The Institute has attempted to obtain the best original copy available for filming. Features $¢$ this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
\square Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculèeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiq’!es en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Reliè avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bisliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages dètachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

$$
\begin{aligned}
& \text { Various pagings. Parts of pages }[175]-[176] \\
& \text { are missing. }
\end{aligned}
$$

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

STRAMUSEIRS
weairinu the aornices of COMPIETHNT FNGINNSERS of any cinse, cas obthin sober, intelligant and rellable mon, by applyiny in

CANADIAN ASSOCIATION .

 stationary encineers.A. E. Eukins, President, care boiler inspection \& Insurince Co., Torunto.
Jas. Robertson, Secretary Montreal Imanch, 1420 Mignonne Street, Montreal.

ENGTNEDRIG HAVE YOU EVER USED

 gPOONER'S COPPERINE?If not, you don't know what solid comfort is. No Hoi Boxes to worry your life out. No stopsto annoy the owners. saves oll, wears longer, is much ciseaper easier hand. led in the iade. This ono metal does it all. You can swear by it every trip. "No swear by it avery intip

COPPERINE

Superintendent's Office, Water Works Depit. Tosonto. January 6th. 889 I . Alonzo W. Spooner. Ese.
Port Hoge, Om.

DEAK SIK: 1 am pleased to say that after nearly three years constant use day and night. on our largest engine, your Copperne has stood its work well I have not had to renew any of the heavy bearings yet. co 1 conseder that speaks for inself. 1 am pleased to recommend it to any one in ueed of metal to stand heavy work.

I smin, yours truly,
J. C. FERGUSON.

Chiet Engincer Toronto Water Works.

F. E. Dixon \& Co.

mauractuners of

LEATHER BELTING

70 KING STREET EAST, TORONTO.

Headquarters for Electric and Dynamo Belting.

We have the following Leather Betts in use in the works of the Toronto Electric Light Co.:-

One 36 inch belt 98 feet long.
[This leelt has b:en in coustant use since August. $\mathbf{8 8 8 5}$, and looks goat for another ten ymirs yet.) Also
One 36 inct: belt 100 feet long. One 35 inch belt 100 feet long.
One 36 inch bett 123 feet long. One 24 inch belt 100 feet long. And over 1500 feet of S inch belting.
All the above bells are DOUBLE THIC KNESS nud are all giving satisfaction.
The 3^{8} inch belt is the largest trelt ever made in this i'rovince.
The following Electric Companies are also using our Belting:
The Toronto Construction and Electrical Supply Co.
The Ball Electric Light Co.
The Hamitoon Electric Light \& Powe Co.
The Niagara Falls Electric Light Co.
West Toronto Junction Electric Light Works.
The St. Thomas Electric Light Co.
The Barrie Electric Light Co.
The Berlin Electrir and Gas Co.
The Woodstock Eisctric Lipht Co.
The Manitoba Electric and Gas Light Co., Winnipeg.
The Goderich Electric Light Co.
The Markham Electric Light Co.
The Oshawa Electric Light Co.
The Orangeville Electric Light Co.
The Port Arthur Electric Railway Co. AND OTHERS.
We are the only Belt Manufacturers in this Province who can show Belts of OUR OWN MAKE which have been in use AS LNNG AS FIVE YEARS. We can point to belts of our own make in THIS CITY ALONE which have been in constant use for TEN, THIRTEEN and even NINETEEN years, and are still good.:

We are prepared to furnish Belts of any size, two or three ply, of any width. Every bell fully guarmied.
Send for Discounts.
Dixon's ISelting Hand-Book mailed frec on application.

THE BROOKS MANUFACTURING CO., Ltd., $^{\text {M }}$

 \leqslantMaNUFACTURERS OF

CARBON POINTS FOR ALL SYSTEMS OF ARC LICHT,

PETERREOROUGE, ONT.

Earle's Air and Steam Injectors

S. R. EARLE,

Please mention the Eluctricat. News when corresponding with advertisers

The "Unique"

TELEPHONES

Made especially for Exchange and Privato use.
The chenpest, simplest and most effective Electrir Telephones in the world.

The "Unique" Transmitter is the only" one made which does not reguire atjustment and that is fint affected by atmospheric changes, or rust up.
ALWAYS THE SAME.
Will transmit over the longest distance without readjustment.
"Samson" Batteries supplied with the "Unique."
Send for Telcphone Chicular and livice Iist.

> ManUfacturbd oniv M

John Starr, Son ${ }^{\text {a }}$. Go., Ltd. ELEGTRIGAL APPARATUS AND SUPPLIES,

2, 4 and 6 Duke Street.

- EAAIIEAX, N. S.

Kay Electric Works

NO. 268 JAMES ST. N. - HAMILTON, ONT.
manufacturkes on

DYNAMOS

For Are rand Incandescent Liffitine!. MOTORS
Rbom 1-8 H. P. to कO H. P.
El.fCTRO PIATING MACHINES ANI GENLRAl. El.ECTRICAL. IPPIIANCES. SPECIAL ATTENTION TO MII.I. AND FACTORY IIGHTING.
WRITE FOR CJRCULARS.

.... OUR SPECIALTY....

We also manufacture Horse and Trail Cars of every description.

PATTERSON \& GORBIN,
ST. CATMARLNES, ONT.

CANADIAN

Electrical News

AND

STEAM ENGINEERING JOURNAL.

Vol. II.
TORONTO AND MONTREAL, CANADA, DECEMBER, 1892.
No. 12.

WINNIPEG ELECTRIC STREET RAILWAY.

The accompanying illustration pictures a scene at the inauguration of the Winnipeg electric street railway.

The road was put in operation on the 5 th of September last, the start being mide from the city hall square at two o'clock, in the presence of thousands of citizens. An invitation had been extended by the management to the members of the Local

CANADIAN ELECTRICAL ASSOCIATION.

A meeting of the Executive Committee of the Association is being held to-day (Dec. Ist) in the offices of the Bell Telephone Company, Toronto, to further the arrangements for the January convention.
Three or four papers on as many subjects of interest to members engaged in the various depatments of the electrical

Scene at the Inauguration of the Winnipeg Electric Street Rallway.

Govemment, City Council, Board of Trade, and to leading citizens to enjoy the first trip over the liue. On the initial trip, which was very successful, there were about 300 passengers aboard the cars.
On returning to the city hall a sote of thanks to the manajement for the energy slown in the construction of the road was moved by the mayor and seconded by the Secretary of the Board of Trade. The vice-president, Mr. Wm. White, and the manager, Mr. G. H. Campbell, responded for the company.
Much enthusiasm was manifested by the citizens, the completion of the road being regarded as likely to aid in no small degree the advancement of the city's welfare.

A deatleck has occurred in tbe Lachine Councal on the question of awarding the contract for the construction of an electric railway between Lachine and Dorval. Tenders have been submitited by tbe Canadian Genena Electric Co. and by Mr. Hickerdike,
field, are alreadiy in course of preparation, and others are beng arranged for.
The School of Practical Science, in which, by the kindness of the authorities, it is proposed to hold the convention has a very fine physical laboratory, including a full equipment of electrical machines and instruments, which, with the other features of the institution, will alone afford much interest and instruction to the members.
Visits of inspection will be arranged to the Toronto Electric Light Company's central station, in process of enlargement to double its former size-and one of the largest stations on the continent-the new power house of the Toronto Street Rallway Co., the Bell Telephone Company's new exchange, the Incandescent Electric Light Co.'s station, and the factories of local manufacturers. An opportunity will also be given of inspecting the Toronto Street Railway Company's system.
These visits of inspection will reyeal to the obseryant visitor
the latest ideas in electrical devices and practice. Although prominence will not be given to the social features of the occasion, they will not be entirely overlooked.
The Commiteces appointed at the last convention will give a report of their work. Besiness relating to the progress of the Assoctation and the annual convention of 1893 will call for conssderation.
Altogether, the meeting in January promises to be one of interest, pleasure and profit, and the members are urged to assist by means of sugkestions and othetwise to make it a surcess. Especially let every member who can possibly do so make up his mind to attend.

ORGANIZATION OF ENGINEERS AT GUELPH.

Os Wednesday, Vovember 16 th, A. E. Edkins, President of the Executive Council of the Canadian Association of Stathonary Engineers, went to Guelph for the purpose of organizing a branch of the Association in that town. He was met at the station by Mr. John Angell, engineerat the Ontatio Agricultural Collenc, and escorted to several places of interest around town before the time arranged for the meeting to take place, which was at 8 p.m.
Through the kindness of Messrs. W. Bell \& Co., the use of their draughting room was offered as a temporary place of mecting. At the hour mentioned the following gentiemen were on hand ready to become members of the new Association :
Messrs. J Angell, P. Ryan, S. C. Cosford, C. Jorden, J. I. Dixon, L. Thompson, Jas. Fordyce, Jas. Tuck, H. Flewelling, J. Thatcher, II. Littlechitus, J. MiRac, J. L. Goold, J. McNeil, E. Moodie, R. Gireen.
A preliminary mecting was held, at which the following officers were elected: President, J. A. Angell; Vice-President, P. Ryan ; Conductor, S. E. Cosfotd; Recording-Serretary, C. Jorden; Financial Secretary, J. L. Dixon ; Door-kecper, L. Thompson.

Bro. Edkins was asked to explam the aums and objects of the C. A. S. E. for the benefit of a few engineers present who had no knowledge of the Association or ats work. Bro. Edkins complied, and after doing so tead a part of the Constitution, which apparently satisfied everyone regarding the chief objects of the Association and the work it was intended to do. All present having signified their desire to become members, the mitiation ceremonies were proceeded with and the officers installed. Bro. President Angell assumed command of the new association, and in a happy speech thanked the members for the honor conferred on him, and assured them that he would with their united help strive to make Guelph No. 6 an association second to none, and one of which the members of the C. A. S. E. might be proud. General business was then disposed of.
Several committees wele appointed, one of which was for the purpose of looking after a suitable meeting place. It was resolsed that the association should meet on the first and third Saturday in each month, at 7.30 p.m.
Uneer the head of "Gooll of the Order," Bro. Edkins was ralled on by the President for an address, and spoke in sub)stance as follows :
It is a great pleasure to me to come up to Guetph to organize you as Guelph No. 6, C. A.S.E. 1 have often wondered why the engineers of this city did not band themselves together as a branch of the order. but I am aware of the fact that there is a difficulty in organizing in a place of the size of Guelph that is not met with in a place like Toronto or London, owing to the small number of engineers. There are a number of places in which there are engilleers whe would like to organize a branch, but unfortunately there are only eight or tell engineers all told in the viennty, and of these perhaps threc or four are unwilling to join, and so for this reasorn in many eases :ssociations are not formed.

These associations have been the means of doicf a large amount of good in other places. lly then engineers nre brought together for the purpose of assisting each other, and discussing matters of every day interest. In this way each member is sure to gain some information that will help him in one way or another. We are all well aware of the fact that some men did not get the chance to acquite a good education in their youth; this certainly is their misfortune, but as a rule not therr fault. An engineer may lack education. but in spite of this he may be a thoroughly practical man, and I am amuanted with many men who are in just this position.
The chac object of the. $\mathrm{C}^{\boldsymbol{2}} \mathrm{A}$. S, E, is mutual improvement and instraction, and the meetungs of assoctations have been largely devoted to this object, while we. have not by any means overlooked the fraternal featurc, such as helping a brother engineer in distress and endeavoring to secure employ. ment for our members who are out of work.
I feel sure that your nssociation here in fhe Royal City wil! prosper and
be theredit to the oriter at large, and even though you may be small in number, if you remain true to your obligntions and each one does his shate of the work in and for the association, you will find that the nssociation will prove beneficiat to yous all. It will bring the engineers of this neighborhooil together as brothers, and be the means of creating a feeling of fraternity such as should be present among any body of men who follow the same employmem to gain n living. We have the locomotive Brotherthool, the Brotherhood of L-ocomotive Fitemen, the Manne Engineers Association, and many olhers who bave organized for the purpose of heiping ench ollicr. and it has always bren a matter of surprise to me that the stationary engi. neers of Canadis have only made a move in this direction cluring the last few years.
I am glad to say that at the present time there is a strong feeling in favor of organization all ovet the country. The C. A. S. Bn has spent a good denl of time and not a lithe moncy in trying to get an act pessed in the Local Iegislature for the licensing of stationary engineers. So far ve have been unsucerssful in obtaining what we asked, but two yenrs apo the Local House passed a permissive act and appointed a loard of Examiners to cxamine all enginecrs requiring certificates and to issue the same.

Up to the present time quite a number of engincers have leen granted certificates, yet not as many as we condd wish. We do not intend to the corntent with this. as we believe that what is required in Canada is n law to liennse stationary eagincers, and thus give every steam ustr a gunrantee that the man who applies to him for a position as engineer, has had the necessary experience and possesses the necessary qualifications to enable him to properly discharge the duties of the position to which he aspores. We do not think, or at least I do not think, thecessaty that in order for a man to be a qualified stationary engineer, he must have graduated from n technical school, but I do mantain that he should at least have served a sufficient length of time in the boiter room as fireman to enable hini to thoroughly understand the care of boilers and feeding apparatus, and if he las complied with this requirensent he certainly should be able to pass a practical examination. If an engineer has served time in ar engine or machine shop, so much the better, and you will invariably find men of this class holding the best positions all over the country and receiving good remuneration for their services.
1 am not one of those who maintain that in order for a man to be a good engineer he must have served his apprenticeship in the shop, but what I do maintain is that if a man has served from three to five jears in the shop. and in addition to this has had four or five years in the engine room, he certainly must make a good engineer. On the other hant. there are hundreds of men in the country who hase worked themselves up from the boiler room by having teken an interest in their work, and while they may have but a limited education, they have the experience, und in my cstimation that is what is required. It would not be right or just for any legislature to pass a law for heensing stationary engineers which would shut these men out simply because they could not pass a teclimical exammation or exphain the construction of certain parts of ath engine or booler, for there are hundreds of men in charge of statinnary engities who have been at the business for years, yet if put to an examitation, would fail, simply because they are not versed in the terms and technicalities of steam engincering, These same men, when anything goes wrong with their machinery, know what to do at once, and can do it quackly, but asked an hour before the accident what they would to in such a case, mught not be able to answer satisfactorily.
If an act should be passed to provide for the licensing of stationary engineers, it should be similar to the one passed respecting certificates to marine engineers. When the act respecting certificates to marine engineers came into force in 1863 in England. there was a provision made granting certificates to engineers who gave proof of a certan number of years' service in the engine room. \&e. These men were entitled to a certifate correspending in grade to the position they were holding on the boat at the tume the act came into operation. They had the experience, jet the authorities knew full well they could not pass the examination.
I believe the engineers on our inland waters in Canada were sinilarly dealt with, for 1 know that there are large numbers of them holding third class certificates who could not pass an examunation, but who are practical men and had a certain number of years experience, on account of which certificates were granted them.
Looking at the state of affars in regard to our marine brethren to day, we find when they come up for examination they have to prove conclusively that they have served is engincers or firemen, as the ease may be, on boats of a certain N. H. P. before the Board will examine them at all, and then the examination is severe. The coming marine engineer knows full weil what will be expected of him, and consequently he adapts himself to the situation, puts in his time firing or in shop, and prepares himself for exambnation in his spare time. When the time comes he is ready.
As I said before, if an act is passed providing for the licensing of stationary engineers, it must necessarily, in justice to all concerned, be framed in the manner I have pointed out, and any stationary engineer who ean give proof of five years service in the engine room, should be granted a third class certificate. The fatal explosions which have occurred of late prove conclusively that legislation is requited to prevent steam users fiom placing men in charge of steam boilers who have no experience. and as a consequence know litue or nothing of the duties they are expected to perform. It is the duty of every member of thes association to assist in obtaining this legislation, and we should try and do everyshing in our power to arouse the public to demand such a law.

