The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endornmagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques eri couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'ii lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

TTPPER CANADA MEDICAL JOURYAL

GF

Medical, Surgical and Physical Science.

ORGGINAL COMMUNICATIONS.
 nexim of this diserse with Imbecility and an alteration in
 Demonstrator of Ahatomy, $\downarrow c$.
 cases and disections which may from time to dime come mador my notice. and which ilhatrate sume of theve pringiphes of Pathohey winch have been cetablished by anatomical and phriblogical stady, or indicate mediods of research, hy which the existence of orgnic chame may be demunamed in cases thereto regardel as cntirciy of a functimai chameter.

Convulsive diseases of the nerwas system have hitherte, fur the most jart, bafited the attempts of the morbiud aratomist to associate them with structural changes of a characteristie ar consiant kind and the acconats of the pathologienl observations whein have been made in these diseases, thougl: very numerius, have not yet assan-l the furm of a patholegical lam, by which the occurreace of theit symptrase may be exphamed. Such diseases
 statements.
 on the ascernincel functions of the nervous spsien ; and we may with confilence recmanem the remarks made hy R. 13. Twh in the imancian Lectures for 1843, as clearly shering the lirection in which obsertation ought to be extemded ia such diseases, with the view of confirming or modifying cpinions regarding their fathology.

As a comparison of the specifie grivity of the central parts of the opposite homispheres of the brasu, in the case of cholerat deseribed in the following article, has furnished some unexpected resultw, I have deemed them worthy oi beiag recorled; and it is boped, that rhen its history, as detailed hy Dr. Weir, is comected with some collaterna details in tise pathology of similar rases, mai with the receatiy pubtished :nd raluable reconds of the specific gravity of the evelbral substance in health athd disease, sume additional interest may he atiacind to a case, which otherwise is in :n, reepect different from many which are atrendy familiar to the profestion.

As more fully stated in Dr. Weirs history, this case occurred in a female, aged 17 years, admitted to one of the wards in the Glasgow hoyal Infirmary, 13ith December 1852, with the characteristic symptoms of cholera in its most aggrarated and acute form. Ahhough previously healthy, she exlibited to the family with whom she lived as a servant varions unusual symptoms of disease, both mental and bodily. She was woserved to have little control over her limbs, and freguently complainel of weariness and pain in the lower extremities. From her infiney she had been brought up in a benevolent institution; leer parents, were both intemperate, and particularly the father, haring died when she mats young. Her disease terminated fataliy on the 29d December, in abous ten days from the first appearance of the acute symptoms.

Examinaton of the hody 20 hours offer drath. - The cavity of the cranium in this case was the part to rinch our eitention was more immediately directed, and it is more especiaily to the condition of the brain substance, that I mean to call attention; promisins that no lesions of any moment existed in any other internal organ, and that the external surface of the body oresented appeazances of severe bruises and abrations of the scarf skin, resulting from the injuries received during the more violent paroxysms of the convalsive movements. The pupils were uncqually diated; the left to aboat twice the dameier of the right, which measured about a tentin of an inch. Hefore remorinut the brain, it was observed that the contour of the laft cerebral hemisphere projected considerably abore that of the right side; the supericial vascularity was also greater on the left side. The brain reighed 46 ounces aroiriupeis. A horizental section through the cerebrum showed that its white substance was comparatively bloodess, while the grey matter was unusually distiact. from its ruduy apparance. The veniricles contained no fluid, and the sub-arachnoid spaces mere atso unasually dry. The nerses at the base of the brain were firm and naturai in appearance. The arteries of the circle of Willis enclosed fibrinous congula.

In the absence of any marhed organic hisease in ibis case, it appeared to me degirable to have recourse to that kind of investigation which in diseased comitions of the liver, and alterations in the urine and kidncy, had yieded swea varied nud remarkable results, more especially when studied along with the miceoscopic :ppearances of the objects of camination; and directing my eaguizies to the central parts of the hatin, as recommended by Dr. Todd, en accurate eramination of their specinc gravity was marle.

Their specific grarity of the central masses wat determined in two ways, 1st, by weighing the parts in air :und then in water, and, od, by the grarimeter, cmploging in the latter method a strong solution of Epsom salts, which ras gradually reduced by the addition of water, to the density of the portion of brain floated in it. In consequence of the uncertainty of the results obtained by suspending such a sufímactial as the brain both in air and in water, the observations frum the gravimeter lave been retained in preference to those modes by the hydrosatic method. The following results were thus obtained:-The specinc gratity of the corpor:s striata, and thalami optici was difierent on the tro sides of the hrain: those on the right side were of the specific gravity of $1.0-5$, , those ga the left side of 1.081 , and this difference appeared from the hydrostatic experiments as well as front those made with the gratimeter, confirming in sume ineasure the wrematy of the general result.

The rascularity aiso of these central parts of the brain, when compared with the grey matter of the spinai curd, which was healchy, was so mell marked, as to leare no doubt of its sbnorinal increase.

Microscopic examination confirmed the existence of increased vascularity, for numerous capillary vessels, in usual aburdance, caisted in every section examined. Some of these were irregalariy dianted, as in a varicose condition, and ali mere filled to a greater or less eatent with the red corpuscles of the blood. The amount of granular substance in these parts of the brain on
both sides, appeared to be greater in propertion to the fibrous substance than in the same parts of healthy brain with which I compared them.
When removing the dura mater, it was observed to be more adherent thau usual to the surface of the convolutions, on each side of the superior tougitudinal sinus, by firm rascular connexions with the pia mater and Glandule Pacchionii. The sinus was tuxgid with blood and a decolorized ibsinous clot which flled its carity. The veins on the surface of the convolutions were aliso much congested and turginl with bloon, while the whole surface of the pia mater presented a bright rosy colour, fron the increase in the number and size of the vessels visible to the naked eyc.
The following are the Measurements of the Meva, Cranium, and Brain:-

Fothing amomal was observed in the nerve substance of the cord. Its sheath enclosed fuid in the usanl quantity. All otiaer internal organs healthy.
Remarrs.--the mond apperance of the heny which have been fomd in eases of chorea, have not as yet throwa much ligist on its pathology. Sydenham, Cullen, Rostan, Bright, Stoll, Pinel, and others, who have hard frequent opportumities of examining cases of this disease, failed to detect any other morbid appearances then thuse which were commonly seen in other affections of the brain andispinal cort. Accomingly, by oue ciass of pathologiste, chorea has been regarded es catirely a functional disorder, independent of organic chenge : and by mother class it has been comsidered as associated with some other diseases, when futhology is better known, eithe: as a concomitant feature, or as a necessayy consequence of their previous cxistence; sucti, for mstance, as phemmation and diseases of the heart.

Much evidence has been brought formand in favour of the humoral or rheumatic character of the disovder. Dr. Copland (Lendon Zydical RepossSory, tol. av.) has the merit of having been the first to indicate the complicacation of chorea with that class of diseases: and his views have been subsequently confirmed by Drs. Puchari, am Raser, and mure recently by the claborate rescarches of Dr. Begbie * ane Dr. Seé i Num rous instances have also been adduced by Audrai, Bouilhard, liright, Mackintosh, Watson, and others, in which disersed conditions of the heart and pesicardium have heen attended with, or have given rise io, spasmodic diseases of the nature of chorea, maralysis, mana, or demenia; man the eriblence of these writers is nuFly suffeient to prove that a considerable number of individuals affeciel with churea have suffered from cardiac or cynovial rheumatism. But it is unquetionable that all have not so suffered: and indeed the history of the majority of the cases clearly shows that chnrea has a more intimate connexion with mental disease, sucin as imbecility, of even iasanity, than with jechape any uiler morbin state.
The history of this case of chorea and the examiuation after death, as now descriced, present the following points of special interest in its patheloge: :-

1. The condition of slight mental imbecility which characterized the patient during the whole of life, and which apneared to be congenital, and probably hereditary.
2. The altered condition of the nervous substance, not indicateil by any rery obvions deriation: from the heathy structure, hat sufficiently manifost by various obscrrations made upon the brain.
These observations are (i) a diferuice of the comparative inuin of the two

[^0]hemispheres of the bruin; (b) a marked difersnce in spocific gravily of the corpora striath and thalami optici of the opposite sides: (c) an increased vascular condition of the grey matter, amd anomic condition of the white.
The previous state of our knowledge of the nervons diseases now under consideration has inclined pathologists to arrange them into three sets, namely:-(1,) Those in which anatomical lesions of the nervons sabstance have been ascertained to exist: (2 , Those in which no organic change of the nervous structures has yet been detected; (3) Those chiefly of a mental kind, in some of which organic lesions have been observed. in others not. But a more complete examination by eatended methols of researeh, may ultimately lead to considerable modifications of an arrangement which seems in a great measure founded on inperfect knowledge.

There is perhaps no class of diseases, the history of which abounds with more conchasive cridence of the advantages to be gained by extended and varied instruments of pathological resarch, than affections of the nerrous system. If we compare the state of our knowledge of these diseases wiih that possessed by physicians a hundred years ags, it will appear that by improved methods of researeh and eammation, diseases which were before unknown, or classified amongst those of the second and third order referred to above, come to find a place in the first, so as to increase the number of those in which an appreciable change of texture is apparent after death. It is a commoniy reccived upinion, that fund mental derangement may exist without orgauic change; that when fundamental disorder is prolonged, as in the case of the heart, the structure of its substance becomes in some part or other organically changea. But although, in many insiances, cur means of observation are not as yet such as make it apparent whether a change of an organic kind, hitherto incapable of detection, may or may not precede a functignai change, we are not, therefore, warranted in assuming that in cases of functional disturbance, organic change is always of secondary origin.

It is by no means intended here to assert that all diseases are essentially the result of structural altezations. But although ia many instances these mey be of a kind Enappreciable by our present means of observation; and although hysteria chorea, epilepsy, and insanity, for the most part leave behind them no pathological change of a constant cr characteristic nature, yet we are still so little conversant with the changes to which the organs involred are liable, that it is reasonable to believe that the delicate teature of the nervous system may be organically changed in some parts of its substance, although it may further be remarked, that the congenial nature of some of these affections, and the permanence of the functional derangement, add probability to the view of a coincident organic lesion. This remark applies particularly to mental diseases; and in reference to them it may further be stated that although marked organic changes often appear to be absent, yet even in the obscurer cases a morbid condition of the brain may be indicated by vazious observations of the following lind: namely, change of colour of the nerrous texture; altered consistencies; abnormal rascularity; softening; increase or deficiency of size, or of specific gravity, congenital malformation. Aud although, also, it may be urged, that such morbid conditions of the grej matter of the bram, as well as other changes of the fibrous substance, are not siguificant of any fixed or particular form of mental or nervous uerangenent, yet it has been clearly shown that every variety of lesion has been associaferl with one distinct functional change, viz. insanity.* Our knowledge of the physiology of the brain is not yet sufficiently far aumanced, to state rith certainty the varied conditions under which the difterent parts of the encephalon may be modified in their operations, by an alteration of structure in other parts of the nervous centres, more cspecially when such alterations are of congenital origin, and of gradual development. The compensating and ricaricus powers of diferent organs and textures of the body, are also now so fully recognized, that every allowance nuust be made for the natural performance of function, although a part of the organ may be in a conditiou

[^1]incapable of healthy action; and while the great varicty of morbid changes which have been observed in hysteria, chorea, epilepsy, and cretinism might lenve it doubtfu! whether any are constant, the congenital nature of these affections, along with the gradual and increasing development of the morbid symptoms, under vaious exciting causes, give great probability to the view that alterations of structure originally existing have only been increased and made more manifest by various excitants of the nervous system.

The observations of Drs. IIowe and Kseeland in the American Journal of Medical Seience, contain abumdant evidence confimatory of these vierrs, and bearing more immediately on the following points:-

1. The hereditary transmission of inenity.
2. The birth of imbecile children from imbecile parents, and from parents in whom the size of the brain is deficient.
3. The prevalence of hysteria. chorea, and epilep a among imbeciles, and among children born of imbeciie or dissipated parents.
4. The general coincidence of organic change of the brain and cranium with the aticctions of idiotey and cretinism.

The history of this case of chorea, as given by Dr. Weir, shows that tie treatment to which the patient had been subjected, particularly in early life, was calculated to induce disturbane of the nervous system, and to foster a predisposition to imbecility, while the following conclusions, derived from a comparison of some of the morbid conditions with well ascertained facts, tend to connect the organic changes with an imperfect condition of the functions of the brain.

The weight of the brain (46 ounces avoir.) is above the average weight of the femate brain, as given by Dr Reid, at the age of 15 years. The average circuncrence of the female hem is ascertained to be $2 \mathrm{t} \cdot \mathrm{5}$ inches, and while the greatest circumfereare obtane from idiatic crania gives only $20-7$ inches, it is evident that when we empare the siae (40 ounces) with the dimensions given in the ease hefore us, and also take iato account the difference of specitic gravity of the centur parts of the hain on the tro sides. it shows a disproportion between the weight of the brain and the capacity of the cranium-an obserration whirh enincides rith meaburements made in a certain class of idiots: and if to the above mentinach changes of the specife gravity we add the increase of vaspularity, we see mure and more reason to conclude that some physical change has taken phace in the testare of the brain, and more especially in the central parts.

A change of a morbid hind may exist in a sirgle pat, and may therefore be readily appreciated, or it moy exist mos generally diffused throughout the whole mass, and be only cipshin of detection by ubservation on large guantities. This is more particularly the case with vascular congestion of the brain, and nore widely diffued ihanges in the vesicular clements of the nervous system. Of all the morhid cienge, assuciated with insanity, epilepsy, and chorea, there are noue which onew with greater frequency than congestions in the nervone centres, cither of a lucal or of a general character; white it is also the npinim of the most experienced physiologists. that congestions of a local kind may new ? ?uring life, without leaving any marked evdence after death of their previous existence. Other changes are of frequent occurrence, giving wise to symptoms similar in kind, although the inurbil conditions of the textures mey be different; and Dr. Sennett has the merit of clearly pointing out " that death may be uccasionced by structural changes in the brain, which are altogether imperceptille to ordiary vision." ${ }^{*}$: We must not, therefore, at once conelubie that crgatic lesiuns are altogether abseit, because appearances do not indicate uny of those which have hitherto beea familiar to us. Other methods of research may be in store, and among them observations to determine the epeeific gravity of parts not yet examined.

While anatomical and physiologimal nhserrations assign to cerebral congestion a very prominent place in the pathology of insanity and convulsive
disease, an increase or diminution of the specific gravity of the brain is a no less certain index of some change having occurred in its structural elements.
The absolute weight and specific gravity of the hrain have recently been the sulject of obserration in Germany, France, and Britain; and although some discrepancy is evident in the obtaineil results, j et they all tend to shew that any considerable change in the specific gravity of the cerebral substame is incompatible with a healthy exerviso of the nerivus fanctions.
Meckel affirmed that the brain of the insane was lighter than the brain of persons of sound mind; an ubservation siace cunfirmed, and recently elucidated by M. Parchappe, in a memoir preseated to the Academy of Sciences, where he shows the gradual decrease of the weight of the brain, in proportion to the successive degrees of loss of the intellect.
Min. Leuret and Mitive gave the mean specife gravity of the braia of an intellectual individual as 1.028 , but this is a statement which recent observations have shown to be much below the average; a density, in fact, more frequently associated with an impaired anental canacity.
To Dr. John Charles Buckuill, Physician to the Devon County Luatic Asylum, we are indebted for the first most extended account of the specific gravity of the cerebral substance, and its relation to diseases, more especially to atrophy and paralysis. The following are the gencral vesults of his obscrvations, as detailed in the Lancet, 25 th Decenber 1852, and for the most part made upon patients labouring wader tie diferent forms of mental disease:-

1. Average specific gravity of healthy brain, 1.036 .
2. In paralysis of a chronic character complicated with insanity, the specific gravity ranged between $1 \cdot 036$ to $1 \cdot 040$.
3. In some acute cases the specific gravity was as high as 1.052 .
4. In paralysis terminating by coma, 1.040.
5. In paralysis terminating by syacope, or asthenia, 103 ; to 1.039.
6. In general terms a higher specific grasity was fuund when life terminated by coma, or asphyia, than ween it ended by syncope, or asthenia.

