The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Culoured covers/ Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restauree et/ou pelliculée
\square
Cover title missing/
Le titre de couverture manque
\square
Coloured maps/
Cartes géographiques en couleur

\square
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Reliè avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, iorsque cela ètait possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meiileur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculēes

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Titie on header taken from:/
Le titre de len-tete provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraisonMasthead/
Génèique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

THE COCHRANE SYSTEM OF DRIVING ROLLS.

THE illustration appearing on this page represents the new Cochrane roller mill, the manufacture of which is about to be commenced by the Cochrane Roller Mill Supply Co., Dundas, Ont.
There are seven sets of double 9×24 rolls set in a solid ion frame 88 feet in length and 5 feet in width, each double pair of rolls occupying six fect of space in frame. Each double pair of rolls is carried by a pair of iron

The mill is a continuous or combined mill or a single mill at the will of the miller, as he can stop and start each pair of rolls independent of the others. Indeed these rolls are said to be even more independent than separate rolls.
The hoppers rise above the frame the same as on ordinary rolls buill by leading manufacturers, with automatic feed, which is also driven by a continuous shaft, through hollow feed rolls, with clutches adjusted so that the feed can be stopped on ea:h roll separately or by
or hammering. The iron has a tendency to rust from the moment it leaves the hammer or rolls, and the scale must come away. One way to preserve tron is to coat it with paint when hot at the mill; although this answers for a time, it is a very troublesome method, and the subsequent cutung process to which it is submitted leaves many parts bare. In addition ir does not remove all the scale, and until that is done paint.ng will be of little use. The only effectual way of preparing wrought tron is to cause a thorough and chemical cleaning of the surface

Stram Braartmont.

METHODS OF SECURING "DRAUGHT."

Br (ilio. C. Romb.

IN order to burn fuel in a furnace, a sufficient quantity of air must be supplied to it. The quantity regured saries with the equality and composition of the fuel. The supply of air shot.dd be continuous and eventy distributed among the fuel, so that the fire may burn with uniform intens ty. Each kind of fuel used requires a special metho: of fring, and kiad of grate in order that the best results may be obtained.
The one point proposed for consideration in this artucle, hovec er, is not su much the treatment of the fuel, as the methods by which a current of air may be made to pass through the fuel.
The production of "draught," when by means of a chinuney or high pper, is said to be "natural draught"; when by means of some machine or mechanical contrivance, it is called "forced draugh."
In some of the modern types of war vessels both means are combined, and the vessels are fitted with smoke pipes or fumnels of sufficient size to make enough steam in the boilers for all ordinary purposes, but when more steam is needed for some extraordinary purpose, the stoke-hole hatches are closed and powerful fans are made to blow air down into the boiler room in such quantites as to raise the pressure above that of the atmosphere. By this meins the fires burn more intensely. and the men in charge are supplicd with abundanve of fresh air.

Forced draught may be produced in several ways, such as by a fan blowing air, or by a jet of steaminducing an air current, the steam being used sometimes under the grate, and sometimes in the chimney. A fan drawing asr out of the smoke pipe would procuic an effect similar to the jet of stean, but as the parts of the fan would 1 re exposed to the escaping heat, it is not a very practical method. In. locomotives the draught is produced by a steam jet near the bottom of the smoke plpe, the steam used being the exhaust from the cylinders -hence the origin of the sajing "the faster she goes, the harder she blows."
Some idea of the amount of draught thus produced may be formed from the statement that the power of a locomotive as used in England for passenger trains will run up as high as seven hundred horse power, and the coal used will be 3,000 pounds per hour. The sinoke pipe from the boiler doing this amount of work is not over 13 feet high and 18 inches in diameter.
The locomotre gives the best results of any steam jet method of forcing draught. In portable engines for agricultural purpnics, a similar method is used by many makers, but generally the results obtained are not as grood as in locomutives. By far t..a biust common way of obtaining drauiht is by means of a chimney; but though so commonly l'sed, the reason of its producing "draught "and the natural laws which regulate its action are not so commonly understood. When a grate, covered with fuel closely packed, is supplied with air forced in by a fan, everyone at once recogriacs the fact that power has been expended in order to supply the quantuly of air needed in any given time; but when, by aneans of a chimney, the air is made to pass through the furnace, the work done is but seldom looked upon as power expended. Yet it is quite obvious that if it was power in the one case, it is power in the other, and the result obtained is precisely the same.
The draught of a chimney, then, is proculed by expenditure of power. Hut how is the power obtaned? What is is ongin or source? A chimney is a vertical pipe in which the air is made to be of a higher temperature than the air outside the chiance:. The outside air is therefore heavier than that inside, and as arr may be termed an elastic fluid, the pressure of the atmosphere at once causes it to flow into the base of the chimney; or rather into every opening which may be in the chmmey, where the outside pressure is greater than the inside. The draught is really produced, then, not so much by an up-rurrent inside the chimner, as by a downcurrent on the outside. The inside should be kept hot -hence a brick chimney will produce a better draught from the sane expenditure of heat, than can be go, from an iron one In arranging the furnace flues and connections from the boiler to the chamey, the fact that the air current is really forced lrom the outsicle towards the chimney, and not pulled as it it were a rope, should be kept in view.
When the air current is looked at in this light, it will be seen at once that in ilues, all sharp turns should be avoided, and any bends made by casy curves. Sudden change in area should also be avoided, and as a general cr:
rule, the dralught will be belter if the are: over bridg wall be less than area through the tubes or biuns, and the chimney area be at least equal to the area through the tubes.
In cases where the furl used packs closely, such as small coal and saw dust, a greater velocity of draught or rather force, will be needed. He ght of chimney is essential for this as ares : for quantet!:
The difference between the quantity of air passing through a fire and the force or velocity with which it passes should be considered ; and it is proposed to view the draught question from that standpoint and in relation to kind of fuel used in another article.

the adjustment of corliss engine valves.

TIIE following paper on the above subject was recently read before the Association of Stationary Engineers of this city by the vice-president, Mr. G. C Mooring:

We wi' esin by taking off the caps, or back bonnets, when lines will be found as follows: For the sacim ports, at line on the celinder coinciding with that edge of the port towards the end of the cylinder; and a line on the back end of the valve coinciding with the edge of the valve towards the end of the cylinder. The tap movenent of the steam valve is towards that cnd of the cylinder in which the valve is located. The exhaust valve covers or works over the opening in the valve chamber into the exhaust chest, and the opening edge is that side of the opening towardis the center of tive cylinder, the line on back end of exhaust valve showing its opening edge.
The wrist-plate is located central between the four ports on the frunt bonnet side of the cylinder, and has lines on the upper side of its hub, showing the extremes of travel and its center of motion.
To set the valves, place and hold the wrist plate on the center line, and by the adjusting rods for shortening and lengthening the valve connections, set the exhaust valves at the point of opening and lap. the steam valves from $1 / 5$ to $3 / 5$ of 2 n inch, according to the size of the engine-the less amount for an 8 inch cylinder, the larger amount for a 30 inch cylinder, and intermediate sizes in proportion. Connect the wrist-plate to the eccentric by the eccentric rod, and hook. With the eccentric loose on the shaft, roll it over and note if the wrist-plate vibrates to the mark of extreme travel. Adjust at the screw and socket in the eccentric rod to make it vibrate to the marks. Place cannk on either dead centre, and roll the eccentric sufficiently more than one quarter of a revolution in advance of the crank (observing at this time which way you want the engine to run) to show an opening of the steam valice nearest the piston of from $1-3:$ to :' 5 of an inch, according to the speed the engine is to run. This port opening at the dead center is called "lead," and is for the purpose of making a cushion for the piston to rebound from or stop against; high speed engines require more lead than slow running engines, other things being equal. Tighten securely the screw in the eccentric, and turn the engine shaft over in the direction it is to run, nosing if the other steam valve is set the same. If not, adjust by shorten. ing or lengthening its connection.
To adjust the cam rods, place the govenor balls on the top motion pin; then move and hold the wrist-plate to one extreme of its throw, and adjust the cam rod for the steam value. Open so as to bring the steel cam on the cam collar in contact with the circular lumb of the cut-off hook. Move the wrist-plate to the other extreme of throw, and adjust the other cam rod in the same manner.
To test the correctness of the cut-off, block up the regulator to about its mediun hergh, and with the eccentric connected to the wrist-plate, roll the engine shaft very slowiy in the direction it is to run; and when the cut-of hook is detached by the cam, stop and measure the distance the cross-head has traveled, then contunc the revolution of the shaft, and note if the other -ram valve is cut oft at an equal distance, traveled on the. es. If not, adjust the cut-off rods until the points of cut-off measure alike from each center.

The Ontans Oatmeal Millers Association met in this city on the $33^{\text {th }}$ of Januang. $t 0$ constlet what course to take in regard to indancing prices of omemeat in new of a considemble rise which has lately taken phace in the price of outs. It was decided to take no mamethate action. If the price of onts continues to go up an inct ase in the price of meal will le necassar:. The dennand for rolled oats is rejoried to 2 xe incteasing largely. This will protably niany of which will close of ontmeal mulls throughout the country.

THE NEW 1,000 BARREL FLOURING MILL AT KEEWATIN, ONT.

FROM the Millisg Enginecr, of Milwaukee, publishad by Messrs. Edw. F. Allis \& Co., the well-known mill-furnishers, who had the contract for the erection of the new 1,000 barrel flouring mill for the L.ake of the Wonds Milling Co., at Keewatin Ont., we reproduce the following illustration and descripton of the new structure and the manner of its equipment:
keewatin is siluated on the shores of that beanitiful sheet of water known as "the Lake of the Woors," and on the Winnipeg river. The lake itself is unsurpassed for beauty by any sheet of water in America, being studded with innumerable islands covered with pine. It presents the appearance, from a distance, of a heavy forest traversed by innumerable rivers. This lake is destined at no far distant time to become one of the most famous of America's summer resorts, and with the enterprise and push of the Canadian P'acific railway, which skirts the northern shore, nothing will be left undone that will add to the traveler's pleasure.

The natural distance from the level of the lake to the level of the river was seventeen feet and ten inches, but the engineers saw where they could add to the power and, by building a dam across the outlet of the lake, have raised the water four feet, making the fall twenty one feet and ten incles. It is from this scource the power for the mill is obtained, laving the lake and its tributarics for a feeder and the Winnipeg raver to carry off the discharged water from the wheels, it gradually finding its way to Lake Winnipeg. The raceway for carrying the water from the lake to the wheels is a natural ravine, terminating about $: 50$ feet from the shore of the lake. Through this granite bluft they had to blast an opening for the water to flow. On this bluff runs the Canadian Pacific railway. A bridge was constructed to span the race way of the plate girder type.
The wheel pit, as is clearly shown, is of granite, resting on a solid rock foundation. The depth of water below the wheels is eight feet, and there are arched openings on three sides of the wheel pit to allow the water to escape io the river. The walls of this wheel pit are cight feet and six inches thick at the bottom tapering to six feet thick where the sills of the wheel house rest on them. The floor on which the turbines set is of four inch plank supported on 16×16 inch timber, which are supported in the middle by sixteen six inch and two ten inch iron columns which rest on the solid rock.

The power is obtained from two sixty inch New American wheels, furnished by Wm. Kennedy, of Owen Sound, Ont., although the wheel pit was made large enough to accommodate four wheels. These wheels will develop 900 horse power with a zwenty-two foot head and have a draft tube of sufficient length to allow the tubes to stand clear of the tail water and in no way obstruct it. The opening from the race way to the whee! pit is thirty feet wide and the race has an average depth of ten feet of water. At the head of the race are massive head bates built between solid granite walls with wing walls spreading out in both directions to insure free access of water to the race way.

The wheel house is two stories in height at the end next the mill, and one story high directly over the wheels, thus giving plenty of room to take out the wheels without moving any flooring. In the first story of the wheel house, which is 36×70 feet, is located the heavy gearing, which transmits the power to the mill, being eight feet in diameter, four inch pitch and sixteen inch face. These gears and shatts connected to them are carried on three heary trusses, which span the wheel pit and are made of 16×16 inch timber. There is also on this floor the fire pump which has a eapacity of 900 gallons per minute under a pressure of 150 pounds. This is obtained from a Fales \& Jenks rotary pump, which is driven from the wheel driving the cleaners and elevators, and can be started at a second's notice. There is also the shatting operating the gates of the wheels. In the second story of the wheel house are located the two water wheel governors and an electric dynamo,
of the Edison make, 125 lights capacity. The entire ol the Edison make, 125 lights capacity. The entire outside of the wheel house is covered with corrugated iron and has a flat tar and gravel roof.
Passing to the mill building, which is of native granite, quarried from an island in the Winnipeg. a few yards from the mill, we find the building to be six stories high and standing, as shown by the engraving, on a bluff of granite, the surface of which has been blasted off
in level steps to secure a soltd foundation. The build in level steps to secure a soltd foundation. The building is divided into three separate parts by heavy granite walls, the mill proper being 50×85 reet, with an addition of 25×50 feet on the east end, and separated by a three
foot stone wall, for cleaners and feed dopartment does
room and bins over the rolls. On the south side is an addution "-x $\times 110$ feet in which are located the packers, packer bins, office and flour storage. This addition is tiwo stories high, next the railroad track, with an additional story next the mill for flour and feed bins, so that there is no fibur in the mill except what is being bolted on the different machines. The basement walls of the mill building proper and cleaning room are four fert thick at the top and five feet thick at the bottom, resting on footing courses eight feet wide, which are down to the solid rock. The basement walls of the warchouse are three feet thick at top and four feet at bottom, resting on footing courses six feet wide, which are also carried down to the solid rock. This room at the noth side is again divided into two rooms, in one of which is placed the boiler for steam heating. In the other is the oil and supply room. The balance of the basement has not been blasted out and is not intended to be used.

All the posts in the building rest on granite piers five feet square at top and seven feet at bottom, which are carried down to the solid rock and capped with one stone 5×5 teet and two feet thick, on which rest the building posts, the surface of cap stone being four inches above the level of the basement floor. The first, or roller, floor of the mill is on a level with the first floor of wareltouse which is four feet three inches above the top of the rail on the side track, which brings them on a level with the car door. The walls of the mill house proper and cleaning room on this floor are three fett thick as is alsothe partition walls between mill and cleaners. The walls on this floor of the warchouse are two feet thick all around. The walls of the nill proper and cleaning house, on the second and third floor, are two feet six inches all around, and on the second floor of the warehouse they are twenty inches thick. On the fourth floor of the mill house and cleaning room the walls are two feet thick, while the attic walls of the mill and clean-
ing house are twenty inches thick and carried square up to a distance of eighteen inches above the level of the roof and capped with cut granite cap stone, extending around the whole building, twelve inches thick, twenty-four inches wide and four feet long.

In the southwest corner of the mill is carried up the smokestack of the steam heating boilers to a distance of twenty inches above the capping stone. The roof of both mill and warchouse is flat, tar and gravel, pitching to the center, and the water is taken down through the mill in six-inch gas pipes, which connect with sewer pipes laid below the basement floor, which lead to the mill race. As one steps into the bascment, the first thing that attracts the visitor's eye is the granite piers on which is carried the main roller line and the line connecting it with the water wheel. The gears connecting these two lines are eight foot diameter, four-inch pitch and sixteen inch face. The top of both piers is capped with solid iron plates which are securely bolted down to the piers, which brings a bearing both in front and behind the gears. These stone piers contain 2,500 cuhic feet of mason work and represent more than $175,000 \mathrm{lbs}$. of weight. Add to this the weight of the sole and angle plates which weigh some 16,000 lbs., and it can be realized easily that gearing under such conditions, must work in the most approved manner.

The power is transmitted from the first roller line to the remaining three lines by 224 iach. double leather bett runoing over 8 -foot pulicys. The power is also taken from bere to drive the packer line, which is suapeaded
from the ceiling of the first floor in the warehouse.
The main roller line also extends into the cleaning department, and the pulley driving the whole upstars is on this end of the line. This power is transmitted by a double $24 \cdot$ nch leather belt running over a 9 .foot pulley. There is also located in the basement the suction trunk for aspirating the rolls, which is provided with a conveyor to alway's kecp it clear. There are also the main steam heating pipes connected with the boiler which encircle the entire basement, also the main pipe from the fire pumps, which runs down the centre of the building, and has three stand pipes in the mill with a branch running into the boiler and store room and up to the first and second floors of the warehouse, on each of which are three lines of hose fifty feet long.

The main pipe extends into the cleaner room, which is also provided with a stand pipe, which is connected with a tank ten feet in diameter and ten feet high, which is put in a building located on the roof of the cleaning department, which is 20×20 feet square and ti:0 stories high, with door opening onto roof of mill proper. This tank operates the sprinkler system, one of which is placed over every bearing in the mill and one in each elevator head. By a system of check valves the tank can work direct on the sprinkler system or the hose, and as swon as a sprinkler starts in operation it rings an electric gong in the wheelhouse, which notifies the emplnyes and sets the pump to work.
sliding doors. On this floor, in the cleaning department, is a double $9^{4} \times 30^{\prime \prime}$ Gray's noiseless roller mill for feed, also the tightener for operating the shaft which transmits the power to the elevator by means of a wire rope running over six feet sheaves. Here is also the lever for stopping and starting the grain carrying belt, and handles for operating the slides to the two iron elevator hoots which carry the wheat and feed to the bins as it is delivered from the belt. On this floor of the warehouse the office of the company is located. The balance of this floor is used for flour storage. On the second floor of the mill are two No. 35 Sturterant wide exhaust fans and two No. 5 Prinz dust collectors for the roller aspiration. Also the small stock hoppers over the rolls, eight wheat heaters and twenty-one elevator boots for the elevators fending the purifiers. In the cleaning department on this floor there is one upright special close scouring machine, driven from a horizontal shatt by means of a double belt tightener, which admits of being stoppect and started. On this floor of the warehouse there are four flour packers, two bran and one feed packer: also the flour and feed bins. The flour after packing is lowered to the first floor by inclined shutes, one being located between each two packers. On the :hird floor of the mill thete are twelve purifiers with dust collectors attached and three No. I Morse elevator bolts for rebolting the bakers' and low grade four, and two lines of shafting, one driving the purifiers, the other driving the reels located on the fourth floor, while in the cleaning department is one upright special close scouring machine driven in the same manner as the one on the second floor; also the belt tightener for the cleaning machines.
Thedust room for cleaners starts on this floor and extends up through all the remaining floors into the tank house where the air, after passing through the Cyclone dust collector, is allowed to pass out doors through slatted windows. Here also begins the
The New a,000 bakrea. Fiouking Mill at Krewatis. Ont.
The mill is provided with twenty seven lines of hose, each fifty feet long. A branch from the main line is taken to the elevator in which is located a stand pipe and four lines of hose fitty feet long, which is operated in the same manner as those in the mill. There are also two lines of hose in the house built for the protection and support of the belt carrying the grain from the elevator to the mill. There is also in the basement the four conveyors under each line of rolls which carry the stock directly in front of each elevator, thereby avoiding crooked and complicated spouting and gives the rolls 2 much better aspiration. The elevator boots, twenty-four in number, also stop on this floor.
In tha cleaning room there are five elevator boots and the drive and tightener for the belt bringing wheat to the mill. Along the north wall is the belt which drives the cleaners and elevators, which transmits the power of one of the wheels. The boilers, which are located in the basement of the warehousci, are sixty inches in diameter and sixteen feet long, with fifty-two 4 -inch tubes. The pump, injector and trap for delivering the condensed water from the steam pipes to the boiler are also located here, and the shafting operating the spools for switching cars.
On the first or grinding floor of the mill are thirty-six double $9^{\circ} \times 24^{\prime \prime}$ and $9^{\prime \prime} \times 30^{\prime \prime}$ Gray's patent noiseless belt roller mills, arranged in four lines of nine each. There is also a passenger and freight elevator reaching from this floor to the attic. This ffoor is coanected with the cleaning department and warebouse by four lange iron
storage bins into which the dirty wheat and feed from elevator is thrown before passing to cleaners and feed roll. Each of the two dirty wheat bins have a capacity of 1,500 bushels, while the clean wheat bin has a capacity of 1,200 bushels. From this bin it is drawn directly through the heaters to the first break roll. The feed bin has a capacity of 1,800 busheis, which is drawn directly to the feed rolls, so that no machine is in operation in the elevator during the night time. On the fourth floor there are ten purifiers with dust collectors attached and two No. 2 Gray's patent sectional purifiers with Cyclones attached.
The bolting machinery also commences on this floor and consists of eight flour dressers and eighteen centrfugal reels standing in two reel chests, both driven by one quarter tum belt with tightener. The flour dressers have a spur gear at the tail end. In the cleaning department are located two No. 4 double geared cockle separators; also the main belt tightener driving the mill proper. The dust room extends to this floor; also the feed, dirty and clean wheat bins. There is also a line ot shafing driving the bolting reels on the fifth floor.
On the fifh floor are two purifiers with dust catchers attached; also two No. 2 Gray sectional purifiers, with Cyciones attached; there are also foutteen No. 48 -foot double geared Gray's patent double scalping machines for scalping the break stock and grading the middlings before passing to the purifiers. There are also twenty flour dreasers and eight centrifugal reels, standing in two reel cheats, and driven in the same manner as those on the fourth soor. The two elevator lides are also
lowited on this flow, one directly above the other, dis chatguns in oppasite directions, thereby avoulang twistung and turmug of spous around the elevator leys. The shath driong the scalpung uno hines and purfiers is also on this thoor. In the cleanuig depariment is one large millm: separator, the dust and bin for wheat and feed, and atl ground feed, being stored in the adpoining warehouse.
The heating of the building is accomplished by 10,000 feet of 1 -mch piping, the main steanl pipe being $;$ inches dameter and all the stand pipes being $3,2 \%, 2,1 \frac{1}{2}$ inches dameter, each coil provided with sumbable valies for the admission and retention of steam, and each with an air valve. On the first floor there are three clusters of eight coils each, and on the second foor and in the warehouse are the same. On the dird and tourth foors, there are three clusters of six coils, and on the attic Hoor theie are three clusters of four coils. The cleanng deparment has one coil on each floor with the same number of pipes as the mill proper. The second floor of the wheel house is also provided with one cluster of eight colls. The slipping facilities are of the best. being provided with one siding 1300 feet long and one G;o feet long, and with suitable mechanism for handling cars.
The elevator, which as a capacity of 150,000 bushels, stands with its end to the siding, and is 200 feet from the mill, by which it is connected by a house covering and carryung the belt as before mentioncd. The building is 43 feet six inclies by 100 feet having bins fifty-three feet six inches deep and built on a solid stone foundation, part of the basement having been blasted from the sold rock. The basement is twelve feet high in the clear, with a pit for the recciving elevator boot at the front end twenty-one feet six inches cieep, and a pit for the weigh hopper sixteen feet six inches deep, all blasted from the sold rock. The weugh room, which is on a level with the botom of the bons, which begin twelve inches above the top of the foundation, is eighteen feet by thirts-one feet four inches. There are thirty-four bins ten feet by ten feet, fifty-three feet six inches deep. and two bins ten feet by ten teet, thirty feet deep, over the weigh hopper.
The lamina walls are two by eight inches for a dis. tance of fifteen feet, and wo by six inches for thirty feet, and the balance of two by four inches. In the center of the front end there ..e four bins spared out and floors put in with stars connecting the different floors. The enture top of the bins are floored over and have a story twelve feet high in the clear, built of two by eight anch studding, with a flat, tar and gravel roof covering the whole.
It the front end, in the center, is a cupola twenty feet - quare and seventeen feet high with a door opening out on the roof. The basement contains the hopper over the grain belt which delivers the wheat to the mill; also a 12 -inch Caldwell conveyor, and the spool for switching cars to and from the elevator, and a sink below the weigh hopper, with a capacity of 1200 bushels; also :he pipe tor fire protection and fifty feet of hose.

