IMAGE EVALUATION TEST TARGET (MT-3)


4


Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques


The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which max significantly change the usual method of filming, are checked below.
$\square$ Coloured covers/
Couverture de couleur


Covers dämaged/
Couverture endommage
Covers restored and/or laminated/
Couverture restaurée et/óu pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes geographiques en couleur ....
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
Le reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutbes lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible, ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a óté possible de se procurer. Les détails de cẹt exemplaire qui sont peut-btre uniques du point dq, vue bibliographique, qui peuvent moditier une image reproduite, ou qui peuvent exiger une modification. dans la méthode normale de filmage sont indiqués ci-dessous.


Coloured pages/
Pages de couleur .

Pages damaged/
Pages endommagésPages restored and/or laminated/
Pages restaurees et/ou palliculées


Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées


Pages detached/
Pages détachées


Showthrough/
TransparenceQuality of print varies/
Qualité infigale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Titie on header taken from:/
Le titre de l'en-tête provient:
$\square$ Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison


Masthead/
Générique (périodiques) de la lixraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed hare has been reproduced thanks to the generosity of:

## Library of the National

Archives of Canada

The images eppearing here are the beat quallity possible considering the condition and logibility of the original copy and in keeping with the fllming contrict specifications.

Original copies in printed paper covere aré filmed beginning, with the front cover and ending on the last page with a printed or illustrated impresslon, or the back cover whien appropriate. All other original coples are filmed beginning on the first page with a printed or lllustrated impression, and ending on the last page with a printed or Illustrated impression.

The last recorded frame on each microfiche shall contain the symbol $\rightarrow$ (meaning "CONTINUED"), or the symbol' $\nabla$ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at differert reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to rightiand top to bottom, as many frames as required. The following diagrams illustrate the method:

L'oxemplaire filmé fut reproduit grâce da générosité de:

La biblioth'que des Archives nationales du Cenada

Les images sulvantis ont dré reproduites avec le plus grand soin, compte tenu de la condition et de le nettoté de l'oxemplairs filme, et en conformitt avec les conditions du coh̆trat de tilmage.

Les exemplaires originaux dont la couverture en papier est Imprimbe sont filmbe on commencant par to premier plat at en terminant soit par ia dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le ces. Tous lés autres exemplaires originaux sont filmis on commençant par la promidere page qui comporto une emprainte d'impression ou d'illustration ot en terminant par Ia dernidre page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur to dernì̀re image de chaque microfiche. sè̈lon le cas: lé symbole $\rightarrow$ signifie "A SUIVRE', le symbole $\nabla$ signifie " $F I N$ ".

Les cartes, planches, tableaux, etc., peuvent dite filmés dos taux de réduction différents. Lorsque lo document est trop grand pour bire reproduit on un seul cliché, il est filmé a partir de l'angle supdrieur gauche. de gauche adroite. ot de haut en bes, on prenent io nombre d'images núcessaire. Les diegrammes suivants lllustrent lo melthode.


# WATSON'S 

COMPOUND INTEREST AND ANNUTTY,

## LOAN and VaLuation Tables

POR THE USE OF

# Wuflding ©octeties, Wrokers, 


MORTGAGES, BONDS, DÉBENTUR゙ES ©R ANNUTIES.


## WILLIAM E WHTSON,

 1900unt toTomonte i
DUDLEY \& BURNS
円uwrame.
Entered according to the Act of the Pariiament of Canada, in the year one thousand elyht hundred and eighty-four, by William E. Watson, in the Office of the minister of Agriculture.

## PREFACE.

The following Tables embrace those prepared by James Watson, Manager of The People's Loan and Deposit Company, the first edition of which has been exhausted, but the stereotype plates of which have been secured by the compiler of this edition.

The former edition contained 22 rates, but the present work has been extended so as to embrace $3^{5}$ rates, and the new, together with the old rates, in several of the Tables, have been extended to 45 years on the half. yearly, and 70 years on the yearly basis.

There have been also added two additional tables, showing the amount of $\$ 1$, and the amount of an annuity of $\$ \mathrm{t}$, for 50 half-years, and 50 years; and a complete list of all the nominal yearly, and half-yearly rates, showing the true rates of these, convertible yearly, half-yearly, quarterly and monthly, and the Logarithms of these true rates, to 10 places of decimals by the use of which ariy item in the Tables may be verified, and new problems beyond their limits solved with the greatest accuracy.

There have been added besides, complete formula for the calculation of nearly all questions which can arise involving compound interest and annuities, together with examples showing the practical use of Logarithms in such calculations.

The compiler hopes that the work will thus be found a useful manual for all institutions or individuals dealing in Bonds, Mortgages or AnnuitiesLife or otherwise.

The Tables have been prepared and revisgd with great care, and may be confidently relied on.

## INTEREST.

The number of rates pf interest included in the present edition is 38 , and comprises whole and fractionary rates from $3 \%$ to $12 \%$, proceeding by halves, and the results of these rates, compounded yearly and half-yearly, are shown.

The true rates of these nominal annual rates are exhibited in a classified form on page 17, which shows the true rate of interest on $\$ 2(\boldsymbol{y})$ for one month, quarter, half-year or year of each of these 38 nominal rates. Along with these true rates is shown the Logarithm of each (Log. 6) to ten places of decimals, and also the Logarithm of these rates increased by unity $($ Log. $r,-r=1+t)$.

The rates compounded half-yearly are equivalent to one-half of these rates compounded yearly, for double the time as regards Tables I and VII. Thus 6 months at $3 \%$ half-yearly is equivalent to 12 months at $11 / 2 \%$ yearly, and 1 month half-yearly to 2 months yearly, etc. This applies to all rates.