In addition to these observations, an able and claiozate paper has since been published by Dr. Shankey, in the Briiwh tad Iureigh Medicu-Chiruryicu! Review, showing the rehative specific gravity of the grey and white matter of the brain, and of so extensive a mature, as to furnish vory cupious data for comparing morbid states with the standard of health.
The following are the gencral rusults of his researches, as given in the

"1. Mean specific gravity of the grey substance of the brain, in either sex, 1.034.
"2. In the earlier and latter perivels of life the specific gravity of the grey matter is below the mean.
" 3 . The cerebral substance acpuires its greatest density in males between the ages of fifteen and thirty, and in females between the ages of twenty and thirty.
"4. The density diminishes with prolongel illness.
"5. It decreases with lapse of time after death in the ratio of 001 for every 24 hours.
"6. A density of 006 above the aserage, indicates the existence of the following couditions during life:-Icute cercbral symptoms, or chronic disease with no cerebral symptoms, ur only slight delisium ; also with conditions associated with hyperemia.
" 7. Mcan specific grarity of white matter 1.041."
The observations referred to abore appear to have been made apon tho brain as a whole; and, as the ubservations of Dr. Shankey shuw that no constant relation exists between the absolute weight of the brain and its specific gravity, it is necessary that we examine the brain as we do its anatomy, namely, by comparative ubservations un its central parts or ganglia. ds I was not aware of the existence of any published accounts of the specific gravity of the brain substance at the time when the case of chorea now detailed came to be the subject of post mortem investigation, and
as the observations then made showed such a striking difference on comparing the epecific gravity of the central anasses of the opposite sides of the brain, I thought it right it the time to institute comparative experiments upon the brain of a number vi indiviluals in this city. The observations I have made are of a shailar hind to those recorded by Drs. Bucknill and Shankey; but while my ubservations have nut so directly in riew the determination of the specifie gravity of the grey and white substance throughout the whole brain, they tend rather to detect any difference of specific gravity which may exist in individuat portionts of the cerebral substance, and which have ben styled by eme the whtrul yomplia, and which are now generally regarded as parts more immediately related to the combined exercise of sensory and motor functions.

The following is a statement of the results of my experiments on the specific gravity of the central masses of the encephalun:-

The observations in the fureguarg table were made upon subjects within forty-eight hours after leath, and the specific gravity tahen by the gravimeier in a colution of Epsom atis, made of such density as to float the portion of the brain.

Of the six cases ohservel, fuar of them indicated a difference between the central masses of the opipsite ciles. The ease of chorea gave the greatest, white only me of the whers caceded u difference of one degree upon the gravimeter. It was a cause of death from typhus fever.

In the case of charea now detand, we hare little to indicate the real nature of the morhid change that has taken phec. A diminution of density in a great extent, and that uncutally upoh the opposite sides ut the oran of itself indicates some abnomaal condition of the nerve substance, and the
 substance, and a mount of molecular (exadation or degeneration?) matter, which harily left any vesicular nerve substane to be seen anongot the tinc nerve fibres of tiae sections eximined.

The moribid conditions which this case illustates are also of some importanre in a physiblogic ta point of view, inasmuch as they are not at variance with the views, expessed by Dr. R. B. Tudd and Dr. Carpenter, and now very generally receivel, regarding the functions of the central ganglia of the brein, - amels, that these centres, consisting of the corpora
 nervons matror inneftel wit: the cenolutijns of the hemuspherws, and the solistaner of the cerebcllam, while they are the immediate seat of the origins of nerves, may be looked upon as parts where some changes in comexion with nerves are e matantly guing on, of a kind such that it res alt is expressed through "rolition, precition, or enution, or the bahancing and co-erdinating of movements.:"
The evidener from this case, while it is not at variance, therefore, with opinime of a theoretical nature which are catertained negarding functions, at the same timn coincile, in sume measure with the results of those experiments and ebservatious in morbid anatumy, which prove that injury to
the optic thalami is productive of considerable disturbance to the movements of the body. In conclusion, therefore, this case seems to establish, for itself at least, the existence of a prinaryy morbid change having taken place in the central ganglia of the brain; and, though there were no symptoms of a hemiplegic character recorded during life, yet the condition of the pupils may be considered as indicating a cerebral origin to the disease; and, when we also consider the extensive connexions and relations of these central parts, above, below, and on every side, an abnormal condition, such as has been described, may be fully sufficient to account for the charecteristic phenoment of chorea, as well as the imbecile condition of the individual which her history records.

- While the observations made upor this case are to be regarded as a contribution to wards the pathology of chorea, the accompanying remarks have been made with the purpose of bringing more prominently into view an instrument of pathoiogicai research, whose importance has not yet been aprreciated; and the observations cannot fail to show that a determination of specific grarity points out physical conditions of texture, which are of the utmost importance to pathology. The microscope has been unjustiy and unnecessarily burdened mith labour, and has been equally mijustly blamed and brought into unmerited discreuit when it has failed to elucidate the nature or eren presence of a morbid state, the existence of which could not be doubted, but which the sense of sight could not appreciate, sien when presented in small quantities grently magnified. In such an instance the microscope has been applied to uses, which it is not the nature or province of the instrument to detect. The gravimeter or hydrostatic badance, the microscope, the stethoscope, the pleximeter, are merely instruments of pathological researcis, each one adapted for the determination of particular classes of facts, and can only elucidate disease when they are brought to bear upon the physical properties of the textures, organs, and regions, the nature of which they are able to appreciate; and it is only from their combined and appropriate use that the science of pathology win be advanced.

Art. XXXII.-Case of Un-united Fracture of both Fore Arms, by S. J. Stratford, (M. I. C. S., London), Toronto.
The following case appears of a unique character, and may be found not uninteresting in detail. it is evidently dependent upon some peculiarity of constitution which has not been particularly investigated, and ibis case may s:ive to call attention to the subject:-

John Wallis, aged 42, a native of the south of Ireland, has been about eighteen months in this country, a shoemaker by trade, having owned a shoe establishment in Dunmanna, Ireland. He had enjoyed pretty good health before he came to this country, excepting that he had rheumatic pains across his hips and down bis thighs, which appears to have been caused by fishing in frosh water. These pains used to return about every fourteen days, lasting for several, and then subsiding. When on the sea coming to this country, he appeared to become worse; he seemed extremely weak-was scarcely able to walk. His health appeared to improve while he resided in the township of

Haldimand, after which he went to reside with hes brother in the township of Medonte, during the passage of Lake Simeoe he had a fit, supposed to be epileptic. He has been married about cight years, and has a family, the youngest only a year and a haif old: latteriy he has been separated from his wife, not being able to maintain his family. While living in the township of Haldimand he went with his consin to Cobourg; it was very cold weather, and he was attacked with great pain in his arms; after he returned home, his arms swelled very much. About a week after, he was pulling ofi his boot, when his hand slipped againsi the arms of a rocking-chair on which he was sitting; upon examination he found that he had fractured both bones of the right forearm. He could shake the arm and make the bones ratte. Three or four days afterwards be went to a doctor at Baltimore, C: W., and had the fractured bones ect, but no union ever took place, and the arm has continued swelled and has been comparatively useless ever since. He says that the left arm swelled after the pain on the cold days, but when the general swelling by degrees disappeased, he found that the ulna was fractared; he declares that he met with no accident, and was meonscious when the injury happened.

At the present moment the right arm is considerably swollen; about the middle of the arm there is a great thickening of the ends of the bones, a false joim having formed. There did not appear to be any tenderness on bandling the part, and, save a considerabie impaiment of its strength and usefulness, the patient did not seem to complain of great inconvenience. In the left arm the ulna had also eridenty been fractured, and was displaced, but was casily reduced, changing ite position, however, upon the least moxement of the arm. The upper extremity of the ulna could be felt projecting under the skin, at the back part of the arm; there was no swelling or irritation apparent in the part, a degree of inconvenience only being complained of. Among other things, the man complained of losing the substance of his body (as he expressed it,) which passed in his urine; be described it as a thick cloud in his water, often feeling hke slime after he had urinated; he declared that he had no involuntary discharges of semen, to the best of his knowledge-consequently I made an examination of his urine, and found its specific gravity 1028. It had a dark straw colour, and under the microscope showed a vast amount of octahedral erystals of oxalate of lime in suspension, and abundance of epithelial seales; there was not the slightest appearance of spermatozoa, as I
had been led to expect from the man's declaration. The general appearance of the patient did not indicate any very marked dability of constitution ; he was, however, evidenty sufiering from hypochondriasis to a considerable extem, which seemed to turn upon the supposed deficieney of his sexual powers He had been sent down from the township of Ifedonte, by Dr. Rankin, for me to endeavour to obtain his admission into the Gencral Hospital: he was admitted. In a few days after 1 saw him in the streets, but could not learn the opinion of the medical officers, or the reason of his discharge.

Without doubt the disease 1 at , dependant upon some constitutional peculiarity, causing a brittleness of the bones, which seemed to have been augmented by intense frost. That any local inflammatory disease of the bone was present, progressing to the formation of matter, and the death of the bone, did not appear probable, as no matter ever made its exit from the part, while the evident want of sensibility forbade the idea that any such had ever existed.

How mach the secretion of the oxalate of lime from the kidnies had to do with the discase of the bone, did not appear evident, although it was a mark of the degraded and altered condition of the blout. The presence of the osalate of lime may doubtless present isself under many different circumstances in the urine. In some cases it may be shown to be the result of materials taken in with the food, as the rhabarb or pic-plant and the onion in man, and the sorrel in the horse, for example. In these cases the oxalate of lime, or the immediate elements from which it is formed, is present in the food, is absorbed inte the blood, and is readily excreted with the urine. Crystais of oxalate of lime are casily shown to be present on the onion, and these in many cases constitute the crystals or raphides of plants-hence their presence its the blood and their excretion from the kidnies with ihe urine is casily accounted for. This condition i have found to be particulariy frequen: in the Spring of the year in Canada, at which time the rinubarb is so generally and largely employed as an article of food. When this condition of oxulariajs present in a healthy subject, the effects produced are but temporary, and do not appear to assume any very great importance, the healthy condition and active function of the kidnies appearing to prescrve the necessary balance, and prevent the undue accumulation of the salts in the blood. In cases, however, when the excretory powers of the kidnies are deficiont, or an inordinate amount of this material collecting in the circulating fluid, it would appear
to be often a canse of severe disease; a condition of bloodpoisoning equal to that present in acute rheumatism is developed, prodncing symptoms differing in character, bat often as grave, and frequenty far more intractable in their mature. This condition of the blood, upon due examination, will often be found to be the canse of the persistence of many cases of chronic gastritis, bronchitis, periostitis, and varions neuralgic affections, and whether taken in with the food, or produced in the blood by the chemical changes which are constantly pregressing during the varions processes of nutrition, it accummhates in the system principally from the inability of the kidnies nomally to perform their functions, and it mnst be evident that unt this power is restored (if such, from the condition of things, is possible), that the diseases catused by it will remain more or less permanent, or their liability in recur may be sufficienty intelligible.

That the pationt was labouring under the efiects of the oxalate of lime in the blood, and had done so in all probability before he left Ireland, was shown by the frequent return of the pains, and their disappearance after an effort of nature had encouraged the activity of the kidnies, and assisted its removal from the syctem. In this man the oxalate produced in the first place symptoms of sciatica; afterwards it caused hypochondriasis and inability to perform the sexual functions, but what effect it had in producing the marked brittleness of the boncs, or the great swelling of the arms under severe frost, does not at the present moment appear.

RETIEW.

PRINCIPLES OF PHYSIOLOGY; GENERAL AND Comiparative.-By Wimlam B. Campenter, M. D., F.R.S. F.G.S., Examiner in Physiology and Comparative Anatomy in the Eniversity of London: Professor of Medical Surisprudence in Eniversity College, fec, Sic. Third cdition, London, John Churchill, Princes Street, Soho, IS51. 1050 pages.
The elaborate work before us is intended to present a compendium of the principles of Physiological science up to the present time, it is a compilation of the facts, data, and deductions on which that science is founded, cavefully aranged and systematised, so as to bring into view, and make serviccable for refiection, the vastly catended series of the animated races which clothe, or imhabit our globe. Donbtess, the great end and aim in this investigation is the study and comprehension of the several functions which the varied structures of the human body present; these are often difficult to compreliend, from the simple observation of their individual processcs; nay, there are many parts, such as the thymus and hymoid glande, on whelh the fullest light of science has failed to iadicate their uses. This obscurity has, however, of late years, been considerably illuminated by the study of comparative Anatomy: here we may often trace from the general to the special form, white we constanty find in the lower grades of animated existence the rudiment ortype of that plan which becomes more claborate and complicated as we ascend the the seale; the investigation of conamaive anatomy in these instances has been beautifully compared by the illustricus Cavier to so many varicus experiments and demonstrations alieady prepared for us by the hand of nature, in which, from the veriest rudiments, we are led step, by step to the comprehension of the more perfect organs; evincing also in the less complex organization, a simplicity of function that by degrees enables us to understand the complicated Physiological data. The study of individual development,-Embryology, -has also greatly assisted in the elucidation of Physiological facts, presenting us with daia ihat very surprisingly confirm the tmulbs of comparative Analomy, as illustrative of the more complicated organisms proceeding from ble more simple types. Again; the most powerful assistam in the wonderfil progress that Ana-
tomical and Physiological science has made, and is still making, in our day, is the application of the microscope to the development of these hidden truths; without its assistance, these must have been still lost to the world of science; it has truly opened up a new and most extensive field for observation, that has produced the most glorious results. Only compare the study of Physiology but twenty years ago, and you will find it litite more than the baseless fabric of a vision, when compared with our present knowledge. Still however, we believe that there are many great and mighty truths yet to be developed, many of which will doubliess grace the present century, now that the Baconian spirit of deduction is applied to the investigation of the many hundred thousand species of plants and animals that at present exisi upon the surface of the giobe, or whose exuvie are disimered by the geologist from the storehonse of organic remains. In the long series of these mimated races we cominnally fand that nature deducts or superadds the varions parts, as it were performing experiments such as we would wish to do in our laboratory, until by accumulated experience we have, as it were, by symhesis, arrived at the truth. Such ample means for observation being in the hand of every student of nature, each individual who takes an interest in the Physiological science may, by the simple observation and collection of facts, add some data to the common stores of our linowledge. What a noble field is here presented to the industrions medical student in all parts of the woild; : book which mature continually presens beforehim, in which he may read with ceaseless adrantage the various data of Physiological truth, the very basis of his profession. If the facts above enmeiated are really correet-and we firmly believe them to be so-the siudent in medicine should pay more attention to comparative dnatomy and Physiology than is now usal in our schools. fif, as we have said, Fhysiology, or the knowledge of the stracture and functions of the humen body, is one of the bases on which the student musi expeet to raise his saperstractare of medieal knowledge, why should he not go to the book of nature, and practically learn the muths which are to guide him in future practice? To say the least of in, the study of this departmem is far too much neglected in the education of our youths,-a fault it would be weil for our sehools to correct.

