IMAGE EVALUATION
TEST TARGET (MT-3)


1

4


CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

The Institute has attempted to obtain the best original copy available for filining. Features of this copy whieh may be bibliographically unigue, which may elter iny of the imaegs in the reproduction, or which may significantly change the usual method of filming, are checked below.Colourgd covers/
Couverture de couleur

Covers demaged/
Couverture endommaide
Covers restored and/or Imminated/
Couverture restaurte et/ou pelliculbe
Cower titte missing/
Le titre deccouverture manque
L'Institut a microfilmé le mailizur axemplairo qu'il Iui a ditt possible de se procurer. Les dítails de cet exemplaive eul sont peut-ftre uniaues du point de vue biblíographique, qui peuvent modifier whe image reproduite. ou qui puuvent axiger une modification dens la mítiode normale de filmage sont indiquis ci-dossous.

Coloured perva/
Peges de cóvlour

* $\square$ Pages demigeod/
Paps andommaties

Coloured maps/
Cartes ghographiques on coulour
Colburid ink (i.e. other then blue or bleck)/
Encfo de couleur (i.e. autre que blewe ou noire)
Coloured plates and/or illustrations/
Planches at/ou illustrations en couleur
Bound with other material/
Relid avec d'autres documents
Pages restored and/or leminated/
Pages restauries et/ou pellicultes
Pages discoloured, stained or foxed/
Pages dicolortes, tectieties ou piquies

Tight binding may cause shedows or distortion along intitijor margin/

Pages detached/
Pages ditrachios
Showthrough/
Trensparance

La roliure serrie peut coveer de l'ombre ou de la distorsion le long de la marge intórieure

Blank leaves added during restoration may appeer within the text. Whenover possible, these have been omitted from filming/
II se peut que certaines pepes blonches ajoutios lors d'une restauration apperaissent dens it texte, mais, lorsque gela dtait possible. ces pepes n'ont pas drte filmbes.

Cuality of print varies/
Oualité indgele de l'impression
Continuous pegination/
Pagination continue
Inctudes index (es)/
Comprend un (des) incex
Titie on header taken from:/
Le titre de l'en-ritte provient:
Title page of issua/
Page de țitre de le livraison
Caption of issua/
Titre de depart de la Parraison
Mestheed/
Gônérique (píriodiques) de la livraison

Additional comments:/
Commentaires supplibmentaires:


This item is filmed at the reduction retio checked below/ Ce document est filme au taux de reduction indiqut ci-dessous.


The copy filmed here hias been reproduced thanks so ino generecity of:

Lberary of the National
Archives of Ceaede

The Images appearing here are the bect quality pocelble cencideriny the cendidion end ioplbilly of tho eriginal cepy and in keeping with the filming centract apeeffications.

Origlinal ceples in printed peper covere sere flimed beginning with the frert cevpr and colling on the leat pege with e printed or muatrated impression, or the back eover when eppropilate. All other eriginal cepies are' filmed beginoling on the flros page with a pilinted or Mustrated Impres. sion. and ending on the leat page with oprinted or Misetrated impreseion.

The laet recorded frame on cech miltrofiche. shall contain the symbel $\rightarrow$ (mieaning. "CONTINUED"). or the symbel $\nabla$ (meaning "END"). whichever applles.

Mape, plates. chiorts, ecc., moy be filmed at differemt reduction ratios. These toe lorge to be cortircly included in one expeaure are fillmed beginning in the upper loft hand comer, loft to sight and top te bettom, es many framee as required. The following diegrams illustrate the methed:

Loxom pira fllmb fut reproduit grice ita éndrod do:

Le bibliothique des Archives notionoles de Ceneds

Les images sulvantes ont ote reproduites avec to plus grand zoin. compte tenu de le condition of de io metrot' de l'ezemplaire filmb. ot on conformith avec lee cionditiont du contrat de êmage.

Tee exathplairee originaux'dont io couverture on paplitr cest lmprimit sont filmés on cómmencant per lo promier plat et en tertminant soir par io dornibe pege qui comporte ute emprointe - impreasion ou dilluatration, ecit.par io secónd plat, selon to eas. Tous twe autres exemplaires origincux sent filmte en commengant par io premilere pege qui comperte útie empreinse dimpreasion ou dillusitration ot on forminans par. in dernlype pege quil cemporte une telle empreinto.

Un. dee symbolee aulvants appareftra sur io dernitre imege de chaque microficho. selon io cas: to symbole $\longrightarrow$ signifio "A SUIVRE". io symbele $\nabla$ signifio "FiN".

Les carres, planches, tableaux. tetc..'peuvent Atre filmis a dee taux do refluction diffitents. torsque he document est trop grend pour Atere. reproduit en un soul clicht. Il ent filimet t partir de l'angle auptriour gauche, de géuche a droite. ot dí haut en bes, en prenant io nombre d'images nécessaire. Les diagrammes suivants Huatrent lo móthode.

(t

ADVANCE PROOF-(Snljact to rerisich).
Thia Proof la sent to you for discusolon only, and on the exproee uniderstanding that it la not to be used for any other purpose whatsoever.-(S.is' Ser. 40 "f the ( (onstituliculs).

Canadian \$ociety of eirillenqineers.
TRANSACTIONS.

niated in aing of lim publitullinif.
(Tis bereal on Thurailay, Inerombir ith 1889.)

## Vaveouveir watenwollks.






 dence of the presenve of muni theing a cleariuy a few :urrex in erthent, on which low franue buildings. net nure, than a doa'n in numiker, hail beros erecterl, and whirin was vagiely kimwn to the ontwitce world as Coal 1Larhour, Gas Town, and the Ciranvilla-Town I'lot.
At this date the C'analiun Paeitic. Railway Ierminuated at Port Nooly, a small thwn at the extreme head of llurraril Inlet, 18 miles from the Gulf of Georgia. 'The Company, 'taxiring' a terminus urarer the open mea. negritiaded with the legivatures of British Collumbia for n grant if land in the neighbourhood of the Ciranville 'Trwn I'lat.
The (invernuent, foremeeing that a large eity would speelily be build op at the terminus of this great traus-comtinental railway, were it. oneated on the best attainable site near ther sea, voted the grant hy a large unujority, stipulatiog only that thu exterusion from lort Moody westward to the hads grented should be corimerrueted and in operation by ustated time. When it became known that the curminuas of the railway would undoubtedly be at the Granville Triwn I'let, population begain to pour,in mo rapidly that, on April itith, 1886, the Legisslature paned an act incorporating the-locality an the eity of Vunceniver.
Ths population at that date did not exceed twi thousand. So great, ${ }^{\circ}$ however, has been the influx of all elasese, that at the time of writing. it is. essinusted inn reliable data no less than ten thousand souls are contained within the limitu of the eity.
The City of Vancouver is situated on the soutlf shore of Burrard Inlet, in Iat. $49^{\circ}, 16^{\prime}, 31^{\circ} \mathrm{N}$, Long. $123^{\prime \prime}, 05^{\circ}, 52^{\prime \prime} \mathrm{W}$, its western "boundary being 34 miles east- of the Gulf of grgin., It in distant from Liverpool on the enst 611t atatute ahi and fron Yoko. hama on the west 4991 atatite miles. From \& ito Vnnconver is 2905 miles, and frum New York, via Canada, to the same point is 3162 miles.
Burrard Inlot in the first harbour of. mignitade on the Pacifie mainland north of the Unitud Staten. It is eminy of accens to vessels of the deepent draught, and anfe anchorage can be found in any part. Engliah May, the entrance to the Ialer, ia $4 \frac{1}{4}$ miless long and 4 miles wide. At its head it divides into two branches,-Fralne Creek on the wouth, and the First Narrows on the north. Faleo Oreok is a narrow arm 41 miles long, oxtconding dee catit from Rnglich Hay, midway betiven the North Brauch (Burrard Inlet proper) and the south boundary of the City of Vacoonver. Boing almont yocoverod at low water, is in aniuitable for navigation.
The north branch, whiok loave Raglish Bay for the First Narrown, extende dre east a distance of 14 miles. The vidich of the Narrows at axtrome low watur does not axeed 1086 freet, wherens a milp and a thalf inland it remolee 12,810 foot. Sounding of 120 flot one be
 couver.'

The Iund betwean Burrard Inlet and Falsp Creek, on which, the proment Vascouver is built, in for the mout purt flat, the highest eleva. tiun above seen lovel not exseeding 145 feer. South of False Uricik, - however, a rapid rise tatea placo, diriminuting in a tubleoland 200 feet abovo sea lovel. A fuw mamell stronma run duwn from this table-land into Falne Creck ; but Theme are inaiguitionnt, and eannot be utilized for manafacturiog or other purpmess, The nearest river on the same side of the Isket on-whieh Vanconver is built puacs 15 miles to thn west ward.

## OAIOAN OF THE CITY's WATEE HOPPLY

The subjeot of a good and somieient water esupply for the City of Vancourer, or to write more necarately, for the place now known as tho City of Vanooaver, was first taken into carnest consideration by $\mathrm{Mr}^{\text {r }}$ G. A. Keefer, Mem. Can. Soe. C.E., in Jane, 1885, nearly a year previous to the incorporation off the eity. Me. Keofer, foresecing at that carly dito that the ultimate destios of the Canadius Piecifo Rail. way wan to reach a point ncarer the const !han Port Moody, and tnowiag that the Granville townite pomesered all the relpuisiten for the fonndation of a larke city, inturented bimeclf in obtaining information an to the beat mouroe of a water aupply for that locality, ahould thg Ratiway Company deeide apon it an the terminas of their systom. He apoedily ancertaived that vo aupply could be advantageously and eoosomienlly obtained on the zouth side of the Inlet, where the city must nocerearily be locitud, no streama or laten of any mugritude exirtiog in the viciaity.

He thierefore directed hin attention to the norih aide of tho Inlet, alchough coofronted at the very outcet by the thet that, never bofore in the himitory of bydraulic engiveoring hud a aystem of water mains been laid acroes auch a sheet of water as Burrard Inlet, and under such conditions an pertained thereto.

Aeting under inatruationa from Mr. Keefer, the writer plaoed a fally Aaipped party in the field, in the winter of 1883-86, and thoroughly examined all the atreams fowiog into the Inlet immodiately oppotite the Granville towasite, from the lofy chain of monntains on the north "ige.

The resulus obtained from this survey ehowed that of all the streams available, the River Capilano, falling inte the Inlot at the First Narrons pearly opponite the western boundary of the present City of Vuncouver, was the most saitable, the diecharge being mach greater than that of any of the others, and the average fill of the river $\mathbf{n o}$ /areat that an iaitial point for a gravily aytom of wator aupply coold be obtained within a remeonable distaveo upotrcail.

Havlag decided on atilizing the watern of the Capilano for the aupply of the futare city, Mr. Kcefar oaperiencod no dificulty io obtainiog the co-operation of reveral prominent and enterprising eapitalistes of Victoris, who were quite in acoord with him in the belief that at a very oarly day a large popmatation would be located at the Granvillo towaite, and that an immediate ontlay for an eficient aystom of waterworka would be a romanerative inventment.

Accordiagly, the extension of athe railway to the Grasillle towanite boing an aesured frot; and the futare name of that loonlity being defialooly doeided on an' the City of Vancouver, theot gentlemen applled to the Provincial Legislature for an not of lncorporation of a eompany, to be knowa in the Vancouvor Watorworka Company, and proposing to cometruct a gravity nymem of waterworke, for the purpoes of conveying meter from a poiat on the River Capliano, on the morth wide of Burrard Inlot, to pertain appoified lota in the New Weetmimeter diatriet on the sonth alde of Burrard Inlof. About the sume time, appliontion was made by the iahableanta of theem lotes for an wet $\alpha$ incorporation under the name of the City, of Vameourer. Both requelea wore grastod by the lajiolaturs on the mame day, the ehh of April. 1886.

Dariax the ammaner of 1866, the writor, ecting mider. inatructione from Mr. Kevere, made detailed nurvegs, definitoly lopeting the point of oupply on the River Capingo, and the moming of Burrard Iublet. In
 colvered inio for dowriog, olone eutting aed grubbing. In Docember,

1887, a permanent Board of Directors was formed, momprising the following pentlemen: Prenident, Capt. John Irring; Directors, The Hon. (oni Sir) Joseph W. Trutih, Meners. R. P. Kithet, $\boldsymbol{G}$. A. Keefer, Thoman Earie, anl D. M. Kberta ; Mr. J. W. MeFarland wan appointed Secretary; Mr. D: M. Eberts, milieitor; Mr. (i. A. Kecfer, M. Can. Soc. C.E., ehief eugineor; and the wriler, Mr. II. B. Smith, M. Can. Soc. 1.F., engineer in charge.