INTERESTING IMPROVEMENTS.

IAVENTORS are asking themselves the question, says the Boston Jourgal of Comimerc, what is there now that we can invent that has got the money in it. It must seem that they have been working on worthless imentions long enough and must strike something rich before long or give up the bus:ness. A steam gauge is a good thing to work on only they must not get up a new thing entirely. Add something to the looks tor the eye to dwell upon and that is all that is necded. One inventor has already painted the dial white as far around as the boller inspector cares to have the index hand turn and the rest of the face is panted red. The white portion is called the field of safety; the other the danger field. It must give the engineer the impression that there is too great a contrast allowed where the dowding line indicates that safety leaves off and danger begins. They should blend together, giving the idea that safety starts only free from danger at zero and gradually takes on this disagrecable feature till it gets to be more dan. gernus than safe, the safety part of the proceeding gradually distappearing until there is nothing left but pure danger, and explosion likely to occur at any moment.
Something must be done to leather belts to keep the link chain trash out of the market. The only place where trouble exist is in a small pulley which is to be driven from a large driving wheel. The are is too small for the belt to cling to, so the pulley is covered with a material soft enough for metalice projection riveted to the belt to sink into. These grip teeth are kept from running on the driving wheel by giving a half.turn in
the twist of each fold of the belt, which brings the teeth on the outside till thes reach the pulley again.

The belt punch that punches a round hole is ever of the right size and two or more must be punched cluse together to form one large one. Thus has lead to making the punch in the form of the letter U whinh has only to be reversed at the sccond drive to give an obloug hole of any size.
Little inventions are useful, but the smallest thing we have heard of is making an improvement on "nature's" pen rack. No hole has to be bored to pin on the clamp. ing device belund the ear to hold a whole kit of drawing tools.

COPELAND \& SONS' NEW 150 BARREL MILL AT ELMVALE, ONT.

MESSRS. George Copeland \& Sons, of Penetanguishene, must be counted among the most successful and progressive roller mill owners in Ontario. To their enterprise the village of Elmvale is indebted for one of the finest roller flour malls in the province. Being already the owners and operators of the Huron Roller Mill at Penetamgushene, built by Messrs. Wm. \& J. G. Grees; of Toronto, some two years ago, and realizing that their trade had sutgrown the capacity of that establishment, Messrs. Copeland decided upon the crection of a larger mill to be located at some point on the Barrie and penetanguishene branch of the Northern R. R. nearly the centre of the wheatpreducing section. The village of Elimazle was decided upon as a suitable location, and plans were immediately prepared for the buildings, and their erection was proceeded with at once.
The mill building is of frame sheeted with California siding on a stone foundation, the dimensions being 48×30 feet, three tull stories each 13 feet high, with a cupola or lantern 10 feet high extending the whole length of the building. The basement is 9 feet high, built of stone. At the east end of the mill is a brick engme house 36×24 feet, one story high, separated from the mill by a brick fire-wall. At the west end of the mull, and separated from it by a passage-way 12 feet wide, is an elevator storehouse, 36 feet square, the same height as the mill, and capable of holding 50,000 bushels of gra:n.
The mill is fitted with all the latest improvements in machinery. On entering the "roller foor," the visitor finds seven double sets of Greey's improved roller mills containing 14 pairs of 9×24 chilled iron rolls, with belt drives, the latter being an improvemen' whach abolishes the terrible nose that is a disagreeable feature of many roller mills. Over the first of these rolls is an ingenious latte machine, automatically weighing the grain as it flows into the mill and accurately recording the same on a dial. Besides the rollers before mentioned the only other machinery on this floor is a large grain separator, a flour-packing machine, and the elevator bags or spouts, the latter being provided with neatly moulded sliding doors with black walnut trimmings, varnished. In the basement, is located the "line shatt," carrying the pulless that drive the rollers, and grain-cleaning machinery, conssting of a :=ouring machine, a brush machine and cockle extractor; also the "boots" of the elevators before mentioned. On the second flat are 4 purifiers and a double aspirator, flour, bran and shorts bins, and the contunuation of the elevators. The third flat contanns 8 of Grees's improved four dressing machines, two centrifugal reels, six scalpers and a bran and shors duster. In the cupola are the "heads" of the elevators and a reel for dusting bran.
One noticeable peculiarity of this mill is the use of an endless rope running over grooved pulleys, instead of a belt or shaft, for driving the whole of the upstairs machinery. We are informed that the Messrs. Greey are the only builders using this device for saving power in flouring mills. The power for driving the mill is supplied by a fine corliss engine of 100 horse-power, built by inglis \& Hunter, of Toronto. The plans for the buildings and machinery were supplied by Messrs Wm. \& J. G. Greey. The contract for the buildings was execuied by Richard Whitacre, of Penetang., and the machinery for the elevator and roller mill supplied and put in place by Messrs. Wm. \& J. G. Grecy; of Toronto. The capacity of the mill is over 150 bbls. per day, and the owners state that they are making as fine grades of flour with as great economy as can be attained by any mill in the country.

HOW TO BECOME A MECHANIC.

PPERHAPS no question in the whole range of mechanics is asked with so much earnestness, and usually receives so meagre a reply, as that from the young man who asks: "How can I become a good
mechanic P" In nearly every case the young mall asking this question feels that the circumstances surrounding, him absolutely prohibit the idea of his attendance at any of the technical schools, and in his despair of finding any way himsself, he turns to the editor ot some mechanical journal. Too often he is told to read such and such a book, regardless of the fact that the reading of no one, or a dozen books, or a hundred books, will make a mechanic of him.
As one who has been compelled to get all of his mechameal information without personal assistance from any one, it may not be out of place for us to outline such plans as have been of the most help to us. The best of all mechanical educators of to day is the mechanical journal.
Let the young man who wishes to become a mechanic subscribe and pay for one or two of such journals as have a special beaving upon what he wishes to learn. We say pay for it, beciuse there is a moral influence of having paid for what he is getting that will cause him to obtain more real information fiom one journal so obtained than trom a dozen which may be given him.
Each number should be read carefully, and every article studied so thoroughly as to be certain that there are no points not understood. Nor is this all; each statement made should be carefully compared with everyday experience, and when items of information are conveyed that have no direct relationship to his present surroundings, he should enter upon experiments or carefully retain the remarks until he can find such an opportunity. It is by the careful comparison of others' statements with one's own practical experience that the best and truest knowledge of mechanics comes.
Books on various subjects are also of great advantage to the young mechanic, in fact, they become a necessity If he wishes to develop far in mechanical science; but as a great number of minds are wiser than any one mind, so is the technical journal, which is the reflex of many minds, better than the book, which is the reflex of only one nind.
On the practucal side of the question the young mechanic should carefully study the machine with which he comes in daily contact. A long time spent in study of a single machine may seem like a waste of time to the beginner, but if he thoroughly understands but one machine he has travelled a long road toward the comprehension of all machines.
By the understanding of a machine is meant, not only underslanding how it operates but how it is made, the thickness and kind of the metai, the size of bolts, the proportions, and general arrangements of parts. The best way to go about the study of a machine is to carefully make a set of drawings of it, letting everything in the drawing be of the exact size and proportion that it is in the actual machine.
Having made this drawing, the next study, and the one that will give the test to native ability, is to locate in the marhine the amonnt, kind and direction of the strains that come upon it when in operation, and see if the proportions are in true relationship to these strans. If he finds in his work what are apparent weaknesses in the machine, let him then carefully watch the machine in operation with every nerve on the alett, and sce if he can detect these as actual weaknesses.
If this work is made and studied out fatthfully with out the assistance of any one, it will be of vastly more benefit to him than anything he could possibly learn in a college. Having extracted all the information possit.-: from the first machine, let him take ano:her of a somewhat different class and go through it in the same way.
A comparison of the strains and proportions in one machine to the strains and proportions in the other will give him some idea of the latitude exercised by designers. If the young man has the true mechanical instincts this investigation will have an absorbing interest to him, and he will see a wide vista of thought opening up before his mind, which in after years will bring forth good fruit.

Such work is not impossible nor even hard for the young man who has to work ten hours a day for his living. If he has any real desire, real ambition to become a good mechanic, his spare moments morning, noon and night, will be turned upon his investigations, and even in so short a time as a few noonths he will find that he has made wonderful progress.
The watchword of advance, is think. Think in all times and places. Rememlar that one hour's earnest thought upon a subject on which you have been reading is worth ten extra hours of reading upon it. The mechanic who will persistently study and think on his business will not down. He will certainly come to the front, even though he were ennfined within the walle of a prison.- Waad and Irom.

PUBLISHED MONTHLY.
CHAS. H. MORTIMER, 0ffice, 31 King Street West, TORONTIO, - - ONTARIO.

AHPERTINSMENTN.

Wrethosing taten sent promplys upon application. Orders for atvertising preediug our date of issue
Changes in adverticentiente will be made whenever dested, without cont to the alvertiur, bue to insure proper compliance with the instructions of the adiectuser, requets for change should reach this office an eatly ax the ond day of the month.
vericill adiertisements under the headings "For Sale," " For Kent," \&. if not exceeding five lines, so cents for one insention, or 75 cents tir tuo insertions. If over five lines, to cents per line extra. Cach must aswmpanv all orders for advertisements of this class.

SHANCMTITIONS

The Dobinion Miechanical and Millingi Nuws will be mauled to sub. The Dosinnon Mirchanical and.inling Naws will be inailed to sub. anuum, so cents for six months. Sxbocriptious mest be paid strietly in ancuun, 50
The price of subscription may be remitted by currency, in registered let. ter, of by postal order payable to C. M. Mortimer. Monev sent in unregisterelletters must leat senders' risk. The sending of the paper may be considered as evidence that we received the mones.
subserittions from ali forigos conntrios, embraced in the Gene:al Postal inion will be accepted at $\$ 1.25$ per aunum.
sulkumbers mav have the mailing address changed as ofen as desirable. H'hen erdering chanse, always gite the old as watl as the wow address. Fulure upon the part of subacrivers to receive their papers promptly and regularly should be notified at once to this office.
midtok's announcmement

Currespondence milling industries.

This paper is in no manner identified with, or conurolled by, any manuacturing or uiill-furnishing business, nor will a bestowal or refusal of pat. from all who are interested in the material advancement of the Dorninion as a manufacturing country, and will sim to faithfully record this advancement munth by month.

Recrilern of the "MECHANLCAL AND "pon the publisher and confer a favor heft themselves by mentionimp thin paper when opeoing comeapomience utin atliertisers. Drop wis a portal cartl sohen you hree "ritten to an adicertiner, uliee us nis mame,
 !lftiny the bencfit. Inon't forglet thet.

We regret to learn that the office of our excellent contemporary, the A merican Engrincer, of Chicago, was destroyed by fire last month.

A RUMOUK is abroad to the effect that the Geo. T. Smith Middlings Purfier Co. have decided to remove their headquarters from Jackson, Mich., owing to the umpossibility of obtaining sufficient land on which to erect additsonal workshops. The Company will doubtless be offered handsome inducenients by towns and cties anxious to secure such a large concern.

Tuose: towns that persistently act on the opinion that prosperity can be secured or enhanced by bonusing manufacturers, are one after another getting their eyes nuened. Walkerton is the latest "horrible example" in this line. A year ago the town bonused a manufacturing firm to the amount of $\$+, 000$. Last month the firm ollapsed, and the municipality and citizens are out of pocket about $\$ 20,000$. Next !

MR. Simeon. Jones, ex-M.P., has been appointed by the Dominion Goverment to visit the West Indies and South America, with a view to establishing more mimate trade relatious between Canada and those countries. Efforts of this kind are likely to be more productive of benefit to Canada than those of the Commercial Unionists, for the reason that the West Indies and South America do not produce articles similar to those of Canada.

TIIE dasly press chronicles the fact that last year Canada consumed English beer to the value of \$140,000 We are not told what the amount spent for Canadian beer was, but we know it to be many times the above sum. Here is an item of expenditure, which, if cut off, would in a very short time remove the talk of hard tinues. The times will always be much harder than they might be, and the scarcity of money for legitimate purposes yreater than it should be, so long as this enormous and unnecessary expenditure continues.

TuE name of Mr. Joln C. Ferguson, of Toronto, has been recommended to the City Council as that of a competent man for the postion of Chief Engineer of the City Water Works. The Mechanical, and Miding; Neivs heard high testimonals from reliable sources regarding Mr. Ferguson's capabiltties as an engincer long before he became an applicant for the present vacancy, and we have not the least doubt that the choice of the experts appointed to examine the various applicants is a wise one in every particular.

Having learned that the supplement issued with the last number of the Mechinicali, and Miliong News was understood by many millers as an expression of the editor's opimons concerning the merits of the Cochrane roller mill, we desire to state that such was not the case. It was simply a trade supplement prepared by the manufacturers of the Coclirane mill, who paid for its circulation as an advertisement in the ordinary way. The editor's opinions will always be found in the editorial department. He is content that the relative merits of different machines or different systems should be set fortin by the manufacturers and be sulject to the usual charge for advertisements.

The Northern and Northwestern Railway, the last of the local independent roads in Ontario, has during tho last month been absorbed into the Grand Trunk system. It is a geod thing for the people of Canada that the country is traversed by canals, which have the effect of keeping railway treights at something like reasonable figures. Unfortunately for the shipper, however, the canals are only available four or five months in the year, and the balance of the time he must pay whatever the railway managers see fit to charge. The time seems to have arrived when the Government should take in hand to regulate by law, in the public interest, the charges which the rallways may impose on shippers.

As Canadians, we have been wont to congratulate ourselves upon the exemption which we enjoy from floods such as destroy valuable lives and property every year in certain parts of the United States. During the last few years, however, certain Canadian loralities have been similarly visited, notably Montreal and Cornwall, where the loss of property has been very serious. In Montreal protective measures were adopted last summer, which it is hoped, will keep back the floods the coming spring. Reports from Cornwall state that floods have occurred during the past month within a few miles of that town, and an uneasy feeling prevails among the citizens living in the districts flooded last year. When once a town or city has been overflowed, preventive measures should at once be taken, as it-is obvious that should similar circumstances again arise, similar results inust follow.

Millers in England are required to pass an examina. ton and prove that they possess the knowledge of chemistry and other subjects which is so necessary and valuable to the successful manufacturer of flour by modern methods. Flour-making by the roller process is a scientific operation, requiring scientufic knowledge on the part of the operator. How many of our millers or mechanics seek to obtain knowledge in any department of science, and particularly in the department where knowledge may be gained that would serve to enlighten them regarding cause and effect in the operations connected with their daily calling? The percentage of such is, we believe, surprisingly small. A few examinations such as they have in England would perbaps serve to show the great deficiency in scientific knowledge which exists among those to whom such knowledge is most valuable.

THE natural gas industry in Canada is assuming an importance that few persons would iave been willing to accord to it twelve months ago. The latest development along this line is the application of a company to Parliament for incorporation for the purpose of acquiring certain lands near Ottawa, supposed to contain natural gas or oil, with a view to supplying therefrom light, heat and power. The stock of the company amounts to Stoa,000. Manufacturers will watch with interest the progress of any movement calculated to cheapen the cost of fuel. Mieanwhile, natural gas corporations, should they succeed in their objects, would do well not to follow the course of similar organizations in the United States, where manufacturers who adopted gas as fuel are in many instances returning to the use of coal, owing to the greed of the gas monopolies in repeatedly increasing the price. If they are not careful the gas companies over there will kill the goose that lays the golden eggs.

We have heard a great deal about the need of a higher standard of morality in political life in Canada, but unth the last few weeks very litte was said or written on the subject of reform in business life. The revelations in connection with the failure of the Central bank, exposing to the public gaze the corrupt practices of men both inside and outside of that unfortunate institution who were formerly regarded with confidence and respect, brings us face to face with a state of things which, if allowed to continue, must have as serious effect upon the character and prosperity of the country. It is unfortunate that some persons, apparently were most to blame, have been allowed to leave the ccuntry. In the interests of the business cominunity, for the credit of the country, and as a warning to persons in positions of public trust adequate punishment should be meted out to those on whose shoulders belongs the neglect and misdoing.
OUR esteemed contemporary, the Toronto Mfail, repudiates as absurd the statements of American journals that a general panic is imminent in Canada. It says: "The leading banks in the country 7 re in a perfectly sound and healthy condition. They began to shorten sail months ago-in fact, some of them are blamed for having been over.cautious-and are now doing a thoroughly safe business. The depression is mainly confined to this province. In the North. West, where there was a splendid crop, the setlers arr, paying up their back dehts and the outlook is hopeful In Montreal business is fairly good; while in ne Marame Provinces the fishermen made a lot of moti-y last year, the catch having been exceptionally large and profitable." Our contemporary should not be too hard on American papers. Their conclustons are doubtless the result of reading day after day the statements appearing in the editorial columns of the Mail concerning the "hapless hopeless" condition of the Canadian people. The comments of the American press regarding Canadian affairs are the legitimate fruits of the Mfail's antl-Canadian policy. If Canadian journals indulge in misrepresentation of their own country, and strive to belittle it in the eyes of the world, is it a matter of wonder that toreign opinion concerning us should be unfavorable and unreliable?