In Table II, Monthly Instalments of $\$ \mathrm{I}$, would then represent $\$ \mathrm{I}$ every two months. In Table III, Quarterly
In Table IV, Half-yearly $\quad$ " half the given rate compounded yearly. " " " per year, at

## TABLES.

Table I-Gives the present value of a single payment of $\$ r$, due at the end of any month from 1 to 240 ( 20 years), at the various rates of interest designated at the top of each page, computed yearly, and half-yearly. It also shows the present value of a single payment of $\$ x$, due at the end of any half.year, from 40 to 90 halfyears ( 20 to 45 years), interest half-yearly, and of a single payment of $\$ \mathrm{r}$, due at the end of any year from 20 to 70 years, interest yearly, at the various rates indicated.

Table II-Gives the present value of a monthly instalment of $\$\rangle$, payable at the end of each month from I to 240 months at same rates.
Table III-Gives the present value of a quarterly ins'alment of $\$ 1$, payable at the end of each quarter from I to 80 ( 20 years), at the various rates given, when the first instalment becomes due at the end of the 1st, 2nd or 3 rd month, and the second, or corresponding instalment, at the end of the $4^{\text {th, }} 5$ th or 6 th month, and so on.
Table IV-Gives the present value of a half-yearly instalment of $\$ 1$, payable at the end of each half-year from 1 to 40 ( 20 years), at same rates as above, compounded half-yearly and yearly, when the first instalment becomes due at the end of the 1st, 2nd, 3 rd, 4 th, 5 th or 6th month, the second at the end of the 7th, 8th, 9th, 10th, 1ith or 12th month respectively, and so on ; and is continued showing the present value of instalments at the end only of each half-year, from 40 to 90 half-years, at rates compounded half-yearly.

Table V-Gives the present value of a yearly instalment of $\$ 1$, payable at the end of each year trom I to 20 at same rates compounded yearly and half-yearly, when the first instalment becomes due at the end of any month from Ito 12, the second at the end of any month from 13 to 24 respectively, and so on; and is continued showing the present value of instalments at the end only of each year from 20 to 70 , years at rates compounded yearly.

## USES OF THE TABLES.

1. To find the present value of an ordinary Mortgage, or any sum to be paid at the end of a period of years, or years and some months.

By Table I, find the present value of $\$ 1$ for the term required, which will be on the same line as the required number of months in the column headed by the required be on the same and multiply this factor by the sum of the Me column headed by the required rate of interest, value is desired.

EXAMPLE.-Required the present value of $\$ 1000$ due 14 years and 7 months hence, interest at $10 \%$ compounded half-yearly. By Table I, factor for 14 years 7 months hence, interest $.24098 \times 1000=\$ 240.98$, the present value.
2. To find the present value of a Mortgage or Debs after a number of years, or a broken period of years and sofige when the principal becomes due intertst, compounded half-yearly or yearly.

By 'Table I, as above, find the present value of $\$ 1$ due at the end of the period required, and multiply the principal by this factor. Then, by Table IV or V, as the case may be that the interest or coupons are payable half-yearly or yearly, find the present value of a half-yearly sum of interest, which will for the same time; multiply this factor by the half yearly or yearly the present values of the principal and the interest the inferest or coupons. Then add together whole. .

Example I.-Required the present value of a Mortgage bearing interest at $7 \%$ payable half-yearly, principal $\$ 4000$, due II years and 2 months hence ; to pay $9 \%$, compounded
half.yearly.

By Table $I$, the present value of $\$ 1$ due 134 months hence at $9 \%=.37417$
$\times 4000=$
And by Table IV $\ddot{p}$. v. of half. $\ddot{\text { yearly }}$ instalments of $\$ 1$ for same time and rate $=14.569$.
$14.569 \times 140=$$\quad$ The half-yearly interest on $\$ 4000$ at $7 \%=\$ 140$, and

Example 2.-A Debenture of $\$ 100$, having 19 years and 2 months to run, and bearing interest at $6 \%$, compounded half-yearly, is offered at a price to pay the purchaser $5 \%$ half-yearly. Required its present value.

By. Table I, present value of $\$ \mathrm{I}$, due 230 months hence, at $5 \%=.38808 \times 100=$
And by Table IV, present value of ha'f-yeariy instalments of $\$ 1$ for same time $=25.141 \times 3$ (value of half-yearly coupon) $=$

The present value of the Debenture is
$\$ 114.231$
Thut the present value of any Mortgage or Debenture may be calculated to pay the purchaser any rate of his purchase money, notwithstanding the rate of the security being differett. It will be seen that if the purchaser gets a higher rate than that borne by the security, he will pay less than its face value, and. if he fealizes a lower rate he will pay more than the face value. If the rate borne by the Mortgage or Debenture be the s.me as that which the purchaser obtains, he will pay for it the par value. This may be shown by the tables as in the above cases.

Example 3.-What is the present value of a Debenture of $\$ 100$ due 18 years hence, having coupons of $\$ 8$ each paynble yearly, to pay $8 \%$ yearly ?

By Table I, present value of $\$ 1$ due 216 months hence at $8 \%=.25025 \times 100=$
And by TableV, p. v. of yearly instalments of $\$ \mathrm{r}$ for same time $=9.3719 \times 8=$

## The present value of the Debenture is

$\$ 100.090$ $\rightarrow$
3. To find the amount to which any sum would accumulate after a given number of months.

Divide the sum by the present value of $\$ \mathrm{I}$ due at the end of the term, and at the rate required. The quotient will be the amount.

Example.-To what sum will \$100, now invested at $10 \%$ interest compounded half-yearly, amount in 18 years and 7 months?

For any even number of half-years or years up to 50 respectively, Table VII gives the amount of $\$ \mathrm{I}$, and this factor multiplied by the given sum will give its amount for same period.
4. To find the present value of any Instalment or Annuity, payable yearly, half-yearly, quarterly or monthly, during a given number of years, or a broken period of years and some months, at any rate of interest given.

Find the present value of an Instalment of $\$ 1$ for the proper time and rate in the Table corresponding to the periodic payment, and multiply this factor by the given Instalment.

Example 1.-A Mortgage payable by monthly instalments of $\$ 20$ each, has 8 years and 4 months to run. What is its present value, interest $10 \%$, convertible half-yearly?

By Table II, the present value of an instalment of $\$ 1$ for 100 months at $10 \%=\$ 68.164 \times$ $20=\$ 1,363.28$, answer.

