The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCoyers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cat tes géographiques en couleur

\square
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

\square
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the texi. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or iaminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

\square
Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraisonAdditional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

-

 Ex. Clematis, PotentillaEx. Rosa.
Ex. Strawberry

THE CANADIAN JOURNAL.

NEW SERIE'S.

No. XXXVI.-NOVEMBER, 1861.

AN ATTEMPT AT AN IMPROVED CLASSIFICATION of FRUITS.

BY WILLIAM HINCKS, F.L.S., ETC., propessor or natural mistory, univeasty college, toronto.

Read before the ©anadian Institute, April 6th, 1861.
In the course of my botanical labouss, both as a teacher and a student of scientific characters, I have strongly felt the importance of great accuracy in the definition of the different kinds of fruits,-in reference not to mere external marks, but to their real nature and structural constitution. My acquaintance with a very great number of botanical treatises, has not yet introduced me to any arrangement entirely satisfactory to my mind; I have, therefore, made an attempt to supply the deficiency, which I lay before the Insticute as a slight contribution to practical science, which can be best appreciated by those most immediately engaged in this class of studies.

I premise that the gynceium, the germ-producing part of the flower-like the andreceum, the corolla, and the calyx-consists of one or more circles of similar organs, each of which is in its essential nature a leaf modified in its development, as is abundaritly proved by analogical reasoning and by monstrosities. In the case of the gyncecium, each distinct organ is called a carpel (carpellum); its tip being the stigma; its elongated extremity, when present, the style; and the germs being produced in some definite relation to it, most usually

Vol. VI.
2 м
along its border. Although the production of germs from the axis, as maintained by some high botanical authorities, is not antecedently. very improbable, I cannot consider it. as established by any good evidence, and it supposes so remarkable an anomaly in the mode of fertilization, as cannot be admitted without certain proof. Again, each carpel, according to the analogy of the leaf, has an upper and under surface, and a middle portion containing the vascular system. The under surface, which forms the external covering of the fruit, is called the epicarp; the vascular layer, the mesocarp; and the upper surface, which lines the interior of the carpel, the endocarp. The differences in the mode of development of these parts, explain the membranous, coriaceous, woody, fleshy, or pulpy character of fruits, or certain portions of them; and it thus appears why these differences are of minor importance, and may occur between fruits of the same essential structurc.
The number of germs produced in a carpel depends partly on the prodactive tendency inherent in the species, arising from its clemental structure and vital energy; much, also, on the space afforded to it and the amount of nutriment it receives. It is common for a carpel to be single-seeded, and not uncommon for the seed so closely to fill the folded carpel that the whole passes for a naked seed. It may have two or several seeds; and in a few instances the germ-producing or placental portion of the edge of the carpel is extended and crowded with germs so as greatly to multiply the seeds. The coherence of carpels in a circle is very common, and may either be slight and partial, producing a lobed fruit, or more complete-either by the edges only of the carpels, causing a one-celled capsule with parietal placentæ, by their meeting on the axis so as to cause axillary placente, or by their turning inward from the axis, so that the placentæ project into the cells; and in these cases, if the substance be membranous, coriaceous, or woody, the opening may be by the separation of the carpels, by the splitting asunder of the midrib of the carpel, by separation of the external portion from the firmly united infolded parts, by the tarning back of valves'at the upper part, by circumscission, or by pores formed to allow of the escape of the seeds. If we add to these circumstances the various adherences of exterior parts, we have the means of explaining the nature of all known fruits. We endeavour to express the facts with as many distinct names for varieties of fruits as we have found adopted by good_authorities, and can perceive to be.
useful, in the accompanying tabular view, which is by no means proposed as exhausting the varieties of fruits, but will at least sufficiently explain the principles upon which, I conceive, they ought to be studied.

ADDITIONAL NOTE ON THE OCCURRENCE OF FRESH WATER SHELLS IN THE UPPER DRIFT DEPOSITS OF WESTERN CANADA.

BY E. J. CHAPMAN,
MROPRSSOR OP MINBRALOGY AND GEOLOGY IN UNIVERSITY COLLBGR, TORONTO.
In a recent number of this Journal, I published a series of Notes on the general conditions of occurrence of the Drift deposits of Upper Canada, in which I strove to establish, more especially, the former extension and union of our great lake-waters. Amongst other facts tending to this view, I cited examples of the occurrence of freshwater shells, identical with those of our existing lake-species, in some of the higher Drift-beds, as discovered respectively by Mr. Robert Bell of the Geological Survey of Canada, by Dr. Benjamin Workman, of Toronto, and by myself. I have now to add to the localities there cited, one of still higher interest in its bearings on this question, as it discloses, over a considerable area, an extraordinary abundance of fresh-water shells belonging to seven distinct genera. This locality was discovered and made known to me by one of my former students, Mr. A. E. Williamson, at present engaged on the Northern Railway of Canada. It lies around the Notiawasaga river, in the vicinity of the Angus Station of that railway. The shells, at least, are more abundant or best seen at this spot, but I have traced them over a distance of four miles south of Angus Station, and I havelalso found them to extend a mile or more in other directions. In all probability, however, they will be met with much beyond these limits, as my visit to the spot was : -arried one, and made during a day of extreme heat. They lie in fine sand, at various depths below the surface of the ground, varying, at the points examined, from about a foot to sixteen or eighteen feet, according to the surface inequalities of the district. Those at present collected comprise species of the following genera: Unio, Cyclas, Amnicola, Valvata, Planorbis, Limnea, and Physa. The
sand in which they occur is in some places obliquely stratified, and is underlaid (apparently everywhere) by a deposit of fine sharp gravel, also in places obliquely laminated. The unios, though very fragile, are of large size and well preserved; and so abundant are they, that a cart-load might be collected from some cuttings in less than an hour.

The following species of these shells have been collected altogether: Unio complanatus, with apparently another species, not at present determinable; Cyclas similis, C. dubia; Amnicola porata; Valvata tricarinata, V. piscinalis; Planorbis trivolvis, P. campanulatus, \boldsymbol{P}. bicarinatus (?); Limnea palustris; Physa ancillaria.

Around Angus Station there is a general depression of the country, but the Nottawasaga river at that spot is still about 30 feet above Georgian Bay, this latter lying at a distance of 22 or 23 miles to the north of it. The general level at which the shells occur at this locality may be taken at from 30 to 40 feet above Lake Huron, and at about 90 feet below the surface level of Lake Simcoe. The waters of this latter lake probably passed at one period from Kempenfeldt lay into the Nottawasaga valley, and so escaped into Lake Huron by a more western channel than their present outlet at the Severn.

August 4th, 1861.

ON THE OCCURRENCE OF VANESSA CENIA IN CANADA WEST.

BY w. SAUNDERS, ESQ.

In liay last, while on a visit to Port Stanley, I was much pleased to find in the possession of a collector there, Mr. William Edwards, two fine specimens of Vanessa Cænia which he had captured in the vicinity of the Port during the summer of 1858. No further captures of this beautiful insect were made until the present season, when, on the 30th of July, I received a note from my friend, stating that he had taken several specimens a day or two previous. On the 2nd of August I paid a visit to the spot where they occurred-which is on the railway track, about a mile from the Port. I had not been there
long tefore one of these handsome creatures came floating past me on the wing. An exciting chase ensued. Although its flights were short, it was very difficult to appronch, and always when alighting, turned to face its pursucr. After many cautious, though ineffectual attempts to take it by bringing the net suddenly down on it, it was finally made prisoner by a sudden sweep. In a short time another was seen which was taken in the same way; and in about an hour aiterwards a third made its appearance, but although I did my best to capture this, I could not succeed in taking it.

They are confined, as far as I could learn, to a spot on the railway track about two or three hundred yards in length. It was there the two specimens were taken in 1858, and there they occurred again this season; nevertheless, we searched diligently for many hours in the vicinity, but failed to find one in any other place.

It is very probable that this species may occur in other localities throughout the Province, since 'I' Cottle, Esq., of Woodstock, is of opinion that he has seen it on the wing near his residence. It would be well for collectors to keep a sharp look out on all suspicious-looking Vanesser, as the occurrence of this species (which is, I believe, not generally supposed to be found far north of Virginia) in different localities throughout the Upper Province would be an exceedingly interesting fact in the ammals of Entomology.

For the benefit of those who may not have seen this insect or its photograph, I have added a short description of it, in order that it may be readily recognized.

Gencral color of upper surface brown; anterior wings having a broad whitish band extending nearly from the costal to the inner margin, and enclosing near the anal angle a large black, cyelike spot, encircled by a yellowish brown iris. In some specimens, a second and very small spot is situated near the tip exterior to the band. Two smaller reddish bands bordered with black, and placed at equal distances from the body and the white band, cross the discoidal cell.

On each of the posterior wings are two conspicuous eye-spots, the under one much smaller than the upper, both encircled by a yellow iris bordered with black. Between these eye-spots and the hind margin is placed a band of red bordered externally by one or more dark marginal lines. The under surface of the wings is much paler then that of the upper, and although the markings are similar they are much less distinct.

The Caterpillar is stated by Boisduval to feed on the Linaria Canadensis. It is black and spinous, with two lateral white lines, the upper of which is marked with a row of reddish spots.*

London, C. W., August 13, 1861.

A POPOLAR EXPOSITION OF THE MINERALS AND GEOLOGY OF CANADA.

(Continlued from page 455.)
by e. J. Chapman, proprsbor op mineralogy and geology in university collegb, tomonto.

PART IV.

SORE REMARKS ON QRGANIC; REMAINS, WITH SPECIAL REFERENGE to Canadian forms.

Many stratified rocks, it has already been explained, contain the fossilized remains or impressions of vegetable and animal formsvestiges of departed races of plants and animals which peopled the Earth and its waters during the epochs in which these rocks were under process of deposition. So numerous in some instances are the remains in question, that certain strata appear to be almost entirely made up of them, either in a perfect or in a fragmentary condition. The study of these fossils has a threc-fold value : first, in enabling us to recognise one rock division from another, each division holding its own proper and separate forms; secondly, in elucidating obscure points in the structural and other relations of existing types; and thirdly, in shedding light upon many of the past conditions of the globe, both physical and organic. In illustration of the first of more practically useful character in connexion with these remains, it may be observed that in the great coal-bearing and all overlying

[^0]-strata, we do not meet with a single trace of the peculiar group of Crustaceans termed Trilobites (see figures and description in our next Number), although in earlier-formed or lover strata these forms occur generally, and often in great abundance. Hence, in a rock containing trilobites, no matter how similar such rock may be in aspect and mineral characters to coal-strata, we may be assured that it will be useless to bore or excavate for coal, at least with the expectation of finding great workable beds of that material, such as occur in the proper coal formation.

Some fossil remains, belonging to the most recent grological deposits, are identical with existing species; others are a: al to these, without being actually identical with them; and others, again, are wholly without representatives in existing Nature. These various bodies comprise chiefiy: the casts or jmpressious of sea-weeds, fernfronds, and leaves of higher vegetable types, with occasional fruits and stems of trees; the remains of corals, star-fishes, and other radiated animals; the shells of mollusca; tests of crustaceans; and teeth, bones, and more or less complete skeictons of vertebrated animals. In some cases, these remains have evidently been entombed where the plants, corals, mollusks, \&c., were actuall- living; whilst in others, they have been drifted to a greater or less distance with the sediments of which they now form part. The process of fossilization is a gradual replacement, atom by atom (as in the case of many mineral pseudomorphs), of the original organic substance of the body by mineral matter. The fossilizing agents comprise the general substance of the enclosing sediments, together with certain special substances, of which the more common include-silica, carbonate of lime, and carbonate of iron, the latter being frequentiy converted into peroxide of iron, and also into iron-pyrites. (See Vol. V., page 171.)

The caurses which principally influence the preservation of organic bodies in the fossil slate, comprise :

1. The habitat of the plant or animal.
2. The conditions prevailing at the spot to which its remains may be brought, or at which it meets its death.
3. The inherent power of these remains to resist mechanical disintegration.
4. Their powers of resistance to chemical decomposition.
5. The nature of the rock-matters in which they may be enclosed; and the after conditions to which these matters may be subjected.

