CIHM
 Microfiche
 Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes technique et bibliographiques

The Institufe has attempted to obtain the best original copy available for filming. Feafures of fhis copy which may be bibliographically unique, which may alfer any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
 Couverture de colleur

Covars damaged/
Couverture andommagée
Covers restored and/or laminatad /
Couvarture restaurée etou pelliculée
Cover titla missing/Le titre de couvertura manqua
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.a. other than blue or black)/
Encre de couleur (i.a. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planchies evou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along intarior margin / La reliure serréa peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possibla, these have been omitted from filming / il se peut que certaines pages blanches ajoutées lors d'una restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Instituf a microfilmé le meilleur examplaire qu'il lui a été possible de se procurer. Les détails de cet exemplalre qui sont peut-éfre uniques du poinf de vue bibliographique, qui peuvenf modifier une image reproduite, ou qui peuvent exiger une modifications dans la méthode normale de filmage sonf indiqués ci-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées etou pelliculées
Pages discoloured, stained sr foxed /
Pages décolorées, tachetées ou plquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale da limpression
Includes supplementary matarial /
Comprend du matériel supplàmentaire

Comprend du matériel supplàmentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been reflimed to ensure tha best possible imaga / Las pagas totalament ou partiellement obscurcies par un feuillet d'errata, une pelure, atc., ont été filmées à nouveau de façon à obtenir la mailleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ansure tha best posslble image / Les pages s'opposant ayant des colorations variablas ou des décolorations sont filmées deux fois afin d'obtanir la meilleur image possible.

This item is filmed at the reduction ratio checiked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thenks to the generosity of:

Medical Librery
McGiil University
Montreei
The Imeges eppeering here ore the best quality possible consldering the condition end leglbility of the original copy end In keeping with the fliming contrect specificetions.

Original caples in printed peper covers are filmed beginning with the front cover and ending on the lest pege with eprinted or Illustrated Impression, or the beck cover when eppropriete. All othar originel coples ere filmed beginning on the flrst pege with o printed or Illustreted Impresslon, end ending on the lest pege with eprinted or Illustroted Impression.

The leat recorded freme on eech microfiche shell contaln the symbol \rightarrow (meening "CONTINUED"), or the symbol ∇ (meening "END"), whichever epplles.

Meps, pletes, cherts, otc., moy be flimed ot different reduction retlos. Those too lerge to be entirely Included in one exposure ere filmed beginning In the upper laft hend corner, left to right and top to bottom, es mony frames es required. The following diegrems Illustrate the method:

L'oxempleire filmd fut reprodult grice d la gendrosltd de:

Medicai Library
McGiil University
Montreai

Les Imeges sulventes ont útd reprodultes ovec io plus grend soln, compte tenu dw le condition et de le nottetd de l'exempleire filmé, at en conformitd evec les conditions du controt de filmege.

Les exemplelres origineux dont le couverture on pepler est Imprimíe sont fllmís en commençent par lo premior plet at en terminent solt par lo dernidre pege qul comporte une emprelnte d'Impression ou d'llustration, solt per le second plet, selon le ces. Tous les eutres exemplelres origineux sont fllmés en commençant par la premidre pege qui comporte une emprelnte d'Impression ou d'llustration ot en terminent per le dernid̀re pege qul comporte une telle emprelnte.

Un des symboles sulvents epperaitra sur io dernildre Imege de cheque microfiche, selon to cas: le symbole \rightarrow slgnifio "A SUIVRE", lo symbole ∇ slgnifle "FIN".

Les certes, plenches, tableaux, etc., peuvent Utre filmés de des taux de réduction difforents. Lorsque le document est trop grend pour âtre reprodult on un seul cllchd, Il est filmd d pertir de l'ongle supérieur geuche, de geuche de drolte. et de hout on bes, en prenent to nombre d'Images núcesselre. Les dlagrammes sulvants lllustrent le mithode.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

NOTES ON

MILITARY ORTHOP EDICS

$+$

Notes on Military Orthopædics

By
Colonel Sir Robert Jones, c.b.

Imepecter of Military Orthopmedice, Army Medieal Service

With an Introductory Note by Surgeon-General Sir Alfred Keogh, G.C.B. Director-General, Army Medieal Service

ILLUSTRATED

Published for the British Red Cross Society by CASSELL AND COMPANY, L.TD
London, New Yoris,-Tomato and Melbourne 1917

Dedicated to

HIS MAJESTY KING MANUEL

In reeoznition of his sympathy, oooperation and enthusiasm in the promotion of Orthopredie Centres for disabled soldiers, and as amall tribute of personal gratitude and esteem.

PREFACE

This little work is published in the hope that it may perhaps be of some service to surgeons engaged in military work. It is an attempt to formulate rules for the application of orthopædic principles to the treatment of injuries received in war.

The foresight of the War Office and the sympathetic generosity of the British Red Cross Society have enabled us to open Orthoprdic Centres in many of the principal towns of the British Isles, and to equip them so that the surgeon may have at his disposal every facility likely to develop and perfect treatment.

The "curative workshops" started in each centre owe their existence and success to the initiative and inspiring enthusiasm of ling Mannel, who has acted as representative of the British Red Cross Society. These workshops have already proved to be of very real value, and are the latest but not least important advance in the orthopædic treatment of wounded men suffering from physical disabilities of their limbs.
By the time a soldier has passed through various phases of recovery from septic wounds in several different hospitals and is finally transferred to an Orthopædic Centre for treatment to correct deformity and restore the use of injured joints and muscles, his spirit is often broken. The shock of injury, frequently in itself severe, followed in succession by a long period of suppuration, and then by a wearisome convalescence, during which he receives treatment by massage or electricity, or by monotonons movement with mechanical apparatus of the Zander type, too often leaves him discontented with hospital life, its monotonous round of routine, and its long periods of idleness.

In the Orthopædic Centre he finds his fellow-patients busily engaged in employments in which they are

PREFACE

doing something, and it is not many days before lie asks for a " job."

In the Military Orthopædic Hospital at Shepherd's Bush alone, out of 800 patients about 500 are employed at some regular work, which fosters habits of diligence and self-respect, and converts indolent and often discontented patients into happy men who soon begin to feel that they are becoming useful members of society and not mere. derelicts.

Thus, when the preliminary stages of operative and surgical treatment are over, there is a steady gradation tlirough massage and exercise to productive work, which is commenced as soon as the man can really begin to use his limb at all. If his former trade or employment is a suitable one, he is put to use tools he understands, otherwise some occupation suitable for his disability, and curative in its character, is found for him.

Men with stiff ankles are set to driv- a treadle lathe or fretsaw. If put on a treadle-exercising machine the monotony soon wearies the mind, but if the mind is engaged not on the monotony of the foot work, but or the interest of the work turned out, neither mind nor body becomes tired.

Men with defective elbows and shoulders find exercise and mental diversion in the carpenter's and blacksmith's shops. If their hands and fingers are stiff, working with a big swab to clean windows or with a paint brush is a more interesting occupation than gripping spring dumbbells.

Those of us who have any imagination cannot fail to realize the difference in atmosphere and moral in hospitals where the patients have nothing to do but smoke, play cards, or be entertained, from that found in those where for part of the day they have regular, useful and productive work.

Massage and exercise is no longer a mere routine : it all fits in and leads up to the idea of fitness-fitness to work and eain a living and serve the State in an economic sense, even if not to return to the regiment and fight once more in the ranks of the Army.

I have to thank the Hon. Arthur Stanley and Sir Robert Hudson for their unfailing help and encouragement in connection with the Orthopxdic Centres;

PREFACE

Miss Perks for her drawings; and my friends Dr. Dawson Williams and Lt.-Col. J. Lynn Thomas, C.B., for help and advice in connection with the proofs.

To my friend and colleague, Mr. Aitken, who has long been associated with me in my work, and who is conversant with my methods, I am much indebted for help in this as well as in other writings.
K. J.

Mar:h, 1977.

The several chapters of this volume appeared as a series of articles in the British Medical lournal during 1916, and I desire to express my acknowledgment for pernission to republish them in book form.
R. J.

CONTENTS

ragle Introde، tory Note. By Surgeon-General Sir Alfred Keogh xiii
CHAPTER1. Positions of Election for ANkylosis fol-Lowing Gun-shot Injuries of Joints . I
2. Suture of Nerves, and Alternative Methods of Treatment by Transplanta- tion of Tendon 9
3. The Soldier's Foot, and the Trea 'ent of Common Deformities of the Foot 27
4. Malunited and Unuvited Fractures 60
5. Transplantation of Bone, and some Uses of the Bone Graft 81
6. Disabilities of the Knee-joint 96
7. The Mechanical Treatment of Fractures under War Conditions 110
INDEX 129)

CONTEN'S

Introductory Noti:, By Surgfon-GeneralSir Alfred Keogilxiji
chartek1. Positions of Election for Ankilosis fol-lowing Gun-shot Injuries of Joints.I
2. Suture of N゙erves, and Altfrinative Methoa s of Treatment by Transplanta- tion of Tendon 9
3. The Soldier's Foot, and the Treatment of Common Deformities of the Foot 27
4. Maltiniten aind Ununited Fracturies iso
5. Transillantation of Bone, and some Lies of the Bone Graft 8I
6. Disabilities of the Kinef-joint 96
7. The Mechanical Treaiment of Fractures Under War Conditions 110
INDEX 129

INTRODUCTORY NOTE

By SURGEON.GENERAL SIR Al.FRED KEOGH, G.C.B.

Of the many surgical problems which have neerled especial attention cluring the past two years, none equals in importarce those generally known as the orthopedic. The term has been extended to include cases not hitherto comprehended as helonging to this branch of surgery, and the wider application of orthopaedis principles has been forced upon us by their special importance it the present time.

This importance rests not merely on surgical, military, or even humanitarian considerations. The problem of the maimed and discharged soldier has leaped into prominence, and we are forced by grave social and economic considerations to devote our attention mot merely to procuring a sound administrative system to solve it, but to securing the highest professional efficiency. to ensure the best results.

The publication of such a work as this is at the moment most opportune. The long experience and the reputation of the author will be to the profession its best commendation, but I may be allowed to take advantage of the opportunity which its appearance affords of commending the subject gencrally to the attention of the profession. If within the domain of Orthopaedic Surgery we include the many varieties of disabilities which, for administrative reasons, we are now bound to consider as coming within the scope of this branch of surgery, it follows that the general surgeon, no less than the orthopædist, is directly concerned with the subject. A wider extension of surgical work becomes, therefore, imperative. Indeed, no one who has had his attention drawn to the after-effects of some forms of treatment
can hesitate to recognize that muless the general anrgeon is concerned with the nfter-treatment of cases, the efficacy or inefficacy of original procedures will often be unknown to him. We are here concerned with conditions necessarily entirely different from those of civil life. The military surgeon's connection with his case is oftell brief: cases pass from one surgeon to another with extreme rapidity; few surgeons see their patients from the legimning to the elld. One combld well wish that there was no evil in this. lsut thare is much of evil and not the lenst is the fact that the orthoparlie -11 - n 's work is enormomsly increased.
Bhat it is not merely the methods of cure which, for many years to come, will confront the surgeon. The relation of disabilities to earning capacity is one of the most important problems of the day. A large part of this subject cones within the domain of Orthopardic Surgery, and, indecd, the relation of physical infirmity to inclustrial work has become a question of no little momient.

If this wori brings home to the surgeon the necessity for a correlation between early and late surgical procedures, and at the same tirle succeeds in obtaining for the discharged and disabled soldier the same surgical interest as is displayed on his behalf in the earlier days of his incapacity, it will prove to be a sery solid! contribution to national efficiency.

Alfred Keogh.

NOTES ON MILITARY ORTHOPAEDICS

CHAPTER 1

POSITIONS OF ELECTION FOR ANKYLOSIS FOLLOWING OUNSHOT INJURIES OF JOINTS

Tiffer are certain injuries to joints nccurring after gunshot … ankylosis. From their very nature some of these will not arlonit of excision.
When a joint has been shattered, and the museles governing it lavo been in part or wholly destroyed, excision is not merely difficalt from the point of view of surgical technigue, but often results in a flail-articulation which renders the limb quite useless. This is especially the case when such joints as the shoulder, ellow, and wrist are concernel. Excisions of the "pper part of the humerus are frequently prictised as a comservative procedure in the presence of acate or persistent sepsis, especially at the Prench front. This may be very necessary, but the resulting conalition will at a later date require further singical intervention. The question lias often been put to nee: "What should be done with these flail-joints, and, if anleylosis is to be expected, ill what position shonld the josint be place.t in orter to bo of the greatest use to the patient?" The fluestion as to flail-joints will be consitlered at the enfl of this chapter, but in the first place it may loe of service to indicate briefly the conclusions as to the positions for ankylosis to which experience hias led me.

Shoulder.joint

Position. - The arm should be abrlucted to abont 50° (Figs. I and 2). The ellow should be slightly in front of the coronal plane of the broly (Fig. 2), so thint when it is at right angles and the forearm supinated,

2 NOTES ON MILITARY ORTHOPAEDICS

the palm of the hand is towards the face. The arm is placed in this position while the scapula retains its normal position of rest.

Reasons. -If the arm be correctly placed, the hand (Fig. 3) can be bronght easily to the month by bending the elbow. Further, the hmmerns being lised to the scapula at the angle indicated, the arm can be lifted to a considerable height by scapular action (Fig. 4) ; moreover, pockets ean be reached, the hair brushed, and the patient can pick up a plate or cup without spilling the contents.

The arm should never be kept to the patient's side if

Fing, 1 and 2.-To illusirate the position for ankylosis of the shoulder in abduction.
ankylosis is feared, for in such a case the functional result must be nost unsatisfactory; not only will it be difficult to reach many parts of the body, but difficult also to reach across a table or to perform many simple movements constantly recurring in everyday life. Flail shoulder-joints: also silould be ankylosed in the position described, and joints which have been allowed to ankylose in an adducted position (Figs. 5A, 5n) may require osteotomy of the humerus high up to correct this faulty position. The shoulder-joint should wever be allowed to become fixed at right angles to the side in adults, as in that case the patient will be nnable to bring his arm down to his side.

It is to be clearly melerstood that I am dealing with injuries to sobldien and sailors, and not with children, in whom other neans can be adopted owing to anatomical considerations.

I:Ibow-jonst

Position.-The proper course to allopt will alepend upnuthe patient and his calling, but by far the greater nimmber of men woulal prefer the fixation to be at just below a right augle-that is, about 70° (ligg. if). The ank jlusis commonly met with at 1.30° is not nsefnl. It is important to bear in minul that in cases in which both elbows will become ankyloseal it is necessary to fix the one at an angle of in on and the other at 70° as recommended for onc-sided trumble (lig. 7).

-

3.

4.

Fiks. 3and 4.-Ankylosis of the shoulder in ahduction to show (Fis, 3) dexree of abduction, (Fis. 4) the dekree of power of lifting the arm.

Reasons. - This position enables the patient to mowe his hand to his month, button his clothes, brish his hair, and reach over a table. At an angle less than a right angle it is certainly more easy to get the hand to the month and to varions parts of the lieat, but linitations in other directions more than connterbalance these alvantages.

Forearm

Position, - If the movements of promation and supination are lost, the radius should be fixed midway between pronation and supination.

4 NOTES ON MILITARY ORTHOPAEDICS

Reasons.-The hand is more nseful for dressing and eating and for manual labour in this position. A minor advantage is that of appearance.

Fil. 5 a shows faulty addacted position of arm. and Fia. 5 a the consequent extremely limited power of abduetion,

Wrist-joint

Position.-All injuries of the wrist-joint should be treated with the wrist dorsiflexed (Figs. 8, 121, and 123).

Find. 6.-Ankytosin of elbow. joint at 70 .

Fia. 7.-Riaht elhow et 110, left elbow it 70°.

This is a priceless surgical axiom, the neglect of rihich is grave.

It is an urgent necessity where ankylosis is expected, or where even limitation in movement is likely to occur.

The common deformity of palmar tlexion occurs. when no splint is applied, or from the use of a straight
splint ; in all eases in which the arminn fingers are kept on such a splint, palmar flexion of the wrist uccurs, and this condition is a lifelong handicap to the usefulness of the hand.

Reasons. -The grip of the fingers is diminished if the wrist is palmar-flexed. The strong Hexors overbower the extensors of the fingers, and in consequence proper co-ordination of the finger movements is inpairel. The grasp of the hand is strongest when the wrist is in the dorsiflexed position, the balance between the flexors and extensors is better preserved, and the co-ordinated movement of the fingers is secured.

The splints reyuired are simple.
In proof of the importance 1 attach to the dorsitlexed

Fis. 8.-Dorsiflexion of the wrise.
ankylosed wrist, I may state that I always restore hyperextension of the ankylosed joint from the position of flexion by manipulation or incision. This invariably improves the grip of the fingers.

Apart from the impairment of function, a tlexed wrist is unsightly.

Hip-joint

Position.-Ankylosis should be encouraged in a position of very slight aboluction, with thigh extended and very slight outward rotation (Fig. 9).

Reasons.- The common deformity in ankylosis the hip is flexion, adduction, and internal rotation (I 10), which is the characteristic position we find in an untreated or imperfectly treated tuberculous lip-joint ; it leads to lumbar lordosis and an ugly limp. Adduction deformity brings the limb too near the middle line, interferes with the normal position of the sound limb in walking, and, by involving abduction of the sound limb, interferes also with a free gait.

If the hip-joint is ankylosed in the ally extended position, lordosis and the consequent trouble from backache are avoided, and there is freer pelvic movement in walking if the thigh is slightly abducted.

The limb should be very slightly rotated outwards, to avoid the unsightly lift of the pelvis as the patient rises on his toes when walking, due to the immobile condition

6 NOTES ON MII.ITARY ORTIIOPREDICS

 of the hip-joint. This gives an easier walk than if thetoes are puinted straiglit lorward.

Knef.

Position.-This joint should be fixed in an extencled position.

Reasons.-Very gool reasons may he given in favour of slight flexion from the point of view of elegance in repose and that of ease in mounting stairs. Due weight shonld be given to these arguments, but in the

Figs. 9 and 10-Ankylosia of hip. (9) Correct pnsition, in slizht abduction ankylusis in thexion with ward rotation. (10) Faulty pesisitior of ankylusis in Hexion with adduction and internal totstion.
ease of war injuries the straight position obviates many risks. Ankylusis, as we know, is not necessarily bony; when it is fibrous the tendency is for the flexion angle to increase by exercise. The incidence of the borly weight on a slightly bent knee, unless the ankylosis is sound and bony, will increase the flexion. The position, therefure, is mechanically a weak one jor carrying body weight. Even when new bone is forming, its complete consolidation is sometimes a slow process, and if the surgeon phaces such a knce in azslightly Hexed pomition
the degree of nltimate flexion is often much greater than he would wish. The advantage of increased strength and stability ensured by an extended joint will generally outweigh all other considerations.

A.skle

Position. -The foot shomld be kept at a riglit angle with the leg. so that the sole impinges on the gromend in a slightly varus rather than a valgu. position (lig. 11).

Reasons.-If the reader will recall the ankylosed ankles he has seen, he will remember that most of them were in a valgoid position. A varoid position condtues to a strong type of font: a valgoid (hatfoot) to a weak foot, and all the disability associated with erroneous deflection of body w :ght.

Jonits of the Tarsus and Metatarsus

In gunshot wounds and other injuries of the tarsins and metatarsus, the deformities to be feared correspond to the common

Fif. 11.- Ankyhouir of ankle with foot nt sole in slithty varue position, static deformity of flat or pronated foot -a subject which is dealt with at greater length in Chap. III-that is to mey, to pronation at the midtarsal joint, flattening of the longitudinal arch, and some-

Fis. 12.-Boot with ber behind head to relieve in. iured metataraal joints and phalanges from pressure.

Fis. 13, - A and H, boot with straisht beet elongated and raised t in. on inner border, with emali patch to thicken inner sida of cole.
times flattening of the transverse arch associated with pain in the metatarso-phalangeal joints. Callis exudation added to plantar malposition results in a very crippled foot. in all gnnshot injuries of tarsus and

8 NOTES. ON MILITARY ORTHOPAEDICS

metatarsus the surgeon shomla take care dmring the later stages of healing not to bandage the sole rigidly against a that foot-piece, for if that be done every irregularity of bone will conduce to callosity when walking is resmoned. It is necessary, therefore, at this stage to arljust a splint having an inside arch padded to conform to the natural shape of the foot. Fiversion of the foot should be guarded against, and the hollow of the arch should, when possible, be emphasized. Later, the heel of the boot should be raised on the inner side to obviate eversion, and, if the metatarsals are involved, in order to allow of early walking a bar sliould be placed across the sole of the boot behind the tread (Figs. 12, 13). Light duty can then be undertaken at a much earher date.

lilail.-JOINTS

In answer to the cuestion " What shonld be done with Hail-joints?" I would say, "Secure by operation an ankylosis in the most useful position." The only exception is in the case of the hip-joint, where by means of simple mechanisin a very useful Jimb may be obtained in spite of the joint being thail.

CHAPTER II

SUTURE OF NERVES, AND ALTERNATIVE METHODS OF TREATMENT BY TRANSPLANTATION OF TENDON

Tuise are few problems more urgently needing solntisin at the present time than thase involvel in the treatment of timbs thisabled by injuries insolving nerwe. 'rate contitions vary and are often very complex. The nerve may le irretrievably injored bevomblall tope of suture: it may be entanglet in cicatricial tisishe: onte or more of the museles it supplies may have sutfered grase lesions, varying from partial to eomplete destruetion; the tendems or muscles themselves maty be bumd down by athesions, or the joint or joints the misisles gowern nay be stiff, ankylosed, or lechl in al deformed position by a skin eicatrix; or more than ome of these hampering conditions may be present. The simple condition, Where the nerve or stnne of its tibres receise a cleten severance, is exceptional.

If onee these facts are realized it will regnire no argmonent to establish the proposition that certain orthopartic problems must the mastereal in romnection with the sinture of nerves if proper resturation of motor function ant of the mormal efferent and atferent commection between misele and the central nervoms bystem is to be secnred. In certain furtumate casest the: conductivity of the nerse is restored and genal mosecular fometion may resnlt. In other instances, althongh the conduetivity is restored, the function of the bansicles and joint may not be reganed becanse certain fumblamental principles have been neglected. There are other cases in which the condneting power of the nerve is not properly restored, and yet others in which, waing to extensive destraction of the nerse, any attempt at suture wonld b: fintile. We must, therefore, be prepared with alternative methonts in order to secare for the patient a satisfactory limb.

Iatl: Sittre of N゙erves

With regart, however, in the first place, to late smture of the nerve, certain general principles mast be burne in mind. Tlase are:

Io NOTES ON MILITARY. ORTIOPAEDICS

1. The consetinn of comtractares of skin or mancle and atl the athatomical comatitnents, from skin to trone, culs the contave aspect-that is to say, on the side of the aboormal direction the contrac. thre tiakes.
2. When pessible the frecing of joints from all acthesioms and the restoration of the molbility of the joint in all cases where ankylesis is threatened.
3. The maintenance of the paralysed muscles in a prsition of relisation thrunghent the periox of
recovers.
4. The pratetice of massinge durimg the recovery, but withent once allewing the reliaxed muscles to be stretcheed.

In short, the principles and their application coinctale with those I have so often emphasized in the treatment of polionyelitis. ${ }^{1}$
I. Freelng the Muscles. - If the muscles are not freed from all mechanical obstructions to their action, they cannot respond to stimuli sent to them thronghi the nerve, and therefore cannot in their turn send the answering afferent impulse which is necessary to bring the apparatus into proper working order. It is essential to dwell on this point, inasmurlh as many operations are heing performed while the miscles and joints are stiff. This stiffness is not due to the nerve injury, but to the consequences of trauma and sepsis affecting the muscles, tendons, hlocel-vessels, nerves, and ligaments abont the joint. When we realize how anremic an unused minscle becomes, we shall not delay in giving help to prepare it for the reception of nerve impulses.

1. 2. Moblilty of Joint. -Where the joint is threatened with ankylosis, every effort should be made to restore its function. Operation on the nerres is doomed to failure if these findamental principles be disregarded.
1. Relaxation of Muscles.--The importance of keeping the partially paralysed and overstretched muscles in relaxation during treatment has been so forcibly brought home in ordinary civil practice in the treatment of residual paralyses after poliomyelitis, lead palsy, injuries of the brachial plexus and of isolated nerves, that it shonlel be searecly necessary for me again to call attention to it. Nevertheless, visits to wards prove that this elementary orthopedic measure is too frequently entirely omitted by surgeons who hase performed suture of injured nerves. Thus we find men who have hate the nusculo-spiral sutured allowed to
[^0]
I.ATE SUTURE OF NERVISS

 instead of its being kept combinmonly in domadexion! lisy letting the hame hong in polmiar liex ion the museles suppleal by the sutured muscolospiral, whel can only retower if kept relased, are allowed to become stretched. The remult is that the fingers imel hand de mot regain, fan harilly be expected to resilin, full mormal fumetion. A smilar grave crror is often perpetrated in the cise of the external p"pliteal urwe, with the same dise appointing renalt in the font. firmpently 1 hatse noticed that the ferst of a pithent whene proplateal nerve has been sutmed is allowed to remain in an equims. position I Sometimes, inleed, the: uperation is even performed while the teludu. Wehillis is contracted. Were it nut so frequently happening I should feel ashamed to refer to this matter, but as it is happening 1 again urge surgeons who suture nerves to insist that the affected muscles be kept in complete relanation until power returns. The most skilful operition performed on the most suitable case will prove a fiatico muless the atfected muscles are continuously kept relaxed until recovery takes place.

