The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d^{\prime} une restauration apparaissent dans le texte, mais, lorsque cela ètait possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilieur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modifiction dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
\square Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
$\square \begin{aligned} & \text { Pages detached/ } \\ & \text { Pages détachées }\end{aligned}$
\square Showthrough/
TransparenceQuality of print varies/
Qualité ، 'ėgale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Coınmentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

THE PRINCIPLE WHICH UNDERIIES THE CHANGES IN THE NEURATION.

by a. RadCliffe grote, A. m., hlldesilem, Germant.

In developing a general view of the changes in the neuration of the lepidopterous wing, the mass of detail in any one paper may obscure, for the reader, the statement of the assumed plan of progression. This seems to be, briefly, a simplification of the longitudinal systems of veining, and attained through a process of reduction. Where this progress would interfere with the serviceableness of the crgan, the dormant tracheæ in the tegument may, in special cases, develop accessory veins, such as the humeral spurs of the Lachneids, the cross branches and extra veins in l'ineides, and, as I have suggested, the socalled precostal spur (at one time vein I. of Comstock) on the hind wings of the diurnals. The cubital and discal cross-veins may be, however, survivals of a former system of cross-veins, since we apprehend them in various stages of retrogression. But they may be also what I call sub-secondary : produced at one time to be abandoned at another. Still, this latter is a rather violent theory. It is better to adopt the view that there is a general simplification going on controlled by mechanical causes and subsidiary to the habit and changes in habit of the organism, and which includes these two cross-veins.

In this general movement the participating logitudinal veins are as follows:

The branciles of the radius.

These, on primaries, are still oftencst of the primitive number, five; on secondaries Comstock shows that the first radial branch survives some-
times as the outer margin of the humeral cell, fusing above with subcostal. The movement here is longitudinal, from base of wing outwardly to external margin. On the primaries some of the most specialized forms of Pierids and Lycienids have only three branches remaining. On the hind wings the radius is already two or one-branched; the remainder of the five primitive branches have been lost in the higher lepidoptera, but retained in Hepialus and the Micropterygides. The details of the process by which the radial branches of the fore wings have been reduced in number become apparent through a comparison of their present position in the various genera.

The branches of the media,

which, as a rule three in number, alone survive of the system, are situated between cross-vein and outer margin of the wing. The base of the median system, as shown by Comstock, has disappeared and is again only exhibited in the Tincides. This base consisted of two, at least, longitudinal veins, which traversed the discal cell, and the traces of which are now to be found in certain backward spurs which remain attached to the cross-vein on its inner side. The reduction has taken place from the base outwardly. The branches themselves move upwardly or downwardly, attaching themselves to the system of the radius or that of the cubitus; the cross-vein degenerating as a further stage in the disappearance of the median system. For this is doomed. The wing tends to divide into two halves-the radius and its system, the cubitus and its system. 'To the first belongs naturally, by position, the subcostal vein; to the latter, the anal veins. The most perfect examples of this reduction are found in the Attacine. Take our common Samia cecropia or Philosomia cynthia. Here the cell has opened, the discal cross-vein has vanished, the branches of the media have attached themselves to the radial and cubital systems, deriving their nutrition from these, and the wing is centrally opened, from external margin to base, and free from veins. It presents now a certain coincidence with the embryonal or pupal wing, which is in itself curious, but need not detain us. We must finally notice the fact, that sometimes the branches refuse to follow the attraction of the upper and underlying systems. It is the middle or second median branchlet which is decisive. When this becomes radial, it follows the first median branch and attaches itself to the radial system. When it becomes cubital, it follows the third median branch and attaches itself to the cubital system. But sometimes it remains neutral. It will
not go either way, but obstinately retains its original primitive central position. This happens in the Skippers and Noctuids. The result is that the vein becomes isolated by the disintegration of the supporting discal cross-vein, a process which is never stayed. Then the second median branch, deprived of support and nutriment, fades away. For particulars of this theory of the movement of the median branches, see various articles issucd by me in the years 1897 to 1899 . The radial position is assumed by the Pierids and Nymphalids, aiso the Nemeobidre. The cubital, by the Papilionides and Dismorphians, which latter include Leucophasia. The central position is retained by the Skippers, apparently yielding to the cubital in the Megathymidr. The movements of the radial branches and the median may be traced in all lepidoptera. Although I have worked them out chiefly from the diurnals, they pre intelligible only as part of a system generally applicable All genera of butterflies show the wings in comparative stages of advance in this respect. For instance, let us compare the wings of Parnassius with those of Papilio. These movements, which are frozen in the Swallowtails, are released in the Apollo butterfly and its kindred; in other words : Parrassius is seen to be here the specialized and Papilio the relatively generalized form. I say relatively, because all these changes are gradual and one form must be compared with another to ascertain the difference in extent of these two movements. The grades are innumerable, established by the delicate differences of these natural instruments of measure. Another truth, which I have dwelt upon elsewhere, may now find its place: The specializations, of the two systems and of all other features in the wing, are unequal. This prevents snap judgment as to which is ahead, and which is behind, when we discuss the position of different groups and endeavor to establish it by a single feature. Rank is not an absolute and determinable condition in all cases; the specializations of moths may exceed those of butterflies. Moths may represent younger forms and butterfies may be older than we might suppose. We now come to

The anal veins,

which are theoretically four in number. The first anal (submedian fold) has disappeared as a vein, and appears only as a fold in most generalized forms. The fourth and third anal veins depart one after the other ; the second anal is alone permanent. The Hesperiades have two anal veins remaining, the second and third; the Papilionides only one, the second.

Z̈̈re stationary areins

in the lepidopterous wing are, then, the subeostal, the main stem of the radius, the cubitus with its two invariable branches (cases occur in which a fourth median branch is noted), and the second anal vein.

It temains to state that accessory or secondarily developed veins always seem to be joined on to other veins, their object being in strengthen the tegument in some partientar part of the wing which the changes above detailed have left weak. A curious way in which veins have become bent, in order to support the peculiar shape of the wing, has been detailed in my papers on the " Round-wing," Pscudopontia paradoxtr. Another curious case is that of the fusion of the first and second radial branches, just before tip of fore wing, in Percute callinice. The itrst radial here fails to reach the outer margin, and the object seems to be to strengthen the apical field, left weak by the reduction of the radial branches.

If this localization of the secondary veins, which I assume, be correct, it follows that all veins issuing from base of wing are, ipso facto, primary, carried over from primitive types of insects. The short, downwardly curved internal vein, which I have taken as the visible sign of the Papilionides, is, then, a true third anal vein, or what remains of one, and is not to be considered as of secondary origin and value.

TYPES OF NOCTUID GENERA.

IS A. KADCIIFFE GROTE, A. M.

In reference to my previous paper (page 209), Mr. Louis B. Prout kindly draws my attention to the fact that Duponchel, Lep. Ent., March, r829, also selects didyma as type of Apamea, Ochs., 8816 . While it is gratifying that I had come independently to the same conclusion with regard to this type, I cannot follow Duponchel's selection in other cases. - I merely state the fact here, reserving details for a later occasion.

It further appears from Mr. Prout's researches that Curtis, who publishes later than Duponchel, viz., in May, 1829, "chooses chirysoyrapha" as type of Apamea. Independent of the fact that this choice is rendered nugatory from Duponchel's prior action, I do not identify this name with certainty as referring to one of Ochsenheimer's original species of Apamea. Great confusion has been caused by the double employment of uictitans for two distinct forms. It was owing to the fact that I incorrectly supposed Ochsenheimer's nictitans ($=$ oculea) was Linne's
specics, our common //Iviracin nictitans, f.. (=americant, Spejer ; Iusca, Harris), that 1 used Apamen at one time for this species. The species leucostigma, sype of Mchotrophir, l.ed., formed one of Guenée's original species of /fydracia, (inen., Noct. Eur. Index Meth., 18in, as also of Ochsemheimer's Apament. Jut, in 1852, Guenée referred Icucostigma batek to Apamer, leaving mictituns, I.,., as type of Hydracia by process of exhaustion.

Mr. Prout's kind communication does not affeet the conclusions 1 have reached so far as to types of Noctuid genera.

