The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (ie. autre que bleue ow noire)Coloured plates and/or illustrations/
Blanches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée pent causer de l'ombre oud de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se put que certaines pages blanches ajoutées loss d'une restauration apparaissent dams le texte. mas, lorsque cell était possible, es pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il li a été possible de se procurer. Les détails de cet exemplaire quit ont peut-étre uniques du point de vue bibliographique, quip peuvent modifier une image reproduite, ou quip peuvent exiger une modification dane la méthode normale de filmage sons indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées our piquées

Pages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continueIncludes indexes)!
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraisonMasthead/
Générique (périodiques) de la livraison

Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au aux de reduction indiqué ci-dessous.

OFPIOFB :

Victoria Chambers, 140 Wellington Street, oxurawa.

Vol. XII. OCTOBER, 1893 . No. 10.
THE OFFICIAL ORGAN
THE GOLD MINER'S ASSOCIATION OF NOVA SCOTM.
THE UNITED MINIMO SOCIETY OF NOVA SCOTIA.
THE ASBESTOS CLUB, QUEBEC.
THE GENERL MININO SSOCIATION OF QUEELC
THIE following Resolutions of Council indicate layonci a peradventure the status of THE KEV BEW as the exponem of the Camadian Dineral Incustries:-

The Gold Miners' Association of Nova Scoti:.
"At the annual meeting of the Gold Miners Aweininon of Duva Scotia, held at Halifar on 6 th llanth, is89, The Ciavibun Mivise

G. J. Paktisitern, Sturctay.

The Mining Socicty of Nova Scotia.
"Moved l,y Mr. K. G. lechie, eeconded b) Mr. C. A. 1) monh, That the thath or the Society be tendered to Mr. B. T. A. Hell fors

 II. S. Prouse, Prosidint,

The Asbestos Club, (Quebee.)
"Reohed That Tus Cavapas MinNo, 及esizu 以by authoriby of the Dlembers and Council, herely appointeit the officiat organ of the Astectos Cfuh:" (Signed), 1). A. Browns, Jocaitent. - A. M. Enans, Sculday.

The General Mining Association of the Province of Quebec.
At a mecting of Council beld at Montrent on tridas, Eth Mta, 289x, is was mesed by Coptain sdam, seconded tys lis. k. it Hopper, and resolicel: That The Canaman Minisi Re:ien be the official organ of the susciation. (Signel), is, T. A. HeLL, Sitriaros.

The late Mr. W. H. Irwin.

It is our painful duty to record this month the death of Mr. W. H. Irwin, which occurred at inis residence in Montreal, on Sunday, October ist. The deceased genteman was a parmer in the well-known firm of Irwin, Hopper it Co.,dealers in asbestos, and at the time of his death was a director of the Anglo-Canadian Asbestos Co. (Limited), the Montreal and Kootemay Mining Company (Limited), and the English portland Cement Company (Limited). To the mining men of the Province of Quebec, he will be long remembered for the prominent position he took in all that affected the welfare of the industry, and particularly for the energy and zeal he displayed in promoting the abolition of Mr. Mercier's ounoxious mining law, the tax on powder magazines, and other legishative measures. He was one of the first to advocate and further the formation of the General Mining Association of Quebec, and by his untimely death the members of that body mourn the loss of a wise counsellor and firm friend. He took an active part in the proceedings of the International Mining Convention at Montreal in February last, being foremost in promoting and carrying out th: arrangements for that meeting and
in entertaining the visitors. Indeed, we are informed that his death is directi, traceable to this event, for a cold contracted on the toboggan slides with a party of guests developed into an attack of pleurisy from which he never recovered.

The deceased gentleman, who was only 38 years of age, married about twelve years ago a daughter of the late MIr. Johnson, Assistant Commissioner of Crown lands for the Province of Ontario, by whom, with one daughter, he is survived. The Revinw joins with every member of the General Mining Association of the Province of Quebec, and the mining men of the country, in tendering to Mrs. Irwin an expression of suncere sympathy in her sore bereavement. -

The late Mr. W. Hall Itwin.

