The institute has attempted to obtain the best original copy avalable for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

\square| Covers damaged/ |
| :--- |
| Couverture endommagee |Covers restored and/or laminated/

Couverture restaurée et/ou pelliculéeCover titie missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documentsTight binding may cause shadows or distortion along intertor margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge interieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Instrtut a microfilmé le meilleur exemplarre qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur
$\square \begin{aligned} & \text { Pages damaged/ } \\ & \text { Pages endommagèes }\end{aligned}$Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de depart de la livraison

Masthead/
Générıque (pérrodiques) de la livraison

Additional comments:/
Commentarres supplémentarres:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

CONTENTS.

PAGEI. Sir William Itamilton's Thilosophy: an Exposition and Citicism. by the Rev. J. Clamk Mumbar 267
If. On the Vagaries of Medicine. By C. B. Itatr, M. D 225
Revinws:

1. A new arrangement of Phanergamous pran's, wih esperial reference to rehaive position, including their relations with the Cryptosanous 233
2. Catalorne of livds kiown to inhabit We tern Canada, systematically anamed :acordiner to the mothod adopted in the Dluecum of the University of 'loronto.
3. List of Bids observed near Iamilton, C. W' by Thos. MoInwamin $\because .15$
4. A short treatise on the Miik weed, or Silk weed, and the Comadian nettle, viewed as industiat resoures 247
Oa the Somee of Museular Power 2.48
A Study of the Cephatic Disk of the Remora 260
Entomological Sucicty of C.anada 261
Obtuary:
The Rev. Bdward Hia.cks, D.D. 262
Metforology:
July Meteorological Table for Toronto 265
Remarks on 266
August Meteorological Table for Toronto 267
kemarks on \therefore יis
September Mleteorological Table for 'ironto 249
Remarks on 270
*** The Annual Subscription, due in January, Country Members, \$3; in Toronto, \$4.

L. SCOTT \& CO., NEW YORK.

I. THE LONDON QUARTERLY [Coı zervative.]
 II. THE EDINBURGH REVIEW [Whis.]
 III. THE NJRTE BRITISH REVIEW [. 'ree Church.]
 IV. THE WESTMINSTER REVIEW [Liberal.]
 V. BLACİWOOD'S EDINBURGH MAGAZINE [Tory.]

EARLY COPIES.

The receipt of Apvance Sneers from the British publishers gives additional value to theoe lequints, inamuch as they can now be phaced in the hamds of subseribers about as soon as the original editions.

TERMS:
Per amm.
For any one of the four Reviews Sis. (t)
For any twis of the four Reviews . 5.00
For any three of the four Reviews . 7.00
For all four of the lieviews....................................... . . 8.00
For Bhack wood's Masazine . 3.00
For blackwood and three Reviews. 9.11)
For Blackwoud and the four Reviews. I0 in
Priyments to be made in all cases ine almance.

CLUBBMN(.
A discount of twenty-five per cent. trom the above price will be allowed to Clubs ordering four or more copies of any one or more of the above works.

POSTAGE.
In all principal Cities and Towns, these works will be delivered, Frek of Postage. Mail Subseribers in Camada will receive the works Fines of U. S. Pustate.
N.B. The pice in Great Pitain of the five leriodicale above uaned is S:l per :

THE CANADIAN JOURNAL.

NEW SERIES.

No. LXIV.-JANUARY, 1867.

SIR WILLIAM HAMILTON'S PHILOSOPIY: AN EXPOSITION AND CRITICISM.

By the rev. J. Clark murray,

PRORESSOR OF MENTAE AND MORAL PHILOSOPHT, QUEEN'S COLLEGB, HINGBTOX.

1. SCOTTISH PHILOSOPAY.

I propose to present in this Journal a series of articles on Sir William Hamilton and his philosophy. Whatever value one may ascribe to the work which Sir William has performed in the world, it cannot be doubted that he is the representative of a very extensive philosophical school at the present day, and that for some time it will be required by friends and foes alike, that that school shall be estimated as it is represented in his writings. The philosophy, of which Hamilton is the most distinguished exponent, he regards as being identical, in its fundamental positions, with that which is known in our histories of philosophy as the Scottish School; and it is consequently of importance, if it be not absolutely necessary, in order to the scientific comprehension of Hamilton's philosophy itself, that it should be studied in its relation to the national philosophy of his country, of which it is ostensibly an exposition and defence. I sball Voz. XI.
accordingly endearour to give, in the present article, such an outlite of the Scottish philosophy in its history and its most prominent characteristics, as seems requisite for the explanation of Sir William Hamilton's speculations; and in doing so, I must of course limit myself exclusively to the most prominent of the problems on which these speculations touch.

The earliest impulse to philosophical speculation is protably to be traced in Scotland, as in most other countries in modern Europe, to the general intellectual reviral which mingled, at one time as cause, at another as effect, with the reformation of the church in the 16th century. A powerlil influence must have been exerted in the earlicr part of the century by John Mair, especially through his opinions on civil and ecclesiastical polity,* which he had probably thought out when, as a student at the University of Paris, he became acquainted with the claims of the Gallican church, and which, it is equally probable, gave a direction to the lives of his pupils, Knox and Buchanan, as well as to the reform which they were the principal means of introducing. But in those departments of philosophy, in which the Senttish school became afterwards famous, Mair attained no emancipation from the traditional forms of thought whose trammels were beginning to be felt througho.. Europe; and accordingly when the last quarter of the century opened, it was still an axiom in St. Andrew's, Alisurdum est dicere errasse Aristotelem, which could not be questioned without a riot,* and the denial of which by the Principal in the University of Glasgow, was sure to excite, in one of the regents, disrespectful manifestations of ill temper. \dagger The Principal of that University at the time was Andrew Melville. Melville had in earlier life attended the lectures of Ramus at the University of Paris, and not only his immediate assault on the dominant Aristotelianism in the Universities of his native country, but his whole teaching, as far as may be gathered from the text books which he introduced,* seems but the natural issue of the stimulus which he had received from the great leader of the revalt against Aristotelian authority in France. The learning and eloquence and argumentative ability, with which Melville led his successful inroad upon the old routine of thought in

[^0]the Scotch Universities, originated a fresh educational power which had begun to attract even foreigners \dagger to the then remote University of Glasgow ; and a more intimate acquaintance with the period will only confirm the impression, that for Scotland a brilliant career in letters was being opened up,* such as her Southern sister had then already commenced, and such as she herself entered upon at once, whenever the cause was removed, which soon after this began to operate, and which rendered such a career impossible for her until she had done a century of other work more essential to her own existence, and also, it is believed, to the progress of civilization in the British islands.

It is no part of my task in this place to interpret the development of the Scottish mind in the seventeenth century; but even Mr. Buckle explains the limitation of its range during that period, as arising, not from an inherent impotence, but partly from the compulsory imprisonment of external circumstances, partly from the voluntary concentration of its powers on an unwearying revolt against political and ecclesiastical despotism. That such is the true explanation of the narrow space within which the Scottish mind moved during the century in question, becomes apparent from the results which immediately followed the Revolution of 1688 . With the peaceful communication, which by this means was opened, between the north and the south of Britain, began that influence of the two nations on each other, which, after a few years, rendered their legislative union possible and which is now welding them into one. The literature of England thus found its way into Scotland, and the literary langunge of London soon become that of Edinburgh also. The Scoteh, able once more to breathe freely, began to look abroad on what other nations und been doing, while they were absorbed in their long struggle for existence and for what was dearer to them than existence itself. Eren in theology a freer range of thought was ventured upon: so conservative a churchman as Wodrow did not shrink from acquainting himself with the writings of Tindal and Collins, while be indicates the change which had come over the spirit of the Scottish

[^1]Kirk by his alarm at "the notions getting into the heads of yorng preachers, that moral duties are preferable to positive, \&c."* Already in the earlier years of the century there are not wanting iudieations of the first beginning of those efforts, which at a later period became more decided, to explain what had been deemed the peculiarities of Christianity in accordance with the natural course of mental and material phenomena. In this reawakening of the nation to questions, which it had been precluded from investigating by the circumstances of its history during the previous century, it was natural that the intensely theological bent, which had been already given to it by these circumstances, should direct its efforts still. It may be owing to this, that, as has been noticed by Cousin, \dagger the most eminent guides of the new intellectual movement were connected professionally with the national church and that the speculations of the Scottish school, especially in moral philosophy, have uniformly shewn the high morai intluence of the old presbyterianism, or, as Hamilton has expressed it, have been uniformly opposed to all destructive systems.;

Meanwhile a change took place in the constitution of the Universities, the influence of which in the impulse given to science and philosophy has uever, so far as I am aware, been noticed. This was the institution and endowment of professorships, and the consequent abolition of the practice in accordance with which each regent carried his set of pupils through the studies of the entire curriculum in Arta. The change had in fact to cume extent been adopted in the University of Glasgow more than a century before, namely in 1576 , under the Principalship of Andrew Melville.§ and was subsequently continued, as well as extended; $\|$ but its adrantages were in a large measure annihilated by the circumstance, that the salaries attached to the several professorships were on a graduated scale, and that when, any of the higher became vacant, the occupants of the less lucrative were advanced.** It was not however till the year 1708 that the old system was abandoned in Edinburgh i† \dagger and the first appointment, under the

[^2]new system, to the chair of Moral Philosophy did not take place till 1729, to that of Logic and Metaphysics not till the following year. In Aberdeen the old system was continued even in 1752, when Dr. Reid was elected Professor of Philosopky and in discharge of its duties required to teach Mathematics and Physics, as well as Logic and Ethics.*

The first professor appointed under the new system to the chair of Logic and Metaphysics in Edinburgh was Dr. John Stevenson, to whom an honourable place should be assigned among the earlier originators of the philosophical inquiry, which the introduction of that system assisted in advancing. It is not indeed for the contributions which his own speculations have given to the philosophy of Scotland, that ise is here brought into prominence; but his influence as a teacher in awakering and unfolding the philosophical spirit in others is spoken of by such pupils as Robertson and Stewart so highly, that one cannot but wish to know more of him than is contained in the slender notices which thave come down to us.

In the same year in which Stevenson entered upon his labours in Edinburgh, a man of greater mif stance both for the results of his speculations, and for his influenc, as a philosophical teacher, commenced his career as professor of moral philosophy in the University of Glasgow. Francis Hutcheson is rightly regarded by nearly all historians of philosophy as the true originator of the Scottish School. Undoubtedly his claim to this position is founded in a considerable measure on the influence which he exerted in directing inquiry towards mental phenomens in general ; but we shall afterwards see how largely the distinctive doctrine of the Scottish school is indebted to the most prominent dectrine of his system, -the theory of internal senses whose affections furnish the mind with ideas as peculiar and indecomposable as those with which we are furnished by the affections of the external or bodily senses. \ddagger

We are now to trace the course through which speculation was led to the position it assumed in the Scottish school. From the opening of intercourse with England, the Scotch professors seem to have kept their students abreast of the most recent English specula-

[^3]tions. The writings of IIobles and of his immediate antagonists came too soon th produce any appreciable influence in Scotland, or at least their influence was interrupted by that of a work which has created a more prominent epoch in the history of philosophy. It is from Locke's Eisay concerning IJuman understanding and the consequences to which its doctrines were reduced by others, that we must trace the most impurtant philosophical systems which have since prevailed in France and Germany, as well as in Britain. During the earlier part of last century the doctrines of the Essay formed the basis of the principal philosophical teaching in the Scottish Universities; the abridgement by Bishop Wynne was a favourite text-book, and the Elements of Logic by Professor William Duncan of Aberdeen is also a mere summary of Locke.*

But, in the transition from Locke to the speculations of Scotlard, we may not omit a philosopher, who has not, indeed, received the same prominent position in our histories of philosophy, because his doctrines are only now eserting their just influence by being only now interpreted correctly, but who appears to me to have at once displayed keener philosophical insight, and attained more nearly the true theory of knowledge, as well as the true theory of existence. In Berkeley's New Theory of Vizion, which was published in $2: 09$, if it be carefully read, there will be found rising to explicit statement at times an implied theory of perception, not by sight alone, but by all the senses ; the theory, in fact, which was more fully explained in the Principles of Human Knowledge (1710), and which received its most perfect form in the Three Dialogues between Mylas and Philonous ($1 ; 13$). The received interpretation of this theory, which became afterwards presalent in the Scottish school, regards it as a reduction of Locke's theory to partial scepticism-to scepticism concerning the reality of material things. I cannot but maintain that few, who read the bishop's writings afresh in the light of more recent speculations, will rise from their perusal with any such interpretation of their drift. What the drift of his teaching is, it mast require considerable time, in the face of such long-established misapprehension, to explain; still, in the few sentences which the brevity of this sketch allows me for such a purpose, I must endeavour to indicate, at least in general, the meaning I attach to his theory.

To interpret the theory, especially in so far as the interpretation of

[^4]it depends on the interpretation of the language in which it is delivered, we must go back upon Lockn's Essay, which determined the terminology and phraseology of philosophical writings for a long time, both in England and in France. The problem of Locke's work, $2 s$ its title implies, is a scientific explanation of human understanding; and this problem is reduced to the question, V, sat is the origin of human understanding, or, in other words, of human knowledge? In the solution, which the Essay gives, of this problem, human knowledge is explained as originated exclusively by the action of the phenomena which are prasented to the mind from the period of birth onwards, none of these phenomena being admitted to have had any prior existence involved in the nature of the mind. Now, the phenomena which are presented in human knowledge, and which, therefore, form the immediate objects of the mind when it knows, Locke named ideas.* It will thus be seen how the problem of the Essay came to be expressed in the question, What is the origin of our ideas? and this became the form in which the problem of philosophy continued to be studied in the school of Locke. It is not necessary here even to touch upon the detailed analysis of our ideas, into which the Essay enters with the view of vindicating its theory regarding their origin; but it is necessary to notice the fact, that ideas, or the immediate objects of knowledge, though, of course, existing as ideas, are still regarded as only in some way revealing to us real existence which can never itself be known. Now, in the light of this philosophy and its phraseology, the doctrine of Berkeley must be recognised as bearing a very different significance from that which is usually ascribed to it. There are, at least, three points in his doctrine, which I am confident that an examination of the Dialogues between i:ylas and Philonous xill confirm at every page.

