Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquees

Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela etait possible, ces pages n'ont pas eté numérisées.

HINTS TO THE EMPLOYER.

E have, as a general rule, directed our remarks on technical education to the employed. A few words of advice, now, will not be out of place to the employer. It is as much to the interest of the employer to have around him skilful and well-trained workman, as it is to the employed to become such, their interests, in fact, lie closely together, and there can be no doubt but that employers should, in duty to themselves and the public, take an interest in the training of their helpers, and see that the boys in their establishments, learning trades, are not kept in ignorance, but that they receive careful instruction and drill, so that they may grow up to be skilful workmen and good men. Any his tman, when he has acquired a skilful knowledge of his trade, has a self-respect which otherwise he would fail to feel, and then he is not as likely to be led away into presesion for higher wages, at periods of commercial depression, as those are who have skill and who would fain ejijoy the same wages as another worker at the bench, Who can do his work better and in half the time of the $u_{\text {n }}$ kilful man. When bad times come it is the skilful and good men who are employed, even although wages are low, because, as a general rule, they are good men. it is true some very skilful mechanics who are dissipated, case in the but such, also, we frequently find to be the ceptin the highest spheres of intellect; they are but exceptions to the general rule.
The foreyers should spare no pains to teach their boys. Touth foremen should also take a similar interest in the fouth placed under their charge, and not say, as we have myself, ly heard said, "I had to find out knowledge for myeelf, let them do likewise," this is a very selfish that ing. We have invariably found it to be the case in imparting their information to others. Everybody
in a factory ought to undergo, periodically, a catechetical examination on the principles of his trade, and such things as he did not clearly understand should be explained to him. Young beginners should not be discouraged by a want of communicativeness on the part of a foreman, and the employer should take pains to encourage boys to ask questions, so that they may learn the why and wherefore of what they see in daily practice. Many boys are too diffident to ask questions, fearing it may be considered impertinent, or afraid to show an ignorance of what they might be supposed to understand ; to such lads, a little kind encouragement would advance them rapidly in a knowledge of their trades. A celebrated Italian, when once asked how he managed to obtain such an immense amount of varied information, replied, " by not being too proud to ask a question when I was ignorant."

Employers have it in their power to assist most materially in the education and welfare of those they employ, and it should never be forgotten, by either employer or employed, that there is a connecting link, of mutual interest and good, between them that should on no account ever be severed.

ENCOURAGEMENT TO INVENTORS AND INVENTORS' FOLLIES.

A good deal has been written lately about the discourgement inventors meet with from the first conception of their idea until the issue of the patent, if it ever is issued. The inventor has nearly as many stages to go through as Shakespeare has given to the life of man. First is the dawning idea, seen through a mist or fog, in which the image is indistinct and undefined; often it is but a mirage, a mere atmospheric deception of the brain and never assumes any tangible shape whatever, and just as you think you have it, it disappears, like a Will-o-the-Wisp. Even when caught it has to be worked into many shapes and undergo many trials before the inventor feels that his babe is strong enough to be launched into life. For awhile he is wrapt up in the consideration of the great value and importance of the thing and the money that is in it. About this stage, he is seized with a sudden fear that some one may forestal him in his idea, or, that the secret may be stolen from
him, and then he is in all haste to have it patented; but now comes another terror on his mind, where ran he find an honest Patent. Agent to whom he can entrust hi: invention? Can he even trust the officials at the Patent Oflice? Is there not a clique there, who band themselves with patent brokers, and whenever they see a valuable invention such as his, keep back the knowledge of it, until they convey the secret to another party who pays them a handsome sum? Is there not, he thinks, a dozen ways in which venal clerks can rob him of his treasure? This is a very severe period of the patent fever, during which the patient is generally in a state of wild delirium. After the paroxysm has som \cdot what subsided, he feels that he cannot prepare the specification and drawings himself, he must have some one to take out the patent, and then too often he makes a hasty choice. Here then comes in a very peculiar phase of the disease; hitherto he has been in a state of nervous excitement, lest any person should surreptitiously steal his idea, but no sooner has this subsided than a reaction takes place, and he goes off w ith his model under his arm, and chooses for his solicitor-not the most upright man, or one of the most practical ability, but the one that will do it cheipest. Having deposited his model and given instuctions to his solicitor to claim everythiug, by which he means the very elements themselves, if necessary, for a few days he will fall into a quiet calm, and indulge in castle-building to a great extent. A great difficulty trises in his mind at this stage as to the lowest sum he shall accept for the patent, or whether he shall dispose of it in iogyalties, or, whether he shall work the invention himself and keep the monopoly in his own hands; but, should he be of a philanthropic turn of mind he may drem it charitable and christian-like to give it to the world in such a way that its benefit will be enjoyed in the shortest period of time; he may be willing even to lose a little for this laudable object. From this delectable state of mind he is aroused by the receipt of the specification, and to his astonishment finds that he can only clain, as original matter, but a few of the working parts of his mathine and that the other claims were common property to all, and that he can only claim them in connection with one or two original improvements. After a grood deal of diecontent to himself and worry to his solicitor, who ultimately gives way and tries for some things he does not expect to get, just to ease his client's mind, the papers go to the patent office; the inventor feels now more resigned, and rather chuckles over the idea that those old and tried experts, the Examiners, will overlook the little claims that he has had inserted in rather an ambignous way, that they might not appear too striking, he thinks they may slip in among the main points and not be noticed. The application having been forwarded and the receipt of the first fee acknowledged, week after week passes away and no further notice is taken of it-the inventor, if he had any doubts before about the honesty of Patent Office officials, that is, he did not think them all rogues, but now he is certain they are or there never would be so much delay if some one was not stealing his invention or this vexatious delay was merely to gain time for another person to forestal him. He casts severe glances at his solicitor, and throws out some sarcastic hints that there must be something wrong somewhere or hispatent never would be delayed so long. After a delay of about six weeks, during which time the inventor has lost several, pounds of flesh from
worry, and those investments he had in his mind's eye are slipping away, a short memorandum comes back to his solicitor to inform him what he knew would be the case,--that the claims are too broad, or, perhaps, that they interfere with previuus inventions. About this time the nervous irritation of his client is assuming a chronic form, he is seldom seen to smile except in a sickly, ghastly way, and looks frequently as if he wanted to cry. He begins to think that his solicitor is incompetent and that if he had put the patent into another party's hands even had he paid more, it would have been wiser. He thinks too that his solicitor has no private iutluence with the commissioner, if he had, a private note ought to have a settled the business at once. However, there is now no help for it, the broad claims are withdrawn, as well as those that interfered with other inventions, a id the poor applicant finds that his invention robbed of all its borrowed plumage is a very sorry looking bird indeed. Sometimes he is informed that the thing is old, or impracticable, or not useful, and the patent is refused ; but even in such case he never feels so bad as when his patent is stripped of other people's inventions.

But, even in case that the inventor obtains all be clains, and a patent is granted, how few indeed realizo their hopes of profit-not one in a hundrel. Too often is money and valuable time lost in eudeavoring to carry out ideas of no practical benefit.

Now this brings us to a point where we can bring in, we trust, some useful advice to Canadian inventors of that class who too frequently put themselves and their families to a great pecuniary inconvenience, to take out patents that are perfectly worthless that can never be of any practical utility.

We do not address ourselves to those who can afford both time and means to indulge their inventive faculties, but we do speak, in all earnestness, to a large class of artisans who too often are put to great straits to obtain the means to take out a patent that can be really of $\mathfrak{n} 0$ practical us..

Among other measures that we are bringing to the consideration of the industrial classes, we propose that to all members of Mechanics' Institutes pecuniary assistance should be granted to take out a patent, provided ${ }^{a}$ committee of practical men considered the invention was really of a useful character; this would give the inventor time to realize on his invention, and his family would not be put to inconvenience for want of the money used for such purpose. It would also enable ${ }^{2}$ man, who had really some useful invention laid by because he had not the means to take it out, to give the benefit of it to the world, and it would also stimulate others to put their ideas into shape from the know ledge that if their invention were really practical they could obtain assistance to patent it; of course if the money was borrowed from the resources of the Institute, legal interest would have to be paid and a certain security given, but no poor man would be necessitated to give up the half, of perhaps a valuable patent, for the sake of the loan of a few dollars to pay the patent fees. We are at present strongly urging the necessity of Canadian mechanics coming to the front and taking an active interest in Mechanics' Institutes, and, if they do so, most assuredly they will in a very short period reap the benefit.

Gexu Tublications.

Lovell's advanced geogriphy.

Just published by John Lovele \& Son, Montreal.
Canadian Literature and Elucation owe more to Mr . John Lovell than to any other publisher in the Dominion. What the late Hon. John Young was to Canadian Enterprise, Commerce, and Navigation, Mr. Lovell has been to literature and education. The former gentleman saw in Canada a great country in the future, and if he did not live to see all his projects for its advancement carried into effect, at least many of them Were completed in his lifetime-of which the last and greatest was the conception of the Victoria Bridge-a monument of lasting faume to his memory.
What Mr. Lovell has done for literature and educition in Canrada is a parallel to the biography of Mr. Young. He has devoted his lifetime and his purse to the cause, and to the encouragement and help of young authors. and to the encouragement and help of young
his pan scarcely realize the value of some of h_{is} publications, becuuse we constiantly have them before ${ }^{\text {us }}$ for reference ; were they not in existence where could We seek for the valuable information they contain?
The "A tvanced Geography," is a most accurate work and interestingy illustrated; the letter press is exceedingly clear, and the maps beautifully executed and not ${ }^{0}$ ver crowded.
In preparing this work for th, country we are aware that the best talent has been engaged, and the greatest care taken to ensure correctness.
The Elucational Departments, and the public owe much to the enterprise of Mr. Lovell in publishing brougcellent work, which we hive no doubt will be brought into general use in every school of the Dominion Where the Euglish language is taught.

Utilization of Wood Shavings.-From wood shavings and Belper Herr Heileman makes plates, dishes, etc., as follows: a bath of plane shavinss are bound into bundles, and steeped in cat int of weak gelatine solution about 24 hours, then dried and paste-boaritable lengths. Plates are cut of stroug paper or thin Paste-board, of the size of the objects to be produced. These are molda wed with a hquid consisting of weak grlatine solution with drying, the plasis and pressed in heated metallic molds. After an adhes, the pressed paper obj cts are coated on both sides with part thicive material madn ol tive parts Russian gelatine and one part thick turpentine; the shavings are applied to them and the beope is subje:ted to pressure. Wood sliavings alone would, The objects their unequal thickness, present uneven surfaces. I jopects are now cut, if necessary, dried and varnished.
in the lity a Boon.-A German physician considers insanity in the light a Boon.-A German physician considers insanity
that a boon. This is certainly a novel view. He holds one of coloss of reason. lands the sufferer from a sea of trouble into
and atouparative calm.一often iuto one of decided lappiness ; rather thapts to restore such a person to sanity would be cruel amornt of kind. Moreover, he insists that without a certain the term of insanity success in life, the ordinary acceptation of tre term, is yuite impossible. All emiuent men, he contends, Monotidedily more or less mad. Many of them are dangerous shat up, acs whom it would be decided on public grounds to credited but who nevertheless achieve grand careers, and are he attribith doing a vast amount of good. The false notion also intributes to the lact that the greater mass of mavkind are eril.
OMr. Sutton, who proposes to erect a cotton factory in London, tead, asks the city for a boulus of $\$ 50,000$, and says that he in$\mathrm{I}_{1} \mathrm{i}_{8} \mathrm{l}_{\mathrm{k}} \mathrm{k}$ orm a joint stock company with a capital of $\$ 300,000$. It is likely a that the city Council will subunit the proposal to the
citizens.

THE BEET-ROOT INDUSTRY IN FRANCE.

It will be interesting to our agricultural readers to read the following description of the cultivation of the sugar beet at "La Briche" farm, in France, which we copy, together with illustrations, from a jourcal r cently published on "sugar beet" by Messrs. Henry Carey Baird \& Co., 810 Walnut street, Philadelphia ; and we recommend all interested in the culture of beet root for manufacturing sugar to obtain this excellent work, which will give the experience of all interested in this important growing business.

> "LA BRICHE"' FARM AND DISTILLERY.
> (See page 301.)

When the French paid one thousand millions of dollars in. demnity to the Germain Empire after the Franco.Prussian w ir, it was generally thought that their financial stability would be disturbed, and that, for years to come, unknown principles of economy would necessarily be introduced; and that, notwith. standing their previous prosperity, serious changes fur the worse would take place. It was predicted that no nation conld survive if its treasury were called upon to pay within such a limited time gold coin to the amount above mentioned. None of these prophecies proved true, as they were based on general principles, from the local point of view of the other nations. France to-day is apparently and rctually as rich as ever. Her government is at present spending millions upon its army, navy, improvements and fortifications. The late International Exhibition was considered equal, if not superior, to any previously held in that country. But whence comes the money to do this ? We answer, from the farmers, who represent the true wealth of the country. The greater number of them, since the French Revolution, own some few acres of land, on which small crops are raised at modest but satisfactory profits. Whatever these profits be, only a portion is spert, as the importance of providing for the future is one of the earliest principles taught the French peasantry. If a new government loan be issued, it is bought by the masses throaghout the country with the money so deservingly saved. Monopolies in the purchase of government securities do not and, perhaps, cannot exist. The farmers and populace at large have a chance, and look forward to it by waiting and sleeping days and nights at the doors of the exchange office ; and when these are opened, they exchange their small gold coins for the three or four per cent. goverument bond. The fact of real zing a profit on a tew acres of land which at the same time supply the daily needs of the owner or tenant, is beyond the comprehension of the average Ainerican tiller. On the one hand, with a soil naturally yielding comparatively little, money is saved ; on the other, extraordinary crops, and frequently the rents have not been paid. The explanation of this is, that in France the most painstaking care is given the soil, and improved methods of cultivation are continually b-ing introduced through the exertions of the government agricultural colleges located in various sections of the country. We know of no better illustration of the numerous farming changes that may be brought abuut, depending upon intelligence, perseverance, econ omy and money-and are of frequent occurrence in Europe, than the history, past and present, of the "La Briche" farm and distillery shown herewith. This farm, situated on the river Loire, and in the department of "Inde et Loire," was purchased by Mr. J. F. Cail, in 1851, for two hundred and fifty thousand francs (50,000), and was then mainly marshes with any quantity of stagnant water, rendering the entire neighborhood unhealthy. The swamps in question were divided into two parts, called respectively l'Hommes and Rille. The surrounding small farms were then worthless, or nearly so, and could be bought for about forty dollars each. Mr. Cail called the farmers' attention to the fact that their land was good, but their manner of working was not what it should be. The new owner of "La Briche" farm commenced his improvements shortly after purchasing; the first operation being to uproot some twenty-five thousand trees, thus exposing the soil to the action ot the heated sun-rays, air, etc. Draining the water from these swainps was no easy tosk, as miles of small canals had to be dug to receive the discharge from the system of drain-pipes. The total number of these of all sorts was eighty thousand, and the coat of this drainage alone amounted to $\$ 20,000$. This preparatory farming outlay would have frightened many, but it must now be said that the neighboring tillers realized its im-
partance, and followed the example set them, with the effect of increasing the value of their previously worthless land. The price was raised from forty to eight hundred dollars. The total number of agres now worked at "La Briche" for farming purposes is two thousand, yielding sufficient beets to supply the distillery for a hundred days at a hundred tons per day ; also a grain crop sufficient to supply three hundred laborers with food. "La Briche" farm has numerous roads and woods, and the most imprortant of the first is shown in the illnstration. On each sidefrees have been planted, rendering the street to the distillery most stractive. Before entering, we pass over a goodsized ditch, which receives the drainage of the enclosure which it surrounds. On entering we pass "Porte d'Hommes," and find

Fig. 1. Bad Shapk.
Fig. 2. Improved Vilmorin. White sugar Grayiah Top.

Fig. 8. Good Shapr. Improven Duprez.
an immense yard 450 feet in length and 165 wide. To the right is a large building, the upper stories of which are for the storage of grain, the ground-floor being occupied by the offices of the overseers. Each floor of this building has an ares of 4,320 square feet, or, for the three floors, \& total of 12,960 square feet, sufficient for the storage of $1,000,000$ litres (or about 35,166 bushels) of grain. This building cost $\$ 12,000$. On each side of it may be noticed two covered sheds used for housing the farming implements. On the left, after entering the beforementioned yard, may be noticed three structures which are each 196 feet in length and 85 feet wide, and have a total capacity for six hundred head of cattle. The space between the buildings is a manure-yard. There is a most excellent arrangemont for the cattle in the interior. The anithals are arranged in four rows. The pulp from the distillery is received in cars that circulate upon tracks visible in the figure, in front of their staties. These stables cost $\$ 100,000$.

The large circular structure on the left of the ontrance is s sheep-fold, having a capacity of four thousand animals, and costing \$7,000 to build. The distillery is of considerable importance at "La Briche" farm, and the three buildings clustered at one corner of our illustration give the reader an idea of its importance. Alcohol marking $90^{\circ} \mathrm{B}$ is made, and pure enough to be used in the manufacture of quining and numerous other chemicals where a solvent is required. The beet-distiller is in France a public benefactor, as the manufacture of alcohol from the beet keeps down the price of almost every article sold in pharmacy, and thus enables the suffering poor to relieve their pains at a low figure. The pulp required for feeding would otherwise be a waste product, and hence is an important factor in the profits.

Besides the buildings mentioned as being within the enclosure, we find others devoted to the cooklng, gas manufacture, etc.

In conclusion, we can say that the entire working of "Ia Briche" farm came nearer to the desired standari than any other of which we know ; and much credit is due Mr. Cail for the energy and enterprise there displayed.

WHAT THE BEST SUGAR BEETS LOOK LIZge.

When we experimented throughout the country with variout varieties of sugar-beet seed, with the view to ascertaining the soils best adapted for their cultivation, we were thoroughly convinced that but few farmers had even a slight idea of what the sugar boaf looks like. Some, when asked if they had grown these roots, replied that they had, but that they would not continue to do so, as these had not proved to be profitable crops, either in the market or when used for feeding domestic stock ; and that they were convinced that the carrot and other roots came nearer to what was required than did the beet. When these gentlemen entered into the details concerning the size, general external ap pearance; manner of growing, etc., their ignorance of the aubject became more and more apparent. For example, in New Jersel we were told that these roots grew some eighteen inches in length, frequently with a diameter of eleven inches; that twonty pounds for their weight was not uncommon; that they grew about one-half above ground; that their flesh was watery, and that hollowness was general. Upon investigation we foura that their so-called "sugar beet" was the mangel wurtzel," of that frequently the ruta-bagat had passed for what it was noto When theae farmers were informed that the sugar beet (unliad the mangel wurtzel) grew well underground, that the neck alope was visible, that the diameter of the roots was small, that the color of the skin was nearly white, and that the weight rarely exceeded two pounds, they became convinced that they did sol even know what the sugar beet looked like. When the beets from our seed were ready to be taken up, we remained upon the field woit ascertain by the farmers' actions if the sugar beet had beep actually before planted. Their amazement on seging roots of thi kind was beyond description ; and they acknowledged that thos the sugar beet had, for the first time, been grown in their section of the country. Some few roots were fed to their cattle, and tho -acknowledged the resulting beneficial and fattening effects.

When farmers or those interested in the sugar-beet culture buf seed with the view of testing their soil, it is desirable to know this, was, when bought; of the best variety. This cannot bit actually ascertained in advance, as the crops alone will be proo

[^0]

THE LEAVES OF THE SUGAR PLANT.

Phat no deception existed; for that reason it is desirable to know Thet the best nugar beets look like.
emonce that our readers may appreciste the external dif--rych top "give an illustration (Fig. 1) of a "" white, sugar it ${ }^{1}$ nop." This variety closely resembles the mangel wurtzel
 Trate latter, is white, and the neck far less conical. Its maxi* ${ }^{\circ}$ out ${ }_{6}$ yield to the acte is 96,000 pounds and it contains only Fingel per cent. of sagar. Even this type is preferable to the hagel as it containg a far greater percentage of sugar, and is Wptible of improvement.
Weatian the now consider two of the best types. First, we may thoan the Improved Vilmorin with small neck. The shape, curcon in Fig. 2, is conical. It grows entirely beneath the patain ; has an average weight of about one pound and is said to - 4 abotit fifteen per cent. of sugar. The maximum yield Mts of is 28,000 pounds. Mr. Vilmorin's beet attained this The of perfection in 1879 ; but since then we have planted it, Fritod, ragret to say that it has shown a tendency to become Ppod, thus rendering the harvesting difficult; but its shape as - If wonted in the illustration is most satisfactory.

Mcout prizes examine the types of sugar-beets that have taken To Fil prizes at the agricaltural exhibitions throughout Earope, He. 8.) ind long roots with comparatively small diameters (see Moth.) These are the result of Protessor Violette's selection of rown in and improved methods of cultivation. These are yotuined Earope as Deprez No. 1. These roots have frequently Hald of 24,000 teen per cent. of sugar, and have an average mppoed 24,000 pounds to the acre. In the illustration we have 4thed and theoretical shape for the neck, and, as shown, this is Bh and conical, and grows partly abovegronnd. The yield in Ht the, when compared with that of the grayish top, is small, Thititie percentage of sugar is double, and these very saccharine * hed proportiat is wanted. Admitting that these roots con. Hepat to portional quantities of other elements than sugar, the The $D_{0 p r e z}$ worked up would be double in the grayish tops that 4 4 a be the samile the amount of sugar that could be extracted t the the same. Consequently we have double the expense Wh than rasult; and other camplex manufacturing difficulties 1 Lot it ben using the large beets.
Nenta or remembered that beets which have the appearance of Whint of 8 will, as a general thing, contain a satisfactory * oine theugar, and when it is asked what the best sugar beets - Wonjd theme shapes should be borne in mind. In conclusion W. Towld say that farmers should not be misled by large aropes
and large roots, as the one is consistent with the other, but not with the sugar these roots are expected to yield.

THE LEAVES OF THE SU̇GAR BEET.

While the leaves grow the root increases but little. After the leaves cease growing, the root repidly becomes larger.

