The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the inages in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculié

Cover title missingi
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/ Encre de cowleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texse, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normaie de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraisonNasthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

CANADIAN AGRICULTURAL JOURNAL.

Vor. III.
MONTREAL, AUGUS'T $1,1840$.
No. 3.

We have so often denied that the poor of England pay a tax upon bread for our advantage that it requires some proof from us in explanation. From the returns subinitted to the -Imperial Parliament, it appeared that the average duty paid on foreign wheat from the passing of the Corn Laws in 1815 to the year 1843, was five shillings and some pence per quarter. Canada grown wheat was, we believe, during all that period subject to a duty of five shillings sterling per quarter. The amount of encouragement, therefore, to the Canadian farmer was very trifling indeed, not amounting to one penny per bushel. During the same period there was a heavy duty on Colonial salted-meat, cheese and butter, nearly equal to a prohibition of these articles. But in addition to these duties, the high freights paid for exports of agricultural products from this country to the protected shipping of Britain enhanced the value of food to the poor without profiting the Canadian farmer. It is easy to make assertions, and denounce the Corn Laws as an injurious and oppressive tax upon the poor in favour of farmers, but if the state of the case was properly investigated, there is a class of persons that comes between the farmer and other producers, and the poor laborer, that are the true taxers of the food and other necessaries of the poor, and we hesitate not to say, that the free-traders generally belong to this class. It is not at any time the prices that farmers obtain for produce, except in case of failure or shortgess of crops; that would be found oppressive upon the poor, but it is the large profits that other parties require, who come between the farmer and consumer, and who would desire to purchase in an open market of free competition, and sell in a protected one. When men come honestly forward and call for the total abolition of every law that restricts the free circulation of the productions of the earth and of man's industry, we shall be disposed to give them credit for their pretensions to be freetraders, but certainly not before. Maintaining duties for revenue, or any other pretence, upon oncic article, and taling. it.off another, is contrary. to the very terms-free-trade and to every
priniciple of justice and equity. A bushel of wheat when fimally converted into bread, sells for more than double the price the farmer obstained for it, and thus the miller and baker, who are free from foreign competition, obtain more for their labor than the farmer gets for his labor, land and seed, and we cry out against the farmer for his covetousness in making bread dear for the poor. The brewer sells the proceeds of barley and hops at the same increased price over what the farmers obtain for these articles. Every article of produce and manufacture is in the same or greater proportion enhanced in value by those who traffic in them between the producer and consumer, and yet the farmer is accused for desiring to have food dear. There is not a class of the community, here or elsewhere, so ill-paid as the farmer ; and the only advantage he has to make up for hard work and small pay is, that he enjoys the clear pure air of the country, and is continually surrounded by the beautiful works of the Creator, instead of the impure air of cities and towns, and the works of man. This is certainly an enjoyment that is not to be valued by pounds, shillings and pence, or that would be exchanged for pounds, shillings and pence by any true admirer of the beautiful works of God. We should not occupy so much of this Journal in the discussion of this subject, but that we apprehend that the contemplated changes in our laws and system will produce great confusion and embarrassment; because nothing short of totally abolishing every restriction on trade, commerce and industry will be doing justice to all classes and interests, and how that is to be effected, and a sufficient revenue raised, is beyond our comprehension. As we have repeatedly observed, it is the most unqualified-injustice towards the principal interest in every country, to do away with every species of protection to agriculture, while there is protection continued to other intcrests. There is another product of Canada-timber-that is said to have been protected at the expense of the people of England, but if the real state of the case was examined it would be found that this protection was not of much advantage to the poor Camadian lumber-
man, who has all the labour, trouble, and great risk of bringing his lumber to the shipping ports of Canada. The price he obtains for it at these ports is very trilling in amount, compared to what this same lumber ultimately sells for to the English consumer, and all the amount of this enhanced value and price goes into the pockets of ship-owners and merchants. So that in reality the tax paid by the people of the British Isles upon our timber is not paid to us, but to parties who are fully protected by the English Navigation laws, and who are resident in the British Isles. It is very easy to say to the people of Canada, that the favour bestowed upon our producer has been a constant tax upon the British people; but we conceive that it is as easy of proof to show the, contrary. If by the late change in the Custom House laws all protection and encouragement is taken away from our products, why should we be prevented from taking our produce by the cheapest means of transporting them to a market of sale. We cannot perceive the justice of saying to us-"It is true we have taken away all protection and encouragement fiom your products, but at the same time we must insist upon being allowed to transport all this produce for you at our own terms, and for our own exclusive advantage. You cannot be allowed to employ any other meains of transport but protected British shipping." Now this is exactly the sort of freetrade that we think so objectionable, because it is not free-trade, and is not allowing to buy in the cheapest and sell in the dearest market. In.deed, unless all restrictions are done away, as well as the duties on provisions, we shall. be in a worse position than foreigners, because we can only bring our products to the consumers by the employment of British ships that are completely protected by the Navigation Laws of England, and , who can in consequence charge what they please for transport, and always have done so. The consideration of these matters is now forced upon us by the changes recently made in the Custom House Laws. We did not seek these changes, and those who have made them are accountable for all the consequences that must inevit.bbly follow. It is absurd to pretend thatso great an injustice would be expedient as to do away all protection to the products of agriculture, and retain protective duties upon every other article of consumption, and upon the ships that carry all description of products which we may buy or
sell. The agricultural classes, here and in the British Isles, are possessed of a degiee of power, if they will only exercise it unanimously and judiciously, that will be much greater and more irresistible than was ever possessed by the Corn Law League, who have now dissolved themselves on obtaining the repeal of the Corn Laws, and are perfectly content that all other protective laws should be retained. Let agriculturists now unite and demand free-trade in all other commodities as well askin their own products, and they must succeed in obtaining this common justice, which is their due. They desire not to tax other classes for their benefit; but neither will they submit to be taxed for the benefit of others.

LECTURE ON THE CHEMICAI COMPOSITION

 and Nature of manures.BX J. C. Neshet, f. G. s., 3I. C. S. I., \&C., ov the AGRICUEtural and scientific school, kensington, london.

(Continued.)

The substance called chalk, with which you are all so well acquainted, contains a large quantity of this carbonate acid, which can easily be liberated by means of a stronger acid. I will liberate a little from this chalk. I will put some chalk into this jar with some water, and pour in some spirits of salt; and you will find that the gas will at once become liberated. This gas, I should tell you, will not support flame: you see perfectly well that this candle is now burning brightly; bnt if I pass the candle into the vessel of gas which is now being liberated from the chalk, it will at once be extinguished. This gas-this carbonic acid gas-which you now see generated from chalk, is the same that is produced by the fermentation and decomposition of all your manures. I will explain to you how it is that this gas gets to the bottom of wells and vats: it is simply from this reason-that it is heavier than the atmospheric air. Now, I will make a little more of it: I have now a sufficient quantity to extinguish this candle. This gas being nearly twice as heavy as the air, I can pour it out of one vessel into another with the greatest ease. I have now poured some gas into this vessel, and you see by pouring it out upon the flame of the candle 1 have extingished it. (Experiment performed).
You cannot see the gas itself; you cannot behold it; but it, nevertheless, exists, and you can see its effects. I will now show you a property whicls this substance has of giving to lime water a white colour. You perceive that as soon as I pour a little lime-water into the vessel containing the carbonic acid, there is a curdy precipitate; and this precipitate is exactly the same substance as that from which I originally preparcd the carbonic acid, viz., carbonate of lime, or chalk. From the lungs of man, and other animals, the same gas is given out as that which was evolved by puttiug the acid upon the chalk. The very gas which the vegetables require for their growth is given out from the lungs of animals, as you will see by a very simple experiment. I will take this glass vessel of lime-water, and, with a tube, breathe the respired air of my lungs into it; you see, that there is the same white precipi-
sive proof that the gasses are identical (applausc.) The same white precipitate may be obtained from the gas produced by burning paper. This is the very substance which the plants require, and the air is the great receptacle from which they derive it. Now, nine-tenths, or I might say nineteen-twentieths of the substances of your crops are derived from the atmosphere. The charcoal they derive from carbonic acid gas; the nitrogen from ammonia; the hydrogen from water.

The mineral ingredients contained in the soil are several : you see them on this diagram:-

Constituents of Soils.

Potash,	Alumina,
Soda,	Chlorine,
Lime,	Fluorine,
Magnesia,	Silica,
Iron,	Phosphoric acid,
Manganesc,	Sulphuric acid.