1. Berkeley maintained the common belief of men, that sensible things, that :s, the things which form the immediate objects of perception, really exist, and are not, as most of philosophers maintain, merely images of a real world, which w 'ว not and cannot perceive.
2. But the question with Berkpley is strictly not whether sensible things really exist, or not; but what is meant by saying that they exist really? Now, according to the common doctrine of philosophers, which Berkeley combats, the real existence, which we ascribe to the material universe, is predicable not of the things which we

[^5]know by the senses, but only of a material substance, which these things represent, though, in itself, it can never be known by the senses or by any other means. These things, however, which we know by the senses, but which merely represent to us real existence, were, as we have already seen, called ideas in the ph losophy prevalent at Berkeley's time; yet, in spite of this unfortunate fact, it is not difficult to arrive at the conclusion that, regarding the reality of his opposition to the theory of representative perception, there is not a shadow of the do.dbt from which Sir William IIamilton acknowledges himself unable to clear the language of Reid. "These ideas, as you call them," his language repeatedly and explicitly insists, "these things which we see and touch. vou may call them by whatever name you please, are not mere images; they are not the aere show of a world, but the real material world itself, and the only material world that really exists: for that unknown, and unknowable, and unthinkable world, of which you say the world we know is nut a phantasm-it is that world which is a phantasm; the result of your own fantastic speculations, with which you puzzle yourselves and your followers." Berkeley, therefore, does not seek to explain the material world, which we know, by supposing the existence of another world, about which we know and can know nothing.
3. What, thon, is the explanation wheh Berkeley gives of the existence which we attribute to material things? According to him, since a thing exists for us only inas:nuch as we know it, its very existence, so far as we are concerned, consists in our knowledge of it. The existence of anything independent on me must, thereiore, he concludes, be merely the fact that it is known by some other mind; and, consequently, the material universe, as it does not depend for its existence on human, finite minds, must be known by an Universai and Everlasting Mind.

Berkeley brings us, naturally, to the speculasions of the Scottish schrol, not merely because it vas necessary to go back upon him to find the originating influence of these speculations, but also because we must go to Scotland to follow the history of the Berkeleyan philo. sophy. It is fortunate that Dugald Stewart has preserved to us, ou the authority of his teacher, Professor Stevenson, the most valuable evidence we possess of the extent to which the doctrines of Berkeley were studied, and studied sympathisingly, among his younger contemporaries in Scotland. The evidence, to which I refer, is the fact, that a number of young men in Edinburgh had formed a club for the pur-
pose of studying Berkeley's writings, that they had corresponded with him in order to obtain further explamations regarting bis theory, and that he had spoken of them as evincing a more intelligent comprehension of his argument than he had met with anywhere else.* The ouly person, whom Stewart mentions as having been a member of the club, is the Rev. Dr. Wallace, who is well-known as one of the earliest writers on the iheory of population, and is still remembered, in the church of his nat've country, for the wise applicatoon of his economical studies in the origimation of the Scottish Ministers' Widows' and Orphans' Fund. While this was going on in the capital, traces more distinct may be discovered of the influence which the Irish bishop's writings were exerting in other parts of the country.

Two or three years before Hutcheson had begun his career as professor in Glasqow, a younger son in the family of the llumes (or Homes), of Ninewells, in Berwickshire, though scarcely over 3ixtzen years of age.t was schooling himself into habits of speculative thought, by which he was to create a new era in the pinilosophy of Surope. After abandoning, from disinclination, the study of law, and trying, \therefore ir a few months, a mercantile life in Bristol, he ultimately retired, for about three years, to Rheims, and atterwards to La Fleche, in Anjou, with the view of devoting himseif entirely to philesophical and literary pursuits. Wnile he was still but twenty-six years of age, he returned to London, with the Treatise of Iluman Nature ready to be put into the printer's hands. Though the doctrines of the Treatise were afterwards recast and its authur objects to their being judged in their earlier form, \ddagger there can be no doubt it is in this form that they have acquired historical importance and are, therefore, to be considered a.t present. Moreover, I know none who have not felt disappointment on turning frum the Treatise to its re-vision-none who have not found in the former, rather than in the latter, the power which has revolutionised the speculative opinions of modern Europe.
Hume starts with the same question, with which Locke's Essay is mainly occupied, "What is the oricin of ideas?"§ Hume's answer

[^6]is, also, in the main, identical with that of Locke; but the conclusions which he draws with regard to our most important ideas, as well as with regard to the nature ot ideas in general, from his analysis of their origin, direrge as widely as is conceivable from the conclusions of the corresponding analysis in the Essay Concerning IIuman Understanding. Setting out with the theory, that all ideas originate in the experience of each human organism from the commencement of its existence, or at least from the commencement of the consciousness associated with it, he refuses to recognise in any idea a single element which cannot be traced to this origin; and there is no belief exalted to so lofty a height in human reverence, that he fears to direct against it the assaults which logically issue from his theory, nor does he weary in piling argument upon argument if he hopes to succeed in dethroning it from the eminence which he believes it to have usurped. There was much in the character of the man who undertook this Titanic task, which qualified him for carrying it out. The retirement of his early life, and the thoughts with which his early studies constantly occupied his mind, combined probably with the peculiarities of his physical temperament* to create in his very boyhood a wish to "fortify himself with refections against death, and poverty, and shame, and all the other calamities of life;" \dagger and the result of this may be observed in an inability to appreciate the passionate enthusiasm which has carried many to their noblest deeds, as well as in a distaste, if not an incapacity, for those feverish longings and endearours which trouble the lives of men who are driven into the struggle of haman ex.stence by the tyranny of external circumstances or by the equally resistless tyranny of nervous irritability. With all this there was a native kindliness of disposition, a humility under his own speculative conrictions regarding the littleness of human reason and its liability to error, which produced in him such an indifference to varicties of opinion, such an absence of pugnacious dogmatism and eren such generosity towards antagonists, \ddagger as have been reached by few. When such a character was united to an intellect, which saw from afar the aim terminations in which all lines of thought inevitably end, which untied with delicate touch the most complicated knots of speculation,

[^7]which wrought into luminous language the most intractable eccentricities of scepticism, we can understand how the farthest and fullest consequences of the doctrine which traces all ideas to experience were unfolded with a consistency which was deterred by no consideration of human interests, whether esteemed to be petty or lofty alike.

There is of course much in Hume's, as in every creative mind, the origin of which the most elaborate investigation into the circumstances of his hife leaves us unable to trace; still it is impossible to avoid recognising the influence of the philosopher who has been mentioned immediately before him and whom we know to have been a power among the thinking young men of Scotland while Hume was still a young man. The evidence, which the Treatise of IIuman Nature contains, of the general "impression that Berkeley's writings left upon Hume," has been noticed by Dugald Stewart ;* and we are now to see that the bishop's philosophy fiumshes a point of transition to that of the sceptic. The theory of the former, which ascribes real existence to the sensible objects or "ideas" that are immediatety presented to the mind, and denies that they represent any unknown and unknowable substance, is adopted likewise by the latter, but whenever they come to define what is implied in existence, they diverge into two theories of the universe as hopelessly irreconcilable as could be conceived. For while the bishop maintains that the aatural beli.f in the existence of things, independently of their being perceived by our minds is valid, and explains that as being an existence in the Eternal and Universal Mind who knows all things, one of the most elaborately finished sectionst in the whole of the Treatise is occupied with an effort to prove that the belief is altogether illusory and to explain the origin of the illusion.
This divergence in the interpretation, which the two speculations sercrally give to the existence of matter, arose from another difference which reveals more fully the thorough consistency at which Hume unshrinkingly simed. If matter is but a system of "ideas" which hare no existence beyond the mind that perceives them, what must follow with regard to mind? Is it also "only a system of floating ideas without any substance to support them?" Berkeley was too acute not to see, too honest not to face this question $\ddagger \ddagger$ and his

[^8]answer is well worthy of consideration by those who would comprehend his theory. 'Jo Hume the same problem presented itself, hut met with a very different solution. According to his theory regarding the origin of mental phenomena, these are all, to use his own language, either impressions or ideas, or, to use language which he might have adopted if he had not been too timid in departing from that of ordinary literature, presentations or representations. Still further, according to that theory, our representations can never contain any plement which has not been first given in a presentation; and therefor any idea or representation which we form of existence must be derived from some impression or presentation. But there is no presentation of existence as an object of knowledge, uniformily accompanying the presentation of those objects to which we attribute existence; and consequently, "the idea of existence is the rery same with the ider of what we conceive to be existent. Any idea, therefore, we please to form is the idea of a being, and the idea of a being is any idea we please to form." Accordingly, "we can never conceive any kind of existence, but those perceptions which have appeared within the narrow compass of our own minds."* But our minds themselves? It is evident that "what we call a mind is nathing but a heap or collection of different perceptions, united tarether by certain relations, and supposed, though falsely, to be endowed with a perfect simplicity and iuentity.' \dagger I shall not here anticipate a criticisn that will more appropriately arise at a subsequent part of these discussions, when we shall find the similarity between the theory of Hume and the latest form of empiricism in their explanation of all known existence as a series of presentations and representations.

When the Treatise of Muman Nrature appeared in 173!), Thomas Rejd, who was a year older than Hume, had been already two years a clergrman of the Scotch church in the parish of New Machar in Aberdeenshire. Descended on the father's side from a family, which for some generations had been distinguished in the literature and in the learned professions, especially in the church, of Scotland; on the mother's side, a nephew of David Gregory, the celebrated Sarilian professor of Astronomy at Oxford and persomal friend of Sir Isanc Newton, Reid contimued to follow his ancestral scientific tastes with

[^9]the modesty, with the reverence for traditional modes of thought and life, which one should expect in the character of a conscientious and benevolent country clergyman. This is not the place to attempt a mediation between the opposite extremes in the estimate of Reid, which have been maintained even in recent times by Hamilton amd Cousin on the one hand, by Ferrier and Buckle on the other. In his quiet observation of such phenomena as his range of inguiry brought within his reach, in his unpretending classifications of such as he observed, in his timid groping after inferences which his observations seemed to legitimate, there was no danger of falling into those extravagancies in which the flights of genius are doomed to land, olten, like that of Icarus, from the rery height to which they rise; but he would probably have accepted, as but a dubious compliment, the ascription to him of those sublime anticipations, which direct the labours of subsequent inquirers till they are established in literal accordauce with the rules of scientific induction.*

Dr. Reid, in a well known letter to Dr. Gregory, (20th August, 1790), acknowledges that the discovery of the fundamental and distinctive principle of his philosophy was owing more to Berkeley and Hume than to himself. \dagger From the evidence already adduced of the influence which Berkeley's writings had exerted in Scotland while Reid was still a young man, we are not surprised to learn, as we do from the philosopher himself, + that he had at one time adopted the whole of the idealist's theory. Accorbing to the same account, it was not till the conclusions of Hume's Treatise, "which gave him more uneasiness than the want of a material world," were seen to follow inevitably from the principle on which idealism is built, that he was arrested to question whether that principle is not an unfounded hypothesis.§ The principle referred to is that which Reid supposed to be the umiversal opinion of philosnphers, that "the only objects of thought are ideas or images in the mind;" and he claims for himself nothing that is strictly his own in philosophy, except his having called this hypothesis in question.* We shall lare to consider immediately whether Reid was correct in selecting this as the fundamenal peculiarity of his philosophy; but there will be seen to be little

[^10]room for doubt, that he is mistaken in supposing the doctrine selected to be distinctive of his system even among those of which he intended his own to be a critique, or that, except in one aspect, it is distinguishable from the doctrine of Berkeley, against which he believed it to contsin a successful polemic.

To explain, it must be observed that the doctrine referred to may be regarded both as a theory of knowledge and as a theory of existence. As a theory of knowledge, it maintains that the immediate objects of perception are not mere "ideas or images in the mind" of objects that exist really or out of the mind, but these really existent objects themselves. The Three Dialogues of Berkeley, however, maintain exactly the same theory in the different language enforced by their different point of siew. For the idealist denominates the immediate objects of perception by the term current among philoso. phers; the realist, by the term current among ordinary men, or in the language of common sense. But the idealist himselt acknowledges the revolt of natural feeling against his theory, arising from the awkwardness euforced by the technical language of philosophers, which obliged him to speak of the immediate objects of perception as ideas, and not as things ; * and the statement, that the imisediate objects of percention are not the mere images of an unknown existence, but exist really themselves, would undoubtedly have been accepted by both philosophers, as expressing their theory of knowledge in contradistinction from the theories which they opposed.

Though the doctrine of Berkeley and that of Reid, considered as theories of knowledge, may thus be regarded as coincident, as theories of existence they appear, at first thought, to diverge in widely opposite directions; but it is impossible, on second thought, to say how far this apparent divergence would have been found to be real, if the true meaning of Berkeley had been explnined to Reid. For I can find no evidence that Reid lad ever clearly proposed to himself the question, in answering which his doctrine seems to diverge from that of Berkeley. His polemic against Berkeley consists mainly in an appeal to the natural and necessary belief of mankind, that the objects which we perceive exst really-that they exist beyond the mind which perceive them; but we have already seen that the credibility of that belief is asserted quite as unmistakabiy by Berkeley-that he only refuses to accept it without a scientific explanation of its mean-

[^11]ing. His explanation, as we have further seen, is that the belief in the real existence of the objects of perception is only the belief that they are really perceived, and that the belief in their existence beyond our minds, is simply the belief that they are perceived by another mind, or by other minds : their existence, therefore, according to him, consists in the perception of them by some mind; and he is consequently content to speak of them as ideas, which have no existence but in a mind. It is difficult to explain the shock which this language created among Berkeley's antaronists, except by supposing that they understood the preposition in as expressing some kind of relation in place; it is more difficult to conceive what mental fact they understood it to denote, and most difficult of all to believe that they had paid any attention to his own explanation, in accordance with which to exist in a mind and to be know by a mind are convertible phrases* If this explanation had been noticed by Reid, it is scarcely possible to believe that he could have placed himself in the unmitigated antagonism, which he assumed, towards Berkeley; for the faith in a Primordial and Universal Mind involves the admission that nothing exists which is not also known, or, in other words, that ererything exists in that Mind. Does the hostility betwcen Berkeley and Reid thus resolve itself wholly into a difference about the meaning of words? There still remains one point at which the two doctrines seem to come into distinct collision; for, while the Scottish philosopher regards the material objects presented to the senses as being the qualities of a substance which is not known by us, \dagger but is, of course, known by the Omniscient, the Irish philosopher protests against the hypothesis of such an unknown substanze, as not only unacessary to explain the phenomena of knowledge, but as contradicting its essential conditions.
I have already hinted the possibility of a doubt whether Reid has hit upon the really fundamental primciple of his philosophy, when he elerates to that position his discovery, that the theory of perception by means of ideas is without any ground in fact. I believe the his. torian of philosophy must decide that such a principle should be reoognised in Reid's antagonism, not to the "ideal theor." as he calls it, but to the empirical theory regarding the origin of $k . . \imath w l e d g e$. Whatever opinion may be formed of his opposition to the latter theory,

[^12]it is that which distinguishes his place in the development of British speculation and gives his philosophy an importance it never could have derived from the principle which he regarded as its distinctive peculiarity. For as the growth of philosophical speculation unfolds into clearer prominence the real meaning of the problems which it has to solve, it will be foumd that the conclusions of philosophers regarding the principle involved in the "ideal theory" must depend on their conclusions regarding the origin of our knowledge. There is not here space for an explanation and proof of the above statement; but it may be sufficient in the present connection to notice the fact, that in disproving the "ideal theory" Reid himself is obliged to aduuce beliefs which he regards as originated by the very constitution of our minds, and as therefore having an origin prior to experience. It is in this comection that the doctrine of Hutcheson, with regard to internal senses, assumes historical importance as having possibly sug. gested the general name of common sense for the source of those behefs which are common to all mankind and are considered capable of explanation only as original and compulsory issues of intelligence. Moreover the statement I have made regarding the actual fundamen. tal principle of Reid acquires additional confirmation, from the fact that the Scottish philosophy, of which he is regarded as the chief representative, is, when mamed after its distinctive characteristic, usually designated the philosojhy of common sense.

