The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may aleer any of the images in the reproduction, or which may significantly change the usual method of filming, ? checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titse de couverture manque

Coloured maps/
Cartes géographiques en couleur

\square
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

\square
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relie avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le iong de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible, ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une imrage reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Quality of print varies/
Qualité inégale de l'impression
\checkmark Continuous pagination/

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de depart de la liuraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplėmentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

W. A. JOHNSON ELECTRIC CO.

 Sole Canadan Reppesentatives for United Electric Improvement Co.'s

MOMOPHME MOTORS
 Walker Manufacturing Co. ${ }^{\prime}$ s

DIREG GOWMEGED RMIIWIY GEIEERTORS AHD STEL MOTORS.
WAGNER TRANSFORMERS × DUNOAN METERS.
WE MAKE: A SPEECIALTY OF

\qquad
SERIES, ALTERMTIIGG AND DIRECT CURRENT IMCAADESCENT CIBCUITS.

Will Ship laxps on Appioval - THE THOAPSON ELEETRO BO. Prices from \$12 to \$25 Each. Write for Particulaks.
 WATERFORD, ONT.
 Rlanafacturers all winds Electrical Apparatus

THE ROYAL ELECTRIC CO. MONTREAL, QUE. Hestern onien. TORONTO, ONT.
 are now prepared to receive orders for the justly celebrated

STANLEY TRANSFORMERS

A money maker for the Centmal Station. None equal them.

They increase station capacity.
They diminish operating expenses.

Ecomomy . Efficiency : Regiulation
also a full line of

Electrical Apparạus, Arc Rynamos, Arc Lamps, Railway Generators, Railway Motors, "S. K. C." TWO Phase alternating generaters and motors

DIRECT CUHRENT GENERATORS AND MOTORS
SHITCHBOARDS, INSTRUMENTS, WIRE, ELECTRICAL SUPRLIES
CORRRSIMNDENCK SOLICITED POR
Electric Lighting. Rallifay, Manufacturing and Mining Wurk, Isolated Plants, Central Stations, Long Distance Transmission for Ligift and Power.

ELEGTRIGHE ENGINEERS

GEO. WHITE-FRASER
 conallifio
ELEGTBIGAL ENGINEER Eletric Raflways and Bicctio Ifeht. is Impariai Loan Delldiag - TORONTO
E. GARL BREITHAUPT consulginc Electrical Engineer

Assoc. Mss. An Inst. E E E Eloctric Lighting BEALIH, ONT.

DAVID A. STARR Elactical Engineer 1 and Contractor
Shactal purctasho agrat pok
Contral Station Plants and Supplies Amasure windings for all prteems
Osfce, 434 Boaxd of Trado Bullding, momtrbal
PATENTS Proccord on ELEETIICAL RNVIENTIONS
or RIDOUT \& HAYBEE, 203 mar et., Tomonta
A pampblez on putents tent free.
"Ribsott on latents," price $\$ 5.30,56.00$

Importer and Dealer in

STEEL RAILS

Now and Second-Hand. All sections. Old Materlal Bought and Sold.
G. B. W. ——

6PEGIALTIES:
Leclanache Cells
Anmumeiators
Patent Electric Gongs Bronze Pushes
THE GALVANIC BATTEEY WORKS 145 Fielington St. West, TORON2O.

FIRSTBROOK BROS. Eing St. East, - TORONTO. mangoractireses of
TOPPING,
SID.EL OCKS and OROES-AKMS. WMITE FOK PAKTICULARS.

If you want to
 SEML ANYTHING

to the wholesale and retall hardware merchants and manufac-

turers

in Canada, you can reach them through the
Cahadiah HabdHare Merchamt
J. B. McLEAN CO., LTD.

OFFICE AND FACTORY:
Now York 0ffice: 10 Cortiandt Streat.
Prouidence R. I.: American Electrical Works.
Montreal, Ganadá.

The Beardmore Belting Co.
 (Formerly The F. E. Dixon Beltixis Cō.)

 banufacturers of ${ }^{-}$

39 FRONT STREET EAST, TORONTO.

Headquarters for Electric and Dynamo Belting.

Ofloutt's Bilier Impovement

Fin) rersoth uatak a Sticam tholer can save so per cent
 FAnLCUTTS MATER.IUBE IMDROUEMENT
 twrousth, Ont.

Petorborough Steam - Boller Company
W. N. LAZIER

Box 341, VICTOLIIA, H.C. Pacife Coast Azent for
Reminguton Machine 60.
Refngeratung and lce Machnes. Complete Plants Installed for all Purposes Kobb Engincerins Co. Economu Boters. High Specd and Corliss Engines. Complete Plams Erectel.
ALL WORK GUARANGEED.

STEAMUSERS
besiring the aerelces of COMPESTLSN KNGINFERES of any class, can obtaln sober, intellijent and reliabla
mes, by appiging to
CANADIAN ASSOCIATION STATIOMARY ENCIMEERS.
J. J Yurh. Itresudent, Board of I rade humd ing. Montreal.

ELECTRICITY
 ins Ifacunty iarpentrvande founert cirnamentatand strnifurul/rom li uta Sfram
 sthrrrif. be furnished froe to students. Send for free Circular stating the subject you wish to study to THE INTERNATIONAL CORRESPONDENCE SCHOOLS getenton Pa
the international correspondence schools, secranton, pa

(General Electric Co., Bertin, Germany.)
CAPITAL. PUILLY PAIIB UR. \$8,000,000
A. E. G. IMCANDESCENT LAMPS

Bare and Insulated Vires, Rubber Ooods, Ricetrical Supplies and Railway Equipmeata, Instruments, Dynamos . . and Xotors

MUNDERLOH \& CO., Sole agenti NIONTREAL

Manufacturets of

Dodge Split Pricioion Clutch

We cialm points of Superlorlty and Merlt

Perfect Balance Easy of Adjustment Excellent Lubrication Repairs Made Easy

STEAM PUMPS

NORTHEY MFG. GO., Ltd., TORONTO

The Laurie Engine Go., Montreal
*- .- SOLE AGENTS FOR PROVINGE OF QUEBEG-_

THE JONES \& MOORE ELECTRIC CO. Telephose z3io. manufactlerers of DYNAMOS + MOTORS * SUPPLIES
 HRite wor prices Tint York Street, TORONTO

FINE - -

... OUR SPECIALTY .
We also manufacture Horse and Trail Cars of every description.

PAGGERSON \& CORBIN

STEAM ENGINEERING JOURNAL.

THE STREET RAILWAY CONVENTION, MONTREAL.

A representative of the Eifectrical. NEW: had an intervicw a few dhys ago with M. Stonewall Jackson, of Montreal, the local secretary of the American Street Railway Association. The Fourteenth Annual Exposition of that association will take place in the Victoria rink, Montreal, the 15 th of October next, listing four days. The officers and eaecutive board are as follows :I'resident, Joel Hurt, l'res. Atlanta Consolidated Street Railway Co., Atlanta, Ga. ; ist Vice-President, W. Worth Bean, Iresident St. Joseph and Benton Habour Railway and light Co., St. Joseph, Mich. ; and Vice-President, Joln 11. Cunningham, Dır. L.jnn \& Boston R. R. Co., Boston, Mass. ; 3rd Vice-President Russel 13. Harrison, Pres. Terre Hamte Street Ralway Co., Terre llaute, Ind.; Achog Secretary-Treas., John A. Datridge, Brooklyn Street Railway Co., Brooklyn, N. Y..; Enecutive Committee: :he President, Vice-I'resident and Hy. C. I'ayne, Vicel'resident Milwaukee St. Ry. Co., Milwaukee, Wis.; Wm. H. Jackson, l’resident Nashville St. Ry. Co., Nashville, Tenn. ; D. G. Hamilton, President, Cass Ave. and Fair Grounds Ky. Co. and St. Louis Ry. Co., St. Louis, Mo. ; Granville C. Cunning. han!, Man. Montreal Street Ry. Co., Montreal, Que. ; John N. Paitridge, President l3rooklyn City \& Newton R. R. Co., Bronklyn, N. Y.

Exhbition of supplies and manufactures of every nature used in the street railway business will be displayed and electric power is to be provided for the running of machinery which may need it. All machinery, will, if possible, be exhibited in motion. Every precaution will be taken $t o$ guard against fire, and a full corps of watchmen will be on duty day and night. The association heartily invites all manufacturers, inventors and street rallroads to exhibi: their machinery and will make the utmost effort to devote the requisite space to all applicants. All the leading street railwav men will attend this exposition, and the directorate will do all in their power to make it the best street railway exposition ever held. For full particulars address, Stonewall Jackson, I.ocal Secıctary, 17 St. Sacrament St., Montreal, Que.

LEGAL DECISIONS.

Haktford v. Beit. Thelephone Co., Toronto Electric Ligit Co., ET M--The appeal from the judgment of Mr. Justice Rose in favor of the defendants in this case, was dis. missed by Nir. Chief Justice Meredith in the Common Pleas Divisional Court, Toronto, in the following terms. "To have entitled the plaintiff to have succeeded against any or either of the defendants, it was incumbent upon her to prove that the defendant or defendants sought to be made liable, had been guilty of some wrongful or negligent act which was the proximate cause of the injuries received by her, and in respect of which the action was brought. On both branches of the case the plaintiff, in the vijw of my learned brother Rose, failed upen the facts, for he has by his fudings of fact acquited ench of the defendants of the wrongful or negligent acts charged against them, and has found that, even if the defendants were guitry of the wrongful or negligent acts alleged to have been committed by them, those acts were not the proximate cause of the injury and damage to the plaintiff for which she sues. There was, we think, evidence which fully warranted the learned judge's findings. . . . Upon the facts of the case it was properly found (for it appeared upon the plaintiff's own case, and there was no evidence to the contrary) that the wires of the Elestric light Co. and of the Holmes Cu. were brought into contact owing to the conduct of a boy who chopped off a branch of a tree which stood
near the wires of the Holmes Co. and the bell Telephone Co., between l'ortand street, where the contact, as I have mentioned, took place, and the buidding to which the fire was communicated, and the branch, falling upon the wires adjacent to and somewhat below it, brought the Holmes wre down upon and into contact with the I:lectric Light Co.s wires, and, but for the boy's act, the negligence of the companies, if neglisence there were, would have produced no damage to the plantiff. It appears to me, therefore, that, according to both the principle acted upen in the Howartl case (22 S. C. R 147), 'the wrong and the damage are not sufficiently conjoined or concatenated as cause and effect to support an action,' and, as put in the Howard case, the negligence and the mjury are insulated by the intervening ate of the boy-the causal connection between the negligence athd the dianage bemg broken by the interposition of independent responsible human action, and the phainuff's case, therefore, faled. There are probably other difficulties in the way of the plaintiffs recovering, but it is unnecessary to refer to them. The result is that the judgment of my brother Rose is right and must be affirmed, and the appeal from it dismissed wirh costs. I do not feel, however, that I should part with with the case without expressing the hope that some provision of law may be enacted that will place under proper governmental or municıpal supervision and control the vast network of wires which is to be found in a city like Tornnto, and may at any moment become the cause of serious injury to life and limb, as well as to property, and for requiring companies and others, whose disused or 'vagrant' wires maty become a sounce of danger, to remove then.'.

The gross earnings of the Toronto Siteet Railway Company for July amounted to $\$ 93,049.94$.
John F. Payzani has been elected president, and W. B. Ross, secretary, of the Italifat Electric Tramway Co.

Mr. Chas, W. Wasson, of Cleveland, Ohio, has leen elected a direc. tor of the London Sirect Railuay Co, to steceed the late Hon. (ireene lack.
The electric light inspection branch of the Inland Revenue Department will bee self-sustaining, as up to the present $\$ 2,00$ has lveen collected in fees.

The first truck with electric motors for locomotive work to le used in Canada was shipped last veck to Oshawa by Abeasn \& Soper, of Ottawa. It is a specially consiructed truch of heavy steel ant? weighs with the motors something over eight tons. The motors combined have a capacity of 120 horse power. The truck will le used in hauling freight cars to and from the G. T. R. at Otawa.
Ar. Thos. Ahearn, of Ottawa, has devised a methoxl for preventing variation of E. M. F. oceastoned ly sudden withdenwal or addition of load in connection with selfexcited water driven dynamos. An independently driven water wheel is employed to generate current exclusively for th: purpose of exciting the field of the generators. An anmeter is included in cach dynamo field circuit, and upon each dynamo is placed a small double throw switch on that in case of accidert, the seseral dynamos could be self-excited by throwing the switch on each dynamo, thereby conneating the armature of each to its own field. The advantages claimed for this method are: Steadiness of voltage, removal of the darger of burning out fields by aimormal armature speed, relief to the driving machanery, removal of fields from the lonecorcuit preventing any possobie damage to them by haghtang or whet cause, the prevention of damage to conmutators formerly caused thy shont circuits upon the line throwing open the curcut breakers and short circuiting the carrent across the commutator. Consideratile tume is alse saved in throwing in dynamos, which is now done without deiag after the circuit breakers are reset. This formerly required a very considerabie fime in synchro. nizing ficlds.

Canadian association of stationary engineers.

TORONIO N-boclation No. 1.

IN the alsence of the Presitent, E. J. Philp, the last regular mectung was presuled over by A. K.. Edkins, Dist, Depury. Afer general business had been disposed of, the newlyelected officers were mstalled as follows :
l'res., Walter l.ewis: Vice-P'es., Samuel Thompson; Rec. Sec., T. Eversfieh; ; Cor. Sec., Jas. Hughell; Treas., A. Wickens: Door-Keeper, A Slute; Conductor, Mattin Mose.
Ilros. Fox, Ilughett and Wirkens were appointed delegates to the annual convention.
At a recent regular meeting the following resolutions of condolence were alephed:--

- Whereas. it has pheasul onr ilenvenly Father to remove from the fianily of our estermed and worthy brother, W. G. Blackgrove, two of his chiliten. thetsfore te it resolved that we deeply sympathize with our brother, his wife and family in their shd terenement, but commend thetil to that alt. wise Supreme Ruler who, though sometimes inscrutable in Ilis dispensa-
 lutions be spreat on the minutes of this Assoctation, and a copy of sume tre sent to the berenved fannily and also to the mectianical press.

MONTREA. ASSOCIATION NO. 1.
A representative of the Ehbetrical. News called on the Montreal No. I Canadian Association of Statomaty Enkineers at their handsome and comfurtable quarters at 660.15 Crang st. They had just completed business, and the secretary, Mr. B3. A. York, stated that they had just elected delegates to the amnual convention to be held in Ottawa in September next.
The following are the delegates elected: Brothers T. Kyan, J. C. Robertson and E. V'aliquet, with alternues, ligos. Hy. Nutal, Jos. Marchand and J. Murphy. The delegates will be accompanied by Bros. J. J. York, (President C. A. S. E.), (ico. Hunt and O. E. Granberg, members of the C. A.S. E. executive.
An invitation was evtended to our representative to attend their annual pienic, Aug. 3rd, and make an inspection of their lodge rom, which is the best equipped for the study of steam engineering of any in Canada. On the walls are drawings of Babcock engines and designs of differem engine and boiler makers, together with photos of the past and present officers and groups of the members of the association. They have the latest models and appliances, and a librarv of no strall saze which they hope to add to from the proceeds of their pienic.
Bro. ib. Cowper, chief engineer of the Canadian Rubber Co.. presented the association with a model double plunger pump with glass cylinders. They have also a model ste:m pump with cylinders cut in half, showing working of valves.
Many of the merchants of the chy contributed to the prize list for the pienie games, and a goodly numbet turned out to the 1:xhibtion grounds to enjoy them.
In the drawing for a forty gallon barrel of oil, a little maid of ewhe summers pieked out the lacky ticket. In the lacrosse mat-th the tean captained by Mr. Humt won victory over the team led by Mr. Murphy. The Executive have reason to congratulate themselves on the complete success of the pionic.

BROCRVIIILE ASSOCIATION NO. 15.
AT the last meeting of the above association, the election of chicers for the ensuing year resulted as follows:
Pres., W. F. Chapuan ; Vice.Pres., Archie Franklin ; Rec. Sec., Wm. Robinsen ; Fin. Sec., John McCaw ; Treas., John Grundy ; Conductor, W. S. Baverstock ; Trustees, Emest Carr, Fred. Andrews and Edward Devine ; Delegate, W. F. Chapman.
The Secretary reports that good work is expected during the next term, the newlyelected officers being all energetic men.

Winslabe assoctation no. 11.
At a meeting of the above association at their hall on the ith ult., the following officers were appointed:
I'resident, C. Mazletl ; Vice.P'resident, Thos. Gray; Rec. Sec., J. Sutherland: Fin. Sec., A. B. Jones: Treas., R. Sutherland; Conductor, E. Simpson: Door-Kieeper. I. Harrison; Trustees, G. Hazlelt, C. E. Robertson, Thos. Gray.