> tue bive capliano.

The River Capilano is a mountaio atrenur of conxiderable magnitude. Proxpectors who have penetrated ita Cafiona, and elaian to have renehed its source, entinuate ita length at no leme than finty miken. It rises in the naow-covered mountains of the Howe Sound dintrict, and flown alnost due south, emptying into Burrard Inlnt at the Firit Narruwn.
Although anthing definife is known as to its soureo, nll accoants agroe that ias origio is niot a mouotain lake, but the -accumulated waters derived friun melted snow and ice fulling from the mountain summite. For $n$ distance of seven miles frons its month, the river han - berd surveyed. Throughout this dinasace it Anwavat the average rate of tive feet per mecond over a bed of granite, basalt, and conglomerate boulders " Sand and gravil eas be found urnly in a feww wheltered bays. It passes through reveral eaniona of granite and whinstone rock, one of whieh is oully 15 feet wide at its base, 94 fiet wide at its top, 600 feet logg, mod 218 feet deeph. Previous to the ereation of chis cañon, the whole valley to the nerth must liuvo been one large like. The wall of met through whith the strean penctrated ages ago, by some gadden effort of the cartli's hidden firecs, stuada like a huye gatelitt the eouth end of the valley, the valley itenff being but a *trip of. Tat hand from 1,000 to 1,500 feet wide, lying at the base of itwo parallei raogée of monataina, which tower upwards, to a height of $\mathbf{3}, \mathbf{1 0 0}$ feet. Tho fall that took place when the river Aowed over the aummit of this roeky wull must have eqmalled the Niugara of torday for depth, if not for volume. Should the City of Vingcouver increase to the ungnitude prodicted, it naay be that its people at some future day will canse a dam to bo ponstructed acrose the ourrow gorge, and once again convert this vallcy ioto a lake.' Vancouver will theo ponsess a reservoir from whonce to draw its water supply, which will not be surpaneed hy any waterwerkn aystom on the continent. Thene cafions are imolated, standing about a mile apart. Between them the river flown through low lying fintr; forming many isiands. The immediate banks are bat a fow feet above the level of the river, and from 100 to 200 feet in width, the ground on cach side rising in terridea until it is meerged is the usiforu alope of the mountains. Both sides of the river aro heavily timbered with the huge troes poculiar to the British Columbin coast, - Douglas fir, cedar, liemlock, apruoe, balsani und white fir being in abundanoe. The Douglas fir and oedner/ grow to an enoruoua siae. Uoe codar in partieular' was menaured by the writer, and found to be 64 feet in cirou uffereace, 4 feet from the groand.
'An a source of a city weiter aoppiy, the River Capilano in an ideal one. . No purer water can be obtained froun any soarce than that from this meunotnies stream, towing awifly over a bouldét bed, through doap rooky onfionf, aed along shores aet yet uncontamianted by the iappirities which follow in the wake of nottlemeat. The supply afforded, belag by gravitutlon, is auperior to all other methodu, whether by reservoir, direct preseare, or ntand pipe, mad itt permmannoo is beyond guection, caroful gunging of the river at the fiaitial poiat of the aystem haring demonstrated the fast, that at the lowest atage of wator the river dischargen 440 milliona of gallons in 24 houra.

## olinelina, clobe cutting and amulimo.

The Irrt oontract entered into by the Company was for olearing, doloe cutcing aud grabbing. This wort wan done by a looal Arm at the following pricee : eleariog, 859.00 per acro; alowe onting, 895.00 por aore; gribbing 8800.00 per acre, undor the comditione of the followlog appoification :-

Tho pipe traok is to be clacrod a width of not lose than 38 feet, and all timber and bruah, not requirod for then parponem of the wort, pliod up and barsed, an in olearing hand for oulcivation.

The dam site is to be eleared in the same manuer; and to such limits. as may be directel by the engineser.

Whenever embankiments, securring on the line of pipe track or traurway, aro less than two fuet in height, nll the trees, wtumpe an I brush immediately under tive cmbankinent are to be eut rlose to the ground, and whenever the cmbunkunits are from two to four teet high, they shall be cut within six inches of the ground; but when the embankments axered four fert in height, ehopping as for ordinary clearinge will be allowella.

Grubbing shall be performed under the sents of the embankmenta occurring on the line of pipe track, or tramway, that do not ezceed one foot siz inches in'height, and also all excavations for pipe track, trauway unil dam'embankment, less than three fert deep. The stampsiand routs from the grubling shall be removel to such places av directed.

No Chioese are to be comployed, directly or indirectly, on the alowe work.

THE DAS.
The puint on the river relectid as the sonrec of supply is at a distance of $6 \frac{1}{2}$ miles upatream from its mouth, where the river is confined to one channel, and the banks on either side are sufficiently high to admit of the construction of 1 dant .
The locality selected ia the only point from the river's moulh upwarils where a dam could be safely and coonomically constructed, and give at the same time a anfieient heul to overcome the elevation of the high flats $3 \frac{1}{2}$ milen below it.

By reference to Plate $\qquad$ , which shows the dam site nod lis vioinity, it will be seen that immediately south of the site the river is divided into two wide channels.
Still further south, all the way to the cañon beluw, if is divided into threo and even four channels. Similarly, nortio of tho dam site, the river has two branehes separated by a large, low, flat islaud. This risland is completely covered at high water, making the river at that stage no less than 830 feet wide.

The eross section of the river at the dam aite at how water gave a.' current of $4 \frac{1}{2}$ leet per second, a wilth of 100 feet, and an extremu depth of 3 feet, the difference of level betweyn kow and him water being. 6 feet. It has been subsequently asecrtained, however, that during occasional floods the water rose mach higher, and covered the level fiat oo the uorth side to a depth of 9 feet. This fat stands at an avorage level of 12 feet above luw water. The bed of the stream conisisted of large granite boulders, olowely packed together, small stones anid coarse gravel filling up the interatices. The cbannd of the river in ordinary floods was 310 feet wide. *
On the north shere the immediate bank is 12 fect high, and extends at the rame level a distance of 140 feet inland. A sudden rise then takes place, terminating in another flat 40 feet above low water, and which stretehes to the bese of the pountains.

On the south shore, the bank nises abruptly to a height of g2e feet above low water, and conimues at that elevalicn for 200 fect. It then rises rapidly in terracestill it reaches the mountain aide hill. The high land on the north shore trenda to the northward immediately west of the daun, and that on the soutl/ to the southward, immediately eqast of die dam.

The dam site lien directly between these two high points. The contract lor the construction of a stone-filled timber dam at the point selocted was let on the 2 年h of January, 1888, to Mesars. 1I. F. Kcefer and D. McGillivray of Vancouver, and was mout satisfactorily completed by them on the 18th of April following. The dificultics encountered by the contractors in carryint. out thia work were of au ordinary claaracter. Inamuch an it was the initial work of the syatem and looated in a wildergess in which no roads exiuted, all supplies, tools and machinery were of accesolty pucked to the works on the baoks of mules. The geanon wis mid-withor, and unumally inelemant. Chinook. winds and heavy raiantorma, molting the unow on the mountain summits, ansed frequent fresheta, io whioh the rivor would rise from 6 to 10 fect in a fow hours time.

The formation of the banks in the vicinity did not aduit of the river being temporarily diverted, except at enormoun cont. The foundations of tho atructure had therefore to be excavated, aud the firyt courses haid in from 3 to 4 feet of amift running ice cold water.
Plate., s...... is a "redueed copy of the workiog plan of the dame. It will be meen that the atructure is of continunus crihbing, stone filled, planked and shect pilen. It consista of three principal. parts, viz., the porth abutuent, the Tumbling. Way, and the south abutnent.
The north ahutuent is located well inlandy owing to the unuleney of the river in high foods to over-run its elannel, and apread over the low lying land in the vieinity. For the purpone of deceription it may $\therefore$ be aubfivided into the following heade: The abutmeut proper, the well ohambers, the settliag pond, the pipe outlot, and thenorth wing.

The abutment proper in a right rectangular prism $41^{\prime}, 3^{\prime \prime} \times 20^{\prime} \times$ $18^{\prime}, 9^{\circ}$, constructed of round timbers, laid in alternate courses of cross ties and longitudinals, dove tailod at the angles, and forming 38 cribs, wh which are filled up with heavy mone Gilling and coarse gravel, the lattor being rammed into all interntion beifeen the ntones and under the timibers. A apace equivalent to 4 oribe in the exset centre of the abutment is floorod and walled, from the foundation upwards, with double $2^{\prime \prime}$ plankiag over-lapping. A perfeetly watertight chamber $10^{\prime}, 6^{\prime \prime} \times$ $\mathbf{7}^{\prime}, 10^{\prime \prime}$ is formed. This chamber is subdivided into two amaller and equal ones by parallel walla, $4^{\prime \prime}$ a part, of double $3^{\prime \prime}$ planking overlapping, and placed at right angles to the leagth of the main chamber. Theso constituts the well chambers, by meana of which the water from the reservoir formod by the dam ia conveyed ints the maina: An infiuent conduit of double 2 ,' planking overlapping $13^{\prime \prime}, 5 \frac{1}{\frac{1}{2}}$, long, and of arca sufifient to admit a larger volume of water thap can be disehargod by the mains, coonects the first of theee chambers with the actling pond, and consequently with the reservoir in front of the dap. In tho $4^{\prime \prime}$ space beiween the double central walls, elose to the floor of the clanubers; are placed double fish sereena of the same area as the influcat conduit, and so arranged that they can be easily removed, one at a timer, for the purpose of elcaning. The first or outer screen is coarse, being of No. 12 copper wire, woven into merhes $t$ inch square. The se cond or inner acreen is fincr, beiug of No. 15 copper wire, 6 ueshes to the incli. The rear of thafifond chamber is piereed exactiy opposite the fish screens to aduit ato bevelled 22 inch rivetted ateel pipes, the mouthe of which are opos $\mathbf{d}$ or closed at will by means of timber gatus aliding in vertioal uprights attached to the walls of the chamber.

Two trap doors cover the top of the chambers, and over all. resting on the top courses of the abutment, is built a compact wator-proof shad $12, \times 13^{\prime} \times 13^{\prime}$. This shed sorves for a tool hidue, as woll as effectually preventing the acesss of atrangers to the gates which control the mains.
In front of the influent conduit in a trianzular slapod setelings pond, measuring $15 \frac{1}{4}$ feet at the ba e, 16 feet from base to apex, and 14', 3" deep. It is constructed of loogitudinal timbers and cross tics, laid oae above the uther, the whole being fermly bolled to the face of the abutment. At the apex the ends of the longitudinals are dreased, so as to fit closely, and bolted together. The triangular space between tho apex and the apex oross tieps is fillod with large bouldera, for the purpowe of giving weight to the structure, and retaining it in position.
At the base of the pond, the entrince of water into the infuent conduit is controlled by means of a timbor gate, sliding in vertionl runners bolted to the aboet piling on the fuce of the abutment. Immeliately -behind this gate covering the mouth of the conduit is plaoed a cagt iron grating with 4 inch openings. The water from the river has free scoess to the sottling pond through the apaoes between the longitudinal timbers of the walls. The main object of its construction la to provent loysand Anating debris from coonmulating in front of the influent conduit. It will thus be seen, that, in order to reach the mains, the water must first enter the metting pond, then pass through the iron grating at the mouch of the induent conduit, then, by megna of that conduit, enter the first well chruber, the through the double fish sereena in the oentral ralla ioto the second chamber, and finally into the nasins in the pipe outlet.
The pipe outlet at the rear of the notthi abutimsit is a crib contieus-
mon of that abutment, merving an a protcotion for the mains agninat the peotion of the water fowing gver the tumbling way, uatil a mep point is reeched oo the lat below. It is 138 foet loog, 15 foet 3 ischen wide, 10 foet high on the aide facing the river, and 6 foet oo the land aide. It bes three parallel rowa of longitadinaiss aupported on eroes ties, the two outcide rown, of the rown nearest the river formalng cribe $4^{\prime}, 8^{\prime \prime} \times$ $3^{\prime}, 5^{\prime \prime} \times 10^{\prime}$, which are heavily londed with boulderm. Between the oribn and tbe third now of lodgitadivale on the land side, is a apace 8 fect wide, in whioh the maina leading from the well chambernare laid.

