CIHM
 Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
 Couverture de couleur

Covers damaged /
Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée etou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur

Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added duriny restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

Additional comments / Various pagings. Commentaires supplémentaires:

This item is filmed at the reduction ratio checked beiow /
Ce document est fiimé au taux de réduction indiqué ci-dessous.

The copy fllmed here hes been reproduced thenks to the ganerosity of:

MacOdrum Library
Carleton University

The images appeering here are the best quellty possible considering the condlition end legibility of the original copy and in keeping with the filming contrect specificatlons.

Original coples in printed paper covers are filmed beginning with the front cover end ending on the last page with a printed or illustreted impression, or the beck cover when appropriete. All other original copies are flimed beginning on the first page with e printed or Illustreted impression, end ending on the last page withe printed or illustrated Impression.

The last recorded frame on eech microflche shall contain the symbol \rightarrow (meaning "CON. TINUED"), or the symbol ∇ (meening "END"). whichever applies.

Maps, pletes, cherts, etc., moy be fllmed at different reduction retlos. Those too lerge to be entirely included in one exposure ere flimed beginning in the upper left hend corner, left to right end top to bottom, as meny frames as required. The following dlegrems illustrete the method:

L'exemplaire fllmd fut reproduit grâce à la générosité de:

MacOdrum Library
Carleton University

Les imeges sulventes ont dté reproduites avec le plus grend soin, compte tenu de la conditlon et de le nettet'́ de l'exempleire filmé, ot en conformité evec les conditions du contret de flimage.

Les exemplelres origineux dont la couverture en papler est imprimée sont filmds en commençant per le premier plat ot en terminant soit par la dernlere pege qui comporte une empreinte d'Impression ou d'llustration, soit par le second plet, selon le ces. Tous les eutres exemplaires origineux sont fllmés en commençant par le premidre page qui comporte une empreinte d'impression ou d'illustretion ot en terminant par la dernidre page qul comporte une telle empreinte.

Un des symboles suivants epparaitra sur la dernidre imege de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE". le symbole ∇ signifie "FIN".

Les certes, planches, tableaux, etc.. peuvent étre fllmés à des taux de réduction différents. Lorsque le document est trop grand pour âtre reproduit on un seul cliché, il est filmé à partir de l'engle supérieur geuche, de gauche à droire. ot de heut en bas, en prenant le nombre d'Images nécessaire. Les dlagremmes suivants illustrent le méthode.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

CANADA
DEPARTMENT OF MINES GEOLOGKOAL UUREET DRAROR
Hon. W. Tlyplaman, Minhetar ; A. P. Low, Dapoty Miniota R. W. Bencis, Ihriotos.

REPORT
OV A PABT OF THE

NORTH WEST TERRI'OORIES

IHAINED BT THK
WINISK AND d'TTAWAPISKA'I RIVERS

on a
TRAVERAE THKOUGH THE SOUTHERN PART
or the
NORTH WEST TERRITOKIES PROH LAC SELL TO CAT LAK IN 1902

Br
ALFRED W. G. WILSON

OTTAWA
GOVERNMENT PRINTING BUREAL
1910

$$
\text { Now. } 1008,104
$$

CANAIA

\|EPARTMEN'TOF MINES GEOLOGRAL EURVEY BRANCK

II. W. Benek, Hirictor.

RF゙l"orly

HHANEFH HY THF:

WINISK AND LPPER AITAWAPISKAT RIVERS

II
WILLIAM McINNES

OTTAWA
GOVIIRNMENT PRINTING BI'RFAT
1909
No. 1040
4074-1

To IV. W. Bnoc\%,
Director Geological Sursiy.
Department of Mines.
Sir, - I have the honour to submit a report on my surveys and explorutions made during the srp., s of 1903,1904 , ant 100%, in the portion of the North Went Tersitories of Canada drained by the Winiak river and hy the upper branches of the Attawnpiskat river.

I la ve the honour to be, sir,
Your olvedient sersunt,
(Signed) WIIIIIAM MCINNES.
Ottawa. May. 100 f.

CONTENTS.

I'AgF
Cieneral remark. $:$
Earlior explorations in the district h
Surveys..
9
9
Rontes into the regioin 30
General deseription of the region.
13
13
Geological summary 21
Direction of slaciation.
21
21
fonzat mi land remina.
21
Laber Winiok l:iver reqtoll.
21
21
Alhany liver and llowapi-kat liver vallas. 22
Winisk river.
35
35
Attawapiskat river.
39
39
Rontes between the Attawapiskat and Winisk rivers
Rontes between the Attawapiskat and Winisk rivers
41
41
Routes between the Winisk river and Trout lake.
43
43
Route betweon the Albanv and Atta"•apiskat rivers
Route betweon the Albanv and Atta"•apiskat rivers
41
41
Cultivation of the land 45
Fish. 45
Wild animal-
Wild animal-
46
46
Indians: 49
Arelamology 49
Forests. 51
Climate.
32
32
Wator temperature. 52
Laud shell: 53
Fresh water shells.
53
53
List of freh water shells eollfeted H : W. MeInnes. 55 f, lex
ILLUSTRATIONS.
1 late 1. Bombler of grein abl reddish-purple slate, Winisk river.
Frontispicet.
ar II-Silurian limestone on the lower Winisk river. 16
" IH.-Treeless area fringing west eonst of IIndson Bay. 34

- N. Indiats uf the lower Winisk river. 4fi
. V.- Lower Winink river, showing banks of Silnrian limestone,
and eharacteristic forest50
MAP.
No. 1089. I'ortions of Northern Ontario, and of fle North West 'urritorics. slowing eonntry drained by Albany, Seseru, and upper Winisk rivers, ete.

REPORT ON A PART OF THE NORTR WEST TERRITORIES OF CANADA DRANED BY THE WINISK AND ATTAWAPISKAT RIVERS.

BY
Whleam MicInnes.

The present report deals with a tract of country lying within the unorgunized North West Territorics of Canada, between N. lat. $51^{\circ} 11^{\circ}$ and N. lat. $55^{\circ} 10^{\prime}$, and hetween W. long. 83° and W. long 90°.

This distriet forms part of what was known for a time, prior to the inauguration of the Provinees of Alberti anl Saskatchewan, as the Distriet of Keewatin, and lies between the northern boundary of Ontario and the southwestern shore of IIudson bay.

It is drained by rivers rmming from the west into James bay and into IIudson bay respectively, and the report is, in the main, a deseription of one of the latter-the Winisk-throughout almost its entire length, and of the upper branches of one of the former, the Attawapiskat.

Earlier Exploration in the District.

As far as I have been able to learn, there are no references in the journals of the early explorers to the Winisk river. All concerned in the seareh for a northwest passage to the Orient, they were naturally led to give most of their atteution to the passages between the Aretic islands lying at the extreme north end of the bay. The mouth of the Severn river was, however, visited by a number of them, and IIenry Iudson and Thomas Janes explored the bay now known as James bay, then ealled Mndson's bays.

Captain Thomas James, and Captain Luke Foxe (who styles limself in his journal, 'the northwest fox'), seem to have been the only navigators who sailed along the coast between the Severn rizer and Cape Henrictta Maria, for the purpose of examining it. They describe a generally low shore, with shallow water, and make no allusion to having noticel the month of the Winisk river. It must

have been, however, as Mr. Miller Christy pints out, in the vicinity of the bay at the mouth of the Winisk river that the two vessels approacherl one another in August, 1631, when the two eaptains, both bearing letters from His Majesty King Charles I to the Emperor of Japan, were able to compare notes as to their discownies. and when Captain Foxe, ridiculing James' aetion in keeping hiflag continually fring at the masthead, said to him, to use the quaint langrage of has journal, 'Keepe it up then,' gnoth I. 'but you are ont of the way to Japna, for this is not it.'

Mr. (i. Taylor, of the Ithlson's hay Company's service, seems to have visited the river in 180 , and to have supplied the topographical details that appear on the Arrowsmith map.

Ff. Liobert Bell, in 108t, descended the Attawapiskat river from the lake, which he named Lamidowne, to the sea, and published an aceomat of the exploration in the Anmual Report of the Geological Survey for that year. ${ }^{1}$ The Jawn branch of the Severn river wa; explored by Dr. A. P. Iow in 1hafie and thr Ekwan and Tront riverby Mr. D. B. Dowling and Mr. W. II. Boyd in 1901.3 No description of the Winisk has been published, thongh, without doubt, employeof the IIudson's Bay Company have traversed it, as, in the early nart of the last century, posts of the Company were established at three points near the head of the river. The missionary priests from Albany, ton, have descended the river, holding missions it the more importunt Indian centres.

Surveys.

In order to secure data for the compilation of a map of the region, the following surveys were earried out during the seasons of 1903-4-5:-

Surveys by mierometer teleseope and compass, checked by astronomical observations for latitude, were made of the Winisk river, from the mouth to a point 190 miles from the coast following the course of the stream; from the foot of Wunnummin lake up to the outflow of the west braneh a. Misamikwash lake, a distance of 60 miles; down the west ranch for 55 miles, and across ly a portage route 24 miles in length to Trout lake at the head of the Fawn

[^0]branch of the Severn river; of a route from the foot of Lake St. Joseph by way of the south branch of the Attawniskat river to Fort Hope, a distance of 189 miles; and of 27 miles of the Albany river below Fort IIope.

In addition to the above a number of track surveys, eleecked by latitudes, were made. These eovered portions of the Winisk river; part of the Attawapiskat river; three routes conneeting the Attawapiskat and Winisk rivers; a route from the Abany river at Eallomet lake to Lansdowne loke and a route from Trout lake down the west branch of the Winisk river and aeross to the main river near Nibinamik lake.

Routes into the Region.

.While the number of possible routes to the Albany river from the Canadian Pacifie railway is very great, there are but thres that have been used to any great extent, one leaving the railway at Dinorwie station and reaching the Albany river by way of Lac Seul and its tributary the Reat river, another one starting from Lramer and reaching the Albany by way of Sturgeon and Musibimega lake- and another leading from Nipigon station by Nipigon river mat lake and erossing to the Albnny by way of the Onbabika and Opichuan rivers. The first of these is the best route in, partieularly where a load is to be earried, as, though somewhat longer than either of the others, it is down strean or through large lakes for the greater part of the distance.

For light canoes and , quick passage the route by way of Nipigon is pieferable, on account of the shorter distance to be traversed.

The greater part of the supplies used for the fur trade in the distriet are brought up the Albany river from James bay, a route ineluding 300 miles of swift water where trarking is the only means of progression, and ahout 50 miles of alternating quict water and rapids where portages arr frequent. This is considered an easier route to Fort Hope, the headquarters of the trade, than any of the roads from the Canadian Pacific railway.

The completion of the Grand Trunk Paeifie railway will shorten very considerably the distance from this side, and render the whole region comparatively easy of access.

From Fort IIope the heads of the Winisk and Attawapiskat rivers ean be reaelied by several routes, none particularly diffieult, but all made tedious by reason of the number of portages necepsary.

General Description of the Region.

The region mas be roughly divided into three great areas, each with charaeteristie features: the Arehean area of the high interior plateau; the boulder clay area; and the liniestone area of the IIudson Bay basin. The Arehæan, of the three, eomprises by far the largest extent of country. It eonsists of an elevated, undulating plain, with inl average height of from 700 to 1,000 feet above sea-level. The effects of long-coutinued subaerial decay and denudation, supplemented by the later cleaning up and smoothing action of a great glacier, are everywhere noticeable in the gently rounded outlines of the very moderate clevations. On it all the larger rivers r_{i} the IIudson Bay watershed, and many of those flowing south and west, have their sources, the great muskeg areas aeting as storage reservoirs, from which, even in the dryest season, the volume of drainage is large. It is along the parts of their courses lying within this area that the quiekest desecnt oceurs, falls and rapids that would afford water-powers being thus largely confined to the upper stretehes of the streams. This condition is in eontrast with that obtaining everywhere throughout eastern Canada, where the streams flow for the greater part of their length over the Archæan, and only come tumbling down from the elevations when low down in their courses after they have attained almost their maximum volume, thus making the castern rortion of Canada probably unequalled in the world in the matter of water-powers. It n.ust not be thought, however, that throughout the area now under consideration there is any seareity of good water-powers. They oceur in great number, but owing to the distribution of the Arehæan highland before referred to, they are situnted mainly for inland rather than near the eoast.

Through, considered as a whole, the central, clerated region cannot be spoken of as generully adapted for agrieulture, there oeeur basins covered by heary deposits of stratified sand and clay that seem to have been laid down in lakes held in between barriers formed by the walls of the retresting glacier and ridges of drift. An examination of some of these clays by Dr. Hoffmann sbows them to be highly calearcous and somewhat siliecous, a composition that with the admisture of the surface regeable mould should produce an exeellent soil for general agriculture. The question of elimate, which is, of course, of the utmost importance when eonsidering the agrieultural possibilitics of a distriet, will be referred to more particularly
in another place. It may be said here, however, that the elimatic conditions are, if somewhat adverse, not by any means prohibitory to the general cultivation of suitably situated tracts.

Muskeg, alternating with low ridges of gravel and boulders, covers wide tracts, though, owing to the faet that the only practicable mode of travel tlirough the country is by cunoes, there is a tendency, perhaps, to overestimate the extent of such areas, as the natural can:oc rontes must follow the watereourses, and these in turn keep to the luwest cheations, and, therefure, show a proportion of swanp that is greater than the average of the district. It was noticed that the surfinee drainage became nore perfect in that part of the region estending westerly towards Trout lake. Ascending the Winisk river from Weibikwei lake towards its headwaters this was very noticeable, the muskeg areas lecoming infrequent and of smaller extent.

The larger lakes throughout the district are confined to the Arehwan aren. They are all emparatively shallow, and so studded with islands, und broken by long, projecting points, that they seldom show any large expunses of open water. They oceupy depressions in the superficial depusit-, generally with a boulder elay bottom, and in no rase was one fount uccupving a regular rock basin.

The areas of the principal lakes are approximately as follows:-
Wumumn:in lake. 60 square miles.
Weibikwei lake. 10 "
Lansdowne lake. :18 "
Ozhishi lake 05 "
Wapikopa lakt. $\because t$ "
Eabemet lake. 21 .
Nibinamik lake. 10 "
The highest land lies about the headwaters of the south branch of the Attawapiskat river, east of Cat lake, where an elevation of probably 1,500 feet above the sea-level is reached.

The approximate heights of the prineipal iakes determined by barometrie measurement is giren below:-

Finhent lake, Mlbany rivir		abore sea-lesel.	
Ozhask lake, Attawapiskat river.	910	،	
Lansdowne lake, Attawap" "at river.	515	¢	
Wimbobika lake, Attawapiskat river	1,300	،	
Weibikwei lake, Winisk river.	680		

The tract \mathbf{r} ferred to as the bonlder clay area consists of a broad bel: of country, about 159 miles in width, lying between the Archrean highlands and the eflge of the limestones of the basin of Iludson buy, overlappiug the latter, however, so that the surface features of the two are generally quite similar.

Gently undulating, and with a slight slope northerly and casterly, its general surfuce aspect is that of a great awnup, sparsely coveref with stunted and deformed trees, that reach a growth approaching their normal ouly along the immediate banks of the rivers where diainage is afforded by frequent short gullics into the trenches that constitute the river valleys. The interior, to within a chain or two of the river-banks, owing to the impervious character of the till, is quite undrained, and consequently covered by a thick deposit of sphagnum moss from two feet to ten feet deep, the surface layer still growiug, and even the bottoin only bleaphed a little, but not at all oxidized. The short cool summer season, and consequent low temperature of the water that saturates the moss, is probably the prinicipal reason for the absence of any of the visible effects of lecay.

The riscrs flowing through this region havo no real valleys, that is to eay, they occupy trenches but little wider than the immediate channels in which they flow, cut down through the stiff, tough till, which stands up in nearly vertical walls that rise from the freshet mark on cither side. At low stages of tho water a slanting heach. often paved with boulders, slopes gradually from the foot of the bauk to the edge of the diminished channel. A more or less enntinuous layer of marine clay, rich in fossil shells, cverlies the boulder clay, ensuring. wherever it is present, a soil of good quality. The absence of other than swamp vegctation must be ascribed, then, to the almost total absence of drainage, and to the generally unfavourable climatic eonditions.

The third area, underlain by Silurian limestones and dolomites, presents essentially the same surface features as the till area. The folding of the limestones, however, though generally amounting to broad undulations only, gives to it somewhat more of relief, and the troughs in which the rivers lie have been excavated entirely through
the mantle of till, and lave eut down into the limestones to depths of from twenty to thirty feet.

There is the same absence of any vegetation other than that haviug a muskeg habitat, excepting on the islands in the rivers mucl along their banks.

The northern rim of this area consists o! a treeless plain, bordering the shores of the bay, and varying in width from a mile ame a half to three miles. It las an elevation of only a few feet above the level of high, spring tides, and is probably snbmerged on ocensions when these tides happen to coincide with northeast storms on the bay. The saudy anil gravelly surface is sparsely covered with bunchy grasses, and, early in August, was bright with the alowers of many sub-aretic plants, among which the Aretie daisy, Chrysanthemum arcticum, the yellow ragwort. Senescia pullistris, the painted cup, Castelegia pallida, a live-for-ever with suall, bell-like blue tlowers, purple retches, and the large rose-eoloured Epilotiam were prominent.