The District l)eputy, Mr. C. L:. Robertson, installed the off. cers, and in a short address asked them to pay great attention to therr work in this associntion, as it was one of the most im. portant in the world.
All the officers are working engineers, and prospects seem to point to another year's successful work.

Chas. E. Rohfatson, Dist. Deputy.
Catigton ibace association no. 16.
bellour Einctrical Nons.
Sik,-The following officers of Branch No. 16, C.A.S.1:., were elected for the present term, July 6 th:

Past I'resident, Gco. 11. Routh; Pres., Jos. Mckiny; VicePres., Ifenty Derrer; Rec. Sec., A. M. Schnficld; Fin. Sec., John Ilamilton; Treas., Jolm McFarlane; Conductor, Thos. Mechan; Deor-Kceper, W. M. Tajlor; Trustees, A. Nichol, J. 1). Armstrong, J. M. Ilamilton.

Branch No. 16 is making sood progress. The membership does not grow very fast, owing to the limited number of engineers in the town. We have net otise a week so far, but are thinking of changing our rooms, and meeting only twice a month, doing away with our reading-room for a time. The weather being so watm has interfered with our meetings of hate, although in spite of that we are in good shope financially and every other way.
l3ranch No. 16 wishes the other sister branches every success.

> A. M. Schoftitin, Rec. Sec.

ONTARIO ASSOCIATION STATIONARY ENGINEERS.

Eilitur Fizctuical Nixn.

Sik, - 1 wish to call the attention of certificate holders of the O.A.S.E. who lave not renewed their certificates to Sec. 2, Art. 7, of the By -lanws and Constitution, which is incorporated by the Ontarin I.egis!ature, and reads as follows:
"The certificated thall be cood for one jear, and shall remain the property of the Ihand, and must te returned to the Resiutrar within 30 dags after the halder thereof
has leen twotified wo to da." has iren mutified to tu da."

A notice was sent to every member in January last, yet there are quite a number who have not sent in their renewal fees.
A further notice will be sent oult (to all who have failed to renew) in a few days, and after thitty days from date of said notice, all certificates not then renewed will be cancelled and means taken in cellect old certificates.

This will entail a good deal of work and expense, but the board are determined to carry out the act as laid down.

I would also request all certificate-holders who may change their place of residence, to communicate same 10 me by post card. I remain,

Yours very truly,
A. E. Evkins, Registrar.
I. S.-Renewal fees are $\$ 1.25, \$ 1.00$, and 75 c . fur $15 t$, 2 nd and 3 rd class respectively.
A. E. E.

SPARKS.

A liquidator has teren appolnted for the Victoriat Electric Light Co., lindsay. Ont.
The Burk's Falts (Ont.) electric light plant has arrivet in that tuwn and is leeng phiced in prisition.
The locil electric light company's plant at Port Arthur, Ont., has been purchased thy the lown for \$7.000
The Bell Telephone Co. has served a writ on the Dundas Telephone Co., chaimang damages to the annount of $\$ 10,000$ for alleged injuties to the furmet's service.
The Stratford Gas Co. has accepted the electric lisht agreement proposed by the Council. Lights will be supplied on the moonlight schedule at the rate of $\$ 57$ per lamp.
An oricrinn. council has been passed under the Electric Light Inspection Act. making the following additional regulations:-All electric lisht supply meter in use at the tine of the passing of the Electric Light Inspection Act shall be presented for verifications as follows:--One.third before ist Decem. bet, 1895. one.thisd before 13t March, 2896 . one-third before 231 July, $\mathbf{2 8 9 6}$. for every unverified meter found in une after the first day of July, 1896, the owner shereof shall incur a penality of twenty.five thilars. For every failure or neglect to comiply with the provisions of section 22 of the Act in relation to affording the departmemt testing facilities, the contmactors shall incur a penalty of fity dollars. For every failure to procure a certificate of registra. sion as required by section 35 and the payment of the fee establistied thereof, within thiryy days afrer the first day of July, in each year. the contractor shall incur a penalty not exceeding one handred dollars and not less than fify dollars.

canadian electrical association.

Arkanceatents for the Annual Convention of the Canadian Efectrical Association are being pushed forward as rapidly as possible, and are making satisfactory progress. A strong local committee has been appointed it Ottan:, to arrange for the proper reception and entertainment of the members of the Association who maty attend the convention. Ihis committec is composed of the members of the Executive resident in Otawa, with whom are associated Messts. 'I'. Y'. Soper, J. W. MeRae, and Thomas Ahearn. The committee is manifesting an enthusiastic interest in the work which has been assigned to it to perform, and the members of the Association can confidently look forward to a convention which will be in every iespect the cyual if not superior to any which has previnusly been held. A number of intercsting papers on various phases of electrical work have been promised for this convention by persons who are well qualificed to write interestingly and instructively upon the subjects which have been assigned to them, or which they have voluntarily chosen.

It is a well-known fact that Ottawa is one of the most interesting cities in the Dominion, and this is particularly true from an electrical standpoint. It possesses one of the greatest watel powers in Canada, from which sufficient current is generated for the operation of the city railway and lighting systems. The street railway system has become known far and wide as a model of what such a system should be, and will consequently well repay careful inspection of all its details both of management and equipment.
The dates for the convention have been fined for the $17 \mathrm{~h}, 18 \mathrm{th}$ and 19th of September. The local committee are arranging with the railway companies for reduced rates, and bope to be able to secure a single fare rate. The very satisfictory attendance at the Montreal convention last year gives ground for the expectation that at Ottawa a considerably larger attendance will be witnessed, as the convention will be located mid-way between Ontario and Qucbec.

DEVELOPMENTS IN THE TELEPHONE BUSINESS.

IT is astonishing to observe to what an extent the telephone business has become a part of the World's commercial equipment and to notice what strides have been taken by the telephone system in Canada since Professor Alexander Graham Bell made his first experiments in telephony at Tuttello lieights, on the outskirts of IBrantford, in the year 1875.
The business which has now become consolidated under the control of the Bell Telephone Co. of Canada, having a paid up capital of over $\$ 3,000,000$, consists of upwards of 500 offices and toll stations, with an enormous mileage of wire connections, and notwithstanding all that has been done a large amount of money is still being expended in erecting and otherwise perfecting the system so far as it relates to the successful operation of local exchanges; while in recent years also Long Distance lines have been constructed covering the greater part of the l'rovinces of Quebec and Ontario.

In all the large cities the Company has shown willingness to adopt the more expensive underground system for ts wires, dispensing to a great extent with the over-head pole wotk on the principal streets in business sections. Toronto, Hamilton, Ottawa, London and Montreal all have systems of underground work more or less extensive. The subways in the latter city are used principally for trunking between exchanges. As has prevously been mentioned in this journal a large amount of this work has been done within the past five years in Toronto, where subscribers now enjoy telephone communication over metallic circuits free from all noise and disturbance.

At present there are nearly five thousand subscribers in Toronto divided among four exchanges, consisting of the new Main office on Temperance St., having about three thousand subscribers, and the balance being divided between Yorkville, Parkdale and Toronto Junction Branches.
The underground cables which run to the New Main Exchange enter that building from two directions, passing over and round a roller curve built of iron and steel rods, on which are small cast iron rollers over which the cables pass. The cables are then bent up through hoies in the ceiling of the cellar to the floor above and are there attached to iron cable terminals. The cables are protected from abnormal currents by the usual combination,
heat coll and carbon arresters. From the terminals the lines are carried in switchboard cables under a false flooring to one side of the libbiad distributiag rick, from the other side of which similar cables are taken through a shaft up stairs to the large operating room, which is located on the top floor wh the building. llere they ate connected to an intermediate board fastened on the wall close to the first section of the litrge switchboard.

The switch itself is of the branch terminal type, with the usual iarks and self-restoring drops. It has an ultmate capacity of 4,200 lines, and is at present wired for 3,6 : Ten positions are arranged for incoming trunks from branch ou.ces, and especially designed sections are used for long Distance wark. In front of every operator is a small to volt incandescent lanp which lights when an annunciator falls, Fliracting the attention of the operator and also facilitating supervision by the Chief operator. Small incandescent lamps are also used for dis-connect signals on the inter-office tronk lines. Outgoing trunk lines are equipped with mechanical visual busy test signals. Instead of the usual cam and ringug keys, a combination key is used, consisting of two buttons. I epressing one button cuts in the operitor's telephone, while a depression of the other button cuts its out, and cnables the operator to ring a subscriber.

The frame work of the switch is of iron veneered with polished cherrv. The brass work is of dull finish, and the whole presents a very handsome effect. The board in all its parts, except the cables and wires, was made in the Bell Telephone Co.'s factory in Montreal, beng put together and set up here by local employees.

The power plant consists of a two horse power motor generator for charging the storage batteries, and two-half horse power motor generators for ringing bells-one being kept as a sparetwenty storage cells, 300 amp . hour and fourteen 30 anp. hour cells. The cells are arranged in sets, one set being in use while the other is being charged; suitable swithes throw them in and out of citcuit. A Weston Standard voltmeter and ammeter are in the charging circuit, white four Weston current indicators are in the discharging circuts.

Attention was called in a former article in this journal to the magnificent fire proof head office building which the Company is now erecting in Montreal. The butding will front on Notre Dame, St. John and Hospital Sts. In Ouawa also the l.ocal Exchange has been thoroughly temodeled and now occupies a bandsome new buildink, adaped in every particular to its requirements. A description has already been given in the Elifctrical. NEws of the new Exchange lately erected in Quebec.

All along the line the same energetic policy is being pursued. New lixchanges are being opened in small places, and additional Long Distance lines are being erected in different sections of the country.

A FEW STEAM PUMP CALCULATIONS.

Wanteb- A stean pump to deliver 1,000 gallons per minute. Strokes per minute, 40 ; length of stroke, two feet; steam pressure, So pounds : head to pump against, 100 feet ; allowauce for loss, 20 per cent. A loss of 20 per cent. necessitates calcula. tions for 1,000 gallons +20 per cent., or 1,200 gallons per minutc. This divided by 7.48 gives 160.4 cubic feet of water per minute. Diveding 160.4 by to we have 4.01 cubic feet per stroke, and call it 4 , omitting the decimal. Dividing again by the length of the stroke (in feet) we get $4+2-2$ square feet as the areat of the pump cylinder, or about 19% inches for diameter; a pretty large diameter for the stroke, but necessary to meet the requirements, although it would be better to lengthen the stroke in three feet. The head of 100 feet (.434 pounds per foot, but calling it .5, makes an allowance for friction) gives us fifty pounds pressure per sq. inch of piston, and the piston area equals $2+144-288$ square inches, $288+50-14.400$ pounds total pressure on the piston to be overcome by steam pressure on the steam piston. Dividing the total load by the steam pressure we have $14,400+80-180$ square inches for the steam piston plus 20 per cent. loss in the steam cylinder, etc. $15.25+3.05-$ 18.3 inches as stean cylinder diancter. The conditions here given are a little unusual, the band being low for the pressure used, and the stroke short for the diameter; also the small number of strokes per minnte, but the method of calculating is clearly shown and can be done for any selected case.

THE ONLOOKER.

Tus coliege-bred mechanic is a good deal in evitence in these days of techmeal colleges and schools for manual trnining. He is, in some respects, a much discussed individual, tor it has not been settled in all minds that schools and colleges can tum out cap.ible mechanics. They may make scholars and professional men, but, as Rudyard Kipling lias said, that is another story, Opmion differs whether the course actively pursued of reeent years of producing electrical engineers through our colleges and universites is going to give to the electrical industry the strong and efficient men, that this science, with its great development, must require. True, the schooling, if we may use the term, obtained by the electrical student, is usually supplemented by a measure of practical training in some one or other of the large electrical uanufacturing companies, but is this sufficient to make a capable electrical engineer? In this particular, inportant advances have been made within a very few years, for Mr. James 13. Cahoon, the electrician in charge of the Expert bepartment of the Thomson-Houston Co., has said, that a few years ago no special tequirements for entrance were required or exacted and the result was that the student class was composed mainly of young boys from sixteen to twenty years of age, who could no: overcome therr bopish proclivities, and were in for fun more than serious work. To day, in most of the colleges and universities furnishing in electrical engincering course, the ase limit has been raised, and no student is admitted unless he is an engineering graduate of some technical college.

But the ques:ion is a broader one than that of method and efficiency, as reflected through collcge and university. Experienced men divide ont the question, whether the mechanical enginect or the college-bred electrician is likely to make the most capable eiectrical engineer. The former has a practical knowledge of mechanics, that is as necessary, in many respects, to the electrical, as to the mechanical, engineer. With this thorough knowledge as a foundatinn, the contention is that he can add to that an electrical knowledre, and thus equipped, no mere college taught electrician can expect to cope with him. This may seem like treating very slightingly the work thet is being done in our colleges and universities, and which, by those whose views ought to count for something, is pronounced timely and capable. It does not seem unlikely, in this case, as in others, that the best results will be secured by striking a happy medium between the two methods. Though prejudice has condemned the colucated man in many practical walks of life, opinion, based on experience, shows that education, whether with the mechanical or the professional man, is important ammanition in his possession. If the thoroughly trained mechanical engineer can add to that invaluable capital the eiectrical training that comes through the student course of the universitues of the present day, he ought to develop a measure of strength that would at once place him at the top of the electrical engineering profession. Wuch of the criticism levelled against mechanical engineers, who undertake to call themselves electrical experts, is due to the fact that these men are not mechanical engineers any more than they are electricians. They are firemen and stokers tow often, and doing their work in a bungling manner, the capables and incapables come in 'reether for severe criticism.

A conversation the Onlooker lad a day or two since with Bir. 1). C. Mcl.ean. Chief Engineer for the Toronto Street Railwiay, brouritt out in bold relief the contrast between the capable and incapable engineer. Mr. Alclean is a mechanical engineer, having receved a training and experience that is common to few men. He is one of the seventy-four, and only seventy-four, the world over, who have passed an honorary examination in engineering, that in Great Britain holds a parallel position with the degree of 13. A. Prom Cambridge or Oxford. There it is necessary, in orter to beiome an engineer, to be apprenticed, under artucled indentures, for a period of seien years, where the train ing the young man is to receive, rather than the immediate emoluments, is the main consideration. Having put in this length of time in apprenticeship, then in order to obtain a third class certificate he must put in one year's actual experience at nea. To obtain in second.class cerificate another twelve months at sea is necessary; and the same length of time is called for
when trying for a first-class cortificate. In the latter case the engine of the vessel must be at least $3,000 \mathrm{~h} . \mathrm{p}$. and whilst the studentengineer is not actually in charge of the vessel, he bas charge of an important watch, so that the responsibility, and the experience that comes from that responsibility, is lirown upon him. Mr. McLean lias obtained this experience, besides having had thirteen years' actual experience as a marine engincer. The Onlooker enquired of him why so great emphasis was laid on the training of a marine engineer, and the reply was that only by this means could one become thoroughly eguipped in lis work. The ordinary experience will make a man what will be termed an engineer, but not as the term is understoo' in its lighest sense. Queried as to his view of the training necessars to become an electrical ehgineer, Mr. Mel.ean replied that the best nuthorities were of one view that the perfectly equipped electrical engineer must be nine-tentis a mechanical engineer. "How absurd," said he, "to suppose that because a young man can handle a coil ol wire and perform a few mechanical acts connected with an electrical plant, that this makes him a master of electrical engincering. And yet 1 have seen this kind of thing. I bave known those calling themselves electrichl engineers to be unable to give an intelligent answer to what was an armature, while it was altogether beyond their compreliension to work out the simplest equation." The study of mechanics in Mr. McLe.in's opinion embraces so much, that it is impossible for one to become a master of his work except by years of toil. Going over the long list of text books that an Old Country examination calls for it was clearly shown that these could not be mastered except after many years of study. Then, on top of the study there had to be the real experience. It may be that Mr. McLean's ideal of a mechanical and electrical engineer is a difficult one to reach. The vety fact that it has been placed high ought to be an incentive for those who would aspire to complete success to endeavor to reach it. One thing seemed vely clear to the Onlooker that with a man of Mr. McLean's education and experience at the helm the mechanical and electrical affairs of the Totonto Railway Co. were in strong hands.

MOONLIGHT SCHEDULE FOR AUGUST.