It is oniy a short time ago since i went into the boiler room of a iarge
manulacturing concern in Ontario and found a man filling the prosition of engineer who told me he knew nothing about the work. The engineer had left some tume before, and lie was diving the tean when the boss came ont and ordered him to go in and take chatge of the boilers and engine. He satd be knew that if he refused be would tre discharged, he hand a wile and family at home depending on lis weekly earmans for bremb. I could see the fix be wouth be in. He told me he knew nothug of the work he was doing, and when I asked him how often he washed out, he dad not appear to understand what I meant. is it uny wonder that explosions occur when such a state of things is allowed to exist?

The law which was lefore the Ontario legishature three years ago would have passed had it not been for the opposition it met with from members from the saw mill districts, many of whom owned mills und were afrand they would have to pay 25 cents a day more for thetr engumer, and these are the vety men who need hensed engincers must, jadging th the number of explosions which oceur in saw mulls.

In conclusion, 1 trust that sucess. may attend your effurts in establishing the C. A. S. 1 in in Guelph, and even though you may be small in number, you are banded together for a good cause. and you can rely on it that the right hand of fellowship will always be extended to you by the members of the different asscciations.

A vote of thanks wis tendered to Bro. lidkins by the l'restdent for the address, to which he suitably rephed.

Guelph No. 6 is composed of a good lot of fellows who are all practical engineers. Their officers are the bight men in the right place. In fact, all the officers and members seem to hate plenty of "go" in them, and Guelph No. 6 starts out with every prospect of a long and usetul career.

Bro. Edkins was made an honorary member.

CARE OF STEAM BOILERS.

Editor Electrical Nhws.
LONION, ONT., Nor: 20, 1892.
Sir, -In the November issue of the Eitictrical. Nfiws you published a pi^{-}- on "Care of Stcam Boilers," by Mr. Albert E. Edkins. I wo kd like to make a few remarks on this very important subject through your columns, as I believe, as stated by Mr. Edkins, that this matter does not receive the careful consideration that it should.

With the knowledge at hamd there is absolutely no reason for boilers to explode. There are teliable safery' valves; there are icliable fusible plugs, and there are reliable engineers to take charge of them, and what is more, expert inspectors can be secured to inspect boilers at a very reasonable charge.

In the last 40 years the alterations made hate not been very gieat, though they have been important. In the structure of the boiler itself the chief alterations have been in the direction of providing against expansion stresses due to the actoon of heat upor. different portions of the boiler causin; differental movements. Ia details, there have becu mprovements in the riveting and in the making of the rivet holes.

I regret to saty there are still :o0 many archutects who prowide the worst part of a building for the steam plant unless they are expressly enjoined othernise. Now, right here is whete the employer makes a great mistake. If, instead of an architect, he would consult sume first chas ensineer as to where the stam plant should be put, how much room should be required for it, and how the brick work should be built, he would find that the life of the boiler would be a great deal longer, and there would be considerable saving on the coal bill.

An employer called on the writer a short time ago and wanted to know the reason why his new brick chimnes would not give satisfaction. He stated that although he employed a first-class architect and bricklayers, results fram the new chunney were not as good as from the old iton one in fact, the steam could not be kept up the draught was so bad.

When asked the details, he said : "The boiler is a 35 H . P., the chimme! is 4 ft . square at base inside and $3 \frac{1}{2} \mathrm{ft}$. square at the top of the flue, and the height is 60 ft from surface."

Would it not have paid this man to engage a first-class engineer in the first place, in which case he would have had a firstclass job, whereas as it is he knows not where the expense is going to end.

This is only one instance. A furnace u.eine a boiler into which I looked the other day, as the fireman was shovelling in the coal, night be compared in an old stieet car open at both ends. Sonse good consulting engineer would strike quite a harvest if he could be allowed half the sitving he could make in the coal bill. The so-cilled engineer in charge of this plant boasted to we that it was the finest biened in boler he ever handled.
lle satil. "I can blow her off, "ash out and fill her up again (with water at $50 \mathrm{~F} \cdot$, and then have enough heat left in the brickwork to mise steam to to lbs. without any fire."

Now, the city has a by-law in forec, and fathfully carried out, whirh provides that only a small quatity of gunpowder can be kept in or around a store. My opinion is that such steam plants as the above mentioned should be classed as gunpowder in large quantities and should be taken out to some lonely spot in the country, where the "engincer" could be given a fait chance to show his abilities. Still, were such a boiler to explode, some people would think it was a pure accident.

It is bigh time that anengimeers license and boiler inspection lan was in force and faithfully applied. I must sis that much credit is due to the Builer Inspection and Insurance Co., of Ioronto, for the able manner m wheh their mspectors have given safety by inspection and a word or two of good advice to the engineers of this city. I know steam gauges now telling the truth, which wetc 5 and to lbs. out before inspection. and safety valies made good which were absolutely useless. In this clirection we ought to set out with the conviction that a boiler is not an auticle to explote.

Freis. (i. Mitchaid.i.

POWER TO RUN A DYNAMO.

If J. II. Giover.

One of the most remarkable things about the dynamo-electric machine is its power-absorbing capacity.

It is well known that in operating a mechanical device it requires less power to keep the apparatus in motion after it has been started than it does to start it. In the case of the loco. motive, for instance, it requires very little steatn to keep the machine in motion after it has started, but it requires great power to start it from the condition of rest. The same applies to electric cars and all other vehicles, as well as machnery. In all, the greatest power is needed to effect the start, after which little power will maintain the motion. Not so with the armature of a dynamo, however, which in its mechanical aspect is no different to any other piece of mechanism.

Naturally, the uninitiated would suppose the armature would run with great facility afet thad got started, just as the locomotive does, but exactly the reverse is the case, and it is a remarkable fact that the faster the armiture is revolied the greater is the power required to maintain the motien.

The armature of a gigantic 500 H . l . gene rator may be turned by the hand from a state of rest, so delicateiy is it balanced, but to run it at at speed ot several hundred revolutions a minute requires the energy of a steam engine of great power, and within certain limits the faster we run the armature the more stam power will be required.

Now, what is the reason for this apparent inomaly in mechanics? It is this. When the atmature is at rest there exists no magnetic field, the existence of which depends upon tue metion of the armature, and the faster we run the amature the denser will the magnetic field become. The elements of the magnetic field consist of what are ordinarily termed "lines of force," and when we speak of a dense magnetic field, it is another way of saying that thereare a great number of "lines of force." One of the peculiar properties of the magnetic "lines of force" is that they tend to arrest motion, and in the case of the dynamo the tendency always is to stop the motion of the armature in its revolutions. It is evident, therefore, that the stronger the magnetie field, and consequently the greater number of "lines of force," the greater will be the tendency to arrest motion, hence the greater will be the power necessary to overcome the retarding infuence of the field.- Electrical Afc.

Mr. W. A. Grant, formerly secretary to Mr. Van Horne, President of the C. P. R., has been appointed mianager of the Niagara Falls Eilectric Ratil. way, and will enter upon his duties at once. The milway, however, will not go into op-ration until the spring.
The Bach River Power Co.. Lid., is applying fur incorperation at Mont. real. lis capital stock is to be $\$ 200,000$. The appicanis are, -John Thomas Wilson, merchant. James Robert W'alker, merchant, Gilman Cheney. genteman ; Exams Fisher Ames, manufacturer, and Frederick Milton Cole, insurance agent. The object of the company is to lease or sell water poner or electric power to indoviduals. cempanies or municipal corporations.

C. A. S. E. BANQUET

The Sixth Ammul linner of the Canadian Association of Citationary Engineers was held on the evening of the gith of November, at the Ric hardson llouse, Toronto. . Wbut ;o lidics and genilemen sat down to dimer, amongst whom were noticed the following -

Guests Messts. Cico. (itant, Jas. Witson, Win. Towers, J. Wright, IV. S Brown. I'rof. Ciallotath, J. Mann, R. Hutl.

Latly Cuests Mis. R. Hult, Mis. Wim. Fuwers, Misses d. M. Wickens, I:. M. Wickens, Miss Mortimer, Messes M. Croacke, V Counts, I. Coutts, J. Winters, l. Kennedy, Miss Winters, 1. Simith.

Members and wives Mr. and Mrs. '. (.. Bain, Win. Butler, W. G. Black grove 'President, Mr. and Mrs. M. Caldwell, A. L. Edkins, (ico. Emory, J. Fox, (ico. (ilchrist, Mr. and Mrs. Chas. Heal, D. Jeffecy, Mr. and Mrs. Chas. Kinsey, W. Leevis, 1'. M,ers, Mr. and Mis. Chas. Mosales, J. C. Mooring, W. Phillip
 Reveley, 'I. Rolph, C. Scott, W. Sution, Mr. and Mrs. Cicorge Saunders, E. Tipton, II. Terry, Mr. and Mrs. A. M. Wickens, Jas. Wadge, II. Winters.
An excellent bill of fare was presented, and after full justuce had been done thereto, the "Queen" was proposed and diank in royal style. The "C. $\lambda . S$. . L.." was coupled with the names of Bros. ${ }^{\text {A. M. Wickens and A. F. Bakins, President of the Execu- }}$ tive Committe.
"Our Manufacturing Interests" was coupled with the mames of Mr. Urown, of the Cilodie \& MeCulloch Co., (ialt, and Mr. J. W. Mann, of John Inglis N Sons, Toronto.

Mr. Brown, it responding referred to the growng mfluence of the C. A. S. L:, and the many benefits that had been derived by ts members. The Association was not only beneficial to members, but also to employers, as it enabled them to secure thoroughly capable men. The engines were better taken care of and better satisfaction given in every way.

Mr. Mrain also epoke, expressing the pleasure tt afforded ham to be present. He had attended several dinners of the Assoctation and alwiys enjoyed himself. He was pleased to sec the Association prospering, and hoped that it would contanue to atvance in the future as in the pas!.
"Our Educational Interests" brousht forth a response irom I'rof. (;albrath, who said:-"It is with pecular feelings that I arise to respond to this toast to.mght. I thank i have been at every ammal dinner that you have held since the beginning, and 1 must say that I neven felt so embarrassed as to-night. I think the last time that 1 had to make a specch in the presence of ladies, that is aside from a writen speech or somethine of that kind, was the mornug that 1 was married, and 1 observed the five minute rule then I can assure you. I didn't attempt to till up the time. But, ladies and gentlemen, I think that we must all acknowledge the advance of the times; ten years ago we never thought of seeing a hady at our classes in the University; to day we think nothing of it. (Laughter). The professors are quite accustomed to speaking to labies; it is only within the last year that we had the pleasure of addressing any ladies. There is one now atsending the School of Serence-the first one. I am beginning to ges accustomed to it, but it takes a great deal of cournge I am sure. But this has quite driven the subject of the toast out of my head. As a change has taken place in the respect that I have just mentioned, so changes have taken plase in educational interests with which we are concernert, namely, in technical education. It is only, I think, four years ago since we had nothing but bare draw:ng tables, seats and ackboads, and a few books. Now we are pretty well fitted out with a large quantity of apparatus and machinery. Within the same period the technical evening school has become a fact. Four years ato your former Presiden. Mr. Wickens, and your present l'resident wete working hard with us to get that school established, and we never expected to meet with the success that we have. For the first year we worked in the same way as we have worked for a long tume in the School of Science, with very little except mechanical apparatus. This year I am glad to say that the council have given a farry large grant toward electrical apparatus, and 1 am glad to say that as time goes on we shall find both of these classes-the Schnot of Science and the Technical School-yrowing and increasing. I don't fear now
that they will fail ; a few years ago we scarcely hoped that they would succecd. I scarcely know what I can say mote than I hase said on former oclasions. Une thang perhaps 1 may say: I promised you fot the last three or four years an evening at the Shool of Science. 1 promsed it so often hat 1 felt sure that gou had lost all faith in my promises. However, 1 determined to be at the dinner to-night and speak a few words to you, and now I think I can take courage and make a funther promise, sometime during the coming winter to give you a more extended address something that will interest you. I ann ghad to see your society progressing as it is, and from the signs that we see the the end of the table, I atm glad to believe that it will never die out.

The Hosi and Hostess were then proposed, to wheh Mr. Richardson responded.
After the room had been cleared, the following programme, interspersed with dancing, was gone though:-
Piamo solo, Miss Croake; song (comic), Mr. F. Wright; duett, (: W. Grant and Miss Mortimer ; song, Mrs. 13ain ; song, Mr. Major ; duett, C. W. Cirant and Mr. Blacksrove; song, Mr. F. Wright ; song, Miss Mortimer; ductt, G. IV. Grant and and Mrs. Bain ; song, 're. Major ; song, Mr. F. Wright ; Miss Croake, pianist.

AN AUTOMATIC TELEPHONE. .

The Automntic Telephone and Electric Co. of Canada has been organized at Montreal, to introduce an instrument designed to enable each subscribet to a telephone exchange to make his connections without the assistance of a third petson at the exchange. Mr. James P. Dawes is the President of the new Company, and Mr. H. M. Linnell, formerly manager for the Edison Co., is to be the managing director. Among the directors are Miessrs. John Torrance, R. Wilson Smith, L. M. Dupnis, 1. 13. Clarkson, J. E. Macdougall, and Alf. Lomas.