Of these bodies Fluorine, Manganese, and Alamina are found in plants in only minute quantities; and it has yet to be determined whether their presence is essential or accideutal. Silica, or soluble sand, is found in most plants, and Phosphoric acil (the base of bones), united with Lime, Magnesia, Potush, or Sodla, is found in the seeds of all plants yet examined. Soda is found in the ashes of all sea-plants; and Potask can be produced from the ashes of most land plants. Magnesia is the base of Epsom saits. Lime everybody knows. Iron is also well-known; it is found in plants and the soil generally in the state of the red oxide, or rust of iron. Sulphuric aciel is made of sulphur and oxygen, and is well-known under the name of oil of vitriol. Chlorine, united with hydrogen, constitutes muriatic acid, or spirit of salt. Common salt contains Chlorine and Solda. Every plant will, if possible, take something from the seil, to enable it to take something from the air. But if the roots cannot take that which is necessary: out of the soil, the leaves are not in a condition to take that which is required out of the air, and accordingly the growth of the plant does not go on in a satisfactory manner. Your object is not merely to get returned to you ear for ear, the corn which the land has previously grown -you want to produce a hundredtold by the application of every scientific improvement, and every new and scientific suggestion. One of the most important of the mineral ingredients is phosphoric acid (contained in bone-dust); and I will speak of this first as being of primary importance: all animals require it to form the base of their bones; and they must derive it frotm the vegetables upon which they live. If you attempted to feed them upon vegetables which did not contain any phosphoric acid, they would not grow at all. If the Almighty had intended them to live without bones, they might have grown upon fuod not containing phosphoric acid; but as that is not the case, they must have it. You have it in many soils; but owiug to the practice of mankind, which prevails, of buryiar bodies in places of interment separate from the land, and owing to the bones of cows, horses, and sheep never having been put back into the ground, it happens that bonc-dust is generally contained in the ground in much smaller quantities than is desirable or uecessary to give many plants this acid in sufficient quantity. For thousands of years the bones of animals have never been put back again into the land, and consequently there it a deficiency of this substance unless supplied by artificial means. When, however, a farm has got up to its proper pitch of cultivation in this respect, it requires very little to keep it so. Another of these important substances. is potash; it
is required in large quantities by most plants, and especially by turnips. It is this potash which enables the leaves to absorb the carbon or charcoal; and without a sufficient quantity of it, you will never get the carbon absorbed. Then lime and magnesia are both requisite, as both are found in the bones of animals. Iron, also, is found in the bodies of animals: you could not live without iron. By its action with the oxygen certain vital forces of the body are liberated; it is the oxide and peroxide of iron which are the principal agents in the circulation of oxygen in the system. Alumina, or clay, is found in almost all. zood soils; but, singular to relate, it is only found in the most minute quantities in plants. I have in one or two instances discovered a small quantity, but so very minute as to leave it doubtful whether it did not proceed from some of the impurities of the soil which had adhered to the plants when pulling them up. It has a great attraction for ammonia, and if made red. hot the ammonia will immediately be smelt. I wilt next touch upon silicic acid, or soluble sand, as a substance of very great importance to you. Now, glass is only a composition of silica and soda or potash. The stalk of whent, you have no doubt observed, has a glassy appcarance; in point of fact, it has a perfect coating of glass over it, which is produced: simply by the union of silica with potash or soda. The object of this conting is doubtless to protect the plant against the attacks of insects, and to strengthen the stem. There are two sorts of silica; one that is soluble, the other that is insoluble. It is with respect to these two kinds, something like the substance resembling coal which was found in a certain part ofAmerica. The persons who discovered it said, It looks. like coal, it smells like coal, it tastes like coal-it must be conl. But the only difference they could. discover between it and coal was, that the one would burn and the other would not (laughter); and the only difference between these two kinds of silica is, that one is soluble and the other is not. But silica is not generally soluble unless previcusly conbincd withpotash or soda. Granite rocks contain it in large quantities; and in these rocks you will see pieaes of white substance, in six-sided crystals-this is feldspar. The granite rocks are the oldest rocks we have, and they contain about 17 per cent. of feldspar, and 60° or 70 of silica. The carbonic acid in the air has a great attraction for silica, and readily unites with it. All our river waters contain soluble silica; all your soils contain some silica and potash which is not quite decomposed. It is the soluble silica that beconesavailable for plants; and the more rain you have, the more of it becomes soluble. The straw of your wheat not only requires a great deal of potash and silica, but also a great deal of bone-dust. In a wet or dampspring you will have a large produce of strar, and a small produce of wheat; in a fine season, on the contrary yon will have a small produce of straw, and a large produce of wheat (IIear, hear). Now, how does this arise? Why, probably in this way. Owing. to the large quantity of rain falling, there is a larger quantity of silica, disintegrated and taken up; as well, as an increased quantity of bonceust You get a double quantity of straw, and you get a double quantity of phosphoric acid taken up, as well as an increased. quantity of the bonedust. You get a double quantity of phosphoric acid taken up; and when the time comes for forming the ear, there is no bonedust left for the purpose. Now this is the reason why in a wet spring there is always a large supply of straw, and often a small supply of grain. This however, can be remedied by putting alarger quantity of bonedust into the land I now mish to refer you to your own farm-yards. In
shall address you in plain and familinr terms. I do not want to play the orator, but rather to take the part of the tencher, if 1 can succeed in so doing (checrs), I wish first to speak to you about ploughing.
There are all kinds of plougling, the use of fallows and the use of draining. Now these operations are intimately connected together. In the first place, what docs the plough do? I will show you. Every year the atmosphere nust make soluble a number of the chemical substances to which I have alluded (Ineed not go over their names again), to be taken up by your plants; otherwise those plants will not grow, The atmosphere is always acting on the land. Now suppose it is acting on an acre of land, and you take the plough, and throw up the soil to a depth of six, eight, or ten inches. After you have done this, only perceive to what an extent of surfice it then operates, compared with what it did before the acre had been ploughed and when the upper surface only could be acted upon By thus onening up the laud, you let in the atmosphere; the soil is disintegrated, so as to set free the largest quantity of those necessary substances for the succeeding crop. I can imagine gentlemen suying, "If 1 were to stir that land to the depth of eight inches, I should never get any thing to grow." But could you not subsoil it first? (Hear). Messrs, Drewit, of Guildford, have actually ploughed into chalk, and made a soil for themselves, But they manure well, gentlemen (IFear). Ploughing is comparatively of very litthe use unless deep: it is perfectly absurd to see them in Norfolk ploughing to the depth ouly of two inches and a half, I think they are wrong, because they prevent the action of the atmosphere upon the substances of which I have been speaking. Now what do fallows do? Why the very same thing, they leave the land exposed to the action of the air, but by ploughing deeply you accomplish the same end. (A member observed "Fallows are pretty well out of fashion now") so that fallows are nothing more thanassistance to the plough. It is, however unnecessary; you can always do without it, except in cases where there are grat quantities of weeds to be cradicated and these should never have been allowed by a good farmer to get ahead. A spring fallow for turnips is guite sufficient; but a fallow in the carly part of the spring is all that ought ever to be attempted. For it is much better to have green crops and plough them in, than to have any fallow at all. Well, then comes the draining. Draining acts in two ways: one way in assisting the operation of opening up the land to the action of the atmospheric air, and the other in taking away the redundant water from the roots of plants. The water eithur arises front springs in the land, or it talls from the heavens. That which arises from springs is generolly best got rid of by boring; and that which falls upon the sarface, you do not want to take off the cream of the joke, or, what is the same thiug, the cream of the land. You want it to percolate; so that all the substances alluded to may let very little else than pure water go away. There has been a good deal of talk about the respective merits of decp and shallow draining. My opinion is, that deep draining is much the best. The marrow of the landlics between the drain and the surface: the marrow of these useful substances will with deep draining be retained, and the water will run away slowly. Draining acts also in another way. After you have made a drain, you will soon observe a great number of fissures in the land, this will be the case cren in the stiffest clay. These fissures rise up to the yery surface, and allowing the air to get in, the same effect is produced as by ploughiug. This is constantly at work'; as the water goes down the fissurcs are left open. Whius there is it con-
stant action of air and water-air and water which are of the grenteat bencfit to the plants of the soil, in liberating those ureful mineral substances (Hear, hear). Now the drains prevent an excess of water, which is a great object to be accomplished; for the moment the plants have had enough, that which remains and was useful at first, now begins to act as a poison. Drainitig is also highly beneficial in carrying the water of the surface of the land: if it lies uponthe surface of the land it has the effect of cooling it; and you allknow that you want heat. You well know the difference between what is called cold lands, and a warm genal soil (Hear) ; and this difference plainly depends upon the presence or absence of an excess of-water. If you have jour land covered or saturated with water the sun is employed only in evaporating that water instead of heating the land.
The nest point to which I propose to call your attention is the process of making mixens, and manures in general. Now these manures must consist of oxygen, uitrogen, hydrogen, and carbon, with the mineral ingredients before mentioned. Your manures are made up of vegetable matter, straw, and aninal excrement. Some people think-I have met with many people who thiuk that the lands derive great advantage from sheep being put upon them; they imagine, if they put a flock of sheep upon twenty tons of swedes, that these sheep have some unaccountable way of benefiting the land. Why, they cañot put anything upoin the land which they do not derive from the surnips. They have no power of making mavure theinselves; ley will in fact take something from the land. Twenty tons of turnips rotted in the land, would give nore manure than the shecp will give by eating the same amount of turinips upon the land 1 do not say that it is better to rot your turnips than to feed your sheep upon them, but I am stating a matter of fact in relation to the comparative amount of minare to be derived; and 1 repeat, that the whole of the manure which they can put upon the land, they derive from the turnips. When you use hay, or linseed, or oil cake in addition to the turnips, you are adding manure to the land, for the major portion goes upori it. These sheep, then, derive the whole of their manuring power from the food which they consume; bullocks do the same. Where do vegetables derive their sustenance? -From the mineral substances in the land; froin the air, and the principles of those from the air, are caitbon and nitrogen. The carbon is there in sufficient quiantities, but the nitrogen it is well to supply in the form. of ammonia. Your mixeus consist of fodder for the cattle, their excrement, \&e., all put together in a héap in your farm-yards. These vards are generally nide with a gente slope down to the horsepond; thein the: outhouses and sheds are constructed with the greatest ingenuity, so that all the urine may run away from the mixens; taking care that the whole shall be washed by the drippings from the outhouses, and that all the washings shall be drained off into the horsepond ("Hear.' and loughter). Why, I believe,-I know it has actually been conjectured by some people, that this misture, this part of the manure, which would have been invaluable to the vegetable when preserved, was beneficial to the animals that drank out of the ponds. Now allow me to say, that I believe that one half of the consumptions in catile arise from their drinking this abominable mixture : diseases of the lungs must be geenerated by drinking such a compound Putting this matter however, out of the question, this urine and this soluble matter which are thius washed away are the most valuable portions of the manure, By allowing these to run off, you take from your manute the potash, the soda, the chicf part of the phos-
phoric acid, as well as the greater portion of the soluble silicia, and all the ammonia, (which is quite soluble), and all the nitrogen compounds which decompose into ammonia. In short, at the most moderate computation, one-third of the manure is washed away and utterly lost (Hear, hear). The farmer in many cases, loses as much as half his rent by allowing the rain to wash away, that which is the most useful part of the manure. These soluble portions of manure are most easily taken away, and therefore they ought to be taken most care of; yet, acording to the general practice, they are allowed to run away, as if thes they were of no value. I wish to say, not only to the farmer, but to the landlord also, that the constructions of farm-buildings is a matter of the greatest importance to both. For those very substances which you allow, to be washed away, you have to supply either by the purchase of guano, oilcake, London dung, or some other substance. Mr. Warnes, of Trimmingham in Norfolk, has adopted an excellent plan for preserving his manures; he has sheds, constructed in the yards, open on one side only, in which the cattle stand with their heads turned towards the rack or manger, and their tails towards the open yard; cach beast stands in a sort of box (without being tethered), sunk about one foot deep into the ground ; the bottom is covered with straw ; and as the boxes get full, the manure is carried away and nothing is lost ; all the. liquid portions of the mauure, gets absorbed in the more solid parts, and the cattle are kept admirably clean. I went into these sheds myself, examined the cattle, and found that their hoofs were perfectly clean; in fact I do not think there is a better practical plan adopted than that of this gentleman. He sometime since published many letters on "Box feeding," and he has just published a work, "On the cultivation of Flax," which I can highly recommend. (A gentleman here asked Mr. Nesbit, whether he did not think flax growing injurious to the land). Mr. Nesbit replied: I do not think it is; and I know that is Professor Kane's opinion also. By Mr. Warnes' method; all you want is a box for each beast, two feet deep, with a composed bottom, and you then lose nothing. Nothing goes away, because there is nothing to wash it away. The straw absorbs all the liquid, for straw, bear in mind, will absorb its own weight of fluid Having now come to the end of my remarks, I beg to say that I shall be happy to hear gentlemen present, put as many.questions as they please; and it will afford me great pleasure to answer them (cheers). I always think myself, that the little discussions which follow the lecture are the best part of the business; because matters are suggested by different minds which might never occur to the lecturer on a subject embracing so wide a tield (Hear, hear). 'Before I sit down, however, I will say a word or two upon Guano. The value of Guann depends principally upon the presence of bonedust and ammonia; as to potash, it never contains more than from $2 \frac{1}{2}$ to 4 per cent. of that; this guano is the excrement of sea fowls, which feed upon fish. You' know of how much importance sprats and other fish are in the manuring of land, simply because they supply bone dust and ammonia; and in this respect Guano is a very important manure. But I want the farmer to save manure for himself. It is of no use to go and spend two hundred a year, on guano, and then let the best part of your manure run out of the yard. I do not think there are a hunfred farms that would not be benefited by the applicativi. of new manure. This sample of the best Peruvian Guano which is now before me contains 20 per cent of ammonia, and 20 per cent of bone dust; this other sample of Ichaboe guano, about 12 per cent. of ammonia, and
more bone-dust. In purchasing guano you are very likely to be taken in, unless you are very cautious. I have known some of the dealers to adulterate it to the extent of 34 per cent. When you want to buy do not go to the dealers at all. Unless satistied of their probity, but go directly to a respectable importer, and then you will not be cheated. There is another thing that I will advise, and that is never to apply guano by itself. I told you that guano contains only from $2 f$ to 4 per cent. of potash; now the ashes of peas contain 35 per cent., beans 21 per cent and wheat 24 per cent. of this substance. Consequently if you use guano constantly and by itself, you would impoverish the land; therefore, always put with it either salt-petre, or mitrate of soda, wood ashes, or other bodies of the same composition. Make it a rule always to mix your manures. The mere fact of mixing them is one of the greatest points next to being chemist enough to know the exact and proper quantities, Put farm-yard dung with it one ycar, lime another, and nitrate of soda another; changing each year, so as gradually to work the whole of the tarm into the same state. It is very desirable to equalise the state of your farm all round; there are very few who have their farms of equal guality throughout. But the best way to attain this is to make fiequent changes of your manures. Another very good manure is common salt : it is exceedingly valuable in many cases, especially where the land is sheltered from the sea. I know a gentleman residing near Guildford who has applied as much as 4 cwts. per acre of salt to his land, and says it is the cheapest manure he ever uses; it makes the a straw beautiful yellow; now nature disseminates salt to a great extent; and you ought to help nature in circumstances when there may be any thing to impede this operation. I have known all the windows and trees in a town to be covered over with a thick incrustation of salt after a storm, when the wind was blowing in from the sea; and in some cases salt will travel in the atmosphere as much as one hundred and fifty miles from the ocean before it is deposited. In conclusion, gentlemen, I beg to say that I feel I have placed this important subject very imperfectly before you (N No no). If however, I shall have scattered a new thought here and there, and conveyed any information which may be turned to account, I shall feel the greatest satisfaction in having met you here this evening (cheers)
J. A. Gordox, Esa: I think, gentlemen, you willall agree with me when I say that we have heard Mr. Nesbit's admirable lecture with great pleasure, and that we have also derived from it a considerable amount of instruction, (cheers). I therefore beg to propose that the thanks of this meeting be accorded to that gentleman, (renewe icheers).
Widman Jenne Esq: I have verygreat pleasure in seconding that inotion.
The thanks of the Association were immediately carried by acclamation.