While a correct historical estimate of Reid's philosophy thus seems forced to raise into special prominence his assertion, for some of the elements which constitute human knowledge, of an existence indeperi. dent on experience, it is scarcely possible to avoid surprise at the slender grasp with which he holds this principle and the unskilful manner in which he applies it in his explanation of the meutal phenomena. This may indeed be partly accounted for by the fact, already mentioned, that he was ignorant of the prominence duc to this doctrine of his system; but it also arose from his never having clearly apprehended any criterion, by which the a priori facts in consciotisness could be readily recognised. For although Sir Wiliain Hamilton gives Reid the credit of having discovered such a criterion of these facts in their necessity,* yet not only are Reid's references to this characteristic so incidental as to afford no ground for believing that he recomised it as the criterion, but his doctrine of first princi-

[^13]ghes is such as must have led him to deny that necessity is their differentiating attribute. A brief glance at this doctrine may not be uscless in emabling us more correctly to interpret the philosophy of heid.

According to this ductrine, \dagger first principles are those which all reasoning in the last appeal implies, inasmuch as the inicrence of one truth from another cannot have noceeded withont a betminge, but must have started from some truth or truths which are not themselves inferred from any prior truth. Such triths, as being prior to all oihers in human knowledge, are called first principles; and since they do not draw their evidence from others, must contain it in themselves. Seffecidence is therefore the distinctive characteristic of first principles. There is, however, a difference of opinion among men, as to what truths are seli-evident, and accordingly it is necessary to inquire whether there is "no mark or criterion hy which first principles that are truly such may be distinguished from those chat assime the character without a just title." In amsweriug the question which be thus jroureses, we should certainly expect to find what Reid considered to be the criterion of first principles; and yet, in the four propositiono with their corollaries which form his answer, while there is an enumeration of several tests, some of which are most imapplicable, there is so mention of the criterion which is now recognized. The only passages in which this criterion is explicitly referred to, as far as I can recullect amb as far as Sir William Mamilton quotes, are at pp. 45s, Liy and 521 ia his edition of liedl's works, where, ameng other eridenees, necessity is adduced as proving the non-empirical character of the two frincindes, that every begiming of existence must have a cause, and that intelligence in the canse may be inferred from the maris of it in the effect. In rhese passages undoubtedly Reid sees that a proposition, which we know to be true necessurily, and therefore true in ail places and at all times, camot be obtained by an induction, however extensive, of our experiences; but waiving the consideration that he here mis-states a subjective necessity of knowledge as the knowledge of an objective necessity, we must notice, what dors n:ot seem to be observed by Mamilton, that Reid's classification of first frinciples is sufficient to shew that he would have refused to constitute becessity the critericn of them all. For he divides truths into the two chasses of contingent and necessary, while he allocates to each of

[^14]these a separate set of first principles.* Among the first principles of the latter, he enumerates the two which have just been mentioned; and it is not because they are first principles, it is beeause they are not contingent, but necessary truths, that he regards them as transcending experience.
With this doctrine of first principles, it is not to be wondered that Reid has been so unsuccessful in what ought to have been the most prominent excellonce of his system. We have probably in this an explanation of the circumstance, that, although he recognises the importance of an accurate system of the facts which are primal in human knowledge, his detail of them, eepecially when compared with their exhibition in Kant's Critique, appears rather an enumeration ar random than even an attempt at systematic classification. It is further remarkable, as possibly traceable to the same source, that, althourh the analysis of the idea of cause in the Treatise of Human Nai, tr led him to the theory of its a priori character, he failed to see thi conchsion which his own principles should have inferred from the analysis in the same work of the ideas of space and time.

In Reid is iacluded all that is distinctive of Scottish metaphysien! philosophy previous to Ifamilton. We have indeed contributions of various valne from others: in the writings of Dugald Stewart, thic whole field traversed in the works of Reid, as well as numerous collateral departments of interest and importance, is illustrated with more claborate fulness, with the elegance of a wider and more refined $x:-$ thetic culture, with a superior command of the Euglish language, and an infinitely snperior crudition, if not with a more comprehensine grasp of principles, or any bolder originality in their application ; bu: we have no considerable addition to the substance, no new trait in the character of the philosophy.

We are now better prepared for understanding the exact point at which Sir William IIamilton found the philosophy of his country aind the nature of the task which was laid before him. In my next article I shall give an exposition of Sir William's own system; and I shall thereafter procced to estimate his success in solving the probic:,s which he took in hand.

[^15]
on the vagaries of medicine.

BY C. B. HALL, M.D.
 (Read before the Canadian Institute).

Mr. President, - In the investigation of any scientific question, vur judgment is not to be formed from the number of its adrocates, or the individual opinion of its respective supporters, but from the wipss em: ating from the few experimenters and investigators who are acknowledged lights in their particular sphere.

You cannot name the whole range of Animated Nature, without alluding to Buffon and Cuvier, calling on the way unon poor Goldsmith.
In the vast field of Palæontology you recognise an Agassiz, Owen, buckland, Richardson, and a few others. The Geologist knows Murchison, Ramsay, Lyell and Logan, and remembers with sall rererence the name of IIugh Miller. Numerically, how meagre seem these names to the countless thousands who, in every part of the world, are prosecuting with unyielding ardour these delightful and most useful studies, gathering, as it were, particles of matter from every clime, ascending with a Humboldt to the mountain peak, or diving with a Wallich to the bottom of the sea; but like the streams that pour their ceaseless torrents, never get their full nourishment and strength until they mingle with the ocean's depths. Thus has it ever been with the Science of Medicine-from its earliest record, there have been, through each succeeding era, certain gifted spirits who have ruled its destinies; culling from every busy theorist such parts as bore the test of experiance, and rejecting all others-moulding and fashioning, in their proper places, such as fitly joined, and thus keeping together a series of comected truths from the days of Hippocrates to our own.
The early history shows nothing remarkable, other than the ordingry pursuits of learning. We read of each distinguished physician haring his class of pupils, and we are told that in two of the schools iounded by rival pupils of Pythagoras, human dissection was practised, and whether true or not, leaving the impression that it was upon the laing subject. But the first account of any great numbers was in the College of Bagdad, when about the eighth and ninth century there were yenerally a thousand regular attendants. From this date, as did all learning, the practice of medicine fell into the hands of Monks, who did not add much to its adrancement, but retained their hold upon the
public mind to a comparatively modern date. In the latter part of the 15th century, when we find the first notice of the most intricate discase as well as the most revolting to humanity-so close was the alliance with these Reverend Gentlemen, (either as prescribers or patients) that the writers of the day gave it the name of Rheume Ecclesiastique. Not to trouble you with the names of such impostors as Valentine Greateacre, who astonished the London world about the middle of the 16 th century with his wonderful cures, but which, in more modern times, was called Mesmerism, I will only allude to a few of the vagaries with which science-proper has had to contend. My object being to call your attention to the fact that the Science of Medicine has descended in an unbroken chain, from the earliest ages to our own, separate from the absurdities foisted upon it, receiving in each era additional links or more firm welding, and were I able, like a modern Plutarch, to parallel the other sciences, would be constrained to show the picture much to the advantage of medicine.

As now, so of yore, men sought for specifics, sume single principle upon which all cure was to rest-the Alchymist in his universal solvent, 'till a more wise made the grand discovery-that if successful they would have nothing to keep it in. The first great principle was Vitality, its source, power, and influence, but as this was associated as much with Philosophy as Medicine, I need give it only a passing notice.

Phlogiston or Caloric, the principle of heat, was the life-giving porer at one time, and many and curious too, were the expedients proposed to impart and regulate its influence as a sole curative. Oxygen, in the last century, claimed a higher state, no less than the source of the former and its vitality.
In like manner Magnetism yielded its place to modern Electricits, which, with all its boasted power of giving life to inanimate objects, must, with its twin sister Spiritualism, yield to the ever-existing truth, that life is solely the gift of the Creator, and goes back to its girer when the created resolves into its elements.

Loing and tiresome were the disputes on the classification of disease, which in time were reduced to the synoptic and systematic-the first being dogmatic, and biased by the peculiar mind of each writer, at last gave way to the latter, which, arranged, and re-arranged, according to discoveries of different periods, is now acknowledged by the profession proper.

Brown, a man of great learming, sustained for sereral years the Brunosian System, wherein medicines were to act aceording to their degrees of stimulating or exciting. To this followed the Italian system of stimulants and their opposite-depletants or stimulants and comuter stimulants.
lhrosseau reduced all disenses to inflammation of the stomach and bowels, or Gastro-enterite, and ndopted to a great extent this theory of treatment.
Ilickson prored, to his own satisfaction, that all changes are periodic, or as Shakespeare makes his victims of the Pontine Marshes say,"they're all alike the arue."
And Muller, to this day, denies any variation from the normal, to other than chemical causes. A few wonderful means of cure may not be, without interest. Cholera received the nane of St. Yitus' Dance from the habit of its victims resorting to the Chapel of St. Vitus, i: Germany, and dancing away the complaint-it was necessary to kcep up the dance 'till the disease gave way or the patient fell from exhaustion. One wanan danced for a mouth! "And frequently it was required to hire musicians to play in rotation, as well as rarious strong sturdy companions to dance with the patients till they could stir ne.ther hand nor foot." So efficacious was flagellation for certain ailments, that it has been suggested as the origin of the physicians cane. We read that "this process was employed to cure Octaviis Augustus of Sciatica." Another believes "it has the same effect as Coiocynth administered internally." Galen recommended it as a yeneral restorative ; others for nervous irritability. One of Queen E'razbeth's physicians found great success in herbs; he says, "with daisy-tea I did recover one Belliser, not only from a spice of Palsie, but also from a quartan ague"-and to show "man's inhumanity to man," he adds, "and afterwards this same Belliser, more unnatural than a viper, sought divers ways to have murdered me, taking part against me with my mortal enemies, accompanied with bloody ruffians for that bloody purpose."
Success did not always attend merit. Sir I. Brown, one of the first physicinns who received the honor of knighthood says, "when he commenced his career, he had twenty remedies for oue disease, but at the close he had twenty diseases for one remedy."
Scarpa, a distinguished surgeon, says he destroyed a hat f:ll of eyes before he was successful in the operation for cataract ; and Dr. Lett-
som was satirized for some of his remarks in the Gentleman's Mayasime, by setting his name to doggrel verse :

> "When patients comes to I, I physics, heeds, and sweats 'em, Then, if they chose to die, What's that to I? (I Letts'em.")

Though a few men of real worth have been subject to unealled-for strictures, the profession may be safely said to have held its high position throughout the most of its history. Lady Mary Montagu said. "air, exercise, and company, are the best medicines, and physic and retirement good for nothing but to break hearts and destroy constitntions." And you all remember Macbeth's contemptuous remark to his physician :-

> "Can'st thou not minister to a mind diseased;
> Pluck from the memory a romted sorrow;
> laze out the written troubles of the brain,
> And with some sweet oblivions nutidote, Cleanse the stuf"d bobum of that perilous stuff Which weigls upon the heart

Then-Throw physic to the dogs, I'll none of it."
There have been four great divisions, calied the four pathe, which hare been charged upon the profession, but to which they plead no: guilty, though each has been acknowledged as having great merits in the cure of different complaints. The first is called the Antipathia, and consists in employing medicines of an opposite effect to the tendency of the disease, having for its motto-" contraria contraribus opponenda," and in all cases giving purgatives for constipation, astringents for looseness, and opium for pain. Though this principle acts correctly in many cases, the profession reject it as unsound, because there are instances in which the opposite would be indicated.

The next is called Allopathia, having for its princ:ple the creating another discase, counter to the one treated-their motto "Ubi irritatio ibi fluxus;" consequently their remedies were called counter-irritants or blisters Sic., or such as excited the action of an organ functionally opposed to the diseased, as irritating the stomach to cure inflamation of the throat. By this theory is often produced the curative effect of mercury, the discharge from the salivary glands serving to carry off the over-wrought action of the liver. An interesting case is recorded of an old-standing jaundice being cured in a few days by a sudden? produced ptyalism, the discharge from the salivary glands being of a
vellowish brown color, resembling bile, and of a hitter taste. Numerous as are the farorable results of this practice, the profession deny the theory, because it is fomed efficacious in certain cases, in others it is no yood. As the discharge from a blistered surface will not diminish the discharge from an inthamed eye, or remove the excessive secretions in dropisy, the principle is recognized as an adjunct, but rejected as a theory.

The third, Homocopathia has had its rage and strurerled hard for supremacy, but its benefits are found tho circumscribed for gencral principles. In this medicines are selected as curatives which would produce similar effects in the normal state, hence "Similia similibus curnutur." Like the two preceeding, this theory was known to the ancients, amd by some carried to great length. Aristotle prescribed "a nair of the dog that bit you" as a preventive of maduess, a now established maxim, and followed faithfully as an antidote for a quite differant species of hydrophobia. The two most interesting points in :' is are the priuciple of infinitesimal doses recently propor nded by Hahmeman in Germany, and their being carried along the nervous filaments into the substance of the brain, as stated by Jahr of Paris, who appears to the former what Spurtzeim was to Gall, the philosophiser of his dogma. He asserts positively that in this way melancholy, griefa cacoethes scribendi,-particularly for poctry, and the more fatal malady of love, have each their globule and each globule is a charm. There have been some cases of lesion of the brain causing a marked change in the person's mind without any subsequent malady. Barhave describes a poet of his time, who, after recovery from an injury of the kind, lost the art and denied his former offispring.
The Reports of one of the London hospitals mention a Welshman twentr-five years of age, who had lived in England for twenty years and spoken their language. After a protracted disease of the brain he conld ouly speak Welsh. I had, myself, the case of a boy five years old, who lost two ounces of the substance of the brain from the kick of a horse-previous to the injury he was unable to speak correctif, and had nicknames for his brothers and sisters. After three weeks quictude he recovered, and to the surprise of his parents spoke distinctly, calling each person by their proper name. On the other land it is said these results may have happened without any injury to the brain, but were simply suspended memory from rest. The dependanee upon a too minute attenuation is discharged b_{j} that modern Paul

Pry of nature, the microscope, which detects when the division of particles of gold and sulphur have been carried to their utmost limit, showing particles of mineral in some of the globules and none in others.

Like the others it is very good at times, but never can be called a science. It may relieve headache in the morning by taking (as compared with former potations) an infinitesimal dose of the cause of disease, but it can never cure delirium tremens! And, besides, I quote from Vol. 15 of the "Medical Gazette," "Homœopathia has been fairly put to the test of experiment by some of the members of the Academy of Medicine in Paris, and the result was a failure. Andral tried it on 130 or 140 patients, in the presence of the homœopathists themselves, adopting every requisite care and precaution; yet, in not one instance was he successful." However, one credit we must award it, and that is-the harmless sugar globules have been the means of stopping the excessire use of those patent medicines that flooded the country, many of them of a most dangerous kind, and I fancy it is generally a transition of patient from one to the other-with them it is "Coelum, non animum, mutant."

