The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bieue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion
alonis interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagées

2
Pages restored and/or laminated/ Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquéesPages detached/
Pages dètachées

Showthrough/
Transparence .

Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issuel
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la liuraison

Additional comments:/
Commentaires supplėmentaires: Various pagings.
This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

FIRSTBROOK BROS． Kiny St．East，－TORONTO． banupacturkrs op TOPPINS，

SIDE－BLOCKS
AND GROEE－fRME．
WHITE FOR PAKTICULARS．

TENDERS WANTED
 A Weekly Joumal of advance informa． tion and public works．
 The recognized me lium for advertise． urents for＂l＇endera．＂
 CANADIAN CONTRACT RECORD
 TORONTO

STEAM USERS

Denirivy the servicee of COMPRETENT REN： IINEFARS of any clase，cas oblals sober，intelligent amit rellable men，by applying to camadian association stationary emcimeers．
A．E．Edkins，President．care Boiler Inspec－ tion \＆Insumnce Co．，Toronto．
Jas．Robertson．Secretary Montreal Branch． 1420 Mignonne Street．Montrenl．

F．E．Dixon \＆Co．
 manufacturkhs of

LEATHER BETTING

70 KING STREET EAST；TORONTO

Headquarters for Electric and Dynamo Belting．
We have the following Leather Belts in use in the works of the Toronto Electric Light Co．．－

One 36 inch bell 98 feet long．
［This bell has been in constane use since August．A885，and looks good for amother ten years yet．］Also
One 36 incl：belt 100 feet long．One 38 inch belt 100 feet long． One 36 inch belt 123 feet long．One 24 inch belt 100 feet long． And over 1500 feet of 8 inch belting．
All the abave belts are DOUBLE THICKNESS and are all giving sausfaction．
The 3^{8} inch belt is the largest belt ever made in this province．
The following Electric Companies are also using our Belting：
The Toronto Construction and Electrical Supply Co．
The Ball Electric Light Co．
The Hamilton Electric Light \＆l＇owet Co．
The Niagara Falls Flectric Light Co．
West Toronto Junction Electric Light Works．
The St．Thomas Electric Light Co．
The Barrie Electric Light Co．
The Berlin Electric and Gas Co．
The Woodstock Electric Light Co．
The Manitoba Electric and Gas Light Co．，Winnipeg．
The Goderich Electric Light Co．
The Markham Electric Light Co．
The Oshawa Electric Light Co．
The Orangeville Electric Light Co．
The Port Arthur Electric Railway Co． AND OTHBRS．
We are the only Belt Kanufacturers in this Province who can show Beits of OUR OWN MAKE which have been in use AS LONG AS FIVE YeARS．We can point to belts of our own make in THIS CITY ALONE which have been in constant use for TEN，THIRTEEN and even NINE－ TEEN years，and are still good．

We are prepared to fursish Belts of any size，swo or three ply，of any width．Every lell fully garanteed．
Send for Discounts．Dixon＇s Belting Hand－Book mailed free on application．

THE BROOKS MANUFACTURING CO．，Ltd．，

Earle＇s Air and Steam Injectors

THE GEST DEvice in the market
For burning hard or soft coal screenings under steam boilers，for work－ ing gas producers，\＆c．\＆c．，exhausting gases from mines，ventilauing ships，buildings．Ac．Can be applied to any boiler without disturb－ ing the present setting．Guaranteed to do the work satisfactorily． Can give the best of testimonials showing their efficiency． the canadian oil．ed clorring Co．，（I．＇Td）． Manufacturetx of
waterrzoor ilomse and waccon ccvers，oiled clothing，brc．
S．R．Enxlx，Esq．，Helleville，Ont．Port Horc，June 23rd， 189 g． Drax Sir，－We have had in use for some time，your Combined＂Air Inject． of and Exhauster＂and with pleasure we state that it is giving us the most corm． p：cte natisfaction．Regarding the caving in fuct，we we＇e burning，before using Injector in，we bum iwo ton hard coal screenings per week at a cost of $\$ 2.0$ ， making a sxving of $\$ 1.00$ per week，which speakx for itself．We have a mach clezner and bexter fire and far leas troublo io keeping xreem．We consides your invention a bocn to all paries using steam doilers．Wishing you every success， －ie are，Yours inuly，（Signed）The Canadian Oiled Clothing Ca．
per S．Henderson，Manager．

Canadian General Electric Company (Limited)

 General OMlces: 63 to 69 Front Street West, TORONTO, CANADA.Finclorias:
PETERBOROUGH, ONT. HAMILTON, ONT.
Hramrhes:
HALIFAX, N. S. MONTREAL, QUE. WINNIPEG, MAN. VANCOUVER, B. C.

Manufacturers and Contractors

Continuous Curvent Dymamos, Alternating Curvent Dynamos, Generators for the Transmission of Power; Arc Lighting Apparatus.

Electric Railway Motors and Equipments. Electric Mining Apparatus.
Electric Motors for every possible duty.

Electric Cables and Conductors for Telephone, Telegraph and Electric Lighting and Power Circuits.
Flexible Cords and General Electrical Supplies of every description.

COEREBPONDHNCH INVITHD.
Please address all correspondence to the Company.

Kay Electric Works

NO. 268 JAMES ST. N. - HAMILTON, ONT.

DYNAMOS

For Arc and Incendescent Lighting. MOTORS
From 1-8 H. P. to 50 H. P.
fi.ECTRO PIATING MACHINES iNL GENERAL Electrical. applidances. SPECIAL ATTENTION TO MILL AND FICTORY LIGHTING.

WRITE FOR CIRCULARS.

FINE - ${ }_{E^{\dot{L}^{E}} \boldsymbol{c}^{\boldsymbol{T}^{\boldsymbol{R}^{\boldsymbol{I}^{\boldsymbol{C}}}}} \text { Street Bars }}$

OUR SPECIALTY

We also manufacture Horse and Trail Cars of every description.

PATTERSON \& GORBIN, ST. C.ATHARINES, ONT.
 Electrical Supplics.

CANADIAN

Electrical News

AND
STEAM ENGINEERING JOURNAL.
ToI. II. TORONTO AND MONTREAL, CANABA, OCTOBER, 1892 . No. 10.

BOILER EXPLOSION AT STAPLES, ONT.

On Saturday, the ifth of September, a serious boiler explosion occurred in the village of Staples, County of Essex, Ontario. Gaples is a sillage of recent oribin, and is a station on the branch line of railway from Comber to Leamington. The village contains four saw mills and dwellings of the workers. It is surrounded by hard-wood bush, and the chief employment at the mills is cutting and bending the wood and the making of staves for barrels.
Vessrs. Force \& Dickson had two steam boilers in their
were suggestel, such as that the tubes were rotten, and that scale inside caused the bottom to become red hot, but the jury very wisely did not endorse any of these opinions.
An examination of the remams of the exploded boiler showed that several portions had gone completely out of sight, nobody knew where.

The boiler was an ordinary tubular boiler, built in Detron about nite years ago, and made of chatcoal hammered iron plate fully one quarter of an inch thick. It had been twelve feet long and four feet in dianeter, and had a done about 20 m. dameter.

Scene of boller Exilosion at Stapies, Ont.
stave mill. They were horizontal tubular boilers, encased in brick-work. On Saturday merning a few of the men had reached the mill before starting time, and as it was chilly, were near the boilers to warm themselves.
The engineer was preparing to start one of the engines, and wats in the act of turning the fly whecl to bring the engine in proper position for starting, when one of the steam boilers exploded.
The explosion was a very violent one, causing the death of seven men and the complete destruction of the mill. The accompanying illustration gives some idea of the destruction caused by it.
The exploded boiler was torn into a number of pieces and scattered about the mill yard and into the bush beyond. The other boiler was driven out of its brick setting and broken in several places.
A coroner's inquest was held, and the jury found that the death of the man whose body formed the subject of enquiry was caused by the boiler explosion, and that the explosion was accidental and from a cause not known to the jury. Various theories

The dome had parted from the shell, tearng the plate near to the dome flange. The part of the shell immediately under the dome was flattened out und lay only a few feet from the ongmal position of the boiler. The upper part of the front of the shell had taken a thight upwards, and las not for from the dome. The other portions of the shell plates were missing.
The explanation of the cause of tie exploston does not seem very difficult. The dome having gone up, and the shell phates under it being fattened out and left near the orymal ste, susgest that the rupture rommenced around the dome. The appearance of the fractured plate still rivetted to the dome agrees with this idea, as one part seems wasted and reluced in thickness to about one-half that of the rest of the plate. The manhole plate was not among the remains, and if it were found might give a better explanation than the one suggested.
The boiler had been covered over with brickwork, and a leak at the dome flange could not bave been seen and was probably the cause of the corrosion now visible.
The boiler had not been inspected by anyone competent to do
we.h work since it was ereeled in Staples. The mumber of killed In this casc, and the distressing condition of some of the families left, are strong arguments in favour of some plan being devised for the prevention of boiler explosions.
The jurs, in their verdice, said. "We would earnestly recom mend that users of steam should be compelled by law to have their boilers thoroughly tested at least once a year, and that some latw enforcing a system of examination for engincers of stationary engines should be enacted and certificates granted to those passing such examinations, proving thenselves competent to take charge of engines, and that a penalty be innosed upon any person assuming the charge of an engine who had not a certificate."

THE ACTION OF THE FLY WHEEL.

A By wheel acts solely by tis incria. White the engine is up to its speed, the fly wheel is absorbing power. Any sudden and monentary temdency of the engine to increase its specd is counteracted in gieat measure by the fly wheel, which if heavy enough and of sufficient diameter, absorlis nearly all the excess, paying it out gradually until its nomal speed is again reached; thus making of what might otherwise be a running away or rac $m_{\text {h. }}$, onls a slight gradual increase of speed, followed by a gradual decrease to the normal amount, if the conditions remain normal. In the same way any sudden and momentary tendency of the engine to slow up would be met by the fly wheel by a giving out of momentum; so that what might be it very considerable momentary slowing up, is changed to a vety slight and gradual decrease of speed, followed if the conditions ate restored to lheir normal state) by gradual return to the normal specti. In other words the fly wheel acts as a store house of power. Its inertia causes it to oppose any tendency cither to slowing up or speeding up. The greater the weight of fly wheel rim for a given diameter and rotation speed, the heavier the rim for a given diameter and rotation speed, and the faster the rotation speed for a given rim weight and diameter, the mone efficient it is in keeping the rotation speed unitorm; so that where there are expected great variations of pressure or of load, or where great regularity is intended, it is only necessary to sufficiently increase either the rim weight, the diameter, or the rotation speed.

It must be remembered that at fly weel can tiake off only momentary variations in pressure or in lond. It only distributes through many rotations an excess of power that would be inconvenient if used up during a few; or stores up in tetaining the regulat rotation speed, enough power to keep the engine going for at few turns at nearly the regular speed, in case of momentary increase of load or decrease of piessure or of load. If the load were taken off and the pressure kept up, or the load kept the same and the pressure doubled, the engine would tun away and probably wreck itself, despite the fly wheel; and vice versa, if the load were doubled and pressure not increased, or if the load remaincd the same and the pressure fell to one half, the engine would slow down, fy wheel or no fly wheel.

SOME OF THE TROUBLES OF MANDFACTURERS OF INCANDESCENT LAMPS.

We suppose it will be conceded that every trate has its troubles and every manufacture its difticulies, and that these conditions govern to no small extent the selling price of the commoditues; those who vehemently complan of the price they have to pay for their incandescent lamps will do weil to bear in mind this platitude. There is scarcely any manufacture that could be instanced in which there is more loss Irom what may be termed "spontancous" breakage. Finished lamps apparently well made and of the best material will for no very obvious reason crack without having been subjected to any shock or blow. Manufacturers of incandescent lamps always expect a reasonable amome of loss from breakare, but when a certain limit is excecded some special cause is sencrally suspected to be operating, such as carelessness in the glass-blowing depatment, imperfect annealing, \&c. Lamp-bulbs may exhibit this spontancous cracking as a rule in three loia:-i. Where the platmum wres are sealed in. 2. Where the "stem" carrying the wires and carbon filaments is joined to the bulb proper. 3. Where the exhausting tube is sealed on at the apex of the bulb. Now in addition to the intemal stresses existing in any such class of work, the lamp bulb when finished is subjected externally to the full atmospheric
pressure, and in, perhaps, the majority of lamps in use, the butb is subjected to sudden heat stresses due to the instantanemus furning on of the current. This combination of stresses being considered, it is evident that differences in the glass used for the bulb and "stem," and consequent differences in the values of the cocflicients of expansion will become of special importance; although in the case of ordinary hlass-work subjected to no purticular stress, such differences would be negligible. Cihass blowers know by experience that similar grades of glass should be used together, but they are skitful enough to be able to work up grades of glass differing in composition far more than is permissible in incandescent lamps. Dr. Durand Voodman hats had his attention called to this matter by an American firm of incandescent lamp makers, and he was able to investigate the character of the glass at a time when a percentage of spontaneous breaking was abnormally high, whilst every care in making up the lamps, in aunealing, dic., was unavailing. A number ot samples of glass rod and tubes used in making the bulbs were examined chensically. From the results Dr. Woodmans concluded that the high spontancous mortality was caused by using different grades of glass in making the lamps. The lesson to be derived from this investigation is obviously that it is desirable to use the same glass in every part of a lamp, or at least glass of practically the same composition. It has been asserted that some glasses of different composition may have simular cocficients of expansion, owing to the constutuents compensatung each other's effect, but the determination of this characteristic involves problems connected with the coefficiency of expansion, which after all are unnecessary trouble, since it is a simple matter to obtain glass of practically the same composition for all parts of a lamp, or for any other complex glass-work.-London Eilectrical lictienu.

PLAYING CHESS BY TELERHONE.

Last December two chess clubs, one in London and the other in Liverpool, played a match game of chass by telephone. The distance between the iwo cities is about 200 miles. The telephone company arranged to have the receivers and transmutters connected with a direct wire between the two clubs, and stationed in the club room at each end. The success was perfect. As eacl move was made on the chess board it was at once telephoned to the other club, and the two games procecter without any hitch or interruption. Several hours were consumed in the games, and when they were concluded every one was congratulated on the success of the experment. Chess playing is a recreation which is peculiarly adapted to electricians, and many of them are good players and members of chess clubs. One reason why there have been so few team matches between different clubs has been the difficulty of gathering a team which could spare the time and expense involved in inviting another city to play the match. But the telephone affords a ready means by which games and mat thes can be played at a compararively small expense, and without the members of either club leaving their own comfortable rooms. The success of the LondonLiverpool experiment opens the way to many such expermments here; and there is no reason why the clubs in the cities should not play telephonic matches not only with each other but with clubs in adjacent cities.

AN ADVERTISER WHO TALKS BY THE BCOK.