Mr. Nesbit : Gentlemen, I beg to:return you my best thanks for the warm and handsome manner in which you have expressed your approbation of my imperfect efforts. I can only say that I am quite at your command, and I trust I shall have a perfect shower of questions (cheers).
Mr. Pope: When I have applied Guano, I-have generally also applied nitrate of soda or potash about three weeks afterwards.

Mr. Nesbit: that is a very good plan. With regard to arresting the loss of ammonia from your mixens, I will suggest, that if you will not follow the plan which I have descriked to you, adopted by Mr. Warnes, of Trimmingham, that you should make them in this
way: If you will have them in, the open air, lay down a bed of ditch-stuff, upon that put about a foot and a half of the dung, \&c., which comes from the cattle, and upon that seatter some gypsum ; then place another layer of dung, and add nore gypsum ; then place another layer of dung, and add more gypsum, and so on to the end. Observe not to have it laid too light, for if you do, it will heat, and may take fire. You must not make it toolight or tno heavy, but just light enough to keep it warm; if it gets too warm, press it well down. Yon should also have shoots or gutters in your farmyards to carry off the water. Where this is done I don't care so much about the rain of heaven, because the straw absorbs so much. In this district there are not more than 24 inches of rain in a year. In the north part of Lancashire and at Keswick, there are as many as 57 inches.

Mr. Pore: Manchester is very bad.
Mr. Nesnit : Manchester and London are pretty nearly on a par. In London there are 28 inches and at Manchesterabout 30 .

A Member: how often is found necessary to clean out the cattle boxes of which you were speaking?

Mr. Nesbit : about once in six weeks. You would be surprised at the condition of the animals whenthat plau is adopted so different from those which are running about the farm-yard. In fact there is no comparison between them. They were fed upon turnips and linseed, mixed with pea-haulm, \&c.

Mr. Pore: Mr. Warnes asserts that he can produce as much meat with six pounds of this mixture on his plan as he could with twelve pounds of oil cake on the ordinary plan.

Mr. Nesbit : If you were to expend as much money as the Duke of Devonshire has upon his conservatory at Chatsworth, I do not think you could much improve on Mr. Warnes' plan of sheds. Perhaps the cattle might be kept a little warmer by having the sheds closed in. If this were done in a manner consistent with ventilation, it would be an improvement, as at present the wind rolls in and cools them; and it would be better to have them kept in an atmosphere of a nice genial temperature. The great defect of Lord Torrington's plan is, that the ventilation is bad; and no system will answer where the ventilation is bad. It is highly important that cattle should be kept in well ventilated buildings. Why, a bullock consumes 79 ounces of charcoal, and destroys 13 hundred cubic feet of air, in a day.

Mr. Pope: I rather think it is better to have one side of the sheds open.

Mr . Nesbit: why you must recollect that if you do not keep the animal warm by artificial means, he will consume a certain part of his food, to keep himself warm, instcad of for the purpose of making fat: and it is much better to warm him with a pound of coals, than with a pound of fat, (hear, hear).

Mr. Dawn: you were speaking, Mr. Nesbit, of sulphate of lime or gypsum. Now, there is a general impression that where there is a deficiency of that you cannot grow clover, but I have not found that to be the case.

Mr. Nesbit: Wherever you have hard water, gypsum.is of no use at all-this you may take as a general rule; but where you have not lime in the soil it is of great use.

Mr, Dawe: I think too much importance attaches to the use of gypsum.

Mr. Nesbir: This is a question of some importance. You will recollect that I stated that sulphate of lime acted beneficially by preventing the volatility of an-
monia; but it acts directly in supplying one of the mineral constituents of the crops.
Mr. Dave: I have found the ashes of burnt wheat very productive. I bad a rick of wheat accidentally burnt, and I used the ashes for manure; the consequence was as good a crop as I could have had from guano, (Hear).
Mr. Nessir : Exactly so. Now does not that prove just what I have been saying with regard to manures? viz., the value of the mineral ingredients.
Mr. Dawe: You certainly could not have a better proof of what you have stated.
Mr. Nesmit: By the application to the land of the substances required by the plant, you make it productive. But if you use manure fot containing the whole of these substances, you will imporerish the soil. In the burnt wheat you had all you wanted.

A Memmir asked if there was not sulphuric acid in the ashes of wheat.

Mr. Nesist : Yes, a small quantity-from $2 \frac{1}{2}$ to 4 per cent.

Mr. Griffin: I very much agree with you in what you have said respecting the growth of straw. I have always found that in wet seasons I had a large quantity of straw, and a deficiency of yield in the ear.

Mr. Nesbit : You will always find that to be the case. Wheat only coutains 2 per cent. of silica, and the ashes of the straw contain 60 to 70 per cent., and in wet weather this is conveycd very freely from the soil to the plant. Of phosphoric acid the ashes of the wheat contain 45 per cent., and those of the straw only 10 per cent. But the straw weighs a great deal more than the car. The principal things for the growth of straw are silica and potash. They are derived from the land in great abundance in a wet spring; and the straw growing up rapidly, talies the phosphoric acid which would otherwise have gone into the grain. This happens from the straw beiny "first in the field;" and when the wheat comes to demand its share, where is it to be got? (Hear). When there is this deficciency in the ear, you will often observe that the leaves turn yellow.

Mr. Griffin : I have found that to be the case when I have used saltpetre.

Mr. Nesint : precisely so. If you use caltpetre you should use guano or a sinilar, manure.
Mr. Griffin : I do not myself think guano a very genial thing.

Mr. Nesmit: Where do you get your guano, pray? Now I an an apostle of agricultural chemist:y, and think nothing any trouble which relates thereto. If, when you are about to purchase guano, you will send me a specimen of it, I will analyze it, and let you know its precise qualities without any expense (cheers).
Mr. Pore: With regard todeep ploughing, may it not be bad economy in a wet seasson?

Mr. Nesbit : That is a. question, Sir, which I should not like at present to také upon me to decide. Mr. Warrington, of Apothecaries' Hall, took a bitter extract, and filtered it. through some animal charcoal or ivory black; and when this solution canue through, it had some of the bitter taste left. He then took some sulphate of quinine, and performed, the same experiment.. The liquid passed out perfectly pure in this instance, as in the former: in fact, the charcoal had retained all the original qualities. He then tried Glauber's salts and Epsom salts, and the result was the same. I therefore think that perhaps the capillary attraction of the carth will retain most of the essential qualities. For instance if you- send water through the land with 20 per cent of, salt in it, it may not contain 10 per cent. when it comes out.

Mr. Gonpon: What do you think of land producing wheat 18 times without a fallow? What composition of soil would that be?

Mr. Negmit: I cannot tell without seeing it, or knowing something of its situation.

Mr. Gornon. It is in the parish of Mere.
Mr. Nesbit: "Mere"-that looks like water.
Mr. Gormon: Oh, I will admit it is an alluvial soil.
Mr. Nesbit: There you come to the point at once. (Hear, aud a laugh). A friend of mine tells me that in the marshes of Erith and Dartford, whenever they put any manure on the land, they always diminish the crops. The fact is, the lands are, in hoth cases, supplied with both mineral and organic substances from the neighbouring rivers.

Mr. Pore: There are farms in Essex of the same character.

