BULLETINS

or the

Arrial Exproment Astariation

Bulletin No. Ix
Issued meanay, sept. $7 / 908$

LIEJT. Siminamases copy.
he metendi copr

$$
11
$$

1. Editorial Hotes and Cempentg:-

The removal of headquarters to Beinn Bhreagh..........i-2

2. Hempendaport Forkto

Telegrans from Mombera.
Aug. 28, MeCurdy to Be11................. 3
Alug. 26, Gurtiss te Bell................... 3
Avg. 29, Be11 te MeCurty. 3
Aug. 30, Ourtise to Beli................. 3
Amg. 31, ItaCurdy te Belz.................. 3
Sept. 3, Bell te Curtiss..................... 3
Letters from Members. 4 -13
Ang. 19, Curtiss to A.S.A................. 4
Alug. 26, Curtiss to Beli. ${ }^{7}$
Ang. 26, Gurtis. to ltrs. Boll........... 8
Aug. 29, Curtiss to Bell................... ${ }^{9}$
Aug. 30, Mocurdy to 3tra. Bell........... 10

3. Boinn Bhreagh Torkite

Work of Beinn Bhreagh Laboratory by Ma. P. Bodwin.14-18

> Plans for Aerodrome Fe.5 by A.G. Bell................ 19m33
> General romarige on tetrahedral con-
> struction................................. 19-22
> Bxperiments with the Kite Cygnet.22-27
> Changes from the Cygnet form dise
> cussbd.... $27-30$
> Plans for Aeredrome \#e. 5.........30-33

Baldwin's Experiments with the Dhonnas Beag, Aug. $25,26,29,1908$ with esew Illetes of Progress by
A. O. Beit

Brperiments. $34-37$
General Remarica.37-37
Changes of Apparatus. 38 -39
4. Migelizncous Cormunieationas-
(For illustrations aee over).

M2ustratcons.

Curtian sketch of a naw launching deviae front view....... 6
Curtisat Sketch of a new launching deviev side view........ 6
Mocurdy'g sicetch of nev rudder support for the June Bug.. 22
MoCurdyt ${ }^{2}$ map showing the eourge of the two mile filght of the June Bug August 29 12
Balduin's old and new outrigger-floats for the Dhonnas Beag. 16
Baldwin' ${ }^{\text {s }}$ old and now outriger-trusses for the Dhonnas Beag. 17
Boldwin's hydroplanes for the Dhonnas Boag. 18
Bell's Cite The Cygnet" ${ }^{\circ}$ - Front elevation, and top and bettorn views. 23
BeL1's Fite Cygnets- side elevation, and detaila relating to the protruding beak, and the mode of manipulating the flyingmine frem the idte...
Beli'a Kite Cygnets- ILIustrations of the anglembeading ompleyed. 25
Bell's plans for Aerodrone He. 5t side elevation and front view. 51
Beli's plans for Aerodrane IV. 5: Arrangemont of aeotions.32
Baldwin's hydroplane beat: Photograph of the Dhonnas Beagon Beinn Bhreagh Har'ber.36

TIL RRMIOVAL OY HRADQUARTERS TO BEITMI BHRRAGH.

Letters and telegrams from Hammondsport indieate that aerodrome Me.4, MeCurdy* Bilver-Dart 1s now practically come pleted, and that the machine may take the alx any day.

It is understeod by all the members that the Associations headquarterg will be romoved to Beinn Bhreagh, Mear Baddeck, Mova Seotia, after sufficient time has elapsed to afford Mr. Mefurdy full opportunity of testing out his machine at Maminendapert.

A meeting of the Association must be held at Beinn Bhroagh on the 30th of September to decide upon the future of the Aasociation, as this is the day wen the Aaseciation, in accordance with out agrearant of organizution, expires by time limitation, unless some other arrangement is unanimously agreed upon by the memberb. It is therefore urged that the Hammondsport members should corse to Beinn Bhreagh as soon as practicable.

Lieut. Selfridge, our Secretary, has for aome time past been in Washingten, D.C., having been ordored there by the War Department. It ia hoped that he tee may be able to visit Beinn Bhreagh before the 30th of September for the continuanee of the Asseciation after that date, in its prosent, or in any modified form, reguires the unanimous approval of the mombers. Should tieut. Selfridge find that his preaence at Beinn Bhreagh upon that date would be inconsiatent with his military dutiea In Washington, D.C., he is specially requested to communiaate hia viewa coneerning the future of the Asseciation by letter to the Chairman, so that his vote may be recorded. In such an ovent he is alse requested to turn over the records of the
 te be brought to Beinn Bhreagh in time for the meeting Septamber 30.