Geological Summary.

The geologieal divisions recognized in the region under consideration eonsist of the following, in ascending order:-

Laurentian.
liecwatin,
Lower Iluronian (?),
Silurian (Niagara),
Pleistocene (Till, cte.),
l'ust-pleistocene (Marine clays, etc.),
LacRentins:
Biotite granite gneisses, varying in the proportion of their various constituents, in their attitude, and in the degree to which the gneissic strueture has been developed in them, are widespread over the whole extent of country explored. Over great areas they have a stratiform appearance, the foliation showing an almost liorizontal structure, with only very low, broad undulations. As at present constituted they, without doubt, inelude areas that differ widely in age, the comparatively new granites, however, occurring in quastity quite insignificant in comparison with the volume of the older gneisses. l'egmatites, in veins and irregular masses, cut the gncisses practieally everywhere, and are, probably, though newer than the gneisses, almost contemporaneous with them in their present form.

KEEWATIN

The Kiewatin lmals, made up of neens of basic: roeks, in the main diorites, diabnses, and chloritic and lormblende sehista, but including a considerable volumo of conrse conylomerates, though oceurring as belts of considerable length and four to six miles in width, are of a xerelingly sumll volume whin rompared with the whole extent of gncianes in which they ure enfolded. Probnbly not more than a tenth of the whole Archasan area is oceupied ly them.

In the region explored, between the Albany river and the overlap of the mantle of till, six apparently separate belts of theso rocks were note They have all, in a general way, about the same trend, N. $70^{\circ} \mathrm{E}$.

The belt of these rocks crossing the Albany river at Petawanga lake and seen again on the routo between the Albany at Fort Hope, just north of Eabemet lake, is the most sometherly. It is made up for the most part of chloritie, feldspathic and lurmblendic schists, and diorites in different stages of deformation, and has a vidth of about six miles. The gucisses bordering tho belt on the south are finely foliaten, hell a harge proportion of black liotite, mul are, in certain layers, thickly spotted with garmet crystals. Masses of coarso pegmatite, entting these pucisses, hold crystals of mion up to gen in diameter.

The next belt going northerly is situated about twenty miles north of the Albany river, and is well exposed along the banks of the Kawinogans river, which has cut its chaunel in theso rocks for about seventeen miles. This band is from one to four miles in width, and is mado up of feldspathic and chloritic sehists, diorites and other basic rocks. It io lanked by biotite gneisses, with, at points close to the contact, occasional outcrops of hornblende granite-gneiss.

Another : \cdot 't, quito similar to the two above referred to, lies just north of Lansdowne lake. Further referenee is made to it in the descriptions of the routes leading nortli from the Attawapiskat to the Winisk. The most interesting belts are the next two; the first, lying just soutl of Nibinamik lake, by reason of the occurrenco in it of a large mass of hypersthene gabbro, similar to the niekel-hearing intrusives of Sudbury; and the next, the Wunummin Lake band, on account of the extensive development in it of heavy berls of coarse conglomerate, holding pebbles, chiefly of various forms of granite. The most northerly band is apparently quite narrow, and was noted
 nurth of thi. Winink riwer.
sll.CRIAN.
The silurinn section ulong the Winisk river seems to eompriss: in ascending order, twenty feet of elose-grainet, hard, brittle, green and hack ribbonel slates, with hunls aml nowlules of more highly ealearcous material; six feet of a hard, dark-grey, susty weathering, ealeareous ıurtzite; ten feet of il mueli more caleareous form of the last named heds, so ealeareous ins to constituto an impure limestone rather than a quartzite. All of thes ver beds, which are "xposed at but one pluce on the river, where they are brouglit up by a coni, wund antielinul fold, are laril s.nd baked-looking, with many sinall veins of quartz nul valeite eutting them in all directions. Lithologically they are quite dissimilar to uny of the strata eomposing the rest of the section. Further effects of pressure are seen in llu Itardened eomation of wll the rocks, and in their cracked and fiswural condition, the cracks filled with secomlary quartz and enlcite. The more massive beda deseribed us ealeareous quartzites are seamed in all directions hy these white, reticulating veins, which arw bought into stroug prominence ly theor contrast in, colour with the dark, rusty-weathering surfinees of the parent rock.

There secma io bre a gradual passage upwards from these beds. hy the inerease in their ealeareous content, into impuro linestores. and then into the next bels in the series, eonsisting of a series of slightly magnesian limestones, comprising eight feet of luff-coloured, slightly ferruginous, hard, elose-grained, flaggy beds, with the texture of lithographic stone in eertain layers; two and a half feet of more massive nodular limestone, the nodules of finer texture than the enelosing, slightly shaly matrix; and ten feet of rubbly, shaly limestone. with occasional sandy layers. Nodules of bluish opalescent quartz, with banded, agate-like structure, oceur in the more compact beds throughout the series.

Abovo these beds is a very persistent band, six feet in thiekness, si a tufaceus-looking, vesieular limestone, the very distinetive character of which makes it easily recognizable at many points along the river. Cavities in it are eoated with erystals of ealeite, and vesieles and eracks oceurring in it are filled with a fibrous form of that mineral. The ealcite oceurs throughout the roek in irregular masses that weather out to form eavities of irregular sizes and shapes.

Immenately above this bed there oceura a $6^{\prime \prime}$ layer of a compact - \quad lhwinh himextone, with but litte mugnewia; then six fert ut very fine-grimel, almust compuet, very light buff coloured dolomite. rontaining a sunll quantity of argillaceous mattor and occurfing in heavy flag-like beds, the phates lard and clinking under the hammer. Theo ure overlaid by twelve feet of butf-eoloured impure magnesinu limestone, whaly in certain layers; und teu feet of tlaggy and shaly buff-culoured, somewhit nolular, maknesian linestone, the whole becoming disintegrated eusily so nu to show only nodular, crambling surfaces.

Itroadly peakius, the stratu may be said to lie alinost horizontally, wi ha eligh! dip towarts the shor-s of the bay, amounting If about the ame as the desent aceomplished by the river. Low undulations canse the sume bets to reeur again and again in the sections exposed along the river. The exposures are not continuous. long iutervals where the overlying boulder elay only is seen intervening between the exposed sections, so that the generalized section given above, and tabulated on a succeeding page, is made up from wn examination of separated exposures oceurring along the river for a distance of eighty miles. Though the strata are uniformly buffcoloured and closely similar in general appearance, a few very distinetive leds-notably the tufu-like limestone bed, which seems to be very persistent and to keep its distinctive characteristies-serve to conneet the various exposures satisfactorils. The lowest beds, comprising the thirty-five fect of strata brought up by the compound anticlinal foll, appear at only one place on the river. As no fossils were found in them their age can be inferred only from their apparently confurmable poaition immediately underneath the fosihiferous Silurian strata.

The corrugated surface of the dome of the anticlinal itself dips about ten degrees north of west, at a low angle varying from five to twenty degrees, and it is possible, though not probable, that the roeks noted by Mr. Dowling at Sutton Mill lake represent underlying beds brought up by a sontlieasterly extension of this fold.

The calcarcous nodules, which probably represent bands broken by the stress of the folding, weather out readily, where exposed to atmospheric action, leaving a rock full of holes.

Silmen 1.
110.711 .14

A small collection of fos-il was made from the beds overlying the vesicular tham, in whiell Dr. Whiteaves has identified the following forms :--

Fannites gothlandia, Lamarek.
Strophcodonta niagaraensis, W. and 3[.
Leptana rhomboidalie, Wilckens (sp.).
*Camarotachia (!) u'inishensis, Whiteavea.
*Camarotochia (!) coalescens, Whiteaves.
"Glassia rariabilis, Whiteaves.
*Actinoceras keeuratinens, Whitcares.
Trimerella, sp. indot.
Orthis,
Spirifer,
Streptelasma,
Trochonema,
Euomphalus, ."
Loxonema, "
Cyrtoceras, "
Bronteus, "
Encrinurus,
Though not a very catisfactory collection in itself for purposes of age-determination, the above-named species correlate the beds holiling them with thosc of the Severn river to the north, and the Ekwan river to the south, and collection* from the three localities combined fix the age of the rocks very satisfactorily.

The southern limit of the Silurian linestones cannot be fixed with any degree of exactness, owing to the heary overmantle of till that conceals from view the underlying rock for a distance of 130 miles along the river. It scems probable, however, that it extende to the ricinity of N. lat. . $1^{2} 20^{\circ}$. Mr. Low found on the Fawn branch of the Severn, the nearst river to the west, the same wide area of country completely covered hy till intervening between the most northerly exposure of gneiss and the first exposure of limestonc. He thousht it probable that the limestones extend under the till for a distanec that would correspond very closely to that given above for the Winisk. East of the Winisk river the iuland boundary of the Silurian bends suddenly to a dircetion nearly due south, crossing the

[^1]Attawapiskat river a little above N. iat. $52^{\circ} 30^{\circ}$, and the Albany one degree l.wer.

PLEISTECENE.

The boulder clays of the Winisk river may be casily divided into an upper and a lower till, the whe lying upon the eently undulating surface of the other.

The upper bed is composed of a butf-coloured elay, drying slightly friable, with oceasional larpre boulders, and many small pebbles and angular fragments of diorite, quartaitw, gheiss, red and white sandstone, jasper, ete. Its greatest uherered thickness is about forty feet. measured from the surfaer of the lower till to the bottom of the fossiliferous marine beds. Nu -tratifeation is apparent in it, aud the large boulders are so rare, that, at a little distance, cut faces hase the appearance of beds of pure chay.

The lower till, the thickne- if which was not :scertained, is composed of an extremely tough blue clay, witt very many large boulder semi-rounded and moxtly well striated. Limestones and dolomites quite similar to the Silurian berls of the lower river make up a large proportion of the boulders. but others of gneiss, "- artzite
 ing hetwern low and high water matrk are wfien a mosaic of the washed out material from the clay, fomming very good examples of boulder pawnents, the nutural tend mey of the rocks to arrange themselves with their flatter sides parallel to the surface resulting in an almost smooth floor, ourr which the spring floods seem to pass with little or 10 denuding power. The whole bed of the river is, in the same way, protected by a layer of hewy houlders that offers great resistance to the wear of the current. and that has practically stopped the fur exearation of the chamel at levols far from the botom of the lower till.

The accumulations of glacial critt are au iniportant feature over
 principal causes that define the shapr of the lakes and the direetions of the rivers. The influence of morainic rillece wi boulders and gravel on the coursc of a river j--trikingly seen in the case of the upper part of the Winisk river. The direction of the ice mevement was about L. $23^{\circ} \mathrm{W}$., and the cour-o of the river is found to conform to this direction to a remarkalol evterit. that $\mathrm{i}-$. it makes it= way

$$
107!-2!
$$

en=tward in a surics of rimeras-, the lake-like "xpansions conforming in a remarkalle wag to the rentere af the morninie ridges of drift.

The: hakes owcurring along the river are characterized by many luny harrew hays with the -anm trmul, due the the drift ridges that bound them.

The glaciation of the whele ar:a shows most remely that it is the resuh of the parage of a large wheicr, contimental ahmost in extent, moring in in general way al lithe -unth of west, bit showing minor
 tion when the ice sheet was not at its gratiot thiokres aml was thors readily influenced by the surface routurs:

The general S.s.W. direction of nownome is indicated not only by stria, chatter mark-, and crag and tail senpturing, but ulso by the character of the loulders elulosed in the till and scattered broadf:ist ower the Arehemarea. The necurrence of the fussil-bearing limestonce along the west const of Hudson hay and James bay, and the entire absence of any rocks at all similur to them over the whole regi-n fanther south, makes the character of the travelled bo ulders derimel from these rucks a sure index to the direction followed by the moving icc-shect. Idditional evidence is afforded by the oeeurrenee in the till of bouhlers and pebblos of jasper, hematite, quartzite of a very distinctive ,haracter that Dr. Bell has recognized in phace on the cast const of Hudwon bay, and jasper breeeia or eonglomerate. The widn tract of commtry lying botwern the Areham gheiss and the first expmonors of li estone, where the underlying rocks are complotely woncealed by the thick mantle of boulder clay, migit be the sonree from which is derived many or all of these apparently foreign buhbors, hut their very clome similariter to rocks that ate known to werne on the cant hone of thatson buy makes it mone probable that thes hase heme drived fre them.

I fow southwentory -tria that appared to be possibly later than the prevailing whes might he interpreted to indicate a glacier travelling down a sathering gromml such as has been assigned to the Keewatin glacier. The lowal variation- of the strix from the general direction are ol many, howrver, that it sceme quite possible that they are ouly the reenta of dethexions caused he heal surfine relief, and mathe worhapa he a very much redured ghecier. No (evidence of a glaciev mowing down towarle the hay was noticent. The following liot of

 gencral conrse of the placior, the Winink River chamel where the direcion of the stria seems th have lawn somewhat atferterl by the river comest, und the valless of the Sllany and Vpper . Ittawapiskat rivere. Where the direetinu has lown quite greernel lye the trend of the vallers.

Direction of Glaciation.

Height-oj-Land hegion-

Louer IWinisk River Region-
Ninisk river below outlow of Winiskisic. \therefore. ${ }^{`}$ W゚.

Allany Rirer and Allauropiskal River lalleys-
Fabomet lake. morthwrst shore. S. S: : $i^{\circ} \mathrm{II}$.

> POMT-PIEISTUC F.N:

The marine elays, oferlying the bember clays along the winisk river, were foum to be gentrally fo.iliferous. excepting near their mot -untroly axten-ion where they are quite thin, ant, a- far as
obarvel, du wo lold fosoils. From a collection made frum these chas in 190:3, Dr. J, F. Whitrare has identified the following -proibe-:-

P'ecten islundicus Mïller.
Mytilus edulis, I.
Cardium ciliatum, Fubriciuz.
\therefore Sripes Grenlandicus, Gumlin.
Macoma calcara. Gnielin.
Mya truncala, l.
Mya arenaria, I .
Saxicura rugosi. J..
Bucciuum tenup, liras. Buccinum?
anl. fresh whter sperie-:-
sphntimm alrialimum. Lamarok.
Limm"'" |mhavirs, I..

The Winisk River.

The Winisk river, thougin withont falls in its lower course, and with a volume that wonld lead one to suppose it casily navigable by ressels of considerable size, is so rapid and so wide for a long dis. tance up from the buy that it would be difficult to find a channel for a steamer of even moderate draft. This is particularly true of the thirts miles of its course over the flat-lying limestone ledges that often form bariers quite across the river bel, on which there is a depth of only a few feet of water.

The river has cut down into the limestones to a depth of more than forty fect. the strata rising in vertical walls to that height above mean low water level.

There is evilence that the river followed its present channel in the limestones prior to the glacial periocl. It has since then not worn out for itself any valiey besond its immediate chamucl, which is a mere trench in the boulder clay in the upper stretehes, and in the chay and underlying limesture farther dhwn. The extreme tonghHest of the lower boulder elay, and the protection afforden by the great ummer of large boulders that wath out from it and coat the bottom and lower parts of the sides of the trench, have prevented any quick degradation of the banks, wheh tand up, raw and steep.

more gently sloping part of the hank. betwern high water mark and the foot of the houlder chay wall, are covered with a growth of grasses and small buikes, and, beyond latitule it' 30^{\prime}, the nearly vertical boulder eley iteelf support a grouth of silver berry, Eleagnus argen. tea, and buffle berry, thepridiu, the almo-t show-white foliage of the former standing out in -truly contri-i with the dark-green leaves and red berrien of the hater.

The Winisk river, along it- urper conrse casterly th Weibikwei lake, has a distinguisluble valley. The lower pare of the river, however, from the lake to the sea, hat-atisolutely no valley ortside of the sterp-walled trough in which it runs. The upper Attawapiskat river, fowing in an easterly direction, hit 11 fairly well-marked valles, eomparable to that of the Albany, though of less extent. The upper parts of the river are roughty parallel to one another and to the Albany river, with which it is nut ut all improbable that the Attawapiskat was at oue time connected, as the country now dividing then is characterized ly high hill= of gheial drift, filling up and concealing any former chamels that may have existed. Theee are the very remarkable hills described elsewhere in this report in greater detail.

In all the rivers on this slope is seen the tendency to split up into tw. ir unve channels, enchoing area- of hund often many miles in extent. This feature is more marked in the ease of the Winisk than in any of the others. Above Weibikwei lake one of these divisions of the chamel oecurs, enelosing an area of thirtecu sumare miles: and helow, the two brunche= known or the Wini-ki-i- and the Tabasokwia flow around islands with areas of aiout ts0 and 180 square miles respectively. The former of these branches, flowing to the eaz: at a point seven miles helow the lake, joins the main river again six: 9 -five miles belors. The Indians say that no important stream coms- in to the branch, hot a number of small streame make: it a river of considerable size at its confluence with the main channel. eve: at low water when mo water is pa-ing over the har at its nper end.