The fourth, Hydropathia, I need not remind you is of ancient date, though recently brought forward as a sovereign balm, or the absurdity of its being the only one thing needful, but the incalculable amount of good it has effected in the prevention of disease cannot be named, and if, as we are told, cleanliness be godliness, its adrantages have. been moral as well as physical. Celsus describes its use in hydrophobia to allay its spasms. "In this hopeless state," he says, "the ouly remedy is to throw the patient instantly and without warning, into a fish-pond, plunging him under the water that he may drink, then raising his head and forcing him under it and keeping him below till he is filled with water, so that the thirst and water-dread may be relinquished at once." And Von Helmont, at a later date, kept the patient under water till the choir could sing the psalm Miserere.

It is here worthy of remark how singularly void of information on all that pertains to medicine are men of learning, men erudite in every other branch, yet seeming incapable of forming a correct opinion on that subject in which their lives are most interested.

Lord Bacon says it is accounted an error to commit a natural body to empiric physicians, which commonly have a few pleasing receipts, whereupon they are confident and adventurous, but know neither the
canses of the discase, nor the complexion of patients, nor the peril of accidents, nor the true method of cure.
Still one chooses for his phesician an Alinpath, arother a IIomocopath, a third an Ecloctic, without, for an instant, giving a thought as to whether the indisidmal man thus chosen be competent to manare the intricacies of disease, or blindly ignorant of the first-most radimentary principles of any skill-a simple retailer of other men's iteas. Not many years since, a man by the name of John Long, a prototype of a Dr. Tumblety, in this country, commenced the sale of a wonderful specific in the City of London, with plenty of effrontery and a pleasing address, he soon found his sales increasing, and, fired with ambition at such success, issued a carl with the mame of St. John Longe, and "in one year's operations his pass-haok at his bankers contanned cretit to the amount of $£ 13,400$." Little more than a century back the British House of Commons passed "an act for the providing a reward to Joama Stephens, upon proper discovery to be made by her, for the use of the public, of the medicines prepared by her," granting her the enormous sum of $\mathfrak{E} 5,000$ sterling. A committe of twenty was appointed by the Govermment for the examination, who reported that she had made the discorery to their satisfaction, and that "we have examined the medicines, and her method of preparing the same, and are convinced, by experiment of the utility, cfficacy, and dissolving power thereof:"

These medicines, in the words of the lady, "are a powder, a decocfion and pills; the powder consists of equshells and smails, both catcined. The decoction is made by boiling some herbs (together with a bal!, which consists of soap, swine-cresers, burnt to blackness, and lomey) in water. The pills consist of smals calcined, nild carrot seds, bardock seeds, ashen keys, hips and haws, all burned to blachmess, sonp and honey. Preposterous as was this recipe, it was purchased in that enlightened age which a distinguished chronicler sait, "produced more men of letters as well as more men of science, than siay epoch of similar extent in the literary history of Englame.
I now give one quotation from Dr. Mason, grood in confirmation of my position: "Whilst a few species of diseases are now no longer to te found, which are described by earlier writers, a few seem to liare saphed their place which are of modern origin ; yet, upon the whole, tie march of nature is but hitle interfernd with, and hence the pros:0stics and aphorisms of IHiplocrates, the medical histories of Arctiens
and Galen, of Thages and Asicema, are transeripts of animal life in our own day. The estensive families of fevers and spasmodic affection are, ia the main, the same now as they are represented to us by the most ancient writings that have descended to ns,-with, however, this improvement, that cases requiring then from three to six mouths for a cure, now take only as many weeks, and three to six weeks now get their quietus in as many days. The great lesson which experience has taught has been physiological, and consequently the course of freatiment has become more positive and definite, hence the more favorable result. From Hippocrates we have the first link supplied by Galen to the end of the Greek Schools-Celsus then furinishes the Italian. The Schools of Bagdad by Serapion, and through the Monks till about the time of Sydenham, all of whose works are handed down to us and translated into our language, and the whole of the sehools represented by these writers were anited upon what is called the Immoral Patholegy of disease-the same as is tanght by the schools of medicine at the present day.

Mr. Jeafferson, in his book De Doctoribus, says the lives of three physicians, Sydenham, Sir Mans Slome, and Heberden, completely bridge orer the uncertain period between old empiricism and modern science. Sydenham was born in 1624 , and received the most inportant part of his education in the University of Oxford. Sir Mans Sloane continued till 1:33-his museum was purchased by the llritish Government and becamo the nucleus of the present British Museum. Heberden extended the time to the begimning of the present centiry and was the iustigator of the transactions of the College of Plysicians, to the first volume of which he was the chicf contributor.

I will onty refer to one or two instances to show the scientifie application of medicmes for the relief of disease: First,-Affections of the liver or bilious complaints, as they are called, and peculiar to this comery.

A secretion of this organ called hepatine is readily changed into sugar by the disturbance of particuar nersons functions, or interrurtions of the circulation of the blood through the vena-porta. Xusi this occurs in ail cases of biliary calculi or obstructions of the biliary ducts, rendering the most trifing derangement of the liver a canse of this nonazotic, nafbrous and most abnormai secretion. Now, wot one of the theories named, conld, as such, directly have the slightoi effect in removing or changing this sugar from the biood, yet to the
scientific man I have only to name cascin or rennct of milk as one substance that would convert it into lactic acid, the natural gastric juice of the system.

The other is Scrufula, or generally known as incipient consumption. All organized bodies are composed of carbon, hydrogen, nitrogen, and oxygen. This disease is produced by excess of hydrogen in the propurtion to form water with oxygen, and a deficiency of nitrogen to form fibrin or proner muscular contractility. Again, not to enumerate the particular remedies, I may say that all such as contain nitrogen in escess and are deficient in hydrogen, of these oxalic and tartaric acid, the cyanides, and ammoniacal salts, are familiar examples. Thes, Sir, the great point of separation between the profession and empiricism is on the subject of education,-the former holding that whatever theory is followed, the piactitioner must understand anatomy, physiology, pathology, chemistry, and the nature and effects of medicines, the action of mental influence upon disease, sufficient knowledge of collatteral sciences to judge so far as they bear upon their patients, atmospheric influence, chemical tests, and the use of the microscope; and, in addition, their minds expanded by study, enabling them to comprehend and unravel the intricacies of a complex and difficult complaint, with sufficient moral acyurement in eusure patience, long suffering, forbearance, gentleness, lindness, and wefinching firmaess; and a trusting confidence that Ile who holds the sparrow in its fall, will guide their counsels and direct their skill.

REVIEWS.

A new arrangement of Phaneroyamous plants, with especial riference to relative position, including their relations uith the Cryptoyumous. By Benjamin Clarke, F.L.S., M.R.C.S. London, sold by the author, 2 Mt. Vernon, Hampstead, 1866.

This work, expected for some time, is at length before us; and, though we cannot pretend now to offer such a critical examination as it deserves, we are desirous of introducing it to the notice of those in:erested in its subject, with such remarks as occur to us on a first perusal. And first, it is quite certain we think that there is room for such a work; and that, if it makes any considerable approach
fowards aceomplishing its object, it will confer a great boon on the lovers of botanical simenc. Nay, even if its principles shond prove unsome or insuftheient, and its results should not satisfy the mind, it is still true that the laborions endearour to promote knowledge deserves gratefnl acceptance, and that many years cannot have been desoted to such imquiries by an intelligent amd patient investigator, so situated as to have access to many mare specimens, without important facts being brought to light, and hints afforded which wht assist others in the pursuit of the same object. It mast be admitted that the proper limits and true relations of the families of plants are not yet understood; and, if there are real relations at all in nature, which we for our part camol doubt, their discorery must be an object of the highest interest and importance. We have no symmathy with those who make light of system in Natural Scienec. It is justly remarked by the present distinguished President of the Linnean Society, in his mmal address, in reference to the sort of confempt with which some seem now to segard system in Zoology and Botany: "This is surely a mistake. Without a good system, clem! illentitying the subjects of observation, no biological inquiries can have any practicn adrantage; and, in all our reviews of the progress of our seicuce, we ought rqually to appreciate the labours of the systematist, the fhysiologist, and the biologist, provided that each in his corn degarment has duly called in aid the results obtamed in the others." We shouh be disposed even to go berond the leamel Iresident, not rahuing a good sustem only or chiefly for its mabling us dearly to identity the subjects of observation, but accoumting the relations which it brings to our kowledge as among the most whable results of our stadies; amb believing that, as nature can ouly ine usefully examined through the medium of a system, the best sysem will give us the truest and most practically valuable acquatate with its wonders and beanties.

Mr. Clarke, in the work before us, deserves the praise of enderroumg to improve sfetem by means of biologiral knowledee, anl that not only what he cond collect from others, but what he whamed by patient and waried observation.

The vegetable kingdom is so bentiful, and, for many reasons, so interesting to man, tiont many persons desire to acquire some knowledge of it. There is no seneral insensibility to the ralue of ble trees of the forest, the grain, frats, and vegetables of the fied am
garden, or to the beauty of the wild flowers of our fields and woods, or those with which culture adorns the parterre or the green-house. Many feel the desire occasionally to make them the subject of scientific study, but they are met by difficulties. which discourage and repel all but the most perserering; and which oblige even these to be satisfied with becoming acquainted with a certain number of objects without forming any clear idea of an order of nature among the subjects of their study, or of the well-distinguished groups which make up the whole. Since a professedly natural method has been generally adopted, the genera have undoubtedly been collected into those higher families which among plants are, by an improper application of that term (inconsistent, at least, with its use in other parts of Natural Science), called Orders; but, although much is thus gained, these families have not always characters easily recognised by the student ; and higher combinations, presenting distinctly to the mind lar ger associations, are absolutely essential to our enjoying the advaniages of good classification. So far as concerns the highest divisions of all, we canuot but think that Jussieu's Acotyledoner, Monocotyledoner, and Dicotyledoneæ, exhaust the subject, and are so well supported by every part of vegetable structure, that we may rest on them with full satisfaction; but it is, at the same time, clear to us that they are not classes in the sense in which it is convenient to use that term in Natural Science, but what in Zoology are called sub-kingdoms or oranches, and that the other proposed classes, if good at all, are such sections of these sub-kingdoms as ought to be called classes; but the difficulty is that, between the sub-kingdoms and the great families which it is customary to call orders, we need and have not yet obtained such good divisions, conformable to nature and separated by well-marked characters, as might with propriety take this name. The Gymnospermous Exogens may be a good class of Dicotyledonce (for the structure is Dicotyledonous, though the cotyledons are more than two) ; and it is possible, though less clearly made out, that Lindley's Dictyogens may be a grood class of Monocotyledonere (of its members being within that sub-kingdom there can be no doubt); but there remains in each sub-lingdom a great assemblage of families which must afford means for establishing good divisions of equal importance with these, though such divisions have not yet been detected. In what he calls alliances, Dr. lindley made an admirable attempt, making the best use of what had been done by others, and
exerting to the utmost his own ge at powers to unte the so-called orlers into larger groups, which should be at once natural, because resting on important real characters, and capable of definition. Different opinions will be entertaned as to the measure of success attained by him. Of the value of the plan, we think there ought to be but one opinion, and we see with pleasure that, though differently worke!, it is adopted by Mr. Clarke. Many of Lindley's aliancesindeed, a very large proportion of them-seem to ta good. In a fow instances he appears to us to give undue importance to an unstipported technica! character; in others we fancy we see artificial sephrations of what a right estimate of mature would combine; and there are, doubtless, instances of obscure orders placed by a not very hapy guess; but, on the whole, the work deserves the highest admination; and if such allirnees, carefully reviewed, were combined into classes, we might, at length, boast of possessing a Natural Sistem.

For assistance, in iniproving our views, we have to look to such labourers as Mr. Clarke, and we receive his nttempt with welcome, and with respectful, and we hope, candick attention. We only wioh we had better means in our power, in our remote position, for testins: the accuracy and real value of some of the points which he especially relies upon. We whl, however, offer a few remarks which oectr io us, whilst bearing our humble testimony to the clam of the author, to have his plans examined with care by those whose thoughts are turned to the interesting subject on which he has bestowed so mach industry and ingenuity.

We camot help wishing that Mr. Clarke had not ex. pressed himself in a maner implying the truth of the Duwinian hypothesis respecting the origin of species, and semin? to make relationship always dependent on a common descent. This hypothesis will, no dondt, for some time be very much regarded br scientific inquivers in all their investigations; but, however strongly