Chear ($\grave{\text { i }}$) second-hand bollers sometimes turn out to be very much dearer than first-class new ones, though the first cost of them may be less. An instance of this appears in the particulars of a saw mill boiler explosion which occurred the other day at Jordan, Ont. This is the way a "cheap" boiler sometines acts, as related by an eye witness of the accident referred to: "The saw mill was a temporary building owned by a man named Tallman. The engine was an old threshing one and the boller was about used up. It is said the glass showed three inches of water, but one of the workmen says he thinks the glass was stopped up and that there was no water in the boiler. There were several men working in and around the mill at the time, and it was a miracle that there were none killed and so few hurt. Pat Flannigan, of Merritton, a teainster, was sitting beside the boiler room taking his dinner, and C. Holland, the engineer, and A. Honsberger were also in the engine room. Flannigan was thrown about twenty feet down an embankment, and scaldied and badly cut about the face. Holland was thrown against a pile of lumber, end was also seriously cut and scalded. Honsberyer was standing close to Holland, and merely got a iew scratches on the face. None of the other men got hurt. The boiler went straight up in the air over the tops of the trees, and fell on the bank and part on the road leading up the hill, about one hundred yards from the mill. The engine was blown in another direction about one hundred feet. Other parts of the machinery and timber were scattered a long way. The engine in falling struck a telegraph pole, and cut a piece six feet off the bottom, and left the pole standing a littl: further off with all the wires perfect." Experience indicates that machinery users will probably continue to buy "cheap" boilers so long as they can be had "at a bargain," but it will do no harm to remind them that a trip sky-ward is one of the things that may reason: hly be expected by persons handling that class of articlis,
At the late London exposition of invenuglis there was shown a working steam-boiker, the interior of windh was illuminated by electricity. The whote apparatus used for this purpose consists of a litte battery outside of the boiker, which is connected with incandescent lights screwed to the interior walls of the steam.space above the water-kerel and encased in steam. if hi buibs, wnite a above the water-kerel and encased in steam. inds in a leading button outside of the boiler. Strung double observing glasses are let into a brass rim set into the eod wall of the boiler. If the current is closed by pressing the button against the metallic boiler-wall, then the incandescent lamps begin to giow and ilght the interior of the boiker. It is hoped by this meaus of obwerving the process of heating water and the production and withdrawal of Heam to gain material knowlodge and adventares for stanem.

allorthurst fitter.

Tite movement to have a reduction in the Manitoba whent standards secms to have stirred up a good deal of hostile feelmg in the East, as is shown by the rather heated utterances of the grain and flour sections of the Toronto and Montreal Boards of Trade. When the Winnipeg grain men passed the resolution s in favor of a reduction of the wheat standards, it was never supposed nor intended that the changes should go unto force during this crop year. The iden was merely to memoralize the Covernment in the matter, to pave the way for a clange in :ime tor next seasan's crop. Understanding the tedious and persistent efforts which it usually takes to induce the Government to make any change or reform in existing oficial regulations, the Winnipeg dealers concluiled that if they set to work at once, it would take them all therrtime to induce the Government to assent to the change in time to have the desired regulations in force by the commencement of the next crop jear. The sudden decision of the Government to make the reduction at once was perhaps a greater surprise to the Winnipeg grain men than to any other interested partics. The reason assigned for the sudden decision of the Government to grant the request of the Winnipeg board, and even go farther than that request by moving to have the change made at once, is generally attributed to the influence of C. P. K. officials. Mr. Van Horne promised his assistance to the grain men in urging the change, and it is understond he stated there would be no trouble about having the standards reduced at once. It is certain that without the assistance of the railway officiats, the concession would not have been announced wish such alacrity; and twould probably have taken a couple of jears to have secured the desired reductions in the standards. The inatter is looked upon here as showing the great influence which the railway company wield with the Government. The decision of the Government, on the representation of the Toronto and Montreal dealers, to postpone for the present the enforcement of the new standards, will not be objected to by the western dealers, who, as already stated, did not expect a change in the grades before th- commencement of the next crop year. Indced, they only hoped to be ab to prevail upon the Government to make the change by that time.
It will be observed that the new grades, as announced in the Comuda Gazettc, are practically the same as requested by the Winnipeg board. These were set forth in our last letter. So ar this has been a satisfaction to the Winnipeg grain interests, and i: only remains yet to be seen whether the efforts of the eastern grain and flour men will have any influence in inducing the government to partially withdraw the concessions made. Naturally enough people here think that we should have control of our owingrain trade, and the movement of eastern interests to frustrate our eforts, is not 100°.ea upon here with any degree of patience. It is charged in sume quarters, that eastern grain men desire to keep the standards high, so that they can profit by mixing the wheat and still have it of high quality, as compared with grades of other countries. As to the flour interests, the latter would naturally desire that the grades be kept up to a high standard. At any rate, it is expected that eastern grain and flour interes's will endeavor to thwart the enfo.cement at the proper time of the reduced standards. The resolutions passed by the Toronto and Alontreal boatds set forth that any change of the grain standards is depreciated, unless coming through the regularly constituted board of grain examiners, thus showing that the eastern grain interests are anxious to have an opportunity to pass upon the subject. Undoubredly if they have such an opportunity, it will be to take a position not in harmony with the feeling here. Western dealers who remember the opposition which they had to encounter in establishing scparate grades for Manitoba wheat, have good reason to expect little consideration from cernain Montreal and Toronto dealers. It will be remembered that when the Manitoba grain standards were first fixed, a considerable section of the examiners desif to have Manitoba wheat graded the same as the soft ${ }_{i}$ astern wheat, instead of having separate grades for ${ }^{\text {a }}$ de west. This being the case, it can be seen that peop e. here do not relish the idea of having eastern interests rontrol our grain regulations.
The reasons for desiring a reduction in the Manituba wheat grades were fully set torth by the writer in a previous letter. Indeed, the first discussion of this sub. ject in the press was first made through the columns of the Dominion mechanicai. and Milling Newes, by the writer, some months ago, and before any action had been taken here with the object of having a reduction of the grades. We will therefore not attempt at this time to repeat the arguments in favor of the reduced grades it would however seem desirable to correc
some misstatements made by certain papers cocerning the change. The Toronto Montary Times, a journal which has alwa, shown gross ignorance in discussing Western matters, and which invariably makes a mess of any Western matter which it attempts to deal with, appears to be equally as badly informed regarding this grain question. This journal secms to be undier the inpression that the new standards will be lower than the Duluth grates, and it moralizes upon this idea to the effect that buyers will not he deceived thereby, and will pay for the wheat in accordance with the quality, and regardless of the stanciards. It states that nothing can be gained by the move to reduce the standards, and a loss of prestige is sure to follow. The M/anelary Times is either wilfully or ignorantly astray. Manitoba wheat will not be below the Duluth grades, even with the proposed reduction in the standards. It will still be of as good and even of higher quality than the corresponding Duluth grades of No. t and No. 2 hard and Northern. Ilut besides the Manitoba grades which will correspond with the Duluth grades, the new regulations provide for a special grade of Manitoba wheat, to be known as Manitoha hard, which will be very much superior to any Duluth or any other grade of whent for that matter. There is therefore no reason why the new regulations should operate to depreciate the qualty of Manitoba wheat. Wheat on a par with the Duluth grades, if not better, will be secured, whilst the new grade of extra Manitoba hard will provide, a grade of wheat which will keep up the reputation of Manitoba hard wheat as the best in the world. The statement of the 1 chery Times to the effect that "buyers will pay for wheat according to the qualits," has not been borne out by the facts during the present season. To show this it is only necessary to point to the fact that Manitoba hard wheat is this year selling under Duluth wheat, though the very much superior quality of the former under the existing grades is not questioned. The Monctary Times should give a little more attention in the direction ot studying and understanding the western questions which it so frequently undertakes to discuss, and it would not be continually making an exhibition of itself.
The l.ondon, England, afiller thinks one of the first effects of the completion of the C. P. R. is to stimulate the millers of the Dominic: to enterprise in the far east. It nutes the shipment of "cargoes" of chcice Manitoba flour to China and Japan, and intimates that large shipments will fellow. As a matter of fact the cargoes have so far only consisted of small lots of flour, shipped as an experiment. There has been a good deal of talk about the possibilities of extending trade between Canada on the one hand and China and Japan on the other, since the construction of the C. P. R., but the flour trade is not one which gives promise of much development in this direction. The demand for four in those countries is not large in the first place, being confined princtpally to European residents of the seaport towns. If the natures could be educated to consume flour, there would certainly be a very large demand, but it would be for cheap grades, and not for choice Manitoba qualities. As i: is, the present demand can be supplied to better advantage from other parts than from Manitoba. The millers of the Unted States Pacific Coast are in a much better position to supply the demand from China and Japan, both owing to their freedom Irom paying railway freights, and to the cheaper grades of four which they turn out, and which answer well enough for this eastern trade. The fact that their Pacific coast millers still hold a considerable trade in Brtish Columbia, in competition with the Manitoba millers, and with the duties in favor of the latter, attests their ability to hands the China and Japan trade to better advantage than our millers can hope to do. The C. P. R. line of steamers from Vancouver to the Asiatic countres have formed an additional means of export, which the Oregon millers have not been slow to take advantage of. They are now shipping large quantities of finur by the new - P. R. steamship line, and thus the route is proving oi much greater advantage to the Oregon than to the Manitoba millers.
An effort is being made to induce British millers to purchase Manitoba wheat here, and ship direct, instead of purchasing say at Liverpool or Montreal. By the latter course they would get the pure, unadulterated article, before it has been mixed and doctored in passing through several hands. No doubt in tume this course will be largely followed, when the lifitish millers have become thoroughly aquainted with the merits of Manitoba wheat. A large central wheat market here is also a necessity, if sales are to be made direct. The lately organized grain exchange in Winnipeg is the first step toward centralizing the grain trade here, and in time this may grow to such proportions as to fill the bill.
The completion of a through line of railway between

Minneapolis and the east, via Sault Ste. Marie and the C. P. K. has been a matter of considertole interest to the flour world here and elsewhere. This road is first of all a flour route. It was conceived anid pushed through by the Minneapolis millers, in the interests of their industry. The first object of the road was to give these millers an addutional vutlet to the east, independent of the Chicago lines. The matter is viewed here in a spirit akin to en'y and jealousy. Minneapolis millers, who already get a 7 to to cent rate to Chicago, against a 23 cent rote from Winnipeg to Port Arthur, are thusgiven an additional outlet by the aid of the C. P. R. - the same road which forces a monopoly upon the people of Manitoba. No wonder that the trade here feels a little sore when they see these things. The tew people here who are howling for Commercial Uniun with the United States, should readily discern from ths that the Manitoba flour trade, the leading industry of the province, would be entirely ruined from a consummation of their pet scheme, with such fearful odds in freight rates against the local inanufacturers.
The Manitoba oatineal millers are enjoying a prosperous season. The short oat crop in Ontario, which has led to the recent advances there in the price of oatmeal, has left the western markets entirely in the hands of the local millers, besides enabling them to ship eastward at renumerative figures. The oat crop here this past season, like all other crops, was a heavy one, and oats are accordingly plentiful and of good quality. The situation will be fully aippreciated by our oatmeal millers, coming after last year, which was a very poor one for them, owing to the light crop and poor quality ot the oat crop of 1886 in Manitoba.
The heavy crops this year has found the raiiroads very inadequately supplied with faciltties for taking the grain to market. The C. :. K. Co. has been making every effort to handle the grain, but though up to the middle of January everything was in their favor, a blockade has been steadily growing. The storm about the middle of the month brought matters to a crisis, and caused a general block. The inability of the railways to handle the grain has caused a great deal of loss and inconvenience to the province, and seriously retarded general business. With elevators and warehouses full, farmers have been obliged to either stop delivering wheat or pile it up in bags outside. Passing along the railways; one would notice great numbers of bags of wheat piled up at almost every station. There is a great quantity of wheat still in the hands of farmers, and it looks now as if previous estumates had not over-rated the crop. At many points it is believed that not over one-half the wheat has yet been marketed, and in some districts a great deal of threshing remains to be done. The experience of this season goes to show that it will not be long before an additional outlet will be an absolute necessity for this country, if our rapidly growing exports are to be taken to market at all.
The apologists for railway monopoly in Manitoba have in times past pointed to the fact that Manitoba farmers sometimes received higher prices for wheat than were paid in Minnesota and Dakota, at points distant from Duluth and Minneapolis. The writer explained in a previous letter why this was the case. Owing to the light crop here in 1886, there was a keen demand from millers for the grain, and prices were thus kept on a par with points south of the boundary, notwithstanding the higher freight rates here. This year, however, with a large surplus of wheat in Manitoba, the demand has not been quite as keen, and the result is that prices here have ruled from 4 to to cents lower than at points in Minnesota and Dakota, immediately south of the boundary. Thus, lately when wheat was quoted at 54 cents at Emerscn, it was bringing 64 cents at St . Vincent, the two markets only being about a mile apart. The Manitoba farmers are of course prevented by the custom regulations from driving across the boundary to obtain their higher prices. The higher prices ruling south of the boundary this season are also partially due to the frecr competition through the breaking up of the Minneapolis elevator monopoly.
A very pretty piece of business has lately come to light here. Last fall the N. P. R. completed their railway to the Manitoba boundary, south of Emerson. It was expected that this road would thus be in a position to competc for the grain carrying trade of the Emerson district. The Canadian custom authorities, however, have stepped in to prevent the American road from competing with the C. P. R. This they accomplish by refusing to grant landing privileges to parties wishing to avail themselves of the lower ri:ces on the Northern Pacific. Without bonding for through shipment, the whrat would be subject to custom duties. This is certainly a small move, and shows to what length the government is prepared to go to protect the C. P. R. monopoly, no matter bow the Manitoba settlers suffer thereby.

Corrcspondents' (Opinions.

CORROSION IN STEAK BOILERS.

Hamiliton, Jan. 26th, 8888. Shur stechanical and stillime Nictws:

iplates showing how they had been destroyed in twelve months wear by corrnsion, and this result is charged to the use of bad water containing sewerage, builer compound, etc. I think when some people read thas artirle they will scarcely know what to do, for they may think that all compounds are alike ineffectual to prevent corrosion on the boiler plates. That is not the case, however, for we can have good and bad boiler compounds, as in everything else. Now 1 think the best thing steam users could do would be to apply to the Statonary Engineers' Associations, where they can get good practical information concerning the value of differemt kiids of compounds from those whe have tested thein, and by this means they might learn the best that is to be had. Almost all waters require some compound to prevent scaling on the boilers, and boilers require to be frequently washed out. I have used compounds that had to be put on with a white wash brush, and were of no use except to eat holes in one's clothes. I have known branches of oak with the bark on to be put into the boiler to prevent scaling, ind to be used for that purpose for fully 25 years. Still that did not prevent the scaling, for men had to go in and chip the scale of with hammers, two or three days being required to clean the boiler.
1 have a very distinct recollection of coal tar being used in a boiler. On one occasion wo men were putting it in the safety valve, another safety valve being connected with the same pipe. One of the men lifted the lever of the other valve, and in a moment the coal tar filled both men's eyes. They were laid on their backs and oil poured into their eyes to get the tar out Some have used coal oil, pure and crude, but there have been so many complaints about destroying iron that thas nearly passed out of use. Others have used soda until they found that it destrojed their boller plates as well as thei, steam pipes.
Some people when they find their boiler has given out and leaks, resort to a hundred remedies, instead of having it repaired as it ought to be. Some will use horse manure, which contains 50 much ammonia that soon the trouble is made worse instead of better. Others use bran and shorts, potatoes, etc., and if it is a tube boiler, it will settie just over the fire in the warmest place, and they will soon find when the boiler is forced much, that the part where it is setlled will bulge down and cause the plate to crack.

There should not be any remedies put in to stop any leaks or compounds but what can be proved by practical experience to be good for the boiler plates. Always keep your boilers well washed out and use nothing but well-known compounds, and then you will not have much work for the boiler maker to do.

Yours truly,
J. Langdon.

HE WANTS SOME ADVICE.

Carlingrord, Ont., Dec. 31, 1887.

1.ditor Michanical-and Milling Netts:

XTILL you please give me some advice in my.case? I have a $35 \mathrm{~h} . \mathrm{p}$. tubular boiler, thirty-six 3 -inch tubes 12 feet long, smoke stack 45 feet long, 32 inches diameter, but have no draft. I wish to be able to burn sawdust, which I can not do. I have the usual oval saw. dust burners in furnace, but can only burn wood. If you or any of your correspondents could do me the above !avour you would greatly oblige.

Yours respectfolly,
Luuis Seerach.
[The cause of defective draught in any particular case cannot be solved iby the arpplication of general ruies, unless every cietail as to arrangeruent of boiler setting, grate bars, chimney and its surroundings are known. High ground or high buildings near to a chimney will affect the draught. In this case the most obvious point is the great diameter of the chimney as cumpared with the area through the tubes. The tubes are 3 inches external diameter and 36 in number, the area through these, when clean, would be about 216 sq. inches. The smoke pipe is 3^{2} inches in diameter and 45 feet high. The area through it would be about 804 sq . inches or nearly four times as much as through the tubes. The cause of the poor draught is probably due to the want of
height in the chimney and the large surface exposed to the cooling influence of the air, from its being of so large diameter. A smoke pipe 18 inches diameter and 80 feet high would give for that size of boiler a good draught, and would, if made of the same thickness of iron, be the same weight as one 32 inches diameter and 45 feet high, as now in use.- The Editor.]

Lon:mon, Ont., Jan. 21, 1883.

Editor Mechanical and Afillimg A'rews.
AM desirous of getting some information regarding what is known as short system milling. In thinking on the subject, J have been led to wonder why it is necessary to have six or more breaks in a mill, instead of three or four. Wia some of your readers who are beller posted than 1 am be kind enough to explain this matter to me?

Yours truly,
Enquiker.
Toronto, Jan. 17th, 1888
Editur Mechanical and Miflixg Norev:
N your last issue a sheet was enclosed purporting to be a supplement, issued editorially, of your paper, in which the name of our firm was made to figure in a very disadvantageous light. We feel that as far as you were concerned it was done unwittingly, and trust you will see fit to give as mich prominence to our denial of the statement therein contained, viz., "that the Greey plant of rolls in Messrs. Meldrur's mill, cost $\$ 4,800$." 1 find, on referring to the original estimate for the construction of the said mill, that at the outside not more than $\$ 2 ; 236$ can be charged to the cost of the rolls, their pulless, belts, shafts, couplings and bearings. It is the first time we have ever known such tactics to be introduced into the mill furnishing trade in Canada, and we feel sure that they will in no way promote the prosperity of those adopting them.

We are, yours trul,
WM. \& J. G. Greey,
Per W.S. B. Lawrie, Supt.

PERSONAL,

 mill.Miller A. Munro, has lately been re-visiting friends at Carluke, Ont. He comes from the vicinity of Alontreal.
Mr. Galbraith, proprietor of the Tollendale roller mills, is receiving the congratulations of his friend. It is a boy.
Mr. Rolic Grifin, of Lakefield, Ont., had his hand severely injured by a circular uw in his father's planing mill.
Mr. Jos. P. Rarber, Str., one of the pioneer manufgctureers of George. Iown, Ont., died suddenly tast nuonth at the age of 72 .
Mr. T. A. Burrows, of the Selkid., (Man.) Lumber Ce., is recovering from a mevere illnee which confined him to bed for seviral weeks.
Mr. Robs. Burg, axistant mechanical sapperintendent of the Weserm Division of the Grand Trunk Railmaj; died a few days ago at Stratord, Ont.
It is generally oelicved that ill health will shorely force Hoo. Mr. Pardee, Commissioner of Crown Lands in the Ontario Government to
M. D. Babcock, who at one time was in receipt of $\$ t 0,000$ a month for foyaliy on the fire-extinguishing apparalus bearing his name, died recently in a San Francico almahouse.
Mr. James Misler, proppretor of the Assiniloia, N. W. T., four mille, has lacely returned home after spending the holidays with his wife and fantily among friends in Obtario.
Sannuel Devenue, xr., who met with serious injuries in Hillyard's mill. St. John, N. B., some weeks age, has been seat to the lunatic asylum, his iojurie haring affected his brain.
Mr. J. D. Saunby, the well-known miller, of London, Ont, hes been clected to a position on the Board of D

Mr. Thoe Price, of the fiour manufacturing firm of Hulton, Price a Ca Winsham, Ont., was andidenly atrick en with paralysis in the middie of has month, and at inst accounts his life was deapaired of.
A few years ago Jamen Moargonery had his right hand severed while Amon's mill, St. Thormes, Ont., the little finger of his s white working at amputated.
A Mr. Kiddie, whike in the act of cleariog a alab with an axe in Engan Hroc:- saw mill, South Dorchestet, iasi month, kout his belance, and falling aeainat a circular sar had his, a
The death of Mr. John Crosty, of Minneapolis, President a°. the Nillers' National Association of the United States, which occurred on Liec. ogth, has croond a freling of deep regret in milling circles, where tte docrused geatheman was highly honored for his many sterling qualities.
The daily Citiarn, of Jackson, Mich., publishod ∞ O Jan. 3rd., contorns at compleer report of the proceedings at the fifth annual banquet tendered by the Goo. F. Smith Midolings Purifier Company to its frienas and eanployoes. Among the names of thowe present appears that of Mr. S. S. from the Crition's's report the evening was apeat in a thoroughly enjoyable manner, and the remith of the gathering will doulviess be to cause hermone. tone action on che puat of rampleyren and employmes in the interevis of the Compeny during the coming 3 mor.