The volume of water in the river huring the prion of spring freslot must luy quite ten times as areat a- at low water in midsumneer. The height reaehed bes the water is, in many phace, plainty indeated on the banks.

Fxidences of the dnatrusive form of the ief, when ruming out in the -uringe are common. Trors on some of the $i=l a n d=$ are found
l, roken and uprooted at luights of fiften fent ubse the nor mol - Tater level, and the boulder clay of the lanks is ploughed and decrit, scored at corre-ponding lecights.

The that surface of the limenture lund rink the porge is evidently swept manually by the river whell it it = lu-ight, though the water surface in the gorge at ortinany -mmmor level is thirty feet below the top of the limestunc.

 beneath the boulder rhay on the "Inere Winisk riser.

Owing to the frement small lamslide- orromring nlong this part of ther river it was imposible for fix the pmoition of these loed with any dorrex of curtainty.

Thomgh for so great a part of it- comme the river in bordereat lis high alul step banka of why, landslides setht to be excedingly rare, exegting where the comintry has been swept ly forest fires. Where fires lure recently taken place nlonpe the banks, dennding them of their proterting ragetation, small landslides ure almost continuous.

The Winisk is with little doult the largent of the rivers diselarging into the west side of Ifudson bay or James bay betwren the Serern unt Albany rivers. Rising in the highlands lying to the sonth of Trout luke, it drains the large expanse of country lying to the east of the upper waters of the Sesern river, and to the north of the sprending lirunches of the Attamapiskut. The watereourse of this seetion of country have been most inadequately represented on the existing maps, wing to the lack of knowledge of their pusitions, and a reference to the map aceompanying this report will be neesanry in order to muderstand the apportiomment of the water-heds among the various rivers. From Misamikwath lake, above which the Winisk is divided into two main and many amaller branches, the river flows out ly two chamels, one quite in-ignifieant in volume Howing to the north, and the other, a river of eonsidetable -ize, flowing to the east. The former of these furms the licad of the A-hewoite or weot branch of the Wini-k. atal the later the main river.

Diverging at a point situnted in N. lat. 23° ant W. long. $9 \mathrm{a}^{\circ}$, these two streams unite 22.4 miles below, following the eourse of the main river, in N. lat. 54° and W. long. 65° 50'.

Frum Misamiknash lake for twenty-five miles the river keeps a general casterly course. Ta this astanee the dearent is about thirty-

 Silleruble full. Betwern the rapion ure orethen of - wift water, varied ly muny lake-like expansions. The surmmang wontry in for the

 generaly with an alunst horizontal foliation and of en incaleol las a "wnerer whit" eranite or bermatte. The hank- ure usnally lw,
 stratifien snuld and grasel twents to thirty fert in hight.
 in from the sonth, and the river wilens ont to firm Winmmmin hake, a lonly of water of varying wilth. IW mety tio mil... in kengeth The trongh in whieh tise lake lic- han : wem hollowed unt mainly in a band of keewatin rocks to, whene trend it plasernlls anowrms. Th.c mot eunspicuons rocks neenring in the helt are henvy hels of cos-... "onplomerate, very similar in that of Abran luk on the Engli-h river helow Mimitaki lake.' With these nte a…"inted diuritse and chboritic and horublende schiats, the whole striking abont N. 70^{2} F. und dipping at high angles. These rochs cant, without donbt. liw classed ahmost whilly with the Keewatin, though there are possibly
 represented by the conglomernte.

Alout the lake almost the only reminemon in view are low hiliof unassorted drift, rising generally not mere than fifty feet almo the water level, but in one case forming a very triking cone-lmped

 weneral aspert. and from the acenunt- if it piven hy the Indian. it evidently is one of those remurkill. inolatell mu-ses of drift Ee:n on the south branch of the Attawnikikat, ant muted alo, l, M M. Camsell as occurring in the comitry nurth of (at lake:-
 five miles, the desednt is alwut forty-five feet, the fall oecurri:-: principally at thre points, whore serio of hatary rapids break the

[^2]water, where the rarrent, thengh wemerally strong, How along phe rilly between bunk of sanl nut generally high, but in placew, where the current has worn into the side of a drift rlige, showing eint hanks seventy-five fect in height. A strean known as Michikenis fluws in from the sonth nbent six miles below Wmmmmin lak', anl a larxer rene, referred to again in describing the ronte from Tront lake, joins the river from the north five milea above Nibinamik lake.

Sibinamik lake is bin irregular body of water whose shap haz been lurgely defined liy ridgen of glacial drift. From inlet to outhet i. but five miles, the lake, howerr, exteming to the south for seven miles and to the norih for four miled. A number of low ledges of tine, well-foliated biotite gneis- urerur along ite shorea, cut beonrs. white gueiss that often is interbanitel with the ther, giving the whole an appenrane of stratification. The land rise gralually from the lake shores to heights of about sixty feet, a convideruhle thicknest of sand and gravel eoneenling the andorlying rocks, exeepting at the immediate shores. A forest ubgut one humired years old, but Hever very large, covers the surrounding comntry. Spruce and tamarack are the principal tres, with n-pen, poplar, und ennof birch on the ridges.

From the southern ent of the lake, by in lurge lamok entring the sontheasterly buy, n ronte to be referred to again, leal- to the Attawapiskat river.

 at three places, und descends in :lll about thirty-five fert. No ledges are seen along the shore=, the over-mantle of drift, rising in ploces to form ridges ninm: fret in hoipht, quite powering the whiorlying roks.
 a long irregular bay running to the north for fourteen miles, where it receives the waters of the river of the same name, a quict flowing stream thirty gards wide, tw, th six fect dep, and with a slugsish eurrent of about one mile :11! hour.

Many exposures of hootite meits oceur about the luke-shor so, the foliation well marked. and dipping at nugles of from forty degrees to horizontal. A coaraer prey gneisa cuts these stratiforin beds and - meloes in place thtular hink- of the finer hork gueise in swh numbers as to enn-itutu a bre ceria.

A suwer reddish granite, with porphyritio rey-tald of red fehtopar, oceurs in heavy ledget near the west ind.
 shores of the lake on avery sitic.

From Wapikopa lahe dewnwable fo Wieibihwi lahe, a liotaner of thirtyerght miles, the river fulluws 11 most irregular crobres, and really constitutes a suceession of lake... with intervening rapide, the total deseent being abont cighty feet.

The lake-like exp:otion= nre remurliuble fur the wisy ith nieh the loag narrow huss, runinig off from them, ernform the the drection

 them forming the bueins of the lakes.

A number of small rupiols curour whre the river hatak- throngh the drift rilges, ant for ten mites manediately ulwar the outtow of the chatral coming in below Weibikuei lake the furr ut is very swift, and heavy rupils aecur, oome of them over linkue of hiotite gneis.

These roeks, the only expusures seell, aro fine, hamberl hack and grey biotite gneisses, dipping at varione anghes but prewerving a general northeasterly trenl. They are invaleal by irreghlar masea of a coarser white gneise, that ometimes curur- as hath conforming to their folintion, but ofen cut, them in the form of applysers. and surround und enclose- mughar libeks and misore.

Midway, at u point abowe Kinnthan lakr, where the rior divides into a number of chanel-, a smull lorook flowing in from the south is the starting point or a runte uerose to Lanstowne lake, ani nine miles above Weibikwei lake a chmmel leads off to the worth, rejoining the main river ju-t l. liw that lakr.

The sonthern chamel of the river tlows int", the mothwesterly bay of Weibikwei home and diwhargen from it- extmone unthern end.
 seven miles wide. Two rivers of considrable volume flow into its
 uaps as the Fisbbasket river and thu Wapitotom. W! whinh the prineipal canoe route to the sonth leant-

The lake, though of em-iderable :ur:i, : awhere shan- ans: wite

 usinr the: wontherit inl ut the lukt.

Thie river disularges from the extrente northern bing of the batie lise 11 slurt rupid. with n full of thre.. or four feret. Jubt breluw the rinud, ut the lead of n long hay that externte fur severnl miles to the weot, the rhmumel whelt lenves the river tru mites above rejoine.
 juntorion the river thows fur the tirat eight miloa uf its conret over

 wif to the borthenat, to homane rembited to time main river sevinty
 trance t" this rhanmel, though there io. at all stuges of the whter.
 Imlinus say. but to any singl- large otrenn, but t" a great momber of smatler trihuturies druining the rombity litween this strfam al
 rivers. 'lhirtent miles below the lend of tho island thas formed. another brumel, chambel, culled the 'labus-hwia, splits off to the wett nud fows aromml an ishand abont twouty-thrin miles long. For fortsfive miles betow the lnke, or to the unger eds" of the till-covered area,
 as much as surat fent tu the mitr. At two point a only de theoe rapiate become ramanles, hoth sithated near the fontom of the vary rapid wotion. At the "lanka rapid the vertienl fall is not grait.

 a how ridge of bunler relay, hat en bimki-, howing a section thromgh

 llany well oriated bundilers.

 tifl! fey abmo it.

 are low, rommbi, well-ghcinted ledges. =hwing well murkell -tia-
 showing (nedazinul strin, that ure probaty litw. having a dirention

 thirt: bitrowh.
 the ahore for axteen milu- lu lin lankinmig fill. I horizutal or

 that outcrop along the river mitil the outer rim of the limestones of the Ifulen Byy basin is reanhenl. 110 milea helow. 'Thenges the bottom of the trough grmbally lamam lewer in refi remer the the -afface of the till as the river is derormbel. Int we, phere in this

 wearing away of the till probably hemming un inopen-ingly imporfant factur in retarding the weraige netion of the rurmut.

Hellow the last expreare of gherios the wh forent atill rethes the

 within the till-coverel aron. a wery mitorn charater. The shores

wher's pion. and are often puved with loulders, and markel at the uno the I a belt of low bushes and graces. From high water ...ne the rent if boulder elny riers in an ahoot sheer wall, bare and
 lower .ut often rough with the great manker of projeeting boulders, but the upper -mowth fared like a pure clas. ('apping the upper elay is a very marqually distributed layre of marime chay, in places reaching a thickness of ten feet, but owr long distaners entirely wanting.

The impervious character of the till, together with its nearly flat or gently undulating surface, give th the country a muskeg-like character, even though it lies "ighty feet ur more above the bed of the river. Along the immediate lamki, and for perhaps a chain or two back, there is a narrow belt of trees of fair size, and back of that stretehes away a great level, phateau-like comotry, praetically withont drainage, and eonsequently mosicovered th a great depth, supporting a stunted and deformed growth of blark spruce and tamarack. There is no river valley, the treneh eut in the boulder elay being but little wider than the actual bed of the theam. The comparatively stable character of the till walls is indicatual hy this belt of larger growth, as. Were the disintegration promeding at all rapidly, the ordinary comalition of tree grewth wonhi presail quite to the edge of the trougis.
 Weibikwei lak, the Tabasokwianal Winiakis chamels rejoin the parent stram, the latter now of rim-ilh rable volume. At a lake-like expansion studed with islands, situated seven miles helow the inflow of the Litth Wini:k, the first tributaris of importame join the river, the A-heweig slowing from the shathwer, and the Atikameg from the southeast. The former of these, which is slightly the larger, is the West Winind of the old mape, and the stream referred to ors a former page ne flowing out from the main river at lli-a.sith wash lake 224 miles nhove. At its outlet it is a quict flowing stream. with a good current. H chain or morn in width, and having an average depth of about fon: feet. A short distance below this point white birehes and balsam spruers are $=4 \cdot 10$ for the last time on the banks, and thence to the rea the forest growth, quite to the edge of the river trough, is composed entively of black spruce and tamarack. The islands. and here and there a projectinu wint, however, conti in to show grover of white prure, hat-am peplar, atal a=pen.

After a couree ahmost directly north, with light eurves to the eant and what. for 126 miluc, the river hy a -harp turn suldenly -hange; its ditection th a little whth of eat, amb keeps that tremb for serraty miles.

Looking down the vallo: fron a point a fow miles above the dhow, the linal to the north, leyond the turn, is seen to be elevatel a little abuse the general level, the line of higher ground probably representing the northern ens. ins silurian basin. The abrupt turn made by the river, an i.s inng ". "wr ; the cast before resuming its normal northerly d wotin, ma, rnot aly aloo be attributable
 area.

Two tribntaries, the hampatan and the l'ikwakwad, join the main river near the ehow. Both heall near the Fawn branch of the Severn river, and by the last named there is a cance ronte to the Severn. The Winino brook comes in from the north about half-wny down the easterly streteh, and nine milu farther on an island six miles in leugth, known to the Inlians as Drikminis, or Caribon island, divides the river into two hannels of narly apmal vohune. The almost sheer walls of boulde elay, with their internittent and irregular capping of marine: day, mutinne to ri* in reference to the river bed, until at a point fifty mile- abow- the mouth they attain a height of eighty-five feet above the water lew.l. with a berl of but slightly beached and not at all decayed sphumum moss on ton. The marine elays with their contained fossils, a li-t of which is published elsewhere in this report, immediately underlie the moss. The limestones and dolomites of the Indion Bay basin firwt outcrop at a distance of forty-two miles from the bay, measuring along the river. They are flat-lying, slightly magnesian, flagey limestones, forming the bed of the river, but int apparing above the water. Whithin a very few miles, however, the slun of the river earries it below the surface of the limestones so that they form low walls, gradually increasing in height in reference to the surface of the water until, four miles. helow, the river tlows through a gorge eut to a depth of thirty feet in the limestones and dolomites. This is probably a part of an old pre-glacial chamel, as from here on down towards the sea the lime-tone walls, "apped by boulder clay, alternate with banks that show till only down to high water mark. The surface of the countre, "drndine back from the silfs of the river-trough, has the

- -lunted trer-
 1m, noarly that, with a slope northerly eorresponding elusely with the deacent of the river. I =mall collection of fossits, determined by
 ecre to sutisfactorily tix the position of these heds as Niburian, and \therefore almont he age of the. Niagara.

It a projoting peint on the suntheast hank. twenterix mikes from the mouth, an eminely ditferent set of rocks i- brompht to the -ntiane, in the furm of a doable antielinal foll, whose axis strikes -ruth \%o eats. These con-int of handed green and black shates and rakareous quatzites, the whole very hard and bakel looking. No actual contane with the operlying doluniter in limestones is seen, so that it is not pus-ibhe to say with certainty whether or not the two - + - are ronfumable. It seents very probable, however, that the
 site: inte: a hishly -ificeots linestane, maderlie conformably the burest strat unn of limestunc. Nin forsils were found in these beds. The ribbonce chararter of the shate, their bright moration, athl the vecurrence in them of stromb of more highly calcareons pebblelike pieces that are very sugestive of broken limestone bands, give (i) thom at most striking apearance and wonld make their recogni1.0n. if exposed at any other place on the river. almost a ertainty. It was con-idered at the tilut thar thee might represent a part of the Nastapoks stric- mital ly Mr. Wewling about thirty miles to the till, ,n Sutton Mill lake. There doc- not seem, however, to be a =uticient similarity lu•tworn there bed and those deseribed by Mr. 1) Bing th warrant thi- motation. Beluw this point, and down andy to the mouth of the river, the limestunes and dotomites, for the now part a repertition uf the ame beds lying in low undulations,
 thick mantle of boulder clay. The ziere, along this part of its cour-c.
 a mile or more in with, and dutted with islants.

The Mattawa, a river of consilcrable whme, by whith there is
 twentrefor miles from the month, mill milus farther down the Ti=hamattana, or His Mattaw, Hhw in from the we-t. This strean
is used by the Indian an an inland canoe ronte to the mouth of the Sesern, which is reached by asenuling the stream almost to its head and crossing threner the Shagamu, which thows into the west shore of Iludson bay abow' a day and a half's journey below the Severn.

For the last twenty-five miles of its course before reaching the shores of the bay, the river las an averuge width of about threequarters of a mile, but expands to over a mile at many places. An almost continuous line of island divides it into a number of ehamels all along this part of its course. For the last twelse miles above the sea these islamls are generally low, and elothed only with grasses and low bushes, but waried by oceasional, more elevated ones that nupport groves of balsam poplar of good size. Above this th. ialauls are mostly masses of till that have resisted the wear of the current; they are higher and generally well wooded with large white spruce, that attain diameters as great as two feet, and arr tall nal straight.

The eurrent is swift for the whole distance from Weibikwei lake to the mouth, a distanee of 240 miles, though across the boulder elay: area, and through the fimestones, the descent is comparatively uniform. Thungh there i, water chough all along for tracking eanoes, a chamel suitable for harar hoats could only be found by following a rery tortunus course. and liy frequently crossing from side to side. where the flat limestone ledges, approaehing the surface, form almost continnous harriers acrose the eurrent, with perhaps only one break where the water has any considerable depth.

This even slope is characteristic of all the rivera flowing from the grent eentral Archean platpau downwards to the west coasts of

Hudson and James be

 Arelwan country and The Albany, the and, he gently sloping till-covered area. examples of this. The abe...., and the Severn river: are other mean that the rive in abence of any valley might lic interpreted to horne in mind lowever, that form, is very recent. It must be along in its passare thet forty feet into the is indieated basage through the sedimentary beh alternataial age the interend on the other. \mathbb{w}°. oukder clay forming the banks in intervening spaese, constituting what is practically a brond, shallow, partiy till-filed gorge all the way.