[^16]it may attract some minds, it is not too much to say that it is not yet satisfactorily proved, and that it lahours under some great difficulties and serious oi.jections. A really good classification, independently formed, might greatly assist our judgment on the question, but the assumption of the hypothesis, and the attempt to trace the order of descent of the multiplied forms occurring in nature, can only enconirage fanciful analogies, and interfere with our application to the great questions, What are the parts? and, What are the circumstances respecting them? which, in themselies, and from their connection with general structure, have most real importance in determining affinities and leading us to a natural grouping of objects. Mr. Clarke's arraugement is certainly not rendered more plausibie by the fancy that Endogrus (Monocotyledonca) are derived through Riccia and Lemna from Marchantiace: ; Epiornose Dicotyledouce through Balanephoracea from Bryacees ; the Chloranthal division through Gnetaccee and Lyeopodiacere from the same source, and so in other instances. We camot but be struck with the insufficiency of the analogies by which, in one or tro cases, it is attempted to justify these speculations.' Take for example the relation of Endogens to Marchantiacea. The author expresses himself thus:-"I am aware that there is no evidence to slow that any near affinity exists between Lemmacer and Ricciacce, further than that the habit of some species of Riceiu is so much like that of Lemna, that they are stated to have been mistakea for species of that genus by some authors, while species of the latter genus have in fact been described as belonging to the former; and although habit is often of little value as a character anong phancrogamous plants, it is acknowledged to be of more importance among the cryptogamous. But as the present arrangement includes the piacing of sil the cryptogamons families in relation with the phanerogamous, the Eudogens should in all probability be compared to one, at least, of their lowest forms; and as the Ricciacear have no affinity with the apetalous forms win Exogens, a negative cridence is afforded of their being the eryptoyamous form of the Lemnucece." What this amounts to is, that granting the truth of the system, and that each race of higher plants is derived from, or immediately related to, some form of the lower, there seems some probability that licciacere afford the form nearest to Lemmacte, there being cases in which the foliage, when the flowers or fruit cennot be found, mary be mistaken one for the other. The sysietn being by no means proved, we might leave any reader to judge
of the importance to be attached to the analogy; but we may ask whether the resemblance between the smaller water lilies and Brasenia to Hydrocharis and Limnobium in one direction, and to Menyanthes and Limnanthemum in another, is not quite as striking, though it sug. gests no idea of near relationship. Certainly when the flower and fruit are not procurable, we might well be in doubt of which of these genera we had obtained the foliage. We cannot but strongly censure the practice of some botanists, amongst whom is Mr. Clarke, of speaking of cryptogamous and phanerogamous as two great divisions of the vegetable kingdom, thus disguising the fact that the latter includes two divisions, as well separated from each other, and by as important characters, as either is from cryptogamous; just as in zoology, we know of nothing more misleading than the use of the division into vertebrata and invertebrata, when each great branch of the latter is as distinct from the others as any of them is from vertebrata. Curiously enough it is among Cryptogamous-flowerless or spore-bearing plants, whose growth commences from a primordial cell, without an embryo lueing formed and preserved in a seed-that we have made the farthest adrances towards a true and good classification, the full recognition of which would hare been no disadvantage to Mr. Clarke in making his comparisons. The sub-kingdom naturally falls asunder into three good classes, each of which has the same number of alliances, under which all the orders or families are readliy arranged. We have first Thallogens, or Thallophytes, with no proper distinction of stem and leaves; with no chlorophyll, no stomata, and the lowest reproductive type, though always, we beliere, two cells intermingle their contents to form a spore capable of germination. Here are ranged Fungales, Lichenales, and Algales. Secondly, Anogens, with stomata and the green colour of vegetation depending on the presence of chlorophyll, but with no rascular system, and reproduction in a prothallus which is temporary, the plant producing successive ones periodically. Here rae found Charales, Hepaticales, and Muscales. Thirdly, Acrogens, with an imperfect vascular system, and reproduction from a prothallus in which the fertilized archegonium developes the spore-producing plant, of which the prothallus usually resembles an initial condition, Here are placed Equisetales, Lycopodales and Filicales. We doubt much whether this exposition of the Acotyledonous or Sporigenons sub-kingdom, on the correctness of which we rely with great confdence, and which affords the best indications we have of what we may
expect to find in the higher sub-kingdoms, is quite consistent with Mr. Clarke's attempt to commect the muscal alliance with Epigynose Dicotyledonee. Granting that he is right, that Epigynose plants are lower in structure than Hypogynose, from which Perigynose camot be properly separated, we have still to consider the proper position of Grmmosperma, and many powerful arguments may be adduced in justification of their usual position below other Dicotyledonere, but even passing by this point, what is the true value of Mr. Clarke's analogies? Grant that some Bryacere are parasitical, though more are only epiphytical, but parasitism is a mode of nutrition found in various parts of the vegetable system far remored from each other. The involucre of Jungermanmiacex is compared with those occurring in Chamelancincer, Calyceracer, and Dipsacer. The analogy is surely but a slight one, and other cases may prove it mimportant. In Quercus the female fruit is surrounded by numerous scales, which are leafy organs. The fruit of palms of the section Calamer is enveloped in such scales, completely combined into one covering, and in boih instances the single seed has orerpowered the ruliments of other carpels with their germs ; yet there is no relation between Qucrcus and the Calameæ; and though leafy organs may give origin to the teeth on the urn-shaped capsule or spore-case of Bryacee, their structure is so far removed from that of Epigynose Dicotyledonce, and adherpuce of parts under pressure, is so widely diffused a phemomenon of vegetable growth that no inference can be drawn from the resemblance, suen as it is. Assuming that the diclinous and apetalous characters are but of secondary importance, and that there is no clear or useful line betreen IYypogrnose and rerigynose, then if this kind of character, fomded on the closeness or separation of the circles of the flower, be really arailable for leading distinctions, we ought in the sub-kingdom Dicovledonex to place Gymnospermx as the lowest class, Epigynose next, and Hypgyoose as the highest; but ought we not rather to berive our classes from particuiars relating to the embryo? and are we yet prepared to say that this is impossible?
He are far from being satisfied with Mrr. Clarke's view of the analogies beineen the veretable and animal kingdoms. It is no doubt true that :he total absence from plants of the sensory and motire organs limits ar opportunitics for noting differences amongst them: and with mepece to nutrition, whilst animals, living on crganized substances, are great variety in the means for secaring what they need, plants Vol, XI.
absorting their inorganic nutriment on a plan which is mearly waifom: ia them all deprive us of another series of valuable characters upo; which in the animal kingdom we rely much. Still the nutritive ser. tem of ghants displays very important varieties, some of which desers more minute study than they have yot received, and their reproductive system whilst essemially corresponding with that of the animal hins. dom is so wonderfully raried as of itself alone to be almost sulficieat for a good system, athough we can by no means admit the wistom of refusing the aid of organs commected with motrition where we find thens affording clear and constant characters. Mr. Clate fimls an analox: between Actiniadre and phanerogamons plants, which if it is any thims beyond the superficial resemblanees so often observable in nature must be very rague and gencral. Me hinks indeed that a lenf is a trur branch and amalogous to the limb of an animal, but assuredy there is no analgey between the branch or limb of a phent and the limb of :! animal, the former is the growth of a bud attached to, but in erere respect resembling the parent stem and having, like it, leaves specin?!. organized for their pecuiar function. In truth if we would see an: relation between an animalis limb and a lear it must be, thouch the: but slight, by carefully distinguishing the leaf from the brameh: the inference from the monstrosity of a cabbage leaf is very far fetcle, ama unsatisfactory. Actiniade belong to a grat series of animals made uf of a defuite number of mercsomes each supplied with all the vital organs as if so may separate simple animals had been comprasefl into complete union round a common axis thus becoming a single individual, their fower like aspect results from this arrangement. I fiower is the reproductive system of a phant, formed by a modifintion of its leafy organs, which by the supmession of the axis are in that case brought into successive circles. Is there any more than a sutpebicial resemblance, uncomected with structural amagries, between the two?

But we have not yet touched upon the really important part of Mr. Clarke's work. We cannot but feel that he has himself given very :sufficient exphantion of his meaning and of the way in which he arme at his conchasions in respect to the Procarpous and Weterocaryons characters, and we need alse to be better informed as to the theortice! grounds on which he rests the importance of these characters. Thy may be very important and they form a fit subject for investigation Thus far we chinfly juige of then by their results which by no means
always agree with our feeling of what is natural, which howerer is only the general effect of previous judgments and impressionsocurring withont reference to this riew of the subject, and is only worth anything so far as our own previous julyments rested on clear and solid characters which it would not be easy to overbalance by cther riews of the matter. It seems reasonable in such a ease that we shouhd await further knowledge and study before we presume to prononnce any judement, but we think it would have been better if the anthor had explained and defended his ideas more fully. We should lihe also a fuller explamation on the subject of the position of the raphe, we mean as to the theoretical gromms for the special importance attached to it, and the proof that can be given of its intimate comection with natural grouping. The elahorate tables given by the autior form a most intersting study to any one desiring to understand the aftinities of plauts. Being the chief part of the work they have been allowed to gise the book a peculianty awkward shape making it a real dithoulty to read it. It is howerer worth reading and studying and we hoje it will meet with attention from those who are in a position to form the best estimate of it.

In refcrence to the table of Monocetyledonere or Endocgens, we may state that the leading dirision into Exorhizal and Endorhizal appeared tw as a priori a good one, since it wasonce supposed that all Monocoty ladonese were endorhizal, aud when it was observed that many of them were exomizal, it wonld naturally be concluded that these latter or proached the Dicotylelonce, and were more highly developed than the others, and this idea wouk correspond well with the facts, but for tie decision at which our anthor has ultimately arrived respecting famacta, which he phaces among the exoriazals, whilst we feel irarsithly compelled to wive it a position near the grasses. Can he le wroug on this point, respecting which he seems to hare hesitated long? If not, such an anomaly of structure throws doubt on the value of i:e character. There are few characters more important than V Enetiom, when it affords defmite results. Now all palms, whether pinmely or palmately reined, have straight reins, simple with the least pasible cross comection. Arals, on the contrary, to which Mr. Clark beileves the palms allied, have a complex renation, showing an aproach towards the boundary of Monocotyledonex, only their lowest forms approximating to simplicity and parrallelism of venation. Com. pariag palms with grasses, the largest grasses approach to their aspect.
the bractes among the flowers form a striking point of resemblate corresponding with the glumes of Graminacte; in Cornucopix we hane even a grass in which the lowest bracte, almosi envelopes the spike of flowers as in palms. Palms have only two fertile carpels, the third being aborted sud not a few have but one seed as in grasses where ti.e two styles and stigmas are conspicuous. Altogether we know of nu surgested relation of palms which can be compared in probability ia every possible view with that to grasses, and we feel sure that botani-s will not be persuaded to abandon it. Otherwise, we should acecpt at once as the classes of Monocotyledoner, Endorhizere, Exorhizea and Dictyogene, for we still hold to Lindley's clars which in Mr. Clarhe: arrangement may be considered as occupying the highest place though only as an alliance of the Exorhizex.

In his preliminary remarks in the section on the "value of other floral characters," "c., besides the Lpigynous, and Procarpous and Ifcterocarpous, we meet with the following paragraph relating in Irregularity:-_" The occurrence of irregular tlowers, where they are irregular in the highest degree, especially if the ovary is reduced 0 one carpel, and that anterior, and the raphe where the ovule is pe!dulous is next the placenta, is beyond doubt also a character incies:ing a comparatively higher degree of development, even though it may not extend through the whole of the family, and it may be a question if there is any material exception to this peculiarity of stras. ture as a gude to affinity, as far as regards subdivisions. On thes principles the Proteacece and Leguminose and their allies, in whed the Apocarpous ovary oecurs in conjunction with the irregular thma * * * * winl deciádly take their places as the hightsi developed forms of plants."

We confess that we cannot see the force of this reasoning. Irres. larity, as is generally agreed, and is certainly proved by examples i return to regularity from increased nutriment, especially in termind flowers, is due to unequal distribution of nutriment-that is to sa!, less development of some organs than of others in the same circle-and how it should mark general increased development we cans: conceire.

There are perhaps few alliances without one or more irreguir orders, but are inese deemed superior in any sense to the revic... ones? Lindley assigns to the Dapinal alliance, in which he places i'r. teacer (which, however, is insulated by Mr. Clarke) a solitary cary,
but Thymelacese have certainly two or more carpels, thongh only one seed; Lauracere, as Endlicher perceived, have three; Cassythacea, two or three; and the fact of their being so pressed togecther as to form or perfect only one seed, marks a lower type. The solitary carpel of Proteacex is due to great irregularity with close pressure ; and even if this order is assumed to have no cumection with Daphomales, the single envelope, and the close adherence upon it of the stamens, are characters opposed to high development. Granting that the Perigynose character is not separable from the Hypogynose for any useful purpose, it still indicates partial union of some of the floral circles from uear position and some amount of pressure. We presume then, that if the Hypogynose structure is higner than the Epigynose, the highest forms are those which are most completely hypogynose, having all the organs and circles distinct, and that all degrees of uuion place the plants displaying them somewhat lower, a principle which certainly places Leguminosæ below Ranunculacere. Besides, must we not always place full development of all parts rudimentally existing above the partial abortion of certain circles, and will not this compel nis to set Spiraea above Leguminosæ, and generally the regular above the nearly related irregular?
We should feel detailed criticism of the tables to be for as at least premature at present, but there are some of the combinations which we have much difficulty in conceiving to be true, and the evidence does not yet come before us with any appreciable force. We want, as a preliminary step, an attempit to estimate the real meaning or relation to vegetable structure of every character that has been much used by any eminent systematic botanist since the triumph of the natural method, with an examination of its comparative value, as dramn both from reasouing on the importance of organs and modes of considering them, and from experience of the results of their use. We should thus know whether the value assigned to a character rests on good scientific principles; and though many poins might for a time remain unsettled or liable to question, we could not but feelour foundations to be more solid, and our bulding more symmetrical and more promising of satisfaction.
In the meantime, nothing can centribute more to clearness of ideas thay simple, intelligible, and strictly accurate terminology. It is, we think, quite time that the expressions, Monopetalous and polypetalous, should gire place to beter terms. We never liked, as a matter
of taste, and from a prefercnce for simplicity in convering an lilea, gamopetatous and dialypetulous, though they are greatl, to be preferred to the old terms; but why not use Synpetalous and apopetalous, with the correspouding terms for the several circles of the flower, observing, however, that Syncarpons, which is often employed, is only truly applicable to the case of the union of whole fruts, as in our pretty American twin-berry (Mitchella repens). To express union or separation of the portions of the fruit of one flower, w. must employ Syacerpellous, aposarpellous, and let us be rid, except in Limean phrascology, of the term pistil, which is so speciatly liable to risconception and abuse. fgrain, the phan strongly insind upon by Lindley, of naming all Orders from a type genus by an aitjective ending in acee, has such obrious and decided advantages, that we are almost disposed to be angry with those botanists who will sill obstimately use the other terminations, given accidentally, or from regard to somm only, before this improvement was thought of, and will cling to Umbellifera, Crucifore, dic., when the better methoil is before them. Mr. Clarke is a simer in these matters, and shoiad not think them beneath his attention. We have last spoken of an improrement in the expression of Botanical affinities, by Dr. Lindley, but 'at great botamst was, in other matters, an adherent of the termalogy which expressed the mistaken ideas of preceding times to an exicat which greatly injures his descriptions of plants, amd which is very consjicuons in his otherwise useful work, "Descripise Botany.' We part, for the present, from Mr. Clarke's book, wi!h the observation that we believe there as much good in it, and that it well deserves study; but our own fath is in finding out the leal:u; types of recretable strueture, and subdividing each of these so as: have groups amalogous with each of the primary types, and so on in farther subdirision; whilst the attempt to show the derivation of cach section, and to trace the varions groups to their origin in !'wer forms, we must declare to be thus far utterly unsatisfactory, and to him forth no rational promise of better success in future
W. II.

Catalcgue of Birds kinown to Inhabit Western Canada, systemat:cally arrunged accorting to the method adopted in the Museun'g the Emrorsity of Tormono. By the Rev. W. IIncks, F.L.S., E:., Professol of Natural Mistory, University College, Toronto.

Last of Birds olserved near ILamilton, C.IW., by Thomas McI'wraith. Extructed from the procecilings of the Lissex Institute. Fol. I. 1866.

We have, here, two catalogues of the birds of Western Canada: one as general as it could be made from the information within the author's reach; the other professedly local, and the expression of actual personal knowledge and observation, yat the latter reaches $2-11$ species, including several not found in the more general list, which only numbers 27 l . It is much to be reareted that Mr. Mcllwraith's list was not, like an earlier one, which he communicated to this journal, some years since, among the materials accessible in compiling Professor IInchs' list, whin it was hoped might be a useful aid to lovers of ornithology, throughout the country. For their conrenienec, we will here erive the names of the birds added by Mr. Mellwraith, which n.ay be inserted in their places in the more general eatalogue. But we must first notice the difficulty of comparing the two lists, from the different order in which the birds are phaced, and the great difierence in the names empluyed.