Not ouly will it be fomme in some cances that no provision is made for the muscle to be in the most favourable condition to responal to the earlient motor impulses which come throngh the bork in the nerve, but, further, the mechanical condition of the musele as tol function seems to be entirely neglected, and suture of the nerve is performed when the paralysed muscle or the joint on which it acts is immobilized by cicatricial adhesions, If restoration of fanction is to follow nerve suture, the new axis eyhuders growing through a cieatrix must, of comrse, be enablel to establish some sort of mormal relation as to function with the end organs in muscle. If the muscle is mechanically disabled from making any response, it is absurd to inope for good functional result, even thongh the physiological processes of repair of the nerve be perfect. 1 devire to emphasize again the fundamental principle of proeedure-nanely, that the restoration of the mobility of joint and misele minst precede the operation of nerve suture. It is useless to attempt it utherwise.
+. Voluntary Use and Massage, -For precisely similatr reisons, it is inportant that the patient should, as sonm its possible, exercise the limb in hormal movements. In the case of the lower limb this msinally monas the application of some apparatus designed to prevent strain on the recovering muscles white the pationt is permitted a monlerately free physiongical use of his limb. In order to make the foregoing olmorsiathons more bued to those whe have not followel my

12 NOTES ON MH.ITARY ORTHOPEDICS

Writiug, wheltate hamed on the lite MIr. II. U. Flomans:s theory of "mosele lengthenins:" I will Indedly indicate their tenmer.

It is well, in view of the ellu atoms number of binjuries to nerves recurring it. this war, to emphasize the fact that principles applicable in probimpelite are applicable here. When speaking. some vears agos, of the resalts of arcute poliomyelitis, I printerl out that, thomgh the dise:ase might permathently dentroy methr cells ill the

Fis. 14.-Showind action of Jorsiflexing afler transgiantation of tendors. Captain Me.Murray's cese.
anterior lorns of the grey matter, so rentering for ever uselens the museles dependent npon them, unless nerve transplantation might at smane litter diate come to their reseue, vet complete destruction was fortmately the rarer condition. The clinical evidence atforded by rapid and complete recoseries from complete paratysis alll the very many partial recoveries proved that the motor cells concerned had suffered irem tempurary injury and had not been lestroyed. Something had happened to make the minscle imcapable of responaling to motur stimulus. Whether this was to be attributed to the

I.ATE: SUTURE: OF NERVES

absence of afferent macle aemte stitmulus, as seemed probable, or whether it wily due to wonn ather canse, it was clinieally certaill thitt the nerve colla lecealle pirs. tially inactove, bost extioct, illel that wat appropriate treatiment of the ollorle wr gromp of museles finmetonal actority comll le reilnatitel. When it mincle governed by al live cell, or rather al gromp of live cella, falls tar act. the divalbility thily locesken of ar fate tional. tof thes

 olld comblition from the other.
 moscollar groupy must 'w prevelitel fromb latiog over. stretcleed. If the wrint is, fors illatillice, allosered to rembin llexeal, the flexist mincle's mitlergo adaptac

Fis. 15 illustraten a similar reaule in another of Cimpain McMarray's came.
shortening, ind the extensors heconme oversterteleal and
 This peint is well illustrited ley drojpedelwist from lead
 in the lerve tranks ; in cither ciase the marches rease to he controlled by their nerve econtres, ind the pittiont goes
 mascele become alivilled by contimoms oxerstretching As tla" condition is mathilly hilateral, an interestiong experiment to tent my contention mily lie matre, if the case he uf some wrek ' stambing. ly jolacing rane of the paralysed wrists on a splint ta keepl the hinnl dorsi tlexed. It will be fommd thit recowery will le minch more rapiol on the sile on which the extensors are relieverl from werstretching than on the other, ueglected side. When a mosicle is deprived of the natorill motor stimml, its condituon from the juint of view of function and motrition is the same whether the absence of stimuli le due toinactivity uf the centril nerve cells or lointerniption of the conducting jiths along the peripheral nerves.

I NOTES ON MIIJTARY ORTHOPARDICS

 becomes analnic, and it may essily be owerotreteled by gravity, by the merestrained action of the oppoming Inimele, or by these two forcen theting 111 combination. If the wrist and lingers are kept in extremed dorathexan.

 comstant st ream of tomic stimali nelst to them beferemt mimplaes: lister they conse ubter the higher contron of the volmitary centres.
 is an nnefpalal degree of recovery ill "pponing mincollair gronips.

Deffection of Body Welght. - A mont pretent fictur for evil is what I have catled the erronenoms defle town of lexly weight, which, for phesical reinoms, "perates chietly in the lower limbs. if, for eximple. Hene be weakiness in the thbial gronp and the pheticont bo allowed to walk, the valgodid leformity will constantly increase, the tibial maseles will be more and more stretched, adaptive contraction will atfert the peromel, and structural alteration will cusine in the tarsal beme, terminating in a tronblesome that-foot. . Ill these mos toward results may be avonked by simple treatment ons somal scient ific priatiples: a little alteration of the lant which, by raising the inside of the heel of the lwot. will deviate pressure from the imer to the onter sible of the feot, may suttice. When we have to deal withs a group of museles in which the power is only slightly impairel, the miscoular bialance mily he restored by over-leveloping the weaker gromp. If, for instance, the peronci are weak, but the foot can quite easily be placed in the everted position, then massage and excrcises may reasomably be expected to siteceet. But if the foot cannot be everted becanse of adaptive shortening of the tibial tendons, then massigge and exercise of the peronei will be perfectly useless mintil surch time as the deformity has been corrected and the owerstretehed miscles kept relased for a sullicient periox to permit them to recover by interstitial shortening.

Late Resonery of Muscle lower

Before any operations are performed affecting the mobility of a joint. every use shonled be made of availathle muscle power. No surgeon should operate on these cases until he has fully satisfied himself whether or ne it be possible 10 restore the applarently paralysed muste. Neglect of this precantion proxhies sinch it distressing occurrence as the unexpected recosery of misicles which were ignored because assumed to be paralysed. For

RR:GOVI:RY Of MUSC:I, POWFR 1

example, a patient was bromght to me omer with a par
 been performeel with a view of bringing alomit lwaty ankyliwis. As an arthrextesis the operation had fatled. for the knee had a short ramge of movemont. Sh int experiment, illustrating the principle wo are dher liwing,
 ing with comsiderable stiength. I'rolongel fixation hall reliever the fuadricepls from all strain, and reaturathon of finetion resmited. This case exemplifies the mintake of taking for granted that a mbele is paratyerl withont first making equite certain that it is really paralyamt. It is only posible to make quite certall by relising the muscle, and thas putting it intos the panition mont lavomrable to recovery, fir a sulticient langilo of time. Electrical texts canmot be relied mant to give this information.

Treatment to Promote thls, - 'Hhe tirut stage of treatment is the enrrection of exioting deformity. Whon deformity has heell corrected the amb, alomil be kept immovable until the ligaments, museles, and even tone have become of normal length and shape. The contimuity of treatment must be maintained or a relapse will result. This pont is fundamental, and neglect to ob serve it spells faihre, as the slightent stretching of a mincte on the point of rerovery divablew it again. All the gookl work may be thwarted by a single indineretion. I cannot emphasize this point tos sitongly. For instance, led us take the case of a drop-wrist which has been placerl in a splint designed to dornitlex the hand at the wrat. The position mast be comstimely waintathed. 'rhe hamb must not be allowed to flex for a single moment untal recovery has occurred. Diven while the patient washes, the haml minst be held dorsillexed.

The clinical test of the recoverability of a mosele. therefore, depends on an experiment. leet it be kept for a prolonger perioxl-for it least six monthe-ill a position of relaxation. 'I'Inis test should always be made before condeming any muscle, no mitter hra long the perion for which it mity apparently haw been paralysed. When, therefore, one reals in textbonk statements to the effect that we are to denpiair of the return of power after a certain length of time, we cinl quite well atforil to ignore the advice unless in ardition to this time test there has been an uninterrupted musemar relasation during that time.

These are views which I have withont coising urged upon my professional brethrem as applicable tombantale paralysis. They are eplually ipplicalbe, with certain monlifications, in the case of gunshot injuries. It in obvions that in infantile paralysis long mechanical

16 NOTES ON MILITARY ORTHOPEDICS

treatment can du no harm. This is not so in the case of a soldier in whom a nerve has been injured. If suture is to give any promise of success there must be a linnit to conservative methorls, and in any case an exploration of the nerve is a harmless procedtire.

IEnion Trassibantation in Gioshot Injuries of ぶ:ktes

In recommending tendori tranijplantation in gunshot injuries, I have profited by the experience gained in anterior poliomyelitis, I liase frepuently performeal tendon transplantation with suceess in the adult in cases in which isolated nerves have been destroyed.

Fik. If A. Showint the ten. don which is to be trans. planted about in he onased throuth atunnel in the aeting tendon. The gunnel is being dilated in receive the tiansplanted tendon.

Fig. 16 is. Transplant in nositinn. I he angulation is dealt with ak shown in Fis. 16 l.

His. If c.- In norder to overcome antalation slit is made in the upner part of the receiving tendon, which is tifen wrapped roand the transplanted tendon.

Similarly, untecorleyl cases have heen operated upon by my friends Mr. Thelwall Thomas and Mr. Bickersteth. At the Dilitary Orthopachic Itospital, liverpool, my colleagne, (aptain Mcduraly, has at the moment of writing three successful rases in which transplantation ham heen done for miscule-spiral paralysis. As previmasty inflicated, the object of a transplantation is to improve or restore muscular batince. It is mot justified meses it improwes function. There is little satisfaction to a patient if the transplanted muscle merely responds to faradism, or even makes a feeble movement by the effort of the will. It must be, or give the promise of becoming, a substitute for the muscle it supplants, and it can only be judged by its ultimate usefulness.

TENDON TRANSPLANTATION

A tendon may be transplanted in arder to restore the balance between opposing gromps of museles by helping a redistribution of power, or its atlachment may be slightly altered to prevent deformity.

Recognizing that the principles inwolse: i., toinn

Fig. 17 A.- Tendons abont to be pilled throush another before muturins,

Fif. 18.,+ Showine transnianted tendon abont to be passed alnng atunel in the receiving tactive) tendon.

Fig. 17 r,- The divided ends of three tendons passed ihroush another tendon in its course.

Fin. 18 r, -Tendon passed along course of active tendon.
transplantation are the same in both conditions, I will now briefly describe certain transplantation operations I recommend for varions injuries.

As a preliminary 1 give here a series of diagrams, Figs. 10, 17, 18, 19, and 20 , illustrating methods of C

18 NOTES ON MILITARY ORTHOPADICS

transpiantation of tendon into tendon, applicable under varions anatomical conditions.

In the first part of this chapter I considered some general principles which should guide the surgeon in the treatment of limbs disabled by injuries involving nerves. I pointed ont the importance of giving the muscles ample time and opportminty to recover by keeping them in a relaxed position for a sufficiently long period, and 1 began the discussion of tendon transplantation as an alternative methorl of treatment where nerve siture was not possible. I now propose to

Fif. 19,-Thee tendons pamed throokh snother tendon, which hes been split to receive them,

Fild. 20. - Tendana inserted into either side of active terdon.
consider the transplantation operations my experience leads me to recommend in varions :njuries.

l'pper Limb
 Irreparable Injury of Missculo-spiral Nerve

1. In cases of musculo-spiral injury the deformity is a dropped wrist, with loss of the power of extending the fingers. The uncontrolled action of the flexor gronp causes the fingers to curl into the palm, and the hand to become useless.

In such a case :
(a) The flexor carpi radialis and the flexor carpi uharis can be transplanted into the paralysed extensor of thmmb and fingers ; and
(b) in addition the pronator radii teres may be affixed to the two radial extensors.

Transplantation of Pronator Radil Teres and the Radial and Ulnar Flexors in Muscuio-spiral Paralysla. -I would recommend for this condition of musculo-

spiral paralysis the double operation (a) and (b), and I will briefly indicate the nethoxl of its performance.

With the forearm midway between pronation and supination, an incision is made along the radial borter of the forearm in its middle third. Cuder cover of the tendon of the supinator longus the pronator ratii teres will be found where it becomes inserted into the outer border of the radins. From this it is detached, and is then inserted into the tendons of the extensor carpi radialis longus and brevis, which lie closely applied to it on the dorsal surface.
1 A horseshoe incision, with the convexity resting on the back of the carpns, with the two straight sides extending along the radial and ulnar borders, is now made. Through the lateral aspects of this incision the tendons of the carpi ulnaris and radialis are identified, and are possible from their insertion as near the carpus as
The tendons are brought round the uha and radins respectively in very slanting fasilion, and are then attached to the extensors of the fingers and thumb, the carpi ulnaris being attached to the tendons of the three inner fingers and the flexor carpi radialis to those of the thumb and index finger. The method of fixation should be neat and workmanlike.

Injury to Median and Ulnar Nerves

In the case of great damage to the median and ulnar nerves, operations on tendons alternative to those on the nerves will be very rarely required as compared with those on the external popliteal and the masculo-spiral, for the reason that by means of flexion of the elbow a gap of two or three inches in the median may be closed up; by flexing the clbow and displacing the ulnar to the front a similar space in this nerve ran be obliterated. End-to-end suture, therefore, is much more easily secured in these two nerves than in the case of the musculospiral and external popliteal.
In cases of complete and irreparable paralysis of the muscles supplied by the median nerve the only active muscles on the flexor aspect of the forearm are the flexor carpi ulnaris and the inner half of the flexor profundus digitornm.

Transplantation of Tendons in Median Paralysls.(a) The outer tendons of the flexor profundus are inserted into the inner tendons of the sanie muscle.
(b) The tendons of the flexor sublimis arce. into the tendon of the flexor carpi ulnaris Thserted tensor carpi radialis longior is attaclied to the exlongus pollicis.

20 NOTES ON MH.ITARY ORTIIOPADICS

Method.-A curved incision is made convex downwards with the ares just alowe the anterior annular ligament of the wrist. After retracting the flexor suldimis tendonc, the onter two tendous of the flexor profundus are iaserted into the two active inner tendons of the same muscle. The flesor ulnaris is then divided close to its insertion, and between the two portions of its split end the tendons of the flexor sublimis to the four fingers are inserted. The tendon of the extensor carpi radialis longior is now fond at the outer border of the incision, and after division is inserted into the tendon of the tlexor longus pollicis round the outer border of the radius.

Fik. 21.-Tendon of peroneus lonkus divided in its course. and identified at the outer border of the foot.

Fis. 22 -Tendon of weronens lonkus drawn out throukh the lower incision.

Transplantation In Complete Paralysis of the Uinar Nerve.-The two inner tendons of the flexor profundus are attached to the two outer.

The palmaris longus is inserted into the tendon of the flexor carpi ulnaris.

After-treatment.-After operations for musculo-spiral paralyses the hand should be kept dorsiflexed until recovery of the muscle is completc. When the grafted minscles are acting sufficiently well and strongly to lift the hand and fingers, the time will have come for gradual training in co-ordination and balanced movement. Even after the patient has learnt to use his hand, it is still necessary that he should continue to wear a dorsiflexion splint at night to prevent contractuas of the flexors during slecp.

Lowtik Lime
Paralysis of Anterior Craral Nerie
Transplant the sartorins and biceps into the patella." An alternative measure would be the application

TENDON TRANSPLANTATION

of a knee cage with an extension spring to take the place of the paralysed duadriceps. This should be worn permanently:

Fis. 23, - Tendon of peroneue longus ebout to be Jrawn throush the incicion opposite the annular lide. ment under which it has to pane.

Fis, 24, -Tendon of per. oncue longue about to be Onew longue about to be
drewn under the annular lidement to be inserted iin the tibje.

Fig. 25. - Tendon of tibialis anciens being drawn tutut, the fuot being kept at right suglea; tendon is then cut and pansed throush a tunnel in the tibje. The

22 NOTES ON MILITARY ORTHOPAEDICS

Jaralysis of Muscles supplied by External Popliteal Nerve
The anterior gromp of muscles and the peronei are paralysed. The deformity is a dropped font with varns due to gravity and the uncontrolled action of the muscles attached to the tendo Achillis and of the tibialis posticus.

Tendon Transpiantation.-There is not muth scope for effective tendon tramsplantation in this injary, ex-

Fis. 26.-Tendon of peroneus longui about to be drawn through the hole drilled in the tibia.
cept in cases in which only particular branches of the nerve hawe been picked out. For instance, an injury paralysing the two peronei muscles, but leaving the anterior tibial nerve intact, would result in a deformity consisting chietly of inversion of the foot at the midtarsal joint-that is, pes varus. In such cases, transplantation of the insertion of the tibialis anticus into the dorsum of the cuboid or into the base of the fifth metatarsal replaces the loss of the evertors and restores the balance of the foot.

Tendon Fixation. - In cases of more extensive paralysis there is not sufficient muscle power remaining for it to be effectually distributed : there is, so to say,
not enongh power to go round. Tendon fixation is then the best operative procelure, for it establishes a firm barrier against drop-foot, atud yet allows useful mobility. Tilanus of 1 Iolland suggestel tendon fixation for certain types of flailfont many years ago, and 1 am hoping that it will prove increasingly useful in military surgery

The object of tendon fixation is to utilize the tendons of completely paralysed nusicles as accessory ligaments to hold a paralysed foot in a correct position. This can be brought alout in an endless variety of ways, and will

Fis. 27. - Tandon of peronaut longus drawn throuth thatibia.

Fis. $\mathbf{2 8}$, - Tendon of peroneua londus about to be stitched to tha pariosteum of the tihia,
smpply the ingenious surgeon with many interesting and useful problems for reflection. Personally, after many successful operations, I would recommend this method of treatment to meet the disabilities of paralysis due to injury of the external popliteal.
Tendon Fixation In Drop.foot due to Injury of the External Popliteal Nerve.-Two small incisions are made along the course of the peroneus longus tendon. The first is placed over the tendon, just before it turns round the outer border of the foot on to the sole, and the other about three to four inches above the tip of the external malleolus ($\mathrm{F}^{\prime} \mathrm{ig}$ 2i).

${ }^{2}+$ NOTES ON MILITARY ORTHOPADICS

The tendm is now divided through this upper incision, and the lower frecd portion is then pulled out of its sheath through the lower opening while its mormal attachment to the sele rembins malisturlede (Fig. 22).
All indision two to three inches allone the tip of the external matleolus is misle just externitlly to the anterior Lorder of the tibia, and the divided lower portion of the peronens lomgas tembon is passed up from the lawer meisinn to this new one. hats new comrse the temblon

Fis. 29. - Tendone of neroneus lontua and tibialia anticua in. acrted into $\begin{gathered}\text { g gresuve made on the }\end{gathered}$ surfuce of the tibis, thowind the periostenn roined and drown side beliore being eevn in plawn

Fig, 30,-Lower divided portiona of the tendons if the peroneus lonsuasend tibializ antieas incerted inlo the tibis. The upper end of the tendon of the tibialis anticus autared to the lower end below its inkertion in the bone.
2.3 and 24), but if this eamnot be done it may be passed in the deep fascial layer (Fig. 32).

The periontemm is now raised from the anterior aspect of the tibia and a deep groove is made in the bone; the tightly pulled tendon, whose outer surface has previonsly been ronglened, is then laid in the growve and is retained in it by a small nail or it is fised by strong catgut into fascia, The periontemu is then replaced over it (ligs. 29 and 30).
Another effective method of fixing the tendon is to

TENDON TRANSPI,ANTATION

bore a bele thrompla the anterior bereler of the thbia and pull the tendon throngh (1 igs. $26,27,28$), The free embl can then be stitched w beriostembo on the immer side of the tibia, - in some cases it maty be mone comsenient to turn the temenn ware the erent ef the tibial and stitell it tos the tendon before it enters the tannel. Thronght this same incision the conden of the thiatis anticus (lig. 2:5) is divided and the upper cand of the leww fartion int serted bencath the periontenm in front of the tibia, in a manner similar tos that first deseribed, by mailing, or throngh a Irole bored in the siflontance of the bene, after the secomid methexi.
When this has been dome, the cut end of the upper part of the tibialis anticns tendon is inserted into the lewer part of the tendent distal to its insertion into the tilia (Fig. 30). The peronens brevis tendon may then be shortened and inserted into a filter along the anterior surface of the external malleohns, by another short mail.

Another simple device consists in fixing the boot at right angles by means of a leather tongue which is fixed to the tocecap, and a leather strap romind the mper part of the bout just above the ankle (Figs. 33 " and 3.3 c).

Injury to Scialic Trunk

If the whole seliatic nerve has been divide: high up in the thight there is total losis of power below the knee and in certain muscless governing the knee-joint. In stich eisces the patient can walk quite well in a jointed cailiper splint with a filling inside the brot to keep the foost at right angles. Another niseful plan is to fit a jointed knce cage (Figs 96, and 97) with a spring

Fis. 31, - 1biatram to thow the anatomy of the ere concerned: the three parts of the annular lifement are chown, the tendon nf the tibjalie anticua ia hooked inwarde, the tendon of the pervoneua longus hate berit passed under the annular liament and broughe into contact with the tihia. and a right-angled support for the ankle. means that we make the paralysed dise. This really leg into a species of artificial limb anstal part of the practice, has prove much butter thens, in actual linub that I hive ee moch better than any artificial a that I have ever met with. because the seiatic to amputation of a limb merely because the sciatic nerve is destroyed, and therefore

36 NOTIES ON MIIITARY ORTHOPAEIICS

theoreticatly the matrition of the forst mant go wrong, is tos horrible to be contemplated. Actual experience has proved that, in many cases, the errors of nutrition which ought in theory to eceur do not excur, or, at worst, are not nearly su nerivis its might be expeected.

Conctuston

surgeons will glean from what has been written that there are many ways in which the disabilities following nerve destruction cim be met, :and that hardly any case

Fil. 32. - Alternative operation in which the tendon of the peroneus londue is pulied thrount, :be subcutansous tissue without iefard to the anaular lipmont. A, First state. !, Tendon ol peroaeus lonatus drawn upwards and inwards.
is bid enough to justify a comnsel of despair. Our knowledge of what can be done in polionyelitis will invite us to take a cheerful untlook in tranmatic paralyses.

My intention in this chapter has been not merely to indicate ways iu which the ground can be prepared for the operations of nerve suturing, or to point out the value of keeping a paralysed miscle relaxed by opposing the force of gravitation, but to indicate the great and ever-increasing field of usefulness that is opened up by utilizing tendon, whether that of an active or a hopelessly paralysed muscle, for the restoration of movement or the correction of deformity, thereby restoring to a greater or less extent the economic efficiency of an individual who would otherwise sink into the position of a non-prodicitive aud dependent member of the commanity.

CHMPTER III

THE SOI.DIER'S FOOT, AND THE TREAT. MENT OF COMMON DEFORMITIES OF THE FOOT

The, fuot must be regarided fur our present purpose as consisting of two parts: the himer part, behind the mid tarsall joint, furmed by the os calcis and astragalus : and the fore part, in fromt of that joint, consisting of the rest of the tarmas, the metatarsus, and the toes,

The Three Arches of the Foot.- The hinder part of the font is designeal to carry the bexly weight when standing, The os catcis and antragalus are strongly boand together by ligaments, and the astragalus is securely set between the two malleoli at the ankle-joint.

The fore part of the foot is molh more mobile, athat is designed to give spring to the fort when walking. Phis spring depends on the efficiency of the small inuscles of the foot, on the integrity of the longitadinal and transverse arches, and on the freehnin of movement of the toes themselves.

Regariled as a bise of support, the foot is a tripol resting on the heel, the head of the first metatarsal lone, and the leads of the fourth and tifth metatarsal bones. lach side of the triangle formel by these three points is arched. The outer side, formet by the os calcis, cuboid, and the fourth and fifth metatarsal bones, is so slightly arched that practically the whole length of it rests on the gromnd when stambling. This element of the foot is therefore not very sureeptible of strain, and need coneern us no more.

The inner side is strongly arched: the arch runs from the heel upwarts and forwards to the neck of the astragalus, then downwards, forwards, and inwards through the scaphoid, internal embeiform, and first metatarsal bones, to the ball of the great toe. Chis arch, which varies in height in different individuals, is composed of a number of bones, is very susceptible to strain, alal is in consequence the seat of number of disabilities which we shall group toget her as " fiat-foot." The third side of the triangle rums from the head of the
 metatarsal lymes, and forms llec front part of the tramsverne arch of the feot. It must be remembereyt that this transwerse arch extends hackwarts throughout the whole of the fere part of the fexit. The cullofferm bumen amil
 the metataral lwiles.

Deformities and Disablities of the Foot.-lil comsodering deformities and disaligities of the forit, due value mast he given to its varions mee handal clements to that is to say, mot only to its Inmy structure bit also to the muscles and ligituents which help to maintain 1ts shape.

Lerokerl at in this way, we fumb among the deformities and disabilities of the tores such comblitious as hallux rigidus, hallix valgis, ind hammer-toe, and we mote that the two former in particintar are freghently associated with some degrece of that-foot.

Impairment of the transverse arch is specially apt to be associated with the pianful condition known as metatarsalgia.
Impairments of the longitudinal arch are associated with a train of symptoms which are fonmel in the various degrees of weak fout, everted foot, and that-foot.
All these types of derangement of the mechanical elements of the foot and the resulting disabilities depend on strains about the complicated series of joints in the fore part of the foot.

In the hind part of the foot the disabilities are fewer. They are mainly connected with painful conditions of t ie heel, due to such conditions as strain of the insertion of the tendo Achillis, or periostitis of the us calcis, due to tramma or sepsis.

When a clear jilea of these several disabilities and of the measures suitable for the prevention and treat ment of cach has been obtained, it will be more easy to grasp) and understand the varions disabilities of the foot to which the soldier is liable, always remembering that two or more types often occar simultaneously, and that all must be appropriately treated.

FLAIC-FOOT

- The term flat-foot may be taken as a generic term to inclucle all degrees of strain of the longitudinal arch of the foot. To these various conditions different names have been given, which need not detain us here. The point to be understood is that all degrees occur, from slight strain of the ligaments and tendons by which the arch is maintained, to complete desicent of the arch with osseous deformity, obvious to the must casual observer.
 aversion of the fere part al the font (fig. 331). If it
 with strain of the infernos calcameroscaphont ligament:
 liganelint just below the tubercle of the seaphome. This tenderness is characturivac. latill ill this sthmatom is often mont ache in patients who have naturally a very high arch. When such an arch begins to give way the strain ell the " "prong " ligament is great and the pan n correspondingly severe, bunt the foot is not phesifalls. Hat, for the arch may still be higher that is normal int mont people.
 exercise, the limes of the tarsals hegel to decrial and pain is complained of across the donsmin of the loot.