With regard to the first condition, it is abundantly evident that aquatic types are far more favourably circumstanced for preservation, than purely terrestrial forms; and littoral species, again, more so than pelagic tribes. But, allowing the body of the dead fish or floating cephalopod to be cast, uninjured, by winds and currents, on the shore, or the drowned mammal swept down to the river estuary, the co-cperation of various conditions is required to ensure its preservation. Briefly-there may be no sediments under process of distribution at the spot; or the sediments may not be thrown down with sufficient rapidity to arrest decomposition; or the shore may be rocky and exposed, and mechanical destruction follow. Finally, if entombed forthwith, its calcareous parts may be dissolved out to constitute a cementing material for the surrounding mass; or subsequent metamorphic agencies may obliterate all traces of its form.

The more an organised substance approaches inorganic matter in its composition, the greater, of course, will be its capability of resisting the usual process of decay.

The following Table (drawn up chiefly from the researches of M. Hugard) shews, approximatively, the amount of inorganic matter in various animal bodies, and is thus of interest in a palæontological point of viers:

Inorganic matter, 99 or more, per cent.:-Shells of Ostreæ and of some other acephalous mollusks.

Inorganic matter, 95 to 98 per cent.:-Most coral structures; bhells of ordinary bivalves and gasteropods.

Inorganic matter, 90 to 95 per cent. :-Shells of ordinary cephalopods.

Inorganic matter, 60 to 70 per cent.:-Teeth of mammals, reptiles, and many fishes.

Inorganic matter, 50 to 66 per cent.:-Bones of mammals, birds, and reptiles; scales of fishes; shells of crustaceans.

Inorganic matter, 40 to 50 per cent. :-Elytra of certain insects (?).
Inorganic matter, under 5 or 6 per cent.: -Scales of reptiles; cartilage, hair, horns, and nails of mammals; feathers of birds, $\mathcal{E c}$.

Fossilized Vegetable Remams:*-The fossil plants obtained from

[^1]the generality of Canadian rocks, are comparatively of little interest. Throughout the broad areas occupied by our Silurian strata, (as in other parts of the world,) only fucoids or seaweeds appear to occur. It is in the Devonian formations that land plants are first met with; but in Canada, with the exception of Gaspe in the extreme east of the Province, obscure traces of these forms have alone been discovered. In Western Canada, as in the case of the underlying Silurian strata, our lower Devonian beds have only yielded fucoidal types, and it is merely in the limited patches of the Chemung and Portage Group (see Part V.) that fragmentary remains and impressions of terrestrial forms occasionally occur. Long furrowed stems, several feet in length, and varying in diameter from an inch to three inches, occur in the dark bituminous shales of that formation, at Gape Ipperwash (Kettle Point,) on Lake Huron. These have been referred to Calamites, a genus of sub-aquatic or marsh plants of common occurrence in the coal strata, but their character is still obscure. The fossil plants of Gaspé are described in valuable papers by Dr. Dawson of Montreal, in the fifth and sixth volumes of the Canadian Naturalist. In fig. 64 we give a sketch of a common but still umamed fucoid from the

Trenton limestone of

Tip. 64. Belleville and other parts of Canada. Fig. 65 represents another supposed fucoid, the Scolithus linearis of Hall, from the Potsdam sandstone of the

Fig. 65.

Countr of Leeds, C. W., and other districts (see Part V.) It forms, in general, cylindrical or flattened reed-like casts, varying in length from a few inches to a couple of feet, and traversing the strata across the direction of their bedding. The true nature of these casts, however, is still involved in doubt. By some palæontologists they are looked upon as resulting from holes or tubes made by sand-burrowing annelides. Finally, it may be observed that impressions of modern leaves (Thuja, Populus, Acer, \&c., \&.c.,) are occasionally found in our drift clays and shell marl deposits (see Part V.)

Fossilized Animal Remains:-Keeping always before us the fact that this Essay is addressed strictly to the general reader, it will be necessary, before adverting to the animal remains occurring in Cana-
dian rocks, to pass briefly in review the classification-characters of the leading zoological groups as recognised in existing Nature. Animal organi-ms appear to be constructed after five principal types: the socalled Protozoic type, the Radiated type, the Molluscous type, the Articulated type, and Vertebrated type.

Protozoa stand upon the extreme and oscillating limit of the Vegetable and Animal worlds. They include a series of Infusorial forms, in great part of vegetable origin, Sponges and Rhizopods. Radiated Animals exhibit, at least in their typical forms, a radiated arrangement of their structural parts, as seen in the coral polyp, the sea-urchin, and the starish. They are all aquatic, and chiefly marine. Molluscous Animals, as the name implies, are soft-bodied, and the greater part secrete an external calcareous shell, as in the oyster and the snail. In some few, however, the shell is internal, as in the cuttlefish; and some again, as the common slug, are without a shell, or possess merely the rudiments of one. Articulated Animals comprise insects, crustaceans (as the lobster, crab, \&c.,) and other forms with usually a distinctly jointed body, covered in many instances by a hard integument or even by a shell. Finally, Verterzated Animals possss an internal skeleton, of which the principal and most persistent part is the vertebral column. They include fishes, batrachians, (as newts andi frogs, reptiles, birds, and mammals.

Since the first creation of living things, representatives of each of these great types-that is to say, of the Radiated type, the Molluscous type, \&c.,--probably peopled the earth in each and all of its varied periods of development; but hitherto, traces of vertebrated forms have escaped detection in the lowest fossiliferous rocks, fishes first appearing in Europe at the extreme top of the Upper Silurian deposits, and with us, in the Devonian strata.

Protozoa.-This sub-kingdom includes: Infusoria, Sponges, and Reizopods.

Infusoria.-These are microscopic organisms, for the greater part, if not wholly, of vegetable origin, although (as in the case of the wellrecognized spores or earlier stages of development of many cryptogams) possessing powers of locomotion. Recent Infusoria occur in all waters in which decomposed matters are present, and they are frequently found also in clear running streams. Some are entirely softbodied, but others are protected by a calcareous, siliceous, or ferrugiuous shell. The microscope has shewn that many bog-iron deposits,
siliceous marls and tripolis are almost entirely made up of the remains of these creatures. Beds of tripoli occur at Laval and Lanoraie (Sir W. E. Logan) in the Lower Province, but their infusorial forms do not seem to have been specially examined.

Sponges.-Modern sponges consist of a gelatinous mass, full of pores, and possessing in general the power of secreting a horny framework or kind of skeleton-the "sponge" of commerce. This horny framework is commonly strengthened by a number of sharp spines or spicula, crossing each other in various directions. The spicula are either siliceous or calcareous, according to the species. Fossil spicula often occur in flints and in infusorial deposits. Dr. Dawson has also detected them in the Drift deposits of Montreal, (see Part V.) The ancient sponges appear to have secreted a hard calcareous framework, and to have been more nearly related to corals. If we except the doubtful Stromatopora or Stromatocerium, (see under "corals," further on) our Camadian rocks do not appear to have yielded any determinate forms.

Rhizopods (or a praminifera.) -The animals of this class are aquatic, and, with exceptions, of extremely minute size. They swarm in many of o seas. Their soft gelatinous body is sometimes naked, or enclosed . a horny capsule; but more commonly it is protected by a calcareous and usually many-chambered shell, perforated for the passage of long and delicate filaments, whence the name of the class, from $\rho \iota \xi \alpha$, a root. The latter forms, or those possessing shells, are generally known as Foraminifera. The only representatives of these in Canadian Deposits occur in the Drift or Post-Pliocene accumulations of Montreal and its vicinity, where they were discovered by Professor Dawson. (Sce illustrations and descriptions in the Canadian Naturalist, vols. 2 and 4.) All have been recognised as identical with existing forms. Fig 66 is a greatly enlarged view of the most common species, Polystomella

Fis. 60. combilicatula.

Radiated Animals.-The following Classes belong to this division : Polypifera or Corals, Acalepha, and Echinodernata.

Corals.-The fossil forms of Canadian occurrence referred to this class may be conveniently arranged in two groups: Graptolites and Corals proper. The true position of the graptolites, however, is exceedingly uncertain; but the general opinion allots them a place
near the Virgularize or sea-pens, belonging to the lower of the two. great orders or divisions in which modern forms of this class are mostly arranged. It should be observed, nevertheless, that some naturalists divide the Polypifera into three Orders-Hydroida, Alcyonaria and Zoantharia (or groups with other names synonymous with these)-and place the graptolites (with the modern Sertularia, \&c.,.) in the first order. Agassiz, again, removes this order to the class Acalepha.

Graptolites.-The common form of the graptolite-structure is that of a narrow band or "stipe," with a row of "teeth," i.e., the mouths of cells, on one or on both sides. The teeth or serratures are pointed or even mucronate in some species, and obtuse in others. Sometimes in place of forming a narrow band, the cell-structure takes a leaf-like shape, and at other times it assumes a spiral or convolute form. Specimens have also been found, more especially in the Quebec group of rocks in the vicinity of Point Levi, in which several stipes cross each other or radiate from a common centre, around which there is a thin connecting membrane. Our ordinary examples, it is thus evident, are merely fragments of the true graptolite-structure; and as some of these occur in branching forms, of which the branches are only toothed on one side whilst the main stem is toothed on both margins, it is more than probable that the same species has been described in some instances under different names. Being entirely confined to the Silurian strata, the graptolites are especially interesting and valuable as geological test-forms. On this continent they are chiefly characteristis of the Lower Silurian division, (see Part V.) By some authors, the forms with serratures on each side of the stipe are described under the generic name of Diplograpsus; and those with serratures on one side only, under that of Graptolithus.

As examples of Canadian forms, we may cite at present Graptolithus Logani, Fig. 67. from the base of the Lower Silurian formation; Graptolithus (or Diplograpsus) pristis, Fig. 68, with acute or submucronate serratures, from the Trenton limestone, Utica Slate, and Hudson River group of the same formation; G. (=Diplograpsus) ramosus, with obtuse or somewhat truncated serratures, Fig. 69, from the Utica Slate and Hudson River group (Lower Silurian); and G. priodon, (=G. clintonensis, Hall) Fig. '70, with reversed serratures, from the Clinton and Niagara group of the Upper Silurian series.

Fig. 67.

Fiz. 69.

Fig. ts.

Pị. 70.

Corals proper :-The animal substance of corals consists of a soft gelatinous mass containing one or many digestive sacks or stomachs, each provided at the opening or upper part with a number of retractile tentacles. These sacis with their tentacles are technically known as " polyps." The gelatinous mass possesses likewise (in the majority of cases) the power of secretingamidst its tissues a calcareous or horny framework, the "coral" of popular language. As a general rule, this secreted solid portion consists of one or more cavities or cells, in and around which the organized fleshy sack or polyp is contained. This, however, is not always the case. Sometimes, as in the celebrated "Red 'Coral" of the Mediterranean, the polyp-cavity is fashioned in the midst of the gelatinous matter, without any corresponding cavities in the support. When cells occur in this support or "corallum," they exhibit either a round, oval, or polygonal opening; and, if more than one in number, they are either in juxtaposition, or connected by short transverse tubes, or by a mass of more or less porous tissue called "conenchyme." The cell is sometimes smooth
within, but more commonly it is furnished with a number of radiating. plates or lamellæ. These, in some forms, are but slightly developed, or occur only in a rudimentary condition; whilst in others they extend far into the cell, and even unite there in a central column. A central column or "axis" sometimes, however, exists by itself, and may have radiating lamellæ of its own projecting towards the circumference of the cell ; but this latter modification is not observed in any of the Palæozic types. Whether radiating lamellæ are present or not, the cell is very generally divided horizontally by a series of transverse plates or "diaphragms," either extending across the entire cell (Fig. 71, a, which shows three cells thus divided) or occupying the central

Fir. 71.
portion of this, whilst the sides are filled with small and more or less irregular plates, called " vesicular tissue," (Fig. 71, b) In the genus Cystiphyllum, again, the interior of the cell is entirely filled with these irregular vesicular plates (Fig. 71, c). Finally it may be mentioned that many corals possess an enveloping wall or sheath. This is termed an "epitheca."

The following are the moze important or characteristic fossil species met with in Canadian rocks :

1. Stromatocerium rugosum, Fig. 72.In this form, there are no apparent cells, but the corallum is made up of numerous concentric and wavy lamellæ. Lower Silurian : Trenton group*; more especially abundant at the lower part. This fossil is also known as stromatopora rugosa, and is sometimes classed as a sponge. A

Pig. 72. closely related species, Stromatopora concentrica, occurs in the Niagara group of the Upper Silurian scries, and passes in some districts into the Devonian rocks.

