THE JOURNAL

OF THE

FOR UPPER CANADA.
JUNE, 1861.
THE PETROLEUM, OR ROCK OIL OF CANADA.
No. III.
In the February and March numbers of this Journal attention was drawn to the new branch of industry growing into activity in the township of Enniskillen and elsewhere in the western part of Upper Canada. During the last month, the writer of this descriptive notice has had an opportunity of visiting the Springs and works in operation at Petrolia, and of accumulating a variety of information on the subject, which may be found useful to those who are desirous of engaging in the oil enterprise, or who are interested in its progress and development. Although the results of the enquiries which have been made do not tend to change in any material point the opinions already expressed in this Journal, as far as regards the oil wells of Enniskillen, yet it may be found that the facts which have been recently brought to light will extend the area over which Petroleum may be sought for with valuable results, and give a proper direction to further efforts in search of this useful product, where it may be supposed to exist in remunerative quantities.

History of the Springs-Geology of the Oil Region.
The existence of bituminous springs in Canada has been long made known to the public by the labors of the Geological Commission. In the year 1851, Mr. Murray included in his report for that year a brief notice of the mineral caoutchouc of the Western Peninsula, and pointed out the existence of the bituminous springs and beds of bitumen in the township of Enniskillen. The report for the year 1851-52, which contains this notice, being in the hands of private individuals or locked up in the appendices to sessional papers, it is not likely that its contents are widely known, we therefore introduce the follnwing extract, which will suffice to show that the bituminous springs of Enniskillen were well known and briefly described in published documents ten years ago. It is necessary to remind the reader who may be familiar with the geology of Canada, that, during an exploration made in 1855 by Mr. Murray, the supposed black shales at Kettle Point, L. H., were ascertained by him and Mr. Hall to belong to the superior formation, known by the name of the Portage and Chemung group. An
extract from Mr. Murray's report for 1855 will exhibit the area which these rocks are supposed to occupy.
"The black shales of the Hamilton group, in the Western Peninsula, are in gederal probably more bituminous than those of the Utica slate. Several places in their distribution are characterised by bituminous springs, and a visit was made in the early part of the season to a bed of nearly pure bitumen, of which the existence has been noticed in previous: Reports, including that of last year, in which therange of the Hamilton group in the Western Penin-. sula is given. This bed of bitumen, which in someparts has the consistency of mineral caoutchouc, occurs on the sixteenth lot of the second concession. of Enniskillen in the county of Kent, but its extent: does not appear to be so great as we were at first led. to understand. It does not seem to exceed half an. acre, extending five chains in a north-east direction, with a breadth of rather less than half a chain. By different trial holes which have been sunk through: the deposit, it would appear to have a thickness of two feet over about twenty feet square, towards the -south-west end, from which it gradually thins to wards. the edge in all directions, varying in some parts along: a low ridge which it forms, from a foot to four inches. The bitumen is underlaid by a very white clay, which I was informed had been bored through in. one part for thirty feet. The upper portion of theclay was observed to be more or less penetrated with petroleum, and small black globules of the same were seen senttered through the mass for a depth of four or five feet. Bituminous oil was observed to rise to the surface of the water on the Black Creek, a branch of Bear Creek, in two places on the seven-. teenth lot of the third concession of Enniskillen, and I was informed that it had been observed at other parts further down the stream, but to what amount the material might be daily collected at any of the places, I am quite unable to say; a freshet prevailed in the river at the time of my visit, the current of which swept away the oil as fast as it rose."
The following extract from Mr. Murray's report for 1855 contains a short description of the geology of the Western District, which will be found very useful in an attempt to trace the origin and extent of the oil springs of the Western Peninsula.

[^0]the following section was measured in ascending order :-
feet.

1. A slope or talus over the strenm..................... 25
2. Grey calcareous shales with spirifer mucronatus and numerous fossils.

4
3. Bed of compact encrinal limestone

2
4. Soft shales, thinly laminated next the limestone, filled with fossils, among which Cystiphyllum cylindricum (Halls Rep. 4th Dist. N. Y.) is very abundant; the upper part decomposes into a clay, and fossils are found in the decomposed edges
5. Decomposed slale or clay, not well exposed....... 80
6. Grey encrinal limestone, weathering into small lenticular fragments, and holding bivalve shells, corals and encrinites..
"At Jones' mill, on the third lot, south boundary of Bosanquet, on the bank of a small tributary of the Sable, another section is exposed, which in ascending order, is as follows:-

1. Brownish grey-wenthering shales, holding spiriftr mucronatus in great abundance, and a few other bivalves and corals
2. Eacrinal limestone. 2
3. Decomposing shale, with Cystiphyllum. 3
"At Austin's mill, on the fourth lot of the first Irange of Bosanquet, on another small creek, there : is a corresponding section, where the encrinal lime--stone which forms the uppermost layers of the - exposed strata, is about five feet thick. Below the - encrianl limestone, the shales are characterized as at the other places by a profusion of spirifer mucronatus; and in the bed of the creek at a level probably. about fifty or sixty feet lower than the upper limestove bed, there is a band of hard and compact arenaceous limestone, about seven inches thick, underlaid by black shales holding Atripa, Leptcena, and Chonetos.
"The overlying bituminous shales of the Portnge -and Chemung groupwere found at two localities not -observed previously; one in the bed of a stream supposed to be the north branch of Bear Creek, near 'Kingston's Mills, on the seventh lot of the third rance of Warwick; and the other at Branon's mills, on the twentieth lot of the seventh range of Brooke, :in the bed of the east branch of Bear Creek. In , each of these instances the shales are characterized loy spherical concretionary calcareous nodules and masses, as at Kettle Point: but with the exception of some rather obscure scales of fish, which were found at the exposure in Warwick, no fossils were discovered at either place. The debris of the Hamilton shales with spirifer mucronatus, Atrypa and corals, were found abundantly among the drift; and large masses of the encrinal limestone lay at the 'bottom of the creeks, and in the surrounding country.
"In my Report of 1848-49, the clays of the town -ship of Plympton, on the shore of Lake Huron, are desoribed under the head of Drift, and the fossils in the limestone pebbles are represented as those peculiar to the Corniferous formation; a comparison of the Plympton fossils with the collection of the present year however tenids to show that the clays and organic remains in the limestone are derived from the ruins of the decomposing shale of the Hamilton group, -while the pebbles of quartz, granite, and altered
rocks, are portions of the lake drift. It appears highly probable that a large portion of the clay country in the neighbourhood of Chatham, and at the mouth of the Thames, takes its argillaceous charneter from the same source, and that the limestone formerly mentioned, but not yet examined, which occurs in Harwich, belongs to one of the beds of encrinal limestone of the Hamilton formation.
"The result of the evidence thus obtained leads to the conclusion that the trough or belt of the Hamilton formation, running across the peninsula, is considably broader than previously represented, and that it contains near its centre, one and probably two outlying patches of the superior formation; because if. it be admitted (which is most probably the case) that the asphaltic deposits and the petroleum springs of Bear Creek in Enniskillen on the one hand, and the petroleum springs of the Thames in Mosa on the cther, take their origin from the bituminous shales of the Portage and Chemung group, the lower formation protrudes through, and probably divides the shales at Smith's mills, on the Sydenham River, in the township of Euphemia, as described in my Report of $1850-51$, where the prevailing fossil is spirifer mucronatus, which at the time I wrote that Report, I supposed to be identical with a very similar species, peculiar to the Corniferous limestone.
"The absence of exposures of the older strata, in consequence of the great thickness of the drift deposits through the western region, renders it very dificult to give a perfectly accurate outline of the various boundaries of the formations; judging however from the facts above stated, together, with others previously mentioned in other Reports, it is probable that the eastern outcrop of the Hamilton formation commences on Lake Huron, near the town line, between Stephen and Huy, and then runs southerly, parallel to the Sable River, through McGillivray, Williams, Adelaide and Caradoc; thence bending easterly, it crosses the Thames near Munsey Town, and afterwards holds an easterly course towards Long Point, parallel with Lake Erie. The western outcrop may be supposed also, from data given in former Reports respecting the distribution of the Corniferous limestone, to run across from Lake St. Clair, somewhere near the mouth of the Thames, through East Tilbury and Raleigh, towards the Rondeau on Lake Erie.

An inspection of the geological map of Western Canada, by Sir W.E. Logan, accompanying a paper on the Physical Structure of the Western District of Upper Canada, published in the Canadian Journal, August, 1854, 1st Series, will show that the trough or depression mentioned by Mr. Murray, occupies that part of the peninsula which is intersected by the Thames, Black Creek and Bear Creek, the transverse axis of which probably passes through the townships of Chatham, Camden, Dawn and Zone, with a north westerly and south easterly extension towards Lakes Huron and Erie. It is in the rocks occupying that depression, consisting of the black bituminous Hamilton shales, overlaid in patches by the Portage and Chemung group, that the oil appears to have accumulated in fissures or crevices.

The whole of the western peninsula portion of the province has been subjected to a very considerable
bat gentle upheaval and subsequent denudation. The rocks may be fissured to a much greater extent than appears any where in those exposures which bave been recognized and described. The general aspect of the rock, as far as observed, does not lead to the conclusion that these fissures are very extensive or numerous. Too little is known respecting the direction they preserve to warrant any genera rules being given for boring, in the hope of penetrating a fissure. When the country is properly mapped, the productive and non-productive wells accurately laid down, it is not improbable that the general direction of the fissures may be ascertained, and then boring will be prosecuted in conformity with these valuable guides, which are much more likely to produce favorable results than the blind attempts which are often made with no other foundation for success than a hope that oil may be struck. The following extract is from Sir William Logan's paper, before referred to, which should be studied in connection with the more recent examination of the country by Mr. Murray, the results of which are given in preceding paragraphs, and tend to show that the trough occupied by the rccks of the Ham. ilton and Portage groups covers a much wider area than was supposed when the first preliminary exam ination of the country was made many years ago.
"Tiuking these rocks in their general groupings it will be perceived by the map that the Lower Silu rinn series, by a change in the strike from west to north-west, sweeps round from Lake Ontario to Georginn Bay, and proceeds thooce by the north side of the Manitoulin Islands, and the north shore of Lake Huron, to the northern peninsula of Michigan, gradually curving to Green Bay, in Lake Michigan. The Upper Silurian follows them. The Niagara Limestone at the base aids in forming the neck of lund separating and holding up Lake Erie from Lake Ontario, and continues in a ridge along the Blue Mountains, and the promontory terminating at Cabot's Head and Cape Hurd, of which promontory the chain of the Manitoulin Islands is only an interrupied prolongation. The Gypsiferous rocks succeed conformably, running from Grand Island, by the Welland and Grand Rivers, to the River Sauguine, while the superimposed Corniferous Limestone, from Lake Erie on the one side and Lake Inaron on the other, is projected formard into the Western District as far as the Township of Zone. The same formation, with a projected form in an opposite direction, comes up from Ohio by the upper end of Lake Erie, and is carried north-easterly as far as the eastward side of Cbatham. Between Zone and Chatham, the Hamilton group, composed of black bituminous shales, constitutes a narrow band, which runs north-westward towards Lakes Huron and St. Clair, and south-eastward to Lake Erio, gradually widening in both directions in the surface it occupies, and finally merging into two rings, or irregular circular belts, one of which is rudely concentric with the coal measures of Michigan, and the other with those of the Appalachian field-of which last, however, the map shows but a small portion. Within these two ringe, thus united by the band
across the Western District, and between them and the Carboniferous centres, the Chemung and Portage groups occupy their place, in two broad and entirely separate zones, one of them showing itself north-west of Lake St. Clair, and the other southeast of Lake Erie.
"'To any one accustomed to consider the forms derived from the intersection of surfaces, who will carry in his mind that the various formations which have been given are nothing more than a set of thick, close fitting, conformable sheets, which are intersected by the geocral surface of the country, it will be at once apparent that the ascertained geographical distribution of the formations results from the fact that between the Michigan and Appalachian coal-fields there is a flat anticlinal arch, the axis of which-runs, with a gentle curve, from the upper extremity of Lake Ontario by London, Zone, and Malden, to the Mrume River, at the upper end of Lake Erie, and that between Chatham and Zone there is in it a slight transverse depression."

Supposed Antiquity or the Wells.

The explorations which have been made at the new village of Petrolia, on the 13 th lot of the 10 th concession, and the 13 th of the 11th concession of Enniskillen, lead to the supposition that the natural oil spring which now bears the name of Bligh's Well, or the Indian Well, was known to the Aborigines long before Europena settlers came to the country, and the oil or petroleum issuing from it was used by them for medicinal purposes. It is stated by Indians who hunted in that part of the country fully 50 years ago, that not ouly do they remember employing the oil as a great medicine in the vapour bath, so much used by the Aborigines, but from traditional accounts they believe it was so used by their ancestors from very remote periods. In a recent excaration at the Indina Well, which is situated in the flats or valley of Bear Creek, the workmen passed through six feet of alluvial clay, they then came to what had onco been apparently a circular excaration five feet in diameter, uniformly round, and full of gravel, deer's horns, fragments of oak bark and wood, the whole glued or cemented together by petroleum. At the depth of thirty-five feet from the surface, the circular form of the supposed former excavation changed to that of an oblong, about four feet by two, with a slight bend at one end, the oil or petroleum then broke in upon the workmen and arrested further progress. The sides of the well, as it may be termed, were burned or calcined and traversed by cracks, as if it had once been subjected to great heat, such as might be supposed to arise from. the long continued combustion of the oil: and light carburretted hydrogen, which issues in abundance from this and other natural oil wells. It is also stated that fragments of Indian pottery were found in the Indian well, but this statement has not been traced to authority upon which perfect reliance can be placed.

The occurrence of fires in the highly bituminous rooks of the Western Peninsula is a well known fact, and one observation rests upon the excellent authority of Mr. Murray, who witnessed this phenomenon at Kettle Point, in 1848. The whole beach, where the bituminous shales occur, is described to have presented the appearance of having been overrun by fire, which the Indians assert had continued to burn for several consecutive jears. On digging a foot deep or more into the shingle at Kettle Point, Mr. Murray observed a faint and almost colourless vapour arise immediately from the opening, which, gradually increasing in volume and density, became in the space of two or three minutes a distinct smoke, emitting an odor very similar to that produced by the combustion of a sulphurous coal, and evolving at the same time a considerable heat.* The shingle of the beach is of a bright red colour wherever the fire has extended, the bituminous matter baving entirely disappeared.

Natural Oil Springs in the Western Peninsula,

Petroleum or Rock Oil has been observed to issue from the surface of the soil in the following localities, and it is consequently in the neighbourhood of these natural springs that the most extensive operations are in progress to obtain the coveted product.

1. Donnellson's Spring, 3 rd con. Enniskillen.
2. Pike's Spring,
3. The Fountain Spring, 2nd " "
4. The Bligh or Indian Spring, 10th " "
5. Cooke's Spring, "11th " "
6. The Three Holes on lot 20, 13th " "
7. The Mosa Springs, on the 28th and 29th lot of the list concession of Mosa.
8. The Burne Springs, at Tilsonburg, near Ingersoll.
It is highly important to notice, as bearing upon the origin of these natural springs, that while the source of the first seven mentioned in the above list is apparently the bituminous shales of the Portage and Chemung group, the rock from which the Tilsonburg Spring in the township of Dereham arises, is unquestionably of the age of the Corniferous limestone. The importance of this fact will become more apparent when we consider the geological formation of the country between lakes Huron and Erie, and the large area of country occupied by the Corniferous Limestone.

At the Three Holes on 13th con. of Enniskillen, three natural depressions are visible, one of them, the largest, being about 100 feet long, 6 feet wide, and about 8 feet deep. Light carburretted hydrogen is continually bubbling through the water which occupies them in the spring of the year.

