The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of fitming, are checked below.

Coloured covers/
Couverture de couleus

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculie

Cover tivle missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/ Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Reliè avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/ la reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during yestoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, iorsque cela ètait possible. ces pages niont pas ètė filmées.

L'Institut a microfilmé le meiileur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

\checkmark
Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tete provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Génèrique (périodiques) de la livraison

Additional comments:/
Coınmentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

DEVOTED ESPECLALILY TO THE INTERESTS OF OWNERS AND OPERATORS OF
Flour Mills, Saw Mills, Planing Mills and Iron-Working Establishments.

Yor. Xll.-No. 1.

GREEY'S IMPROVED SYSTRM OF CONNECTED ROLLS AND ROPE DRIVE.

THE accompanying engraving represents an important improvement made in the arrangement of mill machinery during the past two years. By this arrangement a considerable amount of machinery is saved and the space formerly required for the driving line shaft below the rolls is left perfectly clear, giving better access to the spouting from the rolls to the elevators. The manutacturers claim that the greatest benefit of this device arises from the saving in power. Owing to

TORONTO, CANADA, JANUARY, 1889.

WHAT SHALL WE DO WITH OUR BOYS?

by "Automatic Cut-Orf."

WHEN our fathers, and even many of ourselves who are middle aged, were boys, this quention did not trouble parents ; for as soon as many of us were able, it was necessary that we should go to work at something and help bring the weekly earnings up to what was required to keep the wolf from the door. A few of the boys starting in the world in this way, succeed, and become self made men, and are written about, talked about, and held up to the rising generation as

Grebs's Improved Sistem or Connected Rohis asi, Rom: Drivh.
the driving friction being removed trom the roll and lightuer bearings, sometimes as many as filty-stx in number, and being placed in specially prepared juurnal boxes, only eight in number, a very considerable saving in power is effected, and moreover, when that driving strain is taken off the roll journals, the rolls have no tendency to get out of line or "train" as it is usually called.

There are many other points of advantage which the manufacturers claim for this system. These our readers may obtain full particulars of by addressing the manufacturers, Messrs. Wm. \& J. G. Greey, No. 2 Church St., Toronto.

$$
\because 2
$$

In Ottawia despatch saivs that several applications have been mastn to the Customs Deparinemt through the inspector of Cus is wis in Manitelsa by residenis of the southern porion of the p^{*},unce, asking petmission to have their wheat ground in mills S.ur-:ed in the Uniled States, but near ilie interrational border, in cien where there are no Canadinn grise mills withm a reasonabie distance. This is a practice which has been permitted for some yeme in the Eastern Townshipt, and the Minister of Customs is new considering certain regulations xranting the same conciocsions tow. opple in Southern Manitobum unilil mills have breen ejlablished
 the selthers:
patterns for all to cop:-
1 remember when a boy hearing one of the self-made men of Canada address sone school children. He said, "Beys, when I was young, I had a hard time of it; I had no home, and no bringing up; I just come up foot.'" This gentleman was then mayor of a neighboring city. His family consisted of two boys, and his cry was, "What shall I do with the boys?" He did not want to apprentice them to any trade, and although they were well educated, it did not help them, for they are 10 -day poor, shittess mortais, neither good for use nor ornament.
To our sober, indusitrious, every-day mechanics, this question is of great impoitance. It is often a troublesome one to solve. With our present admirable school systent, our boys can start out in life with a much better education than their fathers had. It is pretty certain that most of nur sons will be kept at school till they are 15 or 16 years old, and can be far enough advanced to matriculate for college. Still, it is sometimes difficult: io decide just what to do with the boys. One sajs, "Now, there is my boy Dave, he is about ready to leave school; he is quick to learn and is willing to work, but he does not seem to know just what tosectle down to." Another
says, "There is my boy Joe, he is a natural mechanic, and wants to be a machinist; 1 have a few dn"irs to help hm along with-shall I send him to a tech ical school, first, or to the shop? Which will be best? I am sure he is the makings of an extra good man, and I do not want to make any mistake about 4 . If I send him to the school first, will the come home with his notions set too high? While, on the wher hand, if I apprentice him to the trade first, will he do as well when he leaves to go to the school? or will he think he is too much of a man for such a thing ?n

We see many cases where boys have been put at the wrong business-spuiling a goxk man at one calling, to make a ponrone in another. The question is: How can we best help ourselves and others to decide these things? What will tend to help us in this matter?

In the first place; we all cheerfully pay our taxes for school purposes. We are also justly proud of our great free school systen. The working man pays no small share of these taxes. Most of his children will be working men and women. This being the fact, we ought to have what is needed most in after-life, ta ight most in the schools. Take our High School curriculum ; it is divided into two branches-jou may suy; 2 . collegiate and a mercantile branch. Nuw add a mechanical branch. Teach the boy who is going to college the proper course for mixtriculation! Teach the boy who is going into mercantile lite, the particular branches that will help him, that he will require every day ! and teach the boy who is going into mechanics what he will require. Do not bother his head with dead languages or "'ologies." Give him a good sound knowledge or nasural pliysics, higher arithmetic, mechanical drawing, and things he will need when be starts to learnghis trade; and in the examinations, give thooc whotat
proficient in either branch, marks just alike. I would go furthet-I would give every boy some manual training. It will do him good in more ways than many people think of.

1 saw a short time ago that the Trades and Labor Council of Toronto, condemned manual training in public schools. Why they did so, or what their object in doing so was, I confess is an engma to me. They usually uphold anything that will be a benefit to the working man, and by what manner of reasoning they conclude that manual training is agai..st their interests, passes my understanding. They pay taxes to help make boys good lawvers, doctors or ministers, by special instruction, but their own sons who are determined to be mechanics, must not have any special chance in their school days. Why? Will these boys when they leave school, and are apprenticed to any mechanical busmess be any the worse for special study and manual training? if they are quick, and soon master their tools, will they not be worth more mones to their employers, and consequently get more for themselves? When I learned my trade, if I could have shown my employer that 1 could take a hammer and cold chisel and chip a sprue off a casting without hitting iny hand iwice while I hit the chisel once, or if 1 could have shown him that 1 could grind a drill properly without spailing a 'rá inch of stee! and a ': hour's time, I know that I could have got enough money out of him to have paid my board the first year, instead of working for $\$ 2$ a week and board myself. Nor would it havehurt me while \& was at school to learn these things, neither would it have injured the business of the "jour" in the shop at that time.
I wondered when I read the resolution of the T. \& L. Council condemning manual training, if the members were all old bachelors and had no childen to educate and provide for. If the T. \& L. Council and all labor organizations, would expend their energies in getting the employers to only take the proper number of boys, and give them a good chance to become first-class mechanics, paying them fair wages from the first and increasing as the boy becomes more proticient and use ful, they would be helping to mend matters in the labor world. If they would also do what they can to help prepare good boys to learn trades, they would certainly be doing a good work in the labor world.

1 have some boys in my family, and 1 hope they may le able to get manual training in our schools, and a technical training in a school of science. 1 ann sure it will not injure them or their fellow workers, and it the employer does not substantially appreciate it, 1 have missed my guess.

BOILER INSPECTION.

THE following address delivered by the President at the Convention of Boler Inspectors held at Pittsburgh, Pa., Nor. 2o:l, is worthy of the careful consideration of every steam-user :-
Gentlement of the Convention : We have assembled for the purpose, as 1 understand \mathfrak{t}, of taking counsel one of another as to the best means of accomplishing the objects for which the office of boiler inspector was created. The number of lives annually lost by explo. sions of steany boilers is se great, that it appears almost incredible that a majority of 0.8 states and cities have done nothing towards securing a proper inspection of so necessary and yet so dangerous an adjunct of our manufacturing and mercantile industries. In all manufacturing establishments of any importance, steam power is a necessity; and motels, mercantile establishments and other large buildurs, it has come to be regarded as an essential requisite. "othing that is so extremely dangerous, so liable to cause loss of life and valuable property, as steam boliers undoubtedly are, should be permitted to be controlled by men who are ignorant of their management and know nothing of their danger. One more source of trouble and serious accident, resulting from the use of steam boilers, is chargeable to the unwise policy of steam users employing inexperienced and incompetent men as engineers; a position so responsible as that of engineer of a stationary engine is acknowledged to be, should not be occupied by a man who knows nuthing of the -agement either of an engine or boile: Why does any on of incur such a risk to his own safety and that of his propenty? There is but one answer; an incompetent man will work for less money than a competent man will. Should this be allowed, should any man, because thereby he may save a tew dollars a month, be permitted to endanger the lives of his employes and of his neighbors?
Most men of middle age have a vivid remembranc: of the frequent occurrences of boiler explosions on our waterways; they were happening weekly. I once re. collect of three explosions in one week on the Mississippi river, with a loss of one half million of dollars and sixty
odd lives. There were hundreds of lives and thousands of dollars worth of property continually being killed or burned, or finding a final resting place at the bottom of some river or lake. It is not so, to-day, for we seldom hear of the boiler of a steamer exploding, although there is a larger number of marine boilers at the present time than there a as before or during the war. What has wrought this wonderful change? Inspection of boilers and competent licensed engineers. The inspectors are competent men appointed by the general government to examine every steamer's boiler, and no one can assume the position of marine engineer unless he is armed with a certificate of the government that he has been examined and found to be qualified for the position. Why should not the applicant for the position of engineer of stationary engines and boilers be subjected to a similar test? Not in a few cities, states or countries, but the service should cover the entire country.

I have a list of explosions from March 1870 to March 1888 which 1 do not claim comprises all the explosiuns. It gives 2,267 explosions with 4,068 killed and 4,710 wounded. Of these, 8ot explosions where 1,476 were killed and 1,122 wounded. were of threshing machines and saw milis. By carefully looking over the records of explosions, you will find in localities where there is an inspection service, there is not to exceed one third the explosions that occur where there is no inspection service; you will also find in localities where an insurance company is doing inspecting there is quate a reduction in the number of explosions. It cannot be expected that ine insurance inspection would be as effective as state or city, as it cannot be madr compulsury. I find in the city of St . Louss that the insurance inspection is a great assistance to our service.
We have much to learn, and no one should hesitate to avall hrmself of all krowledge that presents itself, come whence it may. We should willingly learn all we can relating to our special duties and as willingly apply all we know to the accomplishment of the gond work in which we are engaged ; we are endeavoring to protect life and property of the people and there is no service that is so great a protection to life and property. I also hope that before we separate we shall have effiected a permanent organization. We should meet annually that each one may receive new encouragement and strength from the experience of the previous year.
The press can be of immense benefit to us and the scrvice we represent, by disseminating facts bearing upon the subject of boiler inspection. As to what may be done here I have no doubt that the reporters will place us in a proper light before their readers. There is no ald so desirable, none so powerful as the support of a free, fearless and ini:irammeled press and its mission is to give its readers unvarnished facts and such comments as may be deemed necessary to a proper understanding of the subject.

BRASS AND ITS TREATMENT.

BRASS is perhaps the best known and most usefuy alloy, says the Boston Journal of Commer re. It is formed by fusing sogether copper and zinc. Different proportions of these metals produce brasses possessing very marked distunctive properties. The portions of the different ingredients are seldom precisely alike; these depend upon the requirements of various uses for which the alloys are intended. Peculiar qualities of the constituent metals also exercise considerable influence on the results.
Brass is fabled to have been first accidentally formed at the burning of Corinth, 146 B . C., but articles of brass have been discovered in the Egyptian tonibs, which prove it to have had a much greater antiquily. Brass was known to the ancients as a more valuable kind of copper. The yellow color was considered a natural quality, and was not suppesed to indicate an alloy. Certan mincs were much valued, as they yie' led this gold-colored copper, but after a time it :..ct dund that by melting copper with certain earth (calan.ine) the copper was changed in color. The nature of the change was still unsuspected.
Alloys of copper and zinc retain their malleability and ductility when the zinc is not above 33 to 40 per cent. of the alloy. When the zinc is in excess of this a crystalline character begins to prevall. An alloy of one copper to swo zinc may be crumbled in a mortar when cold.
Yellow brass that files and turns well, may consist of copper 4 , zinc 1 to 2 . A greater proportion of zine makes $1 t$ harder and less tractable; with less tine it is more tenacious, and hangs to the file like copper. Yellow brass (copper 2, zinc 8) is hardened by the addition of two to.three per cent. of tin, or made more malleable by the same proportion of lead.
There would be less diversity in the results of brass
castings if what was put into a crucible came out of it The volatility of some metals, and the varied melling points of others in the same mix, greatly interfered with the uniformity in ordinary work. Zinc. sublumes (burns away) at 773 to 800 degrees, while the melsing heat of the copper with which it should be intimately mixed ia making brass is neally 1750 degrees. Cepper, zinc, an, and lead in varying proportions form alloys, always in definite quantity for a given alloy. The ease with which some of the metals are burned away at comparatively low temperatures, renders it a very easy matter to make several different kinds of metal with the same mix. This very thing occurs, and the great difficulty in getling bearing brasses uniform in quality causes some engineers to babbitt all bearings as the beat way to in. sure uniformity. One lot of castings may be soft and tough, another hard, and so nn.
Zinc is added the last thing as the crucible comes out of the furnace, and the mixing of the mass is a matter of uncertainty. If the metal is too hot for the zinc a large perceniage goes off in the form of a greenish cloud of vapor, and the longer the stirring goes on the more escapes. The two metals which enter into the com. position of brass have an affinity for cach other, but they must be brought into intimate contact before they will combine. Some bras; founders use precautions to prevent volatilization of the more fusible metals, introducing them under a cover of powdered charcoal on top of the copper.
"Brass finishe:" is a term many understand as applied only to thos: who produce highly-furnished brass works ; but it is not so ; the brass finisher's work is not the superior class of work supposed, most of it being comprised in gas fittings, ormolu mounts, etc., but the highest class of brass finshings is a totally different process. Fittings for gas work, all finished well enough for their several purposes, and as well done as the price paid for them will allow, as well as the mountings for furniture, must obviously be produced at a low rate, in order to supply the demand for cheap work of this chatacter, most of which is simply dipping, burnishing, and lacquering.
Let us follow the process of finishing the highest class of brass work, says the Engineer, of Glasgow. Before commencing to polish, all marks of the file must be removed, and this is done thus: Having used a superfine Lancashire file to smooth both the edges and surfaces, take a piece of moderately fine emery paper and wrap it tightly, once only, round the file. By having many folds round. the file the work becomes rounded at the edges, and so made to look like second-rate things. Some use emery sticks, made of pieces of planed wood about $3\{$ inch thick and $3 i$ inch wide, quite flat on the surfaces. They are covered with thin glue, and the emery powdered on to them, and then allowed to dry hard. Most common work is rubbed over, not to say finished, with emery cloth. This will not do for good work. The paper folded once round the file is used in a similar manner to the file, and when the file marks disappear, and the paper is worn, a little oil is used, which makes it cut smoother. The edges and surfaces being prepared to this extent, the edges must be finished. To eftect this take a piece of flat, soft wood, and apply to its surface a little fine oil-stone powder; be sure that it is quite clean, as it is very annoying to make a deep scratch in the work just as it is finished; perhaps so deep that it will require filling out.

THE FLOUR INDUSTRY OF SOUTH AUSTRALIA.

T-HE manufacture of flour has made rapid strides during the past few years, and the introduction of the roller system bas given it a great impetus. The quality of our wheat enables the miller to turn out an articie which commands attention in any part of the world, and it is not so surpning, therefore, that a ready sale is obtainable in places where cumpetition is not so keen as to cause too great a difference in prices. It is only of late years that China has been drawing supplies from South Australian flour, but during the present season a large quantity has found its way to Hong Kong. New South Wales has for many years purchased in this colony, and during the last twelve months close on 20.000 tons have been sent to Sydney and some 19,000 tons to गueensland, another old customer. Some 3,000 tans have gone to S. Africa, and Ceylon, New Caledonia and Cochin China have also drawn small lots. For the twelve months ending 30 th Sepiember, 75,349 tons have been exported, representing a value of 6647,463 . Of this 60,000 tons is credited to Port Adelaide, Port Pirie coming next with 8,628 tons. For the manutacture of flour there are 85 mills in the colony, with a total horsepower of 2,951, ard employing 614 heuds.-Scult Amstralian Reeister.

DUST SEPARATING MACHINR AND FURNACE FEEDER ATTACHMENT.

TIII: oljects of the machine illustrated by Fig. i, are to separate fine and explosive dust from shavungs and other heavy material made in planing-mills, four mulls, and other factories, and to effectually dispose of the same : to relieve the exhaust-fans used for convecying the material to shaving vaults or other depositories from back-pressure ; and also to have the machine so arranged and constructed as to be fire-proof.
Reference being matr to Fig. 1, the form and arrangement will be comprehended. The separator is in the form of a box or casing, made of iron to render it fireprool, although it can be constructed in any other convenient torm. This box or casing contains a separate

chamber, which may be circular in cross-section or in the form of a convolute pipe ending in a central portion, which is extencied upward in the form of a pipe. At this point this pipe is somewhat smaller, and has a smaller pipe inserted in and extending through a cover on its top, thus forming an annular chamber. At tins point another pipe is connected to convey the light but not explosive dust to the furnace or other depository.
The convolute pipe has openings on its outer side, and the central portoon has an opening in its bottom end for discharging shavings and other heavy material Into the hopper attached to the bottom side of the box. The botton of the separating chamber is provided with a pipe, inserted therein, communicating with the hopper and extended a distance up into the chamber.

