disproved. Gold and silver would have no real value if the productions of land and Agriculture could not be had in excharge for them; neither could manufactured goods have any value, or indeed have existence. Those who desire to see $t:$:s beautiful country furnishing ample means of comfortable living to all its in!abitants, should "begin at the beginning," remove every impediment that would cheek, or, in any was, oblstruct the proper cultivation of the land, provide instruction and encouragement where necessary, and adopt, promptly, all such measures as would be best calculated to insure the improvement of our Agriculture, and the augmentation of its products, in quantity and value. We have already stated that the annual income and expenditure of the inhabitants of Canada (except those who have incomes from other countries) must be derived from the produce annually created, and cannot exceed this anount; and if this be admitted, it will certainly be of some imporlance, that our products should be as abundant and valuable as we c.an possibly make them. This is a matter that cannot be safely left in the hands of agricultarists, in their present circumstances, to improve their system of Agriculure, or let it alone, as they may feel disposed. The period
has arrived that these matters may require the most serious consideration. We have constructed canals of great magnitude; rail-roads are being made, revenue must be provided; trade, commerce, and manufactures should be in a prosperous and healthy state; and to insure prosperity to all those, as well as fond for the whole population, Agriculture must produce the chief means. A country has no other true riches but her own productions, and anything more she may obtain, she must pay for in some shape. Our object in writing this article is to bring the subject fairly before the public. If we have failed to prove its paramount importance to the whole population of the country, it is from our inability to do it justice, and we must leave it to abler hands to follow up the subject we have introduced. We have confident expectations that in this, as in other countries, men of wealth and education are now becoming perfect'y sensible how important it is that the science of Agriculture should be laught, its practice well understood, and an improved system of husbandry generally introduced. If these feelings prevail extensively, and are acted upon promptly, we may anticipate the most favourable results. We have inland navigation that is not equalled on earth, extending into a rich and highly fertile country; we also have rail roads in progress of construction, that are likels to be as extensive as those of any other country; and we have lands requiring only to be cultivated properly to afford ample and profitable employment to all these, and the thousand or fifteen hundred ships that come to our ports annually from the other side of the Atlantic, to carry away our overplus produce, in exchange for what they bring for our use; and to insure us all the advantages that may be realized from these favourable circumstances, it is only requisite that due attention should be given to our Agriculture, and its improvement secured to the uttermost it may be capable of.

According to Mr. Alison, in his excellent work, "Principles of Population," all the capital in the world is nothing more than the accumulation of the surplus produce of the earth, above what was reguisite for the support of those engaged in producing. His words on the subject are as follows:-" The accumulation of the surplus produce of the labours of the cultivators of the earth, in different ages, above what was requisite for their own support. In whatever form this accumulated wealth exists, whether in that of bullion or money-of articles of luxury-costly edifices-sumptuous furniture or apparel-or productive investments-such as Agricultural improvements, commercial or manufacturing establishments, roads, rail-roads, canals, or shipping. It is equally clear that it has been amassed by the latour of human beings, and that these human beings, during the time consumed in that labour, must have been maintained. The existence of capital, therefore, especially in large quantities, presupposes that there existed a surplus produce raised by the cultivators in former ages; its continued increase pre-supposes the existence of a similar surplus at the time that increase is going on." Capital is thus derived in the first instance from the land, generally from new products created, that were not previously in existence. But notwithstanding that capital was first derived from the products of the earth, it does not always follow that a sufficient amount of this capital will be àgain employed in Agricultural improvement and production. This is an evil of great magnitude, and has a most injurious operation upon Agriculture, and checks, if it does not prevent, necessary improvements in husbindry. It only requires to make a tour through this country to be fully convinced of the necessity which exists for employing more capital on almost every farm, in order to render them as productive and profitable to their owners as they are capable to be. Improved tillage and better crops cannot be expected without better draining, 'better ploughing, manuring, weeding, and keeping a
more numerous and better selected stock, not of horses, but of neat cattle and sheep; and to do all this, would requite additional labour and capital. It is true that in this country farmers are not often subject to the payment of rents, and scarcely any direct taves; but they have their lands to purchase, or clear of forest ; they have buildings and fences to erect, and all this generally employs what capital they have, and leaves them very insufficient means for all other purposes, to enable them to farm to the best advantage. Hence it is that farmers paying a moderale rent upon a farm in England, and having only to provide capital for stock, seed, implements, and labour, may often realize more profit than a Canadian farmer can do upon his own property, in consequence of insufficient capital. There is a certain amount required to enable a farmer to carry on his business advanageously, and even a small deficiency of this amount may derange all his plans, and defeat all his exertions and skilful industry, and prevent him realizing any profit. No doubt, capital might be more securely employed in these improvements if skilfull expended, than in most other speculations; but, notwithstanding this fact, we fear capital will-not flow in this direction immediately, unless wealthy proprietors show the example, and prove that it would be a safe and profitable investment. It is certain that in no other way could capital be employed so much for the general advantage, as in creating new and useful productions. It is by this employment :hat capital is augmented, when it creates what was not previnusly in existence, besides, or over and above re-producing the seed and expenses of labour. The sale or transfer of other commodities, from hand to hand, does not increase capital, however it may enrich those engaged in trate and commerce. Money may be loat as well as gained in farming, but the loss or gain is grnerally moderate, compared to that in other speculations. It is owing to the circumstance that the loss or gain
is never great in Agricultue, that so few eapitalists are di-posed to employ moncy in Agriculture; they prefer to risk it where there is a chance of large profits, though it should bealso liable to total loss. It is a remarkable circumbstance, that alhough Agriculture is admitted to be the source of all wealh, that notwithstanding, the capital employed in Agriculture, is deficient. There must be some cause for this, and the sonner we understand it the better, in order that we may be able to remedy this great cher k to Agricultural prosperity. The only way we can attempt to account for such a state of things, is, that hitherto farmers have not been fairly remunerated for the produce they sold, and hence their labour and capital has been wasted, in consequence of production costing more than the price olitained for the produce. We know also, that the mages committed by the wheat fly, for the last twelve or thirteen years, caused a great loss of capital -we suppose not less than sis or seven million pounds currency to farmers. This greatly diminished capital with farmers, and was a general loss to Lower Canada, which it will take some time to recover, and we have no doubt that this diminished production has had a most injurious operation on trade and commerce, as well as upon the farmer. We repeat again, that, to employ a sufficient amount of capital in Agriculture, would not only be advantageous to the farmer, but to every interest in the Province. Capital is much more likely to be wasted and lost in farming managed under a defective and slovenly sy:tem, than by a judicious and perfect system, where sufficient capital is employed. Land frequently does not produce one-third of a good crop, owing to defective draining, bad ploughing, deficient fertility, and no weeding. To remedy all these defects wond require an ourlay of money and labour, but the improvement in the crop might more than cempensate for it . The improvement in Agriculture is desirable; additional capital is necessary to carry these
inprovements into effert, and this employment of capital would be the most beneficial mode of investment for Canada.

SPARE THE TREES.

One of the greatest objections to the mode of clearing the forests of Canada, for Agricultural purposes, is the indiscriminate destruc.tion of every tree that grows upon the land to be cleared. We have heard it objerted that when single trees are left, they gener ally decay, or may fall and do some injury. These objections may be well founded, but certainly not in every case, as we have abundant proof to the contrary; but if trees will not always live alone, after the forest is cut down around them, might not small clumps be spared in different situations, that would give them shelter and be ornamental. There cannot be anything more ornamental than beautiful trees, and their shacis. to cattle in summer appears to add greatly to their comfort and healthfulness. A country deprived of all its beautiful trees, and disfigured by long lines of dead fences, cannot be pleasing to the eye. There couldnot be a more beautiful landscape than we might have here only for this circumstance. If we had no trees, we should plant them, but to destruy them all when we have them in full growth and perfection, is doing great injustice to the natural beauties of our country. Every man who will destroy all the trees he finds upon his land, should be obliged by law to plant others, and to repeat this planting until hey would grow to perfection. It may be objected that this would be an interference with private rights, but this objection, we conceive, is not a sound one. The lands of Canada are naturally covered with the finest forests in the world, and of every variety of trees, and we cannot perceive the right that any settler would have to clear the whole of the trees away, and burn and destroy them all. The natural beanty of a country should be preserved, if posible, and from our own experience, we believe, the
settler who would spare some of the trees, would gain much more by doing so than by destroying them. There does not exist a doubt that a country is injured by depriving it of all its trees, and this has been proved in many countries in Europe, and it will preve so in Canada if some measures are not adopted to prevent it. Where the trees are already destroyed, others might be planted by the fences. and in waste corners of the farm. We hope this article will save many a noble tree of the Canadian forest, and we shail not have written it in vain.

agricultural refort for february.

