The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restauree et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Reliee avec d'autres documents

Tight binding may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possibic, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutëes lors d'une restauration apparaissent dans le texte. mais, lorsque cela ètait possible. ces pages n'ont pas ètè filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les dètails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or fossed/ Pages décolorées, tachetėes ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

\square
Includes index(es)/
Comprend un (des) index

Titie on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de ia livraison

Caption of issue/
Titre de depart de la livraison

Masthead/
Gėnèique (périodiques) de la livraison

Additional comments:/
Commentaires supplėmentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

PROSPECTUS FOR 1883.

Canadian Magazine

OF

Science and the 1ndustrial Qrts.

Patent Office Record.

EDITOR-HENRY . BOVEY, M.A. (Camb.), Aseociate Memb. Inst. C.E.; Memb. of Inst. M.E. (Bng.) and American Inst. M.E., Professor of Civil Fnglneering and App. Mechs., McGill University.

Vol. 11.
JANUARY, 1883.
No. 1.

The Proprietors have great pleasure in informing the Subscribers to the Scientific Canadian, and the Public in general, that arrangements have been made by which Pror. Bovey will undertake the editorship of this Magazine at the beginning of the New Year, when the name of the publication will be changed to the Canadian Magasine of Science and the Industrial Arts.
Every effort will be made to render the publication a useful vehicle for the conveying of information respecting the latest progress in Science and the Arts.

It is hoped that the Macazine will also be a medium for the discussion of questions bearing upon Engineering in its various branches, Architecture, the Natural Sciences, etc., and the fiditor will gladly receive communications on these and all kindred subjects. Any illustrations accompanying such papers as may be inserted will be reproduced with the utmost care.
The First Number will contain, among others, articles on Technical Education by J. Clarke Murray, L.L.D.; on Cable Traction for Tramways and Railways by C. F. Findlay, M.A., Associate Memb. Inst. C.E.; and on the Transit of Venus by Alexander Johnson, LL.D.
A space will be reserved for Notices and Reviews of New Books, and Resumes will be given of the Transactions of various Engineering and Scientific Societies.

The Patent Office Record will continue to be a special feature of the Magazine; and will be published as an Appendix to each number. The Illustrations, however, of the New Patents will be considerably enlarged, so that each invention being more easy to examine will be made clearer and more intelligible to the general reader. This Record gives information of the greatest value to engineers, manufacturers, and to all persorns interested in the different trades.
In view of these great improvements the subscription price will only be $\$ 2.50$, payable in advance, and it is confidently anticipated that a large increase will be made in the number of subscribers.
The efficiency and success of the Magazine, the only one of the kind in Canada, must in a great measure depend upon the hearty cooperation and support of the Public.

Note.-All communications relating to the Editorial department should be addressed to the Editor, 3 I McTavish St., Montreal.

All business communications, subscriptions, and payments to be addressed G. B. Burland, Manager, Burland Lithographic Co., 5 \& 7 Bleury Street, Montreal.

Advertising rates will be given on application to the Office of the Company.

TECHNICAL EDUCATION.

Anout a century ago Samuel Johnson declared that " oducation was as well known, and had long been as well known as over it could be." This effervesconce of his habitual dogmatism was excited by the appearance of a now treaties on education; but in spite of the impatience with which the subject was thus dismissed long ago, the world in goneral find that a great deal remains to be said on it, which is calculated to interest still. Among the questions which continue to be discussed in connection with the subject, there is one which becomes more complicated ovory year hy the porpetual increase in tho range of studies cror which education may extend. It is common to distinguish the atudies of an educational courso into two classes at. cording to the immediate ends which they have in vievr. Some studies look merely to the character of the parson who is being oducated, and their chief end is simply to develop to a state of vigour the povers with which he is endowed, so that he may be able to apply these effectively to ans duties to which he may be called in life. Jhese are what are commonly tn dorstood by lihecial studies. There is anothor class, however, whose primary object is to communicate to the student such special training as may fit him for the particular occupation in whel his life is to be principally spent. Such studies are distinguished as professionnl.

No one dontes the essential importance of hiteral culture in human education; but it has been too often assumed that the necessity of liberal culture requies us to exclude all processional considerations, or at least justifies us in restricting an oducational course, cither wholly or mainly, to studies that can never be of any ervice in the subsequent oreupations of life. It must, of course, be acknowledged that many studies, like some controversies in modieval motaphysics, whith are comparatively trivial in positive worth, may yel, by the enthusiasm of the scholar, h made the means of developing a ligh degree of intellectual acuteness and power; but there is no reason to suppose that an equal culture might not be oltained in the study of sciences Which admit of innumerable applications to the security or the enjoyment of lifo. It is, therefore, worthy of consideration, whether strietly professional studies might not receive a more prominent recognition, even in those academical regulatious which aim merely at liberal education.

But whatever may be the value of professional studies in a system of liberal education, for professional purposes they are, of course, altogether indispensable. Now, among profossional studies an obvious distinction may be drawn. Some of the occupations of life have a permanent material product in view; and the education which is designed to prepare for these, is commonly dastinguished by the term techuical, when used in its most restricted sense. Trelanical is originally a Greek: word for urtijicial, and therefore it describes appropriately any process by which the art of man transforms a product of nature. Now, all such material products of human art imply the use of a material instrumentality,-a tool, a machine, or other apparatus, as well as the raw substance which is to bo transformed. Accordingly, all technical education im. plies a training in the use of such instrumentality,-a
practical knowledge of the natural properties by which it is rendered serviceable to man.

It is too often forgotten that the primitive instrumentality of man,-the instrumentality, without which all others are valueless,-is his own physical organism. Again an etymological rominder may not be out of place: Oigun io meroly a Greek word for instrument. 'Ihe technical education of men ought therefore, to bogin with the training of their hodily organs. The lind is, of couse, the organ chiofly-in fact, almost exclusivoly-employed in the production of human art. We handle our tools and machinery ; we maniputute our apparatus; and all our productions evon whon olaborate machinery is employed, are describod as manufuctures, as if made entirely by the hand. The psychologist and the anthropologistalike know the value of this organ in discovering the mechanical forces of nature, and in making them subservient to tho human will. Since the time whon, twonty-three centuries ago, Anaxaroras declared that 'man is the most intelligent of animals because he has hands," it has been evident to science that there is no other external organ of the body, in which we stand 80 decidedly superior to the lower animale. For the general purposes of human life, therefore, an education must be defective, which overlooks altogether the training of the hand; and it may be fairly pleaded that such a training ought to form a part of ovon a purely liberal oulture. One may accordingly ioin with full sympathy in the lamentations of Mr. Ruskin and others over the neglect of manual skill, oven though one may refuss to charge it upon the extended use of machinery, or to encourage a retrogado movement which would require men to produce by the hand articles which a machine can turn out at inmeasurably less cost of labour, and with more certainty of mechanical exactness. The vary instrumentalities, which human art employs in its productions, give plenty of scopo ior skilful handling, and demand therofore an education which shall refino the sensibility of the manual muscles. Fortunately this is a training Which may be begun even in tine nursery, and doee not exact that unnatural stimulation of the brain, which oxerts such disastrous results on the general health by prematurely adopting other modes of early education. The exercise of his little mind in the intelligent direction of a tool is a kind of labour on which the child is always ready to outer with zost, and therefore with little chance of unnaturally overstraining any of his powers. Every opportunity may therefore be wisely afforded to gratify the childish craving for the use of pen and poncil and brush; and evon the landling of sharp-edged tools may, with some simple precautions, be profitahly encouraged at a very eanly age.

All the instrumente, which man employs, are but embodiments of natural forces, and all the forces of nature work in accordance with invariabie laws. To use an instrument, however clumsily, in the production of any object, implies at least some vague fnowledge of the laws governing the forces that are embodied in the instrument, but perfect accuracy in the operation, and certainty as to its result, can be attainod only when a vague knowlodge has made way for exact science. Even the common tools, which have been the familiar benefactors of man from a period anterior to the dawn of history, depend for their efficiency upon the accuracy of his knowledge regarding the properties of matter, by which they work thoir results.

The advance from stone implements to bronze, from bronze to iron and steel, by which the progrees of civilization has been marked, is indicative of man's increasing acquaintance with the force of the material world.
If even the simplest instrumentalities, without which human life could scarcely be rendered endurable, dorive an increased efficiency from the exactness of the science with which they are used, it is evident that there must be an infinitely larger sphere and a more imperative demand for such exactness of science in the use of the complicated machinery, which has expanded to its enol sous proportions the industrial production of our day. It is a fact which is remarkable, altiough on reflection not unintelligible, that the extended ap. plication of machinery, instead of lossoning the demand for skilled labour, has only led to increased requirements in reference both to its quantity and its quality. To handle a complicated machino sven with safety, requires a considorable amount of techuical skill; to work it with econowy, requires still more; and the deplorable accidents, as well as the deplruble waste: by which industrial occupations have bern in the past, and still are in many cases, accompanied, are generally due to inadequacy of technical training rather than to any moral waut of conscientious care.

The accidents, arriving from ignorance of the forces at work in the machinery and materials of modorn industries, are suggestive of a fact involved in the complicated civilization of our time. In consequence of the numerous and elaborate applications of practical science to the conveniences of human life, men are becoming more and more dependent on each other for the advantages ui the technical knowledge which they severally possess. Accordingly the enjoyment of tho very benefite, which science is conferring on mankind, renders it every day more and more imperative that those, who profess to perform any work, shall be adequatoly equipped for porformance by a previous technical education: The vast increase, which the last few years have witnessed, in schools of technology, and in the numbers of men eager to obtain thoir advantages, affords a reasonable gro.nd for the hope that a technical preparation will, in the near future, become a compulsory provision for all the more important industries of human lifo.

CABLE TRACTION FOR TRAMWAYS AND RAILWAYS.

hy (. farquilat finhlat, M.d., c.k.

Traction by means of a rope and stationary ongine was the way in which steam powor was first applied to locomotion, though it is only recently that it has bees utilized for passenger transport on a large scale. George Stephenson's opponents went so far as to maintain that no locomotive engine could be made which would haul its own weight up a moderato grade even without any cars attached. The trimmph of the locomotive has however been so complete, and its manufacture has been brought to such a pitch of perfection, as to blind even those most accustomed to study the broader aspects of such questions to the fact, that there are special cases, and thise of the greatest importance, in which a stationary engine and cable have an immense economical advantage over any form of locome-
tive, besides boing free from many of its objectionable foatures. The case of most common occurrence to which cablo traction is applicable is that of a road of moderate straightness on which there is a traffic requiring cars at frequent intervals. Not to go here into details, there are two great sources of economy in the cable system as compared with any kind of locomotive, steam, electric or other ; firstly, the avoidance of all the dead weight hauled ovor the road in the shape of ongines, boilers, etc., and otherwise required in order to give sufficiont adhesion to the driving. wheels of the locomotive. In the case of a street railroad operated by any form of locomotive it would be a fair case to supposo a car woighing with its full com. plement of 30 soated passengers $12,000 \mathrm{lbs}$, to be drawn by a locomotive woighing 12,000 lbs. By getting rid of the locomotive we should here save 50 por cent. of the total veight hauled over the track; in other words the mass moved would be reduced from 800 lbs. per passenger to 400 lbs , etc., and the only corresponding increase would bo the weight of the cable itself, which is trifling in comparison and carried in a cheaper way, viz., by pulleys with fixei bearings. The second saving is in substituting stationary eng:nes and boilers, with the modera coal-saving appliances, for a number of locomotives. Where cars run at intervals of a few minutes the saving from these causes is so great that the consumption of fuol with a station. ary ongine and cable would not be more than 1-10th of what locomotives would take to do the same work, aud possibly a good deal less. As, in most parts of the world locomotive traction is chesper than animal traction, the economy of the use of the cable over the use of horses or mules would be equally great under favourable circumstances.

This being the case, the question will be naturally asized how it cames to pass that a means of traction apparently so simple and straightiforward is only now coming into any general uso. The answer is that there are two practical dufliculties to be confronted in adopting cable traction, which have until recently seemed to be prohibitive. First, the case, as before said, to which cable traction is most markedly applicable is that where a frequent succession of cars or trains has to be run. In any special case by studying all the circumstances it could be determined just what frequency of cars would make cuble traction cheapor than thit by animals or locomotives, but probably with morlerate grades, and circumstances othorwise ordinary, cars must be run at a headway of somowhere between 5 min. and 15 min ., to give the economical advantage to the cable. Now this case only arises in the streets or suburbs of a large city and this is just the case winere a running cable, except far overhead, or concealed underground, would be iunpossible, trcause of the other traffic along or across the road. Secondly, no prectical means were ever known by which a car could be so attachad to an ondless moving cablo that the car could start and stop at will, without jerk, unless the cable were stopped also. The first of these difficulties wuuld bo avoided by making use of the modern idea of the elevated railroad to which we shall have to refer hereafter, but this would not meet the requiroments of our cities except in special cases. The first intimation of the practical solution of the problem, as regards ordinary street travel, of which we have nny ku,wledge is contained in a patent granted in the United States to

E. S. Gardnor, of Philadelphia, in 1858, in which ho proposes to construct, bntween the tracks of a city railroad, a tunnel, along the crown of which is a siot open to the street. In this tunnel is to bo carried, on pulleye, an ondless moving rope to bo connected with tho "sr ly a machine passing throngh the slot. He dons not specify the constraction of this machine. The means of overcoming the sceond diffeulty were, in pinciple, first put forward, as far as wo know, by Cien'l Deauregard of New Orleans, who in 1869 patentod a form of grip, for uso in connection with an overhead travelling rope, in which there were iwo jaws enclosiug the rope and by closing the jaws on the rope or opening them, the car which carried the grip, would move with the rope or stand still letting the rope pass freely through. Deauregard's invention was put in operation at Now Urleans but never became a pactical success and from his patent ho would not appear to have undorstood the novelty and value of this feature in his Grip, viz, the jaws controlled foom the car to clatchand ree so the cable at will. Probably in the form his railway took-with the cable carried like a telegraph wire on poles above the car-the grip will nover be used, but the simple idea it contains which we have just mentioned, taken along with the equally simple idea of 'hardner's patent, form the only absoluteIy essential features of the cable system as now in we on street railroads.
The details of the methods in which these two principles are applied may to endlessly varied and have piobably not yet reached the ir final form, for, like many other valuable inventions, they have not received any attention from scientific engineers till their success has becn already estab'ished Probab's (iardacr's underground cable was ridiculed twenty years ago as much is the "movable sidewalk" or any other of the thousind and one fanciful inventions patented overy year.
The first successful application of the cajle to street use was on the Clay St. Ifill R. M. of San Francisco, of which Mr. A. C. Hallidie is president. This road is too steep to be successfully worked by horses, and Mr. Hallidie conceived the idea of applying to it somo modification of the wire rope railways in common use for transporting ore from mines for shipwent, placing the rope in an underground tube as in Ciarduet's proposed plan. The enterprise appears to have met with a good deal of discourayement, as was ocily natural perhaps, from its novelty, but Mr. Hallidic has convinced his friends of the practeability of the seleme and after a good deal of delay it was finally opence in 1873 and met with the success it deserved for the pluck and en terprise displayed in the undertaking. No sooner was its success practically established than other lines of the eanie kind were buit on the steep hill sides over which Sin Francisco spreads, and the economy of the system over horse traction became so evident that, one by ono, the horse railroads on the more level streets were converted into cable roads. Mr. Hallidio's ideas, however, were discarded on aost of these roads both in the construction of the tube and the decign of the grip. Uther inventors came out with improvements on tho Clay St. Hhll plans and a good deal of litigation ensued. We are not goins to enter on the unprofitabie discussion of questions of priority of invention, and indeed it is at present impossible for us to do so even if we wished to decide some of them. It is an undoubted fact that Mr. Hallidie patented the first grip that was
over used with practical succuss for a cablo road of this kind, and also that ho ieserves great credit for the persistence with which he r ged the construction of the Clay St. Hill Ry., and probably his merits as ono of the pioncers of the system would not have been dis. puted but for tho faet that has has denied to others ongaged in the same work, any share of credit for its success and has put forward utterly untonable claims to control by his patents the system of traction by means of an undergroumd ropo used in any way whatever. A hundred inventors have been at work since 1873, and though mosi of thoir inventions, like most inventions of other kinds, are useless, yet some of them are undoubtedly superior to Mr. Hillidio's inventions for the same parpose and do not involve anything discovered by Mr. Hallidie. Nr. Hallidio can only control the cablo system, wo may be sure, by possessing not the earliest but tho best inventions on the subject and the credit of having built the fisst road of the kind will not help him much unless he can build bettor roads than other poople. The must important step in the development of the system of cable tracion was the adoption of it by tho Chicago City Railway Co. which operates 50 miles of road ind carries more passengers than all the San Francisco roxds together. In the summer of 1880 they constructed tunnels for a double track cable road in State St., running from the centre of the city to a distance of four miles southrards. leggines and machinery were at the same time designed for the subsequent working of cables on all their lines from a single station about the middle of the State St. line.