4071-3
 the limetones are rachel, the prome chamel doe not neesearily
 river has remued posesoinh of an fliler, pregheial channel.

Approaching the mouth the hals, lewore lower, and for the last few miles are not generally more than about tiftern feet high, and are compos 1 of stratitied clays and -amb. Bombering each side of
 bey to form a lelt from two to c.e mib; in witth, a treeles tract four or five feet above ordinary high tides extemle awny to the ca-t and north, and is probalily eontinnons, almest without interruption, up and down the wot horr of the hits. It is al comparativels level plain, interoctod. how ver, hes mans chmand, that are filled at hiph tide, with a gravelly and samly surface sparsely coverd by clumps of greas and brightened ley many -proces of sub-aretic thowering plants. The river has an metery dimetion just at it mouth, and the south shore consequ-ntly lecomes, withont change of direction, the reat of the hay; and it $i=$ only lis the turning away to the noreth of the opposite shore that the artual month of the river ean le facd. At this point the emary hat a width of abmat three miles. It is generally shallow, large loonhers -howing ahove the surface even at higl tide, while at low tide hari uf amb, gravel and boulders are exposed. The ordinary rise and fill rit the tide is only alout six feet, but this is sufficient, so that i- the lottom of the bay in this neighborhood, to expose at bow the wide samb thats extending far out from the ual shore line and dotted with larer libers and boulders, mainly of limestone, that in plares are heaped tusether to form points and low ridges that remain mumered even at high tide.

The shallow eharacter of the bay was furthe: evidenced, when the mouth was visited in August, 1903, ly the harrier of paek ice that formed a continuous line across the r-thars, about five miles off
 for the transport of supplies from the post at the month f: the Severn river to the Winisk river is furced, ly the shallow water of the mouta, to make a long eircuit, following the channel of the river trom far out in the bay.

The length of the Winits actually traveram, from Misamianah lake to the mouth, is 305 miles. d it is a river of conseneratle folme at the upper point rached, it may be confidently stater? that its total longth is well ower to miles.

417434
 scemil in midsummer, at a pint wenty-five miles above the hay.

To avoid the diffeult mavigation of the west coast of IIudson bay, the Indians have well-kumb routc; both east and west from the Winisk, the western leading to the Severn river by a stram callel the Mi-hamataw, which entere the Wini-k six milea from the movth. From near the helwnters uf this stream the Nhaganm river is reached by a portage route, and that stram is descented to the eoast, which is reached ut a point about a day and a lali's journey from the month of the Scrern river. The eastern ronte leaves the Wimink eleven miles from the mouth ly its tributary the Shamatara. This strean is ascuded to a large lake on its conrse, and ane of thi tributaries entering the lake is utilized th reach a stremm flowink into the Ekwan river ly which the wotern side of Janter lay is wehed. By this ronte the hazarlous journey for cames along the exposed west coast and armul the point of (inm Itenrietta Maria i. avoided.

The Attawapiskat River.

The Attawapiskat river war examined to the main forks twenty miles above Lansdowne lake, ami its southern brauch, the Kanuchann, for 135 miles farther, where it overlaps the foot of Lake sit. Joseph at a distance of about fifteen miles to the north.

A micrometer survey was made of the greater part of this distance, comecting at one end with Lake St. Joseph and at the other with Fort Itope post on Eabernet lake.

The Attawapiskat watershed was fir-t rearhed at Wimbobika and Kipichegima lakes, lying almat twalve mile- to the anthwest nf the northeastedy end of Lake St. Joseph. The upward continuation of the river is representel by two large brocks flowing in from the west, and one, known as the Rice-stalk ricer, from the north. The latter affords a eanoe route to Cat lake. This has heen traversed lis Ifr. Jabez Williams, of the Mut-mi': Bay (ompany, who repurts that hiotite gneisses only are exposed aling the route.

Thesc lakes, both long, narrow and tronding alout cast, parallel to the prevailing strike of the ghei-me in that vieinity, are separated by a low ridge of chloritic. feldpathic homblende-schists, that occur in a belt, at this point not more than three-quarters of a mile wide. The westerly extension of this belt was not tracel, but it prob-

[^3]ably fors not reach the shores of Lake St. Joseph, as it appears to log tapering in this direction. Fasterly it was traeed pretty con-tin:un-ly, as the strean valley has been exeavated in these rocks practically all down its conrse.

The outlets of these twa lakes unite a few milez below to form the small river known to the Inlians as the $K: w i n o g a n s$, or Nolikerel river. For twenty-five miles below the junction the river las a width of ouly from onu thiw elains, and is swift flowing and br ken by numerons rapils. It frequent intersals exposures of ehiritie and feldspathic schists outcrop, striking both to the north at! Enth of east, or parallel the general mane of the river ralley.

Awiniated with the shists arn more or less shehatime dioritey, mul una-ibe pyritois quart\% diorites. . It the edge of the belt is a strip of horablenale granite gueis: similar to the biotite gueisg, excepting thut in it the biotitc has been replaced by hornblende.

The trend of the belt of basic rocks would earry it to the south oi the long narruw luke ealled by the Indians Kagnbades-dawaga. Fxיursions inland from the south ahore of this lake revealed no outerops, and as no further exposures of these roeks were seen on the river, the belt probably teminates in this direction not far east of the hend of the lake. Along the lake shores ledges of rock were seen at maly one point, where obsenrely foliated biotite gneisses are cut by a lutor red granite of medium grain.

Stritified tine white funitz sand, underlain by bhe elay and overlain by gravel, forms bank: from ten to thirty feet in height all aloug both sides of the lake.

Among the peach pelbles, which oceur in great variety, are inchaled dodomites and fosiliferms limestones, as well as many large senit-angular blucks, indicating that the underlying clay is probably a : ill.

Where the banks are low, and fresh sections are afforded by the wor: of the waves, a layer of pent from two to three feet thick overlies the elay. From the south hore of the lake a rolling, sandyeuverd slope, the surface coated with white moss, and supporting an opert growth of jnekpine, white bireh, and spruce, gradunlly rises to the summit of a ridge two hundred feet or nore above the river. Along the side of the ridge, which is entirely of drift material, are numernus cirque-like sepresions sixty to ninety feet deep, with
steply-kloping rides, and in a few cases helding up small ponds of water. The opposite or southeast side of tho ridge falls away abruptly, at as stecp an angle as the sand will assume, to anotbe: rolling sandy platean that extends for miles to the southeast.

The Otosk or Flbow siver, probably the longest of the suric:is branches of the Attawapiskat, as it lieads near the northeast eral of Cat lake, flows into the lake from the worthwest, nbout half-way down its nerthern side.

Eleven miles below, after tlowing in an casterly dircetion past a number of rapids, with wernional outerop- of biotite granite-gneiss. the river expands to form liaknuizida lnke, a alallow body of water ten miles in length and a mile widt. The stme rolling, sundy plain, with extensive traets of muskeg where it approaches the south shore, surrounds the lake. Beyond the muslieg area, which extends for two miles or more back from the lake, the land gradually rises to abrut
 ubseurely foliated, outcrop through the drift covering. Beyond, the sandy flat gradually gains in elevation southwards for five or six miles, and then rises sharply to form a ridge of grawel ami boulders (a) feet abow the lake, only a few leret wide at the - mamat. i fulling awny ahraptly to the south and enat to a well-wooled wallo.
 plateau.

From the summit of the ridge lesobed othors are eecu, apiarently of similar eluracter ansl with the -ame gemeral cast and wfot trend. Twenty-nine miles furtier down the river. which still kesp an easterly direction, Ozhiski or Mud lake ocerupics a shalluw trugine twents-one mil. - lugg and a little over two miles wide at the limadert part. Shelwing ledges of bictito ghantegnes., lying nearly harizontal, or gratly umdulating, wew at mons pint along the shures The country travered ly the river for the lat fifty miles above the lake is charactorized ly ver, andey deposit of drift, mostly stratified and often from fifte to sixty feet in thickness. Where seetions are exposed aloug the river or lake shores. by the wear of the water. the greatest thandess is seen to be oecupied ley very fine, white, quarti sand and siliceous clay, underlain ly a tough blue clay, in tine laminations, and averain by irregularly distributed deposits c : coarse sand and gravel. Thalerneath the whole, and resting imme. diatrly upon the hem-rock, are depmsite of till of mequal thickres. thet at no plaee are exposed in seetim.

 du-trini hee "a chys.
 tinnes northerly for fiften mike, with many hray bapids amb a hifh
 contre sharyly th the cilst.
 threugh the dafin matle at frequent intervala atong the river valter.
 and crumbled. The prevailing arike is about arrtheat. The Pin-i-

 this i- a rive" of sideraile wdme. Fire the firat few miles abuen the fork- it is howel and -month-tlowing, with baka of chay and sam!, anl is then trown liy a hich fall, nbove which it receives a large tributary that draine Totugan lake, lying a short distamee to He morth of the :math branch, alowe Ohiski lak". Above this the Indians say that the river takes a very lome hend to the north and then southest, and leads near the sourecs of the lipestone branch of the Witui-k. From the rthon the river, men mearly doulded in whene thaw easterly fur twenty miles into the long sonthweaterly bay of lanalowne like. It is a suceession of lake expansions, with romecting rapils, which, hinigh. they are rough, fan all be rum by 1onded "anu.. Kahania, weven miks long and generally quite narrow, is the larges of theie lakes. The land ahnt the lake is low and drift covereh, wasly hirizntal, hut contortod ledges of banded. hintite gheis, with gheinted oufaces, showing at intervals.
 hatw heren deseribed by Ir. Bell in his remert multished in 1 cat.

Routes between the Attawapiskat and Winisk Kivers.

 vi u dernte height. Ifter crow ing the divide the ronter followe the contec of the Whutution river, through man rona lake dhen to the

 (m)

 irun-witite and strikilg ont nat west, is the first outerop olverved. The width of the lathe of whill it forms a part camot be determined we: pproxinutely, $n-$ th the north the firit roek nutcrepping through the drit onemrs on Vinta-xin lake six miles farther on, and to the south the nearest is on lanmbiwhe lake ninetcon miles nway. There, in hoth cases, ure binith. gncion-a, the last being the firet of as series of apmbure that ex.al at int riale ull tho way down the stram to
 ind west, thoush atisfictory strikes are seldom seen owing to the remerted efaracter of the strita, dur pincipally to pegmatite is.

The prevaiting type of row is a hard, redti=h, batcel, hatitu Bneios, lyine maty horizontal, stritifurn an apparance, and rit hy ureg alar ma-me and veins of roare. white pegnatite. 'The distance acrese by thin rute is sixy-five mile, and ior the whole distance the counts, exephing a few low, munkeg nreas. has ben repeatetly swert by forest tires, fer that many of the ridges show surfuces of bare bouller and grivel, and othere n second growth of banksian pille.

 a size to ln. of inhluatrial valhe.

Law, rumbld liman of whtite aneisd, valying from very conreo to quite tine mad contnining a large propurtion of biotite, are exposed at intorvale 1 , ln, volul sugminnis luke. The provailing strike is a little weat uf ombls. At the mortheast and af a bong portage letween two small hoke, lying about midwhy the series, one of these low bosses is companded of interthaded fine quartanes gheisa and horn-
 quartzite, und the whol ofriking in contormity on the foliation of the gucisses that ure expest at an grout ditance olt cither side. The atrata me much shatterel mble seamed with quart: seind colltaining iron sulphile. This is probally un ofthont from, or cons timuntion of the belt to bo next referred to.

Crosing nother divide the route continues to Xibinamik lake, throukh numerous small lakes oexurring al ng the remrae of a -man! ributary flowing: northwesterly into the most antherly hay of the lake. The etremuluy fullows the treme if a belt of bavie rocks [rat: olle t., two miles wile, and tracel in a componal intre wot tarly, norile: -tor:" mul northensterly for twelve miles.

Chloritic and hornhlemen sclists, assaciated with highly altered and sheurel quartz diorites, bre the prevaling rocks at the lower ent ui the iwh. Finther uorth on the band more nasoive, lard dicrites,
 mehe, oreur with the sehist, all -trikiug garallet to the longitulinal uxis of the belt. At interval; for a distance of more than two mila massive ledges of hyprothem gallew, similar the the Shdury nickel. hering irruptive, whote relations to the ather rock masens wern not "learly sem, but wheln weur at or near the western alge of the ln is.

The lelt, striking untheasterly, paves just to the east uf Nibinne thik lake and shoull cross the Winisk river a fow miles below the foot of the lake. Owing to the emtimma dritit cosering no me

The most westerly ronte traversed ascent- the l'usabiwan river, a tributary cutering the Attawapiskat from the burth at the foot of Kubania lalie. For the first fow miles to the nuth of the riwer wo exposures of hard rock are seen, the =urfame consisting of rolling lills of sand and elay. Beyond, though the country is for the most part drift covered, numerous miterons of bigtite gneise, flat-lying or gently undulating, are sen along the river and lake shores to the
heightevi-hat semrating them watery from thooe of the Miehikenopik brook flowing into the sonth end of Weibiswei lak. Siortherly from here the route follow $*$ a eries of small lakes lying neur the heads of merenms flowing northenaterly into the Winisk, for a distumer of twenty miles. Large arenw of mukheg, and liw samily thate, weengy
 gravel, mil bonlider ridge that nowhere rise to chations uf more than eighty oir ninety fort alowe the eneral level.

The sermin ronte, lewring the worthwesterly buy of Lamathwe

 Attawapisknt mind Winick whter-licta.

Ocrasional outeron of biotite gramber aneios lying at law angled

 lahe.

Comiming mirti, the ronte follone a anall ste dun downario

 juint.
 Irift hemeits vowring the areater part of the -antian. From the
 amall stream, which it decemis to a cometherly chanmel of the Winink
 -xpuced all the why through the thater river.

Routes between the Winisk River ard Tront Lake.

 severn rivers were explurel. The mat womery of the kaves the Winisk at Miramikwash Inke, nu! the ther at the first mortherly expmsion above Nibinanik lake.

Deseenting a stall oute that tlows throngh a iwulter-choked

route fillow- thi- -twan- that by the addition of tributary brooks gratmite lecom! - a river of considerable volume-northwards for fifty miles to a small lake known on the old maps as sturgeon lake. For this distance the clmunel lats a steep gradient, and the ronte is impeded ly frequent rapids. Several lakes oceur along its rourse, the largent, ten miles long and a mile and a half wide, lying wot more than two miles to the nortly of Misamikwash lake. Tise comntry is goneralls low and drift covered, with only occasional exposures, all. exepting a few isolated outerops of hornhlende schist hear kingfisher lake, of bintite grmite-gneiss.

From Sturgcon lake, a small tributary from the west, draining a chain of small lakes with connecting rapids, is aseended ior thirteen miles to the divide. The rupirts are many of them rongh, and all are shalluw, so that the stream is mavigable with diffienlty even ly light cannes. The obstructions are cansed by crraties that have heen washel out from boulder and gravel ridges that eross the strean at frequent intervals. From the divide, Nemeigusabins lake and its cutlet, a small strean with many rapids, lead to the southeast corn $\%$ of Tront lake. The shore of 'Troat lake in the vieinity of the month of Nemeignsabins brook and for eight miles or more westerly are generally low and boulder strewn, the land back from the lake rising gradually over morainic ridges of gravel and sand. Occasional ont-crop- of handed biotite gneiss, well folinted and lying horizontully, or gently undulating, oceur here and there in low, romuled exposures near the lake shores. Most of the country seen near the lake has luen lumat ower, and the present forest, over all but wry wet mukig arew, is a second growth of small size.
 an alternative route follow- 11 almost dired line through nine small
 tive miles and a halt in length.

The -retion travered is a mearly hat, samberovered plain, with w.an-iomal low, drift ridges and exton-ive areas of mu-keg.

The seond ronte referred to follows the west brameln of the Winisk flewn tremen from Nturgen lal:" for thirty-three miles in an ea-terly and then sontherly diretion, to n emall lake where the river -hatar- it course for a northerly direction.

The montry traversed by the river is similar to that elosed by th. !asin Winisk in onn of it-mnst striking features namely, the
 chanmel ant of the luks: th a series of rig-zags conforming to the trent of the glaciation. The romitry is, however, more level and not -o well drand as that borderiny the main river; the proportion of swampy land is larser num the furest growth consist largely of back spruce anul tamarach.

Learing the west liran-l| : short divide is romed, and a stream. dowing -onthweterly, probiloly intu ente of the northern bays of Wummmmin lake, is acecouled in a sontheasterly alirection through

 ing the headwaters of this strom from another sinall river flowing sertheasterly to tho Winiok abowe Nihinamik lake, : distance uf thirty-six miles. The comitry is of the same gemeral eharacter, and the lake, and to somue extellt the river chanurl, show the same parallelion to the ghation, due as hefore to the ritges of transported boulders and gravel.

The covering of drift maturial i- su miveranl, and the relief sn eundl, that the umberlying rocks ean soldom be determined. Wherever unterop= ofeur they are biotite granite gurisises, so that if the
 distane casterly, us would -erm probable, they are contirely conecaled lix surfine deposits, and rawe the ronte at one of the long intervals whthout expentures.