NOMADA SAYI AND 'TWO REIATED NEW SPECIES.

 m CHARILE ROHER'SON, CARIINVIILE, IHIRNOtS.In Trans. Am. Vint. Soc., 20: 276, 1893, 1 described Nomada Sayi from eight female and fifteen male specimens. At present I bave fortyfive female and ninety male specimens which 1 have referred to this species, but which 1 now propose to describe under the three following names:

Nomada Sayi, Rob.- . Mandibles simpie, antennse long, joint 4 longer than 3 or 5 , as long as 12 , or nearly so, pygidium rather broadly truncate; scutellum sub)-bilobed, prominent; enclosure of metathorax coarsely reticulated at base, finely roughened beyond; head and thorax closely and coarsely punctured; abdomen shining, rather sparsely and finely punctured; ferruginous, the scape, front and middle legs, tubercles and tegula, more yellowish; about antenne, about ocelli, occiput, band on mesonotum, middle of metathorax sometimes, band from wings to middle and hind coxie, base of femora behind more or less, sometimes hind metatarsi, base of abdomen, sometimes apical margins of segments more or less, and sutures, generally black or blackish; segments 2 and 3 of abdomen with a yellow spot on each side; wings hyaline, marginal cell and apical margins clouded, basal nervure ending before transverse median. Length, 6-8 mm.
J.-Resembles the femaie ; joint 4 of antenna longer than 3 or 5 , as long as \mathbf{i}_{3}, or nearly so, 5^{-8} sub-lobate at apex beneath: pygidium bifid; black, mandibles, labrum, clypeus, sometimes a spot above, inferior orbits as high as antenne in front and usually at base behind, and scape in front, yellow; sometimes a ferruginous spot at summit of eye ; flagellum yellowish ferruginous, except towards base above; collar black or with a yellow or ferruginous interrupted line; tubercles, tegulx,
 with two ferruginous or yellow spots ; postscutellum usually black, some times ferruginous; legs, exeept base, especially behind on midelle and hind pairs, fermginous, foon and middle legs more yellowish in frome; abdomen exeept base and apieal margins of segmems more or less ferrugimous, jellow matks on segments as follows: A spot on each side of $1-5$, sometimes comtinnons, or nearly so, on $: 4$, find 5 , sometimes broken in wo on foteon winting on 1,4 and 5 , and a transverse spot on 0 l, eng (h, G-S mun.

Carlinville, Ilinois; is S. 20 is specimens.
 Sayi; antenm shorter, joint 4 longer than 3 , a little longer than 5 , distinctly shorter than 12: scutellum a lille less prominemt pygidium broader, broadly rounded, not truncale, more densely and tinely punctured, more densely dothed with appressed pubeseence; sides of face below more yellow; abdonen with a spot on each side of segments and i; 5 with a transwerse spot, asually divided, sometimes wanting. length, $6-8 \mathrm{~mm}$.
d. -Resembles the mate of N. Sayi ; joint + of antenne shorter than 13. Length, (1-S min.

Carlinville, llinois: 26 o $\gamma, 54$ \& specimens.
Nomada farva, in. sp.but is a little smaller; joint of antemme longer than 3, about equalling 5 , shorter than 12; abdomen with a yellow spot on each side of segments 2-5. Ienght, 5 mm .
d.-Scape stont, joint 4 of antenne longer than 3 , a litte longer than 5 , much shorter than $13,5-8$ not sub-lobate at apex beneath; pygidium bifid; black, mandibles, labrum, clypeus except sometimes at base, lower anterior orbits, scape in from, flagellum except at base above, tubercles, tegule, sometimes a spot on pleura and legs in front, yellow; abdomen reddish, segments $4-6$ more or less blackish; yellow markings on segments of abdomen as follows: A spot on each side of 2 and 3 ; one or two spots on each side of 4 , sometimes wanting; a band on 5 marrowed or interrupted medially, and sometimes a spot on each extreme side, all sometimes ivanting; a transverse spot on 6. Length, 5-6 mm.

Carlinville, Illinois; if, to os specimens.
 by the form of the bergidinn and the jeints of antemmes All of the apeeci-

 when the mark on segment fis boken in two. The single speremen of N. pureins it has the ubdomen cighespotted. I separmie the of of A". Illimernsis from that of N. Sityi by the foints of matemme. In N. pertion of the seape is stomer, and the omments of abdemen are different.
N. Singi is ellosely related lo N. c'ressmia, difering mainly in siac and colour.

VLisi(oldi:A.

 11, S. NATIONAI, MUSHUM.
(Paper No. 3.--Continued from page 188.)
Sulfamiti, 11 . Ageniime.
The majority of the specties falling in this subfamily are usually sumaller and much less conspicuous than thase in the otiner subfamilies, and with totally different habits. None are true diggers, but, on the contrary, build small oblong, or oval, chay cells, benceath the hoose bank of old trees, mider stones, or in erevices in ohl stome walls, etce, not malike some of the Potter waspss (Ifumentide).

The groun comes evidemly nearest to the /'rasime, the females having, as in that group, a transverse grooved line, impression or emargination on the second vental segmemt. Firom that gromp, however, it is at once separated by the difference in the legs, the hind tibie being smooth, never serrate or spinous, or with a longitudimal ridge, but, at the most, with only a few very minute, scarcely perceptibie spines.

These characters readily distinguish the Alsemiane from all other Pompilids.

The beginner at first might possibly confuse some males in this group) with some small males belonging in the subfumily lompiline, since there is a superficial resemblance in some, but strongly spined legs, always existing in the males of the latter group, ought readily to d:fferentiate the two.

Only five genera fall into this group, distinguishable as follows :

'lable of (enera.

Cubitus in hind wings interstitial with the transverse median nervure.. 2. Cubitus in hind wings originating beyond the transverse median nervure. . 4 . 2. Mescsternum normal, unarmed. 3 .

Mesosternum armed with a large conical tooth or spine just before the middle coxie.

Second and third cubital cells along the cubitus subequal, the third the broadest ; femora in of much
thickened...(1) Macromeris, L.epel.
3. Second and third cubital cells equal, or very nearly, united only about as long as the first.

Mandibles simple, edentate; antenna in of with the flagellar joints pectinate (q unknown).............. (2) Clavelia, Lucas.
Mandibles bidentate ; antenne in of normal, the hind coxae produced anteriorly into a conical tubercle, in q simple; metathorax with a median longitudinal furrow. (3) Paragenia, Bingham.
Sccond cubital cell much shorter than the third; clypeus usually triangular, more or less prominently pointed, subconvex medially; mandibles dentate ; antenme filiform........(4) Pseudagenia, Kohl.
4. Third cubital cell, along the cubitus, as long or a little longer than the second ; claws cleft or with a tooth near the middle, rarely simple; eyes extending to base of mandibles ; abdomen with a constriction between segments 1 and 2 .

Body variable; head transverse, wider than the thorax ; maxilla in O with a bunch of long, beardlike hairs at base; abdomen ovoid, sessile, subsessile, or briefly petiolate ; claws cleft or with a tooth beneath................... . (5) Agenia, Schï̈dte. - Pogonius, Dahlb.

Body very slender; head lenticular ; maxille in of normal, not bearded ; abdomen very long, subcompressed, clavate, the first segment distinctly petiolate; claws simple
(6) Stenagenia, Saussure.

'THE NEW MEXICO BEES OF THE GENUS CCELIOXYS.

 by T. D. A. COCKERELL, EAST LaS VEGAS, N. MEX. Table to separate the females:Legs red .
Legs black, or only tarsi red. 4.

1. Antcrior edge of clypeus deeply emarginate. Sayi, Rob.

Anterior cdge of clypeus not emarginate. 2.
2. Ventral apical plate of abdomen broad; dorsal abdominal segments closely punctured in the middic. deplanata, Cress.
Ventral apical plate of abdomen narrow. 3 .
3. Base of abdomen black; dorsal abdominal segments rather closely punctured in middle. octodentata, Say.
Base of abdomen red; dorsal abdominal segments very sparsely punctured in middle. menthe, Ckll. 4. Apical dorsal plate prominently angled at sides..rufitarsis, Smith. Apical dorsal plate not angled at sides. 5.
5. Apical ventral plate long and narrow, notched at sides near end..6.

