BULLETINS

OF THE

Asrial Exprrimut Assuriatiun

Bulletin No. $x \boldsymbol{x}$
Issued HOMDAX SEPT 21, 1908

MR. MCCURDY'S COPY.

Buluatina of the Aasial. Hrperimont Aasoointion.

Cmememmon00
 -mmemem000

Beinn Bhrengh Monr Baddecka Fova Sootin.

TABTA op compuars.

2. FAitorial Hotes and Comenta:-

The Puture of the A.E.A..
2. Work of the A.B.A:-

Telegrams from Members..
Sept. 6, MeCurdy to Bell......................... 6
Sept. 9, Curtiss to Bell......................... 6
Sept.11, Bell to Orville Vright............. 6
Bxtracta from Letters from Hembers.....................7-19
Aug. 26, Curtias to Baldwin. 7
(about notors for flying machines)
Sept. 5, MeCurdy to Bell........................ 8 (about Herring' a method of calculating horacopower).
Sept. 7, Curtiss to Bell...................9-11 (about Orville iright's machine).
sept. 9. Curtias to Mra. Bell............... 12
(about silver-Dart)
Sept.11, Curtiss to Bell..................13-14
(about success with only four cylin-
ders running on June Bug ${ }^{6} \mathrm{~s}$ ongine)
Sept. 14, Beldivin to Curtise............15-19
(about plans for serodrone Ne. 6)
A Summary of the Work at Hawnondaport Laboratory fron July 4, to Sept. 1, 1908: by G. K. Curtias, Director of Rxperiments. .20-22

Work of Beinn Bhreagh Eaboratory: by lat. P.
Bedrin, Superintendent.22-29
Rxperiments with the Dhonnas Beag: by ${ }^{3}$. W. Baldwin.

30-34
3. yiacellaneous Comunicationa:-

(For illustrations ave over).

K12ustrations.

Wright Brother* ${ }^{\text {a }}$ propeller 10
Plans for aerodrone Mo. 6 19
Present condition of aerodrome No. 5 24
A study Por the Body of aerodrome Ho. 5 25
Two propellerg. 26
Bedwin holding double propellers \& gearing 27
Three hydroplanes. 28
Membors of Nova Scotia, A Canndian Press Asw... 2
Double propel2ers on Dhonnas Beag 34

Time passes ragidly, and the 30 th of sopteviber, the day assigned for the diasolution of the Aasociation in our agreenent of organization, will be upon us alnoat before we know it.

Aerodrone Me. 4, HeCurdy* silver-Dart, is practiculIy eompleted, and the firat experinents with it may perhaps be rade in time to be noted in this Bulletin.

Aerodromse No. 5 and Wo. 6 are advancing rapidiy, but it is pretty certain that superiments with theen can not be made before september 30. It seern therefore advisable that the Aerial Bxperinent Association ahould be continued after the 30th of september for a surficient length of time at loast to enable us to complete and test the acrocromes we now have on hand (Mos. $4,5 \& 6$). In the event of the fallure of $5 * 6$ It would be well for the Association to continue exporiments on the aane lines until we have auceseded in putting a tetrahm edral atructure inte the air, propelled by ita own motive powar and carrying a man. For this was the problem with which we originally started and we should puraue the problem to a suecessirus isะue.

The experiments in this direction were interrupted in Decertber 2907 by the deatruction of the meygnete, and the Latom ness of the season, and the aumer was well advaneod this yoar before they could be reauzed here, on account of 1 frs. Bolles iliness which provented me from coming to Boinn Brasech until quite late in July so that the experimenta did not really begin until August. For this reason the tetrahedral experiments have
been delayed much more than we anticipated in Decenber 2907, and it becones obvious that we aannot oerplete nerodromes Wo. 5 and No. 6 before the date wet for the dissolution of the Association.

It is therefore propeaed to have the following resolution voted upon at the taeeting of the Association September 30, 29088-

Masolvad:- that the Aerial Jxperinent Association be continued for another period of aix menths ending March 31, 1909, the Association then to be diasolved unless other plans are unanimously agreed upon by the members.

I would alse propose the following resolution in the ovent of the continuance of the Associations-

Resolvedt- That Hr. Wh. F. Bedvin, Suparintendont or Beinn Bhreagh Laboratory, be admitted as a member of the Association with all the rights and privilegea of the original members; and that the present organiamtion in all other raapeete be continued.

