IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

(C) 1986

The Inatitute has attempted to obtmin the beat original copy avallable for filming. Foatures of this copy which may be bibliographically unique. which may atter any of the imaget in the reproduction, or which may significamtly change the usual mothod of filming, are checked below.

Coloured covera/

Couverture de coubour

Covers damaged/

Couverture endommagdeCovers restored and/or leminated/
Couverture restaurte ot/ou pelliculie
Cover title miasing/
Le titre de couverture menque
Coloured maps/
Cartes gesographiques en coubur
Coloured ink (i.e. other than blue or black)/ Encre de couleur li.e. autre que bleue ou noirel

Coloured plates and/or illustrationa/
Planches et/ou lllustrationa en coulour
Bound with other material/
Relic svec d'outres documents

Tight binding may eause shedowe or diatortion along Interior margin/
La re llure serrie peut causer de l'ombre ou de le distorsion lo long do la marge intiricure

Blank leaves added during restoration may appear within the text. Whenever possible. these have been omitted from filming/
II se peut que certaines pages blanches ajoutbes lors d'une restauration apperalssent dans ie texte, mais. torsque cele thalt posslble. ces pages n'ont pas dit filmdes.

L'Inatitut a microfilmd le meilleur exemplaire qu'll lul eded poselble de se procurer. Les dotrails de cet oxemplaire qui sont pout-dtre uniques du polint de vue bibllographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans te múthode normale de filmage sont indiquis ci-dersous.

Coloursed pagea
 pages de couleur

Pages damaged/
Pages endommagies
Pages restored and/or laminated/
Pages reataurdes ot/ou pelliculdes
Pages discoloured, stained or foxed/
Pages dicolortes, tachetbes ou piqutes
Pages detmehed/
Pages dítachdes
Showthrough/
Transparence
Quality of print varies/
Qualité indgale de limpression

Includes aupplomentary material/
Comprend du matérial supplómentaire

Only edition available/
Soulo ddition diaponible

Pages wholly or partially obscured by errata slips, tissucs, atc., have been rofilmed to enaure the beat possible image/
Lee peges totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont út'́filmbes anouveau de façon a obtenir to meliloure image possible.

This item is firmed at the reduction ratio checked below/
Ce document est filmé au taux de rdduction Indique ci-dessous.

Additional comments:/
Commentaires supplómentaires:

The copy filmed here hes been reproduced thanks to the generealty of:

Library of the Pubilc
Archives of Canada

The Images appearing here are the beat quality posalbie considoring the condition and logibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filimed beginning with the front cover and ending on the latat page with a printed or illustrated impression, or the back cover when appropriate. All other original coples are filmed beginning on the first page with a printed or illustrated impression, and onding on the laat page with a printed or illustrated Imprecsion.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applles.

Maps, plates, charts, otc., may be filimed at different reduction ratios. Those too large to be ontiroly included in one oxposure are filmed beginning in the upper ioft hand corner, loft to right and top to bottom, as many frames as required. The following diagrama lliustrate the mothod:

L'oxemplaire filmo fut reprodult grace ito genéroeltéde:

La blbllothique des Archivea publiques du Conada

Lee images sulvantes ont fité reprodultes avec lo plus grand soln, compte tenu de la condition ot de le nettet' de l'exemplaire filmb, ot en conformite avec les conditions du contrat de filmage.

Lee oxemplaires originaux dont la couverture on papior cat Imprimio sont filmí on commencant par io promior plat ot en torminant solit par la dernibre page qui comporte une empreinte d'impreseion ou d'illustration, soit par io socond plat, solon le cas. Tous les autres examplaires originaux sont filmbes en commongant par la premilere page qui comporte une emprointe d'impresaion ou d'illuatration ot en terminant par la dorniĺre page qui comporte une tolle empreinte.

Un des symboies suivants apparaftra sur la dernille image de chaque microfiche, saion le cas: lo symbole \rightarrow signifie "A SUIVRE", io symbole ∇ signifie "FIN".

Les cartee, planchee, tableaux, etc., peuvent itre filmés à des taux de réduction diffórents. Loreque lo document eat trop grand pour etro roproduit on un soul cliche, il eat film' at partir do l'angle supóriour gauche, de gauche à droite. ot de haut on bas, on prenant le nombre d'images núcessaire. Lee diagrammes suivants illustrent la méthode.

ADVANCE PROOF-(Subject to revision).
This proof is sent to you for discussion only, and on the express understanding that it is not to bo used for any other purpose what-ever.-(see Sec. 47 of the Constitution).

> Canadian \$ociely of eivil engineens.
> INCORPORATED 1887.

TRANSACTIONS.

N.B.-This Society, as a bolly, does not hold itself responsible for the facts und opinions stated in any of its publications.

A CUBIC YARD OF CONCRETE.

By Heniy f. Perley, m. Can. Soc. C. E.
To be read Thursday, 9th November, 1893.
With the disappearatice of timber from the more settled parts of' Canadn, and conserguently its inerense in cosit, other materials will eventnally have to be used in the ennstruetion of our public and other works. Heretofore, timber has tuken the lead ns a constructive material, by reason of its existence everywhere throughout the Dominion, the ease with shieh it could be obtained, and its apparent cheapness when compared with other and nunch more durable materials. Exeept in Canaida mod the United States, the use of timber has been to a very great extent abandoned, and in its stead, iron, steel, stone and conerete ure usel, the two first prineipmily in superstruetures, and the latter two in fonndations and superstructures as well; and of all these materials it would uppear that concrete has pruved to be the cheapest and most advantageons to use in the construction of' break-waters, wharves, doekwalls, sub-aqueous foundations, etc.; :und the day is not far distant when it will be fully comprehended that all large and important works in Canada will, to a very great extent, lave to be construeted with that material.