Day of Month.	Light.	Extinguish.	No. of Hours.
	11.8.	H.M.	17.am.
	P.M. 11.40	\} 4.20
	-........	A. M. 4.00	
	A.3. 12.40	" 4.00	3.20
4......	$\because 1.40$	" 4.00	2.20
5.....	No light.	No light.
6......	No light.	No light.	...
	No light.	No light.	
	P. M. 7.30	P. M. 9.30	2.00
9.	- 7.30	119.50	$\pm .20$
10.	" 7.30	(1) 10.10	2.40
11.	117.30	1110.30	3.00
	" 7.30	1111.00	3.30
13......	117.30	1111.30	4.00
14......	" 7.30	A. M. 12. 20	4.50
15.....	" 7.30	" 1.00	5.30
16......	17.30	1.10	5.40
17......	" 7.30°	12.10	6.40
18.	" 7.30	113.30	8.00
19......	" 7.20	114.30	9.10
20	$17 \quad 7.20$	" 4.30	9.10
	" 7.20	" 4.30	9.10
	17.20	11.30	9.10
23......	17.00	" 4.30	9.30
24......	1 7.00	114.30	2.30
25.....	" 8.00	11.30	8.36
26.	11 9.00	114.30	7.30
27......	" 9.40	" 4.30	6.50
28......	(1) 10.40		5.50
29......	"1 11.00	11 4.30	5.30
30......	111130		\} 5.00
31......	"	114.30) 5.00
		Total,	853.00

Kamloops, B. C., is about puting in an eicetric platt of the capacity of 3,000 sixteen candie-power lamps.
It is reported that the Weston Union Telegraph Co., is about constructing a telegraph line to Alaska. via British Columbia.
The following board of directors have been elected by the North.West Electric Ca, of Winnipeg: G. H. Streyel, president: J. M. Graham. G. A. Simpson, I. A. AfcArthur and II. Camerod, manager and secretary.

recent canadian pateuts.

Canadian patents lave iecently leen gninted for the following electional devices:-
No. 48.8 ig , for a closed conduit electric milway, to James Fmncis Mc. Iaughlin, Ihiladelphia, I'ennsylvania, U.S.A., and May, 1895: 0 years.

Closki Conduit Ei.kctric Raltiwar.
In an electric milwar, the combination with a closed condulit provided with mann and supply conductors, of swith boxes armanget alternately on opposite sides of the condut and provuled with switehing mechanism for coupling the nanin conductor with seetions of the working conductor, and two series of electro magnets, on opposite sides of the motor car, in line with the switch boxes, for operating the switches therein by magnetic nttraction.
No. 48.838 , for a car fender and brake, to Willam Melketh, Hamilton, and Ilarrie't lelle lewis, Winona, telh in Ontario, Canala, 3rd May, 1895: 6 years.

The combination with an electric or other milway car, of a frame a, b. c. standards d, d, horizontal bar e, e, vertical bangers 1, 1 , provided with openmps m, m, adjustable diagonal bmces, f. f, with covering 2 , shaft J, rollers k_{1} rubber tubing $b_{\text {, and }}$ cushion p, all constructed substantially us and for the purpose specified. In an electric or other rullway car, the combination with a fender of brake shoes, and bmake shoe rods, the same constructed, be operated by the fender being pushed against the brake shoe roads, when meeting an obstruction on the track, to apply the brakes on the wheels dutomatically, substantially as set forth. In an electric or other milway ear the combination with a fender A, of brake shoes p. connected by a shaft r_{1} supported by springs s, bmene rods, t, t, altached to the brake shoes, brackets u, provided with lugs 4 , and spiral spring v, v, to push the brake shoes of the car wheels, and brake rods operated by the rear contact movement of the fender A, against the said brake rod, substantially as and for the purpose specified. In an electric or other milway car, the combination of the fender and brake mechanism, substantially as and for the purpose specified.

No. $\mathbf{4 8}^{\mathbf{8} 870 \text {, for a furnace grate, to Edward Gurney, Tornnto. Ontario, }}$ assignee of Henry Truesdell, Hawarden, lowa, U.S.A., 7th May, 1895: 6 years.

Furnace Gratr.
The combination of a grate frame, rock shafts provided with alternating lateral arms and also operating arms as at C ", a rod d, pivotally connecting arms C ". one of its ends being connected to one of sald arms C " by a serew connection, an operating lever, an adjustable connection b:tween rod d. and the operating lever, and grate bars supported on the lateral arnss. The combination of a frame. two sets of bars adapted to move alternately in vertical planes, a stationary coupling bar having journal bearings and rigid. ly attached at its ends to the frame and interposed between the two sets of
grate bars rock shafs mounted in the journal tespangs of the coupling tair. and having means fot attermately moving the grate lars veeticilly, nud means for operating the rock shafto, ns deserileal.
 Y., U.SA., IJth May, 1895 ; 0 yems

In an are lanp, a frame carrying a gear train controllell by an escapement, said frume being pootally mounted on pmraltel arms, sud arms beng pivoted to fixed supports, whereby the frame will always ixe puralled to a given plane, in combination with an electo magnet located in the shunt circuit of the lampand attached to the frame, and an armalure per. manently fixed with respect to the magnet, a carbon holder consisting of a U shaped yoke pivotally connected with the end of the cutton rod, in com tunation with two jaws pivoted respectively to the amms of snid yoke, anil means for closing and opening said jaws.

ELECTRIC WINNIPEG.

A very odd thing, and one that not only astonishes, but startles, the stranger, says a writer in Toronto Saturday Night, is the peculiar electrical condition of everything in Winnipes during the winter. If you reach out to touch an electric bell, before your finger is within three inches of the enunciator there is a flash of lightning that goes up through your arm and will probibly make you jump six feet. If you touch any metallic substance there is a flash of lightning; when you get into bed the clothing crackles, and one would think that the landlord had provided you with a blanket adorned with fire-fles.

After a while one gets so nervous one is afraid to touch anything. I have stumbled around my room and bruised my shins rather than take chances lighting the gas or turning on the electric current. If you reach for the gas jet, "crack" it goes. If you shuffle your feet along the carpet you can light the gas with your finger. It is really one of the most startling phenomena in the whole northwest. Imagine turning over in one's bed and having the quiles emit sparks, or reaching for a bell and being immediatelv answered by a fash that is apt to make one howl. I saw my traveling companion, who had grown someWhat careful, wrap his finger up in at piece of paper to touch the bell. He jumped back with a slariek, and the whole paper seemed en fire. The people of the effece east who want to be. come electrified and have their systems filled with electricity should go up north; they will get in proper shape and will learn to avoid radiators and every other netallic substance.

The fact remains, however, that in that climate one feels wonderfully hopeful and able to work, and no task seems too hard to be undertaken, and I amn fromly convinced that the great men of Canada will be developed there. It is a remarkable fact that Ontario, the most blessed of all the sections of Canadn, has developed, proportionately to its population, fewer brainy and energetic politicians and business men than the provinces by the sea or the gieat western stretch of land with the wonderful clec. tricity in the air and the greatest difficulties of money making in the climate.

Messrs. E. Carl. Breithaupt, Berlin, A. A. Dion, Otura, Chas B. Hunt. London. and En Mernll. Toronto, were representathes of Canada at the annual convennon of the American Institute of Electrical Enginec.s held last mnnth at Ningana Falls.

HUHLISIIEI ONPrIE YIFTH OF KVKKY MONTH HY
CHAS．H．MORTIMER，
Office：：Confedekation Liff lUuiming， Corner Yonge and Richmond Strects．
TOROINTO，

－Telephone 23 －

New Yoke tapk lisubancr Bumbing．Montrbat． Ikll TClephone 2399.

A DYRETISFMENTN．

Adventising rates ment promplly on apy lication．Orders for adverticing atoould Reach the ofice of puldication not later than the isth day of the month immediately ireceding date of isule．Changes in advertivements will be made wheferer deaijed， without cona to the atlvertiver，but to insure proper compnhiance with the instructions
of the advertiser，retiuests for change should reach the office as early an the zand day of the month．

sHRNCRTFTRONK．

The Filxctaical Naws will te mailed to sulacribers in the Dorninion，of the United States，soos free．for $\$ 1.00$ ger annumg， 50 censs for six months．The price
 cents is added for cous of discount．Money sent in unregistered lesters will beat sendets dilk Sulncriptions from forcion countries embraced in the Genetal tootal Unmo．\＄1．so get annum．Sulmcriphons are pagable sp advance．The paper will be disonainued al expreation or ermp paid for at wo mipulated by ihe subscriber but where no such underanating exits，wini be continued until instructions to ctis． Conlucribers mas have the mailinges nad
 The fubhisher ithould ve sotificd of the failure of subecribers to prompuly and iegulaily．

Correzpnodence is invited upon all topics legitimately comang within the scope of this iournal．
 official．datik of thk canatian mitycthical．asseciation．

CANAIIAN EI．ECTRICAI．ASSOCIATION．

OFFICERS：

PEESIDENT：

ふ．J．DUSくTMN．local Manager lell Telephone Company．Toronto．
1st Vich－president：
A．II．MM1111．Inspector Canadian lhard Fire Indernnters，Toronio．
2N：V＇ick－PKksibe．ot：
C．BERKI：I．EY IOWEL，L．VIanager（Btawa Electric Iaght Co．Outama． SECRETAKT－TREASLYER ：
C．11．MOR IMBER．Aulisher Efectuicai Niws，Toronto． FXRCLTIVK COAMITTER：
1．13．MicFAK1＿ANE．Ikell Tilephone Company．Montreal． GFO．IHAACK，G．N．W：．Telegraph CO．Ifarmiton．
T．K．ROSEBRL＇Gif．Ireturer in Electincily．School of Jracimal Scrence．Torchio．
E．C．IREITIAUMT．IRerlin．Ons．
JOliN Yi＇l．f：Manager Ciuctoh Gas and Electric Light Company． Guelph．Ont．
1）．A．STAKR，Electrical Engineer，Montreat．
\} 1. WRIGilt, Mnnager Toronio EJecinc Jaght Company.
3．A．K AMMFRER．Royal Electric Co．Toronio．
3．W＇．TAVI，OR．Manager I＇ctrimoro Cartion Ca Petmiono O Illilian Inland Kevenue IDepartment．Otawa．

MONTREAl．EIECTRIC CLUUS． ofricers：
Iresident．W．In Suaw．
Fice－Dresident．II． 0 Etiwakta．

CANADIAS ASSOKIATION OF STATIONARY ENGINEERS кXRCLTIVR POARD：
Iresident，J］．YuRk，引land of Trade Bldg．Monireal．

Conductor E．Inilip．
Toronto．Ont．
thoor Kerime．1．F．Cotis．
Warton．Ont．
Toxostry lleancu Now，\＃．Nects and and tith Friday cach month in
 1＇resndeni．1．Everntrhs．Revorling ectetary．E’nversaty Crescent
Mhntikat likasill Vin a Morts ast and zrd Thursdar cach month．
 thelhing，firs vir groikient．I．Slurphy secand vice－preskient．W，Wiate． mecretary，is A．Soxk．ireasures．Thus Kyan
St．latigent lizantrina a－Mcres every Monday erenang at 43 Thonsccoats strme．Montral R．Drounn．Freskient；Alfred I－atour．Secte－ zary， 306 DNisle sirect．Sis．umponde．

IKanion：Man．．likanch Nu．：－Nerts ist and ard Friday eaclı month．in Cily liall．A．R．C＇rinford．Dresident Arthur Jiveming． Siecretary．
Hamilithe Hkancit No．2．－Meets ist and 3 ril Fridiy anch month，in
 Whi．Nurris，Corresponding Secrehiry，asi W＇ellagtun Surel North．
 Secretary．
HKantruni Brancu No．4．－Meets and and quif Fiday each month． F．Iane I＇resident：I＇．Dilgrim．Vice－I＇resident ；Joseph Cigle，Sectetaity．
Irantford Cordage Co．
lonion Brasich No．s．－Meets in Sherwood Ihall first Thursday ane last Frudar in each month．F．Mitehell．Iresident：Willum Meiden，Sec． retary Tireasurer． 533 Richmond Streel．
（ittelirlt likaxcit No．6．－Miects ist and 3rd Wednesdily each month at 7：30．pm．J．Fordyce．President：J．Tuck．Vice．President：1\％．1．Flewel－ ling．Kee Secretary：J．Gerry．Fin．－Secretary：Treasurer，C．j．Jorden．
Otrana Iknascis．No．7．－Meers and and fih Tuestay．each month．Corner linok and Sparks stlects；lirank Robest．I＇resident：F． Merrill．Secretary． 35^{2} Wellington Street．
1）KESUKN lBkANCII No．8．－Mects every and week in eech month：Thos． Merrill．Seeretary．
limolis likascit No．g．－Afeets znd and quh Saturday each month at－ 8 p．5s．W．J．Rhodes，I＇fesident：G．Steinuetr，Secretary，I eerlin Ont．
Kingiton likancil No． 10. －Meets $15 t$ and 3 rd Tuesday in each month in Fraser llall．King Sireet，at 2 p．m．President．S．Donnelly；Vice－ President．Henry llophins；Secretary．J．W．Tandvin．
Winnirge likancil No．is．－Iresident．G．M．Hazlet：Recording Secretary．J．Sutherland：Fuancial Secretary，A．Ih．Jones．
Kincartink Bkancil No 12－Mters every Tuesday at 80° clock，in the Enginert＇s Hall，Watermorks．I＇resident，Diniel Ikentt：Vice－President． Joieph llall．Secretary．A．Scolt．
Wiakton Bkancii No．13．President，Wim．Craddock．Kec．Srere． tary．Ed．Dunham．
 each month S．Pottes．Presulent．C．Poluson．Vive．President．W＇． Sharp．engineer otmon launéry，Charlone Sirect．Secretary．
ifoockvalde：Hkancat No．is－I＇resident．IV．F．Chapman：Vice－ Prevdent．A．Frauklin：Kecording Secretary．Wini．Robinson．
Cakietun Itace Bkancil No．ab－i＇resident，Jus．Mckity．Vice I＇resident．Ilenry Derrer：Fin．Secretary．A．M．Thotield．

ONTARIO ASSOCIATION OF SIATIONARY ENGINEERS

HOAKD OF FAAMMNEKS
President．A．Asues．
Vice．Piesident．F．G．Mircimfle
Registrar．A．E．Elikisis
ilrantford．Ont．
Treasurer．R．Nacris．
1．ondont，Ont．
Solicuor．J．A．McANDr：ws．
239 borden st．Toronto．
28 Napier st．．Viamilion．
Tokonto－s．F Edtine Toronto．
IAxilt

OTr
Kinceron－L Devinn（Chief Engineer Penctentary）．J．Camptell．
LoNion－F．Mitchell．
Niagaka f゙alls－W Phillips．
Information regarding exatninations will le furnished on application to any membler of the thoartl．
＇Tus：Chicago City Kailuay Co．has recently established a school in which their motermen are given instruction which is calculated to fit them to discharge their duties in an intelligent and efficient manner．This is only possible when men have acquired a knowledge of the method of construction and opera－ tion of the apparatus placed in their charge．The experiment is one which seems to be in the direction．

Is the present number of the Elbectailai．Nizls is printed the decision of Mr．Chief Justice Meredith of the Common Ileas Divisional Court，Toronto，upholding the judgment of Mr． Justice Rose，in dismissing the action brought by Mrs．Aynes Hauford against the Bell Telephone Co．，the Toronto Electric light Co．，the liolmes Protection Co．，and Silas Whecler，to recover damages for injaties sustained by contact with an elec－ tric wire on the strects of Toronto．The leamed judge took the ground that the direct cause of the injury did not orginate with the defendant companies，but was due to the act of a boy who chopped a brunch off a tree which stood near the wires of the Holmes Company and the Bell Telephone Companv，and the falling of the branch，which caused the Holmes Company＇s wires to come in contact with the wires of the Electnc Light Company：While the complainant in this case is deserving of the ereatest amount of sympathy，there can be no question that the decision given is a just one，and that had the plaintiff been well advised legal action would not have been broukht，at least as a firss resor．Hiad a more conciliatory course been adopted at is by no means improbible that some of the thousands of dollars which are being expended in law costs mikht have found their way into the pocket of the unfortunate victim of this acciticnt．

So sanguine is the Street Railwaty Gazette of the success of the conduit electric street railways now under construction on l.enox avenue, New Jork, and in the city of Washington, that it advises persons ilesirous of obtaining franchises for the operation of electric railways by the overhead system to lose no time in securing them. The view is that after the conduit road shall lave been shown to be workable, the public will be found much more reluctant to grant permission for the construction of roads on the overhead method.

