

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences
23 WEST MAIN STREET WEBSTSR, N.Y. 14580

CIHM/ICMH Microfiche Series.

回

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy availabie for filming. Feetures of this copy which may be bibiogrephiceily unique. which mey alter any of the images in the reproduction, or which may significently chenge the usual method of filming, are checked below.

Coioured covers/

Couvarture de couleur
Covers demeged/
Couverture endommegée
Covers restored a.id/or leminated/
Couverture resteurde et/ou peilicuide
Cover titie missing/
Le titre de couverture manque
Coloured meps/
Cartes géogrephlques en couieur
Coioured ink (i.e. other than blue or biack)/
Encre de couleur li.e. eutre que bieue ou noire)
Coloured pietes and/or lliustretions/
Planches et/ou iliustretions en couieur
Bound with other meterial/
Reiid evec d'eutres documents
Tight binding mey ceuse shentows or distortion along interlor mergin/
La reliure serrée peut causer de i'ombre ou de la distorsion le long de le marge intérieure

Biank leaves added during restoretion may appeer within the text. Whenever possible, these heve been omitted from filming/
ii se peut que certaines peges bienches ejoutdes lors d'une restauretion eppereissent dans ie texte, mels, iorsque ceia éteit possibie, ces pages n'ont pes ótéf filmées.

Additlonai comments:/
Commenteires suppiómentaires:

L'Instltut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qul sont peut-dtre uniques du point de vue blblogrephique, qui peuvent modifier une Imege reproduite, ou qui peuvent exiger une modificetion dans la móthode normale de filmage sont indiqués ci-dessous.

Coloured peges/
Peges de couieur
Peges damaged/
Peges endommegées
Peges restored and/or laminated/
Peges restaurdes et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Peges detached/
Pages détachées
Showthrough/
TransparenceQueilty of print varies/
Quelité inśgeie de l'impression
inciudes suppiementary material/
Comprend du metériel suppiémentaire
Oniy edition availabie/
Seuie édition disponible
Peges whoily or partieily obscured by errata slips. tissues, atc., have been refilmed to ensure the best possible imege/ Les pages totalement ou partiellement obscurcies par un feuiliet d'errata, une pelure. etc., ont ótéf flimées à nouveau de façon à obtenir ie melileure Image possible.

This item is filmed et the reduction retio checked beiow/
Ce document est fiimé eu teux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Bibliothèque nationsie du Québec

The images appearing here are the best quailty possibie considering the condition and ieglbility of the original copy and in keeping with the filiming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or iliustrated impression, or the back cover when approprlate. All other original copies are filmed beginning on the first page with a printed or iliustrate " impression, and ending on the last page with a printed or iliustrated impression.

The last recorded frame on each microfiche shail contain the symbol \longrightarrow (meaning "CONTINUED"), or the symboi ∇ (meaning "END"). whichever applies.

Maps, piates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely inciuded In one exposure are filmed beginning In the upper ieft hand corner, ieft to right and top to bottom, as many frames as required. The foilowing dlagrams illustrate the method:

L'exemplaire filmé fut reprodult grâce al la genérosité de:

Bibliothèque netlonaie du Quêbec

Les images suivantes ont 6́tó reproduites avec ie pius grand soin, compte tenu de ia condition et de ia netteté de l'exempiaire filmb, ot en conformitt avec ies conditions du contret de filmage.

Les exempiaires originaux dont ia couverture en papler est imprimée sont filimés on commençent par ie premier plat ot en terminant soit par ia dernìre page qui comporte une empreinte d'impression ou d'ilustration, soit par ie second piat, seion ie cas. Tous ies autres exempiaires originaux sont filmés en commençant par ia premid̈re page qui comporte une empreinte d'impression ou d'iliustratlon et en terminent par ia dernid̈re page qui comporte une telie empreinte.

Un des symboles suivants apparaitra sur ia dernlère image de chaque microfiche, seion ie cas: io symboie \rightarrow signifie "A SUIVRE", Ie symboie ∇ signifie "FIN".

Les cartes, pianches, tabieaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque ie document est trop grand pour etre reproduit en un seui cliché, il est filmé a pertir da l'angie supérieur gauche, de gauche à droite. ot de haut on bas, en prenant io nombre d'Images nécessalre. Les dlagrammes suivants iliustrent la méthode.

$$
202393
$$

ALGEBRA

APPLIED TO

$\Longrightarrow P R=$
Alyebraic Solutions of fifeometrical Hroblems,

FOR
BEGINNERS:

BY REV. L. P. PAQUIN, O.M.I.,

COPREFACE.OO

The present little work is intended to have a twofold objectto furnish the young Student with useful exercises in applying Algebra to Geometry, and to put within his reach an easy and ready means of obtaining the Solution of the most Practical Problems of Elementary Geometry, especially of those respecting the construction, 'measurement and division of plane figures. A good many of the Formulas presented in the following pages, may be used advantageously in ordinary cases of Land Surveying, as the laying out, the dividing of lands, and the calculating of their content.