The hopper may be made in any convenient form. The bottom end is open, but is helr normally closed by a weighted door which opens and deposits the load of shavings or other material into the vault or receptacle below, when enough has accumulated to overcome the atlached weight.
The diameter of the separating chamber, consisting of a convolute pipe, is langer at the bottom than at its top, thus giving a slant to the sides, or it may be constructed with perpendicular sides. The central portion is also larger in diameter at its base than the pipe; but this may be also constructed straight, with no pitch to the sides.
The operation is as follows: The shaving or other material are blown into the separating chamber or con volute pipe at the tangentially arrauged opening, and all

Fic. a-Funnace Fred Attachment.
the heavy material is carried by centrifugal force and sriutiation against the outer and lower portion of the chamber, and discharged through onenings into the hopper and thence into the vault or other receptacte. The finer duat or lighter miaterial is carried on into the central portion, where the air has a circular motion. These lighter portions of the dust or other material are carned by centrifugal force aganast the sides of the central portion up iato the pipe where the rotary or whirdrig motion of the air and lighter duat cootinmes mantil
they reach the annular chamber formed by the junction. of pipes, where the dust is discharged through pipe into the furnace or other receplacie, and the air passed out through the pipe.
The good features and advantages claimed for this machine are : that the machine is shipped all ready to connect to the discharge pipe from the fan, which can can be done by any mechanic, full directions being furished with each machine shipped; it is the only machine that can be loaded in a box car, thereby saving to the purchaser over 75 per cent. in freiglit; the best quality of galvanized iron is used in its construction, and all joints are riveted and soldered ; it is the only machine having an extra chamber for the separation of fine dust without producing back pressure on the fan; it has a much larger outlet for the a:r in proportion ts the inlet than any machine in the market, thus insuring relief from back pressure ; it is the only machine formed and proportioned upon scientific principles, and in which there are no antagonizing air currents to produce back pressure ; it is the only machine adapted to successfully feed furnaces.
Fig. 2 illustrates, by a sectional view, a furnace feeder attachment. It is a device employed in connection with planing machines, in lumber mills and similar wond working establishments, for feeding shavings, sawdust and similar solid partucles to furnaces, where they are consumed as fuel for generating steam. The fuel is conveyed through feeder-pipes from the sellector or separator to the furnace and storage vault, with adjustable dividing valves for directing and controlling the flow of fuel into the furnace or vault.
Amongst other advantages claimed for this furnace feeder are : that it is highly reliable and efficient in operation ; that it is perfectly safe, and an improvement in fire risk. Messrs. Douglas Bros., Toronto, the agents for Camada, will supply full information regarding the above machine.

Ogilvie's Winuiper mill was recently shut down for repairs. Mr. Wm. Geo. Emper, saill owner, Berwick, Ont., has ascigned. The new elevator at Fort William has a chimney 186 feet high. J. L. \& J. Cairns' grist mill, Camlechie, Ont., was burnt recently.
Messrs. McIntrre and French have resumed milling at Beaver. ton, Ont.
The demand for Manitoba flour on the Pacific crast is steadily increasing.
There is suid to be an excellent opening at Cartwright, Man, for a roller mill.
The G. T. R. are building an elevator $\mathbb{} \uparrow 750,000$ bushels capa. city, at Midlund, Ont.
Work will be commenced in Manch on a mammoth elevalor antrex at Port Arthur, Ont.
The mill at Sombra, Ont, has been purchased by Mr. Robert Watson, and is being fitted up.
Mr. William Knight, late of Osceola, Ont., has lensed Mr. Wm. Hod gins' grist mill at Shawvilte.
The first car lond of Manitoba whent was stored in the new ele. vator at Fort William on Dec. 8 st .
Mr.W. D. Insky's elevator, as Colborne, was hurned with all its
contents on the night of Dece contents on the night of Dec. 19 th
The peopte of Hawkstone, OnL, want a roller mill erected there. The opening is mid to be a good one.
Port Arthur will vote on a by-law to grant a bonus to W. a J. G. Greey of Toronto for the erection of a fouring mill.

The grist mill at Washago. Ont., narrowly escaped destruction by fire from a neighboring burning building a few days ago.
The citizens of Alvinston. Ont. have subscribed $\$ 1.000$ to aid in rebuilding the Gleneig flour mills, recently destrojed liy fire.
We lenm from our Galt exchanges that Messrs. Goldic it McCuilloch are getting out twenty-Four pairs of rolls for a Montreal mill.
The ensineer in charge of the engine in the Gladstone, Man.,
mour mill tass couplat in the machinery and fatally iniured a few days ago.
Over fr 3.000 stock has been subscribed to form a joint stock comir.ay 10 run the Edison incandescent electric light system in Pembroke, Oat.
Mesars Praren Broa, are about to ereet a ingree roliker mill at Brampton, Ont. They ree anking thie town for cxemption from tuxation and free water for boiler use for ten years.
Mr. Royers' elevalor at Clentwater, Man., contuining 13,000 buahets of grain, was destroved by fire on Dec, roth. Loss on the building, $\$ 7,000$; grain. $\$ 8.000$; insurnace $\$ 8,000$.
There would seenn to exist two very subatantial reatons why the rown of Calsary. N. W. T.. should have a four mill. The firt is that 100 cor loads of four were impoted into the town has year; and the spoosd, that there in mo mill mearer thes Rexima, a dis.

On the 35 th Dec. the large grain wareho wse of Bruce Bros, at Beavertion, Ont., was destroyed by fire witn its contents, 4,000 bushels. I.oss about $\$ 2,000$, partially covered by insurance.
A new line of railway is projected from Ottawa to Barrie and the Genrgian hir. If completed. It will provide the shortest route in existence for carrying Chicango grain to Bostoce and New York.
Mr. F. M. Thompson has been appointed Mannger, Mr. A.M. Kobinson, Mechanical Superintendent, and Mr. F. G. Simpson, Purchasing Superintendent of the reorganized Ogilvie Milling Co., or Winnipeg.

The large flour mill at Stapner, Ont., took fire on the night of Sunday. Dec. 16th, and was burned to the ground. Cause of fire unknown, larticulars as to amount of loss and insurance have
not reached us not reached us
On the night of Dec. 19th, the Hallowells' mills, one and a half miles east of Picton, Ont., were bumed with their contents. No insurance; loss, about \$5,000. About 3,500 bushels of grain belonging to farmers were in the mill.
Milling is apparently not the most unprofitable business one can engage in. Mr. S. N. Currie, gave up his milling businets at S . Uraule, Que., and went 20 whisker selling in Monireal. He has just assigned, with liabilities of \$9,000,
The first shipment of Manitoba wheal in bond over the Northera Pacific raad, consisted of 8,000 bexshels consigned to W. P. Howland \& Co., of Toronto. The grain was uken to Duluth and then tmnsferred to the steamer United Empire, which vesel car. then tmnsferred to the
ried it to Point Edward.
In consequence of the death of Mr. John Ogivie, the Ogivie miling Co.. Winnipeg, has been discolved. Messrs, Hastings Bros. \& McGiaw, the Winniper members of the firm huve with. drawn and are succeeded by Messos. F. \& S. Ogilvie. It is nid that Hastings Bros will bulld a large flour mill at Fort William next spring.
Milkers and others will be interested in a case now before the courts. Mr, Samuel MeGhee, a mill owner of South Durham, has entered suit against the Glacyow \& Londoo Insurance Company $t 0$ recover st,000 policy on his mill, Lately destroyed by fire. The plainsiff alleges that on making his application he gave a promissory note for $\$ 80$, the annount of the premium. The company re. fuse to pay the amount because the fire occurred within the zodays allowed them between the application being marle and the licenve being issued.
While the philanthropists are founding schools to educate ironworkers, wood-workers, clay.workers and other mechanics, it is singular that none of them think so far as to include four-mankers amoag the students of their great jodustial and trade schoote If deep, thorouxh scientific knowledge is needet anywhere, or if it would be valuable any where, certainly it is in milling. If ignorance is cosily and dangerous anywhere, certainly it is in milling. An American school of milling ought to be one of the acherements of the noar fulure.-Milline World.
The pleasint relations subaisuing between Mr. James Goidie. proprietor, and the employess α the "Reoples' Mills," Guelph, Ont, was shown in a very pleasant mander oo Christmas Eve On that evening a committec, representiog the employees, waited upon Mr. Goldie at his residence, "Rosehurst," and presented bim with a beautiful ebony gold-headed walking cane, and Mrs. Goldie with a haudsome silver water jug and goblet. Mr. Goldie replied in feeling ierms on his own bethalf and that of Mrs. Goldic. He thanked them sincerely for their gifts, and hoped that the good feeling which had for the last thirty years existed belween the employees of the mills and the proprietors would continue and strengiten as time rolled on.
Most people thought that the Ontario Oatmed Millers combine was dissolved into its origual elements onor about the first of Sepzember last. In view of this it was a matter of some surprise to learn that a secret meeting of the Association was beld the other day in this city, at which the following gentlemen are said to bave been present: Mr. Wm. Scott, Otuwa, president, in the chair; Mr. Thomas Martia, Mount Forent, vice.presidenat ; Mr. D. R. Ross, Embro, secrelary : Mesers. Edmonds, Lyan Valley; Thomson, Mitchenl: McDonald, Woodstock; Stewart, Inkersoll; Till. Son. Mitchen ; McDonald, Woodstock; Stewart, Ingersoll: Till-
son. Tisonburg : Wilson. Fergus ; Andrews. Thornbury: McDonald, Toronto ; Murton, Guelph ; J. D. Moore, St. Mary's, and others. The matter of most importance which came up for consideration at the mrecting, is snid to have been the subject of consiouing the existence of the Association for anotber year. With this object a committee was appointed to make such changes in the constitution of the Association as it is hoped will increase its efficiency.
It is reported from Otuwa that the customs department has made several seizuices of American four in the maritime provinoes, said to be brought in on fraudulent invoices, thereby escaping duty. It is done in this way: A Boston buyet purchases from a Canadian deaker. let us say, 125 barrels or over, which be ships to the maritime provinces, acking the Canadian milker $t 0$ send invoices in triplicate (one for their own office, one for the custoras and one to acconipany the goods.) Instead of thus using the invoiect, the American purchaser keeps two of them and sends with each ore 125 barrels α American flour into Clanada free of duty; α_{1} in other words, forwards 375 barrels of four and pays duty only on the first 125 , cheating the cutcoras out of stas, the duty being 50 cents, and also the protection aflorded by the duly to the Canadian cents, and aiso the protection anoried by the daly 0 dhe Crume this
millers. How to get at the A merican deakess who perpetrate milers. How to getat the American dcakers who petpectrate his fraud is now uroubling the customs, add the matier has hoen
referted to the Minister of Justice to take up with the Washington referred 10 ut
authoritics:

Four barge, belonging 6 J. B. Blanctherd, of Otuwa, loader with over $1,000,000$ feet of limber, were reeeally wrecked on Lake Changulain and a lagke portion of the lamber loot.

New works for the maunfacture of steam boikers will shortly be put in operation by Mesars. Ruahtion Mitchell, at Puria, Oat. It is aloo proposed to cmaruffecture a bolker chenacer of which Mr. Reshoce is the pavootes.

THE NEW YORK TRADE SCHOOLS.

TIIF decay of the time homored apprentice system, through the mednumship of which, in the days of our fathers, the rallks of the ammy of skilled handicreftsmen were kept filled, leas been the subject of ansious consideration and regretful commen. The causes assugned for tes decadene have been carions. Some have sought to tind it in the destructive inthence of machanery, that has done away with so many of the handierafts,

and that naturally would deter many \quad oung men from devoting a number of years to the acquistion of a skill that nught be rendered worthless by the neat revolutonizing mechaucal mventon : others have thought the cause lay it the changes in the relations of employer and employed, whech modern methods of conductung shop operatoons, and the like have brought about, by reasom of which the masters tme and attention must be devoted 0 other thangs than the instruction of the apprentice ; others, agan, have attributed the cause to the evol infuence and jealous polics of the trades umions, which (as is unfortunately too generally the case) throw hindrances in the way of young men who would gladly seek the opportunity to enter the trades.
All of these things doubtless have contributed their share t^{0} wards bringing about the result, and the reason why it is so gen. erally deplored, is because quite recently no other system had been devised that gave adequate promise of aftiore' ing a substitute for 12 that would be better adapted than the old system to the conditions of modern industrial hife.

Within the past year or two, how. ever, the wellfounded doubts that thoughtul men may have entertained on this pomet, have been so completely dispelled by the successful op. eration of the

Trade Schonls in New York, lately organzed and maintanned by the public spirit and phalanthropy of Col. Richard I. Auchmuty:

For the bencfit of those among our readers who may be interested in gettung an insight into the plan of organizationand the method of operation of these schools, and in learning something of what they have accomplished for the young men who have had the opportuanty of enjoying their adsantages, we have prepared the tolJowing accoumt

The New York Trade Schools were founded by Col. Auchmuty seven years ago, with the object in view of giving young men instructoon in certain trades, and to enable young men already in these zades to improve
hemselves, by hat .ort the benefit of systematic instruc tom by skilled workmen, instead of being left to "pick up" the knowledge, as the nsual experience of young men apprenticed to the manual trades. In carrymg out this scheme, skilled mechanacs are employed as teachers, "whoje duty it is to show the pupil how the work should be done, to see that he does it correctly, and to point out the difierence between good and bad work." Thus, it will be perceived, is a very different order of things from that wheh prevalls in the work shops, where systematic instruction in the practice of the traile is rarely, if ever, imparted. Some approximation to the system followed in the New York Trade Schools is found in the manual training schools existung as adjuncts to a number of the well-known schools of technology in various parts of the country, and which have lately been engrafted upon the public school system in seyeral of the States. These are admirable training schook, and are doing a vast amount of good in familiarizing young men with the use of tools; and it is no reproach to these excellent establishments to say that they only serve the wants of the lmited number of young men who can afford to devote several jears exclusively to the school instruction wheh is part of the plan on which they are conducted, combining as they do the system of trade instruction with general education. They do not, however, meet the needs of young men who must support themselves or who must contribute to the family support. For this far more numerous class, the trade schools have been established.

In the prospecus before us, the case is stated thus: " The system, therefore, which seems best ad:apted at present in Anerican wants, is to leave the general education to the public schools, and confine the work of a trade school to the manual and scientific instruction necessary to maje a mechanic." The schools, as will shortly appear, afford to young men the opportunity of rapidly and thoroughly perfecting themselves in all the mysteries of their trades at evening classes, without interfering with the work by which they may be earning a tivelihood during the day.

The success of a plan of this kind may properly be measured by its fruits. Six years ago, two workshops sufficed to accommodate the pupils who came ; at present the workshops have been increased by the addition of a number of others, and the buildings, which were specially erected for the schools, cover an area of 200 by
first, so long as the utility of the schools was problemat. ical, these organizations held aloof; but at present all the master mechanics' associations of the trades repre. sented at the schools have satisfied themselves of the value of the system. 'The Master Plunbers', the Master Painters' and the Merchant 'Tailors' associations have appointed committecs to visit the schools, to make sug. gestions as to the course of mstruction, and to and the joung men to procure work when they have completed the rourse of instruction. The Master Freestone Cut. ters' Assnctation and the Journeymen Stone Cutce's As. sociation also have expressed thirir approval of the schoul and its methods by allowing the young men who

 sat; Chis.
lave enjoyed the benefits of the instruction, the time they have served in the schoul in their subsequent career as apprentices. The National Association of Builders have unqualifiedly approved the system of trade schools founded and maintained by Coll. Auchmuty, as the proper substitute for the old apprentice system, and at the convention held at Cinconnati, in February of this year, recommended the adoption of the system of mechanical trade schools by all associations of builders in the United States, "to the end that mechanics may be taught on our own snil and American boys given the best opportunitues possible to become proficient in the building trades."
We shall now proceed to give some account of the schools:

The New York Trade Schools are located at First avenue, between Sixty-seventh and Sixty-eighth streets, and are convenient of access by the East side elevated roads, by the horse cars on First, Second and Third avenues, and by the Filtyninth street cross:own cars. The courses taught, embraze instruction in plumbing, bricklaying, plastering, stone-cuttung, house and sign painting,fresco painting, carpentery, blacksmith's work, and tailoring.
The plumbing classes are in charge of the Trade School Committee of the Master Plumbers' Association. At the rlose of their term of instruction, the pupils will be examined by this committee as to therr manual skill and scientific knowledge, and those who are entited will be given certficates of proficiency, which will entitle those already in the trade to a reduc tion of one year's service as apprentice, and will be useful to others in seeking work.