The writer of this article being the compiler of one list, has, of course, no idea of adding to its authority by any expression of approbation here. He performed a rery himble labour, at the reyuest of the Board of Arts and Manufactures, to assist in the public object of sending to the Paris Exhibition as good a sct as the time would allow of being collected of the feathered inthabitants of Tiestern Canada. Ile employed the arranyenent and nomenclature to which he is accustomed, and which seemed to him most likely to be of general use. In immediate reference to Mr. Mcllwraith's list, be adds, now, a few words of explanation. At the her 1 of his own satalorue is a key to its arrangement. 'Yo assist comparison, he will hare attempt to explain Dr. Baird's plan, which is followed by Mr. Mellwraith. Neither of the two, it will be observed, is that found in ordinary ornithological works. First, Dr. Baird begins with the birds of prey-our 2nd. order-and with the family Vulturidee-our srd. family in this order-which, indeed, does not appear in our catalogue, as we learn, for the first time, from Mr. Mellwraith's jresent list, that Cathartes aura, the turkey-buzzard (his only Vultire), risits Canada occasionally. We place the Eagles first, as the most powertul and specially Raptorind gronp; then the Falcons; then the Viltures; and last of all the Ouls. There are, also, differences
in the order of the sub-families. Dr. Baird, not only like Carie:puts Insessores, the perching birds, after the birds of prey ; but, also, after the order Scansores, and not receiving Cuvier's Suborders us Insessores; he adopts a new set, which would mislead the student of ordinary ornithological works. We believe it comes very near thesystem explained by the editor of Orr \& Co.'s English edition of Curier, in his additions to the text. Thus, we have Lumming-birds, Svifts, represented by our chimney-swallow, Night-hawks, King-fishers, and wen the general body of perching-birds, amidst which are introduced the swallows. The remaining orders occur in the usual series: Gallinaceous birds, Waders, Swimmers. We camo: now criticise this system, or bring it into comparison with our orn. We only wish to give the reader some aid in comparing the different lists. But, the chief difficulty will ve found in the names employed. Dr. Baird assumes that species must not be supposed to be common to Europe and America; hence, Aquila chrysetos becomes A. Canadensis; Circus cyancus, C. Mudsonius; Falco peregrinus, Falco anatum, Se., \&e.; besides which, smal sections, or subgenera, are all distinguished by generic names, in:creasing their number in a mamer very trying to the memory; and which, in fact, nearly takes away the use of generic groups; besides all which, there are a few instances in which the decisions of Dr. Baird, and Dr. Geo. Gray, respecting the generic names proper to be adopted, differ. It is, then, scarcely to be wondered at that so lares a proportion of our birds appear under different names, in lisis derived from such different authorities. With great respect for Dr. Baird's scientific character and acquirements, we think a wise discretion is exercised in preferring Dr. Gray's names for our Canadian use. We know that some excelient practical ornithologists amongs us think that even he has carried sub-division too far ; but few wonld be satisfied with the vague gencric characters of earlier times; and. it is desirable to follow some widely-recornized authority. Looking around, we can find none better than Dr. Geo. Gray.

We may now give the additions to our general list of the birds of Western Canada, derived from Mr. Mcllwraith's latest Hamilton list :

Ord. Insessores. Subord. Dentirostres.
Fam. Laniide: : 1. Myiobius Traillii. Traill's Fly-catcher.
Subord. Conirostres.
Fam. Sturnida: 2, Xanthoruis zarius. The orchard oriok.

Ord. Raptores. Fam. Aquilidx.
3. Buteo Bairdii. Baird's buzzard.
4. Buteo elegans.

Fam. Vulturide.
5. Cathartes aura. The Turkey-buzzard.

Ord. Grallatores. Fram. Charadride.
6. Charadrius hiaticula. The piping plover.

Ord. Natatores. Fam. Laridæ.
7. Stercorarius pomarimus.
8. Ilydrochelidon fissipes.

Fam. Anatidx: 9. Anser frontalis.
Fam. Alcidx: 10. Eiria grylle.
11. Uria Troile.

U: these eleren species, Xanthornis varins was known to us as Canadian, but accidentally omitted. We hesitated about the two species of Uria, but did not consider that we had certain evidence. Both species of Buteo, and the Anser, we still regard as uncertain az to their being good species.

We add, here, that in our list, This falcinellus should have been I. guarauna, which is equiralent with I. Ordii, of Mr. Mcllwraith's list. Phaleropidæ should have been made a family, and Alcidæ occurs twice, being, in the first instance, a misprint for Colymbides Divers. We shall be glad to record any further additions to the list of our Native birds.

Mr. Mcllwraith deserves the gratitude of all Canadian ormithologists. W. II.

A short treatise on the Milk-wced, or Silk-w.ced, and the Canadian netile, viewed as industrial resources. By Alexander Kirkwood. Read before the Ottawa Natural History Society, 15th. Feb., 1867. This little pamphlet deseryes the attention of all who are interested in the growth and prosperity of this Frovince; and, especially, of all who are engaged in agricultural pursuits. It is strictly a practical treatise, giring instructions for the culture of the plants, and preparation of the fibre, as well as showing the reasons for believing in their ralue as textile materials. The subject well deserves attention, and we hope Mr. Kirkwood's treatise will obtain a large circuation, ani, exercise a useful influence.
W. H.

ON TITE SUURCE OF MCSCULIR POWER

13Y EDW゙ARD FMANKLAND, MH.D., F.R.S.

The following pares comprise the most irportant parts of a lecture lately delivered, by Professor Frankland, at the lioyal Institution. The subject is one which has, for some time past, attracted the atten)tion of chemists and physiologists, as it had become evident that our old ideas on the matter were incorrect.

Mr. Frankland has, it appears, fully proved this by actual experiment; and the paper is so interesting, both to chemists and pinsiolo. gists, as well as in an economic point of view, that we present a fiel! extract to the readers of the Canadian Journal. II. C.

What is the source of muscular power? Twenty years ago, if this question had been asked, there were but few philosophers who wonid have hesitated to reply, "The source of muscular power is that pe. eubiar force which is developed by living animals, and which we term the vital force." but the progress of scientific discovery has rendered the view implied in such an answer so utterly untenable thri, at the present moment, no one possessing any kaowledge of phrsiesi science wolld renture to return such a reply. We now know that an saimal, however high its organization may be, can no more generat, an amount of force capable of moring a grain of sand, than a stone can fall upwards or a locomotive drive a train without fuel. thl that such an ammal can do is to liberate that store of force, or potentu? eneryy, which is locked up in its food. It is the chemical change which food suffers in the body of an animal that liberates the prest: ously pent-up) forces of that food, which now make their appearance in the form of actual eneryj-as heat and mechanical motion.

From food, and food alone, comes the matfer of which the amimil boily is built up; and from food alone come all the different kinds of physical force which an anmal is capable of manifesting.

The two chief forms of force thus manifested are Ifeat and Whsculue motion or mechanical uork, and these have been almost unversally traced to two distinct sources-the heat to the oxidation of the food, and the mecilanical work to the oxidation of the muscles.

This doctune, first promulgated, the speaker beliesed, by Liebis, orcupies a prominent position in that philosopher's justly celebrated 'Chemico Physiolorical Essays.'

In his work entitled 'Die organische Chemie in ihrer Anwendung auf Physiologie und Pathologie, Branschweig, 18t?,' Licbig says, "All experience teaches that there is only one source of mechaniend power in the organism, and this source is the transformation of the living parts of the body into lifeless compomds. . . . This transformation occurs in consequence of the combination of oxygen with the substance of the living parts of the body." And again, in his 'Letters on Chemistry, 1551,' p. 366, referring to these living parts of the body, he says, " All these organized tissues, all the parts which in any way manifest force in the body are derived from the albumen of the blood; all the albumen of the blood is derived from the plastic or sanguineous constitaents of the food, whether animal or vegetable. It is clear, therefore, that the plastic constituents of food, the ultimate source of which is the vegetable kingdom, are the conditions essential to all production or manifestation of force, to all these effects which the animal orgamism produces by means of its organs of sense, thought, and motion." And again, at page $37-4$, he says, "The sulphurized and nitrogenous constituents of food determine the continuance of the manifestations of forec ; the non-nitrocenous serve to produce heat. The former are the builders of organs and organized structures, and the producers of force; the latter supo port the respiratory process, they are materials for respiration."

This doctrine has since been treated as an almost self-crident truth in most physiological text-books; it has been quite recently supported by Ranke ; and, in his lecture 'On the Food of Man in relation to his Useful Work, 1865,' Playfair says, page 37, "From the considerations which have preceded, we consider Liebig amply justified in riering the non-nitrogenous portions of food as mere heat-givers. . While we have been led to the conclusion that the transforma:ion of the tissues is the source of dynamical power in the animal." At page 30 he also says, "I agree with Draper and others in considering the contraction of a muscle due to a disinteration of its fhrticles, and its relaxation to their restoration. . . . All these; facts prove that transformation of the muscle through the agency of

[^17]oxygen is the condition of muscular action." Finaliy, in a masterly review of the present relations of chemistry to animal life, published in March last,* Odling says, page 98, "Sceing, then, that muscular exertion is really dependent upon muscular oxidation, we have to consider what should be the products, aud what the value of this oxidation." . . . And again, page 103, "The slow oxidation of so much carbon and hydrogen in the human body, therefore, will always produce its due amount of heat, or an equivalent in some other form of cnergy ; tor while the latent force liberated by the combustion of the carbon and hydrogen of fat is expressed solely in the form of heclt, the combustion of an equal quantity of the carbon and hydrogen of volunary muscle is expressed chiefly in the form of motion."

Nevertheless, this view of the origin of muscular power has not escaped challenge. Immediately after its first promulgation, Dr. J. 1. Mayer wrote, \dagger " A muscle is only an apparatus by means of which the transformation of force is effected, but it is not the material by the chemical change of which mechanical work is produced." IIe showed that the $I \bar{j} \mathrm{lbs}$. of dry muscles of a man weighing $1 j 0$ lus. would, if their mechanical work were due to their chemical change, be completely oxidized in 80 days, the heart itself in 8 dars, and the ventricles of the heart in $2 \frac{1}{2}$ days. After endeavouring to prove by physiological arguments that not one per cent. of the oxygen absorbed in the lungs could possibly come into contact with the substance of the muscles, Maycr says, "The fire-place in which this combustion goes on is the interior of the blood-vessels, the blioul however-a slowly-burning liquid-is the oil in the flame of life. . - . Just as a plant-leaf transforms a given mechanical effect, light, into another force, chemical difference, so does the muscle produce mechanicsl work at the cost of the chemical difference consumed in its capillaries. Heat can neither replace the sun's rays for the plant, nor the chemical process in the animal : every act of motion in an animal is attended by the consumption of oxygen and the production of carbonic acid and water; crery muscle to which atmospheric 0 aygen does not gain access ceases to perform its functions."

But Mayer was not the first to conceive this riew of muscular action. Nearly two hundred years ago, a Bath physician, Dr. John

[^18]Mayow,* distinctly stated that for the production of muscular motion two things are necessary-the conveyance of combustible substances to the muscle by the blood, and the access of oxygen by respiration. He concluded that the chief combustible substance so used was fat. A century before Priestley isolated oxygen, Mayow was aware of its existence in the air, in nitre, and in nitric acid; he knew that combustion is supported by the oxygen of the air, and that this gras is absorbed in the lungs by the blood, and is absolutely necessany for muscular activity.

For two decades this doctrine sank into oblivion; and it is only within the last two years that it has been again adranced, chiefly by Haidenhain, \dagger Traube, and, to a limited extent, by Donders. \ddagger
Experimental evidence was, however, still wanting to give permanent vitality to the resuscitated doctrine; for although the laborions and remarkabi.. investigations of Voit!! and of Edward Smith§ point ummistakably in the direction of Mayow and Jiaur's hypothesis, yet the results of these physiologists were not sufficieatly conclusive to render the opposite view untenable. This want of data of a sufficiently conclusive character has been supplied by a happily conceived expriment undertaken by Fick and Wislicenus in the autumu of last rear, and described in the 'Philosophical Magazine,' vol. xxxi. p. tis. In the application of these data, however, to the problem now under consideration, one important link was found to be wanting, viz. the amount of actual energy generated by the oxidation of a given weight of muscle in the human body. Fick and Wislicenus refer to this missing link in the following words:-"The question now arises what quantity of heat is generated when muscle is burnt to the products in which its constituent elements leave the human body through the lungs and kidneys? At present, unfortunately, there are not the experimental data required to give an accurate answer to this impor-

[^19]tant question, for neither the heat of combustion of muscle nor of the nitrogenous residue (urea) of muscle is known." Owing to the want of these data, the numerical results of the experiment of Fick and Wivicemus are rendered less conclusive against the hypothesis of muscle combustion than they otherwise would have been, whilst similar determinations, which have been made by Edward Smith, Mande. ton, llayfair, and others, are even liable to a total misinterpretation from the same canse.

The speaker stated that he had supplied this want by the calorimetrical determination of the actual energy evolved by the combustion of muscle and of urea in oxyen. Availing himself of these data he then proceeded to the consideration of the problem to be solved, the present condition of which might be thus summed up:It is agreed on all hands that muscular poner is derived exclusively from the mutual chemical action of the food and atmospheric oxyen; lat opinions differ as to whether that food must first be converted into the actual organized substance of the muscle, before its oxidation can sive rise to mechanical force, or whether it is not also jossitie that muscular work may be derived from the oxidation of the fend, which has only arrived at the condition of blood and not of organizal mawcular tissuc.

The importance of this problem can scarcely be overrated; it is a comar-stone of the physiological edifice, and the key to the phemoneena of the nutrition of animals. For its satisfactory solution the following data require to be determined :-
lst. The amome of force or actual energy generated by the oxititigin of a given amomet of muscle in the body.

2m. The mount of mechanical force exerted by the muscles of the body during a given time.

3rd. The quantity of muscle oxidized in the body during the sane time.

If the total amount of force inrolved in muscular action, as measureal by the mechanical work performed, be greater than that which could possibly be generated by the quantity of muscle oxidized durins the same time, it necessarily follows that the power of the muscles is not derived exclusively from the oxidation of their own substance.

As regards the first datum to be determined, it is necessary to agree upon some unit for the measurement of mechanical force. The unit most commonly adopted is that represented by the iifting of a
kilowram weight to the height of one metre. The researches of Joule mat Naver have comected this standmb mit with heat ;-they prove that the force required to elevate this wetsht 4\%. times will, when comerted into heat, raise the temperature of an equal weight of water $1^{\circ} \mathrm{C}$. If this wright were let fall from a height of ind metres, its collision with the earth would produce an anount of heat sufficient to raise the temperature of 1 kilogram of water $1^{\circ} \mathrm{C}$. The same heating effect would also of course be produced by the fall of 425 kilograuns through 1 metre. This standard of force is termed a mefrekilogram; * and 495 metrekilograms are equal to that amount of lieat which is necessary to raise the temperature of 1 kilouram of water through $1^{\circ} \mathrm{C}$. If then it be found that the heat evolved by the combustion of a certain weight of charcoal or masele, for instance, raises the temperature of ! kilogram of water through $1^{\circ} \mathrm{C}$., this means, when translated into mechanical power, 12 on metrekilograns. Agrin, if a man weighing ib kilograms cimbs to a height of 1,000 wetres, the ascent of his body to this height represents 64,000 metrekilograms of work; that is, the labour necessary to raise a kilogram weight to the height of 1 metre 6 b, gife times.
The autho then procecds to describe the mamer in which he determined the ac al eneroy developed hy one gram of each the stustaice in the following list, when burnt in oxyere:-

The heat erolved was determined by means of a calorimeter of pecular construction; the substance being burnt ly means of chlorate of potassa, and various corrections introduced.
It is evident that the ahove determinatior of the actual energy dereloped by the combustion of muscle in oxygen represents more than the amount of actual cuergy produced by the oxidation of muscle within the body, because, when musele burns in oxygen its carbon is converted into carbonic acid, and its hydrogen into water; the mitrogen being, to a great extent, evolved in the elementary state;

[^20]whereas, when musele is most completely consumed in the body, the products are carbonic acid water and urea; the whole of the nitrogen passes out of the body as urea-a substance which still retains a considerable amount of potential energy. Dry muscle and pure cnergy yield, under these circumstances, almost exactly one-third of their weight of urea, and this fact, together with the above determination of the actual energy developed on the combustion of urea, enables us to deduce with certainty the amount of actual energy developed by muscle and albumen respectively when consumed in the human body. It is as follows:-
Actual energy developed by one gram of each substance uhen consumed in the body.