Example 2.-A Mortgage, payable by quarterly instalments of $\$ 25$ each, has 8 yerrs and 1 month to run. What is its present value, interest $9 \%$, and convertible half-yearly.

By Table III, the present value of a quarterly instalment for 8 years and 1 month (i.e. 33 instalments, first due one month hence), at $9 \%=\$ 23.545 \times 25=\$ 588.62$, answer.

Example 3.-A Lease, payable by half-yearly rents of $\$ 60$ each, has 7 years and 3 months to run (i.e. 15 rents unpaid, first due three months hence). What is its present value, interest at $10 \%$, convertible yearly?

By Table IV, the present value of a half-yearly instalment of \$1 for 7 years and 3 months at $10 \%$ yearly $=\$ 10.716 \times 60=\$ 642.96$, answer,

Example 4.-A Mortgage, payable by yearly annuities of $\$ 210$, has 15 years and 3 months to run, when last ins:alment matures. What is its present value, interest $91 / 2 \%$, annually ?

By Table V , the present value of 16 yearly instalments of $\$ 1$, last instalnient due 183 months hence, at $91 / 2 \%$, annually $=\$ 86301 \times 210=\$ 1,8_{12} .321$, answer.

Example 5.-What is the present value of a Lease of $\$ 100$ per annum, for 62 years, at $5 \%$, compounded yearly?

By Table V, the present value of $\$ 1$ per annum, for 62 years, at $5 \%=\$ 19.0288 \times 100=$
902.88 , answer.
${ }^{18}$ By Tables IIT, IV and $V$ the present value of a quarterly, halt-yearly or yearly payment of Rent, or Interest on Mortgages or Debentures, can be determined to pay any of the rates given, and in the case of Mortgages or Debentures the present value of the primcipal may be found by Table I, and added to that of the interest as in the examples of $\$ 2$.
5. Assuming that a Mortgagor has arranged with the Mortgagee to prepay his Mortgage, or a portion of same, in addlition to his usual annuity. To find how such a payment would affect equitably the subsequent annuities, as to amount, or as to time.

Example 1.-A Morgage, payable by monthly instalments of $\$ 20$ each, yields $101 / 2 \%$ interest, convertible half-yearly, and has 7 years and 5 months to run. The borrower wishes to pay down $\$ 600$, and to find how long his instalments of the saine amount must continue to pay off the debt.

By Table II, the present value of a monthly instalment of $\$ \mathrm{i}$ for 89 months $=62.101 \times 20 . . \quad . . \quad . . \quad \underset{\text { Deduct }}{.}$
1242.02 600.00

Dividing $t$ is by the amount of the instalment, viz. \$20, will give
the value of an instalment of $\$ 1$ for the necessary time- 642.02
$\div \mathbf{2 0}=\quad . . \quad . \quad . \quad$.. ... .. .. .. 32. 10
And p. v. of a monthly instalment of $\ddot{\$ 1}_{1}$ for 37 months $=\cdots \quad \cdots 31.59$ (nearest amt. below)
Difference on $\$ \mathrm{r}$ instalment $=0.51 * \mathbf{2 0}=\$ 10.20$
The time therefore would be 37 months, and $\$ 10.20$ additional cash to be paid now ; or if postponed till $3^{8}$ montha would be (3) $\$ 10.20 \div .72320=\$ 14.10$, to be paid as a last instalmert.

Example 2.-A Mortgage, payable by quarterly instalments of $\$ 60$ each, rand yielding $10 \%$ half-yearly on investment, has 5 years and 5 months to run lefore maturity of last instalment. The Borrower wi-hes to pay $\$ 300$ on account, and to know how much his instalments are to he reduced for balance of period.

Fïrst method.-By. Table III, the present value of a quarterly instalment of $\$ 1$ for 5 years and 5 months $=\$ 16.955 \times 60=$

| $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ |
| :---: | :---: | :---: | :---: |
| Deduct | $\$ 1017.30$ <br> 300.00 |  |  |
|  |  |  |  |
| Present value of balance |  |  |  |$=$| $\$ 717.30$ |
| :--- |

and this amount, divided by the present value of quarterly instalments of $\$ 1$ for 5 yearsind 5 months, viz. $76.8 .78=\$ 42.31$; or

Second method.-Divide the amount paid down by the present value of an instalment of $\$ 1$ for the period to run, and deduct the quotient from the former instalment for the new instalrient. Thus, in the above example, amount paid downt= $\$ 300$, present value of instalments of $\$ \mathrm{I}$ for 5 years and 5 months $=\$ 16.955$; then $300 \div 16.955=\$ 17.69$; and $60-17.69=\$ 42.31$.
6. The addetion of a percentage to the amount loaned for the whole term, and that amount divided ghe number of the instalments to be made during this period, yields a variable rate of interest, according to the time for which the loan is made, and the nuinber of instalments; -monthly yielding a better rate than quarterly, and quarterly than half-yearly.

Example 1.-A Borrower receives $\$ 1000$ cash, at $6 \%$ for to years, to be repaid by monthly instalments. To the $\$ 1000$ there is added interest at $6 \%$ per annum for 10 years $=\$ 600+1000$ $=1600$, and this amount is divided by the number of payments, $1600 \div 120=13.34$. It is required to determine the rate of interest half-yearly which this investment yields.

By"Table VI an instalment of $\$ 13.11$ will repay $\$ 1000$ in 10 years at $10 \%$ half-yearly, while $10 / 1 / 2 \%$ would require an instalment of $\$ 13.37$ The rate would therefore be between $10 \%$ and $101 / 2 \%$.

Example 2.-A Loan of $\$ 4000$ on same terms is made for 5 years. Required the rate this investment produces. To 4000 add 5 years' interest at $6 \%=\$ 1200+4000=5200 \div 60=\$ 86.67$ monthly, or per $\$ 1000=\$ 0.09 \times 86.67=\$ 21.67$.