The details of the work the author has divided into two books, one of which ireats of general Physiology, and the other of special or comparative Physiology. Speating of the objects of the work, Mr. Carpenter says, that "although the
"special object of the present treatise is the exposition of "purely Physiological principles, it seems desirable to "preface these by such an outline of the general structure "and arrangernent, of the organs on whicin the phenomena " of life are dependen, as to render subsequent details "respecting their functions more intelligible. We shall "first consider, therefore, what then is peculiar in the "chemical composition and physical arrangements of the "particles of which organized structures are composed, and "in the forms which these fabrics preseat. The principal "varieties of the primary or clementary tissues of which "the more complex organs of plants and animals are "constructed will next be described, and compared with "one another. And thirdly, the general characiers of ihe "principal groups in eacll of the animated kingtoms of "nature will be pointed out, the mode in which their "individual organs are arranged and combined will be "explained, and the relative position assigned. Although "such knowledge is readily accessible to the student of " natural history, the embarras des richesses may not be a " litile perplexing to such as seek only the extent of it, "which will enable them to enter upon the study of "Physiolegical Science, withont being immediately "checked by the want of this information." Such are the objects and intentions of this work, and we must candidly acknowledge that Mr. Carpenter has eleganty and indicionsly fulfilled them. Led by the facts contained in the wori, and the able deductions of Mr. Carpenter, we intend from time to time to make an epitome of some of the elementary truths of Thysioiogy, and to present them to our readers, hoping it will serve io encourage in the medical student the study of this most pleasing and necesary science, white we flater ourselves it will tend to ele vate the taste and instruct the mind of the amatere in natural history.

It may be said that the laws of life are the especial objects of enquiry in all Physiological investigations, that the differences between inanimate bodies and living beings are sufficiently obvious io all observers, that scientific comparison is not necessary to discover such obvious distinctions. Upon close consideration we shall, however, find the comparison is necessary i:l the very first steps of our investigations. It has been said that in the inorganic kingdom permanence is the rule-change, the exception; that the particles of matter remain as coherent masses, unaffected by the lapse of ages: but in the domain of life, change is one of the most constant allributes of animated
structure; to be born, io grow, to arive at maturity, to die, and to be deemposed into the original elements from which it sprung, is the ilistory of every structure endowed with life; it is alke the destiny of the highest form and the most simple stracture, -of the simple vegetable cell, and the ponderous accumnlation of anmel material which eahbits itself in the clephant and the whale : even man in his present rudimental form, or lava condition, is in a great degree comparable with processes which nature employs in the perfecting other organised beings. Take the metamorphosis of the insect for an example,-it is but a state of preparation for a change, of the beauties of whose form and the glories of whose developments, we can form but the faintest ideas. If then death and decomposition are the certain results of all animated beings, the power of reproduction must be their most marked attribute, for without this power plants and animals must cease to exist, and the world would become a barren void, shom of its greatest beauties and perfection.

In what the essential principles of life consist is still hid in impenetrable mystery; like the principle of Gravity, the principle of Electicity, the principle of Magnetism, there is an unknown cause producing certain phenomena as yei inpericenly comprehended. Dr. Prout declares that the vital phenomena are io be auributed to the operation "of distinet intelligem agenis. superior 10 , and "possessing the power of, directing and controlling the "common forces of mater;" that, he learns from the effects-efleets which are the laws and phenomena of life, that cannot move or progress without ihese necessary agents. It is the duy of the Physiological studem to rompare these facts; donbtess at first sight they may appear far more dilficule to comprehend than the kindred phenomersa of gravity, electricity, or chemical alfinity, from the intricacy of their combinations, and the complexity and style of heir arrangements. When howerer, we investigate their laws, has complexity will in a great degree subside; stili, however, leaving us mignorance of the absolute mature of the controlling camse, the essential principal of life.

The process of Endosmose, and Exosmose, as explained by Durochet, would at first sight seem to indicate the operation of a far larger amount of physical force upon the compound organic structures of the animal cconomy, than was presumed by the apiorism above guoted from Dr. Prom to inlluence these structeres; sitil, nevertheless, allowing to physical force a principle, the true cause of
which we are unacquainted with, a fuil latitude of operation, the capability of reproducing its like, -was there no other evidence of the agency of this controlling power present in the sumal economy-would be sufficient evidence of the trath of Dr. Prout's declaration. The principle or cause, which impresses upon the Embryo-the character of its parent, thronghoat the vast chain of animated existence-must centainly be a controiling power of enormous import, and, in the animal and vegetable economy of most extensive influcuce. In opposition to this declaration of Dr. Pron, Mr. Caepenter maintains that there is no inelligent agency operating end controlling the forces of matter, bat that it is a direct emanation from the mind of the Deity that influences all these operations, keeps them in continual motion, and directs all their actions; ceen in the simplest cell of a cryptogamic plant we find that it performs for itself all the functions of growth and reproducion. Still this orginal impress, this power of reproducing its like, is a prominent feature which has not apparently changed for countless ages, and in all probability will presem the same feature as long as the present condition of things cxists; that it is the orginal impress of the Deity upon matter is withoui doubt; an influence delegated to vital or pibysical laws, still heeping up the same round of actions and producing the same results, demonstrative of the controlling agency jadicated by Dr. Pront. In our opinion the objection of MrCarpenter is a distimetion without a difference, serving to confuse this intricate and difficuli subject, rather than to throw any new light upon the mather.

As presenting the latest and most comprehensive views of the component structure of organic fabrics, we propose to pass in review the several considerations offered by Mr. Carpenter, as presented in his views of the primary tissucs of plants and animals, and shall return to the subject at every suitable opportunity that presents itself, until we have placed the whole subject before our readors; convinced that in this deparment of Physiolegical hnowledge the greatest strides have been recenty made, and that in them must exist the key to decipher the more elaborate and compound structures of animated nature. Mr. Carpenter truly says, "It is a fact now well established by micro"scopic investigation, that just as the Chemisi resolves " the countess substances formed in nature, or producible " by art, into a comparatively small number of ultimatc "elements, cach having its distinctive propertics, so can "the Anatomist resolve the fabrics of plants and animals,
"w whatever may be their dimensions, into a limited number " of clementary tissues, cach having a structure peculiar to "itself."
Following up the proposed course of our subject, we proceed to commonee with an abridged view

OF THE PRIMARY TISSUES OF PLAN'TS.
Among these, as the mosi predominent and important structure, Mr. Carpenter enters into the consideration of the history and structure of the cell formation in the vegetables, and shows in what essential particulars it diflers from cells developed in animals. The cell-wall has been considered heretofore as a simple membrane, but it is now shown in many instances to consist of two layers of different composition and properties. We camot do better than to present the latest jdeas by an extract. "Although we have hitherto spoken of cell-wall as a simple thembrane, yet it is now well known to be made ap in most, if not in all instances, of two layers of very different composition and properties. The inner of these layers, which has received the name of primordial utricle, appears to be the one first formed, and most essential to the cxistence of the eell; it is extremely thit and dehicate, so that it escapes attention, so long as it remains in contact with the external layer, and is only brought into view when circumstances occasion its separation from this; it seems to consist of an azotised compound, probably an albuminous nature; and it appears to participate actively in the vital operations of the cell. The external layer, on the other hand, though commonly regarded as the proper cell-wall, seems to be generated on the external surface of the primoswial utricle after the latter has completely enclosed the cavity and its contents, so that it camot be regarded as essential to the cell; it is usually thick and strong in comparison with the other, but it may possess various degrees of consolidation, from mere mucous to a firm tenacious substance; it is composed of cellulose, a substance nearly identical with starch; and it does not appear to take any active share in the vital operations of the ceil, its principal oflice being to locate and insolate the matter it contains. This external layer may consist of many lamina, the result of successive deposits from the surface of the primordial utricle, but it still usually remains readily permeable to fluids, although no pores can be distinguished in it under the highest magnifying power."

EDITORIAL DEPARTMENI.

TO THE READERS OF THE UPPER CANADA MEDICAL JOURNAI.

As will be seen by the prospectus upon the cover of this Journal, a new series is now offered to the public, and Medical profession of Canada; as therein declared, it is intended to be a medium of commmication for the profession generally; the organ for the maintenance and defence of their rights and privileges particularly. As such, it is hoped that the Upper Canada Medical Journal will continue to enjoy its former measure of encouragement; and while it is declared free and independent of every sectional view and interest, it is expected that it will obtain the patronage and support of all the profession, without reference to politics of any party or faction, and that it will be made the medium for recording the facts and deductions resulting from the practice and experience of the Medical Profession generally. It is certain that the profession numbers among its nembers in this part of the world many who are not to be excelled upon this broad cominemt; and it would be both a crime and a disgrace, that they should not have a means in which to enregister each bright thought, or commendable confirmation of the rapid and glorious progress which medical seience is making in our day, for the want of having an opportunity to record their individual experience, or the details of their particular practice. It must not be said that the soil and climate of the New Word, and especially of British America, the seat of true freedom, and the location of the truth, is inmical to the progressive development of medical science. The spirit of the age, and the democratic elements of our communities, it is to be hoped, will not become demonstrative of a degradation of the professions. We confess we have our fears from what we see around us; but at the same time our confidence in the sterling sense and truthful aspirations of the Anglo-

Saxon race is such, that we hope that any temporary abasement will, in the end, serve bnt to arouse and demonstrate their energy, and their indomitable determination still to move onward in the right paths of science and knowledge, that will at no distamt day clearly evince that the medical profession of British America is not lacking for zeal in the prosecution of science, and that it will stand a legitimate comparison with the older institutions of Europe. Let us then hope that the pages of the Upper Canada Medical Journal will be graced by, and be found a realy medium for, the communication of facts and observations, not deficient in originality and imporiance with any upon the American continent. It is our design to encourage the publication of reports from the several hospitals of this province ; these are now already many in number and considerable in extent, for so young a country. If we camot prevail upon the medical oflicers of each institution to give us a record of the many interesting cases admitted and treated under their charge, we hope to encourage the students by suitable rewards to make a record of the facts for which they have paid their fees; and we shall consider ourselves happy if by such a stimulus we shall have been the means of impressing such facts upon the memory, or encouraging the young medical practitioner to reason upon the various cases presented to his observation, and thus give him confidence in himself, and habituate him to habits of reflection and research that shall greatly extend the range of his medical knowledge, while at the same time he will be obtaining by such practices a means of properly expressing his ideas. To every ardent and enthusiastic medical student, we flatter ourselves this will offer a means of distinguishing himself, that will be highly prized and readily adopted. We also hope to see the pages of the Journal graced with the records of the various Clinical and other lectures delivered at the various Colleges and medical schools of this province. In most cases, if these lectures are worthy to be listened to, they are not undeserving of record, as the personal practice and experience of the leamed and
polished teacher, and truly we have many among us; so that we sincerely hope that a new era is about to dawn upon the medical literature of this province, which must be greatly bencfitted by attention to this particular object, as it at once presents to view a ready collection of the most recent ideas and trubluful facts of each particular science. All we can say is, that we shall be prond to offer the teacher an opportunity of showing that he has industry in the collection and facility in the expression of these facts, that shall convince any body conversant with the subject that he is worthy of the position he essays to hold. Such a course will be sure to reap its own reward in the increased number of medical students, and the honour and celebrity of his particular school. Indeed, we would like to see the matter taken up in a national point of view, so as to enable us to show to the time-honoured institutions of Europe, that medical men and medical literature have not retrograded by transplantation into another far distant, but virgin soil. It is also the intention, as heretofore, to give a selection from the periodical medical hiterature of the day, in which will be included the approved Clinical and uriginal lectures of the most popular teachers. As such lectures gencrally contain the latest ideas, and a complete resume of all the interesting facts on each particular subject, they must be very acceptable to the medical profession in this part of the world. These, with reviews of the most interesting and novel works on medical subjects that shall issue from the press, and with a collection of medical news, the passing events of the day, it is hoped will make the Upper C'enada Journal wonthy of the patronage of an enlightened public.

One of the objects that will be most zealously advocated by the Upper Canada Medical Journal will be an incorporation of the profession, that shall enable its members to regulate their own affairs. It is imly monstrous to observe the degraded position of the medical profession in Canada west; cut up into parties, and divided among themselves, they are perfectly powerless for good, and in far too many instances receive the scorn and contempt of the public,
although in most cases individually of the greatest merit, and not unfrequently deserving the fullest sympathy, and the richest encouragement from all who have the interest of suffering humanity and their country's good at heart. Why should the inedical profession of Canada West be denied the same privileges which are enjoyed by their brethren in Canada East. It is a vast absurdity, that in one section of the province the medical profession should be incorporated, and have power to control their own affairs, while it is denied to them in the other. The profession mast be anited, and loudly demand a union with their brethren in Canada East, if the Legislature persists in refusing them an act of incorporation, under which they may be permitted to place the profession in a more lavourable position than that in which it now exists. Arnong the facts, it should not be forgotten, that a few years since an act of incorporation of the medical profession in Canada West was passed by both houses of the Legislature, but was disallowed by the Queen, at the instigation of the Royal College of Surgeons in London, who considered that it would abrogate their charter in this province. This was an act of interference in our local aflairs, that for any other cause, and for a far less worthy object, would have raised the ire and indignation of the length and bradth of the land; but from the dissention and personal animosities of the members of the profession, and the want of a professional organ, it scarcely recenved a passing remark. At all events, it was an event truly to be lamented that the medical professiou in Canada West, many of whom venerate the College of Surgeons in London as their alma mater, shond have to look upon her as, if not the positive cause, certainly as one of the reasons for the present degradation of the profession in this region.

By the means above expressed, the Upper Cancide Medicol Journal will, in future, endeavour to cultivate medical literature, and if possible to raise the standard of medical and scientific intelligence in the province; and it is fervently to be hoped that it may be the means in some degree of combining the views and interests of the medical
profession, and of allaying and discouraging the political and private heartburnings and bickerings among its members which are so prevalent at the present day; and that it will assist to direct into a far nobler chamel an activity so fruitless of private or public good, and help to lead to results that shall not be muworthy of attention and admiration in a cosmopolitan point of view. Al all events, we sincercly invoise the aid and assistance of all true lovers of science in this part of the world, and the encouragement of every sincere philanthropist in the British American provinces, in the furtherance of our noble aim and object.

DR. MARSMALL HALL.