The object of this paper is not to point out where eoncrete ean bo advantageously used, nor to show that, though entailing a larger initial expenditure, it eventually beoomes, where depreciation through natural deeay and wear and tear, and the consegnent eust of repmirs are taken into aecount, cheuper than timber ; firr a solid strueture of conerete is better in every way than the wooten boxes filled with loose stone, constructed by privite as well as public cuterprise, whieh pass and serve as wharves, breakwaters, bridge-piers and ibutments, etc., throughout the length and breadth of our country; but merely to make af few remarks on the composition and character of eomerete as a eonstruetive material, without any referenee to its use, or its oost, in both of which cases the question ol locality becoues an important factor.

Conerete is an homogencous mass, -in faet, an artifieial stone, formed by the almisture of lime, or ecment with gravel, broken stone, sand, ete., in lixed proportions, the strength and durability of the eompound being directly in proportion to the gu:lities of the lime or eement employed, the nature of the stone, sand, ete., seleeted, and the manner of their admixture and mole of deposit in sitn.

For the purpose of this paper, the subjeet has been divided into frur parts as follows:-

1. Cement.
2. Components (stove, sand, eto.).
3. Mixing.
4. Deposit.
5. Cemert.

In eonerete, ecment-for the use of lime will not be consideredtakes the leading pliee, and on its goodness the goodness of the resulting mass d pends, always provided that the other components are good and the mixing, etc., has been honestly done.

By cement is meant that subrtance, ei ciher a natural or an artificial production, whioh possesses the property, when wixed with water, of setting in comparatively short periods, eifher in the air or in freal or salt water, and also of attaining grenter strength and solidity with an advance in age, und these properties aro posessed in their fullest oxtent by what are classed as Porthonl Cements. It is trine that certain cements bearing local numes, hint not mumufaetured in the same manner as the l'ortlands, possess the same propertics, but obly to a certain extent, and often that extent is so small as to preelude their use in any important work.

Portland cement is an artificial product, revulting from the mixing of certain olasses of limestone or chalk with elay of a suitable quality, in fixed proportions, and ealeining and grinding the product. In the south, of England the hard chulks and elay deposit from the beds of several rivers are used, but in the uorth of Eingland und on the Continent, limestone ind field elay are the components, the proportions not varying far from 72 per cent. of stone to $\mathbf{2 8}$ per cent. of clay.*

On analysis, a sample of good cement should show the following oonatituents -

In the above there are three constituents, whieh, when they exceed a certain porceutage, are objeotionable,viz.: magnesia, when it exceeds $1 \nmid$ per eent., and sulphurio and carlonic acids, when thoy exeeed $1 \frac{1}{2}$ per cent. Another objectionable element which cannot be detected by analysis exists in the shape of free lime, but it is asserted that the measure of carbonic acid is the measure of the amount of free lime. \dagger
Lately in England there has come into use a cenent made from "slag," or the refuse from the blast furnaces in the smelting of iron, it having been found to contain generally all the chief ingredients found in Portland cement; but all slags aro not equally adapted, for those which disintegrate and fall to powder spontancously are wholly unfit, but they have been made use of by unserupulous manufacturers, especially in Europe, for the purposes of adulteration.
The following is an analysis of good slag given in the "Proc. Inst. C. E., Vol. 105, p. 221."

Siliea......................	24.10 per cent.
Iron oxide.........................	0.93 "
Alumina..........	16.30
Calcium oxide.....	46.53
Magnesia	2.08
Sulphuric acid....................	2.05
Carbonic acid	0.65
Water combined with lime.......	6.45
Insoluble and other matters......	0.94
	100.08

It will be noted that there is a deficiency in calcium oxide (lime), but this is made up in the process of manufacture, which is freely quoted as follows:-" The slag, as it emerges from the blast furnace, is passed through a stream of water, which reduces it to a spongy and readily erushed material known as'slag-sand,' which is ground to a

* G. F. White—" Proc. Inst. C. E., Vol. 62, p. 185."
\dagger A pamphlet on Portland Cement, by W. W. Maelay, C. E
fine powder between mill-stones. As no slug in iteolf confains a sufficient amount of lime to produce comontitious action, the requisite amonnt is umble up by the uldition of 25 per cent. of the mixture of alnked lime, obtaised from pure or titt limes, which in the not of slaking fall intoan cxtrcmely fino powder, finer than can be produced by any meohamical means.
"Alter the misture of the slag-sand and lime, a charge is passed into a metal cylinder about 42 ft . in diumeter, partly filled with iron or steel bulls from 1 to 2 ins, dianeter This eylinder revolves horizontally and slowly, and in consequenco of the crushing and pounding action of the balls, the friction between them, mad the very complete intermixture of the ingredicuts cunsed hy the rotary motion, the partioles of lime nod slag aro most intimutely united and reduced to a suooth silky powder, reembling to the touch the finest flour. After remaining in the drinu for about one hour, the contents are withdrawn, nad the cement is rendy for use
"The under-mentioned results wore obtaining in testing samples of slag.cement at the Royal 'Testing establishment for Building Materisls, Berlin, Germany.

Mixture.	Tewile streugh per sif. inch.		Compressive strength per sq. inch.		Remarks.
	7 days.	2 d daya.	7 days.	28 days.	The briguettes wereone day in the nir, the remuin. der in water.
	lis.	lbs.	Hes.	How.	
Nent. 1 ct. : samd.	1447 427	692 509	3,376	4,269	

"In colour, sag-eement is lighter than Portland, and, owing to its fine grinding and partly to a lower specific gravity both of the slag and the lime, the weight per cubic-fiot sellom exceeds 75 lbs ." *

The process of mannficturing Portland Cement need not be desoribed, as it is now well kuown, but it differs materially from that adopted for slag-cement, and it is at once apparent that it is a much more extended and therefore a more extensive process.
The goodness of Portland cement depends:-
(1) On the proper eonstituents of the unaterials employed;
(2) Upon their being propirly mixed in the right proportions:
(3) On the exaet amount of caleination ;
(4) The degree of fineness to which the elinker is reduced by grinding;
(5) The thoroughorss with which it has been sieved to obtain only the finest particles, and the rejection of all eoarse parts; and
(6) A careful air-slaking for at loast one month, to peruit the cement to cool and purge itself of free-lime. \dagger
Uniform fineness is almost an absolute necessity, and in passing a sample through a sieve of $\mathbf{7 6}$ meshes per linear inch, or 5776 inches per square ineh, not mure than 6 per eent. of residue should remain on the sieve. All coarse particles, such as small lumps of uaground or partially ground elinker, are not of any cementitious value, indeed it is better to use more coarse sand in concrete than such particles, becuuse they can only be regarded in practice as sond, as they reduce tho effective proportion of the cement.
To show the efficet of coarse and therefore inert particles in cement in the mannfacture of concrete, take a specification which requires concrete to be made with 6 parts of broken stome, 2 parts of sand, and 1 part of cement, the product leing known as 6 to 1 concrete, and suppose that a sample of the ecment supplied, on being sieved through a standard sieve, leaves a residue of 20 per cent. of coarse particles, then the actual available amount of cement is 80 per cent., and the mixture becomes $7 \frac{1}{2}$ to 1 , instead of 6 to 1 , as called for.