An ongineor who had been engaged on some of the Sun Francisco roads was employed to carry out tho work, and in most respects, it has been a decided success. We give illustrations of the work on pages $1,5,8$, and 12, comprising a viow of the grip and a section of the roadway showing the construction of the tunnel. The ofrip is differont in some respects from any previously usod and is probably the best yet introduced, though still not porfect in its action. The most notable adrance in the application of the system made at Chicago is the use of the cable on curves. At Sin Francisco the roads were all straight except one, where at a short curve the cars released the cable and running round by their acquired momentum picked it up again on reaching the tangent line. At Chicago, on the ether hand, the cars pass on a loop round several b.ocks, to pass from one track to the other without switching. The curves are of 45 ft . radius, and on this " loop" there is a separate cable travelling at half tho speed of the State St. cable and diven by it. It is found that the cars can bo nperated on this part of the ling as well as on any other.
The only other company that has adopted the cable system so far is the Union Passenger Ry. Co. of Philadelphia which has built a line about a mile and a half in length in the outskiris oi the city near Fairmount Palk, as an experimental piece, prelininary to introducing it in Market St., the chief street of the city, next summer. Their plans are almost entirely different to any previously tried, their grip boing a now one, and their tuenel simply made of a cast iron tube 12 inches in diameter. At the time of writing, this road is not yet at work, but we believe the company has fully decided to introduce the system on Market St. next year, though the plan of their present road will probably
be found to need some molification under the test of actual practico. Other companies are contemplating the construction of cable roads shortly and a atroug company has been formed in Iondon to introduce the systom in Europo. lu proceeding now to consider a fow of the points of interest involved in this system of traction, the most important one and that which governs more than any other the success of the rond is the gri, as it has come to he technically called. In the earlier forms of grip used in Sau Francisco the rope was grasped botwoen pairs of rollers. In theso afterwards introduced, as in that used at Chicago, the rope is grasped botweon surfaces of some considerable length, in some cases of metal and at Chicara of wood. It is claimed that the wires of the cable are injured by the application of so much pressure as is required on the small portion of the cable which can be brought into contact with the edge of a roller. liollers are introduced in the Chicago grip for the purpose of carrying the cable whon the car is standiag still and the cable running through the jaws. This is required becauso the grip has to cary the weight of a considemble length of the cable, travelling as it does, some inches above the normal lovel of the cable. Another dillerence between the various grips in use is that Hallidie's grip, and many other patonted grips, are so constructed as to he able to descond and pick up the cable at any point on the road, while others, including the Chicago grip receive the cable at the beginning of the journey and retain it throughout, whether moving or still, and have no provision for recovering the cable if once lost. Such provision is not found to be requisite and without it the grip is much simplified in construction. The weak point in the Chicago grip is the uncertain action of the device adoptod for getting rid of the cable at the end of the journey. This is done hy spools which will be scen in our illustration at each ond of the grip. They are raised by a catch with the upper jaw of the grip when the operating lever is moved right to the end of its stroke. They sometimes fail to eject the cablo from the grip and the worst features of it is that the driver has no means of knowing whether this is so or not and in this way when the road was first opened the cablo was cut in two several times, catising a delay of many hours for splicing. Since then, at each phace where a cable has to bo dropped, a mauhole is kept always open and a man is stationed to wath whether the cable is dropped or not, so that if not, the car can be stopped. This is not a satisfactory state of things, and in some cities it would not be permitted to have a manhole constantly open in the middle of the street, but there is no doubt that a mechanical device can be found which will effect the required object with certainty and then this grir will be all that can be desired.
(70 be continued.)
on hydraulic lifts for passengers and goods.
bY MR. FDWARD bayzand EhmingTong of london:
(A paper rad before the Institution of Mfehanienl Engineirs. England.)
Ir is only within the last ten or fifteen years that Lifts worked by mechanical power have come into goneral use, and, excluding docks and railway goods stations, it is still rather the exception than the rule to
find power lifts in public buildings, or in marehouses and hotols cven of considerable sizo. The greatly increased value of land in large towns, and the consequent inereased height of the buildings erected, render however some kind of mechanical lifting power essential to the comfort and convenience of tho occupiers.

Accidents to lifts, especially when worked by mechanical meane, have beon so frequent that many hesitate to adopt them on account of the risk involved. But in a rapilly increasing mumber of cases their use is a necessity, and the risk must be taken. It becomes therefore a question of public importance that tho risk should bo reluced to a mininum.

In determining then question as to the best kinds of lift for passengers and for goods, it is necessary to premise that whatever system of lifts is proved to be safest and best for passengers should also be adopted, where practicable, for goods. Workmen and others are in the habit of travelling in goods lifts, and a prohibition against this prectice is productive of inconvenience. Consic rations of expense however will often stand in the way of the adoption -f the safest kind of lift for goods alono, especially when the height of lift is areat; and there is in consequence a demand for two standard types, one for pussengers and another ior goods.

- Ciman Lifrs.

The first rudiment of a lift is to be found in the Hoisting Jigger, as commonly used in the Liverpool rotton warelouses: this consitts of a winding drum, a cat-head pulley, and a chain attachod to the article to bo raised, as shown in Figs, 1 and 2, lage 9. By adding a cage and a guide to the chain, the apparatus has been llevoloped into a lift. It is worked eithor by winch handles A, Fig. 9, or from a lower lloor by the endless rope 13. There are not many porsons who would risk being hoisted in a sling to a considemble height : but when a cage is attached, the temptation to avoid the labour of iseent beecmes great, and the individual enters, unwittingly stakirg his life on the security of the chain or rope supporting the cage.

Various attempts have been male to reduce or climinate this risk. The favourite plan is to insert, alove or below the cage, a safety apparatus, to retain the cage in position in case of the breaking of the chain or tope. livery $f \in w$ months a now safety apparatus crops up, always the most perfect that was ever invented, and warranted to stand the severcst tesis that can be applied. The apparatus is tested, and is found to work admirably, to the delight of the unfortunate victims who aro to ose it. A few years after an accident lhappens, and in the majority of instances, the safety appanatus is found to bea delusion; generally for the simple reason that no apparatus which is not in constant and necessary use is likely to be kept in proper working order. Moreover no safety apparatus with which the author is acquainted provides against all possible accidents to the machinery. Reasonable safety must be secured by some other means.*

[^0]CABLE ROADS.

FIG. 10.-GARDNER'S PATENT OF 1859.

YOKE USED IN the ROAD BED CONSTRUCTION.-Destcaen by D. J. Minler

In a chann hoist of any hind (where the word chain must be taken to anclude a hemp or wire rupes, the first thing 19 to be sure of the chain or rope. If a chain be used, it should be of such strength that the ordinary load would not stmaighton the link uat, oven if it were cracked through. If ware ropes are usel, there should be two, each capable of doing the wholo work. The next point is the attachmonts. The author's experience is that more accidents arise from the breakage of the attachments than of the chain. The attachuments shumld bo considerably stronger than the chain, and, where practicable, should bo tested with it.

Having secured a grod chsin and attachments, the next question is as to the safety of the mechanism by which the cham is hauled in, an the casn lifted. There 13 a certan rish athached to chain wr wire rupe, which canot be removed. but it will ubsionsl depend upon the mechamsm dupte. waether uther risk, aro super-adled. The cham may be haled in hy machinery worked by hamd, steam, air, gits, ele tracity, or water; but there as genarally very little distinction tu be drawn batween the machinery usad with the first five of these mothre viers, - -given the gear, it is sim ply a question as to what furee shatl drive it.

Accidents mat hippen to any of the mathanisms adopted. aud some of the element, of risk, with thene varous somces of puser, may here be mentiuned
(a) It ud-power hifte are genetally hatted with a bata e appamatus, made up of seteral pieces, the giving way of any one of thes: would probably send the cago duwn with a run.
(i) The stean or ar engine in adlition to the risk of breakige in the bake mechanism, is liable to break age in the engine itielf, and also in the gearing throngh wheh the power is usually 'macmit!ed, while the common practice of having cluteles to thmor the orheels in and out of geat adds a further rish of areident. Stean power is siten where nurm gearing is mhpted, and where steam is used for lowering as 11 il as lifting. but this unvolves a neat waste of power. In steam hits thore is also a con-iderable danger of acci leat from orerwinding.
(.-) Tha gat engue hw all the risk, attending the use of hand or steam power, and others besidds. since, owng to the pecular imermittent nature of its work ing, oraring is unsutai,le fou the lirst motion, and straps have to be used, whith of all trausmitters are the most dangerous. Io a lift worked by a gos engioe therefore, in addition te, the n :cesintry rish of a chain. thero as the rask athecharg the use of driving strapsand gearing in the working crab, and of brato gear, the posishlity of overwindag. the compratively long time occupied in starting and etapping, aod also the extra simin on the whole of the mechmism due to th? shork of the cxplusions.
(d) The application of electricity to huisting is at present only in its infucy; but so far:s attomphs have yet been made to obtain motivo pover by this mesns, its apphation would appear to be subject to tha same defectis as the other methols that have boen consilered.
(r) linally there remains hydraulic power; and it is olvious that one source of risk is at once removed by empluying water-prossure, namely, that cused by the usi of a brako appamtus, siuce in a hyiraulic lift tho descent is regulated by the spend at which tho water used in liftiog is allurrod to exhmit. Wiater-power may be employed to haul tho lifting chain thesugh
twothod gearing, or by means of straps, in which cases thero still remain some of the risks inherent in the other systoms, hut by saitable arraugements all such mechanisms may be avoided, and th. motive power may be obtained without in any way increasing the rish inherent to the use of a chain this condition of relative safety is only obtained ly taking care that the pressure of water on tho hydraulic ram is directly trans. mitted to the hoisting chain. If the power is so applied, an derauroment of the mechanism would oither mean the stoppage of the lift, or its gradual descent owing to the escaps of water from the lift cylinder. In the possible case of a burst cylinder or pipe, the same condition would hold good; while the friction of the ram in the stuttion box would in itsolt perform the function of an antomatic brake, in case of the :00 sudden escipe of the contained water. The ram should alsu be puviled with a positive stop, to prevent overwinding. The perfection of control ohbined in hydratulic lift is a furthor import int cloment of safoty. A single balve stafices for the control of all the motions of such lifts.

The form of hydraulic lift which most perfectly fulfils the above conditions fur a chain hoist is that introdased hy Sir William Irmstrong and known as the Hidraulic .ligroer. Fige $: 3$ to i, Page 9 illustrate this, the simplest type of a high-pressure hydralic chan lift. In fige 3 and the cylinder is horicutal, and the working pressure is therefore constant. There is a loss of efliect in this hoist, in consequence of the weight of the chain being halanced when the cige is at the hottom, and unbalances when the cune is at the top. This loss might he partially avoided ly placing the eylinder vertical and making the ram work upu.trls. but this would involve halancing the rom, otherwise it would increase the risk of accident ; for, if the cage got fast, and if the valves wero open to the exhaust, the rim night desend without the cage, and the cige might afterwards become suddenly released and fall. The liftins chain is sometimes balanced by letting the cage carry a loose chain below, which is coiled on the ground when the cage is at the bottom, and which is picked up by the chain as it accends.

Fig. 6, ldare !, is an illustration of a hydraulic iiseser hoiv suitable for moderato prassures. The ram - is inverted. and its weight partly balances the weight of the carge 1;. The chain $(\mathrm{is}$ attached at one end to the cylinder, at the other to the counterveights WF. From the conntorwoinhts two wire ropes liare ied to the cage, earh being of sullicient strength to carry the weight The author's experionce is that wire ropas are not so reliahle as chains, and that it is desirable where prarticable to use duplicate ropes. In this hoist it will be observel that owing to the inverted pesition of the ram. thre is a areat er head of water at the end of the stroke than at the rommoncement. Ihut, as t'te lift is ronitrueted, there is uo loss of effect from this cause; for, the rhain lusing mor than twice the weight of the wite ropns, this oxtm woight assists the ascent of the cage at the commensement of tho stroke, and thus compeniates for tho wariation in head of water.