To Thaprr Cutting Toot.s.-ll has been stated that a good temper for cutting tools may be obtained by plunging the tool, heated for hardening, into hooling water and letting it remain there until cold. The tool is to be ready for work without further treat. ment:
A Simile Mixture.- It is stated that soft so:tp with halt its weighit in pearlash, one ounce of mixture in about one gallon of boilling water, is found of great practical value in engincers' shops in the drp-pans used for turning long artucies bright in wrought iron and steel. The effect of this mode of trentiment is that the work, though constantly moist, does not rust, and bright nuts ane immersed in it for days till wanted, retaining their polish.
natural gas and Leges.-According to a telcgram from Uniontown, Pdat, Mtrs. Rlder. living near the big gas well in Ger. Uniontown, Pdo, Mirs Rider. Nving near the big gas well in Ger-
man Township, Fayctle County, reports a strange freak among man Township, Fayctle County, reports n strange freak among
her barn-yard fowls. Ater the flow of gas was lighted and had her barn-yard fowls. Alter the flow of gas was lighted and had
warmed the alr in the vicinity, her grese nnd clickens suddenly warmed the alr in the vicinity, her grese and clickens suddenly
began laying eggs. She has been raising geese for forty years nnd began laying eggs. She has been ralsing geese for forty years and
says she never knew them to lay except in the spring ume. Now says she never knew them to lay except in the spring
they are laying rikht aloug, as are also hre chickens.
How to Cut a Botrle.-put the botle on a level foundation, and fill up with oll as far as you wish the line of separation to be. Nex: get a rod of iron as large as possible, but small enough to go into the mouth of the boutle. Make the iron alnust white-hot, enud dip it into the oil. In a very; short time the sound of a crack will le heard, when the iron can be taken out, and the botloull will be found as neally cut as if with a diamond. Siould the botlle be very thick, and the sound of the crack not heard in a 1 minute or so, an:shof cold water outside will settle the business.
Tut experiments with the incandescent electric lights which have been made at the torpedo station at Newport have developed 4 novel use for these lamps, and one that is said to promise to be of great value in naval warfare. With lanups of about 100 -candle power fastened on the ends of polcs submerged in the sea 10 a depth of twenty feet the water is so illuminated that objects in it can be distinguished within a radius of 150 feet. There is litile or no glare from the submerxed light to betray the presence of the boat using the poles. It is believed that by this neans a boat might countermine an enemy's field of submarine minesby cuttung his calles or sweeping them to one side. It is probable that torpedo inunches will be equipped with these lights.
incandesckit lasp Guibes.-The common practice of surrounding incandescen, lamps with open globes or globes of ground glass, ceads to a loss in the one case of from forty to sixty per cent. of the light, and in the other of from twenty-five to thirtyfive per cent. A simple method by which the charactes of the light can be softened without experiencing so great a loss of inte:1sity has recently been proposed, and consists in covering the globe of the lamp with a film of ordinary collodion, which can, by adding successive films, be made of any desired thickness. The reduction of the light of the lamp does not. It is said, with this method excoed ten per cent., and the system possesses the further advantage that the film can at any tine be removed by sumple rriction.-Boston Yournal of Commerce.
A Filling for Millstones.- A cortespondent of the Millstone, writing on this subject, says: I have tried several kinds and after experimenting myself have found somelhing that stands better than anything I have tried before, It is this: Take one pound of alum, add $\%$ ounce white glue and \% ounce gum arable; put thems in a lade with $\%$ pint of water. then boil them untilall is dissolved. The lade or vesel should be large enough so that the liquid will not boil over. Should it become too thick before all is dissoived add a litule more water from time to time. Do no boil too fast. Have the cavities brushed out well, so they are free from flour dust. Then when your liquid is boiled until no water remains in it, pour it tato the cavities or seams of the stones. It will cool and be ready lor work in about an hour. The liquid when ready for use should be some thicker than the white of an ege and a small paddec can be used in assist in running it into the cavities. I have this filing now; that has been қunning four years It does not cost much. I just give the proportion of the diferent articles to be used. Moreor less can be made according to amount of filing to be done.
A Good Cement,-Very often a form of cement is required around shops and milis for filling cracks in stone or brick work. New factories, especially, often develop awkward cracks between the window frames and the brick walls, and during the cold months the air entering here will largely reduce the conal pite. Procure a bot of paint, old paint if possible, from a dealer, the skins forming od top of the paints, selluing from the bottam of paint. pols, and, in fact, any refuse which conwins aill, rinc or othes mineral body may be used for the purpose. Reduce this mass, especially if hardened from conunued standing exposed to air, to the concistency of cream by soaking in some chenp oil. Heating may be resoried to if the hard paibis cannof otherwise be soflened. When the whote has become soft enough to be stirred into a homogeneous masi, more oil may be added and the whole worked through a zeve and then run through an ordipary paint mill. A quantity of common whiting is pext to be worked into the oll and paint, much in the way as when ordinary puty is to be made. The thickneas of this putty, as we may now call it, should not be as dense as when used for glaxing. When the whiting has been thoroughly mixed in and the mass well worked over, add a quanity of Rood Portand cement suficient to briag the putty to a consistency which will eanble tt to be handled readily. When in this state, the patty may be worked into crackes in briek or sone work muech as ordinary party is usod when allowed 10 sit and harden, and it will become powily as hard as iroo, impetrious to moistise and any rmomuble degrow of heat.

RETURSN:
Sine the birth of moller millingAnd jerlapk ere that cecurred,-Levery evpert has then willing To alouse ad dos return.

Fienoly they we been emernatd.

 In the style that eceltes aund barns: Lisney one was mocked and rated Who abandoned not returns.Hut too far the whin they've followed. Ated their mills ane now hike uresThey hold fast what they have swallowert. Secer giving out retarns,
Ant so we find at every meting
Everytoly prosent clams
This great grevance, and is blearng. Beating widly for retuma.
And the premier they ixtation. But the great man coolly sparns
Their oct werving requastion
To retore then their returas

- Wilaser in Lombon Athers' Ga:cte.
 A new roller process snat mill has laxen stareal at Cookshire, I: Q .
The new roller mill at Minactosa, Man. is now worhng sutsfactorily.
Anong other thing, Kucurdue wants a thouriny mill and a groin warchouse
The from of Polson. Scoth is co. tmilers. Highgate. Ont. has lexen dissolved.
The milling firm of Snider, lake s lavey, Hanithon, Ont., has Inewa dissolveat.
The prople of Smathelar, Man, are taking alout ereting a roller mill there.
One end of J. G. Snetsinger's grst mall at Moulnetre, Ont, was carried nuay by floots hast month.
Mr. R. B. Morrison, is putang win nan of stones for oummen at his tull at Ahetfoyle, Ont.
The Young's loint. Ont., gnst mall was closed down hast momb to allow of rephirs leings made
The tour mills of Manitoth and the Northwest have a daty cipacity of atout cooss bushechs.
Over 900 bushets of gran were received in expht chays at the 1otus, Oat., grist mill. recently
 hest month. owing to a break an the dana.
The ruins of the O.ak lake. Man., mill dotroyed by fire on D. ©emaker, were smoking far mono january.

A Aite originatug from the explonon of a lamp, has dotroyed Mr. Jetihts hour mill at Amelashurg. Ont.
The new :nitalugs pariner tuilt hy Mr. Turdy of the Caticerry. Man., mith. is sidid to le domp good work.
The robuiting of the Oak Lake, Man., grist mill. zeventy destroyed by fire, will lne completed in Fetruary
D. H. Meatillan \& Co., is the new name of the oha from of D. H. Michillan \& lro. of Winaureg and CuAippelte.

A correppondent writes the Gotench Signet thas the roller procest fuar mill at lor Alecr. Ont, is the lest in the coumy.

The C.I. R. has conunctical work on the new gram hoth at Fon Willam, which will have a cap.exty of give handfed thousand beateres.
The Assintiman roiler mills which were elosed pan of hast month owing to the heaking of the giston ferl of the everine. are agan in running order.
Messss. Huron, Pree $\&$ Cirr. millers. of Wingham, have bougha Tumer's mill for 57 -ito and expect to get pensession an ahous a :monht.
The new soller mill at lethhadge. N iv T, is is expected. will have a capmeity of 50 to 75 tharels, aund vill cons in the neigh. tronhood of s8,000.

 will he stateof at once
The requn comes from Halifas N. S. that wnoter feciphe sates oa the Gruat Trumk and Inercolonial milkays ate driving Ontaro thara to halfina vin losson.
The lanuing of Mcalblans mill at Winnisere has couset the
 ate derinats of western cusooncrs.
The new rolker mill at Crystal City. Man. is almat ready to make a san. The poppretors propme to ceeta a warchoucc, and lay in a sook of griin for sumuct grinding.
 has Inem living for some ture in Minnenga, hass retumat to Canada and remed a mill in the texmingot Coran. Ont.
The elemior it Carlenty. ownol ly Crowe \& Co., Durit on the

Acorrespondent writing from Doninion Cily. Man., says there is a gook opening there for a moller mill and tie propple would to willug to grom a tome to a penon samang such an enterprise. Hower's large houring mill at Picherng. Omt. was totally destoved by fire tas monith. The mill and ath the machinere ayd thooks, togelter with a targe store and dwelling touse were emstmed. Insurimce s 13.500 .
 City, Man, is almost completed. Mr. Gcorge Agnew who has at tha wandouse at the sume phace has comumeneal the creston of :th elecator of 35.000 lunthels capacity:
There is sath to be no better opening in the province of Mami. tokn than at Dedoraine for a theur nul grist miah. Mr. Corconan of Stratfonl. Ont. whorecenty purehosenlShephend's thour mill at old Deloraine is considering the advesability of movige there.
The exports of grain from Montreal during the seavon of 1887 were an follows $7.73^{2}, 8,8$ bushets of whean, 1, 181,483 of corn, $1,923.304$ of pans, 407.383 of outs, 9.648 of huntey, aud 109, 123 of
 with the previous year of 2.722 .529 lunshels.
The lrambon (ity Council are diseusimg two schemes for the erection of a vecond hlour mill there The fint is a proposal to bubd a farmess mill and elemor by a joms stock compung.
 vaded cernina aid lecegisen, but as yet have and accepted the terms haid dowat by the councel.
Of the do,00,000 bustele of wheat saud so have been moved mast From Wiaming by the Canadian Pacific Kaikay atrout $5.000,000$ bushels has paseed through Othwa in lwad to thoton and New Fork for expent. or to Montreal and (everiec. A small proporion of the remainug million busthels has treen purchased in westeta Ontario. the Lhlance Iring in the company's elecators at bort Arthur.
Mr John Martin's grist mill at Ganden Bial, Ont., took fire a fortuight ago. and wss totally consumed. The mill was two storias and a haff hygh, comained two nums of stonco, was vaiuel at alout four thousand dollars, and was insurvel for two thoustind. The firce, which oceured on Sumday morning, is oupposed to tave Inen caturd by a stove lea burning on siturday when the mill was closed down.
 the C. I. K. to New Enghand. pasted through Montreal has month. Its cargo amountext to 55.000 tharests, and the trip, was made on los than seveadays. Quicker time wond have Ixcen mate but for snowdrafts. Unless the American railroat corporations succect an getang changes made an the tariff, this will prove a proftable trate for the Canacian rand.
As the annual mereing of the Canadam Millers' Mutual Fire Insumnce Company. hedithat mondh, the following officers wete
 Waterlox: Secetary-Trastarer, Enece Joncs. Ihamilton: Directors -A. Wiak. Brautord: Isac Warcup, Oikville: k. Shirra. Calstonin. R. Suarce, Elfrida, Jamos Golde, Guclph; J. D. Sunhy, Lonton; J. K. Wisler, Saleun.
A manuficturet of mill picks advises millers that if in grinding

 it shoud alson in- remenikered that "cracking" pichs stoukd never be used for furrowing. and no prok should te uvel affer its edges are worn too bium. When pichs are bunt grimet hent 10 a straight level one-cighth or three-sixternths long.
Winh regard to the zotal mypors of thour into the U. K. (1887). snys the lomdon afillers Gi:ectes, they thave lwent the hargest on record. viz. $7,200,000$ sacks of 280 poundts, of which London. Jiverpool and Ghasgow have reveivel $5.364,000$ sacks. or nearly threefounths of the whole America has of murse leen our chicf conathutor, her total expors of flour to the U. K. during 288\% reaching nearty 6,000,000 sacks of 280 pounds.
At the annual genceal mecting of the Terswater Milling and Mankfactunug Co. leld hast weck. the following diretors were clecen for the ensuing yenr. Messr. Thos. Fairluim. Gero. Colvin. J. 1. Howson. I- A. brizk, W: J. Howson. Messas Houson. the leseres of the mial ownext ty the compuny. strongly recemmead the selling of the propery, which will prolathy te attenptect. The original cost of the mill was $\$ 19.003$.
The St. Join. N. 18., Sur says: Ds appecass to be cerain that the Canadian lacinc milway will have the inside srack for the four trafic from the great inilling centre of the wess 20 borton and New Sork. The conghint is familar that the manitime provincer ame

 appreces to the popular mind whicen it is realized thas the Unaned States nanuffecured thour foumd in the lkoston markert is haulat nght mate the Ontano mills and whent ficlds from a much more distans country: The nearest sonice from which losion, as nell as St. Jolun, is alice to supyly itesl/ with thour and meal. is Ontario.
The tour trade in :his province is at present extrenely thull. It is soid that at no cortesponding pretion within the past thiny years thas tle demand leen wo light. This is aconsmed for by the fact that heavier jurechases than weual were maile lefore the alrancein Frcightes, and that stucks have nod leen irokicn into to any grat extent. In Montreat illete is a gocold kal of hour held. There is Akon considernble quantity in Cuelece, bet there is not so mukh consigned suff thetc. Eiocks in Hatifax are heavy. being between 30.000 and 35.000 lits. The werst fensure of the situation is that Ontario milkers. Eceting shmpt of funds, have commenodito ommign to the castern markets. This is almoxat a suicikis policy. These
 is that ma orly thos tive miller who makes the consiguwent sumfer.
 Ginver.
Thr Mifters cinasefe ayn: A mesen has lien ctanimed in

1887). for guite a noved "lreak"" mill. In this appliance the Guim is squerexed hetween smonth, or nemarly smooth, mollers. sothat they (the grimes) will le thattened in the form of thin round or oina eahis, which atre sun or cat through inmediately, by means of thin ciredar or other satus or knives, whist the gmin is stith hed
in contact ty the mils. Or a hollow wedge-stapel grind hate hock may be so phaced undernenth and between the spucraing rollita that the flatened groin is dividerl into two slices, and that gen sliee will te compriled to plos with its thoury side over the finely fluted contave surfaces dumng one reduction, without exposing the bramy havk to the intluence of sharp working surfaces. it is no desimble, howeser, to work the bram noo close, and it is, therefore consideral preferable by the inventor to finally clean it by thued ohltre, or other suitabte mems. The thoury purts of the grinare howefer, by this means revluced to a greater and better extent than by four or five reluctions ty "break" rolls. There sexmis to te a fot of theory in this invention which ue shoutd like to sete worked out.
A recent isstue of the Dictoris, 1B. C. Times, contans the follow. ing deacription of the oatmeal min , it Stanwich, north of Vietoria, on Sancouver bsland: "The Stanwich antueal mill is propetied by stem, the hore prower being an so horse eugine the ma thinery consists of four num of stones, three phir of whichare Fremeh
 auts. One set is constanty cmployed al grinding oatueal: another thour and a third pair for chopping feed. The capacity of the mill is 25 harrests of hour, three tons of outmen and five toms of chop foxl per day. The machuezy is all in exeellemt order and made epprossly for the ropuirenents of the firu's tmde The huilding is a substantial frame structure, 100.330 fete, 3% stom high. The drying hiln has a cupacity of four tons per day: The drying is tone ty the use of coke feecets call at the wharf, the accomunotation leing such that the largest stemuers can enter and tie ap at the wharf with safey. The frim bave also a stare mached to the mill. The firm was ceablidert in 88%, ated it composid of thenry trackman anal Davial K. Kerr. It is undet and thate branches are to the fopenaed hy theyn they extended Province. This step they deven as an nevesity, in order to mine castern compertition."
London (Eng.) Mithr: The admatage presented hy Maniotim and the Canadian Nonthwot generally as gramarios for the Mritish miller have so ofeta feeth pontext out in our char:sas ihat any funter insistance would at this sime ine out of phace We all know that that tegion of the lritish limpine produces a wheat than which our millers can wish mo ixtter. It is ejually well known that this groinn is so covected that it cannot make its way unaided to these: shors, at least in harge quanatics Under such circumstances it has alwalys wewaed to us that the leat thing the British miller
 ally or hy depaty purchace his nheat diteyth or the Mand ultivator and ship it sraipht houre it is clar that the thinh zuiller, if tre can make up his mind to this course, will find his path'; reatlysmeothed bythe Canadian lacefic Railway., hich runs dirád ly from the sellaurd into the regien of this desirable grain, and x 总: are given to undertand that the company has made every provision in the event of an active urport trade springing up. ly proveding clerators at Montreal and the take ports with sufficicot bin ients thation to proserve the grates of whens intict. Th is ot, dentical the imetests of this nost enterirising company ar The necescrey facilitios foroperating direca purchaces of Manitchan what thus sceurs to be all sendy to the hatent of our milkers. horg ate such opportunitios to loc nexileted?

HEATING SHOPS WITH HOT AIR.

 OHN WAL.KER, Cleveland, Ohio, read a paper alis a recent meeting of the Civil Engineers' Club of thascity; on the system of heating and ventiluting as com. pany's works by hot air. The works are scattered wer seven acres of land, andit became a problem of some difficulty to heat them satisfactorily. The process no employed was adapted for the work by Mr. W.lker. Air is saken into a blower from outdows, passesover a coil of steam pipe, and is forced shrough carthenware conduits underground for several hundred feet. List 1 winter the method was tried for the first time, and in In the summer the air is forced through the pipes winhout submission to the steam radiator, and cools the air in the different departments several degrees below the ouldoor temperature.
With this system it is possible to keep an equal semperature in the works, sumner and winter. The advantages of the system are economy, sood ventilation and convenience. So far as known , this method has never been used or. the heating of factories before,
though it has been applied in public buildings. The entrance of a stong current of warm air, and its tendency 30 carry up with it all impuritics, keeps the f.ctory free from smoke and the air wholesome.
The pipes, in passing from one building to anoiker, pass under open ground for several huodred feet, It turned on, that no beat reached the opening at ative further snd. As somon as ibe ground became heaced "tic air entered ithe building heated. When smow fedin Wis
 the iir blast-Mcial Worther.

progress of gas and electric Lighting

THE electric lighting industry, like every other madustry to whech men apply their brains and inconve faculties, progresses with wonderfal rapidity Tlun fact must be admitted b) the most prejudiced adowate of gas lighting, unless, indeed, lee apes the athen of the ostrich when it sees danger approaching. The admission does not alter circumstances in the least. The athowifedged progress hats not done the slightest hartu to the gas industry; on the contrary; we are prepared to maintain that it has done good by stimulatbur, both manufacturers of gas and gas :apparatus, the furmer to produce pure and grod gas at a low price, and the latter to introduce improved methods of burning it as to get the best results in the way of illumination a: the least possible cost. Hitherto, however, certann enefineers have been wedded to the belief that progress in electric lighting is inmical to the interests of the gas industry: Others, again, have pooh-pooled the dea of ele tricaty trenching upon the preserves of gats, and have been more inclined to regard oil as the real competitor. Hut to hew the matter of electric lighting in thas way is amere burying of the head in the sands in order to avord the mpending danger of competinon. We bave never banished from our minds the :th, whint that one day electricity may be applied in such a way as to constitute it a sival of gas in the domams both of public and domestic lighting; but we have sten nothing to lead us to any other conclusion at present than that this period is set in the the unknown future. Every day experience, howcrer, teaches us new lessons. When we find that veosels can telephone long distances to each other through the medium of the intervening waves, and when we learn that reprints of existing books may be produced withum the aid of the compositor or the printer's reader, we do not know what next may happen.-f'regressiot

A SMOKE PREVENTIVE.