[^0]The anthorities* eonsulted in the preparation of this paper ngree on the necessity of demanding a properly groumd cement, for exaotly in the degree that it is not so, is its vilue as cement thrown away, as the particles of hard clinker which will not pass through a 2500 mesh sieve, will not pive uny good results. In Germany-and it may hero he stuted par purenthese, that the Gicrman Porthome cements give, as a rule, bettor results than those of Eughith make, fine grinding being required-the reeognized standuril is that the residue must not excoed 20 per cent. on a sieve oft 900 menhes per sipuare centimetre, or $\mathbf{5 8 0 6}$ meshes per rq. ineh, but an ortiele whieh will muly leave 10 per cent, is supplied. In Englaml the residue Jeft on a sieve of 2850 meshes per sq. inol varies from 15 tan $\mathbf{2 7}$ prer ent.
The weight of coment por cubic font cannot be taken as an indication of its strength, for a heavily burut clinker, if conracly ground, will produce a heavier article per cubic font than the salne clinker will when fleely ground, but the litter article will give the lectier results in use.
The average weight of a enhie foot of Porthund Cement, when filled into a measure from n hopper with mu average drop or lall of 18 inches, muy be taken ns 85 liss ; und, necording to liresenius, its specifio gravity should vary but very lititie liom 3.10.
There are two modes of testing coment, -the ehemieal and the mechan. ienl. Relative to the first, a writer† remarks that "alhough chemistry hus enabled definite conclusions to le drawn as to the ennstitution of ${ }^{-}$ eement, and tho value of the various materials used in its manufiature, it eannot be said that for the purpose either of the maker or nser it is of much proctical service in rapidly testung the finished product in the market. Chemical amalysis requires a speial technienl knowledge and akill which is not often available, and a chennieal amalysis in itself is not a sufficient eriterion of the worth of a cement. It is possible to get an artiele whieh from a chemieal point of view may be perfect, and yet io pructical use may be worthless. In the munufucture, in eontrolling the operations of the fictory, chemistry cannot be too highly valued; but in dealing with the linished article it is nunceessary and the ulcimate test is its adnptability and cemomic worth as a materina of construction, and this cannot be made by :ny leeter method than by an examinution of its behavions when in intimate conjunction with water and sand or other :ggrepates, thus placing it mider conditions as nearly similar as possible to those moder which it is used."
Setting aside then the emsideration of a elumical analysis, the mechaniend test is within the compass of every presen using cement in large ruantities, or of the enpinect having charge of works in the construction of which cenernt is in impertint faeter.
The mechanical test may be divided as follows:
Specific gravity.
Weight $p^{\mathrm{r}} \mathrm{r}$ cubic foot.
Fineness.
Tensile strength.
Adhesive strength.
Compressive strength.

SPECIFIC GRAVITY.

The determination of the speeficic gravity of a sample of erment requires only a sumall mument of inex|ensive appuratus, and the result is obtained in a few minuless. The apparatus refuired comsisis of a ghiss flask to hold 100 cubie rentimertes when filled to at mark on the neek, and a burette with : ghass stipecuck, to lwid the sime quanity, graduated to $\mathbf{1 - 1 0}$ of a c.e. I'lue modus oppermenti will hwo be: choromogly dry a quan tity of cement. (4.4 oz . will answer), and from it weigh out

[^1]100 grammen. Fill the burcto with the tept quality of turpentine or coal oil to the 100 c.e. mark, then draw off into the flask, say, 60 e.c., after which, through a funnol, deposit the comient in the flosk, which fill from tho burette until the finid renchos the mark on the neek; read off by menns of the griduated sealn the quantity of fuid left in the burette, and dividing 100 by that quantity, the rosult is the specifio gravity. For example, the hurete shows that 67.5 e.c. were required to fill the flakk to the mark on its urek; then $100-67.5=32.5$ c.e., the quantity remaining in the burette, and $100 \div 32.5=3.077$, the speeffie gravity requirca. Of course this is only a mugh-and-remly way of determining speeifio gravity, but with care and pructico, resulta npproaching correctness can be obtained. An uppuratus known as Schuuuan's gives good results, but the proeess is somewhat tedious, and there is always a chance of breaking the joint belween the graduated stem and the dask, in which ease the test beeomes useless.

whioht per oubid foot.

As previouly stated, the weight of a certain measure of cement cannot bo taken as an index of the resulta to be obtained from its use, but the purpose of this sub-test is to deternine the averago weight for eulculating and eatimating cost, us will be referred to hereafter.

FINENESS.