By Table VI, instalment to repay $\$ 1000$ in 5 years, at $11 \%$, half yearly $=\$ 21.63$, and at $111 / 2 \%$ s yearly $=\$ 21.71$, which are therefore approximate rates for such a loan.

Thus for any loan, when the number of years and the amomint of instalment to repay it ate given, by reducing the instahment to the basis of a loan of $\$ 1000$, the rate of interest, if het ween $3 \%$ and $12 \%$, may he found approximately, in Table VI. If beyond these rates it no si be found by imlependent calculation.
7. To find the rate per cent: yielded by the return of a certain sum, gt the end of a definite number of years or half-years, for the use of a smaller sum,' when between $3 \%$ and $\mathbf{1 2} \%$, and less oún 50 years or hall-years.
Divide the amount returned by the amounl loaned, which will give what was repaict tor the use of $\$ 1$. Then find in Table VII the nearest atnount for a corresponding time, and the columin will show the rate per cent.

EXAMPLE - A Borrower returns $\$ 5000$ for the use of $\$ 1335$ during 30 years, find the rate -per cent. yearly. $\$ 5000 \div 1335=\$ 3.7453$. By Table VII, the amount of $\$ 1$ for 30 years at $41 / 2 \%$, yearly $=\$ 3.7453$. The rate is thus $41 / 2 X$, yearly.
8. To deiermine the time required for any definite sum to accumulaite to a larger given sum, al a given rate.

Reduce to the basis of $\$ 1$ by dividing the larger sum by the smaller. In the columh of the given rate in Table VII, find the amount which corresponds to the resulf of this division, or the nearest given, and the line will give the exact, or approximate, time required.

Example.- How long will it take $\$ \mathbf{3} \mathbf{0} 00$, bearing finterest lat the rate of $6 \%$, convertible yearly, to amount to $\$ 12,828.40$ ? $12,828.40 \div 4,000=\$ 32071$, and by Table VII, the amount of $\$ 1$ at $6 \%$, yearly, for 20 years $=\$ 3.2070$. Required time $=20$ years

In case quesions may arise beyond the limits of these tables, or a more accurate result be required by ádditional decimals, the following formulæ are added, and the true rates for one year, half year, quarter and month of all the nominal rates of interest, compounded half-yearly and yearly, are given on page 17, together with their logarithms, to 10 places of decimals.
9. Formulx of Compound Interest, with or without the use of logarithms.

## I.-FOR A SINGLE SUM OF MONEY

Let $P=$ the principal; or present value of an amount $M$.
$M=$ the amount of this principal at the end of a given time; or the sum due at the end ol a given time, of which we wish to find the the present value.
$t=$ the interest on $\$ \mathrm{I}: \mathcal{E} \mathrm{I}$, or other unity for one year or other given period. $r=(1+t)$ the $s z m$ of $\$ 1, \notin \mathrm{I}$, or other unity for one year or period. $n=$ the whole number of years or periods. Then
For the amoznt ${ }^{\circ}$
(1) $\quad M=\operatorname{Pr}^{n}$

For the present value
(2) $P=\frac{M}{r^{2}}$ : or $\log P=\log M-n \times$ log. $r$.

For the rate of interest
(3) $r=\sqrt[p]{\frac{M}{P}}$
or $\log . r=\frac{\log . M-\log P}{n}$
the rate of interest Then $r-1$ gives $t$ or
For the number of years or periods the rate of interest for one year or period.
(4) $r^{\circ}=\frac{M}{P}$
or $n=\frac{\log . M-\log P}{\log r}$


To find the annuity which a given sum $-V$ will purchase.
(11) $a=\frac{V t}{1-\frac{1}{2}} \quad$ or $\log a=\log . V+\log t-\log (1-1,1)$ or (12) $a=\frac{V t r^{n}}{n^{m}-1} \quad$ or log. $a=\log . V+\log . t+* n \gamma \log \cdot r-\log .\left(r^{n}-1\right)$.

The period and rate being given, to find what annitity it would take to amount to a given sum $(A)$ at the end of a certain number of periods. riod.
(13) $a=-\frac{A t}{r^{n}\left(\frac{1}{r^{2}}\right)} \quad$ or $\log . a=\log , A+\log \cdot t-n \times \log \cdot t-\log \cdot\left(1-\frac{1}{r^{0}}\right)$
or (14) $a=\frac{A t}{r^{2}-1} \quad$ or $\log \vec{a}=\log A+\log \cdot t^{\prime}-\log \left(r^{2}-1\right)$

To find the number of annuities.
(15) $r^{n}=\frac{a}{a-V t}$

$$
\text { then } \begin{aligned}
n & =\frac{\log \cdot a-\log \cdot(a-V t)}{\log \cdot r} \\
n & =\frac{\log a-\log \cdot S}{\log \cdot r}
\end{aligned} \quad \text { or, as } S=a-V t \text {, }
$$

$$
\text { or }(16) r^{\mathrm{n}}=1+\frac{A t}{a} \quad \text { then } n=\frac{\log \cdot\left(\mathrm{1}+\frac{A t}{a}\right)}{\log r}
$$

To find present value of a deferred annuity.
(17),$D=\frac{V}{r^{4}} \quad$ or log. $D=\log . V^{\prime}-d \times \log . r$ (first find log. $V$ by form 5, 6 or 7).
General formulæ applied to interest compounded, or convertible into principal, half-yearly, quarterly, \&c.
10. The following Tables are based upon interest convertible yearly and half. yearly, and although payments are also made quarterly and monthly, these are based on interest convertible yearly and half-yearly. Should it be required to find the values of same rttes convertible half-yearly, quarterly or monthly. \& c ., the following formulx will apply. ( $t$ being the nominal rate for one year on $\$ 1$ and $n$ the number of years).
(18) For interest convertible half yearly.

$$
M=P .\left(1+\frac{t}{2}\right)^{20} \text { or } \log . M=\log P+2 n \times \log \cdot\left(1+\frac{t}{2}\right)
$$

(19) For interest convertible quarterly.

$$
M=P \cdot\left(1+\frac{t}{4}\right)^{4 n} \text { or } \log . M=\log . P+4^{n} \times \log \cdot\left(1+\frac{t}{4}\right)
$$

(20) For interest convertible monthly.

$$
M=P \cdot\left(1+\frac{t}{12}\right)^{120} \text { or } \log . M=\log P+12 n \times \log \cdot\left(1+\frac{t}{12}\right)
$$

To find the true rate of interest for any given period of time.
Let $r=\mathbf{1}+$ its true interest for one year. By considering $\dot{p}$ as $\mathbf{I}$ and $n$ as i, $M$ will then represent $r$. Then raise this formula to the power represented by the number by which 1 year would have to be multiplied in order to produce the given time for which we wish to find the rate. The result will show $1+$ its true interest for the given time, and this result minus 1 will leave the rate of interest.