THE /ron Arc, in speaking of smoky chimneys, tells about a device upon which the patent has expired. The device is known as the Woodson patent, but is now open to the use of anybody without royalty, an the patent ran out last year.
It is described as being very simple in its arrangement. A boiler-phate drum eighteen inches in diameter runs horizontally through the furnace from side to side athat arelve inches above the grate and two feet from the doors of the furnace. The space above the drum to the briter is bricked up so that the smoke and heat cencrated in from, of the drum must pass down under the bed of fire and under and in rear of the drum, in order to find its way to the flue in the rear, and the moke in passing through the fire is absolutely consumd and destroyed.
The coal is farst thrown in the front, where it is coked and all smuke eliminaied, after which it is shoved under the drum into the back furnace with iron bars, and fresh coal is fed in its place. With fine coal a latue smoke an be detected coming foom the chimney at the time of tinng, but with coxrse :oal 12 does not smoke at all. This drum is supplied with hot water from two five-inch rculating pipes, one on each side of the boiter on the rutside, and connected with the ends of the drum through the wall of the boiler. The water is fed into these pipes from the mud drum in the rear of the boiler.
from the large drum in froat there is a six-inch coni,ceting pipe with the liniler, through which the water passes, keeping it constantly in circulation, and thereby making the drum not only a means of heaung the water, but a generaior of steam. The purpose of the drum running through the bed of burning coall is simply to thut nut the smoke of the front or coking furnace from he rear furnace, which connects directly with the the and chimney; the water is introduced to the drum for the purpose of preventing its burning.
The cheapest Illinois soft conl is used in this furmace, osting only $\$ 2.65$ per ton delivered at the works, but :lie chimney is as xuiltess of smoke as though the purest anthractic was being consuned. The boilers are $\therefore x i 6$ feet, suppiying power $30 \pi=0 \times 48$ inch engine, und heat to a four-story building 90×100 feet, and but, :'s rons of this cheap coal are requared per day:
it is suficiently shown that all smoke is consumed from the fact that the tives of the boiters are cleaned but once a week, and then nor one-sixteenth of an inch of spot is found in them. white in furnaces not using a smoke consimer the filues of the boiter require to be ileaned every day, and always found heavily clogged with soos. A strong point in favor of shis consumer is that it coses but Siso, ant can be attached so any fur. nace wathout requiring a change of boiters or the comodelling of the eatire furnace.

CHIPS FRU誼 A MILLWRIGHT'S LOG.

TIIE decree has gone forth that the fan pump must run faster. A very small pulley on the pump prectudes all possibility of a chame there, so let us look above. Here we find a "solid" pulleys seven feet diameter and eighteen-inch face, keyed on to a 678 -inclies diameter section of the "main line."

To take this section out, take off the pulley and replace it with another, is more of a job than we can get anay with between shuting down Saturday night and starting Sunday night. Sol we decide to split it off.
Bright and early on Sunday morning, Charlie, with a helper, "rigs up" a ratchet drill, and drills three "s-inch holes on opposite sides of and through the hub to the shaft. Next he drills one s-nch hole through the rib in the center of the rim on two sides. By this time it is night, and we leave the pulles to run another week before we split it off.
During the week Charlie makes three steel pins, tapering, and about four inclies long. These pins, after we have "checked" or "channelled" the rim with a "diamond point" chisel, are inserted in the holes in the hub, and oy gentie driving witha sledge the hub is easily split opran. One pin druen in each hole in the rim is sufficient to split it, and thace she is.
Some time prevous to this we had made another change in the machinery, and left us a "solid" 21×90 inch vulley, 1015 inth hore. This pulley was of the size we wated, but we , 1 to split it to get it on.
This was accomplished by means of holes and taper pins as above described. To make at a "clamp" or "split ${ }^{n}$ pulley 1 had two very heavy forged clamp collars, one for eatch side of the hub, and four heavy pieces of iton, two on each side, to hold the rim. These pieces were held in place by means of countersunk: head bolts. The bushing was made in two parts, one kejed in the hub, the other on the shaft. Two long five eighths cap screws, tapped in between hub and bushing, held them firmly together.
Tnis dodge, thourh not as mechanical as might be, was much cheaper than a new split pulley of the required size. It was a good job, well done and highly satisfactory. We have made more "clamp" pulleys since, as above described, and find it pays to do so.
I have split pulleys before and since, but not with a view to their subsequent use.
When any changes are to be made in 2 paper mill, time is closely limited, and you have your new pulleys ready to clap on, don't fritter axiay sume and patience trying to get then off. If all reasonable methods fail, grabl a sledge-look out for the pieces troys, and -smash. When you get down to the hub, a good solid cold chisel, backed up by Alike with a sledsc, is the best "persuader."
I have read much in the papers lately about the care of tonls, ctc. This is all very good to talk about, but "what avauleth a man," etc. Some men are very proficient in making their own tools. That is, they can,but won't. I have seen many a man working with tools (lathes and others) that were nearer ready for dressing than work And why so? Sunply from negligence to attend to them.
Such habists of shitiessness are greally detrimental to an otherwise gexal meclanic. Where is is a possible thang to do, let every man give his tonls or the toots in his rare the best attentoon, immediately replacing any worn out or broken ones. The care of teols is smmething very simple in leam, and once the habit is formed, like others, it is hard $t 0$ break. Many millwrights think that they cannot r ake their own chisels and drift, when in reality the working of steel is a matter that requires but lute jukgment.
The beat screw driver that 1 ever had 1 made out of five-cighths octagon strel, two fect long. My forge was a soft coal stove in a Pennsylvania flour mill. The ancil was my hand axe stuck in a biock, and I iempered the screw driver in the snow and ice on the door sill.
When "stuck" I have made chisels and drifts at the mill, heating them in the furnace under the boikers and using an old gear-hub for an anril.
Of course such work is better done by men of experience, but when they are not available, one can learn.
Alter a few trixis one may readily leam the different steels he uses, and at what teniperature they stand the best. l.et no one be afraid in 1 gy.-J. A. Laxtic in Afonnfaidurcers' Giatifle.

PUBLICATIONS.

The filth annual forliday number of the .lirskarsfera Miller is to hand. In beauty of appearance and interest of contents, it surpasses all precious etforts of the enterpeising publisher.
We are pleased so notice the prosperity of the Winaiper commerisul as evidenced by an increase in the sumber of its pages. out.
Green\& Mcwillians will huild a machine shopat Virden, Man., in the spuing.
Mr. MeKelvies foundry at Vancouver, BS. C., will prombly be in operation by March.
A new shingle mill will be crected at Foxmead. Ont., his winter by Mr. James Hadden.
Mr. Merner is said to ke thinking of removing his foundry from New Hamburg to Simatord. Ont.
Mr. Meng of North Gravenhurst has invented a machine capp abe of splinting $\mathbf{2 , 3 0 0 , 0 0 0}$ matches in atday of ten hours.
The Ontario Whet Co., recently incorromerted with a cenpital of \$5o,000, has comutuenced operations at Gamanoryuc, Ont.
A joint stock company is saul to be cortemphating the purchase of the 'atterson foundry at Whithy, with a view to operating It.
The foundry at New Westminster, 13. C.. is lneing thoroughly reparied prepazatory to the erection of a new 15 hurse poner engine.
The D. E. Jones Manufacturing Co.. of Gamnogur. Ona, having just put in 53.000 worth of new maclinetry, will revolutionize the manufacture of shovels.
A number of nogul engins. with six whees couplings and entension toxes, are being built in tite Montreat shops and will te prit on the C. T. K. in a coupile of months.
7he Hamition Sperfator thinks the denand for !exls for pallic tnildangs, churches, etc., in Canada. is sufficiently Lutrec to warrint sometbody in estaldishing a bell foundry in the country.
W. II. Kussell, of Vancouver, B.C. lus hately invented an clevator, by which it is clainked a versel can be unionded with less than half the labor and in one-fiuarter of the time tequited at prescnt.
The consunution of water has increased in Hamilion from tit 5199,270 gallons in 18,5 to $2.095 .745,650$ gallons in 1887 . The twilk of this large increase is atributed to the incecase in number of tuanufuctorices.
The St. Anseline Manufacturing Co.. is being orgnnized with a capial of $\$ 10,000$ at Moncton N. 13., to manufacture lumber. furniture and flour. For this purpose property has lxeen purchascd on mbich saw and grist mills already stand
The Winniper Citr Council will have surneys made with the object of erecing 2 dam zeross the Assinitbone river to proride water power for manufacturers. The Council is said to le desirous of increasing the flour milling capacity of the city.
A new seam sencrator in Exeland is arousing a grat deal of interest because of its kreat efficiency. It rans on the pressure instead of the draft principle. This obviates the expenswe tall chimbers and costiy methods of fring now in use. 11 is simply done liy forcing an increased anmount of air into the fuel.
The Association of Stationary Enziseers of this city moved into new and more conmodious quarters in the Shaticeshury liall ruididing last month. The meetings of the association are increasing in interest. The memtership aiso is on the inecease.
 3oth, destroying the new mill of the Mechanics Miall Companty and the building of frues Sound Hiuce Ca. the Seatte luxice Wooks veng also lodly damaged. Toal loss will aggregate sio.00
The Stratord. Ont. Council are nexotiatirg with Mr. Maxwell. irripkerment manuafaturet. of liaris, Ont. Sor the semoral of has shops to Stra:ford. St. Thomas, hy proposing togrant it lonus of \$00.000. a free site anis water, and carmption from taxation for sen years. is anging 10 induce Mr. Maxwell to go there.
The process for the instantancous grectation of stemm, lately
 cent in fuel, фо jer cent in hoiker space and $\$ 3$ per eent in the cost of phant: also that it its ure a boike exgiosion lecomics an an possimitity. Suct an inversion shocld suppiy a long. -cet uant.
Tre preent sleam mind capucity in Winniper is alou: 1,000 trosse power, abour so pee cent. of which is used in thour miling. by a stight additional cost in the consifuction of the dams remurat for the improvencent of ravipation it is shought that alooxa 30.000 horse power can le mask arailube for manulacturing pratreces on the Red and Assinilooine rivers in the cisy of Winniper
The contractors who anc doing the excarating fo: lellis tew
 frosen gravei by blesting. Surnc ofkan boxes nere piocel onet the
 and chay were fy:ng in all directions throught the aif. Serem jumes of glass wite smantied in ilic iactory, and a number of the pren were greatiy frichuemed. but no ooc was hur:-
The Cochrame Koike Maill Supphy $C a$ ans formalty organeen at Hamizon iast month when the foltowing oficerss wire elested
 Mlesurs. W, F. Coctrame. Chas Rionian. C. M. Connscll, I. .1
 Thompeon, difecturx with power to adh to their nemikr. The company's headfanters will be at Hamilhon. and thecir mmas as Demons.
A certaia dector in this ciry. says the Angusta, Mc. Yoarrat.
 precrimion for akotol. "For what purposer' askinl ite ctoctor. "Mectamizal." said she man with a compknamee honcit enought 20 thot nary joplece in ite counary our of counlenance. Mifer knting the proccinion amd handiace it to the man the loctor sainl-

 A shingle mull is to be tuatt at Cascey. Ont., hy Dhos, Gireenhw. The oll Gathersheve saw mallat lake Opmon is heime torn down
New machenery is twing: added to lethey \& lioteres will at Otaw:
Geter Ganon saw mill operator at colman P: F. bland, has assinned.
Thartsonis new phatug mall at Unen Sound wem mo operation a week age.
A new siw and shimgle mall will shortly he erected near Kinmoune. Unt.

1. (" Bechasds new steam sinw mill at liardwood Ithl. Quec, will soon ive in operition.
The curnouslumber fitms at Fishet kiser, in the Nothwest, are cetung out loxs in hatge quantues.
 to jualt s.iles m the liuropxan markets.
2. C. Green, lumber meechans. London, Onl., is reforted to le wehmg a compromuse with his credntors.
A saw mall and gram crasher are lean! exected hy Mr. ELum Laviniston, on lus hush furn at Wastock. Ont.
A company nithta capmat of $\$ 10,000$ is talked of at Madoc. Ont., for the marpose of ojerating a sash and door factory.
l.umbermen in the vicinaty of Nickesport. Ont., are very busy. and exjece to do a hirge amount of work this wimes.
Mr. F. G.illtallh laas putchased a tactory iat licthany. Onh, aud is fiturig it with craculiz sins for lumber, Lath machmert; Sc
 aen stcam saw thill will also be crected by Mecses. Cart is Staw.
Mr. Thos. Sisinson is efectung a new saw and shingle mill at Minden. Ont Oikrations will ice commenced catly in the spring.
The owners of the Gken Major. Ont.. sax mill ate trying to atrange with the C. If. H. Company to run a switch up to their mill.
W. A1. Murtay's six mill at Indantown, N. B3., is leing enarged, and inachincty added for the manufacture of staves and claphoards.
At the annual sale of lumict at Nascau Mills. Itetetioto: hast werk, over one milion feet mere disposed of. A large quantity will go 10 Allans:
Raymond's siw mill at Mutizelis hav. Ont., which was destroyed
 facture of staves will fec comarited.
J'cect Melaren. of I'crith. Ont., who owns extenssee and valualie timber lamis in boraid. It C. papposes prabing uj a large mill on the cioiumlan kiver in the sptran.
The mimstet of ciustoms has derded shat teams wheh go from Canadi so work in the dumber noxds in Mlatwe or Micharan cannot be readmitred into cianata free of dony.
Vance ikor Large saw mills, near Inwood, Ont., wete destioned gry fire lass moath. A laric quantity at staves and lember was a!so liarned. l.oss. \$=coo: no insurance.

 Messi-], in entiens A lem. of Irassube. Uns.

 artcirs

 with ikje

 bux shan dat year. athoragh ment get from thice to fous ofoliats a manhls morrs atol are scorcce at shas.
 of theemime are as folloms Simn lumber 5.800 .30 sect

 aikems she forand fatis for the ;usuge of fors down the mer.

 misc

manufacurers camot det a sufficient gunatioy of it in Cimada. Sir (hatirs tupher with consther the mather on his return from Wishimgton.
 mount, Ont., districe, ly Mi, Boyd. Ower cor men ate enpaped al hiss shamicis, and z70 head of cathe were recently sint to them. fen shames employtug alwot 60 men each are in full swing. The at of logs will be enomonts. is soon as show makes its apmearance the drawisg will lecith. Oter too te.tus nitl take purt in this nork.
St. John. Ni. Br. Sun . At the tumber whes at the Crown land oflices on Wednesday, the whe 太ith ker mile wats bind for one of

 taken ont this year thath for many grevious onss. Up so fanuaty
the sth, saes new applieations for leases had laven received hy the the sth, saes new applications for heases had been received hy the
office. in addituon to the goo licenses whin were remewed under office, in addituon to the 900 lie
the system of anmal tenewals.
17:e chetric lught is preth getuerally used in the lyget Sound sive thlls. The fort (iamble mall was the tirst to introtuce the hight atoon as81, and the example was yatekly followed. The Gamble mill bas:a small dymano and a fex incomescent damps in addition to its ing lyghts. With that evception the are light is used he all the mills. Most of the mills have their own phants. thought in Se:atte the ligits ate furmberd thy the lialison and the local gas

An Ottana despatch syys The creditors of Mir. K. I. Stemart. the well-hoown fumberman, with a veen to hastening a settlement. have made Mr. A. (i, (ither, of the firm of siewart \& (iver, an afler for the gurchase of Mir. (iners metests, No arrangement has yet heen reached, houever. Mr. Grier, it is understood. offered to sell bus suserest for an adiance of sroo.000 on dive thasket salue of his interest. The market value of the mills and lemits is undes. stood to ise neatly a milhon dollars.
Setikess in the liarey Sound mistrics have drawn up a petision to the Alinister of Crown Lands for Catano praying that the (iosernment would canced all zmiker lacense locations thas have not 50,000 fert M. 13. and that a sesectiation of 50.000 fert M1. B. be made to the loctuon in each lieense grinted after the mesent license yens expires. The inary Sumat Star sugbests that a fri=ndly conference leiuera the se:thers and the lumikerinet \cdots ould probably sesult in a satisfactory understanding regiardag the anaters complaitead of.
Ituch sympathy is expressent in busimess circles for the laniker fran of S C hanaty fi Co ot this cat:, who were announced ome ten days aro to lie in fnancal dificultues. The troulte is Gad to le dure to the failure of a number of lumbermen whose puper they iceld. atmong them teing lecticl $\&$ Ca. lumber unerchants, of london. Ont.. $\$ 6.000$ werth of whose paper ther iedd. The lialsisises of the local firm amount to $\$ 70.000$, to the farty :cound suatker Company and other simitar companies throughout the province; while to the Ontario Kink and others the hirm onesi50, coon It is lelieved that the difficulties which now leset the firm will shorty be overcome.
A Guelece mojer charges Depuity Commissoner of Crown ands lache with using duts official positoon to grant favors to his rehatues in the shaje of siles or teases of certion timber hands under conditions which do not harmonize with the suies of his depatiment. One instance is cied in which it is alleged that a leuse was dranted a momber of the Jache fanily withott acy fuyment wing required unsil after the lessee bad disposed of his hease at a sume cotroderably in advance of what he was 20 pay for is. and it is charged ithat shorty after the irancaction, the lumberman to whom he tease was sransle:zed in considetation or she higher paice, was suldenty notifed by the Crown iands ineponment that ithe kease thad treen cancelind. iny this procedure it is alkered the lumikerman loss consideralise money. These are serious charges, and call for an mmedaste snuestigation of the facts.

THE DRYING OF LUIBER.

FNOM the earliest his:ory of the lumber develop. ment of this countiy a necessity beas been felt fora rapid process of seasonin;- Lip to it few years ago an intending buildes shought it sequisite to lay his plans and purchase hus material many months if not years befere he expected in use it, and gartet and burn lofi filled with lutibler was ofien the silen: xitness that build. ing projects were filling the brain of the farmer or the merctiant. When at last the time had come for the siructure to rear its noble proporions heacepward, it was almost invarially found that ahrougl miscalculation a jortion of the needed matcrial had not been provided or that exigenctes badarisen leading to its utilization in other schemes, and when most wanied it was not avallable. Then cance a make-shifn, for the work on the building couldn't iec ielayed, and in one comer of the usually spacious ln: could lie seen an oxd-looking structure from which, night and das; smoke coukd tee discovered issuing throuth iss crevoces with the chances about cien that almut she time the "swnote seasoning" poncess should be sufficienily adduanced in warrant the cooling of the pile it mouk suddenly disappear in a thaprism of fire, and the loss of mancy and yime in profiaring in:ublery latch be the sumpiement to a delay Whe the wrimen in the proneress of the work. The second endeavor mas usually (in latser dary) in the line of heat scasnoing, rather than of smoke, ofien ending mo less disasionusly than did the first. In smoke seasoning the lumber was usually sinod on end forming a tent or shanty; the upper end resting upon the limb of a irec, or upon a frame erected for the purgose, arill afier a sufficiency of lumber was thus pathered a smudge was built at the busce and the beated suoke was maintained
or several weeks or until the lamber was reasonably seasoned, a result attained oftentimes as much through the imfuence of the sunas by the artifical means. After the heary box stove became common, the smoke process save way to one in which the lamber being piled on sticks, with a recess built in the center and the outside tight boarded on sides and top, a box stove or boiler flue wats placed in the recess and a moxderate fire mantained for such period as was dewned requisite. Not seldom was the unoderate fire fed once ton aften, and like ins predecessor of the smoke process, the labor of months in procuring and of weeks in drying was lost in an hour. Then catme an era of steam seasoning, in which the lumber was subjected to a bath of live or exhaust steam for an hour or swo, effectually cooking the native mois. ture of the wood which speedily dried ont after a few day's exjrosure to the sun or wind. llut all these processes were slow, and did more or less daminge to the texture of the wood, and when the consumption of lumber reached the development of the period just stibsequent to the close of the war, more speedy meth. ods became a necessity; and inventive genius exercised inself in producing inethods which sloould be effoctive in proportion to the demands of trade, and it as been the aim of each of those whotrave delved in thes directionto attain the lughest degrec of excellence, first in the shortest length of time in which the largest almount of lumber could be prepared for the proper use of the consumer or builder; second, with the greatest economy of cost; thi-d, with the least development of inherent defects in the texture of the lumber, and the avoidance of defects which should be induced bs the process. Nature's processes of air drying are not always the most conducive to the best preparation of lumber as it is used in these days of stoves and steam heat, however effective it might have been in the days of fire-place ventilation. Suppiementing it, no doubt, the best means of preparing lumber is in permitting it io remain in water until the more soluble of the resinous products are dissolved, afier which the process of seasoning is a rapid one, but even then the tendency to warp and iwist is not wholly overcome, and it will invariably be found that when the hard outside shell is removed a contraction of the fibes of the wood takes place, and a shrinkage occurs after the lumber has been uressed.
Slow processes of seasoning did very well and answered all purposes, as long as the consumption of lumber was restricted to the quantity which could be diressed by hand, but with the influx of planing mills and wood-working factories, supplying a demand in the building of cities and the populating of vast prairies, in a nationat development such as was sever witnessed before in the world's history; 2 demand requirng the building of immense railway systems in whech the iransportation of lumber forins no inconsiderable ponion of the iraffic, nonre rapud preparation of stock is requisire, and capital must be turned more rapidly in the competitive race than would be possible were nature lefi zlone 10 dry out the moisture and prepare the lumber for the use of the caasumer.
Another cconomic and mos: important factor also enters into the consideration in the expense of transportatior by rail, for whike in water carsiage this cats but littie figure, by rail where charges are based upon weight, it becories a most important item, as it costs just as much to ransport a pound of water which must be eliminated before the lumber can fiaklly the used, as it does the product ready for use, and it is to a large extent true. that the saving of expense in this respect constitutes the profit of 2 saw mill or jobbing yard. Hence the demand of the day is for the simplest and mast effective meibod of expelling the moisture from lumber, and varioas devices are offered to the public to this end. Among the requisites to be considered are, first, efticiency in doing the work thmroughly ; second, without injury to she lumber: third, with sufficient rapidity; fourth, at x minimum of cost burth in original construction and in operating. The first three, amd in fact all these points, are of the utmost consequence in determining the value of any process for dring lumber. If the work is not iboroughty done, or if it leaves the lumber in a condition of reduced value by reasom of checking or splitting, or the develnpment of detects, which by natural process would not be inherent to it, the econmeny of opetal.on would be an expense in place of a saving. If the cosp of construction and operating eats up all the profits accraing from the seasonigg, then she orher advantages are aullifed. Of the last point economy of operation is more so be copsilered than the first cost of the desice, as coastruction none perfected, expensc ceases, while operatiag, expene is an ever present factor. The subject is a moos sumpertant ooe which interents consomers sad deakers in hamber equally with mapufaciurers-Chicage Zanowher Trabie Ynurnol.