Finally. When the deformity becomes still greater, there may be patin on the outer side of the os calces below the tip of the extermalmalleohns. This is probably to be attribute l to hosing of the periostemm due to the
 adventitious burst is ultimately profluced in this sitasion.

$$
\therefore \cdot \Leftrightarrow!\text { T-FOOT }
$$

All the ahoy symbertas, al also actual desecme of the arch with pronounced alaluction and eversion of the foot at the mid-tarsal joint, may come owl with great rapidity, and then be issisciated with very severe pain, so that the patient cannot walk, and can hardly heir to have the font touched. Such a condition mite fairy be described as acute flatfoot. It occurs in its tepreal form in people who are in poor physical condition, as, for instance, after an attack of influenza, and return tom soon to work which involves much standing impel lifting of weights-for example, hospital immerses. It exciurs in exactly the same way in the recruit. Take, for example, the clerk who has taken little exercise and who has been

30 NOTES ON MILITARY ORTHOPEDICS

in the hahit of wearing loots in which there is no room for movement of the toes and hones of the fore part of the foot: all the muscles and liganents controlling and supporting the arches of the foot are weak and out of condition from want of use; under the strain of hard drill they give way.
Treatment of Acute Flat-foot.-The treatment of such a case falls into three stages.

First Stage.-If the foot is acutely painful the patient

Fin. 33 h- 1 . Bontlace to panz down-over " drop-foot tontue," through eyelet holen therein, and then boek into higher boot eyelet holes. 2. For boot without toe-cap, the drop-foot tongue must to to tip of toe.
should be put to bed and the feet gently massaged for two or three days till the acute tenderness passes off. During this time he must never be allowed to set foot to the ground, for the weight of the borly wonld again strain the ligaments.
Second Stage.-As soon as the acute tenderness has passed off, the foot should be abolucted and inverted so as completely to restore the arch, and kept continuously in this position to allow stretched ligaments to shorten and become adapted to the correct position. Mere rest in bed is not enongh, for then nothing is done to restore the proper shape of the arches, adaptation
takes place in the flat-foot position, and the patient is left with a real flat-foot. It is often hest to mould the foot into correct position and fix it in plaster-of-Paris for about ten days to allow the strained ligaments to recover completely.

Third Stage. - W^{2}. the plaster is removed, after, say, ten days, the patie . ; foot is exercised-first of all hy massage and exercise, particularly movements of the toes and inversion movements, never eversion movements. These inversion movements are intended to strengthen the muscles controlling the arch.
Boots.-The patient is allowed up in specially altered boots. The boots should grip comfortably round the ankle

Fin. 33 c.-Side view of boot with drop-foot longue allached.
and heel, but the whole fore part of the boot should be roomy to allow free play of the small muscles of the foot.

Pointed toes are very harmful, as they abrluct the fore part of the foot and help to produce the condition of flat-foot. The inner side of the boot should be straight, so that when the two boots are placed side by side the inner sides are parallel right forward to the great toe. This is not the convention.el boot of the shoemaker, but it is the correct boot for a strong foot.
The present Army hoot is not perfect, but it is much better than it was some years ago.
Boots of suitable shape having seen secured, they should be sent to the shoemaker to have the heels "crooked" on the inner side. By this is meant that the heel of the boot is made 1 in. higher on the inner side, and tapering gradually to its outer side, so that

32 NOTES ON MILITARY ORTHOPADICS

the inner side of the heel is 1 in . higher than the outer side. In addition, the Iength of the heel shomild he extended forwards hy ${ }^{3}$ in. on the inner side, and the sole should be raised f in. by a pateh on the inner side of the sole just below the tere-joint (Fig. 13 13).

The patient must never put foot to the gromul withont an altered boxt or shoe on, otherwise he will unwittingly let his arch descend and so inflict a fresh strain on the ligaments.

The man should then be instructed to walk with feet parallel, not with the toes turned nut. The altered heel helps him to keep his toes turned in. Jixercises slowld be graduated till he is fit for full duty.

A bad case of acnte flat-foot shonld le fit for light duty in three weeks, and for full duty with the hecls of his boots raiscd on the inner side in six weeks to two months.

1t is really a question whether the Army anthoritics ought not to issue all brots with heels raised on the inner side, as this is a great relief to the foot on a leng march and increases the man's weight-carrying and lasting power.

Certainly all recruits with weak feet should be started off with crooked heels on the boots until the muscles of their feet get into training. They shonkl also be tanght to walk with their feet parallel. If this were done the feet wonld grow stronger rather than weaker, and considerably fewer men wonld require to be taken off duty.

Traumatic Flat-font

Flat-foot in every respect similar to that just descrihed as acute flat-foot may aise from injury-for example when the wheel of a trap runs over a man's foot and strains all the ligaments.

Flat-foot from Periarthritis

Similar mechanical conditions arise in gonorrheal periarthritis when all the ligaments are sodden with exudate, become soft, and stretch. The same is true when the infection is of an ordinary septic character, for if the man puts weight on his foot before the arch is restored to its strength he will get a flat foot. IHe can, however, walk with safety in a beot with the heel well crooked almost as soon as the disappearance of pain allows him to put his foot to the ground.

Rigid Flat-ruot

These cases lead us naturally to the rigid form of flatfoot which results from neglect in the acuter stages, whether the cause of the sudden yielding of the ligaments

RIGII) FLAT-FOOT

be overstrain due to macenstomel evertion in walking, to minny, or to weakening of the ligatments by the products of infective agents.

The foot, therefore, shomble be mantamed in the inverted and adducted perition during recowery from the acuter conditions, and when the patient lregins to

Fia, 34 a, -Fint foot, first state: : Thomas'n wrench applied to invert.

Fis 34 g. -Fintifoot, necond stere: Thomas'n 'wrench applied to adduct foot at midtarsal joints.
walk the brily weight shomld be deviated foum the inner to the outer side (Fig. I,3 B). If this important routine should be neglectel the recovery of ligaments will occur in a flat-footed position with stiffness in all the joints. The patient in that ease cannot stand on the onter edge of the foot or turn it into an arched shape.

Treatment is very simple, but millst be thorough. The foot shonld be wrenched so as to break down all adhesions and make it thoroughly pliable (Figs. 34A, $3+\mathrm{B})$. The foot is by this means converted into an acute

34 NOTES ON MII.ITARY ORTHOPEDICS

tranmatic fiat-font, and it manst undergos the conurne of treatment described elsewhere for that condition. It should be mondded into the correct position, and plaster-of-1'aris applied. After two or three weeks of sith rest, to allow recovery from the tranma, gradnated exercise may be taken in boots so altered as to deviate bokly weight from the inner to the outer side of tarms. An ontside iron is often fomme a great assistance in maintaining the correct position of the foot

Fis. 35.-Outside iron in addition to crooked lont heel and piece to nole.

Ossi:OUS FLit-fotot

A real stiff flat-foot which has been neglected for years becomes an "osseons flat-foot "-that is tosay, changes ocear in the shapes of the bones to adapt them to the erroneonis position. Thongli something can be done to improve such cases, they cannot always be made fit to be soldiers; the surgeon nust, however, be sure that he is dealing with real osseons change and not merely with a flat-foot which is rigirl owing to liganu ntous contract:res and adhesions.

Flat-foot neti to Spash of the Prikonel

I described this condition (Fig. 36) many years ago, and stated that it was. by no means uncommon. It may he found in any ont-patient department if looked for, and I have operated upon as many as 150 cases in one year. It occurs usinally after puberty and also in early adolescence; it is common among the robust, not only among the weakly, and is not associated with the temperament that is known as nenrotic. I will describe a typical case. A young man of 18 limps with a springless gait into the out-patient room. Ife walks with feet practically rigid and with toes pointing out. They are both everted, and the inner border over the region of the seaphoid appears thickened and even angular. Both the character of the walk and the appearance of the feet might lead to the diagnosis that osseons changes were advanced. On being questioned the patient may give a history of injury such as a fall on the feet; usnally he cannot account for the origin of his trouble. The pain is often acute, the feet may perspire abnormally,
and the pitient miny not be able to walk mure than in short distance. Relief is experienced on removal of fis sos, a if he is asked to invert his foent he catmot In so, a, when he attempts it the peronei become tinds there is poing when he examines the foot mimmally wer the scaphoil, and malleohns where it impinges me tip of the external tenderness over the peronei along the outer b inder if the foot. If the sirrgeon gently attempe onter worter of ankle molh pain is experienced, and the peronei, sith to speak, immediately place themselves on gnard and strongly resist his efforts. Now, while he has firm hold of the foot, let him engage the piatient in conversation, at the same time gently pressing in the direction of inversion. Then at the prycholugical moment, while the

Fin. 36,-Peroneal apasm producink a fiat everted foot.

Fif 37,-Fixposure of ten. Jona of peronei preparatory to exsection of about \mathcal{F} in.
peronei are quiescent, very sinddenly and very forcibly let the foot be inverted and held there. It is a very pilinful movement, bat the character and contour of the foot are completely changed. It is no longer rigid. osseous changes are obviously absent, and the general appearance of the foot is almost normal. The moment the surgeon releases his hold, the old rigidity and deformity return.

For this condition mechanical measures are of no anail The patient must be ancsthetized to relas all spasin, and about ${ }_{3} \mathrm{in}$, of eald peronems should be removed abomet $1]$ in. above the nalleolns. (Fig. 37). The foot must then be fixed for about three weeks, well inverted and adducted at the mid-tarsal joint, and later the ordinary treatment for flat-foot began. My old honse-surgeon, Mr. Nanghten Immn, secured equally goond results by pinching with a pair of forceps the nerve as it enters to supply the peronci. Simple tenotomy of the peronei is not sufficiently drastic to prevent recurrence of deformity;

36 NOTES ON MILITARY ORTIIOPREICS

Diagionsts

It is not an easy matter to lay down rules far a harel amd fast differential diagonsis between these types of rigid feet, lutt the following considerations will help.

An osserns flat-foot which has become adapted to its. new position is usuatly strong and painless.

A flat-font rigid from alltesions and shortented ligaments is still susceptible to strain, and is liable to beconne painful after unusial exercise.

The type due to a spasmodic contraction of the peronej is characterized by pain, and the spasm may le wereome in the manner I have just indicated.

In the two last varieties, after the deformity has been ower-corrected for a time, energetic massage and a correct deviation of braly weight are essential clements in bringing abont a cure. The osseous tyje, once the bones have completely dropped, may not only be painless but may be strong enough to bear the strain of long marches. Wommed soldiers may constantly le met with whose feet are very that, whose mid-tarsal joints are fixed, but who have uidorgone several monthe of hard training withont a complatint. If in addition to these osiscous changes the power of inversion of the font is lost or the peronei arce in spatsm, surgical attention is urgently called for.

The flat-foot, for clinicial purposes, maly be divided into two classes:
(a) The font which the patient can invert.
(b) The foot which lie camnot invert.

The seconrl clitsis will not respond to any mechanical treatment, such is a plate or alteration of the loost. It will mot even anfor correction by means of a bandaige to all ontside iron from knee to heel. An operation, or forcible manipulation and fixation under an anastlietic, are essential preliminaries to the sinypler mechanical methoris.

The first clasis will nover require an operation.
This simple clinical division should be helpfal to the military surgeon.

The stage of flat-font most comnomly seen is neither all acntely painful font ton tender 2 is he handled, nor a rigid that-foot, but an intermediate stage, which may be callerl subicute.

The patient's fect give him little tronble in ordinary life, but a long walk makes them acle round the instep.

FLAT.FOOT

When he gexes to bed after a hard days exercise his feet pare afpt to get stitf. Next morning they are stitf anmil passes off. Lilter gets. np, but is he mowes abomt thi a lot of standing and wayderemially if he hats to do very painfol.

Diagnosis, -. This is history and by finis made beomsidering the patients: bedow the taberosity of distinct temdernessis on pressure toot be pain in other lecalitiesphosid there maty or may voluntarily stand on the outer Finally, the patient call crowk his foot into the arched edge of his fout and cam very important, for it medposition, This lant point is theels of his beots are crooked he will recover if the weight on to the onter side of the fore :o deviate bexly The patient should there of the froot. last stage of treatment dewerreat once berput thromgh the namely, gradnated exercises, and ler Aente Flat-font off donty for more than a day or twe need mot be tilken being altered. "Contra by or two while his bexts are alternately, to stimmate thaths " of hot and cold water a great relief to the patient erenlation of the fent, are his fert may be a little sore and sumy at might, when about all dity, at hatle sore and swolder afterng

Conclusion

Ihave purposely avoideyl all mention of tiptof exercise, These exercises are excellent, but they will not ente a Wat footed position int is allowed to come down in the If the principle of the intersals. onter edge be loyally adthereal of borly weight on to the recover, even withathered to, every ordinary calse will adhesion to the principle staterl means expercise. Lenyal never sets foot to the gromed means that the patient crooked brot, shoe, or sronati execept in a propely mist be careful to stand onper. Even in hise bath he The whole idea of treatment is to enter enge of the foot. rupted adaptive shortening of sto entisure that mintertake place.

Massage, tiptoe exercises, electric stimmation of mineles, all belp to hasten the recovery, bat at few minates careless walking withont boots or shomes will mado all bencfit from other treatment by again streteding recolering structures.

Frequently the high-arched foot is the most troublesome type when the tendons are strained and the seaphoid j o in give. The strain upon the astragaloreibsons, great, and the type is, for obvions mechanical

3 NOTES ON MIL.ITARY ORTHOPAEDICS

marked by a prominence abont the scaphoid date to pressure interitis.

CL.IW-FUUT

One of the surprises the military surgeon meets is the number of men with daw-feet who have been pansed into the Army: bitt still more surprising is the fact thist many suld cone's have fonmed their way to the front after the vigorons initial training which the recrnit notelergues, Somer or later, lowever, these men gravitate to loms pital, and very few of them return to the ranks ans efficients. A piatient with this condition of the fort is folite unfit for military mervice, and should never be alceppted as a recruit. The affection usually begins in carly life, and is often not recognized until it has reacled what I have termed its second stit, e ; until then serions trouble lardly ever arises.

The etiology of "claw " or " hollow" foot is still uncertain. It is very often associated with a slight eomtraction of the Acliblles tendon in childhood, and in some cases is due to a transitory paralysis of the extensor group of muscles. The short boot also stands in some cansal relation to it. The whole question is, however, too rexed to be discussed here,

Clinically the condition presents five degrees or stages. The progress of the development of the deformity fron one degree to another, though often continuous, is frequently arrested in one of the early stages; or perhaps the faets may be better stated by saying that progress from the first two stages to the later more severe stages is very slow, and sometimes does not take place.

First Di:Gree of Claw-hoot

The first degree occurs in childhood, and is easily overlooked. There is no visible increase in the height of the arch-in fact, the foot appears normal. The complaint inade is that the ehild is clumsy, especially when running, and frequently stumbles or trips witiont ulvions canse.

It will be found in such a case that the foot cannot be dorsillexed beyond a right angle with the leg, and that there is commencing contraction of the Achilles teudon and the structures in the sole. The elind's tendency to stumble is thus explained, for the fore part of lisis fort fets in his way as he tries to rin.

The treatment in this stage is obviously to stretch the Achilles tendon and the plantar structures, and so restore the power of dorsiflexion of the foot at the ankle. This can ussally be effected by manipulation, after which the boot in which the patient walks should have

CLAW.FOOT

no heel to it, but a bar \& ill. thick placed transemedy
 to lengthen the Achifles temblon. 'This is bent done sulocitanconsly by the following prowerlere: Phe tencotome is entered onf one side near the heed, and one hate only of the tendon is divided. The tenotome is next entered $1 \frac{1}{2}-2$ in, farther up on the other side, and the other half of the tendon is divided. Now, by forcible made toslide on font, the two halses of the tendon are ing i.s obtained (Figs, as ier intil the reguired dengthenthen applied so as to keep the ichilectangular splint is the corrected position and to indilles tendon at rest in
 that of complete division of is always preferable to the perios of convalescence the tendon at one level, as power in the calf muscles is shortened, and functional

Second Degriee of Claw-foot

In this degree there is defillite contraction of the plantar fascia, and the characteristie deformity of of the foot is dropped-that is to 39). The fore purt it the mid-tarsal joint or en to sily, thare is tlexion the foot. At the sime or exaggeration of the arel of at the metatarso-phalingen the great toe is dorsitlexerl the extensor proprins angeal joint, and the tendon of Further, if the surus hallacis stands out prominently: of the great toe he eisily places his finger under the baild

40 NOTISS ON MIIITARY ORTIIOP.EDICA

straighteln ont (lig. fol). Fhe other teen dan mot proment a similar defurmity at this stage, but the dehalen tembor is shortened. Livell in this crmation the patient may not complaill of pain or disibility: copecially is this the

 mujnstly, for even at this stage there are bun very whoms objective signs. 'The arch of the fowt in int collapment. bilt, on the contrary, slightly exaggeratel : if, howewer, the surgeon makes al eareful examination he will note. tenderness belleath the metatarsin phatangeal range, and when the pratient is anked to rxtend hir toxe the log toce respunds to a doproprortionate extent.
Treatment at than stage mast be Irastire. If tha patient is tu be remdered able to pert abmit with easo

Fis. 39.-Claw fuot. ecennd da ares.

fit. 40,-Claw.funl, second desree. The wuricon'a finds sesjly replacsa the dropped head of the metafarsal bunc of the trist like: de cowe in this state is suitahle fin fsindon trons. plantstion.
and comfort, mothing less than operation will suffice. A radical attack may sal we the sitnall iom, allit in a few weeks the sublier may return to dity. The opreation consists in dividing and streteling the plantar fascia and then in making all incision over the tendon of the extensor of the great loe (execensor proprins hallueis), and the tenton is severed from its attachment. Two holes arre drilled close to each other behimi the metatarsal he:al, forming; a tumel, throngh which the temblon is drawn by means of a catgut ligature (Fig. 11). The temdon is then pulled so as to raise the drupped metatarsal head into punition (Fig. 43), allal its lower edul is stitehed to its upper part just above its entrance intos the bone (Fis. 1-9). This completes the opperation, but the foot mast be firmber bandaged down to a metal sole plate with a thek roil oi wool placed tramsersely just behind the heads of the metatarsals son as to latten the are is moch as possible. The whole font is then fixel in al re . .angular font splint, which is bent to rather less than a right angle. Alter

CI.AW.FOOT

the stitches are takell ollt, the for in put up ill f!ater.

Fits. 41,- Claw-fout, second de. aree. Operation hy trangalunta. then of tendon of the extentor of the firwat tow. The dimeramm ahow huw the tendon of the extenear pruariua ballucia ia inerindueed throuth the tunnel whove the head of the metiotaraal bone.

Fit. 42.-Cion. fuot. Uperation fur ocerond detree, ghowing huw tho tendon of the aitenior buw that hallueim, after traversing the tunnet in the bone, ia attwehed to iteetf and excured.
is alluwel! to walk in this for fromll three to six weeks. Ife should then firs it few weeks wear busts with very low heels, anal a bar actesis the sole benteath the leades of

Fig. 43.- Clow.foor, ecend dearee. Uperation thowing the endian of the atensor aroprisa hallucis assed thruugh the hewd of the metendian of the of the arent toe and gulled before fixing.
the metatarsal fromes so at to keep ithe fout dorsiflexed
when walking.

12 NOTES ON MII.ITARY ORTHOPR:DICS

 the filiger to lift the heade of the lirst metatarmal illes mennal lime ewing to the inc reaserl eontraction of phatar stricturos: the "preratiosi just eleacribed for the seconel degreo woild therefore the iselens. firther. the other fors alos are now dersillexed. and the eharacterontic deformity which ut timat was visible only in the great tere is usw shared by all the toes. The movements of the teses are limiterl. inm they are beginning to lrecome rigit In the pemition of eleformity: forns and eallosities are formed aceross the lall of the fent owing to the jucterared pressure of boxly weight, for in this stage the patient can hardly get his heel to the gromblat at all. The Achilless tollefin and plantar fascia are still more eontracterl than int the first two ntages.

Fis. 44. -Claw. fort, third der

Fin. 45:-Clinw.fons, fiurth defres.

Operative treatment has now to be carried ont in two stages.

1. The $1^{\text {rifit }}$. e includes division of the plantar fascia and severe "resching to thatten the foot as far as posisible, but as at Ifos stage all the metatarsal bones are very ohlignely placed it is necessary also to remove bone. The operation consists in removing, throngh separinte ineisions on the dorsmon of the foot, a lalf to one inch of the shaft of the first, second, third, and formrth mefatarsal lones toward the bases withont opening the joints. Ihe fifth metatarsal is retained intact, as it forms a usefnl splint for the rest of the bones. Kenowal of the lead of the metatarsal shomlel be avoided. 'liee extensor and flexor tendons shomla be divided.
2. As it is imposibible to correct all the catins al: fermity in this way. the Achilles tenden is divided at a liter stage by the sliding operation, and the foest wrenched intodursiflexion, The iffer-treatment allul alteration in bests follow the sime linces as these alreaty preseribed.

Fourth Degrei: (NF Cinw-foot

In the fonrth stage in adelition to all the deformitioes alrealy described the fort actuires a well-marked varus

(:I.AW.forot

 "right with comfurt . ' the platientilly turary the lanly.

rie 4h. - C:lan. lout, fifth dellere.

Hid. 47, - Clav.fint. fifth dedree, fromt view ofter isperefifit teconmmended in the lent. The tores and the herele tise and tarsal binces, we well wo the metredue, have been remived.
the callosities axpmisitely tember. The defnomity is that of equino-varus (Fig, por). Tho pattient longe for amputation. This shonld never be done: and I womld rerommend is al subatitute in operation I have devigned

 from the dorsume of the A thap shomblator be raised metatiansal trane exposed fort, amd the heinds of the the metatiarsial bemes ire the toese imed the hempor of aperation in excellent are remesed, The resilt of this Athomgh the vinions (1) if and +8).

4t Notes on Military ortiopedics

described as necesiary in the treatment of the later stages of chaw foot ilo mot rennlt in proklacing ann ettieient soldier, there is every reasom why they should be known. The military surgeon has to consider the nsefonness of citizens when the war is ended, and operations sued as 1 hase deseribed, with appropriate "ilriatioll, will be needed for many types of ernitracted feet following injuries reveived from the enems:

The comditions known as lallux rigidns, hallux valgus, and metatarsalgio, or Mortemis disease, are all frequently atsoneliated with flat-ferot ; they all have some features in common both as regards the nature of the pain experienced, and the alterations reguired in the beot to relieve mikl cases, and to complete the after-treatment in cases whicol have reguired operation.

Mobility of the Toe.-This is a comsenient proint at which to make a digression to disenss the importance of correct $\mathrm{p}^{\text {osition }}$ and free molility of the great toxe in marehing.

Flae great toe is directed slightly jumards towards the middle line of the bexly in yoning chideren of adt races, jn line with the anterior part of the imaer longitudinal areh of the forn, to the structure of whel attention was directerl in the section on Flat-foot. (See plp. 27. 28.) Races who habitnally go barefonted preserve this position of the great toe in indult life. In civilized races-those, at least, who wear boots-the toes are often cramperl into boots of minsmitable shape, so that the small minseles of the foot sutfer atrophy from dismse. and the power to spread the great toe inward: in walking is minch impaired. The great toe of a strong font. which has mot been deformed by wearing pointed loots, is spread inwards by the action of the abdeletor hallacis when balancing on one foot, when the weight of the borly is on the fore part of the foot in walking, and still more so when carrying a pack on the shomlders.
Qualities of a Good Marching Boot.-A goxd marching lont shomblat, therefore, leave the font free to adiapte itself to altering conditions of balance and strain.

1. Thee bent should lit comfortably and closely romad the heed and ankle so as to avoid lifting of the beed in the boot, which results in chaffing, enting in a mister of the heed.
2. To sate the arch from giving way and to avoid fiat-foot the heel of the lexot shombl be slightly higher on the inner side than on the onter. (Figg. 13.)
3. The inmer side of the lowe should lee straight right up to the tij, of the big toe-that is to sily, the inater

A GOOD MARCIIING BOOT

sides of the two bexts shoukd be pirallel to cach other all the way along to the great toe. There shombla be motrace of printedness. for pointedness tends to produce hallas valgis and help. to canse flat-foot.
I. The sole of the boot inside shonld be as bromat as the foxt with the weight of the bexly on it. In the case
 - that is to weight of the soldier in full marching order pack, and all his accontrements the man hamself, his 5. The upper of the boont shomin part of the fort in any way shomblat nompresis the fore and deep enongh to clear the the toecap) shombld be stiff ment inside the boot This tres and allow free moseoll the inner side of the bistiffening shombly rin back metatarsio-phalangeal joe bont to a point behind the 6. The boot shand be ton the great toe to extend to its full lengit whenghto allow the fere his pack and all his accont when the soldier is carrying These list points demements. of the fore part of the foot with freerdem of movement velopment of the smaill mont, are essential to the fill desoldier's endurance and marching the foot on which the large all extent. allows free play to top in a foot encasel in a boot which mental chiroporlist is fore part of the forst. The regiexistence is, ipso facto a mont valnable alsset, but his men's lonnts is not all it might and onpht the the of the shonld not be allewed to fight and onght tobe. The man when his foot is cool. Ont ef of the tightness of his boot served out when men bave the contrary, bunts shombla be march, and their feet are come in from al ling ronte fore at their largest. if enged with bionkl, and therewith t!e circulation of the fins were dome, interference often occing. When a forot subellie the lent womlel less swelling is practically all in the fore after at march, the heel. To serve ont boots the fore part, int romal the wonld toot prevent a mam frefore, after a romte march fitterl properly rombl the heel and anoleg a pair which The present Army bout ise and ankle. bont served ont at the time or great improwement on the it is still lacking in two point Sonth A friman Wiar, but onner side and the clear free stitfenadely, the straight of the fore part.

Haticex Rhentes

Hallux rigichan (fig. 19) is a condition characterized by limitation of the pewer to dorsiffex the great toe at the metatarso-phalangeal joint

If we remember that in straining on tiptue or in'

46 NOTES ON MILITARY ORTHOP EDICS

stepping off with the font in r arching this juint minst be dorsiflexed, it is evident that any linitation o the movement of dorsiflexion must, in the comese of a long or hard march, result in straining the joint so that it becomes painful and inflamesl.
As hallux rigidnes and hallux valgus are both disoricers of the same joint and are often intimately comenected, the rigid toe may lead on to valgns deformity and a hallox valgns nay become rigid. There is no essential difference in the pathological condition of the josint, but only in the direction of the deformity assiceiated with it.