Ex 1 .- What is the rate of interest per 2 years at $10 \%$, compounded halfyearly? Here I year has to be multiplied by 2 for 2 years $\therefore$ we raise the formula to the power of 2. Then $r^{2}=\left\{\left(1+\frac{.10}{2}\right)^{2}\right\}^{2}$ or $r^{2}=1.05^{4}=1.2155$ rate $=2{ }_{2} 55$ per 2 years on 1 , or $21.55 \%$.

Ex. 2.-What is the rate per month at $10 \%$ convertible half. yearly ? Here 1 year is multiplied by the fraction $\frac{1}{18}$ to make 1 month $\therefore$ we raise the formula to the power of $\frac{1}{12}$. Then $r^{\frac{1}{2}}=\left\{\left(1+\frac{.10}{2}\right)^{2}\right\}^{1_{2}^{12}}=1.05^{2} \times 1^{12}=1.05 \%$. We then raise $x .05$ to the power of $1=1.05$, and extract the 6 th root of the result $\stackrel{6}{1.05}=1.00816_{4} \ldots$ Rate per month $=008164 \ldots$ or $0.8164 \ldots \%$ (see tàbu-
lated true rates).

Ex. 3 -What is the true rate for 7 days of $10 \%$ convertible half-yearly ?
 $=1.05^{8} \times 5^{7} 8=1.05^{\frac{1}{2} 86}$. . Here we have to raise 1.05 to the 14 th power and then extract dhe 365 th root of the result, or by logarithms, multiply log. $r$ by 14 and divide the result by 365 , and then, taking the corresponding number, $r^{3}{ }^{\text {d }} 6$ $=1.00187 .$. Rate per 7 days $=0.187 \%$.

## Single payment Examples.

Ex. I (Amount, Form I). What is the amount of $\$ 527.75$ put out at compound interest for 34 years at $4 \frac{1}{2} \%$ yearly? $P=527.75, r .=1.045, \log . r$ $=01911,62904, n=34$.

$$
\begin{aligned}
& \text { log. } 527.7 \dot{5}=2.7224282 \\
& 34 \times \log . r=6499589 \\
& \text { lig. } M=\overline{\mathbf{3} \cdot 3723821}=\$ 2357 \cdot 12 \text {, answer. }
\end{aligned}
$$

By Table VII, $4.4664 \times 527.75=\$ 2357.14$.
Ex. 2 (Present value, Form 2).-What is the present value and the discount of $\$ 3600$ due after 7 years, the interest being $6 \%$ convertible half-yearly ? $M=3600, r=1.03, \log . r=01283,72247, n=14$ half-years.
$\log .3600=3.8683025$
$4 \times \log . r=\frac{1797211}{} \quad P=\$ 2380.02$.

Discount $=3000-2380.0 .=\$ 1219.98$.
By Table I, $.66112 \times 3600=\$ 2380.03$.
Ex. 3 (Rate, Form 3).-A Borrower returns $\$ 5000$ for the use of $\$ 1335$ during 30 years. What is the rate per cent. yearly? $M=5000, P=1335$, $n=30$.

$$
\begin{aligned}
\log .5000 & =3 \cdot 8989700 \\
\log . \mathrm{I}^{2} 335 & =3 \cdot 1254813 \\
\log \cdot r^{30} & =5734887 \\
\text { log. } r & =0.0191163, r=1.045, \text { rate }=41 / 2 \%
\end{aligned}
$$

By Tables, rate $=41 / 2 \%$. See Example $\S 7$.
Ex. 4 (Time, Form 4).-How many years must $\$ 3000$ be put out at $4 \%$ interest, compounded yearly, in order to amount to $\$ 102,358$. Here $M=102,358, P=3000, r=1.04, \operatorname{lng} . r=0170334$.
$\log . M=60101218$
$\log . P=3.4771213$
$\log . M-\log . P=1.5330008$ and $\div 0170334=90$ years.
This example is beyond the limits of the Tables.
Ex. 5 (Amount, Forms 18, 19 and 20).-What will $\$ 1$ amount to at the end of 50 years when put out at compound interest at $8 \%$. the interest being converuble half-yearly, quarterly and monthly? Here $P=1.00, t=.08, n=50$, $\left(1+\frac{t}{2}\right)^{80}=1.04^{200},\left(1+\frac{t}{4}\right)^{40}=1.02^{200},\left(1+\frac{t}{12}\right)^{120}=1.006^{000}$.
(18) $8 \%$ half-yearly. $\begin{aligned} & \text { log. } P=0\end{aligned}$
$100 \times$ log. $1.04=1,7033339$
log. $M=17033339$
(19) $\log P=0$.
(20) $\quad \log P=0$.
$200 \times \log .1 .02=17200344 \quad 600 \times$ log. 10 是 $=1.7814129$
$\log . M=17200344 \quad$ log. $M=1.7814129$ $M=\$ 52.4849 \quad M=\$ 53.8782$