Bimetallism - Rothwell's International Monetary Clearing House a Chimera.

The fundamental condtuon underlying any attempt to create a double standard of value, is the possibility of maintaming an exactly equal value for given quantities of two separate metals, that is, that an ounce of gold shall always be equivalent to a certain number of ounces of silver in the denominations by which money is known; in such a way that whoever has a pajment to make or a debt to receive, it shall be a matter of absolute indifference whr ther he gives and receives this in gold or silver (or in paper certificates of either, or paper promises to pay either).
It need not be stated that the actual unit of value in every country is a certan definte weight of metal. It is important that this should be clearly understood, and that thas las come to be so through the varying influences operating for many centuries in the region of commerce and banking; for the all dominating reason that while the value of anytring is a fluctuating and uncertain quantity frected by many infuences constantly working in millions of minds and finally resulting in what is called "supply and
demand," the zeight of any commodity that can be handled is a fixed and determmate thang. Not all the influences in the world put together can make an ounce of silver more than an ounce, or a pound of copper more than a pound. There are fixed standards of weight in every country, by whatever names these weights may be known. These are capable of being made so definite as to be absolutely unalterable. Similarly with anything that is estimated by its bulk, any commodities that can be mensured are susceptible of definition that is absolutely unalterable. An inch, a foot, a yard, are certain properties of matter which are determined by unvarying and invariable standards, and no conceivable circumstances cut, make any change in them. No law of supply and demand has the slightest effect upon the length of a piece of cloth, or the weight of a bar of iron, or of an ingot of gold or silver. When, therefore, contracts are made to buy or sell so many tons of iron or so many yards of cluth, the quantity can be exactly estimated inasmuch as their denomimations must conform to fixed standards in possession of the government of the country. Weight on the one hand, length, breadth or thickness on the other are properties wherent in material bodies, and nothing can alter them.
Now, these weights and measures, so far as the denominations are concerned, are purely arbitrary as between one country and another; yet, within the same country they must perforce be precisely the same. Every country has somewhere a legal standard of length, and a legal standard of weight, and these are purely matters of legislation. The legislature of any country, if it so pleased, could make its standard of a foot to be siv inches longer, it could make an inch equivalent to two inches, it could make a yard as lons as a yard and a half. But then this standard would require to be universally adopted and understood throughout the country, or the whle of its exchanging or trading operations would be thrown into confuston, and it would require to make known its standard to other nations of the world, or its trade with them would be thrown into disorder. In practice, such things as attempting to alter measures or weights and make them longer or shorter, heavier or lighter, is unknown, for no possible object would be attained by it to anybody.
But when we enter upon the region of value, we are in a world of ideas of an altogether different kind for walue is not inierent in anything whatever. Value is in the mind of man-it is a purely mental conception-it.does not inhere or form part of the substance of the thing itself. A bar of iron can be measured, and its length, breadth and thekness are unalterable-it can be weighed, and its weight is unalterable. A bar of silver can be subjected to the same process, so can a nugget of gold. But the value of that bar of iron is a mental conception, and that mental conception is subject to a thousand changeable influences. It may be one thirg in one man's mind and another thing in another's-in fact, this changeable conception and the difference
between one man's mind and another man's mind is the foundation of all the bargaining and higgling that tahes place in trade. lhes mental conception, too, mas be different to-morrow from what it is to ding, and different as between different indisiduals. I manis mental conception may be different from that of gesterday in one dirction, while another's may be different in the opposice direction. The play of all these divers influenees is expressed by the varying figures that (like a thermometer) measure the heat or cold of the mashet, the desire or alsenence of desire of persoms to get or to part with any commodity, rangung from the utmost eagerness to get, to the utmost eagernens to get rud of midnay bee. which is a state of perfect indifference. All these influences are operaimg every day with regard to etery commodity that is used by mankinal, and operatuyg all over the world in tens of thousands of minds, giving rise to tens of thonsands of confluting thuughts, which finailly settle themselves in the marhets of the world, in certain figures whith are called prices, which prices are just the fimal result day by day of thousands of confluting memtal conceptions. It would in sain to attempt to arrest this process as carried on ding ly day all wier the world, that is to say, it would low atterl) futile to attempt to fin a permament cachangeable what for amy commudity in existence.