The invention, which is said to have been proved by tests to work with entire satisfaction, is thus described by a local paper: It is a device to automatically make the connections in a central exchange and dispense entirely with the services of an ploye at that place. The method by which this is accomplished is simple. On the telephone shelf is a row ot keys, five in all, marked thousants, hundreds, tens and units, the fifth being a release key. The subscriber who wishes to place hinself in communication with some one of the other hundred or thousand subscribers taps out the desired number on the key-board, which athomatically connects his wire with that of the person with whom he wishes to speak. Suppose for instance, that a subscriber wishes to communicate with No. 1123. He simply presses the key marked thousands once, the key marked hundreds once, the key marked tens twice, and finally the key marked units three times. His wire is then in electrical connection with that of the subscriber 1123 , and he can ring his bell and converse with him in the same way and with us much ease if he had been wrangling with central for five or ten minutes. The whole mechanism of this, the Strowger, patent takes up a space of only $6 \times .4 \times 4$ inches. The apparatus is placed in the central exchange and takes the place of the ordinary telephone girl. As for the subscriber's end of the line, there is nothing more than the ordinary telephone with a row of keys upon its shelf; the mechanism at the exchange consists chiefly of a circular dise constructed of hard rubber or any other suitable non-conducting matcrial, and this is the centra! feature of the machine. This dise is provided with perforations in circular rows of 100 each, these rows being about one-twentieth of an inch apart. Through these perforations extend the wire connections to the main line wires, so that the wire of every subscriber in the exchange comes to this instrument, and passes up through one of the perforations, ending in a good metallic contact slightly raised above the face of the disc. If, now, a moving arm or needle can automatically be made to make contact with any one of these points at will, it is evident that a telephone citcuit can be completed and the object of the invention attained.

This is accomplished in the following manner :-A circuitclosing arm is made in parts, of which one is a rod. Within the circuit-closing sleeve is closely fitted a circuir-closing needle held ia such a mañer as to be in perfect electrical contact with the wire terminal by a spring. A rod is located along the axis of the cylinder and is free to rotate and move longitudinally;
the lower end of this rod is sleeve.
uppe: portion of the rachet rod. TI
the rathet rod to have a longitudmath
ing the ratchet teeth continuously tow
The rachet rod is provided outside of the
iently below it with a series of matchet teeth
the reds are moved longitudinally. Two whe
the rods extend with a feather and groove conne,
in contact with the matchet teeth and levers, having
in their ends. Eath lever has a vibratory movem
oscillated by the alternate energizing and de-energiz
electro-magnet, thereby imparting motion to its aljacent
teeth, and consequently the circuit closing needle. Each pressure of the push bution at the exclange made at the will of the operator, causes, through the channels thus described, the circuit closing needle to move from row to row and from wire to wire, it being understood that both ends of the wire atre grounded or comected with a return tap, and also that a bittery is used to generate the current. This battery is located at the sub-station between the keys and the ground.
Each perforation of the cylinder is numbered with respect to an initial or starting point on the cylinder. When any conversation is ended the person hangs up his ear phone and presses the release key. This causes the magnets to be energized, attracting the armatures, therebv withdrawing the several pawls from their engagement with the ratchet teeth and allowing the circuit closer to fall and return to its initial point.
The subscriber is never isolated from the exchange. Suppose that two persons are in communication with each other and a third wishes to speak with the first. He can tap the number and make sufficient connection to ring has bell and call has attention to the fact that somie one wishes to speak to him, so that the first subscriber can then at will release his instrument from the one with which he is in connection and connest with the third man, or he can continue his own conversation until finished, when upon pressing the release key, he will find himself in communication with the third person. The outside party, however, cannot either speak with the other party of listen to any of the conversation, be can only obtain sufficient connection to ring his bell.
Mr. Limnell claims that there can be no errors in the call, for an arrangement is provided on the instrument of every subscriber so that the number which he calls up is automatically registered on the front of his telephone. If a subscriber calls up No. 100 he sees 100 in plain figures on the face of his instrument, and there can be no question as to whe:her he is in connection with the riglt person.

A FEW POINTS ON UNPACKING AND ERECTING.

In unpacking machines and lamps, be very carcful, says the Scientific Machinist, that packages are nevel dropped or jarred in any way.
Use special care to avoid dropping anything on to the lamp rods or arc lamps.
Never lay an arc lamp on its side, but set it up in some secure place.

After, taking lamps out of boxes, remove the packing blocks, and sec that all parts are in proper position and working freely.

In unboxing the dynamo, do not attempt to remove it from the box after simply taking off the cover: but, instead, knock the entire box apart, leaving the machine standing on the bottom piece only. If the armature is shipped in a separate box from the balance of the machine, it will, in most cases, be necessary to use a hoist for the purpose of placing it in position, and great care should be used to avoid scraping or cutting of the shaft wires, or armature bobbins, in dropping the armature into place. Look the machine over thoroughly, and see that everything is in place and all screws tight. Secure the pulley firmly on the shatt.
It is a good plan to run a dynamo idle for a day, or even longer, if possible, following this with several hours' run with only a light load. This load should only be sufficiently heavy to warm up the fields and armature, so as to dry them out thoroughly in case they have become damp during transportation. A litte care of this kind before putting the machine into regular service, will avoid trouble at a later stage of the proceedings.

It is very important to locate the machine in a dry place, and
ammoovingung machines, it may not be necessary to run all of the dynamos for exactly the same length of time. Under such circumstances, a clutch pulley must be provided on the main shaft, which will permit throwing on or of the dynamo which it drives, as such dynamo may be needed or dispensed wilh.
A light double belt is the most desirable for lighting work. It should never be less than 30 feet long, ind should be very pliable. If the belt is new and stiff, it can be softened up by applying neat's foot oil, or belt oil, on the outside.

THE MONTREAL LIGHTING CONTRACT.

Following ate the terms upon which a committe of the Montreal City Council has recommended the renewal of the city lighting contract with the Royal Electric Co.: "That the contract for lighting the city of Montreal by electricity be awarded to the Royal Electric Company for a period of ten years from the first of January, s894, at the following prices. For the first five years at 34 cents per lamp per night, equal to $\$ 124$ per year; for the following three years at 33 cents per lanpp per night, equal to $\$ 120$ per year; for the remainder of the term, two years, at 32 cents per lamp per night, equal to $\$ 116$ per jear ; each lamp to be of 2,000 nomimal candle power." The present conthact is $\$ 146$ per light, and has one more year to run, but in constderation of a renewal the company agrees to teduce the price for the remammg year to $\$ 124$ or a total of aloout $\$ 22,000$, which would make an average of \$nio.35 per hyht tor the whole term. The company under its present charte has an absolute rig:At to maintain its poles in the streets, bur it makes the following concessions: "Should the city at any time during the continuance of the present contract construct conduits for the placing underground of all electrical wires for whatever purposes they may be used, and cause all such electical wires to be placed in said conduits, the Royal Electric Company shall make use of such conduits for its wires ma such terms as may be mutually agreed upon, provided, however, the expense to the company for supplying electric light to the city or to ut inhabitints be not thereby made more onernus than if they were to continue to use poles for the purpose; and the company will then remove their poles from the streets, wherein such conduits are constructed without indemnity."

The following are the officers of the Cumadian General Electric Co. :Presulent, W. R. Brock, first vice-president, II. P. Dwight ; second vicepresident ant general manager. Freteric Nicholls; nssistant gencral manager, M. D. Barr: comptroller, Walter S. Andrews ; chuef engmeer, W. M. Rutherford ; assistant engincer, H. T. Hartman: purchasing agent, Geo. W. Wattc ; superintendent Peterborn factory, William S. Andrews ; sup. erintendent Hamilton factory, C. S. Stilwell.
Ihave an idea which, though not new to some, may be of use to others. It is just a little wrinkle in mbbbiting a journal box. When lining up a shaft. put a small piece of pine wood in the bottom of the box. in lengin about if or 2 inches less than that of the box, and in widh $\$ 1 / 2$ to $1 \frac{1}{3}$ inches. aceording to the size of the box. Equalize it th the botlom from each end. 'et the shaft lie on it, and pour. After you have scraped out the box, remove the prece of pine and substitute some woollen cloth sittuated wih olt. This prevents the oil from dripping, and not only insures a more positive lubrication of the journal, but also is clean and requires less oil than other journals. - No patent is infringed.
A coating of pulverized chalk is excellent for preventing the packing stecking. A paste of graphite, plumbago. or black lead, as it is variously called, is most excellent. It is the finely pulverized product that is used, and the paste is made wath water or some oll, having no gum as kerosene or lard oil or glycerne. Some old-time boilers used to have a stean dome surrounded by a cast iron safcey-walve, from which steam is led to the engine. The valve is usually, in such cases, fastened to the dome with cap screws, holes for the same being drilled therein and tapped-the flange of the valve and dome being made stean light by a rubber gasket between. If the rubber is objectionable, and the ron is wanted to join, a rough joint may be made tight and dumbic by putung letween a cement made of boited linceeci oil with two parts litharge and one part cach of fine sand and airs-shecked lime mixed to a paste. It dries rapidly and should be screwed down before too stiff. This cement is equally applicable to joints below the water line. ays ago. Λ sted crank pin broke otrough the back end of the large steann the daily papers it was estimated thot 00,000 lbs. to the square inch on the piston The pressure was certainly more than the , but if there had been even the laite of the althere would not have been much of the engine which broke was five inches in diameter and the presented a rather brittle appearance.

Office: Confederation Lift Buidminc; Corner Yonge and Richmund Slorets.
TOROIVTO, - - OANADA. 6. Trmithe Bullming, Momthkal..
 reach the office of publication not later than the isth day of the monith immediatcly preceding dats of lasue. Changes in advertisements will be made whenever desired, without cost to the advertiser, frut to insure proper compliance with the instructicms of the advetticet, teyuests fot change should reach the office as eatl) as the asnd day of the month.

HUHACHIETION.

The Eincrajeal Ninws will be mailed to vubscribers in the Dominion, or the United States, yost free, for $\$$ s.00 per annum, so cents for six months. The price of sulictiption may be reinitied by currency, in registered letter, or by prostal order iayatie io C. AI. Alotimet. Nease do nor mend cheques or focal banks unless as cenders tiak. Sutucriptions from forcign countries embraced in the General Potal Unon, \$1.50 per annulli. Subscrntions are payatic in advance. The paper will be discontinued at expiration of term paid for if so stipulated by the subseriber, but where no such understanding exists, will be continued until instructions to discontinue are ieceived and all arrearages paid.
Subscribera may liave the mailing address clanged as often as desired. When nioring chance, alruays five the old as mell as the metre address
prompty and tepulaily ve notifiet of the failure of sulscribers to feceive their papers pomptly and regularly.
Cormitoris diveUUACREMEYTN
Cortespondence is invited ujon all sopics coming legitimately within the scope of his journal.

THR " (ANAHIAN HIKCTXICAI, NEWS" HAS BKKN AI'OINTED TIHE

CANADIAN ELECTRICAL ASSOCIATION.

OFFICERS :

JRKSIDENT:

J. J. WVIGIIl', Manager 'Ioronto Electric Light Company. ist Vice.prísubher :
K. 1. DINSTAN, local Manager lkell Telephone Company. Joronto. asい Vick-Prksident:
JOHN (A芝ROLA, Sex-Treas. Eugene Phillips Electral Works, Montreal. Shcentary-l'kRASURKR:
C. H. JOR'IIMER, P'ubisher Et.kCTRICAI. News. Tooronto. ExEcutive Comsutter:
D. A. STARR. Royal Electric Company, Montral.
11. O. FISK, Electrician Electric Light Company, Beterboro'. Ont.
W. A. JOHNSON, Manager Ball Electric laght Company, Toronto.
S. J. PARKER, Managing Director Owen Sound Electric Lught Company. Owen Sound, Ont.
A. 13. SMITIH. Inspector Cinhaian Board Fire Underwriters, Toronto.
1). THOMSON, General Mianager Hamilton Electne L.ight and Power Company, Ilamilton, Ont.
THOS. H. WADI AND. Suprrintemient Construction, Bell Telephone Company. Hamilton, Ont.

1. B. Mcfarlanive, Bell Telephone Company, Montreal. JOHN YUL.E. Manager Guelph Gas and Electric Light Compnny, Guclph, Ont.
canadian association of stationary engineers.
lressdent. A. E. Enkins.

Vice- iresident. G. Hult
secretary, W. G. Blackgrove.
Trasurer. R. Mackir.
Conductor, Cilas. Heal.
Door Kerper, F. Brisbois
Tonovio Benci
Tokonto Bkancil No. z. Meets every and and ath Friday each month in Roons D. Shalicsbury; Hall. W. G. Blackgrove, President: E. Ehillips, Secretary, 63 Mariborough Ave.
hamiton brascin No. 2.-Mects istand zrd Fnday each month, in Macenber's Hail. W. Siweet, Prestident: E. Nash, Secretary, 89 Little Willim Street.
Stratpord Branci No. 3.-John Hoy, !resident, Sinuel h. Weir. Secrelary.
Brantronil (3kanch No. 4.-Meets 2nd and fth Friday each month Thos : Bilgrim. President, John Ogle. Secretnry, G. T. car shops.
Lovitus Braveis No. 5. - Meets and Tueslay each month. F. Mitchell, President ; J. MeIntosh, Secretary.
Brandos, Mas., Bravci No. 1.-Meets ist and 3rll Friday cech month. in Civy Hall A. R. Criwford. Prestlent, Arthur Flenung, Secretary.
Mostreal Braseh No. 1.- Mects ist and 3 rd Thursday each month. in Mechanics Institute, 204 St. James strect. Thos. Naden, President ; Jos. G. Robertson, itzo Mignonne street, Secretary.
St. Laurknt Branci No. 2.-Mects ist and 3rd Tuesday cach month, in Mechanico' Institule. 204 st. Janirs street. Mathias Gumond, President alfret Latour. Secretary, 306 Beliste street, S. Cunegonde.
Gusloni branca No. 6-Mects every ist and 3rd Saturdiy at 7:30 pm. J. A. Angell. President; C. Jorden, Secrelary.

Moniral. Que
+3 Bmnt St. Toronto Hanilton. Ont. Toronto Ont Toronto, Ont.

Fodey ach

Toronto, Ont.
 to pass; this condenses and water accumulates in the pipe beyond the valve. A thoughtless attendant will open the steam valve without first draining off the water, or he will open it up quickly instead of slowly, and the sudden rush of high pressure steam into the pipe and coming in contact with the water will produce watel hanmering enough to rupture the strongest pipe.

Chimsey draught when defective has been helped in many ways-sometimes by a fan forcing air under the grates, or by a steam blast forcing air under the grate or over the fire. In locomotives the draught is induced by exhaust steam forced through a jet at base of the smoke pipe. Korting Bros. make an apparatus which is placed in bottom of chimney and by means of a straight jet induces a current of air. A Chicago firm is at pres-
ent trying the experiment of an exhaust fan piaced on top of the climney. If it will work at the top of the chimney, why not have it at the botom, and save the trouble of carrying the power up so high and having to send oil up to the bearings? The chicf difficulties in using an exhaust fan for promotion of a driught are the high temperp -ne of the gases passing through the fall and the necessity for a thing rid of the gases. If the fan could be got to run notwith: .nding the hight temperature of its bearings it might be a good plan to make the discharge go down into the sewers. Enough deadly gas might be sent down and hot enough to kill all the typhoill fever and diphtheria that are said to dwell in the sewer.