The Traasurer, Mr. MeCurdy, is requeated te prepare a full repert of the expenses of the Association since its form mation, and all debts and 2iabilities of the Association ahould be patd off before September 30 .

Mr. Curtiss, as Directer of Experiments, thould report at the meoting on September 30 fiffe experimental work of the Association from its organigation for preservation in our rem corde.

The following buainess will cone before the Asseciation at its meeting on Septermber 30, and it may be well ther申fore for all the member: to be prepared with a derinite answer to the queries propesed.

1. The pirat business will be the appointment of a Truatee to hold the property of the Aaseciation under an agremment te distribute the aame in accordance with our articie of organization.
2. Shall the Asseciation be continued beyond the soth of Septemaber, 1908.
3. Shall the preaent organization be continued, and if se for hov long a period.
4. Shall the Asseciation be continued in a modified form, and if so that modifications ahall be adopted.

Reportas.

1. Report of the Chairman.
2. Report of the Secretary.
3. Repert of the ireasurer.
4. Repert of the Director of Buperiments.
5. Report of the Auditor.

Te Dr. A. 0. Ben, Baddeok; H.3.

Hammendeport. Y. Yan Auge 28, 1903:milade two flights last eveningt one with top axirace ori tan, another with both ourfaces off. Se notieeable difference with one aurfsee off, but with both off machine wae speedy and tremendously sensitive. Will need practiee to attain skill. Used nev propeller push 212 Lb . silver-Dart about ready. Fill propare full details before trial
J.A.D. HeCurdy.

To Dr. A. G. Bell, Baddeck, \#.s.

Hemmondsport, HoYoe Ase, 28, 1908:. Jehn and I beth rlew toe nigat int notingg bentin out ruader. Ifo tail.
G. H. Curtiss.

Te J.A.D. Itocurdy Harvondsport, $\frac{1}{2}, Y$.

Baddeck, H.Son Aak. 29, 19088- Baldwin' B "aittle Devil" made trontywiour kionetern por hour this morning without any hydrep planes, an urprecedented feat for a motor boat driven by an aerial propelier.

Grahava Bell.
Te Br. A. G. Bell,
Baddeck, II.s.
Hempondeport, H. Ye. Aug. 30, 2908:- John came back last night Vith june suge braing winted mailed tomorrow.

> G. H. Curtias.

Te Dr. A. G. Bell,
Baddeek, II.s.
Hermendeport, H. Yo. Auso 32, 1908:-G1omn made eirele tomight. Time 2 minutes and 28 geconds.
J.A.D. MoCurdy.

Te G. H. Curtiss, Hammendsport, H.Y.,
Beddeck, H.S., Sept. 3, 190Similet adviaable I think to enter for Sientiric dridricah rropiny, Gept. seven under new eonditions without some reasenable prospect of sucesss and without oompetp itors, but do as you think best.

(5etters).

To The Aarial
Ixperiment Asseoiation, Baddeek, Hova Seotia.

Hampondsport, Y.Y., Aus. 19. 1903:- I have read the last tive Bulletins with great interest. The scheme of starting a flying machine fron and landing on the water has bean in my mind for some time. It haa many savantages, and I bolieve can be worked out. IVen if a meat mitable device for launching and landing on land is teeured, a water eraft will still be indisponsable for war purposes and if the exhibition field is te be conaldored, would, I beliove, present greater posaibilities in thia Ine than a machine which works on land.

An arrangenent of r2oats te support the flyor whon at reat would be necesaary. Then amall hydroplanes to earry it up out of the water and to osteh the shoek of landing. I do not think the probler is difficult.

For work on land, I would subuit the enclesed sketch of a new launching device. The one fixed wheel is used entirely for starting and alighting, the skids only acting as supm ports while standing. Balaneing on the one weel oan be caally seoured with the reveable wing tipa and the front horizontel rudder as when fiying in the air. If we have the opportunity would you advise trying this on the June Bugh

Hemnendsport. H. Yo. Aust 26, 1908:- MeCurdy's Ho. 4 is being asaembled and is a beauty. Ingrahen, whe by the way is doing finely of late, thinks that a couple of cays more will aee it assembled.

Before taking the June Bug out of the tent to make reop for the Fif. 4 we decided to replace the ribs which had straightoned out by getting wet, and wieh aceounts for gelfridge ${ }^{\circ}$, fallure to fly. This has been done and we will R1y it tomay With the new surfaces which have ne reverse ourve. We have alae added better lubrioation for the ongine which will onable us to make longer Rlights.