In Germany a code of regulations exists under which oement must be manufactured, and for fineness of grindiag it is atipulated that the residue left in a sieve of 5806 inebes per squarre inch must not exoeed 20 per eent., and, us previensly stated, it is ground so fine that the residue dues not exceed 10 per cent. In England no standard exists, and as a consequelice the cement is coarser, the objeetion to fine grinding being the extraexpense, which competition will not warrant. If a finely ground cement is officrell, its fineness is dependent upon two things: (1) that it is a good article anall well ground ; or (2) that the article has been "over-elayed" and lightly burnt. A quotation is applieable berc*: "Lightily burntecment at 7 or even 28 days may appear to be superior to the heavy, which is with diffieulty gound as fine is the lightly burnt; but in the long turn, the heavy, if' not coarsely grouud, will surpass the lighter article; and if the heavily burnt were as finely ground as the light, it would be a great deal stronger from the beginaing, the time of setting being the same. Fine cement, as it takes more sand, gocs further than the coarse, and it is alsn much safer where it verges on the blowing point from an execss of lime. By whatever proeess finencss is secured, the effective quality of the ecment is iuproved, but the cearse, and generally the stronger, part should be re-ground and mixed with the finer. Heavy cubser ground fiue will, when tested, give higher results than lighter cerent of equal fineness obtained by sifting. The difference in strength of coarse and fine cements is not ascertained by testirg them neat, for of the two the coarser would generally appear to be the stronger, and it is only when miserl with sand that this can be secn."

For concrete, as for moortars, cement cannot be ground too fine, and as cement should be sold by weight, and not by the barrel (which last in the English market is an unecrtain quantity), it is by weight combined with fincness and testile strength when mixed with sand, that the relative cconomical value of different cements can bc obtained.

tensile strenath.

Anomalous as it may scem, Portland cement, except in rare cascs, or under very exeeptional circumstances, is not used neit, and yet heretofore all texts to ascertain its strength have been made with bloeks, specially prepared trom neat cement alone. Happily a change has taken place, and the German system now obtains of making the blocks (briquettes) out of a mixture of ceneat and (normal) sand, in the pro-

[^2]portion of one part of the forner to three parts of the latter, thus approximating the repuling inaws to the mortar actually uned on workn. Koglish mannfacturers and English engineers did oot at first take kindly to this radieal depurture from thy rild groove, but it has been aooepted, and, It may be said, with ailvantage to the user. When cement ia mired with sand its strungth is reduced, or, in other words, nent coment is atronger than any mixture that ean be undo with sand, and thersfore, to coniply with a standaril fixed an the tensile strength of a nixture of one of cenent and thrie of Nulud, the cement munt be of a high quality.

Formerly for texting the atrength of eement the briquette was, at lts smallent part, $1 \frac{1}{2}$ inches mpure, or $2 \frac{1}{2}$ spuare inehes in aron. Of late yeara the alupe of the bricuctte hus beel changerl, the nmallest part being 1 inch square, or 1 mplare inch in aren, thus fucilitating the manufuoture and tenting of a greater number of briquettes during a day, and tho use of sunaller and more easily uperated testing apparatus and apnliances.
In the preparation at' hrifuettrs, will are ngreed that whether of neat coment or of nn admixture of ecment and sand, only a certain percentage of watrer, suy 20 per cent. hy weight for neat ecment, and 10 per cent. for sand and eement-is required; and that the mixture ahould be pressed solidly into the moulds. Apparatus has been devised and used in tho Engineering Department of hice State University of Iowa, U. S.,* for making briquetten in which the pressure excred on the compound is placed at 150 lbs , and it is claimed that the briquetter made in it give more even resulta on being tested.
An excess if water weakens buth ecment mortar and conerete, und no more should bo used than is necessary to work upeither inte a plastio mass and muke it fit for use ; more than the proper quintity produces porousness, and retirds the process of setting amil hardening.

Relative to the naking of briquettes, the fillowing has been freely condensed from a paper by the late Jolin Grant, to be found in Proc. Inst. C. E., Vol. 62, p. 122.
Tq inake 10 briquettes of 1 inch square section for a "neat" test, 3.2 hhe, of ecment ure required; for a "sund test," 1 ib . of cement and 3 lbs of sand must he providerl. With newly ground and quick setting cements it is importnitt to ascertain it they are fil for immedinte use, in which ense two cakes of neat rement, 2 or 3 inches in diameter, and about $\frac{1}{2}$ inch thick, with thin culges, should be unde, and the time noted in minutes in which they set sufficirntly to resist the impression of the finger-nail. One of these cakex, whing hand enough, should be placed in wuter, and examined daily to sec if' it shows any tendeney to "fly" by eracksof the slightest kind beyinniny, and being widest at the edges. With slow setting cements, however, urioks on the surfuee, begimning at the oentre, are nicrely the result of the surfice drying too rapidly upon exposure to a draught or to exterval heat. The seeond cake should be kept in air and its colour and behnviour notid.

The sand to be used should be washed and lrime, and ouly that portion which will pass through a sicve of 20 and be enught on a sieve of $\mathbf{3 0}$ meshes to the lineal inch slould be used. For briquettes of 3 of sand und 1 of cement, 10 per cent. of the weight of the μ nited cemeut and sand will serve, but when al' neat cement, then, us previously stated, the water should be inercased to 20 or 25 per cent. , Sufficient water must, however, be used to make a sliff paste and nothing more, A number of pieces of wet blotting-paper, a little larger than the mould, may be laid on the slate, murble or glass bench, and a nould placed on ench. The moulds are then filled......the mortar being beaten till all the air has been driven out and has become clastic, the surplus being cut off and the surfiee left smontl. Dr. Michaëlis of Berlin reconmends what is known as the gypsinn-plate proecss, which, however, is not adapted for very quick-setting cements nor for briquettes made. with a mixture of sand. The cement is mixed with from 30 to 35 per cent.

[^3]wato r, and pourod ioto mouldn renting on sheots of wet bloting-paper Jald upon plates of plaster of Parin, the moulda being tapperl or shaken. About 50 per cent, of the water is quilokly absorbed, and if neconaary moro cement is added, and the surfuce haviog been amoothed with a trowel or knife, the briquettes nro dexterounly dropped out of the mould. Thin prosess is a very quick one, and Dr. Michnelis claims for it that it leaves only the amount of water which is required by the cement for setting properly, and that greater uniformity is attained than by any other process. The briquettes can thus be made denser, taking more comont, and breaking frequently under a strain about 50 per cent. higher, or cven more. Mr. Grant, howovor, quentioned this, as he liad not succeeded in getting more uniformity from briquottes prepared in the mannor deseribed than from those mate acoording to his own process.