Small leaves, with given signs indicate roots rich in sugar.
Linde soils produce small leaves, for reasons unknown. Stripping the leaves makes the necks longer, increases the water, and lessens the sugar per centage in the root. The explanation of the latter is that the neck contains the greatest amount of salts and the least sugar.

Beet Sugar Prodoct.-The continen of Ea rope now pro duces from beets more than one-fourth of all the sugar of all kinds made in all parts of the world. France makes 451,000 tons ; Getmany, 290,000; Anstria, 205,000; Russia, 150,000; Belgium, 80,000 ; Holland and Sweden; 35,000-in all, 1,211,: 000 tons. France has about 500 sugar factories, and about as many distilleries for beet spirits and for beet sugar molasses. In this country capitalists are awakening to the importance of this brinch of manufacture, and already immense establishments have been organized in some of the Eastern States. The prairies of the West affiord the finest field for the cheap pruduction of the beet.

Graplvine Leaves as Hops.-Did amy reader ever try using grapevine leaves instead of hops in bread-making ! Simply use grape leaves as though they were hops, only, perhapes, requiring a little larger quantity. After having made yeast, just before setting it to rise, stir into it from one-half to one teaspoonful (according to quantity of yeast) of light hop yeast, or that made by soaking yeast-cake in a little warm water, stirring in the flour and allowing it to rise. After the yeast has become light, use as you would hop yeast. While the leaves on the vines are still fresh and green, gather the tenderest and best, dry and save for winter use.-Inter.Ocean.
The largest sheet of plate glase in the world has recently been cut at the St. Gobain works in France. It measures 21.15 ft . by 18.48. It is 7-16 of an inch thick. It is white glase and weighs 1,573 lbs. The same works have turned out a silvered mirror 17.90 by 9.94 ft ., weighing 770 lbs . The Jeumont works have produced a plate of white glaes 17.81 by 11.51 ft ., which weighs 1,100 pounds.

Sanitaxy Paxattexs.

HOUSE DRADNAGE.-I.

The Sanitary Committee of the Society of Arts (London) were able to obtain evidence from Messrs. W. Eassie, Rogers Field, and E.F. Griffith (three engineers having wide experience) on various matters connected with house drainage. The following is the part relating to the examinatious of bouses and to works:

Mr. William Eassie :

Will you be so good as to describe, as practically as you can, what is the course of your examination in diagnosing, so to speak, the condition of the house? =In the "Practical Hysiene" of Drs. Parkes and De Chaumont, I have furnished a description of how this is usually carried out in ordinary cases. I first begin with the drains, which I lay bare when I can do so, at various places, in order to see of what they are composed. When I find that they run inside the house, and are not concreted around, I pour in at the end of the draina measured quantity of water, and collect it at the opening made somewhere in tne area, not far from the outiall into the sewer. In some cases I find it necessary to fill the drain with water, and notice if this water disappears, because if it does so, it betokens unsound pipes or bad jointing, in which case I take it up and relay the drain. In testing the suitability of a drain for properly conveying away solid matters, I work the closet by pouring into it some suitable substance, and watch at the opening in the area whether it speedily appears. If it does not quickly made its appearance, and especially if the scouring distodges any excess of paper or solids not iutroduced by me during the testing, I conclude that the drain is not calculated to retain improperly the voidance, and 1 then recommend the drain to be tikeu up and relaid. By these means I am able to ascertain the geueral soundness of the pipes, their freedom from forming deposits, and their velocity of How. It the house has been rebult upon an old site, I also examine for any old cesspools or brick drains. I next ascerta'n the absence, presence or condition of the main trap between the house and the sewer, which is generally found in one of the area vaults. If it is a dis-trap, I in variably find it acting as a cesspool, and remove it, and I do the same with some patterns of syphon traps. Where I am permitted, I then construct a discommection chamber, with a fresh-air inlet of some kind suitable for the place; and as the next thing to consider is the ventilating outlet of the drain, I pay particular attention to the absence or presence of the ventilating pipes. If the soil-pipes be adequately ventilated, and if these are at the extremity of the dram, carried up to the roof, and terminating sufficiently far from windows and chimneys, I consider them calculated for the work which they have to perform in the matter of ventilation. But 1 sometimes introduce surecial ventilating pips. When the sol-plpes descend into the house, I fill them with water in order to ascertain their soundness; and if, a I hequently that, they leak, I recommend them to be taken away and others nxed, if it be at all possible, outside the house. I alwaysassume the soll.pipes to be faulty, owing to improperj inting or decayed solder seams, and
sul,ject them to the water or some other test. sulject them to the water or some other test. An examiuation of tne closets follows, and it they are of the horrible pan pattern 1 condemn them, and if of the valve pattern, with D.traps I remove the latter. Of course the woodwork around the closets must be taken round, and if the trays or salies have their wastes conducted into the D-trups, I make a note of the removal. I pay partucular attention to the servants' closets, aud see whether they Hush properly and are of a good pattern. The next inquiry is regarding the cisterns which supply the closets, and it frequently takes a cousiderable time to ascertain whether these cisterns also supply dinking water, and to where the overflows are led. If I find them supplying taps from whence drinking water is likely to be drawn, I proceed to notice where a separate cistern can be fixed for thit service, and make a memorandum of recommendation to this effect. An examination of all other cisterns follows, and 1 carefully notice whether the overtlows are properly disconuected, and also the physical appearance of the water and the state of the cistern iuteriors. I nutice whether auy of the basement closets are supphed direct from the mains. Very likely next in rotation would come the waste deliveries of the sinks, baths, and lavitories. II, as I too frequeutly find, they enter the soil-pipe, the closet-tiap, or the drain direct, I specily thir immediate removal. It is sometimes difficult to disconnect some of the sinks in the interior of the house, but it. is always pussible to contrive some method of doing so. Ialways make a note insisting upon the discomnection of the rain-water
pipes, and their delivery over a gully. When I find an improper disconnection as is frequently the case with sink wastes, 1 indicate the best method. Sometimes a too free method of disconnertion has been followed, as, for iustance, where an untrapped sink waste is made to deliver close to the trapping water of a gully, and where the effluvium from the latter is led into the room. I find it very often necessary to draw attention to the position occupied by the closets, and to the want of ventilation of the spaces in which they are placed, as also to the general ventilating arrangements of the house, and whether there is a proper air flushing, it possible, to the rooms and staircase.

What fornas, sizes, and inclinations do you usually adopt for house-drains ? My chief desire is to make use of the smallest possible pipes, and I use stoneware pipes of four inches diam. eter when these can perform the work, and if they will not, then pipes of six inches dıameter. Sometimes I am obliged to use pipes nine inches diameter, but this is nore rarely, and only as a main when several six-inch pipes junction into it. 1 rarely find use for
twelve-inch pipes. The fali greatly depends twelve-inch pipes. The fall greatly depends upon the depth of the sewer, and I take as much fall as the latter will afford me, providing a little extra tall before the main disconnection chainber. Where there is a good means of flushing, the amount of fall is of less consequence. I find houses where it is impossible to get a fall of nore than an iuch in ten feet. Mr. Field's selfacting syphon is of immense advantage in such cases, and I have fixed then in connection with the sinks whence the cleaner kinds of wastes are delivered.

What are the modes you find applicable for testing the sufficiency or competence of this description of work?-If the pipes are laid down on proper lines, surrounded by concrete, with occasional man-holes it is very easy to ascertain whether they act properly. As for the discounected traps, their efficiency can be seen at a glance. The chiet delinguencies are found at the water-closets, and the proper working of these is tested by the rapidity with which iutroduced paper, etc., can be carried to the disconnection chamber, which I mostly cover for this very pur-pose with an iron man hole cover easily litted up. If any smell arises in a properly laid drain, and from a closet, the soil-pipe of which is ventilated by a pipe of the same diameter, to the outer air, I gencrally attribute it to some temporary stoppage of the drain, owing to the introduction of some foreign substance, such as a duster down the closet. In any case the fault ought to be easily remedied when the work has been properly executed. In every case where pipes are led down inside the house, they should be cased in with hinged casings, and the seats and risers: of water closets should also be so constructed as readily to afford inspection. It is not in my opinion necessary to employ a workman to test the efficiency of any drain, and as I provide a plan of the house, showing the position of the man-holes and air-chamber, it is only necessary for a servant to raise the covers to see if the drains run clear. . Screw caps on the various traps Weuder it easy to remove any temporary stoppage at these places. With a proper plan of the drain in his hand, and with an airchamber, $i e .$, a disconnection chamber, easy of access, a man should be able to test the efficiency of all the waste removals, in the course of an hour, even in the largest houses.

Mr. Rogers Field :

Will you be so good as to deseribe, as practically as you can, what is the course of your examination in diagnosing, so to spenk, the condition of a house?-Tue first point is to ascertailt whether the drains pass underneath the house or outside it. they pass underneath the house I test them carefuliy for sound ness (to ascertain whether they are water-tight), as well as test ? ing them for treelom from deposit and velouity of flow. If they pass outside I merely apply the two latter tests. The test for soundness is managed as follows: The drain is opened down too ${ }^{\text {, }}$, at its lower end senerally in the area between the house and thet street, and carefully stopped with a plug of clay. Another opening is made in the drain, and the drain is then gradually, filled with water. As soon as the drain is full the water if turned off, and carefully watched at the apper opeuing. If theit Water remaius in the drain, the drain is sound, but if not, the
drain is leaky, and the rapidity with which the drain is leaky, and the rapidity with which the water sinks indi: cates the amount of the leakage of the drain. It is not at all unusual for the water to run away so rapidly that it is impossif ble even to fi!l the drain so as to make the water show at the upper openang at all. The test for deposit is by flushing frow the closets, sinks, etc., and pouring down a large yuantity 0
water and watehing the drain at the opening at the lower en water and watching the drain at the opening at the lower enf
(of course without any pluy in it). If the water cojoes do thick or with a bad smell, it shows that there is a deposit; if it runs clear and sweet, it shows that the orain is clear. The test
for velocity of flow is by noticing the time that water takes to run a given distance. Whether there are any old drains or cesspools, can only be sscertained by opening up and searching for them, and this must be done whenever there is any reason to
suspect their existence. The next point is to ascertain whether Buspect their existence. The next point is to ascertain whether generally unmistakable evidence of the absence of the trap. Should there be a trap, it must be opened down too, as the of dances are that it is so constructed as to be more or less fuil of deposit. It must, of course, also be ascertained whether the drains are ventilated. There is not much difficulty about this, as it is generally evident they are not. The next proceeding is Wexamine and test all the details of the sanitary arrangements, Water-closets, sinks, baths, etc., and as it would take much too limg to describe all these various necessary operations, I must simply refer to a few of the most important points. The soilpipes must be carefully. examined, and if they are inside the jouse they must be .specially tested. If of iron, with putty joints, as is often the case, they may, without much risk of
error, be assumed to be unsound; but if it is wished to test them, this could be done by the smoke tes ${ }^{+}$. If they are of lead, they should be tested by being plugged and filled with water. A glance at the water-closet apparatus is enough for an experienced man; but it is necessary to take down the seats to see whether the overflow of the "s safes" or lead trays underneath are conbected with the soil-pipes, as is often improperly the case. The condition of the traps can be tested by lifting the handle of the noset and noticing whether any smell comes up (in a good closet no smell is perceptible). If, however, the apparatus is of a Galty description, the closet is sure to smell sooner or later. It and be carefully ascertained what cisterns supply the closets, and, if there is the least uncertainty, the cisterns must all be
tested by drawing off water from them, and in some cases by colod by drawing off water from them, and in some cases by coloring the water. The waste-pipes of sinks, baths, etc., often
give a good deal of trouble. A good way to trace them is by pouring down hot water, and feeling which pipe becomes heated.
If hoo If hot water poured down the waste of a bath, for instance, heats soil-pipe, it shows that the waste of the bath goes into the oil-pipe. It is never safe to trust to appearances, as the followIng curious instance will show : In a house I recently examined, inform an open end of a pipe projecting through a wall, and was oyerflow that it was the overflow of the cistern. I tested this projecting by pouring water down it, but no water came out of the rojecting pipe. I was then told that it was the wastes from the safe's or tray under the water-closet. I tested this in the same told it no water came out of the projecting pipe. I was then told it was the waste from the safe of a bath, and on closer exGath. I I found that the pipe evidently did come from the Wath. I thought it better, however, to test it by pouring water Th the safe of the bath, when to my surprise no water came out
The pipe. I then had the casing of the bath taken down, When it was found that the pipe had surely enough been con-
Mected with Mected with the safe of the bath, but at its highest point, so that
Wo Water would of Water would run out of it, and that the real outlet from the dafe of the bath was into the soil-pipe. The explanation was, no the soil, as follows. -The vutlet of the safe had always gone into altered. pipe, but some former tenant had insisted on its being bered. To do this properly, the fall of the safe must have Pojecting, which would have involved some expense, and the folecting pipe had therefore been run ihrough the wall as a
to deceive him. The bath in question was in a dressing. room to deceive him. The bath in question was in a dressing-
opatlet opening into a bedroom, so that the connection of the outlet with the soil-pipe was a very serious matter.
How long does the process of examination usually take?-The tion various so much with the size of the house, the complicaHot, and the sanitary arrangements, whether there is any plan or to and the facility of examination, that it is almost impossible idea, I may this question. In order, however, to give some rough the, I may say that in an ordinary London house of moderate-size of examination would probably take from three to four hours had been proval time. This is on the assumption that the house concealed previously prepared for my inspection by having the tequired. parts exposed, and that no great amount of testing is
there sanitary arrangements are complicated, or if there is delay on account of workmen opening down to the
demins, thans, making preparations for testing, etc., the time is largely
the the reased. In very many cases, however, after opening down to
moralins, I consider it unnecessury to test them, as I am Horally certain that they are leaky, from my experience in testho other similar drains.
What formin they
Wonat forms, sizes, and inclinations do you usually adopt for diametrains ?-I generally use stoneware pipes of 4 or 6 inches Occasionally 9 -inch pipes may be required in very
large houses, but this is only under exceptional circumstances. Under ordinary circumstances 9 -inch pipes are too large even for considerable sized houses, and it is a mistake to use them. The fall varies immensely according to circumstances, hut I always endeavour to ohtain a fall of 1 in 30 , or 1 in 40 , for ordinary house-drains. When, however, self-acting, flushing arrangements are employed, the fall may be greatly reduced, and I have 6 -inch main drains carrying the sewer from large mansions working very satisfactorily with falls of 1 in 100 to 1 in 200 , where flushed by my self-acting syphor.

What are the modes you find applicable for testing the sufficiency or competence of this kind of work ?-In order to render my answer intelligible, I must, in the first place, explain that the different portions of all sanitary work carried out by me are made as accessible as possible. The drains are laid in straight line, with man-holes, or inspection openings, at everv change of direction. The traps on the drains are made easily accessible. The soil and waste-pipes are never built into the wall, and, if cased, the casings are easily removable. The open ends of all waste and overflow pipes are made visible. The water-closet seats are all hinged, so as to lift. The traps of sinks, lavatories, etc., have screw-caps for inspection and cleaning. It is then a comparatively easy matter to examine and test the drainage. The drains are tested to see that they are water-tight when they are laid, but this test (by blocking and filling them with water) can be applied at any time. The accuracy of the laying of the drains, and their self-cleansing capacity, can be immediatelv tested by trying the velocity of flow, as already explained. The traps on the drains can be texted by examining whether any solid matter rests in them, and also by trying whether paper, etc., flushed down the drains passes through them. The sufficiency of the flush of the water-closets can be tested by seeing whether it drives paper through the traps. The test of smell is also valuable, as in well-laid drains any other smell than that of fresh sewage is an indication that something is wrong. I may add that in the work I carry out, I not only supply my clients with an accurate plan of the drains showing every detail, but also a detailed schelule referring to the plan, giving particulars of every pipe, trap, closet, man-hole, inspection cap, etc., with a written description of the works, and detailed instructions for keeping them in order. This is extremely useful for future references, and in some cases my clients have duplicate copies made, and deposit one of them with title-deeds.

house drainage wryhin the walle.*

These demand still more care and skill than the drains outside. In the latter case the soil has certain absorbent powers, combining chemically with the products of decomposing filth, or holding air in its pores for the oxidation of the noxious compounds, which are thus rendered innocuous. Moreover, the poisonous influences within the walls are more likely to be absorbed by and act upon our systems through the lungs than if out of doors, and diluted more or less by air being admitted into the houses of those who cannot afford to heat it during six months of the year. The suffering from frost is immediate, leading the poor man to calk up every crack, while the iujury from bad air is a slow poison, warning us only by the sense of smell, a sense which soon becomes benumbed, and rarely becomes sufficiently imperative to lead to action. In fact, its imnortance is not appreciated by a large part of our population. They might perish with the cold if they let in the air, so they choose the chance of living without it. We must therefore expect bad ventilation among the poorer classes in cold weather. The volatile exhalations of the skin and lungs are not always so easy to get rid of as the fluid and solid excreta. But in getiing rid of the latter, if we do not take great care, they too becom gaseous, and return to plague us in the air already heavy with the exhalations of the lungs and skin.
The introduction of water-closets in tenement-houses should therefore be guarded with special attention, or the benefits to be derived from their use will be more than cancelled by the evils which may arise from their defective construction.

It must be remembered that houses situated on high places, though enjoying the advantage of good opportunity for drainage, may be more exposed than lower sites to the invasion of bad gases from drains and sewers, for the very reason that they are higher, for these gases are light, and are always tending upward. It is well known that the pressure in our gas-mains increases very perceptibly as we rise a hill, being about double the ordinary working pressure at an elevation of two hundred and

A lecture by Mr. Edward S. Philbrick, O.E, delivered before the stu dents of Technology.
eighty feet above the works, and although the gases in our sewers may not be "so light as illuminating gas," they are somewhat lighter than ordinary air, and are therefore always tending npward by their baoyancy. This tendency is aggravated during the winter by the rarefied condition of the air within our houses, the ordinary heating of which always creates a slight inward pressure from the outside in all the lower stories.

As a general rule, it is, of course, advisable to limit the length of the drains within the house walls to a minimum, for the reason that a large number of joints increases the risk of leakage. In planning the lines and course of drains, therefore, this should be kept in view.

In planning the general arrangement of plumbing fixtures, care should always be taken to have them arranged as compactly as consistent with convenience, and to avoid scattering them about in remote parts of the house, from which the drain pipes can rarely be collected and combined with a proper fall to guard against deposits being formed in them. It is also a matter of no amall importance to place the drain and waste pipes so they can be readily accessible for inspection and repairs, without tearing up floors. When located under basement floors, loose trap-doors should be left for access, and if the drain is necessarily below the surface of the ground it should not be buried, but walled in on each side by brick.

The material for drains within the houses should be of metal, in all cases. Stone-ware pipe cannot be trusted on account of their fragile and porons joints, through which gas can penetrate, though they may be impervious to water. For all main-drains and soil-pipes, cast-iron is the best material. It is made in lengths of six feet, with all the necessary special forms for joints, bends, etc. Its joints should be filled with melted lead, and well calked. Kight-angled connections must be avcided, except in vertical pipes, for the same reason as has been given for outside drains. Oblique connections can always be provided for by arranging the lines of pipe for the parpose, if care be taken. Vertical lines of drain from water-closets, generally called soil. pipes, were formerly made of lead, and this material is still used in England. But iron has taken its place in this country for soveral years, with success. It has these advantages : Its rigid nature renders it less likely to get out of place than lead, which often sags and changes form. Lead is also more subject to corrosion from the gases existing in drains than cast-iron. Wrought-iron would rust away rapidly, but cast-iron rusts only on the sarface, and seems capable of enduring for twenty years or more, while lead is often found badly corroded in ten years. The corrosion in lead takes place along the joints where in contact with the solder, probably from galvanic action, excited by the contact of the two metals. Lead is often exposed to damage, as is shown by these samples before us, taken from houses in this city, also from rats, which gnaw holes in it, and nails carelessly driven in securing the wood-work have often made holes that-were not discovered for several years. The joints of iros pipe are sometimes put together with putty by poor workmen; but it can never be relied upon for any length of time. It soon crumbles away and becomes worthless. The lead should be applied nearly or quite at a red heat, so as to penetrate the thinnest parts of a joint without becoming chilled. When cooling, it contracts 10 much that it must be upset with calking tools, applied around the whole circumference.

The small waste-pipes from bath-tubs, bowls, sinks, etc., are generally made of lead, which is a very suitable material. Where entering the iron pipes, the joint is often made by applying hydranlic cement, putty, or red lead. But the proper way is to solder a brass ferrule to the lead pipe, which is inserted into the bell of the iron pipe. This gives a stiff material, against which a lead joint can be calked, in the same way as between two pieces of iron pipe. When lead traps are used under waterclosets, the joint between these and the iron soil-pipes should be secured in the same way.

Every vertical line or "stack" of soil-pipe should extend through the roof of the house at least four inches in diameter,

Orilinary illuminating gas has a apecifio gravity of .42, that of air being 1.00. The increase of proseure in gas-pipes as they extend up to a higher level, is due to the difference in welight between the air and ras for the height traveried: gas when diftributed from the works is under a pressure of alout 21 inchen of water.