Treatment.-The treatment of hallux rigidns must be directed to restoring the power of dorsiflexion of the great toe at the metatarso-phalangeal jonitat.

In the carly stages, when the tenderness and inflammation either abont the joint or in the joint has not

Fin. 49.-Hzllux rigidue.
resulted in onseons changes, palliative measures may still learl to recovery.

First, the joint must be relieved of strain, so that the inflammation may be allayed. This can be brought about by arranging a bar like a football bar fully $\frac{1}{3}$ in. thick and abont 1 in. broad placed on the boot behind the head of the metatarsal lone (Fig. 59). This canses the body weight to be borne on the neck of the metatarsal rather that on the tender joint, so assuring rest to the joint. As somm as the inflammatory tenderness becomes less the patient finds that the power to dorsiflex the toe begins to return. This is the moment to begin massage, movement, and hot and cold contrast bathing in order to hurry up the processes of repair.
ln more advanced cases, and in cases resulting directly from tramma-as, for instance, dropping a weight on the joint or violently " stubbing " the toe, osseous changes due to formative periostitis ox cur rombl the joint. There may be lipping of the base of the phalanx, and usinally there is some mondular thickening of the head of he metatarsal, esplecially in its, upper aspect. 'His onseons outgrowth forms a mechanical bluck, preventing hyper-

HAl.I.UX VAl.GUS

extension. The impact of the bones on cath other mandans the periosititis, and the condition $\begin{gathered}\text { other }\end{gathered}$ gressively worse. Palliative measures maly fets proscivilian to go alont his businectsures may enable at comfort, but he cannot donsiness with some degree of tive measures are of mo lise a day's shorting, and pallia-
Operation alone will rene for a mall who must mare h. ment and give permanent relief. The operation follows exactly. below for hallinx valgus.

> Hallue Valges

Hallox valgis (Fig. 5n) is a rleformity of the first metatarso-phalangeal joint, the essential feature of

Fin. 50.-Hallux valaun.
which is that the great toe is deffected outwards, athl in extreme cases may lie over or under the second toe.
One consequence of this position of deformity is that phalanx form an undue angulat the bise of the proximal border of the foot. As a rilar prominence on the imer by the boot, a bursa, or a result of chafing and pressure

4^{8} NOTES ON MII.ITARY ORTIIOPEIICS

inner part of the capsule of the joint. Jt may comm. minnicate with the synovial civity.

The continned pressilire and friction callse the skin over the bursa to become indurated and horoy, and this greatly adds to the pain and discomfort suffered by the patient.

Frequently suppurative inflammation cecurs in the bursa (septic bursitis) ; thus may be followed by septic cellulitis with inflanmatory thickening of the tissues ronnd the joint, or, in cases in which the bursa communicates with the joint cavity, it may lead directly to septic arthritis.

It has been a surprise to many surgeons that sombers have been able to go through their training and even to serve in France with prononnced hallux valgns fle. formity. The reason is that the disability is not rloe merely to the visible deformity but to the adilition of the following three comblitions:

1. Inflammation of the bursa (bumion).
2. Trammatic artbritis, of the same lype as the arthritis in cases of hallux rigidus.
3. 'Femerness due to pressire on rigital nerves br every respect similar to the tendermen in a classical case of metatarsalgia or Mortom's diacelse.
Bursitis is the most common of these three canses of disability: the dangers of septic horsitis commonsenting with the joint have alrearly been noted.

Artbritis is much more rare, and is usinally of the sub)acute type common in eases of hallux rigidns without the valgoid deformity. It is diagnosed by tenderness and pain on any movement of the joint, even gentle attempts at passive rotation of the toe,

The third variety, comparable to Morton's disease, is marked by acute pain ou oblique pressure on the joint between the finger and thmmb, and is due to excessive sensitiveness of the digital nerves and adjacent tissues outside the joint. It is not, as a rule, characterized by any ohjective sign., ot liev than the valgoid deformity, and in cases of hallus rigidns of this variety there is no visible ceformity-anly tenclerness on pressiure on the joint.

It is difficult in make a sharp division loetween hallus rigidus and hallux valgis. The same types of pain and disability occur in both. It may, however, be ifid that with a distinct valgoid deformity it is compara.ively rare to find rigidity, but that in cases of painful great the withont valgoid deformity-that is, in cases classed as hallis rigidus-arthritis and the resulting rigidity are much more common. Hence the difference in lescriptive terminology-but to understand the conditions properaly they should be taken together,

hallux valgus

Treatment. - Pallatove meastres may suffice in mild rases. First, the weight of the loxidy slomald be taken wll the joint by putang a loar-mber a frethall bar

 this.s work ked into the thar kness of the sole with a hollow in the sole hor the great tore goint. The hatr om the sole will. however, keep a man on his feet who wonld otherwise be disabley ly pain in the great toe-joint. The beet shomde, of comrse, be straight on the inner stele, the large head of the spring clear up, leaving romen for tunately alosent from tirst metatarsal-a feature miforare romber enongh, a piece of ation lean. If the bonts acommonelate thic bminn will atter "the it lole in it to Surh measures, howevir afteral rohef.
mulder cases, and are wite are only chrative in the service.
Operatier Trectiment. Onerative Ireatment of hathe balgis must not aimemerely at correcting the of halihex hilt must also he directed to secterting the deviation, of the great toe, otherwise the emomig free dorsitlexion all the diwability of a hallux rigiluent will be left with

It follows, therefure that, rigiths. of the valgoid deformity. apart from the correction practically the same in prine "perative procedure $1 s$
 First, let it he stated for both. sometimes performed, whit there are two nperations be condemnerl. The first need only be mentioned to extensor proprims hallucis is transplantation of the the metatarsal head in the tendron to the imner sinle of outward deviation. five hope that it will corrert the operation is generally userielise hats perowed that thes tome to perform it. The : it is therefore at waste of of the joint-camut the second operation-excision as it is lialle to end in a ter) emphatically condemmed, the crippling disability of filf jont, bringing with it all form.

Finally, no operation shond the performed while there is any intlammation of the bursa or of the surmonding
A. In early cases in which there is valund deformoty but mot much emargement of the lieald of the metatarsal by bolly mitgrowthe, wisertomy of the neck of the first metatarsal bone. esther linear or caneiform (Fige. 51), associated with tenotomy of the extensor proprons. hallucis tendon, will sutlice.
B. In later stages, with bony excresicences round the joint, more free removal of bone and some form of pesendarthrosis minst be performed in order tos weeure
:

50 NOTES ON MH1,ITARY ORTHOPAEDHCS

the free movement of the toe, which is indispensable to comfort.
r. Free exsection of the lientel of the first metatarsal bone, with interpowition of a flap of tissile, or of part of the bursa, is not satisfactory in a soldier, thongh it has proved satisfactory in civilians who do not have hard walking or marehing to do. The reason is that the lower part of the lead of the beme is all inmortant part of the weight-learing apparatus, and minst he preserved.
2. The operation to le preferred is resection of the head of the metatarsal bone (lig. 52), learing as much

Fin. 51. - Hiallux valgun. To ilfantrate onteotomy of the neek of the metntarmal bone, ahowing the wedse to be removed.
as possihle of the lower part, taking care to clear away all bony excrescences which obstruct dorsiflexion or full eorrection of the valgus leformity. The bursal flap is then interposed as a covering for the raw surface of bone. At one time I nsed to interpose the whole bursal sac, hit nearly twenty years ago several patients developed bursitis in the transposed bursa. The procedure 1 now adopt, therefore, is to open the bursa and interpose only one wall as a covering for the bone (Fig. 53), or to obliterate the hursal cavity.
3. In some cases (more often in cases of hallux rigidus than in those of hallux valgus) it is possible to preserve the articular cartilage of the head of the metatarsal] bone. This may be done in two ways: The one method is to remove a wedge or slice from the posterior part of

HAIIIUX VAI.GUS

the head ams then apply the cartilage to the raw surface of bone. The other is to cillt a wedge of bone with the cartilige and mortise it into a cleft made in the bone farther bate, removing the intermediate bone.

In every case division of the extensor proprims hallacis otherwise ential part of the operation for halhns valgus, pronlace the deformity. Technique of the y :
skin incision should be a lion and After-treatment--The a linear incision along the inner

Hin. 33.-Hallux valikus. Showinf finp to cover the end of the metataral bone in the operation illyntraled in Fin. 52.
side of the joint. The flap incision romnd the hursa lescrihed by Mayo has not proved entirely satisfactory n my experience.
The skin having been freed and retracted, a flap incision is made in the underlying tissues with a second knife. The knife used for the skill may he infected with Staphylococcus albus from the skin; it is therefore a wise precaution never to use the skin knife for any deeper

52 NOTES ON MILITARY ORTIIOP®DICS

dissection, especially in plastic operations where the least infection may destroy the valne of the operation.

The joint is thins opened, and the lreaul of the metatarsal freely exposed. The surgeon can then decide how mucli bone he is to remove and exactly how the wedge is to lie marle so that tlie toe will be correctly in line after the operation. Je can also decide whether he can usefully retain the articular cartilage, or is to dissect ont a flap of the wall of the lursia to cover the raw bone.

It shomid be noted that the sewamoid bones shomed rarely le removed, as they seent to form an essential part of the tread of the ball of the great tose. The pad of fat between the sesamoit] loones is, however, sometimes thickened, red, and tender; if so it may be clipped away.

Fin. 54. Splint for hallux valikus after operation.
The whole operation must be carefully carried out with the most scrupulons attention to three points :

1. Ireservation of part of the lower or weightbearing portion of the hearl.
2. Iestoration of free dorsiflexion, or the soldier will not march freely.
3. Correction of the valgoid deformity in cases of hallux valgus.

The valgoid deformity is purposely placed last, for in a sense it is the least important from the point of view of restoring the man's marching power.

A hallnx vagns splint shonld be applied at the end of the operation. The splint I nse is made of thin metal, as shown in Fig. 34. The hole in the splint fits over the inner side of the head of the metatarsal bone and prevents pressure from orcurring at this prominent point. Tle hase of the spint is strapped or bandaged to the inner side of the foot. The toe is then drawn inwards and secured to the narrow end of the splint, care being taken that the alignment is correct.

After-treatment in cases of hallux ".gidns and hallux

HAMMER-TOF

valgus is quite as important ans the operation if we are to succeed in restoriug function. Three weeks after the operation the patient may walk. prowided he hats a proper loot. Gradual exercise and the correct bearing of the bexly weight in a properly designed boot is :an esisential part of the treatment.

The lerot, ill the first instance, shomble be malde of soft material with a stiff leather sole. On the sole is put a lhe herad bin. thick and $f \mathrm{in}$, to I in. wide behind thme falls of the metatarsal hones. The berly weight rather than on time on the necks of the metatarsals made fing higher on the imer farther, the heel should be in order to deviate berdy wer side than on the outer side. font and relieve strain on the to the outer side of the (Fig. t2). This is, of conrse, imber side and great toe ment for the flat-foot so compmon the appropriate treathallus valgus and rigidus, must be straight, to allow the inner border of the bent freely, so that no pressure of the beot the drawn inwards duce the valgus deformity. As a rule, patients shox i
with comfort. later in ordis way can walk at once in the same way. The operation boot may be altered bear the pressimre of lea operation area is too tender to operation.

It is while walking in these berot\%, with the body weight carried on the outer ecige oi the foot, that the real cure takes place. ©nder the normal physiolugical stimulus of walking, repair is hastened, and the small museles of the foot recover strength.
To let the patient get up in a slipper is absurd, for the weight falls then on the head of the metatarsal, and by irritating the new bone formed at the site of operation it sets up a fresh process of oster)-arthritis, which maty leave fore worse than he was before. The patient must therefoot to the cround till the time and never allowed to set be allowerl to walk in a properly has come when he may

HAMMER-TOF

Ifammer-toe is a deformity which usually affects the second toe, thongh it is common to find slighter degrees the proximal interpther toes. It consists of flexion of the metatarso-phalangeangeal joint and dursi lexion of knuckle of the proximil jont (Fig. 55). The promineat on the upper of the boot, while interphalangeal joint chafes on the sole. Jiainful coms naturally the toe is pressed points of pressure, mi, king the manally develop at these

54 NOTES ON MILITARY ORTHOPAEDICS

The cannes are mumerons. Sometime n the deformity is congenital, bit the commonest cane is the crowding of the toes in ill-fitting, bally designer l bouts. Hence it

Fit. 55.-Hammer-Ioe.

Fit. 36. - The diambility produced by amputa. lion of end tow.
is common to find hammertoe associated with hallux vitus.

Treatment. - In the adult, operative procedure is indicated if we are to produce a rick and lasting recovers. Neither amputation of the toe nor an attempt at piemalo-arthrosis of the proximal interphalangeal should ever be undertaken. Amputation should not be done, because the absence of the second toe increases

Fit, 57. - Wedge exertion of joint for hammertoe.
The tendency to the production of hallux valgus, and often leads to a second elisability more serious than the original hammertoe (Fig. 56).

Some surgeons, when operating to correct the defomity, leave the articular cartilage on one side of the joint in order to obtain a new joint. My experience is that this is followed by recurrence so frequently that the operation should be condemned as uncertain.

DISPlACEMENT OF I.ITTIE TOE

Opiration. - The
"lneration formil mant maiformaly
 arficmatre eartilage oll lath, sindes of thre jomat, at as detinitely to ankylowe the joint in extension. dil owal piece of skin, including the eoorn, is excised ower the prominent knuckle. A wedge, bise npwards, inchuting the joint, is then excinerl, of sulficient siace to all w the tere for be atraightencel (Fige 57). The thexor tendon is divided by teroseony. The skill iacivion is then stite hed
 walks abont, still wearing the in Fige. 58 , and the patient walks ilhmet, still wearing the splint inside his boots for

Fiu. SN A. - Snlint for hammerotes.

Fid. 54 h. - Splint fur hammer-toe anplied. himmeratomanplied. fout,

Fic. 58 c.-Splint for humberto asplied, View from or aper ilida of foce.
some weeks, to make sure that solid ankylesis uccurs withont any return of the deformity.

DISPLACKMENT OF THE HTTLE TOE

A displacement of the little toe similar in mature to hiallux valgns, frequently occurs, usinally as the result of "earing boots which are too tight and too posinted, Uceasionally the condition is congenital. The toe is displaced inwirds cither over the donsial or muder the pialmar aspect of the fourth toe. In either position it is subjected to undue pressure in any ordinary boot, and therefore becomes painfinl.
Treatment:-This comdition is very troubleseme, and when it occurs in a soldier all operation is essential. The treatment which may be applied successfully in chiliren has no place here, as the structures have become so contracted, expecially the skin, that tenotomies, excisions, or simple splintings are wholly inefficient. Amputation of the toe is simple and eflective in most

51 NOTLS ON MHITPAKY ORTHOP:EDHCS

 to whtall redief in to gring the metatarsials in the himble

 there in complinlit of severe paill shanting ap the teg.

 as the remilt of the utady if desse tions allol frosery

 the reall callore of the pails.

 of the transiorse arcla is thanally premelat, alld the fatty
 the pressare of the atescenderd arela, wothat the " beill "f the foot " teels unnathrally thin, atad there are corns in the sole under the wnamail points of pressitue. I'la
 sected with onerstrain of the font, anse is cunseqiently dssuciated with flat-loot.

METATARSA.GIA

Treatment. - Immehite rehof 4,111 inarly ahtway tw kivell by remonille the premore of the tanly weaght oft the heraty of the metatarval lathe by a biar acrime the whe of the loatt. leblinal them (Fige sio).

 mesi wire" combmed with exerrise of all the small moss Whes of the fonit tw restore the arch, allad misnsige to wheve the polloland mprose batrolloth, whll sultice to cure all early camen ill the place uf at fow wedk.
'lhe patient shondat then the warned athanst warmg narrow lowns, whelh 1131 pula the frere play of the dire pirt at the
 else of the foxit frome dianse.
 ill caver which hive listed fors sume times. though they give some reher.
 ramired for the soldier's fowt. Removal "If the hered of the offenotinge metatarsail throngh a smalt forsat me ision completely relieves the romatitum in sos per cent, of elises, even when the crippling edfects

Fig. 59, - Har ont mole of buot bs. hind the theade of the mutatarial bunes.
 font. It gives emeneh relief ins implititions of the the patient to be madle connfortabe withathing cases for the sule of the lanot.

After-treatment.- The bir on the sole of the boot abst cronked leed, already dencrilnel, shand be empleyed is an ensential part of the after-treat ment. The patient may then walk thrime the whole perionl of emvalencellice "ithont injuring the site of aperation, and so exciting new intlammatary changes.

The painfal enonditions abont the hel most come monly met with bitily getrerally Ine traceal to orre of three cinlise's:
t. Injuries or strain abont the insertion of the teltelo Achillis.
2. Spurs of bone and adtentitions bursia under
3. Onteitis and periontitis from direct injury of the

5^{8} NOTES ON MIIITARY ORTIIOPAEDICS

These are marked by pann abont the back of the lieel which is aggravated by walking and relieverd by reit, int the pain recurs again if the patient is tempted to take exercise, The condition may be divided into three types:
(a) Tenosynomitis, in which there is swelling due to effinsion within the tendon sheath, This swelling extends snme distance up the tendon, and is both palpable and visible.

The treatment is counter-irritation, firm bandaging and rest. When the acute stage is past, the patient may be allowed to walk hmited distances with the heel of the boot raised \neq in., so as to relax the tendom and dimiuish the strain. If the condition tends to become chronic, the actnal cantery may be used with great benefit, especially in the form of the heated nealle.
(b) Bursitis of the bursa under the insertion of the tendon into the os calcis. This is diagnosed by localizing the tenderness at the site of the bursa and by detecting a small area of thectuation.

Treatment. - Relax the tendon by raising the heed $\$$ in. Apply a band of strapping round the leg above the malleoli to act like the wristlet worn by workmen who have strained a tendon at the wrisi. The patient shond be instructed to walk a little every day, but shond not be allowed to do an indefinite amount of walking; this is one of the difficnlties connected with letting soldiers ont from hospital on pass.
(c) Periustitis at the site of insertion of the tendon, due (w strain of the insertion.
The diagnosis is made by localizing the tenderness ou pressure a little lower down than in the ease of morsitis, and by the absence of deep fluctuation in the hursia beneath the tendon. Treatment by rest is the same as for the preceding condition.

Both these last-mentioned conditions may be present simultaneunsly and become chronic. The best treatment then is first to puncture the bursa or the inflamed area of priostem several times with a hot needle. The process is exactly that known to the farrier as "pin-firing." The effect of this is to, excite an active vasenatization of the part, after which reparr takes place more rapidly if the rest treatment is carried ont. Firther, cauterizing a patient's heel deters him fron wearing a boot and going out for too long walls, alud gives the deep lesion an opportunity to recover while the surface bhister is healing.
loregular filvens: manses are sometimes unted in the

Achilles tembon. These are mandly the result of partial ruptares, and if large allel pernistently jaillfal they shonlet be rewen ed.

Sjurs of bone running forward into the plantar fascia or shert muscles of the sole are frequently serell in skiagrams (Fig. 6n). 'I'hey often catuse mosyuptemms. On the otler liamd, if the patient aceidentally jumps ons to a stone and loruises the periostemm ower she of theses spurs, it nay become enlarged, or an aldentitions bursa may develop uhder it. Diter this, the patient feels

Fid, 60. - Sbur of bone under we caleis.
pain esery time lie puts his heel on the ground, aldy it becomes acute in the contrie of a long march.

Treatment.-Make an incisiou along the side of the foot and gonge away the spur and tissue ronnd it to make sure of clearing ont the bursa and any chronically intlamed periostenn, The incision shourd, of course, not be made in the sole, as a sear in thene regions is often itself the canse of tronble.

3. Osteltis and lobriostifls

Osteitis and periostitis of the os calcis ofterl arise from bruising of the bone by a jump or fall from a height, or by injury due to gumshot. There maty be no gross fracture, only seme crumpling of the lametla, which may be seen in a gool skiagram. When a fratanre occurs, the disability is often due to bony irregularities on the moler-surface of the beme.

Treatment is often un: atisfactory, and if the bony nasises are felt in the sole umber the heed they shembly bu freely removed. lalliative meitsures are of ho woe in tlec ciaste of at suldier; antl one mity state ats a getmeral proposition that a soldier with a butly fritetured ustragalus or os calleis will llest agaill loe fit for service.

CHAPTER IV

MALUNITED AND UNUNITED FRACTURES

Delayili Union

Tha: conditions to which the terms "delayed mion" and " non-union " are applied may be difficult to dis--inguish, becalme often we lind that, even after munths, osteogenctic changes leading to consodidation with
 take place in a fracture considered to be permancitly united. If we are to anoid disagrecable experiences, we most recognize that for varions reanoms, some of which we know and some of which are still maknown, a certain proportion of fractnres take longer to minite than others. Some years ago I was called to a distance to operate npon a fractured femur. The accident had excurrel three months previonsly. The length and alignment were gexal, lout the patient hatd some sugar in the urine, and we decided, instead of operating, to place the liml, free from circular constriction, in a 'Thomas's bed splint (Figs. U1, 10.5. 106. 107, IO9). Certain other procedures whicla I adsined were not carried out, but in forr weeks very firm consulidation had oseured. This case affords all example of a clinical type. There may be several wecks of apparent inactivity in callus formstion, and then consolidation oceurs guite rapielly. If a practitioner takes "are to mantain a goord length and accurate athgment, he should look forward Cheerfully to a happe ismae even if mion is delayed. As a rule, this is exactly what he dues not whe. At the end of the fifth wrek he begmis to feel nervons, be disturlss the bone ernds, menlifies his methods, and by degree transforms into a permanent disabality a condition whicls merely demanded pationce.

Delayed mion is mont common in the middace of the
femur, in the humerus at the jumetion of the mulde amb "pper third, amblin the tibiat and fibulat at ther lower third.

Causes.-ln many cases there is inl movions reason for the delayed momon, Very often it is mut due tur millposition; it is, indeed, folite remarkable low often m delayed and unmited fractures the lomes are almost antomatically opposed. I will mot waste time ly rloing more than mention some of the acarlemic catuses assigutrl -such as tabes, syphilis, and acnte diseases. 1 womld prefer to focus attention on the more real and practical conditions which have a direct relation to the methol of treatinent.

Circular Compression. - In olswions and frequent canse is inefficient rednction, aldd later on, in consulaning malmaion, I will refer to this in greater detail. I will, however, deal first with another conse uf deliyed momcircular conipression of the limh by splint and liandiage. A fundamental principle in the treatment of fractures is to secure and maintain good length and good aligument, and in attaining these ends care should be taken that the circulation of the liml) shall be in no way hamperexl. The splint used shomld be so comstructerd that after the bandage is applied the fingers can be realily intronluced bet ween it and the lateral aspects of the linil). In looking back nnon the unumited fractures I luase scen, I generally recall an attennated lisms and a thick plaster case. When the casing is temoved the blanclied limb becomes red, and the blanched bume begins to take its fill of book. It is becallse plaster generally fails to secure length andi alderuate boral supply thiat it is a prolific somrce of delayed mion and maninterl fracture. 1 wonld not condemin the use of plister altogether. much as 1 dislike it, but it shonld be nsed with diserimination. It shombl be fixerl in such a way that the limb remains in extension and in gemel aligmment, and that the circulation of the limb is in mu way hampered.

Duration of Period of Consolidation.-I extloonks have led ins astray in regard to the perionl regnired for the consolidition of lone. Iractured idfult bones are never firm after four or five weeks, as the bowhs would leat us to infer.

Lor practical phrpeses, ignomance of this fact may make ino ditference in the rase of the upper hamb, foit in the ease of the lower limb, where tise ettect iff thr fucts. weight has w be consithered, to molerestimate the pellonl of comsolidiation is to invite disaster.

Treatment.-If a case of deliyed umion is first seen in the seventl, or eighth week we need do no more than make puite sure of gronl alignment, length, and circulation. Nature will do the rest.

6 NOTES ON MHITTARY ORTHOPAEICS

l'ercussion and Damming. - If a long time has elaporel the need for atction is more pressing, and we mint en. deavomr to transform the indolent callas into all oxtorgenetic factory, so that bone may be gemeraterg. I know of mo better means than that suggested by II. U. Thomas, and named ly lam "percassion and damming, "

Fomur-As an example, I will take mom-minion of the femur with shortening probally of two or three inches. Vender an alliesthetic the soft fibroms callns is broken down and the fractured ends are turnel towards the skin and beatell with a mallet ; at pulley is then applied to the limb, amb as much length as possible sailinest. A Phomas knee splint is thene alljusterl and thes extension maintained. Pwo pieces of indiarnber tobing are tied aromal the limb, one three or four inches

Fia. 62.-" Damming " or enngestive trentment of anunited fractifir of the humerua by Thomm's method.
abwe the fracture, and the other at an equal distance below. They are kept on, to begin with, for about twenty minutes each day until they can be borne for several hours at a time. They shonld be kept tied sufficiently tightly to proxhce considerable swelling and stasis. Usmally in two or three weeks callus is thrown out, and the osteobiasts begin actively to proluce bone. Local congestion between two inliarnbber thbes is mnch more effective than congestion by one proximal tule. I can recall many cases in which bones that had remained ummited for several months beame firmly comsolidited after use of this simple device (invented by Thmats and iscribed twenty years later to Bier) for stimulating ostengenesis. The methorl of applying the indiatrubber tubes to prorlace congestion is shown, applied to the homernis, in Fig. fiz.
Tibia and libula--In old unmiterl frartures of the:
 attained, and it mily le necessary to remove bome. If this bedone, the operation should be performed under

 boce-horn fashion after the methot of Jane. If the
 will subsecpuently to keep it goxal alignment, it is lent to asoid the introlaction of plates or screws. Tolut
 alld where it can be easily accomplished they shombl lue wrapped in transplanted fiscia, which will act ats al binling membrane in the same way as perisistem.

In inwther type of canse in which the bone is elmarmater with feeble callis prexhectom, it is wall affer satwing the
 trinsplant lwore from some other piat al the luxts: The sielen of the fractirred ends shombl be prepared torecese

Fiak. 63. Pulley used in wettina and onerating unon fracture ol tibin and fibuln: counter extensicus shown.
the transplanted portion, which can be affixed litterally (Fig. (b, A. A), or drisen into each end of the merlulla, The transplanted bones and the fractured colds are held in positions with transplanted fascia wrippeal anmomal them.