When the moulda havo been filled, the briquetten are numbered, covored with damp clotha, and set anido till they have set suffioiontly to be romoved from the moulds; after whioh they remain, still oovered with the damp oloths, in the nir, for 24 houra from the time of making, and are then placed in water tanks, there to remain, the temperature of the room ranging from 60° to 70° Fahr., until required for teating.

The form of the test briquette approved by the Amerioan Society of Civii Eoginoere, and adopted in all standard cemont tests, is shown as follows:

For breaking this briquette there are many machines in existence, and each maker claims superiority for his machine over all others, but there is one uncertainty about them all that no two or more of them using the same nake of briquette give the same result-mll differ; and as there is not a standard to which reference can be made, it only remains for the purchnser to choose for himself and select what he considers to be the best machine.
The first testing maehine was made by Patrick Adic of London, England, and for many years it remained the only machine, but as time advonced it was considered that the briquette used with it, with its mininum area of $\mathbf{2 . 2 5}$ squarc-inches, was too large ; and as the results obtained had, for the sake of comparison, to be reduced to the standard of one square-inch, the shape was modified nnd the size reduced to give a minimum area of one square-inch, and this led to the introduetion of small, compact machines, in which the traveling weight and the long graduated bar of the Adie machine was replaced by compound levers, and the grudual incrense of struin obtained by means of the flow of water or fine shot into receptacles, or by the use of a worm wheel raising a heavily weighted lever, or by a screw acting in conjunction with a spring balance, etc.; and yet in all of these there was a cause for complaint, viz., the clamps in which the briquettes are placed and through whieh the strain is transmitted; for though theorctically the briquette is supposed to break in the middle, where its area is a minimum, in practice only a percentage do so, the cause
being traced to (1) the slape of the elamps where they grip the briquette, or (2) the atrain not being transmitted in a direct line. It is not purposed to diseross the merits of the testing machines in use, or what in the proper sort of clasps to employ, to do no would require an intimate acqumintance with each machine and the results olitained by it, reaults which could not be compurel with any degrec of satisfinetion with the resulte of other maelinea. For instanec, it is claimed by \mathbf{H}. Faija, Ass, M. Inst. C. Fi. (Vide Proe. Inst. U, E., vol. 7h, p. 216) that the strain on the briquette should be applied at an even and regular speed, and he suggests that the stamiarid speed shamid be 100 lbs. applied in 15 seconds, or a little shower, and certainly not slower than $\mathbf{1 0 0}$ lba. in 30 secouds, on acrownt of the length of time which a test would occupy, as if the saving of'a fow secouls of tian is of arore importanee than the deterimination of the correet tenaile atrongth of the eement under examination.

The following tablo has been extracted from Mr, Finija's paper, for the purpose of showing that the spect with which weight is applied is an important factor, med that it is possible to obtain reaules from the same sample of cement which aro totally at variance with eneh other and, it may be said, are not trustworthy.
"Suamary of Resulta of Experiments to determine the differonce oblelned by applying the weight to the briquette, when testiog for Teasile Strength at different speels:-

Numiter of Briquettos.	Sjuen	Averuge R(:91)IT.
129 124	$\begin{aligned} & \text { ibs. Necs. } \\ & 100 \\ & 100 \\ & 100 \\ & \hline 15 \end{aligned}$	$\begin{aligned} & 1 \mathrm{ba} . \\ & 560.75 \\ & 606.43 \end{aligned}$
115	100.10	452.20
146	100 " 30	130.96
10	100 " 30	417.27
10	100) " lit	40:\%.65\%
(1)	11910 "11	1118.75
111	$1110{ }^{11211}$	400.87

From the foregoing results it will be seen that the increase per cent. due to increased speed of applying the strain is as follows:-

Taking the lowest speed of 100 lbs . in 120 seconds as a starting poist, by applying the strain at the rate of -

	lbs, in 60			3.96	
"	" 30	"	"	7.488	"
"	، 15	"	"	12.416	"
"	1	"	"	23.142	"

It is plain to see from the above statement that it is possible to give a fietitious strength valuo to a cement, and at the sume time to justify the mode by which it was obtained, hence the speed with which weight should be npplied should be a fixed factor.
The question, what is the slandard tensile strength of Portland coment in Canada? remains unanswered, and eaoh ongineer, following the practice of his knelish brother and Ameriean cousin as well, is left free to tix, in his specifications, the minimum strength per square inch he requires. To show the wunt of uniformity on this point, the following statements are tuken from " Proe. Inst. C.E., vol. 62, p. 216." It was highly desirable that enginects' and architects' specificatiens should be more uniform.........The vagueness and the curious variety of divergence which characterised them (the specifications) were remarkable.........and it was difficult to imagine that this state of things could be allowed to continue much longer, displaying as it did a backwardncss on the part of those concerned, in comparison with German engineers, who had been so mueh later in entering the field, and who, from being disciples, now appeared as teachers and examples. The evidence of this was furnished by published rules, adopted by the Society of Architects of Berlin, the Society of Builders of Berlin, the German Socicty for the manufacture of bricks, carthenware, lime and oement, and the Society of German cement manufituturers.

In 21 speeifications examined there were 13 varieties of test for finenema, 10 varietien for weight per bushel, and 18 variotien for tensile breaking strain 7 days after gauging, the weightn varyiog from 200 to 444 lbn, por miunre ineh, or in all 37 variations in tests,"
In fixing n atanderd of weight per mquare inch an the minimum test atruia, there are several thing to be considered and determioed, vix:-

1. Whether the teat sliall be with nent cement ; or
2. With a mixture of sand andfeement ; if no
3. The proportions of mind to cement to be x to 1 ; and
4. 'Tho ecment to be fine enough to pass through n sieve of \boldsymbol{x} meshes per square inch, leavingin residue not oxeeeding x per eent by weight;
5. The sand to be of a stundard quality (whieh requires defining), or to be sueh an is generally uned;
6. The quantity of water to be used in mixing to be x per oent. of the weight of the cement, or of the mixture of sand and cement;
7. Test briquetten to be made of a standard form (to be defined) in a atated temperature ;
8. The briquetten to remuin one dny in air, eovered with a damp oloth, and 7, or 28, or x duys in water, kept nt x° Falır.;
9. In testing, to use -'s machine, and to stipulate:
10. That the strain shall be applied at the rate of $x \mathrm{lbs}$ in x soconds; aod
11. To fix the number of briquettes which must be broken to obtaio an average of the strain exerted.