The hydrulic jizger is not generally applicable except for high working pressures; and high prossure whiter is only occasionally amiable. linfortunately therefore it is ofton necesary to depart from the beautiful simplicity of tho apparatus. Tho bast arrangoment in such a caso is to adhere to the hed-
raulic cylinder and ram, bat to introduca a second chain into the multiplying gear. By doing so thero is the additional risk due to the second chain and its attachments ; but this extra sisk is far less in proportion than that of the lift clain itself, owing to the diminished speed and greater absolute strength oi the first motion chain.
Figs. 7 and 8, Page 9, illustrats a low-pressure hoist, suitable for pressures of $2 \overline{3}$ to 50 lbs . per sq. in., constructed as above described. In dealing with such low pressures it is essential to economy to save every foot of head, and to bo very careful in tho arrangoment of the pipes, so as to avoid unnecessary bends. 13y putting the cylinder A below ground, and lettivg tho ram work vertically upwards, the greatest cconomy is secured. The whole of the available hoad is then utilized, and the extra head of water at the b gioning of the stroke of the ram compensates for the extra weight of the lifting chains which have thon to bo raised. It is necessary to balance the weight of the ram by counterweights B , both to savo power, and also to ensure the ram being pullel down by the deceending cage, and su to prevent the possibility of an accident from tho cage sticking fast. The winding drum C of this hoist has two diameters, as shown in lig. 14. 1late 14; on the smaller is coiled the lifting chain, and on the larger the cage chain, passing up to tho bottom of the counterweights. The drum winds itsolf along a screw thread cut in the fixed supportings shaft, the pitch of the screw being equal to the pitch of the lifting chain wound on the drum. The lead of the chain is thus kept fair.
It will thus be seen that in properly constructed hydraulic chain lifts there is practically no element of danger beyond that incurred by the use of the chain or rope; and that on the score of safety, even in chain lifts, lydraulic power is to bo preferred to any other.
Any of the chain hifts which have been considered may obviously be adapted for passenger use, without any moditication of the mechanism in iteif: but, in onder to secure greater steadiness of working, and comfort to the users, the guides and worhing pats should be more carefully constructod. The controlling gear is arrauged so as to prevent the too sudden startiug and stopping of the lift; and the cago is furnished with seats, and is of a more or less ormamental chameter. Doublo chains and safety apparatus are often introduced: but even where hydraulir gear is used, and alt is dono that is possible to secure safety, there still remains, in litts so roustructed, the considerable risk attachnge to the use of chains or ropes for hoisting the cage. It is accordingly imperative, if passenger lifts are to come into more oxtended use, that so:ne satier means should be adopted.

> (Tw lne sontinur d.)
division d of the ontario \& quebec railway.

1mstos D of tho Untano ant luubec litiluay, now in process of construction, lies about thirty mules north of the shore of Iako (Intario, in tho counties of Hastings and Addingtoa. Tho division is sublivided into soven sections, each five miles in length, and numbered from the wost towards tho east, beginning wath 34 aull ending with 31. Section et rums through a vory wedl settlal country, nod, although the ground is rither hilly, the soil to bo movel has ust as yet been fonud to be very hard but conthins a large number of bould-
ers which render its manipulation rather mure costly than was at first anticipated. The line in this section crosses, on the ler. the Ontatio Central which is now under construction and runs northward to nowly discovered iron mines. Although the Untario Central, a continuation of the Prince Edward Railway-is merely a local line, a union station at the crossing would have been convenient, but has been found inpracticable owing to the heavy grude which is something like ninety-three hundredths of a foot in one hundred (93 per 1,000). The only suitible site for a station is about one milo further cast.

Continuing eastward from section ≥ 4 we find the nature of the country still hilly, but the line is so located that very fow large cuttings are necessary and considerable cost is thereby savel as the soil hero is not of a kind to b3 moved cheaply, being filled with a great number of bouldere so larye as uecasionally to require blasting. The rock formation from section $\geqslant 4$ to about section 29 , is Trenton limestone which affords excellent material for the construction of stone drains and culverts at almost overy point, olviating the necessity of a lengthy haulage. In section 21 tho line crosses by an overlead bridgo (a proposed design for which is shewn on page 13) the Belleville and North Hastings haihway which runs along at narrow valley here boundel by banks more than twenty feet high (I). The bridge sito is approached on both sides by cuttings, and the creok shown on page 16 , is to bo diverted. The chords of the bridge are compsed of four timbers, those in the top chord having a seantliug of 10 ins. by $6 \frac{1}{2}$ ins. and those in the bolton chord of 19 ins. by is ins. Che timbers are bolted together ly ${ }^{\prime}=\frac{1}{2}$ in. balts and are kept one inch apart by white oalk keys, 3 ins. thick, let one inch into eich member. The joints fail betweon two sets of koys and thoso in the lower churd are formed as shewn on the lrawing. The braces are double, that i , are compused of members between which the counter-braces pass. The braces vary in sizn with the distauce from tha centre, haing s-ins. x
 in tho lirst, seconl, thind and fourih buys respectively.

The corresponding cuunter brates are \bar{i}-ins, $x i$ ins.,
 end varticals consists of tro $1!$ ins. rods, the next set consists of three If in. roll, the third of three l? in. rods, the fourth of three 1 ; in. rode, and the fifth of three $1 \frac{1}{\mathrm{i}} \mathrm{in}$. rode. The braces and counter braces abut against cast tron angle blocks with sarface ridges which are let into tho brices and so prevent lateral displacement. The tic rods pass through the chords and angle blocks, and are secured at the top by nuts, this surface of the timb r heing protected, wherever necossiry, by wrought iron wachers. In order to provide for winil pressure, timber braces are intmpuced hetween the chomels both at tho top and
 and their ends are kept in place by the $1 \frac{1}{1}$ in. tie rods, which are spreed abont fifteen feet apari. Between the lower chords are phaced the needle beams upon which are laid 10 ins. $x \cdot 1-1$ ine. track striugers to receive the cross ties and ruils.
The clear width lethroen the thusies is 14 ft and the clear height alo we the mils is 17 ft ., if in., alloring ample henluay for the passage of tmins. The abutments are being luitt according to the designs shown on page 10. The excavations are carried down to

Howe Triss

ELEUATION

the sold rock. In both abutments the batter given tw the front is 1 in 12 , to the rear of the wing walls 27 in 12 , to the ends i in 12 , and to the rear of the centre portion 1/ in 1!. Theso piers are to be built of firstclass masonry, th, quality of which must fulfil the following specification:-
"The stone shall be lad at the rate of oue header to two stretchers disyosed so as to make efficiont bond. No stone to be less than twelve inches in thickness. None to have greater height than width and all to be placed on ther natural bed. The masonry throughout to have hammer dressed hods and joints. Vertical joints to be continumb back from the face of the wall at least ten inches. The mortar joints on the face not to exceed one-fourth of an inch in thickness. The stone must be dressed cumplete before laying, and nut to be moved after lowing placed in the mortar. The face will not le toold but only roughly dressed, except for ono-half inch fiom the beds and points where it will he hammered. Also the mortar to be used must be of the best cement and will be subject to the inspection of the lingineer in charge."

Proceediog eat wird from Crookston the line pasies through the village of liweed and is to be carried over the Moira river by an iron bidge of two spans, each ono hundred feet in leneth. At this villuge is located the factory for the manuficture of the explusives to be used in the rock work lying to the east. The rocks here still belong to the Tronton formation, but from about the middle of scetion 29 eastward, for twenty or thirty miles the furmation is wholly I.aurentian. The country too, in these sectons, 94,30 and 31 , is very rough and there will necessarily be many heavy roch cuthengs so that the construction of the !ine will b. luth difficult and corily. The work masy wo lightenet to some extent by ming the grades. For this papose embankments ate to he made which will not only consume all the aralable earth, which for some distance is rath is scarce, but also lavere guantities of rock which will have to b: herd. If tweer many of the hills; occur long stretches of mash land, which in summer is moderately dry and rovered with a growth of long stout grass, but in the tall and early spring are t.ansferred intu small lakes, so that the whole surface of the mash inst ad of beins solid is sponge-like and impassable for some time after the wator has disappuared.

In these places it is ditiocult to obtain a good form road bed and this hav only leen accomplished by croser t:e del (page 13). The timber in this dietriet has in grent measure heeon left standing, amil exceptin; whero the .. 2 en have ieen datroved bi fire, or where the large pine has lom n cut down bir lumbermen, the lam is in its primeval stato and sutficiont timber can generally ho obtained for this pumpes. Tho logs when liod across the road bed mast have their onds at least two feet within the line of supo stakes so as to ensure their being wholly carracel with earth when the bink is built. Above the logs lonth is to le laid to a depth not exceeding one foot. Very few of the swamps requare to be treated in this manuer as the depth of the soil in many of them is only sufliciont to hold the roots of small trees and is often less than lo in. Hence, by digeging a drain on either sude of the road the water may be quickly dinuned olf. As already remarked, many heary rock cuttings will occur in the last three sections in the lhivision and stean drills are being introduced loy which the work will be done more quackly
and with loss expense. A proliminary and important difticulty is the cartare of these heavy machines to the proper sites, as thoy have tu be hauled over many exceedingly rough strotehos of country.

Vory few houses are to be met with in this part of the county and indued in travolling along the ten miles of the railway, in sections 30 and 31 , thore is only one, a stopping placo on the Adelington Colonization Rosd genorally known as "Scoutons."

The work of building a roal in this district is thus necessarily prefaced by that oi building dwellings. Camps aro gencrally erected for the men who are working on the road, but many of them prefor to live at the nearest larme.

In laying down a road in a cuuntry similar to that described above, the line must bo thoroughly clearod between the right of way stakes, and this includes the uperations of chopping, logering, and burning. All ohjectionable trees on adjoining lands, which are liable to fall aeross the trach or fence, must also be cut down The lingmeers have then to lay out the work and cross. section the ground. After this the earth is moved. If rock is met with in a cutting, the earth is cleared off from its surface and new cross-sections are made so as to determine accuratoly the delative quantities of earth and rock.

The culverts along the line are to be made of stone and are sutherently explamed by the drawings, (page 17) excopt when a culvert is built of diy stone masenry, in whith case the ends are to be stepped and the outsile dimensions increased one-fifth.

Where laror openings are required, beam culverts are biltt-a type of whels is shewn on page 17.

THE PATENT PLUMBAGO CRUCIBLE COMPANY battersea.

Avonat the recent donations to the liaculty of $A p$. plied science in Meriall University may be noticed an int-resting series of articles manufactured by the " $\mathrm{P}_{\text {a- }}$ tent linmbiso Crucible "ompany", of Battersea. Enghand, and presented through Mr. J. V. Morgan, of Montreal. The work: of the company were started more than a quarter of a contury ago, and have been graduslly extendel to meet the requirensents of the varions thales which they suphly, until they have become the most extensive crucible vorks ia existence. Their "Morgan crucible" is said to he exctusively used in the loyal Mint, and is faroumbly knorn in every large fonadry throughout the world. The " Balaman. der" is another crucitle which is woll known and is specially prepared to resist dampness, and thus to reduce to a sinimum the difficulty and risks of anneal:ag." Specimens of the "Morgan" and " Salamander" are to be seen in the collection presented to Mce(iill Colleye, as woll as crucibles of several other patterns, scorifiers, roasting-dishes, mulles, fire-clay retorts, porous battery cells, etc., etc. There are also samples of the crude plumbago imp rted by the Company from Ceylon, and of the prepared article for dusting moulds in foundries, for glazing gunpowder and shot, etc.

The whole sories is arranged in tho muscum of the Science tichool, where it forms a part of the technical collection now being brought together by the Faculty.
b. J. Ifarmington, Ph. D.

EFFECT OF PRESSURE UPON THE COERCITIVE FORCE AND MALLEABILITY OF STEEL

In March 188:, M. (lemandot cummunicated an article re. specting the properties acquired by steel subjected to great pressure and cooled under such pressure. Among the propertios, having a completo aunlogy to those given by tire bath tempering process, is coercitive force, that ploperty by means of wheh steel can acquise and retain magnetism.
31. C'lemandot continued his investigations and he recently pablished wow and interesting results.
He save, "the ordnary process of tempering consists in heatung the seet to a cherry red and in oudhans cooling it b. pilumgitg it ato a bath of water, wil, or ans other li'fuil the metal is then hardened, tempered, it has acquiral coerr itive tot e What happens if the sted is again heated. It becomes solt, its courcitive force disappars. But what haphens when the steel is tempeted by compression, i.e., conled under pres. suro after the sudden a noling pastly obtained by congression. The coercitive for e will be found to have been retained in spite of rehratang, it spite even of forging. In other words, in-tead of being rphemeral, as ts the rocercitave property due to ther temper obtamed by the bath prouess, that givon to the steel by compression will he primanent, to whatever operations it may be suboequintly suljected. This revult must be attribated to the more absolute homogeneousuess caused br the compression and by the cooling under pressure.
The funlt is miteresting both from a stientific and utiallu. gal point of view.
In sumpurt of the above theory. M. Clemandot states thie fulowing facts - "surval phates from a magneto olectric pile "ere broken and forged into a bar. the bar uan compressed, the phates wate recoustructad, and wete found to posiess the
 wheh were broken up. Similar experiments were made upan a large number of telephones. the mannetic force was not only preserved, but was inereased by the dilierent modes of treatment to which the -teel was subjected.

I nder these a ncumstane ts compression and cooling umber pressure constitute a men metallurgical process lireat prace tioal advantages ensue from treating the metal in this mannel : for while steel tempered by batlis is hard, untractaible, and of:en distoted, sted subjectad to pressure and then te-norked is malleable; it may be ti.ed, punched, de. 'lhis dact is of much importance to manufacturers of magnetic apparaths, magneto electio machines, telephones, Ne., as valuable time is often lost in working upon magnets waich may break in lie.ees at the las moment.

A Note by M. M. de le Tour du Breuil conceming their method of soparating Sulphur from its gangue by means of a Bath at a higher temperature than the fusing point of Sulphur.

Tut arrangement of the apparatus hes become a matter of mportance in consequence of the investigations which have been necessary with respect to minerals of a special kind from the islands of Milos and Nisyros. The immersions of the ons in cages or baskets las become inpracticable: the fusion of the sulphur was always slow and incomplete. We have been compelled to alopt an arrangement cousistiug in the employment of two rectangular tubs, communitating vith cach other by a tube which allows of the passage of the boiling bath altennately from one tub to the other. one of the tubs is emplied and re. thlled while the other is working. The orifice of llow is composed of a tube widened towarils the outside, warmen by the thame and closed on the inside by a stopper worhed by a screw.

The ores of Milos and Nisyros are composel of sands agerlomerated by sulphur: When the fusion of the sulphur takes phace, the mineral is separated, and the sund is drawn arsay by the fluid stream; to evoid this incouvenience, a central trench has been arranged at the botiom of the tubs which serves a: a collector, and which has an inclination only sullicient to cause tie flow of the sulphur towards the elllux oritice. Two vertical gratings onsure the separation of the sulphur from its gangue.

The apparatus thus modified may be used indiflerently with intractable ores, and ores in a state of purder. It has bcen successlully applicd to the treatwent of the sterri of sicils, i.e., the powlered and very rich debris produced during the work ing and manipulation of the ore.

These sterre, hitherto dissegarded on account of the impossibility of their treatment by the calcceroni, are at present found in cousiderable quantitios. 'The employment of new apparatus,
already at mork for several months in Sicily, has rendered it possible to obtain an amonnt of 30 to 60 percent. in merchant. able sulphur, i.e., an amount mueh greater than that nbtained from the richer ores treated his the nothouls of tho calcaroni or others.

ENGINEERING NOTES.