On Friday, an advertiser who has sent us a good many checks, says the Northavestern Lumberman, comfortably filled up a good aim chair, and talked considerably about advertising. "When I buy advertising," he said, "l want to feel assured that the paper in which l have space goes to the men whom I desire to reach, and, further, that the people to whom it goes have a good opinicis of it. I place my advertising on that basis. I used to think that I did not reccive my money's worth unless ! could trace a certain number of sales to some particuliar ad. I am over that. I meet the demand of machinery in my line, and having done that I want to be known, and known all the time. I advertise, say in a dozen papers, and a man comes along and buys a big bill of goods. Can he tell me what particular paper directed him t, my work? No ; not once in a hundred times. I have been adverising for years so he may know where I am, and when he wants to buy he comes to me. Make first-class machinery, and let everybody know where the machinery can be had, and then treat your customers white, is the way to get business."

ELECTRIC HEATING.

Some interesting and successful experments in the line of lieating by electricity have been 16 progress at Ottawn, Ont., Sor nearly a year past. The apparatus employed is the inventuon of Mir. Ahearn, general manager of the Otama Electric Strect Railway. We reproduce fom the Western Eleclriciun, the following particulas and illustrations of the apparatus :

A cross-section of the electric boiler for car heating is shown In detail in Fig. I. It consists of a shell or tube 2 of oval crosssection, within which is placed another similar bit smailer shell

Fic. 1.
3 , the two having their ends suitably joined to form a water space between them, nozzles being provided for the circulating pipes. The vessel thus formed has its exterior surfaces insulated with strips of asbestos $\%$ A core, s, also insulated with strips of asbestos, and wound with a resistance coil R of German silver inserted in the inner vacant space of the shell 3 , and is of such a size as to press the wires R against the insulation of the shell 3 . A similar resistance coil R is also wound upon the insulated shell 2 , the termunals of the coils projecting. The vessel thus formed is placed in a casing 6 , the terminals of the coils passing through insulators, and all the vacin spaces inside the casing being filled with powdered whiting. i is casing is then wrapped in sheets of asbestos and inciosed in a wooden box secured to the under side of the car flnor. Two of the boilers are used in each car, being placed in diagonally opposite corncrs, each supplying a set of circulating pipes. The tesistance coils are placed within the car circuit. The nozzle in the upper side of the boiler

Fig. 2.
is connected with an upright supply pipe ; from this the radiating pipes C branch off, running to the other end of the car, where they are connected with another upright pipe. From this last mentioned upright pipe a return pipe passes through the floor and enters the boiler by the lower nozzle. A water reservoir D is placed under the seat and communicates with the flow and return pipes to keep the circulating pipes full of water and to compensate for evaporation. An expansion tank E is placed at the end, away fiom the boiler, one in each set of pipes. Tinis tank being high and flat, is concealed in the end panel of the car, and it provides for the variations in the level of the car and the water.
The liquid heater shown in Fig. 3 was next devised. This heater is of handsome design, with a water glass on its side showing the height of the water within it. This type is wound for all voltages, and ina: it is stated, been used for the last three months with most satisfactory results by patrons of the Chandiere Electric Light Company of Ottawa, which company uses the Westinghouse alternating system. These heaters are
used by barbers, drughists and for domestic purposes. A livery stable kecper uses a three gallon heater, the hot water bemg applied to clean hatuess and bathe horses feet. The lieater shown in Fig. 3 requires $3 / 2$ amperes at 50 volts. Such is its construction that when in use in babber shops the water in it is

found sufficiently hot for shaving in the morning, although the current has been off all night.

In Match last Mr. Ahearn had constructed and put in operation in the residence of ex-Alierman Johnstone the electric funace shown in Fig. 5. This ou:fil has been in successfil! and and continuous operation since being installed, and has attracted much attention. The large coal furnace abandoned for the small perpendicular electric furnace shown in Fig. 5 suggests immense possibilities for electric leating. The heated water passes upward into the 63 gallon tank in the corner, from which it fows to the two upper stories of Mr. Johnstone's residence, supplying three bathrooms and one kitchen sink. The fact that hot water is being constantly drawn off, and cold water taking: its place, is a much more severe test upon the furnace than if the water was being used for heating purposes only, is in the latter case the water is being circulated always. Mr. Ahearn

Fic. 5.
has applied this principle to the hot water apparatus employed frerar heating.

Mr. Ahearn, proposes this year to equip all the cars, the car shops and the new power house, with his new system of electric hot water heating. He has also arranged with C. F. Sise, president of the Bell Telephone company of Canada, to heat the new telephone building now being erected in Oltawa. This installation alone will require $6,0 \infty$ feet of pipe. Fot this undertaking the 50 volt aleernating current will be userl.

CANADIAN ASSOCIATION OF STATIONARY ENGINEERS.
True third annual Convention of the above Association was held in Maccabees Hall, Hamitton, Ont., on August 30 hand $31 s t$.
The President, Mr. A. M. Wickens, being unavoidably absent, the Consemtion was formally opened by the Vice I'resident, Mr. Mackie.

The minutes of the last Convention were read and adopted.
Moved by Bro. Humt, seconded by Bro. Blackgrove, that Bro. Edkins read the
preshdents admerss.
"In opening this, our third convention, my first duty will be to congratulate you upon your fortunate selection of the nubitious city as your place of mecting, snd to express myself as exceeding, ly pleased to see so many; of our oldest and best tried members here is representatives. I also wish to thank the officers of the Executure Council and the officers of the different Associations for the very cordial support they have given us luring our term of ofice, now exteating over two yeirs. Our Associations are steadily' increasing in membership, in usefulness and influence. The older Associatoons are receiving a support from the mannfacturer and the steam user, proving conclusively that we are working in the right direction, that our principles are such that no min, whether employee or employer, can afford to ignote us, that we are founded on a rock, the name of which is "Educatim,", and that if we are true to the constitution, true to the promises we made when joining the order, we must become a grand influencial and useful bods; looked up to and respected by all classes of ritizens Our Associations are spreading to the east, to the west, to the north, and I can confldently say the tune is not far distant when we will extent from the Atlantic to the Pacific an unbroken chaun of careful, enerjetic and branney men who will not be left behnd, no matter how fast the inventor and Engine buitder mas improve and change the steanm plames that may be placed uhder nur charge. We are proud of the fact that the members generally are developmg a strong Gratemal and brotherly feeling, and are in reality helpang each other over the hard sports in our journey through life. Brothers, always remember that a complete rope is stronger than at single strand. White our increase during the year bas not been as rapid as it might have been, we are pleased to report the opening of one new association in Mont real (I). D). Bro. Thos. Ryan) and the members of montreal No. 1 . Have done well in assisting to organize the French Engineers of that cit: who were gramted :i charter as "St. L::urent No. 2, of Montreal," and the privellege of working in their own language was also granted by the officers of the executive. It is to be hoped that the good work will not end at the one French Association, but that we may yet report several.
Unity Association, No. 5, of London, which had lapsed, has been mainly through the efforts of Bro. Edkins, reinstituted, and is now in a fair way to show gond work and eventually be of great assistance to the engineers of that city. I am sure all the delegates present will join me in wishing both new Associa. tion God speed.
The legislation to come before us at this session, whate it is not great in amount, is of the utmost importance, and will include a few changes in the constitutions of the C . A. S. E., the consideration of some kind of an accident and life insurance scheme, the adoption of a pin, button, or badge, and the organization of some plan to assist the Association to a regular system of educating their menbers.
1 hope the delegates will earnestly examine everythong. which comes up and let us sift out, and adopt such measures as will strengithen our order and binal us more securely logether.
Our Recording Secretary will give you an account of the membership and finances of the order in as far as he can, 1 would ask the delegates to impress upon the minds of their Association Secretary the necessity of forwarding these reports to tie Secretary of the executive, saty during the month of July, so that he may have time to make out a correct report before the convention meets. Let us all do our whole duty and makr this conung year a red letter year in the history of the C. A.S.E.

1 again thank you for your cordial support of the executive officers and hope you will continue it in a yreater and if possible stronger sence to our successors in office.
The Secretary piesented his annual repore as follows: secketary's beiokt.
In making out my annual report for ile past year. I regret that I cannot prosent to you a full report of the financial and numercin! standiug of the Order For same reason the Secretanes of some of the Associavons have not sent in their half yearly reports with the per capita tax, aceprovited for in the constitution of thass Execu:ive It would be well in future if the differ ent iecretanes of the Association would attend to this matier of detail, as withot: such reports, it is impossible for the Executive Secretary to get out a proper statenem to present at the yearly mecting for the information of the delagates 1 would also remind the brethren that no Association is entited to rerrive the password for a new tern until the said half yeatly re-
port has been sent in. The only Associations fom which ithve received a proper half.yearly report are: Irantford, No. fo and Montrenl, No. a.

	Members on Kull.	Expelied.	Cash Received	Expenses.	Cash in lank.
Brantford, No. 4.	13	N. P. D. 2	\$31.95	\$ 33.45	\$20.15
Iinmilton, Nu. a.j	37				
Monireal, No. 1	888	3	\$234.35	\$211.03	\$126.92
	88 68	2	($\begin{aligned} & \$ 26.25 \\ & \$ 246.85\end{aligned}$	$\$ 119.38$ $\$ 338.78$	1860.94 $\$ 179.15$
London, Nu 5... Brandon, No. s..	19	NoReport.			
	299	7	\$773.40	\$792.57	\$380.10

Moved by Bro. Hunt, seconded by Bro. Ogle, that the I'resident's address be received and placed on file. Carried.
Moved by Bro. Hunt, seconded by Bro. Sweet, that a vote of thanks be tendered to Bro. Wickens for his valuable work during the past year. Carried.
Moved by Bro. Hunt, seconded by Bro. Mooring, that Bro. (; Robertson, of Montreal, assist llro. Edkins as Secretary of this Executive. Carried.
Moved and seconded that th, " Convention adjourn till 7:30 p.m. to-night when the meeting be open to all Engineers and the public. Carried.

EVENING SESSION.

The Convention opened at 7:30 p. wi., with I'resident A. M. Wickens in the char.
A paper was read by Bro. A. E. Edkins, on "the Care of Stean loolers," at the conclusion of which a long discussion took place, and was most interestung.

Bro. Wickens then gave a very interesting address on "The Stationary Engineer, and what Constitutes an Engineer."
After considerable discussion on Bro. Wickens' paper, it was moved and seconded, that a vote of thanks be tendered to President Wickens and Secretary Edkins for their valuable papers. Carried.
Dros. Wickens and Edkins replied in suitable terms.
Ald. Mcandrew, who was present, was then called on for a few remarks, and in response made a eagolistic speech. He spoke very highly of Hamiton No. 2 , and its members. and the order generally as he had observed it.

SECOND DAY.

The Convention resumed at io a. m., President A. M. Wickens presiding.
The Committees on "Constatuon" and "Good of the Oriler" reported progiess.
The Finance Committee reported as follows :
Your Committee have examined the books and vouchers and found the recupts and expenditures for the current year to be as follows:

Receipts... $\$ 77.05$
Disbursement. $\$ 22.50$ $\$ 4465$
Outstanding ducs $\$ 11.85$
Your Conmittee recommend that an order book be procured and all demands on the trensurer be signed by the President and Secretary.
Your Committee would also recommend that the mileage rates be paid the vanous Delegates and members of the Executive Council as follow:

Executive Council (3).		\$7.20
Alontreal	(2).	\$39.40
Toronto	(s).	52.40
Mrantford	(1).	\$1.50
London	(1)	\$4.30
Brandon	(1).	\$2.50
		\$57.20

E. 1. Pulum.

Wr. A. Swerer.
Chas. Heal.
Fhen G. Mitcineli_
Moved by Bro. Hunt, seconded by Bro. Blackgrove, that the Convention adjourn till il a. m. to give the various Committees a chance to prepare their reports. Carried.

The Convention reopened at $11 \mathrm{a} . \mathrm{m}$.
The Committee on "Constitution and By-laws" presented the following report :
"We recommend amendments to the Conctitution as follows:"
13t. That the preamble of constitution be placed first on the constitution of the Executive council.
and. That in anticle 6, section s, the word "thereor' be struck of and - ren" ise placed thercin.

3ni. That in article 12, section 2 , the following addition be attached.

That no subordinate Association recelve the password unul the Secretary receives their report and per copital tax."
4th. That in article 8, section 6. the duties of the Doorkeeper rend as follows : he shall have charge of the door and shall not nllow any member to enter or relire during opening, closing or Initiatory ceremonies, or whllst a member is addressing the chair.
sth. That lieuding read "Constitution for Suborlinate Associdions, that the hy-laws be detachet from the Constitution, that all printed matter te: purchnsed through the Executive Council.
6th. That nuticle 20 , section 1 , of the Subordinate Constitution rend as follows: "That this Association will nuthorize a hadge as evidence of membership, also pass or trivelling card,"

Gino. llunt.
 Jos. Ogi.k.

Wa. Norkis.
G. C. Moorinti.
E. F. Buismors.

It was moved and seconded that the report be discussed clause by clause. Carried.
The different clauses were read and adopted.
Moved by Bro. Blackgrove, seconded by Bro. Mooring, that the repoit be adopted. Carried.
The Committee on "Good of the Orele," presented the follow ing report :
"We recommend that button No. 3 design be adoped as our emblen. with suitable lettering thereon, and that the same be purchased through the l:xecutive Head.
That subordinate Associations be recommended to have a clatise inserted in their by-laws to the following effect. That the Assoctation accept any Irgally authorized Stationary Engineer's Certuficate in lieu of an examina. lion ; that open meetings be held and an educational instructor appointed, also that the Association appoint an Educational Commuttee to encounge menibers to rend papens on different subjects.
R. Mackie.
A. M. Wickens.
J. Rohertson.
A. E. Editis.
F. J. Pillill.
W. G. Blackgrone.

Moved by Bro. Hunt, seconded by Bro. Mooring, that the report be adopted. Carried.
Under the heading of "New Business," Bro. Hunt spoke on the advisability of the members of the Association investigating the merits of different kinds of steam plants for electric lighting and railway purposes, with the view of finding out which of the many engines would be most suitable under the manv conditions met with in electric power stations.
Quite a lengthy discussion took place on the advisability of the members of subordinate Associations taking up the study of eiectricity as needed by the enginecr of the future. Many of the members spoke on this subject, among them Bros. Brisbois, of Montreal No. 2, Bro. Norris, of Hamilton No. 2, and Bro. Mooring, of Toronto No. I.
Moved by Bro. Philip, seconded by Bro. Heal, that the Secretary of the Executive be instructed to obtain stationery with the crest of the Association thereon, so that same might be bought by individual members for use in their correspondence. Carried.
The convention next proceeded with the election of officers.
The nominations for President were, Bro. A. E. Edkins, Bro. Mackie, Bro. Hunt.
The ballot was taken and found to be in favor of Bro. Edkins, who was accordingly declared elected.
The following were elecied without opposition: Vice-President, Bro. Hunt ; Secretary, Bro. Blackgrove; Treasurer, Bro. Mackie ; Conductor, Bro. Heal.
For Doorkeeper, the nominations were: Bro. Brisbois, Bro. Mooring. The ballot was cast and found to be in favor of Bro. Brisbois.
It was moved by Bro. Blackgrove, seconded by Bro. Heal, that the next annual executive meeting be held in the ci:y of Montreal, the date to be fixed later in August or September by the Montreal brethren. Carried.
Moved by Bro. Hunt, seconded by Bro. Robinson, that a hearty vote of thanks be tendered to the retiring officers for the able manner in which they have performed their duties during the past year. Carried.
Moved by Bro. Robinson, seconded by Bro. Hunt, that the thanks of this Executive be tendered to the members of Hamilton No. a, for the royal mamer in which they have entertained ns during this Convention.