[^1]The Tilsonburg Spring, coming from Corniferous limestone roek, is of special interest. When first observed, water and oil were seen issuing from the same orifice, and, on sinking about 13 feet through a black miry clay, the workmen came to a large horn about seven feet long and twelve inches in circumference. Making every allowance for exaggeration, it is not unlikely that this horn may be of considerable scientific interest; and if reliance is to be placed upon the brief description given above, it will be at once seen that it characterizes the horn of an extinct animal whose remains have been found elsewhere in the drift of Canada. After a further excavation of eight feet, or twenty-one feet in all, the men came to a deer's head and horns, almost in a state of petrifaction, with the tines partially worn away. These, like the horn before desoribed, were thrown into the stream close at hand to be washed, but were soon forgotten. Steps have been taken to procure these interesting remains if still in existence and accessible, when they will be subjected to a proper examination, and the epecies of animal to which they probably belonged determined. When first commencing the excavation, the workmen at Tilsonburg observed two small holes at the surface, which increased in size as they penetrated deeper into the earth, and when 26 feet below the surface they bad the form of an L, and were packed in the centre with fragments of vegetable matter cemented together with inspissated bitumen, water and oil issuing continually through the unobstructed part of the tubes. The well yielded, when the workmen first struck the oil, on the 11th May of the present year, about 60 gallons in the course of the day.

The Oil Wells in Enniskillen,

During the six months which have elapsed since public attention was first called to the oil springs of Enniskillen, about 86 wells have been sunk. Arrangements were in progress, chiefly by Americans, for sinking four or five times that number at the commencement of the present jear, but the sudden stagnation of every kind of enterprise, produced by the American revolution, has led to the abandonment for the present of many contemplated sinkings and boringe, so that the present condition of the oil industry in Enniskillen cannot be taken as any guide to the probable degree of importance which that industry would have attained, even at the present time, if the disastrous influence of civil war had not suddenly arrested the progress of numerous contemplated works. The number of wells known to be yielding oil to an extent varying from two to twelve barrels a day does not exceed eleven. From the most reliable sources, it appears to be certain that not more than 13 per cent. of the wells are yielding any return of oil to their proprietors, and out of this
small per centage not more than four or five yield twelve barrels a day, of 42 rallons to the barrel.
All the prolific wells have been sunk in the valley of Bear or Black Creek, but attempts are now being made to obtain oil from wells sunk in the upland, which is about 50 feet above the surfice of the valley of Bear Creets in the neighbourhood of Petrolia, on the 13th lot of the 10th and 1lth concessions. The wells on the upland would have to be excavated in some places to the depth of at least 90 fect, befure the rock is reached, that being the apparent average thickness of the drift near Petrolia, according to the following measurement.
Mean depth of Valley of Bear Creek be-
low the Upland............................. $50 \mathrm{ft} 0 in.$. The Collner Well-

The London Free Press states that,
"At 12 o'clock on Friday last, the new well of Mr. L. L. Collner, on the Bligh farm, lot 13, 10 th concession, Enniskillen, when at the depth of 53 feet, suddenly broke in, with a tremendous rush of oil, filling the well to the depth of 45 feet with pure surface oil, now selling at Wyoming station for 15 and 20 cents per gallon."
The event must have occurred a few hours after the writer had visited the Collner Well. At eleven on Friday, 10 th , 'signs of oil' were beginuing to be perceived, and it was then expected that oil would be 'strucls' in the course of the day.
The depth of the drift is not generally 90 feet on the upland. A boring was comnenced on the 10th May in the 8th Concession, and a depth of 44 feet attained before nightfall. The auger having passed through clay with a trifling admixture of pebbles, but not sufficient to retard the operation. On the following day a depth of 66 feet 6 inches was reached, and the surface of the rock touched. Five feet six inches of the drift above the rock consisted of a "black gravel," most probably derived from the ruius of the subjacent bituminous shales. No signs of oil appeared when the borer touched the rock. It is in contemplation to penetrate the rock to a considerable depth, the rosult being anxiously looked for by many enterprising " oil-men."

Close to the Collner Well are two wells yielding large quantities of oil, which, together with the water, is pumped out by steam power. The oil and water are received into large square wooden tanks, provided with a partition, so that as the liquid rises in one compartment to the level of the partition, the lighter oil flows over and is received free from water
in the second compartment. At the wells in question, the steam engine is placed between them and about 50 yards from each, the pumping gear being connected with the engine by means of shafting on timber supports.
A well may be sunk within a few yards of another yielding a continuous flow of oil without showing any sign of the presence of that fluid. From this fact it appears tolerably certain that the oil is contained in fissures and cavities in the subjacent rock, which may be sufficiently extensive in their ramif. cations as to produce an abundant supply for a long period of time, or they may on the other haod be rapidly exhausted. Instances have already occurred of wells giving a fair yield of oil for some weeks and then becoming dry. It is not improbable that where wells derive their supply from the same fissure or spring, that a greater drain upon one will exhnust its neighbour. This has occurred in the United States, and it has become no uncommon artifice for an enterprising 'oil man' to put up a steam engine. of double or treble the power of those used by his neighbors, and, by sinking his well a few feet lower, draw from the wells around hin the supply of oil which they formerly yielded. The presence of water in large quantities in the well operates as a serious drawback to their productiveness, but at the same time it affords a collateral proof that the oil is contained in fissures traversing the rocks at different levels. Experience shows that eight feet of water in one of the most prolific wells diminishes the yield to the extent of at least 30 per cent. This may probably be explained upon the supposition that the source of the oil is an irregular undulating fissure, occupying throughout its course different levels. An accumulation of water in a well ra:ses by hydraulic pressure the water and oil in the fissure from which it derives its supply; the oil being the lighter body floats on the surface, and cannot pass to the well in quantity until the water has been drawn off and permits a passage through the undulating crack. For the same reason it is evident that the chance of striking a vein of oil is altogether uncertain; hence there is reason to suppose that profitable results may be obtained by boring in the upland, as well as in the bed of the river, although the latter appears at present to afford the best prospect of success, as it is not improbable that the course of the streams have been determined in some localities by depressions in the rock not wholly sbliterated by the drift which covers the country, and in such depressions the oil has probably accumulated during the lapse of ages.
The artifices emploged to prevent an inconvenient quantity of water from mingling with the oil in the well is both simple and ingenious. It is applicable, however, in those cases only where the oil is found
to enter the well through a fissure. A hole is drilled about two feet below the vein, the bottom of the pump is plugged, and feed holes are bored in the side of the tube, two feet from the extremity. Below and above the feed holes, two leather bags containing linseed or peas are fastened to the tube, the extremity of which is then inserted into the drill at the bottom of the well, and the feed holes turned opposite to the vein. The bags with peas or linseed are adjusted round the tube, above and below the vein, and packed or puddled as tightly as possible. Water slowly permeates the leathern bug. swells the pens or linseed, and so fills the drill that neither water or mud from above or from below can enter the feed holes of the pump in sufficient quantity to interfere with the operation of pumping out the oil. A second pump is introduced for the purpose of drawing off the water above the rein, if it accumulates in quantity sufficient to arrest the flow of the oil in the manner explained in preceding paragraphs.

Properties of the Oil-Its Coat.

No one who has once been in the neighborhood of a barrel of the Enaiskillen oil will be disposed to renew his acquaintance with its odour without some special inducement. In cold weather the smell is not oppressive, nor in fact particularly disagreeable, but when the sun shines for a few hours upon an assemblage of barrels full of this odoriferous fluid, the stench must be intolerable to unaccustomed nostrils not rendered insensible by the spirit of enterprise or the desire of gain. Three hundred barrels of Enniskillen oil were exposed on an open platform at the Wyoming Station in the second week of May, and if no protection is afforded during the hot summer months, the odour will probably be any thing but agreeable.

A barrel of the oil containing 42 gallons, weighs 365 lbs . the weight of the barrel varies from 60 to 85 lbs. , according to the extent to which the wood has absorbed oil. The weight of a gallon of crude oil is about $7 \frac{1}{\mathrm{f}}$. lbs. ; but as the character of oil from different wells varies, its specific gravity cannot be exactly stated. A gallon of water weighs 10 lbs ; if therefore the weight of the same measure of oil be assumed as above, its specific gravity will be about 73 , water being 100 . The purified oil is now extensively used as a medicinal agent, even by educated and experienced practitioners. Among the oil men at Enniskillen it is considered a grand specific. The occupations connected with the collecting and handling of this substance are stated to be singularly bealthy, and many are willing to bear testimony that they have enjoyed better health during their labours at' the oil wells than at any previous period of their lives. The process of refining the oil for nennomical purpnses is yet in its infancy. Distilla-
tion at low temperatures appears to be absolutely necessary in order to secure the largest proportion of available illuminating fluid. Oil of vitriol, soda, and bi-chromate of potassa, for the purposes of getting rid of carbonaceous impurities and of volatile hydrocarbons, which cause the disagreeable odour, are largely employed in refinaries; but there is no doubt that distillation at a fixed low temperature would permit expensive chemical operations to be dispensed with to a large extent.
The following statement of the original cost, cost of transporting and refining the crude oil, to one of our most successful Canadian establishments, is stated to be as follows:
Cost of oil at Wyoming Station, per gallon, 0.14 cts. Cost of transport to Ilamilton 0.04 "
Wear of casks...................................... 0.03 "
Refining... 0.07 "
Interest on capital, contingencies, \&e, \&c. 0.05 "

On another page of this number of the Journal, a new process for refining coal and rock oils, recently patented in England, will be found. It is probable that the high price of the chemicals in Canada would for the present preclude its adoption on a large scale in our refineries.
Extensive refining works are being put up at Pe trolia, by the Boston Oil Company, who own some of the most productive wells in that locality. When these come into operation, a considerable additional impetus will be given to the search for the raw material. Besides the refinery already in very successful operation in Hamilton, it is intended to introduce this branch of industry into Toronto, and as there can be little doubt respecting a rapid increase in the supply of the raw material, now that the Corniferous Limestone is known to yield it, the importance of the manufacture of a cheap and excellent illuminator will be felt and appreciated by the public.

Accessibility of the Springs-Wyoming.

The Wyoming Station on the Sarnia branch of the ${ }^{3}$ Great Western Railway is about forty-three miles from London and sixteen from Sarnia. On the right or Enniskillen side of the line the country is still nearly in a state of nature, no clearing being visible in the immediate neighbourhood. On the west side there is a considerable tract converted into excellent farms, but the new Village of Wyoming, standing on the edge of the clenrings, is still in a rough and primitive condition. The mud road which, passing from the Township of Plympton, penetrates through Enniskillen, is in a ahocking state, and may be
described as similar to all mud roads traversing a low and wet country much cut up by traffic. The Village of Wyoming contains two 'hotels,' a few stores, and several buildings in process of erection, among which is a foundry built on or near the site of a grist mill, which was unfortunately destroyed by fire some short time since.
A plank road, passing through the centre of Enniskillen, is about to be constructed, and a bill to incorporate the Petrolem Springs Road Company has already become law. The directors of the Great Western Railway have provided a number of cars for the exclusive transportation of the oil ; the lnsting odour imparted by this fluid to anything with which it may be brought in contact, has already made 'oil cars' a necessary addition to the rolling stock of the Company.

Qumatity of Oil produced in Emmiskillen.

The most exaggerated statements have been made respecting the yield of the wells in Enniskillen, and the quantity alrendy exported from Wyoming-the only outlet. By the courtesy of Thos. Bell, Esq., the traffic Superintendent of the Great Western Railwar, we are enabled to state that not more than one hundred and seventy thousand $(170,000)$ gallons of Enniskillen oil have been transmitted over the Great Western Railway, from the commencement of the pumping operations to the 30 th April, 1861. Of that quantity, Messrs. Williams \& Co. alone received, at their Hamilton Works, 125,000 gallons. Assuming that there were 1000 barrels of 42 gallons each at the Wyoming Station, at Petrolia, and Black Creek, waiting transhipment, the total gield of the Enniskillen wells will amount to 212,000 gallons, up to the 30th April, 1861. The value of this, at 14 cents per gallon, amounts to about $\$ 30,000$.
Such is the position of this new branch of industry in its infancy. It has received a very severe check from the unhappy disturbances in the United States, but there is good reason for the expectation that it will soon become a very important addition to the natural and applied resources of this country.

on the chemical history of a candle.

bX M. faraday, d.c.l., f.r.s.
Irom the Chemical News, Jan. 26 hi 1861.
Leoture IV.-Produots: Water from the Combus-tion-Nature of Water-A Compound-IIpdrogen.
I see you are not tired of the candle yet, or I am sure you would not be interested in the subject in the way you are. When our candle was burning we found it produced water exactly like the water we have around us; and by further examination of this water we found in it that curious body, hydrogenthat light substance of which there is some in this jar. We afterwards saw the burning powers of that hydrogen, and that it produced water. And I think I introduced to your notico an apparatus which I
very briefly said was an arrangement of chèmical force, or power, or energy, so adjusted as to convey its power to us in these wires; and I said I should use that force to pull the water to pieces, to see what else there was in the water besides hydrogen; because, you remember, when we passed the water through the iron tube, we by no means got the weight of water back which we put in the form of steam, though we had a very large quantity of gas evolved. We have now to see what is the other substance present. That you may understand the character and use of this instrument let us make an experiment or two. Let us put together, first of all, some substances, knowing what they are, and then see what that instrument does to them. There is some copper (observe the various changes which it can undergo), and here is some nitric acid, and you will find that this being a strong chemical agent will act very much when I add it to the copper. It is now sending forth a benutiful red vapour: but as we do not want that vapour, Mr. Anderson will hold it near the chimney for a short time, that we may have the use and beauty of the experiment without the annoyance. The copper which I have put into the flask will dissolve: it will ehange the acid and the water into a blue fluid containing copper and other things, and I purpose then showing you how this voltaic battery deals with it; and in the meantime we will arrange another kind of experiment for you to see what power it has. This is asubstance which is to us like water-that is to sar, it contains bodies which we do not know as yet. Now this solution of a salt I will put upon paper and sprend about, and apply the power of the lattery to it, and observe what will happen. Three or four important things will happen which we shall take advantage of. I place this wetted paper upen a sbeet of tin foil, which is convenient for keeping all clean, and also for the advantageous application of the power; and this solution, you see, is not at all affected by being put upon the paper or tintfoil, nor by anything else I have brought in coatact with it yet, and which, therefore. is free to us to use as regards that instrument. But first let us see that our instrument is in order. Here are our wires. Let us see whether it is in the state in which it was last time. We can soon tell. As yet when I bring them together, we have no power, beeause the conveyers-what we call the electrodes-the passages or ways for the elec-tricity-are stopped; but now Mr. Anderson by that [referring to a sudden thash at the ends of the wires? has given me a telegram to say that it is ready. Before I begio our experimen t will get Mr. Anderson to brenk contact again at the battery behind me, and we will put a platioum wire across to connect the poles, and then if I find I can ignite a pretty good length of this wire we shall be safe in our experiment. Now you will see the power. [The connection was established, and the intermediate wire became red hot. $]$ There is the power running beautifully through the wire, which I have made thin on purpose to show you that we have those powerful forces; and now, having that power we will proceed with it to the examination of water.
I have hero two pieces of platinum, and if I lay them dorn upon this picee of paper [the moistened paper on the tinfivil you will see no action; and if I take them up there is no change that you can see, but the arrangement remains just as it was before. But now see what happens: if I take these two poles and put either one or the othor of thom down sepa-
rately on the platinum plates, they do nothing for me, both are perfectly without action; but if I let them both be in contact at the same moment, see what happens [a brown spot appeared on each pole of the battery]. Look here at the effect that takes place, ard see how I have pulled something apart from the white-something brown; and I have no doubt, if I were to arrange this, and were to put one of the poles to the tinfoil on the other side of the paper, why, I get such a beautiful action upon the paper, that I am going to see whether I cannot write with it-a telegran if you please [the Lecturer here traced the word "juvenile" on the paper with one of the terminal wires]. See there how beautifully we can get our results.
You see we have here drawn something, which we have not known about before, out of this solution. Let us now take that finsk from Mr. Anderson's hands, and see what we can draw out of that. This, you know, is a liquid which we have just made up from copper and nitric acid, whilst our other experiments were in hand, and though I am making this experiment very hastily, and may bungle a little, yet I prefer to let you see what I do rather than prepare it beforehand.
Now see what happens. These two platinumplates are the two ends (or I will make them so immediately) of this apparatus; and I am about to put them in contact with that solution, just as we did a moment ago on the paper. It does not matter to us whether the solution be on the paper or whether it be in the jar, so long as we bring the ends of the apparatus to it. If I put the two platinums in by themselves they come out as clean and as white as they go in [inserting them into the fluid without conneeting them with the battery]; but when we take the power and lay that on [the platinums were connected with the battery and agrin dipped into the solution], this, you see, [exhibiting one of the platinums], is at once turned into copper, as it were; it has become like a plate of oopper; and that [exhibiting the other piece of platinum] has come out quite clean. If I take this coppered piece and change sides, the copper will leave the right hand side and come over to the left side; what was before the coppered plate comes out clenn, and the plate which was clean comes out coated with copper; and you thus see that what copper we put into this solution we can also take out of it by means of this instrument.
Putting that solution aside, let us now see what effect this instrumenc will have upon water. Here are two little platinum-plates which I intend to make the ends of the battery, and this, (c) is a little vessel so shaped as to enable me to take it to pieces, and show you its construction. In these tro cups (a and