## Annuity Examples.

Ex. 1 (Present value. Forms 5, 6 and 7). What is the present value of 20 half-yearly instalments of $\$ 1$ at $10 \%$ interest convertible half-yearly? Here

$$
1-\frac{1}{r^{20}}=.6231105
$$

$$
C^{i} \log t=1.3010300
$$

$$
\log .\left(1-\frac{1}{120}\right)=\overline{1} \cdot 7945650
$$

$$
\log . V=10958950
$$

$$
V=\$ 12.4622
$$

$$
\log a=0
$$

$$
\begin{aligned}
& \frac{a}{t r^{\mathrm{n}}}=\$ 7.53779 \\
& \text { Perpetuity or } \\
& \frac{a}{t}=\frac{\frac{1}{.05}}{V}=\overline{\$ 20 .} \\
& \$ 12.4622 \mathrm{I}
\end{aligned}
$$

$$
=1.7945650
$$

$$
\text { log. } t=\overline{2} 69899700
$$

$$
\log . V=1.0955950
$$

(By Table IV, $12.462=$ p. v. 20 instalments).

$$
V=\$ 12.4622
$$

11. From Form 5 it will be seen that the present value of an annuity of $\$ \mathrm{I}$ may be found by dividing the discount of a single payment of $\$ 1$ due at the end of the required number of periods by the interest on $\$ \mathbf{I}$ for a single period of such annuity, and the present value of any similar annuity can then be found by multiplying the result by the annuity.

Ex. 2 -Required the present value of an annuity of $\$ 1$, payable yearly, hal'yearly, quarterly and monthly, for 20 years at $6 \%$ per annum, convertible half-yearly?

By Table I the present value of $\$ 1$ due 20 years hence $=.30656 . \therefore$ the discount $=.69344$. As shown in tabulated nominal and true rates the interest for 1 year $=.0609$; half-year $=.03$; quarter $=.014889 .$. ; month $=.0049386$.. Then $\frac{.69344}{.0609}=\$ \mathrm{Ir} .3866=$ p. v. 20 yearly instalments of $\$ 1$ (see Table V). $\frac{.69344}{.03}=\$ 23.115=$ p. v. 40 half-yearly instalments of $\$ 1$ (see Table IV). . .69344 $\frac{.69344}{.0049386}=\$ 140.41 \%=$ p. v. 240 monthly instalments of $\$ 1$ (see Table II).
As shown by Form 9 the amount of an anuity may also be found in a similarmanner by dividing the interest on $\$ \mathrm{r}$ to the end of the required number of periods (or the amount of $\$ \mathrm{I}-1$ ) hy the interest on $\$_{1}$ for a single period of
the annuity.
${ }^{*} C^{t}$ is a contraction for arithmetical complement. It is the algebraic remainder after subtracting the number from zero or $o$. By using the $C^{t}$ we save subtractions, the addition of it to a number having the same effect as subtracting the original number, thus $z-x=z+C^{4} \mathrm{x}$.

$$
\begin{aligned}
& a=\mathbf{1}, r=\mathbf{1} .05, t=.05, \log . r=02118,92991, \log . t=\mathbf{2} 6999700, n=20 \text { periods. } \\
& \text { (5) } \begin{aligned}
\log 1 & =0 \quad \text { (6) } 20 \times \log r=4237860(7) \quad \cdot \log \cdot r^{20}=, 4237860 \\
20 \times \log r & =4237860
\end{aligned} \\
& r^{2.0}=2.65330
\end{aligned}
$$

$$
\begin{aligned}
& \log \cdot a=0 . \\
& \underset{r^{20}}{\frac{1}{1}}=.3768895 \\
& { }^{*} C^{2} \log . r^{20}=15782140 \\
& \frac{a}{t r^{n}}=\$ 7.53779
\end{aligned}
$$

$=\$ 1.3439$ and Table VII. the amount of $\$ 1$ at $3 \%$ yearly for 10 years nuities ot $\$ 1$ at $3 \%$ mearly anyear or.03; $\frac{.3439}{.03}=\$$ 11.463. (See Table VIII).
Ex. 4.-( Amvunt, Forms 8, 9 and 10).
What in the " "ount of a yearly annuity of $\$ 10$ for 20 years, at $3 \%$ interest, converllite leall?
$a=10 ; n=20 ; r=1.03 ; t=.03 ;$ log. $r=0.01283,72247 ; \log . t=\overline{\mathbf{2}} \mathbf{4} 771213$
(8) $\begin{aligned} \log .1 & =0 \\ 20 \times \log . r & =2587445 \\ 1 & =1.7432555\end{aligned}$

$$
\log \cdot \frac{1}{r^{20}}=1.7432555
$$

$$
\frac{1}{r^{20}}=.553676
$$

$$
1-\frac{1}{r^{20}}=.446324
$$

$$
\log \cdot\left(1-\frac{1}{r^{20}}\right)=\overline{1} .6496505
$$

$$
\log \cdot a=1
$$

$C^{\mathrm{t}} \log . t=1.5228787$
$\log . r^{20}=2567445$
$\log . A=\widetilde{24292737}$

$$
A=\$ 268.704
$$

(9) $20 \times \log r=2587445 \quad(10) \quad$ log. $a=1$.
$r^{20}=1.80611 \quad 20 \times \log g=2567445$
$r^{20}-\mathrm{I}=.8061 \mathrm{I} \quad C^{t} \log . t=1.5228787$
$\log \cdot\left(r^{20}-1\right)=\overline{1.9063950}$
$\log . a=1$.
$C^{\prime} \log . t=1 \cdot 5228787$
$\log . A=\overline{2.4292737}$

$$
\frac{a r^{n}}{t}=\$ 602.037
$$

$A=\$ 268.704$

$$
\log \cdot \frac{a r^{20}}{t}=27796232
$$

Perpetuity or

$$
\begin{array}{r}
\frac{a}{t}=\frac{10}{.03}=\frac{333.333}{A}=\$ 268.704
\end{array}
$$

(By Table VIII, $\$ 26.8704 \times 10=\$ 268.704$ )