Route between the Albany and Attawapiskat Rivers.

The route principally ural betwern the Alhany and Attawapi-kat
 at Lansdowne lake, traver-ing a listance of seventy-five miles. The

 and has been deseribed hy hin in his report on 'An fixploration of Portions of the Attawapiakit athl Albany River-' publisherl by the Geologieal Survey in 1887. The belt of diorites and folsitic, chloritic, and hormblende schists that rowsers the Albany river at Petawamea

granite-gneiss of medium grain, striking about east and west, . n ? banded fine black biotite gneiss eut by a eoarse gneise that eneloses bloeks of the finer.

From the northwesterly hay of Marhawaian lake the divide betwern the Attawapiskat and Albany waters is crossed, at a distance of two miles to the north of the lake, by a pcitage seventy-four chains in leugth, traversing a muskeg with oceasional ridges of transported gravel and boulders.

Manitush lake, two miles long, lying at the north end of the portage, discharges northerly by a small stream, barely navigable by canner, into Marten Drinking river, which the route follows through Hail lake to Wintawanan lake, from which there is a route westerly through an intervening small lake, to the south branch of the Attawapiskat river at Ozhiski lake. The Marten Drinking river, rather shallow and with a number of rapids along its course, is nevertheless navigable by canoes down to its mouth at one of the southerly bays of Lansdowne lake. The country between the two rivers in the neighbourhood of the route is a high, rolling plateau, rising, midway, about a thonsand feet above the sea, or a hundred feet abore the Albany at the point of departure. Large areas of muskeg abound, from which rise low, rounded bosses of gneiss, and ridges of sand, gravel, and boulders.

To the west of Machawaian lake the country is much more broken and rises to higher elevations. This more elevated region extends in a belt westerly past Trout and Celar lakes, and without doubt continues still farther west, forming the hoight-of-land between the Albany and the south brauch of the Attawapiskat. This country is referred to in the deseription of the route down the Kanuchuan river on a previous page, where the hills are stated to be composed of traneported material to their summits.

Cultivation of the Land.

In the matter of the actual eultivation of these northern area, we have little to go upon. At the IIudson's Bay Company's posts at Fort Hope and Osnaburgh potatoes have been grown, and small gardene maintained from the time of the establishment of the posts. and little difficulty has been experieneed in maturing the common garden regetables of Ontario, though oceasionally the frosts of late summer have cut off all but the hardier kinds. As the posts were
loeated with a view to their favourable situation for the purposen of the fur trade with the Indians, neither one is situated on ground well suited for cultivation, and much better results might reasonably be expeeted were trials made on more favourably situated traets.

In Indian eultivating a small garden plot at the head of the Pineimuta braneh of the Attawapiskat river suceeeds in raising good crops of potatoes and turaips.

Fish.

Whitefish and sturgeon are the be,t food tishes, and oceur in most of the lakes. Both are taken in nets, and the lattre al-n) hy spearing from seaffolds built out over rapids in the river-. Doré and also generally distributed over the whole area. and form ir - sourse of food supply, though the sueker among the cilie. tac tae rabbit among the mammals, holds the most important plaee, as it can be eaught everywhere, not onis in the larger lakes but also in the smaller ponds and streams.

Brook trout were aetually eaught only in the Winisk river near its mouth, and in the strearns running into the Albany river, but were seen in the rapids below Weibikwei; the Indians assert that they occur also in the lake itrelf.

Lake trout were eaught in large numbers in Trout take at the head of the Severn river, but are not found in either the Winisk or Attawapiskat waters.

Wild Δ nimals.

The moose (Alces americanus) has been found a far north as the southern shore of Weibilwei lake, in N. tat. $52^{3} 20$, tho:gh traeks were aetually seen during our exploration only as far morth as the Attawapiskat river. Even here it is not nearly so plentiful as farther south in the belt of eountry lying near the Canadian Pacifis railway and extending for about 150 miles north of it .

Caribou (Rangifer caribou) range all over the distriet.
No red deer are found anywhere throughout the region.
The fur-bearing animals, though not so plentiful as thes ouce were, are still fairly abundant thrughont the district; the otter anl
 than any other apecies.

Bears (Ursus americanus) sem to be able to hold their own pretty well, and nre still taken in gool numbers. 'There is probably but one species of tho common black bear, though the Indians and traders difierentiate from this the brown luar, which they riain differs from the blark, not only in eolour and size, but also in li-position and halits.

Wolves (Canis lupus), thongl searee, me not mankow.
Foxes (l'upes culgaris), including the red, silver, black and cruss viricties, ure numerons, though the vary in numiers with the pritiodic increase and decrease in the numbers of the hares.
J.inses (Lynx canadensis) are fairly plentiful.

Otters (Lutra canadpnsis), mul Pine martens (Mustcla ampriranu), are taken in good numbers, and beavers (Castor fiber) oceur more sparingly.

Minks (Putorius vison), and muskrats (Fiber zibethicus), are phontiful. 'These, with skunks (Mrphilis mephitica), Teasels (Pulorius vulgaris), and wolverinm ($i u l o$ luscus), make up the number of the merehantable furs.

The rabbit (Lepus americanus) occurs abmalantly all over the listrict, and is, perhaps, the must useful of all to the Indians, as it affords, during the winter partieularls, both food and elothing.
 i- -rown by the fact of one being taken ly an Indian woman on the under Attawapiskat river in 1933 .

Indians.

The Indims of the district. mumbering whout 700 , are nomanle trappers, living principally unill fi-h, ant obtaining from the Hulson's Bay Crompans. ant to a -maller slegree from other fur traders, the limited amount of neossaries that are not supplied by the comotry. A few have small huts built of ligs, with fireplaces and chimneys of wattles and mud, in which they live for a part of the ycar, but the greater number content themsclves with winter teepes construeted of poles eovered with shcets of birch bark, and summer tents of eotton; indeed, house building is such an arduous task for the Indian that the traders in the district have a eaying to the effect that as soon as an Indian completes a house lie dics, this result heing the. unt to the unwonted labour involerd, hat to the arrival of extreme old afe before the worls is finished.

Andian-of the La, W.t Winih riner.

They ure of the Ojibway tribe, though mixed to a wrain extent with the Crees of the Hulson Bay bnein, the purnot Ojibway stock being found among the bands uhont the heals of the rivers. Ther seem to be men of larger frame than the Crees of the eon-t.
 Indians of the far interior than anong those ncaror the front. in the hinterland of Ontario. This result is due in about eq- 11 measure to the efforts of the Roman Catholie chureh, which maintains a permanent mission catablishmeryt at Albary, with sur farritunal home for children, and sends visiting mi-sionary prieste priodically among the Indians of the inturior; and to the Augliran chureh. which maintains the missionary dincest of hoo-omer, ly which res:lent missinaries are supported at varions painti in the inforins region.

The Indians secm to acect: realily the furbs of (hbi-tian worship, and take great pride in their profioinury in memorizing the religions formulas presented to them.

The mode of life followed by these latime offers ertat al-tacles to the work of the missionaries, who are able to reach them for purpes of instruction for only short periods during carh wear

For the same reason, that is on accomut of their nomatie: life, the teaching of the children ean be carried on whly in the -ame Jesultory way.

Notwithstanding these disadrantages, practieally all the Indians can read and write the syllabic characters designed and introduced by James Erans, an early Wesleyan missionary among the Crces.

The introduction of this system of writing has provel a great boon to the Indians in their intercourse with one another. Written entirely phonetically it is unhampered by irregularities, and can be readily aequired by one Indian from another. So general is their knowledge of this sign language that every Indian camping-place, and erery point where cance routes diverge, become local post offices, where letters written on birch bark. often, of erourse, containing only an aceount of trivial occurrences, hut giv'ig the cipportinisy is convey news of importance, are left for the insormation of fullwing parties

It is very doubtful whether the Indian has adrameel mumh in general prosperity from the days when he livel in primitiof eavagury His teeper was the same then as now; his walma are now wrom
effective, but ganw i, less plentiful; he wears better elothes, or rlothee thet one astociates with rivitization, but not probably so well adapted to his needs and way of living as his old raiment of sking. Even now he has to fall baek upon rabbit skins, the only furs that he can afford to sacritiee to his personal use, for protection in winter. The skins are ent into strips, cach skin, by being cut spirally, producing a continuous strip. These strips are sewn together at the ends, and twisted into ropes which are woven lonsely into blankets and rough conts that very effeetually keep out the most extreme cold.

Fish are taken with net and spear, and in trap-weirs. These are constructed of spruce poles driven in a lise into the bottom of streams, and interwoven with twigs so as to fence off the greater part of the water, and jorec it to run in volume only through a gate arranged so that the water flowing through the opening owiekly drops away through the interstices of a platform of roles. learing stranded all fish eoming down with the eurrent. One or two families will often eamp by the side of one of these 'meehiken' for weds nt a time, supplying their wants entirely from the stranded fish, and smoke-drying any surplus collected. This is accomplished by simply stringing the split fish on poles and hanging them in the smoke-laden atmosphere of the teepee. The fat dropping from the fish in drying is carefully collected and preserved for future use in bags made of the skins of embryo rabbits, the bladders of pike, or in sinilar receptaeles ingeniously improvised from the materials at land

Wild rice, a staple among the Iurlians farther south, is too rarely met with throughout these northern regions to form any part of the Indians food supply, and to supplement his diet of fish and flesh he has only the various berries in their seasons and the small amount of flour that he is able to buy from the trader in exchange for his surplus furs. For tea, when the imported artiele is not available. the sinall twigs of the trailing red eedar are used.

Taken as a whole. they appear to be a fuirly healthy lot, though many suffer from diseases of the skin brought on probably ky a ton coustant diet of fish. The greatest mortality is eaused by pulmonary diseases, to which they are very prone, and to the oceasional outbreak of epidemies of measles, etc.. that sometimes prove widely fatal. Thes are far from eleanly in their personal habits, a few weeks' residence at a place in the summer time generally rendering it un longer habitable ber rearn of the accumulated filth.

With the exception of wemional vall lige hute the Ladians of the regio" dwell in teepees covered with hirdh hurk, though the cotton tent, made from materiais bought from the traders, is now widely used during the summer month. Near the month of the Winisk river, many miles north of the ranges of white birches, a winter teepre, made after the phan gencrully usel for bireh lark wigwam, was coverel with blows of muss cut from the muskerg.

Archæology.

Chipped flints were found in numbers scattered along the beach of an island in Attawapiskat lake. Two fairly perfeet urrowhearls were found at the same place, one elipped from white quartz aml the other from flint, derived apparently direetly from the drift, where it occurs as small boulders which have been carried primarily from the nolular beds in the limestones of the Hudson May basin.

At eamping-places of the Iudians broken speeimens of Pecten islandicus were noticed annong the debris of the camps. These shells occur in a very perfect state of preservation in the marine elay, and are still used by the Indians along the river as very convenient substitutes for spoons.

Forests.

The average size of the trees growing within the country explored is not great. On exeeptionally favourable traets the spruces attain sizes quite large enough for eommercial use as sawn lumber. and large areas would afford gool pulpwood. Fvidenees of the constant recurrence of forest fires over the area are everywhere plainly seen. The brule areas, varying from quite small pateles to large tracts, are of every age; some are so old the furest has attained the full height of the old growth and the newer ange of the trees ean only be ascertained by a reference to their rings of growth, and others so recent that no vegetation covers the blackened zurface. These fires are generally the resilt of the earclessness of Indian travellers, but may sometimes be traced to the igniting of a dry, standing tree-trunk by lightning. The oldest trens found in the whole area were growing on a till-eovered island, about fifty mile 3 frem the mouth of the Winisk river. The complete isolation from t 'e mainland by broad elannels ensured its protection from fires having their origin outside its own borders. The spruces growing

 different lowalites thromphout the regin, wer motel, mal ure given in the list helow:-

The rings show that the growth is genernlly rupin for the periond between five and thirty vors, and afterwards exeretingly slow

The northorn limit of n number of the common trees of nurthern Canada falls within the distriet, and of one speeide buth the nuthern and sonthern limits.

There is a black hirch that the Indians call the squirrol-bark bireh. Sperimens of the wool and foliage of this tree wre submitted te J'rofi-sur John Marom, ly whom they were forwarded to Dr. Surg'm, of the Armol Arboretmon, for determination. Dr. Sargent hin- named this birch Reluln fontinalis. It was not anengrowing in ubumdunce anywhere in the district, though eseasional trees were noted at various mint betwrell the Alhany mol Winisk rivers, the
 bratk thwime into Lake St. Jongh. and the mon hortherly in N. hat.

 at thres fort from the promal, and a height of alunt thirty feet. Where senn it was growit, bar the hanke nf riveren lakes, in moist

$40 \mathrm{i} 4-\mathrm{p} .50$

Northern Limits of Trees.

 piakat : Whll Wini-h riur-....

Kıl-: 11 -

 mertlory 1 Itt amuinerl.

Climate.

 wilfernos country approximately a thonsand fiet ubove sont-lowl,
 days rising as high an 8.0° Fale, urernges wery mull lower, ant the. night arr, practically, alway, enol. Froaty nights aften continue into the carly summar, :unl rirur agailin in the nutumen before most gruin-crops would be renly for larwenting. Temperaturin were taken with the thermometer during two -ratuns, and the..er. averaged. Eaw the fullowing resulte for the munthe of July ant Augist in the lower Wini-k river, and for Inle. Aughet and purt of siptember on the

The only points in the regrion where any altompto alt cultivation
 Oamburgh, near the funt of Lake st. A.weph, and at Fort llope. an linhemet lake.

田苗

At these pust- small kitehen gardens and potato-fichls are maintained with some surees, though neither place is favourably situated for the purpose, the soil in both eases consisting of an almost pure silld. Timothy and elover grow luxuriantly, and all the common garden vegetables thrive at both places. Indian corn, however, is not suffieiently filled ont for table use when caught by the frost. Barley has beell successfilly grown at Osnaburgh, and the potato crop, wherever a suitable traet of land has been utilized, has been generally fairly good at both plaecs.

The first killing frost in 1903 occurred on the night of September 3 , and in 1904 on the night of August 30.

The temperature of the water in a number of the larger lakes and rivers was taken by thermometer at six inehes below the surface. and is given in the following, very uniform list:-

Water Temperature.

Lake St. Joseph, Albany river, Junc 28. $59{\underset{z}{2}}^{\circ}$
Aunimwash lake, Albany river, July 5$59^{\circ}$
Tagabades-dawaga lake, Attawapiskat river, July 16 6릉
Attawapiskat river. August 8. 60°
Weibikwei lake. Winisk river, Augnst 9 62^{3}
Nibinamik lake. Winisk river, Augnst 2:? 28°
Winisk river, August 24. 57°

Land Shells.

A small collection of land sliells, made during the summer of 1904. has been examined by Dr. Whiteaves, who emmmerated the following species. It was noted that in actual number of individuals there was a decided and progressive deerease as the latitude in-creased:-

Verligo oralu. Nay.
Conulus fulvus (Müller).
Zonitoides arboreus (Say).
Vitrea hammonis? (Ströı).
Pyramidula striatella (Anthonv).
Succinea vermeta, Say.
Succinea retusa?, Lea.
Succinea ovalis, Gould, uon Say.

Freshwater Shells.

Collections of the freshwater shells of the region were mate eacll year, and submitted to Dr. Whiteaves for determination, who has furnished the subjoined list, which for ennrenience has been tabulated aceording to watershel areas:-

List of Freshwater Shells collected by Mr. W. McInnes in 19034.5 on the Winisk, Attawapiskat, and Albany Rivers, on the Root and English Rivers, near Lac Seul, and on the Severn River at Trout Lake.

BY
J. F. Winteaves.

INDEX.