Name of substance driet at $100^{\circ} \mathrm{C}$.	Hent units. (llean.	Metrekilourams torce. (Mcan.)
Berf Muscle purified by ether Purified Abumen	$\begin{aligned} & 4369 \\ & 4263 \end{aligned}$	$\begin{aligned} & 1848 \\ & 1843 \end{aligned}$

The second point, viz., the amount of mechanical force exerted by the muscles of the body during a given time, was ascertained fro:m the experiments of Fick and Wislicenus, during their ascent of the Fanhorn, from the Lake of Brienz. The third point, viz., the amount of muscle oxidized in the body, as ascertained from the experiments of the above-named observers, on the quantity of nitrogen secreted in the urine, both before, during, and after the ascent.

From the above data the following table was constructed:-

Weight of dry Muscle cousunzed	$\frac{\text { Fick. }}{\frac{\text { Grams. }}{37 \cdot 17}}$	Wislicetas. Grams. 37.0
Actual energy capable of being produced by the consumption of $37 \cdot 17$ and $37 . \%$ grams of dry Buscle in the body	$\begin{aligned} & \text { rekilograr } \\ & 63,69 \end{aligned}$	63.376
Measured work performed in the ascent (exterua! work) Calculated circulatory and repiratory work per formed duriug the ascent internal work)	129,096 30,541	148,656 85,631
Tuta! ascertainable work performed . .	159,637	181,2へ

It is thas evident that the muscular power expended by these genthemen in the aseent of the Faulhorn could not be exclusisely derived from the oxidation, cither of their museles, or of other nitrogrnous constituents of their boties, since the maximmm of power capable of being derived from this source even under very favourable assumptions is, in both cases, less than one-half of the work actually performed. But the deficiency becomes much greater if we take into consideration the fact, that the actual encrey developed by the oxidainm or combustion camot be wholly transformed into mechanical work. In the best constructed steam-engine for instance, only i'v of the actual energy developed by the burning fuel can be obtained in the fom of mechanical power; and in the case of man, Melmholtz estimates that not more than ! of the actual enerey developed in the body can be made to appear as external work. The experiments of Haidenhain, however, show that, under favourable circumstances, a muscle may be made to yield in the shape of mechanical work as much as one-lanti of the actual enerey developed withici it, the remander taking the form of heat. Taking then this highest estimate of the propertion of mechanical work capable of being got out of actual energer, it becomes necessary to multiply by 2 the abore numbers representing the ascertainable wotk pertormed, in order to express the actual energy inve ed in the production of that work. We then ret the following a mparison of the actual energy capable of being dercloped by the amount of muscle consumed, with the actual energy necesssary for the performance of the work executed in the ascent of the Fauhorn.

-.-. - -- -- -- - - - - - - - -	Fick.	Wislicenus.
	Metrekilograms.	Matrekilograms.
Actual energy rapable of being produced by		
Muscle metammornusis.	6.9690	68, 806
Actual energy expended in work performed .	319,2\%4	368,574

Thus, taking the average of the two experiments, it is evident that searcely ${ }^{\text {th }}$ of the actual eneryy required for the worle performed could be obtained from the amount of muscle consumed.
Similar though not quite so conclusive results were obtained from experiments made on prisoners engaged in treadmill labour, on miliarr prisoners engaged in shot drill, and on various kinds of labourers.

We have seen, therefore, in the above four sets of experiments, in. terpreted by the data afforded by the combustion of muscle and urea in oxygen, that the transformation of tissue alone cannot account for more than a small fraction of the muscular power dereloped by animals; in fact, this transformation goes on at a rate almost entirely independent of the amount of muscular power developed. If the mechanical work of an animal be doubled or trebled there is no corresponding increase of nitrogen in the sccretions; whilst it was prosed on the other hand by Lawes and Gilbert, as early as the year 185.t, that animals, under the same conditions as regarded exercise, had the amount of nitrogen in their secretions increased twofold by merely doubling the amount of nitrogen in their food. Whence then comes the muscular power of animals? What are the substances which, by their oxidation in the body, furnish the actual energy, whereof a part is converted into muscular work? In the light of the experimental results detailed above, can it be doubted that a large proportion of the muscular power developed in the bodies of animals has its origin in the oxidation of non-nitrogenous snbstances? For whilst the secretion of nitrogen remains nearly stationary under widely different degrees of muscular exertion, the prodaction of carbonic acid increases most markedly with every augmentation of muscular work, as is shown by the following tabulated results of E. Smith's highly important experiments regarding the amount of carbonic acid evolved from his own lungs under different circumstances.*

Excretion of carbonic acid during rest and muscular exertion :-

It has been already stated as a proposition upon which all are agreed, that food, and food alone, is the ultimate source from which muscular power is derived; but the above determinations and considerations, the speaker believed, prove conclusively, firstly, that the non-nitrogenous constituents of the food, such as starch, fat, \&cc., are the chief sources of the actual energy, which becomes partially trans-
formed into muscular work; and secondly, that the food does not require to become organized tissue before its metamorphosis can be rendered available for muscular power; its digestion and assimulation into the circulating fluid-the blood-being all that is necessary for this purpose. It is, however, by no means the non-nitrogenous portions of food alone that are capable of being so employed, the nitrogenous also, masmuch as they are combustible, and consequently capable of furnishing actual energy, might be expected to be available for the same purpose, and such an expectation is confirmed by the experiments of Savoy upon rats,* in which it is proved that these animals can live for weeks in good health upon food consisting-almost exclusively of muscular fibre. Even supposing these rats to have performed no external wurk, nearly the whole of their internal muscular work must have had its source in the actual energy developed by the oxidation of their strictly nitrogenous food.
It can searcely be doubted, howerer, that the chief use of the nitrogenous constituents of food is for the renewal of muscular tissue; the latter, like every other part of the body, requiring a continuous change of substance, whilst the chief function of the non-nitrogenous is to furnish by their oxidation the actual energy which is in part transmuted into muscular force.
The combustible food and oxygen coexist in the blood which courses through the muscle, but when the muscle is at rest there is no chemical action between them. A command is sent from the brain to the muscle, the neryous agent determines oxidation. The potential energy becomes active energy, one portion assuming the form of motion, another appearing as heat. Here is the source of animal heat, here the origin of muscular power! like the piston and cylinder of a steam-engine, the muscle itself is only a machine for the transformation of heat into motion; both are subject to wear and tear and require renewal, but neither contributes in any important degree by its own oxidation to the actual production of the mechanical power which it exerts.
From this point of view it is interesting to examine the various articles of food in common use, as to their capabilities for the pro. duction of muscular power. The writer therefore made careful estimations of the calorific value of different materials used as food, by

[^21]the same apparatus' and in the same manner as described above for the determination of the actual energy in muscle, urea, uric acid, and hippuric acid.

The author then appends a series of tables, showing the actual energy developed by one gram of various articles of food, when burnt in oxygen, or when oxidized in the body, together with other tables. showing the weight and cost of various articles of food required to be oxidized in the body in order to raise 140 lbs . to the height of 10,000 feet. From the first table we make the following short extract, to elucidate the concluding remarks:-

	Metrekilograms of force.
Cheese	. 1,969
Potatoes.	. 429
Oatmeal.	. 1,696
Bread Crumb	945
Beef (lean)	. 664,
White of Eggs	284
Milk	. 280
Beef Fat	.3,841
Butter	.3,077
Cabbage.	. 184
Pea Meal	1,667

These results are in many instances fully borne out by experience. The food of the agricultural labourers in Lancashire contains a large proportion of fat. Besides the very fat bacon which constitutes their animal food proper, they consume large quantities of so-called apple dumplings, the chief portion of which consists of paste in which dripping and suet are large ingredients, in fact these dumplings freqently contain no fruit at all. Egg and bacon pies and potato pies are also very common pièces de résistance during harvest-time, and whenever very hard work is required from the men. The speaker well remembers being profoundly impressed. with the dinners of the navigators employed in the construction of the Lancaster and Preston Railway: they consisted of thick slices of bread surmounted with massive blocks of bacon, in which mere streaks of lean were visible. Dr. Piccard states that the Chamois hunters of Western Switzerland are accustomed, when starting on long and fatiguing expeditions, to take with them, as provisions, nothing but bacon-fat and sugar, be-
cause, as they say, these substances are more nourishing than meat. They doubtless find that in fat and sugar they can most conveniently carry with them a store of force-prod ing matter. The above tables alfirm the same thing. They show that 5.5 lb . of fat will perform the work of $1 \cdot 15 \mathrm{lb}$. cheese, 5 lbs . potatoes, 13 lb . of flour or peameal or of $3_{2}^{1} \mathrm{lbs}$. of lean becf. Donders, in his admirable pamphlet - On the Constituents of Food and their Relation to Muscular Work and Animal Ireat,' mentions the obserrations of Dr. M. C. Verloren on the rood of insects. The latter remarks, "Many insects use during a perind in which very little muscular work is performed food containing chicfly albuminous matter; on the contrary, at a time when the muscular work is very considerable, they live exclusively, or almost exclusively, on food free from nitrugen." Me also mentions bees and butterflies as instances of insects performing enormous muscular work, and subsisting upon a diet containing but the merest traces of nitrogen.
Tre thus arrive at the following conclusions :-
l. The muscle is a machine for the conversion of potential energy into mechanical force.
2. The mechanical force of the muscles is derired chiefly, if not antirely, from the oxidation of matters contained in the blood, and not from the oxidation of the muscles themselves.
3. In man the chief materials used tor the production of muscular jower are non-nitrogenons; but nitrogenous matters can also be emplored for the same purpose, and hence the greatly incressed evolution of mitrogen under the infuence of a flesh diet, even with no greater muscular exertion.
4. Like every other part of the body, the museles are constantly being renewed; but this renewal is not perceptibly more rapid during qeat muscular activity than during comparative quiescence.
5. After the supply of sufficient albuminized matters in the food If man to provide for the necessary renewal of the tissues, the best materials for the production, both of internal and external work, are :0n-nitrogenous matters, such as oil, fat, sugar, starch, gum, \&e.
6. The non-nitrogenous matters of food, which find their way into the blood, yneld up all their potential pnergy as actual energy; the ritrogmons matters, on the other hand, leave the body with a portion (one-seventh) of their potential energy unexpended.
7. The tranformation of potential energy into muscular power is neccesarily accompanied by the production of heat within the body, even when the muscular power is exerted externally. This is, doubtless, the chief and, probably, the only source of animal heat.

a Study of the cephalic disk of tee remora. [ECheneis.] From the "Conptes Renaues."

Abstract by the author of a memoir by M. E. Bandelot, presented to the Academy by M. E. Blanchard.

The disk on the head of the Remora has been, from the most remote times, an object of interest to observers. Among modern Naturalists, some, as Voigt, and Stannius, have advanced the opinion that the disk may be regarded as the equivalent of a dorsal fin; but this mode of viewing the subject has not been supported by a rigorous demoustration, since there are certain interior portions of the disk whose relations hare not been determined; moreorer the mechanism by means of which the attachmentt of the disk is accomplished, has not jet been analyzed and explained in a satisfactory manner. The researches which I have tie honor to submit to the Academy, have for their object the solution of these still obscure problems. The disk of the Remoras occupies, as is well known, the upper surface of the head. Its figure is that of a much elongated oval, of which the border, a little elevated, consists of a fold of the skin so disposed as to form around the organ a sort of fexible case. The upper surface of the disk is lerel, it preseats on each side of the median line, a series of little transerse lamine, nearly parallel, and slightly inclined backward, so as partly to cover each other like the laths of a Venetian blind. Between these folds are as many corresponding empty spaces.
Excepting the border, the disk is supported by an internal frame-work formed by a considerable number of small bones, disposed in a series of similar segments regularly succeeding one another from behind formard. Each segment consists of the following pieces, four in number: one interspinal bone, two radial bones, and an articular bong element.
The interspinal bone is a small unpaired piece, occupying the median line os the lower face of the disk, of the form of a sharp spine with its point downmards, its aspect in every respect bringing to our minds the interspinal bones which support the rays of the fins; it is of the same natuee with them.
The rass are represented by two little bony stems set across in a horizontal plane and articulated at their base on the level of the median line, with the corresponding interspinal bonc. Each of these stems, taken alone, corresponds with a half-ray of a fin, this half, instend of remaining closely attached to its fellow in a vertical plane, being withdrawn from it so as to lie down siderays.
The articular bone element is an unpaired, symmetrical bone, extended across the disk, of which it occupies the whlle width. It consists of a rery narrom middle portion, and of two lateral portions, enlarged into lamina, or quadrilateral plates. From the upper surface of these latter, protrudes a little lamellose
apophysis directed backwards (the articular apophysis) under which is fixed the extremity of the ray belonging to the same segment.

This bony element, the nature of which has been hitherto misunderstood, must be regarded, according to my view, as the homologue of the little bony nodule found in the fin at the sepanation of the bases of the two parts of each ray.

As to the mechanism by means of which the attachment of the disk is accomplished, it is easily apprehended when one has considered the arrangement of the parts of this little apparatus. Each ray (of the transformed fin) in fact serves as a support for one lamina of the dish. It is capable of moving upon its anterior extremity as if upon a hinge, and consequently of inclining forward or backward, the lamina to which it belongs. This double movement is secured by means of little muscles which are inserted, at one extremity, on an apophysis at the base of the rays projecting at the lower face of the disk, at the other on the interspinous bones of the neighbouring segments. These muscular bundles correspond with the clevators and depressors of the rays of the fins.

It is easy to demonstrate by a very simple geometrical construction, that vhen the lamellæ of the disk are erected, the space which they enclose is increased; the air included is consequently rarified within this space, and as all communication with the exterior is stomped by the cutaneous fold which borders the disk an effect of suction is produced which may be, in erery respect, compared with that of the cupping glass.