The Medical Profession of Toronto have been highly gratified by a visit to this city of the celebrated Dr. Marshail ILall. On Wednesday evening, 20th Junc, a public Soiree was given to him by the medical profession, at Ellah's hotel. At this meeting Dr. M. Hall demonstrated bis peculiar views and discoveries of the nervous system, which have been lately so largely discussed in Europe. By a series of interesting experiments upon the living frog, he showed the nature of reflex action-as it is called,- that it had its seat in the spinal cord, and was entirely distinct from the other nervous centres. Maving removed the head of the frog with a pair of scissors, and with it the brain, the centres of the voluntary system, so that all the power of sensation and voluntary movement was destroyed; by pinching the extremity of one leg, involuntary musculal action was immediately excited, and was so powerfal, as, when the body being suspended by the hind leg, to draw up the whole body with violent spasmodic influence; that this imfluence originated in the nerves of the skin, was shown by removing a portion of that structure from the leg, when upon touching or pinching the part no muscular action occurred, although it was as active as ever in the limb which was still covered by that structure. This learned Doctor remarked that these facts clearly showed that the action began in the nerves distributed to the skin, and carrying the influence to the spinal cord, again diverged as from a centre, and excited the action of the muscles to an involuntary movernent, completely independent of the will: demonstrating also, that most of the involuntary spasmodic affections of the animal frame had, in all
probability, their seat in the spinal system of nerves. Whether the nerves originated in the skin, or in the mucous membrane, the elfect was the same spasmodic action; for that in 110 discases purely of the substance of the brain, unaccompanied with pressure or irritation of the spinal cord, was there any symptoms of spasm or convulsions. He particularly instanced the dreadful malady epilepsy, showing that in all cases this disease was an affection of the spinal system of nerves, originating in the one extremity of system, and propagated to the other ; so that we had an intense excito-motery influence produced without the person being conscious of the actual cause-in fact, anaction similar to theat which influenced the frog's leg. In the very worst cases of epilepsy the impression was upon the muscles of the neek, affecting the museles of the larynx, causing a closure of the glotis, preventing the air passing down into the lungs, the necossary oxygenation of the blood, and the excretion of carbon from the lungs; this excretion being retained, became a source of poisoning to the blood, and when sent to the brain, acted as other deadly nareotic poisons, causing insensibility and temporary disease of the substance of the brain. If the amotut of the spasmodic influence upon the muscles of the neek was even more extensive, the large veins returning the blood from the brain were compressed, and a condition similar to that of apoplexy was the result; this might possibly cause death. It lasted as loug as the spasmodic influence continued, and returned at every epileptic attack: this being frequently repeated by degrees, brought on permanent discase of the substance of the brain, idiocy, and complete imbecility. To prevent these dreadful consequences, the Dr. stated that he had in some cases made an opening into the trachea, and had inserted a tube, so as to permit the patient to breathe, and to prevent the effects of the impare blood upon the brain; which, in some eases, cured the epileptic attack. Procecding with his experimeats, he also removed the head, and all the viscera of the frog, and with them the centres of the sympathetic nerves, and still the power of refles action was present, apparently unimpaired by the condition. The heart continued to move after it was removed from the body, so also did the intestines, showing that their involuntary action was neither dependent upon the brain, nor the spinal system of nerves. The Dr. claimed to be the discoverer of the spinal system of the nerves, having been the first to show their distinction from the sympathetic system, which is supplied to the viscera to
combine their functoons, and also from the brain, which is the centre of the nerves of semsation and voluntary motion. He would not allow that the beautiful diseoveries of Sir Charles Bell had any conncetion with the system of nerves which he demonstrated; although pressed by one of Sir Charles's papils to say if the corpora olivaria of the spinal cord, first demonstrated by that celebrated anatomist, was not the superior ganglion, or commencement of the very system of nerves which he had now been showing, and which Sir Charles Bell declared was a system entirely independent of the will, a species of reflex action comeethig the inncous membrane of the lungs and the museles of respiration. The nature and effect of the epileptic attark was in itself demonstrative evidence of the intimate comection of the nerves of respiration of Sir Charles Bell with the system of spinal berves as explained by Dr. Marstall Hall; besides which the experiments and conclusions arrived at by Sir Charles Bell were so far philosophical that they explained the uses, as well as demonstrated the existence, of the system of which he spoke. Such however, is not the case with Dr. Marshall Hall, for allhough his experiments go to show the fach, as to the existence of the system of spinal nerves, he does not draw any conclusions as to their particular uses. To ns it appears conclusive that they are one, and the same. That Sir Charles bell led the way, and only partially opened to our view the maguificent discovery which Jr. Marshall Hall has more fully developed, at all events it is sufficiently clear that the gratitude of the profession is fully due to the learned Doctor, and we are ready to accord to him our best thanks for the clearmess of his demomstrations, and the urbanity of his conduct, and trust that he may reap the due rewards of the undoubted merit of his noble discoveries in the lasting gratitude of the profession.

Most of the Medical Practitioners of Toronto were present at the Soirec; besides whom we observed several amatures, among them we recognised the Sheriff, one of the members for the eity, and the new Attomey-General; all appeared extremely interested in the experinents, and in the clearness of the Doctor's explanations. After the demonstrations the evening terminated by an invitation to a supper. We found the table displayed in Mrs. Ellah's very best style, being loaded with all the delicacies of the season. Dr. King was in the ehair. After supper many loyal toasts were drank with great enthusiasm; among others the Queen, Prince Albert, and the Royal Family, \&c.: after these, Dr. King
proposed the health of our illustrious guest, which was duly acknowledged with all honours. Dr. Marshall IIall arose 10 return thanks, and said that he had been equally pleased and surprised to find in this distant part of Her Majesty's dominions a great material and social progress he did not expect to behold ; indeed he had met with a reception in this city, which he could but characterise as truly British, more congenial to his tastes and feelings than he had yet met with on the continent of America. He was travelling for the benefit of his health, but he could not cease to regard with interest the condition of that profession, to the duties of which his whole life had been devoted, and he was delighted to see around so many intelligent and worthy disciples; after the compliments paid to him by the chairman, with regard to the demonstrations which he had the honour to make before them, he must say, that after a life of toil and application to this particular department, he claimed for himself the discovery of the reflex action of the nervous system; he fervently trusted that it would be found a siep in advance of our anatomical knowledge, and be made a means of benefitting suffering humanity. From the chazacter and learning of the Medical men whom he saw around him, he was impressed with the idea that science was successfully cultivated among them, and was shedding its benign influence over the profession generally, while the appearance of their great unanimity was clearly an evidence, that they sacrificed all selfish views at the shrine of science, and the public good, but he would ask what was the reason of the destruction of the Medical School in the Turonto University? Was it supposed that a knowledge of the Medical Profession could be gained without study, and that of the most laborions character? For his part, although of considerable age, he stili looked upon himself as a student; and was willing and ready to learn; he could not believe that an enthusiasm, and love of study was to be excited in the mind of youth, unless it was directed by a proper course of teaching, such as a University or a proper school of medicine alone could develop; therefore he was sorry to find that a liberal Government could make so retrograde a movement, and thus attempt to sap the foundation of medical knowledge in this part of the world, by taking from the Medical Schools all encouragemen, which it had always been the aim of the most enlighteined statesmen to accurd: he hoped that they would soon see their crror, and hark back before it was too late, or at least encomage the development in the

Province, of some efficient and extensive Medical Schoul, that should supply the place of the one destroyed. The learned doctor sat down amidst thunders of applause. Many other toasts were proposed, and speeches made, after whicis the company broke up at a late hour, evidently delighted with the conviviality and pleasure of the evening.

DR. HAMILTON'S ADDIESS.

We have to acknowledge the receipt of an "Address to the Graduates in Medicine," delivered at the University of Buffalo, by lrank H. Hamiton, Esq., A.M.M.D., and confess that for many a long day we have not perused a more elegant or trutiful epistle. It should commend iself to the Medical Profession in oll parts of the world, as the only true basis on which the science can rest. If in this utilitarian age the practice of Medicine is degraded to a money-making trade, it must be pervaded by quackery and deception, it must become a curse rather than a blessing to mankind. When moncy is the only object sought, quackery must reign triumphant, amd, like the fabled harpies of old, will surely soil and degrade the fairesi forms, the most zealges intentions for good. . We comoz refain from presenting our readers with an extract from the advice and reasoning of the learned Professor:

Men are liccase lo buy and sell merchandise; to build bridges: to constract iumpikes, canals and railroads: to open theatres, circuses, mee cenrece, salcons for gaming and Arinkines, and in all this you understand the olject io be Gre ti is soin! To matie money and get riet: : ?anestly, if they can, but at all ceente to get rich. They make no secret of their burpoese Each man has cousidered reet the chanese, and he has at bongh
 beliaves this onject can ?e most certain? and unost spredily ationuch.

Heve yon soughi a lieense to practice mediciane ind surgery from such ravtives? :nd do you understand that to this end we have groniod you sendemin homess mint the mitnes of our seal?

Then do I feel myseli instrusted to disabuse you at once of your uniortu mate mistake; and I must teil yoa phaing and without much maste of words yot lave totally misapprehended our meaning, and the vaiue of our diphomas. You linve spent much time, and hamer, an : money, Ifear, fur : n tining.

If you desire the gands and trappings of wealth; if you sigh for the day win cou sholl possess lands ami houses: if you long to loodia upon lerai chests full of precious gold which you may call all your orm; mey more is you reuld live at ease, and dying ron wonk knus that you have left to your fanily that competence which shail seeure them from ramt - why then. tumb back! It may not he cven now too inte. Tear up those aecless parchments, and vitia at beave leart hegin again.

It will never do. my good fellows: yon have eatered the trong door Fonder is your way! To the right; to the left; to the fieh; to the comiter; to the bar: to the fumb: to tie mines go. Go where yon may iff the
hod: go heave the hammer, ant wield the sledge: go aty where-but where we conluct you.
No, the diphoma of the ale-house has bat one menning. It is anamberity to sell for gain. To seli malt for moner. Aud wo man shali dare to interrogate the malt, nor inguire whether it carries into the thirsty veins of its consumers health or life: for cood or for bat, it is a lawful trode. gine : moncy making. Cacsat eaptor.

So also this your dipioma has but me maning. it is at command te give freely: to give health and life; to leagthen the threads sud mitigate the pains of this present exisichec. Without one word of condition eapressed or impliol that the word will return you weatia or esen honos. Missionaries are you. ordaned and sent sbroad, to minister: to your fellor men.
It never has been, and never can he, that any mere selfiti, sordid or mercenary pumpes should find a phace in the hear of the true pinysician. Such purposes and sentments are as incompatible witi a fathenl performanec of the dulies now intruted to yom, as hey would be with the obligations chjoinel upon a missionary of the cross. :if :puna an oher minister of the Gospel. A mereenary phyician und merceney clesyman, me alike minteligible and poranical. They bave aike mistaken their caling; or they have obtaned their commissions surreptitionsly, and hold them under a felse preiense.

No doubt a physician has a right to be rech. Sowedy has. perimes at better right: and some physicims are in the receipt of anamal incomes which secure to them ease ond elegance. Hut the number of these in proportion to the whele, is asectingly small-two snall to warrant any man in regarding our profession as one of the roats to wealh.
Whether this be so or mat, whoner practices medicine man surgery for m, other purpose than to make money, or with this as his chef parrose. is a
 homorable protession thiela he asumes to represent.
For my colleagues, therefore, I charge you not io le deceiven, mo wilfully to deccive us, while, speaking in their stean, 1 councel you, mot hor to make money by your patessiun, nor, indeed, low io zee practice,-that is a mater which onght more to of rn others than yourselve-but my how you con best setre these whon cuance er choice hins intrused to your care.
If it were actally true that yon are entiticd to regari the practue ot medicine in the light of a conmereini menture, :nd crery consultaiba and prescription :s an ordiany busimes tamsaction in wheh the tirst conside:nbion ought to be whether it noun prove remmerative in a pecamiary point of view, then l confess to yon, imbly, i wouh not have swa ever-scraymans
 you in the langrage ef hadente in Mead, when the latere was sbout io
 his patients. cither whuliy or cajole ihem. I have takea the dorner couse, and have done pretty well, as yon sec; you may take the latter, ani perinas do equally as weill."
The world does inotheek for inastretions of the compicte success of either of these modes: and think it a mater of manimerence whel you choose to adopi.
In such a case I wond charge yon somernat after this maner: Sirs. here are your licenses: there sere gour vietims! In the trade which yon are about to commence, experiente inss proven that knarery is often most successful: by which 1 menn to suy, that it pays best. You will, therefore, practice such deceptions sued impesitions as yon shail judge expedieni, witho:t much fear of exposare, sind with a tolerable certainty of a fitir
 preity free rendering-" 111 the worle's an ass and he is a fool that doesn"t ride it." This yon will find a very convenient maxim, and particulady comfortable for the rider. You will not fail to adopt, and apply it to
practice whenever a suitable opportunity presents. And whenever one ass is tired, you will find another with his saddle, bridle and blinders on. Ride him also.

If you would be advised as to books, read Don Quixote. The less you know of medicine the better; and it is probable that all kinds of learning will prove a useless, and sometimes a troublesome incumbrance.

In short, if you would speculate advantageously upon the pains, and sufferings, and dying agonies of your fellow men, copy the examples which, without much pains to look, you can see overywhere around you. Renounce sense as well as science, honor and honesty, and with a shamcless impudence practice wholesale upon human credulity.

Finally, and I am sure you will not think me unreasonable, renounce, also, the title which this your alma mater has now conferred upon you. Adopt any new title or name which may suit your fancy or interest, but let a decent respect for the mother who has nourished you, and whom you cannot certainly wish to wrong, preserve her from the mortification of being compelled to recognize and acknowledge her recreant and disgusting offspring.

Then we have done with cach other, and no obligations remain. You wished to get rich, and I have told you how it may be done, so make the most of it; away-there's a purse full; take it-and may the Lord have mercy on your souls !

To the mind of the youth about to enter the Profession of Medicine, we would especially present the picture drawn by Dr. Hamilton, and would entreat the student to pause and consider the motives that have induced him to take the first step in the study of medicine, to consider well whether the holy mission of good to poor fallen man, to lessen and sooth his griefs, and assuage his pains, are the objects for which he essays to study the noble Art and Science of Medicine; if so, let him proceed onwards with deep humility and untiring industry, and he shall be blessed with a self-approving conscience, worth more than all the gold of Australia or California; but if his aim is only gain, and money, let him not desecrate a heavenly calling, or degrade the Science of Medicine with such base and grovelling motives, that bring but discredit upon a noble Profession; doubtless, in all cases the labourer is worthy of, his hire, and if with zeal he learns the true principles of the science, and with kindness and judgment applies them, he cannot fail to reap a rich reward, an honourable distinction, and an abundant return for all his services.

To the public we would say, the encouragement of true science rests greatly in your hands; if you will not encourage truth and virtue, if you prefer to seek deception and countenance error, you must expect the just reward, unmitigated humbug and quackery.

In an especial manner this matter rests with the Legislature, and if the assembled wisdom of the country can make no distinction between science and deception, cannot understand the difference between a profession and a trade,
the degradation of the Nedical Profession must rest upon their heads; they will contribute to convert into a curse what was designed for a public good; but if they will endeavour to encourare truc learning, and discourage quackery, the communty may expect a blessing in the gradual perfection of the seienec, and future generations gain the full advantages of Medicine as such.

TORONTO GENERAI HOSIITAL.

Agrecabic to the Act of the Provincial Parliament passed harine the last Session at Quebee, the following Trustees have been appointed to the Torento General Hospital, by the Government:-The ilon. C. Widmer, James Beaty, Esq., and John Doci, Esq; ; by the Council of the City of Toronto, Mr. Bowes, the Mayor; and by the Board of Trade, Mr. Clarkson, the President.