Mr. Nesmit: Yes, that is just on the other side of the river. There is no wore productive land in the kingdon, perhaps, than that of the Plumstead, Erith and Dartford marshes.
Mr. Pops: What do you think, Mr. Nesbit, of the sewage company?

Mr. Nesbit Why, Sir, I would not take shares in it (laughter).
Mr. Gordon: Mr. Smith, of Deanston, told me that they were about to bring down the sewage from Aberdeen upon a large tract of sand near that city, and convert it into a soil. Do you think that practicable?
Mr. Nesmit: Oh, yes, it is practicable enough; but the question is, will it pay? (hear).

After some further conversation, Mr. Nesbit announced to the meeting that his lectures would from time to time appear in the Mark Lame Express; and the members of the association then separated, cxpressing their warm satisfaction with the instructive addresses which that gentleman had delivered.

CHEMICAL AGRICULTURE.

Of all the subjects which, at the present period, occupy the attention of the scientific world, there is none perhaps so practically important to mankind as tnat department of chemical knowledge which has for its object the improvement of the productive qualities of the soil, and the increase of the amount of the edible produce of the land. Surely a greater patriot and philanthropist there cannot be than that man who, after years of toil and dangerous experiment, brings all his literary powers to bear on a question so vitally important; and he who is able by his scientific researches to make one acre of land produce one quarter of wheat more than had been gained before, ought rather to be lauded for his merit, than despised as an underminer of old established customs. Let us make a direct appeal to the justice and common sense which every agriculturist of England must possess, whether custom can always be relied on; if so, why do they so assiduously read those publications which profess to describe the greatest improvements of the day? why do they so eagerly snatch at suggestions for the amendment of the implements of tillage? The answer is uniformly the same-"We may improve the works which we have made, but we must not interfere with the operations of nature." If a man is sick, does he not send for the physician, or does he passively yieid up the dictates of his mind and give way under the adverse results of natural causes? this is not the case. Every faculty is strained, and every energy exerted to renovate the system, to supply the deficiences of nature, and to restore the body, which is the garden: of the mind, to its pristine vigour and beauty. This is
the case with the diseased soil. Sow wheat on the same land for many consecutive jears, and every farmer knows the result. The land at tirst yields plenteously; but gradually the crop falls off;-the soil actually becomessick, , and incapacitated to furnish the ingredients necessary to the nutrition of the wheat. The farmer perceiving this, abandons the idea sf sowing more wheat, so removes his seed to fresh land, where he may get an adequate return for his labour and his pecuniary outlay.

Were the farmer as well ocquainted with the abnormal changes which take place in the economy of soil, as he is with the general routine of husbandry, how much labour and how much money would be saved for the comforts of his houschold, which are now expended in support of his ignorance or his indolence! For in the present state of our knowledge e know for instance, that wheat will not grow for consecutive years in the same soil, because the stimulus to solution of those portions or ingredients of the soil which are absolutely necessany to its growth, is deficient, or beeause there is a real paucity of such substances. In either case, or in both combined, Chemistry comes Lirectly to our aid We apply manure, and thus supply at random the neccssaries to the crop. We use clectricity, and administer, in uncertainty, stimulus to the growth of the wheat. Now it is the part of agricultural and organic chemistry to substitute definite desigu in manuring for random fertilizing, and to replace certain stimulus by effectual promotion of growth. We propose now to consider briefly the different properties of the chemical manures now in use, as evincing the superiority over common farmyard dung, to which the agriculturists of England appear inseparably united by the bonds of custom and long-established experience.

Of all the varieties of guano imported into this country, there is none perhaps superior, reasoning from analogy, than that lately brought from the Patagonian coast. Its riches in ammonia presents the highest claims o the agriculturist's attention. I am informed by Mr. J. W. Hopkins, agricultural chemist, of Manchestcr, who has devoted great time and labour to the study of the fertilizing properties of substances in gencral, that the ammonia is in large masses, and especially adapted for the promotion of vegetable growth on account of its great solubidity, Guano is well adapted for the growth of certain plants but must not be considered as a universal fertilizer, for though it abounds in animal matters and ammonia it nevertheless is deficient in the principal salts, which are equally necessary for the production of a flourishing crop. Guano is not adapted for potatoes, turnips, mangel-wurzel, \&c. No manure can be perfect, unless it contain cevery iugredient that plants may require; nor is it absolutely necessary that such ingredients be mixed in the exact proportion in which they are found on analyses of such plants, for plants are endowed with a peculiar vegetable instinct, which enables them, by the spongioles of their radicles, and by means of an intricate process of endosmose, aud exosmose, to absorb into their system such principles as may contribute to their growth, and to excrete and reject those which would have a contrary tendency.-Numerous attempts have been made so to combine vegetable essentials, if I may be allowed the term, as to form a che-: mical composition adapted to the adequate supply of the deficiencies of soils, but in the majority of cases snch attempts have proved failures; for, in the first place, they have been palmed upon the agricultural world at such low prices that no chemical ingredient of any value could possibly bave entered in any quantity into the composition; and in the second place, the principal ingredient has been of such an evanescent

Abstract

character, that on a triffing exposure to the influence of the atmosphere, they have been altogether deprived of any fertilizing power which they might possess. I believe the Minguedo to be a compost the most exempt from what has just been stated, for I have seen its virtues tried, and know by analysks, that its intrinsic value nearly equals its price. I know that it contains, a large per centage of fixed ammonia, which I disengaged by adding quick lime, and then pouring water on the mixture. It contains also a good dosc of carbouic anid, which Y have set free by adding a few drops of sulphuric ucid. It contains salts of potash, soda and magnesin, phosphates of potash and soda, and several other ingredients indispensable to the growth of plants of all descriptions. To return to the object of this paper, I would urge all those who call themselves agriculturists to penetrate by observation and research into the mysteries of nature, not with the idea of diving into obscurities or metaphysical questions, but in order to obtain clear views in tracing nat tral results to natural causes : for we are assured that agriculture, conducted on scientific principles, will not only be more sure in its results, but nore economical in its details. That farmer who knows and hoperly understands the nature of chemistry, to the iniuprovement of the soil, will gain credit as a man of science, and save moncy by the purchase of such articles as can be turned to the best use. Thus the unscientific farmer now'might mix lime and guano, (which I know now to be done) whereas the chemical agriculturist well knows that he would lose, in the ammonia sct free, what he hod hoped to gain. I have little doubt that from the rapid strides by which chemical knowledge is gaining upon the darkncess of old established customI have little doubt, I would repeat-that at no very long period from the present, England will see the sons of her soil sowing and reaping under the guidance of those immutable laws which have ever been found to preside over all natural operations.-G.M. Burton, Manchester.

MONTREAL, AUGUS' 1, 1846.

A highly respected correspondent has made some enquiries that is not very easy to reply to with any degree of accuracy, there is so wide a range between the lowest and highest returns of wheat obtained from land. We shall, however, endeavour to give the most correct reply we have in cur powertomake. 1st, Whatcan be calledanaverage crop of wheat per acre in Lower Canada, Upper Canada, and the Western States.

A fair average crop in Lower Canada, when the wheat is not injured by the fly may be from 20 to 25 bushels per acre, always provided the and is cultivated properly, and in good condition when sown. We have raised thirty minots per acre but on only one occasion. We know parties who have raised much more, but the averages we have first stated, may be readily obtained by good management, or merely cultivating and draining, in the way that wheat ehould always be cultiva-
ted. In Upper Canada, we know that much larger crops may be obtained on land that is summer fallowed, and sown in the "fall, 'but from all we can learn of the scarcity; and high price of labour, and other circumstances we do not believe that the general average of Upper Canada is much larger than may be obtained in Lower Ca nada, from the greater liability of fall wheat to rust. No doubt that in Upper Canada, very large crops are often raised under favourable circumstances; larger we believe than can be obtained under any circumstances in Lowèr Canada, but the general average we are convinced is not over twenty bushels per acre, and perhaps less. The same reply we may give with regard to the Western States; large crops are often raised under fortunate circumstances, but the high price of labour will not admit of cultivating so as to make the land produce all the crop it is capable of-the practiso is, to take up new land, and cultivate it, at the least possible expense of labour with oxen raised upon the farm, whose keep cost very little owing to the favourable climate Hence it is that large quantities of wheat can be raised in the Western States, not by large averages peracre, but by the cultivation of millions of acres.
2nd. What is the probable amount of wheat crop in Lower Canada, from 1832 to 46, and the same in Upper-Canada? From the year 1834 we have had the fly in parts of Lower Canada, and from 1835 their ravages have been general thiroughout that country. The consequence was, that with the exception of the tivio' first years, and the two last years, very little wheat was produced in Lower Canada, nothing near the quantity required for its inhabitants, We have often calculated the probable loss sustained by the ravages of the fly inLower Canada, during that period, and are fully persuaded, it could not be less than six millions of pounds, currency. In 1834, the produce of wheat, in Lower Canada was supposed to be from three to four million bushels, but since that period up to 1844, wie not believe it has not been near half the quantity, We believe, the produce:might be brought to:eight; or ten million bushels, very readily by careful cilltivation, and a suitable variety of seed.
3 rd. What will be the cost price of one bushel of wheat to the farmer in Lower Canada, what in Opper Canada, and what in the Western States? Estimating the value of capital employed in the land, the labour, and seed, in Lower Canada; it will cost at least four shillings currency per bushel,
and in Upper Canada, a shilling lees, perhaps, from what we can learn, of their mode of cultivation, harvesting and returns-more certain climate, and favorable period of the season for haryesting the crops, being much more early than inLower Canada. In the Western States we camnot say much of the exact cost of producing whent per bushel, but belicve they do produce it at much less actual expense than in either Canada. The reports of their mode of cultivation and harvesting, and requiring no fences, dry climate, 8cc., must lessen the expenses of production most materially, and particularly as no expense is incurred in maintaining the fertility of the soil.
4th. What is the minimum price at which a bushel of fine wheat can be sold to afford profit to a farmer in Lower Canada, Upper Caaada, and the Western States?
The replies we have made to the three first queries will give as correct an idea of what this price should be as we can offer in a separate reply. We have always considered that five shillings, or one dollar, was a fair price for the farmer in Lower Canada to obtain for a minot of wheat, which contains óne gallon over the English Imperial bushel. The price should not be less to pay the farmer a reasonable profit for his capital, seed and labor. The price should be in the same proportion in Upper Canada, as it would take the difference to transport the produce here. The measure, however, is less in Upper Canada, and this would make a difference. Perhaps we might say that half-a-dollar would pay the United States farmer of the Far West as well as these prices would pay the Canadian farmer. There is no calculating how much these prices may be reduced by the change in the English Corn Laws.

Agricultural Report for July.