It is here we touch that wer) interestins wid problem of the limitution of legislative power.

The legislature of any given cuuntry has the power to regulate Weights and Measures, but if any Goternment were to nttompt to regulate the value of ams material commodis, that can ln weighed and measured, it would find itelf boff fled by the sarsing operatiuns of these mental conceptions in the minds of men, arising cout of chomging circustances of the world from d.y to day.

Let us illuntrate. The Consices of the Conted States could, undubltedly, pios an Act that a bushel should be larger or smafler than the standard bushel nuw in use, and when this was universall! howna, everything withon the Conited States would adeph itsulf to the change But if Congress were to fullow up this by decrecing that werywhere throighout its jurisdiction, a bushet of wheat should tee exchangeable for a dollar, what would ensue? (We must carry out our illustration and suppose this haw in effect for several gears in which changing circustancess and elements come into play) There might be a time, and we will suppose that that time coincides with the passing of the Act, when in the produce exchanges of the United States the higghy and bargammg between the man who wanted wheat, and the man whe wanted to part with 1 , had setted into a quotation of a dullar for a bushel. But the quantity of wheat in the world is constantly changing an enormous quantuty is consumed every day, and an enurmous quant:ly of new growh is taking place every dey. It is upon men's calculations and opinions of the operations of these two forces that the price in the open market is determined. Now, let us suppose, (and such things do hap.
pen, it is not mere fanciful suppositon) that the arse of growth whi h finally results in harvest, is of such a character that the world has a very large supply. These who hase the commodity in the Cimted states, fin. that the Govermment has entahbinted, that they com exchange every bushel of it for one dull. r. So far, so good. But no bargan can be conclualed without the mtervention of two persons. There must be a buyer, as well as a seller, and in the mud of the buyer there will arbe the cunception that thes yuantity of the what is nut worth a dollar, seeng that an equal quantuty com be purchased abroad for less than a dillur. The man who has the dullar will send it to another country, and the commodity will be brouglat in in the course of trade. But the man who has the wheat wants money in exchange for it-his want is mone, lis demand is for mune: ; in fact, he must have money in order to live. The exchange of his wheat is a matter of life and death to him. He will. therefure, under the operation of that necessity which hnows no law, undoubtedly, part with hus wheat for less than a dollar. On the other hand, if the prucess of growth results in a small crop, those who have wheat will find that persons who have money are very eager to get their wheat, and are ready to part with more than a dullar for a bashel of it. They would, in that c.isc, undoubtedl), refuse to sell for a dollar, and as the eagerness of the buyct mereased, it is cert.un the batriers of haw would be brohen down by the necessty of thangs. Unless, thereture, the law were to go so far as to mpuse peatalties for eiery burgan that did not confund to no requirements, and unless the C'inted states cloned its puris to the whole outside work, for commoditics whose b.lue was fixed by liw, th would be mpossable for a smgle day to mantuan a finty of value. But these suppositions are boih of them an absurdty. A:y .tholate momarch that made such decrees woald hie dethroned, and any legnhture would be turned out.

Exchangeable s.olue. tietw, c.annot be determoned by the aetion of atesonature without such further arintrary and de porthal conditions as would put an end to the ieschatare itself. In fact, it may beset dema is an anom that no action of aby soncrameti: has power to mantain the exchugenble witue of any exsting commodity. To thas aty be rephed that the govermment of Enghind has dune this very thang wi : h is declared to be impossible; namely, it has fixed the value of an ounce of gold at a certain sum expressed in sterling figures.