As we were going to press with our last issue we were the recipients of a letter from the Brantfort Electric Light Company complaining of an editorial in a previous issue of the News commenting on the low prices, etc., obtained in a near-by city on the renewal of their electric lightung contract. As we did not mention any names in connection with the article complained of nor indulge in any personalities whatever, we must decline entering any further into the matter, further than to say that we had no wish to tread on anybody's toes, but only to point out to our readers the necessity of using their utmost endeavors at all times to give their patrons the best of service, and thereby secure at least fair prices for that which they have for s.a.s.

Tue Council of Toronto Junction, having had enough experience with municipal electric lighting, lave sold their plant, together with a nineteen years' franchise, to the Toronto Incandescent Electric Light Co. for the sum of $\$ 26,900$, on condition that the purchasers will operate the plant in Toronto Junction during the term of the franchise. The City Council of London, Ont., scowing to be influenced by the experience of a smaller town, is about to insist upon the privilege of purchasing in the dearest market a stock of experience of its own. A by-law will therefore be submitted for the approval of the ratepayers to authorize the appropriation of $\$ 60,000$ for the purchase of an electric light plant. Possibly, as in the case of Brintford, the citizens will knock the scheme in the head. There is likewise the possibility, if not the probability, that this announced intention of the Council is simply designed to be used as a lever with which to bring pressure to bear to induce the Company, which is at present furnishing light to the city to lower its prices. In any case, we hope to see the scheme fail.

Tus cold weather compels attention to the heating apparatus. Now the landlord complains of the large amount of coal required at the boiter, while the tenants complain of the small an ount of heat at the radiator. The best designed and most perfectly constructed apparatus will not heat the building unless it be attended to. Coal is put in the furnace to be burned, but when it is put on top of the bridge wall or on the dead plate just inside the furnace door its burning will not do much good. The making of îre under a steam heating boiler iequires experience and skill. The method of employing the man who will shovel the most coal for the least money is a mistaken one. It gives satisfaction to none of those concerned, unless the coal dealer. It will pay owners of steam heating plants to employ competent men and pay them according to results. As a rule it will be found cheaper to keep a large building warm all night as well ats all day, than to let it cool down at night, and a skillful fireman can arrange his fire so that for six or eight hours after he has left it the boiler will still make vapor enough to keep the radiator warm.

This is the agreement which the city of Kingston requires any company to sign in return for the privilege of supplying an electric street car service :-"The company to pay to the city annualls the sum of $\$ 200$ per mile for single track and $\$ 300$ per mile for double track, for rent and keeping roadbed in repair, also the following percentages on gross receipts, viz. When the total gross receipts reach $\$ 15,000$ per annam three per cent. on the total gross receipts till they reach \$20,000 per annum, and when they reach $\$ 20,000$ per annum four per cent. on the total gross reccipts till they reach $\$ 30,000$ per annum, and when they reach $\$ 30,000$ per annum and upwards, six per cent. on the total gross receipts." An alderman after a perusal of these conditions
is said to have remonked that no one outside an asylum could be found willing to make an offer on such a basis The present strect car company claim to have the right under their charter to a perpetual use of the streets and refuse to change to electricity unless this ight is recognized. On the other hand the city authorities contend that the law provides that a charter for electric sttect cars cannot extend beyond twenty years unless special legislation is obtained, in which case the period may be extended for another ten years only. No doubt a demnad on the part of the citizens to be given the advautages of electric transit will before long force a setlement of the existing difficultics.

The novel sight of a brigade of ase men engaged in chopping down poles erected by the Street Railway Company has hately been witnessed on the streets of Toronto. The City Engineer's action in ordering this to be done secms justifiable. The agrecment which the Street Railway Compang entered into with the city provides that the character of the construction and equipment of the system shall be subject to the approwal of the City Engineer. The Company has lately acted as though its intention was to evade as far as possible compliance with thrs agrement. It has erected poles which would disgrace the streets of a backwoods village, and has accentuated their native ugliness hy painting wem a variety of colors. In many cases a brilliant red is the prevailing bue. Is it a mater of any wonder that the citizens of so respectable a city should object to the Company "painting the town red"? There seems to be manifest in the Company's dealings with the city as well as with private corporations and individuals a disregard for the rights of others as well as its own promises. To get possession of what it wants now under promise of remedying in the future what is below the standard, seems to be the policy pursued. Whatever the other party to the contract may do, the Company appears to have always in mind the fact that "possession is nine points of the law." If the company intends to continue to own and operate the road, it is making a buge mistake by antagonizing public favor, and even if, as is asserted, its intention is to dispose of the franchise, the fact of its being at loggerhends with everybody must tend to lower the value of the privitege in the eyes of intending purchasers. We refer to this matter because such conduct is calculated to increase the prejudice against which promoters of electric railways have had to contend, and thus to retard further development.

ONE important point in the op.ration of incandescent electric light from a central station, and wheh is a vital one when the cost of operating is taken into consideration, is that due care and diligence should be exercised at all times to see that the lamps on the circuit are never allowed to be strained with higher voltage than ticy are made to carry. We feel sure that we are right when we make the assertion that an increase of 5 per cent. in the voltage maintained for say 100 hours in the life of a lamp will shorten its life fully 25 per cent., which means that the lamp account is 25 per cent. more than it would have been had the lights been kept at or below their normal voltage. We are aware that it is sometimes a difficult matter to so arrange things that this can be done, but there can be no question that it will pay well to see that it is so arranged. This is a matter that is perhaps more difficult to adjust on alternating methods of supply than on straight current machines, as they are generally compound wound, and take care of variations in load with only an occasional hand adjustment, which is necessary almost continually in the general run of alternating dynamos at present in usc in this country, white the load is fluctuating either in one or the other direction. There are alternating dynamos being manufactured for which the claim is made that they are self regulators in every sense of the word, but their use in Canada has been very limited owing to the fact that it was necessary to im.port them and pay heavy duties, bringing the price to such a pitch that it almost prohibited their use here. In this connection we arit credibly informed that this state of affairs is about ended, and that at least two of the large manufacturing electrical companies in the Dominion are at present getting out plans and patterns for self-regulating alternating dynamos with compound windings, th the use of which potential wires and compensating devices will be things of the past.

The Electrical. News completes with this number its second year of existence. An index to the contents of this volume accompanies the present number. A perusal of it should satisfy every subscriber that he has had value for the price of subscription. Indecd, some of our most intelligent subscribers have expressed the opinion that in some cases a single article was in iteclf worth to them the price of a year's subsciiption. The co-operation of every reader is asked lowards making the paper increasingly waluable, and thanks are extended to those who have in any way assisted its progress in the past. To all the wish is extended for a Merry Christmas and prosperous New Year.

It isn't often of late that the tallow dip and coal oll lamp get a chance to demonstrate their usefulness in competition with the incandescent electric light. Such an opportunity came to them, however, in Toronto a few nights ago, when by reason of the fusing of a safety catch in the junction box of an underground feeder, the incandescent lamps went out. In many of the business buildings gas has been entirely dispensed with, and when darkness settled down upon them, the lighting methods of our ancestors suddenly regained a brief popularity, while at the same time serving to impress the public mind with a greater appreciation of the value of the modern illuminent.

In supplying power from a central station for the operation of a number of small motors, it is of the utmost importance to both those supplied as well as to those supplying it, hat a constant pressure or E. M. F. be maintained on the mains during all the time that it is in operation. A greater fluctuation than 5 per cent. should under no circumstances be allowed by the attendant in charge of the generating plant. The prncipal reason is that a motor running at or about full load at a certain speed will feel a greater drop than this very sensibly, and will lose a number of its revolutions, particularly if the drop is as great as 10 per cent. So great would be the difference in the number of revolutions, particularly on very fast running small motors, that it would cause an appreciable difference in the amount of work being turned out by the various machines undrr operation, meaning of course a loss to the power customer, which if kept up for any length of time, would in all probability cause him to condemn electric power or perhaps throw it out entirely. True, the fluctuations in load on a generator, that, among other things is operating a few passenger elevators, is sometimes so great that it precludes anything like fine governing euther by hand or automatically, but the fact remans nevertheless that it will pay best to keep up as near a constant pressure as possible. These remarks do not apply to generators operating strect milways, for in their case there is so great a fluctuation in the load at times as to make it almost an impossibility to maintain a constant and steady E. M. F., nor is it essentially necessary to do so, owing to the fact that a regular speed is not required, it being seldom necessary for the motor man to turn out all of the resistance of the rheostar to get his car to travel its set speed, and a drop in the E. M. F. can easily be compensated for by turning in a littie more current, it being a combination of the E. M. F. and ampetes (or watts) that does the work.

We have quite recently seen tested a one inch by half inch oval carbon for all night single rod lamps, and to judge from this test, they are unquestionably the right thing in the right place. The test on 3 ampere current showed a life of 10 to so hours for each pair (one twelve and one seven inch), plain black ones being used, without any coating of copper at that. In fact a test was also made at the same time of a coppered one of the same size, but owing to the carbon being consumed without breaking down or fusing the copper, it was necessary to occasionally knock off the long metal homs which formed at the extreme outside width of the carbon. In using this style of carbon it is necessary in order to obtain the best results, to set them in the lamp at right angles to one another, and also that means be provided in the lamp to keep them in this position as they feed down. This is not an easy matter to do in the ordinary clutch lamp, perhaps, but in a clockwork lamp, with rack rods, no other device is necessary than to fit them with holders suitable to the shape of the carbons. Such carbons are actually money savers to the company using them, their first cost being
considerably less thian would be that of enough $7 / 16$ carbons to Inst the strme length of time. Again, there is this consideration, that a plant requiring the lamps trimmed every day, siay for six months in the year, would only need them trimmed or carboned every other day for the other six months. Thus, one trimmer would take the place of two for that length of time, a decided saving as all will admit who have weekly wages to pay to half a dozen or more trimmers, and who find it uphill work to make the plant even show a semblance of paying any profit to those who have their money invested in it. The argument may be used that it is necessary that cvery lamp should be looked after in some way or other every dny, to see that the rods are clean, etc., but this is not absolutely necessary where a black catbon is used; they cannot pass by or become locked if used as shown above, nor can there be any reason whatever advanced to show tha: this method of all night lighting is not a change : the right direction and a money saver for the company. Another point, is that the dynamo may flash around the commutator without the least fear that there will be any of the carbons pass by or lock, which is decidedly not the case where a double rod lamp and 7/16 carbons are used.

C. A. S. E. No. 6, GUELPH.

GUELPH, NOV. 21, 1892.
Editor Electrical Naws.
A regular meeting of No. 6, C. A. S. E., recently organized here, was held on Saturday evening last. Two applications for membership were recelved. Every member was present, making the total attendance 16 .
The President, Mr. John A. Angell, gave a lengthy and practical lecture relating to boilers, the common slide valve engine, steam pumps, etc, and questioned the brethren on these and other subjects pertaining to steam engineering.
So pleased was everyone present with the lecture, that a resolution was passed requesting the President to repeat it at nextmeeting.
As we are but new beginners, we would feel greatly obliged for any information or assistance of any kind which our more experienced brethren in the Association may feel disposed to give us.

Yours truly,
C. J. Jordan, Rec. Sec.

PERSONALS.

We have been favored with a copy of a Newport paper containing full particulars of the wedding of Mr. John Carroll of the Eugene Phillips Electrical Works, Montreal, and Miss Emily Selina Ryan, of Newport. Miss Sadie Carry was the maid of honor. and Mr. Andrew J. Carroll the best man. The ushers were Messrs. Sinford Gladdiag, Dr. Wm. Canry. Wm. Christic. of Montreal, A. J. Carroll and H. T. Rooney. The residence of the bride's mother, where the cetemony and werding festivities took place, was tastefully decorated for the oceasion. A large number of the friends of the contmating parties were present. Mr. and Mrs. Carroll left Newpors the same evening for New York, and returned a few days ago, by way of Toronto, to their future home in Montreal.
In a recently published list of men of wealth in Montreal appears the name of Mir Charles R Hosmer, director of the C. P. R. telegraph system. The following particulars of Mr Hosmer's career, from the Kingston Whag. will be of interest to our readers"-"He was an operator in the servoc of the Montreal Telegraph company when the Dominica Telegraph company nas projected. and he had the ambition to advance and become manager. The new business prospered under him, and it was not long ere he was transtated to a higher sphere, to the position of superintendent of a division, in which he showed much ability and qualified for the responsibilities of a still higher position that which he holds now as director of the Canadian Pacific railway's telegraph system. He is one of the best known telegraph men in Anerica and in connection with the Commercial eable be is known across the Atlantic also. It may be said that for him there were grand openings presented to but few. but how many are there who do not take advantage of the opportunities they have had and so gir noint to the old law that nothing venture nothing have?" Granted.mat Mr. Hosmer was fortunate in his associations, fortunate in his choice of situation and lucky in his cbances, he had the tact and the wisdom to carry himself right, and he shaped his purposes and plan: to suit the emergencies of life. Above all he has not lost his head: success and prosperity have not interfered with his ustulness, and he is as aetive and enterpnsing to-day as when he set out, only a few years ago, to buld up a name and a reputation of which he has reason to be proud. His record should be an inspiration to allyoung men. It points so what can be done by work and courage and laudable ambition."

Some of the orticials of the city of Toronto profess to have discovered that the Toronto Electric Light Co.'s buildiag stands parially on the line of a public street. The company deny that such is the ease.

SPARKS.
The Council of the town of Port Hope has appointed a committee to ascertain the cost of an electric light plant.

An electric tramway, to conneit the town of Rat Portige with the towns of Nornan and Keewatin, is projected and will probably be built next sum mer.
It is stated that the construction of an electric street milway in Halifux has heen definitely decided upon, and that the work will commence in the spring.

Mir. J. Culverwell, lately representing the Edison General Electric Co. at Montreat, has been appointed general agent of the Automatic Telephone Co. of Canada.

The experiment is to be tried at Ottawa, of drying lumber by means of electricity. The apparatus for that purpose is in course of construction by Mr. Parr, of that city.
Mr. Maxwell, of the Portland office of the Geneml Electric Co. has been appointed as manager of the Britush Columbin division, to succeed Mr. I. S. Anderson, resigned.

A resolution was recently passed by the Board of Works of the City of Hamilton, requring the Hamiton Electric Light and Power Co. to verify by declaration all their accounts.

A by-law authorizing the issue of debentures to the amount of $\$ 5.4 .000$ for the purchase of an electric light plant, was carried on October $24^{\text {th }}$, by vote of the ratepayers of the town of Niagar. Ont.
A company recently organized has applied to the Council of the city of Quebec for permission to build an elevated electric street railway in that city. They aiso ask exemption from taxation for 30 years.

Stock to the amount of $\$ 60,000$ has been subscribed for the purpose of constructung an electrie railway to connect the towns of Watford, Arkona and Thedford, Ont. The undertaking will be proceeded with at once
As a resuli of a recem meenng of the cinzens of Lethondee, N. W. T.. it was decided to organize a local electric and power company with a capntal of 525,000 . A committee of five was appointed to open a stock book.