The general character of the month of February was different to that of Jamuary, though the temperature was mild for the season, very little snow on the ground, and the roads bare in many places for sleighing at this date.

We have heard many reports of the damage done this winter to meat and fowls of every description, by thawing after they had been frozen, before the winterroads were good enough to take them to market; and from what we have seen, we suppose the report must be correct to a certain extent. There has also heen a general complaint of the scarcity and unprecedentedly high price of salt, particularly in country places, preventing the farmers from salting and preserving the slaughtered meat. We cannot conceive what could have produced such a scarcity of an article so cheap and plentiful in the British Isles. The trade surely should have known the usual consumption of Cana.la, and not allowed the country to suffer for the want of an article that was indispensable, and that if there happened to be any surplus, would keep without deterioration. Large quantities of meat have to be cured in Canada, and for this purpose there should be at all times an abundant supply of salt. Salt at present is about five hundred per cent. higher here than in England, and this excessively high price debars farmers altogether:frem making use of it
in Agriculture. It is certain that the deficiency of salt, this year, has been a very great injury to Agriculturists, particularly in consequence of the mildness of the winter. The inconvenience and loss sustained, this year; from the absence of the usual cold and snow of a Canadian winter, should effectually cure any dissatisfaction we have ever felt at the severity of the winter season in Canada. The general climate of this country is the most suitable for it; cold and rather long winters are amply compensated to the farmer, by the warm and beautiful summer and harvest; and with the same careful system of Agriculture, introduced to practice here as that practiced in many parts of the British Isles, there is not a doubt we might have excellent and profitable crops and stock, though perhaps not equal to those obtained from high farming in the Mother Country. The price of Agricultural produce is much lower than in January, with the excep. tion of wheat, which is still worth from 5 s . to $5 \mathrm{~s} .6 \mathrm{c}^{2}$. the minot. Barley and oats have fallen considerably in price; the first is now at 3 s .4 d . to $3 \mathrm{~s} .6 \mathrm{~d} . ;$ the lastat 1 s .9 d . to 2s. Indian corn, 4 s .2 l . Rye, 4 s .2 d . Buck-wheat, 3s. 9d. and potatoes 2s. to 2 s .6 d . the minoi. Hay has fallen more than fifty per cent., and straw nearly as much. Hay is 25 s. to 30 s. the hundred bundles of 1600 lbs ; straw 15 s . to 20 s . for 1206 lb . Butcher's meat of good quality sells high, but there is much of inferiorquality in the market that must be sold at a low price, in consequence of having been frequently frozen and thawed, without salting. Beef, we believe, sells from 2 d . to 6 d ., or more, the $\mathrm{lb} . ;$ mutton of good quality, 4d. to 5 d ., but the bad sells very low. Veal at about the same price as mution. Pork, fresh, per $100 \mathrm{lbs} ., 25 \mathrm{~s}$. to 30 s ., and by retail, 4 d. to 5 d. per lb. The price of fowls varies exceedingly, but those that are good sell high. Butter, fresh, sells at 1 s. to 1 s .2 d . the lb.; salt, at $7 \frac{1}{2}$ d. to 10 d . per lb. Cheese, of good quality, sells, by retail, from 6d. to 1 ls . per lb. ; the inferior, we cannot say at what price. This price for good cheese would pay the
farmer well, but we regret that the quantity made in Canada is very small. In the year 1846, we have seen cheese of very superior quality from Canadian dairies; but in 1847, the quality was much inferior. We mention this circumstance to show if cheese can be maile good in one season, so it may be in another, in a dairy of proper temperature.

It is not probable that farmers will have much butter to put up in casks until the winter is past, but they should make preparation now, by procuring good dairy utensils, and proper casks, to pack butter in when summer commences. A clean dairy, sufficiently cool, and well ventilated, and suitable utensils, are indispensable for making good butter. Casks of proper materials and construction are also necessary, and in every case they should be so constructed, that, when filled, they can be made air-tight when closed. The most convenient size would be those that contain 56 lbs. of butter. All farmers who would nut have a sufficient stock of cows to fill this sized cask with one churning, might hold over the butter from one churning to another, until they would have sufficient to fill the cask. The butter so held over might be thoroughly mixed together by churning all in the fresh buttermilk, until it would be of uniform colour, and then it might be made up, salted, and the cask filled at once. We know that this method would succeed if carefully managed, and all the butter is of good quality. Bad butter cannot be made good by churning and mixing, but if the butter is good, this management will make the colour uniform, which is most essential. The butter kept over from one churning to another, should be carefully separated from the butter-milk, and have some salt and saltpetre mixed with it. The salt will partly come ont when it is churned for packing, but it will not injure the butter-milk for hogs. A small quantity of salt put into the cream or milk, previous to churning, has a very good effect. Butter might be very profitable produce for the Canadian farmers: if made properly as it might be, and
we are certuin there is nothing to prevent our having as good butter here as in any part of the world, with suitable dairies and judicious management. We shall advert to this subject in our next.-February, 29.

In the leading article of this number we have endeavoured to submit the claims of Agriculture for encouragement, and attention to its interests and prosperous condition. We have advocated these claims upon the principle, that, by encouraging Agriculture, and promoting its improvement and prosperity, we would best provide for the prosperity of commerce, manufactures, revenue, and all other Canadian interests. If we have failed to convince our readers of the correctness of our proposition, we shall regret it; we would not advance such a proposition if we were not persuaded of its truth. The Lower Canada Agricultural Society was organized last year, and incorporated by Act of Provincial Legislature. They have published an address in September last, fully setting forth the object of the Society; they have commenced in January to publish an Agricultural Journal, both in the English and French language, and have circulated them extensively throughout the Province; they have done this in furtherance of the object stated in their address to the public; they have another object yet to accomplish, that is, the establishment of Agricultural schools, model farms, a library and museum. To enable the Society to do this, funds are requisite, and are not attainable under the present circumstances of the country, unless by public aid. The Society do not apply for such an aid upon any other grounds but those set forth in the address; they are convinced that the establishment of Agricultural schools and model farms, conducted on judicious principles, would be the best means that could be adopted to advance Agricultural improvement. In the Journal for January, a long article on this subject has been published, which renders it unnecessary now to explain the plan proposed. The Society hope
for an aid to carry out their views, upon the hrsau principle of public utility, and as calculated to produce general benefit to the Canadian community. It will be in the power of the Legislature to fix the terms upon which any assistance will be granted, and the mode of expenditure to be adopted. The Society only desire to have it in their power to adopt effectual measures to insure the instruction of young farmers, in the science and practice of Agriculture, and to promote the general improvement of husbandry. The Society advocate measures that may claim the unanimous support of men of all parties, and of all ranks and professions. The products of A griculture are necessary to all men, of whatever party, rank, or profession, and it is of the greatest consequence to the inhabitants of every country, that these products should be abundant in quantity and excellent in quality. The fearful evils brought upon a country by the want of sufficient food, we are bound to guard against as much as possible. This country will probably, very soon, lose all preference in the British markets, and the only means we shall then have to make up the loss of this protection and preference, will be the increase and improvement of our products. In all other countries, the most active measures are being adopted to advance the improvement of Agriculture, and there never was a more favourable opportunity. than the present to commence the same good work in Canada, as the people have become interested, and will almost unanimously support whatever action the Legislature may be pleased to take for the encouragement of Agriculture. A library for reading, and reference, is as necessary for the agriculturist as for any other class; also, a museum that would contain seeds, implements and models. It is the want of all these means of instruction that has been the true cause of the backward state of Agriculture in Canada. There is not any reasonable excuse that such a state of things should remain any longer without remedy. It is a matter of vital importance, and interesting to every inhabitant of the country, that Agriculture should
now receive every enrourngement to secure its future prospereus condition.