[^2]2. Stenopora fibrosa (= Chetetes lycoperdon) Fig. 73. This form is made up of long fibrous or acicular

Fig. 73. tubes, with numerous transverse diaphragms. These latter, however, to be properly seen, require the aid of a magnifying glass. The corallum is either globular, hemispherical, dendritic, or irregular. The dendritic forms often resemble sea-weeds, but, except in much weathered specimens, a magnifying glass will generally show their punctured surface (the openings of the cells), and their delicately fibrous structure. Very common throughout the Trenton Group, Utica Slate, and Hudson River Group of the Lower Silurian Series. Found also in the Upper Silurian rocks.
3. Favosites Gothlandica ($=$ F. Niagarensis) Fig. 74.--The corallum in this species is properly hemispherical and sometimes of large size, but specimens are generally obtained in the form of irregular masses. These are made up of hexagonal or polygonal cell-tubes with numerous transverse diaphragms, and with pores in the cell walls. They are the "petrified honeycombs" of quarrymen, \&c. Principally Upper Silurian; but found occasion-

Fg 74 in the Lower Silurian and frequently in the Devonian Series.
4. Michelinia convexa, Fig. 75.-The corallum in this species consists of large but shallow polygonal cells, with convex and in part vesicular diaphragms, and pores in cell walls. Devonian strata, Canada West.

Fis. 75.
5. Halysites catenulatus ($=$ Catenipora escharoides), fig. 76. -In this species, the well-known "chain coral," the oval cell-tubes are united in chain-like groups. There are numerous diaphragms, and some rudimentary radiating-lamelle. Chiefly characteristic of the Clinton and Niagara group (Upper Silurian), but found also of late years in the Lower Silurian series.

Fif. 76.
6. Syringopora tubiporoides, Fig. 77.-The corallum in this form consists of round, elongated, and somewhat flexuous tubes, connected by tranverse tubes of short length. Another species, S. Hisingeri, resembles this, but its tubes are of much smaller diameter. Both occur in the Devonian rocks of Western Canada.

Fig. 77.
7. Columnaria alveolata. • Fig. 78.-This species much resembles Favosites Gothlandica, the corallum being made

Fig. 73. up of hexagonal and polygonal cells in close juxtaposition, but the mouths of the cell-tubes are bordesed by short radiating lamellæ. Numerous diaphragms are also present, but the cell-walls have no pores. Trenton group (Lower Silurian), and principally met with at the lower part of this group ($=$ Black River limestone, see Part V.)
8. Petraia cornicula ($=$ Streptelasma of Hall) Fig. 79. Corallum horn-shaped, simple, consisting of one large cell with well-developed radiating lamellæ, but without diaphragms. Trenton Group (Lower Silurian). A closely related species from the Niagara Group (Upper Silurian) has been named P. calicula. Another species, P. profunda, from the base of the Trenton Group, has a conical and nearly straight form. All of these vary in length from about half an inch to an

Fig. 79. inch and three-fourths.
9. Zaphrentis prolifica, Fig. 80.-Corallum, horn-shaped, simple ; with alternating large and small radiating lamellæ, and transverse diaphragms. A "septal fossette" or indentation passes down the interior of the cup on one side; add externally, the corallnm is enveloped in a thin epitheca. This is a comparatively large species, varying in length from about an inch and a half to over five inches; but a still larger species, Z. gigantea, is often found accompanying it. This latter form is two or three inches in diameter, and two feet
or more in length. Both occur in the Devonian series (Corniferous limestone (see Part V.) of Western Canada.
10. Cystiphyllum Senecaense (Billings) Fig. 81 (a fragment); Corallum horn-shaped, simple, slender, and usually curved. Interior filled with vesicular tissue. Radiating lamellæ quite rudimentary. Diameter threefourths of an inch, to an inch and a half. Length, varying from three or four inches to two feet (Billings). Devonian rocks (cormiferous limestone) of Canada West. Various other species of Cystiphyllum occur in these rocks. Amongst others, C. aggregatum (Billings), in groups of irregularly cylindrical tubes covered by a wrinkled epitheca.

Fig. 81.

These corals represent our mostabundant and characteristic species, but numerous others occur in special localities. For information respecting many of these, the reader is referred to the Reports of Mr. Billings in the publications of the Canadian Geological Survey, and also to valuable memoirs by that palæontologist in the fourth and fifth volumes of the Canadian Journal. An extended analysis of these forms would not only exceed our proposed limits, but would be altogether out of place in an Essay like the present.

Acaleffa.-Until lately, this class was held to include only a series of soft-bodied marine animals (Medusce, \&c.,) of which no fossil representatives have as yet been obtained. The recent researches of Professor Agassiz, however, render it very probable that the Graptolites and some of the lower forms usually classed amongst the corals may belong to this division.

Echinonermata.-The echinoderms constitute a class of marine animals provided with an external test or shell, composed of many pieces, or with a tegumentary semi-calcareous skin. Some are free, and others, fixed animals. These latter are attached to the sea-bottom by a jointed calcareous stem; but in some instances the animal is only thus attached during a portion or its life, and becomes free in the adult condition. The class may be subdivided into the following Orders: 1, Crinoida; 2, Blastoida; 3, Cystidea; 4, Thyroida; 5, Asterida; 6, Ophiurida; 7, Euryalida; 8, Echinida; 9, Holothurida.

1. Crinoida.-In the majority of fossil erinoids or encrinites ("sealilies"), the general form consists of a body or digestive sack, covered by calcarcous plates, and furnished at its upper part with a series of jointed arms or tentacles, and at its lower part with a jointed and perforated stem (composed of numerous round or pentagonal plates) by which it was attached to the sea-bottom : see fig. 82 This Order is of great palæontological interest. In the seas of the Palrozoic and Mesozoic periods, its representatives swarmed io vastnumbers; whilst but few forms belonging to it have been obtained from Tertiary rocks (see the Table of Formations on page 453 above); and in existing seas the order is almost extinct, two or three species alone remaining to represent it. The best known of these is the Pentacrinus caput-Meduse of the West Indian seas. A small species of Comatula exists also in the Irish Chamiel, and of late years has been carefully studied. This form is fixed by a stem in the early condition, and afterwards becomes free. The

Fig. 82. fixed stage was originally thought to be permanent, and the species was known as Pentacrinus Europeus. The genus Marsupites, of the Cretaceous rocks, was also a free form, during a portion, if not during the entire period, of its life.
The cup-shaped body of the crinoid animal is technically termed the "calyx." It is enclosed by numerous polygonal plates, arranged, for each genus, in definite order. The plates in a row immediately above the stem are commonly known as "basals." These are usually three or five in number. The next series, absent, however, in many genera, are called sub-radials, and the next, supporting the base of the arms, are known as "radials." The radials always range in five vertical rows, each row being made up of one or several plates, between which occur other plates, termed inter-radials and anal plates. The upper part of the calyx is covered (in most genera) by numerous small and irregular plates, termed, collectively, the "vault." The vault-plates are sometimes prolonged into a so-called "trunk," the office of which is still undetermined- In some species the vault has two openings, in others only one.

Nume:ous stem-fragments of crinoids occur throughout our Silurian and Devonian rocks, but entire or eren tolerably perfect forms are exceedingly zare. As the character of the

Fig. 83. stem differs frequently in the same species, and in different parts even of its own length, and is more or less alike again in different species, these fragments can only be described as "crinoid stems." Fig. 83 represents a piece of arenaccous shale, from below the Drift clay of Toronto, covered with portions of crinoid stems, some being seenin transverse sections, whilst others are shewn longitudinally. This shale belongs to the IIudson River Group of the Lower Silurian Series (see Part V.)

Owing to this fragmentary condition of our Camadian exampies generally, and to the great rarity of perfect or determinable forms, it is unnecessary in an essay like the present (and would indeed be useless where we are obliged to restrict the number of our engravings) to attempt deseriptions of genera and species. The crinoids of our Lower Silurian strata will be found described in great detail by Mr. Billings, in the fourth Decade of "Canadian Organic Remains."* Of the species met with in our other formations, no complete record has yet been published.
2. Blastoida.-The forms placed in this Order have been separated of late years from the Crinnids proper. They present an oval or globular body, (the calyx) composed of several series of plates, and having at the summit five "ambulacral areas" or rays, in the shape of a star, furrowed down the centre of each ray, and striated across. These are thought to have supported delicate tentacles, but no arms have been discovered. The body was fixed to the sea-bottom by a short, jointed stem. The order contains but few genera. The genus

[^3]Pentremites (fig. 84) is the principal. It is chiefly characteristic of the Devonian and Carboniferous formations. A closely related form-separated generically under the name of Blastoidocrinus*-has been described by Mr. Billings frorr: the Chazy limestone of the Trenton Group, a member of the Lower Silurian series, (Canadian Organic Remains: Decade IV.)

Fir. S4.
3. Cystidea.-The representatives of this Order are more or less closely allied to the crinoids. The cystideans possessed a globular or oval body attached to the sea-bottom by a short stem. The body was covered by polygonal plates, which in some genera were arranged in definite order, and in others, irregularly.

Fig. 85. Arms were either rudimentary or altogether wanting. The body openings were three in number, comprising (according to the more general view) an oral, anal, and ovarian aperture. The latter (or according to some palæontologists, the oral orifice) was surrounded by five or more triangular plates, forming a kind of pyramid. In addition to these openings, most genera exhibit a series of pores, either distributed irregularly over the body-plates or collected into lozenge-shaped areastermed "pectinated rhombs," see Fig. 85 (= G̈lyptocystites Logani, Billings).

The cystideans were limited entirely to the Silurian period. Not a trace of this Order is found in the rocks of any succeeding epoch. Various species, but mostly in a very fragmentary state, occur in our Canadian strata. These are illustrated and described by Mr. Billings in Decade III. of Canadian Organic Remains. The following is an :analysis of the leading forms, extracted from a review, by the writer of :this Essay, in the Fourth Volume of the Canadian Journal (New S.e
"With regard to the Lower Silurian species of Canadian cystideec, Mr. Billings describes nineteen new forms, belonging to his genera, Pleurocystites, Glypto-

[^4]cystites, Comarocystites, Amygdalocystites, Malocystites, Palæocystites, and Ateleocystites. The gemus Pleurocystites is a very remarkable one. It is chiefly characterised by the dissimilar structure of the two sides of the body; a series of comparatively large plates covering the dorsal side, whilst the ventral side consists of an open space protected by an integument corered with numerous small plates. The genus, with us, appears to range from the Chazy to the Hudson River group; and geographically from Canada to Wales and Bohemia (Caradoc group and Barrande's étage D.) Six species are enumerated: P. squamosus: (plates plane or slightly concave; pectinated rhombs, with obtuse angle above); P. robustus? (plates concare); P.flitextus (pectinated hombs with acute angle above; plates on ventral side fewer and larger than in P. squamosus) ; P. ciegans; P. exornalus; and P. Anticostiensis (plates probably smooth). P. eleyrnes and P. ornatus may perhaps prove eventually to be mere varieties of P. filitextus. The genus Glyptocrstites is characterised chiefly by its cylindrical body, enclosed in four series of plates ($=4$ basal $+5+5+5$) some with re-entering angles; and by the presence of ten or more pectinated rhombs, a strikingly peculiar character. It ranges from the Chazy to the Trenton group, and comprises the following species: G. mulliports (arms 4+1, extending down the sides of the body); G. Logani (plates with stellar ridges, arms not developed: Trenton): G. gracilis; G. Forbesi (plates large and strong, with numerous ridges and strie: Chazy). Of the genus Comarocystites only one species, C. puncta'us, has been recognised. It occurs in the Trenton group, and may be readily distinguished by its deeply-concave plates. The basal plates are three in number, succeeded by from cight to eleven irregular rows; the month is provided with a valvular apparatus, and there are free arms. The genus Amygdalocystites possesses the same plate-formula as Comarocystites, and the mouth is also furnished with a valvular apparatus; but, in addition to other distinguishing characters, the arms are recumbent, and composed of a double in place of a single series of joints. Three species are enumerated. One of these, however, may belong to a distinct genus, and the other two may perhaps be united. They comprise: A. Alorcalis, A. tenuistriatus (?), and A. rudiatus. In both Comarocystites and Amyglalocerstites the plates are without pores, at least on the unworn external surface. The genus Malowystites has likewise an indefinite number of non-poriferous plates.* The arms are recumbent, and the mouth is nearly at the apex of the cup. Two species are described: M. Murchismi, with cight long and winding arms, and M. Barfandi, with two short arms. In the genus named Palacocystites, the phates are numerons and also poriferois, or rather crypto-poriferous, as the pores do not extend directly to the outer surtiace, but commmicate with the interiur through the sutures, on the edges of which they open. Nothing is hown respecting the arms, orifices, and stem. Three species are enumerated : P. tenuiradiatas, $\mathfrak{i} P^{\prime}$. Daussoni, and P. © hapmani,