Moved by Bro. Philip, seconded by Bro. Brisbois, that this Council convey its thanks to the publisher of the Electrical.

News And StEAM ENgineering Journal. for his advertisement of our Association. Carricel.

Moved by Bro. Hunt, seconded by Bro. Mitchell, that the President and Secretary be a committee to get the procecdings of this convention printed in pamphlet form for distribution in subordinate Associntions. Carried.

The l'resident dechared the Convention adjourned to meet in the city of Montreal in September, 1893, the date to be fixed later by the Montreal biethren.

THE SEITZ AND LINHART TELEGRAPH.

We know that it would be advantigeous to trace Morse lines not along the length of a paper tape, but crosswise, as they do in the !etienne telegraph. A new apparatus using this metho! of writing is constructed by Messrs. Seitz and Linhart, at Schaffenburs, Bavaria.
The unrolling of the paper is made by an electrical arrangement replacing the ordinary clock movement. This is operited by an automatic interrupter, whose armature daws a band of paper, as its coils are electrified by the current of a local battery closed by it commutator. The principal difficulty in writing across the paper is to prevent the paper from running too far during the writing of a line. The inventors have very skillully overcome this dificulty. They have added an automatic interrupter to the circuit. The function of the electro-magnet is to apply the paper band against the litte writing roller. When at rest, the level of this ammature touches a special contact by the intermediary of a little spring that it carries at its luwest end. When the armature is attached by a telegraphic current, it interrupts the local current by which it is displaced at a certain length, because at this moment the spring leaves the special contact. The interrupter acts at the same time for the transmission of a dash or dot. The dots are simply marked upon the paper when a current of short duration passes through the writing electro-magnet ; the ink-wheel is not displaced.
Besides the main electro-magnet, they insert into the line a second electro-magnet ac*ing as a, relay; but this has a certain inertia, and does not act until it is called upon by the current of long duration transmitting a dash. Its ammature closed, then the local battery on the second parallel circuit to that of the interrupter contains four electro-magnets; the latter then attracts its armature, and the writing table placed upon the end of a lever goes across the paper and writes a line.

This telegraph can also be used upon lines with a continuous current. It is necessary to modify somewhat the mechanism. -La Lumicre Electrique.

Before any general change in the direction of permanency in the type of steam engincering equipment of electric lighting plants can be expected, says the Eugineerng aud Afining Journal, there must be a more general testing of the efficiency of the various kinds of equipment now in use, covering the efliciency of the boiler, is shown by the water it evaporates per pound of coal, of the engine, as shown by its stean consumption per indicated horse-power, anci of the combination of the engine and the dynamos, as shown by the electrical horse-power genemated by the dynamo in comparison with the indicated horse-power of the engine. It is to be hoped that there will be a series of tests made at tke World's Fair of the efficiency of these various elements and combinations, and this should do nuth toward establishing that permanency of type which has been reached in many other branches of engineering.
Many times little occurrences come up in an engineer's practice where some kind of cement which will stand the heat and pressure of steant can be used to excellent advantage. Perhaps π blow hole in a casting opens ud and a stream of steam or water escapes. In such a case it would be most desirable if there was some cement handy which could be put upon the defective spot and would set within a feu moments and afterwards remain tight. Many other circumstances often come up where a good cement that would set solid and strong would be found mnst useful. To be sure, one of the best ways of fixing such things when they occur is to replace the defeetive by new material, but as this cannot always be done withous the expenditure of more time and trouble than is convenient to give it, something that will serve a good purpose instead is desired. A contemponiry gives the following recipe for a preparation which, we think, will be found quite uscful as we have often used a cement of similar composition to this. Five pounds Pans white, five pounds yellow ochre, ten pounds litharge, five pounds red lead, four pounds black oxide manganese. The whole is to be well mixed and a little asbestos and boiled oll added. This cement will set hard in from two to five hours and is not subject to expansion and contraction to such an extent as to cause leakage afterwards. Leaks that occur in places which are difficult to get at and remedy, may often be stopped by the appheation of a little cement composed of the above materials in about the proportions specified.-Stationary Engineer.

PUA.ISHKD ON TIK FIKST OF KVKKY MONTH HY
CHAS. H. MORTIMER,
oflce, if Kinls ificeet liest,

TORONTO, - - CAINADA.

64 Tempif: Buhining; Montrian.

Abstract

Adventiding rates ment each the office of publicatromply on apslication Orders for advertising ahould preading date of pubication not later than the gsth day of the month iminediately wreceding date of issue. Changes in a dvesticenents will be unade whenever desiled, without cost ta thie advertiser, Gut to insure proper cormpliance with the instructions of the adreiciser, reyllests for change should reac.a the office as enrly as the aand day of the month or the momti

NUIBYORIPTION. Thie Haceikisat Nen: *ill be mailed to aubarilers in the 1 lominion or the United States, fwat free. for $\$ 1,00$ per annum, gocents for aix months. The price of subacription naty be remitied by arientig, in cegisteredietter, at by frostal ordes nayable to C. If. Korimer. Heare do not send cheques on local lanks unleas as cents is added for cott of discount. Aloney wemt in unregistered teiters must be at senders sisk Subectiptions foon foreign countries embraced in the General Pastal Union, \$t.50 per ansumi. Subscriptions are payabe in advance. The paper will be alucontinued at expiration of term paid for if so stipulated by the subucribet, but conttoue are rectived and all antenrages patd. Subscribers may have the mailing address changed as often as desired. Whon onirinf changry adtudys frite the old as torld as the nete address. The Publisher should be nolified of the failure of animcribers to receive their papers promptly and regulativ.

EHITTOH'S ANNOLNCKMENTS. Correspondence is invited unon all irpics cotning legitimately within the scope of this journal. TIGE "CANAMAN HI KITHICAI NRWS" HES BEKN ABPOINTED TIE OHPICIAL. I'AP'RK OF THE CANADIAN EL.ECTKICAI. ASSOCIATION:

CANADIAS EIRCTRICAL ASSUCIATION.

officers:

j'resident

1. I. WRIGITT, Manager Toronto Electric Light Company: jst Vice.preshbrat:
 avil Virk Jrhsinfent
IOIIN CPARROLA. Sec-Treas, Lugene Phillips Electrical Works, Montreal Sie:rhtahy-Trbasurer:
 E.necetive Committere
D. A. STARR, Koynl Electric Company, Montreal.
H. O. FISK. Electrician Electric Light Company, Peterboro'. Ont.

Waft. JOHNSON. Alanager Ball Electric Light Company. Toronto.
S. J. PARKER, Managing Director Owen Sound Electric Light Compaliy. Owen Sound, Ont.
A. B. Similli. Inspector Lanadtan Bourd fire L ndenuritets, I oronto.
1). IHUMSUN, (reural Manager Hamilun Eleutm Laght and Power Company Hamilton, Ont.
THOS. H WADIAND. Suprrintendent Construction, IBell Telephone Company, Bamilion, Ont.

1. 13. Mc.l-ARLANE, Ikell I elephone Conipany, Montrent.

JUHN VI'LE. Manage Guelph Gas and Electric Laght Company. Gutph. Ont.

CANADIAN ASSOCIATION OF STATIONAKY ENGINEERS.

EXKClTIVR HOAKD

'resudent, A. M. Wickens. Dice-Presudem. Ront. Machiti, Secretary. Albiekt EE lithhiss
Treasurer. Willilam suttus,
Conductor, Cimas. Mikal.
Door Kerper, AkTllik Aniks.
Reom Mects every and and fith Friday each nonth Secretary, 63 Marlborough Ave.
Hanilizuy BkaNcli No. 2. -Meets ist and 3rd Faday ench month. in Macraboc's llall W. Sweet. Presulent; E Nish Sceretary, 89 Litite William street.
 Secretary.
Mrantrukt 8kaNe. No. 4 Meets and and th Friday each month. Thos. Plgrim, President . John Ogle. Secretary. G. T. car shops.
Lombos Brancil No. 5--Meets and Tuesday each monih. F. Mitchell. Iresident. J. McIntosh, Necretary.
Braninn, Mas., BhaviniNo. Mects ist and anl Friday each month. in City 1ishl. A. R. Crins ford, D'resilent : Arhlur Fleming. Secretary.
Montkkal. Bkancli Nu. 1,-Mects ist and 3rd Thurschay each month, in Mechanics Institule, 204 is. lames street. lhos. Naden. Prestent. los. G. Robertson. 1 , 20 Mignonne stieet. Secretary
Sir. Leaurint BxaNcu No. 2. - Meets $15 t$ and 3rd Tuesday eich month. in Mechanics instutue, 20 St. Inans strect. Mallhias Gumaond, Prestdent. Alfred L. ifour, Seeretary, 300 Uelisle street, Si. Cunegonde

NOTICE OF REMOVAL

The offices of the "Electrical News" have been removed to the Confederation Life Association's new building, Rooms 106, 107 and 108.

Mr opinion is, saide a level headed citizen of 'Ooronto, lhat instead of compelling the electric cars to travel at horse car speed, the public should be educated to adapt its movements 10 a rapid transit gati. Exately' else the rapid transit idea is a iliseth.

This auhomes of the School of l'ractucal Science, Torome, have kindly signified theor willingness to place the use of their building at the disprsal of the Canadian Electrical Association in connection with the mecting to be held in January. The school contans many objects of interest, the examination of which should add largely to the pleasure and profit of the oc. casion.

Eile, trivily fixures out that the Cieneral Electric Comp.ans will require to inate a profit of $\$$,000 per das orer and above opera ing expenses to pis) dividends which have been maranteed io stonkbulders, and declaics that in the fice of the competition of other concerns this camnot be done.

Till. cunsc:adation of the Thomson Houston, Edison ame Toronto Electric.al Supply Companies interests in Canada, fore shadowed in the last number of the Eifectrical. News, has been consummated. The new company will be known as the Canodian General Electric Co. The Lapital stock is fixed at $\$ 2,000,000$. The head offices of the concern will be in Toronto, white the manufacturing will be done at the shops erected by the Edison Company at l'eterboro, Ont.

Tut. rapid introduction of electricity for street railway purposes, made it necessary for the managers of electric roads to place in charge of motors men with practically no training for the position, and this has led to accidents which would probably not has uncured had experienced mortormen been in charge of the cars. The safet) of the public and the interests of the electric street cal companies both demand that men who are placed in charse of mutor cars hereafter, shall first receive the necessary traning.

We commend the following from the New York Electrical Reaieav, to those who have not yet joined the Canadian Electrical Association: "We make our membership in the National Flectric light Association pay us," said the manager of a large central station in New York city "livery paper of a practical nature read before the Association is dissected in our station and all the kinks, short cuts and experiments are tried under the conditions existing in our work. We have made several valuable discoveries in central station practice in this way, and regard our membership in the Association as indispensable."

TuE severest test to which an electric street railway could be put will be encountered in the cit; of Montreal, in conncetion with the enomous quantities of snow and intensity of frost, which is the usual accompaniment of winter in that locality. It is proposed to cart away the snow and ice from the strects, leav ing only sufficient to provide sleighing. The expense of removal, which will be no inconsiderable item, will be borns by the Street Kailway Company and the city jointly. Inder the new order of things, the citizen of Montreal, will be able to recognize acquaintances across the street, which the accumulation of snow and ice has heretofore made it impossible to do.

In another column will be found an article descriptive of enperiments in the use of electricity for heating purposes, which have recenty been in progress at Ottawa, Ont., together will illustrations of the devices employed. So successful have these experiments been, that the new method of heating is soon to fr put to a practical test on an extensive scale. The result will be watched with much interest, more especially in vew of the advancing price of coal. A vast waste of money and labor is involved in our present methods of heating. It may be regarded as certain that there will be substituted for them in the near
future a method not less efficient but more cleanly and comomical. It is by no means unlikely that clectricits will be the chice agent in the reform.

Manufaciuhtars of electric machinery shonda be carcful io see that the persons they send to install apparatusare possessed of sufficient knowledge to enable thein to set it up properly, so that it may not prove a source of danger to life and property. For want of this knowledge an electric motor was mstalled in a Poronto printing office in such a way that when put into operation the machine was burned out and the buidding badly scorched, while the employees received such a scave as will tend to make them, in future, ill-it-ease in the vicinity of the motor. One of the best means of popularizing electric motors is to take pains to see that they are properly installed.

Ar the recent mecting of the Dominion Tracles and Latbor Congress, held in Toronto, a resolution was adopted recrinimend. ing that all railway, telegraph and telephone lines shoukd be owned and controlled by the Federal Government, and all gas and electric light plants, water woiks, fersies and street railway lines should be owned by the munic ipalities in which they are situ,ted. We fear that those who soted for this resolution ded ste on the the impulse of the moment, and without a full acyuantance with the subject. Governmental managenent of public enter in this country in the past has not been marked by such economy or efficiency as shouldi wutrant the extension of the principle. The same is to a large extent true of mumapal management. Beyond all this is the fact that if the most m. portant busincss enterprises are to be placed under guvernment and municipal contro!, capital will be driven out of the country.

A InECISION of considerable importance to electric stieet ratway companies, has just been given by the Railway Committee of the Privy Council, arising out of the application of the Davenport Street Railway Co. for leave to cross the tracks of the (i. I. R. Co. at Davenport. The solicitors of the (i. T. R. and C. P. R. petitioned the Committee to compel the Street Railway Company to stop at the crossings, and to bear the cost of necessary precautionary measures to protect the publu at these points; also that the men in charge at each crossing should receme therr instructions from the railway company, but should be paid by the street railway company. The deusion of the Commutee, practically setles the matter on the basis suggested by the railways viz., the cost of the protection of the public devolves upon the electric company and no electric car must approach within 400 teet of a crossing, at a greater speed than six mines in hour.

AN increased number of exhibitors of electicall apparatus, was a noticeable feature of the recent Industral lexhibition in loronto ; this applies, however, to exhibits of the smaller kinds of apparatus only. So far as arc lighting machnery is concerned, there was only one exhibitor, viz., the Ball Electric Light Co. of Toronto. No doubt the large street rallway contracts wheh some of the manufacturing companies have it present on hand, prevented them from making an exhibit this year. There should be ground for the hope that in connection with the convention of the Canadian Electrical Association next year, there will be such an exhibit in this line as will indicate the progress which electricity has made and is making in the Jominion. We might suggest to the management of the Industrial Exhbbition Association, that there is room for improvement in the facilities at present offered to machinery exhibitors. It is to be hoped that that these improvements will be made before the exhibition of 1893.