s), I pour mercury, which touches the ends of the Wires connected with the platinum-plates. In the
vessel (c), I pour some water containing a little acid (but which is put only for the purpose of facilitating the action, it undergoes no clange in the process), and connected with the top of the vessel is a bent glass tube (D), which may remind you of the pipe which was connected with the gun barrel in our furnace experiment, and which oow passes under the jar (F). I have now adjusted this apparatus, and we will proceed to effect the water in some way or other. In the other case, I sent the water through a tube which was made red hot; I am now going to pass the electricity through the inside of this vessel. Perhaps I may boil the water ; if I do boil the water I shall get steam; and you know that steam condenses when it gets cold, and you will therefore see by that, whether I do boil the water or not. Perhaps, however, I shall not boil the water, but produce some other effect. You shall have the experiment and see. There is one wire which I will put to this side (A), and here is the other wire which I will put to the other side (B), and you will soon see whether any disturbance takes place. Here it is seeming to boil up famously ; but does it boil? Let us see whether that which goes out is steam or not. I think you will soon see the jar (F), will be filled with vapour, if that which rises from the water is steam. But can it be steam? Why; certainly not; because there it remains, unchauged. There it is standing over the water, and it therefore cannot be steam, but must be a permanent gas of some sort. What is it? Is it hydrogen? Is it steam? Is it anything else ? Well, we will examine it. If it is hydrogen it will bura. [The Lecturer then ignited the gas collected, which burnt with an explosion.] It is certainly something combustible, but not com bustible in the way that hydrogen is. Hydrogen would not have given you that noise, but the colour of that light when the thing did burn was like that of hydrogen; it will, however, burn without contact with the air. That is why I have chosen this other form of apparatus, for the purpose of pointing out to you what are the particular circumstances of this experiment. In place of an open vessel, I have taken one that is closed ; (our battery is so beautifully strong, that we are even boiling the mercury, and getting all things right,-not wrong, but vigorously right); and I am going to show you that that gas, whatever it may be, can burn without air; and in that respect differs from a candle, whieh cannot burn without the air. And our manner of doing that is as follows :-I have here a glass vessel (c) which is fitted with two platinum wires (5 K), through which I can apply electricity; and we can put the vessel on the air-pump and eshaust the air, and when we have taken the air out we can bring it here and fasten it on to this jar (F), and let that gas into the vessel which was formed loy the action of the voltaic battery upon the water, and which we have produced by changing the water into it,-for I may go as far as this, and say we have merely, by that experiment, changed the water into that gas. We have not only altered its condition, but we have changed it really and truly into that gaseous substance; and all the water is there which was decomposed by the experiment. As I screw this vessel (G H), on here (R), and make the tubes well connected, and when I open the stop-cocks ($\mathbf{(1)} \mathbf{H}$), if you watch the level of the water (in F), you will see that that gns will rise. Now, I will close the stop-cocks, as I have drawn up as much as that vessel can hold, and being anfely
conveyed into that chamber, I will pass into it an electric spark from this Leyden jar (L), and the vessel, which is not quite clear and bright, will become dim. There will be no sound, for the vessel is strong enough to confine the explosion. [A spark was then placed through the jar, when the explosion misture was ignited.] Did you see that brilliant light? If I again screw the vessel on to the jar, and open these stop-cocks, you will see that the gas will rise a second time. [The stop-cocks were then opened.] Those gases [referring to the gases first collected in the jar, and which has just been ignited by the electric spark] have disappeared, and as you see: their place is vacant, and fresh gas has gone in. Water has been formed of them; and if we repent our operation [repeating the last experiment], I shall have another vacancy, as you will see by the water rising. I always have an empty vessel after the explosion, kecause the vapour or gas into which that water has been resolved by the battery, explodes under the influence of the spark, and changes into water; and by-and-by you will see in this upper vessel some drops of water trickliug down the sides and collecting at the bottom.
We are dealing with water entirely, without reference to the atmosphere. The water of the candle had the atmosphere helping to produce it; but in this way it can be produced independently of the air. Water, therefore, ought to contain that other substance which the candle takes from the air, and which, combining with the hydrogen, produces water.
Now, you saw that one end of this battery took hold of the copper, extracting it from the vessel which contained the blue solution. It was effected by this wire; and surely we may say if the battery has such power with a metallic solution which we made and unmade, may we not think that it is possible that it can split asunder the component parts of the water, and put them into this place and that place? Suppose I take the poles-the metallic ends of this battery-and see what will happen with the water in this appatatus (Fig. 2) where we have sep-

arated the two ends far apart. I place one here (at A), and the other there (at r), and I have little shelves with holes which I can put upon each pole, and so arrange them that whatever escapes from the two eads of the battery will appear as separate gases; for you saw that the water did not become vaporous, but gaseous. The wires are now in perfect and proper connection with the vessel contnining the water, and you see the bubbles rising; let us collect these bubbles and see what they are. Here is Ω glass cylinder (0), I fill it with water and put it over one end (A) of the pile, and I will take another ($\boldsymbol{\mu}$) and putit over the other end (\mathbf{B}) of the pile. And so now we hare a double apparatus, with both places delivering gas. Both these jars will fill with gas. There they go, that to the right (n) filling very rapidly; the one to the left (o) filling not so rapidly;
and though I bave allowed some bubbles to escape, yet still the action is going on pretty regularly, and were it not that one is rather smaller than the other, you would see that I should have twice as much in this (H), as I have in that (0). Both these gases are colourless ; they stand over the water without condensing; they are alike in all things-I mean in all apparent things; and we have here an opportunity of examining these bodies and ascertaining what they are. Their bulk is large, and we can easily apply experiments to them. I will take this jar (H) first, and will ask you to be prepared to recogaize hydrogeu.
Think of all its qualities-the light gas which stood well in inverted vessels, burning with a pale flame at the mouth of the jar, and see whether this gas does not satisfy all these conditions. If it be hydrogen it will remain bere while I hold this jar inverted. [A light was then applied and the hydrogen burned.] What is there now in the other jar? You know that the two together make an explosive mixture. But what can this be which we find as the other constituent in water, and which must therefore be that substance which made the hydrogen burn? We know that the water we put into the vessel consisted of the two things together. We find one of these is hydrogen: what must that other be which was in the water before the experiment, and which we now have by itself? I am about to put this lighted splinter of wood into the gas. The gas itself will not burn, but it will make the splinter of wood burn. LThe Lecturer ignited the end of the woorl and introduced it into the jar of gas.] See how it invigorates the combustion of the wood, and how it makes it burn far better than the air would make it burn, and now you see by itself that every other sul,stance which is contained in the water, and which, when the water was formed by the burning of the candle, must bave been taken from the atmoxphere. What shall we call it, A, B, or C ? Let us call it O -call it "Oxygen;" it is a very good distinct-sounding name. This, then is the oxygen which we present in the water, forming so large a part of it.

We shall now begin to understand more clearly our experiments and researclaes; because when we have examined these thinge once or twice we shall soon see why a candle burns in the air. When we have in this way analysed the water-that is to say, separated, or electroly sed its parts out of it, we get two volumes of hydrogen, and one of the body that burns it. And these two are represented to us on this diagram, with their weights also stated, and we shall

$\stackrel{1}{\text { Hydrogen }}$	8 Oxygen	$\begin{aligned} & \text { Oxyger............. 88•A } \\ & \text { Hydrogen........ 11-1 } \end{aligned}$
	9	

find that the oxygen is a very heavy body by enmparison with the hydrogen. It is the other clement in water.
I had better, perhaps, tell you now how we get this oxygen abundantly, having shown you how we can separate it from the water. Oxygen, as you will immediately imagine, exists in the atmosphere, for how should the candle burn to produce water without it? Such a thing would be absolutely impossible, and chemically impossible without oxygen. Can we get it from the nir? Well, there are some
very complicated and difficult processes by which we can get it from the air ; and we have better processes. There is a substance called the black oxide of manganese; it is a very black-looking mineral, but very useful, and when made red hot it gives out oxygen. Here is an iron bottle which has had scme of this substance put into it, and there is a tube fixed to it, and a fire ready made, and Mr. Anderson will put that retort into the fire, for it is made of iron, and can stand the heat. Here is a salt called chlorate of potassa, which is now made in large quantities for bleaching, and chemical and medical uses, and for gunpowder and other purposes. I will take some and mix it with some of the oxide of manganese (oxide of copper, or oxide of iron would do as well), and if I put these together in a retort far less than a red heat is sufficient to evolve this oxygen from the mixture. I am not preparing to make much because we only want sufficient for our experiments but, as you will see immediately, if I use too small a charge the first portion of the gas will be mixed with the air already in the retort, and I should be obliged to sacrifice the first portion of the gas because it would be so much diluted with air; the first portion must, therefore, be thrown away. You will find in this case that a common spirit lamp is quite sufficient for me to get the oxygen, and so we shall have two processes going on for its preparation. See how freely the gas is coming over from that small portion of the mixture. We will examine it and see what are its properties. Now, in this way we are producing, as you will observe, a gas just like the one we had in the experiment with the battery, transparent, undissolved by water, and presenting the ordinary visible properties of the atmosphere. (As this first jar contains the air, together with the first portions of the oxygen set free during the preparation, we will carry it out of the way, and be prepared to make our experiments in a regular, dignified manner.) And inasmuch as that porrer of making wood, wax, or other things burn, was so marked in the oxygen we obtained by means of the voltaic battery from rater, we may expect to find the same property here. We will try it. You see there is the combustion of a lighted taper in air, and here is its combustion in this gas [lowering the taper into the jar]. See how brightly and how beautifully it burns;-you can also see more than this,-you will perceive it is a heavy gas, whilst the hydrogen would go up like a balloon, or even faster than a balloon, when not encumbered with the reight of the envelope. You may easily see that although we obtained from water twice as mach in volume of the hydrogen as of oxygen, it does not follow that we have twice as much in weight; because the one is heavy and the other a very light gas. We have means of weighing gases or air; but withoutstopping to explain that, let me just tell you what their respective weights are. The weight of a pint of hydrogen is threequarters of a grain; the weight of the same quantity of oxygen is nearly twelve grains. This is a very great difference. The weight of a cubic foot of hydrogen is one-twelfth of an ounce; and the weight of a cubic foot of oxygen is one ounce and a third. And so on we might come to masses of matter which may be weighed in the balance, and which we can take account as to hundred-weights and as to tons, as you will see almost immediately.

Now as regards this very property of oxygen supporting combustion, which we may compare to air,

I will take a piece of candle to show it you in a rough way, and the result will be rough. There is our candle burning in the air: how will it burn in oxygen? I have here a jar of this gas, and I am about to put it over the candle for you to compare the action of this gas and that of the air. Why, look at it; it looks something like the light you saw at the poles of the voltaic battery. Think how vigorous that action must be! And yet during all that action nothing more is produced that what is produced by the burning of the candle in air. We have the same production of water; and the same phenomena exactly, when we use this gas instead of air, as we have when the candle is burnt in air.

But now we have got a knowledge of this new substance, we can look at it a little more distinctly, in order to satisfy ourselves that we have got a good general understanding of this part of the product of a candle. It is wonderful, you see, how great the supporting powers of this substance are as regards combustion. For instance, here is a lamp which, simple though it be, is the original, I may say, of a great variety of lamps which are constructed for divers purposes,-for lighthouses, microscopic illuminations, and other uses; and if it was proposed to make it burn very brightly, you would say, "If a candle burnt better in oxygen, will not a lamp do the same?" Why, it will do so. Mr. Anderson will give me n tube coming from our oxygen-reservoir, and I am about to apply it to this flame, which I will previously make burn badly on purpose. There comes the oxygen: what a combustion that makes! But if I shut it off, what becomes of the lamp? [The flow of oxygen was stopped, and the lamp relapsed to its former dimness.] It is wonderful how, by means of oxygen, we get combustion accelerated, But it does not affect merely the combustion of hydrogen, or carbon, or the candle; but it exalts all combustions of the common kind. We will take one which relates to iron for instance, as you have already seen iron burn a little in the atmosphere. Here is a jar of oxygen, and this is a piece of iron wire ; but if it were a bar as thick as my wrist, it would burn the same. I first attach a little piece of wood to the iron, I then set the wood on fire, and let them both down together in the jar. The wood is now alight, and there it burns as wood would burn in oxygen; but it will soon communicate its combustion to the iron. The iron is now burning brilliantly, and will continue so for a long time. As long as we supply oxygen, so long can we carry on the combustion of the iron until the latter is consumed.

We will now put that on one side, and take some other substance; but we must limit our experiments for we have not time to spare for all the illustrations you would have a right to, if we had more time. We will take a piece of sulphur: you know how sulphur burns in the air; well, we will put it into the oxygen, and you will see that whatever can burn in air can burn with a far greater intensity in oxygen, leading you to think that perhaps the atmosphere itself owes all its power of combustion to this gas. The sulphur is now burning very quietly in the oxygen; but you cannot for a moment mistake the very high and increased action which takes place when it is so burnt, instead of being burnt merely in common air.

I am now about to show you the combustion of another substance-phosphorous. I can do it better for you here than you can do it at home. This is a
very combustible substance, and if it be so combustible in air, what might you expect it would be in oxygen? I am about to show it to you not in its fullest intensity, for if I did so we should almost blow the apparatus up; I may even now crack the jar, though I do not want to break things carelessly. You see how it burns in the air. But what a glorious light it gives out when I introduce it into oxygen, [Introducing the lighted phosphorous into the jar of oxygen.] There you see the solid particles going off which cause that combustion to be so brilliantly luminous.

Thus far we have tested this power of oxygen and the high combustion it produces, by means of other substances. We must now, for a little while longer look at it as respects the hydrogen. You know when we allowed the oxygen and hydrogen derived from the water to mix and burn together we had a little explosion. You remember also that when I burnt the oxygen and the hydrogen in a jet together, we got a very little light but great heat; I am now about to set fire to oxygen and hydrogen mixed in the proportion in which they occur in water. Here is a vessel containing one volume of oxygen and two volumes of hydrogen. This mixture is exactly of the same nature as the gas we just now obtained from the voltaic battery; it would be far too much to burn at once ; I have therefore arranged to blow soap bubbles with it and burn those bubbles, that we may see by a general experiment or two how this oxygen supports the combustion of the hydrogen. First of all we will see whether we can blow a bubble. Well, there goes the gas [causing it to issue through a tobacco-pipe into some soap-suds.] Here I have a bubble. I am receiving them on my hands and you will perhaps think I am acting oddly in this experiment, but it is to show you that we must not always trust noise and sounds, butrather toreal fucts. Exploding a bubble on the palm of his hand.] I am afraid to fire a bubble from the end of the pipe because the explosion would pass up into the jar and blow it to pieces. This oxygen then will unite with the hydrogen, as you see by the phenomena and hear by the sound, with the utmost readiness of action, and all its powers are then taken up in its ceutralisa. tion of the qualities of the hydrogen.
So now I think you will perceive the whole history of water with reference to oxygen and the air, from what we have before said. Why does a piece of potassium decompose water? Because it finds oxygen in the water. What is set free when I put it in the water, as I am about to do again? It sets free hydrogen, and the hydrogen burns; but the potassium itself combines with oxygen; and this piece of potassium, in taking the water apart, -the water you may say, derived from the combustion of the candle, -takes away the oxygen which the candle took from the air, and so sets the hydrogen free; and even if I take a piece of ice, and put a piece of potassium upon it, the beautiful affinities by which the oxygen and the hydrogen are related are such, that the ice will absolutely set fire to the potassium. I show this to you to-day in order to enlarge your ideas of these things, and that you may see how greatly results are modified by circumstances. There is the potassium on the ice, producing a sort of volcanic action.