There are evening and day classes. The schedule of subjects covered in the manual and scientific instruction is elaborate, and will not be repeated here for want of space. It may suffice to say that the work turned out by the pupils is of such excellent character as to have gained the highest praise for the thoughtfulness of the instruction imparted. The Sutritary Enginecr and
convituon Record lately give an interesting account of thi class and its work, some of which was exhibited at the . Imerican Institute Fair. We give a picture (Fif) of practiral plumbing work done by members of lin a lass, with our contemporary's comments thereon : "The illustrations give an iden of the manual instructum if the plumbing elass. The illustrations show wook done by the day class. The work done by the evening dav now on exhibition at the schooss, fully equals it. About two-thirds of the evening plumbing chass hate bern helpers. lav reason, as axe :...uned, there were cublty help. or, in the chass. It in a creditable sli.wing fur the rinan men of this (it). and it promwe well for the durnuan me. chinn of the future : inat so large a amber of lads (i) une trade shauld not only columarily give up their evenings, but pay nearly on' thousand dollans to learn more than the shop could teach them. I nul now, no incucements to attend the plumbing have been ailined by the Winter I'lumbers' hacciation, this larie attendance of helwers, with a
fow exceptions where the fees were paid by the emplayun, being caused by the desire of the young men to become first-class workmen."
the painting class has the conperation of a Trade whool Committee of the Master Painters' and Decorainrs' Association of New York, and the certificates of the school issued to competent pupils are recognized by the association, which has endorsed the school and reswed to give preterence to the young men who graduate from it.
Instruction in
flu wo pamting is
ivi" of the earliest
ultes taught in schools, and in charge of a rutual fresco unter, the pupil ang put through arrescribed regucourse of prac. al work. One men of the rk of a pupil in class may Tice to exhibit proficiency ch an indus. us ladmas acre see Fig. 2). If the bricking, plastering, cksmithing, ne-cutting, car ntry and tailorclasses, we mght add interlugg details re -preting the methil of instruction, and the like, but hall refer the in.

the pupils, we may add in addition to what has already been said, that all of the carpenter's work of the additions made to the schools in 1887, including the orna mental wood-work in the entrance hall, was done by young men who did not know the use of the tools when they joined the class in carpentry the previous autumn. In further confirmation of this point, we call special attention to the views shown in Figs. 7 and 8, respecting whech we take the liberty of quoting the following on the authority of Col. Auchmuty
sectio $?$ is now being built by the class of last season ivearly all the lorick-work of the interior and rear walls was haid by yount men who could not handle a trowel when they joined the Trade Schools a few months before beng set to work. The young men turned the corners, tied in the cross walls, buit the flues and chimnev brersts, built the arches in the wails and between the aron beams, and backed up behind the face brick. A portion of the face brick was also laid by young men who had been employed on the rough work the season before. The number of brick laid was estimated from tume to time and the young men were padac cordinglv. I would be difficult in find more thor ough or better work. The lines are true, each joint is straight and neatly struck The work look as if the the build. ers had 'put their hearts in it.' "
The brick-work of four dwel. ling houses in Sixty-eighth strect, New York, was exe cuted by mem bers of the brick laying class after ane season's in. struction; and we are informed by the founder of the schools, that five similar houses ere built by members of the class of 1387 and 1888.

To these material eviden ies of the thoroughly efficient, practical training given by this admirably organızed and conducted enterprise, it is necessary to add nothing in the way of praise. They speak for thenselves. Up on the question of the readiness with which the young men from the schools may expect to obtain employinent, the following may be of interest: "Experience has shown that from one-third to one-half a day's work can be done atter one season's cnurse of instruction, and that from onethird to one-half a day's wages can be obtained. Full wages have usually been obtained in from six months in two years after leaving the schools, according to the nature of the trade. Young men who were exceptionally quick at learning, have obtained full wages at once: but it is the opinion of the manarement that steady work at moderate wages is the more pro. fitable in the end.'

The excellent work that is being accomplished by these schools, is not confined to
rested reader for this information to the prospectus of he schools, in which it appears in full. We give on the companying plates some interior views of the school partments. Fig. 3 is a view of the plumbing room; ig. 4 , a view of the plastering room, built by the brick.ying class of 1882.83 ; Fig. 5 , the brick-laying room, witt by the brick-laying class of 1883 - 84 ; Fig. 6 , the esco room.
Respectung the proficiency of the practical training of
them the practice they needed after leaving the schnols, and to show what good work they could do. The building is 96 feet front by 132 feet in depth, and is the stories hygh. There are few bualdings of its size and height in New York that are more substantially buit, the walls varying in thickness from 36 inches to 2 feet. It was designed to be built in three sections. Two of these sections were built by young men trom the brick laying classes of 1884.85 and 1885.86 ; the remaining

New York, but will no doubt be widely extended, since the success being so well assured, they will serve as the model for similar schools in other cities. Therr founder deserves the honors due to a public benefactor.

Mr. N. II. Stevens, of the mulling firm of Cample:l, Stevens \& Co., Chathanm, Ont., is at present, with his wife visiting San Francisco and other lacific Coast citics. They went via the C. I'. R. and British Columbia.

HON. G. W. ROSS ON TECHNICAL EDUCATION.

ATa conference with manufacturers, mechancs and others, on Dec. 19th, regarding the establishing of a course of technceal mstruction in connection with the School of Practical Science, Toronto, the Mimster of Education spoke as follows, on the subject :-"I feel very highly honored indeed by the very general response that you have made to the invitation sent out by me sonie ume ago desiring you to assemble for the purpose of discussing such measures as would tend to the inprovement of the School of Practical Science, and particulaty the cultivation of greater skill on the part of our mechancs. 1 have been for some time meditaung some change in the School of Practical Science by which the course of instruction there given would be very much broadened and by which greater facilities would be afforded to those whe are desirous of fitting themselves for trades and industries. Two years ago when on a visit to England in connection with the Colonial Exhibition I took a good deal of pains to satisfy myself as to what was being done in the great technical school of South Keusington. After considering the work carried on there 1 came the conclusion that somethng similar would be exceedingly useful in the Province of Ontario. L.ast summer, in order to satisfy myself, 1 wis sed five or six of the largest schools of the Unite. States, and there 1 found the Amertcans were also giving mrch attention to that deparment of education which is closely alled with the industries of their country. Not only are :hey particularlyactive in that respect, but at the prcsent hour and for many years this educa. tion has been go. ing on, and as they are in many respects our greatest competitors, while their system of public educa. tion is very like ours, it occurred to me that I might get better and more applicable hints from their schools of science than from the other country. Their schools of practical science are somewhat simalarly organized as our School of Practical Science, and many of them are larger. They have about ninety of these schools, attended by 10,000
students - 10,532 is the exact number according to the State report-so that you can readily perceive what effect the addition of 10,000 skilled mechanics or artisans will have on the industries of the country, especially when the same number is being added year by year. The various schools are supported by the States in which they are located, but 42 out of the 90 are endowed by land grants from the States. Yet they are very well off, as they have buildings and appliances valued at $\$ 2,004,758$ and have an annual income of $\$ 6088$,758. I mention these facts in order that we might im. press upon the country the great interest taken in schools of this kind on this continent, and in order that Canadians might see that they are not falling behind in the race. Among the schools which do most work of this kind is Cornell Unversty. Thus university has lately expended nearly half a million of money on buildings and has expended $\$ 141,558$ on equipment, that is, in the departments of civil engineering, mechanical enginecring and applied ciemistry, and pays annually in the salarit of professors and lecturers a sum of $\$ 91,500$. Place that against the state of matters in Ontario, where we pay annually $\$ 7,700$ for the maintenance of our School of Practical Science, including expenditure in salaries, and you will see how much we have to do in the province in order to hold our own with only one of the instututions in the neighboring State of New York. Then there is the L.ehigh University, Hoboken College of Engineeang and the School of Practical Science in Boston, which all have buildings running up into the hundreds of thousands and bearing annual reccipts anininting to about $\$ 35,000$
each, all going to indicate the deep interest taken in this subject on the other side of the line. We watt to know here in what department skilled labor is most urgent. Perhaps it may be disclosed before we conclude our deliberations that thers is no urgency at all. Judging from the letters I have received on the subject, it does appear to me that there is an urgent demand for skilled laborers in the various departments. Iron workers and manu$f_{\text {acturers of engines, and others with whom urgent oper- }}^{\text {of }}$ ations connected with the manufacture of iron and wood in its various forms, are complaining of the want of skilled $l_{\text {abor. In fact, if you look over the industries of this }}$ country you will find many things are not done in Canada which we might do for ourselves. In looking over the trade and navigation returns for last year, 1 find that we mported $\$ 54,130$ worth of blacking, $\$ 25,766$ worth :if black lead, $\$ 371,050$ worth of blueing, $\$ 1,101,963$ worth of manufactured drugs and chemicals, $\$ 6,988$ worth of fertilizers, $\$ 540,187$ worth of gutta percha, $\$ 71,643$ worth of ink and writung materials, $\$ 1,226,878$ worth of oils, minerals, tub:ss, etc., $\$ 553,549$ worth of paints and colors, $\$ 97,679$ wor: 1 l of soap. Now, these are things that by a little assistance and the knowledge of applied chemistry ought to be manufactured in this country. I have no hestation in saying that with skilled labor here, and any quantuly of plumbago and other material which enters largely into the making of the articles named, we could manufacture by reason of applied chemistry a great many of these things. And no less so as regards taanu-
from Mr. H. A. Massey. 1 merely mention this fact in order that these gentlemen may be recognized as being present and as being in favor of the movement.

OLD TOOLS.

IT used to be quite common practice for parties start ing without much capital to build up a machine shop business to buy second-hand tools--cheap ones al that. It is extremely hard to get up to success in that way now. The difference between good and poor thols is 100 great at the present time, and with the worn.put relics of former days there is little hope of competing with well-equipped shops. The man who tries it is likely to grow poorer from year to year, instead of woiking up slowly to where he can afford to buy good tools. It is better to start more modierately ; to start with fewer and better tools. This has come to be pretty generally understood and practiced.
But there are a good many old shops in the country, at one time-for the tumes-fairly equipped, that are slowly going to decay through using their ancient tools and applances. There has been a great advance in machine tools during the past twenty years, not only with reference to the quality of the work that can be done with them, but, and particularly, with reference to the quantity. Then when these old, weak tools, wornout with use, are put against mudern tools in another shop, thare is little hope of compeling. The more modernly equip. ped shop would find all the proft it ought to make in the extra work that could be done on the nodern tools.

Then, modern shops generally have better appli ances for handling work, and this tells in thei favor. Wl.atever in the old shop keeps the old tools in service is very likely to keep out moderm cranes and other means of hand ling wark.

It takes a con stant spirit of pro gressiveness to keep a machine shop up to the times in the way of tools. And un less this is done the shop soon becomes "or. ." And the 4. .ac
actures. During last year we imported $\$ 404,161$ worth of brass manufactures, $\$ 750,791$ worth of earthenware, $\$ 248,030$ worth of fancy goods, $\$ 1,269,486$ worth of glass manufactures, $\$ 9,746,9 ; 7$ worth of iron and steel manufactures, $\$ 1,667,512$ worth of leather, $\$ 1,233,691$ worth of paper, and $\$ 1,149,324$ worth of wood manufactures. Labor represents, according to the census of 1881, 21 per cent. of the entire cost of the manufactured article. Now, the wages paid out in the province last yeat amounted to $\$ 30,604,030$, while the imported manufactured articles amounted in value to $\$ 157,989,870$. We might obtain thas work in iron, cotton and woolen goods if we had the skilled labor, and it would bring mechanics to our country. Everybody knows many of our mechanics leave us and go elsewhere, because men go where they improve their conditioin. Hy superior skill we might increase the value of our goods and in addition to supplying our own markets, get others as well. Vot simply with cheap labor, but with skilled labor. Intario manufacturers should be able to hold their own in every market of the world. In the first place I want to know is there a scarcity of skilled labor? inext, where does our sk:lled labor come from? Do we produce it in this country or umport it from abroad? And thirdly, what, in your judgment, is the best way to secure for us the rught kind of skilied labor, not what is purely theoretical, but what is most practical? I have a letter from his Worship the Mayor, who, on account of another engagement, is unable to be present. I have also letters from Messrs. Bertram \& Son, Dundas; Mr. Herbert Mason, who is interested in manufactures ; also
ter of the tools in a shop is very likely to be refiected an the men. Good mechanics like to work with good tools, and are very likely to go where they can find them. A man who expects to spend the best part of his time in a shop will, if he is the rught kind of a man, want his surroundings reasonably pleasant. Altogether, the old hop is in a bad way.-American Machinist.

We bave received too late for insertion in this number copy for a change of advertisement from the Ifercules Mig., Cu, of Petro lia. They call the attention of nillers to the superior advantages of Dobson's l'atent Fiour Dresser of which they ar the manufac urers. Millers will do well to write them for full particulans of his machine. The Company also make the gratifing statement hat their sales lor the past month were more than double those of the same month last year.
Robin \& Sadier, leather beltung manufacturers, of Toronto and Montreal, have just completed the putting in of all the belting re quired in J. B. Smith \& Sons' new mill on Struchan aveave, To ronto. The main driving belt is 80 feet long, 20 inches wide double tnickness, and put on by them endless at the miic: This relt contains no rivets, sew'ng nor any other fasteners is heep it torether, except cement. By this means only being used, a much . moother running belt is insurer, which will also transmit more power, owing to a clower contuct with the pulley surface. This firm has put on many very large driving belts throuigh the country in the past few years, which are giving the very best of satisfaction.

CONSTITUENTS OF A TON OF COAL。
N NEW York chemist gave a reportA or of an evening paper this estmate of the constituents of a ton of coal. He. sudes gis, he found that a ton of ordinary as coal will yield 1,500 pounds of coke, twenty gallons of ammonia water and 140 pounds of coal tar. He added that destructive distillation of this amount of coal tar gives about seventy pounds of pitch, seventeen pounds of cieosote, fourteen pounds of heavy oils, about nine and a half pounds of naphtha yellow, six end one-third pounds of naptialine, four and three.fourth pounds of naphthol, two and a fourth pounds of alizarine, two and a fourth pounds of solvent naphtha, one and a fifth pounds of aniline, seventynime hundredths of a pound of toludine, forty-six hundredths of a pound of anthracinc, and nine-tenths of a pound of toluclies, from the last named substance being obtained the nerr product saccharine, said to be 230 times as sweet as the best cane sugar.

LUMBER PRICES.

 and and licker, hickinge, imims...
 $x 10$ and 12 cormamon $\times 10$ and 122 Pprume cuili. noth clear and puple culls.:. inch dressing and bette:
inch yidink, mill run..
 1 ind siding, ship culls:
 inct strips, common Yinch foring:

 Sircial sidings, per squake.

Shapuing cull jourds, pucki.....:

prexing sitocks.
 ricks, American inspecioio. ihtre uppers American inspection...

 1aytoarniting, riteed.... , XXX sawn shingles, per ird oak.
Hhute..............:

l.umber, Exc.
liht 1 to 104 in, \mathbf{M}.

Hasimod
Walnut, per

Hoternut per Cedert, ants. per

 Pine, nioci i
Pre, wend gatity
Shipping cull
yervece, cion \quad inch,
shingles,

ement, de.

Porland

ontreal prices.
fire Bricken per M

Hox.....
Ceiling..
Moulding....
ilevel siding
Bevel sidin....
Bridge timber.

Piling, per lienal foet
Pine. 16 in., extra.
sunci......

18 in . exira. 18 in . clear 16 .

$16 \& 18$
Cedar.
Cypress
Cypress...
Redwood.
Redwood. per bunch
HEMLOCK.
Timbe
joists.
Board
... 12
nxessen tumbixa, Cak LOAD 1.OTS No 1 flooring, Kin.
No 1 ceiling.
Kin. No 1 ceiling. Kin.
No. 1 ceiling, tin. Tiniber............
$.23 \infty$
.2500
1800
. .1400
ALbaNY, $\overline{N .} \mathbf{Y} \cdot$ PRICES shingl,ks and lath. Shingles, shaved pine

Dressing boards, 12 in. and up...
Dressing bds., natrow
Shipping boands.
Shipping boa
Box boards.
10 in. boards and betier.
12 in, boards dressing änd better
Xin. siding selected is ft .
in. siding selected.
Common.
Norway, selected
so in . $\mathrm{p}_{\mathrm{k}} \mathrm{m}$ is
Culls., ench..
so
in.
better esch, is ft, dress, an better each.
 NORWAY PINE-ROUGE No. 1,1 and $1 x$ in. No, 2,1 and 13 in.
No. 3,1 ands X in No. 3, 1 ands x in....
Stocks No. I, 1 andi Hite PINE-ROUGH
Uppers, 1 and 15 in
18/ and 2 ind
Selects, 1 inch.
14, 13 and 2 in .
Cuts, No, 3 and 4 inch.
Cuts. $\%$. 3 and 3 inch.
2X, 3 and 4 inch....
No. s, 1 inch.