The Author having in mind not to present an extensive and expensive book on the subject, has omitted to insert the process of operations which brought him to the General Formulas contained therein. His doing so affords moreover the Student the advantage of verifying by himself the correctness of these Formulas, and therefore of exercising himself in Algebraic Investigations.

No Geometrical Figures are drawn; but the Problems and their Solutions are given with sufficient clearness to be plainly understood by the Student, who may very easily construct the figure corresponding to the given Problems, according to the special cases.

On account of the practical nature of this little book on the one hand, and its cheapness on the other, the Author is in hopes that it will be received and found convenient in Institutions where Mathemathical Sciences are taught.
L.P.P.
 INTRODUCTION.

I.

When the relative positions of points connected by straight lines are to be indicated, then the connecting lines are, for the sake of convenience, represented by two letters, $A D$, $B C$. . ; but when the relations of the magnitude of lines are only under consideration, then these lines are more conveniently represented by a single letter, or an algebraic symLol, a, b, с . .

Let a and b represent two given lines, then
$a+b$ expresses their sum,
$a-b$ expresses their difference,
$a^{2} \quad$ expresses a square constructed on the line a,
$(a+b)^{2}$ expresses a square constructed on the sum of these two lines,
$a b$ expresses a rectangle whose a is the base, and b the height, or vice versá,
$\frac{a b}{2}$ expresses a triangle, whose a is the base, and b the height.
$\frac{p(m+n)}{2}$ expresses a trapezoid, whose p is the height; \dot{m} and n the two bases.

II.

Any linear problem may be solved either numerically or graphically; and in both cases an algebraic expression of the
quantity sought furnishes the student with an easy and ready means of obtaining the solution, inasmuch as it indicates either the arithmetical operations, or the graphical construction to bo performed.

When a problem is to be solved numerically, any exprescics, in which the quantity sought is put in terms of known quantitios, will suit; should it be solved graphically, then the expression must be reduced to one of the five following formulas:-
(1) $x=a+b-c$.... Sum and difference of lines.
(2) $x=\frac{b c}{a}$............... Fourth proportional.
(3) $x=\sqrt{ } a b$............ Mean proportional.
(4) $x=\sqrt{a^{2}+b^{2}} \ldots \ldots$ Hypotenuse.
(\$) $x=\sqrt{a^{2}-b^{2}} \ldots \ldots$ Side of a right anglo.

III.

The first formula is evident by itself.
When $x=\frac{b c}{a}$, then it is a fourth proportional to a, b, c, bacause if both members of the equation are multiplied by a, we obtain

$$
\begin{aligned}
& a x=b c \\
& \text { Hence, } \\
& a: b:: c: x
\end{aligned}
$$

Hence, in general, any fraction containing two factors of the first degree in the numerator, and one in the denominator, will express a fourth proportional.

When $x=\sqrt{a b,}$ it is a mean proportional between a and b, because, if both members of the equation are raised to the second power, we obtain

$$
x^{2}=a b
$$

$$
\text { Hence, } \quad a: x:: x: b
$$

Hence, in general, any expression, being a radical of the second degree including two factors of the first degree, will represent a mean proportional.

$$
-7-
$$

When $x=\sqrt{a^{2}+b^{2}}$, an hypotenuse is to be drawn on a and b put at right angle, because, if both members of the equation are raised to the second power, we obtain

$$
x^{2}=a^{2}+b^{2}
$$

The fifth formula is proved in the same way:
N.B.-The student is supposed to know how to draw a fourth proportional to three given lines, a mean proportional between two given lines, etc.
IV.

Let it be illustrated by a few examples, that any expression may easily be reduced to one of the five preceding formulas.

Ex. 1.

$$
\begin{aligned}
\text { Let } x & =\frac{a b c}{r s} \\
\text { then } x & =\frac{a b}{r} \times \frac{c}{s} \text { by decomposing }
\end{aligned}
$$

Let the fourth proportional expressed by $\frac{a b}{r}$ be drawn and represented by y, then

$$
x=y \times \frac{c}{s}=\frac{y c}{s}(2 \text { nd formula }) .
$$

Ex. 2.

$$
\text { Let } x=\frac{a^{3}+b^{2} c+d h m}{p^{2}+q^{2}}
$$

Let an hypotenuse be drawn on p and q, and represented by y, then

$$
\begin{gathered}
x=\frac{a^{3}+b^{2} c+d h m}{y^{2}}= \\
=\frac{a^{3}}{y^{2}}+\frac{b^{2} c}{y^{2}}+\frac{d h m}{y^{2}}=\frac{a a a}{y y}+\frac{b b c}{y y}+\frac{d h m}{y y}
\end{gathered}
$$

Let each of these last three terms bo reduced as in the Er, 1, and the three lines found be represented respectively by u, v, z, then

$$
x=u+v+z \text { (1st formula) }
$$

Ex. 3.

$$
\text { Let } x=\sqrt{3 a^{2}}
$$

$$
\text { then } x=\sqrt{3 a \times a}(3 \mathrm{rd} \text { formula }) \text {. }
$$