In Ireland, the Government hare established a museum of Irish Industry, where all investigations in Agricultural chemistry and geology, which may have public importance, may be therein executed, under the sanction of the Chef Commissioner of Woods, z^{*} the public expense. In this number we give an extract of a notice of the museum of the Dublin Society, and suppose this may be the one provided for by the Government. This is a good example for us to follow, and we should profit by it. The Canadian inhabitants have been charged with apathy and indifference to the improvement of Agriculture, but we conceive ve'; unjustly. Since the organization of the Lower Canada Agricultural Society, they have found the Roman Catholic Clergy, and the rural population, most promptly respond to the address published by the Society, and there are already betweer. two and three thousand subscribers to the Agricultural Journal, and Transactions of the Society, published in the French language, with every prospect of the number being vastly increased during this year. This would not indicate indifference to improvement, when they respond to the first general invitation addressed to them. A publication purely Agricultural would not offer iny inducement to subscribers if they were indifferent to the improvement of husbandry. An interest is now thoroughly awakened that, if kept up and encouraged, will be sure to produce most favourable results to the whole country. The Society are proud to number amongst their life members the highest dignitaries of the Roman Catholic Church, and the Superiors of Seminaries and Colleges; and the general support they have received from the Roman Catholic Clergy, gives the Society great confidence in the ultimate success of their endeavours. The Agricultural Journal and Transactions, published in English, is also circulated to a great extent, with every prospect of an augmented circulation. All these circumstances
are very encouraging to the Society, and the: confidently anticipate the hearty support of every friend to Canadian prosperity.

In "The Agriculturist and Canadian Journal" of the 15 th February, we have seen a letter from Mr. Buckland to the Editor of this Journal, recommending Model Farms, 火c., but as we had in the first number of this Journal published a long article on that subject, containing the substance of Mr. Buckland's communication, it is not necessary to publish his letter.

We have put off publishing a list of the Members of "the Lower Canada Agricultural Society"-until nur next, in order to give an opportunity of making it more full and correct. Several other articles prepared for this number, is unavoidably reserved for the next.

ROYAL DUBLIN SOCIETY.

The following is the Report of the Royal Dublin Society, which we leave for the present to speak for itself:-

REPORT.

The Committee of the Agricultural Museum beg leave to report to the Society, that the expectations formed upon the establishment of this branch of the institution have been fully realized.

They have lately made a large addition, and many important inprovements to the muscum, and without these it would have been impossible to have afforded adequate room to the collection now opened to the public.

The committee are happy to find that the efforts of the society in this department have been successful, and that their success has been amply appreciated by the public: but they felicitate themselves more particularly upon the probability that they are likely, ere long, to be of solid advantage to every part of Ireland.

In an agricultural country, it is obvious that the skilful and profitable cultivation of the soil is of paramount importance. Waste land may be a great evil, but short crops are equivalent to great waste, and, if improved culture would lead to double produce, the result would be almost as profitable to the country as if a four-fold quantity of reclaimed and inferior land were placed under indifferent cultivation. The committee will have occasion, however, to show presently, that they by no means undervalue the capabilities of the bogs and mountains of Ireland.

The Committee think it not tou much tuassume that the practical instruetion afforded by the Agricultural hiuseum, upon almost every point of rural economy; fairly entitles it to this distinction.

It clearly elucidates how the desired improvements may be effected; and exhibits the result in actual specimens of produce, accompanied by well-attested statements as to acreable amounts, $\$ c . ;$ models of drain, specimens of draining tiles, the best implements of every description, furwished by the most eminent manufactures of the United Kilugdom; seeds, grasses, and cereals, in great variety; a collection illustrative of the discases affecting them; specimens of flax with models of implements applicable to its manufacture, models of cottages, farm-houses and offices; a large veterinary collection; specimens of various kinds, and preparations of the turf, coal, marble, building stones, clays, and metals found in different parts of Ireland, together with many misccllaneous articles of use and interest, are here daily presented throughout the year to the inspection of numerous visitors; but the committee fclt all this would be incomplete without an occasional exhibition of green crops, believing that there is no country in the world better suited to their production than Ireland, and that farmers might be easily iuduced to apply themsclves to an assiduous cultivation of them. They accordingly decided (under the sanction of the Socicty) upon holding an annual show of farm produce, and upon allotting premiums to the most successful exhibitors.

The first of these shows was held on the establishment of the Museum, in Nosember, 1844; and the last is still open.

At the outset they would have found it difficult, if not impossible, to have procured from any one individual, in Ireland, a dozen varictics of the cereals, and were largely indebted to their kind friends in Seotland for fine collections of them, but those now in the Museum are of Irish growth, and cue presented this year, by Mr. MCormick, consists of no less than 141 distinct varieties of wheat. Mr. Kelly also presented 60 varietics of wheat, 70 of oats, 26 of barley, and a very fine collection of the indigenous grasses of Ireland,

The present show opened ou the 3 rd ult. It was visited a few days afterwards by His Excellency the Lord Lieutenant, who was pleased to express himself in terms of high praise respecting it. Its merits were also warmly extolled by the judges, and many others whose pursuits equally qualified them to form a just opinion, and, indeed, it is not too much too asscrt, that a fine display of the sort was never prescuted to public inspection in this, or any other country.

Safall Farmin i.-The following paragraph in a newspaper lately came under our no-tice:-"Improvement.- In the comyard of the farm at Pctiy, Morayshire, there are 101 stacks
of corn, cach stack averating 13 quarters of grain. Lat year there were only \&o stacks in this jard, and of a much smaller size. About thirty years ago, the farm was tenanted by a number of small cotters, and their whole produce rould scarcely average 10 small stacks. This piece of information should not be suffired to pass without comment. It furnishes, in a few words, a thorough explanation of the advantages of large over small farming. A piece of land which, thirty years ago, under the cottar sy stem of farming, produced only 10 small stacks, now when in one farm, conducted on improved principles, produces 101 large stacks. It is evident that there is a gain of at least 91 stacks by the change. Who is it that makes this gain? First, the landowner, who receives a larger rent; second, the farmer, who has a larger proportion of the return for his trouble and outlay of capital; third, the public, who have ten times the quantity of food brought to market. But probably six families have been expelled in order to make room for one great capitalist farmer. Quite true; yet it is to be observed that all the grain which the six families could furnish was ten stacks. Suppose, then, we go back to the former state of things, what are we to do for lack of the additional ninety-one stacks? If the subsistence of cottar families were alone concerned, we might be contented to see no more than ten stacks sent to market. But this meagre condition of things will, unfortunately, not answer the demands now made for food. 'Twenty-eight millions of people require to have daily bread, and they must be thought of as well as the tillers of the suil. Mechanies, tradesmen, merchant:, and all other dwellers in towns, though not owning a scrap of land, have a right to see that the territory of our island is nct abused, and brought back to that condition which would defraud them of the material of subsistence. Thus small farming, with its want of capital to improve and make the very most of the land, is adverse to the general wellbeing; and from all that we have heard of old times, is not even advantageous to the parties who conduct it."-C'hambers' Edinburgh Journal.

EXPERIMENTS WITH MANURES.

by hermstead and schubler.

Dricd leaves and other vegetable matter.....................	times the seed.
Stable manure.................... 7	"
Pigeon dung 9	-
IIorse dung...................... 10	
IIuman urinc.................... 12	
Human excrements............. 14	4

Such experiments as the above are far more conclusive and satisfactory answers to inquiries respeeting the comparative value of various manures than the theories of scientific men, at least in the present state of our knowledge. Considcrable attention having recently been directed to
the change and waste which takes place in farmyard manure under the common management, I enclose you an analysis by Richardson. One very curious and important point disclosed is, that it actually contained no ammonia, though it contained some azotized matter capable of yielding that substance by further decomposition; it was of a large heap, which had been carted home from a stable of highly fed horses, about three months before, and was forwarded for examination in the state usually applied to the soil.