 REYNOLDS \& KELLOND,
 24 KIME STREET EAST, TORONTO.
K. A. KEitiond,

STEAM USERS

aINMERS of any clane, con mbtain
aober, Intelligent and pertinbl

camadiak association

statiomary encimeens.
A. M. Wickens. President, gidue Ofice. Toronto: W. West. Toronto.
rat St,

$\rightarrow \begin{gathered}\text { KAY } \\ \text { Blecrinceo. }\end{gathered}$

memsmancom
ELECTRIC MACHIIES
of All Kinila.
Are and Incandescent
DYINMOS and LIMPS.
ELECTRIC MOTORS,
plating machines, annunciators,
call bells,
Medical batteries, \#\#TC.

Cor. Bay \& McNab Sts.,
HAMLLTOM, - ONTARNO.
Send for circulars and prici: list.

Manupacturers

insurance company.
HEAD OFFICF,
2t Chutch Street, Toronto.
JAMES QOLOIE, Quelph, President.
W. H. HOWLAND, Toroito, Vice-President.

DYRLCTORS.

H. McCULIIOCH. GALT
geo. pattison, preston
W. H. STOREY, Acton.
A. Watts, Bkantrord
S. NeElon, St. Cathakines
I. N. Baird, Toxonto
W. WILSON, Toronto
W. WILSON, Toronto

1. L. SPINk, Tokonto

HUGH SCOTT, Managing Direcfor. DOUGLAS SUTTON, Secretary. GEO. HANSON, Inspector.

OBJMOTES

To prevent by all possible means the occurrenc: of avoidable fires.
To obviate heavy losses from the fires that are unavoidable by the nature of the work done in mills and factories.
To reduce the cost of the insurance to the lowest point consistent with the safe conduct of the business.

The Combined Losses and Experses on the buriness of 1887 was umaler pyfty per cent. (50%).
GEORCIAN FOUMDAY,

C. Barber, - Proprietor.

Improveo calinadian turbines, The Best Rollor Mill Drives in the Maricet.

Meanra. Plenead \& spence, of Crermore, Ont.

Six,-In reqard to the 36 inch Turbine we purcheod of
Six, -In repard to the 3 inch Turbine we purchnsec of
Wou, would say ot surpases all our expectalions. We have Gou, would say it surpsses all our expectutions. We hime
 nith any former wheel (4o in. leffe your wheel to any chers we know.

Yours iruly,
PLEWES \& SPENCE.

dulsitem litter.

T
 at present is the probable wheat yeld. Gran lealers, millers, bankers, merchiants, and m fats people in every lime of busimess, are asking the questown "What do you thum about the wheat crop:" The fact is, trade in this commery depends very largely upon the wheal coop, hence the ansiety. The cause of the more than usual merest on this pome at presemt is due to the growimg feeling that coop estmates have been in eacess of the real amomat of gram in the country: After the frost last fall every one was on the gut ithi tor a while to learn the extent of the damarie done to wheat. Keports came in from all parts of the country, and many interested patues made trips through the province with the objec: : f summang up the sumatum. Humitreds of estimates were made by partues more or less competent to judge, and by sune who had sery inte knowledge of the stantion, with the i. satt that the publu were persuaded to bilieve that the dunare was by we means a sermons as at magh thave been, and hat notumbtandan: the trost, there would be a bate gatumty of eve clent wheat to makke. But the tume has been passmes awa, and the movement of wheat to dace has bren very hight. People are now becomang a late aervous as to the result, and many are bermung to bellete that they were decerved by the earher estmate. of oburse a preat many reasons are advanced why the monement of whent has remamed so small. At hest and for a long thme two mann teasons were giton, whelh tended where the public. These ne:e, that the hamest bema very late, theshong was away behmil, and farmers could not be expected to deliser thear wheat befone to was the shed. Then it was uthed that the open fall retarded delneries, as farmers woadd plow as lomer as they could, instead of hatulng wheat to market. A- sumin as the fonst stopped plowing, wheat would prur in at a hacely rate. The trous came, plowing reased, but instend of mereanme, the movemeas in whent decreastl, and his remaned very lught up to the ume of wrums. Those who stal behere that there 19 a yood de.ll of wheat in the commer, now clam that farmers are holdang on achuunt of the dechane in prices, as prices on tarmers here are only now ranging from so to 8 s cents for No. 1 hard, whereas a white abo prices ranged from $\$ 1$ in $\$ 1.50$. There is an doubt some truth in this adea. The fanmers who got . taste of high prices, do not now fecl inclued to take from 20 to so cents per bushel less, and many of then mane that the gram dealers have fomed a combmamon to kerp up pries, and that bs hoidng they will compel an advance. Other farmers behece that on accouns of the frost there will be a zood demand for whe.as in the spron; for seed. Cindoubted! farmets ate mon markenng then wheat, for the reasons stated, as freely as thes have done in past gears, but at the same tune ins behef is that this dores not atiogether acount for the higis delaveries. Dty upmon is, that the wheat is not in the comatry to the entent what many people imarined, and that eren the mmman estumates of hast f.ll ate consedcrably ouce the mark. I come io thin o onelusuon atter a caretul and thorough :rpp throtigh the whe.tt growing distrin to of the province. The guanaty of wheat ne for milling was reduced a very great deat by the frost of hast harvest, but l conclude that the great mistake in estimatung the wheat crop was not in making allowance for frozen grain. The fact is, the crops, where siot damiaged from frast, have not yielded nearly as heavy;as last year, and here is where the great mistake has foeen made. Last year was a phenomenally larie yield. This year the summer was cold, and with plenty of nhoisture, the crops looked vety une, and parties estumatẹd that the yield would be nearly as great per acre as last year. Threshing is now completed. and the returns show that there has been at very considerable shortage in the averare yicld, as compared with last ye:or, the donps having yrown very greaty to stras: and the yeeld has not been in keeping with the appearance of the standing sram. The lighter yieht, combmed with the danage from frost, has therefore greatly reluced the wheas erny of the coumtry, as compared with the crous of 1857.
The present year has been at very dinticult one on make wheat estimates, owing to the very uneven nature of the creps. Eardy in the season, estimates weie sent nut plaring the crops of Manitoba at from $17,000,000$:0 $=0$. 000,000 bushels. I always regarited these estumates as absurd, and state i so in aformer leter. These "boom" estimates do the country more injury than arod in my letier in your Nowember issue, 1 made an estimate piacing the expmotable surnlus of wheat at nut in excess of $7,000,000$ bushels. This inclured lianitolan and the Terronries, and the estimate was lower than popular estimates at that time. Though this ectimate was the
lowes: gren up to that tume, I now belouse it to have ben very much ton latre, and wah the knowledre ficaned by my tip though the province, 1 would redate it b) $2,000,0$ ou bushels. I' p to the time of witing smmething over $1,000,000$ bushels of wheat have leven shuped eastward, of which about half a mallion bushels ate in store at Port Arthur. This does not take flour into at count, of which equal to about $1,500,000$ bushels were expmed from the province from the crop of $18 \$ 7$. It is iny behel that $5,000,0$ on bushels will cover the exports from the crop of sSS, and the presemt movement would barel) w.erram so large an amount. Last year to this date about $3,000,000$ bushets of wheat had been exported, and shapments of flour were also very mach larger. Country grain dealers put the crop lower as a ale, but they ate mostly holding wheat, purchased at above the maket whate, and allowance must herefore be made for ther desire to "bear" the crop and fall wheat.
$\lambda_{\text {areon mamy dealers phace the crop it about one }}$ quarter of last year. For instame, from a personal miternex wah about eaters grath deales in sombthen Mantub.t, the great wheat iegron of the west, the haghest estumate given of the crop wats one thard as great as last sear, and this ouly in one or two :nstances. Nine out of ten dealers placed the crop of Southern Manitoba, west of Morden, at one quater of last year, while one or tuo estumatised it at one-ceghth of last jear. . It only two ponts in somthern and south western Mamboha lats the coop beengood. These are Morden and etema. Buh these plates ate large whent makets, that is manst be temembered that these phats are on the Meanmate reserce, and the lienomates alwas mathet ther whent c.ats. The wheat contributors to those ponts has theicfore been mostly disposed of. in the C. I'. R. wana lute, at houndon and most oher ponts, the quantat of wheat so far marketed is small in comparison whith hast yeat, athd the expectation ts that the proportion will aot be greatly increased. On the Northesesern 1 alway there will also be a great fallug ofit at several pumats, but aiong the Northwestern, wheat-growng is not as meportant a crop as in other parts of the counir!, and the shontage in this distrit is not anatter ot so much maportance as in the Brandon district and southern Mar.noba.
The most amportant occurrence in the malling l::ec is the change in the Wimapeg business of the Osidvie Mitlang Lo., ciatsed by the withdrawal from the company of II. A. Hastings, manager; (3. 1: Hastungs, merhantaal supetintendent, and S. A. Metatw, superintendent of the wheat buyrag department. The withdrawal of these gentlen:en from the company has been brought about by the changes in the distribution of the stoc:s of the compan, iesulamg from the death of the late John Oinve, the semor mentres of the company. The three \%atlemen who now whidraw from the business here, have been instrumental in building up the very successful milling enterprase of athe Opilvies in Winnupeg. They have pratucall: had full control since the establishment of the busmess liere. They have established a new firm, under the style of liastonss Bros. \& Co., and have rommenced to handle gram and thour. Xext summer they will erect elevators in the province, and build a large mill, of not less than 600 barrels capacity: F. W. Thompson, who succeeds W. A. Hastings as manager of the Ogilvic business here, is a very popular young man, and the appointment is an excellent one. He has been connected with the Ogilvie company, both here and it Montreal, for some years. A. M. Kobinson, of Montreal, has been appointed mechanical superintendent, and F. (i. Simpson, superintendent of the purchasing department for the Ogilvie company:
1 sec that the Toronto Fimpire, in order to make a point against reciprocity, or increased trade intercourse with the CInited States, again states that Manitoba farmers are realizing more for their wheat than farmers in Dakola and Minnesota. Sow; this is very absurd. 1 will not discuss reciprocity; but a few facts concerning the price of wheat. At the time of writing, No. I hard wheat is du:nted at Duluth at 5 t. 23 to $\$ 1.24$ for cash. It has ranged at about these prices at Duluth for some time back. No. 1 hard, cash at Minncapolis is wortit abous Si.s. In Manotoba prices to farmers at prowincial pome ange from So in $\mathbf{S 2}$ cents per bushel for No. I hard, which is a superior grade to Duluth and Minneapolis one hard. Manitol,a prices to farmers are equal to say 8 to SG cents no track at Winniper, on a basis of through freight rates to Port . Inthur. The freight charies from Winnipeg to Dort Arthur are a fraction over ${ }^{2}$ 'is cents per bushel, which would make Manitulat wheat worth say 5 s.00 per bushel at l'ons Arthur. agamst $5 t .20$ in 51.24 at I)uluth and Minneapolis. This makes it plain that .lanitola, wheat is selling away treInw llakola and Minnesota wheat, the fimpirc to the
contrary notwithat:mding. The freight rates from Winnipeg ti) Duluth amd Alimne:apolis would not be any hagher than fiom Winapeg to Port Arthur. It will therefore be seen that were the Duluth and Minneapolis markets open to Atamotob, wheat at Winnipeg would be worth fully so cemts per bushel more than it is now quoted att.

ROPE DRIVING IN AMERICA.

AMERICAN mills have used belts exclusively for the transmisston of power from the prime movers throughout the mill until the last year or so, during which time the example of Finglish practice in rope driving: has begun to have an exfect. This new method of transmission, however, is still exceptional, being conined (1) at very few instances.

For a number of years the Roeblings, of New Jersey, the celebrated buitders of suspenston bridges, have made wire ropes for transmssion foom building to building, or from water wheels to buiddings some distance away; and there have also been numerous isolated instances where varinu, forms of rope have leeen used to transmat power from building to buildar. Such ropes for long distances have been provided with suitable shding binder pulleys, to maintain a constant tension under varations in lengh, as the fibres ale all affected by the humid air. In one instance, the rope was kept at such a uniform length that the binder palley was abandoned, the method being to kecp the rope constattly wet by means of a very fine streana of water, which was inpingung upon 18 constantls dasing its aperation. But neither of these instances has any pertinency to the use of rope draving, in milts.
Oace • he larexe rope works in Massachustus now makes great quant.: - - of manilla cables for transmis. sion of pawe the rupe bins overhad with a lubricitung priparation, am also mpresmated with a waterprof material.

There are tuo methods of transmining power greater than the cap:a 13 of a smgle a roove, one being ny a lot of indepeadem ropes sunaing in corresponding grouves, and the other where a single rope passes trom one groove to another, the ends beng brousht around and joined tugether, and the last foop temeg held by a binder pulley. This is knowr as the Dodge system, and is consudered preferable in many instances where rofes are subject to severe usake, on accuunt of the diminution of the number at splices.

Thete are three types of grooves used in various works one is the U' shaped groove ior binder pulieys onls, where the rape rests in the buttom of a semicircle large enough to hold it ; another is the V-shaped groove ; and a third is where the groove is approximately in the shape of an ellipse, the radius of the bottom groove being about 60 per cent of the radius of the rope. The speed of such ropes is limited to about 5000 ft . per minute, at which velocity the centrifugal force becomes a very important element in the capacity of the system for the transmission of power. The working stress of the ropes varies very widely in practice. As high as $\mathbf{j 0 0} \mathrm{lb}$. or 600 lb . have been applied on a 2 in . sope, although the best practice limits the stress upon such a rope to about onehalf of that amoum. The following figures give the sesult of practice of one of the leading mill engineers in America:

The advantages claimed by some imerican engineers who have had experience with rones, are the absence of slip, the ability to turn the corners and to run to any desired distance, the cheapness of cost, it being about two thards that ofleather, and alsel economy of maintenance. On the other hand, it is clainved that the mechanical efficiency of rope driving is nut so high as by belt driviag. That the power required io press the rope into the grooves and then topull it out as it leaves the pulley, is 2 large element in the problem, and also that the ropes are subject to a greater degree of wear than is estimated by their advocates. There is also a difference by reasop of the fibre used, and ropes inade of manilla will not give resuits equal to those of cotion, untess the manilla has been treated especially for the purpose.-Enginecring.

Mr. S. Sioan. of Tillmury Centre. Ont., wiH enlarge his saw mitl.

PUBLISHED MONTHLY,

CHAS. H. MORTIMER,
opfice, 81 King stroet Weat,
TORONTIO, - - OANADA.

A DVEATINEMANTIS.

Avertumg rates sent pronnytly ujon apypication. Orders for advertising Ansiut reath this office nod later than the asth day of the month immediateIf preceting cost date of issue.
Chansed in adventisements will be mple whenever desird, without cost to the adhetimer, but to insure phoper conyliance with the instructions of
the advether, tequecti for change should teach this office as eatly as the and day of the month.
5mial aderrtisemonts uuser the headings" For Sale." "For Rent," If, if mot exieding five lines, so cents for one insertion, or 75 cents ifr in in mextions. If over five lines, 10 cents per line extra. Cash mush arcom;any all orders for advertivements of this class.

SURSCEITOTIONS.

 unikes in the Douinion, or in the United States, poot free, for $\$ 2.00$ per 20aun, whents for six months. Sxbscriptions wase ber caids strictly in stramas

The pance of sulscription may le remitied by currency, in residered let. tet, or the postal order payatle to C. H. Mortimet. Hease do not send
 Monev sent in unrecistered letters mute be at senders risk. The sending
W the pnper may le considered as evidence that we roceived the anoney. Whe paper may be considered as evidence that we moceived the noney,

 Ition onitering shamge, always ritv ith old as mollas the arwe addross. fallure upon the part of sulscribers to receive thent papers prompely and reauiarly should be notifod at once so this ofice.

Cosreypondence
millimit induaries.
This faper is in no manner identised with, or controlked by, any manno. Cxatrins or mill.furnishing businest, nor will a bestowal or refical of pat. rooxte intucnce its course in any degroce. It seek s recoesutivn and support itoon all who are interested in the material avrancement of the Dominnon an 2 manatacturing co
monath by month.
Niculery of the "MBCHANMCAL AND MIDIINは NEBSS" seill confer a fator

 Wrs. Drop on R posial carvl whem wow hate ers. Drop witics to an andreptimer, uiese un hin matme, nnil thes we will pmp. yon in the wousy of ghtling the bemeft. Jhontt forget this.

A WEALTHY citizen of Philadelphia, Mr. V. Wisliamson, has given $55,000,000$ to found a mechanical school where boys may be taught trades. If any wealthy Canadian is impressed with a sincere desire to make a bequest where it will do the most gond, let him go and do likewise.

THE convention of Honler-Inspectors which met at litstburgh, Pa, on Nov. soth, resulted in the formation of an organization to bekm.wn as "The llosker Inspectors' Association, of the United States and Canada." The objects of the Association are to reduce the loss of life and property from boiker explosions, by makin: boiler inspection compulsory, and the substitution of rompetent for incompetent engineers.