Apical ventral plate broad, suboval, more or less hairy at sides..7.
6. Lateral teeth of scutellum short and blunt ; tegule black; length about 9 mm. masta, Cress.
Lateral teeth of scutellum longer and sharper; tegule dark reddish; length about $12 \mathrm{~mm} .$. Porterce, Ckll.
7. Apex of ventral plate with a very small projection; apex of dorsal plate curved upwards. Gilensis, Ckll. Apex of ventral plate with a large projection; apex of dorsal plate not curved upwards 8.

Apex of ventral plate without a projection; apex of dorsal plate not curved.upwards... Apachcorum, Ckll.
8. Lateral teeth of scutellum long, somewhat curved inwards.
grindelice, Ckil.
Lateral teeth of scutellum shorter, slender, straight ...ribis, Ckill. Calioxys Sayi, Robertson, 1897.

Las Cruces, June 12. Resembles octodentata, but easily separated by the clypets.
Colioxys deplanata, Cresson, 1878.
Mesilla, June 30 ; Mesilla Park, October 14. Calioxys octodentata, Say, 1824, (altilis, Cress.).

Santa Fé, July 6, at flowers of Rudbeckia laciniata; July 27 ; Albuquerque; Las Vegas, August in, taken by Miss S. L. Mize, on
flowers of Grindelia squarrosa; West Fork Gila River, taken by Townsend, July 12. A male from flowers of Aster spinosus at Mesilla, July 25 , is inseparable from males of octodentata.
Coelioxys menthae, Ckll., 1897°
o. Deming. 9. Las Cruces, August it and August 23, the last at flowers of Cltrysopsis villosa; both taken by C. H. 'T. '「ownsend. The q is about 12 mm . long; the apical plates of the abdomen are of the same general type as those of octodentata, but longer, and the dorsal plate does not fall much short of the ventral. The bands of pubescence along the front of the mesothorax, and in the scutello-mesothoracic suture, are of arlight warm ochreous colour. The abdominal bands are entire and regular.
Celioxys rufitarsis, Smith, 1854 .
7. Rio Ruidoso, about 7,500 feet, August 3, at flowers of Verbena Macalougali. This specimen, collected by 'Lownsend, differs from Smith's description by the black nervures, and tegulæ not testaceous in the middle, but it accords herein with rufitajsis as understood by Cresson. The tarsi are red. What I regard as the δ of this occurred at Las Vegas, July in, at flowers of Cleome serrulata. It is larger than C. Gilensis.
Calioxys masta, Cresson, 1 S64.
Beulah, end of August.
Calioxys (lucrosa var. ?) Porteree, n. sp.
ㅇ. Harvey's Ranch, near Las Vegas, 9,600 feet, August 22, 1899. (Wilmatte Porter.) Length about 12 mm . Pubescence white; short but rather dense on cheeks; short and mostly appressed on face; abundant on sides of thorax and on metathorax; erect, scanty and inconspicuous on vertex, mesothorax and scutellum; no band on anterior margin of mesothorax, and only a very slight one at scutello-mesothoracic suture ; legs, except coxe, scarcely pubescent, four hind tarsi clothed with fulvous hair on inner side ; abdominal bands narrow, not very conspicuous, inclined to be more or less interrupted in the middle; antennæ and mandibles entirely black; tegulæ dark reddish-brown; wings brownish; punctures of vertex, mesothorax and scutellum dense, large and deep, scutellum becoming cancellate ; edge of scutellum only gently convex, with no central nodule, lateral teeth moderate, straight; abdomen shining, punctures sparse on greater part of segments 2 to 4 ; segments 2 and 3 with a transverse groove; ventral surface with distinct,
rather close punctures; penultimate ventral segment minutely roughened with dense punctures of two sizes; apical plates much as in lucrosa, but the dorsal plate has the narrowing nearer the base, and its keel is distinct ; the ventral plate appears to be rather more produced. Close to lucrosa and masta, but probably a distinct species.
Colioxys Gilensis, Ckll., 1898.
Length: $\delta, 9-10 \mathrm{~mm} . ;$ ㅇ, in mm. The discovery of the female shows that this species is very close to C. modesta, Smith, but differs in the colour of the legs and the entire abdominal bands. q. Gallinas River at La Cueva, at flowers of a^{3} saralea tenuiftora, August 6 (Ckll.); Rio Ruidoso, at flowers of Vicia aff. pulchella, about 6,700 feet, July 29 (Townsend). δ. Rio Ruidoso, with the q s just cited, also at flowers of Rhus glabra, about 6,500 feet, July is (Townsend); Gila River (Townsend) ; Santa Fé, July 6 (Ckll.). The males resemble rufitarsis, but are uniformly smaller.
Colioxys Apacheorum, n. sp.
Mescalero, July 20 (C. M. Barber). \wp. Somewhat related to C. alternata, Say, as interpreted by Cresson. Length in mm., narrow, with the shape of C. Gilensis; pubescence dull white; face quite densely pubescent ; anterior border of nesothorax with the band of pubescence divided behind into three teeth, the lateral ones the most distinct; scutellum with hind edge strongly convex, without a central nodule; lateral teeth lons and almost straight; antennæ and mandibles black; legs black, including tarsi; spurs dark ferruginous; punctures of mesothorax and scutellum large and deep; wings strongly suffused with brown; nervures black, stigma ferruginous; tegulæ ferruginous, piceous at base; abdomen shining dorsally, with strong but sparse punctures; abdominal bands regular and entire; additional bands of hair at the sides of the segments, marking the transverse depressions, which, however, entirely fail broadly in the middle of the dorsum; ventral surface strongly and rather closely punctured, the penultimate segment with small punctures interspersed between the large ones; apical dorsal segment ending in a point at an angle of perhaps 80°, the longitudinal keel wanting, or slightly indicated at the tip; apical ventral segment not greatly produced beyond the dorsal, rounded, its margins hairy.

This species is peculiar for the absence of a keel or raised line on the last dorsal segment, and the broad interruption of the transverse grooves on segments 2 and 3 . Using these characters, our species of Colioxys separate thus:
A. Keel on last dorsal absent

Apacheorum.

B. Keel on last dorsal extending about half the length of the segment; transverse grooves on 2 and 3 entire..octodentata, Sayi.
,C. Keel on last dorsal extending about three-quarters the length of the segment.
a. Transverse grooves on 2 and 3 interrupted in middle line.
masta.
b. Transverse grooves on 2 and 3
entire........... .deplanata, ribis, rufitarsis, Portera.
D. Keel on last dorsal extending practically the whole length of the segment.
a. Transverse grooves on 2 and 3 entire............... grindelice.
b. Transverse grooves on 2 and 3 broadly interrupted dorsally..
Calioxys grindelice, n. sp.
Las Vegas, at flowers of Grindelia squarrosa, August 9, both sexes (W. Porter) ; August II, 太* (S. L. Mize).

Las Vegas, at flowers of Solidago Canadensis, August in, ó (W. Porter) ; Las Vegas Hot Springs.
q. Length about ir mm.; pubescence pale with a brownish tinge, that along anterior margin of mesothorax (especially at sides) and a spot behind tegule, pale ferruginous; disc of mesothorax and scutellum aude ; abdominal bands rather broad, entire and conspicuous, no short lateral transverse grooves or bands, but transverse grooves crossing the dorsum of segments 2 and 3 ; mandibles externally covered with appressed pubescence like the face (this is also the case in ribis); antennæ and tegulæ black; legs black, including tarsi; nervures and stigma black; wings with the outer margin broadly brown ; mesothorax cancellate with extremely dense large punctures; lateral teeth of scutellum long; abdomen rather sparsely punctured; penultimate ventral segment punctured like the others, without the minute punctures interspersed; last dorsal segment densely punctured, with a strong raised line going as far as the articulating base; apical ventral segment longer than dorsal, broad, hairy at sides, with a broad apical pointed projection.

古. Similar to the \mathcal{Q}, except in the usual sexual characters; pubescence often whiter than in q; end of abdomen with eight teeth, those on the fifth segment being well developed.