The manure was composed of -

$$
\begin{aligned}
& \text { Water.. } 6496 \\
& \text { Humus.. 8•29 } \\
& \text { Insoluble organic matter............... } 16.42 \\
& \text { Inorganic ditto............................ } 10 \cdot 33 \\
& 100 \cdot 00
\end{aligned}
$$

The composition of the inorganic matter in 100 parts is as follows:-
A.- Portion soluble in water -

Potash....... 3.22
Soda............................... $2 \cdot 73$
Lime.. 34
Magnesia 26
Sulphuric acid.................. 3.27
Chilorine......................... 3.15
Silicic acid............................ 0.4
-13.01
B. - Residue Solube in acids-

Silica............................... 27.01
Phosphate of lime............. 7-11
Phosphate of magnesia........ 226
Phosphate of iron............. 4.68
Phosphate of manganese..... trace
Phosphate of alumina......... trace
Carbonate of lime............... $\quad 9 \cdot 34$
Carbonate of magnesia....... 1.63
Sand............................... 30:89
Charcoal. $\cdot 93$
Alkaliin basic, silicateandloss $\quad 3 \cdot 14$
$--86.59$
100.00
C. - Analysis of organic part of manure-

Carbon.................................... $37 \cdot 40$
Hydrogen................................. $5 \cdot 27$
Oxygen................................... 25.52
Azote.
1.76

Ashes... 30.05
$100 \cdot 00$
The abore is, unquestionably, one of the most complete analyses of manure jet published. In comparing it with those published be Boussingault, as the mean of six analyses on his orn fam in France:-

$$
\text { Carbon........................... } \mathbf{5 5 . 8}
$$

IIydrogen................................... 4.2
Oxygen.......................... 25.8
Azote............................ 2.0
Salts.............................. $32 \cdot 2$

The conclusion seems almost forced upon us, that even in manures there are some definite chemical compounds: the agreement between the two statements is both remarkable and satisfactory.
C. E. D.

WEEDS AND WEEUING.

'How does your garden get on?' is the question often fullowed by the reply, ' Oh, I am sorry to say it is smothered with weeds!' a confession too often corroborated by actual inspection. is garden properly treated in reference to weeding is comparatively a rare sight, except in large establishments. We often see grounds well laid out, and not deficient in valuable plants, which are, indeed, 'smothered' with sow-thistles, groundsel, and chickenseed. This state of things often arises from the peculiar arrangements people make with their gardeners, who visit the place, perhaps, once or twice a weck. The consequence is that weeding is often postponed io other matters which are more pressing, and the noxious productions are allowed to grow rampant and run to seed. A second crop of weeds may thus often be seen springing up before their parents are dead, until the long-deferred opportunity being presented, a desperate onslaught is made on the enemics, and for a few weeks a more decent aspect is secured. If, in all cases wherethe labnurof a gardener is not sufficient, enough supernumerary help were secured to prevent weeds getting ahead, the benefits would soon be manifest.

We should like to see it acknowledged as indispensable, a conditio sine qua non in gardening, that no weed should be allowed to exhibit a flower; for although this would not be all that neatness demands, the end would at length be attained, since without flowers there will be no sceds, and cxtermination must be the natural result. Let the amateur consider, first, how impossible it is to secure a pleasing appearance in the garden if weeds are allowed to grow, however small they be. Compare the appearance of two beds, one quite cicar and fresh raked, with another, sprinkled with weeds just displaying their cotyledons. Homever diminutive these may be, they nar the beauty of a parterre, and therefore should not be allowed to grow. Secondly, it should be borne in mind that rank weede injure all growing crops, by taking from the soil that which is intended to secure their perfect development. It is vain to apply manure, if weeds are allowed to steal it. Thirdly, weeds which come to maturity and send their reots deeply, are not to be cradicated without considerable labour. Try to pull up thistles, for instance, and they will break off at the crown, only to furnish an abundant second crop in a few days; to be prevented doing further mischief, the root must be dug up, which, in a garden of any size, will be a work of time and labour. Fourthly, weeds are very prolific, and if allowed to bear seed, some years may
transpire before the effects are obliteratud. These four considerations ought to be forcible cuough to induce every gardener to resolve that he will henceforth give no quarter to weeds.-Delenda est Carthago!

As to the expense, which is often alleyed as the grand inpediment in the way of weed extcrmination; let the gardener compute the difference between a constant hocing, \&c., to prevent the growth of those thieves, and the hard tasked labour demanded to clear the ground of them when they are grown, and he will find that in a preuniary point of view the advantage is on the side of cleanliness. There can be no doubt which is really the cheapest mode when the superiority of clean crops is considered. Ply the hoe then well-rake your beds often, and you will reap great benefits. If in any case great weeds have grown up, they had better be cleared away by hand, for if allowed to fall on the soil, they often take root again, or shed their seeds before they can be raked away.-H. B., in Gardeners' Chronicle.

Charred Weeds.-Everything in the nature of charcoal, whether wood, weeds, or stubble, which is susceptible of being charred, or converted into charcoal, will be found of the greatest benefit in its application to the soil. My gardener never potted a plant without putting charcoal to the bottom of the pot, and it was found that the root was invariably drawn down to the charcoal, and fed by it, that substance having the power of absorbing both moisture and ammonia from rain and the air, which is stored up for the use of the plant. Charcoal will be found to give an amazing vigour to the young plant, which will be enabled thus to grow up out of the way of the fly, in a manner which no other means could impart. I mention this fact, inasmuch as the experiment is in the reach of all. I have had lands which were absorbed by that horrible eneny to the faimer, whick, like other bad charactere, rejoiced in a number of names, and had a plurality of aliases, but was generally linown as "scrutch or couch;" this I have caused to be charred and applied to the land with immense benefit, and thus have I converted an enemy into a friend. Whenever wood, weeds, stubble, or the clippings of hedges, could be procured, it should be charred with the view of drilling in. I have some mangold wurzel, the crop of which had at first been nearly eaten up by the black aphis, but which made the greatest efforts to recover itself, by throwing out fibres and rootlets to feed on the charred substances, and thus a good crop was ultimately secured.W. Whitmore, Gard. and Farm. Journal.

Metrorolitan Sefage and Drainage.-At a time when the importance of an efficient drainage of London is urged upon public attention
and colsidered by government, the sentiments exiressed by Mr. Meyworth, a Liverpoulmerchant, in a letter add. essed by him to the Secretary of the Health of Towns Association, may be considered highly interesting. Mr. Heyworth says"From practical observation, I believe that if the noxious matters which, now being left to waste, gernate distase and spread desulation over our population, were scientifically collceted and transforred to the soil, they would not only remanerat: all cost by the abundant fertility they would induce, but would be a mine of wealth to the promoti.rs of any scheme for this purpose, and, thes the promoting of self-interest would theuceforward be the security of public health. By means of tarthen pipes, small covered cesspools, and stench-trays, I convey all the waste water, including that from the water-closets, chambers, scullery, wash-house, \&c., and all other feculent matter in a diluted state, from my residence, stables, sheep-pens, \&c., into one end of a large excavated dung-pit, which, being always covered with litter, never allows any escape of noxious effluvia; at the other end of the pit I have corered well outside, communicating by small openings with the bottom of this pit, from which the fluid manure is lifted by a pump into a covered water-tight cart, and carried upon the ficlds. The quantity of this liquid manure from my single establishment covers annually about 20 acres, and renders them profusely luxuriant. For the rain-water and springs, I have separate and distinct drains, which is an essential arrangement. What should prevent a scheme so encouragingly profitable from being applied in collecting and distributing the liquid manure of towns generally, ir incorporated companies were authorized by acts of Parliament to enter upon such undertakings?"

DUTIES OF FARM SERVANTS IN 1653.