Ex. 5-(Annuity, Forms 11 and 12).
What quarterly annuity for 15 years will $\$ 2,038.75$ purchase at $51 / 2 \%$, compounded half-yearly ?
$V=2.038 .75 ; r=1.013657 ; t=.013657 ; n=60 ; \log r=00889,09158 ; ~$
(II)

$$
\begin{aligned}
& \log 1=0 . \\
& 60 \times \text { log. } r=\underline{-3534649} \\
& \log \frac{1}{r^{60}}=\mathbf{1} \cdot 6465451 \text {. } \\
& \frac{1}{r^{610}}=.443144 \\
& r-\frac{1}{r^{60}}=.556856 \\
& \log \left(1-\frac{1}{r^{* 00}}\right)=\underline{\mathbf{1} 7467412} \\
& C^{t} \text { log. " }=0.2642588 \\
& \text { log. } V=8 . \text { H. }_{3640} \\
& \log _{1} t=\text { I }_{1365472} \\
& \log a=\overline{1.6989700} \\
& a=\$ 50.00 \\
& \text { (12) } 00 \times \log . r=3534049 \\
& r^{60}=2.25660 \\
& r^{601}-1=1.25660 \\
& \log \cdot\left(r^{\infty}-:\right)=0991961 \\
& C^{\dagger} \log . \quad "=\overline{\mathbf{1} \cdot 9008039} \\
& \text { log. } V=\mathbf{3 . 3 0 9 8 6 4 0} \\
& \log . t=\overline{2} \cdot 1353472 \\
& 60 \times \log . r=\underline{3534049} \\
& \text { log. } a=16889700 \\
& a=\$ 50.00
\end{aligned}
$$

Ex. 6 -(Number, Form ${ }_{15}$ ).
How many monthly annuities of $\$ \mathrm{I}$ will it require to repay a loan of $\$ 128$ at $6 \%$, convertible halfyearly ? $V t=.632143 \quad . \quad r($ Table $A)=1.004938 . . ; t=.004938 . . \log . r=0021395$;
$\log \cdot a^{\prime \prime}=0$.
$\begin{aligned} \log (a-V t) \text { or } S & =15656791 \\ \log \cdot \frac{a}{S} & =4343209\end{aligned}$
$\log \frac{a}{S}=4343209 \div 0021395(\log . r)=203$ monthly instalments (very nearly).
(By Table It, 203 monthly instalments of $\$ \mathrm{I}=\$ 128.00 \mathrm{I}$ ).

## Ex. 7.-(Deferred Annuity, Form 17).

A has a term of 9 years in an estate worth $\$ 100$ per annum ; B has a term of 18 years in the same estate in reversion after the term of 9 years; C has a further term of 27 years in reversion after the 27 years, and $D$ has the reversion in perpetuity after the 54 years. What is the present value of the interest of each in the estate, at $4 \%$, compounded yearly ?
$a=100 ; r=1.04 ; t=04 ; \log . r=01703,33393 ; \log . t=\overline{\mathbf{2}} \mathbf{6 0 2 0 6 0 0} ;$ for $\mathrm{A}, n=9$; for $\mathrm{B}, n=18$ and $d=9$; for $\mathrm{C}, n=27$ and $d=27$; for $\mathrm{D}, V=\frac{a}{t}$ or p. v. of perpetuity and $d=54$

## A

(6) $9 \times \log . r=1533001$

$$
r^{9}=1.4233 \mathrm{I}
$$

$r^{9}-1=-42331$
$\log . r^{9}-1=\overline{1.6266604}$
$\log a=2$.
$C^{2 t} \log . t=1.3979400$
$C^{t} \log . r^{9}=\overline{1} 8466999$
$\log . V=\overline{\mathbf{2} 8713003}$

$$
V=\$ 743.533
$$

(6) B
(6) $18 \times \log . r=3066001$

$$
r^{18}=2.02582
$$

$r^{18}-I=1.02582$
$\log .1^{18}-\mathrm{I}=0.0110697$
$\log . a=2$.
$C^{l} \log . t=13979400$
$C^{4} \log . \gamma^{18}=\overline{1} \cdot 6933999$
$\log V=\overline{31024096}$
(17) $9 \times$ log. $r=1633001$
$\log . D=2.9491095$

$$
D=\$ 889.425
$$

## C

(6) $27 \times \log . r=4599002$

$$
r^{27}=2.88337
$$

$$
r^{27}-1=188337
$$

$\log \boldsymbol{r}^{27}-1=\frac{18337}{279354}$

$$
\log . a=\mathbf{2}
$$

$C^{t} \log t=1 ; 3979400$
$C^{4} \log . r^{27}=\overline{1} \cdot 5400998$
log. $V=\overline{32129752}$
(17) $27 \times \log . r=4699002$
$\log . D=27630750$

$$
D=\$ 566.337
$$

(By Table V).

$$
\begin{aligned}
& 54 \\
&-27=\frac{163296}{5.6634}
\end{aligned}
$$

$$
\begin{aligned}
& \text { p.v. or } \$ 1 \text { tor } 9 \text { years }=7.4353 \times 100=743.53=\text { A's share } \\
& \text { " } 27 \text { " } \frac{7.4353 \times 100}{16.3296}=743.53=\text { A's share } \quad \mathrm{D}=\text { perpetuity } \frac{a}{t}=2500.00
\end{aligned}
$$

$-(A+B+C)=$
D's share $=\frac{2199.30}{\$ 300.70}$
. $r=0021395$;
g. $r)=203$
has a term s ; C has a e reversion interest of
or $\mathrm{A}, \boldsymbol{n}=\mathbf{9}$;
v. of per-
$=4599002$
$=2.88337$
$=188337$
$=2749354$
$=2$.
$=1.3979400$
$=\overline{1} .6400998$
$=32129752$
$=4699002$
$=27530750$
$\$ 566.337$
$=2500.00$
$\frac{2199.30}{=\$ 300.70}$
12. Terminable annuities may be considered as being composed of two distinct parts-the Interest and Sinking Fund. The annuity, in order to pay off the principal, must exceed the interest. The difference between the annuity and the interest is termed the Sinking. Fund. If $S$ denotes the yearly sum appropriated to the Sinking. Fund, the amount of which will produce the principal, we have $a=V t+S$ and from Form 5 we deduce directly $a=V t+\frac{a}{r^{n}}$, so that $S=\frac{a}{r}$. But $a$ denotes the annuity and $\frac{a}{r^{\text {t }}}$ the present value of the $n^{\text {th }}$ or last annuity, therefore the Sinking Fund is equal to the present value of the last annuity.