Since our last report, the weather has been excessively hot with occasional showers of rain, which has preserved vegetation from injury by the heat, but has made it rather unfavourable for hay making in the neighbourhood of Montreal, where the crops are generally heavy, and required good weather, to cut, and save them. We believe that in consequence, a considerable portion of hay will be discoloured in saving. The late sown'spring wheat looks exceedingly well and promising, and we believe is free from all injury by the fly; at least, all that part sown subsequent to the 18th May, but all wheat-sown previous to
that time is more or less injured by the fly. We have seen some ears of wheat altogether destroyed. We warned farmers of the danger of sowing carly, as we know that the fly is still in the country sufficiently numerons to do much mischicf to any wheat that comes into ear about the end of Junc. Some years the dauger may not be so great as in other yenrs, because should there is windy weather about the time of the ear appearing, tin Aly cannot do much injury, as they do not attempt to deposit their egrgs if there is the slightest wind to agitate the ears, but remain sheltered abouc the roots of the crop, unless the weather is perfectly calm. We always were advocates for early sowing, until the fly appeared in the country, but the risk is now too great to incur by sowing early, and particularly when good crops of wheat can be raised by sowing from the 19th May, to the end of that month, and will be safe both from fly and from rust. Barley and oats may be sown early, and the latter in particular the moment the sand is in a fit state to receive the seed, and be harrowed. We have grown the best crops of oats we ever had here, that was sown before the middle of April. Of course the soil being dry. Barley is very much beaten down, and will be difficult to cut, and harvest, and will be wasteful and expensive. Thare are many drawbacks to the farmer, and his crops are subject to many casualties before they are secured, and the expenses often doubled without any fault of his, and the worst of his case is, that he never can sell his produce in due proportion to the expense of it, and he would be only laughed at were he to tell the purchaser of his produce that it cost him so much, and that he required to sell them at a price that would pay him; every other class adopt this rule, and their profits and income consists in what they oltain for their commodities over the cost price of them; but it is not so with the farmer, and when crops cost the most to harvest them, they generally selii for the least price, The crops of every descriptiow, with the exception of early sown wheat that is damaged by the fly, never looked better, and if the season is favourable, and not too wet, for bringing them to perfect maturity, and for harvesting, we shall have an average crop of hay and grain, potatoes look well up to this time, but it, is impos-• sible to conjecture what may be the ultimate fateof the crop, as the disease did not appear the two last years until the latter end of the month of August. The quantity of potatoes planted
this year is much less than usual, and we are glad of it, until the disense to which they are sulject is known to have left us. While the furmer substitutes other crops for potatoes, the loss is not so great, but when a crop of potatues is lost by disease, it is a great injury to the farmer, as they are expensive to cultivate. We should be sorry to lose the potatoes altogether, but certainly we do not think it a matter of regret that potatoes should not in future be made so much use of, as the food of man, as they have been for the last fifty years. A carcful selection of seed, and a particular mode of cultivation may enable farmers to grow potatoes to a limited extent, but until we are sure the disease is at an end, it will be the better way not to plant many. The pastures are better this year, at this period, than we have seen them for many years, and the produce of the dxiry should be abundant in proportion. Cattle should also be in good condition and we ought to be able to supply the market with a sufficient quantity of beef, and mutton. The inprovement in mutton for the last few jears is very great, so much so, that the Montreal market is as well supplied with good mutton as may be desired. It may not be so large and very fat as mutton in the markets of the British Isles, but we believe it is so much better, and more like that quality of mutton that is most esteemed at home, the SouthDow.Notwithstanding thelargeimmigration to Canada this year, labourers are more difficult to procure, except at high wages, than other years. All the success of the farmer's labour and expenditure, will depend upon a good, dry, harvest. It is a most dangerous season of the year for the weather to change, to wet about the 25 th July, But though such has been the ense this month, we hope nevertheless, that we shall have fine weather to save the crops. When the weather changes decidedly at particular periods of the year, it is frequently found that the change continues for some time; and the latter end of July is one of these periods.

Cote St. Paul, 31st July, 1846.
Grass Under Trees.-By sowing nitrate of soda in small quantities, in showery weather, under trees, a most beautiful verdure will be obtained. I have used it under the beech-trees in my grounds, and the grass always looks green. Haring succecded so well on a small steale, I have now sown nitrate of soda amongst the long grass in the plantations, which the cattle never could cat. I now find that the herbage is prcferred to the other parts of the field, which have been marled and are a very good pasturo.-Correspondent of Gurdeners' Chronicle.

ARTIFICIAI, PREPARATIONS FROM THE POTATO.

There is no other of our agricultural plants whiclt have come in alternately for so great a share of eulogy and abuse as the potato. On one hand we hear of its being one of the best of nature's gifts; and on the other, that to its general cultivation in this country we may anseribe most of the misery of it:s inhabitants. Notwithstanding all the discussion which has taken place on the subject, it is surprising that the real value of the potato should be so little understood. In its ordinary form it is one of the most perishable articles of food which we possess; but it is cap:ible of being rendered, by artificial means of an extremely simple character, not only portable, but capable of being preserved for an almost indefinite period. There is, in fact, scarcely any other vegetable production capable of being made to assume so many forms, or of being turned to accout in so many different ways; but although this property has been long known to scientific men, it is surprising how little way has hitherto been made in putting the lower classes, who are forced to exist almost exclusively on a potato diet, in possession of this information.
The disease which made such ravages among the potatu crop of last season has caused attention to be forcibly directed to these facts: and.the conversion of the decaying portion of the crop into farina wasa favourite project. It being known that the attention of Government was directed to the matter, numerous statements on the subject were placed before His Excellency; and among others from Mr. Jasper W. Rogers, C. E., who had more than ordinary experience. That gentleman's plan was considered so very satisfactory that His Excellency the Lord Licutenant at once gave directions that facilities should be granted for having it fairly tested. Some of the results of Mr. Rogers's method of making the potato available as food, in many different forms, were exhibited on Saturday last, in the Board-room of the South Dublin Union Workhouse, before the guardians, and a number of other influential and scientific persons, in the form of an elegant déjeuné, all the iterns of which, with the exception of coffee, were prepared more or less from the potato ; when a most satisfactory account was afforded by Mr. Rogers, of the different processes in their preparation, with much intcresting information relatve to the value of the potato itself, which he very justly observed, is too much overlooked. Every one present was astonished at the rich treat provided on the occasion, which consisted of soup, stirabout, milk porridge, jellies, blancmange, S_{i} manishoflmumery, and pasiry of all kinds, made as we have already stead, principally of the produce of the poiato, cither as meal, flour, of fecula.
After the genrlemen present had partaken of the various preparations, Mr. Rogers observed, that the preparation of the meal and flour from the potatocs was so simple thet it could be accomplished in the cottage of the poorest peasant. He then described the component parts of cach food upon the table. The general proportion being one-half potatoes: some, however-viz:. milk porridge, "Scotch bisad," and rock buiscuits-being entirely made from it; also the jellies, blancmange, \&c., produced from the pure fecula without animal matter of any kind-in fact, no addition but the usual seasonings. The soup also, which appeared to be a palatable and nutritious food for the lower classes, was stated to be made of a small quantity of bacon thickened with meal of the potate, and which was capable of bcing made a in a short period of time, at a cost of about one farthing per pint.

Mr. Rogers then alluded to the general impression as to the wamt of nutritive power in the potate, and
deprecated the publication of statements which were founded in crror, stating that there was "little it any nutriment in the potato." He contended that the nutritive properties of the meal and flour of potatues were almost it not entirely equal to that of wheat; and then gave the following analyses of each, nssuming the constituents for the support of animai life, conzained in vegetables, to be starch, sugar, and gluten. When converted into meal, the potato contains-

Starch and sugar..................... 84.8
Gluten.................................. 14.82
Oil.
1.10

100
While wheat, convertedintomeal, contained-
Starch and sugar...................... 75.20
Gluten... 17.53
Oil....................................... 4.27

100

Thus showing that the difference between the gluten was but $2 \frac{3}{4}$ per cent, while the starch and sugar were more abundant.

The difference between "meal and flour of potato," prepared as recommended, and "farina," was poiuted out. Farina is the starch of the potato, taken from the fibre, and contains nothing beyond the properties of starch-while the fibre, which is thrown away in the manufacture of farina, is rich in animal matter and oil, and by being combined with the farina or fecula, produces, a meal, or flour, closely analogous to that of grain. This fact it was particularly necessary to bear in mind, in order to counteract the impression that there was but little nutriment in potatocs-a strange one, where so many millions lived on them as' their only food.
A comparison was then entered into between the relative amount of food obtained from an acre of land, in wheat and potatoes. On this subject, Mr. Rogers stated that he did not rely on his own experience, but cited the authority of practical men as to produce, and eminent scieutific men as to the analysis of the respective crops, stating the following as the result of his inquiry :

	Starch \& Sugar.	Gluten.	Oil.
1 acre of wheat ...	825 lbs.	185 lbs.	451 bs.
1 acre of potatoes	3427 lbs.	6041 lbs.	45 lbs.

Thus it appears that potatoes will produce of meal and flour, four tines, nearly, in weight, what can be had from wheat-a fact not generally known, but which could not be contradicted. Ile begged to impress this startling fact on the minds of those who heard him, and hoped to rescue the potato from the calumuies thrown upon it. In an establishment such as the South Dublin Union Wurkhouse, containing from 1,500 to 2,000 persons, Mir. Rogers stated that from fifty to sixty paupers would be abic to prepare, of potato meal and fiour, by the simple means in operation, a sufficiency-say four to five tons per week-for the use of the house, mixed with other meal-by which a saving would be made in the expenditure of the establishment of above $£ 1500$ a year. He sat down amidst much applause.

Sir R. Shaw, Bart, who presided on the occasion, expressed his astonishment at what he had seen, and at the statements made py Mr. liogers, as to the nutritive properties of the protato, compared with those of corn, which differed greatly from the impression which had been hitherto on his mind on the subject. IIc would suppose it inpossible to put the potato into so many different forms as they had before them. They all owed great obligations to Mr. Rogers, for the handsome mamer in which that entertamment
had been put before them, and in the name of the guardians, he (the chairman) returned him thanks. He had brought most valuable information before them, which would be of great use, if disseminated through the countay.
Mr. llogers returned thanks, and, in doing so, observed that his great object was to render the manufacture of the potato general, henceforward, throughout the country-not alone for workhouses and jails, but that every poor cottier might be enabled to have bread, his stirabout, and his soup, as well as boiled potatowhich could be done, by teaching the people a most simple process, capable of being carried on in every cottage in the coumtry.