I think that ifr. Bedwin's services to the Association in the conatruction of our Harmondaport aerodrones, in the construetion of the "Gygnet" at Beinn Bhreagh, and in the Superintendency of the work of Beinn Bhreagh Laboratory morits this resognition by the Association.

Aasuaing for the present that the Association will be continued for another linited poriod of time it would be well to restrict the work of the Association as much as posaible to the utiligation of tetrahedral atructures in practioal aerodrenes and suberdinate other plans until wo have aueceeded in plecing a tetrahedral aeredrone in the alr. This would be advisable for two reasons:-
(1) It was the original object of the Asseciation; and has only been carried out as far as the construction of the kite "Gygnetw.
(2) The Asseciation will havo no aifficulty in socuring good patents upon aerodromes embodying tetrahearal structures, subordinate only to a broad patent covering tetrahedral structures which was granted to A.G. Boll, now the Chaiman of the Association.

So much work has been done by other people upon plans for aerodrones having the general features of our firgt four aerodromes, the Red Wing, White Ving, June Bug, and gilverDert, that it is extrenely doubtrul whether patents of any great value can be obtained to reprenent our work at Humondaport. Fo are lisble to cone into contect with numerous patonta; and should any patents we obtained turn out ot be subordinate to other patenta already granted, the ovners of those patents, not being affiliated with the Association would be liable to make trouble.

When the Association rinally disaolvas the only way In which the members ean obtain any aubatantial roward for their labers will be by the manufactiure and aale of aerodrones embedying features produced by the Aasociation. This means either that the Asseciation must be converted inte a manufacturing eorporation, or that the Association will sell out its righte to aome manurecturing conpany for a consideration in ahares or cash. How no corqpany will give the Aeseciation anything for its invention unlesa they are patentod, or at least patentable. That we would sell to such a company would be patenta or patentable inventions. Anyuay patents would be
involved and it should, therefore, be the apeoial object of the Association during the remaining montha of its existence to work - not airapiy, as formerly "to get into the aire by sny means we can - but to get into the air by new moans of a patentable nature. Jpon our success in doing this will dow pend whatever future the Asseciation may have before it. The Asseciation cannot be continued indefinitely upon the preaent basis on account of the expense incurred without reimbursement.

If we can produce a new form of aerodrome with diatInctiy patentable features; and a conpany could be found or fonnod, with oapital behind it, to put our inventions into connerical use, the Association could be reimbursed for its expenditures out of the proceeds received from the cospany.

It would then be for the Association to decide whst ahougd be cone fith the proceedst-
(1) The Association might decide to distribute the preceeds in accordance with our agreement of organization and dissolve the Association.
(2) It micht decide to contimue the Aasociation inderinitely putting the proeaeds inte the treasury of the Assoctation for the aupport of 1 ts experimontal work.
(3) It might alae deeide to enlarge the membar ship of the Association and eatabliah it as a pesmanent institution or zociety to proante the art of aviation.
Thia third plan would be wy deaire. But I realize that the posaibility of such a schame deponds upon the poasibile ity of seouring patants controlling new and useful features of conaertal value. We have begun well and the success of our work has atcracted the attontion of the world to the

Aerial Foxperiment Association as an imortant and valuable agency in promoting the art of aviation. I would like, therem fore to see the Association placed upon a permanent basis with aufficient capital to onabie it to extend a helping hand to all worthy investigators who are atruggling, with insurfieient means to advance the art by experimental mothods.

I would, therefore, urge that we should wil have chis great object in view, and bend all our afforta during the next six monthe to the development of practical liprovenonta of a patentable nature to the end that we may be reimburaed surfieiently to enable us, or some of us, to endow the Association and extend a helping hand to uthera who may be aecking to advance the art of Avistion by experimental metheds.

MeCurdy to Boll.

Haymondaport. H.Y.e Sopte 6. 1903:- Made short jump to-night in June sug using double-decker. Control 15 feet in front of main planes. Torks beautifully.
J.A.D. MeCurdy.

Curtisa b Bell.

Hagzondaport. Bept. 9, 1903:- P1ew one haif rile tomieht With four cylinder inproved June Bug. See letter.
G. H. Curtiss.

Bell to Orville Wricht.

To Orville Wright.
Fort dyer, Wainington,D.c.
Badceck, Bort. 11, 1008:- On behalf of the Aeriwl ixperimunt Asaociation alow ne to congratulate thp on your nagnificont success. An hour in the air marics a historical occasion.