A^{*}- agitation is on foot in the Unted States for a reduction of the letter postage rate from two cents to one cent. This would seem to indicate that the time has arrived when the rate in Canada should be reduced to ino cents. We are pieased ro notice that the Boards of Traic of some of our cities will memoralize the Covermment with that object. It will afford the business community especially a great deal of satisfaction if the Government can see its way to make the reduction.
T1. F call the alteation of the readers of the ME:Chamical. AND Miliming Niwws to the re-apprarance in these columns of the advertisement of she weil known firm of Galt manufacturers, Messrs Coldie \& M, Culloch. The reliability of this fron and its manulactures have resulted in the building up of owe of the lariest manufactaring establishonemts on this comtiment. Our icaders are invited to mote their variens lines of masufactures, and correspond with them for particulars and prices.
TIIERE has been a lot of money spemt throughome
Canada during the past year in bering for aatural gas in sowe instances gas has beew found; in poobilvy more instances it has mok. So far as we know, na:ural gas is fraitling no mefol econcmical purpeere whin the bounds of the Deurinien to-day. This exe.
gests the enquiry whether it would not be as well to stop spending money in trying to find more gas until we have discovered a means of puting to use the gas we have already found.

T-111: Rimpirc, of this city, in reply to the argument that the demand in Camada for iron and steel is not sufficient to warrant its manufacture here, points out the fact, which may have escaped the notice of many, that of late iron has been substituted for other materials for many purposes. Iron is taking the place of wood and stone in bridges, and to a very considerable extent and stone in bridges, and to a very considerable extem
also is being used in building construction. Thus the dennand is extending, and we believe the time has fully arrived when the iron used in this country should be manufactured here from native ore.

THE putting in force of the regulation prohibiting mill owners from depositing sawdust in the rivers and streams of Nova Scotia, caused most of the mills to cease operations, and struck a heavy blow at the largest manufacturing interest in the province. In 1887 the value of exports froin Nova Scotia of products of the forests amounted to upwards of a million and a half of dollars. While the fishing industry is the one of most importance in Nova Scotia, it is claimed that the rivers and streams contribute but little to its value, and therefore that the balance of interest in the matter under consideration lies on the side of the mill-owners. We have every reason to believe that this is the case. Further than this, the important fact should not be lost sight of that a large number of men, denerdient upon the mills for employment, are being deprived of the means of licelihood. It is generally believed that sawdust in streams is destructive of fish, and it is no dowist desirable that if possible the fish should be preserved. If it is found, however, that the effect of keeping sawdust out of the streams, must be the shutting down of the mills, and the destruction of an industry more valuable to the province than the one which it is designed to protect, then the common sense course would seem to be to remove the restrictions and let the fish take their chance.

$\mathrm{I}_{\mathrm{p}}^{\mathrm{T}}$I will be a source of great gratification to every person interested in the welfare of our artisan class. es and in the progress and prosperity of the Dominkn as a manufacturing country, to observe the interest which is at present being manifested in the subject of technical education. The representative meeting of manufacturers, educationists and mechanics, which assembled to discuss the question with the Minister of Education on Dec 19th, shows clearly that the importunce of providing means for placing Canadian mechanics on an equal footing, in the matter of special education, with those of Europe and the United States, is impressing itselt upon the public mind.

The opinions expressed by manufacturers at the meeting referred to, tended to show that many mechanics of the present day would be much more valuable, in the sense that they would be able to perform their work more expeditiously and more accurately, if they had had the benefit of a training in mechanical theory. As we understand it, this is to be the main object of the system of techaical instruction which it is proposed 10 establish in connection with the School of Practical Science in this city: No attempt will be made (as our friends of the Toronto Trades and Labor Council seem to fear) to sura out practical mechanics, but students wall be given a course of instruction that will form an excellent foundation upon which to build the superstructure of future mechanical attainments. A youth so trained will enter the workshop with the theoretical knowledge which will enable him to bring an active intelligent mind to bear upon his duties, and to under. stand at the outset of his career the why and wherefore of many things which the mechanic without such preparatory training has so "pick-up" in the course of many years experience.

We regret very much that the labor uninas thus lar have shown no disposition to favor the movement, which is decidedly in their suterests and that of their chil. drea. The only individanks who coald by any possibility be mijured by such a system of education, would be the professional laber agitator and the botch mechanic; peither of whom should be allowed to stand in the way of the intelligent and ambitious young mechanic. The best method of extumating what the results of a system of technical instruction are likely to be, is to acquaint corselves with she measure of success which has antend. ed simular efinuts an efter compiries. In order that our renders may be canalad to do shis, we pablosh in
another part of this paper all illustrated description of the New York Trade Schools, which, though dealing more with the practical side of mechanical instruction than it is proposed to do here, will serve to show some of the advantages of the system. We trust that the Minister of Education will have the hearty co-operation of all persons interested, in cartying into effect his scheme, and that when the Legislature meets, the necessary funds for that purpose will be cheerfully voted.

the flour juty.

BEFORE the Government takes any action on the grinding in bond question, it should undertake to consider and deal with the more important matter of increasing the present import duty on flour. The grinding in bond priviege affects a comparatively small number of the mills ; the lack of protection against United States four manufacturers is a severe burden which is crushing the life out of the milling industry of Canada. The mills of the Unted States have become so numerous and their caparity so large, that the owners are at their wits' end to know how to dispose of their pro. duct. Many thousands of barrels of it they have shipped into Canada, where it has been sold if not at a loss, for a price not more than sufficient to pay the cost of manufacture, and the charies for freight and duty. The owners prefer 10 sacrifice their profits rather than to carry large stocks of flour, and be deprived of the use of the money which it cost them to manufacture it.
The Canadian market has been so glutted with this flour, that a considerable quantity of it remains in the country unsuld at the present time. In the city of Montreal, for example, theie is at present held in warchouse 96,843 barrels of flour, about 48,500 barrels of which is American. Had American unports been kept out, the 50,000 barrels of Canadian flour at present waiting a market in Montreal, would thave been sold, ts value would have gone into the pockets of Canadian millers, and manufacturing operations would thereby have received an impetus.

The following table shows the quantity of American flour impored into this country for the fiscal year ending joth June, 1887 :

We regret that the figures for the preesent year are not yeet to hand, as we have reason to believe they would show the imporations to have been largely in excess of 1857. The figures in the above zable are sufficient, bowever, to show ihal ithe Canadian miller is 10 a large extent deppived of his home market owing to the lack of restricions to prevent American milkers from makking this a slayitherer maxket for their surplus pmadaction. The above tuble shows that in ane year \$ $\$ 49,166$, lex
$\$ 8,0,2 . j 9$ pad as duty, weut out of Citmada into the pockets of Amercan millers. If this large sum of money had been distributed amongst Camadian millers, as it should have been, every malle in camada would have had added to has income upwards of $\$ 330$.
After what has been sad about the overstocked condition of the American flour market, it will be readdy understood that no chance exists for the Camadian miller to sell any flour there, but if a chance did exist, the American tariff steps in and effectually shuts ham out. Under these corcumstances, whs should we deal more generously with the Amencan thour manufat turers than with American manufacturers in other lines? On the other hand, are not our thour manufacturers justly en. tuted under the Namonal l'olicy; to the same measure of protection as is afforded to manufacturers in other lines of industry: :There can be no two answers to this question. We believe in the policy of protection to heme industries. We believe that the beneficial effects of such a policy are abundantly visible throughout Canada. What we do not believe, is in leaving one industry-and that one of the most important in the country--outside the protecting wall, and exposed to unfair foreign competition.
There is another and very important reason why the duty on flour should be mereased. The Canadian liacific Kailwas;, although constructed largely at the expense of the people of Canada, is just now engaged in discrmminating aganst Canadian millers and yrain dealers in favor of the millers of Minneapolis and the Northwestern States. Millers in Eastern Canada who get a large part of their grain supply from Manitoba are being charged nearly double the rates paid by Minneapolis millers on shipments of four to Quebec. In tact, so far as we can learn, what little protection the present tarifi does afford the Canadian miller, is offist by the dis criminating freight rates goven to the Americon millers by a so-called Canadian railroad.
Ne believe sf the Government will give Camadian millers the protection to which they are entitled, the compettion amongst them will be found to be sumticiently keen to keep prices at a farr value, which is all that the consumer should expec: or demand. Wie cannot believe that the majority of consumers would desire to see one of our most important industries crushed out. in order that they might buy inour b-low its value.
We are pleased to see some of the millers speak out on this subject. We will ghadly give space to the opinions of any who may feel disposed to write. The time has come when this injustuce to Canadian millers must be removed, and we are not withous hope that the forth coming session of Parliamem will see justice done in the matter. Messrs. Doughas Bros Toronto, have iseen ap. ponted :orents for the machine for the Dominion ot Canada.

T111: recent action of the Dominion Covernment in increasing the export duty on saw lons is being criticised and discussed from every point of vew. The lates: contribution on the subject comes from Jon. Willian diacdou;all, who, as a constitutional authority, gives it as his opinion that section $1=4$ of the liritash Dorth imerica dict, capressly for mbs the levying of an export duty on imber frown in any of the provinces of the Dominion excep: New 13runswick, in the case of which the right is conferred as a special privalege. We have yet to hear from the nother great co:-stitutional authorities on the subject. In the meantime our .lmerican friends may sifely count on having to pay the export duty.

HINTS TO YOUNG MILLERS.

IREME:MLBER once hearing the jematk quoted of a sucesstul tradesman who had rised himeself from the lowest position as shop and errand-foy, through all the various stages, to le master of a thourishing busuness, says it writer in the liondon ifiller, that in passung through the workshop he saw only one man anomonst those in his employ, whon exhibited any special funess or apparent abitity in follow in has the master's: successfal ontstens. Whether that particular man did surceed alove his fe!lows or fultil his master's antucipations 1 know not ; but I do know that I myselt have niten looked in wain amongst those working: aromat me for evidenre of any spectal ability or fitness to rise aikove heir present level
Wie are font of quoting the saying that "the chald is father in the man," espectally when the cluld is extra precocious, or exhibists any uncommon mental develupnent. Jiut how often does manhomed belie the promeses and anticipations of childiocorl ! is a matuer of tact, clibilhomed is ton carly and unsafe a preried on form any relialic opinion of what the fusure may be. Eiven the lony at school gives no real indication of his talents as a
workman or business man, and he, too, mave belie his promises. It is omly when that sime boy, be lie might or dull, gets fairly to work that we can form any just estimate of his manhoed or future career. This is more especially the case in a trade like modern mulling, which depends so mull on the mental faculties, for in this, if in any trade, the physiaal and mechanical play a secondary part. My desire in wrtting this and what follows is to assist and encourage those who have adopted milling as a trade. My wish is to point out to them, as far as possible, the true road to success the highwity upon which they must travel if they have any wish or intenhon to succeed in theor calling.
First, 1 would say to every young man whe has just started out to learn milling or any other trade, Aim for the top.

> If 1 was a colbler. 1 would made it my pride The lest of all colbters to be:
> If was a tuker, no tinker Ixsulde
> should mend an old kettle like ame."

Herein lies the secret of success. a success which is open to all, but which can be attamets only through determmathon and perseverance. It is said that "eversthing comes to him who waits." Do not wait for success : it will never come to you; press forward, and you will then certamly overtake it. 1 say, Aim hugh. Remember that as workmen there are various grades and positions, the best of which are usually given to those best qualified to fill them, and that the reward is according to the position. Kemember, too, and mark well, that there are prizes, and that these prizes are open to you. By prizes 1 mean the highest postions as formen or managers of harge concerns, which are rewarded with good salaries. These positions must be filled by someone, and that someme majy be any one who will take the pans to qualify himself. In France it is satd that every common soldier carries within his knapsick the field-marshal's baton. Fven so may we say dhat every young linghsh maller has the chance of obtaning the highest postion in his trade. l.et every young mart set before himself the highest deal, and strive to attain t. 1 may say that even now, when the labor merrect secms overstocked, real abilty and sprecai fitness will not go Iong unrewarded. Untormancly, there are many men occupyng food positoms who are in no wily fited for them; they bave only their tongues to recommend them.
A proper iegree of ambition is absolutely necessary for success in life. The youth or man who has no ambinon, and is content to be a mere laborer-a hewer of wood and drawer of water--never gets beyond that positon, except bry accident. The true key in success is a constant pressing forward, an unsatisfied feeling with present atanaments, a strong, unchanging desire to excel. I once heard a master miller facetiously remark that he never knew an onperative miller who had not just got a tise in wayes, expected one, or was about to ask for one. Considering that a man's labor and skill are hus only marketable commodity; there is nothing very surprising in his desire to sell it for the best value and at the least risk to himself. A destre to improve himsell is, I think, one of the best evidences of a man's abilaty and mellinence, and is one which should certainby not go unrecognized.

Having set before himselt the highest ideal, the young miller should always bear in mind that to attain it he must fit and prepare himself for 18 ; and that without proper fitness his success cannol be real and permanent. A youth or man may get along very well amongst his friends, or white he is bolstered by someone always recidy to take his part ; but let him zake his place in the world's competition, where he has to stand upon his own feet, and he will soon find out his failing, and posssbly lose some of his conceit tos. He will quickly discover that on hold has own in an equal position to others he must le equal :o them ; but to reach and maintain a higher postaon he must possess abilitices and qualities of a hugher order. This is obvious; for a man who is 20 fill a responsibic position, and so direct others, must know more than they know, so that in simes of difficulty he can act with promptness and without hesitation. A man wilo arcepts :a position without proper knowledge or fitness is ofien bineety humiliated through having to follow insteal of lead those under him. This will, I hope, make clear the necesssity for special fituess, a quality wituch is not inherited, and is so be obtained only by constant application and keen attention. "Whatever the hand findeth to do, do it with thy might," is espectillty apulicable zo those who have set out to leam the introsacies and difficulties of moxiern milling. A litile knowiedige is a uscless thing in roller milling. liriter to know nothing alout it than to know it imperfecily. And this briugs me in a maller of great impor-

diagram, from memory, of the mill they are working, not one in fifty average millers could do it. Nay, 1 will say more. Not one qualified (?) rollerman in fifty could make a correct diagram of an ordinary sized mill, in which they have worked for twelve months. 1 repeat there are very few men who know the mill and process thoroughly, and are able to compreliend and give rea sons for the particular arrangement of machinery in gradual reduction milling. I wonder how many fore. men really know: The rollerman knows his machines, whence the material comes and whither it goes. In like manner the purifierman knows his part, and no more; and so with uther machine minders. There are very few men, mdeed, who are quick enough to detect a difference in quantity or quality of materral coming to a particular machine a difference which may, and frequently does, arise from a broken silk, or other cause, in sume remote yart of the system. I will not go so far as to sav there are tew men who properly understand grindugs with smooth rolls, but will content inyself with the assertion that the great majority are concemt to set therr smooth rolls as close as possible, so as to squetze instead of grinding; thereby not so much injuring the nour, however, as some magine, bnt wasting power and causing unnecessary heat. I wonder what some of those men would say if you asked them to set a pair of stones as close as posisible: And jet one seems almost as jusufiable as the other.
It is astonishang how satisfied most operatives seem with their atainmems. They seem perfectly happy if the machines continue to work without giving them trouble. If the stock cominues to flow into and out of the varnus mathmes they are quite content (of course any great or seronas dis:urbance can hardly be expected to escape the notice of the most obtuse : it is of the little thing 1 am now speaking more pariicularly.) Now let me impress upon all young millers that merely watching machimes is not mulling, and when the conduct is as above, the man merely lecomes at machine himself, and is of less service than some of those machines he is appoiated to watch and manage. No, no! This is not milling. What constututes the true artist in the trade is a proper conception of the art as a whole, and the percepuan of the amute changes and variations in the material, and consequently in results arising from causes remote and unseen in his deparment. A man to be of real service should have an affection for his machines He should seek to make himself thoroughly acquainted with all the details, and should pay particular attention to those parts wheron most depends. The machines are of secondary inportance. What should engross the attention of every miller, especially the young aspirant, is the proper treatment of the material going into them. lie should know the nature and the quality of the stock going into and out of every machine on his floor. Should know whence is cemes and whither it goes, so as to treat it intelligently. And to know it mote thoroughly he should be constantly handling and examining it. He should be able to detect the slightest alteration or variation in material, and should know the exant spol where the mischief proceeds from, which will probably be in a totally different patt of the mill. This will ve obvious on the slightest feflection, for, say a man is tending smooth solls, unless he knows the quality of material he has on a particular roll, and the part it plays in the system, he cannot treat it correctly. Of course if he goes on the principle of "sjuashing" to the utmosi on every roll he will get it into thour somehow and somewhere, but not as he should. l.earn to do everything correctly. There is one sight way; but a greas many wrong ones. White on this subject of rolls 1 will just say that in setting a roll, malie it a rute to look first at the stuff which is going in. More than thes, make at a practice of placing the ground and unground material side by side ; vou will thus know not only exactly how to adjust your roll to your material, but will also see how much you have done to it. This may be beter appreciated and understond when I say that supposiag on one roll you have semolina and on another dunst, if you attempt to grind one as close as the other you will certainly have rrouble; and this you might attempt to do if you did not adops the simple precaution of comparing the ground and unground naterial of each machine. No doubt I shall be told that men are not such fools as to attenipt to grind semolina as they would duase. Brt 1 sav they are so foolish, and mauy men who comsider themselves clever millers are so foolish. They do this, (00), regardiess of slipping beles and other ominoess indicalions. Now, my young friends, take this as a waraing, and what is here pointed out as the faulss of ofwers ing by all possible means to avoid yourselves. It masy not be generally known or admitted, but it is a ence thas there is considerally more skill required in ajjusing hmoxth rolls than gimerer.