 Vorthern Pacitic Railroad, which crosses the Missouri River at Bismark, D. 'I., was tested and formally opened to traflic on Uet. "1. light locomotives, aggregating 500 tons, passed over the bridge and rested on ench of the 50u-foot spans, while the engineers took olservations. The dellection of each span was less than three inches. The testing committee, composed of ominent civil engineers fom various parts of the country, pro nounced the structure one of the finest and most complete in the liest.

I'us dimensions of the linion arch of the Wi,shington aquednet, it wond appear, exceed those of any of the celebrated engineering structures which are most commonly pointed to as wonderfal achievements in masonry. The entire span is $2 \underline{0} 0$ fret or twenty in exuess of the span of the famous Chester arch across the Dee in Eughard; 6s fert longer than the central areh of london liruge ; feet longer than the noted bridge over the Scine at Neuilly, and low lect longer than the arches of the Wiaterloo liridge over the 'Thames. 'The height of the

AI A mertin: of the Phildiphi. Sowity of Finginers the vicretary uresented. for Mr. Lloward Constable, a description of the Kinzua liaduct, the highest bringo structure In the wobld, illustrated by numerous seteral and detail dranangs and photogiaphs. It furms part of a branch of the Erie Lialmay into the coal lields of Elk Comnty, lia, and its construction was found to be the most economical way of crossing the Kinzua Gorce, a long time obstacle in the way of railroad construetion. Surveys and investigations leading to the conception of thas worh, sere male by Mr. O. W. Bannes, chied encrineer of the ruad, before it passeu into the hands of the Erie Railway. It was linilt according to Siru specifications, by Messrs. Clarke, lireves \& Co., under Mr. (). ('hanute, chief engueer, assisted by llessrs. Chas. l'ug.ley, H. '. Keifer, and the author. It contains $3,500,000$ pounds of irou and cost \$275,000. The paper dexcibes the work very completely and concludes with the following table of data:

DirA.

Ifcixht of rail above streman 301 ft .
jumber of tomers.
lleikht of iron work of lowest tuwers
lleixht of iron work of lijhhert tower
length of airdernoper towers
lenblh of girders between towers.
Width of towers at tos........
ii.......... 10 ft ft.

Figual un cach column of tower at trip
Iounds.
head lond on tons ofeh columm.
76,500
2,200
20
bead load on each story per colnum, ibont. 5,000
Guriers, Culculated for a I'rau of" C'onsolidation" Eingines.
Poumis.
Churls stained in teusiun per sumare inch of not pection 3.000

WINI) PRE:
Ma.xt:num Compressiont. Structur Loadod.
prosure assumed at the ton of cach bent Additionial pressure at cach story of toner.

Pound-.

- 1,980

Marimum Tcrusion. .Structure miloaded.

Preeouro assuncd at top of each bent. . .
lounds.
15,000
3,300
Airains allowed on orf each story of tower
3,300
of
Mavimunce compression frow tive lond per square inch
Maxinum compression from wind brossure per squaro unch.
ireatest strain for combined loads
35,000

Maximum teusion on diafonals (rods).
10.000

Maximum strains onstruts.
15,000
Maximuin tension on anchor bolis.
12,000

UPPER END ELEVATION

MIDDLE SECTION

LOWEA END ELEVATION

STONE CULVERT

end elevation

PLAN

BEAM CULVERT

Tm largest suspension bridge will be the one now building Letween Brooklyn and New lork. 'Ilie lingth of the main sp.un is $6,5 \mathrm{~F}_{\mathrm{f}} \mathrm{ft}$. 6 il The entire length of the lindige is 5,98: ft.

Tat. Limasylvama Liahload's new locomuthe Jum'ro bis s. ven-teet diving whels, and has drann a Irain fron Mhila uejphat to lersey Cibs, a di-tance of ainety milen in "ighty minute.

Thin. longest span of wire is used tor a telegraph an Indin over the river kistmals, betweon Bezorala mul "cetnagrum. It is anore than $6,100 \mathrm{ft}$. long, and is stretched etween the hills. each $1,201 \mathrm{ft}$. high.
As laghish paeme provades for usang two sets of drange wheels on one axle of bo omotives, one set beang arget than the other. Un levels the large wheds run on the ratio, hat oin melmes an catra set of rals are proveded apon whelh the mall wheels ran whe the large wheels revolve an the wh.
 stam bulers wall luvera and pectintate the suale, but rill not remove tontside of the boaler ani tite-room. These facts of tot seem to be lally reali, a untia he boiler is burne. or
 :he watet cannot cone in watact hoilers showhld in all cases be arcyuently nud carefully washed when .., ing sulve miren for the prevention of scale."
 of success mbiling a practical steam rond carmage is the diticulty expernenced in the ellorts to so "hang" the engme and boiler that the carriage may rom in any dincetion, or over ordinary obstacles, without serionsly aflecting the joint and machines y connections. So says an emment mechanical writer. Fisen the liughen acknowledge ths in their ellorts to run .tean oond carriages over the execptionally good roads of Eingland.
 patented at new stear: engm which consists of a sumple wat er aheel, mostly matnersed m hot water in a closed voreel. Steam is admitted at the lower part, and furees the cell- on the :isnge side, and at length legins to eseape into the steam space above the water. Steam may cither be proluced dirctly at the lower part, or conducted to the vessell from elsewhere. The upper tube for outlet of steam may lead either into the upen air os into a condenser. The mechanical work contists an the ascent of the specifically lighter stream in the heavier liquid.

An inproved feed-water heater and purifier has been recent1 b described to the Frimklim Institute by Mr. (ieorge Stronir. It is satd to effect a saving in cual of sed per cent, and an increase of eraromation of 1 et 4 pounds of water per pound of coal. 1 un. sidering that all substances likely to give troulile by depmation would be precipitated at abont 250° F., he obtains this in the heater $b y$ action of exhaust stean, anded bs a coll ulluve ste.un rom the bonler. He also uses a filter formed of wood charcoal, and bone-black trmbly held between two periorated phates. Further detals will be fomm in the , lournal of the lasutute :or November.

1. an artacle by T'. Brace Warren in the dourmul of the Suect: of $-1, k$, the statemcnt is made that very often the grease whech passes intu a steam boiler in the feed water dwes not make its appearance in the scale or mud which is thrown spon the bottom plates he found ont, howrver, by anrlysis, that the fluating scum frum the boiler did contain a notabin percentage of the fatty acids. Heattribuths the fact that none of :he gases sere detected th the bottum scale to the decompunition of the talling ands by the heat to which they were subyreted, and the preservation of the grease at the surface to the fact shat it had taken the form of all insoluble carthy soap, light enough to imot.

A locomotive bonter, it is calculated, will last until the engmes has trave:led over 350,000 males. Un some hanes, however, the boilers, under favoralule circumstances, particularly when pure water is used, may travel tul, 040 or $\mathbf{3} \mathbf{0} 1,009$ males before becomung unserviceable. Assuming that the life of the engine is determmed by the cudurance of the botler, and that, under favourable circumatances, it will liat the 500,000 then during that time it $2 s$ estimated that the hre box will probably require to be renewed at least three tumes, tures of the whoels five or perhaps six times, the crank axles three or four times, and the tubes from soven to ten times.

Cur IVb l'se of Berts.- In lacing obelt, always begin at the centre, keop the ends exactly in line, and lace both sides with eylual tightness. The lacing should never bo crossed on the side of the belt that ruas next the pulley. Lise thin but strong haces. Belts should nover bo oiled excent when they become hand and dry, and even then the on should be used very sparmuly. Uil not only ruts the leather, by its own decomposution, but also causes the boit to stretch. In oulang or greasing a belt use only a pure thin on A thick pasty of is not good. Such oil will soon onter upun a process of decomposition and rot the belt.
Ls arments made by Mr. F. E. Kidder, and reported in the last masue of the Journat of tho Franklin Institute, show that soruce beams loaded to one-half to two-thirds their breahing stran, thalliy beak attel a butg and stealy dellection, which
 stantuted by further capernuents, this foct will go far toward enphannor the hequeat frollang of mill and warehouse lloors, umder loads supposed by the buiders to be perfectly safe. The tloors of alt such buidugs should be sallaciently stroug to carry at least direec wows the weoght that call, by any ponsibhity, t, put on them, and at least five times as strung as tho जui.... : luad Whete there is running machinery in the buhling which is lihely to produze jar or tremble, these ligures anust be eneceded, as the effect of continuous jar and strain combued is very destrumbe to the buildiag in which they are found. - If:ned and Jren.

It is ontunated that the ammal production of iron throughout the whole "orld is $19!$ millions of tolls. This amount is distributed umong the sarious nations as follows:-

Sation- Iear-	Number ot'Tons.
I.nyland. 1881	8,371,3i4
1 nited states 1881	4,14,254
liemmany. 1 dss	2,863,100
France 1881	1,866,43S
Belginm...... 1881	622,283
Austria and llungary. 188.1	148,685
Siweden 1n8u	349,62,
Luxembourg 1851	2040,212
liussia.............. 1881	2:31,311
Ituly.. 1876	\% 6,000
Spain.. 1873	76,000
Turkey.	4(1,000
Japan.. 1875	10,100
wher tountries	46,0u0
	19,487,610

The hast four nations produce SS per cent. of the total outjut. The (mited States consumes the most (en per cent.), lireat líritain consumes è; pre cent. These two mations use more than one-half of the total production.

According to a recent treatise on the transmin, ion of power by wize roper, issued by the William Orton Manufacturing Compauy, of Sterling, Ill, the distance to which wire rope trinsmissions way bo applied ranges fron 50 or 80 feet up to several miles. As an example of long trinsmission, attention is directed to that of Schaffhausen, Switgerland, at the Falls of the lihme. Hero sou horse-power sa carried diagonally across the lime, is extended for a distance of two miles, and is then distributed among 50 different mamufactori's situated in every imaginable position, and embracing all the varied arrangementy of changang directions. Wire rope transmission comes into use at the point where , belt on liue of shafting becomes too long to be used prohtably. In point of economy it is much cheaper than its equivalent, cther in slafting or belting. Ths method has been extensively introvaced in Europe, and with great success, for several years past. It is now receiving a rapid development th this country It has the alvantage of transmitting power in any direction, up or down hill, across rivers, around buildiugs or obstructions of any kind, and of thus maknig arailable many sources of power which are otherwis? uselcss. The ropes hang free in air, and require no protection from the weather, except au occasional coat of warm coal tar, which may be applied to the rope by pouring from a can into grooves of the wheel while running. Instoad of coal tar, rarr linseed oil may be swabbed on the rope to keas it from rusting, and thereby preserve it. The rupes run with perfect smoothness and without noise on vulcanied rubber filling, and are not affected in the least by het or cold, snow or ice.-Scientific Piets.

Practical Efrfct of Cold on Inon.- Careful observa. tione on Rusaian Railways have reculted in showing that for a period of six months 77 per cent. of the fractures of tires oocarred when the temperature was below zero, and only 19 per cent. at higher temporatures.-SCientitic Press.

Paevmatic Tube for Phladilpma.- The Post Office Department is considering the feasibility of putting in very largo pnoumatic tubes for the Chiladelphia Post Ófice, connecting it with the mail dopots in the eity. The object is to aroid the slow transferonce of mails from trains by coaches to the central office. No stops as yet hare been taken in regard to actually putting tho plan in operation.- Yining and Scicntific Priss.
Chinese Stefl. A considerable steel-making Industry exists in China, on the upper Yangtze, whence the steel is sent to Thentsin for shipment and distribution. It realizes much higher prices than the Swedish steel imported into the country. The Chinese metallurgists recognize three kinds of stoel, viz, that which is produced by adding unsrnught to wrought iron whito the mass is subject to the action of fire, pure iron many times subjected to lire, and native steel, which is prollured in southwestern China.

Miea Masks.-In Breslan mica masks are manufactured, they are very useful for workmen exposed to high :omperatures, acid vapours, sparks or to metal or stone splaters.
The mica plates are fixed in metallic beariags protected by amianthus (or asbestos.) The masks protect the eyes much better than spectacles. The neck and shoulders may also be shelded by a covering made of amiatthus, or other similar subistance. The space b-tween the mask and fice allows of the use of spectarles.

Vthazing the Eamin's Mrat.-- We were not aware that our suggestion to the Californians to utilize heat drawn directly from the earth, was already carried out in Nevala, by means of the hot water obtained from the famous Sutro Tumel. This enormous bure, norr completed, disoharges $3,000,000$ gallons of hut water daily from the Comstouk mines. This water has a temprature of 195 degrees, and is conveyed through a closed pane tlume to prevent the escape of vapour. After a passage of four miles through the first tumuel it loses seventy degrees of heat. A second tunnel 1, 100 feet long and an open watermay a mile and a half long conduct the water to Carson River. Along its course are hot water baths and laundrics, and a plan is on foot to conduct the hot mater through pipes under ground to be made available for purposes of irrigation and for supplying artificial heat to hot houses. - - Imenusiall seme.

The extensive use to which nails and screws are put in constraction lends considerable interest to any records of eaperience tending to discover their holding power. Haupt, in his "Mili. tary Bridges," gives a table of the holding power of wroughtaron rod nalls, 77 to the pound, and about three aches long The mails were driven through a one-inch board into a block and the board was then dragged in a direction perpendicular to the length of the nals. Takng a piue planh nailed to a pue block witi erght nals to the square foot, the arorage breaking weight per nail was found to be 3SO lbs. Similar experiments with oak showed the breaking werght to bo 115 bl . With 12 nails to the foot square the holding power was $512 y$ pounds, and with stx nails in pme, to3! pounds. The highest result obtamed was for 12 nats to the square foot in pme, the breaking weight beng in thes case bile pounds per nail. The average strength decreases with the increase of surface. Tredgold fres the force in pounds required to extrict 3 . brads imm drv Cliristiana deal at right angles to the gram of the wood as 58 pounds. The force required to draw a wrought. Iron Gd. uan was 157 pounds, the longth forced into the wood beng ove uch. The relative adhesion when driven transversely and longitudinally is, an deal, abont two to one. To extract a common $6 d$. nall from a depth of one moch in dry beech, across gram, required 107 pounds, in dry Christiana deal, across grain 187 pounds, and with grain si pounds. In elm the force required was $3 \dot{2}$: innde across grain, and $25 i$ with grain. In oak the figure given was 507 pounds across gran. From further expenments it would apprar that the holing power of spike-nails in fir is from 460 to 730 pounds per inch in length, while the adhesive power of screws two inchps loug, 22 mela in diameter at the exterior of the threads 12 to the inch, driven into 1 inch board, was 790 pounds in hard wood and about one-half of that amount in soft wood. Mining and Scientejic Press.

ELECTRIC TRANSMISSION OF POWER.

I: La Lumièrc Eilectrique M. Guerout citos two samples of the transmission of powor to a moderate distance. At the Bolle Jardiniere sowivg machines on the upper fiats of a building were worked by powar transmitted from a motor in the basoment. In Hailmann, Ducommun, and Steinlon's Exhibit at the Palais de l'Industrie, the generators in one division were armaged in two rows and worked from a steam motor, in tho other division, a workshop of machino tools was kept in oper. ation by two gramme machincs (type A). Three H. P., suff. cient to work ten tools, were tmasmitted throagh the connesting wires. A part of the current produced by the goneratora fed Werderman-hoynier and Elison lamps to light the shop.