The annual report of the Montreal Street Railway shows there has been an increase of 5° per cent. in the passenger traffic during the last three months. The year's business netted a profit of $\$ 93.880 .21$, as against $560,361.71$ the previous year.
The Ottawa Board of Trade has appointed a deputation to wait upon the Dominion Government, to urge that action be taken in conjunction with the Imperial authorities, to push forward the scheme for the construction of a cable between Canada and Australia.

The electric cars on the streets of Victoria, B. C., are said to be much larger than those in use in Eastern cities, being capable of holding nearly 100 passengers. They also run at a much higher rate of speed. The road connecting Vancouver and New Westminster covers the distance between the two cities, 14 miles, in 50 minutes.
The Ottawa Electric Street Railway Co. has applied to the Ontario Govment to be given three small islands in the Ottawa River, a short distance from the city. Sbould the request be granted, the intention of the Company is to extend its tracks to the river banks, construct a bridge from the mainland to the islands and establish a summer resort.
A convention of the railway telegraphers from all parts of the continent will be beld in the City of Toronto, on the 15th of Alay next. It is expected that 300 to 500 delegates will be present. The membership of the Order of Railway Telegraphers numbers abou: 30,000 . The Order has on hand a protective fund amounting to over $\$ 40, \infty 0$ and a rest fund of $\$ 30,000$

The Legislature of British Columbia, at its next session, wall be asked to grant incorporation to the Kalso City Electric Light and Power Co. Lid. The Cumpany propose to erect and operate electric works in and about Kalso City, which is situated in the West Kootenay district. The promoters of the Company are S. H. Green. F. E. Coy and B. H. Lre.
Action has been entered by the Dominion Government in the Fxchequer Court, to recover from the town of Port Arthur the sum of $\$ 5,596$, duty on 266 tons of steel rails, used in the construction of the electric strect railway of that phace. It was decided some time ago that mils for electric street railways should be classed as tramway rails and consequently should be subject to duty.

The Hamilton City Council has refused the request of the Hamition, Guelph and Beamsville Electric Railway Co, for a bonus of $\$ 50.000$ to aid the company in the construction of its line It is understood that this decision will also apply to the proposed Radial Electric Railway Co., and the Guclph and Waterdown Company. The promoters of the Beamsville road, when asking for the bonus, stated that the road would not be constructed without it.
The attorncy for the Toronto Street Railway Co., while in Detroit recently, stated that the company were perfectly satisfied with the arrangements with the city of Toronto. The gross receipts last yeat were upuards of $\$ \$ 00,000$ and the receipts for next year 2re expecied to exceed $\$ 1,000,000$. Last yrar the company paid 8 per cent. and $\$ 500$ per mile for single track to the city. Should the receipts next year exceed $\$ 1,000,000$ the company will tave to pay so per cent. to the citr.
A citizen of Toronto recently brought action for damages against the Bell Telephone Co. for having cut branches off shade trees overhanging the
street in front of his prenises. The Company alleged that the branches interfered whith the use of the wires of the telephone system which they had contracted with the city to mantain. The Ceurt of Appeal held that the plaintif had no interest in or title to the trees growing in the street sufficient to enable him to comphin of the cutting. The Court likewise heth that as the bmnches overhanging the street, growing within thie plaintiff s grounds. were not a nuisance and in no way interfered with the use of the highway. the defendants had no right to cut them.
Some time ago the township of Etobicoke presed a by-law granting a bonus of $\$ 20,0 \infty$ to aid the construction of the 'lomnto and Minico clec. tric railway. The by-law under which the bonus was granted provided for the completion of the road by the 3ist October, 1891. The road was not completed by that date, consequently the object of the by-law was lost by default. It is said. however, that the promoters of the nailway are mather pleased than otherivise at the way things have turned out, as an appeal bad been taken from the decision of the court sustaining the by-law, by parties opposed to the payment of the bonus. Under present dircumstances the company will escape the costs incident to this appeal, amounting to about $\$ 759$, and will shortly have the by-law again submitted and expect to succeed in having it carried.
The conditions of the agreement which the city of London has just made for the construction of an electric streat milway provide that the work of building the tmek must be begun between Nov. 15, 1892, and March 15 , 1893. Seven miles of the milway must be completed, and the electric cars running thereon within two years. At the end of so years the city may, after six months' notice, assume the ownership of the railway on payment of its value, to be determined by arbitration. The company will pay yearly to the eity $\$ 100$ per mile of single track and $\$ 200$ per mile of double track, if the gross recetpts of the rallway are $\$ 60,000$ a year. The company will also pay on all gross receipts under $\$ 100,000,5 \%$, between $\$ 100,000$ and $\$ 125$.000 . 51%, between $\$ 125 ; 000$ and $\$ 150,000,6 \%$. between $\$ 150,000$ and $\$ 175,000,51 \%$, between $\$ 175,000$ and $\$ 200,000,7 \%$, over $\$ 200,000,8 \%$.
One of the large expenses of a street miluay electric power plant is that arising from the burning out of the armatures of motors, which results sooner or later, with almost every machine in service. To start a cir requires, of course, the expenditure of more electrical energy than is necessary to keep one in motion. This excess of electrical energy, when applied for the purpose of starting a car, has the effect of severely shocking the armature, which results in burning it out. The same effect is shown in stopping a car, as the sudden check in current, which must result, shocks and burns the coil on the armature. The force thus turned on for starting maries greatly according to circumstances, and it might not be precisely the same at any two times of the many which occur in a coupleted trip. The inertia, also, which is to be overcome by the motor, varies even more often accorting to the load, grade and state of soil ; white the discretion of the driver, in turning on currentin proportion to his load, can never be counted on with any degree of certanny. A mechameal regulaung clutch has been brought out in Philadelphia, by which the machinery is started so gradually that only one-fourth of the force is permitted to enter the motor at onee which would enter without the application of the clutch, and, there fore, the burning out of an armature is an absolute impossibility, After a car is in motion, it is claimed it can be stopped and started withont in. terfering with the electrical energy or increasing it in the slightest degree. The motor runs continuously, but only works when the clutch is thrown in contact."

NOTES.

When a hand-hole plate or flange joint is to be packed it is well to have in mind the fact that it will require re-packing sometime, and do the work with a tue regard for the future. It is the eustom of many to cover plate surfaces and both sides of the gesket with a sticky mixture of white or red lead and oil, the object being to fill all the cavitues that may be in the son that is not touched by the gasket, and in hardening prevent a leak. The lead well does its work, but when from any reason a becomes necessary to break the joint and make it up anew, the conviction is forced upon the mind that while white or red lead makes a staunch joint it also makes a great deal of work in cleaning it for the new, as the lead either dried or burned fast, is very difficult to remove, requiring a seraper and a considerable amount of muscular energy. It is very seidom that such a paste is re-quired-it seems advisable with hemp-and it is usually more a desidemtum to have the packing remove easily than to burn fast.
We dropped into the engine room of one who is glan to learn, says the Bosfon Jourral of Comenerce. Hic was having trouble with an inspimior. and was the more troubled because the water line was fast disappearing. and the "blamed thing was broken and wouldn't start." It was no consolation that others had trouble with an inspintor before, and the sime trouble, in fact, which was hamiy the fault of the inspirator. The inspimtor was fed from a tank overhead. The valve on the inspinator leaked, from a bit of grit getting under its seat, so that the steam entering through the suction-pipe into the sank rapidy converted the water therein to such a temperature that condensation was rather out of the question. The engineer did not notice how hot the water was in his tank, but stanted and re: started the inspimtor as often as it broke. All we could suggest was that be close the valve from the suction-pipe of the inspirator to the tank, so no more sieam could enter, and hold the water-valve in the tank open until enough water had run in so cool the whole down to a temperature where it would draw. and in future kecp steam out of the tank. In this way the trouble was overcoine, and with cool water it worked nicely.

A CONTRIBUTION TO THE THEORY OF THE TELEPHONE.

In the development of the Bell receiver, it was tound in praclice that a louder effect could be obtained by employing a magnetized core instead of a plain soft iron corc. This appears to be at variance with ordinary experience, it being generally supposed that for a maximum effect, the core in electro-magnets shouid be of soft iron.
An explanation of this, which seems tobe commonly received, altributes the improved results to the diaphragm of the receiver being kept permanently in a taut condition, and being thus, for some reason, in a better condition for taking up the vibrations than when left relaxed. However, no very clear ideas upon the subject seem to be current.
For some sime past Dr. F. T. Trouton has been experimenting, with the object of clearing up this point, the result of which is to almost entirely refer the improved effect, obtainable by permanently magnetizing the core of the telephone, to the fact that the mechanical force on the diaphragin or armature of the electro-magnet, is proportional to the square of magnetic force. He points out that the variations in the force of the diaphragm, and consequently its aptutude of variations, will depend on the permanent magnetization, as well as on its vibration produced by the currents passed through the telephone. Or to look

as it another way, it is important that, initially, the armature have strong magnetic poles ready to be acted on by this variation. (This would suggest magnetized steel diaphragms for louder effects')
Another advantageous result arising from permanently magnetizing a soft ron core by the addation of a steel magnet, as in a common arrangement of the telephone, probably is, that the permenbility of the soft iron is increasea thereby; so that the magnetic force at the armature, arising from the current, is greater than were the current to act on an nitially unmagnetized core. This effect is probably always unimportant compared with the last.

The effect here alluded to may perhaps be better understood by reference to the well-known curves of magnetization (fig. 1), where it will be seen at once that equal small variations in the magnetic force proưuce effects in the magnelization dependent in amount on the initial position on the curve.

An apparatus which Dr. Trouton found convenient in his investigation is shown in fig.2. It consisted of an ordinary tam-

bourine, anned in the centre with a littic piece of iron, which thus could be made to vibrate by an alternating current passed through an electro-magnet with a soft iron core, phaced "telephone wise" close to the little piece of iron. The core could be perma. nently magnetized to the extent desired, either by a current passed through an additional ceil wound on for the purpose, or by bringing up in a line with the core a permanent magnet to a vaniable distance.
With such an apparatus it is casy to show the gain in sound brought about by permanently magnetizing the core of the electro-magnet. For this purpose, an alternating current is employed of insufficient intensity to affect the diaphragm much; one then brings up the permanent magnet to the position shown in the figure, upen which the sound is found to be immensely
improved. A similar result, of course, call be obtained by a permanent current sent around the additional coil.
To distinguish between the parts of this improved effect due, respectively, to the two cases mentioned above, one can either connect up the additional coil wound on the electro-magnet with an electro dynamometer or with a telephone. If the improved action on bringing up the steel magnet were entirely due to the second cause (namely, the fact that then the same current is able to produce more lines of force in the iron than before), the deflection of the dynamoncter, or the sound in the telephone, would increase in like proportion with the loudness of the tambourine. The experiment proves that though there is undoubtedly a slight increase in the number of lines of force, shown by a shght increase in the deflection of the dynamometer, the chief improvement is to be referred to the other cause.
Dr. Trouton made a similar experiment with the additional coil wound on the armature instead of on the core. This was effected by taking a rather thicker piece of iron than that which had been previously employ ed for the arming of the daiphragm of the tambourine. In connectirg up a telephone with a coil, it could be arranged so as to have the sound from the telephone and from the tambourine, with the steel magnet removed, of equal intensity; then, na oringing up the magnet as before, the sound of the tambourine is found to be far and away louder than the teleplione.
Lest it might be thought that the increased effect could be due to the diaphragm coming nearer to the electro-magnet, in consequence of the attraction arising from the permanent magnet, it may be mentioned that similar effects are produced on placing the magnet on the opposite side to that shown in the diagram. In this position, the diaphragm lies between the magnet and the electro-magnet, and consequently tends to be drawn further away from the magnet.
Dr. Trouton says that a somewhat curious effect is to be observed with this apparatus on employing an intermittent current instead of an alternating one. With an alternating current a continuous increase in sound is, of course, produced indifferently by either pole of the permanent magnet, as it is brought up from a distance to the position of contact with the core. One pole effects, as before, a continuous increase in the intensity of the sound as it is brought up from a distance to the position of contact with the core; but the other pole, at first, as it is brought up. steadily diminishes what small amount of sound the current alone may be capable of producing ; reaching a minimum the sound still begins to increase, and continues doing so until the position of contact is arrived at. In this case the permanent magnet is opposed, that is, lies in the opposite direction) to the magnetization produced in the soft iron by the intermittent current. The pasition of minimum sound evidently is that in which the average permanent magnetization resulting from the intermittent current is just neutralized by the permanent magnet. For,'as we have seen already, a small change in the magnetizing force applicd to an electro-magnet should produce least mechanical force on the armature under such circumstances.
In the current issue of the Philosophical Magasinc, Dr. Trouton deals with this subject under the title "The Theory of the use of a Permanently Magnetized Core in the Telephone" Although we have made a very full abstract of this paper, our readers will find much more that is interesting in the original. Towards the end of it is an account of some rough experiments made by Dr. Trouton to obtain quantative results, and those obtained agree with the theory as well as could be expected.I.ondon Electrical Reviecu.

A section of the Alabama code authonzes the consoldation of manufac. turing corporations. The Supieme Court of the State held, in the case of Beggs us. Extison Electric Company, that electric light companies ane manufacturing corporations within the meaning of this section. The court said: "When we anke into consideration that the electacty now used and applied in the ordinary business of hife is essentially the product of skill and labor. we car find no difficulty in reaching the conclusion that a corporation engaged in generating, storing, transmituing and seiling such electricity, to be used for lighting purposes, is a manufacturing corporation. In reaching this conclusion we are not without precedent. The very point we have in hand was ably consideted in the casc of People vs. Wemple, 129 N. Y. 543 . In that case the Court of Appeals of New York were unanimous in the opinion that the clectric light company wis a manufacturing corporation."

ELECTRICAL LESSONS FOR STUDENTS.

Tue first question invariably asked by a student is : "What is electricily, To this no more satisfactory answer can be given than to the questions, what is heat, light, gravity, etc.?

If electricity, light and heat are not the same, they are very closely related. The question with us should be not what is electricity, but how best to apply it.
As we know how to obtain and apply artificial light and heat, so also do we know in a measure how to obtam and apply artificially produced electricity.

The simplest and most direct way to generate electicity is by means of the voltaic cell or battery, but the method of generating electricity to operate devices coming more within the range of our lessons is by the dynamo machine.
A voltaic cell consists of two metallic plates of different metals, submerged in a solution which will very readily and rapilly attack one plate without affecting the other.

By connecting a wire to cach of these electrodes and attaching the free ends of the wires to a galvanometer, the indicating needle thereof will instantly be deflected and show that a current of electricity is passing through it.