[^5]but their specific characters are necessarily somewhat obscure. Finally, in the genas Ateleocystites, a single species, A. Huxleyi, is mentioned. The calyx in this form appears to have, as in Pleurocystites, a dorsal side made up of comparatively few plates, with numerous small plates on the ventral side. In other rospects, however, the genus is a very peculiar one, aud perhaps referable to a distinct group."
4. Thyroida.-This Order is represented by a single genus, Agelacrinites : a peculiar type, comnecting the cystideans with the starfishes. It presents a somewhat flat, circular form with a five-rayed ambulacral star at the upper part, composed each of two series of interlocking plates, with the intermédiate spaces covered by numerous scalc-like imbricating plates, arranged more or less irregularly. The rays in some species are long and curved,

Fig. 80. and in others straight and short. Between two of these rays there is a circular opening, corered by five or ten triangular plates in the form of a "pyramid," as in the cystideans. The species range from the Lower Silurian to the Carboniferous formations. Figure S6 represents Agelacrinites Billingsii of the Trenton limestone (Lower Silurian). Other species from the same formation, A. Dickisoni and A. (Edrioaster) Bigsbyi, have long curved rays. (Decade III. "Canadian Organic Remains." See also for a more complete description of A. Billingsii, a paper by the writer in the Canadian Journal, Vol. V., p. 350, and in the Annals of Natural History, August, 1860.)
5. Asterida.-This Order includes the greater number of the socalled star-fishes. The body is covered by a thick skin, strengthened by plates and tubercles of carbonate of lime. There is no stem, and the mouth is always on the underside of the body, in the centre of the arms or rays. These are five or more in number. The risceral carity or stomach extends into them. Species occur in all formations from the Lower Silurian upwards, but the Order appears to be more numerous in existing seas than in the waters of any former epoch. In the Third Decade of Canadian Organic Remains, Mr. Billings describes several species from the Lower Silurian rocks. These are placed under the following genera, but specimens, it should be observed, are of rare occurreuce, and the characters of those obtained are still more or less obscure.

> Palasterina.-Five rays, with intermediate connecting area. P. stellata, more or less regularly pentagonal. P.rugosa, dorsal plates in partstelliform (ventral aspectunknown.) Petraster.-Conecting area very slightly developed. Iarge marginal plates. P. rigidus, (characters imperfectly known.)
> Stenaster.-No connecting area. Rays without spines or overlapping plates. S. Salteri, rays comparatively broad.
> S. pulchellus, rays long and narrow.
> Tceniaster.-No connecting area. Rays narrow, covered in part with spines, and with their outer, or adambulacral, plates partly overlapping. T. spinosus; T. cylindricus. (The latter of these is spparently the larger and more robust species of the two, but otherwise the characters are much alike).

In addition to these forms, small and more or less imperfect specimens of Asterida, probably referable to Hall's genus Palaaster, are occasionally ubtained from the Niagare limestone of the Upper Silurian Series.
6. Ophiurida. -The star-fishes of this Order differ from the Asterida proper, in having their arms or rays quite distinct from the central visceral-cavity. With the exception of a doubtful fragment from the castern Post-Tertiary deposits (see Part V.), no examples have as yet been noticed in Canadian rocks.
7. Euryalida.-In this Order, the arms and stomach are also distinct, but the body is only partially covered by calcareous plates. No fossil representatives.*
8. Echinida.-This is an important Order, but fossil representatives, are all but unknown below the Mesozoic rocks, and none (with the exception of a modern form in the Post-Tertiaries of Beauport, see Part V.) are of Canadian occurrence. The echinids, of which the modern "sea-egg" or "sea-urchin" may be taken as a type, have no arms. The body is hemispherical, oval, cordiform, \&c., and covered by a calcarcous test or shell, composed of polygonal plates joined at their edges. Some of these plates, in radiating areas termed "ambulacra," are perforated for the passage of retractile respiratory tubes. The test, moreover, is covered by moveable calcareous spines (which fall off after the death of the animal) ; and it has always two openings, one of which, the mouth, is invariably situated on the under side of the body. In existing seas these forms are exceedingly abundant, and they appear to have been equally numerous in the seas of the Cainozoic and Mesozoic ages (see Table of Formations, page 453, above).

- The Protastor of E. Forbes is now referred to the Ophiurida.

In the Palæozoic deposits, on the other hand, only three or four genera have been met with, and examples of these are rare. As already remarked, our Canadian rocks of this age have not yet offered any representatives of the Order.
9. Holothurida.-This Order comprises various more or less softbodied marine animals, of which the Holothuria or "sea-cucumber" may be taken as a type. Fossil representatives are of exceedingly doubtful occurrence. None belong to Canadian rocks.

This concludes our rapid sketch of the sub-kingdoms Protozoa and Radiata. The Mollusca and other types will come under review in our next Number.

OBSERVATIONS ON THE: EXISTENCE OF VARIOUS MOLLUSKS AND ZOOPHYTES AT GREAT SEA DEPTHS.
 BY M. MILNE EDWARDS.
 (Translated from the Comptes Rendus of July 15, 1861.)

A more accurate knowledge of the depths assigned by Nature to the various species which inhabit the sea, has been rendered especially desirable by the bathymetrical researches of the late Edward Forbes and other observers, and also by the relations which appear to obtain between the existing and geological distribution of marine animals. I have therefore eagerly availed myself of all opportunities which seemed favorable for the prosecution of this class of observations.
M. Valenciemes has kindly presented me with several shells possessing much interest from the remarkable depths at which they were obtained. One of these is the Toluta Junonia (Sch.) found by Capt. B. Letourneur in the Gulf of Mexico at a depeth of about 130 metres [$=426{ }_{2}^{2}$ feet]. Another belongs to Lima excavata, dredged by M. Hoer at 487 metres [$=1597 \cdot 8$ feet] of the coast of Greenland. This latter station much exceeds the lowest zone hitherto assigned to the habitations of marine mollusks, but other facts which I am about to describe, have proved the existence of these forms, and also of corals, at still greater depths.

The telegraphic communication between the island of Sardinia and the coast of Algeria having been interrupted, it became necessary to raise the cable, in order to examine the alterations to which this had been subjected. In carrying out this operation, the engineers made a careful study of the configuration of the sea-floor on which the cable rested, and determined with great accuracy, from point to point, the various depths at which it lay. In addition to this, and in order to obtain a further insight into all the circumstances which might have affected this sub-marine conductor, the foreign bodies found attached to it in different places were carefully preserved. Thanks to the kindness of M. Mangon (Professeur à l'école des Ponts et Chaussées), I have been enabled to examine several pieces of the cable; and I hare thus had it in my power to ascertain some new facts with regard to the existence of certain animal species at depths in which it is usually considered impossible for animais to live.

A wide sub-marine rnlley, at a depth of between 2,000 and 3,000 metres [roughly, from 6,000 to 10,000 feet], extends from the island of Sardinia to the coast of Algiers. Between Bône and Cagliari the cable lay in this depression ; and it had remained there about two years when the engineers commenced their operations upon it. In attempting to raise the cable, it broke, and a portion only was recovered. This was brought up from a depth of from 2,000 to 2,800 metres $[=6561 \cdot 8$ to $9186 \cdot 5$ feet], and detached pieces were submitted to my examination. Amongst the foreign bodies which adhered to it, I found several corals and various mollusks, all living when first withdrawn from the water. One of the mollusks was a species of oyster, (Ostrea cochlear), a species which occurs abundantly in many parts of the Mediterranean, and which is known to be a deep sea form, as it is frequently found in the dredges of the coral fishermen, whose operations are generally carried on at a depth of 100 or 150 metres [$=328$ to 492 feet]. In the case observed, the animal was eridently attached to the cable when quite young, since its lower valve, measuring two and a half inches across, was completely moulded on the surface of the rope, and so curved as to cmbrace about half the circumference of this. To another part of the cable was also attached, though less firmly, a small species of Pecten, P. opercularis (var. Andouini), common enough in the Mediterrancan. I obtained, likewise, another species of that genus, P. Testa, an exceedingly rare form. Its valves are covered with fine and delicately reticulated strix. M. Filippi
alludes to the species as beino only met with at great depths, that is to say, from 50 to 60 metres (164 to 197 feet). Associated with these three acephalous mollusks, were two gasteropods belonging to species of rare occurrence in localities usually explored by zoologists. One is the Mronodonta limbata; the other, Fusus lamellosus. The shell of this latter, characterised by the fine striæ which traverse the whorls, was in a perfectly fresh condition, and contained, equally with the monodonta, the soft parts of the animal. These mollusks, it is therefore evident, were living at the spot from which they were obtained.

The corals living at these great depths offer still more interest. Those procured, number fourteen examples, belonging to three species of the Turbinolidx. One does not appear to me to differ in any respect from the Caryophyllia arcuata, a very rare species, met with in the fossil state in the Upper Tertiary deposits of Castel Arquato, Piedmont, and which occurs likewise at Messina. Another species of the same genus, closely related to C. clavus but which is yet distinct, and so may be designated as C. electrica, seems to be much more abundant in the sub-marine valley in which the cable reposed, since I found ten individuals attached to the wire and bearing evident marks of having been developed upon this. I should add that this small species appears to be identical with a fossil coral of the Pliocene subdivision, discovered by M. Deshayes at Donera in Algeria. I am not able to refer to any established genus a third form of the Turbinolidæ, which was also attached to the same portion of the cable. This little coral, about one centimetre in length, does not exhibit the central axis of the Caryophyllia. It seems to occupy an intermediate position between the genera Ceratotrochus and Sphenotrochus. I propose for it the name of Thalassiotrochus telegraphicus, to recall at one and the same time, its zoological affinities, its open-sea habitat, and the circumstances which led to its discovery. Finally, I should observe that to the same portion of the cable was attached a little branch of Bryozoons of the genns Salicornaria (S. Farciminiodes); and also several Gorgonida, and two species of Serpula. The calcareous tubes of the latter were of some size, and soldered to the wire along a considerable length. The serpulæ of the Mediterranean are too imperfectly known, however, to allow these annelids to be specifically determined, but I believe they may be referred to two distinct species.

We thus perceive that at the bottom of a part of the Mediter-
ranean, with a sea-depth varying between 2,000 and 2,800 metres [$=6561.8$ to 9186.5 feet], a considerable number of animals, of completely sedentary habits, are actually living. Most of these, moreover, belong to species of reputed rarity; and some have hitherto escaped the observation of zoologists. It is likewise to be remarked that several of these forms do not appear to differ from certain fossil species, the remains of which are imbedded in the Upper Tertiary deposits that occur on opposite sides of the same basin. These results, it is thought, are not altogether devoid of interest, whether regarded geologically or in a zoological point of view ; and they lead us to expect that a more complete exploration of the depths of the sea will bring to light the existence of other species supposed to be extinct because found hitherto only in the fossil state. Physiologists will perhaps, also, think the fact worth recording, that animals, as highly organised as gasteropodous mollusca, are able to live under a pressure of more than two hundred atmospheres, and at depths to which no notable quantity of light can possibly penetrate.
E. J. C.

ON GREAT FLUCTUATIONS OF TEMPERATURE IN THE ARCTIC WINTER.

BY J. J. MURPHY, ESQ.

(From the Proceedings of the Royal Society, June 7, 1861.)
It might be expected that the climate of the Arctic Regions during winter, in the absence of the sun, must be almost a dead level of intense cold; but so far is this from being the case, that there is no other place and time where such great and rapid fluctuations of temperature have been observed.

This phenomenon is thus mentioned in the appendix to Wrangell's account of his expedition to the Siberian coasts of the Polar Sea :-
"Sometimes in the middle of winter a wind from the S.E. by E. causes the temperature to rise suddenly from -24° to $+25^{\circ}$, or even $+32^{\circ}$; previously to this, the barometer sinks as much as fourtenths of an inch in the course of eight hours. The S.S.E. wind has no particular influence either on the barometer or thermometer."