The weight of a cubio foot of water is 62.4 lbs .
of air is 0.08 lbs .
of gas is 0.0336 ib
Difforeace between sir and gare equals 0.0464 lbs. per cubic foot.
We have then the following proportion :-
water preseare $: 1335$ inches, or 111 feet elevation for one additional inch of water presenre.
and far enough above the roof to ensure its end from being filled with snow. The end should be left wide open. If a smaller pipe than one four inches in diameter be used, the part projecting above the house roof will be liable to be filled with hoar frost on cold nights in our climate. With this arrangement a constant draught is maintained through the house drains, entering at the vent-hole close to the outer trap, and passing up through the roof of the house. The temperature of the house in winter is always enough above that of the outer air to sustain this draught, In summer the sunshine on the upper end of the pipe will encourage it, for the hole at the lower end is below the surfaces, where the ground cools the air and thus renders it slightly mores dense. This upward draught is'reversed for a moment whenever a considerable charge of water is emptied into the drains fros the upper stories of the house, for the water pushes the air dor' as it falls, and other air takes its place from the upper end of the pipe. . If both of these holes are not kept open, trouble will bo sure to follow the use of the drains, for the water rushes dow the vertical like a piston, to drive all the air in advance. free escape of this air were not provided for by the vent-hole ot the bottom, the air within the pipe would be forced out at any of all the branch drain-pipes in the lower story, forcing their trape and blowing their contents up through the waste-holes in a $\mathrm{\nabla} \circ \mathrm{r} \boldsymbol{f}$, disagreeable manner. The puff of air that is thus driven out the house-drain at its lower vent-hole by a descending charge water from the upper stories, has sometimes been objected to the ground of a possible offence arising from it at the mouth of the man-hole over the trap previously described; but this is not found to exist in practice. The air from a well-ventilated drain is not so foul as to pollute the air outside the house to any g extent, though whon allowed to escape and taint the air woithem the walls, where the dilation is very much less, the result is much more serious. Moreover, as before explained, the eacsp of air at this lower vent is only by occasional puffs forced out by descending charges of water, while at all other times the druagh is inward at the lower vent-hole. So that this very air which may have been forced out for a moment into the man-h le chand ber, is again drawn up through the pipe and delivered at the tond of the house above the roof, before it has an opportunity to esc from the top of the man-hole Itself. Practically, no reason pears to exist why these vents should not be placed near house, outside, in either the front yards, on the sidewalk, the back yard, as the case may be. If the man-hole cove liable to be covered with snow for any depth, an air pipe of or five inches should be fed up from beneath the cover, to tern nate a few feet above the ground at the top of a back yard fenof or similar position.
The arrang ment described above is essential to every honef By this meaus every part of the main drain is not only kept b. accord with the normal atmospheric pressure, but is also swept of a constant current of air. If there be more than one stack
vertical line of soil-pipes, each one should extend through vertical line of
roof separately.
Smaller branch waste pipes leading from bowls, batla-tably sinks, etc., can all connect or discharge into the soil-pipe or mad drain where most convenient, but each branch should slso of a vent to the open air, and a separate trap under each sink, bowl. Without such ventilation for each branch, the dischar of a few gallons of water through any of them will: be likely empty any or all the traps that connect with it, by syp action. Moreover, the discharge of water down the ve:tical st thl itself will often produce this effect, by the friction betweer descending water and the air in the branch pipe at the junctio It is always best to lead the waste from each bowl, or tub tely to the soil-pipe or drain. If these branches connect one another before joining the soil-pipe, the drainage one is very likely to disturb the air in the other, and destroy the seal in their traps. It has been a common among plumbers in this country to lead the waste water bath-tubs, bowls, etc., into the trap of the nearest water-clo, below the water line; but such a practice is never advisable, several reasons. The discharge of warm water into this trap heats up its contents, which are generally composed in of fecal matter, and the steam and odors arising therefrom very likely, by their expansion, when so heated, to find crack by which they can penetrate into the room. slight sagging of one of the pipes or a tipping of the trap which sometimes ocçurs in time, will throw the conne above the water line and destroy the seal. Another dof this method of connecting wastes of bowls to water-aload arises from the length of waste under the floor which has
fall that the trap water holds the water back in it for

Foot, where it has ample time to make noxious deposits. (Soe 8. 2.)

It is usual to provide a small tank or cistern in the upper part of house, from which water can be drawn, when wanted, more thpidly than from the small pipe which supplies the house from the street. Such a tank is fed by a faucet governed by a float, that it is kept nearly full. As any defect in the action of the tont might cause the tank to overflow, it mast always be provided with an overflow pipe, to carry off the water in such an mergency. If this overflow-pipe is connected to a waste or Ona n-pipe, the foul air will rise through it and escape through its pon mouth at the top, where it may taint the water by being aborbed by it, or taint the air about it. No trap placed upon moh an overflow can be relied upon, for the flow occurs so oom that such a trap would lose its water by evaporation and oon becomes worthiess. The safer way is to discharge such brorflow pipes in the open air, either outside the house, in a rainphout, or on the roof. If this cannot be conveniently arranged, they should be allowed to discharge over an open sink or bathtab, or similar receptacle, without direct connection with the draing. Where no public water supply exists, large tanks for torage of rain-water are sometimes constructed as a source for domestic supply, located under the ground, which overflows diseharging into the main-drain. Such a course should never be allowed. No intervening trap can serve for stopping the back flow of gas, because the overflow does not occur often enough in op weather to ensure the presence of water in such traps. Such overflows ought to be discharged on the surface of the ground, ot in a pit filled with loose stones in a porous soil, where the Water will readily soak away at all times. An instance occurred Within my own observation a few years ago, where the overflow of a rain-water tank discharged into the main drain. This boname choked with grease, and sent back all the sewage of the moned into the cistern, through the overflow. The water was oned for all domestic purposes, and its pollution was discovered only through the nauseons taste it had acquired after some the ${ }^{\text {bes accumulation of sewage in the cistern. This leads us to }}$ on question of grease in drains, a prolific source of annoyance in vir climate. The grease comes from the washing of dishes in waten sinks, which goes down the wastes mixed with warm - Water in a fluid state. It soon becomes chilled in cool weather, thd adheres to the sides of the drain, where it accumulates con. the dilly, till sometimes filling the pipes for long distances. If the drain has a very rapid descent, the flow of water may someseed prevent this accumulation, but otherwise some provision is theded for intercepting the grease in a small tank. The nearer of thank is to the sink the better, to guard against the choking the ontere above the tank. Where the sinks are located against Walls, outer wall of the house, the tank is best placed ontside the wals, where the grease can be removed without creating a nui8), built the house. Such a tank is shown in this section (Fig. hade built of brick and hydraulic cement, plastered smoothly feat long For small and medinm houses it should be at least three corneng on the inside, and about two feet wide, with reanded dipping. The outlet should be made of a bent joint of pipe upping under the water, so that the grease, while fioating on the " inches will not be drawn into it. The inlet should be at least the inches higher than the outlet, so as not to be obstructed by thick accumalation of grease which takes place in the form of a blow the on the water. It is also best to allow about a foot and the mouth of the outlet in the clear, for accumulation of 4 mand other solid matter which is heavior than the water. may be mole cover is placed on the top; through which the grease Watore removed as occasion may require. The soil-pipes from chonald beets should never discharge into this receptacle. It and be arranged npon the branch leading from the kitchen draju pantry sinks only, having its outlet connected with the main to the outside of thent. If the sink is not situated near enough Whetedtside of the house to allow this grease tank to be con. merted outside the walls, it can be made in the cellar or baseFeat, of wood, and lined with heavy lead. In such cases, the Wot does not cool so readily as on the outside, and if the tank Whot of a liberal size, the grease is liable to peas through before choked with from the water. Whenevor drains become porading hot grease, if the pipe is accossible, it can be cleared by
Horrer or pease thes. This heats up the whole contents, and the softened Fut the bettar pases along with the wator that is applied inside. Ppeat If once way is to catch the graase before it gets into the raci If once allowed to coat the inner walls of the draing, I have troble will ensue.
[. We before alluded to the need of getting the plumbing
fixtures inside the house arrenged as far as possible in compact groups. It is a very common fault among architects to so arrange them that their drain-pipes are led across considerable lengths of flobr spaces, with little or no fall, terminating, as before described, in a water-closet trap, just below the floor, which sometimes holds the water for several feet back in this horizental reach of pipe. (See Fig. 2 above). Whenever a bowlfull of water is discharged into such a flat waste, the lower end of which is filled with water, the air that happens to be in the pipe above such water is displaced and is driven out. Where can it escape ? Sometimes it finds a branch waste coming in from another apartment, and is blown up that, through the trap and waste-hole of a wash-bowl in a sleeping-room or dressing-room attached. Sometimes it bubbles upin one's face in the bowl that is discharged. Sometimes it is pushed forward and bubbles up in the water-closet. The result in either case is far from satisfactory, and shows how important it is to give each line of waste an independent and unobstructed course to the main drain or soil-pipe, where the air can find ready communication with the outer air.

EFFECS OF STARVATION ON THE BLOOD.

Further olserv ations upun the gradual improvements of Dr. Tanners blood have made it necessary to modity the statements made at the close of the article on this suliject in the last number of the Scientific American (see page 128). It was noticed that the quality of the blood varied greatly in different specimens obtained from day to day, and even in specimens drawn the same evening. It was at last found that if the blood was drawn from a very small puncture, from which it had to be pressed out forcibly, it was found to be in a much worse condition than if drawn from a deeper puncture from which it flowed freely. It is evident that in the first case it was drawn only from the capillaries, and in the second case from the larger vessels, in which a regular circulation takes place. This appears to prove that the abnormal corpuscles linger in the capularies, and that it takes time to remove them therefrom, while in the larger vessels, in which free circulation takes place, restoration may already have been accomplished to a considerable extent. Close observation appeared to show that this restoration was taking place in two ways, by a cleaning and healing process of the aflected corpuseles, and by the formation of new ones. The first was proved by the observation of corpuscles in all stages of the healing process from the most abnormal to the perfect smooth oues. Some of those which had become free of tungoid spores appeared, however, to have suffiered considerably, some were partially destroyed, some were only halt or parts of perfect corpuscles, and no d, abt such will be either eliminated trom the system or the defective parts healed up. Which of these takes place is a question. The second process of restoration was proved by the apperarance of fresh aud small corpuseles, looking very smooth and pertect, and bearing the stamp of youthfuluess upon their appearance-we would almost say countenance-a treshness which became more striking the higher the magnifying powers were by which they were observed, in comparison with the affected corpuscles, in which the higher powers showed the impertections more strongly.

This corroborates what other mieroscopists have observed in regard to the tormation of new young blood corpuseles. It has, however, been demed by others who failed to observe it ; but this is merely negative testimony, of whech there appears to be a great deal in the medical profession; it proceeds tron a kind of conservatism, which lies ai the basis of all the medical mololerance manfested by the so-called resular sehool agatinst all supposed movations, even among their own brotherhood.
A striking illustratjon was offeited in thas regard by the discorery of Prot. Cohnheim, of Kiel, who found that pus globules could anginate from the white hood corpusiles, wht whose ob. servations wete most strmuously uphosed at first bjohe majornty of the protession, who conlu nut see it. It may be menulaned here, as it has some relation tu Dr. 'Tanner's tast, by whath tast the number of his white blood corpusches was morte bath quadru. pled. It is well known that persons subject to privation of fool have a strong tendency to pustormation and ranmang sores, and if scarvation moreases the number of white corquacits, these com. bined facts apper to support Cohnhem's theory. I'ue opposition aganst il was, however, set at rest by Di. Basthati, in London, and surgeon Woodward, U. S. Army in II ashngton, who veritied Cohntheim's observation, and by Huxley, who adopted it in his great lecture on protoplasin.

The number ot white corpuseles did rapidly diminish alter the last in Dr. 'Tanner's blood, and was soon reduced to the normal proportion ; but the interesting change in the red corpuscies and their vely gradual restoration during a length of thete, is a contiibution to science which Dr. 'I'anner has given after the end of his fast, and this should be neknowledged.

WHAT CONSTITUTES AN ILLEGAL STRIRE.

Judge Cady, of St. Louis, has ju-t given a decision of considerable importance in respect of the rights and duties of striking workmen. The case was that of the Vulcan Stet Works of si. Louis against sight of its wankmen in the converting departinent, who stopped work and demanded advanced wages at a moment When two charges nere melted and partly melted in the cupola, a charge of metal in the scale ladle, and the pit filled witn mgots in the moulds. The evident intent of the strikers was to take advantage of this condition to force the works to yield to their demands. The commsel for the defendants claimed that they were guilty of no crime, either under statute or common law, and moved to yuash the indictment. The Judge held otherwise and held them for trial. The important part of the decision is, that while it may be no crime to conspire or agree to stop
work unless higher wages are paid, it is a crime to thus conspire
or agree under circumstances which menaces the employer with serious loss. The tendency of the decisions of our courts on labor questions that have been brought before them lately, is all ir this direction, and a body of decisions that will be valuable as defining the rights and limitation of unions and strikers is being accumulated. These decisions take the ground that unious and strikes are not unlawful in themselves, but that the acts of unions and the circumstances under which strikes occur may be criminal, and thus the union itself or the st rike may be clearly illegal, and make those who are members or who take part in it liable, both in civil and criminal suits. This was the position taken by the Judge in the Zinesville (Ohio) case. He held that certain of the rules of the Glass Blowers' Union were so clearly against public policy, and so evidently constituted a conspiracy against those not members, that he immediately threw the union out of court, and stated most decidedly that its members were liable to prosecution. In the St. Louis case a rule will probably be laid down showing some circumstances under which a strike may not take place without subjecting the strikers to criminal prosecution. It is evident that some rule must be adopted that will prevent employees from quitting work without notice, and this is true on principles of justice without reference to the justice of the strikers' cause. A demand for an advan ee in wages may be of itself the highest justice, but attempts to enforce that demand may be in themselves the grossest injustice. The end does not justify the means in this, any more than in other conditions of life. No act of the Brotherhood of Locomotive Engineers caused so much adverse criticism, or occasioned the loss of the good will of the public, as the desertion of their trains at miduight by the engineers of the New Jersey Central Railroad in 1876. It was an indefensible act, and one that some of the officers of the brotherhood regret. It will be weil tor both parties to possible future labor struggles, that their rights aud duties should be as well defined in this country as they are in England.

THE NEW GERMAN PRESERVING FLUID.

A new fluid, to be used lor preserving dead bodies, has recently been devised, the patent for which the German Government has purchased, and given to its people tor their tree benetit. Several criticisms upon the: formula for its manufacture have appeared in toreign journals. Mr. Marteuson, of st. Petersburg, says: Alum forms one of the constituents of the liquid; pro• bably potassic alum is meant, and in place of potassa probably the carbonate. Bat under the circumstances, all the alumina of the alum is precipitated, so that the hequid does not retain any in solution. On preparing large quantities of the solution, the labor of straining or filtering from the deposted alumina is very onerons. It is much better io omit the alum, and to substitute at once that substance which was produced by it in the original liquid, namely potassium sulphate. A portion of the alum may bereplaced by borax, so that the constituents will be the $101-$ lowing:

Water
Borax
Sulphate of poitama
salt.
Nitrate of somia
Carbonate of potansa
Arsenious acid
(1)ycerine

Alcohol.
The arsenions acid .hn earbonate of potassium are dissolved together by the aid of inat, and adeled to the solution of the other ingredients.

Table Salt in Aperient.-Physicians bave for a long time known that common table salt is an effieient aperient in ordinary cases of constipation. In a lecture on a case of nervous affection, Dr. Weir Mitchell, of Philadelphia, said that he had recotumended the patient to take each morning on rising a tumblerful of water-cold, to prevent nauseating-in which was dissolved a teaspoonful of table salt. "This simple aperient," the doctor adds, "I frequently employ in cases of constipation, and generally find it efficient. There is great advantage in starting the bowels and in keeping them in a soluble condition, particularly in cases of nervous disorder in woman, as it sometimes clears up obsecure points in the case, and at all events eliminates one source of error."
Sand is worked with cement to keep the latter from cracking, to harden it and to lessen the cost of the mass.

EYESIGHT.

Milton's blindness was the result of overwork and dyspepsia. One of the most eminent American divines having for some time, been compelled to forego the pleasure of reading, has spent thousands of dollars in value, and lost years of time, in consequence of getting up several hours before day and studying by artificial light. His eyes never got well.
Multitudes of men or women have made their eyes weak for life by too free use of the eye-sight, reading small print and doing fine sewing. In view of these thinus, it is well to observe the following rules in the use of the eyes:
Avoid all sudden ehanges between light an I darkness.
Never begin to read, or write, or sew for several minutes after coming from darkness to a bright light.
Never read by twilight, or moonlight, or of a very cloudy day.
Never read or sew directly in front of the light, or window, or donr.

It is the best to have the light fall from above, obliquely over the $\mathrm{l}_{\mathrm{fft}}$ shoulder.

Never sleep so that, on the first waking, the eyes will open on the light of a window.
Too mach light creates a glare, and pains and confuses the
sight. The moment you are sensible of an effort to distinguish, that moment cease, and take a walk or ride.
As the sky is blue and the earth green, it would seem that the ceiling should be a blueish tinge, and the carpet green, and the Walls of some mellow tint.
The moment you are prompied to rub the eyes, that moment cease using them.
If the egelids are glued together on waking up, do not forcibly open them. but apply the saliva with the fingers-it is the 8peediest diluent in the world-then wash your face and eyes in Warm water.-E.change.
This has been going around for about 10 years, and its ownership, we guess, is lost ; but it is good enough to go on indefinitely.

The German Standard for Portiand Cement. -Fyom a paper read hy Mr. John Graur, an English authority on cement, is taken the following brief summary of the requirements adopted in Germany for Portland cement: "In Jauuary, 1877, a committee, appointed the year before of four associations of engineers, architects, and manufacturers of cement, ctc., had, at their meeting in Berlin, agreed upon a series of rules to be observed in the production and supply of cement. Br these, the weight to be supplied in casks and sacks was determined, and certain tests established for the quality of cement, particularly as to its fineness and tensile strength. The latter was to be tested by briquettes of uniform shape and dimensions-five square centimetres breaking area-made of cement and sand, in the proportion of une part of cement to three parts of saud. The apparatus for this purpose was agreed upon. The age of the briquettes When tested was to he twenty-eight days. The cement was to be ground so fine that the residue on a sieve of 900 square centimetres, equal to 72.2 per lineal inch, should not exceed 25 per cent. This was afterwards reduced to 20 per cent. The sand for testing was to pass thmuyh a sieve of 60 meshes per square centimetre, and to be retained on one of 120 meshes per square Centimetre, equal to about 20 and 28 meshes per lineal inch. The tensile strength after twenty-eight days was at first eight kilogrammes per square centimetre, equal to about 114 pounds per square inch, but was afterwards increased to ten kilogrammes Ther square centimetre, or about 142 pounds per square inch. There could be no doubt that the standards thus established for Tine grinding, and for testing the cementitious value of cement When mixed with a large portion of sand, had exercised a beneficial influence on the quality of the Portland cernent manufactured and used in Germany. This result has been arrived at by a combination of the knowledge and ability of those who prodreed, and those who hud to use this inuportant article. The same standard rules, with slight modifications, were afterwards in opted in Austria. To these standards all cement manufactured in or imported into countries must conform. In England engineers and cement manufacturers had not been idle, and the suhject was now much better known than it was twenty years
ago."
tion Lhe Largest Sewing Machine in thb World.-Mention has already been made, says Design and Work, of the modifications of the Singer sening machine to adapt them to certain kinds of the Singer sening machine to adapt them to
whe latest of these we must allude to
more prominently, and introdnce the reader to the largest sewing machine in the world. This gigantic stitcher has just been completed, and may thus be described:-The machine weighs over four tons, and is in some respects of a new design, uniting much simplicity of construction with great strength of parts. It is adapted for general manufacturing purposes of the heavier sort, although specially made for stitching cotton belting, an article which is just now taking the market as a cheap and serviceable institution for gearing and the ordinary leather belting. The material used is of great strength and toughness, and is sewed together in plies or layers up to an inch in thickness. The helting in being sewed together is nassed through heavy feed rollers some nine inches in diameter and over eight ft. in length, getting stretched and pressed in the process. There are two needles at work, with two shuttles, and the shuttles can be removed from the bottom without disturbing the overlying plies of belting. The rollers between which the work passes are actuated by reversible worm and cam motions, and the machine has, in adilition to these roller-feeds, what is known as a topfeed motion, suitahle for a lighter class of work. The stitch, as in the ordinary sewing machine, can be easily aljusted from oneeighth inch upward, and the pressure of the rollers on the work passing through the machine can be regulated at the will of the operator. The machine, which is driven by steam, has been made for a manufacturing firm in Liverpool.

The Use of Copper by the Ancients.-Copper is widely spread over the face of the earth, and man, in all ages, has adapted it to his wants. It was one of the greatest articles of commerce with the Phonicians, who derived a large supply from the mines of Nubia, that at one time supplied the whole of the known world, and combined with it the tin obtained from the islands of Great Britain. It was used by some of the northern nations of Europe in the fabrication of weapons, at a period and under circumstances when steel appeared to he more precious than gold. This has been illustrated in Denmark, by the opening of many Scandinavian tumuli of very remote ages, and from which have been collected specimens of knives, daggers, swords and implements of industry, which are preserved in the musenm at Copenhagen. There are tools of various kinils, formed of flint, or other hard substance, in shape resembling our welges, axes, chisels, hammers and knives, the blades of which are of gold, while an edge of iron is attached for the purpose of cutting. Some of these tools are formed principally of copper, with edges of íron, and in many of these implements the profuse applica. tion of copper and gold, when contrasted with ihe parsimony evilent in the expediture of iron, seems to prove that at that unknown perind, and among the unknown people who raised these tumuli, gold as well as copper were much more common products than iron.

Respiration Affected by Food.-A very careful examina. tion by Dr_{r}. Spuck, of the changes protuced in the respiratory process by the use of fatty tood, of coffie, quinine, alcohol and water, and by the inspiration of air respectively rich in carbonic acid, poor in oxygen aud rich in oxygen, has led him to the following concluvions: With an increased proportion of hydrogen in diet, the amount of air inspired and expired decreases, and nutriment, such as sugar, which contains little hylrogen in comparison with their oxygen, involves more exertion of the respiratory organs than such as are rich in hylrogen like the fats; the more carbon prellominates in the food, in proportion to hydrogen, the more air is exhaled in proportion to that inhaled; the more carbon increases in the diet in proportion to hydrogen, the more carbonic acid is evolved and the more oxygen is taken up-while the richer the diet in hydrocen the less oxygen is required. An atmosphere containing 5% or 6% of carbonic acid could be breathed for some minutes without oppression ; at 11.51% great exertion would be needed to breathe for one minute; at 7.2 all carbonic acid produced in the body is retained in the blood.