The following enumeration of the dutics of farm servants about two centuries since, is extracted from 'Gervase Markham's Farewell to Husbandry,' published about that period:-

- About this time (Christmas) the ploughman shall rise before four o'clock in the morning, and after thanks given to Heaven for his rest, and the success of his labours, he shall go into his stable, and first he shall fodder his cattle; then he shall curry his horses, rub them with cloths and wisps, and make both them and the stable as clean as may be; then he shall water both his oxen and horses, and housing them again, give them more fodder, and to his horse by all meaus provender, as chaff and dry pease or beans, or oats. And whilst they are eating their meat, he shall prepare his plough-gear, and to these labours I will alsoallow full two hours-that is, from four oclock till six; then shall he come in to breakfast, and to that I allow half an hour, and then another half hour to the gearing and yoking of his catte,
so that at sexen oclock he may set forward to his habour ; and then he shall pough from seven oclock in the morning till betwen too and thee in the afternoon; the: he dhen anyole and bring home his catile, and haxiag rabbul and dressed them, he shall give them meat: then shall the sermats go in to their dimaer, for whel is allowe! hatfanhome it will be then townots four weloek, at when time be shall go to la: catilo again, and give them atore folder; which dome, he shath go into the haras, and provide and arake ready foddier of all hamds for the aest day. This beino done, and carricd into ties stathe, os-house, or other convenient place, he shall then go water his cattle, and gi:e them more meat, and to his horse provender, as before shewed; and hy this time it shall draw past six oclock ; at that time be shall coine in to supper, and after supper, he shatl either by the firesite mend shoes, both for himself and the family; or beat or knock homp or flas, or piek and stamp apples or crabs for cider or verjuice, or else grind bialt on the querns, pick candle rushes, or do some husbandry office till it be full eight o'clock. Then shall he take his lantern and candle, and go see his cattle, and having cleaned and littered them down, look that they may be safely tied, and then give them food for all night; then give IIcaven thanks for benefits received that day, let him and the whole houschold go to their rest till the next morning.'

Ine Stock in the Uniten Kingnon. From that invaluable work, "M'Queen's Statistics of the British Empire," we learn the enormous value of the live stock in the kingdom. It appears that there are $2,250,000$ horses of total value of $\mathbf{£ 6 7 , 0 0 0 , 0 0 0}$, of which more than $1,500,000$ are used in agriculture, and that their value is $£ \pm 5,000,000$. The number of black cattic in the kitugdom is about $14,000,000$, to $15,000,000$, of the value of $£ 216,000,000$; the number of sheep, $50,000,000$, whose value is estimated at $£ 67,000$,000 ; and the extent of capital invested in swine is still more extraordinary; when we reflect how litlle it is thought upon or taken into account. The number of pigs of all ages, breading and rearing, is calculated to be upwards of $18,000,000$, which, taking une-third at $£ 2$ each, and the remainder at 10 s . each, givesa valuc of $£ 11,870,000$ as the capital invested in pigs alone, making the total amount of capital invested in the above species of agricultural stock $\mathfrak{£ 3 4 6 , 2 7 0 , 0 0 0}$.

Plequro-Pneumonia amongst Cows.-This epidemic anongst cows is raging with unabated violence round this neighbmuhool (Ipswich). Mr. Gooding, farmer, of Akenham, has lately lost cleven out of twelve of these amimals; several of them, when in health, were worth from f 18 to $\mathcal{E} 20$, but when dead, decir carcases were sold for 2s. Gd. *ach, for the degs.-Suffolk Chronicle.

Tue Enaman's Duwairch.-There's a watd of buxombiamy flomishing in the shades of the comiry. Parm hotises are dangerous places. As yat are thiming only of shecp or of curds, you mag be suchenty shot through by a pair of bright ojer, and alted away in a bewitching smile that sou never treant of till the mischief is done. In fowisami theatres, mal thromged assemblies of the rich and tithed fair, you are on your guard; you lnow what you are exposed to, and put on your breast-phatce, and pass through the most deadly onslanght of beanty sate and sound. liut in those sylvan retreats, dreaming of nightingales, and hearing only the lowing of oven, you are taken by surpuse. Out steps a fair creaturecrosses a glade-leaps a stite. You start, you stand lost in woeder and astonished admiration! You take out your tablets to write a sonnet on the return of the Nymphs and Dryades to earth, when up comes John Tompkins, and says, "It's only the faracres daughter." What! have farmers such daughters now-a-days? Yes, I tell you they have such daughters. Those farm houses are dangerous places. Let no man with a poetical imagiastion, which is only another mame for a very tender heart, flatter himself with fancies of the calin delights of the country-with the screne idea of sitting with the farmer in his old-fashioned chimney-corner, and hearing him talk of corn and mutton-of joining him in the pensive pleasure of a pipe and jug of brown October-of listening to the gossip of the comfortable farmer's wife. of the parson and his family, of his sermons and his tythe pir-over a fragrant cup of young hyson, or lapt in the delicious luxuries of custards or whipt creams-in walks a fairy vision of wondrous witchery, and, wihh a curtsey and a smile of most winning and mysterious magic, takes her seat just opposite. It is the farmer's daughter, a lively creature of eighteen; fair as the lily, fresh as Niay dew, rosy as the rose itself, graceful as the prasock perched on the pales there by the window; swect as a posy of violets and clove gillivers, modest as carly morn, and amiable as your own imagination of Desdemona or Gertrude of Wyoming. You are lost. It's all over with you. I wouldn't give an emply filbert or a frog-bitten strawberry for your peace of mind, if that glittering creature be not as pitifui as she is fair. And that comes of going into the country, out of the way of vanity and temptation, and fancying farm houses nice old-fashioned places of oldfashioned contentment.-"TheIIalland the Hamlet," by William Biracitt.

On the lst of January the opening of the gallery comaining agricultural instruments at the Conscriatoire des sirts et Métiers will take place. The gallery is about 50 metres in length, and contains upwards of 2000 instruments, from the simplest up to the mest complicated.-Galignani.

HOT-AMR FLRNACFS AND AMETMGIT

 STOVES.Emitons Celembaton-I have noticed the remarks in the Culavator daring the past y ear, by Geo. Ceddes and others, on the abamtages of Hot-Air Furnaces. Havius used me in t:y own house for the past seven or eight years, econstructed in a manaer precisely similir to thene deseribed, I can endorse with contilence, all, or wearly ah, that has been said in their fisor. There are, binwever, some defects which should be known. These defecte ate not merely attached to poorly constructed ones, tor mine was a go.... whe, with a lerge stove and tight druts, well put together so as not to smoke.

The adratages, as befure stated, are chient, the facility with which harge wome, fier fet horg,
 up only one fire for several rounas teeciun fom dirt and athes, fromstores and tre-phace: saving in rom: freedem fora coh currest :hangh donicracks, \&ce; and unifern ienlan-riture day mad night.
The disadumt:yes are, the furnace, ancess in a very large ceilur, so as to be entiede suparated by partitions from the rest of the chime heats it tio mach, arally ceasi:g the spect? deces of
 it sares above stairs; the wood bcius heav, but fer wonen can lif it, and hence a man matat be at hand; the fire being away, out of sisha, is api to be forgoten and negiceted till too low: aflet standing and absorbing moist cre dariag summer, the plaster and bri.k-work theow off aii unh hasant and datap smen! into the vooms for some days atter the fire is first commenced in auturan ; the cost, in no case, of a grod firmace. can be much less than a humdret dollars wo: one of the leasi objections is the difficulty of regulatig the heat properly in rapidy changing weather, as from cold to warm, from warm to cold, or from calm to windy. Large sticks six iuches to at foot in diameter will be an hour or two in getting thoroughly on fire; and when once on fire, continue burning half a day or more. In the meantime there may be a considerable change in the weather, in which case the rooms may be greatly over-heated, or become too cold to be comfortable. It often happens that a fire is built up for the night, while the weather is caln; a fresh wind springing up in the night will rapidy diminish the heat of the rooms; or, if the weather is windy when the fire is made, and the wind then subsides, the heat soon becomes oppressive. It is found to require twice as much wood in a high wind, at 25 degrecs, as in a calm at zero. Wind also changes the course of the ascending hot air in the pipes, warming those rocms chicfly which lie in a direction from the wind, often sweeping the air from the windward rooms down the hotair pipes, and out of the air-chamber, through the feeding pipe. This is a serious inconvenience. It uas indeed be obriated by properly adjusting
the registers, and by two of three cold-air feeding pipes on oiposite sides of the furmate, to be closed or opened as the case regnires; or a mew fire may be built of small word, io the wather suddenily breomes windy ; or, on the other hand, it: it sublenly becomes cah or wames, time fire :may be samohercel sith :shtes, or lessched by shutting the fire drat. But all these require much atention; more than farmers generally are willay to giew ; ance nould be a grierous anc on a housckecter where ao nuan is athand.