The punctuation of the penultimate ventral segment in the q is diverse in the different species; thus in rufitarsis, Porterce and Apacheorum there are numerous small punctures interspersed among the large ones ; in menthice, Gilensis and grindelie the punctures are large, on a shining surface, without little ones interspersed; in deplanata, ribis and masta the punctures are small and very dense posteriorly, and larger and well separated on the anterior part of the segment.
Colioxys ribis, n. sp.
Romeroville, April 29, 1899 , at flowers of wild gooseberry (Wilmatte Porter). \&. Length about in mm ., rather broad, superficially like C. grindelia, but the abdomen tapers more rapidiy ; the pubescence is white; the hair on the eyes is very long (it is very short in grindelice); the inner orbital margins diverge much more above; the punctures of the mesothorax are sparser in the middle, leaving some shining surface between; the teeth of the scutellum are shorter; the apical projection of the last ventral segment is longer and narrower; the mesothorax is quite hairy, but has no distinct hair-patches; the penultimate ventral segment is dull, roughened with excessively close minute punctures posteriorly, sparsely punctured anteriorly.

SYNOPSIS OF FOOD-HABITS OF THE LARVE OF THE SESIID.E.

by william beutenmüller, new york.
The larve are universally borers, but in the choice of food-plants there is the widest diversity; some bore through and devour solid wood, as do the larvae of the Cossids; some prefer the pith of woody stems; others are found in the superficial woody layers; still others affect the roots of plants both woody and herbaceous, or are sometimes to be found in the borings made by other insects, as is the case with Memythrus tricinctus, Sesia pictipes, S. scitula, and others. The larvæ are yellowish or dirty white, beset with only a few short hairs. The head and cervical shield are chestnut brown. They hibernate in various stages of growth, but do not overwinter in the pupal stage, as far as the species of the northern States are concerned. The larvæ of Melittia satyriniformis hibernate fully grown in the cocoons. When fully developed they spin elongate oval cocoons composed of chips cemented together by a gummy secretion or silk. The cocoons are formed in the burrows or in contiguous places.
Boring in trees.
Under bark of trunks some distance from the base or in the branches :
Maple Sesia acerni.
Maple " corni.
Apple, Pear. " pyri.
Dogwood, Oak, Chestmut " scitula.
Alder. " Americana.
Cherry, Plum, Juneberry. " pictipes.
Pine, Redwood (Sequoia) Vespamima sequoia.
Pine and Spruce Parluarmonia pini.
Under bark at base of trunk or main roots:
Peach, Cherry, Plum, Apricot, etc. Sanninoidea exitiosa.
Peach and Cherry opalescens.
Peach, Cherry Graefii.
In solid wood of trunks :Podosesia syringre.
Ash. " fraxini.
Oak Memythrus simulans.
Cotton:vood Esyeria pacifica.
Cottonwood and Locust. Memythrus robinia.
Poplar " Dollii.
Willow and Poplar. tricinctus.Willow. Sesia Bolteri.
Willow. " albicornis.
In solid wood at base of trunks and roots of trees:
Persimmon. Sannina uroceriformis.
Willow and Poplar. Egeria apiformis.
Willow " tibialis.
Ash, Alder. Memythrus asilipennis.
Boring in shrubs.
In solid wood:
Lilac Fodosesia syringe.
In pith of stems:
Currant, Gooseberry Sesia tipuliformis.
In roots:
Blackberry and Raspberry Sesia rutilans.
Blackberry and Raspberry Bembecia marginata.Sumac. Melittia gloriosa.

Boring in vines and creeping plants.

In the stems :

> Squash, Pumpkin, and other Cucurbs Melittia satyriniformis.
> Big-root (Megarrfiza) " gloriosa.

In roots:
Grapevine ... Memythrus polistiformis.
Clematis . Alcathoe caudata.
Clematis . " korites.
Herbaceous perennial plants.
In roots :
Strawberry. Sesia rutilans.
In stem :
Eupatorium Sesia lustrans.
In borings of other insects:
Oak-gall (Andricus cornigerus). Sesia scitula.
Oak-gall (Andricus cornigerus)........... ... " rubristigma.
Gall on Live Oak ". " querci.
Gall on Oak.................................... " sapygaformis.
Gall on Mesquite " prosopis.
Gall of Saperda concolor " albicornis.
Gall of Saperda concolor Memythrus tricinctus.

NOTES ON COLORADO BEES.

BY E. S. G. TJTUS, FORT COLLINS, COLO.

The following table is intended to serve as a means of separating the species of the genus Agapostemon, Smith, occurring in Colorado: Body green or blue-green.
A. Abdomen unicolorous with body.
B. Mesonotum with double punctuation.....Texanus, Cress. 9 .

BB. Mesonotum with confluent punctures, metathorax longitudinally rugose radiatus, Say. 8 .
A.A. Abdomen differing in colour from body.

B. Abdomen black.

C. Abdomen yellow banded.

D. With five bands.

E. Last ventral segment with a median
carina. viridulus, Fab.
t.

EE. Last ventral segment without a median carina Texanus, Cress. δ.
1)D. With six bands
radiatus, Say. δ.
CC. With white hair-bands............. . . . viridulus, Fab. of.
13B. Abdomen honey-yellow. melliventris, Cress. 9.
BBB. Abdomen yellow, with very narrow black
bands........ melliventris, Cress. §.
The males of radiatus, Texanus and viridulus are hard to satisfac-
torily separate. That portion of the table relating to them has been
formed almost wholly from a study of the excellent paper of Mr. Chas.
Robertson, North American Bees, Desc. and Syns.*, in connection with
the study of the males in the collection of the Colo. Agr'l College.
Specimens of male and female of radiatus, Texanus and viridulus were
sent to Mr. Robertson, who kindly looked them over and verified or,
where necessary, corrected my determinations.

The following is a list of the specimens now in the College collections :
Agapostemon viridulus, Fab., 1793.
Thirty-five females ; Trinidad, Ft. Collins and Poudre Canon.
Ten males; Poudre Canon and Ft. Collins.
Taken on Salix, Taraxicum, Geranium, Opuntia and several Cruciferr.

Agapostemon radiatus, Say, 1837 .
Two females, Delta ; two males, Montrose and Salida (Gillette), and one male, Poudre Forks (Laura Armstrong).
Females taken on Salix.
Agapostemon Texanus, Cress., r872.
Seventy-four females; Greeley, Lamar, Dolores, Trinidad, Ft. Collins and Rist Canon.
Twenty males; Julesburg (Ball), Greeley, Fort Collins and Rist Canon. This species has been taken on Malvastrum coccinium, Salix, Taraxicum, Geranium and Cnicus.
Agapostemon melliventris, Cress., $1 \$ 74$.
One female at Delta, Colo., 27-v.-00, on Salix, by Prof. Gillette.
There are also in the collection a female taken in Mesilla Valley, N. M., on Solanum, and a male from Las Cruces, N. M., on Solidago, both from Prof. Cockerell.
Colletes nigrifrons, n. sp. \uparrow.
Length, 7-8 mm. Black, rather heavy set; head broad, clypeus

[^0]prominent, punctures larger than on rest of face, partly confluent ; face covered with short black hair ; labrum with a distinct median depression ; mandibles black, tips rufo-testaceous, notch one-fifth of length from the blunt tip, strongly grooved without, space between eyes and base of mandibles not as great as width of latter; anteme short, black, flagellum deep brown beneath, reaching to line of tegule ; cheeks sparsely fringed with short, black hair; dorsum of the thorax with short, sooty hair, some black hair internixed in spots, disc shiny, sparsely pubescent; pleura with black hair; thorax quite evenly sparsely punctured, postscutellum more finely punctured, base of metathorax with transverse series of pits, triangle shining, not smooth; tegula shining, distinctly piceous ; wings hyaline, nervures and stigma testaceous, marginal cell very dark, second submarginal narrow at top, third not narrowed as much as usual in one specimen; legs black with sooty pubescence, tarsi reddish with rufo-testaceous hair, first joint very dark; abdomen black, punctured, first two segments shining, white hair-bands on segments $1-5$, on 1 and z interrupted, otherwise sparsely pubescent with black hair, venter with very short black hair.

Described from two females : Ft. Collins, Colo., 6-viii.-96 (Gillette), and Horsetooth Mt., Colo., 22-vi.-99, on Potentilla. This species differs from known Colorado species by the black hair on the face and pleura and the sooty hair on thorax. Prof. Cockerell writes that it is closely related to C. pascoensis, Ckll., from Washington; but differs by its smaller size and by possessing hair-bands.

I wish to acknowledge the kindness of Prof. Cockerell and Mr. Robertson for favours shown me in revising portions of my manuscript, and for the general help they have given me.

NOTES ON SOME NORTH AMERICAN SPECIES OF TINEIDE.

BY HARRISON G. DYAR, WASHINGTON, D. C.