The Trustecs above mentioned have appointed Dr. Widmer, Consulting Physician and Surgeon; Dr. Telfer, Dr. Herrick, Dr. Beamont, Dr. Hodder, Dr. Bovell, Dr, Aikin, and Dr. Wright, as the Mospital Staff. From these ne:" appointments, we fervently hope that the frequent complaints of non-attendance of the Medical Officers, which have been so frequently reiterated of late, will be effectually obviaterl, and that the gentlemen so appointed, especially the lateer portion of them, will prove a great advantage to the Situdent, and a benefit to the sick poor.

COLIEGE OF SURGEONS AND PHYSICJANS, CANADA EASI.

The tricmial meeting of the members of this corporation took place at Three Rivers, C. E., on the 13th alt. Dr. Morin, of Quebec, the President of the College, occupied the chair. The usual matiers of routine having been gone through, the ballot was taken for election of governors to replace those whose term of office had expired. After Whieh the newly elected governors met logether, and their ribice fell upon the following (entlemen as office-holders.

We learn from the Secretary's report that during the three
years' incumbency of the retiring Board, 75 students presented themselves before the College for the granting of licenses, of which mumber 61 were admitted 10 practice as Physicians, Surgeons and Accoucheurs, 2 as Chomists and Druggists, and 12 were rejected. The number who presented themselves for preliminary, preparatory to their entrance upon their studies, was 70 , of whom 60 were successfal, and 10 deferred.

Dr. David of Montreal, seconded by Dr. Russell of Quebec, moved that a delegate be appointed by this meeting to attend the American Medical Association. This was assented to unanimously. The Secretary was directed to ascertain whether this delegate would be resognized as the representative of the College and allowed to take his seat as such.

The thanks of the Profession, both in the Conited States and Canada, are due to Dr. David, for his well-imed and judicious proposition. The period has arrived whe: territorial limitation should cease to exist as obstacles to the commonity of feeling and aspiration between the members of a wide-spread craft.-.'The meeting was a most harmonious and cordial one, and was wound up mosi agreeably by the discussion of the "good things bountifully supplied by 'mine host' of the Three Rivers Hoiel."-Neison's Americen Lancel.

COLIEGE OF SURGEONS IN LONDON.

Foneigx Medical Schools.-The Council of the Royal College of Surgeons of Eugland has just placed the Royal Caroline Niedico-Chirargical Institution, and Noyai Scraphimer Hospital of Stockholm, among the Continental Bedical Schools, from which they are ready to receive Certificates of Professional coucation from candidates fo: their Diploma of Fellowship or Membership, in addition to those of Paris, Montpeliiar, Strasburg, Berlin, Vicmma, Heidelburgh, Bom, Gottingen, Leyden, Leige, lavia, New York and Philadelphia.

DEATH OF BR. BRANSBE COOPER, F.R.S.

The Medical lrofession and the Public grenerally will hear with great regret that this most cstimable Surgeon expired very suddenly yesterday aftemoon at the dihenaeum Club. The deceased gentleman was the fourth son of the Rev. Samuel Cooper, the elder brother of the illustrious Sir Astley Cooper, and the grandson of Dr. Cooper, for many years Vicar of Great Yarmouth, in which town the
subject of this short and imperfect notice was born, on the 2ad of September 1792, and where, also, he received the elements of his general education, and at an early age entered the service of his country as midshipman in the "Stately," a 64 -gan ship, under the especial care and instruction of the first Lientenant, afterwards Admiral Fisher. 'The sea, however, not agreeing with his delicate liealth, he consemed to return again to school, under the care of the Rev. Mr. Spurdens, of North Walsham, Norfolk. [Iaving finished his education, he visited his uncle, Mr. (afterwards Sir) Astley Cooper, who was then rising rapidly in public estimation, and at his suggestion repaired to the Norwich Hospital, where he remained for two years, at the xpiration of whici time he came to London, and entered the house of Mr. Hodgson, then resident in the city, who subsequently attained considerable fame as an Operating Surgeon in Birmingham and Midland Counties, and to whose professional attaimments Mr. Cooper was to a great extent indebted for his surgical acquirements. III 1512 be entered the army as Assistant Surgeon in the Royal Artillery, and immediately repaired to the Peninsula, where our troops were then vigoronsly engaged. He was present at the bathe of Vittoria, the Pyrenees, Nivelle, Orthes, the siege of S. Sebastian, and the battle of Toulonse, Mr. Cooper was admitted a Member of the Royal College of Surgeons, in England, on the 5th of December iS23, having for three years previousiy acted as Demonstrator of Anatomy at St. Thomas's Hoapital, and having already published his valuable treatise on the ligaments. In 1543 he was elected an Honorary Fellow of the College, and in 1545 became a Member of the Comeil. Thr lamented deceased had made some valuable contributions to the adnamemen of Surgical knowledge, especially in the "Guy's llosptal Reports." He was also the author of Surgieal Besays, on the rrowth and formation of bone, on fractures in general, on disiocations, sc., and a separate solume on fractures and dislocations; and has shown his reneration for the memory of Sir Astley Coojer by editing his biography. Mr. Cooper was a most kind and amiable man, beloved and respected by his papils and llospital patients, with whose sulferings he sympathized. He has feft a widow and a large family to deplore the loss of an excellem hushand and father-London Times, Aug. 1 S .

TO CORRESPOADENTS.

"A Practioncre" shall be atemded to m our next number.

SELECTED MATTER.

A COORSE OF LECYURES ON ORG:ANIC CHEMISTRY

Delivered in the Laboratory of the Royal institution of Greal Britaiz, by Dr A. W. Rofmunn. RI. R. S., Professor at the hoyal College of ('hemistry.

Gimitlemen:

In commencing this se.ies of lectures on organic chemistry, which mast of necessity give only a partial and incomplete view of that rast domain of science, I think it will le profitable if I first direct your attention to the subjects which I have to hring under your notice, and to the point oi view from which I intend to present then.

Those of you who are practically aequanted with organic chemistry are conscious of the vast extent which this branch of science has :eached within the last fer years; ceen those who have but a general acquantance with the subject can hardly have failed to notice the discoveries made in this department, ind all must see hove yain must be any attempt to give a full and connected view of ozganic chemistry in a few short lectures. I am not here to give a systematic course, bat to set before you a brief sketeli of the most important discoveries in this branch of knowledge, discoveries of older date, the influence of which may be clearly and perceptibly traced in the present aspect of science, and also those very recent researches which. claborated as they have been under our own cyes, have as yet had scarcely time to be fully appreciated, but which no doubt will materially affect the inture progress of chemistry.
I have said that my course must be limited; still I hope to be able so to select my subjects, and to comect them with one another, and to illustrate them in such a manner that if any of you desirc hereafter a more particular acquaintance with any portion of the science, you will aimays be able to recognise the true position of the knowledge whic! you seek to obtain; :ud. whilst advancing through the intricacies which may impecte jour progress, you will never fail in retracing your steps to one or cther of the striking printe of the science which in this coure we shall explore togcther.
The subject-of these lectures, then, gentlenen, may be designated the most important chapters in organic chemistry. Now, let me herin with some remaris on the use of this term. What is meant by this expression? What is the difference betzyeen orgamic and inorgamic chemistry" In fact, does any well-defined boundary exist at all! It is far easier, gentemen, io ask questions then to answer them. I might assme that every one here present could well distinguish an organic from an inorganic substance, that all of you understand well what is gencrally intended by the tems organic and inorganic chemistry. But let us not thas avoid questions, the answers to which will at once set before you the point of view muder which 1 wish you to regard the subject of these lectures.

Organic chemistry is generally described ad trating of the subatance whieh compose the stracture of plants and amimals in contradistinction to the chemistry of minerals. In order to see how far we may avail ouselves of this definition, let us for a moment examine the substances of which phants and animals are composed. The ultimate anolysis of vegetable amd animal bodies has proved that their mass is chieliy composed of fome elements, namely, carbon, hydrogen, nitrogen, and orygen. Together with these four elements there occur, in smaller or larger quantities, suiphar, phosphorus. silicium, chlorine, iodine, fluorine, and the metals potassiun, sodim, calcrum, magnesinm, and iron. From this fact, it is obvious that plants and unmals have no special elementary constituents of their own, for all the
elements which have been enmmerated are to be found in compounds of undisputed mineral origin. Nor could it be otherwise; both plants and animals derive their substance from the mineral word which surounds them.

Ihave just now stated, that among the tweive or fouteen elements which have been mentioned, there are four which predominate in the composition ar veretable and amimal matter; that is, if the vegetable and animal kingdoms be taken as a whole, and those endividual phants and ammals which exhibit a preponderance of some other clement be regarded as exceptional cases. These fonr elements, let me repeat it, are carbon, hydrogen, nitrogen, and ozygen. They differ from the ress, not only by the prevailing quantity in which they are present, but also by the distinguishing peculiarities exhibited in several other points. It mimal or vegetable matter be exposed to a high temperature, free access of atmospher:c air being admitted. we find that is part of it is dissipated, while another portion cannot be volatilized, and is no longer affected by the process of heating. Now, analysis shows that in this case it is exactly the carbon, hydrogen, nitrogen, and, to a cousiderable estent, also the oxygen, wiich are carried off, while all the rest, whaterer their nature may be, remain behind. Take as an illustration the bone of an mimal. It contaims carbon, hydrogen, mitroren, oxygen, phosphorus, and calcinm. The thre former, together with a portion of the oxygen, are present in bones in the form of gedetin or giue; the reat of the oxygen, torether with the phosphorus and calcium. in the form of phosphate of lime. Sow, if this bone be heated in the air, the whole of the gelatin is gradually burnt off, nothing but phosphate oit lime remaining beliud. I hold in my hands two pieces of bone of about the same size-the one fresh, still contains the gelatin; the second has been subjected to the action of heat. They are very similar in shape and external appearance; a difference, however, will become at once perceptible if you compare their weights-the burnt being much lighter than the mibume bone.
A similar behaviour is exhibited by all vegetable and amimal substances. When submittel to combustion, their carbon is converted into carbonic acid, their hydrogen into water, whereby the greater part of their oxysen is volatilized; the nitrogen escapes as such, the rest ot the elements remains behind, in the form of what is generally called the ash of animal or vegetable matier. Ant this effect is by no meas exclusively produced by conabustion. All vegetable and aminal matter, when no longer under the infuence of vitality, undergoes gradually a similar change. beconing subject to those grand processes of destruction, daily accouplished under our eyes, which are desiguated by the terms "decay" and "putrefaction." The ultimate result of these processes is similar to that of combustion.

We might accordingly distinguish the elements which enter into the composition of plants and amimals as zolatilizable and fixcd, or, if you please, as atmospheric elements and earthy elements; for, when separated in these processes of destruction, the former mingle with the atmosphere, while the latter mix with the mineral matter of the soil. The distinction in vegetables and animals of atmospheric and earthy elements appeare even more appropriate if we glance for a monent at the mode in which plants and animals are formed. The researches of agricultural chemistry have shown, that, While the growing plant finds ample stores of all its fixed elemeats in the mineral coustituents of the soil, it is the atmosphere from which it derives its earbou, hydrogen, witrogen, and oxygen,-the very elements which, as we have seen, the dying phant returad to the atmosphere. The animal, fecdiag as it does on phans, likewise receives, although boss directly, its carbon, hydrogen, etc., from the atmosphere. The distinction of atmospheric and earthy elements, therefore, appears perfectly justified, whether we regard the ultimate results of their destruction.
Loth the atmospheric and the carthy elements combine with each other to form sa great variety .if compounds, which are called the *proximate constituents of plants and amimals." Starch, sugar, the varimus vegetable aud snimal fats, the great number of acids occurrug in phants and animais, such as tartaric, citric, malic, benzic, hippuric, and wic aer wo the host of
alknoids of a similar origin, such as quinine, strychnine, morphine, caffeine, urea, etc.; the rarious colouring matters, the essential oils and resins, etc.. are among the endless varicty of proximete constituents that are formed by the atmospheric elements. On the other hand, the earthy elements are associated to compounds less varied perhaps, but still presenting a considcrable diversity of composition,-the subhutes of potassa, soda, and lime; the silicates and phosphates of these base:, the correnjonding chlordes, etc. are the most frequently occuring forms in which the mineral elements cither exist ia vegetable or animal structures, on are left in their ash after incineration.
these resules shom that a great purtion of phats and animals is made up of truly earthy substances. The necessity of these substances for the development of the animal fame has been lung recoguised. Their inportance in resiect to the growth of planis. neglected and underated but a few yeu's back, is now fully acknowledged, buing strikingly illustrated both by the rescarches of the vegetu-physinlugist, and the experience of the practical farmer; aud, indeed, one of the greatest modern advances in the theory of manures is based upon the clear recognition of this simple hut inportant fact.

The description of the composition and properties of these eartly compounds being given in ceery manual on inorganic chemistry, it is chrious that the definition representing organic chemistry as that branch of chemical science which treats of the substances composing the structure of plants and animals camot be admitted without limitation.

But how is the definition to be limited? Are we to chafine organic chensistry to the study of those substances whein are combinations of the atmospheric elements-in fact, to the substanes remposed cf carbon, hydrogen. nitrogen, and oxygen? A moment's retiection will shov that at further restriction is still necessary. It has been already pointed out that a certain amount of oxygen forms part of those proximate constituents which consist of earthy matter. Agaim, the oxides of carbon, hairogen, and nitrogenriz.. carbonic acid, water, and nitrie acid-are founl so generally diffused, and, moneover, in such enormous quantities in the mineral kingdom, that nobouty has ever thought of considering these compounds as exclusively beloaging to phats and ammals, alihough. in snaller or larger proporion, they occur in their organisms. The compounds of nitrogen with hydrogen and carbon-aummia and cyanogen-occur for less frequenty in the minera rovld; bevertheless, they have been observed under circumstanees which so entirely exclude the intervention of plants and animats, that many chem ${ }^{\circ}$ a are inclined to attribute even to these substances a mineral character; while others are of opinion that these nitrogen compoumds, and especially cyanogen, belong to the domai" formic chemistry.
You will perceive already, that consideable dificulties present themselves in drawing the line of demarcation between norganic and organic chemistry. The very fact, that certain substances are considered by some to be organic, while uthers belicre them to be inorganic, sufficiently proves that the division is rather arbirary and artificial. It is obvious that this division was made at a period when the science had scarcely made sufficient progress to admil of a rigorous definition of the principles upon which this classification was based. In proportion as chenical science advanced, it becane more and mere difficult to maintain this livision upon scienific grounds.

A great many atempts have been made at a rigorous distinction between inorganic and organic compouads. It has been proposed to confirm the term organic io substances which are exelusively generated by the action of vital processes in plants or animals; while such compounds were called inorganie as could be made directly, without the intervention of life, from the ciements of which ithey are conposed.