In "The Search for Sir John Franklin," published in No. 1 of the Cornhill Magazine, occurs the following notice of the same phenomenon. The For was beset by vast fields of ice somewhere in Baffin's Bay :-
"December 28. During Divine Service yesterday the wind increased, and towards the afternoon we had a gale from the north-westward, attended with on unusual rise of temperature ; to-day the gale-continues, with a warm wind from the N.N.W.
"The Danish settlers at Upernavik, in North Greenland, are at times startled by a similar sudden rise of temperature. During the depth of winter, when all nature has long been frozen, and the sound of falling water has long been forgotten, rain will fall in torrents; and as rain in such a climate is attended with every discomfort, this is looked upon as a most unwelcome phenomenon. It is called the warm south-east wind. Now, if the Greenlanders at Upernavik are astonished at a warm south-east wind, how much rather must the seamen, frozen up in the pack, be astonished at a warm north-west wind! Various theories have been started to account for this phenomenon ; but it appears most probable that a rotary gale passes over the place, and that the rise of temperature is due to the direction from which the whole mass of air may come, viz., from the southward, and not to the direction of the wind at the time."

The cause here assigned appears to me quite insufficient: the rise of the thermometer that we have to account for sometimes amounts to 70° or 80°, which is equal to the difference between very warm summer weather and very hard frost in our climate; and it is unexampled, and I think inconceivable, that any motion of a mass of air from warmer latitules should produce so great an effect on the temperature; certainly the cyclones that come from the West Indian Seas and pass over our islands have no effect in the slightest degree approaching to it.

What I regard as the true cause of the phenomenon is suggested, thongh not distinctly pointed out, in Dr. Kane's Narrative, from which I will make a few extracts :-
"Jamuary 29 . A dark water sky extended in a wedge from Littleton to a point north of the Cape. Everywhere else the firmament was obscured by mist. The height of the barometer continued as we left it at the brig, and our own sensations of warmth convinced us that we were about to have a snow-storm. * * * We were barely housed before
the storm broke upon us. Here, completely excluded from the knowledge of things without, we passed many miserable hours. We could keep no note of time, and, except by the whirring of the drift against the roof of our kennel, had no information of the state of the weather. * * * We then turned in to sleep again, no longer heedful of the storm, for it had buried us deep in with the snow. But in the meantime, although the storm continued, the temperatures underwent an extraordinary change. I was awakencd by the dropping of water from the roof above me; and upon turning back my slecping bag, found it saturated by the melting of its previously condensed hoarfrost. My eider-down was like a wet swab. I afterwards found that the phenomenon of the warm south-east wind had come unexpectedly upon us. The thermometers at the brig indicated $+26^{\circ}$, and, closer as we were to the water, the weather was probably above the freezingpoint. When we left the brig-how long before it was we did not know-the temperature was -44^{Q}. It had risen at least seventy degrees. * * * In the morning-that is to say, when the combined light of the noon-day dawn and the circumpolar moon permitted our escape-I found, by comparing the time as indicated by the Great Bear with the increased altitude of the moon, that we had been pent up for nearly two days."

It appears from these extracts, that although Dr. Kane did not see open water, he was made aware of its neighbourhood by the infallible sign of a "Water Sky." A rise of temperature to a few degrees above frost would be quite insufficient to produce open water by melting through the fields of ice in forty-eight hours; but, on the other hand, the breaking up of the fields of ice by a storm is an adequate cause for a great rise of temperature; for the water immediately below the ice is at the temperature of sea-water at its freczingpoint, which is $+28^{\circ}$; so that when a storm comes and breaks up the ice, the water comes into contact with air 70° or 80° colder, and warms the air.

There is no doubt of the power of a storm to break up the ice. Sir James Ross speaks of "the almost magical power of the sea in breaking up land-ice or extensive fioes of from twenty to thirty feet thick, which have, in a few minutes after the swell reached them, been broken up into small fragments by the power of the waves." The theory that these sudden rises of temperature are caused by storms breaking up the ice and exposing the comparatively warm water below,
also harmonizes with the fact that the warm winds, as mentioned by the officer of the $F_{o z}$, in different parts of Baffin's Bay come from different points of the compass; while on the same coast they come from the same point. Thus Wrangell, as quoted above, mentions that in the part of the Siberian coast which he explored, a S.E. by E. wind sometimes raises the thermometer upwards of fifty degrees, while a S.S.E. wind has no effect on the temperature at all. This proves that the rise of temperature canvot be due to the transpori of a mass of warm air; but it may be easily accounted for by supposing that the form of the coast enables the warmth-producing wind to act at a special advantage in breaking up or driving away the ice, and liberating the heat of the waters.

These extraordinary fluctuations of temperature appear to be common to the whole of the Arctic regions. Sir John Richardson, in his recent work on the Polar regions, states that "in Arctic America the phenomenon of warm winds (teplot weter of Wrangell) also occurs, and makes the month in which they happen, whether December, January, or February, warmer than the other two. The same warm wind was probably the cause of the rain which the Russian sailors observed in Spitzbergen in the month of January."

Rain implies a temperature several degrees above $+28^{\circ}$, which is the temperature of the stratum of sea-water immediately below the ice. But we know that in the Polar regions the temperature of the sea increases in descending, until a stratum is reached of the invariable temperature of $+39^{\circ}$; and we may suppose that in these storms the warmer water of the deeper strata is brought to the surface, and warms the air sufficiently to admit of rain. We know that powerful winds are able to produce temporary local currents, and it is easy to see that such a current when produced in a limited space free of ice, will give rise to this kind of vertical circulation, or interchange between strata of different depths.

Such storms as these must be eminently favourable to the production of rain; for the air that becomes warmed by contact with the comparatively warm water will, of course, take up watery rapour, and when it comes into contact with other masses of air that retain their usual intense cold, the vapour will be rapidly condensed; so that we cannot wonder at heavy rains being a general concomitant of these storms.

Wrangell, in the passages I have quoted, says the warm wind in

Siberia is preceded by a fall of the barometer. Dr. Kane, on the contrary, noticed a rise before the storm above described; it stood at "the extraordinary height of 30.85 ." I camnot suggest any explanation of these facts.

I believe I have now stated the true cause of what is certainly a very remarkable phenomenon-fluctuations of temperature of enormous magnitude, occurring in a very short time, and in the absence of the sun.

SCIENTIFIC AND LITERARY NOTES.

GEOLOGY AND MINERALOGY.

UNity of geological phenomena in the planetary system of the sun. BY L. SEMANN.
M. Louis Semann, of Paris, has sent us a somewhat remarkable memoir under the above title, (Sur l'unité des phenomènes geologiques du système planetaire du soleil), reprinted from a recent Bulletin of the Geological Society of France. In this communication, after bringing forward the generally received views in favour of the common origin of our sun and its planetary masses, and their analogous chemical composition under different states of condensation, the author discusses in detail the peculiar condition of the moon, as apparently hostile to his theory. The absence of water and of an enveloping atmosphere (properly so-called), are of course the points thus chiefly brought under consideration. M. Sxmann regards the moon as having passed through various phases, which the earth is also in its turn eventually destined to witness. The smaller mass of the satellite has led to a mure rapid development of these phases, than in the case of the larger earth mass. Both air and water he conceives to have once existed in the moon, and to have been gradually absorbed by the rock-matters of which this is made up; and the air and water of the earth, it is argued, must in the course of time be equally absorbed. In support of this view, the author enters into various calculations, based chiefly on the experiments of M . Durocher (Bulletin de la Societé Géologique, $2 e$ sér., vol. x.) on the absorption of moisture by rocks generally, and he shews this to be much in excess of that which would arise from the complete absorption of the occanic waters by the solid mass of the earth. Thus, he assumes the weight of the ocean to be one twenty-four thousandth part of the weight of the land; or, reducing all to one hundred parts, he makes the land equal to 93.9958 , and the water to only 0.0042 . On this assumption, if all the water were absorbed, the earth would be lyydrated (so to say) to the extent of 0.000042 , a mere nothing
as compared with the absorptive powers of eren the hardest rocks and minerals Certain feldspars, for example, became hydrated, in 3 . Durucher's experiments, to the extent of 0.0041 , others to the extent of $0.0077, \& \mathrm{c}$., and some even to that of 00263 . In sandstunes, limestunes, and uther urdinary rucks, the absurption is, of course, very much greater than this. The water absurbed would gradually produce, it is considered, definite hydrated compounds, and so remain fixed, more especially as the earth's internal heat became mure and more diminished. With regard to the prubable absorption of the atmosphere, M. Sxmann enters into computatiuns of a similar character, basing his viens, as far as possible, on the actual results of experimental inquiry, and bringing furward in this connexion many cullateral questions of much gevlugical interest. Our present limited space furbids, humerer, a more extended atalysis of this impurtant memoir.
on the supposed relations between tie rotation of the earti and tae gyratory mopements whoil take place in hquid bodies under certam conditions.
In the Comptes Rendus (Tome xlix., p. 637), M. Perrotinserted a note, previously read before the Académie des Sciences, on the gyratory movements of water flowing through a circular aperture at the bottom of the enclosing vessel, in which he maintained that this morement (in the northern hemisphere) always took place from left to right, a peculiarity due to the diurnal movement of the earth. This view being opposed to the researches of M. Magnus, published at length in Pogyendorff's Annalen, Mai, 1855, the subject has been reinvestigated by M. F. Laroque (Annales de Chimie, etc., Mars, 1861). The experiments of this latter observer appear to confirm fully the results of M. Magnus. According to M. Laroque, the rotatory motion arises from accidental causes, is irregular in its direction, and is thus in no way dependent on the rotation of the earth

MINERALOGICAL NOTICES.

Quartz in Meteoric Iron:-G. Rose (Ber. d. Akad. d. Wissensch, zu Berlin, 1861, p. 406), bas announced the discovery of a minute but perfectly distinct crystal of quartz in the Meteoric iron of Xiquipilco in Mexico. This iron is nickeliferous, and is mixed with Shreibersite and with particles of a simple sulphide of iron. In the valley of Toluca, in which Xiquipilco lies, fragments of meteoric iron are scattered over a very considerable area. Eight specimens from this locality, belonging to the Royal Mineralogical Museum of Berlin, were examined in the hope of finding some additional crystals or grains of quartz but without success. Prof. Rose suggests, however, that particles of quartz may occur amongst the insoluble matters of other iron-meteorites.

Arlificial Frormation of Crystallized Specular Iron, Magnetic Iron Ore, Magno-ferrite, Periclase, Hausmannite, Cassitirite and Rutile:-These mineral species have been obtained by Sannt-Clatre Deville in perfectly-formed crystals by the ageucy of hydrochloric acid gas. By passing a slow current of the gas
over amorphous sesqui-oxide of iron.in a heated porcelain tubo, crystals of sprcular irnon ore resembling in part those of Elba, and partly the flattened volcanic forms, were readily obtained. If the current be sufficiently slow, not a trace of a chloride is produced in this experiment, and the acid consequently is in no way decomposed. The cryitals thus formed by M. Deville were capable of being measured. The intervention of aqueous vapour was found to be quite unnecessary, the gas acting perfectly in an absolutely dry condition. Protcxide of iron, as obtained by the process of Debray, yielded under this treatment a number of small octahedrons possessing the exact composition of magnetic iron ore. A misture of sesqui-oxide of iron and calcined magnesia gave, in like manner, octahodrons with truncated edges, having the theoretical composition of pure magno-ferrile. Calcined magnesia alone, under a slow current of hydrochloricuacid, yielded small octahedral crystals of periclase, without the slightest loss or change accruing to the acid itself. Hausmannito was also. formed in dimetric octahedrons (of 104° to 105° over polar edges) from red oxide of manganese. Cassiterite, by the same process, in crystals of groat benuty, from amorphous oride of tin. The crystals were dimetric octahedrons, with their basal edges and angles replaced by the two square prisms, these shewing the proper interfacial inclinations of 135°. Finally, amorphous titanic acid'furnished minute crystals of a blue colour and great brilliancy, belonging either to Rutile or Anatase, most probably to the former. Deville's experiments are given in detail in several numbers of the Comptes Rendus of Jane and July. of the present year. They shed quite a new light on the formation of many crystallized substances in volcanic and other localities, and take rank amongst the most important contributions of the day to chemical.geology.

Brucieie:-The Brucite of Twood's Sine, Texas, has'been described by Hermann, (Joiltr. für Prakt. Chem. Ixixii., p. 368), ander the rame of Ttxalite as a monoclinic modification of the ibydrate of magnesia. This view, huwever, has beensubsequently shewn to be erroneons iby Professor Gebrge J. Brush of Yale Colle'ge. Prof. Brash (Amercain Journal of Science ard Aris, Juiy, 1861); proves clearly the identity of the soccalled Texalite with Bricite, and shews that both are hexagonal.