Ex. 4. Let $x=\sqrt{\frac{3 \pi^{2}}{5}}$

$$
\text { then } x=\sqrt{a \times \frac{3 a}{5}}(3 \mathrm{rd} \text { formula })
$$

I $\dot{\text { i }}$ is ovident that in this last case, the line a should be divided into five equal parts, and a mean proportional drawn between the whole line and chree of the equal parts.
Ex. 5. Liet $x=\sqrt{\frac{\overline{a b c}}{e}}$
then $x=\sqrt{\frac{a b}{e} \times c \text { by decomposing. }}$ making $\frac{a b}{e}=y$ (by formula 2 nd).
then $x=\sqrt{y c}$ (3rd formula).
Ex. 6. Let $x=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$ Let an hypotenuse y be drawn on a and b, and substituted in the expression, then

$$
x=\sqrt{y^{2}+c^{2}+d^{2}}
$$

making $y^{2}+c^{2}=z^{2}$, in the same way, then

$$
x=\sqrt{z^{2}+d^{2}} \text { (4th formula) }
$$

ALGEBRAIC SOLUTIONS OF PROBLEMS.

Ir. the following pages, the letters N. S., put after a formula, stand for Numerical Solution; and the letters G. S. stt nd for Graphical Solution.]

PROBLEM I.

To find the side x of a square x^{2}, whose area shall be equivalent to twice that of a given square a^{2}.

$$
\begin{array}{rlrl}
x & =\sqrt{2 a^{2}} & & \text { N.S. } \\
& =\sqrt{2 a \times a} & \text { G.S. }
\end{array}
$$

PROBLEM II.

To find the side x of a square x^{2}, whose area shall be equivalent to five times that of a given square a^{2}.

$$
\begin{gathered}
x=\sqrt{5 a^{2}} \quad \text { N.S. } \\
=\sqrt{5 a \times a} \text { G.S. } \\
\text { PROBLEM III. }
\end{gathered}
$$

To find the side x of a square x^{2}, whose area shall be equivalent to on -fifth of that of a given square a^{2}.

$$
\begin{aligned}
& x=\sqrt{\frac{a^{2}}{5}} \quad \text { N.S. } \\
&=\sqrt{a \times \frac{a}{5}} \\
& \text { G.S. }
\end{aligned}
$$

PROBLEM IV,

To find the side x of a square x^{2}, whose area exceeds that of a given square a^{2}, by the three-eighths of it.

$$
\begin{aligned}
x & =\sqrt{\frac{11 a^{2}}{8}} \text { N.S. } \\
& =\sqrt{\frac{11 a}{8} \times a_{\text {G.S.S. }}}
\end{aligned}
$$

PROBLEM V.

To find the side x of a square x^{2}, whose area shall be equivalent to that of a given square a^{2} less by the two-sevenths of it.

$$
\begin{aligned}
x & =\sqrt{\frac{5 a^{2}}{7}} \quad \text { N.S. } \\
& =\sqrt{\frac{5}{7} \frac{a}{-a}} \quad \text { G.S. }
\end{aligned}
$$

PROBLEM VI.
To find the side x of a square x^{2}, whose area shall be to that of given square a^{2}, in the ratio of $m: n$.

$$
\begin{aligned}
x & =\sqrt{\frac{m a^{2}}{n}} \quad \mathrm{~N} . \mathrm{S} . \\
& =\sqrt{\frac{m a}{n} \times a} \\
& =\sqrt{y a} \cdot \text { G. S. (See Intro. IV., Ex. 5.) }
\end{aligned}
$$

PROBTEM VII.

To find the side x of a square x^{2}, equivalent to a given rectangle $a b$.

$$
x=\sqrt{a b} \quad \text { N. and G. S. }
$$

PROBLEM VIII.

To find the side x of a square x^{2}, equiralent to a given triangle $\frac{a h}{2}$

$$
\begin{aligned}
x & =\sqrt{\frac{a h}{2}} \quad \text { N.S. } \\
& =\sqrt{a \times-\frac{h}{2}} \quad \text { G.S. }
\end{aligned}
$$

PIROBLEM IX.

To find the the side x of a square x^{2}, equivalent to a given trapezoid $\frac{p(m+n)}{2}$

$$
\begin{aligned}
x & =\sqrt{\frac{-11-}{\frac{p(m+n)}{2}}} \text { N.S. } \\
& =\sqrt{p \times \frac{m+n}{2}}
\end{aligned}
$$

make $-\frac{m+n}{2}=y$ by drawing a line parallel to the bases, at equal distance from each; then

$$
\begin{aligned}
& x=\sqrt{p y} \quad \text { G.S. } \\
& \text { PROBLEM } \mathrm{X} .
\end{aligned}
$$

To find the side x of a square x^{2}, equivalent to a given regular polygon.