If it be irtue as reported that an electric lighting company in a neighboring city has accepted the renewal of their contract for one year at $23 / 2$ cents per lamp for all night service, we can but deplore the causes by which such state of affars has been brought about. While aware that the company use water as a motive power, this fact is not sufficient to warrant such miserable rates and our prediction is that the city will fail to get good lighting at this figure and the company will find that it cannot afford to give a good and efficient service at such a price. We are inclined to blame past bad service by the company for present unsatisfactory conditions, in view of the fact that the
city council tried to pass a by-law empowering them to borrow money and cstablish a plant of their own, which woukd have proved to be a foolish and expensive experiment. Right here let us emphasize our remarks on this subject in our last issue, by agatin calling the attention of those operating electric lighting phats to the fact, that it is inperative that their contracts should be fulfilled in the best manner possible at all tumes, if they hove for their renewal.

Fut, handing of the enormons traffic inculent to the holding of the Industrial Exhbution was a severe test of the efficiency of the Toronto electric street rillway. The completion of the King street line, which was designed to carry the bulk of this thaffic, had to be pushed with the greatest possible speed, and When finished there was no time for experimenting. The visitors were flocking in thousands to the city, and it was necessary that the road should be put into practical operation at once. Not only so, but, as already stated, the circumstances regured that it should be immediately subjected to the severest possible test. The results have excited the surprise and admiration of all beholders. Hundreds of thuusan is uf passengers, many of whom had nevet before seen an electric street rallwas, were trinsported to the liahibition giumels and bach, adistance of eight malen, "shout ingury to a single indivalual. We congiatulate the nannagement upon such a splendid achevement, which bas done much to allay the apprehension excited by some of the dauly papers te gat ding the dinget attendant upon the operation of the trolles system. These papers are now forced to admit that with the exercise of reasonable care on the part of the employecs of the company and the public, the danger is but litile if any greater than under the old horse car system. The adoption of some device calculated to push off the track any obstruction, human or otherwise, which might chance to get in front of a moving ear, and a regulation, such as is proposed, to compel the conductor to stop his car on the near, instead of the farther side of strect crossings, would tend to further seduce the probability of accidents.

A Recenst number of the London Eleatrical Revietu comments stronbly on a paper published in wae uf the C. S. electrical journals on the candle powes of American incandescent lamps, in which, to use the lieview's extract, "it is made to appear thitt so called to cabdle power lamps range in watle powet from 8 to 18 by actu.il photometric tests." While such a state of affairs would be deplorable, we are in a position to know that for efficiency, long life and candle power, there are no lamps manufactured in the world which woll excel the lamps made by the principal ramp makers in the United States. We may be permitied to point out to the Rezicau that the lamp or lamps, if there were more than one, must have been defective and never meant to be put upon the market as a commercial article. The article continues: "and, further, 'hat American lamp manufacturers seem to divide lamps into two classes, viz, a high efficiency, short lived, tamp for use when current is supplied by contract, and a low efficiency but more durable lamp, for use when current is supplied by meter, and it is suggested that these are supplied to central station managers, and through them to their customers, according to the method in which their current is charged for." The Revicie, in commenting on this, calls it American "cuteness" on the part of the lamp manufacturers and station managers. To get the opinion of a person prominent in electrical matters, and who has bad the handling of a great number of incandescent lamps, we suhmitted to hom the artucle in question asking his opmion on tt. His reply in substance was as follows: "I know of but one lamp manufacturer out of the hundred or so in existence in the United States, who makes it a practice to manufacture a short lised, high efficiency lamp, and a long lived low one, and he does not make a point of advertising, as formerly, this specialty, having probably discovered that station managers generally are desirous of pleasing their customers not only as regrards amount of light, but also with regard to price. Wuth the general run of electric lightung companies doing incandescent lighting under contract, the customer is charged for his lamp renewals at cost price. Does it not therefore seem reasonal.e that no station manager who has the welfare of his company at heart will supply his customers whin lamp that will have to be bought over again, as it were, by him,
sayafter two or three weeks use for ordinary lighting, neither would many customers using the light submit to such an extortion for more than a few weeks. Looking at it from a meter point of view, there are very few station managers who would knowingly purchase a low efficiency, long lived lamp to supply to meter customers for the sake of the few alditional hours that such lamps would last. It is decidedly to their benefit to have their meter bills moderate in size and their customers pleased, rather than to have meter bills large, customers growling about the price and declang that their meter is worthless. We feel positive that it is the lamp manufacturer's main endeavor on this side of the ocean to mike an ineandescent lamp which will give the proper candle power, with a consumption of current and length of life equal to any made in the world. We know for a fact that he is doing this, and is selling lamps at a low price and making money; can our neighbors across the water say as much for their manufacturers ?

There was a motor cxhibited at the Toronto Exhibition which was said to be a mechanical device for the increase of power. The inventor and momoters stated that they hat no perpetual motion scheme, but a genuine mechanical discovery by which power was incieased. The machine when driven by a ten horse power engine was said to be capable of doing fully thirteen horse power of work. If it could be made to do so much mote than the engine driving it, no doubt further improvements could make it do fifteen horse poner. Suppose a ten horse power engine driving one of the improved motors, and fifteen herse power is available at the belt from the motor. This belt could drive another motor and the fifteen horse power would then becone :wenty-iwo and a half horse power. From this second motor let a ten horse power belt be carried back to a pulley on the shaft of the stcaun engine, and the ten horse power required at the steam cylinder is brought directiy to the shaft, and the steam cylinder may be removed or the steam shut off. The machine will now continue to drive itself, and have twelve and a halt horse power to saw wood with or to run a dynamo to light up the room so that all the world may come and see the greatest motor of this or any other age. The perpetual motion ideat is evidenty not dead yet, notwithstanding all the efforts of schools of practical science and other methodis in vogue for teaching men they can only withdraw from the bank an amount equal to that wheh they have put in, and that without cren 3 : of interest.

Tue construction of the Toronto electric street railway was delayed for several monits and a considerable amount of expense incurred by the city, in order to satisfy those who were of the opinion that the storage battery would be an improvement on the trolley system. The result was not unexpected to those acquainted with the subjert, in whose minds it was a foregone conclusion that no other system than the over-head trolley could be made successful at the present time. In tiew of the experience which the city of Toronto thus gained, and of the ime and money spent in its purchase, it is somewhat surprising to find that a similar agitation in favor of the stomge battery is at present confronting the Street Railway Co. of Alontreal. With a view to setuling the matter, Mr. James Ross, President of the Company, has made the following offer:-"I will refer the question of the case of the stomac battery to a committee of three, io be selected frow the le ading civil enginecrs of Canada and the I'nited States, including the presidents of the societies of civil engineers of England, Canada and the United States, and the professors of practical science in the MeGill and Toronto universities. If this commitice shall dectde that the stonge matiery system is fit to be used for the whole strect car service of the city of Monireal I will pry the whole expense of this investigation and donate $\$ 5,000$ to any chatity to be previously asreed upon, provided that the storage battery advocates will agree to do the same should the decision be adverse to their system. I have named the civil engineers to conduct this invesitgation in order to avoid the suspicion that electrical engincers nay be buased in javor of the trolley." it is safe to say that Mr. Ross's challenge to the advocates of the storage batiery will not be accepied.
 of the leil Telephone Company at St. Thamas.

"DEAD WIRE" ON ARMATURES.

Al.thougn the modern dynamo is very nearly perfect in its construction, both scientifically and mechanically, yet there exists in certain machines some dead or inert material, which cannot be avoided. We refer to what is known as the "dead wire" on dum armatures.
As may be inferred, this "dead" wite is dead as far as practical results are concerned, and is simply a dead load to carry.
This "dead" wire is located at the end of the armature opposite the commutator, and cousists of the continuation of the windings of the conducting wire from one side of the armature to the other. It is "dead" because it produces no practical results for the reason that it does not come within the influence of the magnetic field; it is therefore a sort of necessary evil, because it is, as far as known at the present time, the only practic able means of carrying the current from one side of the core to the other.
In the case of large armatures, when the conductors are of large diameter, or of such form and mass as to render them comparatively inflexible, it is inapracticable to continue the windings over the end of the core in the manner adopted on ordinary sized armatures. Some special devices are employed : such as half-circle segments, discs, etc. . In any case the cross. diameter connections cannot be dispensed with, hence the necessity of making them as short as possible so as to reduce the resistance. This is necessary in order that as little enersy as possible may be consumed, because the greater the resistance of a wire the more the current strength will be expended in passing through it.
The active wire on drum armatures is located parallel to the axis, and the more wire we can pass through the magnetic field at right angles the better.
The percentage of active wire of the total length varies great-ly-from 30 to 60 per cent. That portion of the wire which is wound over the end of the care is not wholly inactive, however, but the electromotive force produced therein is so slight that it has litile effect on the general result ; what little electromotive force is produced is due to the fact that these portions of the wire cut the magnetic lines obliquely. (The electromotive force varies inversely as the obliquity of the wire with reference to the field of force.) The greatest electromotive force is produced when the wires cut the magnetic lines at right angles, and none is produced when the conductors pass through the field of force parallel to the lines.-Electrical Age.

LINES OF FORCE IN THE FIELD OF A DYNAMO.

Dr. Fleming estimates the lines of force in the fields of the best dynamos at from 6,000 to 10,00 per square centimetel. A definite value must be found for the maximum magnetization of iron ; that is, the number of lines that can beforced through it per square centimeter, with a giten magnetizing current must be ascertained. Ever since the investigation by Dr. Rowland of the laws of the magnetic circuit attempts have been made to settle this question. The nature of the iron bears so strongly upon the conditions, however, that it appeared for a long period almost hopeless to arrive at a definite basis for a workable theory Later researches bearing upon the permeability (mag. netic conductivity) of the izon have, however, proved so fruitful that, knowing the nature of the iron, it is possible to predict the number of lines that would result from a magnetizing current of so may amperes in the exciting coils.

Erom numerous experiments it would appear that the maximum number of lines of force which usually traverse a bar of soft. anncaled iron one square centimeter in cross-section is about 32,000. In some of Prof. Ewing's experiments, however, a magnctization under extraordinary conditions, as highin as 45,350 was attained. Ilut beyond a certain linit the magnetizing current has to be so relatively enormous that in dynamos even the maximum here stated is alnost unknown. There is probably, however, no theoretical limit to the magnetizability of soft iron.

Incorporation has been granted to the External Journal 1.cose l'ulley Company. Toronio, with a rapital stock of $\$ 50,000$ to manufacture wood split driving pulleys, shafing coupling, hangers, etc. Mi. C. T. Brandon is the President.

THE LATE C. N. GISBORNE.

Mr. Gisuonne:, Supeintendent of Govermment telegraphs brief mention of whose death was made in our last issue, was born in Broughton, Lancashire, England, on the 8th of March, 1824. After having male a tour around the world in 1842 , he setlled in Canada in July; 1845 , and commenced life here as a farmer. In 1847, he left the farm to accept a position in the offices of the Montreal Telegraph Co., and shortly afterward onened the first office of the Company in the city of Quebec.

In 1850, he was appointed chief officer of the Nowa Scotia Telegraph Co. While occupying this position, he conceived the idea of constructing a telegraph line, which would bring St. Johns, Newfoundland, into communication with the American continent, and by means of which news from Europe could be received in 48 hours less time. The project contemplated the erection of a telegraph line through a wild stretch of country +00 miles in length, and ultimately the running of a submarine cable across the Gulf of St. Lawrence. A grant of $\mathcal{L} 500$ was secured from the Newfoundland legislature, to cover the cost of preliminary surveys; land grants were also obtained, following which the Newfoundland Electric Telegraph Co. was organized-

Financial aid was obtained in New York, and in 1852 , a submarine cable was hid from Cape R ty to Prince Edward Island. This cable was the first of any length to be put down in America.

In 1853, Mr. Gisborne's New York backers became discouraged, and left him without means :o carry out the projert he had undertaken. The creditors of the company had him arrested, and to regain his liberty cost him every dollar he possessed. He still had faith, however, in the success of his iden, and in 1854, renewed his efforts in New York, to obtain the necessary means with which to complete the undertaking. Jecoming acquainted with Mr. Cyrus W. Field, who was a civil engineer and railroad builder, heinterested the latter in the scheme, which was finally carricd out.

Mr. Gisborne then, in conjunction with Mr. Field, projected the laying of the Atlantic cable, and it was under his charter that the Transathantic Telegraph Com. pany first began its operations. After enormous ditficulties had been sumnounted, the undertaking was finally success. fully carried out.

Shortly after, Mr. Gisborne was appointed Superintendent of the Dmminion Gevernment Telegraply and Signal Services, which position he held until his death. He was one of the founders of the Royal Society of Canada, and the inventor of a numberof electrical and other appliances.

RATES FOR ELECTRIC LIGHTING. Br C. W. Swoore:

At the present time the price of any commodity is regulated by its demand, the location of the demand from the source of supply and the first cost of manufacture. In most cases the selling price, within certain limits, varies inversely with the demand, the larger the scale of production the less the cost for a given quantity; also the rates for transportation, :lthough varying directly with the distance, decrease to some extent with the amount cirricd.

In like manner the rates for supplying current for electric lighting are dependent upon similar conditions. The elements that generally do, and should fix the price of supply, ate the demand for service and the locality; the latter fixing the price of water and fucl. Considerabie disparity exists among the various companies in their rates of serice, some of which are no doubt die to the above named elements, but muchalso, in anay cases, to the method or manner in which the rates were determined. In determining the latter, two methods have generally been followed, one by towns and the other by cilles. In the first case the method of procedure has been something like this. The matter of the electric lighting for the town baving been consider-
ed by a few of its prominent business men, from standpoints of convenience; and more especially as ath investment, a compathy with the necessary directors and officers is formed The first step is the selection of apparatus or system to be adopted, a tour of inspection of plants in the immeliate vicinity "to see what other people have" is stribingly natural and very proper. This problem having been solved, then comes the question "what rates shall we charge for lighting ?" Letters are sent to towns of about the same population, asking "their prices," and from these replies the price is generally determined by avelaging the prices charged elsewhere, regardless of their own condition and locality and what is determined by them. It is here where the mistake is made that has caused much dissatisfaction between the company and the consumer in more tham one instance; these same men, often times very capable and shrewd business managers, would not think of treating matters of law or building operations in such a menner, yet this evil course is entered upon, and the consequences are: the capital invested is more than wruld otherwise have been teguired, the prices for lighting are inadequate, poor returns discourage the investors or expensive lighting becomes unpopular with the public. Current is generally supplied by contract or by meter. The former has many disaduantages and objections, especially for domestic electric lighting, where the price is so much per a standard lamp, as a $16 \mathrm{c} . \mathrm{p}$., or a certain rate per candle power per month or year, when various sizes of lamps are used, as $\$, 10,12 \mathrm{c}$. p., etc., satisfaction has only been given to stores using quantties of light and for long periods. The private consumer desiring to fit up his house with numerous outets, for convenience, is charged for the entire candle power, that is, no matter what percentage of the lights are burned or how long used. To remedy this, various complicated scales of prices have been devised, charging for lamps according to their location such as halls, patlors, bed chambers, etc., which, however, is objectionable, as it requires much time and care to keep track of the various sizes and their location, disputes often occursing when the little paper lable indicating the candle power is detached. It seems strange that the candle power, voltage, and watts per candle power are not stamped on the metallic portion of the lamp, instead of being printed on a label and pasted upon the klass only to be wiped or washed off. Electrolytic and electro-magnetic meters for measuring currents have been in use for some time now, and although some imperfections exist in these methods of me:tsurng current, which will no doubt soon be remedied, considerable success and satis. faction have resulted where they are used. They are cerainly more accurate than any candle power contract system, and farer to consumer and station. A consumer naturally wishes to pay "for what he burns," not "for what he can or may burn," and the meter is the only solution of the problem.