The Value of Bhic-a-Brac.-A bonheur dc jour table, 2 feet wide 18 inches deep, and 2 ft 9 inches high, beautifully and elaborately decorated, one of the Welbeck "properties" inherited by the Duke of Portland, has been valued for probate at 10,000 guineas. There is nothing very astonishing in this, for when, during the bankruptcy of the late Duke of Newcastle, there was a dispute as to the ownership of a cup, whether it belonged to the Duke or to Mrs. Hope, some one suggested that such a trifle was not worth so much discussion, wherenpon it came out that at the death of Mr. Henry Hope the said cup had been valued at £ 10,000 .

BOIIER EXPLOSIONS FROI FAULTY CONFIRUCIION.

One of the clearest cases of a boiler explosion where the cause can be traced directly to faulty construction, and which affords an instructive lesson to would-be improvers of the steam genera. tor where they are tempted to depart from generally accepted rules of eonstraction, is described and illustrated in what follows:
The boiler referred to was a patent boiler, concerning which the mont extravagant claims were made before half a dozen of them had been actually put in service. An explosion which occurred shortly after the first introduction of these boilers, while it justified the opinion of the inspectors of the Hartford Steam Boiler Inspection and Insurance Co., who have steadily refused to pass them, on the ground that they were unsafe, did not interfere with the pertinacity with which the makers affirmed their excellence.

The particular boiler whose history is about to be narrated, exploded at Holyoke, Mass., November 11, 1879. Its dimensions were as follows: Shell, 6 feet long ; upper part, 22 inches diameter; lower part, 30 inches. In this there were 38 tubes, 6 feet lony by 3 inches diameter; shell plates, 4 inch thick, tabes, 5-16 inch thick. The four braces-the ends of which are visible at A A. Fig. 1-were 9 inches wide and of $5-16$ ths iron. The mode of fastening these braces is seen in Fig. 2, where they are shown attached below the small reverse curve of the waist, hy means of four of the seam rivets; to each side of the boiler. The back tube plate was stiffened by short bars of angle iron, riveted on transversely above the tubes. The shell, as will be seen by consulting Fig. 8, was composed of three plates, two of which formed the cover of the upper part, and the third that of the lower part, a continuous seam on each side joining the apper plates to the lower one.
The plan of construction, therefore, shows a departure from the rules hitherto made use of, the idea of the inventor being apparently to construct a boiler similar to the Union boiler, with a continuous connection or leg. The execution of this idea, however, involves a fatal weakness of construction, which will shortly appear, and which the event has shown, justifies the Hartford company in their refusal to insure them. By reference to Fig. 1, it will be seen that the outline of the end plates, which gives general outline of the boiler shell, is that of two parallel, incomplete and intorsecting cylinders. The tendancy
of an internal pressure apon such a form as this must manifestly be to distend this compound form into that of a simple cylindor; and this must necessarily bring a powerful strain upon the anglee of the braces (Fig. 2), tending to straighten them out. The effect of this strain upon the rivets fastening the braces to the seam, will be to pry them downward as the angle of the brace yields to the straightening effect of the strain-something like the effect of a "claw bar" on a spike in drawing it from the fastenings. The correctness of this criticism will be obvious to any mechanical mind that studies the engravings, and furthe details of the settling of the boiler and its fittings are superflous The boiler was considered safe at 75 pounds working pressurc but at the time of the explosion the pressure was supposed to be from 40 to 50 pounds.
The theory of this explosion advanced by the Hartford come pany, seems to be so perfectly justified by the acts, that we entiro Iy coincide with it, and give it without further comment: "Onf of the middle braces, the second or third from the end, became so weakened by frequent motions, caused by the straightening tendency of the internal pressure, that it gave way at the angle (where it will be seen from the drawing, Fig. 1, and three of them are broken off). The rest of them, a little less weakened, perhaps, by the same cause, gave way in turn immsdiately, hsvo ing received a sudden succession to their load, and the sholl yielded and broke at the middle of the long seam, which may also have been weakened along the margin of the inner lap, as indicated by the leak on the left side. The shell being now fairly open, the steam and water rashed towards the place of least resistance, which was outward and upward, carrying the shell plates before them and tearing them from the end platese The bending of the upper tubes indicates the direction which the water about them took in escaping, as does also the tearing out of the entire upper row of tubes which, it will be seen from the one in sight on top of the cluster, were so much bent as to dram them from their setting in the tube plate. The four bracketer which supported the boiler being below the opening, constituted the over-balancing resistance in the downward direction. Had the brackets been above the opening, the boiler would doubtle to have gone high in the air, instead of tumbling over and over bo the left, as observed by the attendant, who caught sight of it just before the whole scene was enveloped in steam and dust. This hypothesis seems to be so well supported by the facts that the word is almost a misnomer.

THE GWYARE PATENT HAMYOCE-TENT.

The season for "camping out" is once more at hand, and the tourist, in order to keep abreast with the requirements of modern travel, must needs set up for himself a more or less luxurions lounge, which he may use at discretion on the lawn, the sea-side, or the deck of a steamboat. Such an appliance, to be of any practical value, must possess the essential qualities of readiness of adjustment, perfect adaptability under varying circumstances, and positive immunity from the weather. Our attention has been called to a contrivance which embodies all these characterintics, namely the "Gwynfe" patent hammock-tent supplied by Messrs. John R. Whitley and Co., of 7, Poultry, London, E.C., and of which we give illustrations. The great merit of this hammock-tent is that it can be fixed in position in one minute, While it will stand by itself any where, independently of ropes, trees, screws or pegs. The "Gwynfe" was originally designed to meet the want so long felt, by officers and others, of a portable Weatherproof shelter and sleeping place in time of war, but at the tame time equally available for numerous other purposes. The framework of the tent consists of several short pieces of ash or piope, fitted one into the other-an operation which takes only a few seconds-in such a manner as to form a compact, secure, and portable frame to which the hammock is slung, and over which the material forming the tent is thrown. The hammock itself is made of canvas, The operation of taking the hammock-tent to pieces takes less time even than that of putting it together, and can, by placing the pieces of framework side by eide, and rolling the hammock and tent neatly around them, be formed into a light and portable parcel. The "Gwynfe" can be placed in any position, or readily removed to another, on grass as well as on rook, on the floor of a room as well as on the muddiest soil. It is equally suitable for the field in war, or for the lawn in peace ; while it will prove invaluable as an accessory to field hospital appliances, and can even be used as a manger for foraging horses. In the late Russo.Turkish War it was found that the mattrasses in general u^{n} by the officers engaged, were no protection whatever from the dampness of the ground, the inclemency of the weather or the irritating attacks of insects, against all of which the "Gwynfe" is completely proof. Sportsmen, gamekeepers, herdsmen, squaitere, ambnlance surgeons, and invalids,-in fact, everybody who does a little "camping out," will find this contrivance of immense use in securing ease and comfort in the open air. It Foruld be a great boon to the tired travellers crossing the prairies of the Australian continent, and useful as a domestic "fixing" in the bungalows of Indis. At home even hotel-keepers, or pmoprietors of sea-side lodging-houses, might turn it to profitable tocount whenever there is a sudden arrival of visitors in a full bode, for with a "Gwynf"" within reach a really comitortable bed may be "rigged up " in a fow minutes.

NEW RATOENT BRACE

Mr. T. Sword, of Cable street, Liverpool, is introducing a now patent ratchet brace, "The Ne Plus Ultra," which seems to possess undenisble merits on the score of simplicity, strength, durability and cheapness. It will be seen that the pawl and its hinge, and the spring, in the common ratchet brace are entirely dispenped with, and the ratchet action is accomplished by two ratchet-toothed wheels on the journal, a little distance apart, and forming with the journal one piece ; while an ordinary spanner, which can be used as such, forms the lever handle. It clasps the

journal between the two wheels, and a lug projecting from each side of the spanner takes into the teeth of the wheels, driving the journal in one direction, and sliding back over the teeth iu the other direction. By having three instead of two ratchet wheels, two spanners can be used, and thius a two-handed continuous action is obtained. A curved spring is attached to the open end of the spanner to hold it on if required, though this may be dispensed with. This improved ratchet is also applicable to screv. jacks, and for various other purposes where a ratchet action is used.

THE THERMOMETRIC BOREAU.

We desire to call the attention of our scientific readers to the following extract from a circular, published by the Thermometrical Burean, Yale College Observatory, New Haven, Connecticut, relating to the importance of the verification of Clinical Thermometers to the medical profession, to whom the true temperature of a fever patient is of great importance to ascertain correctly.
Statistics show that several thousand thermometers of refined construction, and graduated on the stem to $0^{e} .2 \mathrm{~F}$. or thereabouts, are annually procured by the medical practitioners of our country alone for physiological researches and daily practice. The majority of these thermometers are newly made (within six months), and their verification depends on inferior (from the scientific standpoint) thermometers in the hands of individual makers. It is needless to say that the readings of such thermometers have little value in indicating the true temperature of a patient, or affurding data in cases which the physician wishes to describe in print.
The makers of thermometers in our country have been in general content to use for their standards thermometers which have been compared at some foreign observatory, or with some more easily accessible instrument in which they place confidence, in the hands of a friendly neighbor. Thus it happens that many thousand American clinical thermometers hava been sold, which do not depend upon a comparison with a recognized standard for their scale readings. The result has been that the American instruments have suffered in the estimation of scientific practitiouers. This is not so much the fault of the American makers as their misfortune in not having the same facilities offered them by the properly equipped observatories this side of the water, which their favored competitors enjoy abroad.

The meteorlogical observers in this country have now no com. mou standard of easy access; and it seems eninently proper that the observatory should undertake to be useful to the medical profession and the meteorologists in this country, and affurd the means of comparison desired. With this end in view the observatory has accepted the aid of the Board of Directors of the Bacher Fund of the National Academy in obtaining the staudards of the toreign observatories, and has made provision for the constant deterimination of the errors of the standards themselves. The tollowing is the offisial circular of the Thermometric Bureau
Cheftah conerbing the Veblficarlon of Themonetres.
This Burea has bean extabliolud by the Corpration of Yale College, at the recomm ndation of the Buard of Minagars of the Winchester 0 iservatory, in order to affurd desired facilities for adequate verifiction of thernometers.
Thermometers will be received at the observatory for the purpose of comparison with the ohservatory stand ards, and certificates of comparison signed by the Astronomer in charge will be issuel with thermometers so compared. These certificates will contain a statem-nt f the correctuess to be applied at intervals of five or teu degrees of the thermoneter scale to cause it to have the same reating as the observatory standards. In general these corrections will be expressed in tenths of a degree Falirenheit, or in twentieths of a drgree centigrade.

Thermometris sent for verification must have a name and number engraved upon then; and thermometers which are not graduated on the glass stem must be of sufficiently good workmanship to satisfy the observer in charge that the scale will not suddenly change with reterence to the glass stem of the thermometer tube, with ordinarily careful usage.

The Board of Managers have established the following scale of eharges for this service, which includes the hall mark and the certifiate: -

> Standard Meteorological Thermometers. . $\$ 1,00$
> Oidinary Meteorological Thermometers.. ,50
> Ortinary Maximum Thermometers...... ,75
> Ordinary Minimum Thermometers....... ,75
> Clinical Thermometers................... , 50

There will be a deduction of one-fifth of the above charges where more than eight thermometers of one kind are received at the same time. In the case of clinical.thermometers the charge will be four dollars per dozen when not less than two dozen are sent at a time.

For other thermometers than the above the charges for verification will be furnished ou application.
The letter of advice accompanying thermometers sent for verification should contain the miker's name, the number of each thermometer, and full directions for re-shipment.
All proper precautions are taken by the B ard of Managers to guard ag inst loss or injury; but as it is munifestly inexpedient that a University Corporation shonld be responsible for property in its care for such a purpose, it is to be understood that all risks are assumed by the person sending the thermometers.

LEONARD WALDO,
Astronomer in Charge.

bacteria in the air.

M. Miquel has succeeded in seizing and numbering the spores or eggs of bacteria, and while confirming M. Pasteur's observation; that they are always present in the air, shows that their number present incessant variations. Very sinnll in winter, it increases in spring, is very high in summer and autumn, then sinks rapidly when frost sets in. This law also applies to spores of champignons; but while the spores of moul is are abundant in wet periods, the number of arial bacteria then becomes very. sunall, and it only rises again when drought pervades the soil, a time when the spores of moulds becone rare. Thus, to the maxima of moulds correspond the minima of bacteria, and reciprocally. In summer and autumn, at Montsouris, one finds frequently 1,000 germs of buteria in a cubic metre of air. In winter the number not uncommonly descends to four and five, and on some days the dust from 200 litres of air proves incapable of causing infection of liq ors the most alterable. In the intosior of houses, and in absence of mechanical movernents a aising dust from the surfice of objects, the air becones fertilizing only in a volume of 30 to 50 litres. In M. Miquel's laboratory, the dust of five litres usually serves to effict the alteration of neutral bouillon. In the Paris sewers infection of the same liquor is produced by particles in one litre of the air. These results diffor considerably, it is pointed out, from those pablished by Tyndall, who says a fow cuhic centimetres of air will, in most cases, bring infection into the most diverse infusions. M. Miquel comp red the number of deaths from cont gious and epidemic diseases in Paris with the number of bacteria in the air during the period from December, 1879, to June, 1880, and certainly, each recrudescence of the arial bacteria was followed at about eight days interval by an increase of the deaths in question. Unwilling to say positively that this is more than a mere coincidence, he projects further observations regarding it. M. Miquel further finds (contrary to some authors) that the water-vapour whirh rises from the grounl, from rivers, and from masses in full putrefaction is always mi rographicully pure; that gises from buried matter in course of deco:nposition are always ex mpt from bacteria; and that even impure air sent through patrifie 1 maty, far from being charged with micropes, is entirely purified, provided only the putrid filter be in a state of moisture co np irable to that of earth at 0.30 metres from the surface of the ground.

Tu Cinange the Color of Flowels.-The natiaral color of flowers may be changed by exposing them to the diluted fumes of am:nonia. Most of the blue, violet and light crimson flowers ; urn to a splendud bright green. Duk erimion clove pinks turn black, other dark red Howers turn dark violet, all white flowers tarn sulphur yellow. This change of color is especially beautiful when they are variegated or the single petals possess a diff rent color. As soon as the new color is fully developed, the flowers must be dipped at once in cold water, when they will keep their new shade for two or six hours; by degrees then their natural color returns. If flowers be exposed to the vapors of ammonis for one or two hours they turn a dirty chamois, which is permanent. Blue, violet and red asters are dyed or turned intense red when they are exposed to the fu nes of muriatic acid g is; it taked. from two to four hours or more before the shade is fully developed. The flowers are then removed to dark cool rooms to dry.
To Preserve and Renovate Rubber Instruments.- It is well known that many artiches and instruments made of rubber are apt to become dry with time, and to crack, gruw brittle, and lose all elasticity. According to a Russian journal, hhis may be prevented by the use of a simple mixture of one part aqua ammonia with two parts of water; in which the article should be immersed for a length of time varying from a few minutes to one half of one hour, until they resume their former elasticity, smoothness and softuess.

WELDING IRON AND STEEL.

German engineers are now discussing eagerly a question which has seriously engased attention in this country, and though nothing conclusive has been reached abroad, it will be profitable to review briefly the conflicting opinions offered, based upon experience and in some case upon experiments of a specific character. The last German engineer to take up the subject is Herr C. Petersen, of Eschweiler, from whose paper, read before an as. sociation of railroad engineers, we glean the following: The Welding of iron is dependent upon its property to assume a pasty itate within a certain range of temperature, and it may be stated in a general way that the facility with which the welding may be performed is dependent upon the duration of this peculiar condition.

Leaving out of consideration other circumstances affreting Welding, it is conceded by the majority of metallurgists, that an increase in the percentage of carbon in the irun impairs the property of welding, and it is generally believed that when 2% is reached it ceases entirely. It might be concluded that thereore it is desirable to keep the carbon within the lowest limits attainable, but there is some diversity of opinion on this point, because a second inportant condition for good welding comes thto play. It is necessary, in order to unite two pieces of iron, to make the surfaces to be welded free from any coating of oxide, matter which is generally reached by fluxing the oxide by means of sand, borax, etc.; and some hold that a certain percentage of carbon is necessary in order to afford material for the reduction of this oxide.
Wedding, among others, maintains that such is not the case, and the silicate of iron contained in wrought iron plays an im. portant role. These theoretical considerations have quite recently become of considerable interest, because they may offr r a clae to detecting the reason why the steel produced by the open-
hearth and Bessemer processes is generally inferior as regards Welding power to wrought iron, an ipferiority which stands in the way of the more general adontion of steel in place of wrought iron. The former, it is true, can be welded, but there are many practical difficulties. Certainly steel-headed rails show a case of good welding, and tires, tubes, etc., have been made of Besseiner steel on a large scale, but still steel cannot compare in this respect with wrought iron. It is said that hot working in the B ssemer converter or open-hearth steel furnace favorably affects the welding power, and this is explained by pointing to the fact that hot steel will contain a smaller amount of oxides mechanically mixed than that produced at lower temperatures. Herr Petersen claims that silicon is injurious, while Hrrr Koehler, of $B, n n$, during the discussion following the reading of the paper, held that it was not alone not injurions, but actually fatvourable for good welding. Herr Helmu'h took a different view, and stated that at Bochum, during a series of experiments in an open-hearth furn cee, they tried keeping the silicon low, but reached no results, and were sinalarly unsuccessful by increasing the percentage of phosphorus. They then tururd to the Bessesner process and commenced overblowing, which improved the welding; though not in a sufficient degrre. By using oxides of iron, however, they obtained mach better results, but they did not follow ont the matter, because they found that pieces welded together had a yellow red fracture near the weld, and Herr Gresser, of Grafenberg, added that the same tendency to red-shortness was observed by them When making a weldable material in the open-hearth furnace. In using the Terrenoire alloy they found that a good product Was obtained by adding about four times as much manganese as silicon. It was, however, abandoned on account of its high Her
Herr Petersen concludes by giving some interesting data in regard to the influences of arsenic upon the welding of iron. A and it inch rod was rejected on account of difficulty in welding, and it was found that the heated rods had a fatty lustre, and that two rods laid one upon another slid off as though the surpaddline polished. This took place, although the balls in the paddling furnaces and the piles welded well. The cause of this comaly was found to be that the iujurious effect of the arsenic comes out strongly only after the carbon has been considerably reduced. The following analyses are given as representing the Whitesition of the pig used in making these rods, the first being White, the second gray pig:-

1.843

1.8008
$0.5 \$ 0$

0.580
5.980
5.980
1.068

Iron.

As most of our readers will be aware, the monifacture of arti ficial butter from beef fat, has, within the past few years, attained to the rank of an important industry. Like every other new departure from well-worn grooves of custom, it has had to contend with much opposition, which in this case has been the more severe as the product, being designed as an article of food to take the place of natural butter, has heen bitterly assailed and denonnced as unwholesome, and even dangerous. The utterly baseless nature of these denunciations, coming as they did, and still to some extent do, from interested scources, has been sufficientily demonstrated by the enormous growth and extension of the manufacture of olpomargarine throughout the conntry, and by the almost unqualified endorsement of the entire chemical fraternity as to the wholesomeness of the product as an article of food, and as to the value of the industry in giving an enormously greater value to animal products that hitherto have been usel tor less important purposes. With these views we entirely concur, and from our knowledge of the subject, feel warranted in the opinion that the olenmargarine industry is worthy to rank in importance with the manufacture of sugar from the beet root, and a few other equally bencficent industries that chemistry has conferred upon us. As it may be of some interest to certain of our readers to know the grounds upon which, this opinion is based, we will give in brief a review of the process of making this new article of food.
To begin, we will refer to the fact that in the operation of fattening beef-cattle for the market, a large surplus of fat is stored away in various parts of the body-much in excess of our requirements for food, or for cooking purposes. This excess has been hitherto altogether lost as an article of food, the only uses to which it could be put being to convert it into tallow, to be used in the production of soap aud candles, or to be used for lubricating and similar crude applications. The wholesomeness of beef fat as an article of food being universally admitted, it is not surprising that it occurred several years ago to M. Mége, a French chemist, to endeavor to save to the food supply a portion of the immense quantities of fat used for the crude purposes above named. Ilt was led to this thought by the knowledge that the only essential differences between the oil of bitter and the oil of suet, were that the former contained a small percentage of certain compounds (butyric) which impart to it some of its peculial flavor, and that it contained a much smaller proportion of the solid stearine to which the hardness and granular quality of suct are due. The result of Mége's stully of the interesting problem of converting the surplus fat of beef sattle into a fool product, after many diffienlties had been encountered, were ultimately quite sutisfactory.

Mése's procest is as close an imitation as posible of the process of na ural butter-making. It consists substantially of thre steps: : 1.st, The separation from the oily fat of suet of the cella lar tissue and the excess of the stoarine; 2ud, the addition 0 th: neceszate proportion of butyric compinnds, to give the peculiar huter llivor; and 3 rl , the solidifying of the hutter-fat without grain, and the addition to it of the necessary proportion of water, salt and coloring matter. In this proper conduct of the Mige process, as perfected, the resulting proluct is a compound which is substantially the same in composition, app arance and Havor as butter churned from cream, without the aldition of any drleterious suhstances, and without subjecting the substances handled to any process whereby its wholesomeness could be in any way injuriously affected.

The following is a description of the Mege procass as carried on at the extensive works of the Cummercial Manufacturiug Co., at West 4 Sth street, North River, this city. The process begin; with the selected fat from abattoirs, which is received at the oleomargarine factory within a few hours after the killing. The first operation consists in thoroughly washing the fat from adhering blood and other impurities, which is done by soaking first in tepid water, then thoroughly washing in cold water. The pieces rich in oil are then carefully select d for buttermaking, being severed from the pieces less rich in oil by a skilful cut, and the last named are thrown into tubs that find their way to the tallow factory. The fat selected for butter-making, after another washing, is elevated to the floor above, where it andergoes the process of hashing and melting. The hashing machine is simply an iron cylinder provided with a number of revolving knife-blades, which cut up and completely disintegrate the fat as it is fed in at one end and forced out through a perforated plate at the other. The thorough breaking up of the tissues that has here taken place, is a very important step in the operation, since the oil separates from the fat in this condition at a very low tem-
perature, thus avniding the necessity of a prolonged application of heat to effect the separation, as has hitherto been necessary in the melting of tallow. The effect of such excessive heating would be the development of a rank, tallowy flavor, which would be very objectionable.