Exery establinhment, therctore, which camot kecp an atentive hired man, always at hand, should not be encumbered wath a firuace ibut in a large house, where sach care can constantly be given, atd where there are as many as five or sis romus to be conistanty heated, a good furnace vill be foundatogether thenost convenima mode. It is also just the thiag for large schoons, where many apmements are in daily use, obviating the care and interruption vi replenisinug fires in the separaic roms; or for hotelis, anu large public buildings gencraiiy

For simall houses, wearly ail the anvamages of the butain furatace are secured by the use of the best air-ight, seif-regulating shecti iron stoves. The cost of two or theee of these is mueh less that: of a furnace; they are alsays at hand and casili fed; they consume less wood by nearly o:e indi, as I hate anply proved by loug expericnec with both; and tiey will maintain a fire as luty during the night as a furnace. The very conmon objection to the furnace, that every part of the roon is laciect aike, and that every person, whnt!er thinly or wamly tressed, must endure the satac licat; or these who have been a!l day riding th the cold can bave no wamer fire the.in oil res, is wholly obviated by the air-tight stere. So rapidly nay a room be heated with nne of these, that five minutes are scarecly needed in any case; while the self regulater, properly adjusted, will preserve an cquable temperature for a long time. With an additional improvement -that of inserting a tansparent plate of mica in the regulating valve, the light from the fire would be thrown into the room, and the advantagc, so ruch prized by many, of secing the "cheerful blaze," would be at least partially attained.

With one of the larger sized air-tight stoves, (Race's $\$ 14$ ones, I am cnabled to heat i family room and three adjacent slecping apartments, more comfortably than I could formerly with : furnace; for which one cord of good wood will last about one month of avcrage winter weather; and my fruit and vegetables now keep well in the celiar.

But air-tight stoves have their difficulties. Thepe are two in number, namely-the sudden puffs of smnke or explosions; aud the inconvenience of pipes choked with sont, or dripping with pyroligneous acid. The first never thater piace except when the stove is cioscly shut. lan-
pure carburretted hydrogen from the burning wood mixes with the air in the stove, and then taking fire causes the explosion. This is usually only a puff of smoke, but sometimes it has been sufficiently strong to lift the small cast iron plate which covers the hole in the top of the stove. The explosions may be obviated by adjusting the regulator so that it shall not entirely close, till the wood is half consumed. The carburetted hydrogen will not collect while a slight current of air is sweeping through the stove, and rarely except when the wood is in its early stages of combustion. The dripping of pyroligncous acid is prevented by reversing the joints of the pipe, those above being inserted into the next ones below, rendering it impossible for the liquid to escape. To prevent this pipe becoming soon choked with soot, neai?! all should be perpendicular, or nearly so, so that b-: knocking on its sides, the adhering soot may fall. One of my stoves was at first fitted with seven feet of horizontal pipe; but in five weeks it was perfectly choked with soot. The stove was then moved, and the pipe made vertical. By knocking down the soot once a fortnight, no difficulty from this source is now experienced. Where the draft is considerable the soot does not so rapidly accumulate; hence in using another stove, less perfectly made, no inconvenience was found either from dripping or soot, for some months.

A self-regulating stove, made of Russia sheetiron, will last, it is believed, under ordinary circumstances, not less than fifteen years.-Allany Cultivator-Feb. 1848.

ORIGIN OE THE NARRAGANSETT HORSES.

Eds. Coltivator-The following extract from Updike's "History of the Church in Narragansett;" a work which incidentally speaks of other things not relating to the church, furnishes, probably, the best account of the origin, decline and extinction of the famous Narragausett saddle-horses, that can anywhere be found.

> James A. Charlton.

East Windsor Hill, Ct, Dec. 27, 1847.
"Mr. J. P. Hazard, in a communication to the author, says:
" ، My grandfather, Gov. Robinson, introduced the famous sadelc-horse, the Narragansett pacer, known in the last century over all the civilized part of North America and the West Indies, from whence they have lately been introduced into England as a saddle-horse for ladies, under the name of the Spanish Jennette.
"'Gov. Robinson imported the original from Andalusia, in Spain, and the raising them for the West India markets was one of the objects of the early planters of this country.
""My grandfather, Robert Hazard, raised one hundred annually, and often loaded two vessels a year with them and other products of his farm;
which vessels sailed directly from the South Ferry to the Vest Indies, where the horses were in great demand.
"' One cause of the loss of that famons breed here, was the great demand for them in Cuba, when that Island began to cultivate sugar extensively. The planters became rich, and wanted the pacing horses for themsel ves, and their wives or daughters to ride. They wanted them in greater numbers than we supplied them; and sent an agent to this country to purchase them on such terms as he could, but to purchase at all events. This agent never let a good one, that could be purchased, escape him.
"" This, and the fact that they were not so well adapted to draught as other horses, was the cause of their being neglected, and I believe the breed is now extinct in this section.
"'My father described the motion of this [kind] of horse as differing from others, in that its backbone moved through the air in a stra,ght line, without inclining the rider from side to side, like the common racker or pacer of the present day. Hence the gait was very easy, and the horses being of great power and endurance, would perform a journey of one hundred miles a day, withont injury to themselves or riders.'"

We are much obliged to Mr. Charlton for the trouble he has taken in procuring and forwarding the above facts in relation to the once celebrated Narragansett horses. We have never before been able to sbtain a clue to their history. $-I b$.

DOMESTIC ECONOMY, RECIPES, \&c.
Keeping Beef Fresi - Combe says the ribs will keep longest, or five or six days in summer, the middle of the loin next, the rump next, the round next, and the brisket the worst, which will not keep longer than three days in summer.-Ib.

Erost proof Cement. - Mix tar with sand; it gradually hardens, and as moisture cannot in the least degree penetrate it, it will never crack by frost. This was proved by the accidental upsetting of a tar barrel on a spot of sand-the cement thus accidentally formed, remaining impenetrably hard for years, although under the rain-water spout, and exposed to all wearhers.-Ib.

Large Corn Crop.-In our notice of the farm of Mr. John Johuston, near Geneva, in the September number of the Cultivator for last year, we spoke of a field of corn which had been planted with Emery's Sced-Planter. It was the latter part of June that we saw the corn, and though it was then very promising, it was impossible to calculate the yield which might be obtained. Mr. J. informs us, in a late letter, that it turned out to be a heavy crop. There was nineteen aeres in the field, but from what was taken up by an open ditch, and what was occupied by trees, he thinks there could not have been. more than cighteen acres in the field. Mr. J.
says:-"I had 56 tons, 25 pounds of ears of corn. 1 regretted I could not spare time to weigh the stalks, when dry; . On the whole it was the best crop I ever saw.". A part of the field had been under-drained with tile. Mr. J. states that this produced far the best corn, though before it was drained it would neither bear grain nor good grass.-Ib.

Remariable Pig.-At the time of the Pittsfield (Mass.) cattle show and fair last fall, we saw a very fine pig, belonging to Mr. F. A. Willis, of that town; and learning from him that he was keeping an account of the food it consumed, we solicited the result for publication. It appears from his statement, that the pig was slaughtered the 20th December last, and that her dressed weight was 4601 lbs . Deducting from this amount four pounds, which it was supposed the pig would weigh when she was dropped, leaves a gain of about one pound seven ounces per day, during her life. Her food was the shimmed milk from one cow, with oat and rye meal mixed. Mr. Willis owned her 217 days; and when he bought her she weighed 20 lbs.-her gain in that time was therefore 435 lbs . The grain or meal was all purchased, and the actual cost of everything consumed, excepting the waste slops of the family, was a fraction less than $\$ 20$, or about four and a quarter cents per pound.-Ib.
Large Yield of Butter.-Mr. John Lossing, of this city has furnished us with the following account of the butter produced in seven days by a short hurned cow owned by him. She calved the fore part of December; her calf was taken off at about a week old, and in the seven days succeeding, her milk afforded fourteen pounds of butter, besides the milk and cream used in a family of five persons. The food consumed by the cow in the seven days was as follows: fourteen small bundles of top-stalks, three bushels brewer s grains, half a bushel ruta-baga turnips, four quarts shorts." The milk used in the farnily is considered equivalent to one pound of butter. $-7 b$.