Hitherto very litile has been done in the eleotric transmission of power 10 great distances. At the request of the Munich Electrical Exhibition Committee, M. Deprea repeatod on an orduary telegraph line certam oxperiments he had proviously made on the trinsumssion of forcc. The description of these experamputs $1 s$ thus given in the Comples Renulus, Octobor, 1892 :-'The telegraph line placed at his disposal was 57 kilometres (187,009 it.) in length. The conducting wire was of
 wire of the same size was used in preference to the earth. The total length of circuit was therefore 114 kilometres and the measured resistance 950 ohms. The insulation was good but did not differ from that in general use on telegraph lines. Tho ino plectreal machines, wound with fine wire, one at Miesbach and the other at Munich, were absolnt-ly identical, the resistance of cach being 170 ohms. The total resistance of the circut was therefore 1,850 ohms. In the first experiment the Muvich machine, making 1,500 revolutions per minute, gave thorse power. The genemting machine at Wiesbich made 2,200 revolutions per minute. Tho two machines being identical, the ratio of work received at Jlunich to the work oxpendel at Wiesbach was 1500-2200, or more than is per cent.
I heavy ruin fell nearly the whole time occupied by the experiments.
The receiver actually served to feed a ciscade 1 meter (3.2s ft .) in width and 3 meters in height, by means of a centrifugal pump. The collectors of the machines g pe sparks which were scarcely visible, while the heating of tue machines was hardly upperiable after two hours work.

RECENT DYNAMO-ELEGTRIC MACHINES.

Elem:rathal. inventions of innumerable kinds have of lato fullowed one another with bewildering apility; and the impetus to invention alforded by the plesent development of clectric lighting, and by recent electrical exhibitiona, is making itself felt in many ways Most imporant, perlaps, of these is tho proluction of improved types of machines for pencrating electric rurrents. Dynamm-electric machines, in fact, appear to be undergoing the same kind of evolution which the steam-engine has undergone; and just at present the tendency appeared to be in the direction of producing larger an' heavier mochines than heretofore.
The readers of Nuture will be familiar with the description of Edison's large stean-dynano. which lirst made its appearance in laris in 1881, and of which tro examples are now at work in the Edison iustallation at Hollonra Viadust. These mouster dynamos, each requiring from 120 to 150 horsp-power to drve it are capable of lighting from 1,000 to 1,301 incandescont electric lamps.

Six such machines have been also crected in New York to supply the central station of the Edison light Company. Here the une pected difficuity has arisen that if ono of the machines drops in speed the currents from the other machines shortcircuit thomselves through the one, and overpower the steam that is driving it ; a fault which will probably bo remedied by a rearrangement of the governors supplying the steam to the engines. Ner forms of dynamoelectric machines have been designed by Sir William Thompson, some of these being for direct currents, others for alternate, but all of then of pecular construction. The first of them, shewn in Fig. 1, may be described as a modification of Siemens well known machine, the drum armature being, however, made up like \& hollow barrel, of which B 13 is a sectional viow, the separate staves being copper conductors insulated from oue another. Thes resemble the longitudinal bars used by Siemens in the armatures of his electro plating machines, and by Edison in his steam-dynamo. At one ond of the
bollow drum these copper bars are united to each other in pairs, each to the one opposite it. At the other end their prolongations serve as commutator bars. A similar mode of connecting to that adopted by Edison, is also possible.

Inside this hollow drum armature is an internal stationary electro-magnet, $K M^{\prime} \mathrm{K}$, whose poles face those of the external field magnets. This internal magnet answers the purpose of intensifying the magnetic field, and making

Fig. 2.-GIE W. Thomion's Roller D, name.
the magnetic system a "closed" one, as suggested long before by Lord Elphinstone and Mr. Vincent. This hollow armature Sir W. Thomson proposes to support on external antifriction rollers A A $\mathrm{C}^{\prime} \mathrm{C}^{\prime}$, the lower pair AA being of non-conducting material, the upper pair being made up of conical cups of copper split radially, and serving, instead of the usual commutator "brushes" to lead away the current. The hollow armature may be driven either by the tangential force of one of the bearing rollers, or by an axle fixed into the closed end of it.

Another marhine devised by Sir W. Thomson, and illus.

Fic. 6.-Elevation of Gordon's Dymamo, showing the rotatug coils. The "taking-of" cois are stown in the top right hard cermer.
trated in Figs. 2, 3, 4, and 5, is a disk-dynamo for generating having upon its sides projecting wooden teeth, as shown alternate currents, and is therefore allied ir certain aspects to Mr. Gordon's machine, described below. The rotating arinature has no iron in it ; it consists of a disk of wood
having upon its sides projecting wooden teeth, as shown
in Iigs $_{2}$ and 3, between which a wire or strip of copper is bent backwards and forwards, and finally carried to the axie B. This disk is rotated between field-magnets
having poles set alternately all round a circular frame. Figs. 4 and 5 show how this is carrice out. A cast-iron ring having projecting iron pieces screwed into it is surrounded by zig-zag conduciors which carry into it the current from a separate exciter. These currents pass up and down between the projecting cheeks, and excite those on both sides of them.
A still more recent and still larger generator, is that designed by Mr. J. E. H. Gordon, whose " Physical Treatise on Electricity and Magnetism" 'is known to most of our readers. This machine, which is given in elevation in Fig. 6, and in end-elevation in Fig. 7 , is more than 9 feet in height, and weighs 18 tons. It possesses several points of interest. The rotating armature differs from those of the well-known Gramme or Siemens' armatures, being in form a disc, constructed of boiler-plate, upon which the coils are carried. The machine, therefore, resembles in some respects the Siemens' alternate-current machine, though there are notable points of difference, the most important

Fic. 7.-End Eleration and Sectica of Cordon's Dynamo.
being, that whereas in most dynamo-machines the inducing feld-magnets are fixed, and the induced coils rotating, in Mr. Gordon's new machine the rotating coils are those which act inductively upon the fixed coils between which they revolve. The machine furnishes alternate currents, and therefore requires separate exciters. These exciters, two Bürgin machines, send currents which enter and leave the revolving armature by brushes pressing upon rings of phosphor bronze placed upon the axis at eitber side. There are 64 coils upon the rotating disc, and double that number upon the fixed framework. These 128 "taking-of"" coils, the form of which is shown in Fig. 8, are alternately connected to tmo circuits, there being 32 groups in parallel arc, each parallel containing 4 coils in series; thus bringing the total electromotive furce to 105 volts when the mashine is driven at 140 revolutions fer minute. At this spesa at actuates 1300 Swan lamps, but is calculated to actuate
from 5000 to 7000 if the driving power is proportionately increased, The machine is now in nperation at the Telegraph Construction and Maintenance Coaspany's Works, East Greenwich.

A great deal bas been said in certain quarters of late about another new dynamo, the invention of Mr. Ferranti, which, with one of those unscientific exaggerations which cannot be too strongly condemned, was pronounced to have an efficiency five times as great as that of existing dynamos. The construction of this machine has not yet been made known, but it is understood that it has no iron in the ro:ating armature. This is, however, no novelty in dynamo:. It appears, also, that Mr. Ferranti has invented an alternate-current machine almost identical with that of Sir William Thomson described above.

Lastly, M. Gravier claims to have designed a form of dynamo in which there are neither commutators nor separate exciters, but in which continuous currents of electricity are produced in stationary coils by the passage near them of a rotating series of iron bars whose mag-

Fig. 8.-The Fixed Coils of Gordon's Dynamo.
netism is changed, dusing their passage, by the reaction of the cores of the stationary coils themselves. M. Gravier has also designed a machine in which a Gramme-ring is wound with two sets of coils, a primary and a secondary, each set having its orn commutator on opposite ends of the axis. A current from a separate exciting machine passes into the primary coils of the ring by ore pair of brushes, and the secondary current is taken off by a second pair of brushes at the other commutator placed at right angles to the first pair. We are not aware that any practical machine thus constructed has yet been shown in action.
It is certain that there is yet abundant room for great improvement in the construction of dynamo electric machines. But the indlcements to improvement at the present time are so great that rapid progress toward the desired goal of perfect efficiency and simplicity of structure is more than assured.

BHFICDENCY OF LIGHTNDNG CONDUCTORS.

(Extract of a letter from M. G. A. Hirn to .M. Faye.)
Recenticy I took notice of the effect of a flamh of lightning which struck the lightning conductor of a house not far from my own, at Colmar. For some time I have hesitated to speak of in, because this effect was in some measure unimportant, but I have since thought that it is well to show that a lightning conductor, even though most faulty in its coustraction, may sometimes effectually protect a building.
This conductor was connected with a house 15 metres ($=49.2$ ft .) high ; the red was about S_{m} long, and was terminated by a conical brase point about $0 \pm .25$ in length, and $0 \pm .01$ in diameter at the lower part, screwed on to the rod. The conductor was a wire, hardly 0 m .007 in diameter, and in piecer, with termisal rings. The wire passed down through a hole in the moist ground and was connected with a large mass of iron about 0 om .5 long. In every respect then this conductor was constructed in the most defective manner; a physicist would have certainly avoided taking refage in the building to which it was attached during a storm.
On the 12 th of the month (October) at 4 h .30 m . in the crening a very violent storm burst forth ; the clonds must have been very near the earth, for 1 was rarely able to count more than teco seconds between the flash and the thunder. It was one of these flashes that struck the conductor just described. The disturbance was so great that the plaster was detached from the ceilings in several of the rooms. The total action of the discharge, however, was confined to the fusion of the brass joint for a length of about 0 m. $0 \overline{\mathrm{j}}$, where the cone was about $0=.003$ in diameter. No part of the current left the conductor, I have found no trace of the discharge in the small hole in which it terminated.
M. Melarns in his splendid work upon lightning conductors rightly remarks that, on account of the very feebic electric conducting power of water, a large area should in general be given to the part of a conductor which penetrates the ground, and it should be attached, whereyer possible, to large masses of metal, such as the water-pilyes which pass n the houses in great cities. The remarks made by Mr MIel. is on this suliject are almost appalling when one thinks of the small area usually given to this part of the conductor. Perhaps I may here relate an experiment 1 made three years ago, and which completely confirms the views of M. Melsens. In the centre of a white-iron cylinder about $0^{\text {min }} .2 ;$ in diameter, and filled with pare water to a height of 1 m. ., 1 inserted a brass rod insulated in every part except where connected with the outer armature of a Leyden jar. It a distance (caricel at pheasure) from the external citcumference of the eylinder was a conductor terninating in a ball, which 1 placed in contact with the ball of the strongly charged l.eyden jar. is soon as the distance between the ball anil white-iron was less than $\mathrm{y}^{\text {mo }} .02$, the electric discharge instead of traversing the wati 1 in the cylinder, traversed the air in the form of a briliant electric spark. The question here in point was that of an iufinitesimal clectric discharge, as compared with that of alightuing llash; the connection: between the sentral conductor and the internal su:faces of the crlinder was much more perfect than that existing between the earth and the conductor of very many a lightning rod which has been supposed to have been well constructed, yet the spask passed through the air rather than the water. The sole fact of a discharge in the form of a spark at the point of a lightuing conductor is certainly the groof of the faulty manner in which that of which I speak was constructed. We hare then, it seems to me, every reason to wonder, and perhaps in general to feel re-asuurch, seeing that the discharge has not causil any serious accildent.
In saying, "the sole fact of a discharge in the form of a spark," 1 certainly mention no new fact to physicists; it is nevertheless a fact which cannot be too much impressed upon the public, and especially upon persons, often very ignorant, who undertake the fixing of liglitning conductorn. During forty years of observation, thave not seen a flash of lightning atrike a simple one of the iorty to fifty lightuing conductors protecting the factories of logelhach, i.nd yet, during a storm they wolk actively. With some of the maiaterrupted conductors 1 conuected metallic wires terminating in an insulating helix, in the centre of which I placed a non-magnetised sterl bar. Almost always after a storn passing at the zenith, these bars werc more or less magnetised. In my dwelling house, where my laboratory wan, inas bolder. I separited the condactor by meane of a thin leaf of a caoutchouc ; the metallic wires, severed at the two enils, thus separateli, penetrated into
my Workshop and torminatod in a rheo-nlectrometer, which my friond M. Melsens had given me. During the greator niumber of the eevere storms pascing at the zenith, I saw the magnotic needle of the instrument oscillate; on several occasioni I found the bar within the helix atrongly magnetined, and yet I have never obwerved any appearance of fusion in the very thin copper wiree eerving to divide the current. Complat Rendus.

METEOROLOGV.

M. Fare, who during the latt few years in his researchos on tornadots, has only boen able to ma'ce thirty obeervations, considers of the utmost value, Mr. Finloy's report on six handred tornadues obwerved in tho United States in the present century. The number of obeervations appears to have constantly in. creased, but this does not necessarily indicate an increaso in the number of these phemonena; but only that they can no louger pass unobserved on account of the rapid filling up of the country. These sudden storms are far more destructive than appeara to have been believed. Statistics show that from Febraary 1880 to September 1881, 177 persons were killed, more than 539 wounded, 988 houses demolished, and five vill. ages of 100 to 1,000 inhabitants destrojed, entailing a loss of more than $2,000,000$ dollars.

From a mechanical point of view, waterspouts, tornadoes, typhoons, and cyclones only differ in magnitude. They are all gyratory movements, descending, on a vertisal. axis, which originate in the upper currents of the atmosphere and follow their course.
From a metcorological point of view waterspouts and tornadoes are attendant phenomena of short duration formed in the centre of cyclones whoge extent and duration are relatively enormous. The approach of a tornado, while yet at a distance of two or three miles, is announced by a black cloud from which a prolongation in the form of a funnel descende to the surface of the ground. At the bottom is the very small aren, within which the destructive winds are concentrated. The gyratory motion in the tornado is always from right to leit, i.c., in a direction oppssite to that of the hands of a watch. The velocity of rotat:on, although very variable, averages 570 ft. per second, or a little less than half that of a masket ball. The diameter of the tornado at the ground surface is variable; when it is only about forty-three feet it partakes of the character of a small typhoon ; ordinarily it is from 954 to $1,312 \mathrm{ft}$. beyond this circle the wind due to the tornado is no longer perceptible. The velceity of tranelotion of these sudden storms varies from sixteen to eighty-two feet per second, averaging about fifty-six feet per sec:ond, or very uearly that of an express train. The direction of their motion is from west to east, generally from south-irgit. to north east; a tornado has never been known to take an opposite connse. They mar trarel without seaching the gronnd rising or falling, and only causing damage when they tonch the earth. They usually move in a straight line, but sometimes in 27 jin 7.0 g .