Our second method of determining rates, generally followed by our large cities, is accomplished in a more accurate and bust-ness-like manner. The best results and the most fair and satisfactory prices have been obtained when the price for supplying electric lighting is based upon the price of gas in the same locality. The latter having been used for some years its illuminating power and cost are well known. If the company would start by fumishing current at the same relative price as gas, they would not be far astmy, and, if after some time the price was found to be too high in some localities, it could be readily reduced, it being an casy matier 10 diminish the price, but an exceedingly hitardous and dificult matter to increase it.Elcelricily.

A number of Ontaya eapitalists, including Messrs. Thos. Ahearn. \mathcal{K}. Blackburn, Walliam Scotr, J. W. MicRac, G. P. Brophy. Thos Woodman and Pcter Whelan, are secking incorporation as the stheam Electric Heating and Manufacturing Company (Lamued, to take hold of Mr. Abearn's patent heater, elseathere dexcribed in this paper, and supply heat and light by clectricity in all its branches. The capital stock ofitie proposed company is $\$ 250,000$.

ARRANGEMENT OF STEAN PIPES.

We have, from tince to time, says the Locomotive, called attention to the importance of suspending and securing steam pipes properly and providing for their expansion and contiaction. In this article we wish to call attention to a common but dangerous method of connecting boilers with man steam pres.

Fig. I shows the way in wheh the connection is frequently made, the stop valve being near the boiler, and the pipe entering the stean man below. The action of thas argument is as follows: The boiler being out of use, entraned water from the other boilers in the battery, as well as water of condensation, settles in the

Fic. $:$
space between the stop valve and the steam main. Then, when the boiler is put in use again, in order to prevent any sudden strain from being thrown on the boiler, the stop valve is not opened until the pressure in the boiler has risen slightly above that in the man steam pipe. When it is opened there is a sudden outfow of steam, which rases the water in the connectuons, throws it agamst the fust elbow, and, if that does not break, hurls the fult length of the horizontal pipe, against the second elbow, and then into the mann steam pipe. The shocks so produced are greater than can be anagined by one who has not had expenence wath water hammers. In one case that came under our observation recently; threc elbows were fractured in succession from this cause. When the first one broke the superantendent of the mill consulered that there must have been a flaw in it. It was replaced by another which lasted only a few days. A thrd clbow was put in, with a precisely sumalar result, and by that tune the superintendent had become satisfied that something was wrong with the arrangement of the piping. The defect was pointed out to him, the pipe was re-arranged, and there has been no trouble since.

It mugh be sad that the stop valse should be opened when the pressure in the boiler is just equal to that in the main. This is true, but it is not easy to detemme, with any degree of precision, when these pressures are equal, and the engineer very

inc. $=$
froperly prefers to err on the safer side, anil hage his booler pressure a irific too great, rathet than too little.

The danger mais be greatly lessened by pationg in a dnp pipe. The drip should enter the valice at as lou a point as possible, and care should be taken, when the idle boiler is about to be thrown into use, to blow all the water out through this dnp pipe immediately before opening the stop waluc. If this were carefully attended to each time, the arrangement of piping shoun irs Fif. 1 should bive no trouble, but it is a matter of every day cxperience to find ensincers who perhans do not fully realize the importance of the drip pipe, growing somewhat careless about it. After they have conscientiously used it fifteen or iwenty times there is a tendency to slight it a little and open the main valve before the water is all out. If no trouble results this is apt io fix itself on the man as a habit; and some day, when he is in a hurty, he may pay no attention at all to the drip and open the
main valve at once, exposing himself to the danger described above.

It is a far better plan to fix the pipe right and do atway with the drip. A proper arrangement of the connections is shown in Fig. 2. The piping passes up above the main steam pipe which it enters at the top; and the top valve is placed in the horizontal part of the connection, and as near the steam main as it can be, conveniently. It will be seen with this arrangement there is no danger of trapping water. The entire connection, from boilet to main, remains dry, and no water-hammer action is possible.
Fig. 3 shows another way of arranging the connections so as to avodi the trapping of water. In this armagement the pipe enters the steam main at the side, the elbows are done away with, and an angle valve is used to connect the horizontal and vertical pipes. When new work is being put in we usually recommend this arrangement, but if the piping has already been put up, in the

Fic. 3.
manner shown in Fig. 1 or in any similar manner that involves the same element of danger, the arrangement shown in Fig. 2. is cheaper to put up, because it enables one to use the same valie that was in use before.

A PEINT ON SETTING A SLIDE VALVE.

Suppose you are called upon to adjust a slide valve on an upright engine $1 / 32^{\prime \prime}$ lead on top and $1_{1} 16^{\prime \prime}$ on the bottom ; after ascertaining by the usual means that the eccentric rod connec. tion is the right length, adjust the valve so as to equalize the lead on both ends, then increase the lead $1,64^{\circ}$ on the bottom, revolve the eccentric around on the shaft until you decrease the lead on the bottom to $1,16^{\circ}$; you will then find you have $1,32^{\prime \prime}$ on top. For instance you had $1,8^{\prime \prime}$ on both ends; you increase the bottom 1/64" by lengthening the rod ; you then have $9164^{\prime \prime}$ lead on the bottom and have decreased the top to $7 / 64$ ". You now revolve the eccentric on the shaft away from the crink enough to decrease the lead on the bottom 10464^{*}, you will find $2 / 64^{\prime \prime}$ or $13^{\prime \prime}$ on top and $1^{\prime} 16^{\prime \prime}$ on the bottom. If this rule is strictly adhered to it will simplify the setting of valves requiring more lead on the bottom than on the top.-Master Stean Fitter.

TRAINING WOULD-BE ELECTRICAL ENGINEERS.

Accorming to the Engincering Mfagazine (New Yoak), the the question as to the best course of study to be pursued by young men seeking to gain a thorough knowledge of electrical engineering recersed considerabie attention at the late annual mecting of the American Institute of Electrical engineers. Most of the leading technical colleges were represented by their professors of electrical enginecring and physics, and the proceedings, which were quite anmated, served to contribute much valuable information on this important subject. In a paper read at this meeting Prof. Owens pointed out that at the present day there were really three distinct classes of electrical engineers-installing engineers, who superintend the construction and operation of lighting and power plants; designing engineers, whose province relates to the construction or manufacture of machinery apparatus, and a third class whe are engaged more particularly in laboratory, standardizing and experimental work. He thourht that a course of any iechnical school ought to recognise these distincions, and that it should be so shaped as to conform to the different requirements of the speccialized divisions of electrical engineering. While it is neither desirnble nor possible that the courses in the difierent schools should be alike, it is obvious that much waste of effor might be avorded ifthe different institutions would observe a certain unity of purpose and -trcatment. All were agreed that the imporiance of mechanical drawing and of manual training as factors in clementary education could not be over-estimated. "The practical engineer," said Prof. Jackson, "must be pre-eminently an enthusiast, while lie is at the same time a candid and careful thinker. ${ }^{\text {a }}$

SOME NOTES ON THE EXECUTIVE MANAGEMENT OF STREET RAILROADS.

Br A. K. McKar.
THE importance of this branch of railroad operation will not be gainsaid by any one. Executive ability is born, not bred, and as a manager has this quality so also is his worth. By the executive branch of the management mity be understond the whole management of employees, from the officer directly under the manager, to the day laborer on the track; also the management and direction of all supplies bought, promotion of travel, accidents, and the dealings with the municipal government.

The writer will assume that an entirely new road is being built ready for the exccutive officer to take charge, and will briefly refer to the departments and to the problems to which a manaser should particularly apply himself. But before going into details the writer wishes to impress upon owners and directors of strect railways the absolute necessity of allowing the manager full and free control; he should be the absolute and not the nominal head, directing and guiding its policy in every branch. It has been demonstrated too often that a board of directors cannot successfully operate a street railway. Chonse your man, in whom implicit confidence can be placed and who has the best and permanent interests of the road at heart, whose zeal and experience are known; then allow him to cxercise unhampered and unfettered control.

When these powers have been conferred, the manager will begin by appointing his assistants, namely, the clectrician and superintendent; these two offices can be combined in small roads. The conductors, motormen, car cleaners and inspectors will be under the superintendent, and should be engaged by him. The engineers, firemen, oilers and linemen will be under the electictan and he should be allowed to engage them. This matter of allowing the superintendent and electrician to engage their own men is a geat help to them in maintaining the discipline of the road The men will work better, have more respect, and be more strictly obedient to the man who engages them than to one they recognize as subordinate to the manager. The moment they see that the manager reposes confidence in the electrician or superintendent, the same moment will they accord him additional respect and prompter obedience.

A tume-table should be prepared and submitted to the manaser, together with a code of rules, and conductor, engineer and car inspector reporis. Every day these various reports should be handed to the superintendent and electrician, so that each morning they can in person report to the manager, noting m detail anything which may have occurred the previous day.

Having then thoroughly organized his force, through his two lieutenants, and having gone through and sifted the rules and reports and satisfied himself as to their usefulness and practicaoility, the manager can turn to the purchasing of supplics. These should all be bought from the manager's office; the superintendent and electrician inspecting whatever comes to their respective depatments, recommending or disapprovi..', together with reasons, in writing, their supplies. In this manner the best of coal, oil, grease, etc., as suited to the exigencies of the occasion, will be secured.

The question of travel will next engage the manager. It is assumed that the road is situated in some city of moderate size where the cars are not overcrowded, and that travel must be more or less created, or at least encouraged. Having made the schedule, and laving operated the same for a short while, the conductor reports should be examined. From- these can be readily obtamed the hours of the day when travel is the ranviest. Extra cars should be run duning these hours, and during the lightest hours cars may be taken off.

Of course, on some days of the week tavel will be lighter than on others. These should be noted and if possible special attractions should be offered to promote travel. Dunng the summer months this can be very easily done by concerts held in some park or hall at the end of the line. The manager should exercise every ingenuity to furnish attractions of one sort or another which can be obtaned whout 100 much sost, which shall allract crowds. The writer knew a case in which a manager spent some five dollars on a set of negro camp-meetings, feeding the colored people till they became self-supporting, which was in a day or so, and recciving back some three hundred dollars in ear faies during the time the mectings were
held. A manager must be quick to grasp the opportunity of carrying the crowds on such occasions, giving full and auple accommodations for riding, as nothing will detract fiom ammsements so much as a poor teturn service. If he has insufticient car capacity, try to move them in sections, prolonging the entertainment to hold part of the crowd while a portion is being moved.
In winter the same platn should be pursued : a skating carnival, a dance, or a concert in seme hall towards the end of the route will prove attractive and increase receipts. Too much at!ention cannot be paid to this branch, with liberal assistance to any enterprising individual who wishes to open a pleasure ground at the end of the roule.
Accidents will happen on the best regulated roats: and ouly one piece of advice is offered, that is, to compromise. The writer knew of a road which was unfortunate enough io 1 un over a capitalist and kill hum. The widow had ample means to fight the company; but by excellent management of the case, it was compromised at fioo huthded dollars! The road should endeavor to pay such claims by tickets, or privileges; actual cash being the last and final resort. Delay is a very potent factor in the settement of such cases, and the collection of evidence at the time may be intaluable. The rules should state, that in case of an accident, the conductor and motorman should get the names and addresses of all eye-zuitnesses, and make a written statement of the affair to the superinten.lent, who in turn will report to the manager.

Every manager will be called upon to cope with the city fathers, either in getting a new franchise, a side track, or placing a pole. A general piece of advice which may prove useful is to meet and conquer them individually before being called before them collectively. Count noses, only be sure they ane counted correctly. A manager who requests a grant from the council and who does not consult them individually before presenting the same, is not wise, and will oftener be denied than granted the privilege.

An executive officer who is thus equipped, with a pair of good lieutenants, the best men ob'ainable as emplogees, a ready and facile ingenuity for promotion of travel, and a mild form of diplomatic ability in dealing with the aldermen, cannot fail to render a good report both for himself and for his road. Elaifrial Exgincer.

TELEGRAPH COMPANY'S LIABILITY.

IN the case of The Western Vnion Telegraph Company vs. James, the Supreme Court of Ceorgia held that while the contractual lanitation of sixty days for presenting a claim for damages against a telegraph company does not apply to a statutory penalty for delay in delivering a message it does apply to all claims for special damages and operates not alone against the sender of the message, but against the receiver of it, where the message in question relates to the business of both parties anci is a reply to a previous messaye sent by the receiver. The court said that where the d:mage done to the latter by delay in delivering the message was in breaking up negotiations for the sale of cotton of a low grade and preventing a sale which would otherwise have been consummated, the measuce of damages would be the difference between the price which would have been realized by the sale contemplated and the value of the same cotton on that day in the market; or if there was no murket for such cotton it the place where stored its value at the nearest market to that place at which it could be disposed of, together with the expense, if any, of ransporting it thither. that if it had then no market value anywhere the measure of damages would be the contract price less the best price which could afterwards be obtained for it on the first day it could be sold, and the expense of holding it until that day ; that presumptively, in the absence of pronf in the contrary, cotton hat some market value on every day in the year; and that consequently a claim for damages would be practicable, and might reasonably be required, within sivty day;s from the time the mes. sage was sent, delivery having been made on the following day.

We are picased to notice that the lusiness of Minars. Patterson a Corkn of St. Catherines, has developed to such an extent as 10 render it necessary for themin enharge their works to almost douthe their former capacty. The Company manufacture a new style of vestubule rectice car, which is almost a duplicate of the vestibule railway car.

SPARKS.

A patent was recently granted to Mr. W. IT. Jennings, Inte City Engineer of Toronto, for n rall for street milunys.
Mr. A. Shaw, proprielor of the Nanalmo. 13. C., l:lectric Light Co. has found it necessary to make an assignment.
Wm. M. Boomer, owner of the horse street ear line at Windsur, proposes to extend the snme and ndopt the electric system.