PAGE

MISSING

PAGE

MISSING

TLMEW'ELL © SON, . 1 rehtitecta, Bublifing simprewora anit ciril
 si, witended lin aur part x the province Having hail

 ктиие W. Тізкшни,

THE BOILER INSPECTION \& INSURANCE CO of canaida.
Consultinc Bingizemes an
SOLICITOREかPATENTE

Establizhed 1869.

REYNOLDS \& KELLOND,

24 KIME STAEET EABT, TONONTO.

 tuet. A sensiec in all trutixn capitals

ROSCOE B. WHEELER
 PATHINTS FINNEY \& WHEELER PATEMT EUSMESE EXCLUSMELY. fier ressonatle. Hane Huct jirce
 STEAM USERS!
 rud for Citculars or order a box of Puraer from EXCELABC S Wellington St. East, TOMOWTO.
 thilerx and others

T. Chapman \& Co., ENGRAVERS, Lithographers

Gencral Printers

 TORONTIO.

Office, § School,

Church and Lodge FURNITURE

Preston, - Ontario.

Manger for one of the largest

WANED-AN AGENT UN THE NOKTM,

Victoria Wire Mills.

EST:ABLASAED Asja

Perforated Sheet Metals, Steel and Iron Wire Cloth, mine cuanes for mul musows, etc.
B. Greening \& CO. HAMILTON, ONT. - M-

Neve for Calalogur, mentioning yowr nomionmenta

FOR SALE.
75 PER CENT INTEREST IX A FLKST.CLIASS of 90,000 wathek

SAW MILL PROPERTY
FOR SALE.

 Amplion to merive
nor 15 mail 30
10UIS SEERACH.

Cu
dovery

Kenders of shis fowral with comber a tavor on itre pribisher by meationite Tife Mbcwasical ant Milaxis: Ni:ws when corentponding with manresectiwers and denters with referemes to mrickes advertined in these columins

MANUFAGTURERS

INSURANCE COMPANY.

STOCK AND MUTUAI.

ORJEOTE.

To prevent by wll possible means the occurrence of unavoiddble fires.
To obviate heavy losses from the fires that are unavoidable by the nature of the work done in mills and factories
To reduce the cost of the insurance to the low. est point consistent with the safe conduct of the business.

MERMERODB

All risks will be inspected by a competent offi cer of the company. who will make such sugges tions as 10 mprovenents required for satety agninst fire as may be for the mutual interests of all concerned.
Much dependence will be placed upon the obligation of members to keep up such a svstem of discipline, order, and cleanliness in the prenises nsured as will conduce to safety.
As no agents are employed and the company deals only with the principals of the establishment insured loy $:$. conditions and exceptions which are so apt to miskead the ured and promote controversy and litigation be settement of losses min thus be avoided.
The mest perfect method of insumnce must, in the nature of things. be one in hich the self. interest of the insured and the underwiters are dentical, and this has been the olject aimed at by the onganizers of the company.
N. H. HOWLAND, JAMES GOI.UIE.

Lize-President. Preside
HUGH SCOTT, Maxaging Director.
Applicants for insurance and othet information oesired, piense address M11.I.ERS A.ND MANL" FACTLKERS INSUKANCE COMPANY, No 24 Church Street. Totonto
maxkrks-dominion mank.
 Socrotan_Jowx SmiLur,

> Maxacirn-WiLitiani SMITH.

Ceneral 0,
Talugrafh fidirrss-dicurg. Tornwia

 Oor mothed of morning for sur gillocribers the mowt

Wif:zi. JolNTt:RS. 4 by diferent -shetr, and
12 Witrir wiltipts of diferent enakes. Seend
FU1.1. Srock of lije Dier and Tapo, alco ilamd Tapu

STAMDABD GHOPPING MILLS

Wim. Reynolids, Stayner. Ont., is pating in one of Win, א., (i. Greve's wheat heaters

W'in. A ! (i. Grevy have lookich an onder frum 1s. Hoover, of Markham, for one No. a purutier.
 may, Ont., a No. i whent luater.
J. © 1. Breffer, of Matherton, are pating in a macher supplied wivin. \& l. (i. Cinve, of loronto
 a what henter and stom genemor.
N. Wenger A. litos, of hyon. are patimg in another set of rolls of Win. 太 J. G. Cirevys mhanfacture.
 buifl by Vim. of. G. Gifery, of loronto.
Wim. \& J. G. Gray lance blied an order for W Im. Mhare, of Ethed, for cote of ther: mow thur tromern.

Mithemze Brom. of Kirhtald, hade vaderal from Win. © I. (; Grory, of Toronto, one No o vint machane:
 1haris, Ont., with two matrocid whest heatirs.
Wim. \& ! G. Circry. of Tornho, are suphing the Moose Mountaisa I'mating co, with a packer for hour.
Jean Reare of it Therese lig has purchased a threx roll chop mill from Wins. ※ I (G, Gitery of Toromo.
If. F. Reesor, of Nemmarher. has lxught a nan of $;$ fit q in. chop stones from lim. \& 1. G. Greve, of Poronto.
Simury Camplell. of I'rogrestion. Ont. has leught of Wim. S J. G. Circx: Toromo. a Nio, what brushmg machine

Wim. S l. C. Girey have an onder for a No. 3 smuther from

E W. Sart, of lachto: Ont. has phaced an otder with 11 m .

Win. Hodge, of Commall. Ont. Ins ardered a No. improverd

 Mu:t © co. Wimajnex. for a No. 2 vedocit! mudang puntict

Mesors inencer \& forihls, of Onondaga. One ate puatug in at

 of Tora:to.

 or Totonio.
1). M. l,
 has aument mill.

1. N. Hontos, of lhimoter. thes jhaterl an oadre with Wim. \& $!$
 what shaker fred.

 J. (G. Gmery one of ther
mills with Sictry fevt.

 Tornnto. are ap;phing in.
 \& Ca. of Orehard. unt. for three gairs of 9×38 rolls. with imipored feals. for the aldations is sherf mill.
John litharn, of Hullad \& entre, is changeng has mill to the

 for one Niu. a cachle machue, one No 2 sejpratu, onr Nit 2
 11agat, if: 12anex,

 Vamnuth. N. S. Iscolertinn. N. IN: Balifax. N S. Nisuma.

Alonzo lfown, of the village of South Mountain, has ereceet a tine 100 b.irrel full roller mill at the stution of South, Moumain, on

 supplied and put on place liy Messts. Win. NJ. (i. Cireey, of Turomo, and embuxlies all their latest inumovements. The mitl. "ripht work is theaty thishert in vanish and stained woonts.

 custom grist ami chopphing miat. The machanery was nuphlied by

 saljers,a combmed separator and cockice mathaneand a comblmed smutier and bench machume. There is also at chop stome and "heat manteramblalt When completed the mill is requracel to hine staned ofl very stumothly, mahing geod work from the stan. Mr Giorgie lilenes, lute of Crecmore Ona. has frem given chatege of the mull
Win. \& I. G (inery hate jut completed and staneal a tine litte
 mathancen couptreses four double sets of $6 \times 25 \mathrm{mch}_{\text {a }}$ and one
 styly frmons for small roll , ant bited wilh the celcelorited sperty
 new thour drombing machames two maddhegs purtiers and four scalpuge reels There is also a stone for dinmbisg feed The subtue power comsts of a Corlas engene. 30 inch stroke by a-inch

 compora armagement of machatery, sufticient tomon sh hef for the ordmary lusumes of a country mill.

what the strikes of the pastsix years have cost the united states.

THE :hird annual report of Commissioner Carroll 1). Wright, U.S. Bureau of Libor, which has just been oflicially submitted, relate grincipally to the sirikes and lock-outs that have occurred during the past six years. From the facts and figures thercin contained, says the Ifanufacturer and fiwitier, we are enabied to place before our readiers, in concise and compre. hensible form, a statement of the vast and irreparable injury which they have done. The following table shows the number of strikes occurring during each of the last SIx years, the number of establistiments involved, and the average number of establishnents involved in each strike:

Vicas	Sirikes.	Entahlishments mvoliced.	.iverage No. Fitalitish. mients.
18Si.	47	, 2,928	. 6.2
18S	454	. 2,105	. . 4.6
1883.	475	, 2,759	. 5.8
150.	443	, 2.367	. 5.3
1555.	645	, 2,2S4	3.5
1886	1,412	-9,593	. 7.0
Total	3,903	22.336	5.7

In $1 S 57$ there were, according to the best information oluainable, 8;3 strikes.

During the six years covered by the investigation, New Jork had the laigest number of establishments anfected, both by strikes and lock-outs, there being of the fomer 972 and of the latter $1,5 \approx S$. The huilding trades turnished $6,0 \infty 0$ of the total number of establish. ments involved. The total number of emplojees involved in the whole number of strikes was $1,31 \$, 62+$. The number of employees originating the strities was $1.0 \geq 0, \$ 32$. The number of employees in all establish. ments iefore the strikes occurred was $8,6,62,045$ while the whole number employed in the establishments involved afier the stikes occurred was $8,636,247,2$ loss of $25,07 \mathrm{~S}$. There were $203,30 \$$ new employees engaged after the strikes, and 37,483 were brought from other plares than those in which the strikes occurred. In 2,1S2 establishments lock outs were ordered. In these there were 173995 emplogees before the fock-outs occurred, and 109,436 after the lock-nuts, while the number actually Jocked out was 159,545 . These were 13976 new employees secured at the close of lock-outs, and 5.6S2 were brought from other places than those in which the lock-nuts occuried.

The Staies whose industries were principally aftected by these disturiances, were New York, Pennsylvania, Massachuselts, Ohio and Illinois, in which 75 per cent of the strikes and 90 per cent of the lock-outs occurrec. These States contain 48 per cent of the manufacturing establishments of the country; and 98 per cent of all the capital invested in the mechanical indusirics of the Linited States.

Of the 22,336 establishments in which strikes occurred, 18,3ta strikes werc ordered by labor organizations, while of the 2,15I establishments in which lock-outs occurred, 1,753 were • dered by combimations of managers. Ot the whole number of establishments subjected to strikes, there were iemporarily ciosed for business 13,443 , or Go. 19 per cent ; on account of lock-routs, 62.60 per cens. The average duration of stoppaxe on account of strikes was $=3.1$ days ; for lock-outs, 28 dayx

The results of the strixes, as far as gaining the objects sought are concerned, are shown to be as follows: Success follor -d in to, 407 cases, or 46.59 per cent of the whole; partial success in 3,004 , or 23.45 per cent of the whole, and failure followed in 8,010 cases, or 39.89 per cent of the wheke. By luck-outs, 564 establishments or 25.55 per cent of the whole, succeeded in gaining their point ; 190, o: 8.71 per cent, partly succeeded, and 1,305 , or 59.80 per cent, failed.
As to cause or objects of strikes, it is shown that increase of wages was the principal one-42.44 per cent. The other leading causes are given as follows: For reduction of hours, 19.45 per cent ; against reduction of wages, 7.75 yer cent ; fot increase of wages and reduction of hours, 7.57 per cent ; against increase of hours, .62 per cent. Total for the five leading causes, 77.83 per cent. All other causes, 22.17 per cent.
Disclaiming absoluse accuracy, the report gives the loss of employees and employers zesulting trom strikes and lock outs as follows: Losses to strikers, $551,810,165$; loss to employees through lock-outs, $\$ 8,132,717$, or a total wage loss to employees of $\$ 59,948,882$. This luss occurred for both strikes and lock outs in 24,518 establish. ments, or an average lose of $\$ 2,4+5$ to each establishment or of nearly sfo to each striker involved. The assistance given to strikers during the same period, so far as ascertainable, ammurited to $\$ 3,325,057$; to those suffering from lock-outs, $\$ 1,105,538$, or a total of $\$_{4,430,595 \text {. These amounts, however, the commissioner }}$ says, are undoubscdly 200 low.
The employers' loss through strikes for the six years amounted to $\$ 30,732,6 ; 3$; lirough lock-outs, $\$ 3,43^{2,261}$; or a total loss of $\$ 34,164,914$.
The tables also show that the chief burden of strikes was borne by thineen industries-namely, boots and shoes, 352 establishments; brick-making, 478 ; building trades, 6,060 ; slothing, 1,725 ; cooperage, 48; food preparations, 1,419 ; furniture, 491; lumber, 395; metals and metallic : ${ }^{\prime}(x) d s, 1,585 ;$ mining, $=, 060$; stune, 468 ; tobacco, 2,959 ; transportation, 1,478 . These represent 89.35 per cent. of the whole number subjected to strikes.

In lock-outs, five trades 80 per cent. of the whole burden, as follows: Boots and shoes, 155 establishments; building trades, 53t; clothing, 773; metals and metallic gonds, 76; and sobacco, 227 ; or a total of 3,701 .
ft will therefore appear from the cominissioner's report, that during the period of six years which his facts and figures cover, no dess than 22,336 establishments in all parts of the country have been rendered unproductive for a longer or a shorter tine by reason, in sine-tenths of the cases, of strikes; that in these disturbances nearly $1,500,000$ working men and women were involved; and that these disturbances caused a loss to the country; in wages and profis of capital, of not less than $\$ 100,000,000$.

RATES ON THE WELLAND CANAL.

THE Chicago 7imes says: The question of unjust discrimination by the Canadian government in regard to tolls on vessels passing through the Welland canal has caused considerabic comment among shippers. The discrimination is not so much aimed at the interests of American shippers as such, as against the American transportation companies, and tantamount to imposing a tax on export shipments by lake and subsequently over American railways or the Erie canal. A prominent member of the board of trade, speaking of the subject, said: It seems to me that there must be something radically wrong in the system of dues over the Welland canal. According to my unterpretation of the international iseass; all commerce over the waterways of cither nation must be subject to exactly the same laws and regulations. Now, in the case of the canal at Sault Ste. Marie, which is under the control and in fact the property of the American government, all of our vessels are allowed to pass through free of !ues, and the Canadians are allowed the same privilege. In regard to the Welland canal it is truc that American and Canadian vessels are taxed on precisely equal rerms, but nope the less is there a discrimination which sadirectly operates in favor of Canadian interests. To illustrate: 1 can shipgrain consigned to either American or Canantian ports for soc a on canal dues; but $3 f$ that grain is inicnded for export I can save 18 c 2 ton by consigning via Montreal instead of unioadiug it at an American port and shipping it thence by canal or rall to the Americau seaboard for exportation. of course we would much prefer 10 send our shupments from American ports for many considerations, but this unwarrantable sax of asc compels us in many instances to avail ourselves of the St. Lawrence river route. It is a matuer which the penple of every Canadian or American port Lanke Ontario ought to agitate, as it effects their interests evea

BOILER SCALE AND ITS PREVENTION.

N both past and present, and witheut doubt in the future, say's the American Empincer, one of the most troublesome features and :esuli.e of steam development and use is boiler scale. Many are the methods suggested and temporarily adopted, ab:d many the "Compounds" concocted and sold, all sure preventors of scale ; all to be finally abandoned as lacking in eliaciency as well as economy. The clarifier too comes in for its shave of doubtrul success. Too much is chamed, too litte is dane.
The problen to be met is, at tumes not at all understood, or possibly where understexd is totally ignored in the interest of a profitable sale. The troublesome points in the probleon are that the scale, as a material, is a poor conductor of heat, also that it is hard to hinder the formation and hard to get rad of, if formed. In many tapes, thedroad condemnation of scale as a retarder of buler efficiency is enlarged to too great a calamity, and often in the interest of the "Preventor" or "Compound." The standing of scale as a conductorof heat as compared with irmin is as 22 for scale as against 375 to 435 for tron. If now we have equal thickness of combined scale and aron, the efficiency will be reduced to $(22+400) \div 2=$ 21 . Thie bad effects of this really bad capacity for conduction is only felt to any great extent when first fromg up. When the metal and scale become thoroughly heated, the efficiency increases. Danger to the metal arises of course from the application of too high a temperature to the metal bejond the capacity of the scale to transmit or rather to take up, hence the necessity for careful firing that the metal shall not become red hot. Such necessities are quite similar to those of extra thick metal over the furnaces. The outside metal must not be heated ton quickly; ample time must be given, to thoroughly impregnate the metal with heat of good temperature. With the thick metal or the combination of metal and scale, the trouble decreases as the metal or metal and scale become permanently heated and the fire permanently operative. The firebrick walls of the furnace take considerable time before they become thoroughly heated, but when so heated, assist zather than retard the operation of the turnace by giving out a steadying temperature when fresh coal is thrown on the fire. Similar too, though not at all considered beneficial, is it with the scaic, when the furnace heat is low, there is a reserve on the scale that acts while the metal of the boiler is not receiving so much heat, especially so as the ratio between the iemperature of water and heat of furnace is reduced. Of course the thicket the scale and the thinner the iron, the less efficient is the combination, and thinner the scale and thicker the rron the more efficient is the combination.

The principal scale forming matter or materials in fresh water are the carbonates of lime and magnesia and the sulphate of lime. Lime is one of the infusible bodies, fusing with great difficulty even with the oxyhydrogen blowpipe. Its affinity for water in slaking is very great and is attended with considerable heat. This slaking forms hydrate of lime and upon being reheated io a red heat, will part with its water again. But very little lime will be dissolved by water, it taking a very lange proportion of water to that of time, and the more according to the increased heat of the water into which the hydrate is cast. Is zakes some 690 grains of water at 37 degrees, and 778 grains of water at 60 degrees
 of water at 130 degrees, and 2,275 grains of water 21212 degrees in effect the same resule. Thus at will be seen, that upon heating water containing lime, a separation and depostt of lime at once takes place in accordance with the iemperature developed. Therefore, by means of a feed water heater of ordinary pattern, preferably the closed heater, some 50 per cent of the lume will be left behind upon the feed water passing to the boiler, provided, of course, the feed water be at 212 degrees temperature; at 160 degrees, but one quarter of the lime will have been deposited before entering the boike. The reason we preter the closed heater is because in consequence of the steam mingliag, with the water it heats, and there is so much pure water to take up its share of the lime upon becoming condensed and liquified It has been stated on this subject by Prof. Chandler of Columbia College, New York, before the Polyrechnic Association of the American Institute, that boiled water expels the free carbonic acid, and causes the separation of the carbonates of lime and magnesia, and if the water be raised 10 a high temperature and kept under considcrable pressure, there results almost a complete preripitation of the sulphate of lime. This is good as far as it goes, bat is evidemily a litile brond.
Water contaniang carbonic acid will freely rake up lince in proportion so the contaimed acid, and simce all

be expected that lime will naturally be contained. River water, but more especially spring water, invariably contains more or less lime, particularly in limestone districts. The hardness of water due to this temporary presence of the carbonate of lime can always, as already stated, be reduced by boiling or raising the water to a high temperature, or it may be reduced by the introduction of lume water into the hard water when the dissolved carbonate and dissolucd lime become mixed, the lime is carbonated and the whole is precipitated without trouble.
Such methods, of course, account only for the precipitation of the lime but do not dispose of it, so that if in a heater, the water is raised to a temperature capable of precipitation even to 200 or 212 degrees, the circulation of the water due to varying heats and the action of the feed pump will carry the lame with it into the boiler. The reason the lime is left behind in the boilers is because of the coustant evaporation of the water and the carrying off of the steam, and the replacing of such evaporation by new water. If the exhaust steam be turned into feed water by means of a condenser and pumped back into the boilers, the scale to considerable extent will be prevented as but hatle outside water will be necessary to take the place of that due to loss by leakage etc. such being the method generally adopted in salt water practice to keep the salt out of the bollers. The reverse of this is the general practice where statonary engine a are used. In a majority of cases no condenser at all is used, and the exhaust steam is either allowed to escape to the atmosphere as a total loss, or partially used in the feed wister heater, or for some special business purpose, and in winter time used for heating purposes. This brings us down to the distinct question of feed water heaters and clatifiers which we propose to make the basis of a future discussion of this subject.