Provision is made for two maina, bat only one is is une at precent, the otheriboing eapped at its lower end, and elneed at its mouth by meana of ita gate in the second well ehamber. The space containing the two maina in filled with enarve gravel, well packed. Above the silling in a covering of 15 inch logn eloec laid.

In the inmediate rear of the abotment the timbers of the pipe out. let are continued upwarde in steps to the top of the abutment, forming a "leand to,". which prevents the water finwing over the tumbling way from flooding the top of the pipe oatlet. The "lean to," as well as the entire face of the pipe outlet, ia planked with 3 inch planking, nunk 3 feet below frondation level.

The low lying porous nature of the gronnd on the borth aide of the river rendered necepsary the conetruetion of an extensive land moge with deep foundatione. This wing is 155 feet long, and 10 feet wide. The firat 20 feet out from the abutment is 16 feet 11 inches high, and ia in reality part of the abutment proper, its longitudinala beirg a continuation of the longitudinuls of that structure. The remaining 135 feet, being built on higher ground, has uniform height of $7^{\prime} 9^{\prime \prime}$, Both portions are built in rows of parallel longitudinale, 3 in number, and in lengths of 31 feet, supported on cross ties 10 feet long, and' 5 . feet apart. These form 69 cribs, which arc 6 illed with stone and gravel as previonaly described.

The connection between the wing and the high land at ite extremity ia protected by a gravel enbunkment, extending 57 fect along the face of the wing.' This embankment ia made of picked materinal, and effoco tually prevents all seepage round the ead of the wing. The face of both ahutment and wing is protected from leakige by a doublo row of sheet piling, the lower ends of whieh dre embedded in a concrete treneh aunk 3 feet below foundatinu level. The inner sheet piling is 2 inches thick, while the outer and iverlappiag piling is 1 inch.

The main body of the dani, technically nanied the Tumbling Was, ia 165 feet in elenr length, $4 y^{\prime} 2^{\prime \prime}$ brond, and $13^{\prime} 9^{\prime \prime}$ high in the deepeas part of the original channul of the river. Great difficulty was experienced in excarating foundations for thif portion of the dam. At first an cfiurt was made to partinlly divert the river by excarating a new channel, between high and low water maî́k on the south shore, the intention being, if this aucceeded, to excavate the foundations and build the sub-strueture up to the toe of the front slope : then to return the river back to its original elannel, allowing it to flow through the row of horizutal npenings provisled in the dexign of the atructure for that purpore. It was feund however that the bed of the proposed diversion, being entirely couposed of lonse bouldera, was too poroun to admit of the water being confined within the excaration ; and as, at that time, no clay fit for puddling was known to trist' in the near aeighborhond, thia project had to be abandoned. The method then adopted and which proved auccessful, though carrigd out under great dificulties, was as follows :-

Both abutments having been partially constructed, the foundatigna for the end divisions of the tumbling way were cacavated as far as posaible from the abutments towarda mid-chanael. As mueh of the atrueture an the excavations could cońtain was rapidly built up, and loaded with atpoe filling. An embankment of gravel and sand was thep rup out from eash extremity, moeting about 20 feet up stream and forming a $\mathbf{V}$, the apex of which divided the corrent of the river, and forsed it through the horizontal openings io the sections already huilt. This had the effeet of leaving atill water 3 feet deep behind the ombankment, and as this could not be remored, nor lessened in depth, the foundations were oxcaratod and the middle section built under thews exceptionally dificicult ciroumatanocen.

The ails of the noth and south seetinasgare on the name level, while those of the milddle acetion in the derpent part of the rivef bed ore $2^{\prime} 2^{\prime \prime}$ lower. The eross nections of the three portiona are similar. Plato. $\qquad$ shown that of the middle seetion. . .
The gronod willn, "10 in number, in leagthe of 32 feet, are placed at right anglen to the atream, at distanecs varyiog from $5^{\prime \prime} 5^{\prime \prime \prime}$ to $0^{\prime}$ apori,' the diatancen varying in order to secure a row of longitudinala poder cuch vertical angle of the aurface of the tambling way. Above the aills and at right anglen to them are placed a mow of crown ticn piarillel. with the stream, each' 53 feet long, and from 5' 8" $\omega$ (f' apart. These project 11 ' $10^{\prime \prime}$ to the rear of the main bods, of the dam, resting on two of the ailln of the ground course. The apaces betweon thesc projectiona are flled in with round timbern laid elose. A solid olose laid platform to the roar of the main body of the tumbling way is thus furned, which serves to dissipato che foree of the water flowing over the tumbling way before it reachen the bed of the river. The next or third course consists of 8 longitudinala, above which on the fourth course are the horizontal openings previously mentioned. These aro 28 in number, 5 feet wide, $12^{\prime \prime}$ deep, and extend entiroly through the structure from its opstreand face to the open rivor in the rear.

They are formed by flooring the spaces between the cross tien of the th course with double 1 inch planking, and close laying the fongitudinals of the Sth course to serve an a covering. Abpive the Bth enurse the longitudinals and cross ties are so arranged that the front face wopen uprards to the ritige at the rate of 2 ' $3 \mathbf{I}^{\prime \prime}$ ' $191^{\prime}$. The longitudinal which constitutes the ridge is placed at a horiznntal dixtance of $17^{\prime} 2 \frac{1}{2}^{\prime \prime}$ from tho front faee, and ia at an elevation of 415 feet (snrface plankiars not ineluded) above high water marki of Burrard Inlet. Theirear'slope extends downwards from the ridge at the sane rate as the front slope, and terminates in a fevel beneh 12 fect wide.
In the tumbling way there are 106 eribs; formed by the intersections of cross ties and longitudinals. Kspecial care ras ezercisel io filling these criba. As each course was completed, the largeyt brulders attainable were placed in the eribs by hoists. The apaces between were filled up with smaller atnoes and eosarse gravel, the latere being rammed into every crevice. In ereavating the foundationa, certain huge bouldern, which were found to be firnuly anchored in the river bed, were blasted into-a erlumnar shape, so that the bed sills and cross ties when laid would enelose them. These not only served as stone filling, but also securely locked the whole structuro tod the bed of the river in a muela more aubstantial manner thon any artificial means.

The whole surface of the tumbling way is covered with 3 ioch planking, jointed and laid close. The upper half of the front alope, being exposed to tonting logs, in laid dauble. The vertieal part of the front fnce is protected by $1^{\prime \prime}$ and $2^{\prime \prime}$ sheet piling, embedded in a conerete trench 3 feet deep, zod extéding over the whole length of the atructure.

Inasmuch as it wat necessary to keep the horizontal openings open until the whole dam was completed, the placing of this sheet piling was done in two operations.

The lower portion of the piling below the level of the floor of the openings was placed in ponkion in the upual manner, the tope being drosed to a uniform level. A longitudianal $12^{\prime \prime}$ by $3^{\prime \prime}$ plank, extending over the whole length of the tumbling way, was spiked to the tope of this shect piling, projecting 1 inch above, and forming a groove into which the upper sheet piling would fit when placed in position. When the proper time arrived to close the openings, a suficient number of men were ranged along the toe of the front slope, provided with thic proper lengths of sheet piling, apiken and hammers. On a given signa! each plank wan pushod home into the groove below the openings, and the neceseary spikes driven into the top ends. It required only five minutes to complete the whble operation, and by that time, the water in front had not risen above the toe of the front alope.

Immediately in front of the tumbling way is an apron of brush, gravel and boulders. This apron extends from the settling pond in front of the north abutment elear acrosy the faco of the tumbling way to the gite of the stuloevay. In cross mection, it begins at a point halfway up the front slope, and extends horizontally a distance of 9 feet. It theo slopes down to the bed of the river at the rate of $\mathbf{3}$ to 1 .

7

The mouth abutment, being partially he into the high land, mapuind nol wing estrunion. $11_{\text {roperly }}$ upenking, it conmintu of thrue diatinet parks, vis., the abdtment proper, conneeting with the tuabiling wiay; the land abutment, emnecting with the وhore; and the sluiciway, which lien immediately between the two. The foundatione of all thrie are on the name level an thome of the north abuturent, and being ubove how wher mark were aden vated witheut' (roüble
The nluturnt propar in a : rectangular prism $41^{\prime} 2^{\prime \prime} \times 15^{\circ} \times 18^{\prime}$ :"" conotructed of longitudinnis and erisestien in nlecriate tiers, bolted together and dove taitel at ull four eornery. Au in the nertio abut. ment, the longitudinala of the tumbling way at regular intervah pomjeet into the ubucurcit, and aroomeurely brilted to it, thus forming.an almolute and iumovable cennection bretwern the three structures. In
 gilled and rammed an previnualy deseribed. In the raar of the aluutment is a "hanl tio" " 31 five linge, and tupuring froun 15 five at the abot: ment to $11^{\prime \prime} 7^{\prime \prime}$ at its extrumity. Thin aloo is a nome filled erib atrue. ture, the ohjowt of which in to prevent any wenuring thme might take place, by paiding the water flowing ovar the tunbling way bi'yond the rear of the abuthiment, and into the ariginal channel of the river. It nang be here mentioned that one gear after the completion of the dame, a legre segur did take place in the angle formed by the foundation coursen of the "lean to"" aind the rear platform. lharing a sinden freslet the bed of the river at this point nooured out to a depth of $f$ feet below foundation level. The end cribs of the " lean to" were conpletely undermined, the stone-filling carried away, and the timbers left unsupported. A momewhat niuilar oceurrence had taken plaee a few monthe previously ut the angle formed between the rear platform and the pipe nutlet on the north side. The latter wan readily repaired by filling, in and construeting a triangular extension of the rear plitform an shown in Alrawing. In this ease the exthosion could be canily bolted to the exinting platform and the pipe outlet. But in the ease of the birst mentioned merour it wan quite. different. The "lean to" being an aldition to the rear of the abuturent and bint a part of it, timburs extending from itw extrenee end to the rear platform, so ant to coiver the largo scour uade, und prevent further injury, would liavo been insecúre. Instend, therefore, the daunage done was repaired by refilling the menur with a mizture of large boulders and conerete, the latter being in the proportion of 1 part of pure cement to 7 of coarse gravel and and. - Over thia fillisy, and extending 3 feet beyond the rear of the "lean to," wan placed a cavering of almost pure cement, 1 font thick. Twenty-one barrels of: 1'ortland eement, each weighing too lise., were used in making these r.pairy. The totalkength of the abuturent and " lean to" combined ia $\mathbf{1 1} 11^{\prime \prime}$. It therefore projects beyond the rear of the tumbling way a distance of 31 feet. Hoth sides and ruar, as, well us the top of the "lean to," are planked wihh $3^{\prime \prime}$ planking laid elose.

The duiceeway is 73 . feet long and 14 feet in clear width. From wall to wall it is 1.5 feet wide, and at the upetrenum cond is the full height of the 'butmentes. Both walle and fiee are plauked with 3" planking, laid elose. It is opuned aud slut by means of a stop log gate, consisting of 17 stop $\log 17^{\prime} 4^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime}$, placed horizontally one mbove the other, each eajable of being moved vertically in a groove formed by
 aide. On the apstreim face the úprightn are single, counceted at the .bave ly a $12 " \times 12 "$ sill. Belind the stop logs the uprighte are double, while midway between is a triaogular truse of frapmed $1 \underline{\underline{\prime \prime}} \times 1 \underline{12}$ timbers, jlanked with $3^{\prime \prime}$ planks, the sill of whieh extends back from the rear of the stop ings a distaree of $15 \frac{1}{2}$ feet, and is securely bolted'to the ground flooring. The floor sills bencath the trues are close laid on a conerete bed, forning a solid apron, on whish thic force of the water falling over the gate when partially open" is epent previous to discharge into the channel of the river. Frou the entid of the truss to the outlet of the sluiecway, sills are laid 4 feet apart, extending underneath and bolted to the sills of the walls, or in other words to the sille of the aliutmenta on each side. The two silla immediately behind the rear uprights of tho gates, adid the three aills at the cnd of the close laid flooring are