Considering the lage and influential body of gentlemen before whom Mr. Rogers so successfully exhibited the good account to which our much-abused vegetable may be turned, it is to be hoped that some of them at least, will further test the adrantages which he held forth. No better expedient could have been adopted for showing the value of the potato, in a way not likely to forgotten; and it must be remembered, that, although it was extraordinary circumstances which causeds the matter to be brought so forcibly under public notice, yet under ordinary circumsiances it cannot be questioned that a portion of the eron may be converted into meal. with great adval +ge, and be made the means of adding largely to the comforts of our peasantry.-Irish Farmers' Journal.

As a sequel to the foregoing remarks, and for enabling any one to judge of the crops best worth his growing, as well as for showing the comparative anounts of nuiriment afforded by ecrrain crops of corn atad vegetables, we subjoin the following table of the average weight per acre of thirtere crops of corn or vegetables; and also of their organic or inorganic constituents, calculated by Edward Solly, Esq., F. I. S.

Averaje produce per Acre.	Water.			
lbs.	lbs.	Jus	lb	lbs.
3. Turnips 95 tons, or 56000	\$1800.0	3309.6	449.4	448.0
2. Carrots 15 tons, or 326001	29433.6	3138.2	655.2	353.0
3. Parsuips 12 toms, or 26350	21542.7	\$642.2	561.8	333.3
4. Totatocs 5 tons, or 1 tina	14'208.5	3053.6	433.7	204.8
	${ }_{5}^{515}$	1314.2	205.9	42.3
6. Onts 40 hish., or 1700	9030	1215.7	187.8	58.5
7. Peas oss hish., or lic001	137.6	1017.7	399.0	45.4
S. lienas gid beh, or lisu	$1: 88.2$	979.0	5 Sl . 2	31.4
10. What	$\xrightarrow{2435}$	1159.4	255.84	313.0
	$43 \leq 10.0$		1856.0	524.0
	-2176.0	15ss.	539,0	336.0
12. I3ect \because a \because or isinon	65850.0	7312.5	1020.0	317.5
13. 3uckrinent, 30 lesh., or 13(0)	162.51	9.5.52	173.5	17.5

- "Irotein compounds" form the nutritive portion.

Cittie fiom the Cape-We have occasion to notice many remarkable importntions now-a-days from various parts of the world, occasioned by new tariffs or other strange unexpected causes; but that which we are about to mention certainly contains a degree of novelty at once curious and remarkable. A vessel, colled the Sir Edward Ryan, which arrived in the St. Katherine's Docks ten days aro, reporting from Canton, China, and the Cape of Good Hople, at which linter place she had called on her royage home, had on board, in addition to an extensive cargo, sixty bags of flour, sixit bams of barles, sundry packiges of uniuns, apples, seeds and flowers, and eighty sheep, the produce of the place. Tie importation of catue from the soath of Spainis certainly a novelty, and it remains to be seen to how reat an cxient such importation from ile quarter alluded so may or cen be emried,

TIIE NORWEGIAN IIARROW.

The following is an extract from a letter received by Mr. Stratton from a geutleman of high slanding as an agriculturist in Cumberland, on the merits of this implement. The writer, in answer to Mr. Stratton's inquiries, says:
"Your Norwegian harrow I can, from my conscience, say, is the most valuable and masterly implement I have ever scen or used. I can hardly say too much for it.
"In the first place, I will answer your questions seraitim, and aiterwards make remarks on points on which they do not touch, but which by practice and close obscrvation, I find of great cousequence.
"Question 1.-My land is called light land, but at the same time possessing allumina to make it cake, and bake into very hard and large lumps in dry and fot weather, such as no common harrow can have any effect upon,
" 2 nd.-My Narweyian is five feet wide. In the first field, very rough and hard, I used two powerful horses (the rowels working at a half depth) equal to draw a ton each on our hilly turnpike roads. They completely pulverized five acres in six hours; bur it was very hard work, too severe. I afterwards employed three, putting the rowels at two thirds their depth, in a fresh field, which was full work for them. I then applyed forr horses in the latter field, drove them at a greatly increased sbeed, which was sufficient work for them. Four ordinary good farm horses are required for my sized implement on land without hill. The horses were worked four abreast, one man managing both horses and implement.

When I drove the horses at an increased speed, the perfection of the work was increased cent per cent, the clods were reduced to complete powder; but not when going at a slow speed, in which latter case they were left the size of duck's eggs. As the speed is increased, the perfection of the work is increased in a compound ratio; therefore speed, aud plenty of power to accomplish, is a great saving of expense; at a quich speed no land will require more than once going over. The surface is greatly refined by your implement, but the under ground much more so. I used it in a field filled with a black kind of wiggy couch, which formed hard clods bound together by this matted rooted grass. The implement made them quite loose, so that when the common harrow passed over lengthways and crosswise, a single turn of cach, roots were brought to the top completely free from earth. I likewise never saw land before so easily, deeply, and perfectly harrowed: they did not give a single jerk, but swam upon the land as in water, the teeth buried to the wooden bars, and bringing the roots up from their whole depth, and which I had gathered up and burnt close after the harrows, so that the roots were nearly burnt when the harrows were leaviug the field, the plough following the leurners, and stitching the land for turnips, the guano and seed being put in by drillin one operation; the land plougbed up light, finc, and open.
[The writer here suggests a few slight alterations, which he considers would much increase the efficiency of the implement-and thus concludes]:
"Altered as I have suggested, you niay rccommend your implement with confidence to all persons aud all soils, and I am sure that not one can ever find fault with it, for if properly managed, it will always do its work well: it sarea a very considerable amount of labour in ploughing, harrowing, and enables you to gain that fine and loose vilh that no other implement can necomplish; besides the great saring of time in getting
your land ready for the green crop. In stiff clays its value will be incaleulable, as it will make them as easy to work in dry, hot weather, as the light jandsare."

Voluminous works have been written upon Agriculture by able, scientific men, in various ages of the world; and the theory of the earth may be well understood, particularly in what are commonly called the improved districts of these kingdoms. The practical art is but imperfectly understood by any others than the operative labourers, one man by dint of experience obtains a competent kuturledge houe to set a plough to gro strady; and how to hold it struight; another how Ito drill, and to some broudecast, a third how to reap, mow land stach, others hous to cut and under-drain in a proper direction, some to hedge and ditch; in short most farm labourers acquire superior iuformation upon some one branch of the art; but unfortunately when these men die, their knowledge dies with them; others young and inexperienced succeed them, and it follows that they unnecessarily toil their own bones, and waste their employer's property, before they acquire sufficient experience to execute the work they take in hand in the most expeditious and correct manner. The farmer's time and attention are occupied in superintending and directing the general operations of his farn,, the rotation of crops, application of mannres, selection of stock, and other important concerns. He knows when h!s labourers are doing their work well, and he finds fault when he sees they are in error, but unfortenately his small share of practical or operative informtaion, does not enable him to put them in the right way of performing their work in a proper manner; here then a treatise upon the practical and operative parts of the several branches of agriculture would be of infinite scrvice.
As a proof of the practical parts of tarm operations being but partially understood, or not sufficiently attended to, I have only to instance the operation of ploughing, as it is general!y performed in this justly celebrated country.
Ploughing is certainly more expeditiously exccuted in Norfolk than in most other countrics in the kingdom and as far as relates to light soils it may be as well perhaps better done. But as all the lands in Norfolk are not light, for on the contrary there are more or less patches of heavy soil in every district, and in some parts the soil is nearly all heavy.
It cannot possibly be right to follow the same principle of plowing upon all descripticns of soil; such, however, is frequently the case in this country, whers: the leading principles of husbandry, particularly the proper rotation of crops, is so generally naderstnod, that even in asking the commonest laborer, nay, even women and children the question of what crops had such and such fields upon them last year, what this and what they will have next year, it is a great chance if the inquirer does not receive direct and satisfactory, answers to his questions. Very different indeed, in this respect, from any other conntios in the kingdom, where cven the farm-manager himself, would frequently be found at a loss to answer such questions; and when he does, his answers will not ulways be found satisfactory, or proper. Although the proper rotation of crops, and some of the other leading principles of agniculture and rural economy, are so generally well understoud in this county, yet some other leading principles, as well as the practical or executive parts of many more, are better nuderstood and practised in other countries, less celebrated than Norfolk.
For instance, the husbanding of farm-yard manure: the theory and practise of underdraining land; the system and practise of ceuting hedges; the repairing
and making of roads upon scientific principles; the proper management of grass ground ; this selection and management of live stock; the brewing of beer; the dairy; and some other important branches of farm management.

CHOICE OF MEAT, POULTRY, AND FISIF.

Beef.-The grain of ox-beef when good, is loose, the meat red, and the fat inclining to yellow. Cow beef, on the contrary, has a closer grain, a whiter fat, but meat scarcely as red as that of ox beef. Inferior beef, which is meat obtained from ill-fed animals, or from thuse which had become too old for food, may be known by a hard skinny fat, a dark red lean, and in old nnimals a line of a horny texture runninge through the ribs. When meat pressed by the finger, rises up Guickly, it may be considered as that of an animal which was in its prime; when the dent made by the pressure returns slowly, or remains visible, the animal had probably passed its prime, and the meat consequently must be of inferior quality.

Veal should be delicately white, though it is often juicy and well flavoured when rather dark in colour. Butchers it is said, bleed calves purposely before killing them, to make the flesh white; but this also makes it dry, and tlavourless. On examining the loin, if the fat enveloping the kidncy be white and firm looking, the meat will probably be firm and recently killed. Veal will not keep as long as an older meat, especially in hot or damp weather; when young, the fat becomes softand moist, the meat flabby and spotted, and somewhat porous like sponge. Large overgrown veal is inferior to small delicate, yet fat veal. The fillet of a cow is known by the udder attached to it, and by the softuiess of its shin; it is preferable to the veal of a bull callf.

Mutton.-The meàt should be firm and close ingrain, and red in colour, the fat white and firm. Mrutton is in its prime when it is about five yearsold, though it is often killed much younger; if too young, the flesh feels tender when pinched; if tov old, on being pinched it wrinkles up, and so remuins. In young mutton the fat readily separates; in old it is held together by strings of kins.

In sheep diseased of the rot, the flesh is very pale coloured, the fat inclining to yellow, the meat appe rs loose from the bone. and if sciueczed, drops of water ooze out from the grains; after couling the neat drops clean from the bones.
Wether mutton is preferred to that or the ewe; it may be known by the lump of fat, on the inside of the thigh.