Graham Bell.

Curtias to Baldwin.

(About motor: for Plying Machinea).

Harmondaport, Yo $\mathrm{Y}_{\text {os }}$ Auge 26, 1903:- Your acheme for an upaide dow engine is all right. However, for light eonatruction, eylindera should not be placed in line. I as now aatisfied that nine connecting rods ean be attached to one crank ahaft and an air-cooled engine of about tso pounds per horse-power fich will cool conatantly would reault. por larger cylinders, we will
have to use watereoooling and the upside dow buainess mitht come into play.
closed crank casea have many advantages on anall ongines. The open asaes would be the thing for 50 to 100 horse engines of four or nore cylinders in line. At any rate the suggeation is good and we will keep it in nind.

I an anxious to know that you are doing. We seon to be getting along vary alowly here. I must aay, however, that the number 4 ia gaing to be a finished article, and will have ne home made appearance. We expect to fly the June Bug again tomerrew having put new ribs in. The old ones straightened out until she refused to R1y.

Our man over at Ithaca has been trying his luck, but his luek has not been good so far. I understand he went 40 feet.

Under moparate cover we are nailing a print of the Peerless. You will note it has grown some.

We are working hard on a 50 horse, 6 cylinder, wabercooled. Can you give me an laea of what engine will be wanted at Baddeck. G. H. Curtiss.

(About Herring's Yethod of calculating horse-power)
Hamondmport, H.Y.e Sept. 3. 190s:- Itr. Herring told ae that he could reckon the horse-power of his ongine in this manner:-

Sake the apeed of your machine ohile driven by your motor, in feet per second; muleiply this result by the push of your propellar in lbe., and divide by 550 to roduce it to horsem power par aecond, and this gives you the required result. Yor the propeller, it was found by Maxim, produced the swe push when advancing that it did at standstill in a sling (9), and the diatance the machine advanced in a given time would dopend upon this push (for the same nachine): Honce the product of feet and 2bs. would give horse-power if divided by the proper constant, 560 for ft lbs per second, or 33000 for ft lba per minute.

How apply this to our nachinet- Speed 40 niles er hour $=40 \mathrm{x} \frac{5280}{3800}$ ft per second. Puah of propeller 210 lbs (aver) Hence horsemower produced $=40 \times \frac{5230}{3600} \times \frac{210}{550}=22.4 \mathrm{~h} \mathrm{p}$.
yow Baldain will ramember that we figured the horaem power of our engine by tuking into account 1 ts bore, stroke and coapreasion, and number of cylinders, as 22 to 23 horse-power; and the above method agrees with this reault.
J.A.D. Mecurdy.
(About Orville Wright's Machine).

Hermandspart, H.Y.e Sept. 7, 1903:- I have been down to Whathington for two daya, called there by a mossage fron Gen. Allan. I was lueky onough to arrive just in time to seo the Wrightst flighta, Thuraday and Mriday.

The firat flight ars rather ¢hort as Mr. iricht aaid he was unacoustored to the machine, and the levers seenod awkward for him. Me made a wrong move and headed for the tent, which necessitated inmediate landing;in this landing, with the machine tilted sonewhat, one rudder atruck first causing the machine to swing around aideways and broke the rudder off. The next day he did better, however, and rade as pine a landing as you would make on wheels. The launching device, Which includes a derrick, and a big weight which drops the pulleys and rope to give the initial velocity, does not seem to be very well liked, and I bellove that all who have ween our machine and the Wrighte" prefor our method of atarting on theels to skids.

I had some talk with Mr. Wright and nothing was aald about his patents on adjustable surfaces. He has nothing startling about his machine and no seerets.
(eontinued on next page.AdB).
 - ces-ide cr acher

$$
102
$$

有

$$
1 \mathrm{~L}
$$

oto nound hothe

He 3

\square
 4
 10 cos

the alack aide going out around the one which does the pulling. The engine is the ause they hed four yoars ago, being rather crude and not exceptionally light. Mr. Wright aita to the left of the engine just inside of the front gurface on a little eushioned seat, wich is large enough for twe.

Mr. Wright told me they intended to use but one prom peller hereafter, preausably to girmplify. Thia doublemchain tranamisaion they have weighs 100 1bs. more than the single propeller would.
gelfridge has boun ordored to st. Joaeph, Mo. to rly the Government airship at the coning maneuvers. After that he will probably fly the Wrightst machine.