width of both shutmenta Similarly twa cape $1: 3$ f fict long are laid acrown the unp of the muiceway, behind the rear upriglits of the gate.
 the abuturenta on each nide of tho Nluicewoy; thinimaking a molillunion Inilweth the three part.
Alove the stup logn is a powerful windla-s, with nupiput es yn cach abutarent, the rolker being direetly alove the stin lugs. The upper
 end, the stup loys immediately above it beincis yrowived in itw under face, mo as to anduit the ringa, when the ntop leyey are in funsition. and the gate is elosed. Tho exfremitiex of the chaiun emment ed with the wind. lams are provided with clutchen which cau be readily guided mo as io hook ou to the riugn, when it is repuired to oper or ellowe the gnte.
The aluiceway abufiment, or that portion of the mouth abutment which connects directly with the land, having to withasid unuch lowe preseure than other portioun of the dam, is not of uniform height, hat is buile in atepm. At the upotreamend it in of equal beight. $18^{\prime \prime} 9^{\prime \prime}$ with the ansin portion of the abutment on the other side of the sluipeway, and 13 fett wide, while at the oxtrmic rear, the height is, only 5 fiet, and the width 8 fect. It consists of 15 separate cribs,' loaded with atone and gravel, an provioualy denaribe th
The whole abutment, inelading the ( - . by $1^{\prime \prime} \times 2^{\prime \prime}$ sheet piling overlupplug and imbedded in cancrote, as in the case of the cumbling way and porth a butment. This concrete in iu the proportion of 1 part of cemikt to 5 of gravel and sand. The maniocr of its preparation was ap follows : moinc gravel of suitable nature obtaived from the river bank was deposited on a plank platform 10 fect squarre. This was thoroughly worked with sloveln, and all ntorea larger than $1 \frac{1}{2}$ inch diameter eliminated, leaving, the mawn wprend over the platform about 9 inchen deep. The prop proportion of ceinent was theo apread over the gravel, in a dry state. Very liftle water was used, the moisture in the gravel boing sufficient for thic purpose. Six men with shovels then encryetically worked the wholo mase, shovelling $A$ from the quteide edges twiwards the centre. When evident that tho mass had beea completely turned over ouce, it way datteacd out on the platform, and again turned over in the aíue maoner. This operration wus repested three times, the mixture being then considered fit for us.
The concrete treach mentiuned above extciddy aloog tho wholo face of the dam below the level of tho sills, forming an perlectly watertight connection between the foundations and the bed of the river; through which no seepuge can tate place. Seopage round the extremities of the abotmente, where they penetrate the banks, is prevented on the apech side, as previously stated, by a gravel eabbankment. $O_{n}{ }^{-1}$ the south side the sane purpume is werved by a hand-kid stone wall, built in tho angle formed by the extremity of the abutwent and the aaciural bank of the river, fino gravol and earth beiog filled iu behind and wall rammed.
The reservoir ereated by thia dam is, in the high witer semana, 380 foot wide by 700 foot long, and contioina approsimately 14 millivns of galliona.
At low water the eleration of the water fowing over the crest of the tumbling way is 488 fiet abbore the lowist depression in the piph line, 417 feet above the loweat level in Vancouver, 317 feet ubove cho average, and 201 feet above the highoet. These olcvationy correspond wa - maximum presesure of 210 lbe , an average pressure of 138 lbs ., and a minimam premanre of 87 lbs . per square loch;:
The wrought iron drif bolts uned wore of $7^{\prime \prime}$ a aid $y^{\prime \prime}$ round iron, and of lengths rurying from $12^{\prime \prime}$ w $32 \frac{1}{2}^{\prime \prime}$. Spikea for $3^{\prime \prime}$ planking تure $6^{\prime \prime}$ long, weighing 11 per pound, and oails for $1^{\prime \prime}$ plankiag are $43^{\prime \prime}$ " loog, weighiog 19 por pound.

Yrom the above deseription it will be ween that the extreme leagth of the dam trom, liund connection to land oonaection is $38 \pm$ feet, the clear tumbling way 165 feet, mupplemented by an additival 14 foet of Wuioomay, when requited, and the breaditio of base, not including rear platform $41^{\prime}, 2^{\prime \prime}$.

The total cost amounted to \$15,039.26.

## LOUTE OF THE MAINE.

- The country traverned by the mains from the dam to the central point of the oity was, from a hydraulio point of view, of a very rongb oature, and prescated many ongineering dificultien.
From the dam for a distanca of 12,716 feet in a downstream direction; the ground pased over is a gradually deacending fat, the total fall in this distance being 164 feet. The flat is a narruw strip of land, com posed of hardpon and granite boulders, lying between the base of the monntaine on the one side and the river on the other. : At two points the river in former heavy floods has invaded the that and the adjoining side hill, scouring off portions $\$ 00$ feet in length, and leaving a bare boulder bottom only a few feet above the low water level of the river. Several streama ranning down from the adjoining mountains intersect the fint at right angles. Two of these are of considerable size, one being 47 feet, and the other 212 fect from bank to bank. Both flow over rough boulder bottoms.
At the termination of the flat is the rock wall through whieh the river has cot the decp cañon prevlously deseribed. Owing to the rugged natore of the walls of the cafion, it was not deemed adrisable to carry the mains along its face, and its great height prevented their being laid over the summit. A tonuel therefore was rendered necessary. This tunnel ie 280 feet long, 4 feet wide, and 6 fiet from door to centre of roof. In cross section, the walls rise vertically 4 fect from the floor, and are surmounted by a semicircular roof of 2 feet radius. The door elevation is $2 \boldsymbol{2} \frac{3}{4}$ feet below the crest of the dam.

Inammuch as the hydranlic grade line of the wholo systum pasess conaiderably below the floor of the tunnel, it was necessary that the main from the dam to the tumnel shond be of larger diameter than that from the tunnel to the eity. It having been decided that the discharge of a 16 inch main was necessary for the city's supply, a 22 inch main is laid between the dam and tunnel. connecting in the centre of the tunnel with the 16 inch main. The total kength of the 22 jing main is 13,530 feet, the totill available head 29 feet, and the diacharge at ihe tunnel $5,853,500 \mathrm{U}$. S. gallons in 24 hours.
.The, 16 ineh main, conneeting with the $\mathbf{2 2}$ " main ut the centre of the tunnel, for the first 8000 feet of its, length, passes over rough, írregular side hill, composed of earth, gravel and boulders. The ninuosities of the side hill are elosely followed, ail great vertical depressions or elevations being avoided. In one instance, 1400 feet belnw the rock tannel, where the side hill juts out in the form of a stecp " Hog's back," it was found expedient to pierce it with a timber lined tunucl, 108 feet long, 4 feet wide, and 6 feet high.
At the termination of the side hill, a series of filta, composed of hardpan, gravel and boulders, descending in briad terraces is reached. These are followed by the 16 inch main to ordinary high water mark of . Burrard Inlet, the total dietnnce from the centre of the tunnel being 19,320 fect, and the total fall from the floor of the tupnet 388 feet.
At Burrard Inlet the $16^{\prime}$ inch main is divided by a cast iron $Y$ breech into two branclees of $12^{\prime \prime}$, diameter. Oue 12 inch branelh has 'already been laid neross the Inlet, and preparations are in progress for the laying of the second, whioh will tske place at an early dite. Plates Inlet,..... show plan and profile of tho First Narrows of Burrard Inlet, at the point selected for cronsing. It will be seen that this is at the narrowest part of the Inlet, whicre the tidel current runs with the greatest velocity. It would naturally be supposed that the greatest depth of water"would be obtained here, but this is not the case. The bed of the Inlet at this point beiog sof sandstone rock, partially covered with mud, gravel and cobblestones, forms a broad flat ridge, oxténding from shore to shoro. The greatest depth of water on the summit of this. ridge at extreme low tide is $\mathbf{5 6}$ feet, gradually inereasing on each side till soundinge of 120 feet and over can be obtained.
In extreme low tidea the width of the croming is $\mathbf{1 0 8 6}$ feet. These tides, however, are very rove, ocenrring in May and June. In ordinary tides the width at low water is 1237 feet, and at high water 2140 foet. At extreme hlgh water, which oceurs in December and January,
The north shore is extremely low and fat. From low water mark
for a distance of 6750 feet inl:nd, the total rise does not exceed 63 feet. Between high and low water mark, the surface covering ennsists of cobblestones, small boulders, and coarse gravel, undernenth whieh is as stratum of hard pon overlying sandstone rock. The south slope rises abruptly at high water mark to a height of 12 feet. terminating in a leyel flat, which extends some distance inland. Inmudiately west of the erossing in this site of the Inlet, is a steep rocky headant, which rises to an eleration of 216 feet above sea level.
This is the lighest eleration within the limits of the city of Wancuaver, and may at nome future day be utilized as the site of' a level reservoir, of sufficient eapacity to supply the eity for 20 or 30 days Between ligh and low water marks on the south shore, and for nearly three-quarters of the dist:nee acruss the Inlet, the surface furmation is soft yellow sandstone rock, whieh, when hasted aud exprised to the air, rapidly disintearates. The eontour of the bottom is au ulmo-t perfeet eurve, the value of which railway engiucers would express as $-\frac{1}{2}$ degrees.

Skilled divers made three differeut examinations of the bottom, and reported fully thereon, agreeing with eaoh other in every partieular.
The substance of their reportis was to the effect that no crevices existed in the rook ledge on the pipo lini, or in its neighborhood, and thit the bottoxi froms shore to shore wis perfectly smooth aud free from bouldera of any magnitude.

These reports were verified to a certain extent by soundings taken by the writer, at intervals of five foct apart, the lead, whieh weighed 15 lbs , never being allowed to leave the bottem all tho way neross.
The greatest depth recorded is, as before stated, 56 feet at low water, increasing to 70, feet at hiẹh water. The "Bore" oritidal current varies from $4 \frac{1}{2}$ to 9 miles per hour, the greatest velóeity ocearring in the out-going tide, $2 \frac{1}{2}$ hours after low water. Ba volume of water like that flowing from the broad basin of Bawrard Inlet through the restricted chanael of the Fir.t Narrows into English Bay, this velocity of 9 miles per hour is terrific in its effects on any body opposing it. Some idea may be gathered from the faet that a' new 9 inch manilla hawser of 20 tona ultininate tensile strain, which, in the preliminary operations of laying the submerged mains, was stretched across the inlet, was snapped like pack thread by boing suddenly lifted to the surfuee, and allowed to flost on it.
South of Burrard Inlet, at bigh water mark, the aingle 12 ineh main connects with a Y breech similar to that on the north side. A $16^{\prime \prime}$ minin leads out from this breeoh, passing over a uniform bevilder and gravel flat, known as stanley Park, the greatest clevation of whieh above sua level is 7 7rteet. South of Stanley Park at a distaneo of 5041 feet from Burrard Inlet, is a long, nurrow, sliallow bay of Burrard Inlet, known as Coal Hurbour. This bay lies direotly south of, and paralled to, the First Narrows. The extreme length from east to Weat is $\mathbf{6} 720$ fect. The entrance to the bay is 3,730 feet wide. This width gradually docreases till the head is reached at a distanoe of only 1,500 feet from Rogliah Bay, and separated from it by a low lying strip of land, the highest elevation of which above sea level is not more than 17 feet. The bottom is of son mud, thickly atudded with boulders. Half a mile from the head of the bay, the shore on each aide jute out in long narrow promontories, leaving a waterway 870 feet wide 'at high water, and 250 feet at oxtreme low water. This is the point seleoted for the orossing of the 16 inch main. The bottom is of uniform contour, and consists of tenaciona mad and amall boutders. The greateat depth at low water whioh oocurs in mid ohannol is 5 feen.
Immediatcly south of Coal Harboar the Oity of Vanoouvar ia resobed. Tha 16 inoh main in continued aloog the graded atroets to the oentre of the Oity, a diatance of 39,211 fret from the centre of the tunnel, or almont araetly 10 mile frome the moll chambers of tho dam.
The cotal fall from the lovel of wator in the reverroir at the dam to, the tormination of the 16 finch main is 384 foot, and from the foor of the tanael to the mame polat 355 feet. The total available die. oharge in $5,103,000 \mathrm{U}$. S. gala. in 24 hours.
a, South of Burrand Inlet, all works of excavation, refilling, oulvert building, eto., were done by the company by day labor. North of Burrard Inlet, between the First Narrowa and the dam, euch works were done by Messrs. H. F. Keefer and D. MoGillivray, of Yancouvar under a lump aum contract, based on a table of quantitice furmished by the Company. The trenches were excavated to regular grades, the average depth for $12^{\prime \prime}$ pipes being $3^{\prime}, 6^{\prime \prime}$, for $16^{\prime \prime}$ pipes, $3^{\prime}, 10^{\prime \prime}$, and for $22^{\prime \prime}$ pipes $4^{\prime}, 4^{\prime \prime}$, this gave a covering over all pipes of mot less than $\mathbf{2}^{\prime \prime} \mathbf{6}^{\prime \prime}$, an amply sufficient depth in the olimate of Vancouver, frost never being krown to penetrato the soil deeper than 14 inches. When the nature of tho ground was uneven, and the grade line laid down gave excavations less in places than these depthe, the difference was made up by embankments, 3 feet wido on top, with slopes of $1 \frac{1}{2}$ to 1 . In certaio small gullies, embankments 6 feet wide on top were built under the mains, instead of timher trestling, there being danger ol' bush fires during the summer months. The mains on top of these cmbankments, and also noder all streams, are protected from injury by being enclosed in timber enlverts.