The City of Toronto has recelved frem the Toronto Street Rallway C.o., during the last jeat, as milage, the sum of $\$ 60,000$.
A new company has been incorpornterl at Lansdowne. Ont. 10 build and operate a telephone system ixelween that town and Rockport.
The Edison Co. Dave purchased the plant of the Citizen's Electric Light Co. Windsor. Ont. and together with the Reliance Co., will operate the plant.

It is stid to be the intention of the Department of Kailways and Canals at Ottama, to connect the several lock stations of the Rideall Canal by Telephonc.
A syndicate has purchased the Ward mill and witer power ar Smith's Fialls, and will use the power estimated it 300 horse power. exclusively for electrical purposes
The Royal Electric Co. has been guen permission to lay rails for an electric street milnay, to enable them tu connect their different works athe to test electic c.irs.
Mr. Mullan, of the Ottaua Street Rarmay Co., is the menentor of a self lubricating gear for trolleys, which it is claimed does anvay with the necessity of frequent oilhng.
A by:law to give the telephone company exclusive provieges for the period of ten jears, after having recerved ins first reading in the Winnipeg City Council, was filed.
By the first of November, the Montreal Street Railuay Co. expeet to have in operation $3 t$ miles. An all night service on the principal routes, has recenily been inaugumated.
We are informed that If. Il Brown. No. 5 Moulton Ave. Montreal, has bern granted a patent for the latest improvement on a non-infammable and weatherproof electric light wire.
A new power house and ear stables are being erected at Brantord, by the Edison Electric Co. It is sad to te the intention of the company to conduct a genemil lighting business.
Mr. Smith, proprictor of the Electne Light plant at Digby, N. S., has deeded to dispose of the plant and business to Messrs. John Datey and G. 1. Letiney and Bro., of that place.

Incorporation has been granted in the Rat Mortage and Keeunain Electric Street Railway Co., with a captal stock of $\$ 300,000$. The Company proproses to supply light, heat and power.
The Dominion Electrical Manufacturing Co., of Toronto, is seeking incorporation for the purpose of manufacturing electical appamas. The capital stock of the Conipany will be \$40,000.
The National Electric Light Co. of Eau Claire. Wis., have the contract to furnish dynamos for the supply of current to $=00016 \mathrm{c}$. p. lamps for the Citizens' Electric Co. of Rat Portage. Ontario.
James McMillan, employed as lineman by the Hamilon Electric Light and Power Co. white constructing wires on a roof, fell a distance of fifty feet and sustained severe, though it is hoped, not fathal injury.
The Lanadian Whuney-liugt Electncal Instrument La has been formed, with a capital stoch of $\$ 300,000$, to manufacture and sell electrical instrnments. Ihe headymarters of the company will be Manchester, N.H.
The Now Scotia Power Co. announces its intention to construct an electric street railuay from the deep water terminus of the Intercolonial Railway at Hatitax. to the solth end of the city, by way of Water St.
The Enstern Eilectne Co. will push fonward as mpilly as possible the equipnent of the whole street car system of St . John. N. IB. It is expected that the electric cars will ie started on the read in about three months.
It is understood to te the intennon of Mr. Bickerdike, of Montreal, to construct electro milways in St. Cunegonde and $\mathfrak{G l}$. Henri, suburbs of Montreal, togencer with a suburlan line to lachine and St. Anne's, next year.
Incorporation has been granted to the Ampnor Electric Light and Power Co., Amprior, Ont., to furmsh elretricity for commercial purposes and to manufacture electrigal apparatus. The capital stock of the company is \$30,000
The Winniprg Sireet Railuay Co. have filed a bill against the Eectric Railway Co., alleging that the new conipzny has been trespassung on their rights, and requexting that th be not allowed to run cats. A long and hites legal fight is anticipated.
The Bell leleptione Co. aue sad to have offered to pay the city of Brant. ford, \$450 per year. for the sole right to do atelephone business in the city. The company also agree to make concessions respecting the use of poles. the price of teleptiones. ctc.
A new electne strec: milway has bern completed and put in operation in Yarmouth, N. S The new raid is two miles long. and the equipment is said to be firs-class in every partucular. Jarmouth is the first town in the Mantime Prounces to adop: electic irannt. All the stock of the company is held ly catiens of the town.

In St. Hyacinthe, Que, the voing on the by-law to purchase the appant. tus of the Electric Light Company resulted in its defeat by 158 votes to 53. In Nanaimo. B. C., a by-law providing for the purchase at $\$ 40,000$ of the electric light plant hins passed its second rending in council.
John Douglas, of this town, has a necktic pin in which a real electric light of half n candle power. The current is from n small thatery carried in the vest pocket. The light which is set ameng the jewels gives a very pretty effect and can le turned on or off at will. - Truro Headlsght.
An action has been entered agninst the Harbor Commissioners of Montreal, loy the Royal Electric Co., for refusing permission to carry out a contract held by the insolvent firm of Ciaig \& Sons, the assets of which firm were purchased by the Royal Co. Damages to the amount of $\$ 13,000$ are claimed.
The isell Telephone Co. at Ottawa, expect shortly to take possesion of their new exclange. A multiple metallic switch board, designed for a present capmaty of 1,500 subscribers and an ultimate capacity of 3,000 subscribers, is being constructed for the cachange, at the Company's shops at Montreal.
There is a dispute as to the liste of the land along the Canadian bank ot the Niagam river upon which a company was empowered by the Piovincial Government to construct an electric road. The Dommion Government lays clam to the tule of the lind, and has recently had it surveyed. Pending the settlement of the dispute, the undertaking will not be preceeded with.
An agreement has been reached letween the Bell Telephone Co. and the clty of Curlph, by which the Company is given the exclusive right, for five years, to erect poles on the streets. In return for, the privilege, the Company are to connect their wires with several of the outlying villages, and to allow the criy to stretch fire alarm wires over their wires and on their poles, and give the city a metallic service.
On the Ann strect extension of the Ottawa Electric Street Railway, a steel trolley wire thas been used instead of copper, and the trolley wheel, instead of revolving, is fixed. To give the proper conductivity, the cross wires are of copper. It is believed that the steel wires will withstand the constant friction better than copper, although it is expected that the enrrem will not be maintained at so high a standard.
Work is progressing rapidly on the addition to the Toronto Electric Light Company's station A huge chimney stack has been erected, the foundations for the building and steam plant are approaching completion. had a battery of boilers is in position. In short, the most difficult fart of the undertaking is finished, and in a comparatively short time the Company's central station facilities will be double what they now are.
The Electric Light and Trumway Co. of Victoria, B. C., whose power house was recently destroyed by fire, entailing a loss of some $\$ 80,000$, have lost no time in re-building and purchasing the necessary equipment, to enable them to resume business. The new building, composed of brick, stone and iron, is in course of crection, and it is expected that business with be resumed almost immediately. There was an insurance of $\$ 45.000$ on the property which was burned.
Notice is given of application for letters patent to incorpornte the Cental Electric Light Compeny, of Montreal, capital $\$ 20,000$. The following are the names and addresses of the applicants: Lours Perrault, printer: Honore Beaugrand, journalist: Trefle Berthaume, Journalist; E. M. Lovelace, merchant : Udilon Dupus, merchant ; Jos. Melaucon, notary: Jos. A. Rodier, doctor; Aphonse Raza. architect: Charles Berger, contractor. Jos. Brunet, contractor: lames Lochrane, contractor: Louis Cousneau, contractor, and Emmanucl St. Lours, contractor, all of the city of Alontreal. The sand Louns Perrault, Honore benugrand. Treffie Berthaume, E. M. Lovelace, and Oditon Dupuls, are to be the first directors of the company.
The Street Railway Construction Co. I.imited, with a capital stock of $\$ 80,000$, has recintly iven incorporated. The objects of the company are the construction, building and equipment and contmeting for the construc tion, building and equipment of street sailway lines, and of the apparatus and supply of motive power therefor, by electricity or otherwise. The pro. motors of the new Compiny are as follows:-Marshall D. Birr. of Toronto electrician ; Henry W. Darling, of Toronto, electrician: Robt. Bickerdike. of Montreal, merchant : John Torrance, of Montreal, shipping agent; Chas. Morton, of Montreal, merchant; Herbert M. Linnell, of Montreal, electrician; Alex. J. 13. Close. of Toronto. real estate agent : Sam. Insull. of New York, ciectrecian; John Muir, of New York, electrician: and Albert W, Atwater, of Montreal, advocate.
The Supreme Court of Appeals of West Virgina held, in the case of Woolwine's Admir ve. Chesupeake \& Ohio Railway Company, reported in the Raihmey and Corgonation Laso Jozrnal, that a person who, without in vitation, visits a telegmph office merely for the purpose of paying a friendly call to the operator, which ofise is owned and occupicd by a railroad company for its purposes and convenience, and which is located on its land and near its track, from which occasional mesciges are sent and recewed for outside partues for pay. visits said office as a mere voluntary licensee, subject to the concomitant risks and perits; that no duty is imposed upon the owner or occupant to kecp its premises in safe and suitable condition for such visitors: that the ouncr is only liable for such willful or wanton injury as may be done such license by the gross neglizence of its agenis or employees. and that where there is no controversy in regard to the facts or inferences that may tefairly drawn therefrom, the question of negligence is one of law for the court to deternine.

What electricians mean by "earth."

By Sydney F, Walkbr.
Periants no science has a more puzuling nomenclature than electincity, Electrical engineers have named their units after the great men who have worked in their ranks, and by so doing have perpetuated the names of those men, as possibly nothing else could have done. But the names themselves, volts, ohms, amperes, farads, \&c., are sad stumbling blocks to those who would like to know a litice of the science, but who have not tome to make a set study of it.
But of all terms used by electrical engincers, probably "earth" is the most puzzling.

Even the trained electrical enginetr, the man who has spent a large portion of his life in the service of the science, has sometimes to think what is meant by "carth," in a particular case. How, then, can those who have not studied the subject follow its different meanings?
In the early days of electric science, lefore we knew anything like as much of it as we do now, and when its use was confined almos. entirely to experiments shown in the labomtory, we had not these difficulties.
In those days "earth" neant carth, and nothing else. Electricty being looked upon then as something very much like water, only that at flowed in wires instead of pipes, it was natural to refer to mother earth as the great natural reservoir of electricity. As it is well known, you can always procure water if you dig down far enough in the carth, and the earth will always soak up or carry off, more or less readily, all the water that may descend on it. So, too, the carly electractans found that by connecting one side of their frictional machines to earth-in this case the floor of the room-they could go on generating elerericity as fast as 11 was discharged from the prime conductor. They found, too, that connection to earth in the form of their own person was fatal to a certain class of experments.
Later on, also, when it was discovered that an clectric current sent through a wire carried above the ground would return to the place of generation through the ground, the same idea prevatiled. Old text books tell the student to regard a galvanic battery as an: apparatus something like apump drawing water from a well, able to draw an inexhaustible supply of electricity from the ground at one place, and to pour electrictty into the ground, ad infintum, at another place.
A study of old text books. and even sonie nicdern ones. will play rate havoc with the adeas held about 'eath' in connection with electric lighting supply, for instance.
In clarging the electrophonus, for example, the student is told to put the brass plate to "earth;" to discharge it, in fact, by touching it with his finger. And the plate was, and is, so discharged. Fancy trying to discharge a 10,000 volt transtormer in that way.

About the time of the advent of the telephone, it began to be realised that tbe part played by "earth" as a return for telegraph circuits wats not exactly what it had been supposed. It was gradually recognized that the: return current passed through the surface of the carth's crust, using what ever paths might be open to it, very much in the same way that the current passed in the wire torming the other portion of the circuit above ground. The only difterence between them was that, while the locality of the current passing in the wire was fairly certain, that of the current passing through the ground was not so certain. A portion of the return current from Manchester to London. for instance, might go round by way of Glasgow of Aberdeen. if there happened to be a path for it by either of those routes.
The development of the telephone, with its often troublesome "eross talk." which was traced to carth connections, in a great measure gradually drove the old ideas of the reservoir quite out of the field. Es, ecially was this so when it was reported irom America that messuges sent in one telephone wire had been beard on another telephone wire selarated stx anles from the first, the only possible connection being the earth's crust to which both wires were connected.
Gradually it ame to be recognized by practical men that "earth" consisted of the conducting matter, such as moisture, mineml vems. Sc. held in the earth's crust, with any metals buried there. But then came another trouble over this question of earth. How did "carth." affect a lightning discharge? and what was "earth" for a lightning rod? Surely the old idea held good here? Lightning came down the copper rod to "carth," and was discharged. Unlortunately, lightning does not always behave in this proper fashion. Prof. Oliver Lodge has rearranged our ideas upon this point. He has even maintained that the "earth" our forerumners worshipped is rather a drawhack than otherwise. Some of us sull believe in "carthfor lightning rods, though we prefer it of a differens form usually to the old patterns; our views in the matter being lased uron what we have learnt is to the use of the conductors in the earths clust and in connection with other apparatus.
And, now, when we are congratulating ourselies upon having at last reached the dignity of supplyiing electric light from generating stations. just as gas has been supplied during the memory of the oldest of us, comes "enri"" asain, but it means something quite different, and yet the sane.
Now, if a man standing on the ground touches an electric light wire carrying a high tension current, and receives a smart sbock, he is said to have "carthed" the line, or the electric light service through his body. So, 100. when a naked copper wire, used for delivering current to a series of are lamps, touches an iron limp-post, and thereby intefferes with the working of the himps beyond, it is said there is "earth" on. Again, when the passibility of users of dectric light, who are supplied by high tension carrents, geating shocks is discusseal, we ate shown marious devices for puting the circuit to "earth," should such a contingency arise.

But in these cases the meaning of "carth," though suficiently the same as in those previously noticed to warrant the retention of the name, is really quite-different. "Earth" is not necessany in these cases, as it was in the early days of electricity, with frictional machines. Nor do we use "earth" to sive us one cable, as we do with telegmeh wires, and as we may with telephone wires.
It is true that in a recent lawsuit over some electric lighting patents "errth" was brought very much in evidence, but it was shown that what was meant was an uninsulated metallic return cable, and that the sable might be insulated if you like.
It is also true that certain electric tramways in Amerien, and in this country, use what they call "carth" for their return current; but they do not mean "earth" in the old sense-they mean a set of conductors, the mils that happen to be on the ground. In electric lighting work we get as far awny from "earth" as prossible. To any but electrical engineers of considerable experience a recent report that has been made by a Iboard of Trade inspector must be exceedingly puzzling. Shocks were obtained from the water service in a house in St. James, and a gas meter had one of its sides, which rested against the damp wall, caten through by electrolytic action. The water and gas service is referred to as being several volts above the conduit in which the cables of the Electricity Supply Company were laid : and further on it is stated in one part of the report that earth, which should be absolnte zero of dectrinal putentad, had a difference of 190 volts with one of the supply mains, the normal pressure of the service being 230 volts' What doe, all this mean' What does "earti" me:an here?
In connection with electric light supply, where two insulated cables are used, "earth" may he taken to mean any conductor, such as water and gas pipes, iron conduits, \&c., that may be present in the ground, and which are all more or less all in electrical connection with each ollher, by reason of the moisture which is held in suspension in the soil, as well as in bricks, wood. and even in the hardest stones present.
But, and here is the point where this "carth" vartes from what we called "earth" before. "These masses of metal. damp ground. \&c., should have no connection with the electric lighting service at all; they are at absolue zero, because they are, or shoukd be, absolutely neutral. Whenever they betome connected, eitier directly or indirectly, with any portion of the elretric lighting circuit, they are no longer at sero of electreal potental, be. cause no longer neutral, and form part of the electne lighting system, just as if they had been regularly catculated for and lad as the cables were. and the danger, when such a counection exists, is not from any reservor having been suddenly tapped, as a water-bearing fissure may be in a mune, but in the suddeniy bringing within the influence of the electrical pressure created at the central station. of a system of conductors that are of ancer ain and varying measurements, and quite beyond the control of the engineer.London Eicetrical News.