A voltaic cell is, then, an appliance for artificially producing electric energy from chemical action. The metal plates of the battery are called the electrodes, the one attacked being the positive and the one not attacked the negative.
The battery solution or exciting fluid is called the electrolyte. For powerful currents such as are required for light and power, the solution is composed of some of the acids diluted more or less with water. When the wires from the cell are joined together, through the galvanometer, it is said that the circuit is complete or closed, i. e., that there is no break in the chain of conductors.
The circuit is said to be open when the chain is severed at any point throughout its entire length. Simply connecting together the battery wires without the galvanometer or other device in circuit would be called short circuiting the battery. The result of such short circuiting would result in the rapid destruction of the hattery.

By the opening and closing of the electrical circuit by means of a suitable lever called a key, the telegraph operator transmits his message. A short depression of this key will indicate at the distant end of the telegraph line a dot, while a longer depression will indicate a $d: 2 s h$; these dots and dashes are grouped together to represent the alphabet.
The galvanometer is an instrument for indicating the presence of electricity. It is to the electrician what the mariner's compass is to the sailor. The galvanometer, like most other electrical instruments, is exceedingly simple. It consists essentially of a freely suspended or pivoted magnetic needle around which is wound a number of convolutions of fine insulated wire. The deflection of the needle, with the same power, may be increased by increasing the number of convolutions of wire. Instruction for making a simple form of galvanometer will be given when the subject is reached.

The galvanometer is simply an instrument empicyed to show the presence of an electric current, or to show when electricity is passing through the curcuit of which it forms a part.

The circuit is the path over which the current flows. The ordinary galvanometers are graduated simply in degrees, which by themselves have no actual value. The galvanometer in all its various forms consists of a coil of insulated wire having a maguetic needle irecly pivoted or supported within, and so that

wher a current passes through the wire it will have the greatest effect upon the needle. The best results are obrained when the coil and magnet are close, and when each convolution of the coil lies in a plane perpendicular to the needle.

The magnets of the class of galvanometers called Detectors, are pivoted in a vertical plane having one end made slightly heavier than the other, so that it hangs with the pointer perpendicular. A current passing through the hollow coil will
cause the needle to be deflected to the right or left, according to the direction of the flow.
The principle of constuction of the galvanometer may be understood better by reference to Fig. 1, in which N S represents the freely pivoted needle, and ABC the connectors to an insulated wire which surrounds it. When the two wires from a battery are conducted to A and B, the current will fow only through the upper wire and the magnetic needle will be defected only slightly. On removing the battery wire from A and connecting it with B , and the other battery wire from 13 and connecting it with C , the current will fow through the lower wire only, and undet like conditions the action on the needle will be the same, so that when the current passes in the same direction the action is the same through the upper or lower wire. On removing the battery wire from 13 and connecting it with C, the deflection of the needle will be considerably increased, as the wire below will exert a like influence on the needle and in the same direction as the wire above, and the deflection of the needle will thereby be increased ; and so on, will the deflection of the needle be increased for each and every additional turn of the wire forming the hollow coil which surrounds it.

By connecting one battery wire to both A and C, and the other battery wire to 13 , we will, so long as the wire above and below the needle are equal, obtain no deflection. The reason for this is that the current is divided equally between the two wires and the influence of one wire on the needle is counteracted by the influence of the other, which is reversede Galvanometers constructed on this principle are called differential. By increasing, decreasing, or in any way altering the resistance of one of the wires only, we again get a deflection. This fact is taken advantage of and will be fully explained when dealing with the construction of the apparatus for testing.

- The needle tends, at all times, on the passage of the electric current through the wire, to set itself at right angles to the wire, and this it does in proportion to the number of turns of the wire and the strength of the current.
If we reverse the position of the battery wires by connecting the one removed from A to C and the one removed from C to A, we shall also reverse the direction of the deflection of the needle, and this action will be due to the change made in the direction of the passage of the current.
The current in passing through the hollow coil of the wire, produces in the space surrounding it a magnetic field. It is this temporary magnetic field which acts upon the permanently magnetic needle and causes it to be deffected.

From the above you have learned that a current passing througis a fixed wire which is supported parallel to a magnetic needle, will cause the needle to be deffected or to take up a position at right angles thereto, in proportion to the strength of the current flowing, and that by increasing the number of wires or convolutions of the insulated wire around a frecly pivoted magnetic needle, it will, with the same current, likewise increase the deflection of the needle.
We have learned also that the electric current, as it nows through the insulated wire, causes each turn, half tum or complete convolution, io act for the time being as though it were itself a magnet, and that the space around the wire thus influenced is called the magnetic field. Further, that when a freely suspended magnetic needle is at rest it will have its ends directed to the North and South pole of the globe, and that when thus influenced it is said that the action is due to the carth's magnetism.

In all horizontal forms of gaivanometers, before the current is allowed to pass for taking a reading, it is necessary to place the instrument so that the need!e comes to rest at zero under the infuence of the earth's magnetism. The defiection of the needle caused by the passage of the current will deiermine its strength.

The word poles is, in general, applied to the ends of magnets, to the ends of bauteries, to the terminals or ends of the ammatures on dynamo michines, electric motors, cte.
It is a fact no doubt well known to all our readers that one pole of a magnet will repel the like pole of another magnet, and that unlike poles will attract each other: and that the expression foles is generally understood as meaning the ends of magnets, batterics, etc.
The poles of an artificial magnet are gencrally designed to be
at therends, but they ate always a litte distance therefrom. Thes ate distinguished one from the other by calling one the South and the other the North pole. The poles of a battery, as befole stated, are its ends. The terminating plates or electrodes in a battery composed of a number of voltaic cells are distinguished one from the other by calling one the megative, the other the positive pole.
The negative terminating plate or electrode is the positive pole, white the positive terminating plate or electrode is the negative pole of a battery. The above should be very firmly impressed on the memory; as this apparent contradiction is a common source of trouble.
Speaking generally, we may say that the volf-meler and the amperc-mefer are sumply galvanometers which have their coils especially wound and their dal faces carefully graduated and marked, so that the volts or amperes in a circuit of which they are at part, can be read directly as the weight on a pair of scales or as the pressure on a steam gauge.

A zolt is the unit or electromolive force, and it is symbolized by E. It is equivalent to the difference of potential between two points, or it is that force which will maintain a circuit of one ampere in a wire having a resistance of one ohm.

The volt-meter is, then, an instrument for measuring the electromotive force or the E if F as usually written, whinh is expressed in tolls.
The E M F is the force which moves electricity. It is sometimes called electric pressure, difference of potential, electric force and potential. The only difference between electromotive force and potential is that the former relates to the conductive while the latter relates to the inductione circuits. The electromotive force expresses to the electrician what steam in a boller does to the engineer.
The olm is the thnt of resistance and is symbolized by R. One olm is the resistance through which one ampere of current will flow when driven by a pressure of one volt of E M F.
Electrical resistance is the opposing force to electro-motive force : Resistance to electricity exists more or less in evely electrical circuit, just as resistance exists in water pipes to the flow of water through them. The metals are the best conductors of electricity because they offer, compared with other metals, less resistance to the passage of the current. A good conductor renders the same sort of service to the electrician as the large water pipes do to the engincer.
The greater the $\bar{E} M F$ in proportion to the resistance of a citcuit the greater will be the strength of the current, and vice versa. The greater the resistance of a circuit the less will be the current stiength. Thus by doubling a given conductor, the strength of the current will be doubled.
The ampere is the unit of current per second. It is symbolized in formula by C and is that quantaty of electricity which nows per second through a resistance of one ohm, at a pressure of one volt of electro-motive force. The ampere-meter is, then, an instrunent employed for measuring this current strength, or the intensity of the current in amperes.

The current strength is always directly proportional to the electro-motive force. It becomes proportionately less as the resistance of the circuit becomes greater. When an electromotive force of one volt drives a current through a resistance of one ohm, that curreat is said to have an intensity of one ampere.
The fact that electro-motive force and resistance bear a relation one to the other was discovered by "Ohm" who prepounded the law of electricity in motion, which now suites the elertrician in his ralculation. Knowing the current strength and the rate at which the F MI puts it in action, we can readily find the work done, as by multiplying the volts and the amperes "e obtain the energy in wates.

The araft is the unit of energy or power and is equal to about 1 iff of a mechanical horse-power. With a constant resistance the current is proportional to the electro-mutave force with the same difference of potential and it is halved by doubling the resistance In other words, if we, with a given potential, fet an unit of current over a wire one mile long, we get but half ths unit of current over the same conductor when it is increased in length to two miles.

Ohm's law expresses the above thus: "C," current strength, "E," clectro-motive force ; " R ," resistance.

$$
C=\frac{E}{R} \text { or } E=C \times R
$$

The current in amperes mas be found by dividing the E M F in volts by the resistance in ohms.

To find the electro-motive force in volts of a circuit, it is simply necessary to multiply the current in amperes by the resistance in ohms. The resistance of a circuit may be found by dividing the electro-motive force in volts by the current in amperes.

The colombe is the zunil of gatantify and it is symbolized by \mathbf{Q}. It is that guanitty of electactly which is given by one ampere in one second.

The next most important effect for us to study is the action of the electric current on a bar of soft iron enclosed within a coil of insulated wire in place of the permanently magnetized stecl needle te have been dealing with.

Such an arrangement is called an efcetro magret. The soft
iron is called the core and the roil of insulated wire surrounding it the hetex.

A current of electricity passed through the helis will act upon the soft tron core willm as it did upon the permanently mag netized needle of the galvanometer. In this instance, however, the tron coies are converted into a powerful electro magnet, one frec end of which is said to have North and the other free end South polarity.

The nearer the coils of wire forming the helix are to the soft iron core the greater will be the magnetic effect in the iron when the circuit is completed. A piece of Norwaty or Swedish iron placed with a coil of wire will, when a current is passed through the coil, become magnetized in proportion to the number of turns of wire around the iron, in proportion to the strength of the curient passing through the coils, and in propoition to the distance between the coils of wire forming the helix and the core.

If we place a bar of soft iron in a helix of insulated wire, the ends of which are connected in circuit with a voltaic battery and a key for opening and closing the circuit, we may energize this core at will by simply depressing the key so as to close the circuit. This is the principle of the electric bell and the Morse and other telegraphic instruments. It will readily be understood that the closing of the circuit by depressing the key will act upon the tron core so as to make it a magnet, but only for the time drring which the circuit remains closed. On arresting the flow of the current by releasing the key, the magnetic effect in the iron core is also arrested.
The softest iron and the best should alone be selected for the cores of electro magnets, for the reason that good, soft iron immediately parts with its magnetism when the influence of the current is removed by opening the circuit. Whereas hard iron or steel will retain magnetism in proportion to their hatiness and consequently will respond to the action of the current proportionately slower.
The quality of the iron for the cores, armatures or field magnets of electrical machines is one of the most important points to be considered in their construction.
Of course work is done in energizing this piece of iron so as $t 0$ make it an electro-magnet capable of sustaining a considerable weight.

It may be a question with some as to what the source of this enersy is. When the current from : battery is emyloyed the energy to do the work is so far primarily due to the chemical energy in the cells which on being converted ints electric energy; act upon the iron so as to cause it to develop energy in the form of magnetism.

When a steam engine is used to drive a dynamo machine to generate electricity the coal burned is so far the source of energy.

It should be remembered that in every transportation of one form of enersy into another there is a very considerable loss, therefore the more direct the means of producing and utilizing the current the less will be the loss. A great part of the energy expended in producing the electric-magnetic energy in the soft iron, will, if the core be removed, be expended in heating the wire. The chemical energy of the battery will likewise be expended in producing heat energy in the wire of an helix.

This heating effect will be dealt with presently as fully as space will permit. The heating effecfis proportionately less as other work done by the current is proportionately sreater.
We have stated that the effect of temporarily closing the electic circuit through the helix is to temporarily masmetize the soft son core. We may say that the effect of closing a voltaic battery circuit through an electro-magnet is to convert the chemical action developed in the batterv into magnetic energy developed in the solt iron core of the electro-mignet. If the core is remuved from the helix the same amount of work is still done, but it shows uself.in a difierent way. In this instance the chemical energy developed in the buttery would appear in the helix and connecting wire as heat energy.
Iron is the only metal which can be practically employed for electro-magnets, although nickel is acted on in like manner by the current, but in a much slighter degree a°.d at much greater cost. The object of insulating the wire of the helix is to compel the current to travel from one end of the wire to the other.

If the wire actually touched, i.e., made metallic contact at any two points between the ends, the greater part of the current would pass at the point of contact, instead of passing around the convolution of the loop, which would be intermediate in the wire and between the points of contact.
Thus you will understand the necessity for periect insulation in clectric wires.
The current will at all times take the path of least resistance, and rather than go round the coils it will jump across if the insulation is not sufficiently good.

Fig. 1 represents a stiaight electro-mannet. This, if bent at its centre so that its poles approached cach other, would then be called a horse-shoe. The horse-shoe form of electro magnet is considered the best, and in this form it is used in the principal electrical devices.

Iron, then, is employed because in a remarkable degree it has the property of acquiring and losing magnetism very rapidly.
We have learoed that an electro-magnet inmediately acquires magnetism when a current of electricity is passed though the
wire encircling the core, and that inmediately on the cessation of the flow of electricity it almost as readily loses its magnetism. It will readily be understood from Fig. I that the closing of the circuit by depressing the Key K will allow the current to flow through the wire around the core and make it a mignet, but only for the time during which the key is depressed and the circuth remans closed. On arresting the flow of the current by releasing the key, the magnetic effect in the iron core is at the same instant also arrested. The softest and the best iron only should be used for the purpose for the reason that cores of electro-magnets composed of good, soft iron retain but little magnetism when the influence of the current is removed by opening the circuit, whereas, if made of cast or an inferior quality of iron the magnetis'n is retained and the action is sluggish.

Fig. 2 diagrammatically represents an electro-magnet of a form very generally emplojed for telegraph instruments, electric bells, etc. N and S are simply pieces of round Norway iron serewed by means of an iron screw, or riveted with an iron rivet in the plate 13.

It is of the utmost importance that the cores of iron make surface and solid contact with the inon yoke piece B.
C is a simple spring contact key for temporarily closing the electrical circuit when depressed, normally it leaves the circuit open. By depressing the key until it comes in contact with the anvil O, the current will flow from the battery though the key,

out by the anvil O, through the helix surrounding $N S$, to the metal frame along which it travels to the armature A, out by the spring to S and back to the batters at the opposite pole to that from which it entered. The effect of the depression of the key is then to magnetize $N S$, which attracts the suft iron armature A until the ball at its fice end strikes the gong. The instant the hammer strikes the gong the spring will be drawn out of contact with the screw C, and the circuit will beagain open for an instant and until the spring and screw C come again in contact. N S will lose their magnetism on the opening of the circuit, and the armature will instantly be carried back by the tension of the spring, and the current will again be established and so on, causing the armature to vibrate and the hammer to strike the gong at each vibration. This is the principle upon which all vibrating bells are constructed.
There is very little difference between the action, etc., of an electric bell and the Mforse telegraph instruments. If, for instance, we remove the long spring P from the bell armature A, so that the armature plays between the studs C and H, and if we also remove the wire from C and connect it with the end of the helix on S, we then have a simple Morse telegraph instrument, which may be read by the sound of the armature beating against the studs.