PAGE

MISSING

PAGE

MISSING

Opeatum on the Saguenay will be unusually active this winter. Itr jas 1 . Chester has just completed the erection of a new an mull at Bhamton, Man.
Ohe Wroneter planing mill has leren purchased hy Mesars. auth 11 ilcolinn, of Brussels, Ont.
Melauphlan Bros. of Amprior, Olt., ate about to erect ex. kasure all mills at lapineauville, P. Q.
The suw anth in the New Sweden Colony, north of Mtinnedosa, Man., wish humed to the ground recently.
If Ma onell has leen appointed local Crown tinuler inspector for the Iurtce Mountain district of Manitota.
Mf, is a liutee, the well known lumkerman, will be asked to throas a cuuddate for the Ottawa mayoralty.
Thelumber dock:ige accomodation at Midland, Ont, will be incraselt te the extension of the esplanade 3.200 feet.
Messtr, Hhy Bros., of Listowel. Ont., have sold the machinery od axar suw mill at Henfryn, Ont., to a party in Muskoka, for 51100.

Dhe firewatu lumber companies have raisen the price of lumbben and all the leike Winnipeg cut has been pirchased hy one sxakr
 tarmsor
hemgo.
Nesss. Ginham, Horne \& Co. s shingle mill as Port Arthur. tas chmed down for the season. The total cut is a littic ove 3000000 shaugles.
The Cilaskong Mining and Lumber Company has been chartmedth the Dominion Government to develop the mining and tambems mbutries of the R.at Portage district.
The Hhafax. S. S., Chromicle. estinates the output of E. D. numen is Soms mill on the la thave Riser, for the past ycar, at

An Allot is leing made to secure he oprration next season of the sau millat Birtle, Man. This mill has been ide for some reass though lons are taken through listic to the Assiniboinc

At il I: Hatir will take out about 3000000 tops at St. Bitienne. Sreal of the Quebec

to the comums season.

Hon. Mtr. Mowat has accepted a retainer from the Untario l,amlemenct s Association and will seek to cobtin redress through the courts for the alkered unfair sreatment accorded to the luntterrien ty the Grand Trunk Kailway Co.
Mesers MoCormick \& Son. of Sudtury, have sold nearly the wide of thar season's cut to the Cianada Copper Compnany. They are Al-mut to move their saw mill on to their limits, in order to mave eavy atress to the large tracts of white pine they heid in that cist:cet.
Maxtanls shingle mill at Washago. operated by Hzady © Hatre wass destroyed hy fire, a few days ako. The phant was ren. Hady and fiaticy st los anmonns to there was no insurance oa tuxthenc or plant.
Inwahi Mc:Master. of Aiexandria, Ont., recently purchased is splate cuikes of immert limits, Ballantyne. at sa.730, an increase of The shisiser of Customs has 1 ceen waired upon by a depulation af kenterniven, utging that the duty on buirel porkle not mereased as reernly requested ty a deputation from the Pork Packer's Asseation.
ISe following is the estimate of the cut of white pirve ty the O. uxa zulls during the past season: Bronson \& Westion, 60,000 .
000 trme . Vetiky \& latice. $50,000,000 \div$ J. R. Jooth, $65,000,000$:

at arounsing so nlout 500,000 standard: the cut of antromenency at II As thecancour mills, and Bmpliste's Celivmen cur. K. N.
 duxi ef laptiste's Threc Kivers milis has leen sold 10 John thanstaf a ro., amlj . S. Marjhy \& Co, have purchased from licice Iks $\&$ Co, their fine deals now at Hadtow Cove.
M: Kolertson, the luikter of the tamous Jownems raft. is suid
 log- I I thas nve:thod. He expresed the telief that a company wou't very soon le organised and the indastery be pat into operation Such an industry, he thonghe, masse pmowe of value to ithe

 drme injury
 of the lruy Council in favore of the chimess of the trowince to the t:anry in ihe disymued verrivery, has oridenet the cesmion of all lem:rang operations in the said district darimg the precens winter. is wirnil large beonlectiog froms hod thought pleant, engared men. ans: nask -

 tish mean the shmerimp down mext mancer of two horre mims.

The difoctary \%imes commends to the sawmill owners who are wrestling with the saw ast problem the action of Maine millmen, who ship lange quantities of that material for use instead of sand in mortar, as well as for the making of moulding and cornice nork. If some enterprising Canadian would enter into the buslness of the economic disposition of the sawdust that accumulates around the mulls of that province he would reap a fortune as well as lasure the bessing of all concerned in the fisheries.

WATER POWER AND WATER WHEELS.

Br WM. B. Ferguson, Tokonto.

TO say that all the water powers and privileges in Canada are being utilized to their utmost, or even to oure-fourth of their utnost, would be saying what is not true. There are more water powers unused in the Dominion of Canada-and good permanent powers, too -than there are in use of both steam and water together. A great many of the privileges now used are to a great extent "murdered," by which 1 mean that the wheel does not give the amount of power which a great many persons expect to set from it under a given head. The reason is, that the power of the water is destroyed either in the head race or in the tail race. Fully sixtenths of the water powers at present in use, are to a great extent destroyed either from one of these causes or the other. Then the water wheel is blamed for not giving the amount of power rated, or percentage of water used. In all my varied experience with water powers and wheels, 1 have usually found on making an examination in cases where people have complained to the that the wheel did not give the power rated on the manufacturer's tables, that the fault was their's and not the whel's. They either had the head race, or the tail race, too small, or had too large a wheel for the amount of water in the stream.
The importance of having a large canal to bring the water to the wheel cannot be overestimated. Especially is this the case when the mill is crowded or using some special exertion when the full gate is used. Have it so that the wheel will not have to suck or draw its waterthe water should be perfectly still in the floom, and not run in a heavy current as I have seen it do sometimes. In such cases, half the active power of both wheel and water is lost. The first thing to be observed when one is about to utilize or improve a water privilege, is to ascertain the amount of water in the stream, if it is a small one. If a river or large stream it is not necessary, but It is always necessary to ascertain the actual head, and to know the horse power you want or that can be obtained from the stream ; how many cubic feet of water per minute will be required to produce the required horse power under the present head of water in the stream; and that there is a sufficient head race to the water full up to the required head without any perceptible motion in the water. Then, if the wheels are set perfectly true, as they should always be, the next im. portant point is she whee! pit. (In speaking of water wheels I have reference to the turbine water wheel, the most approved in use at present-of which there are several manufacturers in Canada.)
The wheel pit and tail race, deserves particular attention. As a rule, 1 find wheel pits and tail races 100 much contracted. The wheel pit should be from 3108 feet deep below the wheel, and from ifoor 102 ft .6 in . below bed of tail race, large and momy, and lined with plank properly secured. 1 know that 1 differ from a number of others on this point, but I speak from experience, having set and reset some 123 wheels, and 1 find this to be the best metbod. The water should stand when still about one-third of the way up the cylinder of the wheel, and the water in tail race should be on a level. The tail race should be about one-eighth lapger shan the bead race, so as to allow of a free exit. Once it is used, let it get out of the way as readily as possible, yet not 100 tast, not more rapidly than if foot per second, but have the way large and free. It should not be so tha: when the water is turned on the wheel it will rise in the tail race and spread over a large area of ground, but should be in such a position as that when water is let into the wheel ptt throught the wheel. it will thow out of the other end of the tail race and show little or no rise of water in the tail rave. I know it is very difficult to pet a sufficiently large tail race, persons mor caring to go to the expense, bat there is mo denying the fact, that iney lose about one-fourth of the actual power of the wheel by haciag the tail race coatracted 30 that the water rises up into the wheel when in motion. 1 am very often asked by letter ind persocally, how many horse power caa be got mader a given head, without being tohd the curreat of water in the stream, which is in ver) important maker. 1 certainly woold advise any person or company, abome to we or iraprove a water privilese, to secure she services of a practical hydraulic power engineer to level, lay out and rave the whole of
it is carried out accotding to plan. It is the best invested money about the whole job. At some future time I will give some examples in wheel setting, and also offer some remarks on the history of the water wheel.

A NEW BRAN PACKING PROCESS.

Othe vatious assortments of offals produced during the process ot milling wheat, says the North. bran sunce it forms on the average at least fifteen per cent of the total weight of the grain. In addition to this, the tact of the bran possessing a high market value enables it to exercise a very great influence upon the success or otherwise of every mulling business.

While both grain and flour constitute large and increasing articles of commerce, bran, from an international point of view, is practically excluded, owing to the difficulty and heavy cost of transporting it to any great distance, consequent upon tts large bulk as compared with its weight, when packed in the ordinary manner.

In many foreign countries the profitable disposal of bran is impossibie, and a natural result of this is that the producers are heavily handicapped in their business. This state of things would be entirely reversed were the bran, in place of being as heretofore loosely packed in sacks, etc., capable of being exported in the form of hard and dry cakes and thereby bring its bulk and weight into so close a ratio that the carriage of the material to long distances could be effected at a reasonable cost.
For years past endeav-rs have been made to form bran into cakes, but these have hitherto proved all more or less unsuccessful, and it has been reserved for Finkle Lesshafit process to demonstrate the fact of its being possible to press bran and similar products into cakes of a hard and durable nature by the judicious application of heat and superheated steam to the material, be. fore commencing the process of pressing.
Bran and similar materials possess withon themselves the necessary properties for securing the required adhesion of the various particles when acted upon by warmth and moisture in a suitable manner, and it is upon this fact that this process has its foundation.

Nagel \& Kaemp, of Hamburg, have devised a machine which embodies the Finke-Lesshaff process, and which is claimed in produce a constant stream of compact and durable bran cakes in a simple and expeditions manner. Its mode of action may be explained as follows:
A crank sets in motion one or more stamps or plung. ers, and each time the stamp is drawn towards the crank a measured quantity of the material (bran, etc., falls into a pressing cylinder. Upon the advance of the stamp this material is forced into a long and suitably formed mould, and from this the finis' :d cakes are discharged somewhat after the manner ot moist bricks.
The crank works within a link to which the stamps or plungers are attached, and the whole is driven by a belt, pulky and geared wheels. The material to be plessed enters into the separating chamber, and is shence discharged into the heating and steaming apparatu:. This apparatus is furnished with a steam jacket and contains a series of plates placed one over the other in such a manner that the material talling upon them is minutely subdivided, and in this condition is subjected to the heating and steaming process already referred io, before passing into the pressing cylinder. The stamp or plunger carries the material through the pressiag cylinder into the mould, from which the furnished cakes are discharged in a fit condition for storage either in sungle cakes or in layers.
The pressing cylinder is constructed with a view so the removal, duriag the pressing process, of any superfluous air or moisture which may be in the material, and the mould can be adjusted to give say required dexree of compactness in the cakes.
The cakes fowned by Nagel si Kxemp's bran press, average in bulk only one.fifit or one-sixth that of a similar weight of wheat bran when packed in the ordinary manaer sod in she case of bran from rye, the bulk is reduced one halk. The capacity of the bran press is equal to about 1,200 lbs'. weight of bran per hour, and the machine can be driven by from 6 so $7 \mathrm{~h} . \mathrm{p}$.
Cakes formed by this process weigh apon the average one ton per cubce meter. They are enten by horses in a dry state, whik for cther animals they are broken up. Provonged tents have demonstrated the finct that the cakes are quite as nutrinious as loose braa, and the advantage in the matter of storage and transportation will be evident to every one identified with the wade. Wm. de la Barre, the well known engineer of Minmeapolis, has a supply of sampiet, and will be gind to farnish them co partios raking say inmeres in stie matuer.

FIRING WITH SAWDUST.

ISi:k that one of your correspondents wants to know something dbour tinng whth s.modust. 1 will explan how 1 tired.a siow mill boiler. I thed and a an the engene for three years. The engme was tonat, cumbin of at :s stroke, and the boiler was $\mathbf{5 x} 18$ feet, with $\mathbf{3}$ f four-melh lues, engine ramming 100 revolatoms per minute. There were two band saws, edger, trmmer and other mathon ery. It first I had comsiderable trouble with the firmg, and tried everythang 1 conld thank of without success until Ihit upon the method whath 1 will now describe.
1 got from a mill near by two wheellharrow fuls ot hate maders, about the suze of a hens esg, and spreal them upon the grate, putmingost of them upon the sides, and in the corners, and just enough to cover the grates in the middle. I then put sawdust on about tive or sis mehes thick evenly. I then gave the niegt watchman instruc. tions how to arrange the furnace in the moming before starsing the fire. I tuld him to serope the cinders bat and forth until the fine stuff had all fallen through, and then to put in cinders enough to keep up the same amount. After that thad no more trouble in kecpmg up stearn, and most of the time I had to keep the bo:tom dours nearly closed, or the stean would be blowing off. This may seem strange to some before aying, but I found it to be the most economical was of fisinge is s.an. dust boiler. I forgot to say that tive minutes before dinner I would :' ' \boldsymbol{i}^{\prime} :tas turnace pretty well with sawdust, and shut all the doons of the furnace, and the dampet about one quarter, and open about tive minutes before startmg. 11. 13. in I'occo:

heat and precaution against fire.

TEeason is at hand, sars C. R. Tompkins, in the Hibdta, propretors of mills and manamartories who con sub heir own meterest and the counfort of their workimen to provide some plan for heating their establishments during the wimer. It is not only the combont of their workmen which the proprictors should consult, as an inducement to keep their shops and mills comfortably warm, bat the liability of machinery to be broken when running in cold weather when every part of it is tilled with frost. is another important item to be taken into consideration.
Unpleasant as it is for the workmen in a plamme mill to commence work in the morning with the thermometer perhaps ten degrees below zers, when they are obliged on petform their work with a heavy overcont on and with their hands encumbered wists a parr of thick, clumsy mitens, it is sull more unpleasant to the man and more unprofitable to the proprietor to be obliged to start up a machine covered with frost, with the liability of some of the bolts breaking and knives ilying off in coneequence, or the cogs in the gearing droppung out within an hour after starting. Under such conditions it is no wonder the men feel like anythn; else but workins, and proprietors complain that there is no protit in running in cold weather no matter how pressing then business may be at the tme. The rickety old store which is found in many mills stutied full of shasings, maty in a manner contribute to the comfor: of the men, but it is surla :a dangerons element on account of its liabilty to se: fire to the mill, that its presence should never be tolerated.
Few proprictors seem to be aware of the fact that the intense heat ;enerated by the fires under their boilers, and which if properly utilized would be sutir,ient to heat woo such bualdings, is nearly all wasted by being blown off mot the air through the exhaust pipe. Now with companatrely a small expense that heat may be utilued bic carrying $1:$ around the mill, either overhead or under the finor, enclosed in boxes so as to be entirely out of the way, yet utilized for the purpose of heating withous any danger from fire.
The freguent sires which occur at this season of the year should admomsh all mill owners of the nee essity of providing all the neressary precoutions and safeguards ag.unst diss destruative element. Whate stoves may be one fruiful cause of uire, there are other dangernus ele. ments found in every mill that should be guarded -onanst. The fine dust which collects upon everything, esper ially in the upperf.re of the buadung, is one that is liabie at any tane to become ignited whenever a favorable opporsunity may present itself. If the tine dust from dour which collects in a mour mill is suticient in cause an explosion aluost equal togun-powder, how much orare dangerous must the dust of a planing mill be when we consider that it is almost entirely coma, ..ed of tine partices of pith, whichas thrown ofif from pue lumber whic being planed, and is of itself a murh more combustible substance than thour would be under the same condetions. Therefore the yuansuly of dust found in al.
most every phen of the mills shand mever be p.onmed to accomulate, bue should be feepuenty swe pt down.

It is thee that the dust in a plameng mill or hom mull in
 lixhted hanp or a the of a.me homit, ore there ate other elcments to be found in every phaming mall, sash and door factory, and every other plowe where wowd-wom king mathmers is used, that only; need foworable comdanoms to set lie to the mill by spinataneaus a mibustuon. Thete is no doubt but this is a Imatful umire of many of the mysternous tines which occor in many of the mulls and fatomies of this kimd. . In the, fibrous substance, when saturated with oul an stease, is known tw be hable
 ditions, and yuantities of just such matter may be found aouand and atached to erens mathene in the form of tine dust well saturated with inf by the drpping's from the several boses
Ualens these anmalations are frefuently removed mud the machumes k-pt clean and free from them, a fire may oucur when it is least expected and at tumes perhaps when there has been no fire in the buldung fur several days. Such fiues are usuatly set down as incendian, but there is a strong probataility that the majorty of those my netimes fires, which are attributed to ineendiarism, are the result of spantancens combestion.