Tuk turbine water wheels are about as unique and interesting as any other feature of the great power phant which is about io beset in operation by the Catarict Construction Co., on the American side of Niagara Falls. These wheels, which were designed in Geneva, have six times greater capacity than any turbine wheel previously constructed, being capable of givink 3000 14. r. while running at $2 j 0$ revolutions per minute, under a head of 136 feet. No higher praise could be bestowed upon the skill of the designers of these wheels than to state that during a recent test their speed varied only 7 per cent. its a result of 3,000 11. 1. being suddenjy dropped from the load.

Tilf. extent in which electricity will ultimately supersede steam as a motwe power on mailroads is the subject of much speculation and interest. The Eifecteicai. News has been slow to place confidence in the assertion so fully made, that in a few years the steam locomotive would be superseded by the - electric locomutive. On the contrary, there is littie room to doubt that under certain conditions and for cert.in purposes, the electric locomotive will find a place on steam railroads. This subject has received its latest consideration in a paper entitied "The Substitution of Electricity for Stean in Kailway Iracticc." by 1)r. Louis Duncan, presented at the recent convention at Niagara Falls of the Anerican Institute of Electrical Engineers The questions considered by Dr. Duncan in his paper were: (1) Given a railway system at present operated by steam, will it pay to change entirely to electricity, or to make a partal sub. stitution, and how should the change be made? (2) If entirely new lines are to be built, will it pay to equip them electrically? How should they be cquipped? The ultimate conclusions arrived at by the author on these points, are as follows: 1st. The iendency of passenger transporation on the steam lines has been in the direction of the greatest electrical economy; while the tendency of the freight transponation has been in the direction of the least electrical economy. ad. It will not pay any through line with considerable traffic, having two tracks, to equip their main tracks electrically. 3d. With four track roads it will pay to equip all of the tracks electrically unless a considerable portion is through passenger trafic. fith. It will pay all the larger roads cither to equip a number of their branch lines electrically, or to control competing electric lines. jth. In order to remain on a dividend paying basis it is imperative that most of the two track: lines either build additional tracks or control the electric roads that parallel then Gih. Helieving that ultimately all of the triffic will be done by electrictit, it is imperative that the managers of steam roads keep constintly in touch with electrical progress.

Tit: question of the rating of are lamps seems io require a considerable amount of adjustment. Should an are lamp be rated according to candle power, or current, or voltage, or how? The rating astally adpoted is according to nominal candle power, that is, a specitication says that the lamp shall give a full candle power of nominal 2,000 or 1,500 , etc., with a certann amperage Now, as a matier of fact, this is no specification at all, and refers $t 0$ no standard whatever. First of all, what is the full candle power of at nominal $=, 00 \mathrm{c}$ p. arc lamp? Next, at what angle is this full c.p. to be measured. It is well known that the intensity of the light from an are varies arcording as the cye is above, on a level with or below the arr, and that it is maximum at an angle of 45° below the homzontal. It is well known to those who make any study of elecirical matters, that the arc lamp does not give the light, but that ats givenly apiece of mechanisim for regulating the distance a part of the cartoons, and that it is the carbons that give the light ; that carbons vary among themselves so much that those of diffeient makes may
give 50 per cent. difference in light for the same expenditure of energy. So how can the lamp be rated at so many candle power whthout distinctly specifying the kind of carbon, its size, and the angle of measuremhnt? Candle power depends directly on the temperature of the crater, and this enaperature is nearly inverselv proportional to the size of the carbon, the amperage remaining constant, so that any lanp may be adapted to give any candle power (within reasonable limuts) by merely varying the dianseter of the carbon. Howeves, as the carbon decreases in diameter, it takes a greater pressure to produce the same amperage than with a larger cabbon, so that candle power and amperes remaning constant, pressure and diameter must vary inversels according to some proportion. All these general conclustons haie been very carefully examined by l'rofessor Ayrton, and experimental results prepared, which show the proportion rather closely that exists between amperes, volts, diameter of carbon, and candle power, and the effect on an actual case of varying one or more of these factors. Starting with the assump. tion that a certain candle power (at a certain angle of coarse), is required, and keeping that intensity invariable, he shows that with a certain definite diameter of carbon a certatn quantity of energ' is required, which, within limits, remains constant, no matter whether the volts be high and the amperes low, or vice versat. Now this gives us a very satisfactory basis where to rate our arc lamps. Instead of specifying them to be of so many "candie power" a standand which no one can verify, and which depends on so many uncentain factors let them be rated at so many volts with a certan anperage, and a carbon of such and such ciearly defined diametel. These data can be easily verified by experiments, and purchasers of arch lighting plants will have something to go by, instead of nothing as they have now.

A counthy like Canada, when water powers abuund, and where manufacturing: industries afford outlets for large amounts of capital, is peculiarly well adapted for the development of the electrical methods of power transmission by the use of polyphasal currents. The demand for power is increasing every day; the supply is paracacally unlimited in the numerous streams that waste their potential energy in innocous desuctude, and the means for the conversion of this potential energy of water into kinetic energy of rotation are open to all. The Canadian mamufacturing interest should lee particularly wide-awake in adopting any means for cheapening the cost of their power, and it is somewhat remarkable that the electrac motor has not had a freater success in ousting from the factories and other places where power is scattered about in small units, such a very incfficient prime mover as the small steam engine. Central station plants would do well to work up this kind of business. A preat source of expense and loss, in such plants, is the fact that for a great part of the time the machinery is being idle, and so earning no money, while if work could be found forit during : longer period a deficit mighs be converted into a profit. In other words, a higher"load factor" would be an aulvantage. .low a few motors would go a long way towards helping out relarns, and there are very few towns where power is not :equired to a smaller or larger extent. There are always some people who use a litile power, and the fact of it being obtanabic would of itself create a demand. A principal reason why electric motors are not more used in factories, saw mills, $\& \in c$., secms to be the regrettable ignorance on the part of the owners and operators of electric lightine plant of the prossibilities of electric transmission, and thas iknorance is largely inken adyantage of by steam engine manufacturers, who sell small incficient engines under the very noies of electric light owners. Why do superintendents of ceniral stations not keep themselves up to date in the matter of eiectrical developments? It might perhaps be too much to expect of an average "electrician" that he should study the more scientific elements that govern the design of new apparatus, but at least he shmid know that improvement is taking place along cettain lines, or that cerrain novel zypes of apparatus ate being brought out, or that electricity is being used for such and such new purposes. And yet it is ver; unusual to find a man in charge of a small power house with any general information at all on clecancal subjects. Owners are just as bad. The unfortunate results of this carelessness and indolence are observable wherever one goes, and can be seen in aimost every detail of the manaymens. Machinery is purchased because it is chestp, without any reference
whatever to its efficiency. Wires are put up by guess work as to size, and the instruments used are frequently curiosities. These matters, we can understand, are passed over by inexperienced persons, but why the ust of motors for all kinds of industrial purposes is not more pushed by those having power to sell, is a question that can only be answered by reference to the backwardness of electrical knowledge throughout the Dominion. There are many lowns in which are situated factories of all kinds that use steam power in small scattered units. These small inefficient steam engines might very well and successfully be replaced by electaic motors, that would do the wotk equally well, and connmize much in the saring of condensation in pipes, radatuon, 太c., to say nothing of the higher efficiency possessed by the electric motor over the small stean engine. Here is a promising field to work in for central station men, who are sufficiently enterprising to study what may tend to their own pecuniary advantage.

Since: the article appearing elsewhere in this number relating to the approaching convention of the Canadian Electrical Association was put in type, some additional particulars have come to liand from Ottawa concerning the arrangements for the convention. The lncal committee have secured from the railway companies a rate of a fare and a third for delegates altending: the convention from any part of Canada. Any member with or without his wife desiring to attend the convention should buy a first-rlass sungle fare ticket to Ottawa from the ticket agent where he lives, and at the same time procure from the agent a standarl cerificte. Thes standard certificate is in the possession of every ticket agent, and is absolutely necessary in order to buy a return tucket from Ottawa bark home at one-third the regular fare. The Ouzwa hotels hate quoted verv low rates for the accommodation of delegates and their wives; in no case will the rate exceed $\$ 2.00$ per day: We are advised that the local committee are not only making most complete arringements for the entertainment of the mentbers of the Association, but are likewise making provision for the ladies. A binguet to members and their wives has been alranged for at the Kussell House, at the close of the Convention. This banquet will be of an electrical nature in its appointments a:ad quite unique in all respects. We strongly recommend all members of the Association to visit Outawa on the occasion of this Convertion, and take their wives with them.

Ouk readers will be interested in noting by another column, that the Canadian General Electric Co. have commenced the manufacture of carbide of calctum under the Wiilson patents. So much has been written and prophesied regarding this new product of the electric furnace and of acetylene gas, the result of its decomposition in water, that the opportunity of obtaining it will be welcomed, if only for expermental purposes. We are not, however, able 10 share the roscate views of its promoters to the extent of seeing in it an invincible or even a formidable rival of the electric light. It would indeedr: the itony of scientific evolution should the electne are in the e ad have produced of itself a rival from which should come a sucressful challenge of its supremacy as the most brilliant and economical of artificial illuminants. This, however, is far from likely, Already certain linits, undescernible, naturally; in the first glow of an inventors enthusiasm, have been indicated by more recent developments. The earlier representations as to the cost of production of the carbide, have been found unreasonably lou, even under the most favoiable conditons, and difficulties in the actual use of the gas for illumination, while possibly not insurmountable, have led to the belief :hat it is more likely to prove of service as an enricher of existing bases, than as an actual alluminating medium. I.ooking at the matier from an eiectincal point of view, there seems to be no reason to fear, but sather many to weleome, the new discovery of Mr. Willson. Carbide of calcium and its most imponant resultant, acetyline gas, will take their proper rank amongst the contribumons of clectrical science to the industrial art, not aj revolutionary or destructive intruders, but as valuable and now indispensible auxiliaries.

Sibetrooke. (huc. captialises are amplying for letters putent soconstitute a company to rin derime and horse cats in that city, with power to exiend thery railuay to any place in the distice of St. Framis.

THE TELEPHONE AND ITS TROUBLES.

When a telephone was first used on a telegraph circuit, says A. Dolbear, in the Cosmopolitan, it was noticed that hissing and fiying sounds could be heard, as well as telegraphic signals of all sorts, all of which had their orıgin in other electric circuits. Sometimes the extraneous noises were so much stronger than the telephonic speech that they quite overpowered it. The din destroyed the articulation. This was the case when the automatic Wheatstone transmitter was employed on a telegraph circuit parallel to a telephone circuit on the same poles. This was at first interpreted as being due wholly to induction, and for business purposes telephone lines were removed as far as practicable from telegraph lines. The trouble did not cease. In some cases it was nearly as bad as before; and then it was apparent that the source of the disturbance was the earh itself. lloth arcuits made use of it ats a part of their systems, and their greund connections were adjacent, oftentimes practically the same. When the telephone ground, as it was technically called, was moved away, there was some relief, but it was found possible to detect telegraph signals from lines separated by miles of earth.
When compased with telegraphic instruments, the telephone is found to be exceedingly sensitive. A sounder requires about the tenth of an ampere to work it properly, a relay, about the hundreth of an ampere; but a telephone will render speech audible with less than the millionth of an ampere, and is, therefore, more than ten thousand times more sensitive than a telegraphic relay. When the earth is made to form a part of an electric circuit, the current does not go in a narrow strip fiont one ground terminal to the other, but spreads out in a wide sheet, much broader than perhaps most have imasined. Thus, if the grounds be no more than three or four miles apart, the spreading earth curtent can be traced in a sheet as much as two miles wide. If the grounds be still further aparr, the sheet will be correspondingly wider. This earth current in its course may meet with streams of water, gas and water-pipes, and other conductors better than the earth itsetf, and these will conduct some of i, but not all. The stronger the current the more it is spread, and a telephone ground connection anywhere in its path will receive its share unavoidably.

In cities and towns employing the trolley railway systems, the mils form part of the circuit. As they lie upon the earth, the earth necessarily conducts away a notable part of the current, no matter how large the rails and good the connection. For instance, in lioston, where great pains has been taken to provide smple metallic conductors in rails and return wires, a thousand amperes have been found to return through the earth to the power house, and this is something like ten per cent. of the whole outpar. How widely such a current may spread may be imagined, and one may compare such acurrent with the minute one needed for telephonic work. One must remember that a steady current does not effect the telephone at all. It is only when the current varies in strength abjve a certain rate, thirty or forty times a second, that it begins to be troublesome. The variations in strength come from the Morse key or its substitutes in telegraphy, from some types of are lighting dynamos, from alternating dynamos for incandescent lighting, and from the motors in railway work. Though there be thousand amperes in the earth, if the variation be but one amperc, the nine hundred and ninty-nine which are constant are not offensive, hence it does not so much matter how much current is in the earth as how rapidly it varies. There are other currents in the earth due to natural causes, such as lightning, auroras, ecc., which have sometimes been desiructive to the telephone and its connections. To protect both service and the telephone uself there is one remedy, namely; to cease using the ground as 2 part of the needful circuit, and to provide each instrament with a complete wire circuit. Telephone comprnies are adopting this method everywhere as fast as practicable. It is more costly to establish and maintain, but it has been made necessary by the nature of electrical action and by the E reat increase in industrial enterprises within the past ten years.

Iror ore is now smelted by elcotricity in some parts of Nom Seoria. The new method will likely supplaniste old thats furnace process.
The half-jeatly divident of 2% per cent. declared by the Toronto Rail. way Company recently, is equiralent to a davidend of 35 per cent. on shoo,000, the amount of the company's original invesament.

SOMETHING ABOJT INJECTORS.

Hints Ahout Thfim for Engineters and Fireamen.
In some instances it may be found impossible to adjust the injector for the work required, as it may have been especially for a far different pressure than that at which you wish to work it, for the higher the steam pressute used the smaller in proportion must the steam tube opening be, and no injector can be made which will fit all conditions equally well, regardless of advertisements to that effect.
Suppose our injector acts as we bave stated before, we immediately know that it is not the fault of the injector, for if it was it would not start at all, unless in rare cases there may be a tube loose, and after the injector has started this may move and alter the relation between the water and the steam supply.

If our injector does not recelve steam from the same pipe, the engine does, and the boiler is not forced to such an extent that it lifts the water badly, we may neglect the wet steam cause and look for others. First of all, we will make sure that our water supply is not interrupted by some unknown cause, for this would cause a deficiency of water and the steam would show at the overflow, making the injector break. This water deficiency may be caused by the water valve laving a losse disk, which may move on the steam enough to alter the opening for water, and this is a fruitful cause of trouble many times both in steam and water pipes.

Or it may be that a pump in the neigborhood is taking the water at intervals, and at times the lessening of water may be enough to cause a "break" in the injector's working. Other causes which give trouble may be given briefly:

In many instances the pipes leading to the injector are long and small, and often filled with rust and other deposits, and while the injector will start all right it breaks just as soon as it has used the amount of water that is in the pipe, for this acts as a reservoir, supplying water enough for a start, but being soon exhausted.

In a case of this kind it will not do to blame the injector after being sure that there is nothing loose about it, for if it will start it will run until worn out, unless stopped by some outside cause, and this cause must be looked for.
In cases where smallinjectors are used on large pipes, confusion often arises as follows: The injector will start all right, and after a very short period of operation, will suddenly break and we wonder why. In cases that have come under my notice this has been caused by there not being an opening into the boiler, the check being either stuck or the stop vaive shut. The injector starts well enough, but after it gets the lange pipes filled and the pressure rises to the limit of the injector, then it breaks. A long pipe between. injector and boiler, even if not so large, will have the same eflect.

Great difficulty will sometimes be experienced in starting an injector, and one of the most common causes for this is a leaky check valve, allowing hot water from the boiler to come back into the injector and boil the water, or prevent it from condensing the required amount of steam. This can be readily found by care, carefully noticing whether any hot water shows at the overfow when the stcam supply is shut off; this will indicate a leaky check valve unless the steam valve leaks, and a little care will soon determine which is the leaky valve.

The checks that give the most trouble are what are termed straight way or swinging checks, which, while very good for some work, are not 25 good for injector work as the old-fashioned plain check. The reason is this: The passage of watcr through them wears the side of the seat farthest from the hinge, and in a very short time the check is not tight, and this iitle leakage back from the boiler makes it hard io start the injec:or. And if a very slight obstruction becomes lodged near the hinge, the opening at the outer end of the swinging valve is much greater and the leakage is considerable. This is not said to injure any maker of swinging checks, but merely to give ny own experience in this class of work.

When you have your doubts as te the quantity of water that can be supplied to the injector, just measure the flow by letting it run into a measure of known quantity, and note the time taken to fill the measure. If we have a two-gallon pail, and the water from the supply pipe of the injector will fill it in five seconds, we know that as there are sixty seconds to the minute the pail will be filled twelve times per minute, which is twenty-
four gallons a minute, or 2460 equals $1,44^{2}$ gallons per hour.