So much for uniformity which is not obtained in Canada, for there will be as mnny variations in the resultes obtained ns there are varia. tions in the materinls employed, the manner ndoptell in making the briquettes, and in the testing machines used, for no two of the latter using the snme make of briquette will give the same results, and in fact very variable results are obtained from the same moohine. As an illustration of this, the following bas been taken from a pamphlet* on Portland Cement.
comparative tests of the same oement.

A. Southam.	H. Faija.	Gorlonde'Cu.	Eastwood (1)	Eastivood (2).	Oibbs.
$\begin{aligned} & \mathrm{lbs} . \\ & 290 \end{aligned}$	$\begin{aligned} & \text { 16e } \\ & : 38! \end{aligned}$	Ibs. 466	$\begin{array}{r} 16 s . \\ +: 372 \end{array}$	$\begin{array}{r} \text { l6m. } \\ +\quad 670 \end{array}$	$\begin{gathered} 168 . \\ 525 \end{gathered}$

- Hroken al the rate of 100 liss, in is mecomula.
t Mate up by the same gattiger.

CONPRESBIVE STRENGTII.

Neat eement is but rarely used where it is subjected to compression, snd eubes one inch square crush under weights whioh vary with the nature of the cement of which they are composed, their age, and the mode of applying the stress ; and roughly it may be taken as varying from 7 to 10 times the tensile strength of the sample tested.

The compressive strength of conerete will vary with the nature and proportions of the materials used in its manufacture. The following table is extraeted from " Proe. Inst. C.E., Vol. 32, p. 297, to show the difference in strengil due to the nuture of the materials used, as all the blocks were mude in the proportion of 6 to 1 , and were 12 inches square, one-half of the number made being kept for 12 months in the air, nud the remainder the same length of time in water, prior to testiog.

[^4]

ADHESIVE BTRENGTH.
It is olaimed by some writers* that the tosting of briquettes made of x parts of sand to 1 part of cement for tensile strength is really a test of the adhesive strength of the cement used, for sand not having any adbesive strength in itself; it follows that the (tensile) strength of the briquette must lie in the force with which the cement ndheres to and binds the grains of sand together, and converts loose and disconneoted materials into a solid and coherent mass.
In a paper published in the "Proc. Inst. C. E.," Vol. 71, p. 251, Mr. T. J. Manu states that the prineipal test adopted by hin is one of " adhesion," which has given him, after some yeurs of use, satisfactory results, and he explains the mode adopted and the apparatus used to obtain then; ; but his adviee apparently has not been adopted, engineers and others resting content with the results obtained from tensile tests.

In determining the stross of adhesion, mueh depends upon the fineness of the cement, for the finer it is ground the fewer the coarser partieles which are not any better than sand. To show this, a table has been copied from Mr. Mann's prper.
effect of coarse particles on the cementitious ADHRSIVE STRENGTH.
" Age of samples, twenty-eight days."

Percentage of coarse particles.	0 fineonly.	20	10	80	100 coarse only.
Average adhesive ntrength in lbs. per square inch.........	101	84	57	34	18

Percentage of coarse in the unsifted cement, 49. Cohesive strength of the sifted after 7 dnys, 430 lbs . per square ineh. Number of tests 20, plates, aawn limestone.
"T', Mann, " Proc. Inst. C. E.," Vol. 7I, p. 251.

It must be stated that Mr. Manu used a sieve of $\mathbf{1 7 6}$ meslias por linear inch, or 30,976 meshes per square inch, which is simply too fine for practical inse, however well it may answer for experimental tests.
No standard can be fixed for adbesive strength, as a variation must take place with the quality of the cement used and the proportion of sand employed ; and its determiation is only necessary in the case of walls or structures resistiug lateral pressure, and even then no fixed rule can be applied, for the strength of any joint against sliding mast, at the very least, be equal to tho adhesive strength of the mortar joint, plus the weight of the mass above the joint in the terms of the co-efficient of friction.

9. COMPONENTE.

By the term components is to be understood the materials used with cement in the manufacture of enocreto, and they generally consist of gravel, broken stone, brieks and sand, all of whieh shonld be clean and sound in texture. Gravel from the pit or from the sea-shoroshould be sereened through 音ineh sereens, to remove the sand and small pebbles, the residue consistiug of stones not more than two and a half inches in their greatest diameter. Where pit-gravel contains carthy matter, it must be washed as well us sereened, in which case the result. ing sand should not be used ualesy again washed. Gravel (shingle) from a sea-Leach is gencraily elean, cspecially when found dry, but it has happened that a poor quality of concrete has been made with it, where the pebbles have been eonted with a slimy deposit, due to the evaporation of the sea-water, which prevents the adhesion of the cement.
The best material for concrete is a compace stonc broken into cubes or pieees to pass through a two and a half inch ring, a material with which all are acquainted, and can be obtained in almost any locality.
Sand is a necessary component in eoncrete, and should never be omitted, but it must be shawp nad elenn and oitirely free from earthy particles, and coarse coough to pass throngl a twenty mesh, and be retained on a thirty wesh sieve. If dirty, it should be thoroughly washed before using, and if soft and fine it should be rejected.

3. mixing.

Where a solid and impervious mass of concrete is required, the components selected must be unixed in cerlain proportions. Specifieations generally read that the concrete required shall consist of so many parts of broken stone, or gravel, to onc part of cement, or so many parts of broken stone, or gravel, and so many parts of sand to one part of ${ }^{-}$ eement. In these the word "parts" is an indefinite term, and may mean a eubic foot, or a bushel,or a fixel weight per unit, or even a barrel or a whel-barrow load.
It is asserted that in proportioning the an.ount of ecment to stonc, at given weight rather than a given bulk should be used, bulk being affeeted by the weight and degree of finencer, as a cement of eighty lbs. per cubic foot will be larger in bulk than one of nincty lbs., but the system of using a cubu foot as the unit of measure is certainly the most convenient and gives equally as gool results.