The disintegiated fat is melted in cauldrons, which are surrounded with water, and the water being heated by steam, effects the melting of the fat when the temperature has reached 122° to 124° Frh. When the fat is completely melted the contents of the cauldrons are allowed to stand until they deposit the fragments of membrane, which gathered on the bottom, forming "scrap." On top is formed a thin layer of a white emulsion of oil and water, which is removed, and the clear yellow oil is drawn off in vessels which are removed to the press-room. Here they are allowed to rest while the oil granulates by the crystallization of its stearine, which is allowed to take place at a temperature of 85° Fah. The melting process occupies about two or three hours, and the granulation about 24 hours, or even longer.

The next step is to remove the separated stearine from the refined fat by straining under pres.ure. This is done by placing it in cloths set in molds, and placed on galvanized plates in a series of presses. When these are filled, the packages are subjected to a gradually increasing pressure, under which the fluid oil is expressed, leaving the hard cakes of stearine in the cloths from which they are subsequently removed by a dexterous flirt of the cloth.

The resulting oily product, is a clear, sweet, yellow oil, substantially the same as the oil of butter.' In this condition it affords an excellent oil for cooking purposes, and formeriy the larger portion of the product of the Commercial Manufacturing Co. was packed in this form for exportation.

To convert the butter-oil into butter, it is next churned with milk for about 20 minutes, by which it is thoroughly emulsionized or broken up into minute globules. At this stage, also, a small quantity of anatto is added to give a richer color to the product. The emulsionized oil is then drawn off into a tub of pounded ice, in which it cools suddenly without granulation. Here it is allowed to remain for two or three hours, after which it is thoroughly worked over by hand, and the pieces of ice removed. To impart the proper butter flavor, the solidified pro. duct must still be provided with more of the peculiar butyric elements which give to fine natural butter its rich odor and flavor; and for this purpose it is again churned with about an equal quantity of milk. After'this second churning, the butter goes through the same operations of working over, salting and packing, as ordinary butter, and the finished product-oleomar. garine bntter-when made in the manner above described, is substantially identical to butter made from cream, and while it is not equal in flavor to the best grades of dairy butter, it is preferable, both in taste and smell, to much of the butter sold in the shops; and its very deficiency in those peculiar butyric elements that lend to the finest creamery butters their agreeable odor und flavor, is in one sense an advantage, since it renders oleomargarine butter much less liable to become rancid.

Fig. I represents caul fat under the microscope, the crystalline nature of the adipose tissue being clearly seen, as also a globule of oil.

Fig. 1.

Fig. 2 represents oleomargarine before it is churned or what is known as oleomargarine oll. It will be seen from this plate that oleomargarine, before being churned, is entirely in a crystalline condition.

Fig. $\$$
Fig. 3 represents natural butter firat melted and then allowed to cool slowly to a solid condition. The miaroscope shows the same crystallization as in oleomargarine oil (Fig. 2) from which it in no way differs.

Fig. 3.
Fig. 4 represents oleomargarine butter and Fig. 5 natural butter. It will be seen by eramination of the two figures, that they consist of an innumerable number of minute globules of varying size, and are substantially identical in appearance in all other respects.

Nig. 4.

Fig. 5.
The manufacture of oleomargarine butter is now carried on in most of our leading cities and towns, and rapidly extending as the prejudices of the public, and the opposition of the dealers in 10w grade butters are overcome. Already the industry has reached proportions; adding in its present state many million pounds to the food supply of the country, more than double the money value of the crude production of the fat obtained from beeves.

We repeat in conclusion that we are fully convinced of the great value of the discovery of Mége, which, Chandler says, "marks an era in the chemistry of the fats," and place this opinion on record in the belief that it may serve to remove from the minds of some of our readers nnreasonable prejudices or unfounded fear respecting a wholesome article of food.-Manufacturer and Builder.

RDGE-TOULDETG TACEMES

One of the most useful wond-cutting tools is the edge-moulding machine, of which we here illustrate a representative machine manufactured by the well-known firm of Bental, Margedant \& Co., Hamilton, Ohio, manufacturers of wood-working machinery. Nearly every shop throughout the land has one or more of these tools in operation, and although they are called by different names, such as, friez ing machines, Yankee whittlers, inside molders, Frazer's radial cutters, irregular moldere, upright molders, shapers, or shaping machines, they are the same tools, and produce the same class of work. These different denominations are evidence of the general usefulness and applicability of the tool. There are two classes of thi i tool known, the double-spindle molding machine and the single-spindle machine. The names indicate the principal difference in their coustruction. One carries two spindles, of which one rotates to the right and the other to the left; while the single-spindle machine only carries one mandrel, which rotates either to the right or to the left, at the will of the operator. The old way of arranging the counter-shaft of the single-spindle machine, for the purpose of changing the direction of motion of the spindle, is the application of two driving belts from the line-shaft, one of which is twisted and the other rans straight and holding one of these belts on either one or the other of the tight pulleys, and the other belt on the loose pulley of the counter-shaft.

Our illustration shows the counter-shaft arranged in a, different manner. It will be seen that it belongs to the class of friction counter-shafts, consisting in this case of two horizontal miter wheels, made of manilla packing-board and iron, and of one vertical miter wheel of cast iron. The horizontal shaft, with its manilla wheels and driving pulley, rests in long rigid bearings, and remains, while in rotation, laterally stationary, while the upper or vertical friction wheel hangs in a streng, webbedpivoted frame, which has its fulcrum back of the wheel. It requires very littlu motion and power to bring the upper friction wheel in contact with either of the horizontal wheels, and thereby change the direction of rotation of the horizontal wheel and pulley, and that of the apright spindle of the machine, to which
it is connected by means of the horizontal belt shown in the engraving. The operator of the machine changes the motion by pressing the treadle either up or down. This treadle is connected to a rod passing under the frame of the counter-shaft. The attachment of a double crank at its end connects it, by means of rods, to a pair of eccentric arms, which hold on their peripheries pinned rollers fastened on the swinging frame of the upper horizontal wheel. This arrangement of changing the motion from right to left, or to rest, is positive quick-acting and unyielding. The whole arrangement is a decided improvement on the common friction counter-shaft now used. It also has all necessary arrangements for taking up wear.

The illustration shows the frame of the machine. It is cast in one solid piece of great strength, and stands broadly on the floor, taking up all vibration, and the spider-webs of the housings are of improved pattern. The spindle is adjustable, and can be raised and lowered, and set at different angles to the face of the table, so that the pitch of the molding can be changed and the cutting made easy fir deen or hat mollings. The spindle carries cast-steel stocks, in lapend nt of the spindle, which enables the operator to use stont: af larger or smaller diameter, to suit the work. Solid immovable, solid reversible, or flat cutters can be used, or cutters of other mubhines can binterchanged.

The manufacturers furnish the machine, when so orilered, at mederate cost, with different attachments for doin; special work.

For further particulars and prices, address the Aatafacturers as above.

TRAPS IN HOUSE DRAINS.

On Thursday last the Board of Health, of New York, met for conference a number of gentlemen interested in public hygiene, who had been invited to discuss the question of what the board, in the exercise of its legal discretion, should require of the builders of tenement and apartment houses to anticipate and avert the evils which follow defective drainage. There being no differences of opinion as to the property of requiring good work and good materials, or as to most details of plumbing work, the discussion chiefly centered on one point-Shall traps in house drains, cutting of the house from the public sewer, be required? On this subject Mr. J. C. Bayles spoke as follows

Mr. President: I scarcely dare venture the discussion of the matter before your board at this time. It is one in which I ann very deeply interested, and while there is nothing which inposes upon the citizen the duty of holding opinions in accordance with those of public officers, especially if he has a good and sufficient reason for the faith that is in him, it is always a pleasure to agree with gentlemen so able, so conscientious and so devoted to the work of public hygiene. As a citizen I desire nothing so much as to strengthen the hands of the Board of Health and to give it in all good undertakings such moral support as I can. \therefore It is for this reason I dread to encourage discussion with it, fearing that it may be magnified by the enemios of this board and its work into opposition. I desire, therefore, to preface my remarks with the assurance that nothing which i may say is properly susceptible of an interpretation which would seem to place me in any other attitude than that of entire sympathy with this board in its efforts to reform all evils prejudicial to the public health.

I understand that the question we are invited to discuss is not the broad oue of what system of drainage is best adapted for tenement and apartment houses, but what the Board of Health can properly require of the builders of such houses to anticipate and avert the evils which, if permitted in construction, must subsequently be discovered by inspection and corrected by order, or left to do their mischievous work unnoticed, in the absence of complaint. I should conceive it to be a matter of considerable difficulty for this board to lay down any general rules for the piping of tenement and apartment houses, for the reason that there is grcat variety in the arrangement of such houses, and wide differences in the views of builders as to what conveuiences should be provided. Among the requirements which may probably be insisted upon are the use of good materials, the proper jointing of iron pipes, the carrying of all vertical lines of waste pipe to and through the roof, and a clear connection with the sewer by a continuation of the iron soil pipe, with no traps or other impediments to the flow of water freighted with matter intended for the sewer. This last suggestion touches the really vital point of this discussion.

I am informed that when complaint is made of defective drainage in a house under the jurisdiction of this board, the
work of reforming the evils found to exist begins by requiring the owner to put in a trap somewhere between the cellar will and the sewer, and to vent this trap above the seal in such a way as to obviate what, in the absence of such ventilation, would make a trap in this portion so obviously dangerous that no man could be found to favor it after giving the matter even superficial attention. Without an adequate vent above the seal, there would really be no room for discussion as to whether a trap in such a position was desirable, since it could never be anything else than a dangerous nuisance, giving rise to greater evils than would be likely to exist in its absence. With an adeqnate vent the objections to such a trap are in part met, but the question remains, " Is it even then necessary or desirable?"

I conceive the objection of this board to an antrapped house drain to be that which my esteemed friend, its president, has many times expressed to me and in my hearing-" I do not want the sewer ventilated through my house." Presuming that the associate commissioners share this feeling as regards their own in whllings, they doubtless consider it their duty to protect other; form what they regard as a source of danger in their own cases. I honor their consideration for others, even though I livenver no reason for the feeling which prompts it.
[1,1 not need to remind you, Mr President, of the experiments so carefully made at your direction, and so frequently cited by Fou, ro prove that there is no such thing as a prcssure of air in sewers. I might, perhaps, take exception to the broad conclusion you seem to have drawn from these experime:sts, but, for purposes of argument, I prefer to concede that you are right. I might object to making the soil pipe of my house a safety valve throngh which a sewer should blow off great volumes of fonl air compressed within, but if there is no such thing as a pressure of air in sewers - if, in other words, there are too many possible means of escape to permit within them a compression great enough to disturb the level of water held in a bint glass tabe one end inserted in a sewer connection and the other open-I see no reason why I should fear to permit what air may enter my house drain at the sewer end to pass out through my soil pipe at the top. We are not dealing with pressures, by your own admission; we are not under the ne vessity of closing our pipes against rushing eurrents of air charged with organic poisons. If we were, no form of trap would stop them which did not, at the same time, oppose serious obstacles to the ontflow of matter intended to reach the sewer.

The only possible object, and the ultimate function, of a trap depending on a water seal, be $i^{+} \mathrm{s}$ dip more or less, is to close a pipe against what may be called natural currents of air. In the case of a trap in a house drain, it can hase no other object than to close the house drain against currents tending to move in one direction or the other in obedience to natural laws. If we ask why it is put there, the answer would probably be: "To keep sewer gas out of our pipe syetems." To this I reply without hesitation: To avoid an imaginary danger you not only sacrifice a tangible benefit, but you create condiuions incomparably worse than those you seek to correct.

The term sewer gas is as convenient to the pseudo-hygienist as is the turm "malaria" to people of another class. It means at once a great deal and nothing. A; used, it commonly means nothing. The air of sewers, aftertall, is in no sense the worst enemy with which the nlumber has to deal. Men work in sewers, and unles; asphyxiated by carbonic acid, which is not, I believe, accredited with toxical properties, rarely suffer any inconvenience therefrom. The real enemy to life and health which doe; fatal work under the pseudonym of sewer gas, does not come from the sewer at all in most cases, but is born within the pipes which drain our houses. I am sure that every pu nber of experi nce will say that he would rather work for hours over a clean connection with an average New York sewer and fill his lungs with the air coming from it, than lay open an old and foul waste pipe and be for even a few moments in close contact with the deposit lining it. We do not want to breathe the air of sewers if we can help it, but better that than encounter the greater dangers of air fouled by confinement in our house drains and waste pipes. I say this with the more confidence as 1 have often used the term sewer gas with unscientific looseness myself, meaning what a large experience has taught me to trace in most cases to sources within houses, in themselves so foul that a free access of sewer air, bad as it may be, would have practically purified them.

Now, Mr. President, let us deal briefly with the question of house drain traps in their practical aspects. Having no pressures to resist, it is no objection to such traps that they are incapable of resisting pressures. But every trap impedes the flow of water through water pipes and causes a foul accumulation in them. Their influence in this respect is most conspicuous in the case of
pipes laid nearly horizontal, as in the case of house drains, and it may be seen by catting out such a trap with a length of pipe at either end and, examining it. The length above the trap will be found foul, the length below the trap comparatively clean. If then, you do not by your seal oppose a barrier which air from the sewers cannot pass under a pressure due to even a slight compression, while by your trap you do oppose an obstruction to the outflow of drainage from the house, the practical advantage of a trap in this place is certainly not conspicuous.

Suppose you have no trap in your house drain, but carry an open and unobstructed tube from the sewer to and through the roof, what conditions have you? The sewer air is not commonly forced out under pressure, and if it was that pressure could not be maintained in a vertical tube open at both ends. You find that the air does not rush through your house drain and soil pipe, displacing seals and seeking esrape into living and sleeping rooms through branch waste and fixtures, but moves in gentle, natural currents, sometimes up and sometimes down, according to circumstances. To ventilate sewers you do not need to blow air into them nor exhaust air from thrm. The failure of all such efforts has been conspicuous, an:; \therefore not need to refer you to the voluminous English literatese wis subject, with which you are doubtless familiar. To veministo sewers to the best advantage, it is only necessary to give them is chance to breathe. Why they should not breathe throush pipts extending to the free air above our houses, as well as through the manhole covers over which we walk and ride, is a question to which I fail to find any satisfactory answer.
It will probably be claimed that by requiring ventilation for house drain traps above the seal, the objections which might otherwise hold against such traps are practically met with the single exception that a house drain so trapped contribute. nothing to the ventilation of the public sewers. I could searcely concede so much save for the sake of argument ; but supposing it true, that absence of anything specifically objectionable in such a trap, so far as the individual housewife or tenant is concerned, would scarcely be a sufficient reason for imposing it as a require. ment. I understand you are seeking advice from those of us who are enough interested in the matter to accept the honor of an invitation to meet you for conference, as to whether it is desirable or expedient for your board, in the exercise of its legal discretion, to require builders to put such traps in. I do not hesitate to respectfully offer it as my opinion that it is neither right nor proper to require a man to do an unnecessary thing, either when he is building his house or after it is done. I know of no evil connected with defective drainage which cannot be better corrected in other ways, or which would not be increased and intensified if reform began and ended with a trap in the house drain. The plumbing trade know this, and by forcing upon them a regulation which their practical experience teaches them is based upon a misconception, you weaken their confidence, alienate their sympathies and invite their bostility. Your honesty, sincerity and unselfish devotion to the public gool, will not win for you friends enough to outnumber the enemies you would make by insisting upon a mistaken notion of this kind. The plumbing trade exercises a powerful influence in such matters with property owners. When you are right, as you are in most of your recommendations and requirements, you can afford to disregard the complaints of property owners and the clamor of the ignorant and prejudiced members of the craft. When you are even possibly mistaken you cannot, I think, wisely disregard the views of those who are neither ignorant nor prejuliced, but whose confidence rests upon sure knowledge.

As one deeply interested in the cause of public health and eager to co-operate with you in every possible way, I would advise abandoning the house-drain trap altogether. In new work, if you deem it expedient to prescribe materials and methods, insist upon good pipes, properly joined and open from end to end, with branch wastes properly trapped and vented at fixtures ; in old work, correct the evils found to exist in the same way sou would seek to avert them. If the individual citizen wants a trap in his house drain, there is no reason why he should not have it. The moral benefit of personal satisfaction at having interposed a few quarts of dirty water between him aud the sewer into which his house drains, will probibly offjet any disadvantage resulting from it. but do not force this needless expense upon those who do not want it. Give property the benefit of the doubt, and property owners will the more readily support you in enforcing requirements which do not admit of intelligent objection.

Dr. Janeway reminded the speaker of a consideration which, in the estimation of the profession outweighed the practical objections to house drain traps which had been presented in the
argument. It was believed that contagion, especially the germs of typhoid fever, were communicated through the public sewers, and instances were cited in which it was considered probable that such diseases had been communicated from house to house through the sewers.
Mr. Wingate presented some extracts from well-known English authorities favoring house-drain traps.
Mr. Partridge thought it unnecessary to complicate the discussion by citing English authorities, as American practice was: far in advance of English practice in house drainage, and there were gentlemen preseut whose opinion was worth more on a subject of this kind than that of any English writer quoted.
Mr. Many approved the position held by Mr. Bayles, and cited examples showing that traps in house drains cause great accumu. lations of foul matter in them, leading to worse results than are found to exist when such traps are omitted.
Mr. Mead held the same views, and cited instancas in which serious evils in house drainage had been corrected by taking such traps out.
Mr. Bayles, in reply to Dr. Janeway, held that the fact claimed, if established, did not prove the advisability of a trap is house drains. If what he had said of the mechanical objections to such traps was well founded, and the testimony of the -xperienced practical plumbers who had spoken was impurtant
this point, it was eminently worthy of consideration by the board whether the danger of locking contagion in the house was not greater than that to be apprehended from a froe connection with the sewer. It should be remembered that in this discussion they were dealing with the worst class of dwellings-the tenement and apartment houses occupied by many families. Was it not possible that the danger of spreading contagious diseases through such houses, by encouraging the retention of lisease germs within their pipe systems, would result in greater aggregate mischief than could be traced to the spread of disease through sewers.
From this point the discussion became general and lasted nearly two hours, without eliciting anything uew on either side: At the request of the president, Mr. Bayles formulated the objections to hou e-drain traps substantially as follows :

1. They retard the outflow of house drainage and cause foul accumulations which are not found in untrapped house drainsfresuning good laying in each case.
2. Even when such traps are vented above the seal, the air passing th:ough the pipes is, on account of their foulness, ordinarily worse than that from the public sewer passing through an untrapped drain and out through a vertical soil pipe.
3. They oppose no obstacle to the passage of sewer air when; from any cause, a pressure is brought to bear upon them.
4. The danger of locking contagion within tenement and apartment houses is possibly greater than that whieh is assumed to attend the passage of sewer air through soil pipes.

Having thus defined in shape for further consideration the one point of difference which existed, the president endeavored to find out upon what points all were agreed. These were substantially as follows

1. Good materials, especially the use of soil pipes of sufficient wright and free from holes.
2. Gwol workmanship, insuring tight joints.
3. The absence of traps in vertical lines of soil pipe.
4. The extension of all soil pipes to and above roofs, and the raths of every trap independent of the soil-pipe ventilation.
j civing all safe wastes, ovetflow pipes and refrigerators arip waste outlets wholly disconnected from the waste-pipe ystem and sewer.
5. Suitable protection for sewer pipes against frost.
6. So arranging suil and waite pipes that they shall be accessir ble from end to end.
7. Adequate trapping of ali waste pipes under fixtures.
8. The discouragement of dependence upon deodorizers and disinfectants as correctives of bad drainage.
9. The prohibition of pan closets and all forms of closets having an air space within them which is not or cannot be ventilated.
Sume, and perhaps all, of these conditions are likely to be insist: ed upon in houses which the law places under the jurisdiction of the board. The question of house-drain traps seems to have been left open for further consideration by the board. It is not likely that the fact of their objectionableness from a mechanical standpoint will be further doubted by the commissioners; but the question of their hygienic value in checking the spread of contagion through sewers receiving the discharges of typhoid fever patients and disease germs in other forms, is one which admits of further investigation, which we hope the commissioners
will give it, determining, at the same time, what weight should be given to the suggestion that house drain trajs are likely to increase the danger of spreading contagion among the several families in the house where contagious diseases appear. We hope the commissioners will determine these points, so far as possible, from actual observation, ${ }^{\text {and }}$ not by quotation from English authors. Notwithstanding the fact that for some thirty years sanitary science has been more or less carefully studied in England, plumbing as practised in this country has been, and still is, incomparably superior to that in Great Britain. There are but few absurd notions connected with house drainage whioh caunot be sustained by unlimited quotations from English writers of reputation. For example, a few years ago some eminent "authority" found fault with the plan of placing water closets in dwellings and suggested the desirability of cutting them off from the living and sleeping rooms. The next book which appeared carried this idea further ; the next further still, until the crowning triumph of theoretical sanitary engineering was reached by an "eminent" author who seriously advocated a Parliamentary enactment requiring water-closets to be placed in towers built wholly separate from houses, and reached from the several floors by bridges with open sides. We notice the same progressive tendency among English writers dealing with this question of trapped and disconnected house drains. For some years this idea of broken connections with sewers and cesspcols has been a popular one in England, and a great deal of ingenuity has been expended in developing it. The theoretical sanitarians long ago learned from practical men to distrust simple traps in house drains, and in most of the later works absolute disconnection is advecated-the house drain emptying into some kind of vessel open at the top, and this discharging to the sewer by a pipe dipping below the constant water level. Those who have studied and done good work according to the best American practice, know perfectly well that such precautions are not esseutial to good house drainage, and that better results are attainable by cheaper and simpler methods. While conceding the great and permanent value of English sanitary literature, we can say with confidence that the great bulk of it has very little practical value for the American specialist in the mechanics of hygiene. From a library which includes nearly all the standard and much of the current English literature of sanitary science, we could pick out very little relating to house diainage which would be of use to the intelligent American plumber seeking information as to improved methods and materials. The reading would repay the effort, but it will be found to yield on these practical topics a great deal of sack to very little bread.