Lamb.-This meat will not keep long after it is tilled. the large vein in the neck is bluisti in colour when the fore quarter is fresh, green when becoming stale. In the hindquarter if nut recenty killed, the fat of the Jidney will hase a slight smell, and the latuche will have luot its firmaness.
Pork.-When good the rima is thin, smouth, and coul to she touch; whea changing from being ivuluar hilleh, it become fiaceid and claminy. Enlazged hlonds, colled hernels, in the fat, are marks of an ill fed or diseased pis.
Bacon should have a thin rind, and the fat should be firm, and tinged red by the curing; the flesh should be of a clear red, withont intermixture of yellow, and it should firmly adhere to the bone. To judge of the state of a ham, plunge a knife into it to the bone; on drawing it back, if particles of meat adhere to it, or of the smell is disagreeable, the curing has not been effectual, and the ham is not yood; it should in such a state be immediately cooked. In buying a ham, a short thick one is to be preferred to one long and thin. Of English hams, yorkshire, Westmoreland, and Hampshire are most estecmed. Of foreign, the Westphaia.

Venisor.-When good the fat is clear, bright, and of considernble thickness. To know when it is necessary to cook it, à knife must be plunged into the haunch; and from thie smell the cook nust determine on dressiag or kecping it.

In choosing poultry, the age of the birds is the chief point to be attended to.
An old turkey has tulugh and reddish legs; a young one smooth and black. Fresh killed, the eyes are full and clear, and the feet moist. When it has been too long kept the parts about the vent begin to wear a greenish discoloured appearance.

Common domestic fouls-when young have the legs and combs smooth; when old, they are rough, and on the breast long hairs are found instead of feathers. Fowls and chickens should be plump on the breast, fat on the buck, and white-legged.

Geese.-The bills and feet are red when old, yellow when young. Fresh killed, the feet are pliable, stiff when too long kept. Geese are called green, whein they are ouly two or three months old.
Ducks.-Choose them with supple feet, and hard plump breast; tame ducks have yellow feet; wild ones red.
Pigcons are very indifferent food when they are too long kept. Suppleness of the feet shows them to be young; the state of the flesh is flaccid when they are getting bad from keening. Tame pigeons are larger than the wild.
Hares and rabbits, when old, have the haunches thick. the ears dry and tough, and the claws bliunt and rugged. A young hare has claws smooth and sharp, ears that easily tear, and a narrow cleft in the lip. 1 leveret is distinguished from a hare by a knob or small bone near the foot.
Partridges, when young have yellow legs, and darls coluured bills. Old partridges are very indifferent eating.

Woodcocks, and snipes, when old, have the feet thick and hard; when these are soft and tender, they are both young and fresh killed. When their bills become moist, and their throats muddy, they have been too long killed.

BLURNT CLAY AS A MANURE.

to the editor of the incolnsiniz chronicle.

Sir,-Having observed in your paper of the 17 th ult. an interesting extract on "Burnt clay as a manure for heavy clay land" (originally communicated by Mr. Pusey, M.P.), perhaps it may not be altogether uninteresting to some of your readers to know that burnt clay laid on land acts both mechanically and chemically ; mechanically, by rendering the soil porous and permeable to the air; chemically, by its property of fixing ammonia in the soil (similar to the action of sulphate of lime (gypsum) and chloride of calcium), which would otherwise be: lost from its vitality. As aitrogen is indispeasable for the nurrition of all plants, it is the object of the agriculturist not only to provide it in sufficient quantity, but to present it in a condition in which it can be taken up by their roots. This is attained in manuring with burned clay ; the modus operandi of which as a manute was very unsatisfactoon rily explained until Liebig threw light upon the sub ject, by demonstrating the presence of ammonia in the atmosphere and in rain water, and pointing out that the fertility of ferruginous soils and land manured pith burnt clay was owing to "the oxides of ion and allumina being distinguished above all other metallic oxides by their power of forming solid compound with ammonia." After stating that "minerals containing aluinina, or oxide of iron, possess in an eminent degrec the remarkable property of attracting ammonia from the atmosphere and of retaining it," he goes on to say that "soils, which contain oxides of iron and burot clay must absorb ammonia-anaction which is fayoured by their porous condition; they further prevent tie escape of the ammonia, once absorbed, by their chemical propeitics; the ammonia absorbed by the clay or ferruginons oxides being separated by every shower of rain and convejed in solution to the soil." Although in Mr. Puscy's erperrinent the 3rd lot (manured with
burnt clay and sheep folded)did not show any great increase in yield over the 2nd lot, it is probable that an analysis of its produce, would have shown it to be the richer of the two in gluten, a substance of great value in wheat. This brings me to a subject I wish to remark upon, viz; the culture of barley for malting purposes. Science throws so much light upon the cultivation of land that we may begin to hope che aim of the farmers will be not only to obtain an increase in the bulk of cereal crops, but to increase or diminish the per centage of their proximate principles. The highly nutritious property of gluten and its value in the fermentation of bread renders its presence in wheat and bread corn of yast importance; and manures of rich urine (especially human urine) should be used in their culture to encourage its development-but, in the growth of barley for malting purposes, the object should be to limit development of gluten. In the fermentation of malt liquors gluten is required in small quantity, it being the brewer's interest to have no more than is sufficient for the purpose, and to get rid of it altogether when the proposed attenuation is reached. It is evident, therefore, that inferior barlcy (as far as regards the perfecting of malt liquor) would be grown on land manured with urine or other oxidized niatter.
Cow-dung would seem to be the best of all manures,
as it is said to contain the smallest quantity of nitrogen.

Ventilation:-Good ventilatlon is nowhere more important, althnugh nowhere more neglected thanin our bedchambers. The bad effect of sleeping in small and close rooms has been often mentioned; to which we may likewise add, that of having thick curtains drawn close round the bed, which confine the air that has been exhaled, surrounding us with an impure atmosphere. Provision should be made for a continual change of air in the apartment during the night, by the escape of the heated and foul air and the introduction of cool and fresh air. The first way be effected by some apperture at the top of the room; perhaps kecping the tup) sash open for about an inch may be sufficient : of course care must be talien that the fresh air brought in at the top of the roon; shall not act as a draught striking upor: the bed, hut that it enters by small apertures, and diffuses itself as quickly as possible; and likewise that there may be the means of regulating the quantity accordind to circunstamecs. If the temperature of the fresh air can be regnlated it will be better.

A little apparatus for ventilating a bed-chamber in the night, invented by the Marquis de Chibannes, though not very effectual for a large room, is perhaps worth mentioning for a small one. It consists of a little box, or enclosure of tin or other metal, having an opening in front, in which may be placed a small lamp. The upper part or flue is to be inserted in the wall on the chimney breast and is to go quite into the flue of the chimney. The air which thie lamp requires for combustion will thus pass into the flue, occasioning fresh air into the room to supply its place. This machine is in fact, a little chimney, in which the lamp is the fire. It should be placed near the top of the rown.

It is highly descrving of attention, that although we never use fires without flues, yet we very absurdly have long continued to burn lamps of considerable size, which are in fact, so many fires, in the midde of our :upartments, cven when small. without the least :ittempt in carry off the burnt air which they are constanty generating. Nio wonder then, that the air. in such places, is often felt to be oppressive: it is, indeed, extremely unwholesome.Cycloprdia of Domestic Economy.

Italian Ree-grass.-I am quite satisficd of its being the most vaiuable plant I know of, especially for carly spring feed; it comes to perfection for fecd guite as early as ryc, and the comparison between the two for fecding qualities, is as 10 to 1 in fayor of the Italian ryc-grass.-Jow. of Eus. As.

Nutural indications of barrenness and fertility,- As the day is now rapidly approaching when the young farmer. commonly enters upon his furm, it will be useful toremind him of the scientific indications afforded by suils of their degree of produrtiveness; since, after all the cautions which skill and practice can suggest, mistakes, especially; by the stranger, are not always very readily escaped. It was thus that that the celebrated Arthur Young was, much to his cost, deceived in hiring (although assisted by his Suftolk bailiff) a farm in Hertfordshire. "I know not." he suid in his usual emphatic manner, "what epithet to give this soil. Sterility falls short of the idea: a hungry vitriolic grayel.-I occupied for nine years the soil of a wolf." Amidst many other natural indications, the colour of a strange soil should be carefully regarded: barren soils are generally of a lightish brown, foay, fawn, palered, and whitish yellow colour-a deep yellow is a certain sign of barremness. Dir. Bravenden thinks all soils should bo called barren that do not produce on an average, 20 bu shels of wheat, or 30 of beans oats, or barley per acre. The spontaneons growth, in considerable proportions, ot the following plants, is an inulicution of a barren soil-
The agrimnny: dry sandy soils.
Rouph dandelion \qquad dry barren pastures.
Woolly betony. \qquad in baren pastures.
Cauterbury bells. in wonds.
Il cath-bell flower.................................. on heaths. Hiea rushin wet places. Star knapweed............................barren meadows. Common Cudweed......................barren meadows. Corn marigold..sandy soils.
Smooth cat's-ear.........................sandy ant gravel.
Silver weed. .lands subject to Hoods. Sheep sorrel...sandy meadows. Wild thyme..............................barren elerations.
Of the natural grasses which tenant barren sails are-
Common bent.......................dry beaths, limit of elevation above thu seas
White-ronted bent. 2000 feet.
Creeping bent....................................... 200 snils.
Marsh bent...............................damp and shady places.
Tufted hair................................limitof elevation 1500 ft.
Slender foxtail...ack peat.
Common quaking.......................pour soils.
Soft bromepoorexhansted pastures.
Sheen's fescuc............................dry sandy soils.
Wood fescue.............................in damp woods.
1 Wonlly soft. moist peaty pastures.
Wild sainfoin.. chalk pastures.
Timber trees flourish best on soils, which are for-
Sycamore..............sandy lightish.
Miaple.........................eep sandy.
Alder.
..............
Hon
ight, moist, and sandy.
Hazel nut..............deep sanily; moderately fertilc.
Befch. \qquad calcarenus.
Ash.................... deep, flourishes on the inferior colite. Walnut.................dry loamy, rich.
Jarch................... han, dry, and rocky:
Poplar. \qquad wet, bogry. Pine.....................light, dry and rocky.
Elm.......................deep rich loam.
Of the plants whose chief occupancy of the ground indicate a fertile soil, are-
Stinking May-weed, Dandelion, Fat ITen, Pale Persecaria,
Cow larsley, Sow histle, Viryin's Buwer, Chick-weed, Gonse Grass, Nettle.
The sume presence of the following grasses also indicate a fertile suil-
The Meadow Foxtail, Mendow Fescue, Swect-scented Vernal, Ryc Grass, Meadow-ont Grass, Rongh-stalked Meadow, Fiorin, Perennial Red Clover, Crested Dogstail, White Clover, Cocks-fuot, Creeping Vetch.

Of asperts, a northen aspect is rather an indication of barrenness, sn is N E. or N W.; pasture lands with these aspects are the most subject to moss. S., SE.. or SW., or W. are wery farvurable aspects. $\boldsymbol{\Lambda}$ icrtile inclination
should not exceed 15°; soils of a greater inclination are thin, and near the rock or subsoil.