Assuming a cement weighing 85 lbs, per eubie foot, and a mixture of broken stone and sand weighing 2835 liss. per cubic yard, or 27 cubie feet, then :-

Number of subic feet of		Will ber equal to	
Cement.	Stone.	liy buik.	By Weight.
:3.00	27.0	1 to 9	I to 11.12
3.37	6	1 tos	1 to 9.89
3.86	"	1107	1 to 8.64
4.50	6	1 to 6	1 to 7.41
5.40	"	1105	1106.15
6.75	*	1104	1 to 4.94

For solid concrete, there are two proportions in the materials used which should be determined :-
(1) The voids in the gravel or stone, and the quantity of sand to fill them ; and
(2) The voids in the sand, and the amount of cement to fill them.

Taking stone broken into picces whieh will pass through a two and a lialf ineh ring, and be stopped hy one 2 inches in diameter, the solids will average about 52 per cent., and the voide 48 per ceat.

The voids in dry sharp silicious sand will nverage about 40 per cent.; but where the sund is compressed in water, its volume can be rednced 122 per cent.

When dry sand and cement are mixed together, contraction takes place, and in one of sand and oue of eement it amounts to 16.66 per eent, of the original volume, in two to one the coutraction is 15 per ceat., and in three to ove 13.81 per cent. When mixed with water, further eontraction to the extent of 10 per ceut. takes plaee, and, according to Sandeman, "Prec. Iust. C. E.," Vol. 54, p. 251, the ratio of contraction of dry materials is 34.43 per cent.
Adoptivg this pereentage, to produce one eubic foot of set concrete would require 1.525 cubie feet of dry materials, and one cubic yard will require $27 \times 1.525=41.175$ cubic feet.

Assuming that an imperueable Portland cenent concrote is required, experience has shown that such can be made by using one part of eement, two and one balf parts of clean, sharp, silieious sand, and five and one-half parts of sound compaet stone, broken into eubes averaging from two to two and ove-half inches square. The quartities of each material required to make one cubio yard of concrete set in place cun be determined as follows:

A part will be equal to $27 \div 5.5=4.909$ eubie feet.

Cement $=4.909$	$\times 1$	$=4.91$ cubic feet		
Sand ="	$\times 2.5$	$=12.27$	"	"
Stone $=$ "	x 5.5	$=27.00$	"	"
	Total	44.18	"	"

The eontration or shrinkage will therefore be $=44.18-27.00$, or 17.18 cubic feet $=38.88$ per eent., and the results will be as 61.12 to 100 , or it will take 1.636 cubie yards of materials to make oue eubic yard of conerete set in place.
The composition of this ansumed "cubic yard of eonerete" ia as follows:-

or, it is composed of $10.72+26.80=37.52$ per cent. of mortar and 62.48 per cent. of stode.

That the amount of materials provided for mortar is suffieient to fill the voids in the stone is determibed thas:-

Voids in the atone $=27 \times 0.48$

$$
\begin{array}{ll}
\text { e. ft. } & \text { o. ft. } \\
= & \text { c. ft. } \\
=12.96
\end{array}
$$

4.91 of cement and 12.27 of sand

Shrinkage on admixture dry $17.18 \times 0.85=14.60$
Further shriakage or admixture wct $14.60 \times 0.90=13.14$
Excesa of mortar $\quad=0.18$

Or the excess of mortar may bo determined in another manner:-

> o. ft.
o.ft.

Total quantity of cement-dry measure $=4.91$
Reduction by wetting $=15$ per oent. $=0.74$
Net quantity.
Total quantity of sand-dry measure $=12.27$
Rednetion for voids $=25$ per cent. $=3.07$
Redinim tor voids $=25$ per cent. $=3.07$
Net quantity
Total net quantity of mortar $\quad=13.37$
Voids iv stone $=27.00 \times 48$ per cent.
Excess of mortar

$$
=12.96
$$

$=0.41$
Assuming that 5,000 eubic yards of sonerete of the foregoing proportions are required, then the quantitics of the components to be proeured will be as follows-a barrel being taken to contain 370 lbs. of eement :

$$
\begin{aligned}
& \text { lls. lbs. } \\
& \text { Cement. } \quad 417.35 \times 5000=2,086,750 \\
& \text { Add for maste, ete., } 2 \frac{1}{2} \text { per cent. }=52,150 \\
& \text { Thtal }=\mathbf{2 , 1 3 8 , 9 0 0}=\mathbf{5 , 7 8 0} \mathrm{bbls} . \\
& \text { e. ft. o. ft. } \\
& \text { Sand. } \\
& 12.27 \times 5000=61,350 \\
& \text { Ald for waste, ete., } 5 \text { per cent. }=\quad 3,067 \\
& \text { Stone. } \quad \begin{aligned}
& \\
& \text { 'Total }=64,417
\end{aligned}=3,068 \text { c.y. } \\
& \text { Add for waste, ete., } 5 \text { ner cent. }=6,750 \\
& \text { 'Jotal }=141,750=5,250 \text { c. } .
\end{aligned}
$$

Given good materials and poor mixing, the result will be porr conerete, and therefore too much eare cannot be taken with this operation, whether it be done by hand or machine. Poor results are due to: (1) improperly ganging the materials; or (2) to an exeess of water ; or (3) an insuffieiency of labonr in mixing the materials, either dry or wet, or beth ; or (4) the want of a proper mixing platform.
For the mannfieture of ennerete hy hand, u platform is alsolutely nceessary, for eencrete shomid never be mixed on the ground. If 3 inch deals are nsed, then a width of 15 feet will be suffieient, the length being dependent upon the number of times the components are turned over dry and wet; for, with some, to have them turued over twiee dry and twiee wet is held to be sufficient, whilst others maintain that they shonld be turned over thrice dry and thrice wet.