Mr. and Mrs. Pairchild were out to the Plight, and I had a nice viait with them.

I enclose a brief deacription of what we have boen doing here since the last report.

> a. H. Curtias.
m. See report of Hamiondsport Laboratory AgB).

Curtish to Mra. Bu2.

Hormendenort, H. Yoe 3ept. 9, 1903:-1 had a short, but pleaaunt, visit with Mr. and Hrs. Mairchild in Washington the other day. I was there for two daya in rosponse to a rse saage from Gon. Allen to get the Governmont's motor reaty for the 8t. Joneph, MO. tournament.

One of the Wrighta made a 1ight oach day, the pirnt and only two they have medo ao far. The firat day'e flight was marred by a bad landing hich broke one of the akids. The aecond was better lasting for over four minutea. It is plain to see thet they have nothing new, or better than we. I wrote tra. Bell deacribing the machine.

Our number four will be, I believe, both better in appearance and in results than any yet roduced. The new engine will have power and endurance for long continued flights, and we hope to make new records as soon as it is roady.

We have been experimenting with the June Bug and have gotten good reaulta without the tail and with a new front contral. Under separate cover I an mailing a print ahowing this new control.

CURTIS昜 90 BEET.

Hamendaport, H.Y.ع Sapto 11, 1908:- Hxplaining our neasage of yesterday, wish to say that as the weather was Pavorable and a number of out-of-town people wore desirous of seeing a flight of the "June Bug", I went to the track at six otclock in the evening, took the machine out, and flew for the first time with the new rudder and front controls as per the illustration.

The intereating feature of the filght was the fact that I had no sooner gotten in the air than four cylinders ceased running; aaused by the braeking off of the gasoline pipe wich feeds the four cylinders on one side. This pipe had been reeently put in by the boys as they thought the old one might be too mall. The big one did not atand the vibrstion I knew immediately what had happened, and thought it would be a good opportunity to see how noar I could coase to plying with only four cylinders running. To my surpriae, I kept on going and I made a good half mile, including quite a turn, with four of the eight oylinders workinc, wich means that less than half the power was being developed. The nuriber of revoLutions did not deerases to the save extent, as the apeed was over thirty miles an hour, and the propellers turned much more easily than when standing.

The last Bulletin has been reecived and contents gone over earerully. I ahall prepare to be present ut the meeting called for Sept. soth at Beinn Bhreagh, with wy report.

The aumary of the experimonts to date on the totrahe edral aerodrome, and the prospects for the Ho. 5, are moat
intereating and inatructive. The recent flight of the ojune Bug" with but four oylinders running, Mr. Wright's flights of an hour alone, and ahorter time with Mr. Lahm aboard, furni ah data as to the power required in aerodronea of this type. By making deduetions, required power for the tetrohedral-cell structure inay be obtained with reasonable accuracy.

With this information Curtiss Co. would be villing to undertake construction of a moter of surficiont power and licht enough weight to accoraplith the purpose. The ongine for Ho. 4 will develop 50 H. P. and $^{\text {weigh, complete with the radiator }}$ and water, about 225 pounds.

G. H. Curtiss.

BALDITH \% CURTISS.

(About plans for Aerodroze No. 6).

Beinn Bhrasth. Hear Baddeck, H.S.e Sopt. 14. 1908:- I want to give you a little idea about plans for samodrone Ho. 6. We hope to put this machine in the air in a new way. The serodrone will be fitted with a boat instead of on wheels or runners and we hope to get enough speed over the water to onable us to rise into the air. At present all our efforts have been concentrated on the pirst and what seems the nost difficult part of the combination, a auccesaful hull. If wean fet a hull either by the use of hydroplanes or aeroplanea or both, which will make about 20 miles an hour, I think we can asally ovolve an aerodrome of the water-fowl type wich will rise from and land on the water.

As you know wo have built a very light hull to wee what speed we can get over the water. The hull itself is a long narrow shell with very easy lines and depends upon two out-riggera for atability. She is 20 feet lone by 1 foot 3 and carries her maximum beam and diaplacenent seven (7) feet from the bow. The bow itself has a flat over-hang to keep her fron diving under the influence of the high ine of thrust made necessary by aeriul propellers.