Startrolite:-The composition of Stanrolite, as determined more especially by the careful analyses of 'J \triangle cobson, is well known to vary greatly with regard to the respective amounts of silica and alumina. Rammelsberg has recently undertaken a further examination of this mineral (Ber. d. Köngl. preass. Akad. d. Wiss. $z u$ Berlin, März, 1861), but with the same generäl results, so far at lëast' as respects its atomic constitution. Analyses of ten examples from various localities shew such different results-the silica varying, for example, from 28.86 to $51: 32$-that no one common formula can be adopted for all. But Rammelsberg shews, in addition to this, that the iron in the mineral is chiefly present in the state of protoxide, whilst all previous analyses had given it as sesqui-oxide. The writer of these notes, however, so long ago as 1848, in a short paper published in the Chemical Gazette of July 15 of that year, ("On the Composition of Acmite;" \&c., by E. J. Chapman), called attention to the fact that by the em-

[^6]ployment of a blowpipe-test previously amounced by him for distingnishing the protoxide of iron from the peroxide of that metal in silicates and other compounds, he had "discovered the presence of FeO in translucent crystals of Staurolite, a mineral hitherto supposed to be a basic silicate of alumina in which a portion of the $\mathrm{Al}^{2} \mathrm{O}^{3}$ is replaced by $\mathrm{Fe}^{2} \mathrm{O}^{3}$." In Rammelsberg's analyses, as in those of Jacobson, the higher the amount of silica the lower that of the alumina, and the reverse.
E. J. C.

NOTICES OF PUBLICATIONS RECEIVED.

Descriptions of Nez Palenzoic Fonsils, from Illinows and Iora. By F. B. Meek and A. H. Worthen, Illinois State Geological Survey. In this communication, published in the Proceedings of the Academy of Natural Sciences of Philadelphia, June, 1861, the authors describe various new forms of crinoids and other types from the carboniferous rocks of Illinois and Iown. Amongst the crinoids they establish Ω new genus Bursacrutu:, intermediate apparently between Ichthyocrinus and Cyatherznm, its generic formula being: Basals $\mathbf{5}$? ; Sub-radials 5 (four hexagonal and one pentagonal); Radials 2×5; Anal 1 ; Inter-radials 0 ; Arms 10, bifurcating, but laterally connected. A sub-renus, under the name of Irematodiscus, is also proposed for the receptio: of certain forms of Nautili possessing a discoid shell with a wide, shallow, and usually perforated umbilicus. It will include a group of carboniferous species of European ss weli as of American occurrence.

In a_{2} :ent notice, contained in the May number of the Cianadian Journal, wo fear we may unintentionally have done some injustice to the very able geologists engaged on the Illinois Stirvey. In acknowledging a publication forwarded by Prof. Ilall, we stated that the descriptions of fossils which this comprised had been issued in order to claim priority for various new species that might probably ajpear under other names in the furthcoming Report of the Geology of Illinois, since the publication of the concluding pertions of the Report on Iowa (under Prof. Hall's direction), had been suspended for a time. In making this remark, we did not for a moment intend to imply that Messrs. Meek and Worthen would intentionally re-describe any published form under another name; but simply that, where several observers were engaged on the same kind of work, coincidences of this sort were more or less unaveidable. We find that a large number of the fossils about to appear in the Illinois Report, were briefly described in the proceedings of the Philadelphia Academy in Septenber and October, 1860 ; and we understand that every care has been taken, in drawing up this Report, to avoid the introduction of syoonymes. The Report itself, with figures and extended descriptions, will be issucd during the forthcoming jear.

The Primordial Zone of Trans. with Descriptians of Nen Fansils. By B F. Shumard. (From the American Journal of Science and Arts, September, 1861,. The occurrence of Lower Siluian strata in Texas (subscquently referred by Barrande h the Primordial Zone) was announced by Ferdinand Romer in 1852. Prof. Shumard, in 1859, shewed their occurrence over a much more extended
area than had been recognized by Remer, and placed them in parallelism with the Potsdam Sandstone and Calciferous Sand Group of Iowa, Wisconsin, and Minnesota. In his present notice, the same author enters into a more detailed analysis of their minerai and other characters, and describes several new Trilobites from the lower or Potsdam Sandstone division.

Cowtijhutions to Palacont logy. By James Mall. (Fourtecnth Annual Report of the Regents of the State Cabinet, Albany; Appendix C, and Continuation, July, August, and September, 1861). Professor IIall, in these issues, continues his descriptions of varions new fossils, comprising numerous brachiopods, cephalopods, trilobites, \&ic., chiefly from the IIudson River Group of Ohio and Tennessee, and from the Devonian Strata of Now York. Our restricted space, at present, forbids an analysis of these forms; but we may observe that in the first part of Appendix C, published in July, a description is given of a new Euomphalus, named E. Conr.uli by the author. This species appears to be identical with the Euomphanlus de Cemi of Billings, described and figured in the July number of this Journal. Should this apparent identity prove true, we think that Mr. Billings may fairly claim the species, since that number of the Journal was published on the 9th of July, and copies of Mr. Billings' paper were previously transmitted to him. Even if the dates prove coincident, the description of the species in the Journal must be looked upon as the more complete and satisfactory of the two, as it is illustrated by figares. The Devonian trilobites described in this Appendix by Prof. IIall, belong to the following genera: Calymene, (l species), Dalmania, (14 species), Phacops, (3 species', Proctus, (15 species), Lichas, (2 species), Acidaspis, fragmentary examples), and Beyrichia, (1 species).

The Gold of Noun Srotin. By A. C. Marsh, A. B. (From the Am. Journ. of Science and Arts, Nov. 1861.) This is an interesting account of the newlydiscovered gold districts of Tangier and Lumenburg. The gold lies chiefly in quartz reins traversing disturbed strata of clay-slate. It is accompanied by mispickel and iron pyrites, the latter, according io Mr. Marsh, being more or less auriferous. ${ }^{*}$ The author also abserved three crystallized specimens of gold from the Tangier locality, two of which were octahedrons, and the other a rhombic dodecahedron,with bevelled edges. An analysis of the Tangier gold (sp. gr. 18.95) gave Mr. Marsh : gold 38.18 ; silver 7.76 ; copper 0.5 ; iron, a trace. A sample from Lunenburg (sp. gr. 18.37) consisted of: gold 92.0.4; silver 7.76 ; copper 0.11 ; with also a trace of iron. These gold-containing metamorphic rocks of Nova Scotia are referred by Professor Dawson, (Acadian Geology: Supplement) to the base of the Lower Silurian series. The gold appears to extend over a wide area, since indications of it are eaid to have been found in the sands of Sable Island, at a distance of one hundred miles or more from the main land.

I'he Sanadian Naturnlist and Gculogist: (Vol. VI. No. 5.) Oct. 1861. This Number of the Naturalist is an exceedingly interesting one. In addition to sundry miscellaneous notices, it contains original papers by G. Barnston, E. Billings, I. G. Venner, Dr. Dawson. T. Sterry Hunt, and D. W. Beadle. Tho geological contributions comprise an article on the occurrence of Graptolites in

[^7]the base of the Lower Silurian series by Mr. Billings, and an analysis by Prof. Sterry Hunt of Barrande's recent Review of the Primordial Zone of North America. Dr. Dawson contributes some Additional Notes on Aboriginal Antiquities found at Montreal.

On the Dimorphism of Arsentc, Antimony, and Zinc. By Josiah P. Cooke, Jr. (From the Amer. Journ. March, 1861.) Both Arsenic and Antimony as occurring in nature, and a . amonly obtained in the reguline state, are well known to crystallize in rhombohedral or bemi-hexagonal forms. Zinc, as artificinlly produced, has been generanly referred to the Hexagonal, or to the Trimetric system. The experiments of Professor Cooke as detailed in this memoir, seem to prove conclusively, however, that these motals may be-also mado to assume a monometric crystallization. Arsenic and Antimony were crystallized by sublimation in acurrent of hydrogen gas. They gave minute octahedrons, combined at times, in the case of the antimony crystals, with the faces of the cube, and in one instance, with those of the rhombic dodecahedron. These modifications do away with all suspicion that the minute crystals may have consisted of rhombohedrons with truncated polar angles. The crystals were moreover carefully examined in order to prove that they did not consist of partially-reduced arsenious acid on the one hand, and of oxide of antimony on the other. The oxidation of the metals would scarcely have taken place however, as these experiments fere conducted. Zinc in combination with variable amounts of copper has been shown by Storer to orystallize in regular octahedrons, and Professor Cooke desoribes some octahedral crystals of zinc and arsenic, in which the latter metal was in too small a proportion to form a definite chemical compound. The heteromorphous oharacter of these mẹtals appears therefore to be fairly established.
E. J. C.

MISCELLANEOUS.
on cleaning and preparing diatoys, etc., obtained from boundingb. by J. B Dancer.
The first operation:generally required is to separate the soundings from the tallow or fatty matter which has been employed to bring them up from the bottom: I may here meation that Licutenant Stellwagen, an American officer, has invented a-sounding-lead which does not require grease. It hes a trap at the bottom for collecting the soundings. I am sure our section will join with me in the wish that the soundings which our worthy Secretary hepes to receive from various parts of the world may be collected with an apparatus of this kind. The grease involves a considerable amount of trouble, and some loss. The mass of soundings and grease is to be placed in a basin or an evaporating-dish, and boiling water poured on it; the melted fat rises to the surface, and when cold can be easily skimmed off. This operation may be repeated until the sediment appears free from grease; to insure this, draw the water carcfully from the sediment, and pour liquor ammonia on it; I prefer it to potass or soda; this will combine with the grease, if any remain, and form a soapy solution. This may. now be treated with hot mater for the final washing. This sediment must be allowed to settle quietly for an hour or two each time beforo the water is carefully
decanted or drawn off with a syphon; otherwise the minute forms of Diatomacea will be lost, and the operator greatly disnppointed in the result of his labour. Having now cleared the soundings from all extrancous matter, the next operation is to ascertain, by the microscope, the mature of the objects thus obtained. Take u_{p} with a glass tube some of the sediments, draw the contents of the tube atong a slip of glass, and cammine it with a low power. If Foraminifere or large Diatomacee are present, they may be removed by means of a split hair or a bristle from a shaving-brush, gummed or fixed in a cleft in a split of wood, and then placed on a cleau slip of glass for further examination. If you have a considerable quantity of mud or sand under the operation, with an abundance of Foraminifere, as is frequently the case, they can be separated by first drying the soundings, and scattering them on the surface of water in a basin; the heavy particles of sand will sink, but the light Foraminifere will flont for a time, and can be easily collected. Another mode is to stir up the sediment, and then pour off the lighter articles into test-tubes or wine glasses. In this maner, by having a number of glasses, you can separate the varietics according to their specific gravitics. If the Diatomaces obtained are recent and abundant, they should be separated from the calcareous portions of the soundings, and boiled in hydrochloric acid; and if not sufficiently cleaned, they may be boiled in nitric acid. The contents of the diatoms can be removed by burning them. Place them between two thin pieces of tale, and submit them to the flame of a spirit-lamp. Some use thin glass to support them when clenning a quantity. Ihave burat them in a small platinum crucible with success. It is advisable to mount specimens dry, and also in balsam, for careful wicroscopic examination. Those mounted dry show the markings most distinctly. There is one difliculty which the slidemounter meets with on his first essay, and which I will briefly allude to, viz., retaining the object in its proper place on the slide whilst the thin glass is being pressed down on the balsam. Some operators place the thin glass on the objects, and allow the balsam to flow gradu!ly between the glasses by capillary attraction. Professor Williamson employs a little gum in the water which contains the Diatomacere; this fixes them when dry, and the balsam does not remove them. Some objects, such as Foraminifere, require a long soaking in spixits of turpentine to displace the air from the chambers. By using an air-pump this process is much facilitated. A solution of balsam in chloroform will doubtless be an improvement in mounting this class of objects. It is needless to take up the time of the section by entering minutely into the details of mounting all the various objects which may be met with in specimens of soundings. Those interested may consult Quokett, Garpenter, and Hogg's works on the microscope; and Smith on Diatomacer. I must now apologise for taking up so much time on a subject which many present may be conversant with.
P.S.-Since the above was written, several engravings, with descriptions have appeared in the 'Mechanics' Magazine,' December 28, 1860, of the decp-sensouuding apparatus inrented and used on board The Bull Dog during the sounding expedition in the North Atlantic Ocean, under the command of Sir F. L. M Clintock, with one of these machines. Twenty-four ounces of ooze was brought up from a depth of 1,913 fathoms.- Jourmal of the Microscopical Socicty.

Voz. VI.