## ADVANTAUES OF STEEL OVER WBOUGIT AND CAST IBON MAINE.

Previons to describing the rivetted mild ated msina used by the Vanconver Waterworks Co. : it may be of ibterest to trace the origin of ateel pipes, and exemplify the many advantages possessed by them over cast iron pipes.
Up to the year, 1845, cast iron was in universal nse for the mana. facture of water pipes ; but in that ycar, Mr. Jonathan Bull invented and laid in Sarstoga, N. Y., a wrought iren pipe, conted inside and out with hydraulic cement. This is the first instince on record in which wrought iron water pipes were laid on this continent. Owing to the great paving effected by this invention, it rajidly rose in favor, and was adopted by many eities in the union. It was soon, however, discoverel that these pipes required to be laid on a perfeotly solid and unyielding foundution. If laid on made ground the slightest settlement caused the cement linings to cruck and leakage took place. The method of lining and laying in tho trench was cumbersome, and could only be employed to advantinge near the centres of civilizstion, where transport was cheap and labor abundant. When it was required to carry leng lines of water pipes over mountaiaous country in wildernesses eatirely unsettled, and without mads or means of conscyance, enginecrs were confronted with thetask of devising another and still more eonomieal pipe. In Califoruia abd tho Pacifio States of tho Union, this problem was successfully solved by the iovention of asphaltum costed rivetted wrought iroo pipes. The oheapness of construction of these pipes, and the facility with which they oould be handled and more especially in the miniag districts, hrought them at eace into general use. In design and construotion they arecractly aimilar to the rivotted mild steel- mains deseribed farther on in this paper. Between 187) and 1885, the Risdon Iron Works Company, of San Franciso, furnished various water and mining companies with over 150 milus of these pipes varying in diameter from 12 to 52 inches. Aneug the more notable examples may be mentioned the following:

Spaina Valley Watehworks Co.- 36 miles of pipe from 18 to

The Viruinia and Gold Hilli, Waterworks Co,-3 miles of pipe $11 \frac{1}{2}$ inches diamoter, and from $\frac{1}{}$ to $\frac{8}{2}$ inches thick. This main crosses a deep valley lying between its point of supply at Laske Marlette and Virginia city. The bothem of the valley is 1750 feet below the lovel of the lake. Therefore this main is subject to a constant statio pressuro of 750 lbs . per squaro inelh at its lowest point.
The Wiute Pine Watenworks Co.-2 miles of pipe, 12 inohes diaucter, ${ }^{1,2} \%$ to if iaches thiok.
Tue Portland Waterworks Coc-4t miles of pipe, 301 iuchea diancter, and tư inches thick.
The Cherokie Flat Mining Co.-3 miles of pipe, 30 inches dia. moter, and frow tof to th inohes thiok.

The great ancoun of aephaltume-conted rivetted wrought iron pipes led to still further rewearehes. Mannfactureris of water pipes directed their attention to the adaptability of mifd steel for hydraulic purposes, and arrived at moat gratifying results.
The writer, in seeking information on this subject, reccived from Mesars. Duncan Bros., of London, England, a pamphlet on mild ateel mains, of which only a few' copies were published by that firm fir privato circulation. The following extracts, giving a' compurison between mild ateel, 'wrought iron, and cast iron for water mains, may be of ч n tereat
"Scientific in reatigation proved that in sddition to being more dyctile, it (wrought iron) had greater tensile strength than cast iron, the relative tensile atrengths of cast iron and wrought iron being approximately 1 and 2.7. Mild ateel ia refined wrought iron, being nearly pure metallic iron, and when rolled into plates its atréngth compared to cast iron is as 4 to 1 . In consequence of ite atrength and ductility, it is eminently adapted for ath purposes to which cast iron has been formerly applied." With regard to atrength the ultimate tensile strength usually mentioned in'apecifications for cast iron pipes is $18,000 \mathrm{lbs}$; per muare inch mild steel, however, is now wade with an ultimate tensile strength of, $72,000 \mathrm{lls}$. per square inch. It follows. therefore, that if pipes are made of atcel plates of the same thickness as would be employed in cast iron, they are approximately tour times as atrong. The actualsirength is not exactly four times, because it is not eustomary to calculate resis.;tance to internal pressures with the same co-efficient or factor of saliety fur both materiala.
'The factor of satety usually emploged for cast iron is 10 , that is to say; the working strength of the material is taken as only one-teuth of the uctual strength, which, in the case of pipes, ueans that if the interaal working pressure is to be 100 lbs . per square iueh, the strength of the pipes is calculated to resist 1000 llbs , per square inch. For wrought iron, the factor is 6 , and for mild ateel 5 . The reakon for the differences in the facur of safety is because irou and mild steel are more loonogeneous, und thus unve reliable than cast iron.
T'he impurities which are present in cast.irou are of less specifice gravity" than metallic irou, and consequeutly the spreific gravity of the mizture called cast iron is less than that of pure metallic iron. Mild ateel ia the nearest approach to pure metallic iron, which commerceand science combined have yet produced on an extensive workiug scale. The average reights of the metals are:
 lba. per cubic foot ; the average weight of water is $62 \frac{1}{2}$ lbs. per oubic foot ; therefore the specific gravities average

| Water. | Cuat iron. | Wrought inon. | Nild Sted. |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 7.20 | 7.68 | 7.83 |

TABLE OF RELATIVE THICENESS FOR EQUAL GTRENGTH. Weight of plate in lbs., per sq. ft.

Cast inon., Wrought iron. Mild steel

| 1 inch thiok <br> Tenacity per square inoh Relativo atrength for equal thick nesu. | $\begin{array}{r} 37.5 \\ 18,000 \end{array}$ | $\begin{array}{r} 40 \\ 48,600 \end{array}$ | $\begin{array}{r} \mathbf{4 0 . 8} \\ \mathbf{7 2 , 0 0 0} \end{array}$ |
| :---: | :---: | :---: | :---: |
| Fretor of safety ....................... | 10 | 2.7 | 4 |
| Relative of atrength due to factor of eatoty | 10 | ${ }^{6}$ | 5 |
| Reduction in etrength dne to riv. etted jointa | 1 | 4.5 | 8 |
| Relative strength after reduotion |  | 30 p.o. | 30 p.c. |
| for rivetted jointe................ <br> Ilelative thleknesi for plates of equal atrength. | 1 | 3.15 | 5.6 |
| wreagth.. | 1 | 0.3174 | 1786 |

table of belative weiuht fó equal atrenuth.
Theckness of plato in inches, 401 bs .
Cast inon. Wrought iron. Nild sted. weight per sq. ft. ...............



Weipht of plain eylimiders of equal


1
0.3178 , 0.2111

The relative thieknow for plates of erpial strength for mnterials of the oltimate tenacity under' 'rimsideration are given on the last ling of the firat tuble. In the next table, the results ubtained show the relatize weights of pipes of erplal stringth, having socket and spigor joints made from materiaik of the ultimate tonile strength speeified.

Applying there results to an ideal case. we tind that. if it ing apeeified
 inches intermal liameter, are tii he $\frac{7}{6}$ inth ( $=.875$ ) thick, hefll wronght iron piges of the same diameter would be . $\times 75$; $3174=.2758$ inches thick. and mild sted pipues wontal be . $8.50 .1786=.151 .3$ mehes thiek
 internal working pressures.
 np of pijus in 12 feet hengths, weighing 24.8 cwt. each kngth, weighs $\mathbf{5} 45.6$ thos, the eorreponding weight of one mile alt, wroaght iron pipes will be $545.6 \times 0.3068=210.6$ toms. uns une vile of mild sted $5+5.6,0.214=115.2$ tohs.

These rewilts show that for equal diameter, et inchef, enfial working pressures of' 300 feet and epual lengeths of 'one mile, the weights are rexpectively:

| C'ext imin. | Wranyle iron. | Mill atcel. |
| :---: | :---: | :---: |
| 545.6 | Q00.6 | dra. |

The price prer ton of mild stiel pijes averages alooul $4 \frac{1}{4}$ times the ellrrent price of east iron piper: as the relanive weights for enfal strength are as 1 : .2111, it is therefire apparment that the relative cost - for $n$ given length are us $1: 0.91$, or in uther words, bugth tor length at a ewst of 10 per eant. less than east iron pipes. With rygard the earriage, the mente per ton by rail is the same fur cibler cast iron or mild stecel pipen, and as the saving is in the direet ration of dend weiglit for a given hompth, the eost oll railway carriage is 7 s prer rint. Jess than on east iron pipes, and a like sating ean be efferted in handling the pipes at the site of the track in which they are to bee laid.
The mext puint tu which attemian is diverted in the juinting. As mild sted pijus are so mach lighter than cant iron fipes, it is char that they may loe comveniently handhed in longer hongthe. The system of eonstruction abs lisors this, anel in fiact the pipwo may be made in one comtinuous length. binite ingonghe site if' it is desired. 'The customary methods are to make thom in. leonghs of "t feet, this being twied the usual length of cast iron pipe, and/conseguently having only half the number of joints. ITakiag the $2 t$ ineh pipes before mentioned, the lengths and weightes would be


Again, taking tho case of one millo in length, 440 pipes would be required in cast iron, and only $\underset{1}{2} 0$ in uild steel, consequently, there ja a stviug of 50 per cent. in the labor and eost of jointing a piven length. Then with regard to eneh joint, the mean eircumerence of the space for lead in ant orlinary enst iron socket joint is greater than in a mild steel pipe, in consequepec of the greater thiekness of cast irot. The reduetion in the circumferener of "u-mild steel moeket is equal to a muving of $9 \frac{1}{2}$ per cent. upon the weight of lead required for a 24 ineh cast iron pipe socket; assuming that the depth of leal is the same in each oase, the total saving in lead is therefore $50 \pm$ pur ceut.

Te ohow the final economical rewth in the ease otion mile-of 24 imeh pipes previously mentioned, the several relative costs are:


the laps were chipped and caulked. Straight and round senms mere aplit caulked. Tho whole length was then heated in an oven, end immersed in a buth of hot asplaaltumi. This bath was an imon trough, 26 feet long and 3 feet wide, supported aup briekwork, and so arranged that a fire could be kept constaptly bursing depderneath. In preparing the mixture, the trough was findol to within a few inches of the top with nephaltum broken up into small cuipes of abrout an inèh to tho side.

Coal tar, devoid of all oily matter, was then poured in 'till the asphatuinm enbes wero completely covered. The mixtupe was then aliowed to boil for three hours, being constantly stirred during the process. As unany pipes as the" mixture would cover were then dippel and allowed to dry. The coating obtained was amooth, tough, free from brittleness, and of uniform thickness.
The form of joint used in emneeting these pipes is, as before gtated, that invented by Joseph Moore and Francis Smith, employees of the Rision Iron Worky Co., San Francisco. Plate .........shows a longitudinal section of this joint. In malsing the joint in the trenches, the nipple end of one length of pipe was foreed into the larger end of the adjoining length, by means of hamuering on wooden blocks placed against the eud opposite tise 帝ple. The abutting cods of the two lengths were not driven up tight, a spaco of fromi $\frac{1}{2}$ to $\frac{1}{2}$ an iuche beiog left, for the purpose of allowing for any expansion or contraction that might take place. The outside aurface of the pipes was then scraped clean for about $\geqslant \frac{1}{2}$ inches back from the junction of the two ends. A band or ring of diameter sufticicotly yreat to allow of it ineh play between its mexile surface and the outside surface of the pipe, was then made to encircle the junction. The space between was filled up with lead in the usual manner, and carefully cilulked. Joints made after this pattern have been in use for 15 years, und have given entire satisfaction. Care must be taken in making this joint, thit no angle greater than one degree is puade at the junction of the tuo lengths of pipe, otherwise the lead packiog will be of unequal thickness, and the result, in all probability, a leaky joint. Caulkers accuatomed to jointing cast iron pipes must be cautioned, when making tor the firat time a Moore and Smith joint, that the steel pipe will only aduit of the lead being packed to a certain firmness, the degree of which can only be ascertained by actual trial. If the lead is beaten in between the ring and the pipe too tightly, the shell of the latter will bend inward, and render giod worl impossible.
As before stuted, steel mains of more than 24 inches diameter, when subject to heavy pressare, are usually made in specified lengths at the foundry, and rivetted together in the trench. To aceouplish this, it is neceseary that each length shall have a large course at one end, and a small one at the other. - The large course has its extrema end punched for rivets at the foundry, while the small conrse at the other end of the length is nopunohed.
The pipes being placed in the treach, the amall conrse of one length is forced by hammering, or other power, into the panohed large course of the adjoining leugth. The position of the rivet holes on the amali course to correapopd with those on the large course are then marked and serew punched after separation. This being done, the two lengths are again united, their aurfuces premed firmly against each other by means of a set stool, and cold rivetted from the outaide. The seam is split cinalked in the usual manner. This makes the most desirable connection for pipcs of large diameter.
However, it may be mentioned that a pipe of 41 inohes diameter, and wobject to a pressure of 300 feet, was laid, ten yeara ago, in the Sandwioh Inlande. The lengthe were eonseoted by Moore \& Smith joints, and are in active aerrice to this day.
The Vanoonver pipes were laid in the trenoh with the straight meams upwards, so that any leakage might readily be detected, and repained by further aplit caulking. Io moont ayytenus, bowever, tho arraight veama
 sediment gathers on the bottom of the pipe along the edgee of the meame, and tends to preqeat loakago.