Now let us examine somewhat in detail the foundation unon which this givision rests, and you will see at once that in the present phase of the prodress of moderv chemistry, this distinetion, like the former, is perfectly untenable. It is well known that a great number of substances, which were
formerly exolusively derived from phants ame animals, are not prepared in our laboratories by artificial means. I do not allude here to a great variet; of metamorphoses or re-arrangements of the constituents of substances, which we are haly accomplishing in the laboratory, and which realy are no artificia? sormations of veretable and animal compounds, at least not from their elaments. If we have succeerled in preparing cenanthic acid, which constitutes the bouque of certain wines, from oheic acil, the principal ingredient of olive uil-if it has been possible to obtaia the volatile acid of Valerian root, or the fatty acid of butter, by means of ordinary sugar,-we are still far from being able to build up these substances from their clementary constituents; for the power of inducing carbou, hydrogen, and oxygen to assume the form of neic acid, or of sugar, is as yet poseessed by plants alone. Again, the ceseutial oil, to which the aroma of the spirea uhmaria. (the queen of the meadows, is due, is no longer extrercted from the fiowers of this plant; we prepare it more convenienty, purer, and cheaper from salicin, the crystallizable principle of willur-bark. But are ve, on this account, independent of the vitality of plants? Certainly not, we have ouly substituted one plant for another. The cases which 1 have just given you are only chemical transformation of one vegetable cebtance inte another. if you compare the composition of the sulstances framsformed with that of the products obtained, yon will at once pererive that these changes inariably consist in the remoral from the original conpound of a certann quantity of carbon, of hydrogen, and even oxygen, frequently eliminated in the form of carbonic acid and water: that thoy consist in a simplification of the original compand, which, beine peuerilly of a ermphicatelinature, is broken up into atoms of less intreate comporition.

In all these transformations we destend from more complex to simpler compounds.
But it is not diffent to show that frequently we muve in the opposite direction; that we actually can rise from the simple to the complex; that a rariety of substances of recetable and anmal origin have in reality been compounded, if I may use this expression, from their very elements. Among these may be mentioned oxalic acil, the :ormal constituent of several varicties asalis, rumex, and rheum, the the fregnent product of the ammal orgaism; formic acid, the acid exereted by certsin species of ants; urea, the crystalline principle of the urine of the mammalia; and, lastly; acetic acid, which, in combination with potassa or lime is present in the juice of a great many plants, and which the vegetable kinglom furnishes us more indirectly in the destructive distillation of woml, ir in the acidification of alcoholic liguors, derived from sugar by the process of fermertation. All these and many other componds, originally obtained mith the aid of the regetable or aumal ceonomy, are now protuced without their assistance, by provesses perfectly analngous to those which we are in the daily habit of performing in minera chemistry. But how are these formations accomphished? I need not tell you, Gent?emen, that such reuarkahle results cannot be uitained simply by briuging the elements concerned into eontact. By placing diamond into a mixture of hydrogen and oxygen, you will never poduce cither nalic, formic, or acetic aed. These triumphs of constractire chemistry can only be reachel through a series of circuituus processes. We have to follow the path which is indicated to us by the behaviour of the thant itself. The vegetable organism rejects the free nitrogen or oxygen of the atmosphere with which it in surrounded as unfit for its use; free carbon and free hydrogen are never presentel to it mature; but the combinations
which these elements produce with each other-cearbonic acid, water, am-monia-these are the materials with which it works. Out of these simple materials it forms the endless variety of principles which chemists have discovered, and are daily discovering, in the stady of vegetable structures. Now, we are ignorant of the means by which this is effecied; but the recog. nition of the nature of the materials is not the less important.
In artificially building up these proximate principles, we have to arail ourselves of the simpiest compounds of their elements, which are readily obtained. A careful study of the habits and propensities of these compounds has furnished us the means of producing further combimations, more complicated than the primary ones. Some examples will ilhustrate this modu of procceding.

In one of my future lectures I shall have to describe to you the circumstances under which carbon may be made to combine with the nitrogen of the atmosphere, the result of this combination being cyamogen, or bicarbide of nitrogen. Cyanogen, when placed in contact with water, gives rise to a decomposition of the latter, the hydrogen of which uniting with the nitrogen produces ammonia, whilst the oxygen converts the carbon into oxalic acid; again, cymogen may be united with potassinm, forming the well-known substance cyanide of potassium, which may be likewise made to decompose with water. The nitrogen and carbon, as in the fomer case, combino respectively with hydrogen and oxygen, but we have at our disposal an additional element for the decomposition of water, namely, potassium. This is converted into oxide of potassium, and the hydrogen of ahe water, instead of being liberated, joins the carbon and oxygen, and thas formic acid instead of oxatic is obtaned.

Cyanide of potassium, when fused with substances rich in oxygen, undergoes a further change; it is oxidised. The result of this change is the formation of a new substance, called oxycyanide of potassium, cyanate of potassa. The potassium in this salt is replaceable by other metals: by silver, for instance, or calcium, ws sodium. You may replace it by ammonium. This simple series of changes phaces in your hands one of the most interesting products of the animal organism, urea. I. have given to you only the mode of performing these changes. I' might have delineated to you the exact quantitative proportions in which these metamerphoses occur; but as we shall shortly return to a detailed study of these compounds, I will confine myself to directing your attention to the formula of these substances, which exhibit to you at in glance how, from the very elements, we have risen to substances more and more compliceted.

Let me give you another ezample, which is even perhaps more strikingthe artificial construction of acetic acid; and as I may perhaps not find timo to return to this question, we will examine the subject somewhat in detail. A current of sulphur vapour is passed over ignited carbon, when combination takes place, the result being bisulphide of carbon-an extremely valatile liquid, remarkable for its power of refracting light, and whose many and daily increasing applications have gained for it general attention.
$\underset{\text { Carbon }}{\mathrm{C}}+\underset{\text { Sulphur }}{2 \mathrm{~S}} \quad \Rightarrow \underset{\text { Bisulphide of Carbon. }}{\mathrm{C}} \mathrm{S}_{2}$

When exposed to the action of chlorine at a high temperature the sulphide is decomposed, and we obtain another liquid, the bichloride of carbon, corresponding in composition to the bisulphide.

Submitted to the intlueuce of a powerful heat, this biciloside splits into free chlorine and sereral other chinides of carbon, zmongst which tha chluride of earbon par excellente, the solinl sesquichloride discovered Ly Mr. Faraday under very different circumstarces, claims our special atteation.

$$
\begin{aligned}
& : \mathrm{CO}_{2}=\mathrm{Cl}_{2}+\mathrm{Cll}_{3}+\mathrm{Cl}_{2} \\
& \text { Bichtoride of Sesquichloride Protochloride Chlorine. } \\
& \text { carbon of carbon of carbon. }
\end{aligned}
$$

If you expose the e crystals covered with water, in which they are insoluble, to the direct action of sumight, you will fiud that they gradually disappear, leaving an exceedingly sone iquid, which contains two acids, namely, hydrochloric acid and it substance very closely resembling acetic acid, but containing chbrine in the face of hydrogen: two atoms of the solid chloride of carbon and four atoms of water contain the elements of three atons of hydrochoric acid amd one atom of chlonactic acid.

2 C (H	4110	3 If Cl	$+$	Cf Cls Os, 110
Sesquichloride of carbon.	Water.	Hydrochloric		Chloracetic acid.

A simple substitution of hydrogen for chlorine completes this series of chemical re-actions resulting in the artificial construction of acetic acid. This substitution is effected by potassium (to moderate the action, an amnlgam of this metal is generally empinyed, which, seizing as it were the chlorine, and simultancously decomposing water, remoses the former, whose phace is forthwith taken by the liberated hydrogen, thus formins pure acetic acid.
$\mathrm{C}_{4} \mathrm{Cl}_{3} \mathrm{O}_{3} 110+6 \mathrm{~K}+: 3 \mathrm{HO}=\mathrm{C}_{1} \mathrm{H}_{3} \mathrm{O}_{4} 110+3 \mathrm{KCl}+3 \mathrm{KO}$ Choracetic acid. Potas- Water. Aceticacid. Choride of Posium. potassiom. tass:
And thus, remarkably enough, we meet, after nearly half a century, with a new resuit, emanating from Dary's grand discovery, a fact which is purticularly interesting, standing as we do on the very ground on which this discovery was made.

Acetic acid by no means conchales this yemakible series of constructive metamorphoses. When this acid is combined with alkaline bases, and submitted in the form of a salt to the action of heat, we ibtain a new body in the form of a trasparent, very imbumabie liquid, called acetone, of a more complicated composition than acetic acid itself, while an alkaline carbonate remains behime.

$$
\underset{\text { Acetate of haryia. }}{-\left(\mathrm{BaO}, \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{3}\right)}=\underset{\text { Acctonc }}{\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{O}_{2}}+\underset{\text { Cabonate of baryta. }}{2\left(\mathrm{BaO}_{2}, \mathrm{CO}_{2}\right)}
$$

Summitted to the action of sulphuric acid, acetone loses the elements of water, while a new complication takes place, not less than three atoms of this delodeated acetone coalescing as it were in the new product of the re-action, which is known by the name of me:ithol, med which contains not less than cighteen equivalens of carbon.

$$
\begin{aligned}
& 3 \mathrm{O}_{6} \mathrm{H}_{6} \mathrm{O}_{2} \quad=\quad \mathrm{C}_{13} \mathrm{H}_{12} \quad+\quad 6 \mathrm{HO} \text {. } \\
& \text { Acetone. Mesitilol. Water. }
\end{aligned}
$$

By treating this componm with fuming nitric acin, wous succed in introducing the clementz of hypontric acid into the phace of hydrogen, and obtain dinitromesitilol-

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{10}+\underset{2}{2} \mathrm{NO}_{5}=\underset{\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{2} O_{5}}{ }+\underset{\text { water }}{2} \\
& \text { Mesitiol. Sitricacid. Dinitromesitilol. Water. }
\end{aligned}
$$

which, lastly, when submitted to the action of sulphuretted hydrogen, by virtue of a most curious process, with the letats of which you will become aequainted by aml hy, is converted into nitromesidine. an organc body forming beantiful salts with the acids, and exhibiting, in its general character, the greatest malozy with thoce wonderful substances manfuctured by the orgaism of plants, the vegetable alkaloids.

```
\(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Ni}_{2} \mathrm{O}_{8}+6 \mathrm{IIS}=\mathrm{C}_{13} \mathrm{II}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}+\underset{\mathrm{H}}{ }+4 \mathrm{HO}+\mathrm{S}_{6}\) Dinitromesitilol. Sulphuretted Nitromesidine. Water. Sulphur. hydrogen.
```

Now let us giance ouce more at the serics of substances which we have built up from the very elements, commencing with carbon and terminating with nitromesidinc.

Carbon		C
lisulphide of carboa		
bichloride of carbon		C Cl_{2}
Sesquichloride of carbon	- -	$\mathrm{C}_{2} \mathrm{Cl}_{3}$
Chloracetic acid		$\mathrm{C}_{4} \mathrm{Cl}_{3} \mathrm{O}_{3} \mathrm{HO}$
Acetic acid	-	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{3}, \mathrm{HO}$
Acetone	- -	$\begin{array}{llll}\mathrm{C}_{6} & \mathrm{I}_{6} & \mathrm{O}_{2}\end{array}$
Mesitiol -		$\mathrm{O}_{15} \mathrm{HI}_{1}$
Dinitromesitilol		$\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$
Nitromesidine	- -	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$

A better illustration of the constructive powers of modern chemistry could searcely be imagined.

Results like these fully establish the hope, that the progress of chemical science will gradually teach us artificially to proluce the majority, if not all of the substances which are elaborated under the induence of vitality in plants and animals. The same occurrence probably will take place in vegetable and animal chemistry which has been witnessed with regard to minerals. How great a number of minerals have never been produced:It is only within the last few years that the labours of chemists have been engaged in this line of inquiry, in which considerable progress has been already made by the united exertions of mea like Bunsen, Ebelmen and Seuarmont. The number of artificial minerals has been greatly increased, because the circumstances have been carefully examined under which these substances are formed in nature. In a like mamer the daily increased attention paid to regetable and animal chemistry camot fail to produce shortly a similar result.

But even now we see clearly that a distinction of inorganic and organic compounds, on the ground that the latter are producible only by the aid of vital processes, is perfectly inadmissilhe. Compounds which but yesterday belonged to organic chemistry may become inorganic to-morrow.

All other attempts to draw a line of demareation between inorganic and organic chemistry have proved equally unsuccessful. It is stated that the composition of orgamic compounds is generally far more complex than that of incrganic substances. If we admit that such is gencrally the case, we must, not forget that, in pyroxylic spirit, in methylamine, in aldehyde, aud in ordinary alcohol, we possess a series of substances hitherto exclusively produced with the co-operation of plants which are remarbable for their simplicity.

Pyroxylic spirit	-	-	-	C_{2}	H_{4}	O_{2}	
IIethylamine	-	-	-	-	C_{2}	Π_{5}	N
Aldehyde	-	-	-	C_{4}	H_{4}	O_{2}	
Alcohol -	-	-	-	C_{4}	H_{6}	O_{2}	

whilst in common alum,

$$
\text { Alum }-\mathrm{Al}_{2} \mathrm{O}_{3}, 3 \mathrm{SO}_{3}, \mathrm{KO}, \mathrm{SO}_{3}+24 \mathrm{HO}
$$

we hare a compound containing not less than 71 individual atoms, not to speak of the highly complex expressions mineralogists are in the habit of presenting us with, such as that of potassa havanatome, or of the mineral tourmaline, which are respectively represented by the monster formula on the board.

Potassa IIarmatomo - $\mathrm{KO}, \mathrm{SiO}_{8}+2\left(\mathrm{CaO}, \mathrm{SiO}_{2}\right)$
$+4\left(\mathrm{Al}_{2} \mathrm{O}_{3} 3 \mathrm{SiO}_{2}\right)+18 \mathrm{HO}$.
Tourmaline - $\quad 4 \mathrm{Na} 0,12 \mathrm{MgO} 3 \mathrm{Fe}_{2} \mathrm{O}_{3}$ $29 \mathrm{Al} \mathrm{I}_{2} \mathrm{O}_{3}, 48 \mathrm{SiO}_{2} 4 \mathrm{BoO}_{3}$.

Again, organic compounds are described as being rery readily altered, their equilibrium being very easily disturbed by the slighest external intuences. But, is it possible to imagine less stable substances than those fearful compounds of iodine amd chlorine with nitrogen, which split into their constitnents sometimes, as it would almost appear, spontaneously? On the other hand, some bodies, hitherto esclusively obtained from vegetable or - animal structures, present a degree of persistence and stability which is truly marvellous. Napthalin and paranaphthatin, so generally appearing among the products of the distillation of yeyetable matter, owe their formation to the very circumstances which destroy some of the most energetic compounds of mineral chemistry.

I should tire you if I were to enumerate all the characters of organic compounds which have been adduced as marks of distinction, but which, in reality, are found to fail ; sufice it to say, that a limit between inorganic and organic compomens does not exist: that the separation of chemical science into inorganic and organic is by no means founded in nature, but that it is an artificial division, which, first made at a comparatively carly period of the development of chemistry, is nor retained for the sake of convenience only. There is, in fact, no difference in the general properties of mineral substances on the one hand, and of regetable and amimal on the other. Whether you consider their physical or chemical characters, you will find that both kinds of bodies are governed by the same laws. In both kinds you observe the three states of aggregation. They are capuble of existing in the form of solids, liquids, and gases, and the temperatures at which the transition from one state to the other ensues, their fusing points, their boiling points, are equaliy fixed. If we meet with many vegetable or animal compounds, which are destroyed oefore they are converted into gaces or even before they are liquetied, how large is the number of mineral suhstances which have been obeerved in only one or two states? In fact, the great majority are known to exist only as solids.