Let $c=$ the side of the polygon ; $a=$ the number of sides; and $r=$ the apothem; then

$$
\begin{aligned}
x & =\sqrt{\frac{a c r}{2}} \quad \text { N.S. } \\
& =\sqrt{\frac{a}{2} c \times r}
\end{aligned} \text { G.S. }
$$

N.B.-a being a given number, then $\frac{a}{2} c$ is only ono literal factor, and we have the 3rd formula.

PROBLEM XI.

To find the side x of a square x^{2}, equivalent to a given triangle $\frac{a \hbar}{2}$, rectangle $b d$, trapezoid $\frac{p(m+n)}{2}$, and regular pentagon $\frac{5 c r}{2}$

$$
x=\sqrt{\frac{a h}{2}+.0 d+p \frac{(m+n)}{2}+\frac{5 c r}{2} \mathrm{~N} . \mathrm{S}} .
$$

Transform the four expressions which are under the radical, into equivalent squares, $y^{2}, y^{\prime 2}, y^{\prime \prime 2}, y^{\prime \prime \prime 2}$, by the Problems VIT., VIII., IX., X., then

$$
x=\sqrt{y^{2}+y^{\prime 2}+y^{\prime \prime 2}+y^{\prime \prime \prime}}
$$

make $y^{2}+y^{\prime 2}=z^{2}$ (See Intro. IV., Ex. 6) then

$$
x=\sqrt{z^{2}+y^{\prime \prime 2}+y^{\prime \prime \prime 2}}
$$

making $z^{2}+y^{\prime 2}=z^{\prime 2}$, then

$$
x=\sqrt{z^{\prime 2}+y^{\prime \prime \prime 2}} \quad \text { G.S. }
$$

PROBLEM XII.

To find the side x of a' square x^{2}, equivalent to any irregular polygon.

Divide the polygon into triangles by drawing diagonals; let these triangular parts be calculated separately, and represented respectively by $P, Q, R, S \ldots \ldots .$. ; then

$$
\begin{aligned}
x & =\sqrt{P+Q+R+S . . .} \quad \text { N.S. } \\
& =\sqrt{y^{2}+y^{\prime 2}+y^{\prime \prime 2}+y^{\prime \prime \prime 2}} \\
& =\sqrt{z^{2}+y^{\prime \prime}}+y^{\prime \prime \prime 2} \\
& =\sqrt{z^{\prime 2}+y^{\prime \prime \prime 2}}
\end{aligned} \quad \begin{aligned}
& \text { G. S. }
\end{aligned}
$$

PROBLEM XIII.
To find the side x of a square x^{2}, equivalent to a given circle.

$$
\begin{array}{rlrl}
x & =\sqrt{\pi R^{2}} & & \text { N.S. } \\
& =\sqrt{3 R \times R} & \text { G.S. }
\end{array}
$$

N.B.-If a very exact graphical construction is required, the line R should be taken 3.14 times, instead of 3 times.

PROBLEM XIV.

To find the side x of a square x^{2}, which is a mean proportional between any two given polygons P and R.

$$
x=\sqrt[4]{P \times R}
$$

transforming the two polygons P and R into equivalent squares, y^{2}, z^{2} then

$$
x=\sqrt[4]{\sqrt{y^{2}, \times z^{2}}}=\sqrt{y z} \quad \text { N. and G.S. }
$$

PROBLEM XV.
To construct a triangle $\frac{c x}{2}$ on a given base c, equivalent to a given square a^{2}.

$$
\begin{aligned}
\text { Altitude } x & =\frac{2 a^{2}}{c} & & \text { N.S. } \\
& =\frac{2 a \times a}{c} & & \text { G.S. }
\end{aligned}
$$

PROBLEM XVI.

To construct a rectangle $c x$ on a given base c, equivalent to a given square a^{2}.

$$
\text { Altitude } \begin{aligned}
x & =\frac{a^{2}}{c} & & \text { N.S. } \\
& =\frac{a \times a}{c} & & \text { G.S. }
\end{aligned}
$$

PROBLEM XVII.

To construct a trapezoid $\frac{p(m+n)}{2}$ equivalent to a given square a^{2}, having given the two bases, m and n.

$$
\text { Altitude } \begin{aligned}
p & =\frac{a^{2}}{\frac{1}{2}(m+n)} \quad \text { N.S. } \\
& =\frac{a^{2}}{y} \quad \text { (See Problem IX.) } \\
& =\frac{a \times a}{y} \quad \text { G.S. }
\end{aligned}
$$

PROBLEM XVIII.