About the time that Lord Walsingham's valuable paper on Acrolophus and Anaphora appeared (Trans. Ent. Soc., Lond., 1887, 137-173), Mr. Beutenmüller was working on the same group ; but neither author has since attempted to recognize the species named by the other, so far as I am aware. In Prof. Smith's List Lep. Bor. Amer., 189r, the group is recognized as a family-Anaphoridæ-but this can hardly stand. The genera will fall in the Tineidæ, in the more restricted sense (see Walsing-
ham, Proc. Zool. Soc., London, 1897, 139-175). 'The following synopsis of genera is from Walsingham, with addition of two genera described since the original publication :

Anaphorine.

Palpi erect or slightly recurved.
Veins 8 and 9 of fore wing stalked.
Palpi erect.. Eulepistc.
Palpi appressed to head. Neolophus.
Veins 8 and 9 separate.
Antennæe bipectinate. Ankistrophorus.
Antenme simple or serrate towards apex.
Tarsal joints of hind legs strongly fringed above. . Thysanoskelis.
Tarsal joints not fringed above.
Palpi erect, with separate tufts on each joint. Ortholophus.
Palpi slightly recurved, uniformly hirsute..... . Pseudanaphor

Antennæ bipectinate.
Felderia.
Antenne serrate throughout. $\quad 1$
Veins 8 and 9 of fore wings stalked. Cranogenes.
Veins 8 and 9 of fore wings separate. Anaphora.
Antenne simple, compressed, or slightly serrate at ends.
Veins 7 and 8 of fore wings stalked................... . Atopocera.
Veins 8 and 9 of fore wings stalked.
Head with an erect crest. Urbara.
Head without an erect crest. Hypoclopus.
No veins of fore wings stalked.
Palpi roughly clothed throughout.
An erect fringe along lower margin of cell on hind wings

Pilanaphora.
No such serect fringe on hind wings. Acrolopluss.
Palpi smooth, the last joint only tufted............. . Staberhinus. Genus Eulepiste, Walsingham.
Wals., Trans. Am. Ent. Soc., X., 169, 1882 ; Trans. Ent. Soc., Lond., 1887, 142.

Synopsis of Species.

Uncus single, the opposing lower limb not half as long as the upper limb.
Harpes concave, rounded at the ends Cressoni.
Harpes concave, obliquely truncate above
. maculifer.

Uncus single, its opposing lower limb nearly as long as the upper and stouter.
Harpes nearly flat, the ends bent inward, rounded. Cockerelli. Eulcpiste Cockerelli, n. sp.

Palpi upturned in front of the head, free, as high as the vertex ; male entenne simple, slightly serrated toward the ends; veins 8 and 9 of fore wing stalked; thorax and fore wings dark brown-gray, somewhat grizzled or mottled with darker and with an obscure darker spot at the end of the cell. Hind wings dark brown ; abdomen gray-brown; expanse 16 mm . One male, Mesilla Park, New Mexico, at light, July 8th (T. D. A. Cockerell) ; U. S. Nat. Mus., Type No. 4417.

Genus Hypoclopus, Walsingham.
Wals., Trans. Ent. Soc., Lond., 1887, 14 I.
Synopsis of Species.
Uncus single, down curved, broad at base, tip pointed; harpes broad, narrow at base, squarely truncate
sriseus.
Uncus double, the two points separate, sharply down curved, the ends bent outward, enlarged and rounded; harpes long, narrow and uniform mortipennellus.
Hypoclopus sriseus, Walsingham.
Wals., Trans. Ent. Soc., Lond., 1887, 144.
Arizona (Morrison, from Lord Walsingham, through C. V. Riley); San Diego, Texas, May 9 (E. A. Schwař) ; Oracle, Arizona, June 28 (E. A. Schwarz) ; Brownsville, Texas, Apr. 27 (C. H. T. Townsend) ; Washington, D. C., July 20 (A. Busck).

The Texas specimens are pale, the ground colour an ashy white, on which the dark specks and streaks show plainly. The specimen from Oracle, Ariz., is very dark, the black markings predominating.
Hypoclopus mortipennellus, Grote.
Grote, Can. Ent., IV., 137, $18 \% 2$; XVIII., 199, 1886. Wals., Trans. Am. Ent. Soc., X., 167, 1882 ; Trans. Ent. Soc., Lond., 1887, 150 ; quadripunctellus, Beut. (ined.), Smith's List Lep. Bor. Amer., No. 5057, 189 r .

This species, described as Anaphora and placed by Lord Walsingham in Acrolophus, may be removed to Hypoclopus, as a majority of the specimens have veins 7 and 8 of fore wings stalked, at least on one side. Of twelve specimens before me, seven have these veins stalked on
both sides, two stalked on one side, separate on the other, and two separate on both sides, though approximate at base. The form of the male genitalia is peculiar and exactly alike in both those specimens with the veins stalked and with them separate. In size and markings they are also inseparable.

Lord Walsingham remarks about a specimen with veins 8 and 9 stalked, in two places in his article (pages 151 and 155), and refers it in one place to Neolophus, in the other to Canogenes; but the antenne are serrate only towards the tip, and the male palpi are strongly recurved, so that neither of these references seems admissible.

Texas (coll. Beutenmilller, type of quadripunctcllus) ; Texas, Sept. 20 (Belfrage) ; Central Missouri, Aug. 12 and 15 (coll. C. V. Riley); Kansas (Crevecœur); Georgia (coll. Beutenmüller) ; Texas (coll. Beutenmüller, labelled "compared with type of A. mortipenella at Cambridge, Mass.").

Genus Acrolophus, Poey.

Poey, Cent. Lep., Cuba, 1832 ; Wals., Trans. Ent. Soc., Lond., 1S87, 147.

> Synopsis of Specics.

Uncus single, broad at base, the tip sharp.
Harpes slender, concave, obliquely truncate above. simulatus. Uncus double.

With supplementary lateral processes $\left\{\begin{array}{l}\text { pcumitront } \\ \text { cervintus. }\end{array}\right.$
Without such processes.
Harpes slender, concave, uniform.
Tips of uncus down curved, separate. Texanellus.
Tips of uncus straight, bent only at base, more nearly approximate . Hulustellus.
Harpes spoon-shaped, narrowed at base.
Uncus with a tooth below at the base............. $\left\{\begin{array}{l}\text { Arizonelius. } \\ \text { violaceellus. }\end{array}\right.$
Acroloplues cervinus, Walsingham.
Wals., Trans. Ent. Soc., Lond., 1887, 151 ; angustipenellus, Beut., Ent. Amer., III., 140, 1887 ; Smith's List Lep. Bor. Amer., No. 5049, 1891.

The genitalia of this form do not differ perceptibly from those of plumifronteilus, Clem. The moths are smaller, paler and less strongly marked, somewhat narrower winged ; but I doubt the specific distinctness of the form.

Florida (coll. Beutenmiuller, type of angustipencllus); Georgia (coll. Beutenmüller) ; Orange Co., Florida (coll. Beutenmüller) ; Texas (Boll. coll. C. V. Riley, identified by Walsingham) ; Columbus, Texas, June (E. A. Schwarz). Acrolophus violacfellus, Beutenmüller.

Beut., Ent. Amer., III., 139, 1887.
The genitalia are not very different from those of Arizonclus, Wals., though the harpes may be somewhat slenderer. Howeyer, the moth differs in its uniform, unspotted, purplish colour.

North Carolina (Beutenmüller's types) ; Iowa (from Dept. Agriculture).

Acrolophus Arizonellus, Walsingham.
Wals., Trans. Ent. Soc., Lond., $1887,153$.
Arizona (Morrison, from Lord Walsingham, through C. V. Riley); Mesilla, New Mexico, June 25 and July I (T. D. A. Cockerell) ; Tucson, Arizona, July 19, 20 and 2 I (E. A. Schwarz).

Genus Anaphora, Clemens.
Clem., Proc. Ac. Nat. Sci., Phil., 1859, 26 ! ; Wals., Trans. Ent. Soc., Lond., 1887, 155.
Anaphora popeanella, Clemens.
Clem., Proc. Ac. Nat. Sci., Phil., 1859, 26r; Wals., Trans. Ent. Soc., Lond., 1887, 161 (references and synonymy) ; Riley, Smith's List Lep. Bor. Am., No. 506 r , 189 r ; confusellus, Beut. (ined.), Smith's List Lep. Bor. Am., No. 5056: 189 r .