The faculty of assuming regular geometric forms, while passing from the liquid to the solid state. is equally possessed by both clasees: they may be crystallised by fusion or by solution. There are so many familiar instmees of this kind that it is seareely necessary to call your attention to the specimens of spermaceti, (crystalized by fusion), of tartaric acid, of citric acid. and of sugar, which are exhibited on the table. Moreover. the crystaline forms which are thus produced appear indiscriminately anong mineral anl among vegetable and amimal substances. You could not obtain, perhaps, a better illustration of thie fact than by comparing these crystals of alum, the composition of which I pointed out to yon in a former part of this lecture, with those of codeine, one of the alkaloids of opium containing only carbon, hydrogen, nitrogen, aml axygen; both substances crystallize in regular octahedra.

If many organic compounds. especially the more immediate constituents of vegetable and mimal structures, such as albumin and fibrin, hare never been crystallised, I need not remind you of the variety of mineral substances which are entirely destitute of crystallization. such as many metallic oxides, the compounds of phosphorus with boron and nitrogen, the various glasses, porcelain, etc.

Again, the chemical chameters are essentially the same in substances belonging either to the mineral or to the vegetable and mimal kinglome, the same constancy, the same laws of composition, preval in both clavies. The rough classification frequently adopted for mincral compounds of acids, bases, and indifferent substances, founded as it is upon the behaviour of these compounds towards cach other, is equally applicable to the proximate constituents occurring in plants and animals. These proximate constitnents are likewise acids, bases, and indifferent substances. The regetable acids combine indiscriminately with mineral and with vegetable and animal bases, whilst the latter unite just as well with the acids of the mineral kingdom. On addition of citric acid to nitrite of potassa, you displace the nitrous acid, which is evolved in the form of red fumes; in a solution of chloride of
potassiun, tartaric acid produces the well-hnown precipitate of bitartrate of potassa, the hydrochloric acid being liberated. On the other hamd, there are vegetable alkaloids cayable of displacing the sarongest mineral bases from their saline combinations. A solmtion of tetrethylammonium not only precipitates the oxides of iron, nickel, copper, exactly as potassa would do, but even baryta and strontia; and under certain circumstanees it eren displaces potassa itself, which, as is well known, is ene of the stronget of mincma bases.

I an almost afraid, gentlenen, you whl object to me, that in lenying the distinction of inorganic and organic compounde, 1 luse the very ground upon which I siam, and that any other title dor the leotures 1 intend to give you would have been better than the one which lhave chosen.

But you will recollect, that, while denyiug the distinction on rigorons scientific grounds. I admitted already the great couvenience of this classification. Indeed the division into inomanic and organic chemistry will be always retained, if only for the purpoes of instruction. The proximate constituents of plants and animals, simply as their composition may sppear from their gencrally containing only four elements, present weln a dirersity of constitution, such a variety in their properties, such a complexity in their generai behnviour, that the student who engages in this deparment should be prepared by a previous study of the simpler relations of inorganic nature.

The preceding remarks, ahthough failing to estabiish a definite boundaryline between ingrganic and organic chemistry, have nevertheless served. I hope, to limit to a certain cxtent the department which we are going to treat, and to familarize you in some measure with the subjects which you may expect in the following lectures.

Were I called upon to express myself still more explicitly, I would say, I will give you "the chemistry of carbon and its compounds." In consequence of the never-failing presence of this clement in all regetable and amimal structures, the number of the compounds of carbon is greater than that of all the other elements taken together. Owing to the fact of carbon being the characteristic constituent of the organs of phats and animals; owing to the number of its componds; owing to the diversity, at the same time, and similarity of these conipouads, and their pecuhiar differences from most other chemieal substances, the history of this element deserves to be traced apari from all the rest.

On having the subject ihus defined, you might perhaps expect a description of carbon itself, and of its simplest compounds, such as canbonic oxide, carbonic acid, bisuiphide of carbon, eic., as the starting point of our inquiries. However appropriate und interesting such an introduction might be, the properties of these substances are alicady sufficientiy known to you, being invariably described together with the compomen of the other clements. Morcover, our time is so limited, that it will be more expedient to proced at once to the study of more complicated carbon componits.-W/edral Tims and Gazetle.

> By Dr. Warsiaall Mall, F.Ji.S.: ds:
[In remarking upon this case, Dr. Hall says,]
Such cases occur from causes of nervous exhausion, such as excessive study, muscular effort, sexual indulgeace, ice. ; and in such cases strychnia has appeared to me the appropriate and useful remedy.
This agent acts distinctly on the spimal marrow. In excess it induces spasmedic affection. Tt is therefore contra-indicated in cases of irritation of this nervous centre and of spasm. Its appropriate use is in spinal exhaustion. It constitutes one of our hest tonics, improving the general health, and conducing to the recovery ot strength and Hesh.
1 have given it in minute doses thrice a day, in the midst of meals, for
many months. The following is the formula which I have adopted:-R. Strychnio acetatis, gr. i: acidi acetosi, Mlxz. : alcoholis, jij; ;quadistillate, $3 \mathrm{ri}$. M.
Of this, ten drops, coutaining one-fifticth part of a grain, may be given thrice a day; but 1 have generally begun with five, and gone on to tifteen.
In tro cases only have 1 known it to disagree. It seemed to affect the head. In many the patient has improved in looke, as in seneral health and strength, without experiencing enything but good from it.

I am giving the strychmia a cautions trial in the epilensy attended by: pallor, thinness, and nervous exhaustion; in the paraplegia the result of serual excesses, and in which ueither pain ner spasin has oecurred; and in the paralysis agitans.-Luncet, Non. 27, 185\%, $\mathbf{p}^{\prime} .486$.
[In another paper, Dr. Wall says,]
I have been recently engaged in some experiments on the effects of strychmia and their remedies. I cm only give a brief notice of them at the present moment; on a future occasion I will give the experiments themselves, with their interestiug details.

The effects of the awtate of strychnia shaw themselves under two forms or degrees, according to the dose of the poison in relation to the powers of the animal: these are-1 (1) the milder, and (2) the erecrer.

If a dog be placed moder the milder form of stryehnism, it passes into a condition of extreme spinal excitability. If, wen in this state, it be continually excited, like the frog under a similar influence, it certainly dies: if, on the contrary, it be phaced in a position of absolute guiet, it as certainy recovers-facts which suggest our principal of the treatment of tetamus ama of bydrophobia.

If the animal be plated under the severer form of strychmism, a different series of phenomenta occirs. la the viokence of the paroxysm, extreme laryngismus, extreme efforts at recpiration, aponlexy, asphyiaia, death oceur unless one sameure be adoptert: that measure is trachomomy.'

Let alon- the animal would infallibly dir-nf larsagismes: tracheotomy heing yerformed, he lives!

But the patient affected with lyytrophoin-and all hitherto sn afferted hare died-have died of hargugmos. Now of haryngismus he ronld ant die, if eflicient tracheotomy were performed: would he then die of exhatstion.

I repeat that all patents alifictel with hyduphobin have died hitherto: that all have died of largugismus; that of laryngismas they need not die. and will not die, if iracheotomy be performed :-that is, no patient need die from the cause from which all hydrophobic patients have died nitherto.

If tracheotomy be performed, will the hydrophohic paticnt die? This question camot be answered without an appeal to experiment. As the animal affected with the seterer form of strychism was sated from the first efficts of the poison, yet died afterwards of exhasetion, the hydrophobic patient may die of ulterior effects of the poison. Fwen then, the terrors of this most terrific of diseases-the fits of strangulation and of suffocationwill be averted.
From the experiments to which I have adverted two practical inferences are deducible:-

1. Let the tetanic patient be preserved from all external excitement abso!ately.
2. Let the hydrophobic patient. whilst eanally prescrved from exciement, be subunitted to efficient tracheotomy.-Lancet, Fch. 5, 1855, p. 128.

 premosalis.

But Professor Bennct. Elinburgh.
[In the first case related by Dr. Bennett, although no disease or abnormal sound could be derected in the chest, yet the patient, a rentleman, had hawked up from time to time amall clot of houd aboui the site of a pea. He remarks:]

The origin of the blood in this case appeared to ne at that time to be very mysterious. It was not florid. Where was ao reason to suppose it to be of pulmonary origin. There was nothing in his voice to indicate laryngeal disease. I did not examine the pharyns, not being then aware of the importance which ought to be attached to it. 1 was consequently left in great donbt as to the origin of the blowi. and of the lest means of removing anxicty from my patient. My uncertainty, howcver, was partly dispelled by the following case:-
1 was requested by an assurance oflice, in July 18.00, to cxamine the chest of Mr. ML., a merchaut, aged about so. whe said he laboured under no kind of complaint, witin the exception of occasional sore throat, and expectoration of mucus tinged with blood. Ife was tolerably stout, took long walks without uncasiness, and suffered from no difficulty of eespiration or from cough Repeated examination of his chest failed to clicit any physical sign indicative of pulmonary disease. I therefore certified that his lungs were bealhy. In October 1851, this gentleman called upon me again for advice, under the following circumstances. The sorencss of the throat had haterly increased, and considerable cough was inducel, after which he spit up monthfuls of purulent matter, frequently tinged of a yel culur. He brought me some of this sputum to cxamine, which consisted of mixed bloot and pus, of a dirty brick-red colour. Examination of his chest again convincell me that the lungs were unaffected; but in the interval I hat paid attention to the writings and practice of Dr. Horace Green, of New York: and 1 now examined his thout, when the cause of his symptons was at once apparent The favees and upper part of the pharyns were studied over with nolular swellings, rarying in size from a pin head to that of a pea. Many of them were bright red and fungoid in character, probably the origin of the extravasated blood, whilst considerable patches of purulent matter adhered to several parts of the mucus membranc. I applied a sponge, satuated with strong solution of the nitrate of silver to the affected parts. In three days he returned, having been much relieved, when the application was repeated I have not seen him since.

These tro cases convinced me that certain symptuans which have hitherto been considered as indicative of phthisis might have their wrigin entirely in the fauces, pharynx, and upper part of the laryur. The courh so occasioned, with the purulent expectoration, often tinged with blool, frequently so resembles that occasioned by phthisis, as not only to induce alarm in the minds of the patients, but frefuently to mislead the medical practitioner I have now met with many such cases, which have been mistaken for phthisis, and which have been treated for that disease without any effect, uatil local remedies were applied, when they for the most part lisaypenred, or became much better.
[In a second case, tinat of a female aged 0 , there were all the symptoms of phithisis present-frequent cough with hemoptysis, copions purulent expectoration, night sweats, and loss of appetite with somiting. On examining the fauces they were found covered with purulent mucas. The cough was also ascertained to be convulsive, and a ringing sound was heard orer the larynx on inspiration. Laizugitis was the disease diagnosed. The solution of nitrate of silver (3ss. to $\mathrm{K}_{\mathrm{K}}^{\mathrm{j}} \mathrm{j}$. of water) was applied to the fauces, and afterwards the sponge was introduced into the larynx, with some degree
of benefit. Blisters to the larynx were also applied; and as the disease seemed to have a syphilitic origin, iodide of potassium and bitter infusions were the internal remedies resorted to. Whis patient, though not cured, was consilerably relieved. Dr. Bemnett conclades hy saying:]
The eases now given, with others that might have been adduced, have satisfied me that lesions of the pharyns and laryns ought to oceupy the serious attention of the practitioner in all cases of pumonary diseases, and that the following practical conclusions may be drawn from them:

1st. I'hat not unfrequently diseases, entirely seated in the largnx or plarync, are mistaken for phthisis pulnonalis
and That even when pumonary pithisis exists, many of the urgent symptoms are not so much owing to disease in the lung as to the pharyngeal and laryngeal complications.
Brd. That a local treatment may not only remove or alleviate these conplications, but that, in conjunction with general remedies, it tends in a marked mamer to induce areestment of the pulmonary disease-Monthly Juarnal of Med. Science, Dec. 185\%, 1,:1:3.
strangulated obturator hernla.-opirkation.-Rednction.-mayourabla progress of the patines.

[Under the care of Mr. Bransby Cooper.]

An extremely interesting case of obturator hernia, in which an operation has been performed with successful results, has during the past week occurred under the care of Mr. Cooper, and we hasten to lay before our readers some particulars concerning it Instances in which protrusions of intestime at the aperture in the obturatur membrane for the passage of the vessels and nerve are of extreme rarity, and the greater portion of those on record appear to have been discovered for the first time in the post-mortem room. The fatality of the lesion appears, hurever, to be connected rather with difficulties attending its diagnosis than with those appertaining to its treatment. As far as we are aware, in all the published cases, the return of the intestine was eacily accomplished, the stricture being large and readily dilatable. In one recorded by Dr. Frumtz, spontaneous reduction appeared to be accomplished. The patient, a woman, had suffered from pretty well marked symptoms of the affection for several days, which suddenly subsided immediately after she had felt a sonsation as if sumething passed up from the locality of the obturator aperture. In another, which occurred to Dr. Garengeot, am was attended by a perceptible tumour, reduction was effected by means of the tavis. It is also mentioned in the interesting case in which gastrotomy was performed by Mr. Ifilton, that the bowel was replaced by gentle traction, assisted by firm pressure in the groin, and without any aecessity for resort to instrumental enargement of the structure. Division of the upper elige of the stricture was, however, resorted to in Mr. 0 bre's case ; (") but even in this case, it is stated that the bowel was not tightly constricted. In the case we are about to relate it will be noticed that the bowel slipped up almost spontanevusly during the examination of it by means of the finger. The circumstance, that this form of hernia is more frequent in women than in men, may doubtless be explained by reference to the peculiarities of pelvic conformation in the former sex.
It is evident in this accident the discovery of an external tumour must depend very much on the stoutness of the patient, for in a fat subject it must the nearly imposcible to ascertain the existence of a protrusion so decply

[^2]placed as the obturator foramen. In Mr. Cooper's case the patient was remarkably thin, yet it was only by a most cantious cxamination that the swelling was detected. Not, however, further to anticipate, we shall at onee proceed to its detais as given in the netes taken by Mr. Matuder, we of Mr. Coopers dressers.
Mary Ann Neil, aged 49, the mother of several children, a thin and spare woman, was admitted on the 29 hamuary, 195, hating sufferel for three days with the symptoms of strangulatel hermia. It appeared that she had been subject to : small protrusion of bowel at the umbilicus for ten years, and that for about two ycars she had worn a truss on accume of it. For nearly five years she hat been disqualificd for any active employment by asthma. She stated, also, that repeatedy during the last two years she had suffered from sudden attacks of severe pain in the right groin, which were frequently attended with sickess. These paroxysms used to last asually about tro hours, subsiding as they cume on, somewhat suddenly. Her present illness commenced on January 15 , in the evening of which day, whilst sitting at her sewing, she was sudeden seized with gain in the right groin of similar character to that of furmer attachs, and conmencing deep in the groin and proceeding thence down the insite of the thigh. The pain was so great that she coull not sit upright. Niansea and severe vomiting of bilious matter soon after came on, and continued with little intermission until the time a. which she was brought to the hosyital. On the folluring day she sent for a surgeon, who administered castor oil, which effected a full evacuation of the bowels. On the 18 th the oil was repeated, but failed to produce any effect. Her paiu cuntinued unabatel. On the 19 th the dose was again administered, but soon after rejected by vomiting. The pain in the part was not so severe es before, but she had cramps in the extremities and continuous vomiting. In this condition, the lowels having been unreliered for two days, and three days having clapsed since the beginning of the symptoms, she was brought into the hospital. On the 20 th, her countenance was anxious, skin cool; pulse 100, small and weak: tongue covered with thick brown fur; abdomen tender; urine seanty.