Tornadors often occur in stormy weather when the atmos. phere is hot and oypressive. They canse an mmediste fall in the iemperatine, and often proluce showers cither before or after their passage. They sonctimes show signs of an inherent electricity (the formation of balls of fire, (icc); at other times they show no trace of electricity. N. Faye finds all these phenomena in larmony with his theory.
The mechanical identity leetween tornadres and cyclones enables us to l.crecive their meteorolegical-dilerence. Basides the differences of dimension between these phenomena there arc alsodifferences in the length of travel of tornadoes (averaging cleren leagues, and often lex) and of cyclones; the latier traverse encrmous distances, scas, and continente, and leape in their train squalis, storros and rhowers; their time of durntion presents chrmctetistics no Irse distinct; cyclones lasting for several weeks and tormadocs for less than an hour.

Ten or twelve watersponts mas be produced at the same time in a cyelone, as in the case instanced by M. Ialande (II-simultancous waterspout.).

Tornadocs occur moss frequently in themonths of April, May, June and July, and though they may happen at any bour of the day or right, the majority t:ke place in the day-time, especially in the afternoon between four and six ooclock. Fially, M. Finley adviscs the taking of certain percautions to avoid the dentructive effects of tornadocs. Fior this purpose he recommends that hoases should be buila square with a gable roof, and that subterranean julaces of refuge should be prepared within a short distance of all dwellings.-Comples R-ndus.

ON THE METHODB EMPLOYED FOR THE DETERMINATION OF THE OHM.

By G. Lippmans.

(Journail de Physique, July 1882, p̣. 313.)
Wrf: determination of the electro-magnetic absolute unit or resistauce depends on the production of an electromotive for.s by induction. In most cases the induction gives rise to a variable current, and hence a complication is introduced by the induction of the curreat on itself. This necessitates a correction, thee degree of accuracy of which it is difficult to estimate. In the recent experiments of Lord liayliegh and Dr. Schuster by the British Association method, this correction amounted to S per cent. Noreover the resistance of a conductor of finite section, as is the case with a metallic wire, is only properly defined for constant currents, when the intensity of the current is the same for all points of a section of the con ductor. Helinl:oltz has shown that with variable currents the intensity is greater at the periphery than at the centre. Hence the employment of constant currents is much to ${ }^{\text {be }}$ e preferred.
(1.) The first method satisfying this coudition is due to Mr. Lorenz (157\%4. He cmployed a circular dise of copper rotating about its axis which is placed parallel to the lines of force produced by a circular coil concentric with the disc and traversed by.a constant current. The electromotive force due to the induction will be along the radii of the disc, and can be received by rubbers placed at the centre and circumference. If i be the intensity of the current in the bobbin, 2 the angular velocity of the disc, the radial electromotive force is $C . r^{m}, i$, where C is a constant, which cau be determined by calculation. The current $i:$. averses the resistance r, whoseabsolute value is sought, and produces a diflerence of potential between the extremetios equal to $r . i$. By connecting the rubbers to the cnulv of r in such a manaer as to oppose the electromotive forces the velocity uc can be regulateil until the two are equal, the erguality being determined by a galvanometer placed in the circuit, whinh at the moment of equality will give no deflection Then

```
C: z i =ri; wheuce r = C w.
```

The only difficulty presented in this method is the calculation of C , which dequends on elliptic integrals, which cannot readily be evaluated to a known approximation.
i2.! The induction of the earth is also available for the determination of the ohm with constant currents. A vertical frame carrying a coil of wire is caused to rotate about a vertical axis with n revolutions per second. The circuit of the coil is not closed, but its extremities make contact at the moment of maximum induction with wires leading to the ends of the resistance r to ba determined. In one of the leads Sir W. Thomson's astatic galvanometer is placed and used as a galra. noscope. A constant current is maintained through r and measured i y a tangent galvanometer. As the diak rotates an electromotive force is induced in the coil, which is opposed to that of the cerrent i. The latter is then viried by means of a rheostat placed in the battery-sircuit uutil the galvanoscope gives no defleetion. If S be the effective area of the coil, K the constant of the tangent galvanometer, and a its deflection, then,

$$
r=\frac{2 \pi u S}{K \tan a^{\circ}}
$$

The quantities to be measured are precisely those oecurring in the British Association method, but the correction for selfinduction is avoided. This method hat previoualy been sug. gested by Carey Foater and Maxwell.
(3.) The induction of terreetrial magaetisur can also be used for obtaining a constant electromotive force. A copper disk similar to the one employed by Mr. Loreax is rotated about an axis parallel to the compais neaile. A radial electromotive force is produced, which can be nosived by rabbers placed at the centre and circurmference. Uaing a gimiler arrangement to that described in (2), the resintance r is given by the equa-tion-

$$
\tau=\frac{x S}{K \tan a^{\circ}}
$$

Where S is now the area of the disk.
The electromotive force produced in this manaer is very amall, bat by naing a Thombon's nalvanometor a degroe of accuracy of 1 in $6,0 c 0$ cax probably be obtained.-Proccedings of Insf. of Ciril Engineers,
 démie des Sciences for October the 9th, 1882, Lippmann descrites the following thermoscopic method for the determination of the ohm :-
The method differs from that employed by the eminent physicist Joule in that it does not recogniza any measuremont of quantities of heat nor a knowledge of the mechanical equivalont of heat J. This last is important, as, in Joule's calorimetric method, the final approximation is limited by the uncertainty which actually exists as to the precise value of J, the ponsible error being abnut 1-100.
The wire, of which the electric reaistauce r is to bo determined, is placed in a vessel arranged like a calorimeter in the center of a space kept at a constant temperature. An electric current is passed through the wire, and its intensity i measured. By means of a thermometer, or sensitive thermoscope, plunged into che vessel. it can be easily ascertained when the vessel has realized a steady temperature under the heat liberated by the current. Having done this, the current is broken, and friction is then produced within the vessol containing the metallic wire. The heat generatad by the friction takes the place of the heat preriously caused by the electric current, and is so regulated that the steady temperature of the vessel mequires the same value as before. Hence, r may be determined from the equation $r i_{2}=T$. T being the work empended. It is scarcely necessary to add that the friction upparatus should ie firmly fixed in the rescel, aven when it is not working, and should be supplied with an arrangement for measuring T : in practice, it is easier to obtain the heat first by friction, and afterwards to regulate the intensity iso as to regain the same ateady temperature. Finally, it may be advantageons, in the case of large apparatus, to observe the rate of heating instead of the temperature.

Joule's method demends upou the mensurement both of i and of a mechanical work, viz., the work developed at the time of the evaluation of J ; and, further, it implies two calorimatric measurements, designed to mutually eliminate one another in the final result, viz., the measurement accompanying the dotermination of J, and that accompanying the passage of the electric curtent; these intermediate measurements introduce causen of error and corrections, due to the imperfections of the calorimeters by which they are made. This difficulty is avoided by the present method, as the work T and the electric energy r is are expended in the same caloriscopic vessel so that it is not neceasary to know the amount of heat liberated in the vessel.

THE COMET.

I send a few aketchea (nawe 23 and $2:!$) and a briff aceounat of the comet Cruls. I fond the comet at 11 h . a.m. September 22. by sweeping the sky near the sun with the 10 -inch refrnctor of the Observatory of Palermo. It was not an eany ohject to find; it seemed bat 2 point with a surrounding nebulosity, and a trace of tail directod to the south-went.
On the following morning the comet had the form (observed by Prof. \%ona and mysolf) of Fig. I, and preseried it until Saptomber 27 ; the tail was very splendid, inclined 50° to the horizon (that is to sny, nearly parallel to the equator), a little convex to the south; the risible length in the glare of dawn and moon was 6°. and then 10°; the breadth at the ton was 40°, and then $1^{c} 18^{\circ}$. The aucleas was round and very briliant, with a yellowish light.
The spectrum was formed of the linear continuous spectram of the nuclous traversed by a larye and stroag line, that of sodiam (D); by enlarging the slit- of the spectroncone, Isam a globular, monochromatic image of the nucleus and coms. Besiden the line of sodium, many others were nroment, but my spectroscope not having a micromoter. I' did not determine them ; I observed a band in the red, a live in the yellow near and after $D_{\text {, }}$ two others in the green, and an enlarament of the continuous spectrum of the anclens ifi green and blue.

From the form of Fig. 1, the comet pamed to thit of Fig. 2 till October 1. The tail was more carrol and diverging. inclined to the horizon a little more than 45°, the length wat near 15°, the breedth at the top $1^{\circ} 48^{\prime}$; the couth edeo was very mucs: stronger and brighter than the north edge, an obecare streak sembito divide the oomet through the wholn leagth. The nucleas was less laninous; it appeared double, and lengthened to $25^{\prime \prime}$, having a very brilliant jet directed to the яม.

The comet was not now as yellow as befors, and corree

5:c. 8.

E3C. 2.

Eic. 3.

spondingly in the spectrum the sodium line was very reduced and litule summons, but the usuai three binds of the hydrocarbons-yellow; green, and blue-rere very conspicuous.

From October 1 to the present time the comst approached the form of Fig. 3 , whith 1 observed this morning; around the nucleas and very exrentrically to the north, it is a fant envelupe; at the top of the south edge a sort of horn issued; the north extremity is 1° distant from a Hydree. The length of the tail is $17^{\prime \prime}$, the breadth $2^{\circ} 4^{8}$.
The nuclous is much diminished and little luminous, and the colour of the comet almost white.

Besides the linear spectrum of the rucleus, the thrse bands of hydrocarbons extend ;'r,in; the nucieus.

The spectrum of the tail is confindous. and visible to the end.

It is remarkaine that the changes of the spectran iaccording to Dr. Haseelber's experiments) ciabled a:e to predict that the ecrici had passed the Feribelion beiore the orbit was calculated.

The beautiful sky of Palermon pernited me to ubernc the comet Cruls every day excepit Oetoter 5.

- Observatory; Palermo, October il
A. Rlico
A.

Oderveg from Chnies by C. J. B. Wilmhys. Botreon 5 and 6 enm. October 21, 15S3

THE GREAT SOUTHERN COMET OBSERVED AT THE IMPERIAL OBSERVATORY AT RIO.
 Memo. of M. Cruls.

On the 10 th of last September M. Cruls received information of the presence of a comet in the east, visible to the naked eye before suntise. It was not till the 12 th , at about 5 h .15 m . (mean time at lio), that it was seen at the observatory. The sky remained clouded in the east towards the morning until the 22nd. The comet, however, continued to be visible in other parts of Brazil, and telegrams apprised us that it had been seen in broad daylight and a fer degrees from the sun on the 18th, 19th and 20 th.

At last on the 2-ith of September a clear sky allowed it to be seen in all its brightuess. At four ooclock in the moruing a portion of the tail rose above the horizon, ratherlike a column of fire than a pencil of light. It was nearly verticnl, and of a well-defined conical form, measuring 40^{\prime} at it base and $1^{\circ} 30^{\circ}$ in its widest part. The sight of this column of tire, to which the lower atmospheric layers gave a yellow-ochre tint aud which was reflected in the waters of the Hio, was a magnificent spectacle.
The telesconic examination of the tail, in proportion as the parts neareat the nucleus became visible, presented very pilainly the appearance of a stream of oxtremeiy vivid light in which one eould distinguish threads more luminous than their surroundings. Then the nucleus arose and appeared extremely bright, with a diameter of about $60^{\prime \prime}$; it was enveloped by a stream of light, and on both sides behind the two luminous threads spread out aud combined to form the beginning of the thil whose luminous intensity was still considerable at a distance. of 10° to 12 c . However, in the axis of the tail the tint was more sombre aud was even almost destitute o! light immediately behind the nucleus for the length of 10 ; this peculiarity called to mind the vacuum left behind a projectile traversing slace with a sufliciently great velocity. The thil again wis rcmarkable by its carrature, the convexity being turned towards the south, the sinarpand well-defined conven edge formed a contrast to the concare edge whose luminous intensity was vaguc, blurred, as if of a vapourous nature. The luminous pencil of the tail, after being sensibly widened from the muclens for a distance of $12^{\prime \prime}$ then suddenly terninated; but a portion of this tail was prolonged. with other characteristics. on the convex side a very pale luminous pencil of at width about 2 -jth of the thickness of the tail at its free eud, stretched about $1 ;{ }^{\circ}$. M. Faye even believes that the question here is that of a comet having a second tail.

The nucleus is surrounded by a coma very slightly luminous, about 20° in width along a line passing through the nucleus and normal to the solid of the tail.

The spectrum of the extremely large nucleus conld be clearly distinguished from the red to the violet, from the lme B to the line $(\hat{f}$, showing, although feebly, a certain number of Fraunhofer's lines The luminous intensity was such that with a slit of $y^{\text {max }}$ the line D of sodium, although not divuled, was rery fine and the carbon bands aliowed the blurred rays which composed them to be jerfectly seen. The spectrum of the tail was the spectrum of the nucleus, but of less intensity.

SPECTROSCOPIC OBSERVATIONS UPON THE GREAT

 COMET Cruls.Hy the observations of Mr. Lolse in Scotland and of Mas. Theollon aud (rouy at the observatory at Nice, on the 1sth; of September last, it was establishet leyomi doubt that brilliant rays of sodium were seen in the spectrum of the great comet at that time and that those rays were slightly displaced towards the red. The dispersive jrower of the mirror and spectroscope erpploged in the Nice obscrvations was too small, and, therefore the more faint rays observed by Mr. lohse in the green, conld not be distinguished with certainty ; for, under the circumstances, the spectrum of the diffused light was much too sharp not to conceal tiem, as well as the bands of carbon. These sixualtaneous observations agrec in a most satisfaciory manner and should consequently inspire confidence.

Until the Dth of October MM. Thollon and Tous conld not make any further spectroscopic oiservations by reason of the unfavourablecondition of the sky. On this day, an hour before sunrise, it wias assertained that the sodium as well as the other bright mays had disappeared. Only the uinal fourcarbon bands Were visible: the violet band was perfectly distinct, although very feeble; the others were rery bright, especially about the nuclens. it the same tinae the latter gave a continuous, narrow
spectrum, in which the observers believed they saw a large number of black and bright rays.
From the 9th to the 16th of October no observations were made on account of the bad weather. On the 16 th at four o'clock in the morning, the sky being perfectly clear, the spectrum of the comet shewed the same character as on the 9th ; the violet hand had nearly disappeared, and the continuons spectrum given by the nucleus was considerably fainter. The bands had diminished in length but their brightness had scarcely changed. The spectrum of the comet, compared with that of an alcohol flame, showed the most striking resemblauce to the latter. Is it necessary to add that this resemblance by no means implios the presence of alcohol amongst the constituents of the comet? lt is known that all the compounds of carbon give the same bands, and alcohol was selected because of the greater ease and advantage which its employment seemed to offer.