The form confusellus is smaller than the usual form, the ground colour lighter and more purplish, the dark marks strongly relieved. In genitalia there is no marked difference. The form differs from popeanella about as much as Acrolopluss cervinus, Wals., does from A. plumifrontellus, Clem. U. S. Nat. Mus., type No. 405.

Georgia (Beutenmüller's type) ; Kirkwood, Missouri ? (labelled only " 48 M," i. e., Murtfeldt); Georgia (A. Oemler, labelled "Anaphora, n. sp., Wlsm., ' 86 ") ; Georgia (labelled "Anaphora, n. sp., doubtless $=$ plumifrontellus, C. V. R., '86, with Wlsm."); eight specimens, badiy worn (labelled only" 667 , Aug.: 'So, coll. C. V. Riley").

Genus Felderia, Walsingham.
Wals. Trans. Ent. Soc., Lond., 1887, 165.

Felderia filicornis, Walsingham.
Wals., Trans. Ent. Soc., Lond., 1887, 165 ; Maxicancl/us, Beut., Ent. Amer., 1V., 29, 1888.

Arizona (Morrison, from Lord Walsingham, through C. V. Riley); City of Mexico (Bentemmiiller's type of M/cxitathellus); Oracle, Arizona, July 12 (E. A. Schwarz) ; Fort Grant, Arizona, July 2c (H. G. Hubbard) ; Brownsville, Texas, June to (C. H. 'T. Townsend).
(ienns Ortholophus, Walsingham. Ortholophus variabilis, Walsingham.

Wals., 'Trans. Ent. Soc., Lond., 1887 , 169.
Arizona (Morrison, from Lord Walsingham, through C. V. Riley); Arizona (coll. Beutenmiiller) ; Arizona (yellow labels 5, 7 and 8 marked "prob. undescribed," VIsm, i886); Oracle, Arizona, July 8, 10, 12, 16 and 24 (E. A. Schwarz) ; Fort Grant, Arizona, July 19, 20 and 22 (H. G. Hubbard) ; Tucson, Arizona, July $2:$ (E. A. Schwarz) ; Chiricahua Mts., Arizona, July + (H. G. Hubbard) ; Mesilla Park, New Mexico, July 8 and Aug. 13 (C. D. A. Cockerell) ; 'Texas (coll. Beutenmiiller); Sharpsburg, Texas. May it (E. A. Schwarz); Glenwood Springs, C:olorado (W. Barnes) ; Nevada.

Gemus Pseudanaphora, Walsingham.
Wals., Trans. Ent. Soc, Lond., 1857 , 170 ; Euthtia, Grote, Bull. Geog. Surv. 'Terr., VI., 257, 1SS: ; Dyar, Can. Ent., XXVII., 15, iS95; Sapinclla, Kirby, Cat. Lep. Het., 524, 1892.

> Synopsis of Specics.

Uncus single, long and slender. Davisellus. Uncus double, two spines projecting from a rounded plate. . . .arcanella. Psetulanaphora Daviscllus, Beutenmüller.

13eut., Ent. Amer., III., 139, 1887 .
Though described as an Acrolophus, this is obviously referable to Pseudanaphora, from the short erect palpi.

Arizona (Beutenmüller's type) ; Fort Grant, Arizona, July 20 (H. G. Hubbard).

Psetudanaphora aranella, Clemens.
Clem., Proc. Acad. Nat. Sci., Phil., 1859, 262 ; Wals., Tran's. Ent. Soc., Lond., r887, 170 (references) ; Beut., Ent. Amer., IV., 29, $18 S S$; Forbes, 16 th Rept., Ill., 98, 1890 ; mora, Grote, Bull. U. S. Geol. Surv., VI., 257, 1881 ; Kirby, Cat. Leep. Het., 524, 1892 ; Dyar, Can. Env., XXVII., $15,1895$.

Rhinebeck, New York (Dyar) ; Rhinebeck, N. Y., July 5 (Miss L. J. Hoff) ; Fordham, N. Y. (G. Gade); Staten Island, N. Y., June 25 and July it (coll. Beutenmüller) ; District of Columbia, July is (coll. C. V. Riley); Washington, D. C., October 10 (A. Busck); St. Louis, Miseouri, issucd July 3 (C. V. Rilcy, breeding No. 2563) ; 'Texas (coll Beutellmiiller). The specimen taken in October is very dark in colour, blackish, the markings being only faintly indicated.

NELV COCCIDA FROM CALIFORNIA.

hy edw. M. Ehrhorn, mountath view, cat.
Xylococcus qucrous, n. sp. (Plate 7, figs. I and 2.)
Est quite large, of a light orange colour.
Young larvere dark orange-red, active, body broadly oval, about $2 / 3$ mm . long. Legs and antennse light brown, well developed. Antenne short, 6 .jointed. Joint i stoutest, joint 6 longest, and joint 4 shortest. Formula: 651234 . Joints 2 and 5 with three bristles. Joint 6 with numerous long stout bristles. Legs moderately long, with femur quite swollen. Tarsus longer than tibia. Digitutes of tarsus fine hairs; those of claw long stout clubs curved upwards. Each segment of abdomen bears a backward directed short stout spine. On each side of anal tube is a long fine bristle. Anal tube large, with numerous stout spines. Stigmatal tubes well developed.
if second stage, body crimson, shiny, nearly spherical, about $11 / 2$ mm . long, I mm . broad, surrounded by cottony and waxy secretion. Antemme and legs wanting. Anal tube well developed, producing a glassy rod, like a stout white hair, rather brittle. Last segment of body dark brown. When cleared in K. H. O., surface of body finely gramulated, more so near caudal end. Stigmatal tubes are large and well defined. There are numerous spines and gland openings scattered over the body.
of third and fourth stages very similar to second stage, but larger in each case from the preceding, and varying in the further development of stigmatal and anal tubes, glands, spines, etc.

Adult if head, thorax, legs and antemae reddish-brown, abdomen blackish-brown, segmentation distinct. There is a distinct constriction between the chorax and abdomen. Length of body about $.51 / 2 \mathrm{~mm}$., breadth $21 / 2 \mathrm{~mm}$., quite convex above. Ventral side of abdomen concave, with revolute margins. Insect quite active. When ready to
deposit eggs crawls into some crevice and produces a cottony cushion on which it rests and secretes considerable white cotton over its entire body. Antennæ 9 -jointed. Joint I longest and broadest, next in length is 2 , then joint 9 and then 3 . Joints $4,5,6,7$ and 8 are subequal, and are a little shorter than 3. Formula: 129345678. Legs long and stout. Tibia twice as long as tarsus, both very hairy. Claw long and stout. Digitules fine hairs. Body sparsely covered with long stout spines, especially along the margin and caudal end. Stigmatal tubes very prominent. Anal opening simple and quite large.
ot larva much like that of q, but narrower and more oblong.
ot second stage not observed.
of third stage like that of q, but smaller and more elongated.
d fourth stage (cast skin) without rostrum. Antenne 9 -jointed. Joints 1 and 9 longest and subequal ; joints 7 and 8 subequal ; joints 4 and 6 subequal ; and joints 2 and 5 subequal. Each joint with long stout hairs. Joint 9 rounded at tip, with several stout hairs and spines. Formula: $(19)(78) 3(46)(25)$. Legs, long and very stout. Femur much swollen, very little shorter than tibia. Tarsus $1 / 2$ of tibia. Claw stont and curved. Digitules simple hairs. Body covered with long fine hairs. There are several stout spines on caudal end of abdomen.
ot pupa, about $2 \mathrm{I} / 2 \mathrm{~mm}$. long and 1 mm . broad, enveloped in a densely-woven cottony sac about 5 mm . long and 2 mm . broad. Thorax, legs and antennæe light yellow, abdomen crimson. Wing-pads very broad. Legs long and stout. Tarsus $1 / 2$ as long as tibia. Femur stout and as long as tibia. No claw. Antennæ 9-jointed. Joint i stoutest. All joints annulated with white and subequal. Formula: 3.(2.9) 4.5.6.7(18).