The new propeller is a grand suecoss. It pulls tan to fifteen pounds more at 1000 than the old one at 1200 (roughiy). I mailed yesterday a print of the folding tail on the June Bued which is Ingrahon': ting the machine out for filght.

Seme storisa have been going the rounds of the nowge papers referring to a How York man, whese name is not mentiono ed, having ordered a flying machine for the Curtiss Manufacturing Company. For the mest part there is no truth in it. It originated from a converastion with Mr. Baldwin in which he Jokingly said he wanted one. As you know, mest newspaper are ticles are unreliable.

Mr. Dienatbach of Few York is with us, He is apending a couple of weeks in Hammendsport writing up aeronautieal storier,

To Mra. A. G. BeLI,
Baddeok, N_{4}.
 what we are doing here. We are busy enough but things ge rathes: slowiy. We have one conselation, however, and that is that the Ye. 4 machine is being built, as you might say, "like a wateh" and leoks like business throughout. The parts are well finiahea, the result of knowing what we want and not having to change as in the previous machines.

We learned that selfridge's lack of auccess in flying the June Bug was due principally te the surfaces straightening out and lesing thair ourve which gives then the lifting effect. We have sade new ribs and are putting them in se that further experiments oun be made with the maenine before it is taken out to make reem for the Wo. 4.
G. H. Curtias.

To Dr. A. 0. Bell, Badeck, ㅍ.8.
 June Bug as it now appearis: As we wired you last night, John and I both rlew it with the tail entirely removed. The print shows the way we fastened the rudder.

The objeet of this experiment was to gain knowiedge for the Fo. 4. We now believe that with larger front aurface placed further forward the tail is entirely unnecessary; more apeed is obtained and the tuxn seoms to be easior although we amnot quite account for this. Per haps the vertical aurface of the struts on the tail were onough to retard the turning aetion.

You have probably seen the photea and description of the wrightst. They de not seem to have anything atarting, but I cannot asy as much about Mr. Heririag; I believe he ons pleys cyrescope, and I think there are great posaibilities in this line, I see ne other solution of autematie atability. G. H. ©urtiss.

To Atrg. A. 0. BeII, Raddeok, H .8.

耳ampondmprit. Y, Y, Aus. 30, 2908:- You ask me in your 2etter why we thought of the *gizver-Darti as a name for aerodreme Yo.4. Well the murfaces are ailvored on one aide, that auggested the miliver", and the word mart" will explain itaelf. Alse the combination of the twe werde sounded rather attraetive to me. You didn't eritielse but we understeed 1 mr . Bell's tolegram to mean that the name was quite agreeeble to you all.

She cortainly is a beauty. At present the four wing are assembled and all the wiring done. The truck with three wheele attached it all ready to seoure in plaee tomorrow. We think that we ought to use a double-decked front control. It gives greater seope for riglaity, and alse has double the surface for probably the same head reaistance.

Another point is, that the front contrel ought to be powarfuk onough to corrinot, the machine under any condition whether almply gilding at a reduced apeed, or under full power frem the moter. When we get riying in hoavier winds, we may want to foxee the machine to deproas or elovate, and that might require quite a turning foree.

We have been having quite interaating niights with the eld June Bug the lant fow days. We were anxious to try hex without a tail se first we reneved the top surface of the deuthe cocked tail and upen trying a filght no change in stability manifested itself.

Wo then renoved the bettem surface (both renoved new) and tried a flight under "bare poles" as 14 were. The differenee in atability was very mariked. The machine would answer

 372.

and yet produce mere pukh.
Here is a comparisen of the two propeliers. A is the one we have always used in the Jane Hug, and B is the new one.

> A ilameter $52 / 2$ feets piteh 4.2 reet. S ifameter 6

Pu12

$$
\begin{aligned}
& \text { revolutions } \\
& \text { per minute }
\end{aligned}
$$

Hices per how
(theoretieal)

A

$$
\begin{aligned}
& 1266 \\
& 1266
\end{aligned}
$$

65

245
1104 1062 50.2
49.0

These tests were made with the ongine in a aling in A Large elosed reem. Readinge talgen one right after another. It seame to whow that what we want is greater dianoter and maller piteh.

Please ask 1tr. Bel2 if we are to onter for the selen" tifie Amerioan Prighy gane on Septem ber 7. We may not have the new engine ready, but yet there is a ohanee.
J.A.D. MoCurdy.