CHIMNEYS FOR BOILER PLANTS.

THE: s.a, foot hummes of the Clark Thread Com pam, .u Newark, N. I., wheh, of late has been ery wrely soticed, being probably the tallest boiler chamey in the world, calls to mind the fact that a large nu:aber of chimneys now in existence are of much larger height than the requirements actually call for. There seems to be a prevailing notion that the greater the height, the greater in direct proportoon, the draught prodatang power of a chmmey a most natural error perh.pps on :le part of the average power men, but, at the same tume, one whech has been responsible tor mach unnecessary outlay in chimn-y construrtion. As a mat ter of tact the dratight-prodacing capacities of chimnets lawing flues of the same size, are in proporton to the symare mots of their heights, so that if one was to have double the power of the other it would have to be four times as high. Attention has been more than once directed to the urcumstance that beauty of desung, from an archiectural point of wew, has had much to do with the unnecessarily great heaghs so frequently encount cred, a much favored rule being to make the height of the chimney cqual to about $=5$ times the diameter of the thue. A litile constderation will show that by rigidly adhering to thes ratio some rather pecular results will be reached. chmoneys for small plants turning out to be much. lower, and those far larger boiler phants becommg much higher than is necessary. The a.ea of cruss sec tion of the chimney thues in all cases should be made to depend upon the combined area of the boiler flues, and this, with a height of stack of 100 ft ., shown by extended experience to be at very satisfactory fugure, will furmsh ample draughe to burn any of the commonly used fuels. laplymy the $=5$ to one ratue to two plants of, say two and ten boilers, respectively, all of the same size, and proportioning the flue areas of the chimneys in the was we have just indicated, will afford a very striking illustration of the shartconings of the rule. One hundred and ifify feet represent what hats on good authority been gien as the mavimum beeight of chmaney necessary in any case for producing the requiste draught, always providng, however, that the flue area has been properly proportoned. Proprictors of steam plants boastung of chunneys which must exceed this tigure in hexght may indulge in some profitable retlections as to the mone needlessly spent in having such structures raised.

 put and woung in contact wish the tly wher. while lerpmens the
 ansence of amat to proumply stop the engine the yourg nuan muss bave !ken killed.
The amman refort of the Montrent flemang fio., shows the volume of hassams of the past vear to have teen the smatlect for buny yens. The lieak in ter Comunall canal at the ronclusion
 The lravat of dircton reevecetal are Messrs. Indrew Allan president Hukh Mcl.ennan. T A. Crane, A. I, lintersun anel Meximatr Med ougall, managime directors.
Hhas leen sumbed thas Mir Dath Moure, of Nerepawa, will

 amphon frma 2 avituon for turnis year. he will garanion to the armers a return of one latrel of tlour for roch sor l.usheds of mill

SSETVMe

 on remuval, if wratigris or green nast appeat on the celpur, a :acid is in the out.
An mpernous means of repairmg a brok in a stean pipe con. shite in bunding the treat with wool sming, hiad close tojerther, and well servel around with sout corlo or rope, cmanase epmation teing prevented by more rupe crossung the brak chagoonaly and

 than before: as the "woot swells and the corth shorten.
A new process for the prodaction of steel from low prade or sombern ores, is ond to have been dissovered thy john W. Mrook water, of Spungeteld, Ohio. It worked in a pear shaypect, pet. torned. vibrumg converter, wing a sety gente blast The fura.ke is mat to ine nothug mote thatl an ordmatry fonmory cupola,

The low thint athd whomons of comserter ate siad to be the nama promts, and the steel moducedin chatued to to as powat as thas prendiced from hagh hast tescomer pas.
 son, the non ts punted with white dand and lunp-bhech. When
 trost gine is put into coll witer unal it tecomes soft, then dissoire In whegar at a morerate heat athd add of white burpentine on
 and apply the warm cement wath a thush; the leather is then stretched and purchly pressed to the place.
lixjernments have recrenty inern made on Irussian railuays with ate troxes thetel whth tearings of vegetable garchanemt in place of tums. I be jatechame is strongly compressed lefore being used,
 emulsmon of water and oil. any of the muneral oils, is used as lubric.ant. 'The jatchment soon lecomes impreguated with oll, and is athe to go a long fine whom a reneral of luthication. It is be sween the body of the jourana and the thin edpe of the pachment segments that friction t.hkes place.
 an alterage of five feet of water falls annually over the whote easth. Supjosing that condensation takes place at an averige heyph of 3,000 fect. the force of evaporation to supply such ramf.all must cqual the liftumg of $322,000,000,000$ horse-power constasthy carted Of the great energy a very sunall pout is mansfered to the watess that nun lack through nowers to the sea, and it still smalifr triction is utilized by man: the remander is dissipated in sjace.
R. N. I. Rechardon, of liztiburgh. has mented a new proeess fors cxitheng (the or any metallic surdace with tead. The tollowing desctuption wancen of the pr ciess The inare lead an pisc form is fist put inte the melune for and hroughe so a standing semperatare of hagh degrex. The vations solations and mixtares are then heated, lected and the machinery stanterl. The sheres, after
 the surfice of tron in the sim plating: procesc Afterwards the shects are anmerned in pare water to preverit ovadition by contact uth the atmusphere, until thes are phiced in the solution vat cantammag vatom chemicals in dhate hy drochlone acte. The sheets ase then pasend through the molien kead, and, atter treing pansed through the first time cone out with a clean, bright. even and pure conting of lead.
At a recent meeturg of the Cinadian Sxeiety of Civil Engineers at Merill Collepics J. N. Gislmurne. IF, K. S. C. of Oltama, reaid on uberesting paper upon the ${ }^{-1}$ Inception of bilectrial seience and the livolation of Ielegraphy." Ite concluded las paper thy statugg that. ta his opmison, the most successlut and protitable teic praph comganies of the future will alandon the present systemi of a muluphcity of wires for the trimsmestion of intelligence, and at business centres and muxortam statuons will empluy female liator for pertoramg and comparing with the ongunal namascript dis putches to in f forwarded by automatic tramsmitters, an additional wire or two lang; operated by Morse sonnders for the correction. when needert, of iutomatucaily trunsmutied messiger, and also for the feymarements of meamediate local business. Such additionil
 plex instn:mien:
 - The object is to prevent the formation of incrustation and re muve is if alfealy fommed, and also to prevent pitting of internal sudfices. The terminal of an clectice penetator corresponding with the zunc phate of a mattery is electrically connested in any convenient way and ether directly or indirectly mith the shell if the boilet, white the terminal corresponding will the earion of sron of the hattery is connectet to the conductor, wheh latict is passed throught the sheil into the water spance, that is electricall insulated from the shell. This meethod will, therefore, make the internal sutfuca negaluse and the insulated conductor mositive. It is stated to ive a natter of fact. hat if the current fows in a direc tion the reverse of the one aloove descrilect local action on of corsosion of the inner surfaces of the shell will be increased, but it the ciectricity be property appled sorfosion does not take place The inventor sags. " as it is perecrally lelieved that any method of appiying an electincal current to a loiler will not prevent incrusta. tion, I nosh it to be distinctly uniferstood that experrence with m. invention pwoves that incrustation already formed wall le removed hy it and its readherenoce effectually prevented."

THE BAG AND HESSIAN FACTORY OF CANADA.

BAGS

of every quality and size.

ticest Pircetory in the IDemisnions.
ㄴNN.. THIRTY THOUSAND BACS The CANADA JUTE COMPANY, Limited, TOROMTO ACEMTS: MESSRS. STARK RROTMERS,

MACHMERY POR MAMUPICTURIMG HESSIAN CLOTH.
Every guenlify and every wirth conl be nupplied nume dlay ak ordererl.

BAG PRINTIMG IN COLOURS

We are now printing 5,000 to 10,000 Bags daily, and are turning out the BEST WORK in the country, at the IOWEST PRICES.

Write for samides of our
BAG PRINTING IN COLOURS.

62 Front Street East, TORON IO.
15, 17, 19 and 21 St. Martin St. - MONTREAL.

WRITE FOR SAMPLES AND PRICES.

LAIDLAW's BARLEY ClLEANER

 Shelbume, Ont., Jan. 23, seee. Mrasko. A. l.alulaw \& Co., Elarhdale. Gentlenien. - Yours of the zist received and noted. We have
round

 alout ore buthed in seventre five. thel.
harley three to five cents ber buthel. Yours truly: E. Bexwice \& Co. Mrsoki. A. I.aiblaw \& Cu., Toronto.
 Toronto. June 3rd, 1829.
 Jours very trulvis IT WILL PAY MILLERS, OWMERS OF ELEVATOMB, ETC., TO EXAMME THE MERITS OF THIS MACHINE. Simd for circular and listimonials,
A. LAIDLAW \& EO., - PARKDALE, ONT.

F. ㅍ. DIXON \& CO.

- PURE

LEATHER

OAK-TANNED

Guaranteed in every respect equal to the best American or English Belting.
Scund for Inteat Discoments anel ouer Premphletet ons Helting.
OFFICE AND FACTORY:
70 KING STREET EAST, - TORONTO.

Tmachine
Kinves Or every dexcription.
taniong.
zowld
anarmer SEND rok PRICE: LIST.

Victoria Wire Mills. ESTABLISHED /S59.

Perforated Sheet Metals, Steel and Iron Wire Cloth, mie clumes for mul wimows, tre. $-)(-$
B. Greening \& CO. hamilton, ont.
sond for catalogwe, menofonitue your reogwe, mewr
18. J. Mcal USLAN,

MILIWH1GMT,
\qquad
 crain elevatorx careflily; prezwreci.

Correapondence selicited.

general conditions which secure ECONOMY IN STEAM BOILERS.

WCondense from Mir. Barrus' report of 150 boiler tests the following: It appears that in feneral the highest results are produced when the temperature of the escapmug gases is the least. A good examination of this question may be made by selectung those tests in which the temperature exceeds the average, that is, 375 degrees, and comparing with those in which the temperature is tess than 375 degrees, taking first those boilers whelh are of the horzontal tubuhar type, anthracte coal bemg used. The average flue temperatures in the tables gwen are 444 degrees and $3+3$ degrees, respectively, and the difference is 101 degrees. The average evaporations are 10.40 pounds and 11,10 pounds, respectwely. From these tests it appears, therefore, that a reduction of 101 degrees in the temperature of the waste sases secured an merease in the evaporation of 0.7 per cent. This result corresponds quite closely to the effect of lowermg the temperature of the gases by means of a the heater, where a reduction of 107 degrees was attended by an increase of 7 per cent. In the exaporatoon per pound of coal. A table is given in which tests Cumberland coal was used. Here the average the temperature was $i 15$ degrees. Four of the bollers showed temperatures exceeding 415 degrees. The avera;e of these was 450 degrecs and the average evaporation $11 . j+$ pounds. The remaming boilers had an average thue temperature of 383 degrees, and these gave an average craporaton of 13.75 pounds. With 67 degrees less temperature of the escaping gases the evaporation was higher by + per cent. The difference leere is less marked than in the anthracte tests, both in range of temperature and in economy, but it is in the same direction ; that is, the higher evaporation is produced where the waste at the flue is the least.
The wasteful effect of a high flue temperature is exhibted by other boilers than those of the borizontal tubular class. This source of waste was shown to be the maun cause of the low economy produced in those vertical bollers which were defictent in heating surface. Examples of the same effect are numerous in the case of nearly every type ot boiler. Two cast iron, sectional boilers tested, had flue temperatures of 375 degrees and 462 degrees respectuvely, and evaporated at the low rate of 9.79 pounds and 9.61 pounds of water. Six watertube boilers were also tested, and were likewise wasteful on account of the high temperature of the escaping gases. The temperatures in these boilers ranged from 452 degrees and 540 degrees, and the evaporations between 9.68 pounds and 10.36 pounds for anthracite coal and between 10.99 pounds and 10.98 pounds for bitumnous coal, all of which are low for the respective grades of coal. This is not to be found in the boiler uself but in the setting. Thus, a test of a 13abcock \& Wilco: boiler is given in which the evaporation was 13.01 pounds, the temperature of the escaping gases being $\ddagger 02$ degrees. Other cases are given, all tending in the same direction, and with this accumulation of examples, no other conclusion can be drawn than that one of the vital principles underlying the attainment of economy in the generation of steam, is a low temperature of the escaping gases. What the temperature should be to secure the the best results, is to some extent uncertan. In the examples of horizontal tubular boilers cited, the best average results where anthracite coal is used are secured with an average remperature of 343 degrees, and when Cumberland coal is used where the average is 383 degrees. Ht will not be far out of the way if we con ider 375 degrees as the proper limut for anthracite coal, and 415 diegrees for cumberland coal. These are named for the general case. Individual boilers mas; in rare instances, gue excelient economy where, thejwaste iemperature exceeds these figures, and there are two or three examples furnashed in the paper where shis is true. There are so many instances referred to where a boiler secures a low grade of economy with more than 375 degrees in the flue where anthracite coal is used, and more than 115 degrees when Cumberland coal is used, not only among boilers of the horzontal tubular type, but among those of all other types, that it seems reasonable to lay down these temperatures for a limit.

Let us consider now what other conditions are necessary to securc economy: It cannot be denied that the relation between the heatung surface and grate suriace is important, and the question arises as to what that relation should be to obtain the highest efficiency. A pro. per setliemient of this question cannot be made on the basis of the data given by the tests, as an insufficient number of examples is furnished for a full examination. Much may be learned, however, from the few cases given. Keeping to the common horiontial boiler, we will select from the anthracite coal tests, the boilers in which the ratio is below so to s, taking, however, only those cases
where the temperature of the gases is low and the rate of combustuon is above mue pounds per square foot of grate per hour.
lhis shows that with the ratio of heatiag to grate su:face 36.4 to 1 the water exaporated per pound of combustible is 1.16 and with the ratio of heating to grate surface fo to the water evaporated is 11.05 pounds. There is a difference here of 18.6 in the ratio of heating to grate surface, and only a slight difference in the character of the results. Nothing seems to have been gained by increasing the surface above a ratio of 36.4 to 1 , although this increase amounts to one thard. There is in reality a loss. Carrying the mquiry further we will take the tests of the so-called double-deck boilers, of which four mstances are given. The average ratio is 6.3 to 1 and the average evaporation is 10.88 pounds. Here also a loss of even greater amount is produced, athough the surface is increased to the enormous extent of so per cent. These comparisons are made with different kinds of anthracite coals of large sizes, and some allowance must be made for the possible effect which a variation of quality of fuel may have on the results. The evidence given shows that a ratio of 36 to 1 provides a sullicient heating surface to secure the full effictency of amblacacite coal where the rate of combustion is not more than $1=$ pounds per square toot of grate per hour. Bitummous coal evidently needs a larger ratio in two cases goven an increase in the ratio from 36.5 to +2.5 secured a small mprovement in the exaporatoon per pound of coal, and a high temperature of the escapm: gases indicates that a still furiber increase would be benetictial. Among the high results produced on common horizontal tubular boilers using bituminous coal, the hughest occurs in a boiler where the ratio is $\mathbf{5 3}$ to 1 . This boller gave an evaporation of 12.47 pounds. A double deck boiler using bituminous coal furmishes another example of high performance, an evaporation of 12.42 pounds having been obtained with a ratio of 65 to s . The examples gaven, indicate that a much larger amount of heating surface is required for obtaning the full efficiency of bituminous coal than for boilers using anthracite coal. There is suaticient reason for this requircment in the fact that bituminous coal is of a gaseous nature, and the heat generated in its combustion is spread through a larger space. The temperature of the escaping gases in the same boiler is invariably higher when bituminous coal is used, than when anthracite coal is used, and this points to the same characteristic. In practice, the deposit of soot on the surfaces when bituminous coal is used interferes with the full efficiency of the surface, and an increased area is demanded as an offist to the loss which this deposit occasions.
It would seem, then, that if a ratio of 36 to 1 is suftieient for anthracite coal, from is to $\mathbf{j o}$ should be provided when bituminous coal is burned, especially in cases like those referred to, when the rate of combusuon is above to or 12 pounds per square font of grate per hour.
The tests furnish some light upon the question as to the best manner of arranging the heating surface. This subject has special bearing upon the horizontal tubular lype of boilers. In studying these bolters the question ccmes, what is the most efficient size of shell, and what number, length and diameter of tubes gives the highest result.