This boat offers emurkably 11 ttle rosistance and coos through the water very cleanly with little or no wavemanking resistance up to 10 miles an hour. We towed her at various apeed taking the towmine pull as the measure of her realatance. The results of the towing experiments led us to expect a apeed of about 16 miles an hour with an 30 1b pull. She was then fitted

With an aerial propelier 140 em diameter and 2.5 m pitch, and the ilttie four cyilnder engine we have here. This gave us about 85 lba thrust. The boat was then tried and with the ongine working well made 15 miles an hour. At a speed of 15 milea an hour, which is excoptionally high for a hull only 20 ft long, the wavemaking effeets were guite narked and it is doubtrul if very much higher apeods ean be obtained even with greater horse-power unleas we reduce our diaplacement. This can be done efther by hydroplanes or aeroplanes. The hydroplanes would seen to have the advantenge in coapactness and pesaibly in efficiency, but the aeroplanes will give us stability and of course, will be a necassary part of the full-fledged water-fowl aerodrane which we hope to develop. In the few experiments wich we made with the directly driven fropeller, the torque made itaelf felt and the elevated poaition of the engine led us to leok more or less anxiously to the future stablilty of the machine ahould we lift out of the water. Stability calls for two changes, (1) the lowering of the engine to keep the conter of gravity $20 w$ and (2) the elimination of torque action by the use of two oppoaitely rotating propellera. Wo installed your mitae-goar reveruing mecheniam and lowered the engine about 2 rt . The propellera we are using now are 2 neters dianeter, and ubout if ft pitch. This geared 4.4 to 1 does not aeam to load the ongine aufficiently as $1 t$ will turn up 1700 rym and a thrust 15 only about 120 2bs. What apeed we will get out of this has not been deternined, but it does not seem that the thruat is satiafactory and we will try differont propeliers or aifferent gearing of the same propellers until
we get a better reault before trying the boat over the water.
The aero-surfaces we have in mind will be of the oionos type you are faniliar with. We chose this because it seems more efficient than any we know of at present and until we get into the air wo do not propose to worry over stability. It w111 be made of meter or meter and a half cells of one-hale inch fish-shaped amsterial wired laterally in a way we have found most efficient in small 50 mm cells. The corner pieces offered sone little difpioulty for neat construction but we are now raking then of alvinum after a pattern got out two years ago for metallic cella and wile improvements can doubtleas be made upon them thoy will do very well for our pirat structure.

As soon as we get a little more inforization froz the behavior of the Dhonnas Beag te intend to build a longer one wich will be the body and hull for aerodrome yo. 6. We oan build a hull 30 ft long wich will be vory strong, and give adelrable rigialty to the attachernt of bow control, welghing not more than 100 lbs. If the ongine and aero-aurfaces are placed about one-third fron the atern the bowmontral can be placed sbout 20 ft in advance of the front edge of the supporting aurfaces. The arrangenent for the front control has not been decided upon yet but I would like to see both up and dorn and right and loft steering accoryplished by it. We have in mind a universal frontmcontrol either anuing in gimbals or in a ball and soaket joint; but perhups this. wlll be a little too caiglicated and we may resert to a doublemecker witha right and left rudder amung betwoen its aurfaces. Hydroplanes so far have boen vary 41 scouraging. We have used large wooden
planes and amall netal ones. The metal oncs are atopped sonewat after the fachion of a vonetian bilnd.

I enclose a draving giving a crude idea of the nature of aerodrome Ho. 6 se Par an developed. F.

Thon Jusi 420 grpe. 2,2908 by 0 . H. Curtises Director of Beperiavents.

As we have beeocie more protiesont in manding R2yingmachinea, and doalie to make longer flighte, it is thought advianble to rit the nuxiber 4 with an engleve huving a auplua of power, and a poaltive coosing ayatem. Such a bype of enging would ultinately be neoesany on all succeasfix :nchines, thorofore, wo have decided to buisd and equip the nurber 4 with this notor.

It is an oight eyilndor, wherwcoolec, with a $35 / 4$ bore, and four ineh atroke. It will weich about 260 1bs and De rated at 50 il P . Our shopa are running nisht and day on this motor, for wich the mehine is pracosioally ready.

During the conntruction of the numbor 4 , sories of experiments have beon carried on with the gld "June Bug". with a Fiow of incorporating any iryrovements we oould make in the 2atest mohine. The tndi has beon ontirely resoved, one aurrace at a time. The ronoval of the uppor surface seoned to have little erfeot, but with both aurpacas taison away, and the frase only roralining, there is a marised difference in the handsing.