WORK OT BKIME BHRTBAGH LABORATORY by Wh. F. Bedwin, Superintendent.

Have received fren Montreal 150 yards of nainsook wich is available for mork at any time. We have alse reoeived from Hemmondsport a upply of aprocket wheols and chains to be used with the double propellera on Aerodromes 5 and 6.

Tatrahadral Aeredrones 10. 5.

We have made two models of the He. 5 sarodrome for atudy purposes, one a hall sised, and the othor a quarter aised model. These are of hellow type conatrueted like Kite D. We have also made anether model of full construction as in the Gygnet (or $14 i t e$ A) for conyarison purposes. The half aized modela have 32 eells on the ridgempale, and are 8 cells high. We are now at work making aeme changes in the beading.

Fe have finished the asaembling of sectiona, 2 and 3 of aerodrome He. 5, and they have been lashed together. Rach section 1s lightly beaded on the outer odgea alone, and the heavy beading will not be put on until the whole structure hat been assembled. We are now at work putting together sections 7,8,9 etc. (See 111ustration shoving the plan of sectional construetion used in aerodrame Fo.5).

Totrahedral Aerodrene No. 6.

A new outrigger-truss and new floats have been made for the Dhonnas Beag. Photegraphs are appended showing the old and ne申 In corpariaen. Your sets of iron hydroplanes have been made for attechment to the Dhonnas Beag which are show in appended photograph.

Wo are getting a set of double propellers, rotating in opposite directions, ready to put on the Dhonnas Beag.

The glebular comnection doviees to be used in the tetrahodral frauework to be plaeed on the Dhonnas Beag are prom gressing rapidly now. We have ordered lish- haped sticks for the cells, and expect them here whortly.

Datos of Breserinentig.

Aug. 19, 1908:- Experimenta with Ci tes A and D and the Pilet Kite; also experiments with the Dhonnas Beag towed in the harbor to aacertain the atrain oi the toving-line at various speeds.

Aus. 20, 1903:- Bxperinents with KC tes A and $D_{\text {, }}$ the Vietor inte, and the White 50 entimeter celled kite; also experiments with the phonnas Boag with weight of engine high up trying atability.

Aug. 22. 2908:- Juperimente with the Prostmaing KCite; 34 obe servetions, 4 of wind, 40 of eltitude, and 40 of puli. Roperimenta in the afternoon with Kites A and D with a bag of sand attached to Kite D to rakse it of the sase weight as the other.

Aug. 22, 1903:- Kite flying all day $\quad 11$ th Kites A,C, and D. IV6 observaicions. Wind, 56, altitude, 560, pul2 560 observation

Ang. 25, 1908:- Bxperiments with the bhonnaa Beag with ongine on anc propended by her om propeller.

Aug. 26, 1908:-Ticperiments with the Dhonnam Beag with ongine on and propolid by her oum propeller.
Aug. 29. 2908:- Rxperivents with the Dhonnas Beag with engine on and propelled with her oum propeller. Attained speed of 15 miles an hour. © B.

PLANS POR AMRODHOME NO. 5 by A. G. Bell.

In considering the whole subject of tetrahedral oonstruetion there are two peints that constantly recur as unique and advantageous.

1. That we posaess the ability to build largo structures of indefinite size ofthout inoreasing the ratio of weight to aurface.
2. That large aggregations of winged cella, without any horizontal surfaces at all. oxhibit marked stability in the air; the structures containing the largest numbere of cella seoning to be the most atable.

Wo one, I thirk, whe has seen a large tetrahedral struc ure flown as a kite in a fully supporting brease can help feeling wat a great thing it would be if such a stable atructure could be made the basis for an aerodrome, and propelled through the air by its own metive power.

The mement we begin to propare for practical experiments looking towards this end certain disadvantageous conditiens present themselves.

The wing cells are markedly inforior in supporting pewer te the sane surfaces arrangod horizontally, so that a structure desigaed to sufpert a man and an ongire in the air would have to be built of rauch lurger size than in aerodromea of the June Bug class. This diffioulty however is aasily overcome on aecount of the ablility to increase the dimonaions of the atructure without increasing the ratio of weight to aurface. There is not therefore the ame objection to a large atructure as in the aase of one in wich the weight would ine craase as the cube of the dimensions, whle the surfaces in crease only as the aquares.