Then, if the capacity of the injector is only 1,000 gallons per hour at the stean we are carrying, we know we have an ample margin for working. This, of course, is a very large injector, and will supply a large boiler or boilers.

In many cases the injector is made uscless by the manner in which the piping is put up, and the writer has found eases where the injector refused to work, in which the supply of water had been cut down to less than half by the man who did the piping screwing all the pipes so far into the valves and elbows as to almost close the openings. This is particularly apt to be the case in the valves and checks. as the brass of which they are mate gives so much more than irnn fittings that the men do not stop until the pipe refuses to turn with the same force that they apply to iron pipe fittings. A little judgment helps wonderfully in a case of this kind. It is sometimes necessary or convenient to pipe the injector to the same supply and delivery pipes as used by the pump, although it should never be done where both are to be used at the same time, as the pulsating action of pump is very apt to take the water from the in. jector momentarily and cause it to break.

Where this is done there should be valves so that the pump connections can be shut tightly from the injector and viee versa particularly in the case of a lifting injector. One instance of this kind was brought to my notice aboard of a litte yache which was being hurriedly fitted for a southern winter cruise, and in which the injector would stant nicely and work for at minute perbaps, and then break or fly off, as some call it. The first thought was that there was a piece of wood or waste floating in the water tank in the bow of the boat, and that the action of the water drew it ourar the pipe and shut off the water supply, as often happens in eases of open tanks. This was not correct, however, as investigation showed that the men who hat piped the injector had connected the water supply to the same pipe that supplied the wash basins in the cabins, and whenever the faucets in the cabins were open or leaked the air was drawn into the pipe and into the injector, and caused the break. Wy piping the two water supplies separately the trouble was reniedied, and the boat was ready for her thip in tropical climates.The Tradesman.

CALCIEY CARBIDE AND ACETYLENE GAS.

The Canadian General Electic Co. have commenced to manufacture calcuin cabbide under the Canadian patents of Mr. T. I. Willson. An el-ctric furnace has been erected at the l'eterboro works, ander the supervision of Mr. Willson's representative, and a number of orders for the carbide have been filled. A considerable demand for small quantities, principally for experimental purposes, has already arisen. Should the sanguine expectations of the inventor be realized, the use of this product in the manufacture of acetylene gas will in the near futureassume immense proportions. For the carbide as a potential source of energy are clained, as especial advantages, its extuemely low first cost of production, as well as its portability and sonvenient form for transportation. Hesides its use in the pmaluction of acety. lene, it seems likely to be of great commercial value in the production of cyanides and in various other processes of metallurgy;
Acetylene itself is a colorless gas with a penetrating odor. Its specific gravity is a.91 and it is soluble in water, which, at $64^{\circ} \mathrm{F}$. will absorb its own volume of the gas. It can becondensed into a liquid and in that form is readily portable. As an illuminant, properties are claimed for it which should, if justified by the facts, establish it as unmeasurably superior to coal or water fas, and make it easily, the most formidable rival which electric lighting has yet had to encounter. When burned at the rate of five cubic fect per hour, it has produced ia light eqnal so $2 j 0$ candles, as against an average equivalent of 16 to 20 candles with ordinary illuminating gas. If, howerer, the results actually attained in practice should fall far short of the possibilities thus indicated, there will remain for acetylene a field of great value as an enricher of ordinary illuminating and fuel gases.
The Willson process for the manufacture of the carbide is a most interesting one, anci we hope shonly 20 present to our readers an account of it as now in operation at Yeterboro.

THE NEW GANAL AT SAULT STE. MARIE.

 Lock Gathe and Valive of Canal, lock.

THE temark merits reflection that at a time when railroads are cutting scriously into the carryong trade by water, there has, perhaps, seldom been greater activity in canal building, and more thought given to projects pointing to the development and expansion of existing waterways, and the opening of new channels of commerce along these lines.

It matters little what part of the world is studied, unusual effort in canal building is discoveted. One of the great projects of the past year hats been the completion of the Manchester ship canal, providing a direct route between liverpool and Manchester. Italy has important maritime canal schemes under consuderation, and there has lately been completed a notable maritime canal across the high and rocky Isthmus of Connth. Certan difficulues have hindered the progress of the Nicaragua canal, a scheme in which, at least, one province of the Dominion, Bitish, Columbia, is largely interested, as it will be the means of shotening the route between the Pacific Coast
was finally completed with the enlargement of the lachine canal, to the new dimensions in 1848 .

Meanwhile, during the construction of the St. Lawrence canals, the Welland canal, between Lake Eric and Lake Ontario, had been completed and enlarged once. This canal was begun by a private stock company in 182t, after several years investigations by government commissions, and was completed in 1839. It was 27 miles long in 40 locks constructed of wood 110 feet long and 22 feet wide and with 8 feet depth of water on the sills.
After the union of the several Canadian provinces in 1867 , further steps began to be taten towards developing the canal system. In 1870 a canal commission was apponted, which reported in 8871 , advising an uniform and enlarged waterway with locks 270 feet long, 45 feet wide and- 12 feet depth of water on the sills. This depth of water was afterwards increased to $1+$ feet. In other directions the enersy of the government and private parties in canal development has been shown.
bulling the saulit ste marie Canal.
In not a few respects, the Sault Ste. Marie canal, in which we are particularly interested at the present time, and which has a special interest to readers of the El.ectrical News, marks in several ways new developments and progress in canal building.

and Gireat lbntatn by just one-half; but of its ultimate consummation there can be no doubs.

The development of the Canadian canal system furnishes one of the most interesting chapters in Canitdian history. The first practical step towards the construction of these antificial waterways was taken in 1815 and 1810 , although they had been talked of lons before, and indeed the rapids of the St. Mary's wiver and some of the rapids of the St. Lawrence had been passed by primutue canals and locks as early as 172S. In iSis the lefislature of lower Canada voted a grant of money to build a lachme Canal, and in 2818 a joint commission from Upper and looner Canada reported in favor of a canal system on the St. laurence river, the cinals to have a minimum depth of water of f feet. Work was begun on the first lachine canal in 1521 , and it was completed in 1525 , at a cest of 5440,000 The canal was $2 \mathbb{S}$ feet wide at the botom, $f 8$ feet wide at the iop and +4 feet deen and the locks were of masonny 100 feet long and so feet wide. llandly had the Latehine canal been finished when the Koyal Engineer in the charge of the Rideau canal, then being built to connect the Ottawia river at Ottawa with the St. Lawrence at Kingsion, urged the goverminent to construct the remaning St. lawrence canals with longer and wider locks, and with depth of water of 9 feet. This the government decided 10 do in an act passed in 1832 , and the system

It has alread; been stated that a canal had been built across St. Mary's Island as early as 1798 . This canal was built by one of the Northwest fur companies, and, according to such records as can be obtained, was 300 feet long and 45 feet wide, with a lock that raised the water 9 feet, or one-half the total fall at the rapids, so that the remaining haight must have been overcome against the cursent-no great task for the light bateaux of the fur hunters. Between the building of this primitive Sanlt Ste. Marie canal and the construction of the great work of the same name, which is here illustrated and described, 96 years have elapsed.

The total length of the new canal across St. Mary's Island is 3.500 feet, and the dredged approaches under water at the two ends are about 18,000 feet long, with a depth of water of 21 feet. The essential feature of the work is, cf course, the lock by whirh the $t S$ feet fall of the Sault Ste. Matic is overcome. This lock is buitt of masonry; and is 900 feet long between quoin posts, and 60 feet wide, with a depth of water of $30, \frac{1}{4}$ feet on sills on low water. The height of the top of the walls abuve the floor of the lock chambers is 43 $\mathbf{f r e t}$.

The gates are of wood, composed of white oak and iron triss rods. They are built on what may be called the truss bowstring type. Each leaf of these consists of a quoin (or heel) post fomed of three pieces, 2 mitre (or toe) pos: formed of two
pieces, 3 intermediate vertical frames and the requisite number of horizontal frame trusses spaced and proportioned nearly in accordance with the pressure due to depth sheeted with 3 inch pine plank, spiked to the horizontals. Each horizontal frame consists of an upper or upstream chord, bent into a circular arc, a straight chord bar and iron truss ruds. The latter are secured in the quoin and mitre posts in the intervals between the horizontals, but form part of the latter in reality.
There are five sets of gates, 2 at the upper or west end, and 3 at the lower end, i.e., a lock and guard gate at each end and an extra or auxiliary lock gate at the lower end for immedinte use in case the lower main gate should get injured. Two sers of those gates (the lower main and auxiliary) are $44 \frac{1}{2}$ feet in height $\times 37$ teet in width, weighng about 87 tons per leaf. The guard gates are of course to be used only when the lock chamber is being pumped out for examination or repairs.

Water is admitted to the lock chamber by four 8×8 ft. culverts, extending under the breast wall and underneath the floor and having openings at their tops. The inlets and outlets to these culverts are closed by butterfly valves $10 \% \times 8 \mathrm{ft}$ area, constructed of steel. Both the valves and gates are operated by electric power.
running transversely across the canal. The shafts are used for each set of four valves, one running from the ripht side-wall chamber to the centre, and carrying two valves, and the other from the left side-wall chamber, also carrying two valves. At the ends of each shaft in the wall chamber is a crank arm of forged stecl, its least leverage being ffl., to which a vertical draw rod 55 ft . long is atached, and steadied in line by 2 sets of guide rollers. This draw rod is placed in a well in the lock wall, and when moved vertically up or down by the operating mechanism opens and closes the two valves on the shafts to which it is attached, i.e., the valves are operated in pairs.

The operating wire rope cables connect with the gate leaf on hooks secured to the gate near the mitre post, the front or closing cables run to and around a horizontal pulley secured on the mitre sill platform and from thence to a horizontal pulley at the bottom of the well, then under a vertical, then up the including well to another pair of vertical pulleys which gives the diverging angle to the cable which passes to and around one of the sheaves of the travelling pulleys operated by the gate machine, and back to and around the deflecting pulley stationed in the end of the frame, thence again to and around the second sheave of the travelling pullev and thence back to a standard to

The culverts are constructed entirely of wood, those for filling the lock are $8 \times 8 \mathrm{ft}$. inside, and those for cmptying $8 \times 1035 \mathrm{ft}$. inside. In constructing the culverts 12×15 inch longitudinal sills were first bolted to the rock foundation, with $1 \frac{1}{1}$ in. round bolts 6 ft . long or over, spaced 6 ft . apatt. On the above 12×12 in, transverse timbers were laid 6 in . apart, and the interstices filled with Portand cement, concrete and grou, flush with their tops. On the top of this was lad a flooring of two thicknesses of plank, 3 in. and 2 in. thick respectively. The walls between the culverts 2 ft . thick, composed of two thicknesses of $12 \times 12 \mathrm{in}$. timbers, were then built and capped with $12 \times \geq 2$ in. transverse timbers laid close, having planed joints. This range of cap timbers was then bolted to the longitudinal sills, first laid by bolts 2 f . apart, extending dewn through the culvert walls and the transverse timbers; to give the bolts a good surface for holding down the cap timbers, continuous iron straps were placed crossing the timbers and acting as washers and the nut screwed firmly down on these. Of course these bolts had to be put in while laying the longitudinal sills, and the culvert walls built around them. The cap timbers were then covered with a double flooing of 3 inch and 2 inch plank respectively.

Valives and Valve Machinery.-The admission of water into the culverts is controlled by valves. These valves are of steel, and are mounted on horizontal steel shafts, toin. in diameter,
which it is secured in a shackle bolt baving an adjusting screw.

The back or opening calbe, when hooked on the back of the kate, passes direct to the horizontal pulley in the bottom of the well and from thence as already described for the closing cable passing; round its pulleys and being attuchect to the opposite end of the gate machine. The four turns of the rope around the travelling pulley, which travels 8 ft . 9 inches, causes a travel of 35 ft . to the end attached to the gate leaf, and opens or closes the leaf by a single stroke of the cross hea.l.

In all there are six gate machines, one for each leaf of the upper lock gate, lower lock gate and auxiliary kate. A one storey wooden motor house covers each of the gate machines and its connecting motor. Four of those houses are 1. shaped, this additional portion being to enclose in the same building the valve machine and its motor.

With this machinery the time required to pass a vessel through the lock going up stream is, after the vessel has taken her place in the chamber, jo seconds for closing the lower gates, plus $j 0$ seconds for opening the values, plus 9 minutes for filling the lock, plus 50 seconds for opening the upper gates, or $11 / 2$ minutes altogether. As the lock can be empucd in $7 \frac{1}{2}$ minutes a vessel can be locked down in 10 minutes.
lt may be noted, that both the gate and valve machines are
governed by automatis switches, operated by what maty be called cutoff, of adjust ible trippung bolts, which push the swith bandles over and thereby cul of the current, so that the cross heads will not go beyond the mended poms.
The tripping boles , which push the handles) are adjustable in a slot by a nut and washer on the back of the plate, so as in make them cut sooner or later, or to the point required. These tripung bolts are isolated by 3 -ifoths of an inch hard rubbes sockets, and washers, so as to prevent the current from passing on to the metal of the machnery. Chords run from the switch bindles to pullevs on the celings, and by these are conducted to the controllers, and the swithes are closed by the motor-man pulting the chords without haning to leave his position. By this arrangement the danger of damage to the machnery from the (ross heal runnmg ablock at the ends of the screws) will be prevented

The machanery whe h has been described is, as far as we can learn, the first electrical power machmery ever used for operating the g.tes and valves of canal locks, and that it should for the first tume be applied to a lock of this size and importance, medicates the coinfidence with which this form of power, whel "as hardly conntered manageable a decade ago. is now re. warded. For both the old 188 s lock and the new 1800 feet

One turbine will be used for tunning the generators, the other for nummg the are light dynamo and seneral shop work, but when it is required to pump out the lock, the two wheels can be coupled and used to operate the centrifugal pumps. There are two of these pumps, and they have a combined capacity of 32,000 gallons per minute. The two pumps will lay the lock chamber dry in between 6 and 7 hours.

It should be noted also that near the upper end of the supply pre there is a $6^{\prime} 8^{\prime \prime}$ valve operated hormontally by two lobin bronze screws, also two 5 ft . valves placed in the supply pupe (and operated vertirally b) screws of the above named bronze) mmediately above the power house, permuting of etther the whole of the pipes or of elther or both turbines being land dry when necessary

It should be futher noted that there is a 13 inch turbine water wheel set horizontally at the rear of one of the large turbine cases. This wheel has its water supply from a T shaped ppe placed between and supplied from the 5 ft . supply pipes, and having a valve on each arm of the T, so that in the event of the large turbines having to be stopped, or in the event of one or ether having to be laid dry, by the arrangement of these valves on the T 's a supply of water can always be obtained for the small turbine wheel, which, by bell to and from a small countershaft on the second floor, drives the incandescent light dynamo,

The Log prom the Westers End.
lock on the American stde of the St. Mary's river, hydraulic machanerv is used.
The reasons which led to the adoption of electric po.ecr on the Canadian lock are stated by Mr. J. 33. Spence, Chief I)raftsman Depaiment of Rallays and Canals, as follows.

As "hark economy, Ithah the difference betueen electric and
 was nut taken into-comodetathon. Sne of the mann olyects of using clertactity uav to orctcubse the gieas trouthic caused by fromi when hy. drauloc machincty in ued. Dunng the clowng weck, uf naigration the coid w mirat that oll hav fole used in the hydiaulac enginer placed on the lock walls, and cren then the cold callus the onf to thecken and mates the actuon of the rogines slon and tedous Of course, frost would not hase ime fleted with hydrauhe sabe engines placed at the

 cret) thang will opesate woceswilly when we open for nawgation.

Iwotin 155 H . surbines, equallang a combined power of 5 to H. F., जuppli the poner for operating the pencrators and purpps. These burbmes are set horizontally and are supplied "uh water foom the upper letel by a oft. S tie danmeter steel mpe. plased at the bock of the look wall, just before entering the power house. this supply pipe davies moto two $;$ ft. pipes one for each turbine The discharge pupes from the rurbines are also 5 ft . in dhaneter The turbmes are phaced on the firse fieor of the power house, and operate by belt a horizontal coumser shaft on the second thour from this counter-shaft are operated the dynamos and senerator on the second fioor and the centufugal pump, shafts on the first tioor.
so that a full supply of incandescent lights can be obtained throughout the buldings, pump well, etc., supposing that the large turbines are still.

The electrical plant for operating the gates and valves and for lighung the canal and approaches, was supplied by the Canadian Cienerai Filerme Co., Lid., of Toronto and Peierboro, under detaled specifications and designs drawn up by the government electrician, Mr. 1). Bryce Scott.