Fignres 65 and $6,5 \mathrm{~B}$ illustrato a methorl of shillug a transplant to bridge ower the fracture. . Nlbee's twin siaw is used to enable the operator to detach with mathe. matical (orrectness atrip of bome partly abowe and partly below the line of fracture. A chinel is liseol at "ither (Ind to complete the detachment. The shorter detached piece (in the fignre the lower) is remoned and the lirger piece is slid down (Fig. 1,511).

Antogenoms tramsplantation of bone is far more effective than transplantation from another pitient or fom an innmal. A bone graft withont perositemm is shmetimes ats effective its one takell with its periostemm, 'This fact is important, for if bone is remosed from sombe

n, NOTES ON MHITARY ORTHOPADICS

otlier part of the bexly milperimateally, the removed bone is very rippidly replaced by mew laine, Where convenient, fowever, the periostenm shoulal be retainel.

Nollomion is very aft to reenr whore a wide gap

A

H

Fia. 64, - Bone draftink. A, Lateral tone graft for fractnre, $\mathrm{F}_{\text {, }}$ J.ateral bone kraft for a esice in which bone ha been removed.

A

H

Fik. 65,- Rove traftink. A. Diastam mhnwina incinions throush tihia hy twin saw and chisel, detasting a mirip above and helon the fracture, and Second stake of noperation, The lower framment han theen removed, down to as to hridale the fracture.
(Albee)
exsts between the bouses. In the case of fracture of the tibia of long standing, where the growth of the fibula has progressed, I have operated with surcess by removing a large lateral slice from the upper end of the fractured tibia, and using it as al bridge to span the gap) (lig. ©| B).

Comprishd Comminuted livachares: Retcontion of livag. ments.- l'his leads nue to speak of comproud comminuted fractures associaterl with loose pieces of bone. The removal of these pieces is very frequently the canse of mon-union. If lowse pieces are felt, provided the woun! is not suppurating, they should be scrupulously saved: the pieces, if quite loose, should be taken out of the wound and laid in alcolol, and then carefully replaced in position or round the site of fracture. In such cases I refrain from introducing any foreign bo:lies, such as nails, plates, or wires. If a drain be usel at all, it should be for forty-eight hours only.

Wiak Union: Exuberant Callus.-Malunion of the femur of six or seven weeks' duration can almest always be corrected by powerful manipulation. The same is truc of all the long bones. At iny clinic every week 1 am accustomed, by wrench or hand, to correct matunited fractures of several weeks' standing. The methond is especially applicalle to a Colles's or a lott's fracture.

Weak uiaion can be diagnosed almosit with certainty even when ordinary manipulation fails to detect it. It is suggested by tenderness on pressure over the site of the old fracture, and conlirmed by the additional sign of exuberant callus exudation. A malunited fracture of some montlis' duration, if accompanied by these two signs, can usually be corrected by forcible manipulation. This is a very inportant clinical fact to remember irom the point of view of imne liate or gradual correction.

Exuberant callus is sometimes so aboundant as to he mistaken for malignant disease, and I have met with many instances in which the pitient has narrowly escaped amputation. This error is more likely to occur in the femur than in any other of the long bones, especially when the force applied to produce it has been so slight as to suggest that the fracture wals spontancous.

Malusion

Malunion of a fracture can always be prevented, and should raise a strong presimption of inefficient treatment. Our duty, therefore, is to examine the cause of malumion, and to arm ourselves with a kuowledge of the weak points in our metho:l of treatment.

The causes of malunion may be found (1) in errors in the initial treatment or setting of the fracture. (2) in errors in the methos of maintaining the fracture in position, or (3) in croors of after-treatment.

1. INIIFFICILNT REDUCTION OF TIE FRACTURE

Malumion of a fractured bone is due to this cause more often than is commonly suppose.I. Sometimes it

6, NOTES ON MILITARY ORTHOPAEILCS

is due to want of kuowledge, but more often to want of experience and confitence.

It is' necessary, of course, to have a clear knowlealge of the anatomical proportions of the limb and of the mechauics of its action ; but it is still more inportant to know the nature of the impairureut of function likely to occur nfter any particular fracture, so as to be ready to take metans to anticipate and to prevent it.

Common canss of ineflicient reduction are-
(a) Insufficient extension of the limb in fractures of long bones-such as the femur or lamerns-so that the overriding of the fragments is not completely corrected.
(b) In I'ott's fracture there is always an associated dislocation of the ankle outwards and backwards. If the backward dislocation is not fully corrected there is pain over the front of the ankle wher the patient walks, and, in addition, inability to dorsifle: 1 ! , ankle, which causes a serious impairment of function
(c) In Colles's fracture the lia kivard displacenent of the lower fragment is very \cdots ions, and is not always corrected by the orthorlox tralitional "hand-shaking" method of reduction. The lower fragment carries with it the articular surface for the head of the ulna, and if this is ont of line the upper and lower articulations between the radius and mina are thrown "ont of trintl." and the radius will not rotate properly. This leads to impairment of pronation and smpiuation, and consequent very serious interference with function.

These are merely instances of how a want of sufficient determination in reducing the initial deformity may play an important part in cilusing subsequent loss of finction. I have referred to them because they occur in common fractures, with the treatment of which everybody ought to be familiar, yet I see a large number of cases of serious impairment of function really due to these canses.

2. FIXATION AFtER SETTING OF FRACTURE

If the fixation of the limb after the fracture has been reduced is inefficient, so that a material amount of movement can take place between the fragments, then every such movement causes pain, and produces a reflex contraction of the muscles. This reflex spasm may very readily canse overriding of the fragments, and in the case of the shafts of long bones lead to shortening. In fracture of the neck of the femur it modifies the angle between the neck and the shaft and so causes the flexion of the joint, with the result that borly weight is
not tramsmittey in the mormall line. In conserfarence of this, crippling changes in an onten-arthritic character subsequently occur in the joint. Fianlty aligument of the bemes may arise from inefficient fixation. even in a case in whels the fracture was originally fuils redice ed and the benes bronght into correct alignment (Wig, on). The rennlt is that the trace line of the shaft of the leme is

Fia. 65,-Endto-end apposition of fractured fensur. A. Ead-tiosad appo ailion and perfact alitamant. ". Imperfeet appontrion bat with good alitn - roent. C, End-to-end wpposition with faulay alignmant.
not maintained, and the joint at one end of the bone is thrown out of its proper relation to the joint at the other : in consequence, musiles do not act in their correct line. anid the usefulness of the limb is impairen!. Further, in the lower limb the line of transmission of bexly weight is altered, and this throws an improper strain on joints. and ligaments, resulting in changes in the joints, in flatfoot, aud in other disabling deformities. For instance, in fracture of the tibia and fibula a little shortening of the limb does not soriomsly impair its strength if the

68 NOTES ON MHIITARY ORTHOPNDICS

 muscular and powerfil men are, inleed, slightly bowlegged. Int in a valgoid deformity the weight of the body Is carried $t(x)$ far to the inner side of the foot, and this throws toxe muels weight on the nrell, and the result is a flat and everterl foot (Fig. 67 II).

- Aly valgis deformity at the klece, ill the leg, or at the

A

${ }^{-}$

Fifet 67.- - Diafrems to illustrete effecte of melunian of tibie. A. Metnnited ridis of fuse, of Molucing bowded end throwing body weiche on to nuter of the body is cerrited to the looer cide of euch n pondtion that the weight
ankle is a weakening deformity, and greatly reduces the usefulness of the limb. It is a gool fault, therefore. to err on the side of prolucing a slight bow-leg, with its varoid accompaniment. if there is to be any error at all. In casses of malunion, when the callus is still tender. it is gencrally not difficult to readjust the limb by manipulation withont liaving to perform an open operation. In the case of the femn", this cinn usially be done two, or even three, months :ffer the original fracture. As a rule, the worse the position of the bones the longer will the callus take to consolidate.

The next peint to which I woukl draw attention is that callus may yiell in such a winy as to throw the bume out of proper alignment. A gexsl example of this is freguently aflorded by cases of P'ott's fracture which have been correctly relluced, and six weeks later arr in goowl position and united. A month after this, however, the patient may complain of some pain at the site of the fracture, and also of symptoms of flat-fent.
Here the counter-pressure of the ground rin the font forces the astragalus ingainst the external malleollus, allul

Fis, 6h, - Homet and irom for we after Protin fracture, A, Showing the beot with crooked and clondated herel and the oufaide iron: 11 , the same epplied.

so proluces a lever action, straiuing the callus. To avoil this, every case of Pott's fracture shomld be set to walk with the inner side of the heel raisel to keep the foot inverterl, and if the patient is a leavy sulject an outside brace also shombl be worn (Fig. 688 a and 68 bi). It is disconcerting and puzzling to see it perfectly goorl functional resint replacerl by a bad one ; to avoid dis. appointinent of this kind it is advisable. particularly in fractures of the lower limb, to apply some sort of guard to prevent straining of the callus.
Functional Impalrment assoclated with Various Fractures. - Before discnissing the treaturent th be arlopted in particular cases, it is well to recognize the forms of impairment of function commonly asseciated with each fracture.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TFiT CHART No. 2)

APPLIED $\mathbb{M A L E E}$ Inc
1653 East Main Street
Rochester, New Yark 14605 USA
(715) 482-0300-Phone
(716) 288 - 5989 - Fa』

7O NOTES ON MIIITARY ORTIHOPRIDICS

Humerus. - Fractures of the humens near the shoulder-joint (that is, those of the sugical neek and above the insertion of the (eltoid) are commonly associated with inability to abohet the limb fully. The reason is that the upper fragment is often tiltel ontwards, and end-to-end union does not take place. In order to avoid this, the surgeon's object when setting the fracture should be to bring the fragments end to end if possible. He shonli pull the arm at right angles to the trunk, or even straight upwards, until all overriding is completely overcome, and should then endeavour to engage the end of the lower fragment on the broken end of the upper fragment. By pressing the two together he can at once tell if they are engaged or are sliding past each other. If they are engaged, the arm can be gently brought down to the side and secured to the trunk by bandlages.

Fi4. 69.- Position for fracturen about elbow in the adult. The eltonw is even more flexed in children.

Once the fragments are engaged they are not likely to become disengaged again.
L:lbow-joint. -In fractures abont the elbow-joint, with the single exception of fracture of the olecranon process, the usual disability is limitation of flexion.

The limb should thereforc be extended to push away any fragment likely to obstruct extension afterwards. The forearm should be supinated to make sure of clearing a right of way in that direction, and then the elbow should be fully flexed and bandaged (Fig. 69), care being taken not to produce tight circular constriction of the limh in any part. In this way we may make sure that there shall be no callus exudate in the bend of the elbow and at the same time the tendon of the triceps acts as a posterior splint.

When a stiff elbow, after an injury, has to be dealt with, the same mancuvres are gone throngh so as to force the recently formed callns ont of the way matil full flexion is secured. Usmally this can be done on one accasion, but in some cases it may be necessary to Hex the joint in two or three stages.

FRACTURES: IMPAIREI FUNCTION
 71

Radius and Ulna.-In fractures of the bones of the forearm the disability most to be feared is obstruction to supination ; pronation is usinally good. Therefore, in setting the fracture, or when breaking down callus and resetting the fracture, the surgeon should extend the forearm and supinate fully in order to make sure of a clear right of way for supination, and then set the fracture, taking great care that the ulna is perfectly straight, and that there is no lateral pressure anywhere on the shaft of the radius (Fig. 7o). It must, however, be remembered that the radins is a curved bone which rotates on the ulna like the handle of a bucket; if the arched shape of the radius is destroyed the joints at its ends will be ont of their true line, and impairment of function will be the result.

Carpus. - Fractures of the carpus often result in a stiff wrist in a flexed position. Every schoolboy knows that the grasp of the hand is weakest when the wrist is flexed. Therefore, in every case of fracture or injury of the carpus. the wrist should be put up in a hyperextended position (Fig. 7I).

If the wrist has been allowed to get stiff in a flexed position, it should be dorsiflexed under an anesthetic and fixed in that position. In rare instances a fragment of the scaphoid is displaced on to the dorsum and blocks extension ; if this has occurred, it may be necessary to remove the fragment before the wrist can be hyperextended.

Fis. 70.-To show the complete aupin. ation and extenaion of the arm nepercary in fracturea of radiua and ulaa.

Ankle-joint.-When we turn to fractures near the ankle-joint we find that many patients complain of both pain and stiffness which last for months or years. A study of the causes brings to light two principal factors

Fis. 71.-Doraifiexion of wrise for frectura of cargus.
responsible for loss of function here. Eversion of the foot, for instance, is fairly well recognized as one of them (Fig. 72). If the patient is allowed to recover with the ankle in a valgus position, the borly weight when he

72 NOTES ON MILITARY ORTHOPADICS

stands will fall two far to the inner side of the foot, and at once all the factors which make for the proxluction of 1lat-foot are prorluced. it is, however, not sufficiently well recognized that these conditions may be at work in an ankle which has every appearance of being in gorxl position when the patient is discharged from hospital. Straining of young callus by borly weight is very common in fractures around the ankle-joint, owing to the patient heing allowed to walk on the unprotected joint tox early. 1 therefore always discharge these patients with a "crooked" heel and often with an outside brace as well, to ensure that the hoxly weight shall fall on the outer side of the foot (Figs. 68 A and 68 n). The natural corollary of this is that if boxly weight will prosluce a valgıs deformity by straining the callus, it will also

Fin. 72.- Malunited Pot's fracture, ahowink everaion of foot.
correct it if we "crook" the boot well, and therefore when the callus is already strained in the valgus direction, and the patient comes with a stiff painful ankle and foot, all we need do in many of the milder cases is to crook the boot well on the inner side, and let the patient " walk out" his deformity. In older and more severe cases it is from the first necessary or aclvisalble to wrench the foot into an inverted position under an anassthetic, and then let him walk with his heel well crooked; this is made easicr by the application of an ontside brace (Fig. 68). If this after-treatment is not persisted in for some weeks the condition will most likely recur.

The second great disability, after injuries ahout the ankle-joint, is inability to dorsiflex the ankle. The patient, when walking, cannot get forward on to the toes and fore part of the toes without pain across the front of the ankle.
This is a very difficult condition to correct, once the
deformity has beel allowed to become entablinked. The proper thing is to prevent it when the injury is recent : to make sure of this the surgen shombld dorsitlex the foot and so satisfy himself that he has commanded a complete and elear right of way for this movement in the future.

Both these disabilities are well illnstrated by cases of Pott's fracture: this injury essentially consists of ? fracture of the fibula shont three or four inches above the external malleoly:s with a dialocation of the ankle outwards and backwards (Fig. 7.3). There nay be minor complications, such as fracture of the tip of the internal malleolns or the less well recogrized fracture of the edge of the articular surface of the tibial. These, howewer, do not alter the general nature of the disability.

Fin. 7.3. - Malunited Pott's fracture, showind dislocation backwards of the foot.
The method of redaction 1 iddopt is the following: The knee is flexed to relax the calf museles. If these muscles give trouble, tenotomy of the Achilles tendom will put them out of action, but this is only necessary in exceptional cases, and strength returns but slowly after this apparently harmless operation. Grasping the foot by the heel in one hand and the dorsum in the other, the foot is pulled and everted to make sure of thoroughly disentangling the fractured eads. While still pulling, the foot is fully inverted and the ankle dorsillexed. If the ankle cannot be doriflexed fully, it means that there is a definite posterior dislocation or that the anterior edge of the tibia is fractured. It is necessary then to push the tibia back and hring the foot well forward until the ankle can be well dorsiflexed. The foot is then fixed in splints in the fully inverted position and dorsiflexed a little beyond the right angle. If the surgeon maintains it in this position, he may wait with confidence for a good result, If he is content with a less

7f NOTES ON MHITARY ORTIOPAEIICS

thorongh reposition, he is is great danger of gettong a result with some stiffness, pilin, or limitation of movement which will seriomsly interfern with comfort in walking. Since the days of lercival lott many splints have been devised. The shape and style of the splint does not matter a jot. The important clement is the surgeon. If he knows his work, be will fix the foot in the position described and will be rewarded by a gexal resill.

As we have seen, malmion and consequent functional disability depend on two factors: (a) eversion, (b) diminished dorsiflexion.
(a) Eversion often calls for operation. In comparistively simple cases all that is needed is to pass a clisel throngh the internal malleolns, and also throngh the site

Fia. 74.- Operatinn for malunited Pott's fractare: wedke from tibia and niteotomy of fibula.
of the old fibular fracture. The foot slould then be forcibly inverted, and treatment continued to maintain the inversion. In the more severe type of case an open operation is advisable. A wedge of bone is removerl from the lower end and inner side of the tibia (Fig. 74). The e vedge should only go a distance of four-fifths through the bone. An osteotomy of the fibula is next periormed. The wounds are closed, and not dressed for twelve or fourteen days. The stitches are then removed, and, under gas, the limb is fractured by forcible inversion. This two-stage operation eliminates the anxiety which must attend the treatment of a compound fracture, and this is an important matter when powerful manipulation is necessary. For many reasons, however, it may be advisable to complete the rednction at the time of operation.
(b) Dorsiflexion of the ankle may be blocked by callus exudate the resill of fracture of the anterior
articular edge of the tibia. Complete horvaleaun of the ankle at the time of accilent womlil sise the pat. tient from this deformity, for the frakment of bente would in this way be pusherl to one vide. hat if than hats not been dones, ind at a liter dite we find that dorsiflexion is prevented, an incision should bemate and the: offending prominence chiselled awas. The apore left by the removal of bome shoult be t. eckel with fat removed from any convenient part. This prevents the new callus exulate from giving rise to troulde. In all operations where bone is remosed and psembarthrosis is desired I find the generous employment of fat most helpful, and in order to reduce the callus exudation the exposed cancellous bone slould be lightly hammeres.

Tibia.-In fracture of the tilial faulty alignment may be brought about by posterior bowing: the weight of the bexly may lie thrown son far back that it passes at some distance behind the :mkle, as shown in Fig. 75.

Femar.-Fractures of the neck of the femur, and all fractures about the small trochanter, should be treited in the abslucted position to prevent reformity of the coxis varis type (Fig. $7^{\text {th }}$ a and $7^{(1)}$ b). Stiffness of the liip associatel with limitation of aleluction, offen accompanied by "ostec-arthritic" changes in the lip-joint, is the sequel of malunion in this region. To prevent this it is necessary to secure abduction and to maintain extension in the alxlucted position. If the fracture is of some weeks' standing and the area is still tencler, the callus is certainly not consolidated: forcible alxatation and extension in an alduction frame and rigid fixation in this position will then be followed by adiaptation of the callus to the corrected position.

Fractures of the shaft of the femur, enpecially in the middle third, are frequently followed by gross forms of malunion, which will excellently serve to illustrate malunion in ling bomes.

The fanls commonly fomed are :

1. Shortening or oterviding. Ine to the fact that (a) reduction has been incomplete, the surgeon not hiwing pulled until the fractured limb was at least as long a:

76 NOTES ON MH.ITARY ORTHOPDIDICS

its fellow : (b) the methon of fixation and extension used has been inefficient, and the muscles have cansed owerriding after the fracture wis set; (c) the lualy weight

A

n

Fin. 76.-Fraefure of jeek of femur, A. Fractured neek, showind netsitioe in edjuetion. H, Fractured neek correetly reduced in abduction.
hisw cansed yiedang of the callus after the piatient has begun to walk.
2. Angular alformuly or erroneotes alignment is the result of inefficient methods of fixation, and more particularly of inefficient extension in the line of the limb. Erroneons alignment throws all the muscles of the part

A

A

Fis. 77.-Fracture nf upper third of femur. A. Adduction deformity. F, Abductinn faulty, as the unper fratment does not participate.
out of line, and, what is more important, puts the joints above and below out of their correct relations. A contmon fanlt in fractures at the junction of the lower and middle third is a posterior sagging (Fig. 78), which is
beat sem when the pationt begillo to walk. 'The lenly weght is than thrown on the posterior part of the capsule. The deformity renembles a gemu reenrvatme.
3. Rotation deformily is far tox commom, and rim only he the result of carclens and inefficient treatmens.

Diagnosis.-In a case of malumion of the shaft of the:
 the whole region of the fracture is tember, and is alos the seat of patin for weeks and momths after comosolidation onght to be complete. 'luss means that consolidation is far from complete. and that the callus is the seat of active change. Nature, infact, is struggling with the problem of buttressing up the matunited fragments so that they ean meet the frrees which are acting in them: hence the exuberant proxlaction of callow, which is attended by pain and tenderness.

Treatment-In such cases it is not difficult to break down the callus by manipulation. Extension with block pulley and suitable tackle will then stretch the muscles and reduce the owerriding by $2 \frac{1}{2}$ in. on a single (xeasion (Fig. 6,3). Rotation deformity is, of comrse, corrected at the stme time.

If open operation is employed. the simplest form of osteotomy is an obligue one through the callus: between the original fragments of the shaft. Once these are ent through, the greatest part of the remaining difficulty is in fully restoring the length of the limb by extension. The t'g muscles of the thigh can only be fully overpowered by the use of bluck pulley ant tachie (Fig. 63). When this

Fit, 78,-Diderram to illum trate posterior satinit in maluaited fre sture of femur in the middle third. has been accomplished the leg is fixed in a Thomas's knee splint, the tuber ischii rests on the paddec' ring, the extension straps are secured to the bottom of the splint. We ars then sure that, whatever happens, the muscles cannot contract and canse further overriding. The only thing the museles can do is to give up the struggle, and, as a matter of experience. this is what always happens. The surgeon finds on lis next visit that he can get perhaps another half-ineh of

7^{8} NOTFS ON MHITTARY ORTIIOPASDICS

 III a 'lhomas's knee sphat fornd general alrgment of the lomb can cavily le secured-in fact, is obtained almost allomatically: The omly pents to which the surgeon has really to attemb are the position of the font-torere
 extenniont.

Ioxally, splints are applied to control latcral moweo ments. In the first instance this is not diftientt. Wincon reselting a mahnited fracture it is mot an easy, for the callus already formed gets in the way.
In these malnnited fractures of the femur of some weeks standing with considerable overlappings, after refracturing the bone by force the pulleys shomlit atwas be applied and a great effort made to secure bath lengih and aligument. To render this less dificult, it may loe wise to move the fractured ends freely in all directions Th disturl) and disengage the fibroms and bony exndate: The extension loy pulley should be maintained for erveral minutes to lessen the resiliency of struetme and to resluce the chance of telencoping. The limb is then maintained in extension by a Thomas's splint, and on two or three sulsequent occasions the pulleys are applied. 13y these simple means overlapping of three or four incher cill le wercome and an open operation is avoided. The " dimming" ": :nethad already described is applied to assish osteogenesis, aided when necessary by percussion.

Whatever operation may subsequently be needed, I cannot $t(x)$ strongly urge the necessity of preliminary pulley traction in order to secure a better length, and in this way prevent the sacrifice of bone.

In cases in which muion in the vicions position is s.s complete and firm as to render operative proced:res necessary, the procedure to be followed is intilnenceal by the special type of snion present. If it is a mere case of faulty alignment, with fair apposition, a small puncture and an osteotomy saw (Fig, 79) will do what is desired. An X-ray photograph should be taken, and the section made through the amgle. The case is then treated as one of simple fracture. If there is overlapping of the fragments, with no excessive callns, the saw or chisel (Fig. 80) is introdnced between the fragmen's and the lateral fixation undone. Pulley extension will then diminish or obliterate the shortening, and the subsequent treatment will main ${ }^{+}$in both length and alignment. In other fractures liguer up, with great thickening and lateral deflexion, a wedge is removed from the conver side of the bent bone, and a fracture at the point preferred may be produced some days later (Fig. 8r). Fixtension and abuluction of the limb should then be secured. In rarer instances, when musual deformity and over-

Fis. '\%. Author's astectainy wow with pruseted end.
of malillited fractures, but a mosiarlt's reflection will satesfy us that there in only onte prolsen before us-the reatoration of firmetion. Gperation or manipulation to
 fanlty prsition is only a preliminary step. fil short, a
 the ojperation call do in tor reromatitute :'e fratiore or matke allother fratiture similar to the first.

Fif. MO. - Fracture of upper thisd of femur. Dietram to illuntrate ustectomy to correct common deformity.

Hid. Mt.-Freeture uf upper third of femur. lifelram showing removal If wedie of bone to correct ad. disction.

If after this the subsequent treatment is not better than the treatment adopted in the first instance, ${ }^{\prime} \boldsymbol{i} \mathrm{im}$ provement in the result is not to be expected. 1 as is probably why the statistics of late operations (o) correct malunion are often disappointing. 'Jhe inrgeon most not inerely reduce the fracture, bit innst maintain tlie corrected alignmeyt motil consolidation of the bone is sebured.

The fun 'amental principles applicalole to simple fractures losd goosl in the case of componnd 'ractures

8o NOTES ON MHITAKY ORTHOP.AEDCS

'He diftultse meatrying thout ont ate olstonaly
 eations are pand. there will be ample time ande opportunity the correct fally alfonment ablel to restore the lest pensible function to the fracturel limb.

I'lie: fractures buet witl its a resolt of gimblat wombely are unalilly very serions, and f hate withesed with priale the splemblitl efferts mate by the joung surgeons in

 very unjust, becanse amputations are performerl willont thaps, ind limbs still suppurating are not in the beit mosition. If the whole truth were known, these mangleal t. nles and flapless anloutations oftell represent surgical tsumplas where every art and device has been concelltrated upon the salvation of life and limb.

GHAMrER V

TRANSPI.ANTATION OF BONE, AND SOME USES OF THE BONE GRAFT

Injurates inflicted by monlern instraments of warfar re so often associated with loms of considerable portic ... of bone that it is necenary to bring together varions known means of replacing these defects. The presert chapter aims at giving a brief acconiont of my experionce of the grafting of brine.

Clinical experience in recent years justifies the ex. pectation that a lone graft will grow and fultil the purpose desired by the surgeon if the operative technique is appropriate and scrmpulous attention is paid to asepsis. Before dealong with the practical difficulties to be encountered, brief reference must be mate to varionts theories which have been advanced eonserning the growth of transplanted bone.
Three of the theories may be mentione 1 :
One, which has been widely held in Europe, is that. when a bone graft is transplantent, the grafte: l boue always dies and is absorbed, and that any new lone formed in its place is laid down by the periostenm, which is the only part of the graft which really survives.
The second is the well-known view of Mrewen that the new bone is formed by the proliferation of onterblasts within the bone itself, and is quite independent of the periosteum, which is only a limiting membrane.