## - BENDB AND CABTINGB.

Inasmuch as the stecl manind described in the foregoing pagee were coostructed with a view to seeuring absolutely tight jointu, the outside sprfaces of the nipples fitted tightly againat tho inside surfaces of the adjoining lengths. Consequently, no deviation from a mraight line greater than one degree conld be made between any troo lengths with out apacial bends. By mesas of apecially adapted machinery, ateel elbows and bends are made by certain manufacturera, but these lack atability when the angle of onrvature fie large. All. Benda in the Van couver ayatem are of oast iron, ove ineh thick. They are segments of a cirole, the axis of the bend being the circumference, and the radius five fuet. Previous to leaving the foundry, they ware individually aubjected to a pressure of 300 lbs . per sqnare inch.
In certaitio parts of the pipe line, north of Burrard Inlet, the ground traversed being contiguous to the river is- irregular horizontally and vertically, and required benda ranging from 5 to 70 degrees angle of deflection: That portion of the pipe line ymediately south of the tannel, and following the irregularities of the ors hill for a distance of $8000 \mathrm{fe} t$, required no less than 80 bends of ailmagles of deflection, being an average of one bend to every 100 fect of length. The total number required by the system from the point of supply to the centre of the eity was 179.
The other castings connected with the mains, not including the connections with the city distribution system, are ap followis two miles and a half below the dampat the lowest depression between the daim and the tannel is placed a blow off, $8^{\prime \prime}$. off $22^{\prime \prime}$. This is controlled by an cight inch valve, leading into a $12^{\prime \prime \prime} \times 12^{\prime \prime}$ box drain, which in turn leads to the river. "To the midnee pipe length in the tuanel is affixed a selfaeting Chabot air valve, the air passage of which is 21 inches diameter, and is controlled by a brass valve, so that the upper part containing the rubber ball may be taken off for examination at any timo without the necessity of shutting of the main at the dam.
At Burrard Inlet, on the north side is placed a blyw off, $8^{\prime \prime}$ off $16^{\prime \prime}$ and on the south side $12^{\prime \prime}$ off $16^{\prime \prime}$ reducing to $8^{\prime \prime}$, both controlled by valves, and emptying into Burrard Inlet. The ends of the 16 .inch. main, on both sides of the inlet, are provided with " $Y$ " breeches, two 12 inch branches off 16 inch. These branches conneet with the diublo line of 12 inch mains, that will ultimately cross Burrard Inlet, and are individually controlled by 12 inch valves, so that eecti main can be shut off independently if required. Between thie inlet and Coal Harbour, on the highest elevation between the two waters, is placed another Chabot air valve, arraoged in a manner similiar to the one alresdy described.
On both sides of Coal Hirbour are placed blow offs $8^{\prime \prime}$ off $16^{\prime \prime}$ dis charginginto Coal Harbour, and finally a 16 inch valve is located at the point where the mains enter the inlabited part of the city. "It will thas be seen that in case of necessity the supply to the city can be shut off at five different places, viz., at the enirance and outlet of well chambere at the dam, on both sides of Burrard Inlet, and at the entrance to the city.
laying the bubyerged main at ífret narbows.
Having in vlew the difficulty of effeeting repairs in pipes laid under Water, and the disastrons conscquences that might result from a temporary stoppage of the city's water supply should a break take place, through unavoidable causcs, the design for crossing the first narrows, instead of being one 16 inch miain, comprised its equivalent, two separate lines of 12 inch maine, 50 feet apart, and capable of independent action by means of atop valves placed at high, water mark on each side of the Inlet. Up to the present only one of these lines has been laid in position on the bed of the Inlet, made up of 746 feet of phina rivetted. steel pipes; 261 feet of rivetted steel pipe, fitted with cast iron flexiblo jointe, and 1236 feet of cast iron flexible joint pipe.

The plain rivetted atoel pipe io placed at each end of the -line, 684 rivetted the north shore and 162 feet on the couth shore.' The rivetted ateel pipe with flexible joints is placed on the north abore between the plain pipen and the cast iron fexible pipes, and the latter are placed on the bed of the Iolet, reaehing from low water to low water mark.

The construction and details of the plain pipe have been already described. The ficxible steel pipe is in leagths of $22^{\prime} .2^{\prime \prime}$ over all, and is exactly similar to the plain pipe, but provided with cagt iron spinotmend fancets, bored and turned in the rame manner as the cast iron ficrible pipes. The latter are of the pattero konwn as the Ward patent flexiblo joint pipe. They were manufaetured in Scotland, nad are of hard olose grained white cast iron, throughly coated with Dr. Smith's coal pitoh varnish. Fach lingth is $12^{\prime} 4^{\prime \prime}$, over all, 16 inches thick, Wighs $1280 \mathrm{lbs} .$, and is warranted by the manufieturers, to staud with safely the pressury due to a column of water 600 feet high: Each jnint required 70 lb b. of thie lxast Spinish pig lead. Drawing No. 6 shows a longitudinal section of this joint. The larger portion of the insido surface of the hell or fancet firms a xpherical zone, the eentre of whish is a point on the axis of the faceets at sueh a distance from its moath that the inside diameter of the later is greater by half, an inch than the inside diameter of the shoulder. The extreme end of the spigot is turned truly, and exactly fits the inside surtace of the faucet. The outer cad, or the end encircled by the mouth of the fancet, is of smaller diameter, so as to allow half an ineh of space between the two aurfacea for lead packing. At the middle of the apigot is a cireular groove; a. quarter of an inch deep and an inch and a half wide, which serves the purpoes of retaining the lead packing, and prevents the joint from palling asunder, when exposed to tensile strain. This foint is gapable of motion through an angle of 12 degrees, and a ceaplete circle ean be made with 30 leagth.

The contract for furnishing and layiog the siogle linc of cast iron flezible joint pipe was let on the 1st of November, 1887; to the iaventor and patentee of the joint, Mr. Johai F. Ward, late ehief eaginecr of the 'Jersey' City Waterworky.' The price agreed on, which covered all riakn, and contingeneies, was nine dollar's per lineal foot.

Mr. Ward has devoted matif geats of his life to laying subuarged pipes of all diameters, and hag, hitherto, met widk ynfailing suceess. Among some of the more premineat works staoding to his eredit, may Ins mentinned the six inch pipe erossing the Delaware River at Easton, Pa., the IU Inch pip., 9 tizs fect lons above the dim, at Lawrence, Mass., and the two lines of 8 inch pipe crossing Shirley Gut, Boston Harbour, a channel 400 feet wide, and 37 fect deep, through which a tidal current flows at the rate of $7 \frac{1}{2}$ miles per hour.

Mr. Ward, on his arrival, made a thorough inopection of the crossing, and expressed himself as confident of being able to eomphete his contract with ease and rapidits. Accordingly on the 21st of April, 1888, he began operations, his plan being to joint the pipes on a suitable plitform stationed at low water mark on the north shore, and by means of a stationary engine on the south shore, haul them across, length by length. Inasmach as Mr. Ward failed to earry out this plan to completion, the writer, without expressing any opiaion as to its practieability, will merely deseribe his mode of procedure.

The strueture crected on the north shore of the lolet, on which the pipes were jointed, was a frame work staging of sufficient height to reneh nbove extreme high water, and strong enough to resist the force of the incoming and outgoing tides. In the middle of this stage was eonatructed a aloping platforno, exteading from the front faec, 4 fuet below the top, down to the ground at the rear face, or the face fioating the Inlet. The object of the platform was to admit of the pipes beiog jointed in an inclined position, and therefore sliding easily to the ground, when the hauling power was applicd. The $10+$ lengtts of pipe required to reach from shore to shore were piled xithin easy rouch of the platform. The eagine on the south side of the river, opposite the plafform and at a distance of 1400 feet from it, was of $\mathbf{3 0} \mathbf{H}$. P., and reorlved anordinary drum, to which was attached a hùndred feet of wrought iron ehain, connceting with a continuous wrought irou rod of $1 \frac{1}{4}$ inches dinmeter. This red reached elear aeross the Inlet, and was-attached to the rearend of the first length of pipe lying on the sloping platform of the rtagiog. The rod was mado from round iron in lengtha of 15 feet, jointed together by cammon.screw unions, its whole teasile strength being that duo to the resistatce dficied to strippiag by the threads of the unions.

Wheo Mr. Ward had completed thesc arrangements, he began without delay to joint the lengths together. To the length lying on the platform, the spigot end of which faced the Inlet, a second length was jointell in the usual manner.:
The engine on the south side was theo pat in uotion, and the first leogth hauled forward a distance erfual to its own lengih, leaving the

* eecond-length to fill the plan previously occupied by the first. A third length was then jointed to the second, the engine ayain polled forward,' until the third length occupied the Ilace vacated by the recond. It was intended to repeat this operation uutil the rhole 104 lengths had been dragged aeross the buttom of the Inlet. However, after 18 lengtha, covering a distance of $\underline{\underline{2} 6}$ feet, had been sulmerged, Mr. Ward.concluded to substitute a steel wire cable for the wrought iron rod. In stretcling this cable acress the Inlet, it unfortunately fouled on a sniall brulder, about 200 feet alore the pipe line, and such efforts as were inade to dislodge it proved unavailing. Mr. Ward then natified the company that argent private business compelled him to leave the works for St. I'aul, Minn. He did not return, but shortly aficrwards officially abandoned the coutract.
On July 9hh, more than a month after Mr. Warl's fuilure, the company coutraeted wih Messrs. II. F. Keefer and D. MeGillivray, the gentlemen who already held the centract for treaching refilling, to complete the work according to certain specifications, froun which the following clauses are extracted.
"The totill length of the erossing to be made is 1248 fret, extending from low water mark on the anoth shore to low water mark on tho north sbore. These points will be detined by stakes placed by the company's engineer, and the whole main when finally laid shall be in a perfecily atraight line betweeo them.
Each pipe length, previous to being placed iv position, shall be well and carefully tested for flaws io manufacture, cracks, air-holes, and other defecta, by the usual process of suapending in slinge and tapping with hammer. Should any be found defective; they shall be discarded, and the engineer notified of the same.
The lead to be used in jointing shall' be that koown as " Best Spanish Pigi"
The whole sumber of pipe lengths; previous to being placed in final position on the bed of the first narrows, shall be jofnted, leaded, and made perfectly water-tight on dry landj, and of such a structure as will admit of the whele length of 1248 feet being of easy aecess for the purpose of inspection.