If it is desirable to support a man and an engine in the air in a tetrahedral structure to be plewn as a kite, it can cartainly be conv by incraasing the size of the structure to a sufficient extent. But here fresh difficulties appear from the aerodrame point of viaw in the form of increased head resiatance due to the increase of size, demanding apparontly an ongine of greater power than in the June Bug class of aerodreme. But greater power involves greater weight in the ongine; and greater weight in the engine involves a still largerstructure to support it ete. ete. ete., so that we really do not know how far it may be practicable to propel auch a structure by the engines we possess. Of course the proper way to ascertain this is in experiment.

What we do know from our former experiments is this, that we can eertainly build a tetrahedral structure that will suppert a man and an engine in the air when flem as a kite. We have already supported a man; and are entitled to oenclude that without any change in the arrangement of the cells, a atill larger atrueture than the Cygnet would alno support an engine. It is not necessary for support that the engine should be in operation at all: We can certainly suatain it through the action of and.

We have then the opportunity of ascertaining just what an angine and propeller will de with auch a structure without any danger of the atructure caraing down through the fallure of the ongine to give sufficiont power for self supe port.

Bhould the engine happily prove aufficient for this purpese the townline will become alack. It can thon be dropm ped and the machine proceed on its way as a free flying maching

If, on the other hand, the engine power should prove insurficient the machine will not cone down but will continue flying as a kite. The engine and propeller will certainly produee some affeet wich we oan study and measure. The strain on the flying line for examale will certainly be reduced; we can observe this roduction of pull instrvenontally, and thus be able to accumulate data from which to calculate the ganount of power required for self aupport; and the general-practieability of a tetrahedral aerodrome of this kind wifh makes no use of horizental surfaces. Through the presence of a man in the structure, we can also obtain data ooncerning the angle of incidence of the supperting aurfaces to the wind, a natter of which we are ignorant at the presont time.

In aerodreases of the June Bug class, if the ongine power is insufficiont, the aerodrone will not fly at all; and it ia only when sufficient power has been obtainod for aupport that experimenta can be tade in the air. There is no half way between these conditions, but in a kite acrodrone we have intermediate cenditions all the way fro the kite without aelf propulaive power at all up to the free flying machine without a. restraining rope. I look upon the kite as a Plying machine at ancher; and the flying machine as a free kite; and between these two conditions we have a vast field for exploration with engines and propellers operating under the actual conditions of flight, the whole being aupported in the air by the wind
whether the engine should prove aelf supperting or not.

Asradrome No. 5

The atternyts to produce a tetrahedral aerodroze at Beinn Bhreagh were comseneed last year, and were earried to the point of raising a man inte the air in the kite fygnet. (See photographs of pliza of the Cygnet appended to th1s artiole).

The stability exhibited by the Cygnet mon carrying Lisut. Selfridge was in every why satiafactory, but, the experinent iasted for so ahort a time that the instrunental data eecured were quite inadequate to afford a safe basis for oaleulation.

The mode of deacozt of the Cygnet tee was in every way satiaftetory. It canc dorm e gently that L out. Belfridge wes unaware of the fact thet he was desoending until the structure sotually reached the weter. This indeed, was the cause of the aubaequent disaster. The initiative in the matter of letting go the towing-line had been left to Lieut. selfridge. It had been axranged that when he was ready te come dovm, he should muke a signal to the steazer Blue Till. The ateaner was then to reduce apeod, and the mon on the glue Hill were to be prepared to let the towing-line gradual2y alif frua the cleat as the kite neared the water, and at the moment of actual oontact with the water the line was to be let ge at beth onds, Lent. Eelfriage releasing it from the kite and the men at the other and reloading it frem the Blue Hill.

An unfortunate oombination of oireumstances provented the rolease of the toulng-line at elther ond, wile the steamer blue Hill did net reduee ite apeed. The anoke of the Blue Hill se obseured the view of the observers on the gteaner that they as well as Hiout. Solfridge were unaware that the kite was coming cown until it was corm. The towing-line at the Blue Hill ond of the line was lashed to a dynanometer attached to the oleat in such a manner that the line oould not be released at a menents notiee. If I remember rightly a man had been stationed there with an axe to out the line in the event of an emergonoy, but the observers were se little prepared for the descont of the xite that even this was not done unt1l tee late. As Robert Burns observes:-

> The best laid plans of miee - and mon gang aft agieo.".

No aignal having been made, the Blue Hill did not atop or reduce speed; the attechrint of the dynamometer to the aleat prevented the gradual release of the townline when it was realized that the kite was coning down; and the umpre paredness of the man with the axe prevented the sudden rolease of the line by eutting until teo Late.