Mr. Cooper saw her soon after admission. Having been informed that there were symptoms of strangulated hernia, without any tumour being discoverable, he at once instituted a careful examination of the whole abdomen. On exposing the pubes, a want of ssmmetry between the two sides was observect, which was apparently caused by the presence of a slight puffy swelling in the right groin. Pressure in this part cunfirmed this impression, and it was thought that a slight impulse might be felt un making the patient cough. Attempts at the texis having failed, Mr. Cooper deitermined at once to perform an exploratory operation. An incision having been made over the seat of swelliry . .r. the dissection performed as if for a case of femoral hemis, Mr. Coopur slit up the inacr part of the sheath of the vessels, and passed his finger ap to the crural ring. Nothing was fumd; the parts were in a natural condition, and now that, by the division of the skin and fascia, all tezsion had been relieved, the existence of any tumour at all became dubitul. On further exploration, howeter, Mr: Cooper discovered tinat ane pectineus musele, part of which had been exposed, was slightly bulged upwards. Ife at once expressed his conviction that there must be an obturatur hernia, aud having separated the edges of the pectineus breris, he succeeded ia caposiag a small portion of the sac. Dy a transperse division of sume of the filifes of the pectinens the whole sac was brought into viek. The protrusion was about the size of the bowl of a dessert-spoon, and it felt soft and flaccid. Whilst being examined by the finger, it suddenly slipped up en masse into the abdomen. Immediately after the reduction was thus accomplished the wiman expressed herself as being reliered from a sense of dragging and constriction which had esisted in the abdomen. The parts fere then brought inte appesition, and supported by a wet compass and bandage. The patient was returned to bed, and ordered to take tro grains of opium at once, with directions that half the dose should be repeated every four hours.

In ihe evening she appeared as confortable as could be expected, and was quite free from nausea. It should bere be sotel, that no pressure was being apphied to the tumour at the time the reduction was affected, it appeared to have been pressed downwards by the pectinens muscle, and after the divisiou of that structare, was apparently free from constriction. Strictly speaking, it could scarcely be said to hare leen strangulated.

January 21.-Ifas slept fairly in the night, and has had no vomiting or nausea since the operation; pulse 120 , full, and of good power; tongue brown and dry in the centre, white at the cdges; skin moist; abdomen tolerant of pressure; bowels have not aeted. Mr. Cooper saw her in the afternoon, and ordered a gruel enemena, containing half an ounce of enstor vil, to be administered.
B. Pulv. opii g. j., hydrarg. chlorid. er. ss. ; ft. pil. 4tis horis summend.
etth.-During the last two days she has somewhat improved, but the bowels have not as yet been relieved. Two enamata have been administered, but they failed to bring away facal matter; much flatus has, however, been passed per anum; the tongue is cleau, not so red as it was, but still rather dry; pulse 110, soft and rather feeble; her appetite is returning, and, at her urgent request, she is allowed to take a small portion of mutton-chop. Rep. pil'‘n. ct. m. summend.
20 .-Although the bowels have not yet acted, she appears to be going on favourably, sleeps fairly, and enjoys her food. The tongue is less dry. The persisted constipation is probably to be explained in part by reference to the opium which has been preseribed with such bencticial effect, and in part by the fact, that the lower lowel was rery freely evacuated on the day after the first occurrence of the sympioins.
We shall not fail. in our next number, to repeat the further progress of this sery interesting case, when we hope also to add some further comments. which want of space compels ny, for the present, to pustpone.
what is tubehcle: winat is fitilisis?
Sy Dr. iW. renner.
[It is strange, says Dr. Jemer, that even at this day we are obliged to ask this question. Has it not been satisfactorily answered by every "athor who has written on this subject within the last quarter of a century ! It would seem not, and therefore for our instruction, Dr. Jenner, in reviewing tie works of Ancell, coton. Virchow, Menle, litinhardt, and uthers, gives us an opitume of opinions held on the subject. He says:]
The opinions now held in regard of tubercle may be divided broadly into classes; the first is, that toherele is an erudation cescutially pathological in character. "It is beyond dembt," says Rokitansky, "that tubercle is :m exudation." The second, that tuhercle is merely n retrugrade metanorphosis of pre-existing structures. Thic latter notion is strongly advocated by Virchuw, in the papers before us.
The opinions referred to, however, readily admit of mure minate division : and for the parpose of chabling us, in a subscyuent article, to estimate what amount of the truth they recpectively contain, we shath here briefly describe them under five heads.
Isi. Tubercle is it specific exudation poured out under the influence of : special gencral pathologival state: in other merds, it in the lucal anatomical expression of a defnite conctitutional affection. Or, as Mr. Ancell says: "As healthy blood supplieq a hastema or succus nutritivus for lealthy nutrition, tuberculous hood supplies a tulerculous hiquo: from which tubercle is formed."
Lebert's statenent, that he had disenverel in tubercle a peculiar and distinctive microscopic element-a tuberele-corpuscle-appeared to give force to this riew : and coinciding as it did with opinions previously entertained,
was received in this country as strong evidence in favour of the farourite creed. If this opinion be correct, tuberele ranks pathologically and anatomically in the same order as cancer, there being in both a specific constitutional disease, a specific exudation, and a specificor distinetive cell.

The truth or falschood of this view will come hereatter to be examined.
2. Tuberele is a degraded condition of the nutritive material. Some pathologists, as Ur. C. B. Williams, refer tubercle to at degreded comblition of the nutritive materials from which new textures are formed," and hold that tubercle differs from fibrine or coaguble lymph nut in himd, but in legree of vitality and capacity for organization. Examined microscopically, tubercle contains, according to Dr. Williams, a few irregular-shaped, shxicelled cells, with imperfect nuclei, the main substance being composed of grambiar or anorphous matter. "No fibres are," he says, "perceptihle."
3. Tubercle is composed of the products of inflammation. Reinhardt is at once the most recent and able advocate of this upinion, aud the high reputation as a microscopical observer he enjoyed amons those most intimately acquainted with him, recommends his statements to war attentive consideration. Reinhardt sees in tuberele ouly the products of chronic and repeated inflammations. In some cases of chronic pocumonia, Reinhardi found a gelatinous fluid in the cells and interstitial tissuc, cuntainiug epithelium and pus. At a later period the epithelium was in a state of hatty degeneration; the interstitial tissue contracted; the cells lessened in volume; and, fimally, a kind of cicatrix was formed. In various stages these slates have been termed, respectively, gelatinous infiltration, gray tuhercle, and tubercular cicatrix. In other cases of so-called yellow tulercle, Reinhardt found pus in the air-cells; the pus became thickened, dried up, and the nuclei disappeared. Shrivelled pus-cells, and not nuclei which have hecome free, form the so-called tubercle-corpuscles. Altivugh Reinhardt considers that in some instances the tuberculous process arines from lucal causes-riz., hyperhamia and recurrent inflammation; yet he adnits that in matuy cases these indicate a state of dyscrasia.
4. Tubercle is composed of dead-tissuce elements: Such is Menles opinion. In the lungs, he says, tubercles fare bluodless, dead (nehrotesche) lubules, gorged with the dried-up elements of the epithelium or with pus, heaps of granules and granular cells, and these dead lubules coutinuc in convexion with the sound pulmonary tissue, as a withered limb nay with the trunk.
"The corpuscles," he says, "which are found must frequently and in the greatest number in miliary and crude soft tubercle, and which have generally been described as specific, are the corpuscles namel ly me elementary corpuscles,' and they belong to that variety of these which is sendered pale and dissolved by acetic acia. T have proved," he continues, "that such forms arise out of cytoid corpuscles long exposed to the air." Ind, further on-"The microscopic analysis renders it probable that the nucleated cells arise out of the air-cells; it offers no explanation as to whether the cytoid corpuscle, the products of the development of which we find in the air-cells, arise out of bronchial nucus, or from the pus of circumscribed inflammation, or from extravasated blood."
Tubercle corpuscles have already been stated by Gulliver to be "effete and shrunken primary cells"-a definition which might be adopted by Henle.
These views of Henle agree in the main with those propoundel, in 184?, by Dr. William Addison:-"A tubercle," says Dr. Wr. Addison, "involves or includes in its substance the vesicular stracture of the lungs: minute bloodvessels, lobular passages, and air-cells, arc all capable of demonstratiou on the dissection of tubercle under a Coddingtun lens; thie bloalvessels are no longer permeable, but their presence may be demonstrated." Tubercles themselves are composed of abuormal epithelial cells. Ifenle maintains that gray granulations are imperfectly coagulated filrine, and if they sumetimes pass into yellow tubercles cannot be considered as their first stage. Ile discards the idea of a specific exudation, and advocates the opinion that the first change, as far as the lungs are concerned, is coagulation of blood in,
and obliteration of the vessels consequent on, defective capullary carculation. arising from imperfection of the respiratory morements.
5. Tuhereles are composel of metamorphosed organizel elements-a metamorphosis co-melinate with the fatty and the waxy degenerations. This is the opinion of Wirchow. His vierss are developed at some length in the papers placed at the head of this articlo; and as they contain much that is pechiar and novel, we shall cuter into then somewhat fully.

To do justice to the opinions of Virehow, we shall firct lescribe what we momerotand him to mean, and then give his own smmary of his opinions in the worls he has himself used in one of the papers above mentioned.
A tuberele is composed escentially of lead tiscues, the death of the part heing occasioned by the accumblation of cells amid its vessels, and consequent compression of those vessels, and eessation of the circuation through them. The cells which thus play so important a part in the formation of tuberele may have their origin,-

1. In the physiolorical cellis of a structure or organ. The mode in which Whe increase in these cells takes place may, be say, be exquisitely perceived in the lungs. The first step in the tuhereulous metamorphosis in these organs is an increase in the epithelium of the air-cells by cadogenous formatim. "I have seen," Virchow says, "cells with five large, oval, granulated uncleolated nuclei." Subsequently the "cells fall to pieces, a granular detritus is left, in which the muclei remain for some time as shrivelled, irregular, upaque hodies, finally these also crumble, and an entircly amorphous, finely granular mass remains behind." It is these nuclei, shrivelled, irregular, and opaque, which, in Virchow's opipiou, constitute the tuberclecorpuscles described by Gluge and Lebert. "They are not," he says, rxudution corpuscles." "The peculiarity of the local process lies in the teudency of the organization, and by no means in a peculiar exudation." In lymphatic glandsafiected with sn-enlled scrofulosis, there is lypertrophy of the elements of the part through indogenous nuclei formation. The cells colarge to tive or six times their normal size, and as many as twelve pairs of nuelei may be secu in the same cell. The nuclei probably increase in number by cleadge into pairs. What share an exudation takes in this change, Virchow says, he "cannot decide." Still he maintains that tubercle is not developed exudation, but merely metamorphosed pre-existing tissuc-ele-ments-elements to which, in their primary state, the name of tubercle couldnot be applied: and that. consequcutly, the tuberculons metamorphosis is not the mark of a specific process of a particular constitution.
2. The cells by the accumulation of which the vessels are compressed and leath of the part produced, may have their origin in the endogenous development, or in atrophy of the cells of cancer, pus, or typhous matter, but not in their simple desiccation.
3. These cells may he deceloped in the fibrine poured out in what is termed tuberculous inflammation. Ts the tubercle here forned directly of infammatory exudation-matter? Virchow says, No: the whole mass of fibrine passes on to organization; but while "one part developes itself into muiting tissue and vessels, another forms, nucieated and cellular formations, which rapidly increase by endngenous growth, so that their number at some points is very great, and the amount of the endogenous melei is occasionally even colossal.' The subsequent steps of the process-i. ε., death of the part, disruption, atrophy, slrivelling, desiccation of the cells, are the same in all threo cases.

But although all pathological and all physiological cell-growths may thus tubercularize, yet there is a local process which leads to the exudation of a material, the cells resulting from the development of which, whether they be physiological or pathnlogical, so constantly tubercularise and lead to locesl death, that this may he said to be the ordinary termination of the process. This process, in the plrascology of Virchow, is tuberculosis; while serofulosis is used by him to signify the constitutional state in which tuberculosis occurs.

To pass from the general state to the particular local lesion:
Scrofulosis is that constitutional affection which commonly leads of tuberculosis.

Tuberculosis is that loenl proces in tho ordinary progress of which there occurs an exudation of a material, nutritive or patheological, which developainto cells that tubercularize or undergo the tubereulous metamorphosis.

Tubercularization is the lecal process by which the metamorphosis of the elements of a part into tuberele is effected-i. c., endogenous development, atrophy, shrivelling, and desiccation of the cells.

A tubercle is formed of the detritus of the metamorphosed and atrophied cells, with the remains of the vessels, Sce, of the part in which they were seated.

It requires some little attention to grasp fully Virchow's meaning; and to those who have heen accustomed to use the word "iuberculosis" to denote a specific constitutional affection, the employment of the term serofulosis to express this state, and the restriction of the word tuberculosis to the local changes going on in a particular part, may be confusing; but a little consideration will prevent any misconception.-Brit. and For. Medico-Chirurgical Review, Jan. 1853, p. 181.

GHOLOFOLM NA SKMPATHETIC VOMITANG.

By Dr. Thos. Jnmun.

[For this symptom two classes of remedies are generally resorted tostimuli, or direct sedatives, One of the most valuable of these is creasote, but on account of its many disagrecable qualitics, Dr. Inman suggests chloroform, in the dose of three or four drops, well shaken up with water, to be used in its place. He says:]

I do not know whether the suggestion is new; it was forced upon me by circumstances. A friend came to visit us across the sea, and suffered urgently from sea-sickness, which continued long after her arcival, to such an extent, that any motion of the body produced romiting. Not having anything else in the house but chloroform, 1 gave some of that, and was gratified to find that its success was immediate. 'lhe next case was one occurring in the practice of a friend, where the vomiting had been kept up incessantly for three days, and where ereasote had been unavailing. The vomiting was partly due to an overflow of biie, and partly to pregnancy: ii continued, however, after the flow of bile had ceased, and was beginning to weaken the patient materially. The first dose of chloroform (five drops) checked the romiting for six hours; there was then a slight repetition of the sickness, which, however, disappeared entirely after another dose.

The next case was one of vomiting from disorder of the liver. The first dose put a stop to the sickness, and had not to be repeated.

My next experience was in the case of the lady I first mentioned, whe found it useful in preventing sea-sickness.

I have induced some of my friends also to try it, and they give an equally favourable report concerning it.

Its chief advantages over creasote are, its pleasant taste in the month as it. goes down, and its not unplensant flavour if it comes up again. The only point requiring attention is, that the mixture must be well agitated immediately before being taken, as the chloroform rapidly falls to the bottom of the spoon or glass.-Med. Times and Gazette, March 5. 185\%, p. 252.

[^0]: * Fdinburfh Monthly Jourmal of Mcdical Scienoc, 1547. \dagger Memoires de l'acad. Aistionale du Medicine, vol. xv. page 3ï̀. et se\%.

[^1]: *IItchmsn, Pathology of Insanity. P'sychological Journal, vol. iii. p. 519.

[^2]: (*) Mr. Ohros's rate is peculiarly interesting, as being, we believe, the only one iu which reduction was accomplished by operation with a successfal result. It affords, in many particulars, a close parallel to the present one.