Ice Houses.-Since ice has been regarded an article of necessity, almost as much as a luxury, during the enervating and oppressive heats of our long summers, so much has been written on the construction of ice houses, it may be presumed that but little can be said on the subject which is new. We still remain unaltered in our opinion (sec p. 280, of our fourth volume), that the success of keeping ice depends entirely on a dry atmosphere, through drainage, and free, uninterrupted ventilation. We condemn the practice of constructing any part of the main chamber, or receptacle for the ice, below the surface of the ground, or of attempting to screen the roof of the house from the sun by the planting of trees. It will be remembered that we have already remarked
that shade trees attract moisture, and that moisture melts ice ten times as fast as a hot wind or its exposure to the sun. Neither do we approve of the sides and back of the ice house being of earth, as that is moist too; and, instead of preserving the ice, as is often believed, it has a tendency to cause it to melt. An ice house, then, may be placed in an open, airy situation, on the bank of a lake or streaun, or any other convenient spot, above the level of the ground, with good drainage and perfect ventilation. If well filled with solid blocks of ice, cut out of as large dimensions as convenient-for the larger they are the better they keep-these are all the essentials requisite to ensure complete success. As a proof of this, we have only to refer our readers to the buildings on Rockland Lake, near the west bank of the Mudson, and the old Congregational meeting house, at Wenham Lake, between Ipswich and Salem, in Massachusetts. These buildings are all of wood, lined with sawdust or tan bark, and standing high and entircly above the ground. It is the same with the large public ice houses in this city.

The best, cheapest, and safest mode of constructing an ice house for this country, is, to make a wooden frame, with posts about a foot thick and six or eight feet high, and then to plank up inside and out, filling the space between with sawdust, tan bark, or pulverized charcoal, over which a roof should be built with a pitch of at least 45°, made of rough slabs, small saplings, or other materials, and finally well thatched with straw of a thickness of twelve inches to a foot and a half. Whether the soil be porus or not, we would construct a plank or slab floor, about a foot above the ground, sufficiently open to admit a free passage of all the melted ice. Beneath the floor, a ditch may be dug, running the entire length of the house, and leading to a lower level, perhaps of the adjoining stream; or, instead of this ditch, a deep cellar may be formed with proper drains, and one of Kephart's fruit preservers substitu.ted for the floor of the house. The entrance doors, one at each end of the building, should be double, with a foot space betwren each, and trap doors to be opened when the weather is dry, and always to be closed when the air is damp or moist. The dimensions of the house should not be less than 13 by 20 feet with 6 foot posts.

Preparatory to filling the ice house, the floor should be covered with a bed of straw about a foot thick for the ice to rest upon. The operation of storing may commence as early in the season as the thickness of the ice will admit. The blocks may be sawed out about two feet square, and laid up like masonry, in a solid mass, impenetrable to the sun and air; and when the house is filled, the ice should be carefully covered up with a thick coating as they throw in, and thus make the whole into a compact mass.-American Agricullurist, Fel. 1848.

Paesenved Poratues.- An importation of considerable novelty amd interest has recently taken phace by a vesselarrived from Gottenburgh, consisting of some casks of potatoes in a state of preservation. It is known that this deseription of regetable is free ol duay, when imported inte this country in a raw state, the privilege extending to all forcign comatrics, and for a definite period, without referene to the mode of introduction and the existing matigation laws; and the parcel was cutered by the mporters as being free of duty. On examination, however, by the officers of the hevenue, the contents were found to have undergone a process of preserving, by which they were considered to become liable to an al ralorem duty of 10 per cent. as manufactured poods, the process which they had sadergone being the division of the potato into small pieces and drying them. We believe that this is a perfect novelty with respect to the importation of the regetable from foreign countries. A patent is in existence for a presesved preparation of the potato in this country, which is supplied to the East India Company; and emigrants, and of which an analysis is given by Dr. Ure, the eminemt professor of analytical chemistry, to the cfect that it is found by chemical analysis to contain the whole uutritious principles (propertics) of that root in a pure concentrated state, also 60 parts in the hundred at least of starch, nearly 30 of a soluble tibrine of demuleent antiscorbutic quality; five of a vegetable elbumen of the nature somewhat of the white of egg, and five of a lubricating gum,that the fibrine and albumen render it mure light of digestion, and the gum more demuleent to the stomach than wheat four, with which also it may be regarded as nearly equally mutritious, and more so than peas, beans, sago, or arrow root. It was a matter of some doubt whether this importation was in any way affected by the existing patent alluded to, but we belirve it has been decided in the negative, and is of entirely different character, although similarly designated. Notwithstanding that the importation is a novel one, it is understood to be a common preparation of the vegetable in Sweden (from which country this supply took place), and to have been so for a long period, and that the only process in manufacture to which the potatoes have been subjected is that of being dried and forced through a sieve or cullender, which; however, is considered to render them liable to the ad oolorem duty before mentioned:

Never arve UR. What if you fail in business? You still have life and health. Don't sit "down and cry about mishaps, for that will never get you out of debt, nor buy your children frocks Go to work at something, eat spariugls, dreas moderately, drink nothing exciting, and, above all, keep a merty heart, and you'll be up. in the world.-

Remahiable Expehiment.-A rece.atwork of science gives the fullowing novel enperiment, which settles yuestions of some importance in piallosuphy -" Two huadred pounds weight on carth were daid in an oven, and afterwardo pat into an earthen tesed. The earth was then moisiened with :ain water, and a willon ace we whins five pounds, was planted therein. During the space of five years the carth has carefully wateresi with rain water, or pure water; the willow gre" and hourished; and, to prevent the earth beins mined with fiesh carth or dust blown in it be the ninds, it was covered with a metal phate periosated with a great number of samall holes, suitabls for the fee admission of air only. Ate growing in the air for five years, the tree was remover. and funal to weigh 169 pomals and abeat 3 ona ces: the leaves which fell from the tree ever autumn were not included in this weighs. Jhio carth was then removed from the vessel, agai., dried in the oven, and afterwards weighed; it wadiscorered to have lost only about two ounces oi its original weight; thus 160 pounds of woony fibre, bark, or reots were certanhy produced; but from what source? The air has been discovered to be the source of the solid clement at least. This statement may at first appear incredible, bu:, on slight reflectioni its truth is proved, becams: the atmosphere contains carbonic acid, which is a compound, or 714 parts weight of oxygen, and 330 yarts by weight of carboas.'

Danger attennmg thetoo harey Devbiopmint oftme Mental. Faculties in Chabaex.There can be no doubt that many a child b:a been zacilifecd in early youth to the pride of parents, who, delight with the intellectaal activiis? of their children, have striven to make them podigies of learning. But in these cases of carly and undue empleyment of the brain, inflammation of the hemispherical ganglion, or of the lining membrane of the ventricles, with serous effusion, has usually been the cause of either a fatal issue or of subsequent mental imbecility. The late Mr. Deville related to me an interesting case of this kind. An extremcly intelligent boy, of about twelve years of age, was brought to him for phrenological examination by a parent who was vers proud of the intellectual endowments of his child. Mr. Deville gave his opinion of the boy's character, at the same time cautioning the father of the dangerous course he was pursuing. But the father's reply was, "all that other boys considercd labour and hard study are mere child's play to him; that his studies could not be hurting him, he enjoyed them so much." Again Mr. Deville epadeavourcd to save the child, but the father would not attend to the warning. Two years from that time the father again called ou Mr. Deville, and in reply to his enquiries after his child, the father burst into teare-his child was an idiot.-Solly on the brain..