It will be my place when next we meet, having pointed out these anomalous actions, to show you that none of these extra and strange effects are met with by : us-that none of these strange and injurious
actions take place when we are burning, not merely a candle, but gas in our streets, or fuel in our fireplaces, so long as we confine ourselves within the laws that Nature bas made for our guidance.

TEA, COFFEE, AND COCOA.
Tea and coffee have hardly any other properties in common than the possession of an alkaolid called caffeine or theine, which is identical in the two. Chocolate contains a peculiar alkaloid, theobromine; but the only other substance used extensively for a dietetic infusion, the Paraguay tea, contains theine.

Tea (Thea Sinensis).
Tea consists of the leaves of several varieties of a small shrub found in China and India. The leaves are gathered in the fourth year of the growth of the plant, which is generally dug up and renewed in its tenth or twelfth year. The leaves are cropped with care by gatherers, who wear gloves, wash frequently, and avoid eating things likely to affect the breath. The differences between teas result partly from the varieties of soil and growth; but also from the mode of curing and drying the leaves. Black Tea consists of leaves slightly fermented, washed, and twisted. Genuine green tea is made of exactly the same leaves, washed and twisted, without formentation; but commercial "green" teas are often black teas coloured with Prussian blue. Probably five hundred millions of men, or half the human race, now use tea. In the United Kingdom, above 32 thousand tons, or 73 millions of pounds, are annually used; or about $2 \frac{2}{3}$ lbs. for every person in the Kingdom. The chief action of tea depends, firstly, on its volatile oil (less in old than in new teas), which is narcotic and intoxicating; and, secondly, on a peouliar crystalline principle, called Theine. Theine excites the brain to increased activity; but soothes the vascular system by preventing rapid change or waste in the fleshy parts of the body, and so cconomises food. Four grains of Theine, contained in half an ounce of tea, act in this way; but if one ounce of tea, containing 8 grains of Theine, be taken in a day by one person, then tremblings, irritability of temper, and wandering of thoughts, ensue. When the system becomes thus saturated with Theine, it is useful to resort to cocoa as a beverage, for a few days, when the irritable symptoms subside and the use of tea may be renewed.
The tea-leaves, which become changed in the process of drying and preparation, resemble coffee in many points. They are rich in casein or cheese, but contain in the same weight nearly twice as much Theine as coffee. The aromatic oil, which by itself is intoxicating, is present in greater quantity than in coffee. One hundred parts of good tea contain :

In an ordinary infusion of tea, the flesh-formers: remain with the leaves; but may be taken up by Soda in the water. Hence the practice of the poor of adding Soda to the water in making tea extracts.. much of its nutritive ingredients. The ingredients. in 1 lb . of good tea are:

1. Water in 1 lb . of tea- 350 gr .
2. Theine in 1 lb . of tea- 210 gr .
3. Casein in 1 lb . of tea- 2 oz .175 gr .
4. Aromatic oil in 1 lb . of tea- -52 gr .
5. Gum in 1 lb . of tea- 2 oz .385 gr .
6. Sugar in 1 lb . of tea- 211 gr .
7. Fat in 1 lb . of tea- 280 gr .
8. Tannic acid in $1 . \mathrm{lb}$. of tea- 4 oz .87 gr .
9. Woody fibre in 1 lb . of tea- 3 oz .87 gr .
10. Mineral matter- 350 gr .

Paraguat Tea, or Mate (llex Paraguayensis). Nat. Ord. Aquifolacer.

The Mate occupies the same important position in the domestic economy of South America as the Chinese Tea (Thea Sinensis) does in this country. The leaves of the Mate Plant, a species of Holly (Ilex Paraguayensis), are from four to five inches in length, and are prepared by drying and roasting, not in the manner of the Chinese Teas, in which each leaf is gathered separately, but large branches are cut off the plants and placed on hurdles over a wood fire until sufficiently roasted; the branches are then placed on a hard floor and beaten with sticks; the dried leaves are thus knocked off and reduced to a powder, which is collected, made into packages, and is ready for use. There are three sorts known in the South American markets: the Caa-Cuys, which is the head of the leaf; the Caa-Miri, the leaf torn from its midrib and veins, without roasting; and the Caa-Guaza or Yerva de Palos of the Spaniards, the whole leaf, with the petioles and small branches roasted. The method of preparing it for drinking is by putting a small quantity, about a teaspoonful, into a gourd or cup, with a little sugar; the drinking tube is then inserted, and boiling water poured on the Mate; when sufficientiy cool to drink without soalding the mouth, the infusion is sucked up through the tube. It has an agreeable slightlyaromatic odour, is rather bitter to the taste, and very refreshing and restorative to the human frame after enduring great fatigue. It contains the same active principle as tea and coffee, called Theine; but does not possess the volatile and empyreumatic oils of those substances. It is calculated that about $40,000,000 \mathrm{lbs}$. of this substance are consumed annually in South America.

The leaves of many plants have been used as sulbstitutes for tea, but they do not seem to contain the same alkaloid. These substances are as follows:

Swiss Tea, prepared from Alpine plants. Fabam Tea of the Mauritius (Angroccum fragrans). Lime flowers and leaves (Tilia Europaca). Appallachian Tea (Prinos glaber). New Jersey Tea (Ceanothus Americanus). Labrador Tea (Ledum palustre.)

Corfse (Coffee Arabica).

The Coffee plant belongs to the natural order Chinchonacees, which contain the plants fielding Quinine: It is an evergreen shrub, with oval, shining, wavy, sharp-pointed leaves, white fragrant flowers with projecting antbers, and oblong pulpy berries which are at first green, then of a bright red, and afterwards purple. Each berry contains two seeds, which are covered over with a tough meinbrane called "parchment." The seeds alone are used in the preparation of Coffee. The Coffee plant is indigenous in Southern Abyssinia, where it .grows wild over the rocky surface of the country.

In the fifteenth century it was introduced into Arabia; in the sixteenth century, into Constantinople ; and in 1652, the first coffee shop was established in London. It is now cultivated in Ceylon, the East and West Indies, and in South America.
The Coffee plant attains a height of from ten to fifteen, or twenty feet. It is planted in nurseries, and at the end of three years bears fruits and seeds, and continues to do so for twenty years. The seeds vary in size according to the countries in which they are produced. The best seeds are obtained from Yemen, the southernmost province of Arabia; these yield the richest Mocha Coffee.

The separation of the seeds from the pulp and parchment of the fruit is a complicated process. The berries are first fermented, the pulp cleared away and the seed dried in the parchment; the latter is afterwirds bruised and separated from the seed, which is immediately placed in bags to render permanent the greenish colour that the unroasted Coffee bean possesses. In its unroasted condition the bean consists of a horny mass, which, after it is submitted to roasting, yields very different products from those which existed before that process. Exposure to heat develops the peculiar volatile oils, and the astringent acid, on which the flavour of coffee depends. The oil acts as a stimulant upon the nervous and vascular system, producing an agreeable excitement of the mind, and a gentle perspiration on the skin. It also tends to impede the waste of the tissues of the body, and when taken in too large quantities produces sleeplessness and palpitation of the heart. The acid called Caffe-tannic; found in roasted coffee, acts as a light astringent; but in this respect coffee does not act so powerfully as tea. It contains a similar active principle to that of tea, called Caffeine. The quantity of coffee consumed in the United Kingdom in 1858 was upwards of $35,000,000 \mathrm{lbs}$. The yearly consumption of coffee in the world is calculated to be about $600,000,000$ of pounds.
The chemical properties of the Coffee-berry are altered by ronsting, and it loses about 20 per cent. of weight, but increases in bulk one-third or onehalf. Its peculiar aroma, and some of its other properties, are due to a small quantity of an essential oil, only one five-thousandth part of its weight, which would be worth about $\mathscr{E} 100$ an ounce in a separate state. Coffee is less rich in Theine than tea, but contains more sugar, and a good deal of cheese (Casein). One hundred parts consist of :
Water \qquad 12.000]

Caffeine, or Theino.......... 1 17700
Cassin, or Checse 13.000
Aromatic 0il: 0.002
$\begin{array}{cc}\text { Sugar } & 6 \cdot 500 \\ 9 \cdot 000\end{array}$

| Gum..........................$~$ | $9 \cdot 000$ |
| ---: | ---: | ---: |
| Frt........................ 12.000 | |

Potash with a peculiar
or $\left\{\begin{array}{l}\text { Water } 12.00 \\ \text { Wlesh-formers } 14775 \\ \text { Ient-givers } 66 \cdot 25 \\ \text { Mineral Matter............ } \\ 7 \cdot 00\end{array}\right.$

In the usual way of making coffee, the flethformers are thrown away; the addition of a little soda to the water partly prevents this waste: The various ingredients in 1 lb . of coffee are:

1. Water in 1 lb . of coffee- -1 oz .407 grs .
2. Caffeine or Theine in 1 lb . of coffee- 122 grs .
3. Casein or Cheese in 1 lb . of coffee- 2 oz .35 grs.
4. Aromatic $O \mathrm{Ol}$ in 1 lb . of coffee- $1 \frac{1}{2} \mathrm{gr}$.
5. Gum in 1 lb . of coffee- 1 oz .192 grs .
6. Sugar in 1 lb . of coffee-1 oz. 17 grs.
7. Fat in $\perp \mathrm{lb}$. of coffee- 1 oz .402 grs .
8. Potash, with a peculiar acid, in 1 lb . of coffee280 grs.
9. Woody fibre in 1 lb . of coffee-5.oz. 262 grs.
10. Mineral matter in 1 lb . of coffee- 1 oz .31 grs .

Coffer Substitutes.

A large number of substances have been employed from time to time as substitutes for coffee, and prepared in the same way. They have none of them established themselves in public reputation, and are seldom sold. This is probably owing to the fact that they do not contain the principal Theine, or any compound analogous to it.
The following substances are used as Coffee Substitutes:

Iris Seeds, and Coffee.
Broom Seed, and Coffee.
Fenugrec Seed, and "Rosetta Coffee."
Spanish Acorns, and Coffee.
Chick Peas, and Coffee.
Swedish Coffee.
Rice, and Coffee.
Carrot Root, and Coffee.
Parsnip Root, and Coffee.
Acorns, and "Hayet's" Coffee.
Beans, and Coffee.
Lupin Seed, and Coffee.
Chicory Root, and Coffee.
Dandelion Root, and Coffee.
Beet Root, and Coffee.
Cocos (Theobroma Cacao). Nat. Ord. Byttneriaceæ.
Cocoa is the seed of the Chocolate Plant, a small tree with dark-green leaves, growing in Mexico, Carraccas; Demerara, and other places. It produces an elongated fruit in shape between a Cucumber and a Melon, which grows directly from the stem or main branches. The seeds or beans that afford the Cocoa are imbedded in the fruit in rows in a spongy substance, and are about fifty or sixty in number. When the fruit is ripe the seeds are taken out, cleaned, and dried, and sometimes a little fermented. The best cocoa is made from these seeds, which are shelled from the outer husks and then roasted. In the inferior kinds the shell is ground up with the seeds. Cocoa-Nibs are seeds merely roasted and crushed after being shelled. Cocoa Paste is the seed ground down, and when this paste is mixed with sugar, and flavoured with aromatics, as Vanilla, it is called Chocolate. The peculiar flavour of Chocolate is due more especially to Vanilla. The latter substance is the fruit of the Vanilla aromatica and V. planifolia, an orchidaceous plant, a native of Mexico, and contains a volatile oil which gives the flavour to Chocolate. Soluble, Rock, Flake, and other Cocoas are the whole seeds ground and mixed with Sugar, Gum, Starch, etc. Cocoa is a rich and nutritious food, containing in 100 parts, 51 of Butter, 22 of starch and Gum, 20 of Gluten or flesh-forming matter, and about 2 parts of a principle called Theobromine, to which no doubt its peculiar character is due: Theobromine contains more Nitrogen than Theine, the active principle of Tea and Coffee. The quantity of Cocon consumed in the United Kingdom in 1858 was 3, $071,115 \mathrm{lbs}$.
Cocoa, though drunk like Tea and Coffee as a beverage, differs from them remarkably in composition. The distinguising feature of its composition consists in the large quantities of fat and albumen
which it contains ; so that Cocoa not only acts as an alterative through its Theobromine, but as a heat giving and flesh forming food. 100 parts of Cocoa contain :-

Water	$5 \cdot 01$	
Albumen	20.0	
Theobromiue	2.0	
Butter	50.0	Water 22.0
Woody Fibre	40 60	or $\begin{aligned} & \text { Heah-iormers } 220 \\ & \text { Hetrars }\end{aligned}$
Gum ${ }_{\text {Starch }}$...................................	60 70	Mineral Natter 4.0
Red Colouring Matter	2.0	
Mineral Matter	4.0	

The ingredients in a pound of Cocoa paste are :-

1. 1 lb . of Cocoa nibs.
2. 1 lb . of Cocoa paste.
3. Water-350 gr.
4. Albumen and Gluten- 3 oz. 85 gr .
5. Theobromine-140 gr.
6. Batter-8 oz.
7. Gum-426 gr.
8. Starch-1 oz .53 gr .
9. Woody fibre-280 gr.
10. Colouring matter- 140 gr .
11. Mineral matter-280 gr.
-Guide to the Food Collection, S. Kensington Museum.

ashes or mineral matters in vegetable AND ANIMAL FOOD.

mineral matter in rood.

The mineral salts contrined in plants and animals are indestructible by heat, hence they are called " ashes."
The body of a man weighing 154lbs. contains about 8 lbs . of mineral matter, consisting of Phosphoric Acid, Silica (or Flint), Chlorine combined with Sodium (common salt), Tluorine combined with Calcium (Fluor Spar), Sulphur, Soda, Potash, Lime, Magnesia, and Oxide of Iron. These substances are extracted from food, and distributed by means of the blood to the various parts of the body, where they are taken up, or absorbed, into the system ; different portions of the body showing a strong affinity for different mineral substances: thus, Phosphorus is found in the brain, and also in the form of Phosphoric acid in combination with Lime, in the bones; Fluorine in the boues and teeth; Silica or Flint in the teeth, hair, and nails; Sulphur in the hair ; Phosphate of Magnesia and Phosphate of Potash in the flesh; and Phosphate of Soda in the blood and the cartilages. In some cases, as in Phosphate of Lime, which forms the ground-work of bones, the use of mineral matter in the body is sufficiently obvious; but, in other cases, its use is less understood, though it is supposed to exert im. portant action on the transformation of the tiśsues, and the support of respiration. Mineral matter is quite indispensable to health, and disease results from a deficient supply of it. All animals, man included, require salt for the digestive processes and for the proper secretion of bile; in fact, each substance has its peculiar uses, of many of which wo are yet to a great extent ignorant.

minerals in food.

In the body of a man, weighing 154 lbs., there are about 8 lbs. of mineral matter. Different parts. of the body show peculiar affection for particular ingredients to the exclusion of others.