The current for power purposes is supplied by two $45 \mathrm{~K} . \mathrm{W}$. $j 00$ volt Edison standard bi-polar dynamos, cither of which is of sufficient capacity for operating under normal conditions.

The lighting plant consists of a No. 7 Wood are dynamo, hatving a capacie of $402000 \mathrm{C} . \mathrm{P}$. lamps, and a 3 k . W. Edison bipoiar incandescen: inachune for lighting power house and repar shops.

The switchboard (allustrated) is a beautiful piece of work, and is a great credit to the manufacturers. I: consists of three polished black slate panels 7 ft . Iong by j ft . wide and z^{-}thick. These are supported by a heavy oak frame of ornamental design. The centre panel carries the instruments and controlling apparatus for the power generators, while on the right is the are machine panel and on the left that for the incandescent machine.

The mechanical arrangement of the gate and valve mechamsm hats already been descibed, and it therefore only temauns to five the electrical arrangement. The motors are of the Canadian Cieneral Electric Co.'s standard W. ''. 50 railway type, and
are operated in pairs by means of series parallel controllers classified by the manufacturers as type " k," that is to say, the two motors sttuated opposite each other on the canal walls and operating one pair of gates, are electrically connected in exactly the same manner as the motors on a street car, the connections across the catal being made by heavily armoured submarine cables, each having 14 conductors and being about $2 \frac{1}{20}$ in

ors. The contractors for the upper entrance submarine wotk (being section 3) were Messrs. Allan \& $\begin{aligned} & \text { Bemong, of Oitawa, }\end{aligned}$ Ont. The lock sites were built and placed by the noted pate builder, Roger Miller, Ingersoll, (Int. The contractors for the turbines were William Kemnedy \& Sons, Owen Sound, Ont. The contract for the gate and valve machues and all pulleys was execated accotding to departmental detal drawings by the Canadian L.ocomonve \mathbb{N} Fingine Co., of Kingston, Ont., and the contractors for the electric plant were the Canadion demeral Electric Company, of Toronto, Ont.

For considerable of the data on wheh this aticle is based we have to thank Mr. J. IS. Spence, Chef Draftsman of the Department of Railways and Canals for the Dommion, These particulars were also in part furmshed to the Engineering News, of New York, though revised to date by Mr. Spence when given to the Elracomicul Niws. We checrfully credut our New Yook rontelt:porary with the information thit we have found it convenient to borrow from its pages.

Mr. Spence is a son of the land of the brown heather and shagsy wood, a native of Kingedward, Aberdeenshire, Scotlinel. Shortly before reaching manhood's years he came Io Camada, choosing the city of llamilton as his place of abode. Afier a brief period or, that city, in April, 1860 , he recened an appontment on the civil engineerng staff of the old Cireat Western Kalway of Canada, serving under (ieorge lowe Reid, then Chief Engineer of the railway. He remaned on the staff of this railway for a consecutive ueriod of sixteen years and left the service in 1876 , to accept the position of assistant to the late John l'age, then Chief lingmeer of Public Works and Canals, for the Dommion. He served under bum and his two successors for a period of neariy 19 years. During recent years he has held the post of desurning engineer and chef of the draughting. staff of raiways and canals. It is thus seen that Mr. Spence's experience in Canada covers a peried of over it ye.trs. As James Bruce Spence he is registered a member of the Canadian

Mk J. B. Sirence.
Society of Civil Engincers. To him is due much of the credit for the success that has attended the completion of the Sault Ste. Maric canal. We are pleased to turnoshamong our illusirations a portrait of Mr. Spence.

A relured farmer of Cote des Netres, was recently crubird to death under an electric car in Montreal.

NOTES ON THE RECONSTRUCTION OF A SMALL CENTRAL STATION PLANT.•

By I-kakklin lo lork.
The financial condition of the smalles central station electric lighting plants throughout the country is at the present time by no means satisfar tory, and in too many instances caunot even be truthfully said to be encouraging. A survey of the field shows that very few such plants located in towns having less than 10,000 inhabitants are earning more money than is necessary to meet their operating experises and to provide for indizpensatble current repairs. In the State of Massachuselts, in wheh the operations of atl electice lightung companies are by law made a matter of pmblic record, it appears frem the latest reports that the aggregate liabilties of the 57 companies operating in that State, including stocks, bonds, and floating indebtedness, amounted on June 30,1894 , in round numbers to $\$ 14,000,000$, nearly all of which stands charged to consturtion account. The net earnings for the preceding yeat were $\$ 1,000,000$, or about 7.1 per cent. on the total investment; a sum obviously quite insufficient to provide for depreciation and at the same time pay a fair dividend on the eapital which has gone into the business. But if half a dozen of the larger plants, in cities like Boston, Lowell, Worecster, Springfield, Lynn and Fall River were exeluded from the list, the showing for the smaller plants would be even far worse than it now appears.

Many of these small plants were started at an earlier day than could have been justified by any reasonable estimate of the business then in sight, and now find themselves hampered by inconvenient buildings, and with unsuitable machinery, bought at high prices, and encumbered with defective business methods which experience has shown to be wholly inconsistent with the dictates of good judginent.

With the owners of many of these plants, it has become a very serious question whether the easiest way out of the dilemma which confronts them may not be to relejate the entire plant to the junk shop and the scrap pile, and commence overagain with new buildings, modern machinery and mproved methods of ad. ministration. When the necessary capital is readily forthcoming, there can be no doubt that this would often be the wisest course of procedure, but for obvious reasons, it is one which is not always, nor even usually practicable. The alternative is to remodel the existing plant, bringing it as nearly as may be into accordance with the best modern practice, and utilizing so far as possible the old material; a course which at least has the merit of avording an undue expansion of the construction account, in most cases already sufficiently burdensome.
llaving been called upon during the past year to advise the owners of a plant of the characier above referred 10 , in reference to certain changes which bad been suggested as desirable, and having afterward been employed in a professional capacity to design the work and superintend its exccution, I have thought that some account of what we undertook to do and how we did it, might not be without interest to the members of the Institute.

The Cireat Barrington (Mass.) Electric Light Company was orgamed and commenced business in $\mathbf{1 S S S}$. The population of the district intended to be served was about 3,000 , and m ost of the expected consumers were located within 2,00 feet of the point decided upon for the station. This was built of wood, in the most mexpensive manner possible, and was placed alongside the railway for convenience in receiving coal, although at the same tame the danger from fire was materially increased. The original outfit was an Edison 3-wire, equipped with a pair of 250.light 1 to-vole dynamos, and the company commenced business whth $2 S_{1}$ lughts on contract of $\$ 10$ per year each; wiring fice. The centre of distribution was 1,800 feet from the station, necesstatung over a ton of copper in the feeders alone. Generally speaking, the plant was well laidout, and well built asthings went in those days. The two dynamos were belied to a single So II. V . Armugton $\&$ Sims engine. The original cost of the plant was about $5,8,000$. The following year a Schuyter are plant for street hightung was added, carrying 35 arcs, nominally of $1,500 \mathrm{c} . \mathrm{p}$., which was nin from the same engine and boiler. In tino, the plant was considerably eniarged by the addition of a second are machine. a Westinghouse 500 -light alternator, and a second engine and boiler of the same capacity as the first. An

8o-kw Westinghouse dynamo of more modern type was afterward substituted for the original one.
Upon examining the plant last year, I found the Edison machines carrying on Saturday evenings a maximum load of some 45 c lights, while three evenings in the week (with the stores closed) it fell to perhaps half that amount. The two Schuyler machines, with an aggregate capacity of 55 to 60 lights, were carrying about 38 to 40 , or an equivalent of that amount, while the Westinghouse machines were seliom is much as half-loaded, carrying a maximum of possibly 500 lichts during three or four months of the summer season, and not much more than one fourth that amount the remainder of the year. Necessarily, with so many dynamos of different types, and with such a mariable, yet sinall averase outpur, the consumption of coal was excessive as compared with the light delivered and paid for.
The street lines, accurding to the usual practice, were of No. 6 3. \& S. weather-proof wire; the poles were of cedar, of good size and fitted with pine or spruce cross-arms, with common greeh glass insulators sel upon wooden pins. In consequence of a silly prejudice, which had been fomented amomg the citixens by interested parties against permitting poles to be set in the streets, the wires, in a very great number of instances, had been attached, by cross-arms or brackets, to the truriks of the immense eln trecs with which the streets of the town were shaded; a practice which occasioned an enormous loss of current every wet night, as well as much irregularity in the performance of the lights. The effect on the trees was by no means salutary, while the appearance was as much worse than that of poles in the streets as could possibly be imagined.
The village of Great Barrington extends for the most part along a single broad thoroughfare for a distance of nearly three miles, and the street lighting circuits are consequently very straggling. The $1,500 \mathrm{cp}$ lamps, which were suspended at intervals of 800 to 1,00 feet, were actually of very little service in illuminating the densely shaded strects.
After a careful consideration of the situation, keeping in view the greatest possible reduction of present and future operating expenses, it wats determined the wisest course to pursue would be to consolidate the whole service so that it could be supplied by one dynamo, in place of five underloaded oncs. In pursuance of this plan it was decided to adopt the two-phase alternating system, at a maximum pressure of 2,100 volts in the primatics, and 105 volts in the secondaries, with a frequency sufficiently low to permit the advantageous use of induction motors if reguired. It was furthermore decided to abandon the steam plant, and to make arrangements to utilize some one of the excellent water-powers which were available within practicable distances. Under ordinary circumstances, 1 should have hesitated to recommend the substitution of water-power for steam as the sole source of power for the operation of an electric-lighting plant. Water power is an invaluable auxiliary, and when conveniently available for use in conjunction with steam, may often be made to save a very large coal bill in the course of a year. On the other hand, the excessive fluctations to which it is subject-which are scarcely realized by those but casually acquainted with the subject-render it in most cases a very uncertain reliance for a business which is compelled to go on, perforce, cvery night in the year, and which cannot suspend operathons, as an ordinary manufactory does, if worst comes to worst, for a week or wo at a time. Even a water privilege which, during ten months of the year, furnishes twice as much power as is needed, and even more, may be expected to fall off, during ene of the extraordinarily dry seasons which occur at intervals of from five to ten years, to one-third its usual ameunt. In such a case, an clectric plant solely dependent unon water-power would find itself in a most undesirable predicament.

In the present instance, the choice of a water privilege finally reduced itself to two sites, one in the town itself, within half a mile of the centre of consumption, and the other at Glendale village, seten miles distant, both situated on the Housatonic river. The privilege first mentioned being already occupied by a woolen fictory, only the surplus water was available, but this was known to be quite sufficient for the requirements of the clectric company at least nine months in each year, leaving three months to be run by steam. It had the advantage of being close at hand, and was capable of being fitted up at a moderate cost. As to the Glendale privilege, it was necessary to be very sure
that the lowest water of a dry summer would give all the power required to run the phant without the aid of steam. Having invariably found the value of a water-power to be greatly exaggerated, not only in popular estimation, bit in the opinion of its owners, the matter was investigated with much eare.
While negotiations were still pending with the owners of the Glendale privilege and also the one in the village already referred to, overtures were received from a manufacturing company owning a third exceptionally desirable privilege, on the same stream, at an intermediate point constderably nearer than Giendale. This company had only recently completed a new dam, headgates, race-ways, etc., at a very considerable expense, and was willing to lease the complete establishment, including a new McCormick turbine of 325 11. P. and a two-phase Stariley generator of corresponding capacity, at a monthly rental based upon the artual output as measured in kilowatt houts at the dymamo terminals, provided that a certain minimun monthly consumption was guaranteed. With the same volume of water as at Glendale, the fall at this point was 20 feet, assuring at least 417 II.P. at Jowest water, during lighting hours. All the bydraulic apparatus and appointments were of the best possible construction, and well calculated to insure absoate permanency of operation.
The minimum tental exacted was somewhat less than the amount of the coal bill of the Great Barrington company for the preceding fiscal year, but while the immediate saving in operatiug expenses was not large, the acceptance of the proposition would place the company in a position to reduce its rates to consumers, for the reason that its output misht be very largely increased without materially augmenting its operating expenses. A lease for a term of years was accordingly closed.

In laying out the plant it was determined to bring the main feeders directly to a distributing station in the village, to be used principally as a convenient headquarters for testing the circuits and controlling the street-lighting service. In laying out the transmission line, a surveyor was employed, and a preliminary line was run directly from the power house to the distributing station. The air line distance was found to be 5.15 miles. With the assistance of the surveyor, the actual line was then staked out, going directly across country, and keeping as near as circumstances permitted to the transit line. About half the dis. tance, the transit line was found to so nearly coincide with existing highways, that the consent of the local authorities was obtained to set the poles along the highway location; the remainder of the route lay principally through uncultivated land of little value, so that a comparatively small expenditure was sufficient to secure a release from all clams for land damages. This enabled the line to be located with long siretelies absolutely straight, avoiding all sharp angles; a very important consideration when heavy wires are used. The poles were of selected chesnu: with natural butte, usually set five feet in the ground at maximum intervals of 125 feet. The poles were ordinarily 25 feet long and eight inches thick at the small end. Shorter poles were sometimes used on clevations and longer ones in depres. sions, in order to equalize the strain as much as possible. The insulators used were of the large double-bell white porcelan type (German government standaid), and were imported by us from Hagen. The insulator of the :op wire is set upon a malleable iron stem 14 inches long, screwed into the top of the pole, which is tapered to five inclins in diameter and protected from splitting by driving on a wrought-iron ring. The tapered part of the pole, as well as the top, was given a coating of mineral pain.: mixed as thick as it could be spocad with a brush. The insulator of the second wire is carried on a malleable iron gooseneek, screwed in a five-eighths inch hnle bored in the side of the pole, in such position as to bring the wires abou: 16 inches apatt. Another hole was bored on the opposite side of the pole, intended to take the goose-neck of the third wire at some future time, leaving the same interval between the second and third wires. The porcelain insulators are fixed to their iron supports by a packing of onkum placed between the screw threads, which serves to prevent any danger of fracture by expansion or contraction. The line wire is laid in a groove formed in the top of the insulator, except upon the curves and angles, in which case it is tied at the side in a circumferential groove, as is usual in this country. The German method of tying is quite complex, and unnecessarily strong; in case of unduc strain if anything
gives way it had best be the tie wire. We therefore devised a simple tie which was easily and quickly applied, and which bas so fat served an adminable purpose. We were obliged to strings the wires during very cold weather; sometimes as cold as eight or ten degrees below zero, and lence it was necessary to strian them very tight. A block and fall and a well-trained horse were used in pulling up, usually six or seven spans of one wire at a time. The hook of the block was always attached to the copper wise, whether bare or insulated, with a chain-knot made of three guater inch roge. The fecder wires were of No. 3 l3 \& S soft copper, covered with weather-proof "insulation" along the highway (as a concession to enlightened public opinion), but elsewhere bare. The lengths of wite were joined with Melneyre twisted couplings; the unusual stran we had to put upon them occasionally pulled one apart, and this led us, out of abundant caution, to solder them, although this was done for mechamical rather than for electrical reasens. Only two feeder wires have as yet been strung, providing for a single-phase current from one side of the two phase gencrator, but it is the intention to run a thirel feeder at an eally day, which will enable two-phase induction motors to be connected to the same distributing system.
A pair of telephone wires of No. In steel were strung below the feeder wires, and these were supported upon smain German porcelain insulators on irou goose-necks on opposite sides of the poles. These wires were transposed at intervals of about a mile, in order to eliminate the inductive effects of the alternating current in the feeders. The feeder lines were cauried under the railway at an undergrade crossing by placing the insulators upon iron brackets leaded into the stone abutments. The plan of con. struction above described makes a strong, handśone and durable line, while the insulation of the circuit, even in the worst of weather, is simply fautiless.