A test pressure of not less than 300 lbs per square inch ahall then be applicd by the contractors, in the presence of the Company'a Engineer, the leuknge under whieh, throughout the whole length of 1248 feet, shall not éxceed one cubie foot per misute. Sueh joints as may prove defective- under this pressure shall be made good by the contractors at their own expense, and surh pipe lengths as may leak or give evidence of flaws shall be removed by the contractors, and replaced by sound lengtha, the cost of which shall be defrayed by the company.
The Engineer's spproval of the mais, after the application of tho above test being given, the contraetors shall be at liberty to place it in position on the bed of the first narrows, which being done, a similartest pressure of 300 lbs . por square inch, subject to the same conditions, shall be applied.
A diver will be appointed by the company to inspect the main when fually luid in position, and on his report such alterations in its position as may be rendered nccessary by reasos of its resting on boulders or sharp irregulapives of the bed of the Inlet,' shall be made by the contractors, and i. .their expense, provided the total cost does not exceed five hundred dollifs. All costs over this amount shall be defrayed by tbe company."
Mesars. Keefer and McGillivray entered into the fulfilment of their contract with energy. A 30 H. P. engine was stationed on she north shore of the Inlet, between high and low water marks. With this the 18 lengtha submerged by Mr. Ward were hauled baok to dry land. A trench, 4 feet wide, 4 feet deep, and 1300 feet long, was excavated on
the line of the crowing on the north ahore. Parallef continuons ranmers of barted fr , three in number, were placed in the bottom of the trench, in such a manner that the bell end of each pipe when joiuted would rest on the oentral runner, and be supported on each aide by the other two ranners. $\boldsymbol{A}$ frame work ataging, aimilar to that employed by Mr. Ward, was built over the trench and supported on rollers, on whioh it could readily be moved over tho whole longth of the trench. On this staging with its sloping platiform, the wholo number of pipe lengths were jointed, the operation being very aimilar to that of paying off a cable from a moving ship. As soon as the first joint was made, the ataging was moved forward till the first pipe length rested on the runpers in the trench, leaving the second in the placo racated by the first. A third pipe was then hoiated op by winches, its spigot end inserted into tho bell of the second, and carefully adjusted in exaet line. Molten lead was then poured in and caulked in the usual manner. This done, the staging was again moved forward and another pipe adjusted; the operation being repeated day by day, till one hundred lengtha had been eonnected. As before stated 104 lengths were provided, but during the process of jointing, furr, showing evident aigns of fracture, were discarded.
Inmediately on the completion of the work of jointing, both onds of the chain of pipes were securely eappel, and the stipulatid test pressure of 300 lbs . per square inch applied.
A first attempt was made to apply the pressúre by meaus of a hand pump, worked by six men, forcing a stream of witer into a circular opening, one ineh in diameter, provided for that purpose inthe eap on the north end. It was speedily found, however, that owing to tho leakage at the joints, slight as it was, this method was not poworful enough to keep the chain of pipes foll and attain the requirod pressure. The stationary engine, situated nidway between high and low water mark, was then brought into requisition: The middle length of the chain of pipes was tapped, and by means, of the engine, water was pumped in until the first detective pipe manifested itself, which oecurred when the eause registercd 30 lbs . per square ineh. This length was immediately broken up by sledge liammers, the bell cut by a cold chisel, split open, and the lead removed.
The two portions of the chain of pipes were then hauled tozether by means of the engine, and re-jointed: Pressure was again applied until the second injured pipe gave way.
This operation was rapeated until no less than eight defective pipes had been removed. The remaining 93 austained the required pressure of 300 lbs . per square inch for a period of five minutes, during whieh each length was aubjected to heavy blowa from a 12 lb . hammer. As the joints sustained this severe pressury vithout excceding the apecified amount of leakage, and as every lengeth seemed to be absolutely free from defects, the test was considfred eminently satisfactory. The following table showg the pressures at which the different pipe lengths gave evidence of the metures thry had sustained daring thefr repeated handlings, and which were not detceted by the process of "ring ing."


Notwithstandiug the additional loss of these 8 pipes, it was deemed advisable to proseed with the submersion of the remaining 92 , the shelving nature of the north shore being suoh that the north end of the chain of pipes, when arat in position, would not be copered by more than 2 feet of water at low tide, and, therefore, it would be no difficult matter to raise that end at any future convenient time, and add tho whole 12 lengtha necemary to comipletc the croming as planned.

The plan adopted for placing this loag line of henvy fexible pipen . fa porition on the bed of the Inlat wae direot hanling from abore to ahore, during the half tidee which oocar is the Ialet daring the monthe of Jaly and Augast. For the parpose of lesenaing the freight as much as posible, enoh lengit was encircled by an wrought iron ring, to escli of whioh toats of 509 lba buoyanay were uttuchod. To prevent as unuch as pomible the forward end of the chain of pipes from ploughing a deop furrow in the bed of the Iolei during the prooesn of hauling it was buoyed ap by a number of cedar loge laid lengthwayn. The Auling gear wid maflown-(See Drawing No. 4) To the rear cnd, that is the end fartheat from the water, was attaohed a 9 inch manilla cable of $44,800 \mathrm{lbs}$. ultimate tensile strength, and 600 feet lang, which was connected with the 30 II. P. Engiac, stationod on the iname shore, midway between high and low water murka. To tho middle length was attached a 4 inch steel cable of $52,000 \mathrm{lbs}$. ultimate atrength, and 1880 ,feet long, which eunnected with a 3i) H. P. engine stationed on the south or opposite shorc. Midway between the middle leagth and the forward end of the chain of pipes, $\mathbf{z}$ similar sieel oable $\mathbf{1 , 6 0 0}$ feet long was attuched, which also connected with a 30 II . P. engine on the opposite shore. A third atcel owble of the same atrength, and 1,325 fect long, was attanhed to the furward end of ths chain of pipes. This latter connected with two 30 II . P. engines on the opposite shore.' It will thus be seen that there were no leas than three 4 inch steel wire cables, and one 9 inch manilla aable attached to tho chain of pipes, the totul ultimate atrength of which was vers nefirly 90 tons. The total effective strength of the engines pulling thy tacklo connected with these cables aggregated 150 horse power.
The four engines on the mouth sifo were stationed on the beach at bigh water mark." The blocks and tackle were arranged in three parullel rowis 10 feet apart ou the flat immediately to the rear of the engines. This fat being deasely timbered with the huge trees peculiar to the Pacific coast, the space cleared in whish to operate the tackle was pecessurily liunited. Tho block; wero securely auchored to huge stamps in the viciaity by heavy wrought iron ohains. The pulleys, one of which was four alheaved and two three shoaved, had a clear distance of 56 feet in which to operate. The manilla cables passing through the sheaves were connected to the wire cables by wrought iron grips invented for the occasion by the contractors.

All arrangments having been satisfuctorily conpleted, the eugines were get in motion on the $\mathbf{2 8 t h}$ of August last at $10 \mathrm{a} . \mathrm{m}$. The strel cables straightened out and remainced tant and stationary, but only for a minute. A audden slaekeniog took place, and the whole chain of pipes took a forward mution of several feet, and from that instant the success of the undertaking was an assurod fact. There had been a question as to whether the joints would withatand the enormous teasile strain brought to bear on them, but it now becaue certain that the lead packing would remain intact as. long as the cast iron bell beld together.

Owing to the extreme distance between the blocks and pulleys being no more than 56 feet, the tackle cohnecting them had to be overhauled every advance of 56 feet made by the ehaia of pipes. The process of hauling was thercfore necessarily slow ; but being bept up without inter mission, at 7 p . m . the forward end of the chain of pipes arrived at its destination on the south shore.

On the day following, at alnok tids, a skillful marige diver walked across the bed of the Inlet, following the chain of pipes, entering on the south shore and emerging on the north. His report was to the effect that the whole line of pipes was lying on the bed of the Inlot in a per fectly atraight line, withont sag or bend, that the heavy projecting bells of the pipei had scooped, as they were being drawn over, a deep groove in the aoft andatone.rock, and that the whole chain of pipes was resting in a rock trench of its own excavating; that above this treneh silt watpo rapidly gathering, and that in his unqualified opinion the pipes would in a few weeks be entirely covered over, rendering their permnneioy and

The day following this examination, the contractors applied the final test 'prisinte of 300 'lbs. per square inch as called for by the apeeifications. An opening was made in the cap on the end length, the pipen filled with water by fteam pumps, and the required presanre ateadily maintained for five minutes of time, without perceptible lcakage.", The coormous train on the joints apparentl'y had no other than a bpact ficial effect, having compacted the lead, and rendered tho wholo livier perfectly water-tight. Elevert of the 12 pipes which had been discarded were subsequently rephemed by pipes cast by the Albion Iron Werks Co. of Victoria, tested to a pressure of 300 lbs . per square inch beforo leaving the foundry. No difficulty was experjenced in attaching these to tho main already submerged. The end of that main having been lifted up was buoyed on the deck of a small scow. The additional lengths were added one by one, the scow being moved forward as'each length was jointed, until the whole eleven reated in position on the bed of the Inlet. It was found, however, at a later date that owing to the ahelving naturef of the north shore, and the fluctuations of the tides, a eatisfactory connection between the end of the cast iron fexible pipe and the plain rivetted ateel pipes conld not be made. Twelve of the latter were accordingly fitted with flexible cast iron apigots and faucets, similar; to those shown on drawing No. 6, and conncoted with the caat iron plpees making a total length of 1496 f feet flexiblo pipe, covering a horigoptal distance of $1483 \frac{1}{\frac{1}{2}}$ feet.

When the project for aupplying tho eity of Vancouver with "water from the River Catpilano, by mcans of a aubmerged main across Burrard Inlet, was firet made public, considerable interest was evinced by both engineers and civilians. Printers' iuk was oalled into requisition, and many articles published demonstrating the utter inpracticability of the project.'

The completo nucceas of fith undertaking is an irrefutable answer to all the adverac theoriea whetued. However, it may be of interest, even at thia late day, to mention' some of the objections urged and believed in up to thesuccessful eobprietion of the work, and the published answers ticreth.

Objection 1.
That the known forco of the current in the first narrows would oause the chain of pipes to away up, and down the bed of the Inlet with eaob ehange of tide, and eventually reault in scparation of the jointa.

Anawer-That it could, be mathematically demonstrated (calculation shown), that the force of the current was'altogether insufficient to produce the results atated, and tbat the proposed method of laying the "pipes by "direct bauling" from abore to alsore woind result in the sharp-edged bells" of the pipes cutting a groove, divis deep to
 motion.

Objection 2. .
That the current would ercate a friction that would sequr off any couting that might be put on to protect the pipes from cọrrosion.

- Answer.-That the pipes being enibedded in the botgm of the inlet, and covered by ailt, would be absolutely frce from frictiónal action.

Objection 3.
That vessels might aocidentally drop anchor on the pipes, or that vcs on finding themeelves in danger of drifing asliore, through stress of Weather ogother causes, unght be obliged w drop their anchors on the bottom, and realt hook on to the, chain of pipes and break it asunder.

Answer.-That the thickncss of the pipe shells if exposed to the shock of a' falling anchor would be sufficient to keep them intaot, and that if the anchor fluke of a driting vcasel were to bury ifself under the chain of pipes, thè veasch would be securely nnchòred, and would be obliged to wait for the turn of the tide to free hérself, suoh cases ocourring daily in Boston Harbonr and elsewberc.

## Objection 4.

That salt water would cause galvanic action of a destructive nature to take place at the joints where lcad and cast irpn were in close coutact.

Answer.-That there in to instance on record of desthuctive galvauic: action haviog occurred in the case of lead and eant iron in contact under salt water.
Objection 5.
That the chain of pipes, being of esst iron, would, uping the the action of aatt water, speedily becomo solt like Plumbago, suld in $n$ few montha become utierly, worthless.
Anawer.-That softening of cast iron exposed to the action of salt water takes placte only in castings of inferior metal, and that it is on record that onatinge of close graived, hard, white metal had resitiend the corroding action of salt water for 40 ycars and upwards.
Objection 6.
That in the case of a Narrows', connecting a large iulund bavin with the sea, wherc the tide has a rise and fall of 12 feet, the counter currenta in such a resiricted passage defied calculation, and were more likely to be greater at the betton than at the surface.
Answer.-That the laws of nature are unchangeable, and that future experiments of the company's engivers would amply demonstr that it was inpossible for a current exposel to the influenee of a v friction bed, like the bottom of Burrard Inlct, to be greater than the free and unrestricted current of the surface.
Objection 7.
That the great force of the current, readered it iuperative that the whole ehain of pipes should be laid in the short interval of slack water between two tides, which did not exceed twenty minutes daration, and that no meuns could be devised to porffirm such an arduous undertaking in such a ahort period of tiume.
Answer.-That the method proposed by the company, of jointing the pipea and huuling them in a continuous ehain across tho ialet, would, na before stated, cotrench the pipes, sind causo a resistance to motion which would render it imuinterinl whether thepipes were laid in twenty minuten or twenty hours.