1. Phosphate of Lime, or Bone Earth, consists of three proportions of Lime and one of Phosphoric Acid. There is no animal tissue in the body in which it is
not present. In bone it forms from 48 to 59 parts in 100 ; the bones most exposed to mechanical infliuences containing the largest quantity. It is always found with flesh-forming substances, whether derived from the vegetable or animal kingdoms; generally in the proportion of 0.5 to 2 per cent. Casein contains 6 per cent.
2. Carbonate of Lime, or Chalk, always occurs in the bones, though in much less quantity than bone earth, the proportions being 1 to 4 parts in a newly bora child, 1 to 6 parts in an adult, and 1 to 8 parts in the old. It is also found in animal concretions.
3. Phosphate of Magnesia.-This substance is present, in only small quantities, in the bones and in animal fluids.
4. Fluoride of Calciun, or Fluor Spar, exists in small quanties in animal tissues, but more abundantly in the bones and teeth.
5. Silica, or Flint, exists in small quantities in the enamel of the teeth and hair.
6. Ohloride of Sodium, or Common Salt, forms the greatest part of the soluble mineral ingredients in all animal tissues. In blood, 6 parts in 1,000 consist of salt. It no doubt exerts an influence on the change of tissues, on the action of the gastric juice, and on other functions.
7. Carbonate of Soda is found in small quantities in blood, and is useful in dissolving Fibrin, Casein, and other flesh formers; it may also aid in respiration.
8. Phosphates of Soda and Potash. Salts of Soda and Potash certainly exist both in blood and the tissues, and they may be present as phosphates, but our knowledge on this subject is deficient.
9. Iron is found in blood, gastric juice, hair, black colouring matter of the eye, ete.
10. Sulphates of Soda and Potash exist occasionally in animal fluids, but do not appear to be , essential.
11. Carbonate of Magnesia occurs very sparingly in the body, and is not deemed essential.
12. Oxide of Manganese is found in bile, gallstones, etc., but would appear to be only accidentally present.
13. Copper and Lead are rarely found in the blood but generally in the bile, of man. They are no doubt deleterious, and introduced accidentally.
14. Sulphocyanide of Sodium, though not existing in food, is found generally in the saliva of man.

All these substances, as will be seen in the anàlysis of the human body, are required for forming the blood and the tissues of the human being. As by the use of the body they are constantly being carried away, it is necessary that they should be supplied by means of our daily food. Some plants contain more of one kind of these ingredients than others, thus Liebig has divided plants into four groups, according to the nature of their inorganic constituents.-

1. Lime-Plants, in which lime nbounds, embracing beans, peas, and other Leguminosce.
2. Alliali-Plants, which take up potash and soda, as potatoes, beet, \&c.
3. Silex-Plants, embracing plants which require silica in their tissues, as the palms and grasses.
4. Phosphorus-Plants, which contain in their tissues phosphoric acid in the form of phosphates of the earths or alkalies, and embracing the most imporitant food plants, as wheat, barley, oats, rye, \&c.

The salts of soda appear to prevail in the blood, but those of potash in the tissues.
The absence of potash in food appears to be the cause of scurvy at sea; and fresh vegetables; or lime juice, which contain potash, are known to be an effectual preventive and cure of this terrible disease.

It should be recollected, that in the boiling of food many of the mineral substances are dissolved out of it , and where the liquid that they are boiled in is not consumed, such mineral matters are thrown away. This is the case with boiled meat and vegetables, and a constant use of such food may lead to injurions effects. The best corrective to such a diet is the use of uncooked fruit and vegetables. In this way the eating of ripe fruits, as apples, pears. gooseberries, \&c., and salads, has a beneficial effect on the system.

ON THE PORIFICATION OF BITUMENS AND COAL OILS.

A patent has lately been taken out in England by James Stuart, of London, for the treatment of petroleum and crude oils of all descriptions obtained from coal, stale, bitumen or wells, such as those which have become so numerous in various parts of this country. The following is a condensed description of the invention, taken from the London Journal of Gas Lighting. We do not vouch for the chemistry of the description. A solution of chromic acid in water is a novelty. The practical use of the description is not affected by the mode of describing the effects produced.
"For every 100 gallous of crude oil to be trented, $12 \frac{1}{2}$ lbs. of bichromate of potash is taken and dissolved in $12 \frac{1}{2}$ gallons of water, and to this solution is added $1 \frac{1}{4}$ gallons of oil of vitriol (the sulphuric acid of commerce). The solution of olromic acid which is thus obtained is added to and mixed with the oil, the oil being kept intimately mized by churning or agitating it for about an hour. By this treatment, a quantity of pitchy matters and other impurities are separated from the oil, and the oil is deprived of the greater part of its unpleasant smell. The chromic acid is at once converted into oxyd of chromium, with which the excess of sulphuric acid unites, and forms sulphate of chromium. The mixture is now left at rest until separation takes place, which is usually the case in from one to two hours. The oil then being the upper portion is drawn off into another vessel, agitated with a solution of soda for about an hour. This is done to wash out or neutralize any acids remaining in the oil. The solution of soda, which it is preferred to use, is made by dissolving $12 \frac{1}{2}$ lbs. of soda ash of commerce in $12 \frac{1}{2}$ gallons of water, and adding that quantity to every 100 gallons of oil to be washed. After one hour's agitation, the whole is left at rest until the oil has separated from the soda solution, after which the oil is placed in an iron still, and distilled. The distillation is continued until the whole bulk of oil distilled over reaches $.840 \mathrm{sp} . \mathrm{gr}$. at 60° of temperature. The distillate is then to be placed in a proper vessel, and treated as before by churning or agitating with a solution of chromic acid in water. For every 100 gallons of oil to be treated, $12 \frac{2}{2}$ lbs. of bichromate of potash is dissolved in $12 \frac{1}{2}$ gallons of water, and to the solution is added $1 \frac{1}{2}$ gallons of oil of vitriol. The compound is mized with the oil by agitation for about an hour, and then the whole is loft at rest until the oil is separated from the solution of sulphate of chrominumad impuritios. Afterward, the oil is drawn off into another vessel, and washed
by mixing or agitating it, for half an hour or thereabouts, with one-fourth its bulk of water or one-fourth jts bulk of lime-water. When the water or lime-water has completely separated, and the oil has become bright, it will be fit for use as an illuminating oil. The heavy oil remaining in the still is distilled to dryness, and may then be treated by any of the known methods for obtaining parafine or lubricating oil. The chromic acid used in the process above described may be obtained otherwise than from the bichromate of potash; it is, however, usually most convenient to employ this salt. It is preferred to apply chromic acid in the first place. to the crude oils, because the solution of chromic acid, by removing the pitch, tar and other impurities from the oil, enables it to be distilled at a heat much lower than would otherwise be necessary, and so prevents decomposition taking place in the still. It is found that, after treating some crude oils with a solution of chromic acid, and distilling until the distillate or whole bulk of oil distilled over reaches $840^{\circ} \mathrm{sp}$. gr., that the oil so obtained is of too dark a color to be used as an illuminating oil. In this case, the oil is treated by churning or agitating it
with two per cent (by bulk) of oil of vitriol for about an hour, then allowing the whole to rest until the acid, tar or sludge is separated from the oil. The oil is then drawn off into another vessel, and agitated with two per cent of powdered quicklime or dried chalk for another hour, or until all the smell of sulphurous acid has left the oil. There is then added 25 per cent (by bulk) of water, and the whole is agitated for a quarter of an hour; after which time, the mixture is left at rest until the oil has become bright, when it is drawn off for use; but if the oil is not of a good color, it is re-distilled. If there is difficulty in getting the oil perfectly bright, there is added to every 100 gallons of oil, 26 lbs . of common salt dissolved in 8 gallons of water, and the whole is agitated well together for a quarter of an hour ; then, when left at rest, the oil will become perfectly bright. In no case however, is the oil of vitriol used for treating the oil, if it can be avoided, as it unites with and decomposes a great part of the lighter oils, and this it is wished to avoid as much as possible. The chromium used in the process may be recovered either as sulphate or oxyd, as desired."

THE ACT RELATING TO BOARDS OF ARTS AND MANUFAGTURES.
The Act relating to the Board of Arts and Manufactures in Upper and Lower Canada has not yet become law. Another year must pass before the desired amendments receive the sanction of Parliament. The unusual shortness of the session and the great press of business were no doubt largely instrumental in preventing the adoption of the amendments desired by the Board, and which they consider necessary to enable them to fulfil the duties imposed by the act of incorporation.

THE INTERNATIONAL EXHIBITION OF 1862.

Our readers will regret to learn that it is not the intention of the Goverament to appropriate any sum of money, during the present year, towards assisting in the representation of Canada at the International Exhibition of 1862. This determination does not in any way remove or lessen the expectation that a grant will be made early in the ensuing session, for the purposes set forth in the memorials of the Boards for Upper and Lower Canada. It is, however, much to be regretted that no encouragement has been afforded to our Manufacturers and Artizans to prepare the results of their progress during the past ten years for exhibition at London. No doubt great individual exertion will be made and a valuable representation of Canadian industry accumulated; but if the Government had thought proper to lend their material assistance, a very unexpected and encouraging exhibition of the progress of Canadian industry and arts would have been transmitted to London, and Canada would have had no reason to anticipate falling in the rear of her sister Colonies, or of those countries in Europe among whom she occupied an enviable position in 1850 and 1855.

Now that no prospect remains of receiving assistance from Government during the present year, Manufactures and Mechanice will be left to their own energies and resources. These we are sure will never fail; and it may happen that the exhibition of our progress in the industrial arts, resting altogether upon individual effort, will be more satisfactory and encouraging than if supported and cherished by the aid of a pecuniary grant.

PROVINCIAL AGRICULTURAL ASSOCIATION'S EXHIBITION.

The following is the Prize List of the Arts and Manufactures Department of the Agricultural Association's Exhibition, to be held in the City of London, during the last week of September neat. The whole of the Rules and Regulations will be published in the next issue.
PRIZE LIST.

ARTS, MANUFACTURES, LADIES WORK, \&c., \&c.
Diplomas will be awarded in this Department, in addition to first Money Prizes, for Articles or Collections evidencing in their production a high degree of merit. (See Rules and Regulations.)

CLASSIFICATION OF PRIZE LIST.

Class.		Class.		
40	Architecture, and Miscellaneous Useful and Decorative Arts.	Metal Work, Plain \& Ornamental, including Stoves. Miscellaneous.		
41	Cabinet Ware and other Wood Manufactures.	Musical Instruments.		
42	Carriages and Sleighe, and parts thereof.	Natural History.		
43	Chemical Manufactures and Preparations.	Paper, Printing, Bookbinding, \&c.		
44	Fine Arts.	Pottery, Building and Paving Materials.		
45	Furs and Wearing Apparel.	Saddle, Engine Hose, and Trunk Maker's work,		
46	Groceries and Provisions.			
47	Indian Work	Shoe and Boot Maker's work, Leather, \&		
48	Ladies' Work	Woollen, Flax, and Cotton Goods.		
49	Machinery and Models thereof, Castings and Tools.	59 Foreign Manufactures.		
Class 40-Axchitecture, and Miscellancous Useful and Decorative Arts, ${ }^{\text {ast Prize. }}$ (2 nd Prize.				
I	Architectural Drawing.........		600	400
2	Architectural Drawing, in perspective		600	400
3	Composition Drawing of Natural Foliage (Canadian) applioable to architectural details.		700	500
4	Modelling in Plaster of Natural Foliage (Canadian) applicable to architectural details..		700	500
5	Mathematical, Philosophical and Surveyor's instruments, collection of		1000	. 600
6	Stained Glass, collection of specimens		600	400
7	Ventilation of Buildings, Model showing the best system for warming and distributing			600
	Miscellaneous.			
8	Banner Painting		600	400
9			600	400
10	Carving in Wood		600	400
11	Carving in Stone		600	400
12	Drawing of Machinery, in perspective		500	300
18	Decorative House Painting		500	300
14	Dentistry, collection of specimens... ..		500	300
15	Engraving on Wood, with proof ...		500	300
16			500	300
17	Engraving on Steel, with proof .		500	300
18	Electrotyping, specimens of...,		500	300
19	Goldsmith's Work......		500	300
20	Geometrical Drawing of Engine or Millwright worls, colored		500	300
21	Heraldic Painting........		500	300
22			500	300
23	Lithographic Drawing, oolored		600	400
24	Lithographic Drawing, on Canadian stone		500	300
25	Modelling in Plaster..		600	400
26	Monumental Tomb or Head Stone (price and design considered)		600	400
27	Painting, Imitation of Woods and Marbles		500	300
28			500	300
29	Picture Frame, ornamented gilt.. Picture Frame, plain gilt...		400	200
30	Seal Engraving, with wax impressions		600	400
81	Silversmith's Work		500	300
32				
Sect. Class 41-Cabinct Ware, and				
			Pr Prize. 00	Prize.
2	Centre Table		600	400
3	Drawing Room Sofa \qquad Drawing Room Chairs, set of		700	500
4			700	500
5	Dining Room Furniture, set of Ottoman		800	600
. 6			300	200
7	Side Borrd..............		600	400
8	School Desk and Chairs (price considered) ..		300	200
9	Wardrobe		400	300
	Miscellaneous.			
10	Corn Brooms, six		200	100
11	Cooper's Work		300	200
12	Curled Hair, 10 lb		300	200
13	Door, 4 or 6 panelled		300	200
14	Flour Barrels, three		300	200
15	Handles for Tools, for carpenters, blacksmiths, g lection of	smiths, watchmakers, \&c., \&c., col-	800	500
16	Joiner's Work, specimen		400	300
17	Machine wrought Moulding, 100 feet		300	200

Class 4l-Continued.

Miscellaneous.

Ist Prize.	2nd Prize.
300	200

| 300 | 200 |
| :--- | :--- | :--- |
| 300 | 200 |

300
200
500
300
500
3"00
300
200
400
300
200
100
300
200

Class 42-Carriages and Sleighs, and Parts thercof
${ }_{1}$ Sect. Axle, wrought iron
1st Prize
300
30
2 Bent Shafts, half dozen
2nd Prize.

Buggy, double seated 600
Buggy, single seated 500
5 Carriage, two horse, pleasure
1000
6 Carriage, one horse, pleasure
700
300
7 Child's Carriage, (price considered)
8 Dog Curt, single horse
500
300
9 Hubs, two pairs of carriages
300
10 Rims or Felloes, two pairs of carriages.
300
11 Spokes, one dozen machine made carriage
700
12 Sleigh, two horse, pleasure 600
13 Sleigh, one horse, pleasure
300
400
15 Wheels, one pair of carriage (unpainted)

16 Extras

Class 43-Cinemical Mranufactures and Preparations.

Sect. Blacking for shoes
1st Prize
2nd Prize.
600
2 Essential Oils, ussortment of
300
3 Glue, 14 lbs.
300
4 Isinglass, 1 lb ...
700
6 Oils extracted from plants
300
Oils, Linseed and Rape 300
8 Oil, Coal, Shale or Rock
.400

100
100
400
200
200
500
200
200
200
300

10 Extra entries
300

Class 44-Fine Arts.
Soct. Profcssional List-Oil.

1st Prize.	2nd Prizo.
1000	600
1000	600
1000	600
1000	600
1000	600
800	500
700	500
700	300
700	500
700	500
600	400
700	500
500	300
500	300
500	300
500	300
500	300
500	300
700	500
700	500
700	500
700	500
700	500
600	400

Class 44-Continued.
In Water Colours. Sect.
25 Animals, grouped or single
$1 s t$ Prizo
600
2nd Prize. 400
26 Flowers, grouped or single400
27 Landscape, Canadian subject
28 Marine View, Canadian subject600300
400600
29 Miniature Portrait400300
400
30 Original Composition, any other subject 600400
Pencil, Crayon, \&c.
31 Crayon, colored400
300
32 Crayon, plain400300
33 Pencil Drawing 400300
34 Pen and Ink Sketch35 Portrait in pencil400300400
30036 Portrait in crayon400Photography.500
300
37 Ambrotypes, collection of
38 Photograph Portraits, collection of, colored700500
39 Photograph Portraits, collection of, plain 600
7 700400
40 Photograph Landscapes and Views, collection of.500
41 Photograph Portraits in oil.600
40042 Extras
Class 45-Furs and Wearing Apparel:
Class 45-Furs and Wearing Apparel:
Sect. Business Coat
Fur Cap
Fur Sleigh Robe
Gloves and Mits, buckskin
Gloves and Mits, of any other leather
200 100
Gloves and Mits, lined with wool.1st Prize.
2nd Prize.
400
300
300 200300400200200300100
200 100$400 \quad 300$
300 200$300 \quad 200$500300
Class 4G-Groceries and Provisions.
1 Barley, Pot and Pearl1st. Prize.
2nd Prize. 300
200
200
Biscuits, an assortment 400
300
Bottled Fruits, an assortment. 300200
Bottled Pickles, an assortment 300
Buckwheat Flour
Candles, an assortment 300
300
30200
Cayenne Pepper, from Capsicums grown in the Province 200
Chickory, 20 lbs of 300
Gonfectionary, an assortment 400
10 Indian Corn Meal 300
11 Mustard, one jar ${ }^{3} 00$
12 Oatmeal 300
13 Preserves, six kinds 800
14 Preserved Meats, one can 300
15 Sauces for table use, an assortment 300
16 Soap, 28 lbs of 300
17 Soaps, collection of assorted fancy. 400
18 Starch, 12 lbs of Corn200
19 Starch, 12 lbs of Flour 200
20 Starch, 12 lbs of Potatoe 200
21 Sugar, 20 lbs of Beet Root 300
22 Sugar, 20 lbs of Corn Stalk 300
23 Sugar, 20 lbs of Maple. 300
24 Sugar, one loaf of refined 300
25 Tobacco, 14 lbs of Canadian manufactured 300
26 Varnishes, an assortment. 400
27 Wheat Flour 400
200
200100
200300
200
200
200200
200200
290$\cdot 300$100
10010020020020020030028 Extra entries800300
Class 47-Indian Work.
Sect. 1 Bark Canoe
200 200
3 Clothes Basket.
3 Clothes Basket.
200100100

Class 4'7-Continued.