The third theory is that the graft is not ostergenetic. but merely acts ats a suitable and appropriate scaffolding aloug and throngh which new capillaries and granulation tisule can grow, taking with then ontengenetic cells from the living lone-ends, between which the graft is placed.

Recent investigations definitely prove that bone transplanted even into the ablomial wall may grow, and that this may happen whether periostenm alone or bone alone is transplanted.
HcWilliams of New York, whoie investigations are thorongh. concludes that the survival of the graft depends on the establishment of an efficient blood supply, and that the blors supply is more ruichly and c

82 NOTES ON MILITARY ORTHIOPADDICS

efficiently established when periosteum is transplanted with the graifed bone.

I advise that, whenever possible, it is best to transplant periosteum with the bone, and, further, to be sure that the graft should also contain jart of the enlosteum.

Every surgeon knows that in simple comminuted fractures portions of bone must often be entirely, or almost entirely, cut off from their usual blood supply, but that necrosis of these fragments is extremely rare, while in the presence of toxins of bacteria, as in septic compound fractures, more or less necrosis is very prone to occur even in portions of bone still connected with their blood supply.

It is therefore safe to conclude that, whether the osteogenetic cells are derived from periosienm or from bone, scrupulous asepsis is essential to their welfare; that if they are not poisoned by septic toxins they can mirvive on exuded lymph or plasma for a reasonable period while a new blood supply is being established; and further, that the open cancellous medullary aspect of the bone and the periosteum both furnish convenient means of access for the new blood supply, and should be retained in the graft whenever it is possible,

It is important to remember certain further facts, which are established beyond doubt. First, that bone taken from one of the lower animals and grafted into man very rarely lives, even with the most careful technique. Secondly, that bone transplanted from one individual to another only lives in exceptional cases, These, therefore, are methods which camot be recommended. Finally, it is established that antogenous transplantation of a portion of the patient's own bone from one part of the body to another is fairly constantly successful if the conditions are suitiable and the technique correct. The nature of the technique and the conditions found suitahle will appear in the smbsequent parts of this chapter.

1'rofessor Taffier's experiences in relation to the transplantation of ovaries are interesting and instructive. He found that when ovaries were removed it was possible to retain the internal secretory influence of the ovary by implanting a healthy portion of one ovary in the abolominal wall. If the patient's own ovary was employed it almost invariably survived and became teuder at each subsequent monthly period. In cases in which no part of the patient's ovaries could he used, he tried borrowing an ovary from another woman on whom ovariotomy had to be performed. In every case this transplantation from one individual to another failed.

There are other facts which should be kept in mind
when repairing bony defects. For example, if a bridge of periositeum can be preserved, osteogenesis, or new bone formation, is much more likely to oceur, and the gap will be filled with greater rapidity than when no bridge is pusible, Stiles's cases of subperiosteal resection for tubercle are evidence of this,

Since the survisal of implanted bone is dependent on the cstablishment of circulation within it, it follows that necrosis is less likely to occur in small fragments than in large pieces, when the periosteum cannot be preserved. It is therefore a goo:l practice to scatter small frigments of lone along the site of the defect, for the cells in them can live for some time on exuded plasma; the new bood sinplly will reach them in a few days.

(ifneral Considerations as to Tranisplantation OF IBON1:

In performing transplantation of bone to replace a defect in the continuity of a long bone the surgeon hats tc keep (rrtain points in view, and in all mast follow Nature's rules.
I. Nutrition of the Graft.-In order to ensure the mutrition of the grift it is essential to observe the foll lowing points :-
(a) Perfoct hamostasis in the bed in which the graft is to be laid. A mass of blookl clot round the graft endangers its life, for this blool clot manst first be " organized " before the new capillaries or gramalations can reach or grow into the bone graft to supply it with hlood.
(b) Perfect asepsis, for toxins, if virulent, will atonst certainly canse the deatlo of the hone cells in the graft before a protective vascularization can occur.
(c) Preparation of the bed in which the graft is to lie. It shonk be freshened, so that rapid adhesion and organization may take place hetween the graft and surrombling tissue. Moreover, the soft tissules shomid be bronght round the implanted bone.
2. Union of the Graft,-The union of the graft with the ends of the bones between which it is placed cinl be helped in a number of ways. The ends of the bone should be opened up and prepared for the reception of the ends of the graft. It is desirable that some part of the graft should be in contact with the vascular medullary cavity. Sometimes it is possible to push the graft straight into the open mednllary cavity (Fiig. 82). As a rule 1 avoid the use of plates and serews, ins they tend

84 NOTES ON MILITARY ORTHOPAEDICS

To deliny mion. Varions methoxls of fixing grofts will be mentioncel litter.

Perfect immubilization is an important factor in seenring early vascularization and mion. It is quite true that a certain amount of mobility at the seat of i fracture increases the output of callus, but this is of a vicions and really useless type. It is produced merely by ostogenesis occurring in the increased exndate cansed by tearing and injuring the granulation tissue which is being produced to unite

Fi. 8. 82.-Graft pushed into ofen medullary cavity, the fragments of bone. It is much more reasonable to keep the part immobile until union is firm and has begun to ossify; then the next stage mentioned below comes into play to strengthen the union.
3. Growth of the Graft.-The growth and development of the graft so that it can perform the function of $\mathrm{t}: ~ \geq$ bone it replaces is best promoted by a modified or guarded exercise of the function of the bone, for then the bone cells respond to the stresses to which the part is subjected, and build accordingly. This is known as Wolfi's law, which is an essential foundation of all surgery of bones and joints. This law is familiar to all surgeons, but it will not be out of place to 'luote it here : "Every change in the formation and function of the bones, or of their function alone, is followed by certain definite changes in their internal architecture, and equally definite secondary alterations of their external conformation in accordance with mathematical laws." It follows from this that when the graft and the bone have begun to unite firmly the union will become stronger if a certain amount of functional use is allowed, provided it is not violent enough to tear up or break the union. Tluns in a graft in the leg or in the forearm the patient is encouraged to move the toes or fingers while the part is still in splints. so that the right traction of the muscles on their origins round the site of the graft may produce a physiological stinulus to increased growth.

In the next stage the splints adapled must allow more
active use, while at the same time pramalimg agianast straill which might callse a " fracture " at the seat of the fraft. Thass in the canse of the lower limb an ambuliatory splint is allowell white the part is still firmly controlled by local oplints.

I'sis of lbont Grafts iN Militaky Sullieky

I. To replace Bone destroyed by Infectlve Processes, such as Acute Osteomyelitis.--. Is in instance of bone grafting after usteomyelitis and of the extril-

 (Sketch from skiakram.)

Fig. 83 bi- Prube to huld ends of tibia anart during healing of wound. (Sketch from ikiastam.)

Fik. 8 Jc .-Fracture of traft: marked callus cxudation. (Sketch

Fin. R3D. - The fracture of the giaft united. (Sketeh from okiagiam.)
ordinary vitality of the transplant, I would relate the following facts: Several years ago I was consulted in a the case of a youth with advanced osteomyelitis of the tibia. I cut down along the whole length of the site of the tibia, and found that the shaft lad co-npletely dis.

86 NOTES ON MILITARY ORTIOPEDICS

appeared, and the periosteum also. When I hat scraped away all putrid material, there remained little except the epipheses and exposed muscles. A long simus probe was tixed lengthwise between the epiphyses in order to milintain the distance between them, and the wom was allowed to gramulate. Several months after the wound had healed and the probe had been removed I transplanted a long strip of tihia from the somend limb. T'his rapidly grew in thickness. The patient was discharged from hespital, and gradually discarded all supports. Seven months later he was knocked down one day, receiving a blow on the leg which broke the transplant, and 1 possess interesting radiogriphss of the callus exudation and firm union at the site of the fracture. This case was a great enzouragement to me, for the transplant was laid in an environment of firm cicatricial tissue. The illustrations are drawn from the X-ray photographis (Fig. 83A, 13, C, r).
2. To replace Defects of Bone where Portions of Bone have been blown away by Gunshot Wou. ids. 'Ireatment here follows the same lines as in the case cited.
3. To Immobllize Injurles of the Spine In Cases of Tuberculous Arthritis, or Injurles which lead to the Development of Kyphosis. - In the present war there have been minny injuries of the spine which hive been followed by the rapid development of a kyphos, sometimes due to traumatic osteo-arthritis, sometimes to tuberculous changes following the original injury. In either case the treatment requires prolonged rest, cluring which the patient is fixed in recumbency. The periond of recumbency can be very materially reluced by a judicious operation.
4. As a Substltute for Plates and Screws.--Bome grafting can be used as a sulnstitute for plates and screws in the treatment of certain types of fractures, and to assist in securing union in cases of manited fractures.

Tlichigute of bone Grafting;

Pieces of bone for grafts may be taken from ahnost any bone in the borly, but for mont purposes the tibia is the most convenient guarry in which to delve, for from it pieces of bone can easily be cut of any length or thickness likely to be needed. When a curverl picce of bone is required, as in surgery of the jaw, a portion of suitable shape may be found in one of the ribs. I have employed the shaft of the first metatarsal to replace a defect in the ulna. The periosteum is left behind, the required length of the shaft with the whole of the endosteum being transplanted. The shaft of the metatarsal bone is rapidly regen ated. The tibia, however, is the bone
of choice, as periosteum can be tramplanted with the bone,

Operation.-The first stilge of the operition is to prepare the bed for the graft, freshening the bone ends. A pliable probe is then laid in the defect and bent to the exact length of the graft recpuired. The wound is packed with gauze to stop bleeding, and covered with a sterile towel while the surgeon removes the graft from the selected area.

If the tibia is chosen, an incision of suitable length is made aiong the outer side of the anterior border of the tibia and the tibialis anticus is partially separated from its insertion. The bent probe is then laid on the lome, and the exact length of the graft reguired is marked off. The periostenm is then incised on the onter and inner surfaces of the bone, completely mapping out the portion to be removed.

The removal of the graft is greatly experlited by the use of a domble circular saw ($\mathrm{Fig} .8_{4}$) electrically driven. Great care must be taken to ensure that any part of the

Fis. 84.-Double circular saw for cuttina bone arafts.
apparatus with which the surgeon or his assistant may come in contact is scrupulously sterilized.

If an electric motor is not available a good hand motor may be used. Failing both, the graft may be cut ont with drill and chisel, but this is a slower process, and requires some care to avoid splintering the graft or splitting the tibia. The methorl of procedure is to drill a series of holes along the line of the incision in the periosteum, and then connect these with the chisel. The drill holes should be made into the nedullary canal, so a to ensure having some of the medullary aspects of the bone in the graft (lig. 85).

The transplantation should be made inmediately; the graft should be picked up with forceps and not touched even with the gloved fingers. It is laid directly into the prepared bed, in which all bleeding has strspped by this time. I am convinced that it is a mistake to wash the graft in saline lotion or leave it in saline while something else is being done. The best results follow immediate closure of the deep tissues round it and suture of the surface wound. The limb must then be securely controlled in correct position either by splints or by a plaster-of-Paris case.

88 NOTES ON MHIITARY ORTHOPEDICS

Spinal Fixation. - Two operations are generally described for spinal fixation-Albee's and Hibe's. The details of the operations onght to be pretty well known, as they have been before the profession for several years,

Albee's Operation.-This operation consists in transplanting a slip of the tibia into a series of spines of vertebra, bridging the weak ?pot in the vertebral columm (Fig. 86).
The surgeon shomld begin by preparing the site for the graft. Each spine, including two above and two below the weak or diseased vertebra or vertebres, is split and broken ontwards (Fig. 87), the junction of spine

Fif. 85.-Slidins traft marked out by drill holes preparatory to cuttint out with chisel.
and lamella being also roughened. The bed is packed with gauze to stop bleeding.

The graft from the tibia is then cut with the circular saw, or chisel and drill. The front of the tibia is reached by secmring the heel against the buttex k with the knee in acnte flexion. This enables the surgeon to cr : the graft without turning the patient over. The whole operation can thas be performed quietly and expeditionsly:

The graft is then transferred and implanted while an assistant stitches the womd in the leg.

No difficulty has been experienced in mursing these cases on their backs in a Thomas's frame. This is applied most casily after these operations by laying the frame face downwards over the patient and turning the patient and splint together with the aid of a sheet, thus avoiding any strain upon the implant.
$H i b b$'s Operation.-In this operation bony fixation of the spines is obtained without transplanting bone from the tibia. The spines are split, the upper and lower
margins are broken away towards the adjacent imine, so that the fragments split away from one spine interlink with those split from the next. The amine can also be ankylosed. Superthoms chips of lome are sprinkled

Figs, 16. -Hone tramaglanted into craft made in apinous processes, (Albee's method.)
along the site of the operation, so that a line of callus is former locking all the spines together. I often prefer to lay the graft upon the lamina rather than between the spinous processes. A very suitable bed can be pere-

Fig. 87. - Diagram of aplite spinous process with graft inserted in cleft.
pared there upon which the transplanted bone easily lies (Fig. 88).

These operations are particularly useful in cases in which the vertebrae affected are in the lower dorsal or lumbar regions, for it is difficult to control these areas completely in a support or jacket in which the patient can go about. The alternative is prolonged recumbency

on NOTES ON MILITARY ORTHOIPADICS

fixed in a splint or Thomas's frame. The result of one or other of these operations is that a patient who in former days would have been kept fixed in recuriblency for a year or more can be allowed up in a light spinal support in three months, and can go alloint his ordimary business ans shon as he can walk confortalsly, for with this osseons bond hetween the vertelra there is practically no fear of kyphotic deformity oecorring.

Technigue of Bonf: Grafting for Fracturfs and Deflets in Continults
The technique of bone grafting for fractures and for

Fid. 88, \rightarrow Bone trafelaid upon the lamine.
the replacing of defects in continuity of long bones, either from loss of bone or from non-minion, follows very similar lines.

My views on the use of plates and screws in the intmediate treatment of fractures have been stated before and need not be repeated at length. In most parts of the limbs good alignment and good functional results can be obtained by simple reduction and setting in appropriate splints, and therefore the rontine nse of piates seems superfluons. The art of setting fractures is deserving of more study than has been given to it by many members of our profession in recent years. In the long bones correct alignment of the limbs, and therefore of the lines of action of muscles and joints,
: mure important than faultless apposition of the ends of the fractured bone.

Excellent is plates iand screws are in certain emergencies, experiencel surgenins know that they proxace: actial delay in true and efficient onseons mion of the fracture.
In any case a metallic phate is a foreigh lumly, and the inevitable tendency of the tissines is to encapsule or encyst the foreign loxly, while transplanted bone can lie built into the structure of the part, and therefore assists usteugenesis.

Bone Grafting for Recent Fracture.-lin my experience, spiral fracture of both bones of the leg, especially in the lower third, is the only fracture in the limis which regularly presents almosit insuperable ditficulties to satisfactory reduction and setting by non-operative

A

H

Fid, 87,-A, Inlay alide before beind placed in position, \quad, Inlar Iraft placed in postition.
means. The difficulty is not in reducing the fracture, hut in persuading the fragments to stay in correct alignment. The cause lies in the great teulency of the foot and lower fragment to rotate, and then the fragments override.

The Sliding Inlay Method (.fllec).-1n this fracture the sliding inlay of bone, deseribed in a previons chapter (see p. 6.3), is a very fascinating and simple way of locking the two fragments so t: at they do not easily disengage when they undergo slight rotatory movements. All that is required is the parallel circular saw shown in Fig. 8_{4}.

The fracture is reduced and held or clamped in position whie the cuts are made as in the diagram (Fig. 89 A and в). The shorter piece is lifted out, and then the longer piece $w l^{\text {th }}$ the medulla is slipped down to lock the two fragments of the broken bone. The smaller fragment is

92 NOTES ON MILITARY ORTHOPEDICS

then lisid into the gap above the longer fragment which hais been slid down. Musclew, periostenm, or any other of the deep tissue helonging to the part are stitchel ower the graft, the wound is closed and the fracture put up in sheet-iron splints or phaster, taking care that im displacement occurs. In a few days organization has occurred sufficient to prevent any further dianger of displacement untess there is carelessness or some anusinal disturbance of the part. It is selfom necessiary to peg or screw the fragments, and the introluction of a foreign borly is to be avoided.
'rises spiral fracture of the tibia in the lower third of the leg is practically the only ordinary fracture for which, in my opinion, operation shombl be considered at once as all immediate procedure, and then fixation by boule to prevent rotation is preferable to plating if it can be done. liailing facilities for a proper fixation by bone, plating comes next.

Neither plating nor bony fixation seenss necessary in any other ordinary fracture of the limbs. In the cance of unusual fractures exceptions oxcur. Further, each surgeon must, of course, nise his own judgment in every case that comes under his notice, and employ those methods which he best understands and in which he feels most confidence. These will differ according to the surgeon's training. My contention is, however, that a surgeon skilled in the use of splints ran get gool results so generally that opetation is rarc. neerled.

Ununited Fractures.-It may be admitted that in dealing with unnnited fractures when firm fixation is required, plates and screws antord a in at secure and rapid means of fixing the fragments. This method requires less surgical skill than when bone grafts are used, both in the operative procedure and the after-treatment. There is, however, always the point to be considered that in these cases the patient has alrearly shown defective osteogenetic power at the seat of fracture, and the plate is, after all, a foreign buxly, which will be likely to impede osteogenesis, while a bone graft is a direct assistance to osteogenesis.

For many years 1 used to cut down on the ununited fracture, crush and drill the ends of the bones to open up new routes for fresh blood-vessels, and turn a strip of periosteum off one fragment down to the other.

At a later perioxl 1 employed in addition animal bone as a graft, with results which were not very encouraging. The use of a strip of the fractured bone as a bridge between the two fraginents was followed by much better results (Figs. 90 A and 90 B).
It is assumed in the methods now to be described that antogenous grafts are always used. The three methods
 clapter.

1. The I.alcral Civafl.-Hisir collsints of laying a strip of lwne along the side of the bone to be repairel, taking;

 *nualted fracture.

Fis. $90 \mu_{0}-$ The olide in position 1 portion removed from bod diecributed between ends of Bome.
care to make a fresh bual for the graft along its whole length, so that raw bone is in contact with raw bone (Fig. 91).

It is the simplest methorl, and often the only one which can be used-for example, when the ends of the broken bone are tapering and wastel (ligs. $92 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$).

Fic. 91, - Laterel arafl.
2. The Intramedullary Plug (Fig. 82). -This can only be employed whell a gook open medullary canal is avaiiable and the transplanted bone can be inserted into the medulla above and below the fracture. This is often difficult. It is advisable, when possible, to use it in combination with the sliding or the lateral grafts.
3. The Sliding Inlay.-The inlay method described above can be employed when bridging a gap: the bits

I NOTES ON MILITARY ORTIIOPADICS

of bante chit from the emil of the slule must mot be wate but should be broken up and sewo aloug the site of the defect to form adblional focl of osteogenesis.

A combination of the slisting inlay (Figs. (x) A and \boldsymbol{n})

,

1

C

Mis. 92,--4, Preparina bed for eransplanted lateral sraft. M, Traneplantad interal fras held in pusition by entert. ', Tramaplanted fateral grafe beld in position by salla,
and merlullary plug in a strong and sitisfactory methex

Conclutiton

Rexappitulating in lrief, it an y le said that, whatever particular theory of ostengenesis may be the true one. the following points have proved valuable in practice:

The aien of the graft inust be kept sernpulomsly

Fid. 93. -The intramedullary glut used in comblnation with the alidint or lataral israft.
aseptic, and free from monecessary blowl clot. Alerpuate blow supply in necessary to the growth of the graft.

The graft must be placed in close appositum to raw surfaces of the bone with which it is to unite.

The whole regiou mu : be kept fixed for a long periosl for undisturbed organization to take place.

The bone graft should be antogenous, and it is better that it should include both periosteum and medulla wherever this is possible, for both these aspects of the bone afforl facilities for the growth of new bloonl-vectels.

UNION IN IRACTURES

 take place, uble comsequent relaxatoon of vtrict fixation

 vatularizal.

Is it kermeral rule, the limbi whild lor kept fixed allul mulisturterl for at least twine the tome necessiry for union ol the satne lrone in :lll ordinitry simple Iratille.

1 iftell see casers which have brion operittel on, and ill Hinly illstances plated, ly wher rithor surgeron, in :which splints have been remioniol at the raml of is few
 Hllon hits bot takell place,
'I'here is un definite tine within which a frateture will Hute, 'fle times gis en in textbanks are winderstiated as applien e the majority of eases, jour example, I may ghote the case ol a pitient, seen in mos, with int ummiterl frateture of the lmmerns of twelve montlis durition, which was treisterl by the " hammer ablid dam" " metluxl. Int lati to be kept still lor nearly six nontlos before the bones united. The nltimate union wats aborIntely satisfactory, Operative proxedures hal previonsly fabled. 'litis question of itte convolialation al fractures has been aliscussed int (hapter IV. The wommeti received in this war have bromght the sargery of septic bones very muell intes the foregronnd, and lense grafting will have to be very extensively pratiserl. Wée numat le carefal to allow a sulficient time to elape before pro. ceerling to this operatom, It is slitheralt to formmate. an exact rule as to when the operation shoulal fee performed, lor we seem never to be phite lrec from the danger ol recrulescent sepsis. My liabst is to wait lor itt leost six months after a sinos is cioserl, during which time athd for a variablce perion aftervirds eflemt: ciall le made to improve the keneral matrition of the limb. It lrequently happens that durimg this delay mion of the fragments takes place, and lw transplantiation is needed. Varly operition is to be diseouraged from every point of view, and faihure to observe this rale has resilited in many a trigedy. It is very exceptomal, unless there has been a great loss of bome for non-unon to persist in fractures which are the seat of the type ol suppuration met with at this time,

CIIDPTER VI

DISABILITIES OF THE KNEE-JOINT

Every kind of disability of the knee-joint may occur in militury practice, from a simple sprain to the results of a severe wound.

An attempt will be made in this chapter to give a broad classification of these derangements and disabilities, with their diagnostic signs, and to indicate appropriate lines of treatment.

There are three common conditions which are not always as clearly distinguished by practitioners as they might be. They are (1) simple sprain of the lateral ligament, usually the internal; (2) slipping of the semilunar cartilage; and (3) nipping of the infrapatellar pad of fat. All these injuries may be proluced by a twist or fall which at first does not seem serious; all are associated with effinsion of fluid in the joint, and in all the patient complains of more or less recurring disability after the lesion, unless it has been recognized and treated in the firs instance.

Sprain of Internal Lateral Ligament

Sprain of the internal lateral ligament is distinguished by definite pain and tenderness on pressure over the attachments of the internal lateral ligament; the patient himself localizes the pain of which he complains to the inner side of the knee; definite pain and tenderness are not found anywhere else about the knee, and the movement of eversion and external rotation of the leg stretches the imjured ligament and retards recovery.

The treatment indicated, therefore, is firm strapping romad the knee in order to steady it, and a raising of the imner side of the heel to divert body weight to the onter side of the foot, and thas relieve the liganent from tension. It is hardly necessary to say that this treatment is preceded by rest in bed, usually with the aid of a straight posterior splint. This is the initial treatment, but neglect of the after-treatment just mentioned renders the patient liatie to recarring injuries of the ligament.

DISABILITIES OF KNEE.JOINT

Intirnal Derangements of the kinet
A regular gradation of injuries is met with, from a slight strain of the attachments of the internal semilunar cartilage of varying degrees of gravity to fractures of the spine of the tibia with rupture of the crucial ligaments. The former is a condition scarcely distinguishable at first sight from a simple sprain ; the latter is at once obvious as a grave disability. It has becone very important in military surgery to be able to distinguish these conditions clearly by signs which can be letermined by the surgeon rather than by symptoms clescribed by the patient ; as, in my experience, a considerable number of men who wish to avoid service have found that they can puzzle the medical officer by complaining of obscure pain and disability in the knee.

There are very many cases in which military surgeons have been let to operate upon a normal joint, expecting to find some abnormality of the semilnnar cartilage. The cartilage is very frequently torn in its posterior portion, and before deciding at operation that it is not lamaged it is necessary to disfodge it outwards. Hence the necessity for careful consideration of symptoms before deciding to operate; it must be realized that exploration, in the case of a cartilage, really involves its removal, otherwise a damage at the positerior part of the cartilage may be overlooked.

Mechanism of Certain Injuries.-Probably the best way in which to get a clear idea of the injuries which lead to error is to consider the mechanism of the various injuries, beginning with simple sprain and going on to real rupture or tear of the semilunar cartilage, and to compare them with bruising of the infrapatellar pad of fat, which is a lesion not always recognized or understood.
All these conditions may lead to a recurring chronic synovitis. Every case of recurring synovitis has a callse, and practicatly each is curable if the cause is recognized and receives appropriate treatment.

It has already b sen stated that simple sprain of the internal tateral iigament is marked by a specially temder spot over the attachunents of the ligament and nowhere else.

Rupture of internal Ligament and Damage to the Semilunar Cartilage.-If we remember the anatomical fact that the internal semilunar cartilage is closely connected round its convex margin with the deepest layers of the internal ligament and with the capsule of the knee-joint, we shall understand why a severe twist of the knee, with the leg abrluctet, may rupture the ligament and drag the semilnar cartilage with it,

98 NOTES ON MILITARY ORTHOPADICS

straining or tearing the attachanents of the anterior loorn. At this stage the inner sicle of the knee-joint is, so to speak, opened ont, ant everything depends upon what happens when it closes again as soon as the distorting force ceases to act.

If the cartilage is canght in displacement between the bomes the knee " locks" in the manner familiar to as all. The cartilage may be split, fractured transversely, rolled up, or completely torn from its attachnients, A penisal of the literature of the subject, indeed, shows that cvery conceivable injury to the semilunar cartilage may take place, and such cases have often been fully described. Sometimes the cartilage slips back into position without being crushed or caught between the bones; there is then no locking of the joint, bitt, in every respect, the etiology of the lesion is the same with the exception of the actual injury to the cartilage, ald the patient generally states that he felt something " slip " or " click " in the knee, but could quite easily straighten it immediately after the accident.