At the other ond of the line Lieut, Solfridge being se far in the interior of the kite that he could not see the wate or on aceount of the silk surfaces below him, and being quite unaware frem aensation alone that the kite was dropping on eccount of the gentio deseent, failed to make any algnal to the Biue Hini, or to ohange his oenter of gravity to eause the kite to go up again (as he had done at the begining of
the experiment, wen there was danger of the kite touching the water). He was so little propared for the descent that he allowed the kite te come right down on the water without releaging his end of the townine.

All these circumstances combined contributed to the sudden deatruction of the kite. It was tewed at full apeed through the water by the stewner Hue H (hn; and as, of course, the atructure was not designed to stand swah a strain, it natureily broke in pieces.

Se far as the experionce in the air was ooncerned the behavior of the structure wes most encouraging and atiafactoory; and it ia only to be regreted that ve did not have sufficient time before the final dianster to socumalate instrum mental data that rould puide us in subsequent experiments.

We canno: therefore stop our experinents in this diraction with the construction of the cypnet; but rust ge on and build another machine on the sanc general model large ow nough to support both a nan and an engine in the air whon towed by a yteariboet againgt a cood rind, and then accumulate suffieient data concerning the conditiona of flicht to yield reasonably reliable averages wifch may be made the basis of ealculation.

While the ratio of weitht to gurface is substantially the sane in a large tetruhedral structure, as in a amaller one on the seme model, it y no rosana nocessarily follews that the aurfaces are all equelly efficient. In the large atructure of trull tetrahedral conatruction the interior celle are much more
shielded by those in front of them, thun in the ease of the senaller model. Indeed it was a eroat surprise to find that the mass of elesely packed celle known as the "Prostming" would 52 y at all; and it was a still greater surprise to find that it would augport a man hanging on to the flying ine. The still larger aggragation of eells employed in the oygnet flew with auch increased liftingmpower as to sugpert mon man easily in the air in the nidst of the atruoture. In fact we have found that each inerease in aizo han givon us greater liftingopower; so that it is obvious that ahatover shiclding actionis axcerted upen the interior colls, the adavantag of the combination as a whole have outweighed the disadrantagas, at least ac far an lifting-powar is concerned. It is also obvious that the limit of size, if there ia a limit, has not yet beon reached, and we can oonilidentiy inoraase the dimensiens of a structure like the Gygnet with reasonable prespset of getting it te fiy when tewed by a steumer against the wind. Onc of the reasons that led to the adoption of the full form of construction in the cygnet arose from s feeling that the interior oells, even though they right not be as offielent for support as the axterior cella, gave greater atreng to the strueture as a whole. The hollew type of conatruction aeamed to me to laek atrength in the very place where it should be atrongeat - the middle.

I was therefore much surprised when lir. P. W. Boldwin stated that, fram an engineers point of view, the interior cella were of little consequence to the atrength of the eovir bination; and that the outer part of the structure was of se
much nore consequance that the wole of the interiov could be acaoped out without injuring the atrongth of the eortbin ation as a whale by taving the matorial frem the inslde, and placing it upon the outaide in the form of atrouger beading, or atrengthening matorial. He pointed out the faet, very obm viou: when atated. that a piye may be very atrong indeed withe out any interior matorial at aly.

In atterapting to build a iarge wtruoture of the cygnet roria, it has becoce obvieus that the interior oella ean if coairod, be onitted without dangor of dininiahing the strongth of the atrueture. 在e necessity axiats for che retontion of theae oolla wheas it ean bo ahovan himt shoir preacnoe materially asassta in the suppart of the kite.

Berore aeciding upon the setual type of atructure to be adopted in the now machine, it issas thought adviambie te teat the erfiaiency of interior calla by oonstrueting kites of beth frus and hollow conatrueston of aucriciont alae te develop the point.
guch icites were rude in Humsiondsyort, but there were vory Pew eoeasions upon wioh they could bo tried, and the observations mate with thon were inndequate in nurber and roliability, to yima positive remults. Upon the princlpie therefore of adopsing the know and proved form of eonatruete ion in the large etrueture, it was aecided that the full oane struction weuld be waed in the now warodrone unicss reliable dute could be obtainod st Beinn Bhreagh indicating that the hollew type of onnstruction would be equally efficiont mer support.

Kites $A_{8} B_{0}{ }^{2}$ \& D were therefore made at Heinn Bhreagh, and we were fortunately favered with a few days when the wind oonditions were expeptionaliy goed. A large number of come parative observations have been made of these kitea in the air Slown soparately and tegether. The observations have bean se numerous as to yield averages that may fairly be considered an reliable.