	Class 4\%-Contlaned.	1st Prize.	2nd Prize.
sect.	Deer Skin, dressed	200	100
5	Fruit Basket	200.	100
6	Hand Basket	200	100
7	Indian Cradle...	300	200
8	Mocoasins, one pair of plain	200	100
9	Moccasins, worked with Porcupine quills, one pair of	300	200
10	Moccasins, worked with beads, one pair of........	300	200
11	Paddles, two pairs of	300	200
12	Pipe of Peace.........	200	100
13	Rice, 14 lbs of	300	200
14	Snow Shoes, common size, one pair	300	200
15	Snow Shoes, eight inches long, one pair	300	200
16	Sugar, 14 lbs of..............................	300	200
17	Tobacco Pouch, worked with Porcupine quills.	200	100
18	Extra entries		
Class 48-Ladies Work.			
Sect.	Bonnet of Canadian straw................	$\begin{gathered} \text { 1st Prize. } \\ 400 \end{gathered}$	2nd Prizo. 300 800
2	Braiding:.	400	800
3	Crochet Work	400	800
4	Embroidery in Muslin.	400	300
5	Embroidery in Silk....	400	300
6	Embroidery in Worsted	400	300
7	Gloves, three pairs	300	200
8	Guipure work	400	800
9	Hat of Canadian straw	400	300
10	Knitting	400	300
11	Lace Work	400	300
12	Mittens, three pairs of woollen	300	200
13	Needle work, ornamental	400	300
14	Netring, fancy..	400	300
15	Quilts in crochet	400	300
16	Quilts in knitting	4.00	300
17	Quilts in silk	400	300
18	Quilts in piece work	400	300
19	Shirt, gentleman's.	300	200
20	Socks, three pairs of woollen	300	200
21	Stockings, three pairs of woollen	300	200
22	Tatting	400	300
23	Wax fruit	500	300
24	Was flowers	500	300
25	Worsted work	400	300
26	Worsted work (raised)	400	300
27	Extra entries		
Sect. Class 49-Machincry and Models thercof, Castings and Tools. 1st Prize. ${ }^{\text {2nd Prize. }}$			
Sect.	Castings for General Machinery..........................	1st Prize.	2nd Prize. 400
2	Cast Wheel, spur or bevel, not less than 50 lbs weight ..	400	300
8	Castings for Railways, Rail Road Cars and Locomotives, assortment of.	1000	600
4	Engine, Stenm, of one to four horse power, in operation on the ground.....................	1500	1000
5	Engine, Hot Air, one to four horse power, in operation on the groand	1500	1000
6	Fire Engine.................	1200	800
7	Model, iu metal of Engine, Millwright's work, or Machinery...................................	700	
8	Pump, in metal..............................	400	800
9	Refrigerator (price considered)	400	300
10	Senles, platform	400	300
11	Scales, counter	300	200
12	Smoke Consuming furnace, in operation on the ground	1000	600
13	Turning Lathe........... ..	500	300
14	Valves and Gearing for working steam expansively, either in model or otherwise, principle of working to be the point of competition	1200	800
Tools.			
15	Augurs, assortment of	300	200
16	Augurs, earth	200	100
17	Axes, six narrow..	300	200
18	Brace Bits, set of	300	200
19	Bench Planes, set of.	300	200
20	Blacksmith's Bellows	300	2.00
21	Cooper's Tools, set of	300	200
22	Edge Tools, assortment of	1200	800
23	Moulding Planes and Plows, collection of.	300	200
24	Weaver's Reeds, assortment of	200	100
25	Extra entries		

Prize.
100
100
100
200
100
200
200
100
200
200
200
200
100

300
800
800
300
300
200
-
300
300
. 0
300
300
00
300
200
200
300
300
300
300
00

400
300
600
1000
800
500
300
300
200
300
800
200
100
200
200
2.00

800
100

Class 50-Mctal Worli, Plain and Ormamental, inciuding Stoves.

Sect.	Coal Oil Lamps, an assort
2	Coppersmith's work, an ass
3	Fire Arms, an assortment
4	Files, collection of cast steel..
5	Finishing in Tron, vice work
6	Fire Proof Office Safe.
7	Gas Fittings, an assortment
8	Horse Shoes, set of..
9	Iron Fencing and Gare, ornamental
10	Iron Work from the Hammer, ornamental
11	Iron Work, ornamental cast
12	Locksmith's Work, an assortment
13	Malleable Iron from the ore.
14	Malleable Iron from scrap iron
15	Nails, 20 lbs of pressed
16	Nails, 20 lbs of cut
17	Ornamental Fencings for Burial Plots in Cemeteries
18	Plumber's Work, an assorrment.
19	Screws and Bolts, an assortment
20	Sheet Brass Work, an assortment
21	Tinsmith's Work, an assortment.
22	Tinsmith's Lacquered Work, an assortment
23	Wire Work, an assortment.
	Stoves.
24	Cooking Stove, for wood, with furniture.
25	Cooking Stove, for coal, with furniture..
26	Hall Stove, for wood
27	Hall Stove, for coal...
28	Parlour Stove, for wood.
29	Parlour Stove, for coal.
30	Parlour Grate...
81	Extra entries

Class 51-MIisccllancous.

Sect.	
1	Brushes, an assortment
2	Combs, an assortment.
3	Model of a Steam Vessel
4	Model of a Sailing Vesse
5	Extra entries.

Cless 52-Musical Instimments.

Class 53-Natural Historye

${ }_{1}$ Sect. Brads-Collection of stuffed Birds of Cacada, classified, and common and technical names attnched.technical names attachedtechnical names attachedand common and technical names attached.also, a portion of the tree cut in sections, showing the bark also, a portion of the tree cut in sections, showing the bark

300
300
200

- 200

200
200
300

Ist Prize.	2nd Prize.	
7	00	500
600	4	00
1500	800	
10	00	600
10	00	600
3	00	200

500
400
800
600
600
200
300
800
300
200
200
400
400
100
400
300
300
300
300
300
300
300
400
300
300
300
300
800
400
Class 54-Paper, Printing, Bookbinding, and their Materials and Tools.
Ist Prize.
500
Ist Prize.
500 2ad Prize. 2ad Prize. ${ }_{1}$ Sect. Bookbinding, (blank-book) ${ }_{1}$ Sect. Bookbinding, (blank-book) 300 300
3 Bookbinders, leather, \&c., assortment
3 Bookbinders, leather, \&c., assortment
3 Bookbinders, leather, \&c., assortment 300 300
4 Cartridge Paper
4 Cartridge Paper
4 Cartridge Paper 100
300 100
300 100
300
5 Letterpress Printing, plain..........
5 Letterpress Printing, plain..........
5 Letterpress Printing, plain.......... 300 300
7 Paper Hangings, (Canadian paper,) grounded, one dozen rolls.
7 Paper Hangings, (Canadian paper,) grounded, one dozen rolls.
7 Paper Hangings, (Canadian paper,) grounded, one dozen rolls. 300
200 300
200 300
200
Paper manufactured from straw, an assortment.
Paper manufactured from straw, an assortment.
Paper manufactured from straw, an assortment. 400
300 400
300
10 Printing Parer, one ream
10 Printing Parer, one ream
10 Printing Parer, one ream 100 100
12 Printing Type, an assortment
12 Printing Type, an assortment
12 Printing Type, an assortment 300 300
13 Wrapping Paper, one ream of stou
13 Wrapping Paper, one ream of stou
13 Wrapping Paper, one ream of stou 200 200
16 Extra entries
16 Extra entries
16 Extra entries
Class 55-Pottery, Building and Paving Miaterials.
Sect. Bricks for building purposes, one dozen, hollow
1st Prize.
2 Building and Flagging Stones, Canadian, collection of. 500
3 Filterer for water 300
4 Pottery, an assortment 800
5 Sewerage Pipes, stoneware, assortment of sizes 600
6 Stoneware, an assortment. 600
7 Slates for roofing. 500
Extra entries.
Class 56-Sadille, Engine Hose and Trunk Mrakers' Work, Leather, \&c
Sect
2nd Prize.300600200400400400
1st Prize.
500
0
1st Prize.
500
0
1 Engine Hose and Joints, $2 \frac{3}{2}$ inches diameter, 50 feet of copper rivetted.
2 Harness, set of double carriage. 600300
3 Harness, set of single carriage
4 Harness, set of team 500
5 Horse Collars, six assorted carriage and team 300
6 Saddle, Ladies' full quilted 600
7 Saddle, Ladies' quilted safe 400
8 Saddle, Gentlemen's full quilted. 600
9 Saddle, Gentlemen's plain shafloe. 400
10 Trunk, solid leather 500
11 Trunk, millboard, leather covered 500
12 Trunk, wood, leather covered 300
13 Valises, an assortment 300
14 Whips, an assortment. 500
15 Whip Thongs, an assortment. 300
16 Hames, four pairs of iron carriage or gig. 300
17 Hames, three pairs of iron cased team or cart. 300
18 Hames, six pairs of wooden team. 300
19 Saddle Tree, Ladies' 300
20 Saddle Tree, Gentlemen's 300 300
Leather.
21 Belt Leather, 30 lbs 300
22 Brown Strap and Bridle, one side of each 00
23 Carriage Cover, two skins. 300
24 Deer skins, dressed 00
25 Harness Leather, two sides300
26 Hog skins, for saddles, three. 300
27 Lacing Leather, one hide 200
28 Patent Leather, for carriage or harness work, 20 feet 500
29 Skirting for saddles, two sides. 300
30 Extra entries
and Prize.300400300300200400300400
300300300200200300200200200200200200
200
200200100200200100300
200
Class 57-Shoe and Boot Makers' Work, Leather, dec
6 Wellington Boots, one pair of Gentlemen's, sewed2007 Boot and Shoemakers tools, an assortasent200300
8 Boot and Shoemakers lasts and trees, an assortmentShoe Pegs, an assortment.4.00
6.00
400

Leather.

Class 59-Forcign Manuractures.

Foreign Articles will be admitted for exhibition only; but Certificates will be awarded to any article of worth or peculiar merit.

NOTICES OF BOOKS.

Popular Physical Geology, by J. Beeve Juiees, M.A. F.R.S., M.R.I.A. London: Reeve \& Co. Toronto: Rollo \& Adam.

The illustrations of this excellent little book are admirable. The sketches were made by Mr. G. V. Donoyer, who unites the skill of the artist with the knowledge of the geologist. Mr. Donoyer was the colleague of Mr . Jukes on the Irish Geological Survey. This is not a recent work, it dates from 1853; buit the illustrations are widely different from those so frequently met with in works on Popular Geology, that we are induced to recommend it to students as an excellent elementary introduction to the noble science of Geology.

Life in its Lower, Intermediate, and Irigher Forms, or Manifcstations of the Divine wisdom in the Natural History of Animals.-By Prilile Gosse, F.R.S. New York: Robert Carter \& Brother. Toronto : Rollo \& Adam.
Mr. Gosse is well known in Canada; his Canadian Naturalist is familiar to all our students of nature. The matter of his "Life" is excellent, but the manner in which it has been produced by the American publisher, is not in keeping with the attractive nature of the subject. It has one recommendation-it is cheap, and consequently easily accessible. We give a few paragraphs from the author's introduction:-
" ' The works of the Lord are great;' but we must not estimate this greatness by their actual dimensions;
else a man would be of less importance than a hippopotamus, and the Bass Rock would be immensely more valuable than' either. It is a greatness not measurable by rule and line; not to be determined by bulk and Weight; it is to be estimated by far other qualities,-by the relative importance which the objects bear to each other, by the variety and complexity of their parts, by the elaborateness with which they are constructed, by their fitness for the purposes which they are destined to subserve, and especially by the degree in which they shew forth the power, wisdom, skill, and goodness of Him who made them for His own glory. Many of the animals of which we are about to speak are so minute that the unassisted eye takes no cognizance of their presence; jet most of these,-perhaps all, if we were able to investigate them,-are so curiously fashioned, so elaborately constructed, as to deserve to be included in the category of those works which the adoring Psalmist eays are great.

We propose in this volume to describe the various phases of animal life, commencing at the foot of the ecale, where we catch the first glimmering of the vital spark, and tracing it step by step upwards through its various developments and clanges, its forms and functions. But what is clpe? There is a mystery couched under that little word which all the researches of philosophers has not been able to solve. Science, with the experience of ages, with all the appliances of art, and with all the persevering ingenuity and skill that could be brought to bear upon it, has ardently laboured to lift the veil; but philosophy, and science, and art, stand abashed before the problem, and confess it a mystery still. The phenomena, the propertics of life, are readily observable. We take a bird in our hands; a few moments ago it was full of energy and animation; it shook its little wings as it hopped from perch to perch; its eyes glanced brightly, and its throat quivered as it poured out the thrilling song which delighted us. Now the voice has ceased, the eye is dim, the limbs are stiffening, and we know that it will move no more. Chemical changes have already begun to operate upon its organs; decomposition is doing its work, and soon the beautiful little bird will be a heap of dust. We say that its life has gone; but what is it that has gone? If we put the body in the most delicate balance, it weighs not a grain less than when it was alive; if we measure it, its dimensions are precisely the same; the scalpel of the anatomist finds all the constituent parts that made the living being; and what that mighty principle is, the loss of which has wrought such a change, alike eludes research and baffes conjecture. We are compelled here to recognize the Great First Cause, and to say, 'In Him we live, and move, and have our being.'"

ON SOME POINTS IN AMERICAN GEOLOGY.
dy t. bterry hont, m.a., f.r.s., of tile geoloaical survet of oanada.
Continued from page 137.
The existence of great dislocations in the Appalachian chain is amply illustrated in the sections of Prof. Rogers, and in those given by Saffordin Eastern Tennessee, where by the aid of fossils it becomes comparatively easy to trace them. See the Map accompanying his Geological Reconnaissance of Tennessee, 1855 ; where the magnesian limestones of formation IV, are shown to be not only brought up on the east against the Upper Silurian and Devonian,
but even to overlap the black shales at the base of the Carboniferous system. It is remarkable to find that as early as 1822, the idea of a great dislocation of this nature in Eastern New York was maintained by Mr . D. H. Barnes in his description of Canaan Mountain. [American Journal of Science, (1) v. pp. 15-18.

To the southeast of this great fault in Canada we have as yet ne evidence of Lower Silurian strata higher than those of the Quebec group. At the eastern base of the Green Mts. we find limestones of upper Silurian and Devonian age reposing unconformably upon the altered strata of the Quebec group, themselves also having undergone more or less alteration. Immediately succeeding are the chiastolite and mica slates of Lake St. Francis, which as we have long since stated are probably also of Upper Silurian age.