REVOLUTIONIZING COTTON OIL HARING.

0UR Southern cotton oil makers will be ghad to know that the entire oil industry of the country is to be revolutionized by a new machine that is soon to be put on the market. In order that the importance and value of this machinery may be better understood it will be necessary to explain the present meth.d of the manufacture of cotton seed oil. The lint adhering to the seed necessitates that the seed be cut in iwo and the kernel extracted and the oil pressed from n. The shell and adhering lint are used as fuel, or thrown away. Now this machine simply removes all the lint from the seed, leaving it perfectly clean, like com, which will enabie oil manufacturers to crush it whole, as the English mills crush Egyptian seed, thus increasing the product fully fifty per cent. The difference in results between the old and the new process is as follow's:
Natue obxinal from one ton of sow by prsent procas:
Gallons of oil. .
pounds of oil me....................... 37.
i'ounds of cotton..................................... 25 .
statuce obsained from oncic ion of suad by new process:
Gallons ofoil...
lounds of oil cakc...
Pounds of coltion........................... 25
The oil cake produced by the new process is not as rich as the oid process cake, and is worth a litte less, but for food purposes is better than the old, as it is not too rich to feed without any mixture with bran or other feed. What is here zermed as the "new process" is new only so far 23 America is concerned. The English oil mills crush annually about three hundred thousand tons of cotton sced-their principal source of supply being from Esypt. The reason of this is that oxing to the nature of the Egyptian seed the filise leaves it more radily than American seed, and in ginning ihe cotton the gins remove ay fibre from the seed, which allows it to be safely shipped to England, where the English oil manofacturers crush the whole seed in the same manner as this machune wiil enable oil manufacturers to crush American seed. The English manufacturers of oil beretofore have not been able so obeain American seed for the reason that until the present sime no machine bas ever been made that would remove all the fibre from the seed, which would admit of its being exported American seed that has the fibre on cannot be exported for the reason thas the fibre adhering to the seed absorbs and retains the moisture in crossing the ocean, which causes it to breat.
As the Enclish crush the seed whole their prodict from a soa of seed is about 50 per cens. more than the American process, therefore they are enabled to pay a greater price for seed than the Apnerican mills. The American seed, after being cleaned of all fibre, is a better seed than the Egyprias, as ithe hull is thismer and the lownil lary and richer in oil. As Etyptian and is
worth in Hull and Liverpool about thirty dollars per ton, there is no reason why American cleaned seed is not worth more for the reasons stated; but at present the English manufacturers are only offering the same price for American cleaned seed that is paid for the Egyptian.

The writer is not at liberty to say anything about this new machine, except that it will be put on the market shortly and sold direct to the cotton planters of the South. It removes all the fibre from the seed without damage to the hull, and puts it in the same condition as Egyptian seed, so that it can be as safely exported. The result of this is to at once open the markets of Europt for American ised, and bring the English and mills of other countries into active competition with American miils for cotton seed.
If Southern planters can get a machine of this kind cheap, it will place them in a position to clean and export their cotton seed, and not be dependent upon the oil monupolies for a market, as has been the case heretofore. The result of this will be that the oil mills of this ccuntry will be compelled to change their present process of manufacture to that of the English, as they cannot pay as much for seed as the English and still use their present method of manufacture. As an evidence of this fact, the English pay thity dollars per ton for Egyptian seed, and make $1 t$ into oil and oil cake, and sell their products in competition with American manufacturers of oil who pay only from $\$ 6$ to $\$ 10$ per ton for seed. The reason why they are enabled to compete with America in the manufacture of cotton oil and pay so much more for seed, is that they crush the whole seed, and from a ton of seed they obtain 2 ton of product; whereas the American mills from 2 ton of seed only obtain half a ton of product.-Henry Featherstone Dixic.

SOME USEFUL "CHESTNUTS."

NEVER work with a dull tool. Take ume to sharpen and put your tools in good order, it saves time in the end.

Above all, never use a dull or liadly "set" saw. It will ruin your work sour your temper, and make you disgusted with the whole world.

If you are varnishing or polishing a piece of work. have the room or shop warm, exclude draught and dust. and don't be in too big a hurry.
If you ..re polishing in the lathe see to it that all dust and dirt are removed from the lathe bed before you commence work.
It is better, when possible, to polish all turned work in the lathe. It always has a better appearance for it. In making pat:ertu- for castings, if you have no experience you had better consult me, or some person who has had experience. Patterns are difficult things for amateurs to make if they do sot understand the principles of moulding and founding.
White pine or mahogany makes the best work for patteras. Lead, brass, copper and sometimes pluster Paris are used for making patterns; especially is this so for small, fine castings.

Shellac varnish is the best material for coating patterns.

Beeswax may be used for stopping up holes or to cover defects in patserns if is is coated with shellac varnish atterwards. The beeswax will "rake" the varmash readily, and will not cling to the "sand," like ordinary putty.
Shellac varnish may be mixed with a little lampblack to give it body and make a black pattern.

Sometimes pattern makers use stove polish, or "black lead," as it is called, to finish their patterns. It is applied nearly dry then polished with a brush.
Wood used for patterns must be of the very best finish, straight grained, free from knots or shakes, and well seasored.
A clean paucrn gives a clean casting, and much labor may be saved by making the pattern the right size, and smooth and clean.
After patteras have been used they should be kept in a dry place, as damp will distort and etherwise injure them.
Always make a drawing of patterns before makran. Much sime and labor will be saved.
Where patterns part in the centre they should be made to separate easily:
Put on your best workmanship when pattern making. -Unitersal Timker.

WhMIEm,-1 Miller, abour let May; stome
 expecom. Adres

RECOLLECTIONS OF AN APPRENTICE MaCHINIST.

IfF there is a trade known to the ordinary average man so good in all respects as the machinist's trade, I should like to hear of it. What other trade is there that demands so much from both brain and hands, that requires so much good judgneme, skill, quack perception and accurate measurement and calls for so thorough knowledge of all its details from begmeng to end? It is a trade that bestows its rewards in the enthusiasm of success, perfection of automatic results and the commendation of mankind for its generous gifts to them. It is the trade that offers to the appreatice the best returns commensurate with her anbition, sudy and labor. It offers him steady work at good wages, the position of foreman, superintendent, mechanical engineer and proprictor respectively of a trade that is always advancing, always leading him into new feids, bringing out new ideas, making new application of old principles, producing new triumphs in the mechanical atts, and always requiring better workmanship, better designs, simpler methods and quicker results. It is the trade that will yied him fame, honor and a comparatively easy time faster than any other that I now have in mind. In a crude way 1 had these ideas presented to my mind about twenty-two years ago when t entered as an apprentice to learn the machinist trade. I have remained steadily at the trade ever since and an free to say that 1 am just as much an apprentice as ever, although I have passed through the stages of jour and forenan. 1 find 1 kncw less every day, that is to sat;, there are so many new problems, processes and imprasements presenting themselves to me constantly that 1 keep on learning and don't think I shall get my papers as a jour while I live. To say that new mechanical ideas are burn Every minute is not putting it too stronghy. A good thinking, studying machinist has few idle moments, and his busy ones are in the main pleasant because he generally succeeds in accomplishing something in the line of success.

1 well rementer $\mathfrak{m y}$ first day in the grod uld machine shop where 1 engaged to learn my trade. 1 carried my little paperfal of overalls and presented inyself at the foreman's desk subject to his oracers and mstructions. After listening to a few general remarks on the duties of an apprentice boy i was introduced 10 my predecessor, who handed me the water pail and accompanied me to the place where 1 should fill it. The source of the water supply was through a large pump, in the public school gard, where 1 found at least from fifieen to twenty other boys from the neighboring facturies, foundries, malls and shops. As 1 was about to fill my pail and return : was very quickly informed that I was ton fast for a new boy. It was customary to rest on the schoolhouse steps for at least fifteen minutes and then join the procession of water pats back. As 1 was fearful of being tardy and so expressed myself, my partner assured ine that it was all right-he had done so every day. After a ueck or so had passed 1 lost my fear and could stiffieen minutes with the best of them, but I think my enployer did not lose any time by these resting spells, for 1 am sure 1 made up tor it during the day. My pard apprentice next introduced me to one of those old-fashioned, greasy; nut-tapping and boltcutting machines. It was one of the kind that had two shiding-heads, one for the nut-holder when tapping nuts and one for the die-holder when in form for culung bols. It was one of those old n.zchines that could mangle more and cut fewer bolk-thecads than any machine we see in these tumes. You put abolt in the jaws and squeezed the dies thercon by means of a handle that tumeda nyim and left-hand serew which carricd each hatf of the due toward the center of the bolt. The die-holder or head had an oil-drip lasin for the reception of dripping oil and an automatic feed was obsained by means of a sporn and your humble servants right hand. Atter the thread was started far enough on the bolt the machine nas reversed by means of a foot-treadle, or if you thought you could catch the thread again you could release the dirs and back towards the end for a fresh hold. After about three or four applications of the dies a thread was finished so that a nur could be put on. There were two or three sets of dies that were just as liable as not to cut any thread or iead except what they were intended for. 1 still hate a rery wivd recollection of this fact because it nearly cost me my place. It happened this way: after niy partner had got me fairly iniziated and stated in the deep
mysteries of cutting bolts, he was called away to some other job. He had scarcely left me when the boss boiler-maker came in with a bolt for a man-hole plate which he wanted threaded for a nut. 1 finally in some way succeeded ingetting a nut on the bolt which he accepted and carried away. Several days after when the boiler was about to be shipped, the superintendent discovered some of my "fine" thread-cutting and called Mr. Boilermaker to account. The latter did not feel called upon to say that he had stood by and seen it spoiled but stated that the new boy in the machine shop did the job. The man-hole plate was removed and the bolt brought to the machine foreman with the supermtendent's compioments to that new boy. Mr. Foreman came to me with that common, ordinary, everyday luoking bolt in his hand and asked me if I ever saw that before. As 1 did not remember that particular bolt and had cut lots of one inch bolts, I repled that I thought I never had seen it before. "Was I sure I had not seen it?" I was not prepared to swear but still thought I had not. Mr. Foreman informed me in no gentle terms that it was bad enough to spoil the bolt but still worse to lie about it, and if that was an illustration of my work and trutifuiness I would in all probability graduate from the shop before the prescribed time. One can guess iny feclings, an honest, ambitious boy, anxious to excel and please, innocent of his misdeeds, betrayed by the foreman of the boiler shop and nothing to say in my own defense, for mind you, my foreman did not volunteer any information as to where the bolt had come from. Since then I have had many apprentice boys in charge, and when any jour accepts a poor job and only when detected does he try to lay the blame on the apprentice, he is the fellow 1 am after every time and not the apprentice boy.

One satisfactory recollection I have in this connection, and that is that as time rolled on and 1 was just out of my "time" the boiler shop was slack and the machine shop busy, and I had charge of setting up a large engine $28 \times 4=$, and the whole boiler shop gang including the big fureman wiss sent in to me as helpers. I had a soft job sprinkling the emery on the cylinder-heads and watching the boiler maker walk around while grinding it down to a steamtight fit, and how I delighted to put on an extra dose of dry emery and make him sweat walking the treadmull! It makes me laugh even now to think that time equalizes all things and grinds down even cylunder-heads.

I well remember the old-fashioned tap-sockets used an that bolt-cutter. They had square holes for the end of raps and a huge long set-screw to hold the tap in them. One day while pushing the nuts up on the tap to get them started, the ragged sleeve of my blue overshirt got too closely acquainted with said slecte and swisted me so much that 1 could not pur m foot on the treadle to reverse the motion or reach the belt-shipper to stop it. Just then a big moulder came in and, seeing my predicament, reversed the ireadle instead of stopping the machine, and the result was that I was speedily thrown over the machine to the other side. As I could not speak and the moulder evidertly did not know how to stop the machine and perhaps thinking I would look better on the proper side of the machine, 1 was given another toss by means of the treadie. Dy this time ? was well wound up and my clothing tom to strips and as help came the machine was stopped. When the hea of the buatic was over I found myself more scared than hurt. IIv arms and back were all bruised and skinned, and all my clothing except pants and shoes torn off. 1 looked like 2 prize-fighter, but although badly disfigured I was "still in the ring." I might mention that 1 was advised by a fellow-workman to moisten my back and arms with turpentine to allay the pain!
Well, I stuck to that old bols-cutter until I knew all its weaknesses and what few good points it had and could cut bolts with uniform success on all sizes from 3 络 $1013 / 2$ inches diameter. I also tound out why the dies would sometimes cut 30 bad threads when they should cut 10 good ones, and, what is more to the point, I made them work right every time. Why ? Because I tried to find out and know the reasons why. I was not satisfied to know that such was the case but determined to leam why:
An apprentice who is ambitious to get to the top, where there is no scarcity of elbow room, must not be satisfied to know that cerain causes produce certain results, but they must investigate and discoyer why. He must keep his eyes and ears open-and never forget that the best and most valuable results are obrained only by the closest attention and study. Ihave given you a few specimen bricks, illustrating not only the ways of apfiratices but also of sonic of those with whom the ordinary apprentice has most to do.

TIMBER RAFTS ON THE OCEAN.

SIl'MENTS of timber in great ocean-rafts hare long been considered possible. Incerest in the subject is revived by the abandonment of the great Nowa Scotian raft off Block Island in December. Keaders of The Lumber. I'orld are familiar with the history of some of these rafts, but it may not be uninteresting to tecile the points in their history. Hugh K . Robertson, of two Kivers, Nova Scotia, in 1883 conceived the idea of buikding an ocean raft of logs all sizes, bound together by chains in the form of a shig. In 188 , he patented his plan in the United States, Canada, Great Britain, Norway and Sweden. The patentable point in this sjstem of rafting is the adjusturent of the chains which bind the whole together. The main or centre chain runs from one end of the raft to the other, and it is that by which the structure is to be towed. The lateral clains are used to prevent the raft from working apart longitudinally by the action of the waves. The encurcling chains are attached to the lateral chains and are in prevent the raft from flatening out while anoat. On this plan Mr. Robinson began in November, 1885 , to build his frst raft on the Bay of Fundy, six miles from Joggins. This was ready for launching in August, 1886 . It was 100 fect lorg, 50 feet wide at the centre, 33 feet deep, and 25 fect in diameter at the ends. The ways on which it rested broke and the launch of the $2,000,000$.foot monster was a failure.

Mr. Robertson tore it apart and rebuilt it on a large scale on stronger ways. The monster in its new form was $5 S \equiv$ fect long, 62 feet wide and 37 fect deep. It contained $3,000,000$ feet of lumber, in 27,000 pieces, and weighed 11,000 tons. It was successfully launched November 15, 1887, and the steamer "Miranda" took it in tow on December 6 and started on the 600 -mile ocean trip to New York, where the lumber was constgned to James D. Leary, the shipbuilder. The weather was tempestuous and on Sunday, December 18 , in a heavy gale off Nantucket South Shore lightship, the towing cables parted at 7 a.m. and the giant went adrift. The "Miranda" proceeded to New York and the captain reportca that the raft had gone to pieces, although other vessels repottedseveral days later that the raft was intact and lying quietly near the spot where the hawsers parted. Government vessels were dispatcted to the scene to clear the patiway of incoming ocean vessels. At this writing reports do not indicate the finding of the raft.
According to Hon. William Gould, of Portand, Afe, the well-known down-east historian, this great raft is not the first of its kind. It had a number of predecessors, and all of them were successfully launched but came zo gref betore reaching their destunation. In 1792 a ratt containing about 1,000 tons of timber was built at Swan Island in the Kennebec, by Dr. Tupper, at somewhat noted eccentric character. It was made by treenoiling square timber together in the form of a ship's hull and was ship-rigged, the intention being to send her across to England. At that time no manufactured humber was admitted into Great Britain; hence the timber in the raft was simply squared with the axe, to make it stow well. The ship or raft lay at Bath for some time, as it was difficult to get men togo in her. She finally went to sea, carrying a small vessel on her deck. But of the Labrador coast, her crew were frightened by bad weather and abandoned her. She was afterwards boarded by sailors from 2 palsing vessel and found to be in good order, and it was suspected that she was deserted without sufficient cause. Two other similar attempts were made from the Kennelec, and both vessels went safely across, but foundered on the English coast, under the same suspicions of fraud as in the case of the Tupper ship.

In 1825 the ship Baron of Renfrew was launched at Quebec, having made a previous unsuccessful attempt when she stopped on her ways, owing to the grease being consumed by fire from Iriction. She was towed dowa to the island of Orleans and anchored. Her dimensions are given as follows: Length 209 feet; breadth 60 feet; depth 38 feet internally and 57 feet externally; tonnage 5,888 tons; draft when launched 24 feet; cargo on board when iaunched 4,000 of umber. She was ship-rigyed, with four masts, and was perfectly fat on the bolloom, with a keel of about 12 inches; wall-sided, sharp for ward and rather lean aft, and lioked more like a block of buildings than 2 ship. She sailed in August 1825, in command of a Scotchman, a half-pay licutenant in the British navy. October 27 the Maron of Renfrew drove on shere on the coast of France, near Calais, and went to pieces.

The Nicola Milling Company, of Niborta, It. C., compooed of Messrx H. Woodward, Edwin Caswell, Lewis Marks, and J. J Rutlecife. have dismolved partnerships.

The Geo. T. Smith Middlings Purifier Company, of Canada, (Ltd.)

 STRATFORD, - ONTARICmanufacturieks of IHE

LATEST \because IMPROVED \because FLOURING \because MILL \because MACHINERY
 INCLIUDING THE
 - - GENUINE BROWN ENGINE--

EDWARD P. ALLIS \& CO'S Noiseless Belt Drive Roller Mills \Longrightarrow Re_
\Rightarrow) The GEO. T. SMITH Middlings Purifier Centrifugal Reel and Inter-Elevator Bolt
And a full line of improved cleaning machinery, bran inusters, flour packers, and

Full Centrifugal Mills, with either the Long or Short Syst $\Leftrightarrow m$, a Specialty

It will pay you to visit some of our full CENTRFFUNLL MILL8 and compare results with mills built apon other systems.

ROLLS RE-GROUND AND RE-GORRUGATED AT EHORT NOTICE.
The GEO. T. SMITH MIDDLIMGS PURIFIER COMPAMY, OF CANADA, (LTo.)

Cattegt Cimadiam platents.

376,194. Hayward A. Harsey. Orathge. N. I., asstgnor to the liarver Steel Company, of New Jersey. liled Dec. 8, iSi6. Harver Steel Condany, of New Jersey.
Serial No. azt, ozo. D.ted Jan, to. 1 S88.
Cham 1. The process of treating ingots or objects comproset of low steel - such as liessemer steet-for the purpose of mpmaning to the netal of which such objects are comprosel the qualities of refined ctuchile steel, wheli conssts, essemtally, membedhang the object or objects to be treated in a booly of granulated or poudered cullonaccous substance, such as woul cliurcoal. deposited in a crucitle or receptacle made of plambinto or any other suitable refrictory material and provided with a cover to prevent the cons. bustion of the charcoul, and in heating such receptacle and its contents in a furtace or heating.chamber the temperature of which is niove the melting. poomt of castiron for such length of time that the objects treated when remoled from the charcoal will exhibit clean unblistered surface of a prescribed color or colors, as herein set forth, and will possess the capacity of taking in temperng the degree or degrees of hardness ordinanly andieated by such color or colurs.
2. The process of treating ingots or otherjobjects composed of low stel- such as beswemet steel-for the purpose of increasing the tensile strengith of the metal of n hich such oljeects ate composed and giving it the quality of weldathity, so that ti man le puled and reworked in the ordinary manncr. which consists. essenteally, in embedding the olject or oljects to be treated in a bodv of granulated or powdered carlonaceous substance, steh as hood- charcaal deposited in a crucible of teceptacle of plumbago or other suitable refractory material and provided with a cover to prevent the conbustion of the charcoal, and in the beating such receptacle and its contents in a furnace or heange chanifer the tempernture of which is above the melting.point of casturon for such length of time that the objects treated will on removal from the charceal exhibit clean unblistered surfaces of a prescribed color or colurs.

itenm Fiedl for sian mill Curringes.

376,109. John IL St. Louis, Minneapolis, Minn. Filed Dec. 33. 1886. Serial No. 22t.39\%. Dated Jan. 10, 1888.