Elevation. $-1,500$ feet may be cunsidered as the limitation of natural fertility. Whent seldom ripens at above 1000 feet. "High farming, hovever," adds Mr. Bravenden, "embracing the best modes of cultivation, is found to ameliorate the severity of the climate, and to place us as it were, in well cultivated districts, several degrees nearer the equator, and reduces the highest of our cultivated hills, several hundred feet.
on the cultivation of flax, and the fattening of cattle witil na:ive phodece, box feiding, and sumaer grazing.

by Joun warnes, ESQ.

We take it that the name attached as the author of this publication will be quite sufficient to command a sale. The interest excited when ever we have had the good fortune to publish a letter from Mr. Warnes, was testified by letters from every part of the kingdom requesting us to give parties his address. The different letters which he has published from time to time in a vigour of style quite new, giving information most material to the farmers and agriculturists of the country, are all compiled with other useful and practical information. As a book of refereuce, nothing can be better.' It is supplied with a curious index. In the preface he remarks :-

If I had ever any solid reasons for promulgating my plan, those reasons are rendered doubly urgent at the present crisis. The repeal of the corn laws is insisted upon by the League, with all the art that human ingenuity can devise, and with all the power that money can command; while agriculturists, formed into photective associations are equally determined to uphold the existing duties. Whatever may be the result of the conflict, it is evident that farmers who have adopted the cultivation of flax, the fattening of cattle upon native produce, \&c., \&c., must be better prepared to sustain the shock of free trade than those who resort to foreign manure for land, and food for cattle. At all events, it is certain that a high price for the common necessarie3 of life cannot be sustained, that profits upon land must be derived from increased production, and that farmers ought no longer to hold out against the adoption of new systems of improvement.

Thus it will be perceived that the object of this work is to circulate that moncy at home that now gocs to foreign countries, to improve the soil and employ the poor. It is a most useful and original production.

Indications of Change of Weather afforded my Peants.-Very many of our most common plants are cxcellent indicators of atmospheric changes. The opening and sluutting of some flowers depend not so much on the action of light as on the state of the atmosphere, and hence their opening or shutling betokens change. The common chickweed, or stichwort (Stellaria media), may be considered a natural barometer; for if the small white upright flowers are closed, it is a certain sign of rain; during dry weather they cxpand freely, and are regularly open from nine in the morning till noon. After rain they become perdant, but in the course of a few days they again rise. The purple sandwort (-1renaria rubra) is another indication of a coming shower. Its beautiful pink flowers expand only during sun shine, and close at the approach of evening or befors rain. The pitnpernel (Anagallsis areensis) has been very justly named "the

Poor Man's Weather Glass." This lite plant blooms in June in our stubble fields and gardens, and continues in flower all the summer. When its tiny brilliant red flowers are widely extended in the morning, we may generally expect a fine day; on the contrary', it is a certain sign of rain when its delicate petals are closed. The goat's-beard (I'ragopozon pratensis) will not unclose its flowers in cloudy weather. From its babit of closing its flowers at noon, this plant has received the common name of Go-to-bed-at-noon; and the farmers' boys in many districts regulate their dinner hour by the closing of the goat's-beard. According to Keith's Botamy, if the Siberian sow-thistle shuts at night the ensuing day will be fine; and if it opens, it will be cloudy and rainy. When the African mari-. gold remains closed after seven o'clock in the morning or evening rain may be expected. If the trefoil and the convolvulus contract their leaves, thurder and heavy rain may be expected. Lord Bacon tells us, that the stalks of the trefoil swell and grow more upright previous to rain. The dark and lovely gentianella opens its blue eyes to greet the mid-day sun, but closes its petals against the shower. The germander speedwell (V̌eronica chamcelorys), so universal a favourite in every hedgerow, closes its blue corrola before rain comes on, opening again when it ceases. The red campion (Lyclunis diurna) uncloses its flowers in the morning. The flowers of the white campion (Lychnis vespertinu) open and expand themselves at the approach of night.-Farmer's Ensycopoedia.

Reles for marieting.-In marketing, the first rule is to purchase chiefly fromknown and respectable trades-people, who are likely to go themselves to the best markets, and who have to support tne character of their shops.
The second rule to be observed, is that of not purchasing inferior articles under the idea of being economical.
A bargain is seldom a prize: and this is especially the case with regard to butchers' meat.
The best meat and the prime parts are unquestionably the cheapest in the end, although the first must be the greatest. In coarse and inferior joints there is always too great a proportion of gristle, bone, and hand meat. to render them truly economic; these may serve as the bases of soups, gravies or stews; but for roasting or boiling they are wasteful.
The criterin of bad meat, by which must be understool meat that has been too long killed, or meat from animals killed in a state of disease, ought to be well known by those who market, no less than than the value and economy of the different parts and joints.

THE TRAVELS OF THE LEAF.

From the hill to the valley, the grove to the plain, From the branch where thou never wilt blossom again, Thy green beauties faded, sere, withered and dying-Brown leaf of the forest, oh were art thon flying? I know not-I heed not-I go with the blast Which swept me away from the bow as it passed. The storm-gust which shattered the oak where I hung, Had ruth for the feeble, but none for the strong; It has rent the tough branch once my glory and stay, And-the wind for my wildmate-l'm whirled away: What rede I, or reck? On its cold bosom lyius, I haste to where all things in nature are hieingAnd the sweet garden rose-leaf. floatsoff with the breeze, Where the zephyr wafts blossoms and buds from the trees. So lightly I drive to my destiny too.
And it may be to glen me-it may be to rue-
My companions theilex, the ash the, bright laurel, And the beech, with its denth blonm, as ruddy as coral. Now read my sad riddle, Sir Seer !-and.its moral.

Dublin Unitcrsily.Magazinc.

A SONG FOR THE TIMES.

ju G. I.
Tune: " Yc Mariners of England,"
These fine old halls of Englend, How nobly do they stand,
Embosomed 'mid their spreading oaksThe glory of our land!

- Winile from their ample hearths beneath The curling smoke ascends--
A pledge for hospitable board, A welcome to all friends.

The good old English manor-house, The hall of ancient times-
Its semblance in vain is sought, Unknown in sunnier climes
It is the home of Englishmen, A word we hold most dear;
How much is centered in that thought, Our fathers they dwelt here!

Those fair green meads and upland slojes, Those sunny lawns and trees,
Those fields where golden harvests wave Before the autumn breeze;
Those natural riches of the land, Tbe good which God bestows,
We will defend with heart and hand 'Gainst perjured friends and foes.

Nor shall the iron hand of trade, The Moloch of our day,
Throughlust of power, our fields invade, And make our lands a prey.
Her noble, yeoman, peasant sons, Who longher fields have trod
Together, shall together stand
For country, home and God.
Dorset Chronicle.

Queen Victoria's Empire.-The Queen of Eugland is now sovereign over one continent, a hundred peninsulas, five hundred promontories, a thousand lakes, two thousand rivers, aud ten thousand islands. She waves her hand, and five hindred thousand warriors march to battle to conquer or to die. She bends her head, and at the signal a thousand ships of war, and a hundred thousand sailors, perform her bidding on the ocean. Come, all ye conquerors! and kneel before the Queen of Eingland, and acknowledge the superior extent of her dependent provinces, her subjugated lingdoms, and her vanquished empires. The Assyrian empire was not so wealthy. The Roman empire was not so populous. The Persiap Empire was not so extensive. The Arabian empire was not so powerful. The Carthagenian empire was not so much dreaded. The Spanish empire was not so widely diffused. We have overrun a greater cxtent of country than Attila, that scourge of God, cver ruled! we have subdued empires, and dethroned more kings than Alesander of Macedon! We have conquered more nations than Napolcon in the plentitude of his power ever subdued! We have acouired a larger extent of territory than Tamerlane the Tartar, ever spurred his horsc's hoof across."-Finch's Boundary of Empircs.

The'TakenyHen.-We some time since mentioned the doings of this little prodigy in the egg-laying line, though we confess with some incredulity; but the fact now comes to us with such strong vouchers that there is no doubt of its correctuess. Her feats have been tested by some who were seeptical, and it was found that in three days in one werk she laid 10,17, 12 eggs ; after tive weeks of unexampled laying, during which she deposited nearly 80 eggs, she is now sitting comfortably upon 17, and if all her progeny possess her prolific propertics, we may expect a decline in the price of eggs. The owner of this golden bird (Mrs. Marshall) has been offered $£ 7$ for her, but has refused to part with her, "unless a more acceptable offer be tendered."Chelnusford Chronicle.

Monster Pig-The Smithfield Club Cattle Show has often exhibited some very large prize cattle, fatted up for the purpose of astonishing the people at Christmas, but all their productions have been surpassed by a huge animal of the porkine species, lately exhibited in Stepney fair. This most extraordinary pig has been fed in the ordinary manner, and weighs rather more than 140 stone, and is much larger than any bullock ever brought to Smithfield. The weight of a good fat ox of ordinary dimensions is about 100 stone. It is two years and a half old, and was bred by Mr. Parish, a farmer of Nasing, Hertfordshire.

Coltsroot.-Coltsfoot increases by root and seed : no tillage will destroy the rout except it be brought to the surface by scarifying in dry weather, nor prevent it seeding when in bloom unless covered by the plough. If the bloom is cut off and left on the ground, it will produce seed in a few days; or if the bloom is gathered and laid in a heap even under cover on a dry floor, it will become. as white as a fleece of wool: hence it is evident that the only mode of preventing its increase by seed is to gather the bloom, and bürn, bury and rot it.
March is the proper season to go over theland to gather the first heads: from three to five blossoms grow on each stem commonly. $\$$ short narrow hoe is the best tool to cut off the heads-a bag apron the best to stow and carry the heads in. The land should be gone over again in a week or two to gather the second heads, and a third time if seeded heads appear above the clover or other seeds,\&e. Each head gathered when seeded should be deposited in the bag separately, lest by filling the hand, much seed be scattered.-Charles Poppy, Witnesham, Ipswich, Novenber $1:$ th, 1845.

published movitily,

A'T ONE DOLLAL PER ANNUM, mayable in advance.

Any Post Master or other individual who obtains six subscribers, to be entitled to one cupy, gratis.

As the object of this Journal is to improve Canadian Husbandry, by the dissemination of the best and cheapest Agricultural information, the charge for it will be simply sufficient to cover the necessary expense. The subcription price will therefore be Nive Shillings per anium, to single Subscribers. Societies or clubs will be furnished at the following rites :-

> 50 copies for \$30
> 20 copies for... 15
> 10 copies for.................................... \&

Payable always in advance.
WILLIAM EVANS, EDITOR AND PROPRIETOE,
LOVELL AND GIDSON; FRHMEESS.