Both Hr. NeCuraly and I rode it in this way making short flighta. Arter the flrat slight wo beowne more acoustono ed to $1 t_{\text {, }}$ and IAnally loarned to keop it on very evon keal, and with the frameworts of the old tail ontiroly ronoved we have turned in a manilier cirole than botore. The princigal ude vantige of roweving the task is the ineronse of apeod, and it was docided to use no tadl on number 4.

To offouet the alight instability a new front control ham been made, and placed $\mathbf{\text { m }}$ feet formard of the main aurface. This control has two surfaces 30 inches wide and elght feet long.

A shart flight was made last ovoning in which it appeared to work nicely and be a good improvement. Oring to the wind no turns were atterptod.

Another axperiment was made in connection with the surfaees. This was to do awny with tho reverse curve. The oritinal ribs had becone flattened, making it neeessary, if further ilighta were atteraptod, to mako new ribs. In doing this we ohunged the form, and fitted ribs wich were atraight axeapt for the usual eurve at the forward ond, wich was alientiy inereased. An imprepoment both in lifting and in gilding mas ingeadiately perceptible, G.H.c.
wh. This repart was unclosed in the letter from Curtiss to Bell dmted, Sept. 7, 2900. A.G.B.

WORE OT BETITS BHRTRACH LABORATOEY By Wh. Y. Bedvin, Superintendent.

All the sections for aerodrome Ho. 5 are made up and beaded wth 11 ght beading and the whole has been aseembled inte a machine and the ridge is beaded. I am now getting material ready to start on the main beading on the apparatus. (Photograph appended).

Ve have under construction the full sized model of the beading sticks Por conter part of machine. This is made up for the purpese of atudying the strength, etc. of the eection.

We have the double propellers set up on the Dhonnas Beag with chain drive from engine to propeller ahaft. Soveral experinents with these propellers show a pull of 100 1bs. againat a pull of only 80 lbs with the single propeller.

Fe have men at work on a model of Ho. 6 aerodrorse, and it is progresaing rapidiy.

Have Mr. M. C. MeTean at work on an idea of hia ovn Por a propelier that can be expanded during rotation.

Trying an experiment in onlarging photographa for Bulletins. I have had teated Dr. Bell's fleurescent sereen With the X-Ray apparatus at Sydney and found it in cood order.

I an making a new pair of double propellers for the Dhonnse Beag; have just started on these torday. The exact dianeter and pitch hes not yet been decided upon.

The hydroplanes with the extra blades on are ready for attachnent to the Dhonnas Beag. (photegraph appended).

Yave the zen at work on the Gaulariota angine which was oont to us in bad rapair. Vill have the boat out in a rev daya now.

We had the pleasure of a call from the Mova Seotia Press Aasociation on the 17 ih at the Laboratory. There wore about 15 in the party. W. . B.

 wth hydroplanes. The hydroplanes were made of iron about 5 3ands of an inch thick being euperposed sonewhat after the fashion of a venetian blind (aee photograph Bulletin IX p. 2is) Three seta of planes wore ueed, two forward and one aft. Hach set carried two planes 25 cm wide, and 4 cm deep. this gave a total hydroplane surface of 600 sq em.

The planes were set at an sugle of 5° with the deck of the boat. This gave them a slightly greater angle of in eidence owing to the fact that the boat trimmed somewhat down by the stern when under way.

There was a froah wind blowing down the harbor when the boat was launched shortly before five otolock. Ingine was started and boat released. She soenced slow and aluggim, the hydroplanes and thoir attachnents making a great ceal of puss.

Ho very satisfactory observations an to speod or lift of hydroplanes were possible, as the boat exchibited a narked tendency to swing off to starboard, and for some reason would not reapond to her heln. The ongine had to be shut off te avoid going ashore, and a new start was made. Thin time fram the middle of the harber. Howctly the sume manuever was rom peated, and experimonta had to be givon up as the boat would not steer.

A lot of eel-grass collected on the planes, and this undoubtediy raduced hor apeed and may have had something to do with the bad ateering.
sept. 3. $190 g$: Tried Dhonnas Beag with hydroplanes arranged as before. Rigine woriced nieely. Ho wind and mooth water in harbor. The forward hydroplanes snade a eroat coal of fuas, aplaahing tap a lot of vater $u l l$ over the boat. About half woy down 200 meter course engine stopped auddeniy, (probably due to water short circuiting battories). Host showed aome marked tondenoy to steer off to starboard, so towed her boek and hauled out for inspection.