But it will be obvins, in considering this matter carefully, and lowkmy beneath the surface, that what the government of England has done in reality is sumply to determine the aveishlt of the coin whel represents the pound sterling. Thb, ce $:$ is called a sovereign, and consists of a definite weight of gold, very nearly a quarter of an ounce. The govirnment stamp on this piece of gold is a warrant to the holder that the metal is genuine and that it is of a certain weight, nearly a quarter of an vincc. The value of an ounce of gold is fixed by law at $£ 3: 17$ s. $101 / 2 d$.

It will be obvious that so far as the gold is concerned, any sale, so called, is simply the exchange of a lump of gold of a certain weight, for the coins that can be made out of it, and is no proper exchange at all. But with regard to the shillings and pence, it may be contended that here is a limat file exchange of one metal for another metal in such a way as to fix a relative price between the two. By the same law which ordains that an ounce of gold shall always be worth a certain sum of silver, it is ordained that twents pieces of silver of a certain definite weight and with certain govermment stamps, shall be equivalent to a pound sterling. Here, it may be contended, is a genuine and perfect example of two metals passing current side by side, whereof a defimte weight of one bears a definite relation of value to a definite weight of the other. This argument however plausible though it be will not stand the test of examination. For these silver cuins, whereof twenty are declared to be equivalent to a certain weight of gold, are onl) allowed by law to pass curre:t at that value in the shape of pocket money. As much silver as a man can conveniently carry in his pocket, viz., $£_{2}^{2}$ worth, and with which he can make the small purchases of life, is allowed to be current at a definte value as compared with gold. This so-called value is purely arbitrary and limited. There the leyislature has stopped, and has stopped oy force of circumstances. No man can gather up a quantity of these silver coins exceeding \mathscr{E}^{2} in value, and demand gold in exchange for them at the fixed ratio. Any man in Englard can buy one pound's worth of an article or pay a debt of $£ \mathrm{I}$, either with the gold suvereign or with twenty silver shillings; and he cango to the extent of $£=2$ in this direction, but no further. He could not discharge any debt deserving to be called a commercial debt with silver. The haw does not allow it. The Bank of England conid not give one hundred of these silver cuins in exchange for one of its promises to pay $£ 5$, and there are no smaller notes current in Englancl. The law allows none of the operations of commerce to be carried on on a stlver bans, still less the operations of banking. The silvor conn is nothingr lut a silater token, and the fluctuations is measured in gold in the value of the metal, harge as they are, do no harm whatever when the coins are restricted in their exchangeable value to such minute quantities. The same argument holds with regard to copper coins.

The silver shilling, then, being considered arbitrarily as a definite proportion of a single pound, which is a piece of gold, it becomes quite clear that the selling of an ounce of gold at the standard price fixed by law, is simply the exchange of a prece of gold of a certain weight, for three or four other pieces of an equal weight, with the government stamp affixed to them, that is, it is an exchange of gold for gold, which is not a commercial operation at all, and has nuthing whatever to do with value. A has a bar of gold weighing one hundred ounces, B has a number of sovereigns weighing one hundred ounces. It is certain that A would not exchange
his bar of gold for 13 's separate pieces unless B 's preces were of equal weight with his bar, or so nearly that the difference in weight would simply represent the cost of melting the bar and coining it into the peces requisite, and putting the government stamp on them. These operations are going on every day at the Rojal mint and at other mints of the world. A gold bar can be changed into an equivalent weight of coins, coms can be transmuted into an equivalent weight of goid bar, and in these operations there is no question of a greater or lesser prict, or increase or decrease of value, but simply of the cost of turning the weight of metal out of one form unto the other, or vice verstr; and the standard price is merely a way of expressing that the pound sterling shall always consist of a definite weight of gold, no more and no less, for which weight the holder of the piece of gold called a sovereign has the certificate of the govermment stamped upon it. If any person therefore says that the value of gold is this, that, or the other, as measured in gold, such language is meanngless. To say that a sovereign is worth a soverergn, or that $\mathscr{E} 5$ are worth $\mathscr{E} 5$, is mere nonsense. And it is equally meaningless to speak of the value of gold as changing, when measured by gold. We might as well say that the yard measure is longer when there is more cloth, or that a ton is heavier when there is more ron.