SFARKS.

Mr. O. Ifigman, of Otrawa, has been appointed by the Dommon Government Inspector ot Electric Lighting and is at prosent engaged in formulating rules for governing the installation and operation of electric plants.
At the Windsor Hutel, Otawn. Oni., recemly, the Mayor and a number, of other notable men were invied to partake of a banquet, the components; of which bad been cooked to a nicety in an electrical oven, located at the car sherts, where the company afterwards had the pleasure of mspecting it. A local paper gives the following description of the cooking apparaus."The oven is of brick, about six feet wide, and somewhat deeper, and about six feet high In the lower part of the oven ate two Ahearn heaters fed by a wire from the Chaudiere Electric Light Cumpany, guing a power of fity volts. There is no water about this system, as in the house heating. 11 is just the dry heat. The maximum warnth produced by the two heaters is literally sufficient to roast an ox so intensen is it, but of course can be molifed away down, and that easily. The beauty of the new system is that everything so cooked is done equally all, through. There is no seorching in one part and half-done-ness in another part. To avoid loss of heat by opening and shutting of the oven door in cooking there are at the side of the doors peepholes, as it were, protected by heavy plate glass. The progress of cooking can thus be watched without disturbance to the artucles be. ing cooked."
With the assistance of the Provincial Secretary the town authorities have reached an agreement under which the Port Arthur clectne milwiay will be extended to Fort Wriliam. Theagrecment provides that Fort William West will bave a milway in full operation by next autamn. The whole length of tholine will be eight miles, and a certain number of cars will run continuously from one end to another every day. Certain provisions were made as to Fort William taking a joint ownership if it so elects, and certan protective clauses were put in guarding Port Arthur's interests in the event of the portion of the road within the limits of Fort Wiltiant being taken over by the mumeipality. Port Arthur is to hase the right to run the read for $=0$ years from Dee 1, 1893. At the end of that time Fort William may buy the pro. perty of the rallway which lies withonis own limissin a valuation so be setiled by arbitrators. The railway plant and propery are not to be taxed by the council of Fort William. Until Fort Willinm pays for in interest in the read. the road is to be managed by the council of Port Arthur, who shall be entiled to the whole income derived from the milway. The line when completed will be a great boon to the citizens of liont Willam and the large number of poople who have occasion every summer to pass itrough that localizy.

ELECTRICITY IN MINING.

I an on record as being of the conviction that a successful electsic percussion drill is the key to the general introduction of electricity in muning operations, writes Nelson W. Perry in filetriaty. As the statement thos stands it might be mislead $\mathrm{Ing}_{\mathrm{g}}$ and I wash at this point to make myself quite clear. It is a fict that at the present time considerably less than one per cent. of all the mines operated employ power drills of any kind, or feel the need of them, or, in fact, would use them if you furmished them a completels equipped plant free of ch:arge. To send solicitors among these, would therefore be not only useless, but a waste of time and substance. there is, however, another class of manes where power drills are not used but might be used to adsallage. Here, intelligent presentation of the case might result in business, but how is our tenderfoot electrician or solictot to distmbuish between the two? But among those manes which do ase ponet drills how useless it is to attempt to maluce the manarement to put in an electric plant which will do but a portion of the work, wheicas it alieady has a steans or compressed ait plant that will do it all. The tepresentative of the electrical company offers to light the mine with electricity, sud will guanantec to work the pumps, hoists and drills by the satue agency, but he knows nothing of pumping, hoisting or drillinsi, and his ignorance is at once apparent, and as to light tur, that is iluaus, und our western brother is unused to luxuries.

But if a few of these mines which can use power dirills could be equipped with a perfectly satisfactory clectrical drill, the entering wedge would have been driven, and the moral effect upon others would indeed be salutary, and in my opinion do more for the general introduction of electricity to mines of all classes than any other one thing. But the fact is that the electric drill has not yel given entire satisfaction. The manulacturers have put it on the market somew hat prematurely, making claims for it from shop tests which have not yet and cannot be bome out by continued use. If less had been claimed, breater satisfaction would undoubtedly have been given; but when the claim is made that a certain amount of work can be done with an expenditure of 4 H.P.s and in practical work but a fraction of this is accomplished with 7 11. P., the reputation of the machine is ser iously damaged. Manufacturers must understand that shop tests of 12 or 20 minutes or an hour's duration give little indica. tion of the practical working of a machine.

Some of the objections urged by practical men agdinst the electric drills of the present day are that they are too heavy and heat up to an abnormal degree. Both of these objections must be met before the electric drill will be a practical success. We know of one instance in which a lot of electrical drills of a prominent make were thrown out because they would not clean the hole well. This was not an electrical difficulty, but prob.ably entirely due to a saulty bit. It emphasizes, however, what I have been contending for all along, viz: the importance of employing for all mining work-both in the shop and in the field -of men who know their business. It will not do to copy after accepted practice unless the conditions in both cases are exactly the same. A drill bit that will clean at 300 strokes per minute mas choke the hole at 600 strokes, or vice versa; and one wheh will wotk satisfactorily whe a true reciprocating motton may not five satisfaction when this is departed from. Attention to details of this kind by men who thoroughly understand their business, 1 all sure, would hase saved the electric companies much trouble.

Then as zegards water power. While there are but few electricians who are also mining enginects, the proportion who are also hydraulic engneers is still less. The opinion that to run a plant by water power it is only necessary to find the water power, install a wheel and connect the latter to a dynamo, has already resulted in many disastrous failures in the mining regions. In the first place the water powers are often gauged at the wrong time of the year and an estimate made which is fur in eacess of the mimimum, which for steady nunning must aluays be regarded as the maximum. This is due to two things - tirst an ignorance of the business; and second, to taking the measurements at the wrong time of the year, when the water supply is not at its minimum. Throughout a large portion of our western country the proper time to giluge the streams is in midwinter, and carly in the morning when evely-
thing is frozen up tight. Those familiar with the western mountain streams know that the volume of water carried by them is sometimes double at 4 P. M. What is it at 6 or 7 A . M., but the difficulty is that at the scason of the year most favorable for gatuging in other respects, the localities are often almost imac. cessible on account of the snow. Then in regard to the proper regulation of the wheel. This is of the umost importance, and nothing short of automatic regulation will answer the purpose. A lack of attention to this caused the utter failure some years ago ot one of the largest electrical plants for mining purposes that has ever yet been erected.

In the case above referred to, a river had been diverted from its usual course in order to enable the company to wash the gravel for gold. The water of the river furnished the motive power for wheels which drove the dynamos, and current was cartied fur about 12 miles to a series of motors lucated along the exposed river bed. These were employed to operite cranes to remove the larse boulders that were in the uay of these placer muners. Occasionally as one of these boulders was being lifted it would slip from its fastenings, thus suddenly removing the loid both from the motor and from the dynamo. The result was that either one or both burned out, and this occured so often that the plant was declared a failure, and finally abandoned entirely, hasing discredited electricity in that section of country to such an extent that it feels the effect of it to this day.

PLACING OF AMMETERS.

Prof. C. W. Pike gave the result of some experiments with a Weston Anmeter, made to show the effect of two or more instrunients on each other when placed near together.

It is much handier when making tests to have the instruments arranged as near together as possible, yet they must not be placed so as to affect the correctness of the readings. Several

When two instruments cnly are used place them as A and B or 13 and C. When three ; plac: in this position.
tests were made to ascertain a safe distance for placing so as not to affect the other instrument or be affected by it, and several interesting points were brought out.

The outline sketches will make clear the correct positions for the least error, although the instruments need not set square with each other if placed over a foot away ; i. e. one foot between the nearest points of their trames.

TELEPHONE COMPANIES LIABILITY.

In the case of The Southwestern Telegraph \& Telephone Company vs. Robinson, reported in the Washington Lazu Reporter the Circuit Court of Appeals for the fifth circuit decided that a telephone company which for several weeks permitted its wire 10 remain suspended across a public highway, a few feet from the gronid, was liable to a traveler who came in contact therewith during an electrical storm, and was injured by a discharge of electicity which had been attracted from the atmos phere, since the electricity would have been harmless except for the wire. The court said. "The duty on the part of the telephone company was clear to prevent its wire from be. coming an obstruction on the highway. Under the circum stances shown the defendant in error might have been hurt by coming in contact with the wire of the telephone company, and injuries to the defendant in error might have resulted independent of the fact that the wire at the time was loaded with a charge of electric fluid from the clouds and storm then prevailing. So that it is difficult to see how this verdict could be disturbed even if the contention of the plaintuff in error is correct, that the electricity with which the wire was charged at the time was the proximate and immediate cause of injury to the defendant in error, for which the telephone company cannot be held responsible."

THE POSSIBILITIES OF THE TELEPHONE AS EIRST VIEWED BY THE INVENTOR.
THis following interview took place recently between l'rof. Graham Bell, the inventor of the telephone, and an old newspaper acquaintance on the staff of one of the Boston papers :
"Did you appreciate, Piofessor Bell, the possibilties and tren:andous scope and influence of the telephone when you described your invention to me in 1876?"
"No, I did not ; but I was much more simguine of its success than were my business associates at that tume. Lake all inventors I saw what no one else could see at that early day. I saw a fortune for some one and hoped that it mght be for me. But really, you newspaper gentlemen place my fortune too high. You are responsible for a too exalted mupression in the mind of the great public as to the colossal proportons of my estate. Iam said to be a millionaire, and people chauge me for everything as if I were a millonare. The telephone has made large fortunes for many men who were coungeous enough in the infancy of the invention to invest in the enterprise, but the amount of mones made by telephone companes is not so large as the public supposes.
"Has the telephone reached its highest stage of mprovement did you say? Oh, no ; 1 sincerely believe that its possibilities are much greater than any of us innagine. What we must now do is to discover some method by which to sumplify the compltcated system which has grown upand surrounds my original invention. The telephone ploper is the same to day that it was 15 years ago, when the first line was run from Somerville to the office of Stone \& Downer, the State street bankers and brokers. Mr. R. C. Downer, now president of the Broadway National Bank, was really the first to use the telephone, and when I recall the crude manner in which the line was then constructed, 1 am surprised that it worked at all.
"In the summer of 1876 , when you so kindly published a sketch of my invention, and when the Boston Journal told the world about my achievements, I could then talk as far as North Conway, N. H., and south to New York. The night when you were obliged to decline an invitation to meet myself and Sir William Thomson, the celebrated English electrician, who has since been made at peer of Great Britian in recogntion of his invaluable contributions to science, I had secured the use of the line of the then Mutual Union Telegraph Company, and we conversed with New York, but, of course, the conversation was not,so easily carried on as it has been since the constuuction of what is known as the metallic circuit.
\because "At the outset we experienced a difficulty in 'calling up' people at the other end of the line, and $\$ 50,000$ were expended in merely developing a 'call bell.' To do that it was necessary to use an induction coil, or two hish resistance coils of fine wre at either end of the line, making four in all. That necessitated a new transmitter, for originally the hand telephone was used as a transmitter and receiver, and the new transmitter called for more.resistance coils and a battery at cither end of the line. And thus addition after addition has been made, while the telephone pripciple remains the same as it was originally."
"The public is disposed to grumble at the prices charged for the use of telephones, and think that because the company is doing such an enormously large business that to ought, therefore, to reduce rather than increase, the rates. The fact 15 , that the telcphone business is unique i. this respect. It costs more to do a large wholesale than a retail busuess, and is less remunerative. It is difficult to convince the public of this, but it is nevertheless, true. To meet the demands of the public expensive additions have been made. The 'call bell' was a necessity, but it cost money to introduce it. A transmitter was a necessty, and that cos: money. Improvements have been made in many directions. Every genius has been encouraged to invent something that would enhance the value of the telephone to the public, and that has cost money. In fact, the increase in expenditures in perfecting and adding to the original invention have been, not in arithmencal, but in geometrical proportion. The original charges were not sufficiently high; consequently, it has jeen necessary to increase the amount, and ualess some device shall be disco cered whereby the expenses can be reduced it will be necessary to make a further increase."
"Americans are averse to the tollage system. They prefer to pay a lump sum and to use the telephone as often as they wish,
for all solts of purposes. What is the result ? The business man, who has occasion to use the teleplone manv times a day pays no more, in most cases, than the man who only actually requires it two or three times a daj A great deal of useless to and unnecessary talking is done every day over the telephone. Servants gossip over it to their friends; people call up their neighbors many times when they would not do so if they were charged a certain sum every time they did so. If the tollage system were introduced the number of calls would be reduced; it would require fewer emplovees to transact the business, fewer wires would be necessaty-and in a thousand and one wilys would reduce expenses, white the men who did need the tele phone frequenty for business parposes would pay for it.
"The telephone, as at present constucted, needs the open ar to obtain the best results. To use wires placed underground a metallic circuit will be necessary, similar to the one used now on long distance lines. To plare the wires underground and to make a metallic circuit, which me:ms to use two wires where one is used at present, will materially increase the expenses of the compary, and the public must pay for the lusury. As the number of wires is increasing rapidly it is evident that they. must, ere long, be buried.
"To simplify the telephone opens a wide field for inventors, for it is in that direction that we must turn. Pay a vist to the central office in Boston, New York or any olher large city, and you will be astonished at the complex system which has grown up almost unnoticed within a few years. There is a labyrinth of wires such as no outsitier ever dreamed of. The telephone is so simple in itself and the people have become so familiar with its use, that they would be astonished if shown a modern switchboard. It cost $\$ 150,000$ to construct the switchboard for the central office in New York city, and if you were to see it you would be surprised that it could be constructed for even that large sum.
"Of course, 1 am not speaking now from the standpoint of the business manager of the telephone. I am merely a stockholder; Ihave nothing to do with the business managemem; but it is patent to me and to others that the problem to solve now is, How can the telephone business be simplified and expenses reduced without impaiing the efficiency of the service? It is needless to say that business will ihcrease. New subscribers are clamoring daily for the service, and this means more wires, or better facilities for usugg what we now have."