Planes were slishtly twietod in a way which mould count for her ateering to starboard, and so were atraichtened up. As no lift had been perceptibie in previous oxporiment we tried planes at a much ereater angle, (inerensed from 5° to tum bout 25°). Boat now steered well, and return trip mas made. Bngine worked well, but speod of boat was narkedy slowar thin before and no lift was manifest.

Sent. 10. 1908:- Double propelleris were finiahod on Dhonnas Boag tomday (soe photograph Bulletin Fo. X1 p 34). Boat soem ed to settle silghtiy when put in the water, and when ongine was atarted up suddonly began to sink. Boat had to be hauled up; found vibration of engine had oponed up long erack in bottom, which was badly wurped. Buperiments had to be postponed.

Sept. 12, 190.s:- The Dhonnas Beas has been repaired in hopea of making her whter-tight. Jigine fitted with double propellerg; experinents mithe at aserodrone wharf to toat the pul2. Propele lerz are 2 metors in diamater with a pitch of about 8 roet, probably $222 / 2^{\circ}$ at tip akeleton form.

Brp. 2. Jogine turned ovar 1700 rym. douring of prow pellere mas 4.4 to 1; mactimum pul2 117 Lbsj stoady pull of

115 2bs, vibration was very great, had to atop experimenta to stiffon up ongine-bed and propeller supports.

Hige 2 Same gearing and propellers as before; pull navimum 210 Iba ; steady 105 Lbm .

Mxp. 3 Maximum pull 105; ateady pull 100. Boat found to be still leaking. Roxperimonts had to be given up. Sopt. 16. 1908:- Tried thruat of double propellers on Dhomnas Beag aith a view to getting some higher efficiency before making a trial over the water. Propellera goarod 24-9 about 2.7.

Bop. 1 Maximum pull 100; steady pull 00 ; engine not tuned up.

Mop. 2 Haximun pull 110; ateady pull 200.
Expeq 3 Masmiux pull 100; steady pull 100.
Hop. 4 Thought we would try effeet of taking off one propeller, so unahipped after propeller which was the one airectily ariven rotating in the save sens as the ongine. With only one propelier the ongine apeeded up. Maximun pull 77.7 steady pul2 70.

Hop. 5 Put on beth propellera again and took rotations and yuil. Maximua puil 100; stoady puli 100; rotations 487 in 30 seconds equals 974 rpm.
ITxp. 6 Thought we would relleve the engine of sone of its load to try and get more speed on the propellers. Cut off a little more than an inch from the after edge of prom pellers, and took rotations and pull. The ongine seensed to work as well as before, but for some ranson ald not turn the propellars any faster in apite of their redueed area
and the pull fell off considerably. Meucimun pull 90; steady pul2 $85 ;$ rotations 487 in 30 weconds eguale 974 rpm . We decided to have a trial of the Dhonnas Beag on the water just as the stis, before we logt any more thrust by further experiments. started off down the 100 mater courae with a five or $\begin{aligned} & \text { ix } \\ & \text { mile brease. Did not have the to advance sparis to apead }\end{aligned}$ the ongine up before being woll started on courge, so let har run course with retarted spark. 100 meters in 20 seconds. Turn ad around and came back agningt the wind with engine speeded up. 100 meters in 16 seconda.

Exp. \& Rris time had the ongine going full speed both ways. Tith wind 100 notera in 15 seconds; againat wind 200 metors in 23 soconds.

It was surprising how Iittlo effedt the apeeding up of the engine made. The thrust , ith the engine spoeded up was probably 50 , mare than with ongine running siovny, and yot there was only 3 seconds difference in speed of boat in 200 meter course.
(nit

Broad and Arch Stgoc Phil. Sept. 2he 1908:- I beg to acknowm ledge the receipt of your kind favor of the 26 th ultimo, and appreciate your consideration of the matter. I have constructed the deck of a mall dirigible to mich the gyroscope is properly attached, and subjected it to teats in a roon, and it certainly bears out my theory as explained generally in ry patent.

Theae amall preliminary teats that I have made indicate very clearly to ne and to several Ingincers who have Fitnessed then, that I have solved the problem of control of a balloon. I should be much pleased to hear of the reault of the diacuacion then the matter has been brought before the Aasociadion.
Ruasell Thaver.