On the same and following daya the integral spectrum of the comet was observed by means of a spectroscope without the slit. This somewhat bright spectrum was continuous and shewed no trace of bands, which proves that the larger portion of the omitted light was white, probably the diffused light of the sun.
The disappearance of the sodium and the other bright rays observed by Mr. Lolise proves that, under ordinary circumstances, the spectroscope cannot give a complete analysis of cometary matter. It is very possible, even very probable, that this matter is composed of the same elements as that of acro. lites. On the other hand, if the temperature of the comet is sulliciently high to produce the spectrum given by the compounds of carbon, it shonld be sullicient to produce that of sodium, which is contrary to observation. These considerations, which have been long discussed, have lod again to the electric theory of comets. In fact, it is known, that if the electric fluid of a Holtz machine, without condensers, is made to pass throigh a gaseous carburet, the gas takes fire and gives the carbon bands; if it holds aluy metallic compound in suspension, in the form of fixe dust, it will always give the same bands without shewing any ray of the metals held in suspension. Probably there is some analogous phenomenon in cennection with comets, and hence, with regard to their chemical composition, they would not present a strange anomaly and would not differ from other bodies circulating in our, solar system.
M. Chalois who makes the calculations at the Nice observatory, and is a skilful draughtsman, joined us in order to observe and skutch the peculiarities exhibited by this brilliant comet. On the 16 th of October, while vbserving with a threeinch finder, he discovered that the whole of the front portion was surrounded by a very faint kind of sheath, invisible to the naked eyc, clearly outlined, and extending j° or 8° in a direc tion opposite the tail. The photographs taken at the observatory reprodace, according to his designs, which were very carefully verified by us, the appearance of the comet on the 9th and I6th of October; it was takoin from 23° to 25° in length.

CRITICISM ON DR. SIEMENS' SUN THEORY BY M. FAYE.

It is rell known that under the action of light and with the intervention of the chlorophyl of vegetables, vapour of water and carbonic acid are decomplosed at ordinary temperatures and are restored to a combustible form, carbon and hydrogen being differently combined. Siemens fiuds that if the vapour of water and carbonic dioxide be extremely rareficd (witha density say of 1-1800), the action of thie suulight will produce the same decomposition without the aid of any other intermediate agent. Siemens, assuming the results of his experiments to be come. plete and decisive, enunciates the following theory :- "Sjace contains, besides minute masses of solid matter (meteors), an exceediugly rare atmosphere (density $=1-2000$) of burnt geses (vapour of water and carbonic acid) mixed with inert gaies, ozote \&c. These gases arc partially transformed into combuytibles by the solar light, are drawn juto the sun, are there burned afresh and sent back again into space. This immerise source of heat continually renews itself, and nothing is lost save as much of the heat of radiation as is absorbed by the conmic medium with a denity of 1.2000 only." This, for the physicist, as M. Faye remarks, is an almont.absolute vacuum, since the electric spark can no longer traverse it, but not so for the astronomer. The rectifications required by the resistance of the surrounding medium in the trajectories of the hearenly bodies which morc, say, sixty times as fast as a capmon ball,
would be trice as groat as those found necessary in the case of the cannon balls, even though the dansity of the sarrounding medium be reduced to 1.2000 , and this not after the lapse of a few centuries or a few years, but after a few seconds. In the second place, the distinguished English physicist seems to havo neglected one important consideration, vil., the amount of matter his theory would add to the sua. Under the influence of attraction this matter would be adled to the already existing stars, but especially to the sun, and their mass would continually increase. Thus, a litre of air containing the desiral proportion of vapour of water weighs at least 1 -gramme at the ordiuary pressure At a pressure of 1-2000, a cubic metro will weigh 0005 kilogramaies. This being taken for granted, and the solar system limited to a sphere embracing all the planets up to Neptune, the weight in kilogrimmes of the very rare mistter addal by the hypothesis would be $4.3 \vee(i 4,000,000 \times 21,000 \times 30),=$.0005 .

The actual weight, in kilogrammes, of the stin is 4-8 " 19t, $000,000)_{3} \times 5.4: 321,004$.

The first weight is 100,000 times greater than the second. However, Sicmens' theory would add 100,000 times thy mass of the sun to the mass which has hitherto been so carefully determinedby the m thod of celestial mechanics.
Faye remarks in conclusion that, although Siomen^{\prime} fundsmental experiments are valunlle, his theory is of no importann from an astronomical point of view. ('smyes Rradus.)

DR. C. Wr. SLEMENS' REPLY TO MR FAYES UBJEC. IIONS TO HIS SUN THEORY.-(('omp.on $/ \mathrm{hen} / \mathrm{lu*})$
"3. Fare, while generally approring of the physical portion of onv investigations, questions their application to astro nony for the following reasons : -

1. 'lhat the pressure of a universal gaseous medinn, at a pressure of 1 zut of an atmosphere, would oflicr au elcessive resistance to planetary motion;
2. That the rapour, thus distributed, would be gradually attracted to the sun and would tend to proiltec a considerable merease in its mass.
In the first place, with respect to M. Fuye's sacond ohjeo:ion, premit me to remark, that the degree of diffivion I have assumed is such as to ensure the permanefice of the statical Pqualsbrium between the foces of expansion and diffasion on the one hand, and the attraction towards the sun and tho celestial bohlieson the other. If such an equalibrium were not established, M. Fuye's objection would nasurally completely overthrow my theory, Besudes, I am willing to admit that if Mratiotte's law resp ecting the expausion of permanent gases could be applied indefinitely, the pressure of the interplanatary gaseous medum would be lowered almost to a degrec begond conception, hut it seems to me, from considerations based upon the dynamical theory of gases and from the behaviour of gases, as demonstrated by N. Cisoukes, in extremely rarefied tubes, it seems to ase, 1 say, that there exists no a priori reason, justifying the rignrous application of the lar to vapours beyond the confines of our atmosphere and of that of the sun. As regards M. Fayce's first objection, I admit that a density of 1.2000 of that of the atmosphere would have the consequonces whicia he so jutily eatablishes, and I remember to have said that, if the results of thy expermments upondisociation of rapours by solar energi, are accepted as demonstrated and if it be assumed that the stellar space is filled with a vapour at a pressure not exreed-i-g 1-1000 of an atmosphers, which corresponds to the grestest rarffacion I have obtained in my experimenty, then there mast ensue a dissociation of that cosmic vapour by tho radintion of ilie sun. Nevertheless, it must be remarked that this obserration only relates to the physical phenomena discussed in my experiments, and it is cridunt that, if the dissociation of the vapour of water and of the carbon compounds is effected, by the direct radiation of the sun, at a pressure as high as $1-1000$ of an atmosphere, with far greater reasou would it bo cfficted in the much more rarefied mediam.

In another portion of my paper, in which I apuly ray hypo. thens to comets, I axsume that they represent, even st their perihehon, a gascous medium, at 2 density of 2.3000 of that of in atmouphere only, and that this density is sufticient to cause incendescence by compressiou. This assuraption at least proves indirectly that I considered stellar space to he fllod with a vapour at a pressure much less than $1-3000$ of an atmosphero, startiag from such a medium, (iu the absence of data derived from experiment and observation), as from an intensely farefied state, without fixing any limit to this rarcfaction.

Afterwards, now fucts of obsarvation tended to confirm my hypothasis of a stellar space filled with rarefied matter analo. gous to that realized in vacuun tubes. The equatorial pro. longations of the solar atmosphere, observed in almorica during the eclipse of 1859 , seems to prove the existence of a substance strotching out from the Sun for a distance of sereral millious of leagues and rendered viable, beyond doubt, by solid parti. cles, jartially illuminatod by the reflection of the solar light. and partly by electric discharges towards tho Sun.

My hypothesis has met with a more direct confirmation in the remarkable spectinscopic investigations communicated by Capt. Abney last August in Section A of the Britibli Associa. tion, which proves the oxiatence between our atmosphere and that of the sua, of carbon compounds at a low temperature which may be casily and distinctly observed, and which are rrobably analogous to ethyle. Professor Langley's observa. tions in America with has bolomiter, although made for another pitrpose, cend to confirm the results obtained $\langle y$ Capt. Abuey upnn Alount littel. 'I'o these proofs may be added the interesting observation of Yrofessor Schwedoff (as yet uupub. lished, and communicated to me by l'rofessor Sglvanus 'Thoinp. gon), according to which, large hallstones of a cosmic origin lave sometimes fallen upon the earth. This obaervation, however, requires conlirmation,
Assuming that these observat:ons are founded on facts, physical considerations render it possible to determine approximately the actual density of the stellar vapour, phich, in this case, depends unon the temperature of the space. From Gorschow's observations on the 30th of November, 1571, of a temperature of 63° C. in the Aretic regions, it follows that the temperature of the stellar mellum (which, if composod of a rapour, must have the power of interceptiug heat rays), must be between 63° and the absolute zero (273°); the solar radistion must manation $2 u$ it some temperature, or, at least, sush a temperature that the dissociation of this mediam goes on very sctively. To llegnault is due our know. ledge as to the donsity of vapours at difterent temperatures, but his investigations are not continued below 32° C., and his formulie could not be rigorously appled below that point, nevertheless they taable us to estumate approximately what the density of a vapour may be atstill lows temperature; hence re are led to believe thit at 130° the density of tho vapour of water does not exceed $1.5,001,000$ of that of tiee atmosphere. Further, let t sssume that the gascous mass which fills interstellar apace ouly contans $2-5$ of its volume of aqucous rapour, the remanang 4.8 consistiug of hydro-carburets, carbonic acid, and azote, the total pressure of ths vapur: Fould not exceed $1 \cdot 1,000,000$ or an atmosphere.
These vapours would traverse space with a velocity probably epual to one-half of the tangental relotity at the sua's surface or to $1 \mathrm{k} . \mathrm{m}$. (5-s.anle) per second. It could be easily shewn, that a column of these dissociated gis is, travelling towards the polar surfaces of the sun with this velocity, and taken at a Ststance of $5,500,000 \mathrm{k} . \mathrm{m}$. from the sun (the mean distance of mercury, the nearest of ats planets $)$, woull present toward the suu a section of flow equal to $140,000,000$ mallions of square kilowetres, much more than enough to supply tho necessary substance which will yield by combustion the heat required to maintan the solar radiation.

Perhaps the distinguished Director of the "Burean des Longitudes" may consider that a gasoous medium of a density equal at most to $1-1,000,000$. "that of our atmosphere would still impade the movements of the planuts in a degrce incorepatiblo with the facts obtained by astronomical observations; if this were the case, it would suffise to assume, for this mediuro, a still lower temperature and consequently a more attenuated rarefaction for interstellar gaseons matter.
(Comptes Mendus, 2xsi, Extract froin Ietter to M. Dumas.)

the transit of venus.

hi Alencinger jollnson i..d.
Astronomy has received an uuusual share of public attention lately in consequoncs of the appearance, first, of the great comet which was conspicuous in heavons for so many weeks; secondly, of the great sun-spot accompanied by the "magnotic storm" which so seriously doranged 'tolegraphic communications; and thirdly, of the Transit of Tenus. Concorning this last there are numerous topics of general public interest, a few of which aro here considered:-

Fig. 8.

Gymnaste militaire au pas de parade.

Fig. 3.

Cheval sautant un obstacle.

Tho transit or pasagge reforred to was simply the passage directly between us and the sun, of the planet Venus, which had previously been seen shining so brightly in the weatern heavens shortly after cunset, on the eastern or left hand side of the sun. A black spot, less in diameter than the thirtieth part of the sun's diameter, was seen even without a telescope, but through a smoked glass, or even without this whon a slight haze coverod the sun, to cross the lower part of the sun's disc. This happened on December 6th last, and a part of the passage was visible at Montreal for about an hour. The beginning of the passage ("External contact at Ingress") must have occurred accordding to calculations about nine minutes past nine a.m., Montreal time. The planet was fully on the disc, and its edge touched the sun's edgo, or, what is callod "Internal contact at Ingress" took place about 9 h .30 m . a. m. The passage then contiuucd across the dise until $2 h .51 \mathrm{~m}$. p.m., when the edge of the pianct was again just touching the edge of the sun (the planet being still fully on the sun's dise). This latter is called "Internal contact at ligress." Yenus continuing to move onwards passed entirely off the sun's dise ("external contact at Egress") about 11 minutes past three p. m., (See fig. 1.) but. unfortunately, clouds covered the sky at these moments and none of these vintacts was seen.

The diagram exhibits the position of the path of Vonus across the sun's dise by reforring it to the north and south points of the disc, these being the points where a decliuation circle through the centre cuts the disc-or they may be regarded as the points where the disc is cut by the meridian when the sun's centre is on it. At that the they are the highest and lowest points of the sun respectively, but not at other times of the day. This may be made obvious by putting a circular piece of papor like the diagram in the sun's place on a coleatial globe placed in the proper position, so that the brass meridian may be over these points; then turning the globe to the position for half- past nine o'clork it will be seen that Venus enters on the sun's disc very near the lowest point. The calculated angle from the north point for contact at Ingress was 145° towards the East; and for contact at Egress was 114° towards the West. As seen in an inverting telescope the whole figure would have been turned unside down.

The same phenomena would have been visible at very nearly the samo instant over a great part of Canada if the weather had been favorable, occurring only from two to six seconds later at Ottawa, and a few seconds later still at Toronto, for example. But although at nearly the samo time absolutely, the hours and minutes which denote the local time, would be, of conrse, different. The difference between Montreal and Toronto time, for example, being about 23 minutes we shall have to subtract 23 minutes from the times given above in order to find tho local times for Turonto. So for other points of Canada, the local timos correspunding to the Montreal times given above were the times for observing the four contacts mentioned. Canada was, however, very unfortunate in the weather. Out of thirteen observing stations, only four are reportod to havo been ablo to see any of the contacts.

The parts of the world whero the transit was visiblo (weather permitting) in whole or in part are given in charts in the Americun Nautical Almanac for 1882. These show also the times of contact at different places.

But these times whether taken from the charts or calculated from the formula in the British Nautical Almanac cannot bo relied on within two minutes. Henoe, indeed, arises the nocessity of obsorvation. In fact, as the data omployed aro somowhat different, the times as givon by the chart, of the one almanac, and the formule of the other, do not always agreo exactly, as may be found by any one who chooses to make the comparison. A further comparison of the times actually obsorved with the timos announced beforehand cau hardly fail to bo interesting.*

But why was this transit so eagerly obsorved by astronomers? What is the great problem to be solved which would justify the expenditure of so much time and thought, and toil and monoy by almost all the civilizel nations of the world?

It may bo described as a problem in survoying on the grandest scale. When a farmer or the orner of a large estate gets his land mapped out, and its size ascertained exactly, the advantages as well as the satisfaction arising from it are obvious. So, on a higher scale, are those of the Ordnauce Surrey of Great Britain or the like work for any other national territory. Rising still higher, we come to those suxveys which have had the mapping oat of the whole carth and the determination of its size for their object.

Higher again, we consider the earth as one body in the solar system, which system is to be accurately surveyed. Beyond this comes the step which loads us from the solar system itself to the dimensions of the visible universe. But with this our present subject has no immediate concern, although there is a close connection.