If we substitute a stylus for the hammerat the end of armature and cause a ribbon of paper to travel above, but within striking distance thereof, we then have a Morse recording telegraph instrument.

We have already stated that dymamo machines ate divided into two classes, viz. alternating current machines which, as their name implies, supply only alternating currents, and direct current machines, which generaie a current always flowing in one direction. Each machine can use cither permanent or clectro-magnetic fields.

By the difference of the winding and arrangement of the wires, these two classes, i.e., alternating and direct current machines, are again, to meet special arrangements, divided into
whit are termed series and shunt wound machines and different combinations therenf.

The series machnes give a constant current with a varymg electro-motive force, while the shunt wound machones give a varying current and a constant electro-motive force, one being the opposite to the other.
Then, again, there are self-exciting and separately-exciting machines, which may be cither shunt or series wound, sufficient magnetism is always retained in the field magnets to feebly act from the start on the armature, which, as its speed of rotation is increased, cuts more lines of force, and in proportion thereto generates a stronger current, whech, passing through the fied magnet coils in the proper direction, incteases the strength of the field magnets, which again in turn so influences or acts upon the armature that it gives out a proportionately increased amount of electric ener:y. The self-exciung machine would appear to be an electric accummulator. A separately-excited machine is used with alternating current machines unless the latter have a permanently magnetized fied.

The exciter is generally a small dynamo, or it may be a voltaic battery, placed in circuit with the field magnet only; its office being to magnctize the field to saturation. The commutator on an alternating generator, or machine, is required to convert the alternating impulses into a direct flowing current. Such convertion is sonetimes necessary, but wheneter resorted to it is attended at all times with a considerable loss of energy.
The alternating machines are more simple in construction and have the advantage of furnishing a higher E.M.F. at less cost than a direct current dynamo machine. They can also be advantageously employed for supplying incandescent lamps, especially on long circuits. For supplying arc electric lights, the direct current machines are best, as they are made simple to

manipulate. They can be used for both are and incandescent lamps, driving motors or electro-plating, etc., whereas, to do more than to light incandescent lamps the alternating machines have to be furnished with special appliances which increase the cost and the complications.

We would recommend our readers, whose intention it is to build a dynamo machine for their own use, to build it on the Siemens pattern, as this is a simple machine to construct and will, to the amateur, give greater satisfaction than any other.
We may have something more to say regarding the converters and the special apparatus above alluded to. Although the forms of field magnets may differ so much in outward form, the same principles underlie all, as the object of the manufacturer is to construct a machine which will concentrate the greatest number of lines of force on each successive coil of the armature.

The different designs of armatures, although not so numereus as the different designs of field magnets, are far too numerous for us to attempt to describe here. We will, therefore, confine ourselves to two or three of the most simple and generally approved types, commencing with the Siemens and Gramme, which are anong the oldest. It would be safe to say that ninetenths of all the dynamos on the market ate simply modifications of one or the other of these.

Fig. I shows a longitudinal view of the Siemens amature, N S representing the poles, W the wire, A the driving wheel, B the commuitator, and C the shaft.
Fig. 2 represents a cross section of the armature, and Fig. 3 a cross section of the comnutator, with the brushes D D resting thereon.
Fig. 4 shows a Siemens armature revolving betiveen the poles of the field magnets. The thin lines represent the circuit or path the current traverses to make it a series-shunt or separatelyexcited machine. The heavy lines show the complete circuit and winding of the shunt system, and the dotted lines show the circuit of separately-excited ficld magnets, with winding and circuit completc.-Scicntific Machinist.

LEGAL DECISIONS.

Telegraphic Correspondence, Agency.-According to the decision of the Supreme Court of Minnesota, in the case of Magic $\%$. Herman et al., where one commences a correspondence with another by telegraph he nakes the telegraph company his agent for the transmission and delivery of his communication, and the transcribed message actually deliveted is primary evidence, and if lost ot destroyed its contents m y be proved by parol.

FLUES IN BOILERS.

A bolle shell, with the pressure acting on 11 from within, is in a state of stable equilibrium ; for of any small deformation is produred in it, for any cause, the pressure tends to remove the deformation and restore the boiler to the form of a true cyinnder. A flue, however, with the pressure on the outside, is in a state of unstable equilibrium, for the pressure tends to mag. nify all deformations and to cause the flue to depart more widely from the cylindrical form. In other words, pressure tends to keep tha shell of a boiler in its strongest shape, and tends to force a blue into its weakest shape. Flues, therefore, are elements of weakness in a boiler, and it is particularly important that proper attention be paid to them.
The U.S. Treasury rules for finding the strength of lapwelded flues are as follows (see Amemided Steamboat Ruthes amd Ricgulitions for 1891): If the diameter of the flue is not less than 7 inches, and not more than 16 inches, and the length not oved 18 feet, multiply the thickness of the flue, in
a good substantial wrought-iron ring between each joint; and no such rmg shall have a thickness of less than half an inch nor at width of less than two (z) inches." The s:eam pressure allowable on such flues is to be determined by the same rule as that siven above for the smaller flues, extept that in the place of the constame number 4,400 that is given above, we must use the constant number $2,8 \not$ fo 0

In the Amended Steamboat Ruties and Requlations for 1892 there appears the following modification for the rule given above ats applying to lap riveted flues not over 16 inches in diameter: "But when such hlues are used under a pressure of over 60 pounds and less than 120 pounds to the square inch, they may be mate in sections of not over 5 feet in length and connected in the manner prescribed for sections 3 feet in length, and all lap. welded flues and tubes using 120 pounds of steam, and under, shall have a thickness of material of not less than the standard thickness. The following shall be the standard thickness of lapwelded flues and tubes from : to 16 inches in dianeter using steanl under 120 pounds to the square inch :

Filg. i.-The Adamson Reng.
inches, by the constant number 4,400 , and divide the product by the radius of the flue in inches. The quotent will be the pressure allowable. "For every foot or fraction thereof over 18 fect, deduct 3 pounds per square inch from the pressure allowable on an is.foot flue; or, add .ot of an inch to the thickness of matetial required for a flue 18 feet in length for every three feet or fraction thereof over is feet." The thickness of such a flue as is described above is to be determined by the following rule: Multiply the radius of flue in inches by the presstre per square inch that it is desired to carry, and divide the product by the constant number 4,400 . The quatient is the required thickness, in inches. "The thickness of lap-welded flues, however, shall in no case be less thin the diameter of the tlue multiplied by .022."
It is further provided by the Treasury department that "Lapwelded flues 7 mehes, and not over 16 inches in diameter, shall be made in lengths of not over three (3) feet and fitted one into the other and substantally nueted; or in lieu thereof corrugated

Fig. 2-T•Inon Ring.
to a depth of not less than three.fourths of an inch outwardly and at a distance of not ovel three feet between such contugauons: Proaided, such corrugations are mate without in any manner reducing the thekness of the matenal in the flue at the points of corrugation to less than the least theckness of the material in the body of the flue, or that such flues are made in sections of not over three (3) feet in length, and fanged to a width of not less than two (2) inches, and riveted substantially together with a wrought iron ring (see the cut of the Adamson ring), having a thickness of maternal of not less than the thekness of material in the flues, and a width of not less than two (2) inches riveted between such flanges."
Flues whose diameter is more than 16 inches and less than 40 inches are separately consudered. Of such flues it is required that they "shall be made in lengths of not over three (3) feet, fitted one into the other and substuntially riveted; or flanged to adepth of not less than two 2 , inches and riveted together with

Outside 1)iameter.	Thickness	Outside Diameter.	Thickness	Oulside Dianter	Thickness	Outside Diameter.	Thickness
1 in .	. 072 in .	$23 / 4 \mathrm{in}$.	.809 in .	5 in.	. 1488 in .	12 in.	. 229 in .
1314	.072 .083	33	.109 .120	6	.165 .165	13	. 33^{8}
12/4	. .883	3 3 $3 / 2$. 120	7	.165 .165	14 15	. 248
2	. 095	3\%	.120	9	. 180	16	. 270
21/4	. 005	4	.134	10	. 203		
2\%	. 109	4\%	. 134	11	. 220		

Although the foregoing iegulations of the Treasury department relate to lap-welded flues, they would doubtless be also applied to rolled flues when used in the marine service, notwithstanding the fact that the rolled flue is somewhat stronger, on account of its more perfectly cylindrical shape. Rolled flues are used in land boilers to some extent in this country, and very generally in England and other parts of Europe. Until recent years it was not tound practicable to roll them in lengths of more than three feet or so, and where they were fitted together at the ends, and riveted, the double thickness of metal at the joint served as a sort of stiffening ring, and unless the pressure to be carried was high, engineers did not consider it necessary to provide additionai rings for securing the necessary stiffness and resistance to collapse.
The method of joining the sections of the flues that is referred to in the Treasury rules above given is illustrated in Fig. 1 , which shows what is technically known as the "Aclamson ring," from its having been first introduced by Mr. Adamson, in 185 1. The ends of the section are flanged outward, as shown, and are securely siveted together with a ring of wrought-iron or steel between. This ring, which should be not less than half an inch thick and not less than two inches wide, is caulked on the outer side of the joint, and if the flue is large enough te admit of it, it is also caulked on the inside, as indicated in the cut. One of the important features of this joint is that both the flanges and the tivets are entirely protected by water. There is also no thickening of the flue by overlapping pieces, so that the joint is not likely to bum out. Mr. Adamson has submitted these flanged joints to severe experimental tests, which they withstood remarkably well. The only serious objection that has been urged against them is, that in case one of the segments of the flue should burn out, either on account of scale or for any other reason, it could not be replaced without remeving the head of the boiler. This objection does not seem to us to have any great weight, because in many cases the flue comes so close to the shell that it is almost impossible to do a satisfactory job of ruveting or any kind of a joint, without removing the flue from the boiler; and if there are projections of any sort upon it, it will be necessary, in removing the flue, to take out one of the heads.
Fig. 2 shows a method of uniting the parts of a built-up flue, which may be used with advantage in some cases, though we should prefer the Adamson joint shown in Fig. 1. Fig. 2 shows a ring of T-shaped wroughtiron wh.ch is preferably made in one piece and shrunk on the ends of the segments to be united; though it may be made in halves, if necessary, the two parts being riveted firnly together when in position, by running straps along the wet of the flange on both sides near the joint, and
riveting through both straps and the web. When the flue is large enough to admit of it, the joint should be caulked both insule and out, as indicated in the cut. If the flue is too small for this, there is no necessity of having the abutting ends of the flue as far apart as they are shown in the cut. T-shaped wroughtiron rings, similar to that shown in the figure, and inade in halves, are sometimes riveted directly to the flue, midway between the joints, when the flue, either through age, through increase of pressure or through faulty design, requires more stiffening than the buider has given it. Rings of angle-iron are also used for this purpose.

Fig. 3 shows a ring of steel, hoop-shaped in section, which is sometimes used in building up aucs in the place of the T-iron

Fig. 3.-Stesl Hood.
ring illustrated in Fig. 2. The advantage clamed for this form of joint is that it has a certan amount of elasticity, and that it yiclds sufficiently to prevent any very severe strain from unequal expansion and contraction in the flue and boiler. This form of ring should be made in one piece and be shrunk on, and then riveted. It should be caulked on the outside, and on the inside also, if the flue is large enough to admit of it.

At the present time, flues are rolled of all lengths up to 18 feet. If a longer boiler is required 21 feet long for example, it is customary to use a rolled flue 18 fect long, pieced out with an additional section threc feet in. length. The joint where the flue sections come together gives stiffiness enough, ordinarily, to prevent the collapse of the shorter segment ; but the long section should be supported by some additional means. Rings of angle-iron, or T-iron, like that shown in Fig. 2 may be riveted around the flue at intervals of irom 3 to 5 feet, to give the necessary stiffness, or the device shown in fugures 4 and 5 may be
 cuts.
gineer of the National Boiler Insurance Company, with regard to them, as he is thoroughly familiar with the best English paactice. "The angle-iron," he says, "should not be less than 3 in. $\times 3$ in. $\times 9.16 \mathrm{in}$. The ferrules between the hoop and the plate should be about one inch thick, [i. e., one inch long], and the rivets should be spaced about six inches apart. With the exception of the part that requires riveting over, the rivet should be as cool as possible when it is inserted, as otherwise the excessive contraction in so long a rivet will be likely to induce such a strain as to fracture the head. The ferrules should fit tightly between the hoop and the flue, and the rivets should fill the ferrules." These rings are made in halves, as explained above, and the ends of the halves are made to butt together and are secured by securely riveting a double strap to the web of the ring where the joint comes, in the manner indicited in the

Mr. Miller does not recommend this form of ring for new boilers, nor do we, unless there is some special reason for it. It is often serviceable, however, when the flues of a boiler were originally made too weak for the pressure it is desired to carry. For new work we strongly recommend Mr. Adamson's joint, shown in Fig. 1, or the steel hoop shown in lig. 3. A few years ago a ferry boat plying about New York City was built with rings of this sort around her flues, except that in place of the angle-iron shown in Figs. 4 and 5, half round iron $21 / 2$ inches wide and $11 / 2$ inches high was used. The rings were placed along the flues at intervals of about twenty inches, and the rivets were spaced 8 inches apart. This stiffening proved insufficient, and a vast amourt of trouble resulted. In our opinion the rings used in this case were much too small, and were weak in shape. The flue was 36 inches in diameter, and in this form no strengthening ring was to be used at all, a heavy ring of angle-iron should have been employed in the place of the weak, half-round strips. If we remember rightly, the trouble was removed by the substitution of corrugated flues for the plain ones.

It may be well to say in this place that we do not approve of flue boilers as a feneral rule. There seems to be no especial advantage in them and they are inherently weaker than the tubular form. We believe that greater safety and cconomy, and more general satisfaction, can be had from tubular boilers than from any other form. Flue boilers are used in some parts of the country in sawmills, where refuse is bunned for fuel; and we have known the owners of these mills to object to tubular boilers because they avere economical. It was necessary, they said, to burn all their refuse, and if the boiler wouldn't do it, it was necessary to have sematate furnaces constructed for the purpose. Nowadays, when all things are put to use and the word "waste" is nearly obsolete, we seldom hear this objection urged.
There are other points that should be mentioned in connection with flues, and we shall reiurn to the subject in a later issue. $-T h e$ Locomotive.

EXTENSION OF THE BELL TELEPHONE SYSTEM.