The history suggests the usinal cartilage injury of textbooks bit without locking; the knee becomes distended with fluid, and the patient refers his pain to the inner side. The physical signs are teuderness on pressure over the internal lateral ligament, and a specially tender spot to the inner side of the ligamentum patelle just wer the border of the tibia, a symptom always strongly suggestive of an injury about the attachment of the anterior end of the internal semilunar cartilage.

The treatment of the condition when the knee cannot be fully extended without causing pain will be discussed later. If the knee can be fully extended without causing pain, the aim should be to ensure complete rest until the torn attachments have united. The knee should be kept absolntely straight on a back splint for at least ten days, the bandage being firmly applied over cottonwool. After this the patient may begin to walk, and when he does so he shonld have a firm bandage over the knee to prevent effasion into it. Movements of the joint should be very limited the first day, and should gradually increase in range,

A common fault in treatment is to allow the patient up without a proper protective bandage on the knee, the result of which is effusion into the joint, and, what is more harmful, into the newly formed cicatrix about the anterior horn of the semilunar cartilage, thus stretching the newly formed scar and letting the end of the cartilage shiit about. When this happens the patient is often put to bed for a week intil the effusion has disappeared, but when he gets up again the effusion recurs, and so lie goes on week after week, mntil fimally the attach-

DISABILITIES OF KNEE-JOINT

 elongaterl and slack. The paturnt then complains that "nceasionally he feels it "give " in the knee, but it does not " lock." Some day a slight unusual twist may resilt in a real locking of the joint.

A joint such as this which has been the scat of at refinite injury will generally fill H_{l}, witl syumvial fluid when first used. Therefore the application of a pressire bandage shonld never be onitted. If the knee is carefully bronght intouse by graduated exercise, there should never be mmeh effusion, and each day it should be less in amonnt; that is to say, there is no effusion in the morning, althongl by the end of the day it may have appeared, and each evening the amount is less than ou the preceding one.

Thickened Cicatrix abc. . the Semiiunar Cartilage. -If the effirsion does not become progressively less, either the patient is using the knee too much and moving it too ronghly, or sonne injudicions masseur is moving it too roughly for him, or the surgeon has made a mistake in lis diagnosis and there is some condition in the joint which requires further attention, and he shonld make a carefnl examination and reconsider lis.s opinion of the case. When these cases have been the victims of defective after-treatment, repeated stretching and effusion about the anterior end of the semilnnar cartilage gives rise to a thickened cicatrix, which is tender, and can sometimes even be felt by the surgeon moving under his finger as the knee is flexed and extended. This painful spot is sitnated at the diagnostic point, already described, on the front of the knee. well to the inner side of the ligamentum patella. Sometimes this cicatricial thickening is so great that it is pinched between the bones when the knee is fully extended, and this canses sharp, well-localized pain an' tenderness.

Treatment in such cases depends upon the exal. condition, and two types must be distinguished:
I. In cases in which the cicatrix is not pinched, bnt merely gives rise to a sense of insecurity as if something is moving or "clicking" inside the joint, a rigorous conrse of strict rest, followed by massage and carefnlly graduated exercises, mity cure the condition in a month.
2. In cases in which the cicatricint minss grets definitely nipped, the condition lias become similar to the type of displaced semilunar cartilage usibilly described, and if rest and carefnl exercise fail, an operation to remove the whole mass is indicatedthe opportunity being taken to inspere the cartilage at tle same time.

1oo NOTES ON MILITARY ORTHOPADICS

Displaced Cartilage with "Locking."-It has long been recognized that definite locking of the knee-joint is a characteristic sigu of displacement of the internal semilunar cartilage, as described in textbooks. This condition is a more severe variety of the injury jnst described; it differs from it in the fact that sone portion of the cartilage is, for a time at least, canght between the bomes and prevents full extension.

The treatment of this condition aims at the restoration of the power of extending the knce fully without pain.

If the displaced cartilage is fully reduced the knee can be fully extended, both actively and passively, without pain. If this cannot be done, the cartilage is not reduced. When the cartilage becomes disengaged the patient is aware of it-in fact, he is the most competent judge of the success or failure of the manipulation.

Ireatment of the Initial Injury.-First, complete reduction is necessary. This can usually be effected by manipulation without the use of force, and the routine I prefer involves the active assistance of the patient. The patient should lie on his back with the thigh flexed on the body and the leg on the thigh. When in this position the surgeon can manipulate the leg, and can sometimes feel a fullness over the site of the displaced cartilage.

The patient is then told that he will be given the word "One, two, three-kick!" On the word " kick," the patient extends the limb as suddenly as he can. At the same time the surgeon rotates the foot inwards and pulls. while pressure is placed upon the thigh. If the dislocated cartilage is reduced, the patient is almost certain to announce the fact, and the objective sign is that the knee can be completely extended without impediment. The knee, surrounded by wool, should be bandaged firmly, and fixed on a posterior knee splint. If the patient is not of a temperament likely to be helpful, an anæesthetic is advisable.

Our next effort is to secure the healing of the lesions in and about the cartilage, so that it may have a chance of adhering in its proper position. The patient should, therefore, wear the splint for about ten days, but can usually be allowed up in his room at the end of five days. After ten days he may walk with the knee bandaged, taking care not to bend the knee suddenly, Active flexion of the joint should be practised very gredually, and the quadriceps muscle should be massaged and excrised gently. If the progression is carefuily made from gentle to stronger movements, the full range should be recovered without the recurrence of any effasion in the joint in about three weeks. The majority of these

DISABILITIES OF KNED-JOINT

cases, carcfully aud efficiently treated in the first instance, do not give any further trouble.

Where a successful reduction is not aecomplished, and. in consequence, the patient is not able to extend the knee fully, an operation will probably be required.

Cases of Imperfect Reduction.-I see many cases two or three weeks or more after the accident, in which it is obvious that attempts at reduction have either not been made or ha'e failed. The surgeon in charge of the case may have thought that he hird got the knee fully extended, but passive extension still caused pain, localized over the anterior end of the cirtilage ; the knee flled with fluid when the patient walked, and, though comparatively free from pain after rest, it hecame tender after exercise, It is often possible, even after weeks of displacement, to reduce the cartilage in these eases hy manipulation similar in kind but more forcible than that necessary in dealing with the original injury. Tinis manipulation forces the displaced cartilage from its abne \because al to its normal position, where it may become firmly and accurately fixed. This late recluction so often succeeds that it is alwiys worth trying. If, after an attempt at reduction under annsthesin, the cartilage still remains in a position in which it gives trouble, or if it remains loose ind frequently gets nipped, operation is the only sure treatment; for the case now has become one of recurring dislocation of the semilunar cartilage with locking of the joint.

A word of warning may here be given alout cases in which reduction is apparently complete, and the patient ean get about with tolerable comfort, but complains thiat the knee-joint dues not feel quite secure, although there is no evidence of the intrusion of any structure between the hones. These symptoms are often due to some minute adhesion within the joint which does not produee sufficient limitation of movement to be detected by the surgeon, but leaves the patient with the sense that he cannot use the joint without a feeling of restraint. Full movement of the joint, particularly in rotation, under gas anæsthesia, will often remove these symptoms, although the surgeon cannot always feel any definite adhesion give way during the manipulation.
Operation on the Internal Semilunar Cartilage. It is needless to say that the knee should never be opened except under the most scrupulously aseptic conditions, and never in a hospital in whic \dot{l}_{1} there are a large nmmer of septic cases. Operitions on cartilages, even it hase hompitals at the front, shomble lis couraged. It is not a practice which can be recommended, as the environment is a source of danger, no matter how experienced the surgeon.

102 NOTES ON MILITARY ORTHOPEDICS

The procedure which I prefer is the following; Thr leg is placed to hang over the end of a table at righi angles to the thigh; the knee is wripplese in sterile galuze, soaked in biniondide solution; the incision is made throngh the ganze, and the edges of the ganze elipped over the skin edges to the superficial fascia, As the knife with which the skin is cut may hecome intected by Staphylocorcus albus, a second clean knife should be used for all the deeper dissections. The incision need not be more than an inch or in inch and a hatif in length; it is made over the anterior end of the

Fig. 94,-Showins position of incistion.
cartilage, sloping very slightly downwards and inwards -that is, nearly, but not quite, parall: to the upper edge of the tibia (Fig. 94). Great care should be taken never to allow the incision to exteul far enough to the inner side to cut any fibres of the internal lateral ligament ; this is a fault which leads 'o weakness of the knee lasting for months or years, and is, unfortmately, still frequently to be met with in cases which have been operated on by the old large \boldsymbol{J}-shaped incision described in texthooks. The joint being opened, a blunt hook can be slipped under the free margin of the cartilage, and by picking it up it can easily be seen whether the front part is intact, or torn, or has tags or projections producing disability. In removing the whole cartilage
great care should be taken that no tags of cartilage are left projecting from the attachment to the coromary ligament, as these freguently give rise to continued symptoms, due to nipping or adhesions, and may necessitate a second operation. The condition of the fringes shomld be examined before closing the knee, and by retracting the patella the opposite front part of the cartilage can be inspected, if this be deemed necessiry: No movement of the knee mist be allowed after the incision has been made, as this may favour the entrance of air-a ninute risk, but an avoidable one, and therefore one which the surgeon has mo right to take. It is not until the stitcling is complete and pads are placed over the womed that the knee is strathitened. Dhessings :are then applied, elastic pressure is put on by bandingine over large piads of wool, and at simple presterior kuce splint affived to keep the knee straght. If the opperation is performed with a tournicpet aromul the thigh-amel this is advisable-no vessels need be tied; and if the elastic pressure is applien before the tourniguct is removed there need be no fear of bleeding into the joint. My experience of these operations now extends to over two thousand cases, ind I feel that 1 call speesk with some authority.

After-treatment.-In a straiglitforward case there is no reason why the patient should not get out of bed on to a conch on the third or fourth day. lle shomld not, however, put his foot to the gromid for the first week. The stitches are removed as insual abrut the tentld day and massage nay be conmenced, the patient being allowed gridually to bend his knee. Each day he exercises, bending and extencling the knee onore and more, matil in abont three weeks he should reach the full range of movement an! walk with freedom. In my practice several professional fowtballers have resumed their game in six or eight weeks after the operation. There is no reason why in suitable cases men should not return to light dity about five weeks after the operation, and, if properly exercised, be fit for full dhty three weeks from that date. This, however, depends njon the patient being put throngh a course of carefully graduated movements and exercises during the whole period of his convalessence.

Sirgeons who have beell operating upon soldiers complatin of the weakness in the kuce which so often follows operation. This expericnee is common, but if the operation has been properly performed and the aftertreatment by masisage and exercise has been thorongh, these disappointments will not oseur. The surgeon shonld be assured that the thigh muscles are restored to their shormal condition, and a patient slomld not be

IO NOTES ON MIIITARY ORTHOPAEDICS

diseharged from hospital until the thigh has attained its normal girth. We minst also retain a critical attitude of mind, for some soldiers are keen to rembin off duts. and the knee is often only an excuse.

Recurrent Effusion into the Knefejoint

Recurrent effusions into the knee-joint are often very puzzling. It is possible, however, to lay down a few rules for guidance.

1. After ininry of the knee, effusion of fluid into the joint is very liable to occur, and if the patient is kept resting and not using the limb, the effusion will probably recur the first time he uses it. The patient is again put to bed, but when he gets up effusion reappears. The rational treatment in such cases is to bandage the knee firmly and let him walk, and in the evening there will be some effusion which will disappear by morning. The knee should again be bandaged and the patient allowed to walk. In the evening there will still be effusion, lout not so much as before. By following this routine the joint will gradually become accustomed to the increasing exercise, with a diminishing amount of effusion on each day. This is the real test that a joint which has been injured is really recovering and is fit for gradually increasing exercise.
2. The second point is that recurring effusion which increases instead of diminishes under the above careful treatment is a sure inclication that the joint is not fit for use, and localizing symptoms and signs should be searched for to find what is the precise cause of the disability.
3. Recurring effusion which is associated on each occasion with some slight mishap-a triffing strain, such as a twist of the knee, a feeling that something has slipped in the joint, or definitely localized pain-is rather an indication that there is some definite borly loose in the joint which is occasionally getting nipped, though not retained long enough in one pesition to prorluce " locking." The surgeon should then decide whether it is an enlarged pad of fat, a loosened cartilage, or a looss " body," or a portion of the cartilage left after operation.

Dislocations of the External Semilunar Cartilage

The symptoms associated with accidents to the external sentilumar cartilage are much less clearly defined than those associated with injury of the internal cartilage. One reason for this is that the external cartilage is not attached to the external lateral ligament
of the joint, and there is 10 definite mechanism by which it is pulled out of phace. "Iacking" mily ocenr, the fain being referred to the front or back portion of the outer part of the knee accorting as the anterior or posterior end of the cartilage is torn from its attach. ment or crimpled up. Cases occur in which both cartilages are displaced by one injury, suggesting that it is only a rather nore severe accident than that msinally associated with the displacement of the internal cartilage which damages the external one also, the mechanisin probably being a lateral sliching of the condyle on the top of the tibia, squeezing the cartilage out of place and tearing its attachment.

Ruprure of Cruchal, Lagamants

In more severe accidents to the knee the displacement of the tibia on the femur may be sufficiently great to cause rupture, not only of lateral ligaments, but of the intrinsic ligaments of the joint. This may or may not amount to what may be described as complete dislocation. Experience of cases of dislocation of the kneejoint, in which of necessity all the ligaments have been torn. proves that with appropriate rest in a correct position an astonishingly good result can be oldtained. When called on to treat a serious accident such as this, the practitioner's instinct is to get the limb straight and to keep it fixed for a long time. It is when the accident has been less than a complete dislocation that one is liable to think that less strict treatment may suffice. Consequently, cases are met with in which the patient suffers from abnormal mobility of the kneejoint, clearly indicating that one or both of the crucial ligaments have been ruptured or stretched. I3earing in mind the mechanism of the crocial ligaments, it is not difficult to make a diagnosis.

1. The anterior crucial ligament is tense when the knee is fully extended, and prevents the tibia from being displaced forwards on the femur.
2. The posterior crucial ligament is tense in complete flexion, and prevents the tibial from being displaced backwards on the femur.
3. Both ligaments check inward rotation of the tibia. Hence, if the tibia cannot be displaced forwards in the extended position, it may be assumed that the anterior crucial ligament is not completely torn: and if the tibia cannot lee displaced backwards in full flexion, the posterior crucial higament is presumably not ruptured. Abnormal mobility indicates chongation or rupture of the corresponding ligament. The history of an injury helps the surgeon to exclude cases in which prolonged

HOG NOTES ON MHIITAKY ORTHOPSDICS

distension of the joint with thid his cansed elongation of all the ligaments, as well as the comditions atisceiaterl with diseases sach as Charcot's isease or locomotor ataxia.

The treatment, when any such comdition is diagument. is prolongel rest with the knee in extension, or tixed in plaster, or a Thomas ealliper splint, in which the patient can walk, the object being to keep the joint immobilized for a time long enough to allow union of the torn ligaments or adaptive shortening of stretelied tissue. The operation of stitching the ligaments is alsohotely futile as a mechanical procedare. Niatural cicatricial tissice, allowed to mature without being stretcher, is the only reliable means of repiai.

The mechanism of this accident appeirs to the the following: The knee is subjected to violent torsion such as might prokince a dislocation or rupture of the cracial ligaments ; at the time when the force is applied the condyle of the femur grinds across the surface of the thin", and the sharp intercondylar margin shears off the spine. In some eases itwision of the spine occurs instead of rupture of the crucial ligaments. The displaced fragment of beme may be lexiget in the front part of the knee-joint, and so prevent its fill extension. Diagnosis is verified by X-ray examination.
Symptoms.-The most constant symptom is a somewhat rigid block to full extension, usually accompranied by pain behind the patella.

Treatment.-If the knee can be fully extended the displaced fragment of bone being presumally purbed back somewhere between the condyles, the knee should be fixed in this position for a long pericxl to allow the tom structures to reunite. On the other hand, if the displaced fragment blocks extension, and the surgeon cannot manipulate it back irto a harmless position, or extend the face even by molerate force, it is best to remove the obstructing fragment of bone, fixing the knee afterwards in a straight position, and leaving Niature to effect her own repiar. The surgeon must use his own judgment as to the route he adopts; the freest access is obtained by splitting the patella longitudinally (Fig. 19), but if the X-rays show that the offending fragment of bone could be reached by an incision at the side of the patella, this is a less severe methon of procedare. As I im liargely responsible for the split. patella route in dealing with numsabl deraugements, I am anxious to emphasize that it is only needed in exceptional cases.

DISABILJTIES OF KNJ:J.JOINT

Alment any injury of the knee which is anom iaterl with increasel vascularity or brusing maty gise rive th swelling of the pad uf fat witnaterl behimi the phitellar ligament. Consecpuently this fat is liabla to he mpreel in Jull extension of the knee. In omblary civil life, thas forms one of the warieties of the initial stage of a lokal monarticular rhemmatoid arthritis. The comelition, lumever, is in no sense rhemmatic. Flae patient complains of pain and tenterness in the kure after walking. and especially when gonlg upand down stairy, or whengettillg if) simelenly from a chailir iffer sitting for any leogth of

Pis. 95.-Showing patalla aplit. A, Femur: J. Tihia: ${ }^{\text {' }}$. Tranaverse lifament :

time. The condition is maintaine low the repeated small injuries which ocenr every time the knee is fully extended. The treatoment, therefore, is obvionsly to prevent the patient from inflicting small bruises on the temfer fat and its covering of syonsial membrance. This can easily the done by phtting is cork parl, half an inch thick, inside the best minder the heel, to prevent the eomplete extension of the knee during walking, and by fitting the knee with a cage support (Figs. 96 and 9%). which allows full flexion but limits extension by abont 30 degrees. When wearing this bootand cage splint the patient camont fully extend the joint and in this way bruise the post-pitellar fat. The swelliug gradnatly disappears, and , ifter a few weeks full extension can la perfurned without pain. The dhagnosis of that

IO§ NOTES ON MII.IT, RY ORTIOPN:IDIS

conclitlon is easy. The patient complains of pain in the knee, or, nore often, in the front of the knee, not at the inuer sille. Passive extension of the knee ly the surgeon proluces the pain. which is clefinitely localizerl just below and behind the patella. On palpation the thickening of the pad of fat may le felt ; it is enlargel and tender, but there is no sensitiveness over the internal cartilage or the internal lateral ligament. In ame instances the retropatellar pad of fat may le brinised in common with injury to the semilunar cartilage.

Fis. \%6, - Cate support for trees.

Fid. 97.-Cete eupport for ince applied.

The full tender point of the internal lateral ligament, cartilage, and fatty pad will be found in such a case.

In all the injuries of the knee which I have been discussing, wasting and weakening of the quadriceps muscle is a characteristic feature, and no treatment can be regarded as sufficient which does not provide for the restoration of the efficiency of this muscle during the stage of convalescence. This is particularly to be noted in the condition which is now under discussion, for sone of the deep short fibres of the subcrirens miscle are inserted into the synovial membrane of the joint, and when they contract they draw up the synovial membrane and help to pull the pad of fat ont of danger when the knee is extended. Neglect, therefore, of the

DISABHITIES OF KNEEEJOINT

 liable to a recurrence of the injury,

If the reater lams appreciatel the regalar grablataon of disorders of the knee alrealy described, he slsuld have little difficulty ill applying and alapting tlie netisol of diagnosis and treatinent to unusual types wlicls oceur as a rewult of injuries in mititary nervice, Even bullet woumbly tlorougli the joint, which sometiuses elsip off fragusents of lone, can be dealt witlo on lines vinular to those inflicated for fractures of the spine of the tibja, The whole grestion of septic artliritis in abll about tlie joints, with resulting ankylosis, is a larger subject, which cannot be dealt with in these pages.

CIfATHER VII

the mechanical treatment of frac. TURES UNDER WAR CONDITIONS

Tune methods employed must be both efficient and simple: they mist allow easy and painless access to the wound, and ensure immobilization of the limb during transport. The following notes are a contribution towards the attainment of these needs, but it must be understood that modifications of them may be rendered necessary loy the severity of the wounds, or ly the necessity of providing for the transport of the patient, should early evacuation be necessary.

Plaster-of-Paris, so often used in the treatment of simple fractures, becomes a filthy methox where sup, mutation has occurred Despite every precantion for the exposire of the wond the plaster mops inp discharges, and becomes horribly offensive, adding to the infection of the wound. I would urge nly jomerg colleagnes at the front to discard it altogethor.

FlRACTURES THROUG]f TIfE LOWVER SPINE:
 ANI) PELVIS

Fractures througl the lower spine and pelvis are, in my opinion, best treated on the donble Thomits frame, (Figs, 98, 99, 100). All that is needed is to place the patient on the frame, bandage the limbs, and press the body and leg wings into position to prevent side novement. If there is any wound on the posterior surface that requires dressing, the pad can be shaped accordingly to allow of access.

THONAS'S DOURIJ: FRAME:
Measurments ripuired: Nipple to external malleons. Splint Measurement: 4 in. less than above measurement.

Application.- Place the patient on the splint with the buttocks on either side of the horseshoe-shaped gap in the back pad, which has been left for nursing purposes. The wings if the splint should then be monded

FRACTURES: WAR CONDITIONS $1 \Perp$

ronalal the patient's r-hest and rilm, care being taken to turn them "paclotely enemgh from the back parl to pre. vent side movements of the body. I 5 -in.-thick paid is placed mader each knee to prevent gemu recurvatmon, and the ankle grijus, whiel reach just above the malleoli, must be well padded. The knees are now bandaged firmly to the splint. and constant pressure of bed clothes on the feet avoided during treatment.

Double Frame too Short.-Place the pistient as high up on the splint as the lesion will allow, Posterior knee

Fit. 98. -Thomes's duable freme,

Fis. 99.-Thomas's double frame -pplied.
splints firmly bandaged to the knees will be found to supply the deficiency at the foot of the splint quite well.

Double Frame too Long.- Place the patient on the splint with chest band at the nipple line as usual.

112 NOTES ON MILITARY ORTHOPAEDICS

Readjust the back pad sufficiently high in) the splint to allow for nursing purposes. The pads under the knees will require to be larger, and the heels must be protected with rectangular foot splints or plaster-of-Paris, as they will be lying on the leg bars of the splint-utherwise, proceed as usual.

Hints for Nursing a Patient on Double Frame.The patient should never be turned for nursing purposes, or the spine and limbs will sag laterally. Phace a block underneath the bar between the ankles to awoid pressure on the heels, increasing the height of the block when necessary to insert a flat bedpan beneath the splint. In this raised position all necessary washing of the buttocks can be done. The patient is never taken from the splint, nor are the bandages removed for

Fis. 100.- Method of liftins patient on Thomas's double frame,
any purpose, but only the exposed skin washed. The feet should be supported at right angles, and protected from the weight of the bed-clothes.

FIRACTURES OF THE LOWER LIMB

Hip and Upper Thigh

Fractures throngh the hip-joint and those just below the trochanter are best treated by a modification of the Thomas splint, which I have described as an " abduction frame" (Fig. 101). It is a splint upon which the patient lies and can be carried (rigs. yor and roz) ; extension is easily applied, maintained, and need not be relaxed for any purpose. The patient is placed upon this splint, and any displacement should be overcome by immediate extension in the abducted plane. The limb should be rotated inwards slightly until the foot is at right angles to the table and be fixed in this position
on the frame. It will be seen by the illustration that both limbs are controlled and that extension is secured by strapping on the injured limb with connter extension by means of a smooth leather groin strap on the opposite side of the pelvis. This groin strap should not be flackened by the nurse under any pretext, but in order to avoid pressure sores she should be instructed to alter the area of skin sinbjected to it over the adductor muscles by moving it to and fro. This metbor of "fixed extension" in abdhction secures the lower

Fis. 101. - Left abduction frame.
limb in relation to the pelvis in a manner which can never be satisfactorily achieved by weight and pulley, where reliance is placed on the weight of the body for counter-extension. It is by reflex nervous impulses, induced by changes of tension in the muscle, that muscular spasm is produced. A patient lying in bed with a fractured femur-high up or lower in the shaft cannot avoid constantly changing the state of tension of the muscles of his thigh if a weight and pulley are attached to his limb. The counterpoise is the weight of his body. Every time he tries to slift the position of his shoulders by digging his elbows into the bed he alters the tension of his muscles, calling forth a

I\& NOTES ON MILITARY ORTHOPADICS

reflex spasm. When he falls astep and his monstes relan: when he moves in his sleep; when he is lifted mpon a beipan or moved slightly by the nurses to have his bed put straight, there is apt to recur this retlex contraction the to sulden change in tension.

The fong Liston splint, which is mueli in nse, is quite unsuitable for fractures of the upper thigh. It does not permit abduction, bnt maintains the limb in line with

Fis. 102,-left abduction frame applied.

Fic. 103, Left abduction frame: limbs parsllel for transport.
the trunk-a position which must result in angular mion, and in a sagging which proves one of the very common and tronblesume deformities. Furthermore, as the splint extends to the axilla, any movement of the trank involves movement of the limb), and attention to the secretion disturbs the fracture. Both the Liston and the ordinary weight and pulley tre ill suited for any form of fracture with suppuration, where good allignment, confort and ease of transport are desired. One of the objections to the old aiduction frame was the difficulty of transport. The alducterl limb proved
 thas, the splint is now mate su that the protiont may be put $n \mathrm{p}$ for transiport with buth limbs parallel. As sinon as the patient arrives at hospital the limb is ablacted without disturbing him in any other way (Fig. 103).

The patient who lies on an "ablaction frame "ean be lifted and moved withont pain, withont disturbin! the fracture or relaxing the extension, and the dressing can be changed without interfering with the mechanism of fixation. If the wombl is throngll the buttuck anil the diseharge takes place there, the yplint can be moxtified

Fis. 104.-Modified abduction frame for nelvie wound: only to be used while wound dischartes.
as shown in the illustration (Fig. iof). The aboluction frame can be applied in a few mimutes.

ABHLCTION FRAME:

Measurements requirch: Nipple to external matleolus.
Splint Miasurement: Fron chest band to ankle grip, \& in. slort of above measmrement.