To construct a trapezoid $\frac{p(m+n)}{2}$ equivalent to a given square a^{2}, having given one of the bases m, and the altitude p. the other base $n=\frac{a^{2}-\frac{1}{2} p m}{\frac{1}{2}} \frac{1}{p} \quad$ N.S. make $\frac{1}{2} p m=y^{2}$ by Problem VIII., then

$$
n=\frac{a^{2}-y^{2}}{\frac{1}{2} p}
$$

make $a^{2}-y^{2}=z^{2}$ by the 5 th formula, then

$$
n=\frac{z^{2}}{\frac{1}{2} p}=\frac{z \times z}{\frac{1}{2} p} \quad \text { G.S. }
$$

PROBLEM XIX.
To construct a regular polygon $\frac{b c r}{2}$, equivalent to a given square a^{2}, having given the side c, and the number of sides b.

$$
\text { Apothom } r=\frac{2 a^{2}}{b c} \quad \text { N.S. }
$$

$$
\begin{aligned}
&-14 \\
&= \frac{2 a \times a}{b} \frac{\text { G.S. }}{} \quad \text { S. }
\end{aligned}
$$

N.B. -The factor b being a number, then $b c$ is only ono literal factor, viz., the line c taken b times. The radius of the circumscribed circle is evidently

$$
R=\sqrt{r^{2}+\frac{c^{2}}{4}} \quad \text { N. and G.S. }
$$

PROBLEM XX.
To eonstruct a circle equivalent to a given square a^{*}.

$$
\begin{aligned}
\text { Radius }= & \sqrt{\frac{a^{2}}{\pi}} & \text { N.S. } \\
= & \sqrt{\frac{a}{3} \times a} & \text { G.S. }\left\{\begin{array}{l}
\text { (See N. B. } \\
\text { Prob. XIII. }
\end{array}\right. \\
& \text { PROBLEM XXI. } &
\end{aligned}
$$

To transform a triangle $\frac{a h}{2}$ into a rectangle $b x$, havinge given the base b.

$$
\begin{aligned}
\text { Altitude } x= & \frac{a \hbar}{2 b} \quad \text { N. ard G. S. } \\
& \text { PROBLEM XXII. }
\end{aligned}
$$

To transform an irregular polygon into a triangle $\frac{a h}{\underline{2}}$ having given the base a.

Let $P, Q, R, S, \ldots .$. be the triangular parts of the polygon, and x^{2} a square equivalent to their sum ; find x by the Pro! lem XII., and then

$$
\begin{aligned}
\text { Altitude } h & =\frac{2}{a} x^{2} & & \text { N.S. } \\
& =\frac{2 x \times x}{a} & & \text { G.S. }
\end{aligned}
$$

By a similar process, any polygon or any number of different polygons may be easily and readily transformed into an equivalent one of any kind.

PROBLEM XXII!.

To construct a square x^{2}, having given the excess a, of the diagonal over the side x.

$$
x=a+\sqrt{2 a^{2}} \quad \text { N.S. }
$$

$=a+\sqrt{2 a \times a}$ making $\sqrt{\overline{2 a} \times a}=y$ by the 3rd formula, then $x=a+y \quad$ G.S.

PROBLEM XXIV.
To construct a rectangle $x y$, having given the perimeter $b=$ $2 x+2 y$, and the surface $S=x y$.

Let $a=$ the side of an equivalent square, then

$$
\text { tho base } x=\frac{b}{4}+\sqrt{\frac{b^{2}}{16}-a^{2}} \quad \text { N.S. }
$$

$$
\begin{aligned}
& \text { making } \frac{b^{2}}{16}-a^{2}=z^{2} \text { by the } 5 \text { th formula, then } \\
& \qquad x=\frac{b}{4}+\sqrt{z^{2}}=\frac{b}{4}+z \mathrm{G} . \mathrm{S}
\end{aligned}
$$

It is evident that the height $y=\frac{b-2 x}{2}$ PROBLEM XXV.
To construct a rectangle, having given the surface $S=x y$, and the difference of the adjacent sides $x-y=d$.

Let $a=$ the side of an equivalent square; then

$$
\begin{array}{rlrl}
\text { the base } x & =\frac{d}{2}+\sqrt{a^{2}+\frac{d^{2}}{4}} & \text { N. S. } \\
& =\frac{d}{2}+\sqrt{z^{2}} & & \left\{\begin{array}{c}
\text { (Sec Problem } \\
\text { XXIV. }
\end{array}\right. \\
& =\frac{d}{2}+z & \text { G.S. }
\end{array}
$$

PROBLEM XXVI.

To construct a parallelogram, having given the adjacent sides $4, b$, and the difference d of the two diagonals.

Let the greater diagonal $=x$

$$
\begin{aligned}
& x=\frac{d}{2}+\sqrt{a^{2}+b^{2}}-\frac{d^{2}}{4} \\
& \text { N.S. } . \\
&=\frac{d}{2}+\sqrt{y^{2}-\frac{d^{2}}{4}} \quad(\text { by formula 4) } \\
&=\frac{d}{2}+z \text { (by formula 5) G.S. }
\end{aligned}
$$

PROBLEM XXVII.

To determine a Right-Angled Triangle, having given the hy: potenuse a, and the sum of the two sides $b+c$.

$$
b=\frac{b+c}{2} \pm \sqrt{\frac{a^{2}}{2}-\frac{(b+c)^{2}}{4}}
$$

PROBLEM XXVIII.

To determine a Right-Angled Triangle, having given the base b, and the sum of the hypotenuse, and the other side $a+c$.

$$
\text { side } c=\frac{(a+c)^{2}-b^{2}}{2(a+c)}
$$

PROBLEM XXIX.