Adult of about 3 mm . long and $11 / 2 \mathrm{~mm}$. broad, slightly pubescent. Colour of abdomen reddish-brown. Mesothorax black, with four raised knobs. Front part of head black, eyes very prominent, strongly faceted, black. Legs and antennæ black and very hairy. Ventral surface of abdomen dark brown, segmentation distinct. Mesosternum black, a small black line on prosternum, and an irregular black patch on metasternum. Abdominal brushes with long stout glassy bristles about 6 mm . long. Style short, stout and conical. Antenne 10 -jointed, very hairy, reaching beyond end of abdomen. Joint 2 shortest, joints 3 and 10 a little longer, and the other joints subequal. Each joint with numerous hairs. Wings large, about 3 mm . long and 1 mm . broad, expanse about

7 mm ., smoky, slightly pubescent, with the costal space blackish-brown. Halteres resembling small wings with several hooks. Legs long, stout and very hairy. Femur much shorter than tibia. Tibia about four times as long as tarsus. Digitules fine hairs. Claw long, slender and well curved. Digitules short club-shaped hairs.

Hab.- I found this remarkable insect in May, 1899, on Quercus chrysolepis in Stevens Creek Canon, near Mountain View, Cal., and patiently collected the different stages during the year.
Phenacoccus artemisia, n. sp. (Plate 7, fig. 3.)
Adult q elongate oval, about 3 mm . long and $11 / 2 \mathrm{~mm}$. broad, of a sage-green colour. Measuring with egg sac $41 / 2 \mathrm{~mm}$. Sac loosely woven without any grooves, eggs lemon-yellow. Legs and antenne light brown. Body thinly covered with secretion, but not enough to hide colour of body. Segmentation distinct. When placed in boiling K. H. O., body turns orange colour, and leaves derm colourless after boiling. Antennee 9 -jointed. Joint 2 always longest, joints 5, ú, 7,8 subequal. Formula: $23914(5678)$. Joints $\mathrm{r}, 7,8$ and 9 with several stout hairs. Legs short and stout. Femur about as long as tibia. Tibia twice as long as tarsus. Claw stout and long, with tooth. Digitules fine knobbed hairs.

Adult of.-Abdomen yellowish-green, thorax and head dark green. Thorax marked with black longitudinal lines. Body slightly pruinose. Antennæ and legs light brown. Eyes dark red. Wings more or less pruinose, very delicate. Antenna very hairy; 1o.jointed. Joint 3 longest, joint r shortest and stoutest, joints 7,8 and 10 subequal, joints 2 and 9 subequal. Formula: 3.4 5.6.(7.8.10)(2.9) . Legs very hairy, long and slender. Tibia much longer than femur. Tarsus very short, less than $1 / 3$ of tibia. Claw long and very slender. Digitules fine hairs.

Hab.-On Artemisia Californica. Stevens Creek Canon, near Mountain View, Cal. August 22, 1899.
Phenacoccus stachyos, n. sp. (Plate 7, fig. 4.)
Adult i about $21 / 2 \mathrm{~mm}$. long and 1 mm . broad, convex, tapering posteriorly, viviparous, of a sage-green colour. Slightly covered with white secretion, which, when seen through lens, appears as minute white dots. Segmentation distinct. There are two longitudinal rows of light brown dots on the meson. The dorsum and margin are thickly set with long fine iridescent spines, which are deciduous. Legs and antennæ light brown, quite hairy. Caudal filaments short and stout. When placed in
boiling K. H. O., body turns reddist1-brown. After boiling, derm becomes colourless, antenna, mouth-parts and legs remaining light brown. Antemme long and slender, each joint with a few long fine hairs. Joint 3 longest, next comes joint 2 , joints 4 and 5 subequal, joints 1 and 6 sub. equal, joint 8 shortest. l'ormula, approximately : 32(45)9(16)78. Legs long and stout, quite hairy. Trochanter with very long bristle. Femur a tritle shorter than tibia. Tarsus about $!3$ of tibia. Claw long and slender, with tooth. Digitules fine knobbed hairs. lobes well developed, with a long seta, and two long fine bristles. Anal ring with six stout hairs. On each segment of the ventral surface, thorax, and on the head, there are numerous very long fine hairs, and there are numerous short fine spines and numerous spimerets with club-shaped tubes scattered over the body. Newly-hatched larve orange colour, elongate oval. Antenne $6 . j$ jointed, quite stout. Joint 6 longest, twice as long as $4+$ 5 ; joints 1 and 2 subequal, joints 4 and 5 subequal. Formula: $63(\mathrm{r} 2)(45)$. legs short and stout. 'Tarsus as long as tibia. Rostral loup extending beyond last coxie. Caudal lobes and sete quite prominent.

Hab.-On Stachys bullata. San Francisquito Canon, near Mayfield, Cal. June aS, $: 899$.
Phenacoctus bahice, n. sp. (Plate 7, fig. 5.)
Adult of about 4 mm . long and 3 mm . broad, covered with white cottony secretion, with a distinct ridge of cottony tufts running longitudinally on the meson and two smaller ridges parallel with it. Each ridge has a large tuft at the cephalic end. Margin fringed with short broad cottony appendages, getting longer towards caudal end. Legs and antenne dark brown. Colour of body is greenish-yellow, with a brown patch on the meson. When boiled in K. H. O., turns crimson at first, then derm becomes colourless, except a row of dark brown patches on the body near and running parallel with the margin. These grow larger caudad. Body is densely covered with round glands and stout conical spines. Anal ring large, with six long stout hairs and numerous stout hairs scattered over area surrounding it. Antenne and legs remain brown. Antenne 9 -jointed, long and stout. Joint 3 generally longest, then 5 , then 9 . Joints $\mathrm{I}, 2$ and 8 generally shortest. All joints quite hairy, and joint 9 quite pointed, with numerous hairs. Formula, approximately : $3 \cdot 5 \cdot 9 \cdot 6.7 \cdot 4.8 \cdot \mathrm{r} .2$. Legs very long, stout, and thickly covered with very stout hairs. Femur and tibia subequal. Tarsus about
$1 / 3$ tibia. Claw very stout and curved, with tooth. Digitules very long fine hairs.

Sminature of much like q, smaller and lighter colour, about $21 / 2$ mm . long, $11 / 2 \mathrm{~mm}$. broad. Legs not as stout. Antenuie 7 -jointed. Formula: 372(1456).

Sac of ot snow white, more or less irregular in shape, no distinct carine, about 4 mm . long, 2 mm . broad.

Pupa. - When removed from sac, cylindrical, shiny. Outline of antenne, wing-pads and segmentation distinct. Body more or less pitted. Colour greenish-brown, about $21 / 2 \mathrm{~mm}$. long, $1 / 2 \mathrm{~mm}$. broad. Turns dark red when placed in K. H. O.

Adult io measuring, without sete, about 3 mm . long and 1 mm . broad. Setie are about twice as long as body, of a snow-white colour. Head and thorax dark brown, abdomen greenish-yellow, slightly covered with white secretion. Head and thorax with numerous stout hairs, abdomen thickly covered with stout hairs. Antenne very long, stout and very bristly, 10 -jointed. Joint 2 shortest, very little shorter than 1. These two joints are about as broad as long, the rest of the joints are sausage-shaped. Joints 3,4 and 5 subequal and longest. Formula: (3.4.5)6.7.8.9.ro.i.2. leges very long and stout and very hairy. Coxa and trochanter short, latter with very long stout spinc. Femur one-fifth shorter than tibia, tarsus $1 / 2$ of femur. Claw stout, curved, with tooth and double spur. Digitules stout hairs extending as far as tooth. Tarsal digitules fine hairs extending to end of claw. Wings dusky, pubescent, each about $21 / 2 \mathrm{~mm}$. long by 1 mm . broad. Halteres comparatively small, with two stout, well-curved hooks. Style long, stout and conical, forming a blunt hook at caudal end. The last abdominal segment has two groups of round gland openings; on the cephalic margin of each two very long stout spines arise, which run parallel caudad. There are also numerous stout hairs surrounding the glands.

Hab.-On Bahia, sp., in foothills near Mayfield, Santa Clara County, Cal. May 7th, 1809 .
Dactylopius quercus, n. sp. (Plate 7, fig. 6.)
ㅇ slightly covered with white secretion, about $21 / 2 \mathrm{~mm}$. long and $1 \mathrm{I} / 2 \mathrm{~mm}$. broad, tapering at both ends. Colour of body greenish-brown, concealed more or less by secretion. Segmentation very distinct. Each segment bears a white filament on the margin. Caudal sete about $1 / 3$ as long as body, white and quite stout. Antennæ and legs dark brown.