## Objection 8.

That the method of laying the pipes proposed by the compaing, viz.jointing and hauling in one continuous chain, was iupossible, as no pipe joint could be made atrong énough to withstand the enormous tensile strain this method would entail.
Answer-That the construction of the Wurd flcziible joint was of such a nature' that the lead packing could not be pulled out, and before a joint could break asunder, it would be.necessary for the cast iron bell to give way, and that in consequence the strength of the joint was limited only by the sectional area of cast iron exposed to the tensilo strain.
Objection 9.
That there were no instances on record of pipes laid in sali water subject to a tidal eurrentiof 9 miles per hour, whero the depth of the channel was 60 feet, and the width 1240 feer.

Answer-That this wus most certainly true, and that when the Vancouver Coimpany's sabmerged main was laid, it would serve as a precedent for similar works on a more gigancic gonles

The above objectiona and anawers, and many more of a like pature, were publidy disoussed and arguod upon by professioual men. Flaborate and specious mathematical calculations were produced in snpport of each theory. Howfver, as the work is now an accomplished fact, all opposing theories aro thereby proved worthless.

In regard to the ninth objeotion, the writer is well aware that no similar work of a like magnitade has ever been attemped. Greater lengths of fiexible pipes hạe been laid in lekee, rivers, and ocean bays; but previous to the laying of the sabmerged main acruss Burrard Inlet, no pipe of 12 inches diameter and 1100 feet in length had been laid in salt wuter 60 feet deep, on a amooth rock bottom, and expoeed to a tidal current of 9 miles per hour. Tho nearest appronch to it is the Shirley Gut pipe, 8 inches' diameter, laid hy Mr. Ward many Jeirs ago whick, us before bizted, crosses an arm of the mea, 400 feet wide, 37 feet deep, and subject to a tidal ourrent of $7 \frac{1}{2}$ milee per hour. The double line of 16 inoh flexible pipe laid across San Francisoo Bay
roit thesas Francirco Walecemorks $\mathrm{Co}_{\mathrm{o}}$. is the longest chain of submerged pipes yet laṭd, The pipes are seamless wrought iron tubes, 5-16" thiek fitted with castiren faugots and spigots after the Wurd pattern. The bsy, ': whicré the: pipes 'cross, is 6300 feet wide, sind entircly freo from eugrents: A thousignd féct out froni. tho Alameda shore it is 60 feet deep, burat two thousand fect it is only $\mathbf{1 5}$ fect, and this latter depth graduitly decreasen till the San Francisco shore is renehed. The pipes ivere jointed on a large neow, fitted with a derriek and sloping platform, and paid out from the rear as each successive length was added. The whole time occupied in jointing and paying out the double line was 40 days.

- The followiug table shows the more prouinent instances of submerged pipes, known to the writer as being laid previous to the laying of the Burrard Inlet pipes.

| Main. | fength. | Waterworks Co. | - Where laid. |
| :---: | :---: | :---: | :---: |
| Single 36 inches. | 4000 | Toionto Waterworks. |  |
| "، 36 | - 3044 | Milwaukee " | Lake Michigan. |
| " <br> 16 <br> 10 | 2000 | Jerpey City " | Indsou liver. |
| "! $12 \times$ | 960 963 | Philadelphia "\% | Delaware River |
| Double 16 " | 6300 |  |  |
| " 8 " | 400 | Deer Island " | San Francisco Bry. ${ }_{\text {a }}$-* |
| Single 8 " | 3100 | Sian Diego... . " | San Diego Bay. |
| - ${ }^{\mathbf{4}} \mathbf{6}$ | 800 | Eastgn " | Delaware River. |

laytio submerged main across fodal hariour.
Coal Harbour, beipy shallow and its bed easy of access at all stages of the tide, is crossed by a 16 inch rivetted steel mbin, $3-16^{\prime \prime}$ thick, fitted with cast iron flexible joints; and costing $\$ 3.50$ per linesl foot at the foundry. Drawing No. 6 shows the form of joint used. Three hundred lineal feet of flexible pipe were provided, but at thic time it was necessary to effect the crossiag, it was found that unusally ligh tides prevailed, sad that this amount was insufficicat. This difficulty was overcome by rivetting two plain lengths to two flexible lengths, tho compound lengt hs, each 48 feet lony, being placed at the ends of crossing, the whole covering, when jointed, a distanoe of 348 feet. The submerging of the pipes was effected without difficulty in the following simple manner:

The total number of lenglhs were jointed in one continuousstraight line on the south shore, between high and low water marks, the forward end resting on and firmly secured to a smalt soow.

The whole line was buoyed aneach side by cedar floats, capable of sustaining the entire weight. On the rising of the tide, the seow and the chuis of pijes rose with $i t$, and when well afloat, a dozen men stationod ou the opposite silore hauled on a amall rope attsched to the scow, pulling it forward, till the line of pipes was direetly above its. destined position on the.bed of the Bay. The floats were then cut off, and the pipes allowed to sink to the bottom. At low water the ende of the chuin were exposed, aud connection with the 16 ineh mains on each shoro was effected without difficulty. 'The whole, operation occupied three days from start to finish.

## tie dietribution system.

The generul plan of the distribution system, was designed by Mr. T. C. Keefer, C.!E., C.M.G., I'artyPresident. of tho Canadian Society of Civil Engincers. Its excellence is therefore beyond question. Subjoined are a few of the more important details.
The city of Vancouver is laid out on the rectangular system, the etreets being 99 and 66 feet wide, forming blooks 260 feet wide- by 500 fect long. The 16 inch steel main is carried under the prinoipal atreets into the centre of the city. Branching from it, at aitable intervaly, by means of apecial castings, the larger aub-maine, $8^{\prime \prime}$ add $6^{\prime \prime}$ diameter, form rectangles, from the sides of whioh the manaller sub-mains, $4^{\prime \prime}, 2 \frac{1}{2 \prime}^{\prime \prime}$ and $2^{n}$ diameter, branoh out in any required direction. The syatem in liberally supplicd with atep valres.-Fach pipe feating direot from tho main, and oaoh small sub-main feeding from the larger sub-mains, can be olowed independenty, when required. In the ease of breaks and
necessary repairs, a single street or part of a strect can be shat off without interfering with the suppiy to other parts of the city. Should it ever becomo neecssary to shut off the whole system, a 16 inch valve is provided on the main for this purpose, outside tho limits of the distribution systen. In all cases the valves have been placed nt a distance of tour feet from the initial point of the sub-main, or frou the intersecting centre of the two sub-miains. The sub-mane nere laid aitin distance of $\mathbf{2 0}$ feet from and parallel to the strect lines, so that the exact locality of tho valves can be found without difficulty, cven in winter when the ground may be covered with snow and ice. In most cities the practiee followed lass been to loeate the valves uniformly on the lines of the street boundaries, the disadvantage of which is that a break in a sub nain may occur betwecin the valve and the feeding pip;, in which case tho valve is rendered uscless.

To resist the severe water hammer, due to the great pressure in the systeu, the valves are made unusually heavy.
The bodies, eaps, and nuts are of cast iron ; the spindles, stuffing' boxes, glands and followers are of eomposition metal.
The plugs arc of east iron with composition faces, and sp:mlle bushings. The following table gives their dimensions, weight and cost in Vietoria.
step vaters.

|  | Diameter in inches. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $2^{\prime \prime}$ | $4^{\prime \prime}$ | . $6^{\prime \prime}$ | $8^{\prime \prime}$ | 12" | 16" |
| Shonkler to Nhoitder of Bells....... <br> Diameter of Bell in inches. <br> Aver. weight in libs. <br> Cost at Victoria.... | $\begin{gathered} 3{\underset{y}{n}}^{\prime \prime} \\ 3 \mathbf{1}^{\prime \prime} \\ 34 \\ \$ 12.00 \end{gathered}$ | 51" | $\stackrel{6}{*}^{\prime \prime}$ | $14$ | 8 " | 97\% |
|  |  | 57" |  | 63n |  |  |
|  |  | 115 | 7\% | 100** |  | $183^{\prime \prime}$ 1100 |
|  |  | \$ 17.50 | \$30.00 | \$44.00 |  | $\begin{aligned} & 1100 \\ & \$ 150.00 \end{aligned}$ |

The body of each valve is enclosed in a square brick olamber, built to such a height that the top of the valve chamber (a small, square cast iron box, weighing 111 lbs. , aud protecting the nut of the spindle), when placed upon it, ia \#lush with the street.

The syatem is provided with 75 double valves, two hose Matthem's fire hydrants, with 4 ineh valve openngs. This hydrant is in general use throughout the United States. The manufacturers clain, and the olaim is conceded by all cities using them, the following superioritiea over all others
There being two mains valves, possiblo leakage is reduced to a minimúm. The lower valve, working independently of the upper valve, the hydrant can be disconoceted for repairs, without tho mecessity of excavation, and without ahutting off the feeding sub-main. The rod and automatio wasto valvo, attached to tho upper induction valve, work in auoh a manner that the opening of the lower induction valve involves the closing of the wasto valvo, and vice-vorsa. Waste of water cannot therefore tuke place, and no water can remain in the atock of the hydrant, when the upper valve is elosed.

The lower valvo being capable of indopendent aotion, the temporary removal of the upper valvo f6f repairs does not interfere with the utility of the hydraut.

Aa previously atuted, tho works of exoavation and pipe laying mains included south of Barrard Inlet were carried out by the company by day tabour. The average depth of trench for the mains was $\mathbf{3}^{\prime} 10,{ }^{\prime \prime}$ and for the sub-mains 3 feet. The cost, inoluding tools, laying pipes, placing apecials, erecting hydranta, refilling and tampiug trenohes, taking up and replacing orossingx, and works of a like nature, did not exceed 17 cents per lineal foot.

## LETTINOTHER WATE INTO THE MAINE.

On Wednesday, the 20th of Marcl, $188^{\circ} 9$, the gate in che well ohembers
of the dam wal partially raised, and watcr allowed to fow for the frst time into the $22^{\prime \prime}$ main. The $8^{\prime \prime}$ blow of near the rook tonnel was kept open, and the water was not allowed for meveral days to all up to the levol of the tunael, and 10 w into the $16^{\prime \prime}$ maln. On Marob 25 th
at 4 p . mit, the gate in the well chambers was opened wille, and a full head of water turned on. At 6 p . m. the $\mathbf{2 2 ^ { \prime \prime }}$ main was filled, and begnn flowing through the tunncl into the $\mathbf{1 6 "}^{\prime \prime}$ main. At $9.45 \mathrm{p} . \mathrm{m}$. the water reached the elosed 12"' valves, on the north shore of Burrard Inlet. At $10 \mathrm{p} . \mathrm{m}$. the valvè controlling the $12^{\prime \prime \prime}$ subunerged main was opened three-quarters full. At 10 minutes past 10 the water retiched the south shore. At 3 a . m . it had reached the tormination of the $16^{\prime \prime}$ main in the centre of the city, and at $4 \mathrm{a} . \mathrm{m}$. it was discharging fully into False Creek, by means of an 8 inctutsub-main opened wide.
It is worthy of note that in the whole length of the mains, not a single joint was found to leak. Sueh leaks as were discovered occurred at the seams, where the rivetting and split eaulking had been imperfectly done. These were specdily repaired by eneireling the mains by steet rings, $\boldsymbol{4}$ inches wide, made in two halves, and provided with "Lugs. "
The lugs were bolted together, abovo and below the main, and the space between the ring and the pipe filled up with lead, and carefully caulked in the usual manncr.









## VANGOUVER WATER-WORKS

## TRPLAN

- SHEWING CROSEINGS OF

BST NARROWS AND COAL HARBOUR



GRAVEL AND BOULDERN OVERLYINO


0



tion of the first narrows of burrard intet Kain and stationary Engines previous to hauling tail arut Vertical iscale of feet

## DRALING No 4

## DVTONE POCN







RD INLET





## VANCOUVER WATER-WORKS



RIVETTED STEEL MAIN

-


and remaned tant and stationury, but only for
lackening took place, and the whole chuin of ution of several feet, and from that instant the king was an assured fact. There had been a the joints would withstand the enormons tensile on them, but it now became certain that tho nain intact as long as the cast iron bell held
o distance between the blocks and pulleys being he tackle cobnecting them had to be overhanled et made by the chain of pipes. The process of ccessarily slow ; but being kept up without inter forward end of the ohain of pipes arrived at its h shore.
g , at slack tide, a skillful marige diver walked plet, following the ohain of pipes, entering on the ing on the north. His report was to the effect fipes was lying on the bed of the Inlet in a per. ont aag or bend, that the heavy projecting bells A, as they were being drawn over, a deep groove ek, and that the whole ohain of pipes was reating pwn excavating; that above this trenoh silt watpp that in his unqualified opinion the pipen would ly covered over, rendering their permavenoy and

21