To determine a Right-Angled Triangle, having given the base b, and the difference d between the hypotenuse a and the other side c; so that $a-c=d$.

$$
c=\frac{b^{2}-d^{2}}{2 d} \quad \text { N. S. }
$$

make $b^{2}-d^{2}=y^{2} \quad($ by formula 5),

$$
\text { then } c=\frac{y^{2}}{2 d}=\frac{y \times y}{2 d} \quad \text { G.S. }
$$

and then $a=d+c$.

PROBLEM XXX.

To determine a Right-Angled Triangle, having given the hypotenuse a, and the difference d between the two other sides b and c; so that $b-c=\dot{d}$.

$$
\begin{aligned}
& c=-\frac{d}{2}+\frac{1}{2} \sqrt{2 a^{2}-d^{2}} \text { N.S. } \\
& \text { make } \frac{1}{2} \sqrt{2 a^{2}-d^{2}}=x \quad \text { (by formula } 5 \text {), } \\
& \text { then } c=x-\frac{d}{2} \\
& \text { G. S. }
\end{aligned}
$$

and then $b=c+d$

PROBLEM XXXI.

To determine a triangle, having given the base b, the perpendicular h to the base from vertical angle, and the difference d between the two other sides a and c; so that $a-c=d$.

Let $x=$ one of the segments determined on the base by the perpendicular; then

$$
x=b+\sqrt{\frac{4 h^{2} d^{2}}{b^{2}-d^{2}}+d^{2}} \quad \text { N.S. }
$$

make $b^{2}-d^{2}=y^{2} \quad$ (by formula 5),

$$
\text { then } x=b+\sqrt{\frac{4 h^{2} d^{2}}{y^{2}}}+d^{2}=b+\sqrt{\frac{4 h \times h}{y} \times \frac{d}{y} d}+d^{2}
$$

$$
\text { make } \left.\frac{4 h \times h}{y}=t ; \text { and } \frac{d \times d}{y}=s \text { (by formulà } 2\right)
$$

$$
\text { then } x=b+\sqrt{t} s+d^{2}
$$

$$
=b+\sqrt{r^{2}+d^{2}}
$$

$$
=b+v \quad \text { (by formula 4). G.S. }
$$

N.B.-In this case, because the Graphical Solution requires many transformations, the numerical solution is much preferable.

PROBLEM XXXII.

Having given the three sides a, b, c, of a triangle, to find the radius r of the inscribed circle.

$$
r=a \sqrt{\left.b^{2}-\frac{\left(a^{2}+b^{2}\right.}{4 a^{2}} c^{2}\right)^{2}} \text { N.S. }
$$

$$
a+\overline{b+c}
$$

PROBLEM XXXIII.

To determine a Right-Angled Triangle, having given the hypotenuse a, and the radius r of the inscribed circle.

Let b and c be the two other sides.

$$
\begin{aligned}
& b=r+\frac{a}{2}+\frac{1}{2} \sqrt{a^{2}-4 a r-4 r^{2}} \text { N.S. } \\
& c=r+\frac{a}{2}-\frac{1}{2} \sqrt{a^{2}-4} \overline{a r-4 r^{2}} \text { N.S. }
\end{aligned}
$$

PROBLEM XXXIV.
Having given the two equal sides a of an Isosceles triangle, and the base b, to find the radius r of the inscribed circle.

$$
r=\frac{\frac{b}{2} \sqrt{a^{2}-\frac{b^{2}}{4}}}{a \times \frac{1}{2} b} \quad \text { N. } N
$$

PROBLEM XXXV.

Let the radius of the circle circumscribed to a polygon to be represented by R; the radius of the inscribed circle to be represented by r; and the surface of the polygon to be expressed by S.-Then, having given the three sides a, b, c of a triangle, and S, to find R and r.

$$
\begin{array}{ll}
R=\frac{a b c}{4 S} \\
r=\frac{2 S}{a+b+c} \\
\text { PROBLEM XXXVI. } & \text { N.S. }
\end{array}
$$

Having given the side a of an equilateral triangle, to find h, r and S (See Problem XXXV.).

$$
\begin{aligned}
& R=\sqrt{\frac{a^{2}}{3}} \\
& r=\sqrt{\frac{a^{2}}{3}-\frac{a^{2}}{4}} \\
& S=\frac{a^{2} \sqrt{3}}{4}
\end{aligned}
$$

PROBLEM XXXVII.

Haring given the side a of a regular hexagon, find R, r and S (See Problem XXXV.).

$$
\begin{aligned}
& R=a \\
& r=\sqrt{a^{2}-\frac{a^{2}}{4}} \\
& S=\frac{3 a^{2} \sqrt{3}}{2} \\
& \text { PROBLEM XXXVIII. }
\end{aligned}
$$

Having given the side a of a square, to find! R and r (Sce XXX V.)

$$
\begin{aligned}
R & =\sqrt{\frac{2 a^{2}}{4}} & & \text { N.S. } \\
& =\sqrt{a \times \frac{2}{4}} & & \text { G.S. } \\
r & =\sqrt{\frac{a^{2}}{4}} & & \text { N.S. } \\
& =\sqrt{a \times \frac{a}{4}} & & \text { G.S. }
\end{aligned}
$$

PROBLEM XXXIX.