532

HONTHLY METEOROLOGICAL REGISTER, AT THE PROVINCIAI, MAGNETICAL OBSERVATORY, TORONTO, CANADA WRST-AUGUST 1861.

533

534

MY:

535

536

Latitudo- 45 deg. 32 min. North, Longitude-73 dey. 36 min. West. Height above the Level of the Sea 118 feet.

537

MONTHLY METEOROLOGICAL REGISTER,

REMARKS ON THE ST. MARTIN, ISLE JESUS, METEOROLOGICAL REGISTER• FOR AUGUST, 1861.
Hiohest, the 20th day 30.190
Barometer $\left\{\begin{array}{l}\text { Lowest, the } \\ \text { Montily Mean }\end{array}\right.$ 29.420
Monthly Range 0.770
Thermometer..... $\left\{\begin{array}{l}\text { llighest, the list day } \\ \text { Lowest, the 2uth day }\end{array}\right.$ 90.0
thermometer...... \{ Mminly hean $46^{\circ} .2$
$66^{\circ} .84$
Monthly Range $43^{\circ} .8$
Greatest intensity of the Sun's Rays $109^{\circ} .4$
Lowest Point of Terrestria: Radiation $41^{\circ} .7$
Amount of evaporation 3.02
Mean of ILumidity 736
Rain fell on 12 days, amounting to 1.950 inches; it was raining 12 hours and 41 minutes, and was accompanied by thunder on 5 days.
Most prevalent wind, the S. S. W.
Least prevalent wind, the N .
Most windy day, the 14 th ; mean miles per hour, 9.3 J .
Least windy day, the sth; mean miles per hour, 0.42.
Aurora 1 sorealis visible on 4 nights.
Solar Haloes visible on 3 days.
The Dlectrical state of the Δ tmosphere has indicated rather high intensity.
remaris on the st. Martin, isle jesus, meteorological register FOR SEPTEMBER, 1861.Barometer $\left\{\begin{array}{l}\text { Highest, the 30th day .. } 29.296 \\ \text { Luvest, the 28th day }\end{array}\right.$29276
Monthly Mean 29.849
Monthly Range 1.023
(Highest, the 1sth day $79^{\circ} 6$
Thermometer ... $\left\{\begin{array}{l}\text { Lowest, the } 25 \text { th } \\ \text { day }\end{array}\right.$ 35\% 0
Monthly Mean $5 S^{\circ} 06$
(Monthly Range $44^{\circ} 6$
Greatest intensity of the Sum's rays $97^{\circ} 8$
Lowest point of Terrestrial Radiation $32^{\circ} 0$
Mean of Humidity 804
Amount of Evaporation 1.83
Rain acll on 9 days, amomting to 4.516 inches; it was raining : 66 hours and 50 minutes,and thunder was heard on 1 day.
Most prevalent wind, S. S. E.
Least prevalent wind, E.
Most windy day, the 21st day; mean miles per hour, 21.60 .
Least windy day, the 17th day ; mean miles per hour 0.02 .
Aurora Borealis visible on 5 nights. On 2nights the Marnetic disturbance was considerableduring its apparition.
The Electrical state of the Atmosphere has indicated feeble intensity.
First Frost occurred on the bth day.
Solar Haloes seen on 2 days.
ERRATA.Page 87, line 5 from bottom, for teammay, read tramway.
" 188, line 5 from top, for resembling, read resembles.
" 191, line 14, for FR.S, read F.a.s.
" 229 , line 4 from bottom, before exhumed human relics, insert the.
" 301, line 5 from bottom, for Professor of Mineralogy, read Professor ofMetallurgy.
" 487 , line 26 , for arranged, read surveyed.
" 500 , line 3 from bottom, for of, read or.
" 516 , line 10, erase the word ambulucral.

INDEX.