The system has been planned to deliver the current at the distributing station at a uniform ptessure of 2,100 volts. Two distributing centres were fixed upon in the old Edison three-wire network, and at each of these points a pair of large transformers, having a ratio of $20: 1$ were fixed upon a pole, with thetr respective primaries in series between a pair of branch feeders from the distributing system, and their secondaries were coupled in series in like manner, with the neutral wire between them. None of the consumers on the old Eidison system knew when the change had been made to the new service from anything they were able to notice in the behavior of the lights.
The next thing done was to reconstruct the street-lightung system. In place of the 36 arcs of 1,500 nominal c. p. formerly in use we substituted 126 incandescent lamps of 50 volts and 32 c. p. placed in Iona fixtures projecting horizontally from the poles 14 feet above the ground. The lights, as a rule, were fixed upon every alternate pole, but in the business centre, the street being broad, they were placed on each side at intervals of about 250 feet, and stagecred, so as not to come opposite each other. A Shallenberger shunt cut out was applied to cach lamp. The uşal number of lamps in each circuit was 42 , alhacugh we have since placed, in some cases, as many as 47 in one series without reducing the brilliancy of illumination sufficiently to be noticcable by any one but an expert. One end of each street-lighting circuit is joined to a special feeder leading to the sub-station, where it is connected with the main feeder through a knifeswitch. The other end of each lamp-circuit is connected to any conveniently located branch feeder of the regolar commerctal lighting service. Each lamp-circuit has, or will have, a fuseblock and cut-out inclosed in a weather-proof box at each end, where it joins the opposite feeders. These 32 c.p. lamps, when run at full candle power, furnish a most satusfactory illumination, and give the strects a very attractive appearance. So far as possible, each lamp was located with the aid of a transit and level, so as to get them in absolutely straight lines both vertically and horizontally, a precaution which adds materailly to the decoratise effect. It is admitted by all that the streets of the town are murh more satisfactorily lighted by the incandescents than they formenly were by the are lamps, while the actual cost to the company is considerably less. The new lamps were cut in, one at a ume, on the old are wires, jumpers being temporanily placed across the terminalsinntul everything was in readiness to discontinue the use of the arc-light machines.

One of the most marked advantages of the senies strect-lightng system, especially when shunt cut-outs are ased, is its great
lexiblity and convenmence. For example, instead of placing from 40 to 45 fifty-volt lamps in one scries, we may use 20 to 23 one hunded-vole lamps, or if an odd number be repuired, less than is necessary to make up a circuit, the deficit may be supplied by addung extra shunt-boxes in seties at any convement point in the circut, until the pressure has been reduced to the required point. From time to time, as new lights are addied, these spare shunt-boxes are one after another brought into use in connection with them. Sometimes, also. we temporaily install extra stiect lights by connecting them in parallel to the secondary mains of the regular commercial service, ultunately transferring them to new series circuits.

It has been found to be desirable to use a lamp of rather low efficiency for the street-lightine service, as there is always danger of leakage and short circuits from wet boughs of trees and other objects getting into contict with the wires, and thus diverting an abnormal cuiremt through some portion of a lamp circuit. In such case, a lamp of high efficiency is prelly certan to be burned out, or at least to have its carcer of usefulness matecially abridged. In this plant, the average consumption of energy in the street-lights, including lamps, lines, shunts and leakage, is found to be about 140 watts per lamp of $32 \mathrm{c} . \mathrm{p}$.

Perhaps the most tickiish part of the whole undertaking was the changing over of the Westunghouse system, which was a 1,050 -volt primary and a 52 -volt sccondary, running at 16,500 alternations. In accordance with the new plan, it was of course necessary to double the pressure both in the promary and secondary circuits, and to substitute 104 -volt for 52 -volt lamps 'throughout. A preliminary test of one of the transformers demonstrated, that which perhaps might have been foreseen from theoretical considerations, viz., that a dangerous guantity of heat was developed within a few hours when it was used to convert from 2,000 volts down to 100 . In order 10 utilize, as far as possible, the old transformers, and at the same ume avold the above difficulty, various expedients were resorted to. Wherever a group of consumers was incated in one negghborhood, a pair of large transfommers were installed, with secondary mains extending from 500 to 600 feet in various directions, these transformers being of course placed in series with each other. Scattering consumers as far as practicable were united in pairs or small groups, and supplied by a par of small transformers coupled in the same way. The Westinghouse meters, having been originally constructed for a frequency of 16,500 ilternations, ran slow when the frequency was ieduced to 8,000 . The necessary coefficient for correction of the readings was easily ascertained by experiment, and as fast as possible the meters were fited with new dises, supplied, by the Westinghouse Company at a trifling expense, adapted to the lesser frequency.

Of course it will be understood that the reason for resorting to these various shifts and expedients, was merely that we might utilize the old apparatus as far as it could possibly be done, and also that we might carry on the work of reconstruction, for the most part, with the ordinary force of the establishment.

The selection of the best among the many available types of turbines for electric work is a matter which merits far more consideration from a scientific standpoint than it generally receives. Water-wheels, like dynamos and motors, are sometimes sold on commission by agents, and it not mfrequently happens that the salesman who makes the langest "clams," espectally if he sells his goods the cheapest, catries away the contract. It needs to be said, however, that there is a far greater difference than is often suspected, in the work that different types of wheels will do with a given, and especially a limited amount of water. There are, furthermore, a great many types of wheels in the maket, which although as efficient as could be asked for with a full head of water, are very far from being so when the volume of water is reduced, cien by a comparatively small percentage. It is but just to say that it is seldom that a tubine makes so favorible a showing, not only in this but in other respects, as the one provided by the company from which we lease our power.

The resules of tests mate in the testing flume of the Holyoke Water l'ower Company are worthy of partucular note, for the reason that they show a very high percentage of efficiency mantained through a wide range of varation in dhe quantity of water passing through the wheel; a most valuable characteristic for electric work. When the quantitv of water used was diminished from $\$ 1.75$ to $\$ 2.55$ cubic feet per second, the percentage of effi-
ciency fell only from 80.99 to 03.9 , and what is even more remarkable, it was found that the efliciency remained well above 80 per cent, over a range of variation of discharge from 83 23 to 70 cubic feet per second, or 15.9 per cent. More than one type of turbine which enjoys a high reputation and extensive sale among power-users, will not reach 65 or even 60 per cent. efficiency at "three-quarters gate," while the 33 -inch wheel above referred to has been found to give by actual test no less than 78 per cent. under similar conditions.

The turbine carries upon its shaft a driving-pulley 100 inches in diameter, weighing 1,000 pounds, which serves as a balancewhecl. It is also provided with a Replogle electric governor, operated by three cells of gravity battery, which has never failed to do its work quickly and certainly, even under trying conditions.

In carrying out this wotk, some thinks have been learned by experience which may be of use to others called upon to advise or to undertake the construction of similar works, and 1 will therefore venture to summarize some of my conclusions as follows:

1. In considerng the advisability of operating an electric plant by water-power, do not on any account neglect to ascertain from authentic sources of information, just how much water can be depended upon during the low stage in an extra dry year, for this is the measure of its value for electric work, except when used as an auxiliaty to steam. The ordinary estimates of the commercial value of a water-power are only $t 00$ apt to prove preposterous exagrecrations.
2 . If rights-of-way or releases of damages can be obtained without too much trouble and expense, it is better to build the feeder line as directly across country as may be, than to follow a hishway. The saving in cost of construction will usually be more than enough to pay for the right-of-way, and on such a route there need be no interference from trees, while many inconvenient angles and much trouble in guying and bracing are avoided. Shorter and stouter poles may also be used; in itselg a very important consideration.
2. In electric line construction it is preferable to dispense with cross-arms unless there are more than six wires. The best arrangement is to place one wire on a top-pin and the others alternately on the front and back of the pole, at a ver:ical distance apart of 12 inches. This construction not only costs less than properly braced cross-arms, but is much less conspicuous and therefore much less objectionable in a public street, is less interfered with by trees, and is tar more durable. Much trouble is caused by the decay of crossarms after they have been exposed a few years to the weather; they splat at the ends so that the pin comes out, and not infrequently break in two in the middle, thus fouling the wires.
3. In medium-sized towns and cities, especially in shaded streets, the incandescent lamp may be made to give a better distribution of light for the same money than is possible with the "half-arc" so extensively used, and is much less troublesome to naintain in good working order. My own experience leads me to think that the lamps ought not to be of less than 24 or more than 32 candle-power. Use lamps of low rather than high efficiency, but run them at full candle-power, or even a trife above. Good street lights, well arranged, and renewed sufficiently often, are the best possible advertisement for any electric company.
4. Use large transformers as far as practicable, placing the consumers within 500 or 600 feet radius upon secondary mains. We have used both two-wire and three-wire mains. The latter plan is certainly to be recommended when the distance approximates or exceeds 500 fect, but for short distances, as for example when distributing within a single block at a pressure of 100 volts or more, it is a question whether the gain in cost of copper over the two-wire plan is of sufficient importance to offset the additional complexity.
5. It was found that raising the voltage in the residence district from 1,000 . 50 to $2,000: 100$ greatly improved the uniformity of distribution, by lessening the potential drop without entaling any corresponding disadvantages. It would seem to be preferable, on every account, to use the higher pressure.
6. One of the most important minor points in the management of a plant is apt to be 100 much neglected; the maintenance of the insulation of the wires by promptly replacing all cracked
and broken insulators, and by keeping the wires absolutely free from contact with uninsulated objects. The covered wires whith lead into the hoods of the street-lamps seed to be carefully looked after.
7. Number all the poles with yellow paint applied with a stencit on a black ground; and keep a record book of the position of each one and its distance by the line from the teststation.
8. In selecting a turbine-whecl, consult competent authoritics as to the available fall and minimum quantity of water, and when making the purchase do not expect 10 get a $\$ 1,000$ wheel for $\$ 100$. Pay a fair price and insist, not only that the wheel shall be well made in every way, but that it shall be tested by an ex. pert before acceptance. If it does not give an average efficiency of 76 per cent. between half-gate and full-gate, it is not advisable to accept it, inasmuch as you can easily do better, as our own experience proves.
9. I think our experience shows that it is possibl to largely increase the net earnings of an old plant without necessarily renewing it throughout, but plenty oi time should be taken for considering as well as for execution, in order to secure satisfactory results with a moderate expenditure.

SCIENTIFICALLY CUT LAMP GLOBES.

An invention that undoubtedly will be developed into great utility, and that among many other applications, would seem to hasten the adoption of small are lamps for interior or even desk use, is described in the London Journal in an article on "Holophane Globes," which is the name applied to glass globes that ale cut on scientific principles for the proper dissemination of light. It is stated that holophane globes, when enclosing any light of high candle power, such as the Welsbach incanclescent gas, or the electric lamp, give the appearance of 3 vase filled with light, brilliant, yet soft while the actual burner or filament cannot be discerned.
The principle of the holophane globe is readily explaned. The interior surface of the globe is formed into vertical grooves, which are so shaped as to spread out horizontally the rays proceeding from every part of the light source. The mouldings on the outer surface of the globe are horizontal, and have the effect of distributing the emergent rays in the vertical sense; and inasmuch as the light may be required in some instances to be cast downward and in others to be equally dispersed, the angles of the outside grooves are modified accordingly. This is a very different thing from the uncientific cutting seen in ornamental cut glass globes which do nothing for the diffusion of the light.
As for the loss entailed by the refiection and refraction of Holophane globes, it is certified by M. de Nashville to amount in the case of an arc light to from nine to thirteen per cent., and as this observer remarks, there is no other kind of globe in existence capable of realizing such diffusion of light and presenting such uniformity of effect. As the loss of light by transmission through clear glass is from cight to ten per cent., the claim that holophone globes do their special work for about four per cent. of loss, is well established.

THE ONLY TEST OF MERIT.

That the people are quick to appreciate a good thing when they see it, is abundantly shown by the phenomenal record of the Toronto Industrial Exhibition. The Fair which begins on the and of September next, is the seventeenth of the series. It has grown steadily in populazity and yearly attracts increasing numbers which is the best possible proof of its superior excellence. This season the display will be more complete and varied than ever. The number of enteries is unusually large in all departments. Already every foot of space in the building is taken up, though additions and re-arrangements have been made to accommodate the incretsed number of exhibitors. Great improvements have been made in the accommodations provided, and all arrangements for public convenience are as nearly perfect as possible. An attractive and diversified programme of entertanments is offered. All railways will give low rates and special excursions will be run from many points, presenting an opportunity of which all should avail themselves.

The Brantford Electric Steet Railway Co. is inclined to charity. Its gross receipts on August 6 th will be given to the public hospital,

PERSONAL

Mr F. J. Proutt, Superintendent of the Madden Electric Co., of Ioston, and formerly of Ihwmanville, Ont., was recently married to Miss Ialura). Yarnuld, of Whitby.

We are pleased to notice that Mr. D. H. Keely, of Olbwa, has iecently received the ..ppointment of General Superintendent of the Government Telegmph Service of Canada. Mr. Keely was for some years assistans to the late E. N. Gistorne, who was for many years nt the hend of the Government 'lelegiaph Service of this country. In thas capacity Mr. Keely hat the most favomble opportunity of beconing aequainted with the regurements of the service, and the menns of meeting those requirenents in the most sultisfactory manner. Since the death of Mr. Gisborne, Mr. Keely hate been discharging the thutics of General Superintendent in a manner so satislactory to the public and the Government, as to warrant has permanent appoint. ment, and we have no doubt that he will justufy the wisdom of the Govern. ment's choice.

TRADE NOTES.

Rhodes, Curry \& Co., Amherst, N. S. have received n continct from the Halifax Electric Railway for fourteen street cars and a $\$ 30.000$ car house.
The lell Telephone Company have contracted with the Babsock \& Whi. cox Company for two of their latest wrought steel type of troters for their new building now being erected at the enrner of Notre Dame and St. John streets, Montreat. While 1 is not intended to instal the ciectue light plame it present, the hoilers will be abundnntly large to furnish steam for the elec. tric light engine whenever wanted. and they will also be buik to carry 200 lus working pressure if desired. The Balcock \& Witcox Company report that their business is very goot indeed, their shops at Belloville Leing well filled with orders for boilers to be delvered during the summer and fall.
The Goorerham \& Worts Company, Linuted, are just now mstalling at therr new distillery at Toronto, a complete independent water works punap ing plant, for the purpose of giving them additional fire protection. This new plant is not intended to furnish all needed fire protection, but rather to supplement the tesources of the regular City. Water Works. Goorterham \& Worts' pinas: however, will be very complete and perfect, and the equip. ment will be first class in every particular. Two large compound condensing pumps of $x, 500,000$ gallons capacity each will be used. These pumps to receive their stenm from two Balmenck \mathbb{K} Wilcox wrought stee boilers. The boilers will be of the well-known Babcock \& Wilcox Co.'s latest improved type, all pressure parts being constructed of wrought steel; boilers when completed to be capable of carrying a working pressure of 200 lbs . per square inch. As many of our readers alsendy know, the Rabcock \& Wilcox Company are now building their boilers in Canada, having equipped large shods at lelleville, Ont., with special tools, patterns, etc., so that they are now prepared to turn out large orders promply. The Gooderhan \& Worts Company are locating therr new pumping plant in a handsumse new brick building with brick stack, enticely independent from their other works, and the arrangement of the boilers and pumps will be such that the apparatus will always be in readiness for use at a moment's notice.

SPARKS.

The gross earnings of the tramway companies of Montreal and Poronto average about $\$ 4.000$ a day.
Charlottetown, N. B., has received a number of tenders for electric light supply, but the contract has not yet been awarded.
The Hubbell Primary Rattery Co. have commenced manufacturing their batteries. They are already introduced in the C. P. R. and C. A. R.
The Othawa Carbon and Porcelain works have commenced grinding coke and earbon. It is expected these works will soon give employment to 100 men.
Dr. Corkett, of Port Hope, proposes to put in a three phase system nna new appanatus in his electric light plant. He also proposes sugplying power to some local manufacturers.
The town of St. Marys, Ont., having declared incandescent lighung both expensive and ineflicient, the Louncil has deuded to adverise fur eenders for thary-two are lighis of 1,000 candle power each.
The Co-operative Telephone Co. of the counties of Iake St. John and Chicoutimu (lue., with a capital stock of sro,000, with heardpuarters at Herbertsville, has been formed to build and opemate a telephone line
The last annual report of the Othawa Electric Co. shows 2.192 meter customers, 677 ordinary commercial and 13^{8} monthly accoums, makme a total of 3.007 difetent customers being it the present time supplied with electric light.
Halifax, N. S., is protably the last city of importance to adopt an electric street railway, but it is at last an assured fact. The company has purch.ased from the Johnston Steel Co., of Lourane, Ohio, 1.000 tons of rail. The same company has also a contmet to furnish the spectal wotk neressary for the curves, sudetracks, turnouts, etc., the aggregate cost of which is $\$ 30,000$.
The Lanadian Electric Forging and Smelting Co., of Ioronio, seeks incorporation fer the purpose of smelung. heatung. cooking. and the manu factere of chemicals, by products. gises and electricity. the manufactuse and sale of machinery and construction of necessiry platus for all electrical circuits, etc. The capital stock of the company is to be $\$ 500,000$. divided into 5,000 shares of $\$ 100$ each. The principal stock holders are from the States of Massachusetts and New York and the Province of Cntario.

ELEGTRIG RAILWAY DEPARTMENT.

american street railway association CONVENTION.