Having given the side a of a regular pentagon, to find R, r and S (See Problem XXXV.).

$$
\begin{aligned}
& R=\sqrt{\frac{a^{2}}{1.3816}} \\
& r=\sqrt{\frac{a^{2}}{1.3816}-\frac{a^{2}}{4}} \\
& S=\frac{5 a}{2} \sqrt{\frac{a^{2}}{1.3816}-\frac{a^{2}}{4}}
\end{aligned}
$$

PROBLEM XL.
Haring given the side a of a regular octagon, to find R, r and S (See Problem XXXV.).

$$
\begin{aligned}
R & =\sqrt{-\frac{a^{2}}{.585}} \\
r & =\sqrt{\frac{a^{2}}{.5858}-\frac{a^{2}}{4}} \\
S & =4 a \sqrt{\frac{a^{2}}{.5858}-\frac{a^{2}}{4}}
\end{aligned}
$$

PROBLEM XLI.
Having given the side a of a regular decagon, to find R, r and \boldsymbol{S} (See Problem XXXV.).

$$
\begin{aligned}
& R=\frac{a}{2}+\sqrt{a^{2}+\frac{a^{2}}{4}} \\
& r=\sqrt{R^{2}-\frac{a^{2}}{4}} \\
& S=5 a \sqrt{R^{2}-\frac{a^{2}}{4}}
\end{aligned}
$$

N.B.-In the last two formulas the value of R, when found, is to be substituted for R.

PROBLEM XLII.

Having given the side a of a regular dodecagon, to find R, r and S (See Problem XXXV.).

$$
\begin{aligned}
& R=\sqrt{\frac{4 a^{2}}{1.072}} \\
& r_{n}=\sqrt{\frac{4 a^{2}}{1.072}-\frac{a^{2}}{4}} \\
& S=6 a \sqrt{\frac{4}{a^{2}}-\frac{a^{2}}{1.072}}
\end{aligned}
$$

PROBLEM XLIII.

To express the side of the following regular "polygons in terms of the radius R of the circumscribed circle.

$$
\begin{aligned}
& \text { side of the triangle } \ldots \ldots . .=R \times 1.732 \\
& \text { side of the square }=R \times 1.414 \\
& \text { side of the pentagon } \ldots=R \times 1.176 \\
& \text { side of the hexagon..... }=R \\
& \text { side of the octagon }=R \times .7653 \\
& \text { side of the decagon..... }=R \times .618 \\
& \text { side of the dodecagon... }=R \times .5176
\end{aligned}
$$

PROBLEM XLIV.
Having given the hypotenuse a and one side b, of a richtangled triangle, to find the surface S.

$$
S=\frac{b}{2} \sqrt{a^{2}-b^{2}}
$$

PROBLEM XLV.
Having given the base b of an isosceles triangle, and the oblique side a, to find the surface.

$$
S=\frac{b}{4} \sqrt{4 a^{2}-b^{2}}
$$

PROBLEM XLVI.

Having given the three sides a, b, c, of any triangle, to find the surface.

$$
S=\sqrt{\frac{(a+b+c)}{2}} \frac{(a+b}{2}-\frac{(a+c-b)}{2} \frac{(b+c-a)}{a}
$$

make, for the sake of abbreviation, $\frac{a+b+c}{2}=7 p$

$$
\text { then } S=\sqrt{p(p-c)(p-b)(p-a)}
$$

PROBLEM XLVII.

Having given the surface S of a regular polygon inseribed in a circle, to find the surface s of a similar circumscribed polygon (See Problem XXXV.).

$$
s=\frac{S R^{2}}{r^{2}}
$$

PROBLEM XLVIII.
To express the surface of a circle in terms of the radius \boldsymbol{R}.

$$
S=\pi R^{2}
$$

PROBLEM XLIX.
Having given the difference d between the circumferences of two circies, and the ratio of the radii, so that $r: R:: m: n$, wo find the circumference and the radii.

$$
\begin{aligned}
& \text { Circ. of the greater }=\frac{m d}{m-n} \\
& \text { Circ. of the lesser }=\frac{m n d}{m^{2}-m n} \\
& \text { Rad. of the greater }=\frac{m d}{2 \pi(m-n)} \\
& \text { Rad, of the lesser }=\frac{m n d}{2 \pi m^{2}-m n}
\end{aligned}
$$

PROBLEM L.
Let the base of a triangle be $B^{\circ} C=b$, the vertical angle be A, and then the sides $A B$ and $A C$ be respectively a and c. To divide this triangle into two equivalent parts by a straight line passing through a given point D on the side $A C$. Let the distance $A D$ be $=d$. The Problem is solved as soon as another point H on the side $A B$, is found, through which the dividing line is to pass. Let the distance $A H$ be denoted by x; then

$$
\begin{aligned}
x & =\frac{c a}{2 d} & \text { N.S. } \\
& =\frac{c \times \frac{1}{2} a}{d} & \text { G.S. }
\end{aligned}
$$

PROBLEM LI.