Ex. 8.-A lnan of $\$ 500,000$ is contracted by a corporation at $5 \%$, payable half-yearly, to be reimbursed by means of 90 half yearly annuities. What sum is to be paid as a Sinking Fund, besides the interest, for the purp ise of redeeming this loan ?

Here $V=500,000 ; r=1.025 ; t=.025 ; n=90 ; \log . r=01072,33654 ;$ $V t$ (interest) $=12,500$; then
(12) $90 \times \log . r=0.9681479$
log. $r^{90}=9651479 \quad a$ (annuity) $=\$ 14,019.04$

$$
\begin{aligned}
& \left.r^{00}=922886 \quad \log . V t=4.0969100 \quad V t \text { (interest }\right)=\$ 12.50000 \\
& r^{90}-1=8.22886 C^{\prime} \log \cdot\left(r^{80}-1\right)=\overline{1} .0846603 . S \text { (sinking fund) }=\$ 1,519.04 \\
& \log .\left(r^{00}-1\right)=9163397 \quad \text { log. } a=4.1467182 \text {. To prove } S=\text { p. v. of } \\
& a=\$ 14,019.04 \\
& \text { last annuity. } \\
& \log . a=4.1467132 \\
& \log .5^{20}=9651479 \\
& \log . S=3.1815703 \\
& S=\$ 1,519.04
\end{aligned}
$$

The sinking fund is a little over $1 / 2$ of $1 \%$ per annum, consequently an addition annual rate of about 6 mills on the $\$$ would extinguish the debt in the period of 45 years..

Ex. 9.-How many yearly annuities would be required to repay a loan of $\$ 200,000$, at $51 / 2 \%$ interest, payable yearly, $1 \%$ additional being added to form a sinking fund ?
$V=200,000 ; r=1.055 ; t=.055 ; \log . r=02325,24696 ;$ interest $(V t)=1 \mathrm{I}, 000 ;$ Sinking Fund $(S)=2,000 ; a$ or $(V t+S)=13,000$
(14) log. $a=4.1139434$
$\log . S=\mathbf{3} 3010300$
$\log .(a \div S)=8129194$ and $\div 02325$ (log. $r$ ) $=34.96$ or 35 annuities (nearly). $\left(\frac{200000}{13,000}=15.3846 . \quad\right.$ In Table V, 35 years $=15.3905$ and 34 years $\left.=15.2370\right)$

Ex. 10.-A Corporation issues 2,000 Debentures of $\$ 500$ each, bearing $5 \%$ interest, and to be liquidated by means of 30 annuities. What sum is to be paid annually, and what number of Debentures will be redeemed in each of the first 3 years, and also the 20th year?
$V=1,000,000 ; r=1.05 ; t=.05 ; n=30 ; \log . r=0211893 ; \log . t=\overline{\mathbf{2}} \cdot 6989700 ;$
50,000 $V t=50,000$

$\log . V=6$.
$\log t=6969700$
log. $r^{30}=6356790$
$C^{4} \log .\left(r^{30}-1\right)=1.4766082$
$\log . a=481325 \dot{7}_{2}$
$a$ (mean annuity) $=\$ 65051.44$
annuity $=\$ 65,05 \mathrm{t} 44$
interest $=50.000$ sinking fund $=15,051.44$ $3^{\text {o }}$ debentures, as a whole number nust be used.

Therefore, the Corporation will have paid tor the 1.2 :mil $2 \cdot 11$ h.lf.
years' interest
and for redemption of 30 Debentures
$=\$ 50,000$ 15000
Tutal.... \$65000
At the end of the 2nd year, mean annuity

Left for Sinking Fund. . . . . \$15 801 44
This would redeem 31 more Debentures, which brings their number down to 1,939 , and the Corporation would have pid for the
2nd year, interest on 1.970 Debentures $\ldots \ldots=\$ 49.250$
and for redemption of 3 I more. . . . . . . . . . . . . $=15.500$
at the end of the 3rd year, mean annuity . . . . . . . $=\$ 65,051$. $\$ 64,750$
interest on 1,939 l)ebentures $=\$ 969,500$
$=\$ 65.05 \mathrm{I} .44$
Left for Sinking Fund. . . . . . $\$ \overline{\$ 16,57644}$

> which would redeem 33 Debentures. And so on for the balance of the time. For the number of Debentures redeemed in the 2oth year, take the present value of the last instalment at that date and divide by 500 .
(2) log. $a=4.8132572$
$\log . r^{10}=2118930$
$\log S=4.6013642 ; S=\$ 39,935.96$ or nearly 8o Debentures.
13 It may be mentioned that the sums paid for the Sinking Fund are in a geometrical progression, similar to the progression of $\$ \mathrm{I}$ principal invested at the same rate of interest.

It often happens that Corporations or Companies, when they make all their bonds payable at one given date, have to lose at least $1 \%$ on the reinvestment of their Sinking Fund. It would, therefore, save them the work and risk of reinvestment by making their bonds in the form of annuities, and discounting these so as to pay the buyer the given rate of interest ; or otherwise, when the bonds are made to bear a given rate of interest, and all payable at the same time, they might bear an agreement that the .Sinking Fund, or excess over interest, of the annual assessment for redemption of the whole issue should be used to redeem bonds to the amount of the sum which remains after paying the interest for each year on the balances remaining unpaid. This mode of payment has been adopled by various Companies, and the bonds to be redeemed are usually chosen by lot, and, as compensation for terminating the investment, some distribute prizes, and others an additional percentage, to those whose bonds are called in during the first few years. As the amounts applicable to redemption are relatively very small during the first years' of bonds running a long period, the cost of an additional $1 / 2 \%$ or $1 \%$ would not amount to one-tenth of the loss usually. incurred in reinvesting the Sinking Fund.