Claim s. A steam fred for saw mill carriages, compnsing an oscillating steam motor armanged below said carrage, with its shaft at right angles to the line of atrivel of said carringe. shafts \boldsymbol{y}_{2} uppon opposite sides of said motor, geanng connecting said shaft with said motor-shaft, whereby they are oscallated with sud motor.shaft and independent fiexible lands 6, connecting the opposite ends of said carriage with said shafts 12 .
2. The combination. with a siak mall cartiage. of the shafts is arranged at the opposite ends of the cirtiage and provided with the pulleys 10 . the independent fievible Innds 6 , atached to the opposite ends of the carrage. cxtending under the carriage and having their encis atached to the pulleys 10 , and means for simul. taneously driving said shafts 32 in the same difection.

The combnation, with the siw mill carrage a, of the fiexible bands 6 , attached to the opposite ends of the cirmage and extending in opposite directions under sad carriage, the shafts ra having palley 20 , to which said iands 6, are attached, the oscillating motor 2s. having the stiaft 22. provaded with the sprocket wheel 20 . and sprochet chains 18 . cxicnding from saill shaft 22 to $2 a \operatorname{ch}$ of said shafts 12.

Inthe.
373.g88. William Chaplun, St. Cabharines, Ontano. Canadit Filed july 23. 2657. Seral No. 245.055. Uated Jan. 3. 1888.

Claje 2. In a lathe, the msin hollow shaft, a hollow drum cos solid with the main hollow shaft and having sloss cut in the domm carricts fitted into said sluts, and one or more shaping knives adjustabiy attached to said carriers, cominned with steeves on the main slaft engaged with the carriets and adjustatite on the nain shatt to move the cutunig edges of the knoves nearer to or tarther from the center of the main shaft.
2. the main keliow shaft A. the drum F thereon and baving slots i, the carticas J, hating wings A and amms A nnd t, and the shaping knives secured on said carriers. in combination with the
matin shaf, and having fuddes m and n formed thenein for the recepition of the carrier arms A: and /respectively.
3. The man hollow shaft A, the dramif thereon and furmed with slots t, the courier] having wings h and shoulders sp, and the shapthe kinte 1, adpustably secured on sud catriers hy the trolt f. mo

 the 'P shapet rmpe formed on the sleeve It, and hawng gades for the carrier arms A nad C, and samd currier erms.
4. The standard C, the slading standard I), the hollow shatt A supported by sadd stamdinds, and the drum F , cast solud with sitid shaft and adapted to corry the shapme knives, in combimation with the shaning knives, and the sleeves $(\mathrm{i}$ and 1 l , hetd together by the shontdered beils a and to the slding standard 1) by the V-shaped ring c, formed on the sleeve 11 .

THE MELBOURNE EXHIBITION.

AI' Melbourne, Australia, there will be held in the fall of 1888 a centennial exhitition. It is to be opened the first of August, 1888 and is to continue until January 31, 1889. It will be open day and evening. Space will be free, but the committee reserves the right to limit the space alloted to visitors in cases where it is evidently necessary. A general reception of exhibits will begin about May 1 , 8888 , and after the 1 th of July of that year no more goods will be received. Exhibitors are to furnish all the fitungs which may be required, but the motive powier to run them is free. By the patent laws of Victoria no exhibitited article can be copied, drawn or reproduced in any manner. The awards will consist of gold, silver and bronze medals, a certificate of honorable mention, and a certifcate will accorripany each metal. Canada should be well represented in this exhbition.

NIGHT WORK IN MACHINE SHOPS.

A^{F}FTER a great deal of discussion on the subject of night work, says a contemporary, employers have not reached any uniform sonclusion, apparently because they have allowed their desires to bias all their observations. Night work, or that which has to be performed by lamp light, is of a poor qualty; because men cannot see to do good work by any light which has yet been used for the purpose of shop illumination. Perhaps a better form of the statement would be to say that such work is not as good in quality as that done by daylight. How great a falling off there is likely to be, any one may see by trying to do any little delicate piece of metal work in the evening, and again in the daytime.
The following conclusions may be set down as facts having been deduced from a long experience: Night work does not pay for the gas or oil used in lighting up the shop. The work done at night is not satisfactory in quality as compared with that done by daslight. The guantity of work done after lamps are lighted is insignificant as compared with the amount of tume taken. In other words, loafing begins at dark. This is not always intentional, but it takes place all the same. Night shifts coming on after the lamps are lighted do but little work as compared with what the same shifts could do in the daytime.
In a shop where smail machinery of a regular character was made, it was the habit not to light up in the winter months, but close when it became dark. Winter and summer the men were paid for nine hours' work, the early closing shortening the day's work and not the day's pay. At the end of the year the manager took an account of the quantity of work done, and found that he had not only saved the expense of oil and lamps, but that the work done in December, January and February excceded that done in June, July and August by eight per cent. The number of men, character of work and all details hating been the same for both periods, he naturally reached the conclusion that it did not pay to work over-time, or cven full time in winter.

While the electric light does something towards sufficiently lighting the shop, it is lacking in several of the most important requisites for shop use. Its bluish color is lad and does not properly illuminate cast or wrought mon. Oil is cheap, but does not give light enough, while gas is costly. It scems best, therefore, to obsy the command, "work while it is day, for the night cometh when no man can work."

FIRE EXTINGUISHING EXPERIMENTS.

ASERIES of experiments of interest to fire underwriters, as well as to manufacturers of rubber goods, were lately made at the works of the Walworth Manufacturing Company in South Boston, the object primarily being to determine by actual test the behavior of the inaterial known as rubber cement. This material is composed substantially of rubber dissolved in naphtha, and is indispensable in the manufacture of rubber goods.

Both the maphtha and the cement have hitherto been dreaded by the fire insurance merest, and with good reason. It is well known that the pouring of water upon burning maphthat is worse thiur useless, since it not only fails to extinguish the flames, but serves to simply splash the burning oil about, thus scattering the flames; and the opmiun is senerally entertamed that rubber cemeat behaves in a simular manner.
The object of the experiments above referred to, was to observe the behavior of these articles, while burning when treated to a stream of water, and particularly when subjected to the finely divided spray delivered from the so called "sprinklers," which of late have come into very gencral use in mills. The result of these trials demonstrated that rubber cement is by no means so hazardous as has been supposed, since it is shown that water, especially when delivered from an effective sprinkling apparatus, will quickly extinguish it. Naphtha alone, however, is shown to maintain its bad pre-eminence as a specially hazardous material.
We give below an account of these tests, with the results obtained, as recorded by the insurance editor of the Buston Commercial bullctin. The tests were as follows:
First : A quintity of naphtha of 70° was placed in an iron pot and ignited. It continued to burn without being affected by the shower from the sprinkler.
Sccond: Boards representing flooring or wood-work, as benches, fixtures, etc., were wet with naphtha and ignited. By the time the naphtha had burned off the wood-work was afire.
Third: The above was repeated with fresh wood. The sprinkler was allowed to operate, and while it did not extinguish the flames, it prevented them from igniting the wood.

Fourth : A quantuty of rubber cement, worked up with naphtha into the ordinary consistency, was ignited in an iron pot. The sprinkler promptly extinguished the flames. The wet cemient was then immediately ignited from the touch of a match and again readily extinguisted by the sprinkler. Cement placed on woodwork was ignited and extinguished just as it was in the pot. Re. lighted and again extinguished in the same way.
Fifth: Cement was placed on woodwork and ignited. No sprinkler was used, and the cement shortly communicated the flames to the wondwork.
Sixth: A lot of woodwork was saturated with naphtha and another lot was covered with cement. Both were ignited and the sprinkler allowed to work. The flames on the lo: covered with cement were promptly extinguished, but the flames on the lot covered with naphtha continued unaffected by the water, and the naphtha exhiusted itself. But neither lot of woodwork became ignited.

Seventh: A considerable quantity of cement still remaining, it was ignited in a un dish, and the sprinkler promptly extinguished the fames. The receptacle was warped out of shape but not melted, and can be seen at Secretary Tatt's office containing the cement which was ignited and extingushed.

ROCK DRILLS RUN BY ELECTRICITY.

MTAVERIDON has successfully applied electricity, as a motive power, to rock drills. The system adopted consists in the use of drills armed with black dia monds at their extremity, capablie of cutting awiay the hardest rock. In attaching these diamonds, they are first electroplated with copper, and then fixed by a very lard solder into the holes prepared for them in the dill. The electric motor is carried upon a special carriage, with a driving pulley and belt for the transmission of power.
The drill is fixed upon the usual drill column, and, instead of being fited (1) run by steam or compressed air, is provided with a belt-pulley and the proper mechanism to run the drill. The inotor is a Gramme machine, of the type used for a number of years past at Sermaise. On the same carriage with the motor is a reservoir of water, with an air space in the upper part of the vessel, the water being supplied under any desirable head. This water is forced by the prossurehead into the drill, and down into the drill-hole, from which it washes out the debris produced by the drilling.

The advantage claimed for this motor is, that by using it at the lieading, the long lines of steam or compressed air pipes, usually employed, are entirely avoided, and that the stoppages in the work are less Irequent. No record is given of the rate of drilling, or, in fact, any data concerning the actual use of this electric drill.

ST. CATHARILES SAW WORKS.
R. H. SMITH \& CO. ST. CiATMABINGN, ONT,
Sole Manufacturers in Canada of THE "SIMONDS" SAWS at aneathy menecempinem.
All our Goods are manufactured by the "Simonds" proces. All our Goovs are manturactured by the "Simonds process.
Our Circular Siws nre unecqualled. We manufacture the
 GU1PRUVED CHAMPION, and all other kinds of crosscut saws. Our Hand saus are the best in the market, and as cheap as the cheapest.
THE LARGEST 8AW WONKS IM THE DOMINIOH.

BUTTERTIITM工D \& OO., HUCK INLAND, 1'. O.,
MANUFACTURERS OF TAPS AMD DIES erf for every use. Send for new Illustrated Catalogue; ©eat

 l.aks and likicrs. adokess

No Purger Used!
Heat alone does it !
THIS PUKIFIER ENTIRFLY PREVENTS THE FORMATION OF SCALE UPON SHELL AND HIUES OF ANY HOILER IN WHICH IT IS USED. AtI. IMPURITIES ARE EXTRACTH:D FROM THE WATER BEFORE IT REACHES THE WATER IINE, AND AKE DEPOSITED IN TII: PANS OF THE YURIFIER.
THESE PANS CAN BE REMOVED, CLEANED AND REPLACED WITH VERY LITTLE TROUULE, AND IN A VERY SHORT TIME, WITHOUT EMPTYING THE HOLLER OF HOT WATER, WHICH MEANS A SAVING OF TIME, LABOR AND FUEL.

Montreal Sam Forks,
CHAS. M. WHITLAW. Manager, compleste stock or Jeather Belting, Lace Leather, Guncmerg, Cuttern, STew Setw, Hitbber Beltifg, Kimery Whoeln, Suarges rinal Filles. Generml Mill Supplien, alwars on hang.
Manufaciukers of circulaz, gang IT, ICE, CKOSS.CUT, ONE. MAN

CROSSCUT ANU BILLEETT

TAPER CROUNB BMMCLE BAW8 Ho. 462 St. Panl St. - Montraul

FAVORITE

MILL BCCKETS

Manufacturer and Dealer, JOHN RADICAN,

68 Mary Street,

HAMILTON, ONT.
sewe fon phices.

*TO CANADIAN MILLERS长

I^{\prime}N RETURNING thanks to our numerous customers for their very liberal patronage in the past, we desire to say that our facilities for the manufactuse of strictly first-class machinery cannot be surpassed, and we trust to merit a share of support from those requiring machinery of superior quality. Since we commenced the manufacture of the

CASE SYSTEM OF FLOUR MILL MACHINERY

we have met with the very best of success. We have changed a number of mills to the Long and Short Systems with gratifying results to our patrons, and would advise millers to thoroughly investigate the system. We have frequent enquiries about the Short System, and in reply to such would say that we can confidently recommend it, in fact it is the only method for small mills, as it requires a comparatively small amount of machinery for firstclass results, and consequently effects a great saving in power and cost. We have mills using butt three breaks, and they are highly satisfactory in every respect. This system is now being considered by some of our large millers, with a view to its adoption. In adopting the Short System, it is important to use none but the most reliable class of machinery. Knowing this, and being confident that there was a field for such a class of machines in the Dominion, we selected the most advanced and bes: machines made in the United States, for which we are the sole licensees for the Dominion, and are protected by broad patents. Millers are requested to ressect the same, and look out for infringements. In introducing this class of machinery, we have not spared expense.

Our machines are finished in the highest style of workmanship, and we employ none but first class workmen.
The following is a list of machines we manufacture under Royaities:

> The Case Celebrated Roll, with Rotatory Feed,
> Aug. Heine Silver Creek Flour Bolt, Aug. Heine Silver Creek Centrifugal, Aug. Heine Silver Creek Bran Duster, Horse Cyclone Dust Cellector.

For wheat cleaning, we use the best and latest American machinery.
We keep a general supply of Mill Furnishings on hand, such as Cotton and Leather Belting, Bolting Cloth of superior quality, Avery Steel Elevator Buckets, Avery Steel Elevator Bolts, Milling and Duster Wire, which we sell at a small advance on cost.

BOLTING CLOTHS

MIMORTANG TO MIt.LAKS.-Agem for the the mision for the C'elebrnted Hodmer Ilet A wker Hindling Clorha, furnished by the yand, or made up to order. Full stock of all numbers on hand.
H. WHITESA W, Wondotock, Ont.

THE LARGEST SOALE WORKS IN CANADA.
OVER 100 STYLES OF HAY SCALES, GRAIN SCALEE, FARM SCALES, TEA SCALES, IMPHOUED SHOW CASES money

MPAWERS "Mat Chomants

AND BUTCMEDS' 8UPPLIE
ADURKss in rull. \quad Write for terma
C. WIL8ON \& 80N,

88 ESPLANADE ETHEET CABT
TORONTO, ONT.

Queen City Oil Works.

PEERLESS OILS

 Aㄴ รหมBEST IN THE MARKET wam onty ay
SAMUEL ROGERS \& CO., 30 Front St., Toronto.
ALSO HEADQUAKTRKS FOR ALA K'IVDS
 H.vD .H.MERUC.H:

HEAST-CLASA MECHANIUAE WORX.

Pew Number Plates

Hん,RHY POHISHED NCKRKL.PIATED HANDSOME and SIDSTANTIII Sinmplex hey Mall, y ctur
The H. BARMIRD RUBBER STAMP MORIS 6 Rebecca St., HAMILTON

MANITOBA FLOUR MILL AND ELEVATOR

- FOR SALE -

Capacity of Mill, 110 bbls. per day. Elevator holds 25,000 bushels.

Situreal at Shoml Lake Station, on the Mranitobin anal Nurfhucestern Ruilwal, in the centre of a fine wheat growing

 ofher businesm interests which require their mindiviled nffention. Will take real extate an l'art payment. Finll demcription and 1hoto cin be ween at the office of this pelper.

For price und terms, apply to
ROBERT MUIR \& CO.
WINNIPEG, MLAN.

JONES'-:-SHORT-:-SYSTEM MTHE LATMST AND BLSM

FOR MERCHANT AND GUSTOM MILLS GOMBINED.

This system has been demenstrated to be superior to any long system now operated. The machine used in the reduction of wheat and middlings is a Two-Roller Disc machine, one set of corrugated rolls for bran, one set of smooth rolls for germ, and one stone roll for purified middlings. This combination with proper bolting and cleaning machinery, will produce better results than if more machinery were used. The difference will be in the color of the flour.

CAPICITY-76 Barrels per Day from Fall Wheat.

-JOMES' SHORT SYSTEM FOR OUSTOM MILLS.

Is the simplest and best in the market. The results are equal to any long system, and the cost less. Grists can be ground as brought in if desired, and can be handled as conveniently as if ground in mill stones. One Roller Dise machine, one corrugated roll, one smooth roll one stone roll, one bran duster, two flour-dressers and one purifier, with proper cleaning machinery and elevators, is alt the machinery necessary in this system to make 2 straight grade of flour equal to the straight grades made in any long system.
\qquad
CAPRCITT-50 Burrels per Day from Pall Theat.

THSTIDMONTA工,

in favor of the short system, using five single rolls to complete the work.

ABINGDON, September 18th, 1887
JAMES JONES, ESQ., Thorold, Ont.
Dear Sir: Our mill has now been run long enough to give us an opportunity to teat it thoroughly, and we are aatisted with it. The yield and quality are excellent. It takes all the flour out of the wheat, and for capacity, instead of making sixty (60) barrale, as the contract called for, we are running from 85 to 100 barrels, and clean it up in good shape. The stone roll, on which nearly all the best four is made, works with less attention than any other machine in the mill, and does its work well. We feel ourselves indebted to you for the prompt manner in which you camried out your contract.
R. A. SHEPHERD.

To Mill Owners and Manufacturers．

 Phøenix $\because-$ Belt $\because-$ Oil，

THE ONLY PERFECT BELT DRESSING．
TO BE HAD ONLY OF
ت．H．DIX○IN \＆CO， mat．up－Jumit LEATHER BELTINGstar bivet

70 King St．En，Toronto．
＂NeW AMERICAN＂Water Wheel Preferred by mill experts as the VERY BEST． Was selected for driuing the targe Keewatin Mill． Will grind＿with Rolls over 2 bbls，tabled H．P．

 want of a Water Wheel．
WM．KENNEDY \＆SONS，OHBI SOUKD，OAT． mannjucturers for patentees in Canaifa．

Toronto Bag Works

－manufacturers of－

ame BAGS

BAG PRINTING

Equal to the Best American Work． －also－
Hessians for MATTRESSES，PACKING PURPOSES，CANVAS AND TWINES．

DICK，RIDOUT \＆CO．

11 cind 13 Front St．East，
TORONTO．

$=\mid$ All Sizes Kept in Stock，and Orders Filled Promptly． $\mid=$ dearema ix
lace lentuer belt moirs and mill supplies．

AUTOMATIC ENGINE．

The Stmplest．Mont Durabie and Mont Sating in Fuel of all the Automatic Engines Made．
has No Superior and Few Equals －Also atil sizks or－
Bollers and Every Dascription of Mill Machinery and Furnishings．
D．WITEMPTAAT，
oxford foundry Woodstock，Ont．

THE DOMINIOK CHOCK AMD TOOL HORES
－mascracture－
Combination，Univeraal and Independant
Wood Boring Machines
Of New and Improved Design．
Trade literally deall with．Catallogue out shortly
Prices on application．
J．F．WALMSLEY， WOODSTOCK，
 －SEND FOR prices－
以IエIER BROB．\＆MITOREXI工， （Sole Makersfor Canada）－MoNTREAL． Calı be seen at Permanent Exhibition，Tororito．
WIRE CLOTH AND PERFORATED SHEET METALS
Of every Deacription
EOR MIII USE．
TIMOTHY GREENING \＆SONS，－DUNDAS，ONT．

LONDON MACHINE TOOL CO．，

LONDON，－ONTARIO，
manufactureks of
Machinist－：－and－：－Brass－：－Finishers＇－：－Tools．
L．A．MORRISON，with A．R．WILLIAMS，Deneral Agents，TORONTO，ONT．
W．FI．BANFIEID， Tonowto－Ontrano Machinist and Die Maker

Poot and Ponor Presses，－Combination and Catting Dies，
Tinsmiths＇Tools， Cannors＇Supplics， EXNITMING MAOHINEB，

CAP SCREWS：：：：：：：：：：：PLAMER BOLTS：：：：：：：：：：：：MANO SCREW Cutting and Stamping to onder for the trade．
Railway，Hotel Checks and Dog Tags．
special atiention paid to repairing factory machinery 80．Wealington Street West．

—Tエエー
London \＆Petrolii Barrel CO．
Masuractureks of
RLOUR，ONTMELL，OLL，Yingear，bebr and OTHER BARRELS，
Flour Barrel Staves and Headings． THT＊＊T：
WORKS：Simcoe St．East，LONDON
All Work：Grecerenteced．

The Port Perry Feed Mill

 BEST IN AMERICA．

$\mathbf{G}^{\text {R }}$RIN DS all kinds of Grain equal to any pair of French Burr Mill stones，or any Roller Mill for the reduction of wheat to flour，or for fine corn to table meal，or corn and cobs to feed meal．Send for par－ ticulars．
PAXTON TATE \＆CO．，Founderw whe PORT PERRY．ONT．

The Machinery Supply Association
 COR．CRAIG \＆BLEURY STS，MONTREAL．

PUMPING MACHINERY，

MINING MACHINERY，

 RAILWAY EQUIPMENT， － Iron and Wood－Working Machinery Stecem Engines，Boilers，Shaftiny，Hangers， Pulleys，MACHINISTS＇TOOLS，ETC．

ITTLE：GUANT

For Simplicity，Strength， Durability，and Economy in use of water has never been equalled by any other wheel．