ENTOMOLOGICAL SOZCIETY OF GANADA:

An ordinary meeting of this society was held at the residence of the President, J H. Sangster, Esq., M.D., Yorkville, on Friday, March 1st, at 7 o'cloch, p.m. Frequent showers of rain, accompanied by lightning-an unusual circumstance so carly in the jear-rendered the attendance rery limited indeed. The President took the chair, and the minutes of the Annual General Meeting of 1866, and a Ficld Mecting held on the 1 st of June, were read and adopted; the Fenian said, which called away many of the members to their duty as rolunteers, and the threatened attack of cholera, which engrossed the attention of others, prerented any subsequent mectings being held.
A communication was read from the Ion. James Cockburn, Solicitor General West, in reply to an application for a grant from Government in aid of the fusds of the Society, stating that the Finance Minister cauld not recommend any fresh grants for scientific objects, as the country was on the eve of Confederation. It ras rcsolved that further application should be made as soon as the Confederation of the Provinces has taken place.

Mr. W. H. Eluls, of University Coliege, Toronto, was proposed and unanimonsly clected an ordinary member of the Society.

To the Libzary,

From the Author,-"Synopsis of the Diptera of the Eastern Archipelago," and "Characters of undescribed species of Smicra (Chalcidiles)," by F. Walker, Esq., F.L.S.

From the Clebrc Brasca:-The Annual Report, President's Address, Bylaws, etc, of the Branct.

To the Cabinet,
From F. Waiker. Esq., British Museum, London, Eng. :-A box of British ama Fxotic Lepidoptera, Coleoptera, and a few other insects, received through the Snithsonian Institution, Washington, D.C.

The Secretary stated that he bad procured, by purchase, for the Lihary of the Society, the first five volumes of the Proceedings of the Entomolegical society of Pbiladelphia. anil that as soon as they came from the binder's hands: they would be phaced in the rome of the Socictr; he also stated that Mr. Suanders, Curator of the London Branch, has preparing, and expected shortly to have published for the Society, a list of Canadian Colecpiera, containing about Sub species.

The announcement of the death, by typhoid ferer, of Dr. Brackenridge Clem:ens, of Eastern Penn, on the llth of Jenuary last, was receired with mur: regret. Dr. Clemess was one of the best American Entomologists of the day, and had attained a wide repatation beyond the limits of his own countre be was the author of a most beautiful Monograph of North American Sphingida many "contributions of American Lepidopterologr," \&c., and was the only abthority on the Micro-Lepidoptera on this continent.
Mr. Bethune mentioned a few rare Lepidoptera, new to Canada, that had heen captured by members durmg the past year; among others Thecla strigusa, Ho:ris, and Lyrana pembint, Edw. by Mr. Saunders; Erebus odora, lines, hy lir. Sangster; and Philumpelus suttelitia, limes. by the Rer. Clements. The meetiag then proceeded to the examination and discussion of Sphingida, the appeintes subject for the erening. The Rev. Pro . .acks made some interesting remerks upon their classification anit that of insects in general, based upen a "atiarr system ;" Dr. Sangster exhibited a large number of rare and beautifnl specimen; and Mr. Bethume, a sliecimen of an undeternined Sphinx, captured hy Mr. lett: at Grimsby, C. W. Tweuty-eight species of this family are now known to in habit this country.

Before the close of the meeting, it was resolved that for the future ordinit? meetings of the Suciety be held on the First Friday in each month, from Septernber to Jiay inclusive, at 7 pm ; and that from May to August inclusive Fic: meetings be beld at 9 , a.m., on each second and last Saikrday of the mon: notice of the pace of meeting to be duly announced beforohand. The nex: reeting will be held at Professor Croft's, Yorkville, on Friday, April Eih, a: 7. 1.m.

After partakiug of Dr. Sangster's kind hospitality, the meeting adjomard.
C. J. S. B.

OBITUART.

THE RET. EDNARD MNCKS, D.D.
The influential positions occupied in Canada by more than one member of the
family of the late Rer. Thomas Dis Hincks, I.I. D. Professor of Ifebrew add (Hicutal languages in the Bilfast Academical Itstitution, confers an aditional inierest here on the wath of the most distinguished among his sons. Dr. Edward llincks obtained a fellowship at Trinity College, Dublin, with distinction rarely, if ever equalled, before he was twenty one. In the first honors thus obtained, he biet!y disphayed his mastery of mathematiral science. His later trinmphs turned mainly on his no leas thorough command both of the chassical and whental languages. His carly traning amid all the succial advantages of the paternal roof, no doubt tended to give this peruliar hias to his tastes, and to direct him to the tieh of his later suceerseful latours.

Dr Edward Hincks was born at Cork, in Aug. 1791. Soon after obtaining his fellowshin he took orders in the Church of England, and was presented bs his College to the Rectory of Ardtrea, which he subsequently exchanged for that of Killyleagh in the Diocese of Down. here the last forty one years of his lift were spent ; and those labours cartied ont which have won for him a firapean reputation as one of the most profound and origina phitulogists of the 19th rentury. The period in which he lived was one presenting peculiar facilities and inducements to his farourite investigations. The discovers of the fimous Rosetta Stone took place in his early youth; hat he had already obtained distinction as a philologist hefore the labours of Yound and Champollion furnished the long songht key to the mystery of Egyptian bieroblyphics. To this interesting department of philological research he now apmind his extensive knowledge: and frequently gare evidence of a rave talent for deciphering its norel characters and unknown language.

But the labours of Professor Grotefend of Gottingen had, so carly as 1802, accomplished for the cuneiform alphater of the Persepolitan inscriptiuns, what Dr. Thomas Young subsequenty did for the ancient chatacters of Egyp : and the alphabet thus partially deciphered, watangmented by the ingenious researehes of Rask of Denmark. To those discoveries, the later exphorations of Botta and tayard gave a new interest: :nd the name of Dr. Folward llincks will wer be asoweted with these of Rawlinson, Oppert, and others of the most profound European philologists who hare deroted themselves to the deciphering of the cunciform inserpations of Perspolis, Xineveh, and other ancient seats of Asiatic cir!listion. He laboured with unwearied persererance in this novel field of research: and won a reputation. especially among German scholars fur great acuteness and sagacity, combined with cantion and paticni conscientiousness. A writer in the Ahenoruin speaks from personal knowledee, of the high tems in whech he was referred to by such continental scholars as Rosiger and Ewald; and adls: " His tatent for deciphering text $=$ in manown chatacters and hansuages was wonderfal. It was applied to the stady of legutian hererlyphies, and to the inscriptions in the cuncifurm character. In this field especiably he haboiaed for years with great perseroratece and success, having been the first ii ascertan the numeral system, and the power and form of its signs, by means uf the inscriptions at Van. He was one of the chef restorers of Assyrian learning throwing grat ligh; on the lingaistic daracter and grammation structure (the hanguges represented on the Assyiau monuments." Ifis interpetations
of tiese inscriptions yere disputed for a time by men of the first class, such as ${ }^{*}$ Rawlinson and Grotefend, who had already committed themselves to other views; but we believe the principles of interpretation which he was the first to discover and explain, are now generally accepted as true and indisputable.

It is not to be overlooked, when estimating the value of Dr. Hincks' labours, that they had to be carried on, for the most part in a remote Irish village, hampered with inadequate means, and dependent wholly on indirect resources for the study of the ancient inscriptions of Egrpt and Assyria.
An Irish writer in the, Northern Whig. complains that men have been advanced to the highest offices and honours of the Church ; to bishoprics and archbishoprics, some of whom could not translate a verse of the Hebrew bible ad aperturam libri: while incomparably the most learned man in the Church, and inferior to none in personal and moral qualifications was left to die in the possession of the moderate living he had received from his Cullege nearly half a century before, Te cannot think that it would have been a wise use of the patronage of the Crown to hare hampered a scholar devoted to such engrossing researches, with the oncrous duties of a bishopric But so long as Deaneries and prebendal stalls are reserved for men like Buckland or Stanley; no fitter occupant of such conld have been found thau the deceased Irish Scholar. In London within reach of the British Museum, or placed in charge of its Egyptian and Assyrian treasures, the nation would have been amply repaid by the results to which such facilities would have given birth. As it is his literary remains are by no means slight. Many valuable papers are printed in the Transactions of the Royal Yrish Acodemy, the Royal Socicty of Literature, and the Asiatic Society: others were communicated to the British Association; in the sections of which the present writer has repeatedly met him. His profound learning seemed almost to disqualify him from dealing with a popular andience ; and it was sometimes anusing to observe the simplicity and naivete with which he would solve the difficuly suggested by some tyro, in reference to the interpretation of a Nimroud cylindei or a cunciform inscription, by a Hebress or Arabic quotation or an appeal to Zend or Sansckrit roots. Nevertheless when occasion required, Dr. Hincks could forsake his study for the arema of public life; and was known as a moderate, but consistent liberal in the political one tiuns which have of late years assumed such grave significance in Yreland, in reference to education, the franchise, and the Church itself. The courage and independence he manifested in dealing with some of those vexed questions, is believed to have been a hindrance to his promotion in the Church. He was, however, in receipt of a small hiterary pension bestowed on him in acknowledgement of his labours as a scholar. The Fing of Prussia manifested the estimation in which he was held by the philologists of Germany by conferiing on him an order of K.ighthood; and the foremost literary societies of Europe had bestowed their chicf distiactions on him.
Dr. Hincks was in his serenty-sixth year at the time of his death, Throughout his long life he had laboriously devoted his rare learning to cope with the most obstruse problems in epigraphy and philology. But with all his great attainments he was modest, simple-hearted, and kind; and has left behind may who affectionately mourn his loss on private, as well as on public grounds.

REMARKS ON TORONTO METEOROLOGICAL REGISTER POR JULY, 1RGf.

270

		 	盛	
	${ }^{\text {sopour }}$			
	－souplly	 	－	2 \vdots $+\cdots$ +- +
	¢̇1021	 	$\begin{aligned} & \pi \\ & \substack{4 \\ \hline} \end{aligned}$	3
	pordosqo mbulu！ 1 C		¢	¢ \vdots \vdots
	pontov¢о	 	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \dot{\infty} \end{aligned}$	$\ddot{\text { ¢ }}$
	$\begin{gathered} \text { otieloay } \\ \text { onofp } \\ \text { ssiox } \end{gathered}$	 $1+1++1+11+1+1+++1++1 \mid++11+1$	：	
	$\underset{\sim}{\underset{\sim}{E}}$		－	¢ $\stackrel{1}{1}$ i
	害		$4 \sum$	

[^0]: - For these, sec Mc C'rie's Jite of Knox.
 - Aulobiography and Diary of Mr. James Melville, pp. 123-4.
 \dagger Ibid, p. 67.
 - Ibid , p. 49.

[^1]: \dagger lbid., p 50. This work, to which I have referred several times, contains some raluable information regarding the condition of the Scottish Universities during the latter part of the 16 th century. The author was a nephew of Andrew Melville, and was the first regent in Scotland who lectured on Aristotle's works, not from Latin translations, but from the original (p. 54.)

 - See D. Stewart's Dissertation, p. 62, note.

[^2]: -Wodrow's Correspondence, Vol. III, p. 470.
 \dagger Philosophie Ecossaise, pp. 18-19 (3me. ed.)
 \ddagger Lectures on Metaphysics; Appendix B. (c.)
 §.Autobiography and Diary of J. Mclville, p. 54.
 \#Reid's Account of the Unversity of Glasgow in Hamilton's edition of bis Works, p. 729.
 *•Ibid, p. 730.
 \dagger †Bower's IIstory of the Universily of Edinburgh, Vol. II., pp. 71-2.

[^3]: -Siewart's Account of Reid in Hamilton's edition of Stewart's Works, Yol. X., p. 253.
 \dagger The fullest information about Stevenson that I have met with is in Bower's History of the Unitersity of Edinburgh, Vol. II., pp. 289-2sl.
 \ddagger See Reid's Intellectual Powers, Essay VI., Chap. 2.

[^4]: - Veitch's Memoir of D. Stewart, p. 25, note.

[^5]: - See Essay, Bouk II., chap. 1, sec. 1.

[^6]: * Stewart's Dissertation, pp. 350-1 (Hamilion's edition).
 ¡Sec the Leter to Miohael Ramssy, in Burton's Life and Correspondence of D. Hume, Vol. I., pp. 12-16.
 \ddagger See Advertisement to hia Inquiry Concerning Human Uirderslanding.
 § See the Treatise, Bouk 1., Chap. 1. Sect. 1.; and the Inquiry: Sect. 9.

[^7]: -See the remarkable letter to a physician in Burton's Life and Correspoidence of D. Hume, Vol. I., pp• 30-38.
 \dagger lbid.

 - See his letter to Reid, with Reid's reply, in Burton's Life and Correspondence of D. Hume, Vol. II., pp. 153-6.

[^8]: - Dissertation, p. 351 (Hamilton's Edition.)
 ¡Book I, chap. 4, sect 2. Cf, Brok 1, chrp. 2, sect 6.
 \ddagger See the third Dialogue in Wright's edition of his works, Vol. I., pp. 203-4. Ky refereaces are all to this edition.

[^9]: - T: catise, Book I., (hap. S, Sec. G.
 fibid, Wook I., Chay. 4 , Sec. 2.

[^10]: - See Intellectual Powers, Essay I., Chan. 3.
 †Siewarts Account of Reid, p. 22, a (Hamilton's edition of Reid's Works.)
 ; Works, p. 283.
 SSee the above mentioned Ietter to Dr. Gregory.

[^11]: - Berkeley's Works, Vol. I., p. 205.

[^12]: - Works, Vol. I. P.
 † lutellectral Powers, Easay II., chap. i9.

[^13]: - Reul's Works, p. 3:3a, note ; and Leclures on Metuphysics Vol. If , p. 359.

[^14]: fintellectual lowers, Essay VI., Chapters $1-7$.
 Tol, XI.

[^15]: *Intellectual Iowers, Essay V1., Chapters 5-6.

[^16]: - We refer, here, speciaily to the tramsmatation and gradual formation of species, by descent from others. Mr. Clarke may not receive Darwin's specise views as to the mode in which species arise, bit he appears to bold the doctise of their gradual growth, one out of another; which, indeed, is by no means peculiar to Darwin and did not originate with him, but is the foundation of las system, and will be resisted hy all those who view Naure as a peefect phan, proceeding from Divine intelligence, which it is the olject of our eivers: understand and interpret.

[^17]: *'Tetanus cine Physiologische Studie.' Leipzis. 1565.

[^18]: * 'Lectures on Animal Chemistry.'
 \dagger 'Die organische Bewegung in ihrem Zusammenhange mit dem Stoifrechiel.: 1545.

[^19]: * De Motu musculari,' 1681. Mayow was born in 1615 , and died 1679.
 f'Mechevische Leistung Wämeentrickelung und Stoffumsatz bei der Musbethatigkeit,' 186%.
 \ddagger As this is passing through the press, the speaker has become aware that Hessis. Latres and Gibbert advocated this doctrine in 1552 , and repeatedly since; their opinions being founded upon experiments on the feeding of catile.
 : Untersuchungen uber den Finfluss des Kochsalzes, des Kaffeés und der Muskel-bewegungen auf den Stoffrechsel, p. 150. Munich, 1860.
 § 'Phil Trans,' $15001, \mathrm{p} .747$.

[^20]: * Ifmber the cxample of the Registrar General in abbreviating the French werd gramme to giam.

[^21]: * 'Tue Lancet,' 1863, pages 381 aud 412.