The White Monntains as we suggested in 1849, (Am.Jour.Sci.(2) ix. 19) are probably, in partat least, of Devonian age, and are the representatives of the of the 7,000 feet of Devonian sandstone observed by Sir William Logan in Gaspé. Mr. J. P. Lesley has more recently, after an examination of the White Mts. shown that they possess a synclinal structure, and has adduced many reasons for regarding them as of Devonian age. (Amer. Mining Journal, January 1861, p. 99.)
It will be seen from what has been previovsly said that we look upon the 1st and 2nd divisions described by Mr. Safford in Eastern Tennessee, as corresponding to the hypozoic series of Rogers and to the Green Mountain gneissic formation, which instead of being beneath the Silurian series, is really a portion of the Quebec group more or less metamorphosed, so that we recognize nothing in New England or southeastern Canada lower than the Silurian system, nor do we at present see any evidence of older strata, such as Laurentian or Huronian, in any part of the Appalachian chain. The general conclusions which we have previously expressed with regard to the lithological, chemical and mineral relations of the Green Mts. rocks remain unchanged. (Am. Journal of Science (2) ix. 12.)

The remarkable parallelism between the rocks of Western Scotland and Canada has already been shown in the existence of the Laurentian, and Cambrian (Huronian) systems, over-laid br quartzites containing Scolithus, to which succeed limestones containing a numerous fauna, identified by Mr. Salter with that of the Chazy limestone. These strata, with an eastward dip, are covered by other quartzites and limestones, to which succeeds the great gneissoid formation of the western Highlands, consisting of feldspathic, chloritic, mienceous, and talcose schists resembling closely the gneissoid rocks of the Green Mts. and including the chromiferous ophiolites of Perthshire, Banff and the Shetland Isles.

This gneissoid series was by Prof. Nichol suggested to be the older or Laurentian gneiss brought up by a dislocation on the east of the Silurian limestones, but Sir Roderick Murchison, with Messrs. Ramsay and Harkness, has shown not only from the differences in lithological character, but from actual sections, that the eastern gneissoid series is made up of altered strata newer than the Silurian limestones.* Thus in geological structure and age, not less than in lithological and mineralogical characters, the rocks of the western Highlands are the counterparts of the Laurentian and Silurian gneiss formations, as seen

[^2]in the Laurentides and Adirondacks, and in the Green Mts. The same parallelism may be exteaded to Scandinavia, (where Kjerulf and Forbes have shown much of the crystaliine gaeiss to be of Silurian age, marking as it would seem the outer edge of a vast Silurian basin, which may be followed in the other direction across the Atlantic to the Gulf of Mexico. We also remark in Great Britain as in America, that whereas the northern outcrop of the palæozoic basin offers at its base only a series of quartzose sandstones reposing upon the Laurentian system and characterized by fucoids and Scolithus, we find farther south in England an immense development of shales, sandstones and conglomerates, which form the base of the Silurian system and correspond to the Primoidial zone and the Quebec group.

We have said that upon Lakes Huron and Superior the sandstones of the upper copper-bearing rociss are the equivalents of the Quebec group. The clear exposition of the question by Mr. J. D. Whitney in the Am. Mining Jour. for 1860 (p. 435) left little more to be said, but the sections made last year by Mr. Alex. Murray of the Canada Geological Survey place the matter beyond all doubt. On Campment d'Ours, a small island near St. Joseph's, the sandstones of Sault St. Mary are seen reposing horizontally on the upturned edges of the Huronian rocks, and overlaid by limestones which contain in abundance the fossils of the Black River and Birdseye divisions. The only fossil as yet found in these sandstones is a single Lingula from near Sault St, Mary, which may be either of Potsdam or Chazy age. The sandstones in question form the upper member of a series of strata which on Lake Superior attain a thickuess of several thousand feet, and passing downwards we find a succession of limestones, marls and argillaceous sandstones, insterstratified with greenstone and amygdaloid, and followed by about 2000 feet of bluish slates and sandstones, with cherty beds containing grains of anthracite, the whole underlaid by conglomerates, and reposing unconformably upon rocks of the Huronian system. The presence of such slates is the more significant from the occurrence already mentioned of fragments of green and black slates in the coarse grained sandstones near the base of the Potsdam, at Hemmingfurd mountain, showing the existence of argillaceous shales before the deposition of the quartzites of the Potsdam; these are perhaps more recent than the lowest shales of the Primordial zone, to which however, palaontologieally they appear to belong.
This Quebec group is of considerable economic interest inasmuch as it is the great metaliferous formation of North America. To it belongs the gold which is found along the Appalachian chain from Canadiu to Georgia, together with lend, zine, copper, silver, cobalt, nickel, chrome and titanium. I have long since called attention to the constant association of the latter metals, particularly chrome and nickel, with the ophiolites and other magnesian rocks of this series, while they are wanting in similar rocks of Laurentian age. (American Journal of Science (2) xxvi. 237.)

The immense deposits of copper ore in Eastern Tennessee, and the similar ones in Lower Canada, both of which are for the most parts in beds subordinate to the stratification, belong to this group. The lead, copper, zinc, cobalt, and nickel of Missouri, and the copper of Lake Superior, also occur in rocks of the same age, which appears to havo been preeminently the metalliferous period.

The metals of the Quebee group seem to have been originally brought to the surface in watery solution, from which we conceive them to have been separated by the reducing agency of organic matter in the form of sulphurets, or in the native state, and mingled with the contemporaneous sediments, where they occur in beds, in disseminated grains forming fahilbands, or as at Acton, are the cementing material of conglomerates. During the subsequent metamorphism of the strata these metallic matters being taken into solution by olkaline carbonates or sulphurets, have been redeposited in fissures in the metalliferous strata, forming veins, or ascending to higher beds, have given rise to metalliferous veins in strata not themselves metalliferous. Such we conceive to be in a few words the theory of metallic deposits; they belong to a period when the primal sediments were yet impregnated with metallic compounds which were soluble in the permeating waters. The metals of the sedimentary rocks are now however for the greater part in the form of insoluble sulphurets, so tbat we have only traces of them in a few mineral springs, which serve to show the agencies once at work in the sediments and waters of the earth's crust. The present occurrence of these metals in waters which are alkaline from the presence of carbonate of soda, is as we have elsewhere pointed out, of great significance when taken in connection with the metalliferous character of certain dolomities, which as we have shown, probably owe their origin to the action of similar alkaline springs upon basins of sea water.
The intervention of intense heat, sublimation and similar hypotheses to explain the origin of metallic ores, we conceive to be uncalled for. The solvent powers of solutions of alkaline carbonates, chlorids and sulphurets at elevated temperatures, taken in connection with the notions above enunciated, and with De Senarmont's and Daubrée's beautiful experiments on the crystalization of certain mineral species in the moist way, will suffice to form the basis of a satisfactory theory of metallic deposits.*
The sediments of the carboniferous period, like those of earlier formations, exhibit towards the east a great amount of coarse sediments, evidently derived from Ω wasting continent, and are nearly destitute of calcareous beds. In Nova Scotia Sir Willian Logan found by careful measurement, 14,000 feet of carboniferous strata; and Professor Rogers gives their thickness in Pensylvania as 8000 feet, including at the base 1400 feet of a conglomerate, which disappears before reaching the Mississipi. In Missouri Prof. Swallow finds but 640 feet of carboniferous strata, and in Iowa, their thickness is still less, the sediments composing them being at the same time of finer materials. In fact, as Mr. Hall remarks throughout the whole paloozzoic period we observe a greiter accumulation and a coarser character of sediments alongst the line of the Apalachian chain, with a gradual thinning westward, and a deposition of finer and farther transported matter in that direction. To the west, as this shore-derived material diminishes in volume, the amount of calcareous matter rapidly augments. Mr. Hall concludes therefore that the coal-measure sediments were driven westward into an ocean, where there already existed a marine fauna. At length, the marine limestones predominating, the coal measures come to be of little importance, and we have a great limestone

[^3]formation of marine origin, which in the Rocky Mountains and New Mexico occupies the horizon of the coal, and itself unaltered, rests on crystaline strata like those of the Appalachian range. In truth, Mr. Hall observes, the carboniferous limestone is one of the most extensive marine formations of the continent, and is characterized over a much greater area by its marine fauna than by its terrestial vegetation.
"The accumulations of the coul period were the last that gave form and contour to the eastern side of our continent, from the Gulf of St. Lawrence to the Gulf of Mexico; and as we have shown that the great sedimentary depusits of successive periods have followed essentially the same course, parallel to the mountain ranges, we naturally inquire : What influence this accumulation has had upon the typography of our country, and whether the present line of mountain elevation from north-east to south-west is in any way connected with the original accumulation of sediments?" (Hall's Introduction, p. 66.)
The total thickness of the palæozoic strata along the Appalachian chain is about 40,000 feet, while the same formations in the Mississippi valley, including the carboniferous limestone, which is wanting in the east, have according to Mr. Hall, a thickness of scarcely 4000 feet. * In many places in this valley we find the Silurian formations exposed, exhibiting hills of 1000 feet, made up of horizontal strata, with the Potsdam sandstone for their base, and capped by the Niagara limestone, while the same strata in the Appalachians would give to them sixteen times that thickness. Still, as Mr. Hall remarks, we have there no mcuntain of corresponding altitude, that is to say, none whose height like those of the Mississippi valley, equals the actual vertical thickness of the strata comprising them. In the west there has been little or no disturbance, and the highest elevations mark essentially the actual thickness of the strata comprising them. In the disturbed regions of the east on the contrary, though we can prove that certain formations of known thickness are included in the mountains, the height of these is never equal to the aggregate amount of tho formations. "We thus find that in a country not mountainous, the elevations correspond to the thickness of the strata, while in a mountainous country, where the strata are immensely thicker, the mountain heights bear no comparative proportion to the thickness of the strata." "While the horizontal strata give their whole elevation to the highest parts of the plain, we find the same beds folded and contorted in the mountain region, and giving to the mountain elevations not one-sixth of their actual measurement."

Both in the east and west, the valleys exhibit the lower strata of the palæozoic series, and it is evident that had the eastern region been elevated without folding of the strata, so as to make the base of the series correspond nearly with the sea level, as in the Mississippi valley, the mountains exposed between there valleys, and including the whole palæozoic series, would have a height of 40,000 feet ; so that the mountains evidently correspond to depressions of the surface, which have carried down the bottom

[^4]rocks below the level at which we meet them in the valleys. In other words, the synclinal structure of these mountains depends apon an actual subsidence of the strata along certain lines.
"We have been taught to believe that mountains are produced by upheaval, folding and plication of the strata, and that from some unexplained cause these lines of elevation extend along certain directions, gradually dying out on either side, and subsiding at the extremities. We have, however, here shown that the line of the Appalachian chain is the line of the greatest accumulation of sediments, and that this great mountain barrier is due to original deposition of materials, and not to any subsequent forces breaking up or disturbing the strata of which it is composed."
We have given Mr. Hall's reasonings on this subject, for the most part in his own words, and with some detail, for we conceive that the views which he is here urging are of the highest importance to a correct understanding of the theory of mountains. In the Canadian Naturalist for Dec. 1859, p. 425, and in the American Journal of Science (2) $\mathrm{xxx}, 137$ will be found an allusion to the rival theories of upheaval and accumulation as applied to volcanic mountains, the discussion between which we conceive to be settled in favour of the latter theory by the reasonings and observations of Constant-Prevost, Scrope and Lyell. A similar view applied to mountain chains like those of the Alps, Pyrennees and Alleghanies, which are made up of aqueous sediments, has been imposed upon the world by the authority of Humboldt, Von Buch and Elie de Beaumont, with scarcely a protest. Buffon, it is true, when he explained the formation of continents by the slow accumulation of detritus beneath the ocean, conceived that the irregular action of the water would give rise to great banks or ridges of sediments, which when raised above the waves must assume the form of mountains; later, in 1832, we find De Montlosier protesting against the elevation hypothesis of Von Buch and maintaining that great the mountain chains of Europe are but the rembants of continental elevations which have been cut axiay by denudation, and that the foldings and inversions to be met with in the structure of mountains are to be looked upon only as local and accidental.
In 1856 Mr. J. P. Lesley published a little volume entitled Coal and its Topography, (12 mo . pp. 224,) in the second part of which he has, in a few brilliant and profound chapters, discussed the principles of topographical science with the pen of a master. Here he tells us that the mountain lies at the base of all topographical geology. Continents are but congeries of mountains, or rather the latter are but fragments of contineuts, separated by valleys which represent the absence or removal of mountain land (p.126]; and again "mountains terminate where the rocks thin out," (p. 144.)

The arrangement of the sedimentary strata of which mountains are composed may be either horizontal, synclinal, anticlinal or vertical, but from the greater action of diluvial forces upon anticlinals in disturbed strata it results that great mountain chains are generally synclinal in their structure, being in fact bat fragments of the upper portion of the earth's crust, lying in synclinals, and thuspreserved from the destruction and translation which have exposed the lower stratain the anticlinal valleys, leaving the intermediate mountains capped with lower strata. The effects of those great and mysterious denuding forces which have so powerfully modified the surface of the
globe become less apparent as we approach the equatorial regions, and accordingly we find that in the southern portions of the Appalachian chain many of the anticlinal folds have escaped erosion, and appear as hills of an anticlinal structure. The same thing is occasionally met with further north; thus Sutton mountain in Canada, lying between two anticlinal valleys, has an anticlinal centre, with two synclinals on its opposite slopes. Its form appears to result from three anticlinals, the middie one of which has to a great extent escaped denudation.
'The error of the prevailing ideas upon the nature of mountain chains may be traced to the notion that a disturbed condition of the rocky strata is not only essential to the structure of a mountain, but an evidence of its having been formed by local upheaval, and the great merit of De Montlosier and Lesley, (the latter altogether iodependently,) is to have seen that the upheaval has been in all cases not local but continental, and that the disturbance so often seen in the strata is neither dependent upon elevation nor essential to the formation of a mountain. The synclinal structure of portions of the Alpe, previously observed by Studer and others, has been beautifully illustrated by Ruskin in the fourth volume of his Modern Painters, and in a late review of Alpine geology we have endeavoured to show that the Alps, as a whole, have likewise a synclinal structure. (American Journal of Science, xxix. 118.)
(To be concluded in our next.)

VARNISHES.*

The following Recipes for the preparation of Var2nishes will be found useful to a large class of the readers of this Journal. It is proposed, in subsequent numbers, to introduce under the beadings Cements, Alloys, Plastering Glues, Papers, Bronzing, Polishes, Bookbinders' Recipes, Gilding, Inks, Wases, \&c., \&c., a variety of practical information, which will no doubt be appreciated by Mechanics and others engaged in different branches of industry.

Preparations of Lac.-Stick-lac consists of twigs of several kinds of trees encrusted Ω resinous matter, produced by the puncture of an insect called the Cocus lacca. This, triturated with water, and dried, forms seed-lac. The seed-lac, when heated and pressed in cotton bags, forms shell-lac. Lac dye is the coloring matter extracted from stick-lac by water, and evaporated to dryness, with the addition of earthy matters, and formed into square cakes. Seed-lac and shell-lac are chiefly used in varnishes, dissolved in rectified epirits, or rectified wond naphtha. The alcoholic solution is rendered paler, so that it may be used for polishing ilght colored woods, by digesting it in the sun, or near a fire, for two or three weeks, with good animal charcoal, and then filtering it through paper in a funnel heated with hot water. Shell-lac may be bleached by dissolving it in a solution of potash, or soda, and passing chlorine into the solution. The precipitated lao is collected, and well washed. Kastner directs 3 parts of carbonate of potash to be dissolved in 24 of water, and 3 of lime added, and

[^5]the whole digested in a close vessel for twenty-four hours. The clear liquor is poured off, and boiled with 4 parts of shell-lac. When cold, dilute with 4 times its bulk of water and filter ; then add chloride of lime, and afterwards diluted muriatic acid. With these preliminary remarks we come now to the lacquers, or varnishes.