The executive committee of the American Street Railway Association has made an arrangement with M. Davjs, customs broker of Montreal, for a reduction in custom house charges as follows on exhibits for the Montreal Convention: Warchouse and bond entry $\$ 1$; export bond entry, $\$ 1$; making and procuring consular certificates, $\$ 1$. When goods to be returned are valued at $\$ \$ 0$ or more a consular certificate which costs $\$ 2.50$ must be procured, but this is unnecessary in the case of goods which are valued at less than $\$ 50$. The fees therefore to be paid for goods under the value of $\$ 50$ would be $\$ 2$; and $\$ 3.50$ would be added to that when a consular certificate is required.
Shippers should mark goods with their own name, and "Care of M. Davis, Montreal, for exhibition purposes," prepaying the freight, and sending invoices marked "certified correct," and signed. On arrival, Mr. Dawis will make warehouse bond entry, and have goods delivered at the Victoria Rink.

When the exhibition is over, the owners of the goods will have to repack them, using preferably the same cases that the goods came in, and they will be returned under the export bond. They must be careful not to make more packages of the goods in sending them out than they hatd in bringing them in, and it is a distinct advantage to have them in the same cases, so that the matks on these cases may be identified. Consignors must pay all freigh and cartage.
The following regulations have been adopted:
Space will le alloted on Aug. to all exhibitors whose applications have been filed with the sectetary and aceepted on or before that date. Applications for squce recerved and accepted after Aug. I will be alloted remasning space, if any; in the order of their acceptance.
The space will be charged for at the rate of is cents a square foot, and no space less than 50 square feet will be rented, not more than 1,000 square feet unless by special arrangement with the secretary.
Space alloted cannot be translerred without permission and nust be taken possession of on or lefore Oct. 9.
Articles placed on exhibition cannot te removed without the uritten petmission of the secretary.
All grows shipped to the exhithition shoukd le phainly marked "Stueet Railway Eaposition, Montreal, Canada." It is advisable to secure a time-limit delivers. Be sure to allow plenty of time for transportation.
On and afier Oct. Scehibitors and dheir agents and workwen will be admitted to the building for the purpose of preparing necessary structutes. The general reception of atticles for exhitition will commence on Oct. 9 .

1. .hibhtors of machinery in operation must have everything in running order, in readiness to statt their machinery on the morning of the opening day.
All goods intendel for exhibition must the on the premises and propeely displayed on or tefore Monday evening, Oct. 14.
Exhblitiors mun provile all counter shafts, pulleys, belling, switches, switchlowarth, etc., necesssary for the operation of their machinery:
So phatorm or other structure must be nailed to the Roor or walls.
E:hilhiots must not place amy sign or circulate advertisements, except such as pectain to their own business (and those only in their own space), without written permission from the secretary.
Electric power will be furninhed to those who use pawer. The chatge therefore during the entire time of the exposition will ix 45 cents per rated kilowatt of machine actually using current. The minimum clarge for porer will ie $\$ 15$.
All machinery will, if possible, be exlibited in motion, and chould be kept in inotion at regular work during the hours 9 to 12 a. m., 2 to 6 , and 7 to closing p. m.
Parties desiring to sell and deliver in the building any article whatever, must first oblain a written permit from the seceretary for such con. suderation as may be determuned upon.
Any permit to sell may be sevoked at any time, at the pleasure of the assuciation.
livery prauble precaution will be taken to guard against firc, and a full conis of watchuren will be on duty day and nught ; lat the associa. tion will not le responsibie for loss or damage to anticles on exhibition, by thef, tite or otherwise.
The association reserves the right to charge an adunission fee to the citizens of Montreal should it so determine, but the admission of exhibjtors and their agents will be free.

THE WESTINOHOUSE CONDUIT RAILWAY SYSTEM.

There is now on exhubition at the New York offices of the Westinghouse Electric and Manufacturing Company, snys the Electrical Review, a model of an underground electric railway system which is attracting considerable interest. It embodies the inventions of Mr. Malone Wheless and Mr. Geo. Westinghouse, jr. The patents taken out by Mr. Wheless were controlled by the Electro-Magnetic Traction Company, of West Virginia, but have recently been acquired by the Westinghouse company. Mr. Wheless' system has been practically tested in Washington, D. C., where a line three-quarters of a mile long was laid last fall on North Capitol stree: and successfull operated all of last winter. Another line is in operation at the new plant of the Westinghouse company in East Pitsburgh, and it was this line that Manhattan Railway officials recently inspected with a view to its pessible adoption on the elevated mailways of New York city. The system was originally designed for street surface traflic, but a few modifications will pernit its adoption on elevated roads.
The prinsiple of operation is very simple and the construction of the road involves a minumum amount of digsing, as it is placed near the sufface. The feeding conductors are laid underground at the side of a sungle track or between double tracks. The feeders are connected at suitable intervals with automatic switches. At corresponding intervals, in the centre of each track, are triple-point contact plates. Under each car are three collector bars which make a sliding contact with the triple-point plates. As the car passes over these plates a storage battery carried on the car automatically operates the switches, and thus the current is thrown from the faeders through the switch to the contact points and on through the collector bars to the car motor. When the car has passed a contact plate the switch automatically breaks the connection with the feeder and the plate remains dead until the passage of the next car. The collector bars are sufficiently long to prevent sparking. It is said that the svstem is so arranged that overhead trolley lines can be used in suburban districts and the same car run on this underground method in city streets.
Should the Manhatran Railway Company decide to use the Westinghouse conduit system, the triple contact plates will be replaced by a succession of metal bars separated by distances varying from 10 to 20 feet.

SPARKS.

During the month of June the Galt and Preston electric ralway carried 13.000 passengers.

The largest teiegmph office in the world is the genem! post office build. ing, London. There are upxards of 3.000 operatiors, 1.000 of whonl are women. The batteries are supplied by 30,000 cells.
Mr. C. J. Morns, of Mfontreal, has entered an action against the street milway company of that city for 52.500 damages on account of the death of his child, which was killed by one of the cars which was being backed into the shed.
The Privy Council has pranted the Toronto Street Railway special leave to appeal from the decision of the Supreme Court of Canada dismissing the appellant's action to recover the amount padd for cuttom dues levied on steel rails.
the route is now defintely decided for the Halifax, N. S., electric tramway. The main line of four and ahalf miles, and branches of four miles addtional, will be in running order by November sst. The rand, building and rolling slock will cost in the neighborbood of $\$ 3+0,000$.
Mr. S. R. Break, superintendent of the Detroit street railway tines, is a resident of London, Ont. He bas resigned his position, to which a salary of $\$ 2.500$ was attached, owing to religious scruples, the duties of his office having made it necessary to transact a cetiain amount of business on Sun. day, to which he obljected.
The heavy blasting on the side of the stone cliffs for the Gorge electrie railway at Niagara Falls has bren causing havoc in the neighborhood. A reeent blast was sent of which tore out several thousand tons of rock, sendrig it up in the air some 300 feet over on the Cani.zian side nbout a quarter of a mile from where the blasting 200 k place. Hundreds of pieces of rock. weighing from ten to thiny-five pounds. dropped like grape shot from their great beight on the laurus and roofs of residences on the street facing the river benk. The Niagara Falls Park and Ruer ruilway bave elosed their ineline milway and promenade, being nfraid of accidents to tourists.

The new electric light building at Dunnville, Oni. is uearly completed.
The teiephone line letween Moncton, N. B., and IIopewall Cape his been completed.

A DVERTISER HAS HAD SIX YEARS' EX. A perience in management of rail and tramway rar.fic (passenger and commodity) and would take charge
of this depanment, or mine charge of new or other elec of this depanniment, or sile charse of new or other elec.
tric line; enersetic and capable ase 32 ; undersandi hic hine; energetic anis caphe; ase 32; understan ability and character. Address hox 24, EiLsctrical. Nкнк.

ELEGTRIC

 WATER WHEEL COVERNORPATENTED.
Variations in spreed de. lected by fass running. sensitive Goveunor 1hills. Gate movement instantly sel in operation ly electric current. Quick and ponerful nction.
. Writefor particulars.
WM. KENHEDY
\& SOHS
Owen Sound, Ont.

$\mathbf{~} \sqrt{\frac{\text { E have the following sizes of ROBB-ARMSTRONG }}{\text { Engines ready for immediate delivery: }}}$
$\sqrt{ } \frac{\text { E have the following sizes of ROBB-ARMSTRONG }}{\text { Engines ready for immediate delivery: }}$
$10,15,20,30,60,80,100,125,150$ Ano 1755 HORSE POMER
ROBB ENGINEERING GO., Ltd.
Amherst, N.S.
WM. McKAY, Seaforth, Ont., Travelling Agent.

Please mention the Canablan Electricat. Niws when corres.
. . ponding with advertisers . . .

2-

STUDY ELECTRICITY AT HOME

By our correspondence method. Thorough instructions with firee Apparatus, illusfated in july isule of Canabian tinktatcal Nisws. Cirrulars firec.

The National Electric Co. wivs cume

Bipolar and Power Genepators and wotors
Multipolar
 The National Transformers are the best in the market. Our Alternators light Forest, Palmerston, Grimsty, Pont Dover, and hundreds of other towns in Canada nond the United States. Ask the companics how they like them. Send for estimates to . .

JOKEN YK. SEXINNER

or apply at 146 YOMX ST., TORONTO.
MIITCIIELI, ONT.

CANADIAN CENERAL ELECTRIC 60. (LIMITED)

Authorized Capital, $\$ 2,000,000.00$.
Paid up Capital, $\$ 1,500,000.00$.

HEAD OFFICE:

65 FRONT STREET WEST, - - TORONTO, ONT.

BFANOEI OFFIOINSE

Factomies: Peterbomougin, Ont.

50 Kilowatt Set.

DIRECT CONNECTED GENERATORS

For Railway and Lighting Service
Economy in Space
Econonay in Powrer
Economy in Repairs

Sizes from $21 / 2$ to 1500 Kilowatt capacity.

CANADIAN GENERAL ELECTRIC CO.
 (LIN:ITED)

Practuras or --iolm	RAILWAY
STANDARD	LIGHGING
ELECTRICAL	POWER
On- por	MINING

The only successful systems for the long distance transmission of light and power are the

THREE-PHASE MONOCYCLIC INDUCTION MOTORS

Weatherproof
Rubber Covered
Magnet
Annunciator
Flexible Cord
Cables

Types: F. and G. Oil Insulation.

Separate Iron Switch and Fuse Box.

Highest Efficiency
Closest Regulation

Thomson Recording Watt-Meter

> Whe only meter which measures both current and roltage and is perfectiy accurate from one lamp to full load.

- autred mor -

Direct and Alternating Circuits
Arc Lighting, Railway and Stationary Motor Service SOLE GANADIAN fGENTS FOR THE CELEBRATED NATIONAL GARBONS
Write for our New Illustrated Catalogues of Railway, lighting, and POWER APPARATUS.

(Oonwall expecte to liave an electict r.olluay shortly

 Petioita Ont, is lximg liscuised.
 Nanamo lelectic laght Works the price geld is sald to be $\$ 55.000$.
therextenston of the ele irw riduay ixeturen West Joronto function and
 Canadian Electre fa will ratry out the work
 the river isel wis furmally opeterd July igth. On the intital irip one of the cars jutuged the trach and severml persons were injured
Himunburgh cuanct has decited to give the Otiawa electic ralway the ught of way uror the Richunond rand through the village for iwenty years proveded the company jay 3200 per yoar for five years and maradamize the rand
At the ammal meeting of the hingston Street Railway Ca, recently held. 16 was dencuted to noresese the capmat stock by issumg stock and bonds to the extem of stoo.000. to be expented in extending, the system to Cataraqui and other pounts
The contract letwren the (ity of guetiec and Mir H. J Beence, repre senting the wuetire Montmoreney and (liarlevoix railway, for the construction of the city reeitric malway, has been signed Work will be pro cected with at once

He total passenget rereipts of the Otiowa Electric Ratiway Co , for the year eading liay 3 ist 188,5 were $31^{4} 3$ int 88 and from mails, fents and
 total expenses were $\$ 1: 2335 \mathrm{coz}$
(he uf the tatest undertakings in eiectical science is the construction of an etectac line for the transporthtion of pissengers. math and express from Chengo to l'uflato and New Yorh lhe run to buffalo is to te made in four hours and to New tork ba frona eight to ten hours
At the arth annual general morving sf the Domumon 1 elegraphica. held in Ioronto on July 1 ith. the directors sutmmed a very famorabie report of the years business the following fentiomen wrie elatied directors for the ensuing year thos iminvard int lank Smith. K. C M. G. Gen Thos 1 liskers. Chas A linket a G Ramsig. Henry Pellati. Hectur Mickenzie lhm I (lark aud thos K Wood. At a subsequentmeeting of the newly elected lloard. Mr thos Sinanyard was reapponted prest dent, wir trank Smuth, wice-gresilent, and What Fred. Kopxes secretary and ire.isures.

The Bell Telephone Co'y OF CANADA, LTD.

MONTIRERE

TELEPHOMIC onar ELECTRICAL APPARATUS

LIME MATERIAL AND SUPPLIES.

Will furnish tenders for supplying Warchouses. Pubhe Bualdings, $\$$ Iotels and Dwellings with
'RIVATE AND LOCAI. TELEPHONE SYSTEMS
IURGLAR ALARMS. HOTEI., EI,EVATOR ANH
OIHER ANNUNCIATORS. HOTEI. ROOM AND
FIRE CAl.!. BELLS ELECTRIC BELIS, pusif
. . . . BU ITONS. ETC.
Will also furmish tenders to Cilles. I uwns and Villages for Fink At.akm asd Police D'atkol Systems

Catalogues trillics /wroushed on afphication

Sales Depratuent:

Itell Telephone Buiding. 367 Aqueduct Street.

TORONTU
1kell Telephone Building.
37 Temperance Street.
hamil.ton
Bell Telephone Bulding. Hughson Street. OTTAWA.
Bell Telephone Ruilding. Quren Street. QUEUEC
Bell Telephone Building. St. John and Palace Streets,

WINNIPEG
Forrest Mock, Man Sitect.

ROBIN, SADLER \& HAWORTH manufacgurers of OAK-TANNED LEATHER BELTING MONTREAL AND TORONTO

O~ROBERT GRAHAM~ \sim

Hon Founder and Machinimt
Water Whoels. Engines and Yill Machinery a Specialty.

- THE -

M
Albr in wio from 6 inches to St inches diameter. Wherl one solid casting. diameter.
is pert. of one solid casting. In five pieces inciudes whole of case, either register or colinder gate. Water gut on full pate or shut completely off with half turn of band nheel, and as cacily governed as any cngine

Do not be deceived

by those who claim ability to furnish you with a Lamp "as good as the Packard," for we are in a position to supply the Best Lamp made, and will prove our claims.

The "Packard"

has been the standard for three years, and in their endeavors to make a sale, agents of other companies invariably make the above quoted statement.

Any efficiency desired will be given you
Get our prices on the "Packard" Transformer

THE PAGKARD ELEGTRIG 60., Loto.

ST. CATHARINES, ONT.

AHEARN \& SOPER OTTAWA ONT.

ganadian representatives of the

Westinghouse Electrice \& Mfo. Oo.

from which an be operated
Incandescent Lamps, Afe lamps. and Yotors.

Dur Railway Apparatus is not Equallad by any othor

C. W. HENDERSON Maniditurg no dintator ELECTRICAL SUPPLIES

Wiring and Installing Complete Electric Plants

experimental Aiparatus, dodels, Patteras
Lhght Machinery and Cominutatoks.
electrical apiparatus of ali, kinids Reppired. Storage l3aiterifs, Doctors'and Dentists' Electrical Apparatus and machinery. Electric and Gas Fixtures. Elfccricic Fan Motors.
Somorfs Fancy and Miniature Incandescent Lamps.

44 Bleury Street. (CORNER JURORS)

THE OTTAWA PORCRLAN \& CABBON CO: Itt OTALAA. SIANUFACTURERS OF-

and solid carbon for incandescent circuits.

Motor Brushes and Specialties in Carbon for Telegraph, Telephone and Electric Light Supplies . . . orcelain Insulators, Cleats, Door Knobs, and all kinds of Pressed Porcelain for Electrical and Hardware Lines ALE. OOODS OUARANTEBD TO OIVE SATISFAOTION

VULCANZED FIBRE CO.

THE STANDARD ELECTRICAL INSULATING MATERIAL OF THE WORLD. Factory: Wilmington, Del.

Offige: 14 Dey St., New York.

THE BABCOCK \& WILCOX

WVater Iube

HEAD OPFICB: 415 Board of Trade Bailding, Montreal.
 Shops at Beliexilio, Ontario.