As the general resunt of these observations it was found that the full type of oonstruetion exemplified by kite A possessed no peints of axperiority over the hollow type exemplified by $D_{\text {, }}$ with the deubtrus exeeption of a sort of "water-leggea" atability due probably te the presence of inefficiont cella. It was certainiy demonstrated that Ci te A mas a heavtimplying kite than Kite D, and required a greater wind to suppert it. The analler aggregate of cella onpleyed In the hollev rite D preved quite as efficient for support as the larger aggregate of cells maseed in Kite A.

Kite D tee pessessed many peints of advantage over A frem a structural point of view, eapecially then it was proo pesed to adopt it in a structure of the aise we are building. One great point lies in the abllity to build the large atrueture in seetions of amsil dianeter se that every part of the structure ean be easily reached beth during the proeess of censtruetion and the process of repair.

The materiala for the new aeredrame are belng rapidyy aasembled. Figa. 1 a 2 will give a general idea of the nature of the strueture. It will eentain 64 cells in the tep layer.

49 cells at the bettem, and will be 26 eells high. Thus the neredrame will be 16 meters fron alde to side on the top, 12 metera from aide to aide on the bottem, 4 meters high (measured obliquely), and four meters deap from fore to aft at the bottom. This of course gives the dimensions oniy of the main part of the structure and dees not inelude the protrualing beak for the auppert of the frent centrel. It is not propesed to use any tail, as the rear cella of the structure are belleved to aet as a tail. The exaet poaition and form of the vertieal rudders, or adjustable wing tipa, if suoh are considered neeessary, have net yet been deeided upon.

The collular part of the atructure is being built in 16 sections, which are illustrated in Fig.3. The 26 th section will contain the body with ita protruaing beak, details of mich will be furnished later. The other seetions are all triangular in eresemection (1 meter on the side), and contain a hollow space in the center forning in oresseaection an equilateral triangle having a side of 50 contimeters. Each seetion is being beaded with very light materiat on the outaide edges only. These seetions will then be lashed tegether; and wen the whole eellular part of the atructure has been assentiod throughe beading will be added of ateuter material to give atrongth and selldity to the whele.

Seetions, 1,2, and 3 have already been completed and have been lashed tegether. The other seetions are being se rajkid ly asambled that it is probable that the whele cellular part ef strueture will be ready for the through-beading before this Bulletin is iasued. A \mathfrak{B}.

Aug. 25, 2908:- The Dhonnas Beag was triod this afternoon with Mr. Baldwin on board. It was propelled by the Curtise motor HO. 2 with aerial propeller, 140 an diameter. The propeller
 had been out down to 140 am diameter and the ends rounded and shod with brass. Dr. Cobb estimated that the boat traversed the 100 meter course with the wind in 24 seoonds; and against wind in 30 seconds. The push of the propeller was found to be 45 lbs., instead of 85 lbs, as in former experiments. Aus. 26, 1008:- Mitr. P.V. Baldwin reports concerning his exe periments with the Dhonnas Beag tomday as follows:-

Exp. 1. Tried Dhonnas Beag this afternoon (Aug. 26) first taking thruat of propeller. How carbureter was fitted and ongine ran nicely giving thrust of about 85 lbw . On firat trial beat apeeded up quickly, and just as she had attained about her full speed the starboard out-rigger fleat tore itselp 20000 from the outrigger. This threw the beat around quickly to port. I shut off inmediately, and by meeting her with the helin and leaning well out kept the beat frem upaetting.

A quick turn has a atrong tendoney to depress the outside fleat due to the inertia of the ongine.

Rxp. 2. The Rleata were then more securely fastened and a second atteript made. This time at full speed the port float seaned to bury Itaelf, and fearing the consequences I had to shut off again before the 100 meter oourse had been eompleted.
Rxp. 3. Beth Rleats were raised a 11 tile at the ber to secure them against diving, and on the third trial we got the time up and dow over the 100 m eourse. On the way down the harber the boat was net quite under full headway and took $203 / 5$ seconds. Coming back she was well undor way, and opened out full with apary advanced and covered the 200 meters in

28 aeconds. There was practically ne wind at the time, but what there was was againgt her going dem the harber and with her coming back. F.F.B.

Aug. 29, 1903:- Mr. Wh. F. Bedvin makes the following report concerning Baldwin's experiments with the Dhonnas Beag tomayt-
llap. 2. This merning (Aug. 29) in going down the harber the mhonnas Beag made 100 meters in 17.5 seconds engine worked fine.