Confining our attention to the solar system we may, from one point of view, compare our knowledge of it to that of an estate or territory of which a very accurate map has been made, so far as the relative positions and dimensions of all the parts are concorned, but on which from some oversight the scalo has been inaccurately drawn. Suppose, for example, it was uncertain whether a mile was represented by an inch or an inch and a quarter. (This, however, would be an enormous exaggeration of the uncertainty in the case of the so'ar system.) 'The result of this, of course, would be that the actual distance in Jards or miles betweon any two points, or the number of acres in any given area, could not be ascertained. Similarly for the solar system we know the relative distinces, the relative sizes, and even the relative weights of the planets and the sun ; bat there is a good deal of uncertainty about the scele, and hence we cannot say with certainty what is the actual number of miles in any required distance. This is, however, due not to any oversight, but to the difficulty of the measurements required to enable us to lay down
"The foilowing are the somule of "The Nautical Almanac,"
"For any place on tho surface of the Earth, the Radius be"ing r, the Geocentric North Latitude l and East Longitude " l ", the Greenrich meantime ℓ of first extcrnal contact may be "computed by the formula,
${ }^{4}$ Dec. 6, Ia $55 \mathrm{~mm} 57^{\prime}+[2.5471] r \sin l-[2.4759] r \cos l \cos$ "($l^{\prime \prime}-57^{\circ} 53^{\prime} .3$). The frast internal contact by
\because Dec. 6, $2^{\mathrm{h}}{ }^{16 \mathrm{~m}} 18^{\circ}+[2.5850] r \sin l-[2.4767] r \cos 2 \cos$ " (l'-85r 55'9). The last in crnal contact by
"Dec. $6,7 \mathrm{~h} 51 \mathrm{~m} 10^{5}-[2.3129] r \sin l+\left[2.645{ }^{\circ}\right] r \cos l \cos$ " (l' - $138^{\circ} 45^{\prime} .7$). The last external conlact by
 " ($\left.l^{\prime}-135^{\circ} 9^{\prime} .4\right)$.
The quantities in brackets are the logarithms of seconds of time.
the scale. Our unit of measurement is the distance from the :un to the earth, and this has nover yot heon determined in milos to the satisfaction of astronomers.

How then can the distance of the sun be found by observing the passage of Venus across his face? 'lio explain this simply, it will be better to consider not the distance of the sun, but the diameter of the sun in miles as the object of search. If cither can bo found the other can be calculated from it by a simple propor. tion (which noed not be hero discussed) so that the above question becomes-"How can wo, by oliserving the passage of Venus across the sun's disc, find the diamoter of that disc in miles !" A general explanation is all that will be attempted here. Reforring again to the illustration of the map, but letting the map now correspond not to the solar system, but to the sun's dise only, it is obvious that if we knew the actual distance in miles between any two points represented on the map, we could readily find the distance in miles hetween any other two points, the map being supposed accurately drawn. For oximple, if wa have a map of any city, Montreal for example, carefully drawn, but without any scale attached, we could by knowing the distanco bstween any two paralloi streets, such as St. ('atherine streot and Dorchester street, tell the entire length of the city, because the ratio of this length to the othor is given by the map. Similarly in the case of the sun's dise, if wo know 1 " the distance in miles between any two parallel lines on its surface, and $2=$ the ratio of the whole diameter to this distance we evidently can tind the diameter. The problem thus hut consists of two parts:

IN The distanco of the two parallel lines in miles.
2° 'The ratio of the diametor to this distance.
If we roverse the order of these we may say that they correspond to
1° Drewing our map, but withort knowing the scale.
2° Finding the seale.
Tho map, however, we lave to draw of the sun's disc is a bare outlino. If we daw any circle to represent the sun s disc, we have morely to lay down on this circle \& diameter and two other lines parallel to one another. (See Fig. 2.)
II K, C I), Paths of Venus as sern from Northern on' Southern Stations. I B., distance between the 1 chorits.

But how are tho lines on the sum's face to be selected ? This may he explained by another illustration. Go into a room with a gasalier hung from the ceiling, sit down on a chair, look at one of the glass gloles, and notice what part of the opposite wall it hides from you, then sliding the chair in a straight path across the room observe that the part of the wall hidden from time to time during the motion will form a line on the wall. Next, stand up, and moving along the same path on the floor you will, of course, sec that the glass glowe hides a different line on the wall. It is clear that the distance apart of these two lines depends on the difference of the heights of the eye in the tro cases and on the relative distances of the glass globe from the eye and the wall. Here the wall corresponds to the sun's face; the glass globe corresponds to Venus, and would correspond better if it moved across betreen you and the wall, instead of compelling You to move in order to produce the same effect. Another illustration might be this: Manging up a large circular sheet of paper against the wall to ropresent the sun, and getting a friond to pass a cent steadily be-
tweon it and your eyes while jou, at a considerable distance, are on the first occasion sitting down, and on the second standing up, you will see two different lines traced out.
L. t tho observers be at A and B, lig. 3 , the two ex. tremitios, suppose, of the diamoter of the Earth (E), which is perpendicular to the ecliptic. Ihen, when the observer A sees the contre of Veaus projected on tho sun's dise at a, the observer at B will see it at b; and the lines CD and G II will represent the lines or the paths that appear to be describsd across the disc. The distance apart in miles of theso two lines can bo found without any great dificulty, hecanse it depends obviously on the distance between the stations of the two ribservers, which is easily found, and on the known ratio between the distances of Vonus from the Sun and from the Earth, about $2 \frac{1}{2}$ to 1. Thus une part of the problem is solved, viz, that corresponding to mea. suring the distance batween two parallel streets on the map of Montrcal.

The most difficult part, however, romains, viz., that which correspends to finding the ratio ou the map listween the length of the whole city and the distance just mentioned. We have to find the ratio of the whole diameter of the sun to the distance betwaen the two lines on its surface that heve bsen obierved. The obser vations for this purpose are simply enough stated. The two observers already mentioned have only to notice the exact duration of the passage in each rase.

Prepallations at meghll college FOR OBSERVING THE TRANSTT OF VENUS, DEC. 6th 1889.

Ar the time of the transit of 1874 the Colloge was very poorly supplied with astronomical instruments. It had a refrating tolescope of $2 \mathscr{4}$ inches aperture, which, together with a small trausit instrumont and chronometer for taking time observations, constituted practically its whole equipment. In order to call public attoation to our wants, I wrote a letter, therefore, to one of the daily papers, pointing out the importance of the coming transit of 18 S 2 , and the need of proper instruments to observe it ; but this had no immediate effect. About the end of the year 1878 gome of our citizens who felt an interest in astronomy held two or three private meetings to consider the possibility of establishing a public astronomical observatory as an independent institution governed by trustecs. In accordance with a roquest from triem, I wrote a letter on the subject which was inserted in the newspapers in January, 1879, and in this I again directed attention to the approach of the great astronomical event. The times were apparently unpropitious. There was no public result.

In Soptember, 1879 , however, Mr. Blackman, B.A., of Talo College, U. S., then a resident of this city, made a very handsome donation to the College of astrodomical instruments, including a $6 / 4$-inch equatorical of $7-\mathrm{ft}$ focal length, a large transit instrument, an excellent mean time clock, a sidereal clock and chronometer. Subsequently, two good but smaller telescopes of $41 / 4$ and 4 inchea aperture were placed in the College, one left to the Trafalgar Institute by the late Donald Ross, and committed for safe keeping to McGill College, and one lent by G. A. Drummond, Esq. As faras instraments sufficient for transit observa-
tions were concorned, the College whs now woll supplied, for with no very great additious it could have equipped two or three observing stations, besides Montreal. But these oth r stations would have involved considerable expense and it was necessary to provido for this-to allow so much "observing plaut" to lie unused while Cadada generally wis nut too well supplied, would not have ben a creditable tu Muntral. In February, 1880, I read a paper beforo the Athenaoum Club of this city, explaning the state of the case, and afterwards another paper on the same subject in May, 1881.

Subsequently the question was takin up by tho Corporation of the College and a committeo was appointed to consider the means of providing for the oxpenses and other matters. In their name I wrote to the Astronomer Royal explaining our situation and asking for information as to the expenses of stations in 1874, and advice and instructions generally, since any observations must be made in concert whih those of other observers. The letter was submitted by him to the Committee of the Royal Suciety who have charge of the management for all the Bitish Transit of Vanus expeditions, and in his reply he gave us ample in formation which was of great service, in addition to eending the report of the British Observations of 1874, which had not long been published, together with the "Instructions to Oliservers" in that year. At a later period five copies of the "Instructions" fur 1802 were sent out.

> (To òe continued.)

ANIMAL PHYSIOLOGY.

The typographical reproductwar of photographs. An indispensable accompaament of the apphications of photegralny to physiological experiments is the exact repruductuve of the images obtained, the facility with. whach puofs can be struck off, and the possibility of aucurvating them with funtang ; these requirements have been fufilled in a very saisfactory manner, by M. Petit's process of "similigravurc." Two specimens of these proofs will enable the reader to estimate all the rescurces of photography as applied to certain sciertific demudstrations. Fig 1 (page 29) shows the successive positions of a man marching, and was obtained by the process of taking succossive impressions upon one plate. The imperfections of the proof are almost wholly duc to de fects in the original stercotype. Thus, at the lower part, the background is not sulficiratly dark and the outlines of the legs and teet are not we'l di fined. This is dur to a faulliness in the screen bef.re whir!. the photugraphs were taken; the lower part of the screen did not comply with the conditions of absolute blackuess as well as the unper part. A vertical white band may be observed upon the fefiis image. This band is the picture of a post which supportal the screen, and nay be unde to disappear by an alteration in the arrange. ment. The chething aecessirily interferes to sume exient wh the exact repristutatican of the bodily mubeneats. The phovi, huwerer, suh as it as gives much mitumution. It shuws that in every compitte stejs the body assumes differthi posithons, that the step occuphes $\frac{6}{50}$ part of a second, and that the head durng the same ture mikes two vertical osedlations; that the arm makes a wilo oscillation in a direction contrary to the movement of the corresponding leg. The succussive phases of the disnlacement of the foot and leg can be eaxily followed, and the actual value of the displacement between two consecntive images, i e., in if of a secoud can be determmed with a com. pass.

Fig. 2 represents a white hirse clearing a fence. It was an old Syruan animal, andan exprrt can casily recognize the signs of ago. The arrangement of the screon had been improved in this series of photographs, and the detail: come out better in the lower part. It is needless to say that the method is not yet perfect, but animportant point has been reached in the ap. plication of photography to the illustration of science.

NOTES.

Tho Chemicer Revicw states that recent amalyses of tho water frum the Huly Weil at Mecea, wheh as so cagerly druak by pildrim-, hew this water to be suwage, about t"a times strunger than the average Lonilon sewage.

Mode of Discoveming the Adulteration of Money.20 parts of honey dissolved in 00 parts of water and mixed with alcohol, gives a white preciputate of doxtrue if glucoso has been adled to the honey; if the honey is pure the liquor only becomes milky.

Domestication of the Edeliveiss.-The edelweiss, that curious and interesting alpine plant so much desired by travelers in Switacrland has recently been grown by an English gardener in tha midst of domestic vegetables. It behaves like a biemninl. Tho search fur it in dipiue districts has been so keen that in order to prepent its extermmation, many cantonw have thought it wise to prohibit its sale.

A New Kisd of Rose.- In the pablication of the Torrey Botameal Club, it is stated that three American botanists whil riding through lower Calitoruia, discovered a new rose which is apparently distinguished by butadical and horticultural pecaliarities from the new aud old world species. Dr. Engelmann has called it the "Rosa minutifolia" on ascount of the small. wess and form of its petals. Seed-plots of it have been inade.

Water filtration.-The use of spongy iron has now been apphed on a large scale to the water obtained from the River Sette for the supply of the City of Antwerp Dr. Frankland has visited the Matwerp. Water Works a: Waelhemm, about fiftenn miles-above that city, nad reported on the results of his inquiry. He attaches especial value to tho fact that spongy uron filtration "is absolutely fatal to bacteriz and their germs," and he considers it would be "an invaluabe boon to London if all water supplied frore the Thames and lea were subnatted to this treatnent in default of a new supply from uniopeach. able sources."

Hygiene.-In the Comptes Rendus M. Burcq remarks that workmen who absorb in the form of fine dust, considerable quantuties of copper are protected from cholera, save in in. stances quite as rare as those relating to the insufficiency of vaccine as a guard against small-pox, and that the same workmen seen to enjoy the same immunity wihh jesuect to infectiuus diseases, especially ty photd fever. M. Bureq proposea to empluy salts of copper as an antiseptic for the planks of huts, infected ships, in the samo manner as they are employed tu Irotect the seeds of cereals and certain tambers employed in the industries, from.iusects.

The Waterino of Plants in Pots. - Wateriug, says the Neuste Erfinilung, is one of the most mportant consideratious in the cultivatiou of plants in roomy and greenhouses. It must first be ascortaned whether the plant really needs pator and this can be done by striking the pot on the outside near the nuiddle. If it gives out a clear rung the plant needs water; if the sound is dull there still remains enough of monsture.

Water is not recuuted more than one or twice a day; in the morniug in summer, in the evening in winter, but never when the sun is shiuing, on the plant. Never use well vater but either raip or running water.

MEDICINAL PROPERTIES OF WARM MLLE.

Malk warmed (not buitel) to a moderate tempeature is said to be a c sumon remedy nin ladia in cascs of the most violent darrhus, stomach complanht, chulera and dysent-ry. Accorting to the Medical Trancs and Guzetle the employserat 3 \& milk that prepared is esprecial'y recommended for typhoid ferer, and is the oilly food which nourishes the invalid and gives strength without unduly loadiug the stomach.

PROCEEDINGS OF SQCIETIES.

Muntkeal Murusiompiai Society.-Certain members of the old Microscopical Club met last month and orgarized a now Socioty, which held its first rexular meoting on the ovening of the th. The number of memhers is hanted tu thurty, and the meotungs are to tako placo in the second Mintay in cach lounth. At the mecting on the foh Dr. Oner read a paper on Parasitic bodies in the blood of the Frog. des cribug tho Prypunosomar sangumis of Grubo and tho Drodanidiof ranarum ut Iankester. Spectuens of tho lattor wero exbibited. Atmung unwresting ubjects shywh were the Filara huminis sangainis b. Craig, and Prof. Bemroso cxhibited a slide and called attention to the grescnce of bacteria in samples of pepsin.

[^0]: * In one of a series of articles on "Elevators" in the American Architect and Buildiny N'eurs, $\mathbf{1 8 8 0}$, the following suggestive passage occurs:-" It is impossible to be too carcful in the inspection of these appliances (viz., safety catches), whose action is vcry uncertain under the varions unfavourable circunstances of actual use. Out of eleven olevators whose fall was reported during the month preceding that in rhich we write, it is said that ouly two were unprovided with what purported to be safety calches." Wire rope lifts are chiefly used in America.