The Famous Brilliant Irench Varnish for Boots and shoes.-T'ake $\frac{3}{3}$ of a pint of spirits of wine; 5 pints white wine ; $\frac{1}{2}$ pound of powdered gum senegal ; 6 oz . loaf sugar ; 2 oz. powdered galle ; 4oz. green copperas. Dissolve the sugar and gam in the wine. When dissolved, strain; then pat it on a slow fire, being careful not to let it boil. In this state put in the galls, copperas, and the alcohol, stirring it well for five minutes. Then set off, and when nearly cool strain through flannel, and bottle for use. It is applied with a pencil brush. If not sufficiently black a little sulphate of iron, and half a pint of a strong decoction of logwood, may be added, with is oz. pearl ash.

Black Farnish.-Take any varnish, of the class you wish, 16 parts; lamblack 2 parts. Grind the black in a small quantity of the varnish, then mix it with the remainder.

Calinet-makers' Varnish.-Pale shell-lac 700 parts; mastic 65 parts; strongest alcohol 1000 parts. Dissolve. Dilute with alcohol.

Callott's Soft Etching Tarnish.-Linseed oil 8 parts ; benzoin 1 part; whito wax 1 part. Melt and keep it heated until reduced to two thirds.

Pate Carriage Tarnish.-Copal 32 parts; pale oil 80 parts. Fuse and boil until stringy; then add dried white copperas 1 part; litharge 1 part. Boil again, then cool a little, and mix in spirits of turpentine 150 parts. Strain. While making the foregoing, take of gum anime 32 parts; pale oil 80 parts; dried sugar of lead 1 part; litharge 1 part; spirits of turpentine 170 parts. Pursue the same treatment as before and mix the two compositions while hot.

Second quality of Carriage Varnish.-Take of gum animé 32 parts; oil 100 parts ; spirits of turpentine 150 parts; litharge 1 part; dried sugar of lead 1 part; dried copperas 1 part. Proceed as above.

Copal Varnish.-Copal 30 parts; drying oil 25 parts; spirits of turpentine 50 parts. Put the copal into a vessel capable of holding 200 parts, and fuse it as quickly as possible, then add the oil, previously heated to nearly the boiling point. Mix well, then cool a. little, and add the spirit of turpentine; again mix well, cover up until the temperature has fallen to 140° Fah. ; then strain.

To Dissolve Copal in Spirit.-Take the copal and expose it in a vessel formed like a colander to the front of a fire, and receive the drops of melted gum in a basin of cold water; then well dry them in a temperature of about 95° Fah. By treating copal in this way it aequires the property of dissolving in alcohol.

Black Copal Varnish.-'Take lamp-black or ivoryblack, in fine powder, and mix it with the varnish.

Blue Copal Varnish. -Indigo, Prussian blue, blue verditer, or ultra-marine. These substances must be powdered fine. Proceed as before.

Fine Pale Copal Farnish.-Pale African copal 1 part. Fuse, then add hot pale oil 2 parts. Boil until the mixtare is stringy, then cool a little, and add 3 parts of pale spirits of turpentine. Mix woll.

Flaxen Grey Copal Varnish.-Ceruse, which forms the ground of the paste, mixed with a small quantity of Cologne earth, as much English red, or carminated lake, and a particle of Prussian blue, and color the varnish therewith.

Green Copal Varnish.-Verdigris, crystallized verdigris, compound green (a mixture of yellow and blue). The first two require a mixture of white in proper proportions from a fourth to two-thirds according to the tint intended to be given. The white lead used for this purpose is ceruse, or the white oxide of lead, or.Spanish white. Proceed as before.

Improved Copal Varnish.-Caoutchoucine (white and scentless), strong alcohol, equal parts; copal in the proportion of two pounds to a gallon. Digest in a close vessel, without heat, for one week.

Pearl Grey Copal Varnish.-White and black; white and blue; for example, ceruse and lamp-black; ceruse and indigo. Mix them with the varnish, according to the tint required.

Parple Copal Varnish.-Prussian blue and vermillion, or any other blue and red; then proceed as before.

Red Copal Varnish.-1. Vermilion, red oxide of lead (minium), red ochre, or Prussian red, de., and proceed as before.
2. Dragons's blood, brick red, or Venetian red, \&c., and prooceed as before.

Fiolet Copal Farnish.-Vermillion, blue, white, in proportions required to color the varaish.

White Copal Farnish.-Copal 16 parts; melt, and add hot linseed oil 8 parts; spirits of turpentine 15 parts ; finest white lead to color.

Yellow Copal Varnish. - Yellow axide of lead, or Naples and Montpelier, both reduced to impalpable powder. These yellows are hurt by contact with iron or steel. In mixing them, therefore, a horn spatula, with a glass mortar and pestle, must be employed. Or gum gutte, yellow ochre, or Dutch pink, according to the nature and tone of the color to be imitated, and proceed as before.

Mastic Varnish.-Gum Mastic 5 pounds ; spirits of turpentine 2 gallons. Mix with a moderate heat (carefully applied), in a close vessel, then add pale turpentine varnish 3 pints. Mix well.

Another.-Mastic 1 pnund; white wax 1 ounce; oil of turpentine 1 gallon. Reduce the was and mastic small, then digest in a close vessel, with heat, until dissolved.

Common Oil Farnist.-Resin 4 pounds; genuine beeswax $\frac{1}{2}$ pound; boiled oil 1 gallon. Mix with heat, then add spirits of turpentine 2 quarts.

Turpontine Varmish,-Resin 1 part; boiled oil 1 part. Melt, then add turpentine 2 parts. Mix well.

White Hard Spirit Varnish.-Gum sandarach 21 pounds; alcohol (65 op .) 1 gallon. Place them in a strong, well closed vessel, and apply the heat of warm water, with oceasional agitation, until dissolved; then add pale tarpentine varnish 1 pint. Mix well, and let the whole rest for twenty-four hours, when it will be ready for use.

White Spirit Varnish.-Strongestalcohol 100 parts; sandarach 25 parts; tears mastic 6 parts; clemi 's parts; Venice turpentine 3 parts. Dissolve in a closely corked vessel.

Tarnish for Toys.-Copal 7 parts; mastic 1 part; Venice turpentine $\frac{1}{2}$ part ; strongest alcohol 11 parts. Dissolve the copal first, with the aid of a little camphor, then add the mastic, \&e., and thin with alcohol, as required.
To Clean Varnish.-Use a ley of potash, or soda, mised with a little powdered chalk. Do not make the liquor too strong of the alkali.
Te Polish Farnish.-Take 2 oz . powdered tripoli, put in an earthen pot, with water to cover it; then take a piece of white flannel, lay it over a piece of cork or rubber, and proceed to polish the varnish, always wetting it with the tripoli and water. It will be known when the process is finished by wiping a part of the work with a sponge, and observing whether there is a fair even gloss. When this is the case, take a bit of mutton suet and fine flour, and clean the work.

Varnish for Harness.-Take $\frac{2}{2}$ pound of Indiarubber; one gallon of spirit of turpentine; dissolve enough to make into a jelly; then take equal quantities of good hot linseed oil, and the above mixture. Incorporite them well on a slow fire, and it is fit for use.
A Farnish for Fastening the Leather on Top Rollers in Factories.-Dissolve 23.0 of of gum arabic in water; and a like amount of isinglass dissolved in brandy, and it is fit tor use.
A Farnish to Preserve Glass from the Rays of the Sun.-Reduce a quantity of gum tragacanth to fine powder, and let it dissolve for twenty-four hours in white of eggs well heat up; then rub it gently on the glass with a brush.
A fine Black Tarnish for Coaches and Tron Work.Bitumen of Palestine 2 oz . ; resin 2 oz .; umber 12 oz, Melt them separately, and then mix together over a moderate fire. 'Then pour upon them, while on the fire, 6 oz . clear boiled linseed oil, stirring the whole from time to time. Take it off the fire, and when moderately cool pour in 12 oz . of essence of turpentine.

Varnish for Clocl Paces.-Spirits of wine 1 pint; divide it into four parts; mix one part with $\frac{1}{2}$ an oz. of gum mastic in a bottle by itself; one part of spirit and $\frac{2}{2}$ oz. gum sandarach in another bottle; and one part spirit and 군 oz. whitest part of gum benzoin. Mix and temper them to suit; if too thick add spirit; if too thin a little mastic ; if too soft some sandarach or benzjin. When abouteto use it warm the silver plate before the fire, and with a flat camel-hair pencil stroke it over till no white streaks appear; this will preserve it for many years.

MISCEILANEOUS.

Icchand Cod Fishories

Upwards of one hundred small vessels, employing about 1,200 or 1,500 men, are annually fitted out at Dunkirk for these fisheries, the value of the produce of which is estimated at $£ 120,000$ to $£ 160,000$. It is principally used for home consumption, and Paris is the chief mart. What is unsold at the approach of a new fishing season, is dried and shipped to the colonies-and also to the Portuguese ports, the French Goveroment accord a premium of from 12 to 20 francs per 100 kilos, the amount varying according to distinction.

The Oreide of Gold.

This substance, of which so many articles called Jewellery are now made, is simply an alloy of copper and zinc-a brass of a peculiar color resembling "jeweler's gold" of about 16 carats fine-copper and gold mixture. It is the invention of MM. Mourier and Vallent-two Frenchmen. It was pateuted in France in December, 1854, and in the United States in March, 1857. Some of our daily papers have lately referred to this substance as if it were some new discovery; wherens, if they had consulted the pages of the Scientific American, they would have found it described in full on page 308, Vol. XII., old series, (June, 1857). It is composed of 100 parts (by weight) of pure copper, 17 of zinc, 6 of common magnesia, 3.60 salammoniac, 1,80 quick lime and 9 of crude tartar. The copper is first melted in a crucible, then the magnesia added, then the salammoniac, lime and tartar separately, and in powder. These are kept from contact with the air, and all well stirred for about 20 minutes, until they are incorporated together. The zinc is now added in strips, which are thrust under the scurf formed on the top of the crucible. The mass is now stirred, the lid put on the crucible and its contents kept fused for about 25 minutes; after which the crucible is opened, the slag skimmed carefully from the surface, then the molten alloy is poured out into ingot molds if it is required to be rolled, or into iron rolls if designed for castings. When designed for works of art, however, it is best to cast it into iogot form first, then melt it in a furnace and cast it. This alloy is very benutiful, an d well deserves the name of " oreide of gold," as it greatly resembles the precious metal. It is very ductile, and may be rolled into very thin leaf; but it is nearly as easily tarnished as common brass.-Scientific American.

The WJaling Eusiness*

An article in a recent jssue of the Boston Commercial Bullctin, contains some very interesting information on this subject. For many years New Bedford, Mass., has been known, not only as the greatest whaling port in the United States, but the whole world; it is now, however, falling fast from its former oily greatness. In 1857 there were 329 vessels of 111,364 tons belonging to New Bedford; but at the present time there are only 291 vessels of 98,760 tons, Ω decrease of 38 vessels and 12,604 tons. This reduction has not been caused by losses of ships at sea, but by their withdrawal from the trade, as the business has been very unprofitable for the past four years. The price of whale oil has been greatly affected by substitutes, especially coal oil, and the more general adoption of gas in aities and large villages. In 1860, the price of whale oil was only 50 cents per gallon, while in 1857 it was 73 cents, and this reduction of price was accompanied with another blow at whaling, namely, a very limited catch of whales. In 1857, the average catch was 800 barrels; last year it was only 500 barrels.
One-half of the whaling fleet is devoted to the sperm whale fishery, the other half to the right whale fishery. One-half of all the sperm oil obtained goes to England, end amounts to about 75,5.00 barreis annually, valued $\$ 81,500,000$. The right whale produces the whalebone, most of which goes to Germany; the annual value of it is $\$ 1,000,000$ The amount invested in the whaling trade in new. Bedford is $\$ 10,000,000$. Many of the merchants in that place are now looking around to see if they cannot enter upon a more profitable business. The total whaling fleet of the United States now comprises 514 vessels of 158,476 tons. There has been a total decrease of 141 ships in four years. In 1858 two hundred ships went to the North Pacific for whale oil ; it
is expected that only one hundred will go this year. 1bid.

Watermproof Cloth.

The Paris Monicur Industriel states that 20,000 tunics rendered water-proof and yet porous, were served out to the French army during the late war with Russia. They were prepared in the following manner: Take 2 lbs. 4 oz . of alum, and dissolve it in 10 gallons of water; in like manner dissolve the same quantity of sugar of lead in a similar quantity of water, and mix the two together. They form a precipitate of the sulphate of lead. The olear liquor is now withdramn, and the cloth immersed for one hour in the solution, when it is taken out, dried in the shade, washed in clean waier and dried again. This preparation enables the cloth to repel water like the feathers of a duck's back, and yet allows the prespiration to pass somewhat freely through it, which is not the case with gutta-percha or India-rubber cloth.

Starch from Potatocso

At Stowe, Vt., there are five factories in which starch is made from potatoes. Each consumes about 20,000 bushels per annum, and eight pounds of starch is the yield of each bushel:-Scicntific Amer.

TO INVENTORS AND PATENTEES IN CANADA.

Inventors and Patentees are requested to transmit to the Secretary of the Board short descriptive accounts of their respective inventions, with illustrative wood cuts, for insertion in this Journal. It is essential that the description should be concise and exact. Attention is invited to the continually increasing value which a descriptive public record of all Canadian inventions can scarcely fail to-secure: but it must also be borne in mind, that the Editor will exercise his judgment in curtailing descriptions, if too long or not strictly appropriate; and such notices only will be inserted as are likely to be of value to the public.

TO CORRESPONDENTS.

Correspondents sending communications for insertion are particularly requested to write on one side only of half sheets or slips of paper. All communications relating to Industry and Manufactures will receive careful attention and reply, and it is confidently hoped that this department will become one of the most valuable in the Journal.

TO MANUFACTURERS \& MECHANICS IN CANADA.

Statistics, hints, facts, and even theories are respectfully solicited. Manufacturers and Mechanics can afford useful coöperation by transmitting descriptive accounts of Local Industry, and suggestions as to the introduction of new branches, or the improvement and extension of old, in the localities where they reside.

TO PUBLISHERS AND AUTHORS.

Short reviews and notices of bnoks suitable to Mechnnics' Institutes will always have a place in the Journal, and the attention of publishers and authors is colled to the excellent advertising medium it presents for works suitable to Public Libraries. A copy of a work it is desired should be noticed can be sent to the Secretary of the Board.

[^0]: "In my reports of 1848-49, and 1850-51; the black bituminous shales which were observed at Kettle Point, on Lake Huron, and at tije flour mills, on the Sydenham River, are described under the head of the Hamilton formation. The shales in those instances are either altogether destitute of organic remains, or bold only forms of plants and obscure shells of: species not then described, and being in each case immediately underlaid by beds of limestone, in which spirifer mucronatus and other characteristio fossils of the Hamilton group are abundant, it was inferred that the shales belonged to the group. Mr. Hall, however, on seeing the section at Kettle Point, expressed it as his opinion that the rocks were the lowest measures of the Portage and Chemung group, and this opinion was further confirmed by our subsequently finding a nearly complete section of the Hamilton group on the banks of some of the tributaries of the River Sable (south), shortly afterwards, on the twenty-fifth lot of the third. range of Basanquet. On the banks of a small tributary of the Sable,

[^1]: * Report of Progress in 1848-49.

[^2]: * Murchison, Quar. Jour. Gool. Society, Vol. Xv. 353 and xyi. 216.

[^3]: * Quarterly Journal, Geologicul Socicty, vol. xv. 680.

[^4]: * In Michisan, accordiog to the Jate report of Prof. Winchell, the total observed taickness of the strata from the top of tho Saultst Mary sandstones to the top of the carboniferous series is little over 1700 feat, divided as follows :-Trent in and Hudeon Hiver groups, 50 feet, Uppar Silurian 185, Devonian 782, Carboniforous 700; of this Inst the true coal mensures constitues 323 fect, invluding from 3 to 10 feet of workable bituminous and cannel coass, while near the base of the carboniferous serles aro found 109 foot of gypsiferous marls, which yitld atrong brine springs.

[^5]: * Tho Mechanic, Machiaist, and Engineer's Practical Book of Reference. Edited by C. W. Harkley, Jrofessor of Mathomatics in