Exp. 2. Going down harber made 100 meters in 22 seconds. Coming back made 100 meters in 27 seconds; engine not working well.

Mrp. 3. In Plat calm the Dhonnas Beag made 100 metera in 15 aeconds going down the harbor and made the same speed ooming back (100 m in 15 seeonds).

Yoxp. 4. This afternoen (Aug. 29) the Dhonnas Beag going dow harber made 100 meters in 18 $4 / 5$ seconds, ongine not working well.

ㅍxp. 5. Down harber 100 meters in 20 seconds engine not working well.

Exp. 6. Down harber 100 meters in 15 seconds; up harber 100 meters in 16 seconds; pretty geod breeze.

Incp. 7. Down harbor 100 meters in 14 seconds up harber 100 meters in 17 seconds, pretty goed breese. Wh. Y.B.

Barly in the afternoon before the 4 th experiment was made the Gavldrie eane inte Beinn Bhreagh Harber with a nurbes of viaitors to aee what we were doing. On board were Dr. and Mrs. Thayer, of Baltimore, Md., Dr. Cobb of Waahington, D.C., yta. A. G. Bell, Hra. Y. W. Baldivin, Misa Cadel, Miss Gertrude Grosvener, Mr. Byrnes, and Capt. MeIver. Other witnesses of the experiment not on beard wers Mr. Angus MeInnis, itr. John Mee Dernid, and the Laboratory staff exployed upon the experiment. The Gawlerie remained in the harber. while experiments 4 and 5 were being made, and then went away leaving as witnesses of

Changes of Apparatue

1. The outrigger-fioats used in experinents Aug. 29, and in the earilior triala were 108 an long, 20.5 wide, and 21 dsep. Bech weighed $2 \mathrm{~L} / 2 \mathrm{lbs} .$, and had an estimated maximun aisplaement of about 30 2bs. It was thought that the resistance to upsetting could be improved, without detriment to apeed, by lengthening the ileate of thout materially increasing their width or depth.

Wev floata were therefore made, which were 183 on long, 13 wide, and 20 derp. Tach weighs 6 lbs., and has a maximum diaplacoment estimeted at about 64 1bs. Both the new and the old pairs of floats are shown in a photograph in thia Bulletin.
2. The upsetting tendeney has been favered by the high position of the center of gravity, resulting from the necessity of plaeing the engine at a considerable elevation above the boat hull in order to allow the propeller to clear the hull, the propeller being driven directly frem the engine-shaft

It is hoped to diminish this tendency by lowering the position of the ongine and using an indirect drive. The ongine will be plaeed as near the hull as practicable and will work the propeller indirectly by a chain and aprocket wheel. The ohain and aprecket wheels to be used arrived from Hamendaport Aug. 27.
3. In the eariler experiments with the Dhomnas Beag the outrigger-trues was pleced in front of the onginembed, and itr. Baldwin used it as a eeat.

Thinking, hewever, that the weak hull might be subjected to twisting strains by awinging metions of the elevated engine,
he has recently placed the truss alrectly boneath the ongine, and now uses tho deek of the boat as a soat where it has been etrongthened by a board plaeed aeress it, a little in front of the onginombed. This ia also advantageoua by bringing his ow conter of gravity lewar down than before.
4. In the experiments Aug. 26 and in the eariler trials the outrigger-truas used terminated at either ond in a point. or narrow nese, thich rested upon one of tha fleats at sbout its thiekest part. The rioat had soas liberty of rocking upon the ond of the truse as an axia. The longar flosts doveloped a tondoncy to dive (Aug.26), and one of them tore loose from its attachzent. The truss alse did not seem to possess aurricient rigidity against twisting motions, although it had beon atrengthened by a zig-sag beading of metallic fubing (alivinum)

Te remedy these defects a new outriggor-truas has been made, not terminating in a narrow nese, but of equal dimensions from one ond to the other. Like the old truss it is triangutur in erosemection. It is much guparior in rigidity to the old truas employed and permits of a more rigid oonnection with the outrigger-12eats. It was used in the axperinents (Aug.29).
5. The Dhennas Beag, won traveling upon a straight course, exhibits a constant tendency to depress its right or starbeard fleat, a result attributed to the torque produeed by the left-handed rotation of the propeller.

Mr. Baldwin has hitherte noutralized this tendeney by leaning over to the port side; but it is now propesed to do ao way with torque altegether by explaying twe propellera rotating in oppesite directions upon the same axia. Double propellers