ADKITB' PATEAT BABH FABTEXIER.

A new brass sash fastener, as shown in the accompanying engraving, has been brought out by Messrs E . Bach \& Co., of Coleshill street, Birmingham. It is on the automatic principle, that-is to say, self-locking, very strong and effective. The fastener is closed by a simple pull-down movement of the finger, When a pair of side spring clips of beeswing shape, engage in the alots on each side of a stud or pivot, and instantaneously lock it. The fastener is as readily opened by the finger and thu'nb. This patent sash fastener cannot be opened with a knife or other implement from the outside, and the sash is held sufficiently tight to prevent rattling or vibration of the window. The arrangement
is simplicity itself.

NEW PATENT GRABS-CUTMITG MACHINE.

Mr. A. Ridgeway, patentee and manufacturer of improved horso clippers, sheep shears, \&c., of Macclesfield, has recently brought out a new patent grass-cutting machine, which we here illustrate as a novelty. This is a new application of the principle of the horse and hedge clippers, and it supplies a.ready and inexpensive means of cutting and trimming grass-plots and lawns, edgings, and borders, which have always been inaccessible to the revolving cutters of the ordinary lawn mowing machine. The patentee claims that his new grass-cutter is much less costly than any lawn mower ; that it is simple in construction, easily werked, and not readily liable to get ont of order ; and when dull by long use, it may be quickly and easily sharpened by an ordinary saw file, We have submitted this new implement to some practical tests, and have focnd that it can be worked in places and situation where it has heretofore been impossible by the aid of any machine to cut the grass rapidly and well. It is a most valuable tool in the hands of the tidy gardener, since it can be used for trimming better and more quickly the edges of garden walks or lawns, flower beds or borders, than any instrument yet used for the purpose. On old and neglected lawns, where the grass has become rough and dead; the new cutting machine will do less rapid and effective work; and it will either leave the grass on the ground to serve as a mulch, or the implement may be used as a rake for collecting it prior to removal. The machine is sold at.a low price.

Safety From Drowning.- The Sheffield Telegraph sayy that the Rev. W. Cowell Brown, Wesleyan minister, of Sheffield has patented an invention which appears to be a simple and practieal means of lessening the number of deaths by drowning. A chemicsl preparation is inserted in a portion of the cost, waistcoat, or dress. It does not add to the weight or in any way
alter the appearance of the garment alter the appearance of the garment. The preparation is inserted between the lining and the cloth; in the case of a coat, it is placed on each side of the breast and up the back. The moment a man touches the water the coat inflates and he cannot keep his head under the waves. The invention was practically tested at the swimming-bath of the Sheffield Bath Company, recently: The inventor states that his apparatus, which wonld simply form an additional lining inserted in a portion of the gar* ment, would sustain a person in the water as long as he could possibly endure the expesure. For 40 or 50 hours it would be effective for its purpose. In the event- of a \cdot person losing cone sciousness, the lining in the back would form s kind of bed, and
that in the breast a pair of pillows, against which his head would that

PORTABLE BOOK-CASE.

I have not yet had an opportunity of seeing or reading a description of the "American portable book-case," but I beg leave to show a book-case which, for portability, will, I think, commend itselt to those requiring such a thing. In the annexed sketch, fig, 1, is a front view of the book-case; fig. 2, the end, or gable. Fig. 1 is shown extended ready for the books, and fig. 3 shows the book-case folded up ready for removal, all the parts being contained inside in the order to be described. Fig. 4 is a section of fig. 3 at A. B, and shows the various pieces composing the article closely packed together-the whole being in fact next to a solid. Referring to fig. 1 , it will be seen that the article consists of two gables with haffits in front, a top, a bottom, two shelves, a back, and a baluster railing over the front.

The following is a short description of its construction :-The two gables are 4 ft . long over all and 12 in . broad; They may be a plain board or panelled as in fig. 2 ; they have a haffit on the front. of each, $3 \frac{1}{2} \mathrm{in}$. broad and 1 in. thick and a haffit glso on the back of each, $2 t$ in. broad and $\frac{9}{4} \mathrm{in}$. thick. Crosspieces are dovetailed into the bottom of the haffits, back'and front, of the same breadth as front haffits, less the thickness of gables; corresponding crosspieees are mortised into the haffits at top, which convert the gables into shallow boxes or trays. The top board of the book-case is hinged at one end underneath the crosspiece, and folds down into that gable, allowing sufficient space behind it to contain one of the shelves, and the bottom board or shelf is hinged to the crosspiece at the bottom of the other gable in the same manner and allowing the other shelf to lie behind it, the two shelves and the top and bottom are disposed of, lying close against the inside of each gable: and there is still $2 \frac{1}{2}$ in. of space left to contain the back, and assuming the book-case to be 8 ft .6 in . broad, the back will consist of four divisions, a little more than 9 in. broad each, and these are hinged together in the manner shown in fig. 5, which is a cross section, showing the article partly folded up.

Fla 1

F1G 6

Fig 6

The four pieces composing the back are hinged to each other, and the outer ones hinged to the back haffiits attached to the gables. When fig. 5 is entirely closed up, it has the appearance of fig. 4, and as the back pieces are about 21 in. narrower than the shelves, a space is left in front which contains the baluster railing. In fig. 1 this railing is held in its place by the two rails being let into the edge of the haffits by hollow mortices. The two shelves are held in place in the gables by short tenons, as in fig. 6, corresponding holes being made in the gables to receive them.
Now, this book-case may be packed or unpacked in a very few minutes. When folded up, as in fig. 4, it is held together by hooks and eyes, top and bottom, and the manner of getting it together for use is this: Laying the parcel with the back hafits on the floor, the hooks are undone, and the gables pulled asunder till the back is quite extended, then the bottom is turned over to its opposite gable, where they are fastened by passing a $1 \frac{1}{2}$ in. screw nail through the crosspiece into each of them, bnt this only after the two shelves have been fitted into their holes in the gables, and the baluster rail fitted in the same manner. The two screws being in, two other scrows are passed through the back near the centre joint into each shelf and this completes the job. The back is made of f in. wood, the gables and shelves是in. wood. The front of the haffits are chamfered and channeled down the centre. The shelves have ornamental leathercommon to book-cases without doors. Fig. 6, as may be seen, is bat a parcel of wood $4 \cdot \mathrm{ft}$. by 12 in . by 7 in . and may be shouldered by a boy. For a larger book-case of this description, having more shelves to stow away, an increased recess in the gables ,would have to be allowed.-A. Cabr in Design and Work.

HEW DYE FROI POPLAR WOOD.

Under the name of "Ericine," a fine golden-yellow dye is now prepared from the young wood of various.poplars, as well as from the woody portions of heather, the botanical name of the latter (Erica vulg.) having apparently suagested that of the dye. Young branches and shoots of poplar are cut off, crushed, and brayed, and then boiled in alum-water, the proportions allowed being 10 pounds of wood and 1 pound of powdered alum to each 3 gallons of water. The liquor is boiled from about twenty minutes to half an hour, and then filtered. In cooling it thickens and clears, throwing down a greenish-yellow deposit of resinous matter. When sufficiently clear, the liquor is again filtered, and then left exposed to the air for three or four days or more, according to the weather and the stats of the atmosphere. It quickly oxidizes onder the action of the light and air, and assumes a rich golden tint. In this state it can be used for dipping fabrics of all descriptions. For yellow and orange-yellow shades, it is used alone ; mixed with Prussian blue, it gives green; with oak bark, brown and tan ; with cochineal, etc., orange and scarlet shades. Or the coloring matter can be precipitated, and then makes a fine and perfectly innocuous yellow body-color for wall-hangings and such like purposes.

Scientifte Items.

PROGRESS IN SCIENCE AND THE ARTS

Technical Brevities,-Question has been raised, hy reason of the unfavorable terminatian of a certain case, concerning the safety of bromide of ethyl, the new analsthetic; but the great preponderance of evidence is favorable to the view of its advocates, that the medical profession have in it an anæsthetic superior to both ether or chloroform. A reform much needed in the matter of disposing of sewage has been introduced at Brighton Beach, by the adoption of an effective system of separating the solid from the liquid portion of the same, purifying the latter, and converting the former into a commercial fertilizer. The sooner our seaside resorts generally follow this example, the better will i-pe foe their reputation as health resorts: for, from what is known of the utter neglect of the subject of drainage at many of these places, their freedom from filth-diseases is one of the standing marvels.
-The report of the British Consul-General at Bangkok, lately published, contains the first detailed account of the remarkable discovery made in 1879 of valumble sapphire mines in that part of Siam. The portion of the Saint-Gothard Tuincl which has given so mach trouble on account of the falling in of the roof, it is now thought has been permanently fixed. The cause we have previously described. It has given so much trouble that at one time it was seriously proposed to allow it to collapse, and make a detour which would avoid the objectionable "stretch," altogether. The expedient was lately adopted, however, of rebuilding the supportitg masoury in rings of solid granite ; and thus far, the experiment has been successful. The rings are each four meters long, so that, in the event of any one of them giving way, the others will not be affected. The utmost care is taken in the work : no imperfect stones are allowed to be used; the masinry is perfect, and the walls are of extraordinary thickness-in the parts most exposed to pressure, not less than 10 feet thick.
-The curious substance known as China moss has a peculiar constiturnt called gelose, which has the property of absorbing and solidifying into a colorless and diaphanous jelly, five hun-dr-d times its weight of water, and is capable of forming ten times as much jelly by weight as the best animal gelatine.
-The second specimen of the fossil reptilian bird, known as the archacoptery.r, found in the lithographic slates of Solenhofen, was purchased for five thousard dollars by Herr Siemens, of Berlin, to prevent it from coming to this country. It is now in Berlin, on deposit in the Geological Museum, with the expec. tation that it will be purciased hy the governuent.
-In a recent lecture by Professor Flower, before the Roval College of Surgeons in London, the question of the origin of man on the American continent was discussed at some length. The statement was made that. "taking all circumstances iuto consideratinn, it is quite as likely that Asiatic man may have been Arrived from America as the reverse; or both may have had their source in a common centre in some region of the earth now covered by the sea.
-The prevalence of oil-tank fircs this year, chiefly caused bv lightning has caused very general remark, The Scientific American to account for the special li bility of such tanks to he fired by lightning, advances the theory that from every such tank there is a constant escape of light hydrocarbon vapor, which forms a permanent cloud or column, rising to a great height alove the tanks. This vapor is a conductor, which the lightning naturally follows, and which attracts it. This theory is ingenious, but fails to account for the immunity which iron-top tanks enjoy from destruction, and which the Iron Age affirms to be the fact, "from positive knowledge of all tank-fires that have been caused by lightning during the past seven years."
-Mr. Bower's plan for protectiny iron against oxidation by treating the cleansed surfaces in a chamber of suitable size with heated air, and subsequently reducing any red oxide that may have been formed by the introduction of reducing gases, is reported in London Lion to have been developed on the commercial scale very satisfactorily. It is said to have become a dangerous rival to the process of Barff, who employs superheated steam for the same purpose.
-Some genius has made the interesting calculation that 72,540,000 parkages, or $18.740,800,000$ single pins, are manufactured yearly in the United States, representing 468 pins for every indivdual of our population. He makes the questionable statement, likewise, that fifty years ago it took one man a min-
ute to make 14 pins, while to-day a single workman will make 14,000 in the same time.

The assertion is made that the authorities of the New York Central R.iilroad intend to add to all their locomotive engines an attachment for arresting sparks and cinders, to prevent their escape from the smoke-stark.
-The prosp"rity of the Pennsylvania Railroad Company has been remarkible. The increase in its earnings has been at the rate of four or five millions per year, and for the first four months of the present year was at the rate of six millious and a half for all its lines.
\doteq From a small heginning in 1832, with an appropriation of $\$ 25,000$, the United States 'oast and Geodetic Survey has become an establishment of great importance, employing 300 men and 14 vessels, with an annual appropriation of over $\$ 500,000$.

MR. LAW'S REPORT ON THE TAY BRIDGE.

The Commissioners to investigate the canse of the Tay bridge disaster, Messrs, Rothery, Barlow and Yolland, employed Mr. Law, M. 1. C. E., to examine the bridge after the fall of a portion of it to make a report thereon, which could be used as evidence on the trial. As a result he submits a long report, in which his conclusions summed up would make the statement appear as follows: The base of the pier was too narrow, occasioning a very great strain upon the struts and ties, that the angles at which the latter were disposed, and the mode of connecting to the coliamns were such as to ren ler them of little or no use, and that the other imperfections which have been pointed out, lessened the power of the columns to resist a crushing strain; and further that the yielding of the struts and the ties was the immediate cause of the disaster. S me of the other imperfertions alluded to were, first, the defective mode of connecting the columns at the flinge joints, the bolts being one-eighth inch less in diameter than the hole, and the flanges being separated in some cases as much as three-fourths of an inch. The concrete was also found to be bal, on account of its inequalitv. The mode of attaching the ties to the columns by means of lugs was evidently insufficient, as in almost every instance the lugs have been torn away.

The English (hannel Tunnel.-It is asserted that withn 18 months two and a half miles of the channel tunnel betwen England and France will have been excavated, and that the work will be completed in four years, probably by boring from each end. There are evidently, however, contingencies, such as a break in the rock, which may destroy the whole enterprise. Meantime another bold scheme for crossing the channel contemplates a line of steel tubes 16 ft . in diameter, ballasted so as to make it weigh one and a quarter tons to a foot less than the water displaced, and held at a denth of 35 ft . below the surface (so as not to impede navigation) by being anchored by chains or caissons sunk to the bottom. Through this floating tunuel of 20 miles or so it is proposed that railway trains shall pass. The scheme appeals too strongly to credulity.
Reducing Power of Grape-Sugar. = Professor Bôttger highIf recommends the use of glucose in alkaline solution for the reduction of salts or silver, affirming that there is no procedure that is so convenient or which gives surer results. He proceeds in the following manner : Chloride of silver, Ireshly precipitated and well washed, is suspended in a suitable quantity of a diluted solution of caustic soda. To this a small quantity of glucose is added, when, on boiling for a few minutes, a complete reduction takes place. The metal, if collected, washed, and slightly calcined, may be obtained in form of a spougy mass of dull white color. The same method yields a very active platinum black.

The Dissociation of Iodine. - Prof. Vietor Mayer reported to the German Chemical Society of Berlin, at its last meeting, that he had succeeded in determining the vapor-density of iodine at a considerably higher temperature than before, and that he had obtained values closely approximating to those required on the assumption that the gas under the circumstances of the experiment consisted of monatomic iodine molecules. If possible, he proposes to extend his observations to still higher temperatures, and for this purpose will employ the lately-described oilfurnace of Deville and Troost, which is capable of fusing porcelain.

As extensive bed of shell marl has been discovered near Orillia, Ont.

PROSPERITY OF THE EMIGRANTS

The emigration from suffering Europe to the Uuited States， greater now than it ever was before．During the first four －nonths of this year the anparalleled number of over 60,000 emi－ grants arrived．The proportions in regard to nationality are as \％ollows ：for every 100 Germans there were 71 Irish， 46 English， 30 Swedes， 3 Norwegians， 5 Danes， 6 Hollanders， 3 Belgians， ${ }^{4} 5 \mathrm{~L}$ Swiss， 5 French， 18 Italians， 7 Russians， 3 Bohemians and 4 Greek．
Those who understand a trade find work at once ；many having霜peen provided before their arrival，while the applications of manufacturers and builders are so numerous that the supply of Hinds，large as it is，is not equal to the demand．The trades Which require labor and have thus far not been sufficiently pro－ Wided for are quarryman，stonecutters，puddlers，moulders，and Ulall branches of iron manufacture．On the first of May more Ghan 100 applications were on file at Castle Garden from man－ fifacturers which had not been supplied．The application of 4arties desiring German or Swedish servant girls，number by the解ox：and．
What we are great gainers by such an influx，is evident frome Whe fact that only that element of a people emigrates，in which Where is the pluck and energy to do so，and who have also the Wheans to pay their way to this country，and usually more，to a
reater or lesser degree ；while those who do not work but live要reater or lesser degree ；while those who do not work but live S ${ }^{\text {Som }}$ the product of labor of others，and，thereforc，are useless in Xociety，being mere consumers and not producers，stay at home Whath have to support that other class，who are unable or unwilling薙 0 ，work and therefore too poor to emigrate．

design and work in cabinet furnture

Our present illustration is a piece of parlor furniture called a thhiffoniere．It is used for many purposes，as the wants of a family Cmay require，including a stand for a small selection of books． Whe article is intended to be made of mahogany，and consists of Ya catcase，enclosed ！y two doors，and having a drawer the full Wength between the blocks over the carved trusses，and over this eascase is an upright back with two shelves for books，supported Dy small turned pillars．This article is at present shown as a piece of furniture suitable to the cottage or a trailesman＇s dwell－ Ying，and one which the ordinary intelligent and handy amateur （might readily construct ；and for the benefit of such as may enter upon the task，I will describe its construction in detail．
Q 1 l consists，first of all，of a base $4 \frac{1}{2}$ inches deep，of $\frac{7}{8}$ wood， Qovetailed together at the corners，with t ：e blocks in front， $3 \frac{1}{2}$ nches in breadth， $2 \frac{1}{2}$ inches thick，rubbed on afterwards．If Weneered，the front of the base hetween the blocks．would be Feneered，and the two blocks on the inner side also veneered． These，when dry，would be cleaned off and the blocks rubbed on ；then the ends of the base and the blocks would be covered each with one piece of veneer，and after this the front of the Whocks with veneer of richer quality，sut h as on front of base． Lastly the upper edges of the base would be veneered along With the ends of the blocks－the front of the base being pre－ yiously filled in with a piece of pine 2 iuches broad and $\frac{f}{8}$ inches thick．This base is 4 ft ．long and 22 in ．Over the blocks，and Eonsequently 19.9 inches in the middle．Now a carcase is made， Having two gatiles，either solid or veneered， 2 ft .8 inches long Ind 18 inches broad．Tbose have a hottom $\frac{7}{8}$ thick and a shelf Or forelegs underneath the drawer and over the doors ；this fore－ Idge is hid，however，by the drawer front projecting downward to a level with the bottom of the end biocks．These blocks are treated like those on the base，and rubhed on atter the carcase Ts put together．The bottom referred to is dovetriled into the ends of the gables，an I the shelf under the drawer let into the Gables by a raggle doretail．The tup of the gables are let into Til top by short tenons or pins．This top being veneered on the edges．and covered with one piece on the top．The drawer front is 5 inches deep，and has a torus head along the under edge． This carcase has a 5 hinch lining hauk cheeked into gables．Mid－ TWay in the height，insi ite this carcase，is a shelf resting on lillets， gerewed to the gables．
Over this carcas：is an upright back of 1 inch framing，with two long pinels between the shelves．The 2 panels are let in from the back，an the framing in front is without moulding or Ghamper of any se t ．The two shelver are of 1 inch wood，either Bolid or veneered both sides and elges ；the lower one is fixed to Whe back with scesws from behind，ant the unper one is fixed With screws yr ssing through it into ris unper edge of the back． The shelves are supyorted by slende：कhars of $1 \frac{1}{2}$ inch wood Ẅ̛rred，excepting hases and tops．Behind the bases are short
railings abutticg on the back of balusters 2 inches long and $\frac{8}{8}$ inch thick，and underneath the shelves are corner brackets of open fretwork，fixed behind the pillars．Over the other shelf is a coping or railing of 合inch fretwork 3 inches deep，and raised to 6 inches in the centre．This is fixed on with Ahort dowels． It may be mentioned that the doorston the carcape are 1 inch thick and panels $\frac{1}{2}$ inch，with double ogee monlitiog planted on the face．The carved trusses are $2 \frac{1}{2}$ inches brod on the face， and have behind them a thin pilaster，the full lenyth of thededors． It may be mentioned that this article is French pofidea，and that piecemeal，the panels，trusses，brackets，pilari，frapes，th： being polished before fitting in their places．Theiriaty ing with fret cutting are done by tradesmen，apart altogethiot trom the cabinet maker．－A．Cabe，in Design and Work

desteg and work in cabinet furnitude．

I have this week to bring to the notice of readers a forme of dining table which is coming into favor，as it ought to do The ordinary parlor tahle is usually made circular or oval，with a massive pillar and block，supported by three or sometimes four carved claws，projecting from the bottom of the pillar．This form of table is at best an awkward affair，as when in a position for unse it takes up a great deal of floor space，and when turned up on an édge，and placed against the wall like a target it is quite useless，und certainly not ornamental，and if not well made at first，the claws are forever getting loose，and threatening a catastrophe．
The table here shown is a vast improvement upan the former both in appearance and utility．Fig．1．is a penspective view， with the leaves hanging down．In this position the table is but 20 inches broad．It may stand against the wall，taking little room，and is still of mach use as a piece of furniture．
Fig．2，shows the underside of the table，with the leavessispread out，and the dotted lines show the inner feet tuyed out in the position to support these leaves．
It will be observed there are eight legs，all turned，exoepting the square parts at the lower rails（we call them sfielethera）． Four of these legs are in the corners of the frame，and remain fixed ；the other four are attacied to short rails top and \＄ottom， and being hinged，turn outwards．These legs are 2 in，in，square， and the rails to which the top is joined are 4t in broadraid 4 in．thick．The end rails，A A，are let into the corner feet，the long rails，B B，are simply placed behind the corner jut，and screwed to them．Then the short rails，C C，are let into the cor－ ner feet and screwed to the long rails，B B which make a thorough－ ly secure job．The four inner feet are mortised to rails the same in girth as the rails C C，and are hinged to them at the detted lines．The stretchers are 2 in ．broad and $\frac{7}{8} \mathrm{in}$ ．thick．The tong ones are double，and screwed together where the enteqtie leps， and are hinged at a point exactly vertical with salls ，bove： This arrangement will be understood at a giance by the aractical reader．
The top of this table ix of in in．wood，the central patit being 4 ft ．long and 13 iu ．broad inside the legs，and is fastened to the top from the insiue with screws．The leaves are joined to the centre by the method kuown as the Pembroke table joint，whioh shows a quarto－round with two listels，and the hinges underneath are quite invisible．This joint is very common on the tables．It is a very nice job to do well，and it is a notoriana fact that very many of our modern cabinet－makers are entirely ignorant of this method of hinging．
The corners of the top are out off at an angle of 45 deg，and the cut is 12 in ．loug．The rails are hinged to the frame with iron hinges known as back flaps，and the stretchers with brass hinges of the same description，and sunk flush．
This table may be made in mahogany or American walnut， and is a pretty，substantial，and durable piece of furnitare，wat may be used with both leaves down，one up，or both ap，and ${ }^{2}$ altogether better adapted for use as a parlor dining table than anything yet contrived for that purpose．If made as it oughtitho be，it will last for an age without liability of a breakdomity have made small card tables in American walnut of same aempa： －A．Care in Design and Work．

To Clean Wail Paper－－Soiled wall－paper mayy whind to look aluost as well as new，in most cases by the foho ofthet． pedient ：Take about two quarts of wheat bran，tietit urith coarse lannel and rub it over the paper．It will clean the ewh drep yater of almost all deseriptions of dirt and spots bétier thfar fiy ffeth means that can be used．Some use breid，but div brimptat better．
a mixhiak

DESIGN FOR A CHIFFONIERE,

THE MANUFACTURE OF RESIN AND TURPENTINE.