The size of shell does not appear to have much effect on the cconomy. The best result obtained with anthracite coal viz, 11.53 pounds of water from and at 212 degrees per pound of combustible, is a case where the diameter of the shell is 78 inches, and this result is all that can be expected or desired from any size of boiler.
The number of tubes control the rano beiween the area of grate surface and area of tuibe opening. Boilers having: a very large number of tubes consequently have a small ratio of grate to tuice opening. In two cases given the ratio is 5.2 to 1 , and these boilers also have the very large area of heating surface represented by ratios of 65 and to to i. Notwithstanding the ample provision of surface and other favorable conditions, ite evaporation with anthracite coal is no higher than boilers give which have surface of much less extent, though of such character that the tube opening bears a smaller proportion to the grate surface. The conclusion which is well wartanted by this fact is, that a certain minimum amount of tube opening is required for efficient work. This conclusion is borne out by the results of a iest of a boiter using anthracite coal, where the products make two circuits through the shell and the ratio of grate surface to tube opening is 11.60 to i. The ratto of heating to grate surface in this boiler is 42 to 1 , and the average evaporation is 18.6 pounds. The best results obtained with anthracite coal in the common horizontal t:ibular boiler are in cases where the ratio is larger than

9 to 1. From these facts the conclusion is drawn that the highest elficiency with anthracite coal is obtained when the tube opening is from one-ninth to one-tenthod the grate surface.
When bitummous coal is burned the requirements ap pear to be different. The eftect of a large tube opening does not seem to make the extra tubes so inefficien when bituminous coal is used. The highest result on any boilers of the horizontal tubular class, fired with bit uminous coal, is obtained when the tube opening is largest. In this boiler, which gives an evaporation of 12.47 pounds, the ratio of grate surface to tube opening is 5.4 to 1. Another high result is given in which the ratio was only 4.1 to 1 and the evaporation 12.01 pounds. These instances are sufficient to exhibit the need of a larger area of tube opening when bituminous coal is used than when anthracite is used, and this might be expected in view of the gastous nature of the products of combustion. Without going to extremes, the ratio evidently most to be desired when bituminous coal is used is that which gives a tube opening having an area of from une-sixth to one-seventh of the grate surface.
As to the effect which size of tubes has upon eronomy, there is little direct information. Only one set of tess bears on the question, those made on two boilers, in one of which 1403 -inch tubes are used, and in the other 100 31 .-inch. The boiler with the smaller tubes gave the best result, but the improved performance was evidently due to the increased heating surface, of which there was an addition of one-sixth, rather than to any difference in the diameter of the tubes. It may be inferred from the fact that bituminous coal requires a larger collectire area of tubes for best results than anthracite coal, that it may also require a larger individual area, and therefore larger diameter of tubes. This inference is not borne out by a comparison of the tests on two boiles, one of which had 3 -inch tubes and one $3 \leqslant$-inch, though the two boilers are of somewhat different type. A practical objection to the use of too small subes must be kept in mind in those cases where a very smoky grade of bituminous coal is used, and frequent opportumty canot be had to clean the tubes, so as to prevent a serious accumulation of soot.
The proper arrangement of tubes in the matter d length is settled when the relations of heating surface to grate and of grate to tube area are once fixed upon.

The best proportions of vertical tubular boilers are not estabished. There does not appear any reason why the relations of heating surface to grate and of grate tube area, found desirable in the horizontal boike, should not apply with equal force to the vertical boiker.
This discussion of the general conditoons which secare economy applies to medium rate of combustion of say 10 $t 012$ pounds per square foot of grate per hour, such as will secure the rated capacity of the boiler when the pow. er is based on is squarefeet of water heating surface per horse power.-Boston Journal of Commerce.
 ton. Ont.
Incorporation is wanted by the Manufacturers' Bank, with head. quarters in Totonto.
Messrs. Day Bros., Sounders, of St. Johns, 1. ©., are buildian an addition to their factory.
Free power and other inducements are offered to he person wbe will establish a foundry at Shornbury, Ont.
A lubrealing oil factory is so be statied at Siellanion, N.S. Al the stock required has been subscribed for.
Steam and other improvements are being added to Mr. Parkiais Galt File Works, with the view of increasing their capecity.
I'ending the erection of their new shops, the Osborse Kily lingine Works, in that city.
The town of Trenton has passed a by-law pledzing itself to pay \$28,000 lowards the cost of the fine water privilege coastructe recently by Messs. Gilmour at Co.

We are pleased to kearn from our Western exchanges that Me. Kinechier, of the Machine Sicrew Works. St. Thomas, Ont, $\%$ likely to recorce from his recent mental affiction.
A by-law has been cartied in Owen Sound, grantiag $\$ 15.000$ \& a bonus to the bolson Iron Works Company for purchasing, er larging and carrying on a dry dock in the Sound, and other wats to be widertaken by them.
A new electric company with a capital stock of $\$ 750,000 \mathrm{in}$ 1,90 shares of $\$ 300$ cach, is lecing formed at St. John, N. A. for wh manufacture of electric lighting plant, and the produciag and do tributing of einctric currenis for lighting. The directore arc for miah Calkin, Geo. F. Calkin, Geo, F. Baird, J. H. Grake. F. I Pearson, and of Havi

James Jones \& Son, MILL BUILDERS

Mawercuness of MILLIHG MACHINERY

- Special Machinery for the Short System of Milling

AGENTS FGR MILLERS' SUPPLIES.

TT has been demonstrated that the Short System of Roller ivilling, when properly carried out, will produce 1 better results than can be produced by any other system. It requires less machinery than any other, and therefore costs less money. Two breaks, with proper corrugations and proper differential motion, will produce better results than six breaks on the gradual reduction system.

After secteral !/eurs experimenting on the best mill for custom milling, we have lately brought out

OUR MODEL CUSTOM ROLLER MILL,

Which is the Simplest, Cheapest and Best Custom Mill ever offered. We guarantec to pronluce as goonl renults as cun be proluceal from the wheut used. Partice alesiriny to change from the lony system to the short system, or change from stoncs to rolls, or buth mea mills, will fhal it to their interest to consult us before placing their omler. For further pervituchers, apply to

JAMES JONES \& SON, - THOROLD, ONT.

THE HERCULES Automatic Wheat Scourrer and Separator THEE ONYY MEETT Souver 4 FIREPROOF HERCULES \square мйїіт \square mivisumit tuz \qquad - THE MERRCULES MFG COMPANY, \div	

T플 J ．A．CONVERSE MANUFACTURING C0．

20 FRONT STREET EAST，
 W．©：huver，Man，mer．

8．10phowner fors
 BREMNER \＆HART＇S WHARF． 1． 1.1 ．．．．n．Mn．．．．．．
 merrick，Anderson \＆co． ．l．aかに。
－
Sample orders will al－ ways receive the greatest care．

$$
\text { R } \sqrt{4} 2^{3}
$$

Cordage，Red Cap Binder Twine，

 jute and cotton bacs，calcined and land plaster．BRANDS，ELECTROTYPES
NOVEL DESIGNS for
PRINTING
supplied gratis．

0UR Bags Works have only been in operation a few months，but nevertheless we are pleased to be able to state that our daily sales exceed those of any similar concern in the country．This is accounted for by the fact that our plant and facilities are vastly ahead of what are ordinarily in operation，and the goods turned off cannot help but be superior in workmanship，appearance，and general uniformity．The Finest Bag Printing Press on the American Continent is running in our works．

Full stock of our Manufactures at all branches．

A．W．MORRIS \＆BRO．，－MONTREAL，QUE．

GOIDI円 \＆M ${ }^{C}$ OUTI工OCI， GAIT，－ONTARIO．

BUILDING OR RE－BUILDING FLOUR MILLS，

On the full or combined roller system，we are prepared to furnish estimates or speciflcations，using a full line of our machines－－NoNE IMPORTED－－manufactured under Canadian Patents controlled by us．

THE＂CASE＂SHORT SYSTEM OF MILLING． INGIIS \＆HUTNTER，

Sole Licensed Manufacturers of the following list of FLOUR MILL MACHINERY：

The＂Case＂Celebrated Roller Mill，with Vibratory Feed． Ine＂Case＂Inter－Elevator Boli as applied to the Hexagon Reel ＂Aug Heine＂＇Silver C＇reek Centrifugal．
The＇Case＂Cornmeal System．
＂Aug Hiene＂Silver Creek Flour Bolt．
＂Morse＂Cyclone Dust Collector，for all purnoses．
"Aug Hiene" Silver Creek Flour Bolt.
"Morse" Cyclone Dust Collector, for all purnoses.

We caution millers and others to look out for infringements on the above class of machinery，as we are fully protected by broad patents on all these machines．
We are now prepared to give special attention to changing heXagon reels to the＂CASE＂inter－Elevating system reducing the num－ def of breaks，increasing the capacity，and dispensing with a large amount of machinery，thereby producing much better results in every respect， with LESS POWER．

MILL CURMISHINGS OF ALL DESCRIPTIONS，
＂AVERY＂STEEL ELEVATOR BUGKETS， Wheat cleaners and separators．

Sole Agents for the RICHMOND MFG．CO．，of Lockport，N．Y．，for their
Grain Cleaners and Elevator Separators，
 Comeltusin！anul Mi！／h．Pressure．
Estimates given for building new and also for changing over old mills to the most approved and advanced method now known． Correspondence solicited．

ROLLS GROUND AND CORRUGATED．

．！．INGLIS \＆HUNTER，．a．

 GNGINHERE，HTC．
No． 6 Strachan Avenue，TORONTO．

Bloomfleld，Nov．20， 1888. Messts．RUNCIMAN BROS．

Gentlemen，－In reply to your enquiry as to how I like the Huriord Bolts which you put in the new mill you built for me．I have much pleasure in letting you know that they are giving perfect satisfaction，and are without doubt the best bolts I have ever seen．
The Cochrane Roll is also do－ ing her work just as you guar－ anteed to me that it would， and with the Hurford Bolts and Cochrane Rolls combined， 1 think you have given me one of the best 75 bbl ．mills in Canada，and I will also take much pleasure in showing any parties who may call on us， just what we are doing．

Yours truly，
想．B．BURR．

1 can fully endorse the above．

H．S．BULL． Head shiller．

The only Round Reel with inside brush， and no Round Reel will do satis－ factory work without it．

＊RUNCIMAN BROS．长
Mill Builders and Mill Furnishers
－sole manufacturers for the dominion of canada of the－
FUREIOID BOII
and Agn：TS Fok the
COCHRANE－ROLLER－MILL． ofeces：COURT HOUSE BU！LLIMG，HAMILTOM．

COME TO THE FRONT
In Canada，as it has always done in the United States：

WE are prepared to guarantee the Hur－ ford Flour Bolt the best Bolt in the market，and we are also prepared to put the sime in compe－ tition with any other Bolt，and guarantee re－ sults in every case．

LONDON MACHINE TOOL CO．， LONDON， ONTA1RIO，

maxumetureks or
Machinist－：－and－：－Brass－：－Finishers＇－：－Tools．
L．A．MORRISON，with A．R．WILLIAMS，General Agents，TORONTO，ONT．

129 Bay St．
TORONTO
$=\mid$ All Sizes Kept in Stock，and Orders Filled Promptly． $\mid=$ ． manam
Cotton and Rubber Belting，
lace leather，belt hooks and mill supples．

Ono you wan＂Catalogue Printed Or do you kuow any uno who doee，ir mo refer to $\equiv B_{i n}$ gham $^{2} \cdot \underline{G} \cdot W_{\text {ebber }}=$

Beaudry＇s Upright Cushioned POWER ．．．HAMMER

Simple，Practical，Low－priced，Entirely New Design． sEsid for PRIC：－ MIITHR BROB．\＆MTTOXITLL （Sule Makirre jor Cranadn）
y Can be seen at Pcrmanent Exhibition，Toronto．

IMAPORTANT TO BTEAME USERES．
TUE PREVENTIUN OF BOLLER EXPLOEIONS 3

AND OTher acchbents to steam bombers．
When were your Boulers last inspected？Are they in safe working order？ Are they giving the greatest power at the least cost？
The Boller Inspection \＆Insurance Company of Canada Irevel Oftcre，

TORONTO．

MI工工思RE！

HAVE YOU SEEN THAT FLOUR BARREL？

NO HOOPS TO FALL OFF！NO STAVES TO DROP OUT！ NO NAILING TO DO！heads instantly put in ！
Finest and strontifest barrel for shipping purposes ever motle．
－BUITTEX
BRANT MANUFACTURING CO． BRANTFORD，\quad Write for information and price．

ONTARIO．

W．Stallschmidt \＆Co． Office，§ School，

Church and Lodge

FURNITURE

Preston，－Ontario．
sem for catalogue．
－－
GEO．F．BOSTHICK， Represtreative． 24 Front Street West，－Toronto－

TORONTO BAG WORKS

mmmmmmen JUTE anv COTTON BAGS Manufactured in all sizes and qualities

NEW HACTORY ON BAY STREET now in full operction
PRINTIMG JUTE AND COTTON BACS A SPECIALTY．
ORIGINAL DESIGNS for Brands prepared FREE OF COST．
Send for Price List and Pamphlet，giving full information，
DICK，RIDOUT \＆CO．，proprictro，
11 \＆ 13 FRONT STREET EAST，

A REVOLUTION IN MILLINGI

The "Cochrane" One Beit Drive

Contheous Train of Rolls

18

AN UNPARALELLED SUCGESS!

Less Power, with

Increased Output,

Less Attention,

 More Middlings.
IIO SLIPPING BELTS •• STOCK IS MORE GRANULAR • LESS EXPENSIVE TO KEEP UP

$\overline{\#}$ READ
 peterborotigh mills. roller process.

vamancer en flller, Ese., President COCHRANE-MANUFACTURING CO. Hamilton, Ont.

Melurum, Drevilison \& Co., Merchant Millers.

PETERBOROUGH, Sept. 20th, ISSS.

Dear Sir, - In reply to youn asking a report of how we were satisfied with the Cuchrane Rolle placed in our mill by your firm, we would say that, after fifteen months trial, running night and day, we feel that we cannot spak too highly of them. either for light driving or in ther operating on the gmin in such a way as to get the very best results, financially or otherwise.

As you are aware, we have same roll surface and number of rolls as our former belted mill. Sising in power in Cochrane Nill, fully ONE-THIRD, or an INCREASE IN OUTYC', using same powcr, of FROM FORTY YO FIFTY BARRELS PER DAY. This has been clearly substantiated. Its advantage does net stop lete, but through the unifornity in sjeced of both grirding rolls and feed rolls, together with the fact that there are no belts or anything else to put the rolls out of tmin, the WHOLE STOCK IS MORE GRANL:AR and a much I.ARGER PERCENTAGE OF "MiDDS" is the result, which maans a LiARGER PERCENIIAGE OF FIRST PATENT FLOLR. Any practical miller cannot help but be satisfied of this by examining into the merits of the two mills.
It is a $M 11 \mathrm{CH}$ LESS ENHENSIV'E mill to keep up, from the fact that there are neither belts nor gears to keep up and repair, except the main driving belt andia pair of gears at the head end.

We ate satisfied the mill HAS ADDED LaARGEILY TO OUR JROFITS since puting it in-which is the best recon. mendation ne can offer-and consider that Mr. W. F. Cochrane deserves the thanks of the milling public for giving a new idea of such practical value to millers. Hoping you may be as successfill as you deserve,

We are, yours truly. MEL.DRUM, DAVIDSON \& CO.

READ what one of the most successful millers of Western Ontario repeats:

The W. F. Cochrane roller mill supply co. [limited].
INGERSOLL, Ont., 3oth Sept., 1888.

DUNDAS ONF.

bor Sins. -Yours to hand and noted. You ast what 1 think of noy W. F. Cochma Mill. I bag to say 1 know it is a grand success as to power, and also to unifornity of grind, fully all you io it. My millers think they have a mill alout fify years ahead of the hest. I cannot sec how it could be any better. You can invite any one to cone here and see a seven inch bele driving fourvin of 9×24 inch Rolls, and as loose as a belt cin le and stay on the pulleys. I ant satisfied I could drive it with:a four-inch belt and make two hundred barrels of tour in twenty-four hours. We "I great pleasure in showing any one the mill that would ' ke to see it at any time. Yours respeoffully,

WM. PARTLO.
Their verdict is supported by that of $\bar{\nabla}$. Denne, Newmarket, as it will be by all Millers who keep up with the times and order a Irain of Cochrane Rolls from the sole licensecs and manufacturers,

THE GUTTA PERCHA \& RUBBER MFG. CO

Omce and Warehouse:

OF TORONTO.
I21 TO 155 WEST Facteres: LODCE AVE.,
ORIGIMAL MANUFACTURERS
Parkdale, Om
PATENT PRESSED AND STRETCHED DOUBLE STRIP
"MONARCH,"
"reD STRIP,"
"LION"
brands of

RUBBER BELTING.

"MALTESE RROSS"
"BANER FABRIG"
(Coftom Hubber Lined)
${ }^{*}$ AvAX"
BRANDS OF

FIRE HOSE

THE BEST IN THE WORID.
 THE GUTTA PERCHA \& RUBBER MFG. GO. OF TORONTO, - 43 YONGE ST., TORONTO zo THE ONI, REMBER FACTORY IN ONTALIO.

NORTHEY \& CO., - TORONTO, ONT.
Office and Works : Cor. Front and Parliament Sts.