A Letter from Mr. Orville wient sckzownedging reeeip of Dr. Bell* a telegram and thanking the terial moperiment Azsociation for their measage of congratulation has been received. It is impossible to insert it here, os Dr. Bell carried the original with hin in his Fote Book to Washington C.R.C.

POSTSCRIPT: by Charlea R. Cox.

This Bulletin is issued without Dr. Bell'a last reo vision, sis he and Mr. Baldwin left for Wathington before it was completed.

I append telegram aent by Dr. Bell fron Grand Marrows, N.S., as he was boarding the train for Washington, to Curtiss and MeCurdy, in relation te meting of the nombers of the Aarial Kxperiment Association at Vawhington, D.C., also telegrame announcing the death of the Becretary of the Aerial Experiment Amseciation, and expressions of sympthy received.

Telecrang.

To Curtiss and MoCurdy,
Hatmondsport, Y.Y.
Grand Morrorts. MeSoe Sept. 18, 1908: Let us hava a meeting of the Association in vishingtion as soon us we can all reach thers. Too stunned to say more at present.

Grahan Bell.

To A. G. Bell.
Baddeck, N. 3 .
Whathington, D.C.e Sept. 17, 1908:-Vright aeroplane wrecked Bo-d.ay. Propaller brokon; IथL over one hundred feet. selfridge aeriounly injured. Urightes lag broken.

Char es Bell.

> To A. G. Bell, Baddeck, H ,

Washington, D.Cee Sopt. 27, 1908:- Poor Fom died tomight of brain injury in wirecocd agropiane. A new propeller broke. Wright atopped engine, but aeroplane pitched forward and dove 50 feet. Wright broke thigh and two ribs. He will recover. Machine completely wrecked.

David Pairchild.

> To A. O. Bell, Baddeck, H .s.

Yow Yorka M. Yo, Sept. 28, 190日:- P2ease accopt deepest sympathy in 1003 by Association of Selfridge.
R. L. Jones.

To A. G. Bell, Baddeck, \%.S.

Hamondaport, N.Xe Sopt. 18, 1908:-Selfridge died oifht P. .1. Iast nle
G. H. Curtisa.

To Prof̈. Bell. Beddeck, N.S.

3ydnoy, M.So, Sent. 18, 1908: Can you aend briefiy particuIaris and stateinent regarding death of Lieut. Belfridge at Waahington.

Sydney Record.
To Raitar Sydney Eecord, Sydney, \$.S.
 Ier't to atiend Tuncral. Melegrams received state a new proo peller broke. Wright stopped engine but aeroplane pitched fore ward and dove fifty feet. Selfridge died aight P.M. from brain injury. Wright broke thigh and two ribs, but will reoovar Although selfridge vsis only twenty-sevon he had already diam tinguished hinself cormanding United States larines in 3an Franciseo oarthquake; ascended in Dr. Bell's manocarrying kita "Cygnet', a feat never before performed. The White wing, the first A. f.A. aerodrome vms built under hia direction and flew suceessfully. His lons great misfortune to A. R.A., and aerom nautios generally.

1Krg. A. Graham Bell.

Washington, Dofor Septe 16. 1908:- We were not there, but Uncie charire, cousin (bstee, Mr. Lathrop were. Tomes parenta coming; funeral on their arrival. Wright inproving. German Taperor eabled aympathy to Sclfridgets. Have wired Charlea. Fom unconseious froin first. Real cause of accident atill obseure.

David Pairehild.

Letter.

To Mr. Alexander Graham Bell, Preaident Ari. Aerial Fxperimental Ass.,

On Train, Egydney Hifer" 17o. 86, Hav alasgoz, Hova Scotia.
 Viait or yesteraty to Beimn Bhratigh, a now and apecial intarm eat in the problem of Aerial Navigation, and your oxporiments in that direction, and results ao far obtained, we desire to convey on bohalf of the Yova Sootia and Canadian Press Association our deep sympsthy in the loss of your friend and comworicer, Lowatenant Thomas Selfridge, Becretary of your Aasociation whose iffe was sacrificed yesterday in the cause of aerial selence.

At the satne time we with to express our appreciation of your thoughtrul courteay in showing us so much during our short visit.

On behalf of the Fova Scotia, und Canadian Press Asm sociations:-

Fred R. Cox, Member Rxecutor, Nova Scotia Presa Ass.
C. M. Young, Meraber Receutor, Canadian Press Ass.