Applicatlon.-A strip of adhesive plaster, to which : strong loop has been sewn at one end, is applied to each side of each leg. The adthesive plasters shombld reach from as near the lesion as possible to the mallenli-the loops lying at each side of the hech. Bandage these

IG NOTES ON MILITARY ORTHOPAEDICS

"On firmly The pratient now lies on the splint (see " Double Frame," p. iro), but before bandaging down the knees lay the body of the groin strap along the gluteal fold of the sound limb, securing it by means of its perforated ends to the pegs on the splint wing. Next apply the traction required to the injured limb, maintaining it by tying the cxternal loops to the end of the splint by means of bandage which has previonsly iveen passed through the loops. The groin strap remains stationary. Further traction of the limb is obtained by means of this extension. The sound limb should have very slight traction applied to avoid pelvic tilting.
If Abduction Frame too Short.- Place patient on aboluction frame allowing only about 6 in. of space hetween the heels and the extenision loops of the splint. Move the back pad higher up the splint fitting the gap between the patient's buttocks ior nursing purposes. Ifaving fitted the groin strap to the patient's gluteal fold, tie the perforated ends over the chest band of the splint at the axilla and proceed as usual.

If Abduction Frame too Long.- Place patient on abduction frame, fixing the groin strap in the usual manner. If the chest band will not mould down suffciently to lie comfortably in each axilla, it may be turned back flat with the bed and ignored. Heels that do not reach beyond the leg piece of the splint must be protected from pressure with a rectangular foot splint or plaster-of-Paris, and proportionately thicker pads placed under the knees (see "Double Frame").

Nursing Hints for Patlent on Abduction Frame. -The patient should never be turned for nursing purposes, or the spine and limbs will sag laterally. Place a block underneath the bar between the ankles to avoid pressure to heels, increasing height of block when necessary to insert a flat bedpan beneath the splint. Also in this raised position all necessary washing of the buttocks can be done. The patient is never taken from the splint nor are the bandages removed for this purpose, but only the exposed skin washed. The feet should be supported at right angles, and protected from the weight of the bed-clothes. Remove the groin strap for five minutes four-hourly during the first twentyfour hours; twice daily is usually sufficient afterwards. liub area with spirit and powder during these intervals, replacing strap in same hole as before, but as nuch as possible over a different adductor skin surface.

Upper Mfiddle and Lower Thigit

For all other fractures of the thigh the Thomas bed splint is incomparably the simplest and best (Fig. 61).

I have often fixed a fractured thigh in this splint int sent the patient home in a cab. By reason of its construction, it antomatically secures a currect alignmenn, ats any surgeon with a mechanical mind cat see if he examines the illustration. I am in the liabit of using this splint for the treatment of all fractures of the middle and lower third of the thigh, fractures throngh

Hig. 105.-Strapping extensions applied to lea. Suspension stings to splint to supsort limb.
the knee-joint, and fractures throngh the npper and upper middle portion of the leg.

The application of the Thomas bed splint is cuite easy. Strapping of adhesive plaster is applied in the usual way to the sides of the limb. At the lower end of the extension strapping there is a loop of webbing to which is attached a length of strong bandage (Fig. IO5). The ring of the splint is passed over the foot (Fig. 1o6) and up to the groin till it is firmly against the tuber

118 NOTES ON MIIJTARY ORTHOPEDICS

ischii. The extensions are then pulled tight, the ends turned ronnd each side lar (Fig. 107) and tied together over the bottom end of the splint, which shonld project
 fare must beyond the fort. care must be taken to avoid internal or extermal rotation of the limb, the forst being kept at riglit angles. Locial splints can then be ennployed, and are made of block tin or sheet iron. They can se monded by the hand ti) lit the limb, and yet, being gutter-shaped, they are rigid

Fig. 107.-Knce splint in position, fraction applied.
longitudinally (Fig. 108). They can be disinfected by fire or water. A couple of transverse bandage slings suspend the limb from the side bars of the knee splint. A straight splint is placed behind the suspensory band

FRACTURES: WAR CONDITIONS

ages of the thigh and knee. On the front of the thigh amother sheet-iron splint is applied, and the femmer is thisi kept rigid. 'rise alignment from the hip.joint to the ankl is perfect, being dependent on a straight pull (Fig. 109).

One may prefer to nise a serew extension instearl of bandage in some cases, when there is diffenfty in maintaining the fult length of the limb (Fig. 120). This splint allows the patient to raise his shoulder, or even sit in bed. His other leg ean be mowed freely withont altering the tension on his thigh mur :hen alill there is no rettex spasim. Even if the muscles try to contract they camot, for the ring of the splint in tirm agamet the tuber ischii. The muscles therefore do not rem,in

Fif. 109. -Sheetiron splints moulded by hand for arjous uses.
on the alert but beenme quiescent, and starting patins do not oectur. Such is the difference between "fised" and "intermittent " extension.

In using this splint a little attention is mecemairy 10 prevent sorene is of the perinemm. The thing of the splint, being covered with smooth basil teather, can easily be kept clean; so can the skin. The dresings can be applied without in any way interfering with the action of the splint. When the fracture has excurred through the knce or upper tibia the splint is applied in the same way.

It has often been a matter of astonishment to me that so simple and effective a splint has not been universally employed. It can be applied in a few minutes, usually without an anxsthetic, and one is always sure of good length and good alignment. The

120 NOTES ON MIIITARY ORTHOPFID!CS

fractured limb can be moved in any direction withont giving pain, so that transport is easy and safe. I have never yet had to plate or wire a femur in a recent case, and this I ascribe to using the Thomas splint.

THOMAS'S BED KNEE-SPLINT

Measurements required: Horizontal circumference of thigh at groin, iength of leg from fork to base of heel.

Fig. 109. - Thomas' bed knee-aplint with loent aplinte applied.

Fis. 110.-Screw ex. tension which may be used, with Thomas: knee aplint or abduction frame.

Splint Measurement: Add $1 \frac{1}{2} \mathrm{in}$. to circumference measurement to allow for obliquity of ring. Ald 0 in . to 8 im . to length of leg measurement to allow for extension pull.
Appllcation.-Apply a strip of adhesive plaster, to which a loop has been sewn at one end, to each side of the leg with the loop lying at the heel. These should be firmly bandaged on and reach from the heel to as near the lesion as possibie. Slide the ring of the splint over the foot and up the leg, pushing the ring well into

FRACTURES: WオR (GONIITHONS :

the groms, and ayply the necemenv combter extionion on the limb, This combter-extemanon is mathtaned by tying the extension lerjps to the ent of the splint bs
 thromgh the lerops.
 gluteal fold at the upper end alal the licel at the lower ellut, is then slomg between the sule hara of the leal splint (1) sidpert the limh. laxal splints cast be applied if repuired, and the whole handaniol immpatly trgether. Sling or support the font of the aphat to provent presonre of the heed on the lerd.

If the Splint Is too Large In the Ring.--lix a sufficiently large wit pial in the ring at ita janction with the onter bar to prevent the inmer portion of the ring slipping from the groin across the perinemom.

If the Splint is too Small in the King. - Si, w through the fing just in fremt of its jumetion with the outer laz : "pen as mecesonty.

Fir. 111,-Skeleton palint for injuries near the ankle-jaint.
Nursing Hints for Patlent with Thomas Bed Knee-Splint.-This is usmally applied when extennion of the lunb is required; therefore presaure over the ischium maty be great, lout this can be relieved by raning. lowering. or abducting the limb from time to time. The skin surface lying moler the ring slould freguently be changed and kept dry and weil powdered. 1'he foot end of the splint mast be cither slongy or supported to prevent pressine under the heel, ame if the foot has been left free it shouhl be supported at right angles by a pillow or otherwisc.

1.1:C;

Fractures of the fower pertion of the thliti or fibulit. and fractures throngh the inkle-joint, I treat in a skeleton splint, such as 1 have illustrated (fig. inis). It allows of casy access to the wound, and can withomt difficulty be modified to suit a special case. Fortumately, in gunshot wounds the spiral fracture is rare, and. genera!ly speaking, one bone remains unbroken. The treatment, therefore, of fractures of the leg does hot present so mucli diffirulty as foes that of fractures of

122 NOTES ON MHITTARY ORTHOPAEDICS

the thigh. lior transport, however, and for general com. fort, the splint should immohilize the knee (lig . 112).

SKELETON OR KE:CTANGI:LAR FOOT SPI.INT
Mcasurements requircd for sikclitom ifliat: Tread of great toe to heel.

Mcasurements required for lisctangular liont Splint: Tip of great toe to hect.

Splint Measurements: 'the sanes, but any alult size is ciaily adapted.

These splints are umatly applied to feet which are, or are required to be, held at right angles. When this is not the case, it is advisable to alter the splint's angle, or a pressure sore may rewult to the heel which is not lying in its appointed place.

Rectangular Foot Splint too Larse.-Of un consefuence unless marked, whell a pill will be required

Fi4. 112,-Wikeleton aplint applied.
above insertion of the tendo Achillis to prevent pressure on the heel: and a skeleton splint will require a local splint or its substitute to the sole of the foot.

Skeleton Splint too Short. - The foot-piece of the splint cin be lengthened by a local flat splint or its substitute.

Nursing Hint for Patient with Skeleton Foot Spilnt.

-This splint should be supported on a graduated pillow whieh is thicker under the knee.

FIRACTURIES OF TIIE UPPER I.IMB Arm

Fractures through the shoulder-joint and through the surgical neck of tbe himerus reguire no splints. The elbow should be slung at right angles, and fixed by a broad bandage to the side. The dressings would probably replace the usual pad in the axilla, which should never be bulky. Shoulder shields are unnecessary and cumbrous. The patient, when practicable, should be treated in the upright position, and should have his head and shoulders well propped at night.

FRACTURLES: WAR (ONDITIONS $: 13$

When ankylomes is tal be expected after al bid volush and suppluration of the shometer, atml uppurtanity is atforted for comtinums areatment, the atim shatid le kept ablucted slighty borwaris anll rutated shagh

Ni4. I 13. -Yplius to keen the arra ablueted slishtly forwards and rofated alidhely inwarde.

Fig, 114. - Splint apphed to keep the arm abducted aliehatly forwards und rofated slightly Inwirdo.
extended range of movement at a more nseftil radius. such range of movement being brought about by the: action of the scapula. This position need not 1, adopted if the patient has to be transportert, as it can be established after the arrival home. Fractures through the elbow or immediately atrove the contlys

124 NOTES ON MIIITARY ORTHOP EDICS

are best treated without splints. If possible, the amm should be kept flexed well above a right angle. Suppurating cases in the adult will not admit of the very acute flexion which we insist upon in the case of childrein. If, for a rare reason, a splint has to be applied,

Fis. 115.-Spliat immobilizing the elbow-joint hut allowing aceess to it.
the internal wooden angular splint must be avoided, because it is always clumsy and often causes deformity, and a splint as illustrated used (Figs. 115 and 116).

Fractures of the middle and lower middle portions of the shaft of the humerus, where dressings have to-

Fis. 116.-Elbow aplint spplied.
be frequently changed, require very gentle handling, and I illustrate two splints which may be found very useful. One is a modified Thomas knee splint used to maintain extension in the abducted position, the patient
being recumbent (Figs. 117 and 118). T'.e other is a modified Thomas humerus-extension splint (Figs. 119 and 120), to be used when the patient can walk about or sit up in bed. Fither splint permits of easy dressing.

Fis. 117. -Thomes'e knee oplint, modified, used to maintein exteneion of the humerte in the abdaeted noeition.

Fis. 118.-Extension arm oplint epplied.
and maintains adequate fixation. As so much destruction of bone may be produced by modern shrapnel, and even by riffe bullet, great care must be taken to prevent over-extension, otherwise non-union will ensue.

Fis. 119.- Modified Thomee'c humerveextencion eplint.

Forearm

The chief disability to be feared in fractures of the shafts of the bones of the forearm is inability to supinate the forearm completely. The trouble usually arises then both bones are broken. but it may occur when we radius alone is involved. We must remember that the

126 NOTES ON MILITARY ORTHOPREIDICS

whole length of the posterior border of the ulna is subcutaneous and is practically straight. On this straight ulna the curved radius rotates, like the handic of a bucket. We must therefore attend to two points. First, we must keep the ulna straight; sccond, we must not interfere with the natural curve of the radius. That is to say, there must be no lateral pressure of bandage or splint on the middle of the shaft of the radius. In dealing, therefore, with thesc fractures, whether one

Fis, 120.-Modified Thomais humeruvexteavion apilint applied.
or both bones be broken, the position of supination should invariably be maintained. This is even more important in septic compound fractures than where no coinplication exists. Neglect of this important point will often result in a locking of the bones in pronation. We must remember that in nearly all neglected fractures of the forearm, supination and not pronation is defective, the arm being usually fixed in the pronated position.

Wrist and Hand

Gunshot wounds through the wrist are very common and far too many have been treated with the hand in line with the forearm-that is, midway between palmar and dorsiflexion. This is fatal to good function. All injuries of the wrist-joint should be treated in the dorsiflexed position, as shown in the illustration, in

FRACTURES: WAR CONDITIONS 127

order that the fingers may maintain their grasping power (Figs. 121, 122, 123, 124, and 125). Fractures

Fis. 121.-Hyperextension hand aplint.

Fis. 122.-Hyperextention hatad aplint apolied.
of the hand may be immobilized as shown (Figs. 126 127 , and 128).

Care must be taken to fit the wrist flexion accurately

Fis. 123.-Skeleton hyperextenoion hand apliat.

Fig. 124.-Skeleton hyperextension hand aplint applied.
to the splint flexion, thus avoiding any possible strain of the carpal jolnts.

Retention of Loose Pieces of Bone
I do not intend to deal with the surgical considerations involved in the treatment of the suppurating wound.

128 NOTES ON MILITARY ORTHOP EDICS

Many distiuguished surgeons are devoting themselves to this problem. It may be well, however, to offer a

Fis. 125.-Skeleton hyperextension hand aplint applied,

Fle. 126,-Lone hend splint.
word of warning against the destruction of loose pieces of bone removed from the wound. If quite loose they can be taken out, cleaned, and replaced. Suppurative

Fis. 128.-Lont hand aplint applied.
compound fractures unite well if time be given then ; a common source of failure is due to the removal of bone.

INDEX

Abnuction frame, ils
--- --- nodiged. $1: 5$
Albee's nursing patient on, ltG
Albee's operation, 88
nit slding inlay method, 9r, 93
Alignment, erroneous, in fractures of feraur, 77
Aggular deformity in fractures of femur, 76
Ankle-joint, functional impairment in fractures about, 7 i

- position of eleetion for anky. losis of, after gunshot wounds, 7
Ankylosis, positions of election for, I
—— ———— in ankle, 7
—— -..- in elbow, 3
————.... in flail-joint, 8
-. - - - - in forearm, 3
—— —— - - in hip. 5
$\rightarrow-$ - ——in knee, 6
- - - - - in shoulder, :
$\cdots \cdots-\cdots$ in tarsus and metia. tarsus, 7
Anterior --min in wist, 4
uterior crural paralysis, tendon transplantation in, 20
Arm, fractured, treatment of, uuder war conditions, 122

Bickersteth, Mr., and tebilon transflantation, 16
Body weight, deflection of, 14
Bone grafting, 63
—— --- conclusions as to, 94
—— -- for recent fractures, g1
-- - for ununited fractures, 92
—— -- technique of, for fractures and defects in con. tinulty, go

- -... general, 86
-- grafts, autogeqous, superiority of, 82
—— meaus to promote growth of, 84
nutrition of, 83
—— 一- theories of growth of, Bg
- union of, 83

Bone grafts, use of, in acute ostm myelitis, 85
———— uses of, in military sir. gery, 8s
-- loose fieces of, retention of, 127 Boot and iron for fott's fracture, 69

- Arny, imperfoctions in, is
-- - proper tiage to serve out, 45
- - for acute liat-foot, $3 t$
- for deformities from injuries of tarsus and metatarsus, 8
- for metatarsalgia, 57
-- good marching, qualities of, 44
— with bar across sole, 8,53
- - with heel raised on inner sicie.

8, 31, 37, 44, 53
Carpus, fractures of, functional inspairment in, 78
Claw-foot, 38
.-. - ifth degree of, 43
-- first degree of, 38
-- fourth degree of, 42
-- second degree of, 39
-- third degree of, 42
Colles's iracture, inefficient reduction in, 66
Compound comminuted fractures, re. tention of fragments in, 65

Damming and percussion, 62
Deflection of body weight, huw tu avoid, 14
Delayed union, 60
-- causes of, 6r
—— -... in femur, 63
-.- in tibia and gbula, 6t
—— -- inost comunon sites of, fus
——- in compound comusinited fractures, 6s
——— treatunent of, 6 r
————by percussion and
dauming, 62
Displacement of little toe, 55
Dorsifiexion of ankle, loss of, in fral. tures about joint, 73
 ill ankylosis, +
Dimble circhlar maw fur enting bunc krillts, H_{7}
lonfoferit, tumbin fix.ition in, 23
F Lemuw splint, I.t
 thonal impamrount in, 70
-. - ankylosis uf, jumition uf clec. tion lir, ;
Eversiouli ill fonit in Iracturn's illomit aukle-joint, 71
External popliteal paralysis, teniton fixation in, 22
.-. -........ transplasutation ili, 22
Exutrerial diallus, fos
Fatety abligument al lentis Iran in Ifficiont fixatious, 6.7
-- - -... frunt yirbling al rallas, for
fiemur, drlavilil mion :in, 62
$\cdots-$ Iractured, treatment of, under war conditions, ita
.... Iractures of, functional lm. pairment in, 75
-- nualuniterl, treatment of, 77
Fibula and tibia, delayel union in, 6,
-... -..- fractured, treatment of, under war conditions, $12 t$
Fixation, spintil, (See Spinal tixation) Fhail-juints, ank ylusis of 8
Flat-loot, 28
.... acıitı, 31)
-.. ...- Inoits Ior, 31

- - - triathinent uf. 30
-- clinical division of formes of, 36
-- diagnosis in-twea! elifferent forms al, 36
....- fronn periarthritic, 12
- From teroneal mpiain. 34
-.. ordillity, 36
- - osseolis, 34
-.. rikill, 32
.-. subile'ute, 3 fi
- - traumstio, ,32

Fixit, arches ol, 27
.... - thefrmities imul disalhilitios ol 2 K
Firbiling, fravtured, trifiturat of, minder war ronditions, 125
Fracturis, bone grafting for, terls nique of, 90
_- Inuctional inpairment in, (See Functional impairinent)
..- malunited and ununited, (Spe Delayed union; Malunion)
 - times required for rimisulflativis ol, 95

- treatment of, under war condl-
tions, 110
arıII, 122
- lureisin, ias
hipn annl noper
thugh, 112
len, I 21
liwerer suine ind fielvis, 110
ifper ilidalle ally lower thigh, 126
 116
Functimal impairntent is frartmes, 6
... ilout ankle-joint, 7 t
- - - about elbow.joint, 70
if carpiss, 71
-. - - - of feimur, 75
$\ldots-\ldots$ of liumerus, 70
ril radius and nlua, 71
— — - - uf tibi.ı, 7 .
Gunshot wommls ol joints, position of election for ankylosis after. (See Ankylosis, positions of election for)

Hallux rigisins, 45

——— after-treatnurut of, 53
————brot for, 53
—— - - treatment ol, 46
valgus, 47
-and hallux riginliss, rela. tion between, 46,48
—— - post-operistive splint for 52
-. - - treatument uf, 40
tlammer-toe, 53
-_- splint lor, 5.5
-- treatment and after-treatinent ol, 54
Itand and wrist, injured, treatment of, under wir conditions, 126
-- sptints, 127
tteel, painful comlitions of. 57
fliblis operation for spinal fixation, 88
Hip and urpar thish, Iractured, tretitment of, Huler wis ronditions, 112
Ilip-jonut, ankytosis of, persition of election for, 5
" Hollow" foot. (See Claw-font)
Ifunserns, fractured, treatinent of nuter war conditions, 121
 pairment ín, 70

Infeficient firation after setting of fracture, 66

- reluction, 65
commoll callses ul, ift
Intrame:hillary plang, is
Jusis, gunshot injuries uf, pomitions of election for ankylosir alter. (Sico Ankylosis, positious of election for)
-- inubility of, ant late siltare uf mervea, 10

Kwte, fage support for, 207
Kimesoint, ankylosis, poritinn of election for, 6
.... Ilivecations of external semij. lunar cartilage, ios

- Iracture ol spiare uf tilia, 106
- Internal derangement of. 97
$\cdots-\cdots$ ilisplareal cartilage with " Jucking," Ion
- - rupture of internap ligament and dim akn: to semilunar rartilage, リ7
—————thirkentrl rinatrix about semilimar lartilage, (n)
- operation on intelnaf selnilumar cartilue:", Ior ltor - trpatdellt, 103
- reenrrint rffrsion inth, 104
-- rupture of crucial ligannents of, 105
-- sprain of inturial lateral likil. ment of. 96
- thickened retropatellar pads of fat, 107
-.-- (See also Functional inpair. ment)
Kyphosis alter injnries to spine, 85
Latk suture of nerves, principles of, $?$
l.atural graft, 93
f.fg, fractureil, treatinent ol, imiles war couditions, 122
Limber, voluntary use and inassag. ol, and late suture of nerves, rI
Little the, . . enent of, 95
Lower spir and pefvis, fracturel, treatment ol, under war condi-
 plantstion, 16
MeWillams on bence gralts. 8s
Malunion, 65
-- caluses uf, fs
Median paralysiv, terobolt trinioglatit. ation ill, th
 tuna al elotion bor, 7
Mrtitarvalki.1, gh
-... lunt tor, 97
- - teraturnt allil after.trestianit II, 57

- - - triatinesit and attre trast. ment ol, 57
Musilh fibres, overstretchiuk; יI, I3 \rightarrow puwer, recovery ol, late, 14
—— - - - flow to securn, ia
Mavins, froeing uf, from ohverurthan aldullate stture al nervia, 10
- relaxation ul, aml late sature inf herves, 10
Musenbrepural paralsois, tendhut trans. plantation itl, is

Nfrves, fujuries tu, camsing ilis ablanent of limba, I)

- Jiate suture ol, principles of, is Nursing of patient on abhlintint Itame, 116
-..... with skeleton lixot splimt, 122
- -. - min Thumas'silouhle frame, 112
—— ... with Timnas's trol knee. splint, 12 t

Gplikallong, immerliate, lut frawture, 92
(Is ralije, spurs ol lroue uader, 59
Obteritis ami? periostitis of on calcin, 5) Unteomyelitis, acute, use ot bone grafts in, 85
Usteotomy in claw-font, thiril itrgref. 42

- in hallux valgus, 4\%
- in hammer toe, 35
--- in inalunited femar, 77
— ilt metatarsalgia, 57
- ill lott's fracture, 74
-- in ununited fracture's of tilo,d ami fibuta, 62
——s.lw, anthor"s, 7y
I'atella, splitting of, in operatinn for fractured tibial spine, for Paralysis. (See various nerves)
l'efvis and lower spine, frarturef, treatment of, inter war combli.
tions, 110

Percusation and damning, 62
Perlontitis and ofteits of we calcis, 30
Plates and screws, bone grafts ss substitutes for, 85
\qquad slrawbarks to, 08, 92
$\rightarrow-$ - Inse of, in spiral fracture of tibla, 9 a
Poliomyelitis, treainvent of, appliraible to injuries to nerves, 22, 16
I'ott's Iracture, reduction of, 73
$\overrightarrow{-}$ - incficient, 66
i'ulley extension in ununitel frar= tures of tibia and fibuta, 62

Ranius and ulna, fractures of, funetional impairment In, 71
Rectangulay foot splint, 122
Retropatellas pads of fat, thlckened, 107
Rotation deformity in fractures ol femus, 77

Sciatic trunk, injury to, treatment for, 25
Screw extension spilnt, 819
Shortening or overriding in frac. turel of femur, 75
Shoulder-joiut, ankylowis of, position ol eloction lor, 1
Skeleton loot splint, 122
_ - - mursing patient with. 122
Siiding inlay tnethod, 93
Splnal fixation, 88

- - Albee's operation, 88
—urnb's operation, 88
Spine, lower, and pelvis, fractured, treatment of, under was cenditions, 210
Spurs of bone under os calcis, 59
Suture of nerves, late, principles ol, 10
Taffiza, Piof,, and transplantation of ovaries, 8 a
rarsal eod metatarsal joints, ankylosis of, position of election for, 7
Tendo Aehillis, Injuries and strains about insertion of, 38
Terdon fixation in drop-foot, 23
- - in external popliteal para. lysis, 21
—— transpiantation, 16
————for claw-foot, 40
—— -- in anterior crucial paraiysis, 20
- - mon in exteral popliteal para. lysis, 22

Tendon tramsplantation in median peralysis, 29

- - in musculo-spital para. lysis, 18
-_ - In ulnar paralysis, 20
Thish, upper, fractured, treatment of, ulvies was conditions, 122
-- - midelie and lower, frar. tureal, treatiment ol unier war conditions, 186
Thomas, Mr. Tbelwali, and tendon transplantation, 16
Thoinas's knee-sptint, 817,820
- - modified, 124
- - nursing patient with, til
- luuble frame, 1 io
$\ldots-\quad$ nursing patient with, 112
- humerusextension splint, modified 125
—— theory of " inuscle lengthening," 12
—— wrench, 33
Tibia and fibula, delayed union in, 63
- fracture ol spine of, 106
- fractures of, impal ment ol Iunction in 75
Tiptoe exerclses, 37
Toe, great, importance of, in marching, 44
Tramsplantation ol bone. (See Bone grafts)
-- of tendon. (See Tendon trans. plantation)
Tuberculous arthritis after lnjurics to spine, 85

UlNa paralysis, teadon transplanta tion in, 20
Union, delayed. (Se Deiayed union)
_-weak, 65
Ununited liactures, bone graftiog for, 90, 92
-- (See also Detayed unlon)
Upper middle and bower thigh, frac* tured, treatment of, under war conditions, 186

Weak union, 65

Wrist and hand, fractured, treatment of, under war conditions, $\mathbf{2 9}$
-.. ankyiosis of, lmportance of dorsiflexion in, 4 - - position of eiection lor, 4

Painted by Cassell \& Company, Lid., La Balle Sauvage, London, E.C. 4 F 50.327

西

[^0]: 1 The: Aumbal Oration, Medical Society, May 18th, 1914, ou "Infantile faralvis: its ladry' T reathent and the Shrgical Means for the Allevistion