To divide the same triangle into three equivalent parts by two lines passing through the same point D. It is evident that
two points H and H^{\prime} are to be found on the side $A B$. Let the distance $A H=x$, and the distance $A H^{\prime}=x^{\prime}$.

$$
\begin{aligned}
x & =\frac{c a}{3 d} & & \text { N.S. } \\
& =\frac{c \times \frac{1}{3} a}{d} & & \text { G.S. } \\
x^{\prime} & =\frac{2 c a}{3 d} & & \text { N.S. } \\
& =\frac{c \times \frac{2}{3} a}{d} & & \text { G.S. }
\end{aligned}
$$

PROBLEM LII.

To divide the same triangle (see Problem L.) into two equivalent parts by a line parallel $t u$ the base. It is e rident that the problem is solved Ω soon as one point D is found on one side $A C$, through which the dividing line is to pass.

Let the distance $A D=x$; then

$$
\begin{array}{rlrl}
x & =\sqrt{\frac{c^{2}}{2}} & & \text { N.S. } \\
& =\sqrt{c \times \frac{c}{2}} & \text { G.S. }
\end{array}
$$

PROBLEM LIII.

To divide the same triangle (see Problem L.) into five equivalent parts by lines parallel to the base.

Then 4 points $D, D^{\prime}, D^{\prime \prime}, D^{\prime \prime \prime}$ are to be found ca the same side $A C$.

Let $A D=x ; A \cdot D^{\prime}=x^{r} ; A D^{\prime \prime}=x^{\prime \prime} ; A \cdot D^{\prime \prime \prime}=x^{\prime \prime \prime}$.

$$
\begin{array}{ll}
\text { N.S. } & \text { G.S. } \\
x=\sqrt{\frac{a^{2}}{5}}=\sqrt{a \times \frac{a}{5}} \\
x^{\prime}=\sqrt{\frac{2 a^{2}}{5}}=\sqrt{a \times \frac{2 a}{5}} \\
x^{\prime \prime}=\sqrt{\frac{3 a^{2}}{5}}=\sqrt{a \times \frac{3 a}{5}} \\
x^{\prime \prime \prime}=\sqrt{\frac{4 a^{2}}{5}}=\sqrt{a \times \frac{4 a}{5}}
\end{array}
$$

PROBLEM LIV.
To divide the same triangle (see Problem L.) into two parts, which are in the ratio $m: n$.

$$
\begin{aligned}
& x=\sqrt{\frac{m a}{m+n}} \\
&=\sqrt{a \times \frac{m a}{m+n}} \\
& \text { make } \text { N.S. } \\
& \text { then } x=\sqrt{m+n}=y \text { (by formula } 2 \text {). }
\end{aligned}
$$

PROBLEM LV.

To divide a trapezoid $\frac{p(m+n)}{2}$ (see Intro. I.), into two equivalent parts by a line x parallel to the bases m, n.

$$
\begin{align*}
x & =\sqrt{\frac{m^{2}+n^{2}}{2}} \quad \text { N.S. } \\
\text { make } & m^{2}+n^{2}=y^{2} \\
\text { then } x & =\sqrt{\frac{y^{2}}{2}} \\
& =\sqrt{\frac{y \times y}{2}} \quad \text { G.S. formula 4). }
\end{align*}
$$

N.B.-The length of the dividing line being known, its $\mathrm{p}^{\text {o- }}$ sition in the figure will be easily found.

 r of another strale, witose aien, कhat 10°, to "that of the first circle in the ratio of $m: n$.

$$
\begin{array}{rlrl}
r & =\sqrt{\frac{m R^{2}}{n}} & & \text { N.S. } \\
& =\sqrt{R \times \frac{m R}{n}} & \text { G.S. }
\end{array}
$$

PROBLEM LVII.
Maving a given circle πR^{2}, to find the radius r of a concentric

-24-

circle, so that the circular ring may be equal to the three-fifths of the smaller circle.

$$
\begin{array}{rlr}
r & =\sqrt{\frac{5 R^{2}}{8}} & \text { N.S. } \\
& =\sqrt{R \times \frac{5 R}{8}} & \text { G.S. }
\end{array}
$$

PROBLEM LVIII.
To make the same construction (see Problem LVII.) so that the circular ring may be a mean proportional between the two circles.

$$
r=-\frac{R}{2} \pm \sqrt{R^{2}+\frac{R^{2}}{4}}
$$

PROBLEM LIX.
To make the same construction so that the interior circle may be a mean proportional between the exterior circle and the circular ring.

$$
r= \pm \sqrt{-\frac{R^{2}}{2} \pm \sqrt{R^{4} \pm \frac{R^{4}}{4}}}
$$

Joseph Loveray, Pinter, Otiawa Canades