AI'w.
Qpricalthral latal 10, 38
Absaly river 2:3, 33
Animuls, wild, of the di-trict. 4.5
A rchean area 10. 20
Archseolug. 49
arrowsmith mab, dntails for, sumpled by (i. Taybur
24.30
Asheweis, weat branch of Hinisk.
30
30
Atikameng river. 30 30
Atakmini: iskul. 3
Attawnpiskat river. 3.5
" \quad ". citarater uf... .. \quad ". $\ddot{\text { " }}$..
" " micrometer surveg ot. 3.5
" \because Hmbable comatitan with iblany river. 23
surreys of, in 1903-4. 9
B
Lanipatan river 31
 s
ca-t coasal Hulsarl has. 31
remot on lansowne lake and Attawaniskat riwer 34 ronte bu! wetn illany and Attawapiskat rivel. $11: 1-$ veluall hy 4.3
Big Mattawa river. $3:$
Boskincig rapid. (1). 12
Foulder cla! aren. 1

C
Cansell. Chas., drift masnes noted by $2 ;$
(aribon island (Ses Itikminis). 31
('lay, bonlder (see Bouldel clay). 35, 37
" marine 21. 30. 31
specimens examined by Ibr. Inflmann. :8
Climate, character of. 51
 α 14. 32

E
Ehbemet lake l'ace.
Eliwan river. 11
Elbow river. K
Eians, James. sy !labic characters designed by 37
Explorations, early, in the district. 47 47
F
F'swn branch fif Severn river.
8
8
Fish in rivers of district. 45
Wubikwii lake.
28
28
Fishbasket river (See Michikenopik) 27
Fishing. method of. 48
Food of the Indians.
48
48
Forests (See also timbei)
49
49
Fort IIope, headquarters of IJ. 13. trade
0
0
Fossils.
Fossils. 12. 18, 21. 22, 29, 31, 32, 36 Foxe, Capt. Luke7
G
Geological divisions of district
13
13
Gcology along Attawapiskat river. 38
between Albany and Attawapiskat rivers.
43
43
" Attawapiskat and Winis: rivers 40, 41
Glaciation
Winisk river and Trout l-ke
Winisk river and Trout l-ke 43
H
Hoffmann, Dr., examination of clays
Fudson, Henry 3.
Hudron's bays. $\stackrel{1}{6}$
Huronian, Lower 13. 2.3
Irdians$4 i$
JJemes, Capt. Thomas.7
K
Kabania lake.
Kafabader-dawaga lake. 38
Kakawizida lake. 36
Kanuchuan branch of Ittawapiskat river. 37
Kepichegima lake. 35
Kawinogans river 35
Kceratin. 36
L
Pus.
Pus.
l.ake St. Joseph 35
lakes of district, character of. 11
I.zustlowne lake 11. 3^{\circledR}
ธлиг 13
Low, A. P., chasacter cl country on Fawn branch of Severn is
Fawn branch of Severn river explored by.. s
M
Mattawa riser. 32
Mica. 11
Michikenis river. 2
Michikeunpla river. 27
Misamikwash lake.. 12. 24
Mislamattawa river 32. 35
Mud lake (Sre Ozhinhi lake). 37
Muskeg, extent of. 11
N
Nestapoka serifs. $3!$
Vibinamik lake. 11, 12, 2t
Nickel-hearing intrimilas. $1+$
No-Pickerel river (Nice Kawinogans) $3 i$
Noithwest passage. B
0
Otcsk river. 37
Ozhiski lahe 11. 37
P
Peat. 36
Pikwaknul river. 31
Dineimuta river. $3 x$
Pleistocene. 13, 19
Post-pleisterene. 13. 21
Fctatoes grown at H. B. posis. 44. 45, 5:
R
Fispids on Attawapiskat river. 37. 34
canoe route Winisk river to Trout lake. 12. 43
Kawinogans river. 36
" Warten Drinking river 41
Winisk river. 25, 27, 24
lice, wild, rarely met with. f
Ricestalk river. 3.
lioutes between Albany and Attawapiskat rivers. 4.3
". ". Attawapiskat and Winisk rivers. 39 41
" into the region. ?
Page.
sargent. Jh., bick namad br. 50
Shagamn river. 33. 35
Shamnttawa rivel. 35
Shells, freshwater 52
limil. 52
-ilurian.. 12. 13. 15. 32Smohy fall.28
T
'le Sasokwin branch of Wimsk river. 23. 28, 30
Tashka rapial.:3
l'nylor, (i., visited Winisk rivev 8
Temperntine of water. 52
Timber. 49
between Whwnpiskat and Winisk rivers. 39
Winisk riser and Trout lake. 42, 43

- on .Itawapiskat river 36, 3;
Nibinimak lnke. 26
"f Winpihoun lahr. 2:
of Weibskwei lake. 2ง
Winisk river 29, 30, 33
'lotogan lake. 3
'Trees, northern limit of 51
Ircut river. 8
V
Vegetables. gnreden. nossibility of raising. 4. 51
Viketaticn along Winisk river. 23
of area. 13
W
Wapikopa lake. 11. 12, 26
river. 26
Wapitotem river 27
Water-powers. 10
Weilikwet lake 11, ${ }^{7}$
Il litenves, Dr., fossils identified. 18, 2-9, 3]
shells determined by 32. 5:3
Williams, Jnbez, H. В. Со. 3.:
Wimbobikn lake. 11. 3.5
Winino brook 31
Winisk rifer, character of 2:
estuary of 31
length and witume. 31
section nleng. 17
survers of in 1903-4-5. \uparrow
visited by G. Tavlor.missionarims8
Winiskisi, Jranch of Wini-k liver. 23, 30
Wumlumanin lakt 11 1. 05

CANAIA
DEPARTMEN'ル OF MINES GEOLOGICAI BURVEY BRANCH
 IR. IV. Hrock. Hikector.

REPORT

(1) A

TRAVERSE THROUGH THE: SOUTHERS PAR'T
(1) THE:

NORTH WEST TERRITORIES

YROM

1.AC SEUL TO OAT LAKE

IN 1!18:

Hi
ALFRED W. (G. WILSON.

OTI'AW A
(:OVERNMENT PRINTING HI RE:H
1909

LETTER OF TRANSMITTAL.

To I. W. Brock,
Direetor Geologieul Survey,
Department of Nines,
Ottawa.
Sik,--I beg to sulmit. herewith, a report on a reconuaisance survey mide through the southern part of the North West Territories: from Lae Seul to C: : lake, during the summer of 1902 . This report was submitted in 1904 to Dr. Robert Bell, then Aeting Director of the Geological Survey, under whose direction the survey was made, but owing to difficulties which prevented the completion of the map to accompany it, publication was delayed. Advantage ilas been tuken of this delay to revise the report.

I have the honour to be, sir,
Your obedient servant,
(Signed) ALFRED W. G. WILSON.
Montreal, May, 1908.

CONTENTS

[1ă。
Introductors
(ifneral ilnalruthema. 7
I'resious exphotathot of adjoibing alome. 7
Topugraphy i
tientral gemeng 13
Amphibolitev and related whict. 13
leid rowks. 15
Aneishers 16
Grabates. 17
Guattalros porphyry 18
Surface geallyg. is
'lible of x \& acial atria. in
Ficomothir seoloxs 19
Fobrstry. $: 1$
Appentiv: Kailway aldortwh- in the datict :
Intia. 23

TKAVERSE THROLGH THE SOUTHERS PAR'T
 fir THK

NORTH WEST TERRITORIES.

$k v$

. 1.11 W. W. (i. Wh.sos.

Introductory.

On May 24, 1:H2, I received instructomy to mabe a remmais-

 the North West Territories.

Owing to the unsettled weather and irrughar charwter of th shore-lines of the water bodies the work was confined to the whthern portion of this nrea, to the survey of Cat lake, nud to at short :an verse northwarl from the eart end of Lac Senl intended to brato the belt of sownlled Iluronian rock- lying north of this lake.

Throughout the season the topographic protion of this work wian undertaken Ly Mr. J. F. E. Jolmston, C.E., of the oflice staff; while the writer had eharge of the geologic work.

Leports on the areas adjoining this unxplored district have heon made by Fawect, ${ }^{1}$ Bell," Tow, ${ }^{3}$ and Dowling.4

Topography.

According to recent investigation, the Archam areas of fanata have probably never been eompletely submergell since carly Cambrian

[^4]time. The nature wi the rekes and their geologide strmetnres ohew thint they must at one time have been buried belo.s the surfaca: lunere, it must loe inferred that these nreas have neen subjectel to degradation, and that a great volume of roek has been removed. Quite recently Sohuchert has shown that in all likelihout the arons inmediately to the sonth of James bay were sulmergeal during the midde laheozoie time; while those in the district of Keewatin and the adjaecont regions huve prohahly existed as land harriers since their pre-Cnmbrian emergence. The greater $p^{\text {wrtion }}$ of the erowion in the eentral parts must linve tukern place hefore the l'nhozoic submergenes.
loring the preriul of partial submergence processes of marine phanation may have lurally monlified the surface previously formed under the uperation of sub-nerial proessors. Within comparatively recent grobgia times the surface of the eometry has heen greatis: modified ly processes of glavial erosion and dequsition.
'The surface. as sem to-dhy, is thas the proluct of the operation of two, or possihly thres, imperfertly known geologic processes, shitarrial darmation, marine phantion, and glacial erovion.
It is probable that the first of these has played the most important purt. inder normal conditions sub-nerial procesens. neting throngh a long periokl of time. would produce smooth or gently undulating
 mane peneplain has ineng given.
On a peneplain, however, one would expect to time the larger -troum- wandering in brondly open valleys; there would be ol. lakes; :mul the soil aver would be romposed of mantle row if considerable depth, in sitn, very fine in texture at the surface, and aradually changing in deptli into unaltered rock. Normally, also, the -urface would not he elevated vers muell abowe sem-lewel.

None of the Arehem areas of C'mada cxhihit all these features. In the remarkably even sky-lines we find evidence of the existence of a planation surface which truneates the strnetures of the metamorphosed rocks: but in other respeets the fentures of the aren are not those of n peneplain. There are numerons lakes, and irregular treams with fregnent raphos; searely any robilunl soil i- fonmel in situ, though n considerable amomit of wail material has been Whositul by glacial ice: and the emeral parts of the region stand high aline sea-level. Yot it mav he that this was once a pearplan
area, amel that its surface has ben morlitien by other procesess. Before or during the period when these other proeessen-ehiefly glaciai. po-ibly partly marinu-were in operntion, the region has been clevated to a romsiderahle height. By their action the old soils were almost completely removed, new exotie material wins ileposited. parts of the old penephin were diseeted ly the renewed aetivity of the rivers, and the present fentures were prodnced.

The modification has been suffieient to remove all traces of this origimal surfare. 'lhis ancient proplan, mow moslified, has been ralled the laurentian Pencplain. and the prement surface fatures exhibited lay the Areme arens may thas be spoken of as those of a monlified nemepluin.

The area through which the explorntion lines of the present survey passed is near the centre of the Keewatin or western arm of this Laurentian l'aneplain, wheh extends from Labrador around Hulson huy the the Aretir arean north of the distriot of Maekenzie. The general tongruphie features of the region ure those which awrywhere characterize the lamrentian Peneplain. The rocks within its iomularios represent a portion of the earth's ernst which at one time must have bern far helow the surface. Owing to its central lovention it might even be inferred that these roeks represent the derpest portion of the earth's crust with which we are ever likely to eome in ecntact. A motioqable feature of nearly all the rocks of the aren, coperiully of the granite- and granituid gneisses. is the presence of a relatively large amomet of microcline and the absence of the nther fellspars.

Thronghont this purt of anthern Keewatin, the varions water bodies lie in shallow hasins out the pemphain surfuer. The maximum reliof in the interior, exerpt in the cuse of a few monalnoeks, is rarely ower in feet; near the southern lomulary it rises to ahome zof feet. In a few plaees, ridges or isolated, dowe-like ma-zes rise comething less than 100 feet above the general level. One of the most striking of these lies to the west of cat lake. about on fort alowe lake level. Severul other similar rilges were olserved in the conntry to the sonth.

All the laken atudied were shallow. marshy, and verv irregular in (antline: some wers surrommed ly large areas of muske. The interstream areas are eithor bure rombled, or undulating surfaces of roek; or. are elothed. © \cdot motially in the hollows, with a thin drift cover of sand, elay. and bonlders, nergrown ly a leman mat of moss (gencrally

[^5]Hypnum triquetrum) and interlaced roots. As a rule the drainage is very imperfect. Occasionally there are small areas, underlain by a thicker cover of till or by a glacial sandplain, where the drainage is better and the moss cover is absent.
The Wenasaga river flows in a general southwesterly course, and it presents the usual characteristics of the streams flowing upon the upland, viz., an alternation of long shallow floorled basins and short stretches of rapids.
The stream-particularly abo ce bluffy lake-flows in the lowest part of a drift-cocred rock hasin. through the deposits in whinh it hi:1s cut a well-defined channel sometimes to bed-rock.
Wenaraga luke, Buffy lake, Slate lake, and the seveml minor lakes along the course of the stream are typical examples of the partly flooded upland basins. It is possible that in some of the basins the water is maintained at its present level, not only by the controlling rock ledge which outcrops as or near the ouilet of each of the lakes, but also hy a partial drift dam located over same lower portion of the nargin of the rock basin.

The lake basi'ss are generally rock-rimmed shallow depressions studded with numerous islands, representing the unsubmerged portions of the ridges between minor basins, and are a gool index of the general character of all the other minor basins,

The form of the islands varics from that of a slightly rounded dome -characteristic chiefly of those which are composed of homogeneous rock-to an arched dome with elliptical ground plan. The longer axis, except in a few cases where the islands are low and flat, lies in the direction of the strike of the rock. Even in these exceptions the longer axis of the island makes only a slight angle with the strike of the structure. In many cases the strike of the structure is approximately parallel to the dircetion of ice movement, and hence the form of the ridges sometines seems to have also been a function of the direction of that movement. In many instances, however, where the structure of the rocks lie, at and angle to the direction of jo. neotinn as indionted hy the strim, the dominant factor in determining the form of the dime was not ice-scour but rock structure. Mans. of the rideres are of the tepieal roches moutonnes type with an ieescoured surface, sloping gently in the direction from which the ice came, and a stecp, scarpel face in the opposite direction. There are. howerer, mameron- instaners where stacp, smotmon iceseoured. eliffs face in the diemetio from whish the ice came.

The basins are the eounterparts of the ridges, and their form and disection bear the same intinnte relation to the rock structure.
Owing to the partial submergence of some eskars, there are a few islands, particutarly in Gull and Cat takes-ot a second type-to which reference will be made later on.

The intricute ram fications of the shore-lines, as shown in the aceompanying map. arc a necessary feature of the gently undulating topography characteristic of the whole region.

A number of minor strenms, sometimes connected with ehains of lakes similar to those through which our line passed, are tributary to the Wenasaga.

The amphitheatrolike lasin drained by the Wenasaga consists of a number of minor basins, each with its quota of loeal basins having their own drainage systems which converge towards the meridian line of the main basin, and its diseharge point near Lac Seul.

The Cat river-a river typical of the Laurentian Pereplain--flows sontheasterly, and enters Lake St. Joseph ahout 20 milea from its western enrl. Northwarl as far as the line was run, it was found to be not a single stream lut a long chain of lakes with short intervening stretches of river. In a few of these reaehes the waters move with a steady flow in a well-defined drift-fielled valley, through whieh they have eut a distinct clunnel; for the most part, however, these stretches are rapid, broken, frequently braided, and usualiy recups chance channels generally parallel to, but sometimes cutting aeros. the ridges between the hasins.

The lakes, on the other hand, contain numerous islands and have aseedingly intricate shore-lines. Numerous hays with narrow entrances and irrcgular back chamels, rmming appurently in ali directions, but actually directly associated with the rock structures, often make it very diffieult for canoe travellers to find rither inle: or outlet. The area of the marginal bays often greatly exeeeds the area of the main portion of the lake itself.

Gull take is an interesting example of one of these upland lakes. Fawectt's line traversed its eastern portion, and on his plan the southeast part apuears as Smoothrock lake, and the northeast part a; (inall lake.

Our exploration shews that the lamd to the northwest of these two divisions of what is really one large lake, is a large island, and that there are two other equally large water bodies, one the north-
west and the uther to the southwest, each with an intrieate shoreline and many islands.

The four water bodies, together with a nunber of ramifying bays, make a single large lake, in the centre of wheh is an island of nearly 20 syuare miles. The four divisions are connected by narrow channels in whieh there is only a perceptible current when the water is low; at such times the shallow chanmel betwern the two custern portions of the lake nuay become almost dry.

Cat lake is an irregular body of water with a length of 14 miles between the inlet on the north, on the route to Severn lake, and the ontlet to ('at river. Along n northeast-sonthwest line, to the ends of two long hass the distance is 18 miles. The lake, with its nunerous ishan- and intrinate shore-lines, i- atypieal exmmple of the flooded upland areas. The ends of most of the bays are slallow marshy areas overgrown with reeds and sedges, the home of numerous waterfowl. The slores are rocky, and the gromm is generally strewn with houlders and cobbles, the whole covered with a tangled mass of moss and roots, and overgrown with coniferons trees, usnally black suruee, and oecosionally poplar and white birel.
Simall smolphains, generally well forented but with poor soil, are fomme aromed the shore amd on a few of the islands. The lludson's Bay: ('ompany's post at C'at lake is located on one of these. Most of the islants of tinll and ciat lakes ure portions of Archasars ridges: a few of them are portions of eskars.
la (inll lake thore are secoral ishamls whieh consist wholly of (anarse colblle stomo hapeal in long harrow ridges trembing northenst--wnthwet. Thwer are emplotely hare of watution. rise not more than if feet abow water level, and have a remarkable resemblane to artificial embankments.

Another well-tefinet enkur. of similar composition, but with a -hall ammont of soil covered with sprner, forms a point which is usaly half a mild luny ame often lese than 9 (9) yards aeross. This point lien allont 4 miles alowe the entrance to the lake on the direet route northwart, and i- known to the Indians as Peshe-asho-kummig. or loux bridge. It i- much nieel as a canseway hyone and other amimale crossing the lake.