PAGE
A. Popular Exposition of the Minerals and Geology of Canada; by E. J. Chapman, Professor of Mineralogy and Geology in University College, Toronto 149, 425, 500
Additional Note on the Occurrence of Fresh-water Shells in the higher Drift Deposits of Upper Canada; bý Professor Chápman 497
Additional Note on the Crystals of Lazulite described in July No. of the Canadian Journal 455
A'ddress, President's, 1861; by Professor D. Wilson, LL.D 101
American Meteorites 300
Annual Report of the Canadian Institute, 1859-60. 193
Atrypa Genus (Dalman) 264
Aragonite and Calcite 300
Bauxite, Hydrated Sesqui oxide of Iron and Alumina 387
Billings, E., F.G.S., On the Devonian Fossils of Camada West138, 253, 329
" " On a new Genus of Palæozoic Brachiopoda 148
Bird̀s Observed near Hamilton, C. W.; by Thomas Mcllwraith, Esq......6, 129
Brayley, Ed. W., Esq., F.R.S., Note on the Apparent Universality of aPrinciple Analogous to Regelation, on the Physical Nature of Glass, andon the Probable Existence of Water in a State Corresponding to that ofGlass63
"Bulldog" and "The Fox," Recent Expedition of 80
Calcite, or Calc Spar 153
Canadian Institute, Proceedings of:
Ist Ordinary Meeting, Session 1860-61, Ist December, 1860 89
2nd " " " 8th " " 89
Annual General Meeting, "3rd Ordinary Meeting,"
4th " "5th " "
6th " " " 2nd February " 302
7th " " " 9th " " 302
8th " " " 16th " " 308
9th " " " 23rd " " 303
10th " " " 2nd March " 303
11th " " 9t 304Vol. VI.2 a
12th Ordinary Mecting, Session 1860-61, 16th March, 1861 304
19th " " " 23rd " " 304
14th " " " 30th " " 305
Conversazione 305
Canadian Timber Trees, Descriptive List of ; by Charles Robb, Esq., C. E., Hamilton, C. W 28
Caverns, Canadian ; by G. D. Gibb, Esq., M.D 386
Celestine, or Sulphate of Strontia 157
Centronella, Genus (Billings) 271
Chapman, Professor E. J., A Popular Exposition of the Minerals and Geol- ogy of Canada; continued from Vol. V., page 531 149
" " " " $"$ Part III. 425
" " " " " Part IV 500
Chapman, Professor E. J., Notes on the Drift Deposits of Westeru Canada, and on the Ancient Extension of the Lake Area of that Region. 221
" " Additional Note on the Occurrence of Fresh-water Shells in the Drift Deposits of Upper Canada 497
" " Note on Stelliform Crystals, with Specinl Reference to the Crystallization of Snow. 1
" " On the Klaprotline or Lazulite 455
Chlorite 160
Ohloritoid 484
Chonetes, Genus (Fischer.) 349
Classification of Rocks in Accordance with tr eir Relative Ages 451
Conversazione, Canadian Institute 305
Craigie, Dr., Meteorological Tables, Hamilton, C.W. 220
Croft, Professor H., D.C.L., On the Oxalate of Iron 18
Council of the Canadian Institute, Anuual Report of, 1860-61 193
Cyrtia, Genus (Dalman) 262
Cyrtodonta, Genus (Billiugs) 353
" Sub-genus Vanuxemia 356
Dz Cew, J., P.L.S., Geology of Townships of Windham and Middleton, County of Norfolk, C. W 295
Demidoff, Prince, On a Second Instance of the Reproduction of the Ostrich in Europe 46
Deseriptive List of the Principal Canadian Timber Trees; by C. Robb, Esq., C. E., Hamilton, C. W 28
Diallage 159
Dolomite 155
D. W., Revicus :
Narrative of the Canadian Red River Exploring Expedition of 1857, and of the Assiniboine and Sakatchewan Exploring Expedition of 1858; by H. Y. Hind, M.A., F.G.S., \&c 175
Coins, Medals and Seals, Ancient and Modern, Illustrated and Described, \&e. ; Edited by W. C. Prime. New York : Harper \& Brothers, 1861.. 192
Earthy Magaucse Ore 150
E. J. C., Reviews ; pagr
Contrihutions to Palmontology, 1858 and 1859, with Additions in 1860; by James Hall, Geologist and Palmontologist, Albany, N. Y, 1861 187
Supplementary Chapter to Acadian Geology ; by J. W. Dawson, LL.D., F.G.S., I'rincipal of McGill College, Montreal. B. Dawson \& Son, Mon- treal, 1861 191
" Notices of Publications 55
E. J. C., Translated Arlicles: 520
" Mineralogical and Geological Notices 525
Eruptive Serpentines of Tuscany 297
Euomphalus de Cewi (N.Sp.) 358
Faraday, M., D.C.J., F.R.S., sc., Note on Regelation 54
Fleming, Sanford, Esq., C. E., On the Daveuport Gravel Drift 247
Flora of Canada ; by the Rev. Professur W. Hincks, F.L.S., F.R.S.E., \&c.165, 266
Flunr Spar 155
Freeland, Patrick, Esq., On the Movements of the Diatomaceæ 324
Gibb, D. George, M.D., \&c., Canadian Caverns, Notice of 386
Gypsum 161
Hall, James, Esq., On the Primordial Fauna and Point Levi Fossils 284
H. C., Reviezo:
The Manufacture of Vinegar, its Theory and Practice ; by C.M. Wetheriil, LL.D., M.D., \&c 183
Heary Spar, or Sulphate of Baryta 156
Hincks, Rev. Professor W., F.L.S., \&c., Specimen of a Flora of Canada, with Preliminary Remarks 266
" On the True Aims, Foundations and Claims to Attention, of the Science of Political Economy 20
" On the Classification of Fruits 495
Humboltive (Oxalate of Iron) 151
Hunt, T. Sterry, M.A., F.R.S., On the Theory of Types in Chemistry 120
" " " On Canadian Chloritoid 484
Illustrative Exanples of some Modifying Elements Affecting the Ethnic Sig- nificance of Peculiar Forms of the Human Skull ; by Professor D. Wil- son, LL.D., \&c 414
Iron-Cased Frigates 74
Iron Ore 150
Iron Trade of Marquette, Lake Superior 97
Leptoœlia Genus (Hall) 351
Logan, Sir W. E., F.R.S., \&c., On the Quebec Group of Rocks, and the Pri- mordial Zoue of Canada 40
Loganite 161
McCaul, Rev. Jno., LL.D., President of University College, Notes on Latin Inscriptions found in Britain. Parts 7 and 8 395
Mcllwraith, Thomas, Esq., Notice of Birds Observed near Hamilton, C. W..6, 129
Malachite, or Green Carbonate of Copper 151
Meteorites, American 300
Metrobological tables, toronto. O. w. page
Return for October, 1860, and Comparative Tables 912
" November, 984
Mean Meteorological Results for tine Year 1860 11
General " ". ${ }^{\prime}$ Register "'M" 212, 213
Return for December, 1860 , and Comparative Table 214, 215
\therefore " January, 1861, 216, 217
Return for February 1861, and Comparative Table 306, 7
". March, 308, 9
" Âpril, " "388, 89
". May, $390, \quad 91$
" June, " 488, 89
" July, " 490, 91
" August, " 532, 533
" Sep., .534, 535
ST. MARTIN, ISLE JEEUS, C. E.
Return for August, 1860, and Remarks $.95,109$
" Septeinber, " $.96, \quad 10 \rho$
" October, $.97, \quad 99$
" November, " " $.98, \quad 99$
" December, " 218, 220
" January, 1861, 219, 220
" February, " " 310, 312
" March, " " 811, 312
" April, 392, 394
" May, 398, 394
"J June, 492, 494
" Julyं, 493, 494
" August, " " 536, 538
" September, 537 , 538
Mean Meteorological results at Eamilton, C. W., 1860 220
Mineralogical Notices 300, 525
Mica 552, 108
Miscellaneous Notices:
North West Territory 73
Iron Cased Frigates 74
Iron Trade of Marquette, Lake Superior 87.
Recent Expedition of The Brill Dog and The Fox 80
On Cleaning and Preparing Diatmos, de, obtained from Soundings. §
Mollusks, Existenee of; at great sea-depths; by M. Milne Edwards. 518
Natural History of the United States of America, Contributions to; by Louis Agassiz, Yol. III., Review of 169
North West Territory 78
Note on Stelliform Crsstals, with special reference to the crystallization of Snow ; by E. J. Chapman, Professor of Mineralogy and Geology, University College, Torunto 4
PAGE
Note, On the Oxalinee of Iroñ ; by Prot. H. Croft, D.C.L., Professor of Chem- istry, Uuiversity College, Toronto 18
Note, Ou a aew Genus of Palæozoic Brachiopoda; by E. Billings, F. G. S. 148
Note, On Land aud Fresph Water SThells, cqllected in the envirous of Toronto ; by A. E. Williamson, Esq 327
Notes, Oo the drift deposits of Western Cinnada, and on the ancient exten- sion of the Lake area of that region; by. E. J. Chapman, Professor of Mineralogy nad Geology, in University College, Toronto 221
Notes, On Latin Inseriptions found iu Britain, Part 7; by the Rev. J. MicCaul, President of University College, 'oronto 395
Notes, On the Davenport gravel drift; by Sanford Fleming, Espq., Civil Evgineer 247
Notes, On a New Species of Triarthus, from the Ütica Slate of Whitby, Cadada West; by J. F. Smith, Jun., Esq 276
Note, (aduitional) On Klaprothine or Lazulite 455
Note, (additional) On the occurrence of Fresh water Sbells in the bigher drift deposits of Western Canada; by Professor. Chapman 495
Notices of Books, ac. 530
Ơbservations on the Existence of various Mollusks and Zoophytes at great sea-depths; by M. Milue Edwards 518
Ochre, Red 150
Ochre, Yellow 151
On great fluctuations of Temperature in the Arctic Winter; by J. J. Mur- plyy, Esq 520
On the Devonian Fossils of Canada Wrest; by E. Billing6, F. G. S. 138, 253, 329
On Elaprothine or Lazulite; by Professor E. J. Chapman 363
On the movements of the Diatomaceæ; by Patrick Freeland, Esq 324
On the Petroleum Springs of Westeru Cenada; by C. Robb, Esq., Miuing Engineer, Montreal 818
On the Theory of Types in Chemistry; by T. Sterry Hunt, M.A., F.R.S. 120
On the Classification of Fruits; by the Rev. Prof. Hincte, F.L.S 495
On the Occurrence of Vanessa Cœuiain Canada West; by W. Saunders, Esq. 498
Ostrich, Reproduction of, in Europe 46
Oxalate of Iron, (NTote on, by Professor Croft, D.C.L.) 18
Pentamerus, Genus 2.69
Pholerite 161
Political Economy.-Truq aims and Claims to attention; by the Rev. Prof. Hincks, E.L.S., \&c 20
President's Address-Can̊dian Institute ; by Prof. D. Wilson, IL.D. 101
Poblications Received, (Notices of);
Description of new Species of Crinoidæ, from Investigations of the Iowa Geological Survey; by James Hall, Albany 301
Notes on the Geology of Murray Bay, Lower St. Lawreace; by J. W. Dawson, LL.D., R.G.S., dc 301
Ninth Supplement to Dana's Mineralogy; by Prof. George J Brush 801
Obselvations upon the Geology and Palæontology of Burlington, Iowa, and its vicinity; by Charles A. White. 301
On certain Theories of the Formation of Mountains; by E Billings, F.G.S. 301
On the amount of lead contuined in Silver Coins; C. W. Eliot, and Frank501
Lovell's General Geography ; by J. George Hodgins, LL.B. 485
On the Pre-Carboniferous Flora of New Brunswick, de.; by J. W. Dawson, LL.D. 486
The Metals in Canada ; by James L. Willson and Chas. Robb 486
Tables of Measures, dc. ; by A. Wurtele 487
Journal of Education, Lower Canada 487
Remarks on Upper Canada Surveys, de. 487
Map of Prescott and Russell 487
Descriptions of New Palæozoic Fossils from Illinois and Iowa; by F. B. Meck and A. H. Worthen 528
Primordial Zone of Texas, de.; by B. F. Shumard 528
Contributions to Palmontology; by James Hall. 523
The Gold of Nova Scotia; by A. C. MarsL 529
The Canadian Naturalist and Geologist 529
On the Dimorphism of Arsenic, Antimony, and Zinc; by Prof. J. P. Cooke, Junr 530
Remarks on the Fauna of the Quebec Groups of Rocks, and the Primordial Zone of Canada, addressed to Mr. Joachim Barrande; by Sir W. Logan, Director of the Geological Survey of Canada 40
Remarks on the Genus Charionella ; by E. Billings. 274
Reviets:
Contributions to the Natural History of the United States of America; by Louis Agassiz. Second Mlonograph in 5 parts, \&c.
Contributions to Palæontology, 1858 and 1859, with additions in 1860; James Hall, Geologist and Palæontolugist, of Albany. 18'.
Coins, Medals and Seals, ancient and modern, illustrated and described. With a sketch of the history of coins and coinage, \&c., \&c.; by W. 0 . Prince. New York : Harper \& Brothers. 1861 192
Manufncture of Vinegar; its Theory and Practice; by Charles M. Wether- ill, LL.D., M.D., de. Pliladelphia: Lindsay \& Blakiston 188
Narrative of the Canadiau Red River Exploring Expedition of 1857, and of the Assiniboine aud Saskatchewan Exploring Expedition of 185S; by Henry Foule Hind, M.A., F.R.G.S., de., dc. 175
Supplementary Chapter to Acadian Geology; by J. W. Dawson, ILL.D. F.G.S., \&e., \&ic 191
Robb, Chas., Civil Engineer, Descriptive list of the Principal Canadian Tim- ber Trees 28
" " Civil Engivecr, Onthe Petroleum Spring of Western Canada. 313
Rocks of Conada, classified and described 425
Scientific and Literary Notes :
MINEEALOGY AND GEOLC: $: ~$ pagr
Artificial formation of Specular Iron, Periclase, Rutile, \&c 536
American Meteorites 300
Brucite. 300
Calcite and Arragonite 300
Chrome Garnet 300
Cual Deposits of British Colonies in the South 479
Notes on Cauadinn Chloritoid; by T. Sterry Hunt, M.A., F.R.S. 484
Nutes on the Geology of the Townships of Wiadham and Middleton, County of Norfolk, C. W.; by J. DeCew, P.L.S 295
Quartz in Meteoric Iron. 526
Rutile, Wolfram, Cerite 300
Staurolite. 527
Tables for Calculating the Thickness, \&e, of Inclined Strata. 72
Unity of Geological Phenomena in the Planctary System of the Sun. 525
Selected Articles and Translations:
Agricultural Manufactures; by S. Copland 463
Note, On Regelation; by Michael Faraday, D.C.L., F.R.S., \&c. 54
Note, On the question, Can Soda replace Potash as a Maure; by M. George Ville 50
Notes, On the apparent universality of a principle analogous to Regelation, on the physical nature of Giass, and the probable existence of Water in a state corresponding to that of Glass; by Edward W. Brayley, Esq., F.R.S. 63
Observations on the existence of Mullusks and Zoophytes at great sea- dep!hs; by M. Milne Edwards. 515
On the great fluctuations of Temperature in the Arctic Winter; by J. J. Murphy, Esq. 520
On the Calorific Relations of Hydrogen and other Gases, abstract of a paper by Professor Magnus. 'Trauslated from Poggendorfi's Anoalen, No. 2. 1861 383
On the Co-existence of Man with certain Extinct Quadrupeds, proved by Fossil Rones (from various Pleistocene deposits) bearing incisions made by sharp instruments; by M. E. Lartet, Foreign Member of the Geolo- gical Society of Loudon. 368
ddditional ; by the President of the Geological Society, L. Horner, Esq., 374, 375
On the Combustion of Rarified Air; by Dr. Ed. Frankland, F.R.S. £SO
On the Flecricity of the Flames of Eydrogen and Alcohol, by M. Mateucci 385
On the occurrence of Fermentation-Producing Infusoria capable of living without free oxpgen; by M. C. Pasteur 456
On the occurrence of Americau birds in Europe; by II. Gätke, of Heligo- land 459
On the Purification of the Juice of the Beetroot in the Manufacture of Bectroot Sugar; by M. Emile Roussenu 292
On the Primordial Fauna aud Point Levi Fossils; by James Hall 284
PGGE
On a second instance of the reproduction of the Ostrich in Europe, Com. munication addressed to M. L. Geoffrey St. Hilare; by Prince Demidoff 46
Remarks on the fauna of the Quebec Group of Rocks, and the Prinordial Zone of Canada, addressed to Mr. Joachim Barrande, by Sir William Iogan, Director of the Geological Survey of Canada 40
Sȧunders, W. Esq., On the occurrence of Vanessa Cænia in Canada. 498
Serpentine. 157
Smith, J. F. Junr., Note on a new Species of Triarthrus. 275
Specimen of a Flora of Canada, with Preliminary Remarks, by Professor W. Hincks, F.L.S., F.R.S.E., \&c. 165
Spirifera, Genus 253
Stricklandia, Genus, (Billings) 265
Strophomena, Genus, (Refinesque). 329
Tale 158
Tuscany, Eruptive Serpentines of 297
Unity of Geological Phenomena in the Planetary System of the Sun. By Iouis Sæmann 523
Ưán-Ochre 151
Vannessá cænia, occưrrence in Cañàda 498
Vivianite or Pliosphate of Iron 151
W. H. Review, Contributions to the National History of the United States of America, by Louis Agassiz, Secönd Monographin Five parts. Vol. III. Boston, Little, Browns, \& Co., 169
Williamsoñ, W. E., On Land and Freshw̌ater Shells of Toronto 327
Wilson, Professor Daniel LL.D., Illustrative examples of some modifying elements affecting the Ethoic Significance of Peculiar Forms of the Human Skull. 414
Wilson, Prof. Daniel, I.L.D, President of the Canadian Institute: Annual Address 101
Woods of Canada. 30
Zinc Blende 158
Postscript.-Since our remarks on fossil sponges, in the "Minerals and Geology of Canada," page 505, were printed off, we have received a publication of the Geological Survey, containing descriptions of various new species of Lower Sllurinn Fossils, by E. Billings, F.G.S. In this publication, Mr. Billings describes, under the generic name of Eospongia, two sponges recently brought by Mr. Richardson from the Chazy Limestone of the Mingan Islands, together with a third species (Astylospongiásparvula) from the Trenton Limestone of Ottawa City. These, however, as compared with the generality of Silurian fossils, may be looked upon as quite of exceptional occurrence. Nevertheless, to prevent misconception, the reader is requested to alter the words "determinate forms," page 505, line 16, into "characteristic forms."-E. J. C.

[^0]: - Suce writing the above, Vanessa Cenia has been found in the townships of Ellis and Jogan, about ten miles north of Stratford. From this itappears that its range is a moro extensive one than I anticipated. The two places in which it has been found being somo sixty miles or more apart, it is very probable that it will be met with in some spots intermediate. Since this Butterfly has undoubtedly been more prevalent than usual duriug the past season, it would bo interesting to know to what extent it las prevailed in this section of country. I should be glad if collectors would communicate anything they know on tho subject-W. S.

[^1]: * It will of course be understood that we are not attempting, here, an Eissay on Palaeontolosy. Our object is chieny to convey to the uninitiated reader such an anount of information as will cuable him to understand the terms of general employ:nent in galaontological descriptions, and to obtain a proper conception of the natural relations and positions of our more common and characteristic fossil types. We have therefore sought to condense as much as passible, and to avoid all matters not immediately connected with the end in view.

[^2]: - The subordinate divisions of our Silurian and Devonian strata will be found described in full in Part $\dot{\mathrm{V}}$.

[^3]: * In further illustration of the inutility ofentering into descriptions of these forms in the present plase, it may be observed that, of several species described and figurea by Mri Billings, only single specimens are known. We have therefore thought it advisable to restrict, for the greater part, our limited number of engravings to representations of characteristic or commonly-occurring corals, brachiopods, lamellibranchiates, gasteropods, cephalopods, and trilobites.

[^4]: * Pontremites exhibits three series of plates (cxclusive of the Ambulacroid sorics): Jasals Radials, and Inter-radials, the latter restiug upon the radials in alternate position. The radials aro comparatirely large, the inter-radials small, so that the ambulacroids extend nto the former. In Blastoidncrinus the reverse of this takes place. The inter-radials are large, and the mbulacroids do not extend betow them.

[^5]: * As subsequently shown, however, by ior. IBillings, the pores in Comarocestite abpear to opron out on the sides of the plates at the sutures, as in the gemus lateoncystites. May not this be the case, aiso, with refard to Cryptocrimus (Vou lueh), and the other soralled non-loriferoms types?
 t This is the dreinnerinus tenumaliatus of Mall. The other species appertaining to the different genera enunerated in the text, belone entirely to Mr. Billines.

[^6]: Vol. VI.

[^7]: - This wo have verified in specimens ohtained from Timsicr, and kindly presented to uso by Mir. Hawkins. P.I, S., of Toronto.-E. J. C.