Goon ror a Gonse.-The Rev. Casar Otway, in his paper on "The Intellectuality of Domesthe A himath," gives the following anedote, which is bey far too good not to reseive the bencfit of a willer circulation:- At the flour mills of Tubbremeena, near (lommel, while in the possession of the hate Mr. Newbold, there was a goose whih. by some accident, was left solitary, without mate or offipring, gander or goslings. Now it happernech, is is common, that the miller's wife had set a mamber of duck-cergs under a hen, which in dene time were incubated, and of course the ducklinge, as coon as they came forth, ran with natual instinet to the water, and the hen was in a sad pucker- her maternity urging her to follow the brood, and her selfitheess disposing her to keep on dry land. In the meantime up sailed the goose, and with a noisy gabble, which certainly (being interpreted) meant, Leave them to my tare; the swam up and down with the ducklings, at:d when they were tired with their aquatic excursion, she consigned them to the care of the hen. The next moming down came again the ducklings to the pond, and there was the goose waiting for them, and there stood the hen in her great flustration. On this occasion we are not at all sure that the goose invited the henobserving the maternal trouble-but it is a fact that she being near the shore, the hen jumped on her back, and there sat, the ducklings swimming, and the goose and hen after them, up and down the pond. And this was not a solitary event; day after day the hen was seen on board the grose, attending the ducklings up and down, in perfect contentedness and good humour, numbers of people coming to witness the circumstance; which continued until the ducklings, coming to days of discretion, required no longer the joint of guardianship of the goose and hen.

Northumbrrland "Ploughisg Day."-At Roseden, near Wooler, on the 29th ult., Messrs. Atkinson, of Embleton, to whom that farm has been just let, received a hearty welcome from their neighbours and friends in the shape of a "ploughing day." The day was favourable, and there turned out no fewer than 176 pairs of borses, all of which were a credit to the district. Similar welcomes have lately been given, at Horson and Silburn Grange, to the new tenants, Mr. Brown, of Sandy House, and Mr. Ramsay of Tweedmouth. On the former occasion, 176, and at the latter, upwards of 100 ploughs were in the field-Gateshead Observer.

Eveay Man's home.-To make it healthful and joyful; toinsure, economically, impunity from fire; such a supply of fresh air, light (God's first great gift), and warmth, when needed, as the constitution of man demands, and to lead Artcapable of producing "an endless fountain of immortal drink"-delightfully to adorn it, is matter of world-wide interest. Whea it is remem-
bered that homes are the manufactories of men, and influence a growing nation, the importance of improving these homes is at once seen. Perfect men come not forth from ill-arranged, ill-ordered dwellings: and how few homes are there which might not be improved!-7'ke Brilder.

PROTECTION OF MANURE.

Tue importance of protecting manure from the sun, wind and rain, may be estimated by the following calculation, for which I am indebted to the works of the French writer-Girudin (desfumier's considérés comue Engrais, Puais), who, ia chapter j , quotes some experiments made by Koerte, which shew that in this exposure a hundred cart loads of fresh dung are reduced, at the end of

Tobacco.-The greater part of the species of Nicotiana (the systematic name of the Tobacco plant) 'are natives of South America, and possess more or less of the narcotic qualities of that article of commerce which is so well known amongst us. Different countries adopt the cultivation of different species, which, in some degree, accounts for the various qualities known in commerce. The Americans cultivate the Nicotiana tabacum; the Persians, Nicotiana Persica; the Syrians, Nicotiana rustica; and the species rapanda is said to be that from which the finest Havannah cigars are manufactured. Several others are known to be grown for use amongat various tribes of Indians, some of whom, by the bye, have arrived at a retinemeut in the use of this luxury, which must put to the blush the admirers of mere leaf-smoke. These Indiansinhabitants of the banks of the Missouri,-as related by Pursh, prepare, 'for their own smoking,' a delicate specics of Tobacco, not from leaves, but from the flowers of the species they cultivate. Thus we see that the time has to arrive, when smoking Englishmen shall possess the refined taste of their 'Tall Indian' brethren.'-Mound's Botanic. Garden and Fruitist, for July.

Smokres.- It has been surmiscu, from the following extract, that the author of the Botanic Garden is no smoker; be this as it may, we give it for the benefit of our readers. 'From the smoker of Tobacco it should not be concealed, that the easential oil of Tobacco, like that from its kindred plants, Henbane and Deadly Nightshade, is a virulent poison; and which, in smoking, is inhaled and swallowed, and is frequently productive of paralysis. Its frequent use, like that of Opium, renders the system less susceptible of its active qualitics; this, bowever, is but the evidence of disordered functions, - of natural sensitiveness destroyed; an effect which, like the effects of other poisons, can only be advantageous where rendered necessary by disease.'
" ULOUGII DEEL TO FIND THE GOLD."

in John palmer.

Plough deep to find the gold, my boys 1 Plough deep to find the gold:
The earth has treasures in her breast, Unmeasured and untold.

Mark yon field of stately storihs Rise on an Autumn day!
Lusty Labuur jucund louks Amidst their thick array;

Aark the barn-yard's ample space, How grateful to behold!
Towers of riehes fill the placePlough deep, and find the gold:

Earth is grateful to her sons For all their care and tuil; Nothing yields such large returns As drained and deepened suil.

Science lend its kindly aid, Her riches to unfold;
Moved by plough or moved by spade, Stir deep to find the gold!

Dig deep to find the gold, my boys!
Dig deep to find the gold!
The earth has treasures in her breast, Unmeasured and untold.

Join Palmer.
Annan, 1847.

COAL ASIIES-COMPOST FOR CORN.

I have been experimenting in the use of coal ashes for potatoes. On half an acre I put nothing but such ashes; on an acre adjoining was spread a good roating of well rotted horse manure; and on another half acre adjoining both the preceding, nothing. Soil, a sandy loam. I found the coal ashes fully equal to the horse may nure, the potatoes being very fine for the season. Where there was nothing, the yield was about one half what it was on the other portions,-both in quantity and size. I planted half a row with diseased potatocs, not a single sound one among them; but in the product I have not yet found the first diseased tuber.

The following was my compost for corn, during the past season:--forty bushels of pigeon dung; forty bushels of hog dung, well-rooted, from beneath an old peu; ten bushels of plaster; and five of unleached ashes. A common handful was put in each hill. The corn was earlier by two weeks, larger ears, better filled, and more of them, but less fodder, than where I put fifteen large two-horse loads of barn-yard manure to the acre. The whole crop was in the same field, and the soil and tillage were alike in buth parcels.
Brunswick, Col. Co. Pa. J. II. Young.
-Albany Cultivater, Fiel. 1848.

INFLUENCE OF THE PRESS ON AGRICUL'TURAL IMPROVEMENT.
Mr. Payson, in his address before the Esses county (Mass.) Agricultural Societẏ, says-"To enumerate all the improvements which have been made in Agriculture for the last half century, would take too much time. One, not only an improvement in itself, but the busis of all other improvements, must not be omitted, and that is the diffusion of agricultural knowledge by the newspaper press. Slowly, silently, almost by stealth, without the knowledge of the man bimself, this mighty engine undermines old prejudices, and teaches the farmer that howeverindependent he may be, he is not so wise that the ex: perience of others will not profit him. Most of us have become willing to seek directions even though they may be contained in a book. We are becoming more like liberal, frec-born, and aspiring men."

In relation to the same subject, Mr. I. S. Hircucock, in his address before the Oneida county, (N. Y.) society, observes-" A medium of communication between farmers was found to be indispensable to the advancement of their interests, and the periodical agricultural press was established. That agricultural journals are among the most decided, and least expensive means of promoting agriculture, no one who has been favoured with their perusal for any length of time, will pretend to deny. While their influence has been highly beneficial, they have injured no one, and since their utility has been fairly tested by experience, that farmer is guilty of an unpardonable inattention to his true interests, who ncglects to provide himself with a well conducted Journal of this kind. I am aware there is a projudice against what some are pleased to call book-farming. And what is this book farming in relation to which such unfounded and untenable prejudices prevail? Farmers communicate to each other the results of their experience in raising horses, cattle, sheep a:. 3 swine, the best and most economical modes of manuring their lands, the most profitable crops, and the best manner of raising them, the best breed of animals, and the best modes by which they may be fatteued-in short, everything relating to the occupation of the farmer. The results are committed to paper, go through the press and become a book, and those who choose to be aided by the experience of others, as there detailed are guilty of took-farming."

All communications connected with this Journal, to be addressed, pust paid, to the Secretary of the Suciety-William Evans, Muntreal.
Annual Subscriptions for the Journal, five shillings.

MONTREAI:

PRINTED BY LOVELL AND GIBSON, SAINT NICHOLAG STREET.

[^0]: *This quantity of seed is not necessary in Canada: from $1 \frac{1}{1}$ to 2 minots, according to the state and fertility of the soil, is sufficient.-ED. A. J.