THE TELEPHONE INSPECTOR.

HE apparently was a visitor from the rural districts who was totally unacquainted with city ways. He entered, snys a Chicago paper, one of the offices at the city building and finally attracted the attention of a clerk, who rather gruffly inquired: "Well, what is it? What can I do for you?"
"Where's your telephone ?" asked the caller, taking a survey of the room.
"Over there."
Without saying another word the caller walked across the the room, timidly took down the receiver, placed it to his ear, and stood for a minute as still as a statue, evidently listening and waiting for the mysterious instrument to "say something" to him. Then he carefully hung up the receiver, glanced around the room and noticed that the face of every clerk was stretched out of its normal shape by a smile of generous proportions. Again he returned to the attack. After listening ats before, he tapped on the transmitter several times. Again he waited. Then he glanced about him, put his lips close to the 'phone, and said quietly-very quietly, "Hello!"

This was too much for the amused clerks to stand, and after a hearty chorus of laughter one of them kindly voluntecred to show the old man how to operate the new-fangled talking machine.
"Hang up the receiver just as you found it. Turn that little crank at the right, which rings the bell. Then take down the 'phone, place it to your car, and when the central girl answers tell her--."
The old gentieman slowly turned, and gazing long and stead. fastly on his young friend, remarked, in that same, sad, sweet voice.
"Say! Don't get gay, now. I'm the inspector, and I'm just testing your telephone."

TRADE NOTES.

The Toronto Electrical Works report themselves yery busy on contracts for the Toronto Street Roulway Company, for whom they are making the cut out boxes, swith broxes and trolley whecls. business genernlly they find very good and improving. Owing to the demand they have increased their machinery list and space to meet the requirements of a growing trade.
Messrs. Darling bros. have made recent sultes of Claussen clutch pulleys is follows: Hohb's Hnrdware Co., 136 in. $x 12 \mathrm{in}$. clutch pulley; Wim. Clendenning \& Son, Montreal, $225 \mathrm{~h}, \mathrm{p}$. cluich coupling ; R. Whte $\&$ Co. Montreal, 160 in . $\times 12 \mathrm{in}$. clutch pulley; 136 in . x io in. clutch pulley; 1 at in. $x 8$ In. clutch pulley i : 50 h . p. coupling: Siandard Urain Pipe Co., Si. John's (que., 1 it in. $x 22$ in. clutch pulley.

1. E. Dixon \& Co., manufacturers of leather beiting, of this city, have received an order from the Toronto 1 lectric Light Co. for two enormous leather lells for the addition to their works on the esplanade. These belts are to be 33 uchus widte, double thekness, and 260 feet long. F. E. Dixon \& Co. have altrady supplied to this compnny four large double telts, 36 to 38 inches wide, averaguge each over $t 00$ feet loug, one of which has leeen in stendy use for over 7 yeurs.

The Bull ielectric Light company repront the fullowing recent sales:Mount Forest Electric Co., 500 light alternating plant and installation: Citizens'Telephone and Electric Co., Rat Portage, Ont.,, 000 light altenating meandesceat dymamo and station upparitus; Imrie \& Graham, Toromo. combination motor and incandescent lighting plant, 50 lamps; E. Hoorl \& Co., Toromo, hoiscry manufacturers, combination motor and incaudescen: phant, so hamps, Messrs. Geo. Hees, Son \& Co., Toromo, window sbade manulicturers, electic motor, Messrs. Anderson \& Godand, Ontawa. Ont., electric motor, Hart \& Co, stathonary manufacturers, Toronto, electril motor.
The St. John's Electric Light Co., of St. Joln's, Newfoundland, whose station was completely wiped out in the reeent conflagration, have completed a new brick station on a much larger scale than their old one. This is equipped by John Starr, Son \& Co.. Led., of Halifax, who have contmeted with the Electric Light Co. for the supply of ewo Leonard-Ball Compound Engines of 100 h . p. each, two 50 light arc dynamos and one 1200 atternating incandescent dynamos, a- well as the wires and supplies. The dynamos were made by the Royal Electric Co., of Montreal, and will be in operation in n few days. The i. assro. Stars have mstalled a plame of the Latmeycr system in the nachine shops of Jomes Angell \& Co., St. John's, and are about completing another of the same system for the new bakery establishment of Messrs. A. J. Harsey \& Co. The Starr Co. are also doing a large business in " Unique" Telephones, of which liney are sole manufacturers. The pronetpal advantage clamed for these, over other mstruments lies in the tramsmitter, the adjestment of which does not depend on any springs or serews, the adjustment of this transmitter is all done in the manufacture, after which no further attention or adjustment is required. Thus is clamed

to be the only transmitter that fulfils the above requrements and it is certainly a strong point in its favor both for exchange and private use. They are handsomely gotten up in different styles for exchange and warchouse purposes. The Valley Telephone Co. of Nova Scotin, after six months satisfactory test of these have extended their lines throughout the Aunapolis Vatley, a distance of 85 miles and have now $\mathbf{~}_{5}$ of the "Unique " standard telephoncs in use with good prospects of largely increasing that number. Messts. Starr sell these instruments outrightat a very low price nad will be pleased to commun'cate with telephone companies or priwate parties waming telephones.

PERSONAL.

We had the plensure of a call a few days ago from Mr. H. C. Whitney, agent for the Crocker Wheeler Electric Co., of New York, who is here with the object of extending the Company's business in Canada.
Our congratulations are hereby extended to Mr. A. M. Wiekens. who recently resigned his position as chief engineer and electrician of the Toronto Gilobe to assume the duties of a similar, but more inyportant position, in the new Legistative Buildings, now nearing completion in Queen's Park.

PUBLICATIONS.

The contributions to the October Arema nre varied, interesting and able. The Arena, besides being the most fearless and aggresswe of our reviews, is always varied and exceedingly intereating. It combines the intellectual wealth and profound though of the scrious review, with the entertaining gualities of the popular magazine.

Alex. Anderson's electncal works, Adelade St. 1 nronto, wire severely damuged by fire a week ago.
Mr. Simuel St. Jaques, head clerk C. P. R. Telegraph Conmany, at Ollawa, was waited on by the leading newspaper correspondents of the city and presented with a handsome diamond pmon the oceasion of lis ap. proaching , arriage to a Brockville lady.

The "Unique"

TELEPHONES

Made especially for Exchange and Private use.
The cheapest, simplest and most effective Electric Telephones in the world.

The "Uuique" Transmittel is the only one made which does not require adjustment and that is not affected by atmospheric changes, or rust up.

ALWAYS THE SAME.

Will transmit over the longest distance without readjustment.
"Samson" Batteries supplied with the "Unique."
Stull for Telephone Circinar and Price List.
MANUFAGTURKD ONI.Y HY
John Starr, Sons Go., Ltd.
ELEGTRIGAL APPARATUS AND SUPPLIES,
2, 4 and 6 Duke Street,

- FAIMFAX, N.

THE "CLARK" WIRE.
 Imaniation Guaranieed whereren, wned, Acriat, Oinerground or Submirine.

 "CLARK" WIRE.
 In a letter from the Inspector of the Boston Fire Underwriters" Union, he states: "A thoroughly reliable and desirable Wire in every respect."
 The rubber used in insulating oar wires and cal'es is especially chemically prepared, and is guaranteed to be water proof, and will not deteriorate, oxidize or crack, and

 will remant nexule in extreme oald weather and is not affected by heat. The insulation is proteceed from mee:ha ical injury by one or more braids, and the whole shiched with Clatky latent Compound, and specixl extra finith, which we have now adopeted for all our solid wire as an extra weatherproof protection, and also preventing chafing of all gause and diameter of insulation for Telecraph and Electric Lishts from stock. Cables onade to order. We are nor: prepared to furnish our Clark Wire witha white finish tor ceiling clent rook as well as cur ssandard culor.

Clark Joint Gum should be used for maling waterproof joinse. This is put up in half.pound boxes, in strips about one ficy long and Giye.cishths inch wide, and when wrapped atrut a jont and pressed firmbly it maker a solid mase. For rallway and Motor use, we make all sizes of stranded and flexible with clark insulation. We guarsntoe our Insulation wherever used, Aerlal, Underground, or Submarine, and ous net prices are as low, if not lower

SPARKS.

The Crosson Car Works al Cobourg, are manufacturing 20 elestric cars for the Montteal Street Railuny.
The Inantfont Electric Light Co. Lus agreed to accept 3\% rents per lagip per uight for 35 lights under a yearly contmet with the council.
The new central station of the Guelph Gas and Electric Co., wert into operation on Sept, s8th. The building is a most substantial one, and in point of equipment in said to mak in the firstclass.
At the instance of the Bank of Montral, the sheriff of Essex uns been appointed receiver of the Windsor and Sandwich Electric Railway. The Third National kank of Detroit is said to have a claim ngainst the rond for nearly $\$ 50,000$, and the Bank of Montreal h claim of $\$ 3,000$.
A new power station for the Eastern Electric Co. at St. John, N. B., is in course of erection, It ewill be buite of brick similar in design to the present station, which it will adjoin. It will be 35 f . by 50 ft . in size, two stories high, and the size of the combined buildings will be 130 n . by 50 f .
The inaugural ceremonies in connection with the opening of the Winnipeg Electric Railway, yere attended by grent enthusiasm on the part of the citizens. The first trip tias successfully made with about three hundred passengers. aboard. The company carried passengers the first day free of chatge. At a meeting of representative cirizens a vote of thanks was passed to the compans! 'n recognition of the energy display. ed in the construction of the road.

A new company has been formed for the purpose of endeavoring to secure the right of operating electric cars' in the City of London, Ont. The company bas made a proposal to the City Council, which has been met by a counter proposal from the existing company, which under a city by-law, have the practical monopoly of certain strvets until the year 1925. and have the first clair. to extend their lines on these and other streets. Action has been deferred by the council, pending a complete proposal from both companies.
The Eugene Phillips Electrical Works, as assignee of William Henry Sawyer, of Providence, have been granted a Canadian patent for an eiectric cable, consisting of a series ol insulated conductors, braided loosely - together with respect to each other into tubular form, each conductor being thereby held apart from its adjoining conductor, practically surrounded by the air occupying the pores and interstices of shid fibrous filling, whercby athigh insulation resistance anda low inductive capacity is maintained for the said conductors, and means for centrally supporting the conductorstofsaid series and for maintaining them in porition.

${ }^{\text {THE }}$ TORONTO ELECTRICAL WORKS

Manufacturing Electricians and Engincers.
Dealers in Electrical Supplies.
Makers of Dynamos and Motors. Dealers in Electrlcal Books.
35 Adelaide Street West, - TORONTO.
$\xlongequal{\text { Packard High Crade }}$ Incandescent Lamps

MANUFACTURED BY THE

PACKARD LAMP C0., Lto.

.96.to 100 King Street,

TORONTO.
Prevention of Aceldent our chief alim.
NOTE-The offices of the Company have been remo
五conomy of.fuel secured

OUR MAKE OF

STEAM PUMPS

ARE THOROUGHLY RELIABLE.
C. W. HENDERSON

ESTIMATES FURNISHE:I FOR Lighting, Power and General Electrical Construction.

ELECTRIC

MFG. CO. hoston.
$2 \dddot{5}$ I St. JAMES Strinet. $\bar{\square}$ \Longrightarrow MONIREAL.
". Juggernaut" is not suchan inapproprate tilic for ilie tlollay car nfier nll. In India the be. utglifed heathen it the dark days of the past de liberniely cast themselves iceneath the ponderous whects. Here in the full light of the nuncteenth century, nad in Christian Camada, the same thing is done. Therr is, however, this mmtked difi s. ence In the impelling enuses in Indan the sacrifice ence in the impeling causes instur here it is the

A Viaw of the World's Fair Buildings,

il) the form of n large sized lithograph, in eight colors, with key to same. can le had by sending your addeess with twenty cents in postage stamps. to Gica II. IIenford (i. P. A.. (hicigo, Mill. wanke if Si, Jiall R'y, (huazo, III. As the supply is lumited, nppliations must ie made catly. Shoult the supply teconic exhausted the postige diampe will te raturned! isapplicant.
"IT'S THE PACE THAT KILLS. 3PODNER'E HIONOR BSRTGLXT MAOHIVERF TUUKNAL RUX NETAI COPPERINE WON'R LETGA \&HTHE THING BTNDO ANY GIT, YRIGHT OR MOT ON. KEEPAnEYE On Your sTOCK. IF YOU WANT TO OO EUSINESS HAVE THE RIGHT KIND OF 60008 20 D) RIIRINE:AN WITH. ais fou fear nothinc ano feel happy. oia it has a christianizina infl.gence WHEREVER IT REPLAOES
NEW OR OLD MOT BOXES. BTE AT上工 MEANE USE II. BIMPGP, TRERE IS MUTHIMG LIES IT.

COPPERINE

Superintendent's Office. Water Works Dep't, Toronto. Januang 6th, 1891.
Alonzo W Shoonhr. Esp. Port Hope, Ont.
Deak Sik: I nin pleased to say that after nealy three years' constant use day and night, on our largest engine, your Copperine has stood its work well. I have not had to renew any of the heave bearings yet. so I consider that speaks for itself. 1 am pleased to recommend it to any one in need of metal to stand heavy work.

1 am, yours truly.
J. C FERGUSON.

Chiet Enginecr Torento Water Works.

Hill Patent Friction Pulleys

AND CUT OFF COUPLINGS

For Electric Light Stations and all purposes where intermittent power is required.

Miller Bros. \& Toms,
 (Brccessory to Millor Broc. A Metchell)

Toronto Office: 74 York Streat.
MONTREAL, QUE.
ESTABLISHED 1869.

GHAS. F. ERNST,

THIE NATIONAL CAREGN CDO.

—.. and The Standaril Caribon Co. OF CLBVELAND, OHIO.

Agent for Electric Light Supplies for all systems.
Arc and Incandescent lyynamos.
Eilectric Railway and Power Molors. $\% 10100 \mathrm{HI}$. P.

Write for mriceg. Annunciators for Hotels and private houses.
Electric Burglar Alarm for Banks, Warchouses. \&c.

THE RELIANCE ELEGTRIC MFG. CO., LTo:

WATERFORD, ONT.

manufacturers of all kinds of

HIWCTRICAT MACFINHRY

FOR LIGFTING AND TRANSDISSION OF POWER.

Constant Current ani Constant Potential Dynamos, for Arc and Incandesceat Lighting.
Eiectric Railway Generators and Motors.
ationary Motors of any horse-power, to run on Arc and Incandescent Circuits.

Arc Lamps for Constant Current and Constant Potential Circuits.
Our Dynamos, Generators and Motors are automatic and self-regulaning.
All kinds of Station Fixtures, Switches, Lightning Arresters, Rhenstats, Ammeters, Volt-meters, \&c., \&c.