From Wilmington, N. C., southward, and nearly all the way to Florida, the pitch-pine trees, with their blazed sides, attract the attention of the traveller. The lands for long stretches are almost worthless, and the only industry, beyond small patches for corn or cotton, is the "boxing" of the pitch-pine trees for the gum, as it is called, and the manufacture of curpentine and resin. There are several kinds of pine trees, including the white, spruce, yellow, Roumany, and pitch pine. The latter is the only valuable one for boxing, and differs a little from the yellow pine, with which it is sometimes confounded at the North. The owners of these pine lands generally lease the "privilege" for the business, and receive about $\$ 125$ for a crop, which consists of 10,000 "boxes." The boxes are cavities cut into the tree near the ground, in such a way as to hold about a quart, and from one to four boxes are cut in each tree, the number depending upon its size. One man can attend to and gather the crop of 10,000 boxes during the season, which lasts from March to September. About three quarts of pitch or gum is the average production of each box; but to secure this amount, the bark of the tree above the box must be hacked away a little every fortnight. Doing this so often, and for successive seasons, removes the bark as high as can easily be reached, while the quality of the gum constantly decreases, in that it yields less spirit, as the turpentine is called, and then the trees are abandoned. The gum is scraped out of the boxes with a sort of wooden spoon, and at the close of the season, after the pitch on the exposed surface of the tree has become hard, it is removed by scraping, and is only good for resin, producing no spirit.

The gum sells for $\$ 1.50$ a barrel to the distillers. From 16 barrels of the crude gum, which is about the average capacity of the stills, 80 gallons of turpentine and 10 barrels of resin are made. The resin sells for from $\$ 1.40$ to $\$ 5$ per barrel, according to quality, and just about pays for cost of gum and distilling, leaving the spirit, which sells for 40 cents a gallon, as the profit of the business. Immense quantities of resin await shipment at the stations along the line, and the pleasant odor enters the car windows as you are whirled aloug.

After the trees are unfit for further boxing, and are not suitable for lumber, they are sometimes used to manufacture tar ; but the business is not very profitable, and is only done by large companies, who can thus use their surplus labor. The trees are cut up into wood, which is piled in a hole in the ground and covered with earth, and then burned the same as charcoal is burned elsewhere. The heat sweats out the gum, which, uniting with the smoke, runs off through a spont provided for the purpose. A cord of wood will make two barrels of tar, which sells for $\$ 1.50$ per harrel, and costs 37 ! cents to make. The charcoal is then sold for cooking purposes.

ANOTHER GREAT ENGINEERING WORK COMPLETED.

An English exchange gives the following account of the completion of one of the most stupendous works of engintering skill and enterprise of ancieni or modern times. We have been in the habit of crediting the new world with some of the most daring and enterprising improvements, but we can boast of nothing that surpasees this. Siays the exchange referred to: "Somewhere about 3,000 workmen, 600 or 700 wagons, 17 or 18 locomotive engines, 3 steam " navvies," and a great quantity of minor machinery of various kinds have been engaged since 1875 at the southeast end of London in a work, compared with which the building of the pyramids-with modern appliances-would have been no very signal feat. Hitherto the one eatrance to the Victoria docks from the Thames.had been at Blackwall point, but now there is a dock capable of receiving all vessels, no matter what they might be. Three and a half miles of walls have been built, enclosing 90 acres of water. These "walls" are 40 ft . high, 5 ft . thick at the top and 18 ft . thick at the bottom, the whole of this enormoys mass being composed of solid conerete, for which 80,000 tons of Portland cement have been used. Some $4,000,000$ cubic ft . of earth have been dug out. It may assist the imagination nomewhat to state that if it were filled into carts, the vehicles would form an unbroken line 7,000 miles long. The excavations have gone through submerged forests; and, among other curiosities dug out, have been a reindeer's horn, a Roman vase, and what is supposed to be an ancient British canoe, carved out of solid oak. The latter is now in the British museum. The new entrance below Woolwich will save about three and a half miles of river navigation, which, in the case of vessels of heavy draft, is, of course, a matter of very great importance.'

Exisceltameons.

Lightivg Rooms.-M. Javal, in a paper on public and private lighting, considered fron the aspect of ocular hygeine (Revue Seientifique, Oct. 18, 1579, p 361), treats of artificial lighting. He says that a chandelier carrying a million of wax lights would not give an amount of light equal to sunlight. Even in a room lit up in an unusually brilliant manner the pupils are much more dilated than in full daylight; and this dilatation explains the
fatigue to the eyes producd fatigue to the eyes produced by artificial light. Therefore, there is never too much, in fart never enough, artificial light, and prejudices without any just foundation are prevalent on this point. M. Javal recommends to persons suffering from certain optic defects, and who cannot work in the evening, two large lamps, which would obviate the fatigue of reading. Artificial light, also, excepting the electric and magnesium lights, contain reuch fewer chemical rays than daylight. All artificial spectra are very dull on the most refracted side ; the chemical rays, the violets and the blues, there show a very low intensity. M. Bouchardat (Revue Scicitifique, August 16, 1879, p. 148) has shown the dangers of violet and deep violet rays, on the authority of M. Reguauld's important work on the fluorescence of the media of the eye. The conclusion to be derived is that the flame light being poorer in chemical rays than sunlight, should be preferred by workers. In fact M. Javal quotes the instance of a member of the Institute, whose fatigued vision would scarcely tolerate daylight, and who shut his shutters, and lighted his lamp, in order to work. M. Javal recommended him to work in daylight with yellow spectacles to destroy the chemical rays. Artificial light, on the other hand considerably dilates the pupil, and renders the chromatism of the eye more sensitive, which is the reason that the light of day is to be preferred. The electric light is injurious, in a certain point of view; it contains a large quantity of chemical rays, which it would be easy to neutralize by giving a yellow tint to the globes. Nevertheless, neither the public, nor the experts, have complained up to the present time, of the electric light ; inconveniences only arise when the eves are too long a time on a too powerful electric light. It is, therefore, advisable not to look too long at electric lights, and when this becomes a habit, the opacity of the globes now in use can be diminished. In fine all our systems of artificial light are insuff. cient ; there is, then, no necessity to fear excess of light, since, on the contrary, artificial light is less penetrating than daylight. Gas, t'erefore, does not destroy the eyesight, it is the wavering and flickering of the flame, when there is neither globe nor chimney, which fatigues the sight; gaslight, with a burner protected by a globe, is excellent for it. M. Javal may well, then, say, with lying Goethe-"Light more Light !"-Sanitary Record.

Eucalyprus Tree and Fever.-In a late number of Nature some very positive statements are made as to the value of the eucalyptus or blue-gum trees of Tasmania in destroying fevers in marshy districts. The testimony in support of this power, it says, is most convincing. In marshy districts near eucalpytus forests, fever seems to be unknown, and in parts of Corsica and Algeria, where the tree has been planted for the sake of its reputed virtues, endemic fevers have been stamped out. M. Gimbert, in a report to the French Academy, instanced the case of a farm situated in a pestilential district about twenty miles from Algiers, where by planting a number of trees the character of the atmosphere was entirely changed. Similar testimony comes from Holland, the south of France, Italy, California, and many other parts of the world as to the febrifugal attributes of this tree. In no case is the evidence more convincing than in that of Algeri a, as related by Dr. Santra, and, quite recently, by Consul Playfair. " Large tracts of land have been transformed by the agency of the "fever-destroying tree," as it has come to be callei, and wherever it is cultivated fevers are found to decrease in frequency and intensity. Fewer districts in Europe have a more evil reputation than the Campagna as a veritable hot-bed of pestilential fever, and people who know the country around Rome may remember the monastery at Tre Fontane, on the spot, as tradition tells, that St. Paul met his death. Life in this monastery meant death to the monks, but since the eucalyptus has been planted in the cloisters, fever has disappeared and the place has become inhabitable.

Re-bronzing Ornaments.-The common method of imitating bronze on plaster casts, wood, metal, etc., is to paint first with one coat of greenish brown, let it quite dry, and then varnish with bronze powder that has been ground on a marble slab, with gum water or honey. This gives the metallic appearance sought
for. Tin that is first, ground, then sifted very fine, and mixed With a clear solution of 1singlass, will also have the same effect. It is applied to the ornaments with a brush. If a dead surface is desired nothing more than the foregoing is needed; but if a brilliant facing is wished, quick friction will produce a burnish. About $\frac{1}{2}$ oz. sal ammoniac, $\frac{1}{2}$ oz. cominon salt, 1 pint vinegar, and 1 oz . spirit of hartshorn, all mixed together will give the bluish green oxydised hue that is generally desired. This wash must be put over the ornaments after they have been painted and varnished with the metal powder preparation before indicated, and it should be done in a sunny situation, rubbed thoroughly, left in the sun for a day or two, and then another wash given if the first has not produced enough tint. Sal ammoniac or ammonia water with vinegar, skilfully placed on plain bronzes, will make them look oxydised.
Hints for Preserving Fiuits.-A useful hint to cooks was given at a recent sanitary convention in Grand Rapids, Mrehigan. It was pointed out that by adding sugar to sour fruits, during the cooking process, the greater part of the cane sugar was converted by the aid of the acid into grape sugar, Which does not possess half the sweetening power. By cooking the fruit first, and then adding the sugar to un agreeable sweetness, a very great deal of sugar migat be saved. Raspberry, strawberry, and cherry syrups of the German pharmacopia have to be made by bruising the fruit and letting the mare and juice ferment, after which the juice is strained off and filtered. A better and safer way is to add at once to the freshly bruised fruits five to six per cent. of alcohol, to let the whole stand for some days, decant and filter. Lastly, boil up once to remove the greater part of the alcohol. Syrups made with juice prepared as ubove retain in a remarkable degree the odour and taste of the fresh fruits.

Lubricators.-The Young Scientist remarks: That efficiency ot lathes, scroll saws, sewing machines, and even watches, often depend upon the judguent and care used in selecting a lubricator, and this cholee is frequently ill made. Common kerosene oil is too often injudiciousity used ia place of a thicker or more bland oil, because the heat produced by friction rapidly vaporizes the oil and leaves the juurual iry. Crude petroleum, for the same reason, is only hitted for very slowly revolving journals, such as water-wheels. For very heavy machinery, or tor geariug, tallow and black lead, rubbed up together, is the best lubricant, and also the best for waggon and carriage axles during hot weather. For light running machinery spenin oil is the best; good olive oil that has nut become raucid and acid, is perhapis the second best, and for winter use lard oil is excelleat, but is rather too drying to be a first-class lubricant. Castor oul is better for axles in the winter, and black lead with it is a help at any time.

How to Weld a Broken Spring Plate.-Get the length and then take the part of broken plate which is easiest to handle and upset it suitable for welding. Make a piece of iron tiveeighths of an inch wide, quite thin at one edge, leaving the other about three-eights of an inch thic's, somethug like a razor blade. Take a welding heat on the part that has been upset and weld the iron across, having the thick end on the punt of the plate. Scarf it for welding, upset the other part of plate and scart it so that when weldng the piece of irull comes between the two steels. In the first heat-it cannot be done in onedon't strike too hard at first, and thin down any thick edges of the scarfs. Take a second heat and the result will be, ia the hanis of an average smith, a good sound weld. If the steel is at all fiery do not attempt to weld it. Should there the a hole near the broken place, showing, on being heated, any siga of a flaw, make a new plate. Tue piece of irou welded between tacilitates the wrilding, and also makes up for the leagth lost in jumping. -London Cuách.Builders' Journal.
The Philosophy of Dyeing.-A French expert has recently been making soine very interesting experiments upon animal and vegetable suostances, with the view of ascercaining how coloring matter is taken up by the substances which are being subjected to t're dyeing process. It was found that the action depended largely upon the capillarity of the fibre or other substance treated. Microscopical examination of infusorial earth showed that the coloring matter entered the capillary tubes of the infusoria, and attached itself to the inner surlace of the walls. So With tibrous material. The more tuliy the capillary construction was developed, the more perfect is the capacity of the substance to receive colors. This fact will be found of special impurtance in the art of dyeing, and affords au explanation of the
reason why some substances receive dyes more readily than others.-Californien for September.

Iron Paint.-A German piper mentions that a Herr Chr. Spangenberger has patented in Germany a paint composed of pulverized irou and linseed-oil varnish. It is intended for painting damp walls, kettles, outer walls, or, iu short, any place or vessel exposed to the action of the open air and to the weather. Should the article to be painted be exposed to frequent changes of temperature, linsped-oil varnish and amber varnish should both be mixed with the paint intended for the first two coats, without the addition of any artificial drying mediuns. The first coat should be applied rather thin, the second a little thicker and the last in a rather fluid state. It is not necessary to free iron from rust, grease, etc., by means of acid before applying the paiut, as superficial cleaning is sufficient. The paint is equally adapted as weather-proof coating for iron, wood and stone.
Infinitesimal Fibres.-The microscope shows a variation in the thickness of human hair from the 1.250 th to the 1.600 th part of au inch; but, notwithstauding such tineness, it is a massive cable in comparison with some other fibres. Thus the thread of the silkworm is many times finer, being from the 1 700th to the $1-200$ th of an inch. This, however, is nothing to the slenderness of the spider's thread, which has been found in some instances to be more than $1-30,000$ th of an inch in diameter. The fibres yielded by the vegetable kingdom are also of astonishing minuteness. Thus every fibre of Hax is found to be composed of a bundle of other fibrils which are about 1.2500 th of an inch iu dianneter. Similar fibesr obtained from the pineapple plant have been ascertained to be no more than 1-500th or even 1.700 th of an inch in diameter.

Mounting Oleggraphs.- Make your frame of wood, on which stretch your canvas (daup); lay the oleograph tace downward, damp the back with cold water, using a spouge ; then paste the back, using rice flour paste, in which a few drops of oil of cloves have been dropped. Daunp the canvas, then press the oleographs carefully in position, pressing out all air from centre, using a soft cloth ; then lay aside to dry. Care should be used to well paste the edges. When quite dry, varnish the oleograph with either copal, oak or hard white varnish, or for simplicity use the ordinary paper varnish, but yout must be guided by your own judgment. Some oleographs require a dark varnish to show up the effiect, others should be varmshed as light as possible. We do not approve of glue, it is liable to crack.

Decorations, - Velvet cloth and lace have been so vulgarized for mantlepiece decoration, that the newest thing in this way is the old orismal marble or wood shelf, without ornament of any kind beyoud carving and polish. But it "The Little Lady" must hide her mantleshelf on account of unsightliness, a shelf of highly polish ebonized wood, with a black fringe, fastened on with gilt nails, would look as artistic as anything. The newest material for drawing suminer curtains are either ecrn yak lace or squares of guipure d'art, alternated with linen or coloured silk or satin, made up into curtains. Oatmeal cloth, unbleached huckaback or crash, with crewel embroidery borders of bright hues, are also pretty and substantial.
-To whiten walls scrape off all old whitewash, and wash the walls with a solution of two ounces of white vitriol to four gallons of water. Soak a quarter of a pound of white glue in water for twelve hours; drain and place in a tin pail, cover with fresh water, and set the pail in a kettle of boiling water. When melted, stir into the glue eight pounds of whiting, and water enough to make a mixture as thick as common whitewash. Apply evenly with a good brush; if the walls are very yellow, blue the water slightly by squeezing in it a flannel bag containing some powdered blue.

Dyeing Sheeprein Mats.-Boil 2 lbs. of logwood chips in one gallon soft water (ruinwater preferred) for two hours; while hot, add 1 oz. green copperas. 8tir the whole until the mixture turns black, pour the not hquor in a tub, in which steep the mats, moving them about so that each part receives the dye. The time allowed for steeping may be judged by circumstances, or until the mats are of the desired jet black. If not dark enough heat the liquor again, and give the mats another steeping. Hang on a line in opell air to dry. By omitting the copperas the mats would be a dark red.

To Restore Rancid Oils.-Fixed oils may be deprived of rancidity by adding a small quantity of aweet spirits of nitre and shaking well, and afterward heating slightly till the cdour of the spirit has disaןpeared.

SIIVER'S DIAYOND LIGHT COOKER.

At this season of the year it is a great comfort and convenience to be able to dispense with large coal fires for cooking, with their concomitants of dust and smoke, constant supervision, and great cost. And yet there aro many people who are not aware that this can actually be accomplished at less than half the cost and trouble, by the use of petrolenm or common mineral oil, with "Silver's Diamond Light Cooker," manufactured by the'Chimneyless Lamp Company, Birmingham. The annexed small illustra'tion shows "Silver's Diamond Boiler," with kettle, a ministure breakfast stove, capable of boiling water, making coffoe or tea, cooking chop or rasher, toasting bread, boiling eggs, \&c., in a few minutes. This portable apparatus forms an indispensable adjunct to the domestic kit of any man who has to rise betimes and hurry away to catch the early morning train. This stove is made in seversl sizes, and with boiler and vegetable cooker, to boil water, steam potatoes, \&c., and stew or fry. "Silver Diamond Cooker," No. 4, is of larger size, complete with meat dish and grid, kettle,

two steamers, and pan to stew or fry, suitable for cooking dinner or supper for a family. The oven is double cased and is com. pletely separated from the burners, so that all idea of the oil im. parting any objectionable flavour to the viands is effectually got rid of. By the arrangement of Silver's patent burners, the uniformity of the heat, and the mode of ventilation render attention to a joint in cooking quite unnecessary. "The Diamond Light Cooker" will roast joints, fowls, dc., equally as well as a coal fire, and bake bread or pastry most perfectly. One great merit of these cookers is that they are ready for cooking as soon as the barners are lighted, and in addition to that they have the adrantage of being cheap, clean, and without.smoke, smell, or nuisance. These stoves are all black leaded, thus getting rid of the objectionable black varnish so commonly used on articles of this kind. This pattern stove is very suitable for export as it packs in a very small compass, while it is not only valuable as a cooker in sum. mer, but may be utilized as a heating stove in winter. We recently saw a number of these cookers got up to special order by the Chimneyless Lamp Company for shipment to Smyrna, and the high finish of the stoves, no less than their suitability for use in that climate, soemed all that could be deaired.

THE TOPOPHONE.

The aim of the topophone, which was invented and patented by Professer A. M. Mayer, last winter, is to enable the user to determine quickly and surely the exact direction and position of any source of sound. Our figure shows a portable style of the
instrument; for use on ship-board it wonld instrument ; for use on ship-board it would probably form dne of the fixtures of the pilot-house or the "bridge,". or both. In most cases arising in sailing through fogs, it would be enough for the captain or pilot to be sure of the exact direction of a fog. horn, whistling buoy, or steam whistle ; and for this a single aural observation suffices. Every one has twirled a tuning fork before the ear, and listened to the alternate swelling and sinking of the sound, as the sound-waves from one line re-inforce or counteract those from the other line. The topophone is based upon the same fact, namely, the power of any sound to angment or destroy another of the same pitch, when ranged so that the sound-wares of each act in nnison with or in opposition to those of the other.

Briefly described, the topophone consists of two resonators (or any other sound-receivers) attached to a connecting bar or shoulder rest. The sound receivers are joint by flexible tabes, which unite for part of their leagth, and from which ear tubes procend. One tube, it will be observed, carries a telescopic device by which its length can be varied. When the two reson. ators face the direction whence a sound comes, so as to receivo simultaneously the same sonorous impulse, and are joined by tubes of equal length, the sound-waves received from them will necessarily re-enforce each other, and the sound will be angmented. If, on the contrary, the resonators being in the same position as regards the source of sound, the resonator tabes differ in length by half the wave-length of the sound, the impulse from the one neutralises that from the other, and the sound is obliterated.

Accordingly, in determining the direction of the source of auy sound with this instrument, the observer gaided by the varying intensity of the sound transmitted by the resonators, turns until their openinge touch the same - sound-waves simultaneously, which position he recognises either by the great augmentation of the sound (when the tube lengths are equal), or by the cessadion of sound, when the tubes vary so that the interference of the sound-waves is perfect. In either case the determination of the direction of the source of the sound is almost instantaneous, and the two methods may be successfully employed as checks upon each other's report. It is obvious that with such a help the pilot in a fog need never be long in doubt as. to the direction of ${ }^{3}$ warning signal ; and if need be, he can without much delay, by successive observations and a little calculation, determino approximately at least, the distance of the sounding body.