In the following table the approximate elevations above sea-level. of the larerer lakem and of the divides cerosed by the travere line are given from barometrio determinations. Dowling's determination of lan sunl 11 - $1.1+11$ foet ahme seatevel was taken as the datum plane.
Fivet．
Wenasaga luke 1.1%
Bluffy lake． 1,240
Oganie 1.244
Slate． $1,2 \mathrm{H}$
Margaret 1 B（w）
Marsh 1，：111
Hailstone． 1，018
Ieight－of－laml． 1，：ン：
Big Portage lake． 1.200
Giull lake $1.26: \%$
Jaekpine lake． 1．2゙か
Cat lake． 1．20．5
Cross lake 1,225
Blackstone lakr． 1．214
Lake St．Joseph． 1．2（4）
IIright－of－land． 1．シ．51

General Geology．

The rocks of the region belong wholly to the Areham：gneisses and schists predominate，granites oecur，but are less witespreal． The schistose struetures are vertical or nearly so，and the prevailing strike is mortheast，thourh there are mimor local variations．Near （＇at lake，and in a number of loealition aromm（iull lake，the strike varies from $388^{\circ} \mathrm{W}$ to $\mathrm{N} 80^{\circ} \mathrm{W}$ ．

The oldest rocks are all metamorphused，and are chiefly hornblende schists and amphibolites containing large amounts of hornblende， smaller quantities of quartz and a plagiociase feldspar elosely re－ lated to oligoelase，and sometimes also a smaller amount of orther－ elase．Several aecessory minerals are frequently fount such as splene，ilmente or leuencene，prite，and garnet．With the amphi－ loblites are assoeiated certain mieaceous schi－ts，hut it has not wet been possible to define their areas．

All the hornblendes appear blaek in mase，and the amonnt varies from about 50 to 0 per ceut of the whole rock．In thin section the abonption enlours vary from pale wellowish green to dark bhe－ green．The absorptinu seheme $i=\mathbf{c}>\boldsymbol{b}>\boldsymbol{a}$ ：the parallelisin of the hinublende plates with the structure of the rocks is well developet．

The relative amount- of gharta and feldspar rary con-iderably in different localitios.

The quartz, when present, is almost invariably in suall anhedra; the feldspars oscur in larger auhedra, and are frepuently altered to kaolin.

Biotite is found nsoeciatel with the hornblende, but it generally forins only a small percentage of the minerals present. In thin section the absorption colours vary from pale greyish-trown to deep brown.
Lcueoxene, ilmenite associated with titmite in collsiderable amount, prrite, and powibly a ammll amomit of maghetite are ulo present. Near the suthwet angle of slate lake the compase wis ansiderably affected lig whe leral intraction.
liarnet, usunlly of a pale pink colone when in thin seretion, orenrs in il number of loenlities in the amplinolite areas, both in symmetrifoll crystais and in strings and masses drawn ont in a direction parallel to the foliation and filled with inelusione of the other constituents, usually duartz anhedru.
 durk tonrmali ce, blue in bnal scetions. are found; less often the tourmaline has lost its crystnl outlines and oceurs in masses parallel with the foliation. The absorption edours in section are various tints of gres, exefpt when the vihration plane of the nierol is transverse to the axis of the erystals, then the entour is hame.

Other varicties of metmorphic rocks momaining biotite, sericite, another miea semingly related to the phlogopites, quartz, and other aceessor: minerals, but little or nu hornblende, oseur, somptimes with the amphibolites. sometimes apparently alone.
These amphibolites alll asouciated molists oecolr hoth in helte extending for long distancos, and as detached nusses. varying in size from a few mbic yard upwirls, and completely surrounded by the more acid rocks deseri\}as! below. Lack of time prevented a detailed exan.ination of the contacts between the schists and the acid rocks, but in the several localitics noted the contaets were similar to those already fully describel he Dr. Lawson as necurring in the Lake of the Woods repion. ${ }^{1}$

The first and liroadeot of these bamde harin* about 21 miles abow

[^6]Lace seul, ant is about 2.5 miles in width. This is the belt of Leewatin rocks, shown on Dowling's map of the Red Lake district. ${ }^{1}$

The contact between the schists and the aeid rocks to the south seems to lie beneath a large muskeg area through which the river rums, as the first nuterop of the schists occurs some miles below shate lake. The northern contact erosses the course of the river 10 miles above slate lake, the basin of which lies alnost wholly upon the selhists; the direction both of the longer axis of the lake and of the lenger axis of the island is parallel with the strike of the rocks outrepping en its shores. The aljacent rock on the northern boundary is a coarse peganatitic grasite containing inclusions of amphibolites similar to those of the muin area. Detailed study of this area mus show the sehists to be divisible into several belts of different origin and composition, now all metamorphosed.

Along the sonthern portion of the band the sehists, as already noted, are wery rich in biotite and another associated miea; while northwards they are chielly anphibolites, in some cases containing little els's than hornblende. The other large belt of these rocks crossed in our traveres lifs over 100 niles directly northeast of Slate lake aloulg the Cat River route and north of Lake St. Joseph, in the vicinity of Blackstone lake, but its homdaries werc not accurately drterminerl.

There is ut present no evidence that this belt bears any relation to the similar lelts found farther west, though the relation of each th the adjacent acid roeks is sinilar. Between the northern boundaries of the schists on Slate lake, and the most northorn pint reached by our line, there are several narrow lelts of muphibolites. rarely exceeding a quarter of a mile in width. Whether these are metamorphosed seliments or dikes is not at present determinel. Probably both types are representel; except near Slate luke they never underlie dominant topographic features.

One of these lelts, ubout $1 \frac{1}{2}$ miles wide, is erossed by the trail letween Irailstone lake and Big Portage lakc. The rook is a hornI Irude-plagioclase amphibolite rarrying small amounts of hiotite, garnet, sphene, itmenite, and leucoxme. It atrikes about $\mathrm{N} 80^{\circ}$ If and stands at a high angle.

The acid rocks of this region eonsist of gucises and granites, and underlie most of the area under review. They range in colour from

[^7] F, map.
u light grey to a decideal red, the provailing tints being shates of pink. When the porcentage of basic constituents becomes greater the edour is dark green or almont black.

Of the seven different varieties of laurentian gneisses, as classiticel hy larhow. ${ }^{1}$ onls four are found in the area. The unrepresented ghoisson ure those in which museovite weeurs alone, those in which miseovite and bintite oceur nlone, and those which contain garnet. Sicocral speomens showel augite as an necessory constituent, and one sperimen contained bidite, lornblende, and augite.
These rocks differ in no essential feature from the typical rocks domeribed by Burbw, and a detailed daseription of each type is, therelirer. unnecessary.
Quart\% is prevalent in all the gheisses, appearing invarinbly as irregular unhedra letween the feldop:r crystals.

Orthoclase of ten occurs in considerable amount, generally in irregular gruins interloeking with the other minerals. Sometimes in has partly decomyosel to kaolin or muscovite, and oceasionally to zoisite or epidote.
In many specinens, microcline is seen in large amonnt, and seems, to be directly associated with orthoelase.

Plagioclase is abundant, and occasionally forms the bulk of the feldrathie constituents. The migles of extinction indicate that it in nsmally related to oligoclase.
The primary biotite, in a few cases partly chloritized, occurs both in large plates (in aggregates of several crystals) and in small isoluted plates, (generally oriented parallel to the rock structure).
When homblenk ar museovito are present the liotite is clovely assoeiated with them.

Hornblende oceurs in a few specimens of these gneisses. In thin sertion the colours vary from pale yellow through green to bluish green, and are mueh lighter than the hornblende of the amphibolites.
Augite was found in tro of the specimens colleeted in the fieh. th oue it is unalteret, in the other much of it is altered to a hornhifnde which oeenre both as small fibres or plates statteren through the ma-s of the augite crystals, and a- large masses nearly surrounting then. The augite in thin section is pale green in colour.

[^8]Epidote is present. premumbly a* a primury constithent. sinme it is closely associated with unaltered biotite or hornblende. It is usually of a pale yellowislt colour and slightly pleceliroie.
 stitucot from the alteration of the fellopare weurs; and a few apromens aloo erntuin elalorite.
Apmate is frequent in irragular grains and atout creatalo.
Titanite is also found, ushally in irreguhar grains of vorying size or as small well formed crystals.
(iarnct uppenta in fresh irregular grains or massers, mall an anul! crestals in specimen- from the southern purt of the region. It i_{s} usunlly much fractured and almost eolourless.
l.onenxens is of fregnent ocenrence when titunte is present, and ilmonite is prombly moresented in thene rocks by a black opapue mineral always associatel with leuroxeme.

Apurt from strueture thre is little difference between the granites nul the gneisses of the arm. In some few cases the fehtapar of the granites is almost wholly mideroline. The preventent granite is a hornblende-hiotite granite, but there are other varietion - -uringh distrihnted in which either or both of these constiturnt- are lacking. In some lowatities threre seems to be a gradual transition from true granites thromgh granitod gheisses to gneiseses, nud bu definite line can be drawn between them. The granites frequently worn an larg. loutholithin masies, dikes from which penetrat: the surrounding rocke.

The largest single urea of these gueinsos mul granites underlies alt the country between (bat lake and (inll lake, and extends a considerable distanere the south and west. Just north of Slate lake our truserse line crossed a harge area of course pegmatitic granite, which "ontinues to (inll lake: other areas are found around Cat lake. The change in the strike of the gneis- at (iat lake. from the fortheast direction found prevalinge south of the lake to a northwest and uearly western dirertion, may be due to the intrusion of thea granitio naswes. thomgh it hav not been presible to work ont the relationin intail.
Both gurisess mul granites orour in the district inmeliately north of Lar Senl ant Lake St. Joseph.
On an island in Take St. Joseph, about 5 ur 6 miles from the outirt of the Cat river. there is a helt of grey-white schistoser. ruch - about io

Chains wide, striko $\boldsymbol{X} 50^{\circ} \mathrm{E}$ ant dip at $i 0^{\prime}$ toward the nortwest. M roncopic examination shows that this is a highly altered quartzless porphyry, consisting mainly of sericite micn in whielı are altered phencerysts of orthoclase and a small amount of less altered plagioclase, with, in one instance, a littlo apatite.
At many points along the route the" bed-rock is obseured by loose debris of glacial origin. The greater part of this material, whiel presumably has not been carried very far, invariably consist; of loulders and eobbles derived chiefly from the country rock. Along the rivera and in the lake lasins this conrser materinl is frequently overlain by finer sands and gravela in the form of samdplains, bencully small, but sometimes several square miles in area
In a few eases along the Wenasaga river, on Cat lake, on the lieight-of-lund between Lake St. doweph and the loot river, and in ans area north of the east end of Lac Seul, arenaceus elays, probahly also of glacial origin, were observed.

Everywhere the humnock: ridges of the Arehsan show the usual smooth rommed surface due to glacial action. Striso and deeper grooves were noted in a number of localities. On the west arm of (iull lake small ennerntric or es-fractures were observed with the conrex sido turned toward the northeast so that a normal to the ehord of the how strikes s. $54^{\circ} 1 \%$

Near the cast end of at lake a few Hat plates of a sectile, finely erystalline, grey-white delumitie limestone were found among the drift eddles ou the beach, and were recognized ly our men as similar to rock they had previously seen in situ on the Severn river. The inference io th. t the fragments havo been hrought to Cat lake from the Palamose arens in the liudson Bay hasin to the mortheast.

The following table contains a record of tho location and direetion of the glacial stris and growes notel during tha travese. The bearings are magnetic.

	$550^{\circ} \mathrm{W}$
Slate lake, uppr end. grooves	$\mathrm{S} 74^{\circ} \mathrm{W}$
Near cighth yortage	$\mathrm{S} 43^{\circ} \mathrm{W}$
Marsh lake, north ent.strive	$\mathrm{S} 59^{\circ} \mathrm{W}$
1iall lake, south chd, coneentrie eross fractures (normal)	S $54^{\circ} \mathrm{W}$
liull lake, morth end of south lake. ¢roove	$\mathrm{S} 50^{\circ} \mathrm{W}$
fiuli lake, east lake, north side.	$S 48^{\circ} \mathrm{W}$

Smootliresk lake，hear inlot s 5゙ W（＇at lake，northeast bay，nurth side，near Untlani＇s Baypont．．．．．．．．．．．．．．．．．．strin allil kroused sit it $^{\circ}$
S＇at lake，northenst buy，midille of north sille． Sis ${ }^{\circ}$
（＇at lake，northeust hus，islund noar east enul． $S 80^{\circ} W^{\circ}$
（＇at lake，northenat liay．sonth－ile nour milille，vomuger． $587^{\circ} \mathrm{W}$
Pat lake，northoust buy，sulnth sile near millle，older． sis ${ }^{\circ}$
（＇at lake，northeast tur！．bontls side． $5 \mathrm{Si}^{\circ} \mathrm{W}$prat．sit W
North has，cust－idu． く泡WCat lake，north bas，on islant in upper arm of lake about：i miles northwert of the ent of Finwetts line．．．．．S $\rightarrow:^{2} W$purt．．．．．．．．．．．．．．．．．．．．tria mad grooves S it II $^{\text {m }}$（＇ut lake，west site of main lake，－onthwot of Italson＇sllay post．\＆ $7: 3^{\circ}$
C＇ut lake，east side of main lake．point 2 miles lelow Itw？
son＇s llay 1 S6．10 ${ }^{\circ}$
Smonthroek luke，southwest side abowe rapids． S $50^{\circ} W^{\circ}$
I．ake Sit．Joseph，：miles sonth of Cat river．．． s．250 W
Lake St．Joseph， 23 milus sontl of C＇at river．．． s 3＊W

Economic Cteology．

Thinterems ti，ine litth：protpect of finding valuable econonin－ minerals in the region in paring quantities．In alast all the bants of busic schists small，lese oftell large，veins of raartz oceur． At the surface these voins mid the astocintel schista present the bisual rusty uppenrance due to the decomposition of the prite． The granites are oreaninnally eut by pamatitic dikes．Near the heal of（ ross lake，a rock，apmarently of this character，carries a suall mount of molyblenite in crestals vurying in size up to an ind mul a half aeross：it is nucertain whether the mineral is of ernomit． impurtano．lant the small size and the poor character of tho specimen soll，and the lifficulties of tranaprotation pint to the depositheing econnmically manorkale．The extent of the rein is mot known．The proprefs is at prosent（1002）in the hamds of Mr．C．W． loose of Dinorwie，in whon the writur is indelitel for speriment of tho minernls．

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIE \square IMAGE Inc
1653 East Main Street
Rochester, New York 14609 USA
(716) $482-0300-$ Phone
(716) $289-5989$ - Fan

Near the inlet into Slate lake, about three-quarters of a mile from its northeast end, on the eastern shore, is the only place where magnetic minerals were found sufficiently segregated to proluce a noticeable local variation of the compass. Herc, stringers of a metallie mineral, probably magnetite, were found. Though this metal is sometimes a constituent of the basic rocks, the more common oceurrence of iron ore is in the form of ilmenite. No hematite was noted in the district.

Botanical Fotes.

The following notes, while not exhaustive, pire a fair index of the phanerogamic plants of the area. The forest growth is found chietly around the lakes and streans. The sands, sandy gravels, or clays, usually of glacial origin, are gencrally forested, the trees varying with the character of the soil. There are large areas of nearly bare rock where only a few stunted conifers or poplars grow in the crevices. Where the soil is sparse, and the country low-lying but yet fairly well Irained, there is an open forcst, chiefly black spruce, and the ground is covered with a dense mat of moss interlaced with fibrous roots. The soil covered, and the swampy areas, are usually thickly orergrown with small shrubs, mostly alder.

In general the timber is rather small; in most parts of the district at present too small even for pulpwood or ties. Occasionally along streams the trees arc larger, especially north of the east end of Lac Seul. Another area of good timber, chiefly black spruce and tamarack, oceurs along the Root river between Lac Seul and Lake St. Joseph.

Forest fires have swept over the rcgion, probably on the average once every 35 or 40 years. On the islands and in certain protected localities one frequertly finds fairly large trees, and there is, therefore, no reason to atiribute the small size of the majority of the trees wholly to adverse climatic conditions. Around Lake St. Joseph ан unknown extent of forest has been fire-swept, and in mans: places completely destroyed within a few years. North of Slate lake, a round Big Portage and Gull lakes and northward, large areas have recently been burned.

The commonest and most widespread tree is the black spruce, Picea nigra. Associated with this, but in very much smaller numbers, is the Canada balsam, Abies balsamea. In the muskeg area the tamarack, Larix Americana, is found abundantly, rarely more than \& inches in diameter. Many of largersize are found along the Root
river. The onls -qecimens of the ral pine, l'inns resinosa, wherved were isohted trefs mar the enst and of lac Seul: probably there are others in the distriat. hut no important areas are likely to weur north of Jne Senl or Iake St. Joseph. The Banksian pine. I'imus lathkiana. however, weurs wherever the soil is sultable. The white celar, Thuya occidentalis. is fomb metasionally aboug the Wenasaga river and on the ('at Jake ronte.

I frw sperimens of a species of muple werr moted aromill lat Senl and north of it. The canoe hireh. Belula papurifera, ochus sparingly throughout the whale region. Specimens large enough to afforl lark for smal' rammes are foum on the ishands in Ciat lake. Asociated with this birch, but more abmolant. are the balsam pophr, Populus belsamifera. unl the aspen poplar. Populus tremuloides. Isolated specimens of the black a-l. Frurimus wamlucifolin. werr noted in several lofalities, was as farth an Cat lake.