The trunk lines of the Bell Telephone system were largely extended in Ontario during
adopted. There is some liability to overheating when the angleiron is riveted directly to the flue, yet this is often done without giving rise to any such trouble. The ring shown in Figs. 4 and 5 seenis superior to the plain ring, however, because water can circulate freely between the rivets, cooling both the rivets and the flue, and greatly lessening the likelihood of overheating. It consists of a ring of angle-iron or U-iron made in halves, with the ends riveted together in a double-strap, as inclicated in the cuts. There is a tree space of about one inch between the ring and the flue, all around, and the two are kept apart by thimbles that are spaced 5 or 6 inches apart. The ring and the flue are secured to one another by rivets which pass through the thimbles, as shown, and are headed over inside of the flue and outside of the angle-iron or U -iron. These rings are used in England much more than in this country, becanse flue boilers are much more common there than here. It will be interesting, therefore, to quote the opinion of Mir. Henry Miller, Chief En-
the last year, and greater extensions and imptevements ale projected for the coming year. New metallic through wires and wires for way stations are to be erected from Toronto to Barric, Orangeville, London via Guelph and Stratford ; from Chatham to Windsor, and from Hamilton to Niagara Falls, to complete the line from Detroit and Windsor through London and Hamilton to Niagara Falls and Buffalo, and thence to all points in New York and the adjacent States; also from Port Hope to Kingston, to put that city, with Belleville and the neighboring towns, in communication with subscribers in Toronto and points farther west.

The new pole routes will all be of the most substantial construction, and the wires of copper and doubled in all cases, so that the annoying effects of induction from electric railway and electric light currents will be done away with and the company able to offer to its subscribers who have metallic circuits to their exchanges perfectly silent lines.

The Bell Telephone Company at Buffalo, with its numerous connecting lines; will meet the Canadian company at the Falls, thus preparing the means for conversation between Toronto and New York and other American cities.

TRADE NOTES.

Messrs. Batber \& Bates, of Meaford, nre supplying a 24 inch Turbine water wheel to the Preston Electric Light Co.

The Reliance Electre Mif. Co., of Waterford, Ont., repors having sold a 150 h . p, gencmitor for power plant at St. Cathannes; alsu to Cook \& Son, of the same ctiy, two. 25 h. p. and one to h. p. motor.
Messrs. IF. E. Dixon \& Co. Toronto, have just finished the manufncture of two belis for the Toronto Electric Light Co., the combined length of which is nbout 260 fect . The widith of ench belt is 33 inches.
The Royall Electric Co. report the following sales for November .-Gimvenhurst Electric Light Co., Gravenhurst, Ont., 35 light are dynamo, Iamps and wire. Victoria Electrit Laght Cu., Lindsiy, Ont. . 35 Light ati dynamo, tamps and wire, zoo light alternatur, lamps and wire, Siandord Electric Lo., Uhuwn. Uat., 5,000 light alternator and transfurmers, Sherbrooke Gns Co., Sherhrooke, Que., 650 light alternator and unnsformers; Quebee and levis Electric Light Co., Qurbec. Que., 2,000 light alternator and tmnsfomers, Tooke Bros., Montreat, Quc., 350 light incandescent, dynamo and lamps; E. Ives \& Co., Conticooke, Que., 6 go light altermator and transformers: St. Johns Eilectric Co., St. Johns. Nild.. jo light are dymamo and lannps; Consolidnted Electric Company, St. John, N. B., 125 h. p. generntor for sirect milway: Hiamitoon Electric Light and Power Co., Hamilton. Ont., $\mathbf{x . 5 0 0}$ light alternator, 125 h. p. generator for power purproses, 50 light are dynamos: Toronto Railway Co., Toronto, Ont., 6 l. p., 500 volt motor ; also a number of small motors and isolated incandescent plauts. E'p to date the company have equiepped 1 ears for the Atontreal street Railvay, with two 25 h.p. motors cach, and thave 14 more equipments ready io mulnt, a portion of wh chge to Winnipeg and Toronto.

For about two years past the Toronto and Rehmond Hill Sireet Railway Co. lave been making preparations to construct an electric milway so Richmond Hill. The County Council, at its session a few days ago. granted a franchise to the Metropolitati Electric Railwny Co to extend their iines over the same route, but were restmined by an injunction.

THE TELEGRAPH WIRE.

Thar's many a little tragic tale Is spun un th' thrummin' wire,
Thar's many a sob, an' thar's many a song Is sung to the hum o the wire,
We know by the hum and the thrum overhead
Thar's some un is born er thar's some un is dead,
As the news like th' lightnin', elick ! is sped
On th' telegraphic wlre.
Thats somethin about th yaller note
Thet th' sighin' wires send,
thet makes a man sheart sneak up in sthroat Till hes torn the mucilaged end.
Fer meybe atells ye ye re rich fer life,
An meybe it tells ye ye've lost a wife.
Thar's the hummin o° peace an' the thrummin 0° strife On th' telegraphe wire,

Each click 1 click ! click 1 strikes a note in the heart
That c.ther'll cord er jar;
It is euther a qalve to soothe a smart Er a probe to scratch a sear.
It mey be th' honey th' busy bee sips,
It mey be th' poison from waspish lips,
Thet is dropped from th' agent's finger tups On th' telegraphic wire.
'J Konn" in Wiunipeg Free Fress.

LAKE GIRARD SYSTEM OF MINES.

Lake Girard Mine. - Nellie and Blanche Mines. - The Horseshoe Mine. CONTROLLING 2,500 ACRESICHOICEST MICA LAND.

The LARGEST L'SERS in the United States are anmong our EARLIEST CUSTOMERS, and can testify to the excellence of our material as well as to our PROMPTNESS OF DELIVERY.

All MICA SHIPPED BY EXPRESS, and sales made at PRICES INCLLDING ALL CHARGES TO POINT OF DESTINATION.

Why buy through MIDIDLEMEN and pay COMMISSION, when you can DEAL DIRECT WITH THE MINES, and receive jour MICA AT FIRST HANDS?

We are prepared to SUPPLY the tequirements of SMALL USERS, on advantageous terms, looking to the FUTURE GROWTH of their BUSINESS.

Our PRESENT STOCK OF MICA actually mined EXCEEDS 300 TONS, and this, too, AFTER A YEAR'S STEADY OPERATIONS.

ALL SIZES AVAILABLE, and we will either cut to size or in rough split sheets, with edges trimmed or untrimmed, as may be desired. We will cut dises or segments of circles when required.

Send us 3 SAMPLE ORDER-we only ask a fair trial ; once we receive that, we are not afraid of holding your business. Address all comunumications to

A SIMPLE MAGNETIC INDICATOR.

Iroof. W. M. Stine, Physical and Electrical Uepattment of Ohio University, writes as follows: Those having charge of dynamos would often like to know the distribution of the external lines of force in their michines, and much useful knowledge could be obtained in this way. If a magnetic needle is used, is is very apt to change its polarity; it can only indicate in one plane; and in no case can it present a complete picture to the cye. Iron filings, when sprinkled on glass or paper, give a more complete and satisfactory picture, but the use of filings is not only limited to horizontal positions, but they may be drawn into the dynamo and make serious trouble.

It occured to the writer, while looking at the excellent maps in Carl Hering's "Dynamo Electric Machinery," that they Coukd have been more accurntely drawn hat iron filings, at least, sup plemented the magnetic needle. With this in mind, an indicator was prepared by placing about half an ounce of filings in at mor-
tar and grinding them as fine as possible, and then placing them in a four-ounce flat bottle filled with concentrated glycerine. The high viscosity and specific gravity of the glycerine hold the filings in suspension and when the bottle is brought near the dymamo the lines of force appear very clearly. Since they are shown in three-dimenstonal space, they appear as they really are in space. When the bottle is held near the lieat of a bolt or shanp projection on the frame the magnetic dischanging power of a point or edge becomes quite apparent. These projections are defects which still exist in many dynamos.

If the bottle is passed along a fiek coil, in many cases it will show that lines of force pass out thickly from a section of the winding and return a few inches farthe along the coil. The elative mensity of the leakisge can, at the sime time, be seen. These are only ifew of the many interesting facts which this simple indicator reseals, and other applications can be readily surgested. It is advisable to use a large nat bottle of clear glass in order to obtain the best results.

THE "CLARK" WIRE.

Insinlation Ginmantoed ichorover wsed, Aorial, Uriderurotmal or Submarine.

In a letter from the Inspector of the Boston Fire Underwriters' Union, he states: "A thoroughly reliable and desirable-Wire inevery respect."

The rubber used in insulating our wires, apd cabies is especially rhemically priepared; alid is guaranteed to be water-proof, and will not deteriorate, oxidize or crack, and will remain fexible in cxtreme cold weather and is not affected by heat. The insulation is protected from meahaicical injury by one or more braids, and the whole slicked with Clarks Patent Compound, and special extra innish, whicn we have now adopted for all our solid wires as an extra weatherproof protection, and also preventing chafing
 finish for ceiling cleat work as well as our standaiv color.

Clark Joint Qum should be used.for meting waterproof joints, this is put up in half-pound boxes, in surips nbout one foot long and fiycecighths inch ifide, an when wrapped about a josnt and vressed firmly it makes a solid maes. For rallway and Motor use, we make all sizes of stranded and fexibie with Clark insulation. We guarantee our insulation wherever used, Agrlal, ivinderground, or Submprine, and our net prices are as low, if not lower,

SPARKS.

The Western U'nion 'relegraph company have decided to increase their capmal stock from $\$ 13 .-$ $\infty 0,00$ to $\$ 100,000,000$.
To prevent rubber gaskets from sticking to hand-hole plates, give them a coat of common whitewash or plumbago.
'The Peoples' Electric Light Co. has been organized at Windsor, Ont., with a capital stock oi $\$ 50,000$, to operate the Edison plant.
A novenient is on foot in Montreal to form. a local association of the workmen in the employ of the telegraph, telephone and electric. street railway companies.
The Nanaino Electric Light Works have been sold by auction to Mr. Emerson, of New Westminsirr. The price paid was $\$ 25.040$, which is said so be less than one-half the original cost.

The Canadian Whitney-Hoyt Electrical Instrument Co. has taken a five years' lease of part of the building formerly occupied by the Edison Co. at Sherbrooke, Que., with the object of manSufacturing for the Canadian market.

A man whose wagon was damirged by coming in contact with an electric car in Hamilton, last July, brought puit aminst the Street:Railway Co. urging that the accident was due to carelessness on the part of the motorman. The jutige nonsuited the plaintifi.
What is said to be the largest generator ever unstalled in Canada, will be placed in the power station of the Ottawa Street Railway Ce. The we ght of the machine is 33,00 pounds, and it will furnish current for the operation of the road and for heating purposes.
The St. Henri Light and Power Co., which was recently granted a charter by the Quebec Legislature, empowering it to deal in electricity. gas and other illuminants, and to lay pipes or crect poles in aly city, town or municipality in the Province of Quebec. including the city of of Montreal, will endeavor to secure the Montreal lighting franchise, both for gas and electricity on the expiration of the present contract. It is satd that English capitalists have offered to take up ail the available stock of the Company, the capital of which is placed at $\$ 1,000,000$. A drop in the stock of th - Montreal Ga3 Co. bas followed the announcement of the above facts.

Packard
 High Grade Incandescent Lamps

MANUFACTURED BY THE

PACKARD LAMP CO., LTM.

S6 to 100 King Street,

W E are now building, for dynanos, roller and mills and all places requising a small able pulley with' iron spider hub and arms and selected hardwood nim, thus securing in one pulley the neatest appearing articlo that can be made. as well as the wood belt sur. face, which of itself is worth more than: the cosi of the pulley. We have furmished these pulleys for sfecial purposes for several years atid many of the leading clectrical generator manufacturers have adopted them as their standard. In practical use we have in 2 number of cases shouth as per cent. belter lisht by simply changing the dynamo pulleys frems
iron to wood rim. Another special feature iron. to wood rim. Another special fcature
is the elimiation of excessive brle strains which incures life of belting and no annoy, ance or danger from heated joumals. For use on saw arbors, where a very heavy pulley is recuired in small space, we can.secommend our irom centre pulley as the very bess and enly pulley which will give entire satisfaction. We manifacture this pulley with any style or length of hub, located in any desired position in rim. Our dynamo pulley is perfect, and we solicit a trial order. Furnished with key seats, set screws, or both. DODGE FOOD SPLTT PULLEECO.
88 King Street West, Toronto.

SPARKS.

Uwing to the discomfort caused by smote nud gas in the St. Clair tunnel. the G. T. K. Co. are considering the guestion of operating the cars through the tunnel by means of electricity.

The Brantord Jiectric I.jght Co. has been incorporated with a culpital of $\$ 1 \$ 0,000$. Messrs. Whr. Huck, Gco. C. Schuliz. 13. B. Lenming, A. Watts, G. II. Wilkes and J. W. Dighy are the promoters of the Company.

The I.ondon City (Council propose to substutite for the taxes imposed on the Simet Rallwny Co.'s property, umounting to nbout soco a yeur, a milleage rate of 5800 a mile. The compiny operate abrout is miles of tmack, which under the proposed arrangement would compel them to pay a yearly tax of $\$ 2,200$.
Opposition to the constructipn of the proposed clectne millway twetween Humilton notl (inelph, is satil to bave arisen in the lattet city, on the ground that the new road would te likely to dipert trade from Guelph to Hamition, uniess it were extended further north. The consent of all tie muncipalitics through which the road is in run lias treen obtained.

New Facts about the Dakotas is the title of the latest illustrated pamphlet issued by the Chicago, Milwauke \& St. Paul K'y regarding those growing states, whose wonderful crops the past season have attracted the attention of the whole country: It is full of facts of special interest for all not satisfied with their present location. Send to A. J. Taylor, Canadian Passenger Agent, No. 4 Pallaner House Bluck, Totonto, Ont., for a cop)' free of expense.

COTTON WASTE

'For Railway, Machinist and Engineers' uses. Eheectric Longatock
yor miegtrical uses a sprcial.ty.
ARNOLD FENWICK \& CO. Factory and Office, MONTREAL.

Piase mention the Elemetrical. News when corresponding with advertisers.

${ }^{\text {twe }}$ TORONTO ELECTRICAL WORKS

Manufacturing Electricians and Engineers.

Dealers in Electrical Supplies.
Makers of Dynamos and Motors.
Dealers in Electrical Books.
35 Adelaide Street West.
TORONTO.

TORONTO.
Prevention of Accldent our chlef aim. ddress to the Canada Lifo Buiburing. NOIE-The offices of the Company have been removed irom above addrest to the Canada Lifo Buiking.

Hill Patent Friction Pulleys

AND GUT OFF COUPLINGS

For Electric Light Stations and all purposes where intermittent power is required.

Miller Bros. \& Toms,

(Surcesmors to Hilley Bros. Ae Mitclucll)
Toronto Office: 74 York Street.
MONTREAL, QUE.
ESTA13LISHED 1S6\%.