When placed in boiling K. H. O., body turns crimson, derm becomes colourless after boiling. Antennæ 8 -jointed. Joint 8 longest, joint 7 generally shortest. Formula, approximately: $832(15) 647$. Each joint has a ring of stout hairs. Joint 8 has numerous very long hairs. Legs long and stout, with numerous long fine hairs. Femur about as long as tibia; tarsus about a third as long as tibia; claw slender and well curved. Digitules long fine knobbed hairs. Anal ring small, with six fine hairs. Caudal lobes well developed, with very long setæ (280μ). Groups of spinnerets, conical spines and long slender hairs scattered over the dorsum.

Hab.-On Quercus chrysolepis, on the leaves and in cracks of bark. May, 1899. Stevens Creek Canon, near Mountain View, Cal.
Dactylopius maritimus, n. sp. (Plate 7, fig. 7.)
of elongate oval, about 2 mm . long and 1 mm . broad, flattish, slightly covered with secretion. Colour of body, reddish-brown. Margin beset with stout, short, white filaments, which grow longer caudad. Caudal setæ about $1 / 2$ length of body. Legs and antennæ same colour as body. Eggs orange-yellow. Egg sac well developed and has the appearance of Pulvinaria camellicola, but smaller-about 5 mm . long and 2 mm . broad.

Young larve light orange-yellow.
When boiled in K. H. O., $\&$ turns liquid purple and derm becomes colourless. Body thickly beset with long slender spines and many round glands. Each segment has a group of spinnerets on its margin, in the centre of which are two short stout conical spines. Antenne 8-jointed, quite hairy. Joint 8 always longest, and joint 4 generally shortest, although joint 6 sometimes is shorter than 4; again, joints 4 and 6 are sometimes equal.

The following formula will assist in determining the species:

$$
\begin{aligned}
& 82(13)(57) 64 . \\
& 82(13) 5(47) 6 . \\
& 8321(57) 64 . \\
& 81(23) 57(46) .
\end{aligned}
$$

Legs quite hairy, well developed, long and slender. Trochanter with long stout spine (128μ). Femur about as long as tibia. Tarsus about a third as long as tibia. Claw short and stout. Digitules fine knobbed hairs. Caudal lobes prominent, with moderately long setre and two very stout conical spines. Anal ring large, with 6 very long stout hairs.

Hab.-On Eriogonum latifolitm roots on the cliffs at Santa Cruz, Cal. July, 889.

EXPIANATION OF PLATE $7 \cdot$

Fig. 1.-Xylococcus quercas: adult $\xlongequal{\circ}$ antenna and leg.
Fig. 2.-Xylo. qucrcus: δ fourth stage antema and leg.
Fig. 3.-Phenacoccus artemisice: adult of antenna and leg.
Fig. 4.-P. stachyos: a, antenna; b, leg of adult \circ; c , antemna of larva.

Fig. 5.-P. bahice : a, antenna; b, leg of adult \mathcal{P}; c, first 3 joints of antenna of σ.

Fig. 6.-Dactylopias quercus: adult of antenna and leg.
Fig. 7.-D. maritimus: adult q antenna and leg.

A QUESTION OF NOMENCLATURE.

The status of Professor French's Gastrophilus cpilepsalis, described in the September number of this journal, has interested me especially, as I am preparing a new catalogue of North American Diptera.

I am convinced that it was decidedly premature to assign a specific name to this larva. In the first place, it was very small and immature, and the earlier larval forms of Oestride are much less known than the later, so that we do not possess the data that would enable us to separate this species, for instance, from G. nasalis. In fact, I do not think Professor French's description sufficient for the recognition of the same stage of the larva at all, unless the specimens were known to have come from a person affected with epilepsy. It must be remembered that there is every reason to assume the normal habitat of this species of fly to be in some other mammal. Its occurrence in man is in the highest degree unusual. Is it not hopeless, then, to anticipate that specimens taken from their normal host at some future time will be correctly associated with this species? And if such a thing could be, would there not be an incongruity in the name epilepsalis?

The name does not deserve a place in a catalogue, unless in a footnote.
J. M. Aldrich.

Moscow, Ida., September 6.

SUDDEN DISAPPEARANCE OF THE PURSLANE SAWFLY, SCHIZOCERUS ZABRISKEI.

by f. m. webster, wooster, ohio.
On page 54 of the current volume of the Canadian Entomologist, I called attention to the sudden and almost total disappearance of this
species at Wooster, Ohio, where it had for several years been excessively abundaut, even up to the latter part of August and early September of $l_{\text {ast }}$ year, 1899 . This abrupt termination of the period of activity was at the time attributed to the effect of a parasitic species, Ichncutcs, sp .?, which had in the meantime become also excessively abundant.

Although the purslane has grown luxuriantly and is unusually abundant this year, so much so that gardeners are complaining bitterly of its abundance and vigour, up to September but a single female Schizocerus has been observed, and but a single instance of the work of the larve noted, though the writer has searched most carefully for both during the entire season. In fact, it was hoped this year that the full life-history of the species might be carefully gone over again and completely studied, but this has unexpectedly been rendered impossible.

BOOK NOTICE.

The Argynnids of North America.-To Mr. Arthur J. Snyder we are indebted for a paper published in the Occasional Memoirs of the Chicago Entomological Society, Vol. I., No. 1, 1900, on the much-ve:xed question of the Argynnids of North America.

The author follows Doubleday, Westwood, Edwards, Elwes and others in rejecting the division of the group, made by some systematists, into the two genera, Argynnis and Brenthis, as he considers this division based on "hair-splitting distinctions." In referring to the range of the genus, he is not quite correct in saying that the group is wholly unrepresented in the tropics, as one species, A. Hanningtoni, was collected near Mount Kilimanjaro, in tropical Africa, by the lamented Bishop Hannington, and was dedicated to his memory by Mr. Elwes.

The author states that he "has on several occasions taken the sexes of different species in coitu, and from personal observations satisfied himself that the Argynnids are polygamous in their habits," and a little further down he says, "Artonis and Eurynome cohabit, also Eurynome and Clio. The same is undoubtedly true of several other species."

Surely this is a railing accusation to bring against these unfortunate creatures who have never had it explained to them that they are really different species and should behave as such, and certainly shows a sublime faith in the infallibility of the authors who have named these forms as distinct to which the reviewer, possibly because he was born on St. Thomas's day, has never been able to attain.

Probably the facts which Mr. Snyder has observed would suggest to most field naturalists that these slightly differing forms were really only varieties of one species rather than that this particular group) of butterflies had lost all sense of decency and propricty, which would be especially shocking in view of one of their number having been mamed after a bishop, and apparently our author was led to this conclusion in regard to some, at least, of the supposed libertines, as will presently appear.

Mr. Snyder states his opinion that dimorphism occurs among the Argynnids, and believes "that at least two of our so-called species are in reality dimorphic males of species previously described," but he does not give the names of these species, which are all males.

The author thinks that a thorough exploration of the territories where these disputed forms occur will result in revelations that will startle those who have hastily named new species, but is it not a counsel of perfection to urge the student of Argynnids "to secure a large series of species from every locality," for is not every few miles in evely direction a separate locality?

Mr. Snyder reduces the number of supposed species from 64 to 57 , and increases the number of supposed varieties from 10 to 15 , but the only names which he strikes out of the list are Macaria, which he states is a synonym of Eurynome, and Opis, as a synonym of Clio.

Cipris and Alcestis are placed as varieties of Aphrodite and Bischofi ; Artonis and Clio are finally referred as forms of Eurynome.

Arge is listed as distinct, but is said to intergrade with Eurynome.
Electa is erroneously given as Electra.
Mr. Snyder groups the forms in six groups, which he designates as follows:

Diana group, Monticola group, Edwardsii group, Semiramis group, Eurynome group, and Myrina group, the latter embracing all those which have been placed in the genus Brenthis, along with Astarte, Doub.-Hew.

This grouping is followed by notes on the individual forms, but the whole paper shows that much more knowledge is needed before a really satisfactory revision of the very difficult North American forms can be made.
H. H. L.

[^0]: *Trans. Acad. Sc., St. Louis, VII., No. 14, 1897.