Imitation Inlaying.-For an oak panel with a design inlaid with walnut, grain the panel wholly in oil. This is not a a bad ground for walnut. When the oak is dry grain the whole of the panel walnut in distemper. Have a paper with the dosign drawn thereon, and rub the back with whiting; place it on the panel, and with a pointed stick trace the design. Next, with a brush and quick varnish, trace the whole of it. When the varnish is dry, with a sponge and water remove the diatemper, where the varnish has not touched. This, if well exeout:d, presents a good imitation of inlaid wood. Marbles are executed in a similar manner.

BETF DUITPLTG SCOWS.

The dirt and refuse matter collected in the streets of New York city, is removed to the ocean, filled up on top of flat bottom scows, in tow of a steam tug, and dumped in deep water. Lawt winter an accident to one of them gave occasion to an invention; it was noticed that one of the scows was leaky, and shipped Fater rapidly. The vessel gradually settled, and after a short time tarned bottom side up. This led Mr. Mitchell, the contractor, to ponder on the circumstance, which seemed to furnish a valuable principle in antomatic dumping. He began to experiment, and finally hit upon a plan on which a model was constructed, and finally he sent in a proposition to the Board of Police Commissioners, offering to take charge and dispose of the ohtire refuse of the city, at a considerably diminished rate.
The new scows to be used for this purpose are 100 feet long, 40 feet wide, and 11 feet deep. The top and bottom are alike, and provided with side fenders. The cross section is represented in our diagrams, they have four decks, forming three separate compartments, of which the upper and lower are air tight, while the middle and largest one is a water compartment, and provided with valves, which open to the water underneath the boat. The valves are connected with each other by means of adjusted wires and are manipnatated instantaneonsly by a single valve handle on deck, which opens or closes them at the will of the operator. When the valves are closed the barge is ready for a load. The garbage can easily be piled in a pyramid twelve feet high. A barge of 100 feet long can carry 700 tons of refuse at eight feet of draught, being a percentage of about ninety tons to Weach foot of draught, including the weight of the vessel itself. When the barge has been loaded as represented in Fig. 1., it sinks until the upper deck is within a foot and a half of the water's surface. In this condition it is towed to sea. When the proper point for dumping is reached, two men approach the barge in a turf boat and pull the valve handle on deck by a pole with a hooked end.

Fig, i. scont loaded with gabbage.

Fig, q. scow losina equilibrium.

Pig, b. Turning oter and discharaina load.

The consequence is the opening of the four valves which allows the water to rush into the hold of the barge which gradually sinks in an oblique position as represented in Fig. 2.
The centre of gravity, previously supported in on the middle above the centre of buoyancy is thus much displaced to one side, and the whole affair being intentionally loaded top heary, will after the careening has reached a certain point suddenly tarn bottom upwards, precipitating the entire cargo in the watar, as seen in Fig. 3.

After being thus automatically unloaded, the air chamber between the two lower decks having fifty per cent. greater buoyancy than the weight of the vessel forces the water chamber high above water line. The water which has been admitted consequently runs out through the open valves. On the next trip the barge floats upside down, the load of refuse being placed on the bottom.
Some incidental advantages are that when a barge requires calking either on the bottom or top, it can be repaired without resorting to the dry dock as only the top is caulked, and when done it is turned over, when the bottom becomes top. Another advantage is that the system of shovelling garbage slowly into the water allows buoyant matter to separate from the rest and rise to the surface, where it befonls the air and drifts in heaps ashore. But when the whole mass is dumped at once the heary matter carries straw, paper and other light material to the bottom where a great portion of it will become waterlogged, being soaked under hydranlic pressure, and so diminish largely the amount of floating material, which occasionally have reached the shores of Coney Island to the great diagust of the bathers.
The practical importance of improvements in this regard is evident from the fact that it costs the city of New York nearly $\$ 200,000$ a year to get rid of the refuse collected in the streets, and the inventor holds that 50 per cent. of this can be saved by the use of scows, purposely constructed according to the principles explained here.

WATER sEAL TRAPS In suIcIGer.

A simple and cheap method is to fill the trap with a saturated solution of calcium chloride. This material is a by-product in the alkali trace, for which, in quantity, the manufacturers would doubtless be glad to find a market at five cents a pound. Owing to its hydroscopic character its solution does not evaporate. About five pounds to a gallon is sufficient. To appiy it to a water-closet, fiush the trap thoroughly, shat off the supply, lift the handle and drop the calcium chloride into the trap, until no more will dissolve. For smaller traps, as in sinks and hand basins, where a slight waste is unimportant, pour in the saturated solution, which, heing about twice as heavy as the water, will speedily displace it. The calcium chloride may possibly contain a little free hydrochloric acid, which will corrode the metal. Iti presence in the solution can be detected by litmus paper, and a teaspoonful of marble dust will neutralize all that can be found in several gallons.

Quick-speed Crrcular Saws.- Soft-iron diges running at a circumferential speed of $12,000 \mathrm{ft}$. per minute will cut hard steel; but $5,000 \mathrm{ft}$. per minute will not cut iron. This fact is taken advantage of in rolling. mills to cat large bars and beams to exact lengths. At the L. \& N. Western railway works at Crewe, the circular saws for catting hot steel have a velocity of 18,000 ft . per minute at the periphery, equal to a speed of about 150 miles per hour. The saws are 7 ft . diameter, and $5-16$ inch thick, driven through gearing in one case by a pair of locomotive cylinders 17 inches diameter and 2 ft . stroke; in another instance the saw is driven direct by a three-cylinder engine, 14 inches diameter and 8-inch stroke. At another works a sam of 4 ft .6 inches diameter is ran at 1,200 revolutions per minate, equal to $17,000 \mathrm{ft}$. per minate. A jet of water plays on oircumference of saws to keep them cool.
Removing Paint from Caried Oak.-Wat the oak with naphtha until the paint begins to dissolve, and when it softens take away the paint with a palette knife. The process in a very long and tedious oue, as much care is required to provent the wood being scraped away with the paint, but it can be done. If a great amount of carving has to he cleaned, the labor may, be lessened by dissolving the paint by a spirit lamp instead of naphtha. The lamp has a jet of a peculiar structure, which naphtha. The flame and disperses the heat over a large surface, It is held to the paint, and, when the paint softons, it is scraped With a blunt pointed palette knife. It must be used carefully, or the oarving may get burnt.

RAILWAY ACCIDENTS IN ENGLAND IN 1879.

The Englisb papers have lately published from advanced sheets of "The Board of 'Irade Returns," statements of accidents for 1879. From these it appears that 1,032 persons were killed and 3,513 were injured on the railnays of Great Britain during last year. On the face of the returns it would appear that accidents to trains, pernanent way, \&c., are far more fatal to life and limb in Eugland than in this country, from May, 1879, to the close of April, 1880-a showing which is, it will be acknowledged, highly favorable to American Railway managers. One cause of this differense is due, probably to the fact that all the accidents are reported in England, while in this conntry no record is kept, or obtainable, of very many that occur.

It may be of interest to give the data concerning the accidents due to fuilures of rolling stock and permanent way. Of the failures in tires, 63 were engine tires, 37 tender tires, 11 carriage tires, 28 van tires, 1,088 were wagon or freight car tires, of which 888 were tires of wagous belonging to owners other than the railway company. Our readers must bear in mind that the wheels of Erglish cars have wrought iron spokes with tires shrunk on, instead of chilled iron wheels cast in one piece as with us. Of the 1,227 tire. which thus failed, 933 were made of iron and 252 of steel, while the material of 32 was not stated. Of the 496 axles which failed, 272 were engine axles, viz., 248 crank, or driving, and 24 leading, or trailing 23 were tender axles, 3 carriage axles, 190 wagon axles and 8 axles of salt vans; 76 wagons belonged to owners other than the railway companies. Of the 248 ciank, or driving axles, 180 were made of iron and 68 of steel. The average mileage of 163 iron axles was 183,992 miles, and of 63 steel axles, 157,824 miles. Of the 1,541 rails which broke, 1,363 were double-headed, 130 were single-headed, 32 were of the bridge pattern and 15 were of Vignoles' section, while the section of one was not stated. Of the double headed rails, 849 had been turned; 1,225 rails were mude of iron, and 316 of steel.

Oue peculiar feature of the Eng!ish accidents is the large number happening to what are classitied as Trespassers, and the large percentage of accidents to these, that prove fatal. Of the eutire 1,032 killed, 308 , or a little less than 30 per cent., were of this class, while of the 3,513 injured, 137 , or less than 4 per cent., were trespassers. Further, the only other case in which the number of killed from uny given cause exceeded the number of injured, were persuns passing over railways at level crossings30 being injured 64 killed. In the same class of casualties it ap. pears that out of 313 servants of the company whose occupations are given, who were killed, 103 , or about $33 \frac{1}{3}$ per cent were pernianent way men, and 156 ot the injured, out of 1,460 , or a little over 10 per cent. We have no data at hand to show the proportion of accidents in this country that came from similar causes, but we confess that these figures are a revelation to us. The track in Eugland is more carefully guarded from intruders than with us, and yet we question it a complete record of accidents here would show any such mortality from these causes.

8LEEPING POSITION.

The food passes from the stomach at the right side, hence its passage is facilitated by going to sleep on the right side. Water and other fluids flow equably on a level, and it requires less power to propel them on a level, than upwards. The heart propels the blood to evely part of the body at each successive beat, and it is easy to see that if the body is in a horizontal position the blood will be sent to various parts of thes system with greater ease, with less expenditure of power, and more perfectly than could possibly be done if one portion of the body were elevated above a horizontal line. On the other hand, it one portion of the body is too low, the blood does not return as readily as it is carried thither; hence, there is an arcumulation and distention, and pain soon follows. If a person goes to sleep with the head but a very little lower than the body, he will either soon waken up, or will die with apoplexy belore morning, simply because the blood could not get back from the brain as fast as it was carried to it. If a person lays himself down on a level floor for sleep, a portion of the head, at least, is lower than the heart, aud discomfort is soon induced; hence, very properly, the world over, the head is elevated during sleep. The savage uses a \log of wood or a bunch of leaves; the civilized a pllow; and if this pillow is to thick, raising the head too high, there is not blood enough carried to the brain, and as the brain is nourished, renewed and invigorated by the nutrmont it receives from the blood during slet p, it is not fed sufficiently, and the result is unquiet sleep duriug the night, and a waking up in weariness, without refreshment, to be fullowed by a aay of drowsiness, discomfort and
general inactivity of both mind and body. The healthful mean is a pillow, which by the pressure of the head keeps it about four inches above the level of the bed or mattress; nor should the pillow be so soft as to allow the head to be buried in it, and excite perspiration, endangering ear-ache or cold in the head, on turning over. The piliow should be hard enough to prevent the head sinking more than about three inches. -Hall's Journal of Health.

ASTRONOMICAL OBSERVATIONS AT GREAT ELEVATIONS.

The progress of modern optics is now furnishing. observers with telescopes of a power which exceeds the capacities of our lower atmospheres for their constaut employment. The obstacles to definition due to this atmosphere have grown to be so nearly a barrier to any rapid progress, that attention has lately been given to the conditions of vision which it is very commonly supposed will be tound to be best on mountain summits. There is no exact information on this subject, however, and Prof. S. P. Langley was, therefore, led to make some observations on Monnt Ftna during a visit there in 1878 , the result of which he records in the July number of the American Journal of Science and Arts. His o!ject was to gather some sort of quantitative estimate of the degree of transparency and definition, ta take the place of vague statement, and to give a kind of staudard for comparison with sites in our own territory. The station chosen was "Cass del Busco," at an elevation of about 4,200 lt. The observations were directed to the sole end of determining the character of vision, as tested at night on stars and nebulae, and by day upon the sun. After a limited number of comparisous, he infers that at this station about vine-tenths of the light of a zenith star reaches us, and that only one-tenth is absorbed by our atmosphere. T'he gain on Etau over a lower station, as tried by the tests of a double star observer, was more in clearness of the atmosphere than in that freedom from tremor which accompanies good definition. The latter was indeed upon the whole better than below, but not couspicuously so.

Prof. Langley concluiles, as the result of his researches, that the bulance of advautages for astronomical observations is most likely to be found in a dry atmosphere, and certainly at a great elevation. Such elevations have undoubtedly the advantace of diminishing the atmospheric absorption of the more refrangible rays, an absorption so important that it probably cuts off rom us the larger portion of the ultra violet spectrum. The gain for observations of precision will be, though positive, not in itself probably such as to justity the difficulty and expense of such a site; but for the study of the nebulx and stellar photometry, the gain is very esseutial indeed, while for almost every problem in sol ir physics it may be said without reserve that, ior rapid progress, such observations have now become not merely desirable, but indispensable. The summit of a lofty mountaiu, however, is not a disirable station. At an altitude of 10,000 or $11,000 \mathrm{ft}$. the observer may still enjoy all the conditions of health that fit him for labor, but beyond this unfavorable conditions increase very fast.

Quoting from his own experience of a stay of ten days upon Pike's Peak, at an altitude of between 14,000 and $15,000 \mathrm{ft}$., Prof.Langley says that at this height the attenuated atmosphere makes a long stay impossible for some, while even tor the healthjest the couditions of life begin to be such as to render continuous hard work scarcely possible. At the same time the mountain condenses about itself continuous clouds, so that, except during a brief period in the autumn, the opportunities for observation are far rarer than on the plains. A dry climate and s table land, at an elevation of something like $10,000 \mathrm{ft}$., sheitered on the side of the prevalent winds by a mountann rangr, which precipitates their moisture in clouds that rarely advance beyond the observer's horizon, appear to be the more pro uising couditions in our present knowledge. Upon the whole, through the ideal station, where atmospheric trumor does not exist, and the observer pursues his studies in an ever-transparent sky, is not to be found on any part of the earth's surface yet examiued, we fiud says Prof. Laugley, within our own territory, in the dry and elevated table lands of Colorado or New Mexico, every condition which experience points out as favorable.-Scientific American.

Saws.-A saw just large enough to cut through a board, will require less power than a saw larger, the number of teeth, ypeod and thickness being equal in each. The wore teeth, the wore power, provided the thackness, speed and feed are eyual. There is, however, a limit, or a point where a few teeth will not answor the plice of a large number.

A CONVENIENT COTTAGE COSTING $\mathbf{\$ 1 , 0 0 0}$.

These designs were prepared to meet the increasing demand for inexpensive and comfortable country houses. The question is frequently asked: "Can a dwelling be constructed for the sum of $\$ 1,000$ that will contain all the accomodations and conVeniences required by an average-sized family, and withal have an appearance that shall not compromise one's self respect?" The chief difficulty in the way of a satisfactory answer lies in the arbitrary number and character of the rooms required. As a rule, there must be the conventional parlor, dining-room, kitchen, entrances, closets, etc., in the first story, and several chambers above; altogether approximating establishments costing double or treble the estimated amount. Although such demands are perplexing, their number is so large that they cannot be ignored. Several desigus for cottages of this class have been already published in the American Agriculturist (see numbers May, 1875: May, 1876; May, 1877; and April, 1878), which may be consulted with profit by those who are considering the subject of huilding. The plans here given will be fcund to excel those referred to in many respects, especially in the amount of accommodation, having seven convenient rooms, instead of the usual tive or at most six divisions....ExTERior (fig. 1).--The side elevation shows the outside appearance of the house. The body is set at a convenient height from the ground, the founda. tion showing 2 feet above the grades. The outlines of the main building are symmetrical and well defined. The roofs are set at an angle of 45°, giving them them the prominence they deserve. The gables have a touch of ornamentation, and light chamfer Work is put along the frieze, and under the windows, giving a
finished appearance. The front and rear porches are timber Work, also chamfered. In some localities it may be desirable to have more shade in front than is afforded by this porch, in such case a veranda may take its place, crossing the entire front of the house... (ellar.-Height, $6 \frac{1}{2}$ feet. In the estimate of cost appended allowance is made for a cellar upder the wing only, Which is sufficient in most cases. Others, especially farmers, Wanting all the store-room possible, may extend the cellar under the entire building.-[All the cellar-room should be excavated for the sake of good health, even if the room is not otherwise needed.-HD. 1 -There are two windows, an outside entrance, and a flight of plain stairs leading to the kitehen above. First Story (fig. 2).-Height of ceiling, 9 feet. The front entrance is from the porch to a vestilule, and through it to the two principal rooms. The vestibule has a small window at one side, towards which the front door swings in opening, and at the other side sufficient space is allowed for a hat-rack aud stand. The parlor and dining-room are of equal dimensions, and similar in form, both being octagonal in front, and havinga single chimney between them, The panlor has front and side findows, and one closet. The dining-room intended as the family living-room, is conveniently arranged, having an open fire-place, three windows, a closet, and direct communication With the front vestibule and rear entry. The kitchen opens from the rear entry, is fair sized, and well lighted. It has a large fire-place, a pump and sink, two closets, and a stairway to the cellar. The rear entry opens from a covered porch, and is lighted by a small window, and from it a boxed or cottage there of stairs lead to the second story. It will be observed that there are no supertluous halls, or other waste room, every inch of 8pace being devoted to purposes of real utility....SEconn STony (fig. 3).-Height of ceiling in the main part, 3 to 8 feet;
in the wing 2 to 7 feet. The roofs, being set at an angle of 45°, in the wing 2 to 7 feet. The roofs, being set at an angle of 45°, are unusually steep, giving increased head-room; then the partitions surrounding the hall are set to add the height of the vertical Walls where most important. There is a hall, four rooms and four closets on this floor. The two front chambers have two of windows each, and the chimney between them allows for the use of stoves, if required. The two rear rooms serve acceptably as bed-rooms, the larger one having two windows, will accomodate
two persons comfortably. The smaller room has a sash-door, tho persons comfortably. The smaller room has a sash-door, tourough which light passes to the hall... Construcrion.-The
fondation and chimney are of brick-work. Frame, of sawed spruce, siding of pine, "novelty pattern." Rrame, of sawed shingles; floors of tongued and grooved spruce; windows, four lights each ; doors, pine, panelled; plastering, three-coat work ; painting, two coats. The following estimate covers the cost of anding by this plan. Those requiring the increased veranda, saitable stone and sand abound, which may be had for hauling, In such cases, the foundation may be of stone, which, together With the plastering, will cost much less than here calculated.

Muzle has been brought out in a handy form by Mr. H. F. Bermard, and is sold by Perry and Co. In a neat box we have seven sets of names of the girls on differentlycoloured counters-one colour for each day. On the other side of the counters we have the numbers one to fifteen. The pazzle is to so arrange the names that the schoolgirls while walking three abreast for seven days in succession, shall nover find themselves in the same company, There are thus 35 combinations of the names, and no two may occur twice in any of the ranks of three. This is a far better puzzle than the so-called American filteen, which is chiefly remarkable for the persistency with which would-be solvers alter the conditions to suit their solutions.

Wire Book-Sewing; Machine.-Mr. Hugo Bilgram read a paper at one of the late meetings of the Franklin lnstitute on this subject, in which he affirmed that the substitution of wire for thread, which these machines successfully accomplish, marks the next step forward that has lately been made in book-binding. He referred especially to a machine which had been exhibited in operation before the Institute, which acted on the principle of producing a number of U-shaped wire staples which are driven from the inside of each section of the book throngh the back, and through one wide or several narrow bands of a strong linen or cotton fabric, whereupon the projecting ends of the staples are clinched over, thus effecting a firm connection between the sheets of the section and the band or bands covering the back of the book. The machine fastens a section at each revolution of the main shaft, and may be run at the rate of 40 ,to 43 revolntions per minute, and the book sections, partly opened, being fed by the operator upon a table which carries the sheet in position to be sewed.
The speaker pointed out that the advantages of this mode of binding, as compared with hand-binding, were greater strength, flexibility, and durability, and a decided saving in labor, inasmuch as one operator, with the machine, was enabled to turn out as much work as five to eight workman by hand-work. The rusting of the wire staples is avoided by using tinned iron.

These machines, it was affirmed, have been introduced with much success in Europe, there being at that time no less than 150 of them in use in England, Belgium, France and Germany, and elsewhere. They have been adopted by the government binders of England and the United States, with the result of considerably cheapening the cost of binding, and amproving its quality. The machine binding, it was also noticed, had been found to be especially valuable in the manufacture of blank books, and the adoption of the machine-work for the branch of manufacture in Germany had already caused a reduction in the selling price of such goods. For additional details of the mechanical novelty, we refer our readers to the Journal of the Institute for January.

Decorative "Tiles" of Metal.-London Iron notices as an iuteresting novelty the recent application of iron and steel to the manufacture of wall decorations for superseding the ordinary decorative tiles of earthenware. Referring to this new product, that paper speaks of it in very favorable terms: "An examin. ation of the metallic wall decorations, which are termed ' metal decorative tiles,' convinces us that their inventors have devised a substitute for the ordinary tiles, which is not only quite equal to them in appearance, but which possesses many advantages, including that of lesser cost, which render them superior to the ordinary decorative tiles." They are manufactured, as we learn, from soft iron or steel rolled into thin sheets ; both sides of these sheets are then well tinned and afterwards varnished by a special process, the object of which last procedure is to insure complete protection of the plates from dampness. The next process consists in enameling the surface and printing the pattern, and finally comes the glazing. The plate thus prepared is then subjected to a high heat, but not enough to canse vitrification, when the operation is complete. These metallic tiles are flexible, will not fly under heat, and will stand considerably rough usage without becoming defaeed. In these respects their advantages over earthenware are obvious. They are fixed in place by pins in the wall, and are fitted to each other by the simple artifice of flanging two of the sides. They can be washed when soiled. The invention has been patented in England, elsewhere in Europe and in this country.

A survey is being made preparatory to the construction of an immense wheat elevator at Prince Arthur's Landing.

AN effort is being made to establish a silk and cotton factory t Picton, Ont., to employ from fifty to seventy-five hands.

Fig. 1.-side elefation of the hoose.

Fig. 3.-plan of second story.
Fig. 2.--plan of first story.

DESIGN FOR A MECHANIC'S COTTAGE (From the American Agriculturist.)

[^0]: " "Mangel Wurtzel" ta derived from the German, and means acarolity poot; While, on the contrary. it is mont abundank, These roots wese the known in Germany, and were brought to France by Dr. Lytson.
 \dagger This is a Swedich tarnip, and containe seldom over two per cost. ol angar.