Each component should be aceurately and uniformly measured, and boxes holding the spreeified amounts of econent, sand and stone should be provided. Assinming a conerete of the proportions hereinbefore stated, and that it is to be mixed in" batelies" of one-half of a eubie yard each, then it will be neecssary to provide . (1) a bottonless box, 2 ft. 10 ins. square at the top, 3 ft . 2ins. square at the bottom, and 1 ft . bins. deep, a beard on two sides prejecting, say, 15 or 18 inches, and trimmed as handles ; (2) a bex with a bottom to eontain 3 cubic feet; and (3) anether bex to contain $1+\frac{4}{}$ eubic feet.

For use, the first, or stme-box, is placed at the end and toone side of the platform. and is filled to onc-herlf its depth with broken stone; on this is pheed and spread one box, or 3 enbic feet of sand, and one box or $1 \frac{1}{4}$ eubic feet of cement, after whieh the stone box is filled flash with its top with stone, and a seennd deposit of sand and cement is made, when the stone-box is raised by its liandles elear of its contents and plaeed on the opposite side of the platform in readiness for the next "bateh."

As soon as the stone-box is lifted, two men attack the heap and turn it over down the platform, when it is again attacked by a second pair of men, whe puss it further down. At this point, supposiog that a mixing twice dry and twice wet is nll that is required, a third pair of men uttack the " batel," but here water is applicd through " " rose" from a watering-can, and at suoh a speed as to eosure tho delivery of not less than 11 imperial gallens, or, say, $1: 3$ cubic feet of water. The "bateh" is turned a fomrth time ly another pair of men, by which time it has reached the lower end of tho platform, ready to be taken nway to the place of depevit. Then the stone-box having been placed on the opposito side of the platform, the filling with eemponents is proceoded with, and as soon as the first puir of men have turned the "first batch" dry, they at onee step over in readiness to operate on the secomd, and so on with each batch in suceession; and with this mote of proce. dure there cannot be any delay, and the cencrete will be evenly and thoroughly made. For a mixing gang-assmuing that the materials have been placed in proximity to the phatform-one sub-foremme, threo men filling stone-box, two mentilling sand-hox, one man filling cement box, one water-boy, and cight men for turning the "batel," or a total of one suh-foreman, folltell men, and one boy, are required.

To facilitate operations where the anomit of conerete to be mixed is large, the sand-box, which will weigh when tilled at lenst 250 lbs ., might be houg in a frame on gudgeons, at such a height as to permit its contents being tipped into the stonebox. Hor the water; a small tank holding $1 \frac{3}{4}$ cubie ft. might be placed opposite the point.on the platform where the third tuming, or the first time wet, is done, the water being conveyed though a hose tipped with a rose-head and stopcoek, whiel will ensure the distribution ot the proper quantity of water.

There are many kinds of " wixing wachmes" the inventors of which claim that their partienlar make is the best; and the manner of manipulation differs with cach machine. For dealing with the manufacture of large quantitien of concrete in ene spot, as in the making of huge bloeks or moneliths, then a machine cam be profitably used, but hand-mixing is preferable where it is desirable to make the conerete as near as possible to the place where it is to be deposited, and frequent removals of the conerete gang liave to be made.

4. berpostr.

The depositing of concrete in the place it is to occupy is a subject so large as to demand a lengtly paper for its consideration, as it ineludes, (1) the place, (2) whether the pace is dry or wet, (3) whether in still water or subject to tidal influences, (4) whether in blocks up to \boldsymbol{x} tons in weight, which have to he movel into place by ordinary taekle, or powerful appliances or special plaut, (5) whether in a wet or plastic state in bags containieg up to e tons, dropped into place in water of varying depths in various localities by speeial plant, (7) or lowered in small sacks to be placed by divers, or (8) ximply dropped from a barrow or flat-skip; the exigencias of ach case determining the mode of deposit. The limits of this paper will not ahbit oi iny firther allusion to the mode of deposit, but there is one rule which shomhlalways be ohserved, viz. :-that conerete should merr be dropped into phace from a height, for the simple rason that the havier parts will separate and fall the soonest, and the re-ulting mass will be formed of alternate layers of coarse and fine materials, and will not be homegencens and inpermeable.

A difference of opinion exists as to the thickuess to which eenerete shond be deposited te cosure sund work, some holding to a maximum thickness of only 3 inches, and others to that of 18 inches. The first appears to he too thin, and the second may be taken as the maximum depth; and if an average of 12 inches be adopted, very yeod results will be obtained. Some there are who maintain that to obtain impermeable conerete, it should be punned ; against this dichum it is asserted, that by punning the coarser parts are settled to the botton, and the
mass loses its homogeneity, and all that is nceessary is to work it with the edge of a shoval if a nceossity for doing so exists, for when setting eommences it is not desirablo to disturb the materials.
Where concrete has stood for some time and has set, before work is resumed the surface should be eleaned off,-if under water by means of a water jet, aud if in the air by being wetted with water and thoroughly brushed, and covered with a thin layer of grout, or sprinkled with dry cement.
In preparing this paper, tho object in view was to treat the subject from a praetical standpoint, and to be as concise as possible, and it is offeres with the hope that the information, or at least some of the information which it contaius, may be of value, and have a beneficial effeet.

[^0]: - Proc. Inst. C. E., vol. 105, p. 221 et seq.
 \dagger Vide General Scott's paper in Proc. Inst. C. E., vol. 62, p. 70 et seq

[^1]: - John Newnan, "Notes on Concretr and Works in Cement." Gen eral Scott, "Proc. Inst. C. E.," vol. 62, p. 202.

 | M. Meyer, | " | " | "p. 224. |
 | :--- | :--- | :--- | :--- |
 | Dr. Michaelis, | " | " | "p. 233. |

 J. A. Spoor, " Eingincering," Ith Angnst, 1885, p. 145.
 \dagger J. A. Spoor, "Engineering," 14th Angnat, 1885, p. 145.
 4

[^2]: "Grant, " Proc. Inst. C.E.," Vol. 62.

[^3]: *Pop. Science Monthly, March, 1891.

[^4]: - "Some Information on Portland Cement," Huward Flensing, N.Y.