INDEX

A

1'ak
13. 14, 15
Imphibolite
Apatite 17
Irchrean rocks 13
Angite. 16
B
Barlow, A. E.., classification of Laurentian gneisses referred to 16
Bell, R., report referred to
7
7
Hig Portage lake, elevation of. 13
Biotite.
11. 15, 16
11. 15, 16
Blackstone lake, elevation of 13
Bluty lake. 10
elevation of 13
Botanical notes. 20
c
Cat lake
12
elevation of 13
strix at 19
river. 11
Clay 18
Cross lake, elevation of 13
molybdenite at. 19
D
Dowling, D. B., map of Ked Lake district. 1.5
report referred to.
report referred to. - -
E
Economic Reology 19
Epidote. 17
F
Fawcett, Thos., report referred to 7
Y'eldspar. 13, 16
Fires, forest क)Forests (See Timber).GGarnet.G13. 15,17
Geology of the di: 18
Glaciation. 18
Gneiss. $13,15,16,17$4074-623
I'tik.
Granite. 13. 15, 17, 19
Giull lake 11,12
elevation of. 13
strife at 18
H
Hailatone lake, plevation of 13
Heisht of land, elevation of 13
llorablende. $13,14,15,16$
I
IImenite. $13,14,15,17,20$」
Jackpiue lakp, elevation of. 13
Johuston, J. F. F., topographic work done by 7
Kaoliu. 14
L
lac seul, elevation of 12
Lahe St. Joneph, elevation of. 13
prite at. 19
Inkes, chasacter of 9
laurentian gneisser, classification of by A. I: Barlow 16
Peneplain. 9
Lawson, A. C., contacts described by 14
l.encoxpme (nep Ilmenite)
Low, A. P., report referred to 7Lyux bridge (Liee Pe-he-asho-kummig).
M
Maguetite. 14. 90
Masparet lake, elevation of. 1s
Marsh 13
" " striz at
14, 15, 18
Mica.
16
Alicrocline
19
Molybdenite
16,17
Muscovite=
Oganie lake, elevation of 13
Orthoclase 16
P
Peneplain, definition of 8
Peshe-asho-kummig. 12
Plaxioclase 16
Pyrite. $13,16,19$
Q
そ1a11\%.

Thes.
.1.1, 11. 11i, 19

R

 19

5
-andりain
18
Echiot-.
$13,14,15,19$
splicile. 14
tlatr lakp

- levation ot
.10. 15
maxnetic attract.. 13
- riaz at.

4rizat.. 18

* thtoch lake.. 18

Sphetir. 19
stric. 2l.11 1a1.. 19, 15
T
Timber.
Titamite. ous

'Turarailite. 14
w

. 13
Wilaon, A. W. G., geologic work done by.. 10

CANADA

DEPARTMENT OF MINES

 oEOLOGICAL BURVEY BRANCH．Hon．W．Taxpleman，Hisisten：A．J．Iow，Jepetr iminiate： IR．W．Hurce，Ifazctos．

SLLECTED LIST OF REPORTS IND MAPS

OF SPECYAL ECON゚OMIO IN゚TEREST

Heports of the Minen Scetion：－

Mineral Proditetion of Canada：－

No． 414.	Yrar mas．	No． 42.			
＋1．5	1ヵら？	No．	－ar lsot．	Nก． $71!$	Yrar 19019
116	ハい以゙，	5	is？．\％	－1138	． 1901.
117	－1549．	fif：	1－16．	A（b）	
419	＊1．490，	6283	1－vi－96．	－11\％	1＇tht．
420	－imati－91．	1111	＂．ing\％．		150.5 ．
421	1sy2．	685	心吅．	0×1	1906.

Mineral Resonreus Bulletins：－

No．＊sis．Matimum．
s．is．（ u ： l
＊．5．4．A－he＂t．
－57．Infuーば
sis．Manco．
ming．Silt．

Reports of ts．

No．＊102．Year 1 （ntes
＊ 110 －
＊119＂
126 ＂．15ラ－5．

15 ff ＂15su－1－2

No．Mfry．Kine
Niti． 11 l a
Ni－2．Nubly No．Svi．Phovphate．

th：3．Mineral ligments．

ant．Miniral ligmenta． （Frondi）
＊1＇ublication－marked thuy are ont of prot
＊l＇ublination－marked thus are ont of priat．

REPORTS．

（ilinlili．ll．

 ヨルル上．
！ 1 パN．

6at hlomble ： 1 in in
 iil．I in

451．I＇，

 1．114．

H12ITlisll Cal．［＇M13］．

212．The kocky mountrins（hetween latitules 49° and $51^{\circ} 31^{\circ}$ ），Diy（i，M1．Jawson

 $n 1, \infty 1 i n$.

 $\therefore \mathrm{m} . x=1 \mathrm{in}$.
743．Atlin 1. irke mining dividon．by J．C．Gwilltu．1890．Map No． $\mathbf{T} 42$ ，scale 4 $11 .-1 \mathrm{in}$.

940．（iralum inand，by 11 ．W．lills．10n：Map No． $0: 1$ ，scale $1 \mathrm{in},-1 \mathrm{ln}$ ．，and Map No．M2，arale $1 \mathrm{~m},-1 \mathrm{in}$.

 997 ．wral． $4 \mathrm{ml}-1 \mathrm{im}$.
1035．Coul－filds of Manitoln，sawatehewnn，Alberta，and Fantern Britinh Col abia， by 1）．13．Howling．

ALBERTA．

＊237．Central portion，by J．13．Tyrrell．18S6．Nlaps Nór． 249 and 250，scale 8
324．Peare and Athaba＊kat Rivers district，by R．G．McConnell．1890－1．Map No． 336 ，scale $45 \mathrm{~m},=1 \mathrm{in}$ ．

 by 1．W．Juwthag．Map No． 1,011 ，wale ：15 m．-1 la．

※囚ォに，

M INITOHA．

 \because ale $A t=1-1 \mathrm{~h}$

 acalo：2110 $17 .=1 \mathrm{it}$.
 adel lithe mblitiart on

－iza fircat luar lake to lireat Slate lakr，by d M．Wh．ll．Iomm
 $\star \mathrm{tm}=1 \mathrm{in}$.
 ． 11 in 1 is．

yois．The Cruie of the Sis
by A．ir Low． 1905.

GNTARIO

215．Jake of the Woode region，by A．C．Lawon．Iss5．Map No．22\％，achle 2 m ． 1 in ．

 scale $4 \mathrm{~m},-1 \mathrm{iu}$ ；No． 256 ，scale $20 \mathrm{ch} .=1 \mathrm{iu}$.

 No．：1！is，ment，$+m=1$ in
 $1 \mathrm{~m} .=1 \mathrm{ln}$.

QUEBBA．

297．Mineril romolitees by it W．J！lle．Ista．

 Iny，X1． $5 \% 1$ ，seale $+\mathrm{nt}=1$ in．

 llutario）．

 So．！otro．scale s m，－ 1 in ．
975．Repurt on fopper－hasing rocks of linstern Townshlps，by J．A．Dresser． （lirenelo）．

Nl：W lı＊ふがった

 210．Carleton and Victoria counties，by L．W．Batey．18s Map No．231，scale $4 \mathrm{~m} .=1 \mathrm{ln}$ ．

 Son lrunsuick geelocy，by it 16 Vills．｜hti．

NOVA HCOHIA．

 J－hether ubul l．，If．liathante．Inati

 $\mathrm{m} .-1 \mathrm{in}$ ．

MAPS．

どにいN．

10．11．Whitelorte Cemper belt，acale $1 \mathrm{in},-1$ in，
1020．10：11－1049．Whiteliorve Corpur belt．Intails．

BRITISII COl．I M1131A．

278．Cariboo Mininf district，spale $2 \mathrm{~m} .=1 \mathrm{In}$
604．Slatwup Cicoltgital sliret，sule 4 m．-1 in ．
771．I＇relimiury linliion，linst liooteuny，arnle $1 \mathrm{~m},-1 \mathrm{in}$ ，

sou．Nioular cual hatin．walr $1 \mathrm{~m},-1 \mathrm{ln}$ ．

0．99．Telkwa river and winity，seale $2 \mathrm{~m} .=1 \mathrm{in}$ ．
097．Nannimo und New Wextmin－ter Mining divitot，«alo．．－ 1 in

1003．Lossland Jining camp．Topmeruplueal slieet s．ale $1,200 \mathrm{ft}=1 \mathrm{in}$ ．
1004．Romsland Mining camp．Geologival sheet．Scale $1.200 \mathrm{ft},-1 \mathrm{in}$ ．
106s．Sheep Creek Alining comp．Geological slicet．Srale $1 \mathrm{~m} .-1 \mathrm{in}$ ．
1074．Sheep Creek Minlng eamp．Topographleal sheet．Scale $1 \mathrm{~m},-1 \mathrm{ln}$ ．

AI.BERTA.

594-596. Peace and Athabaska rivers, wrale 10 m . -1 in .
s08, Hinirmore-Frank coal-fields, scale 1N0 ch. $=1 \mathrm{it}$.
ngt2. Contigan conl busin, scale $40 \mathrm{ch}=1 \mathrm{in}$.
920-9:3i. (Husade coal bavin. Scale 1 in $=1 \mathrm{in}$.

1010. Aberta, Haskatelewan, and Manoubat. Coal Areas. Scale $35 \mathrm{~m}=1 \mathrm{ln}$.

SASKATCHEWAN.

1010. Alberta, Saskatehewan, and Manitoba. Coal Areas. Seale $35 \mathrm{~m} .=1 \mathrm{ln}$.

MANITOBA.

80:. Part of Turtle mountain showing coal areas, srale $1 \frac{1}{f} \mathrm{~m} .=1 \mathrm{ln}$
1010. Alberta, Siskatchewan, and Manitoba. Coal Areas. Scale $35 \mathrm{~m},=1 \mathrm{in}$.

O.NT.1R1O.

227. Lake of the Woods sheet, scale $2 \mathrm{~m} .=1 \mathrm{in}$.
228. Rainy lake whect, sale $4 \mathrm{~m} .=1 \mathrm{in}$.
*32. Ilunter I-land sheet, wale it m. $=1 \mathrm{in}$.
229. Sulbury shert, scale $4 \mathrm{~m}=1 \mathrm{in}$.
230. Kainy liver heet, wrale $2 \mathrm{~m} .=1$ in.

5fin. Se ine liver thent, seale $4 \mathrm{~m}=1 \mathrm{in}$.
570. Vrench liver shcet, scale $4 \mathrm{~m}=1 \mathrm{in}$.
$5 \mathbf{5} 9$. Iake shebandowan sheet, scale $+\mathrm{in} .-1 \mathrm{in}$.
5i9. Timinaming shect, scale $4 \mathrm{~m}=1 \mathrm{in}$. (New lidition 1007).
fu: Mimitoulin loland theet, scale $4 \mathrm{~m},=1 \mathrm{~m}$.

titif. Wenloroke sheet, scale $4 \mathrm{~m},=1 \mathrm{in}$.
Gitio. Ignare sheet, scoale $4 \mathrm{in}, \Rightarrow 1$ in.
Tus. Laliburtun sheet, scale $4 \mathrm{~m}=1 \mathrm{in}$.
720. Manitou Lake shert, seale $4 \mathrm{~m},=1 \mathrm{in}$.

* Fin. Girenvilie sliect, scale $4 \mathrm{~m}=1 \mathrm{in}$.

770 . bancroft sheet, scale $2 \mathrm{~m} .-1 \mathrm{in}$.
775. Sudbury dict rict, Victoria mines, scale $1 \mathrm{~m} .-1 \mathrm{in}$.

7 s ?. I^{\prime} erth whet, scale 4 m . $=1 \mathrm{in}$.
S20. Sudbury dist riat., Sudhury, scale $1 \mathrm{~m}=1 \mathrm{in}$.
\& $24-825$. Sudbury distriet, Copper Cliff mines, scale $400 \mathrm{ft} .=1 \mathrm{in}$.
852. Nomtheast 1 rm of Vermilion Iron ranges, l'imagami, scale $40 \mathrm{eh} .=1 \mathrm{ln}$.
864. Sulbury distrirt, Fl-ie and Murray mines, srale $400 \mathrm{ft} .=1 \mathrm{in}$.
903. Ottawa and Cornwall sheet, scale $4 \mathrm{~m} .=1 \mathrm{in}$.
944. Preliminary Map of Timagami and Rabbit lakes, srale $1 \mathrm{~m}=1 \mathrm{in}$.
064. Geological Map of parts of Algoma and Thunder bay, scale 8 in . $=1 \mathrm{in}$.
1023. Corundunt Bearing Kocks. Central Ontario. Scale $17 \frac{1}{3} \mathrm{~m} .=1 \mathrm{in}$.
1076. Gowganda Minlag Division, scale 1 m . $=1 \mathrm{in}$.

QUEBEC.
251. Sherbrooke sheet, Eastern Town hips Map, seale $4 \mathrm{~m},-1$ in.
2×7. Thetford and Coleraine Asbestos district, srate $40 \mathrm{ch} .=1 \mathrm{in}$.
375. Quebec sheet, Vistern Town hips Map, s ale $4 \mathrm{~m} .=1 \mathrm{in}$.
571. Montreal sheet., Eastern Town-hips sheet, scale $4 \mathrm{nt}-1$ in
665. There Rivers sheet, Liastern Townships Map, seale $4 \mathrm{nl} .=1$ in.
667. Gold Armas in southeastern part, seale $8 \mathrm{~m} .=1 \mathrm{in}$.
668. (iraphite district in labelle county, scale $40 \mathrm{ch} .=1 \mathrm{in}$.
918. Chibougamau region, scale $4 \mathrm{~m} .-1 \mathrm{in}$.
976. The Older Copper-bearing Rocks of the Eastern Tuwurijus, scale $8 \mathrm{~m} .-1 \mathrm{in}$.
1007. Lake Tiniskaming region, scale $2 \mathrm{~m},-1 \mathrm{in}$.
1029. Lake Megantic and vicinity, scale $2 \mathrm{~m},-1 \mathrm{in}$.

NEW BRUNSWICK.

675. Map of Principal Mincral Ocrurrenceq. Scale $10 \mathrm{~m} .-1 \mathrm{in}$. 960. Map of 1 'rinipmi Mineral Localities. Ssate $16 \mathrm{~m} .-1 \mathrm{ln}$.

Nova scuria

813. Prellminary Map of Springhill reat-field, srate $50 \mathrm{ch}=1 \mathrm{ln}$.
814. Pirtou conal-fichl, scule 2:) ch. $=1 \mathrm{in}$.

Preliminary (iowlogical Phan of Nictaux an 1 Tor!)rook Iron distriet, seale 25 ch -1 in .
927. Gencral Map of Prowince showing gold thist ricts, seale $12 \mathrm{~m},=1 \mathrm{ln}$
937. Heip-igate Gold di-trict, seate finl $\mathrm{ft}-1 \mathrm{in}$.

1012. Hrookfieht Gold distritt, wale 2.iof ft . 1 in .
1019. Halifax Geotogirat sheet. No. 6s. Nale $1 \mathrm{~m} .=1 \mathrm{in}$
1025. Waverley Gcological sheet. No. 6i. Fate $1 \mathrm{~m},=1 \mathrm{in}$.
1038. Si. Margaret Ray Cirothgical shewt. No. 11 . Siale $1 \mathrm{~m}=1 \mathrm{in}$.
1037. Wind-or rienloginah sheet. No. 73. Strate i in $=1$ in

Note.-Individual Mape or heports will be furni-hed free to bonn fide Canotion sppli ants.
lieports and Maps may be ordered by the numbers prefixel to titles.
Applitation thould be addressed to The Director, Geological Survey, Lequrt-
ment of Slises, Ottawa.

Trputuritl ui ilime

[^0]: ${ }^{1}$ Panmal lieport Geological Survey of Canada (New Series). Vol. II.
 , Pa.t G
 2 lhid. Part E.
 ${ }^{3}$ Summary Report Geological Survey of Canada, 1902.

[^1]: - The two new species of Camarotuchia, the Glaskia and the Actincoceras hate been deseribed by Dr. Whiteaves in Ialmozoic Fossils, Fol. III., Fart IV., 1906 , where further mete concerning the collection will be found.

[^2]:

[^3]: $110: 13:$

[^4]: et 5 seq .

 Oinn. lieport Geological Sursev of Canada, 1856, I't. C.
 : Ann. lieport Geoloyical Survey of Canada, l8R6. P't. I'.

 * Ann. lienort Cieological Sursey of Canada, issg, lit. I.

 4074-5

[^5]: 4074-51

[^6]:

[^7]: ${ }^{1}$ Mowling, D. B., Can. Geological Surver, Vol. VII, (N.S), 1894, Patt

[^8]: ${ }^{1}$ harlaw. 1. F... Report Genlogical Survey, Sew Ser. Vol. X. 189\%. Part 1. lage il.