The unt of value, therefore, in England is this prece of gold weighing nearly a quarter of an ounce, and called a "pound." All monetary" transacuons on the British Islands are expressed In thes unt, or in divisions of it. The divisions are arbutrary, but it is to be noted that they are represented by most convenient coins. The pound sterling expressed by a sovereign is a convenment coin. One twentieth part of that, the shilling, if it were made of gold, would be an ex. cessively meonvenient coin, and utterly impos. sible of daily use; but a twentieth part of a sovereign expressed in silver is a very convenient formofmoney: Thecoppercoincalledthe "penny", is smply as large a piece of copper as any person can conveniently carry in his pocket. The twelfth part of a slaillingeapressed in silverwould be justas inconvenient as the twentieth part of a sovereign espressed in gold Copper, therefore, comes; in conveniently, and the penny is the unit of value ... ropper coins. But it must never be forgotten, as above shown, that silver and copper coins have no legal value beyend the amount that a man can conveniently carry in his pocket, that is, £. 2 sterling.

If then, it is proposed that silver coms shall be created as moner, so that a definite weight of these coins without limitation shall be equivalent to so many pounds, the reply that must be given is that to maintain such a value in gold for the silver coins, would be impossible in the nature of things; jnst as impossible so to fix the value by law of a bushel of wheat, a ton of iron, or a yard of cluth.

But it may be rejoined, if all the governments of the world representing commercial nations,
joined in an agreement that in their coinage and currencies a given weight of silver should always be equivalent to and exchangeable for a given weight of gold, would that not have the effect of causing it to be so? One single govermment, it may be contended, could not fix the price a which an ounce of silver shall be estimated in gold, or atie erersu, and obviously for the reason that if the market was open to all the world, all the world would pour in supplies of silver if the price was high, and would withhold it from any country where the price was low. But if all the world joined in this agreement, then, the object surely could be accomplished. This is a plausible argument. But there is a fallacy lurking underneath this phraseology of "all the world." What Is meant is the respective sroternments of all the world; not all the millions of individuals living under those governments.
Now the power of any government, it must be admitt'd, is limited. It cannut contrul all the artions of the millions of people that are subject to it, and especially in matters that affect the personal interests of indisiduals. It is certam that no goverument could compel all its citizens or subjects to buy and sell at prices fined by that government. Government interferes with certain departments of trade in the way of exrige, supervision and the exaction of customs duties. That interference is tolerated for the general good, and is in reality not burdensome. But for every govermment in the world to say to persons engaged in silver mining or silver trading, that their commodity shall count for so much and no more, in relation to the standard of value, would be an arbitrary interference that would neser be tolerated.

The idea of this matter being determined at the beginning and constantly regulated hereafter by an Intermational Clearing House or Committee, is a plausible endeavor to meet the diticulties that surround the question.* But the idea is chimerical. An International Clearing House, in the proper sense of the word Clearing House, is simply an absurdity. A Clearing House is a place where a definite number of persons, who have in the course of business, constant chams upon each other, can meet every day for the mutual adjustment and settement of those claims. Such a clearing house can only, in the mature of thinss, apply to the merchants, brokers or bablers, uf a single city, for even if it were attempted to have a clearing house for a single Province, or a single state, insurmountabe difficulties would arise in its working. What then would be the difficulties of a clearing house for the whole of Canada, or the whole of the United States?-Still more if such a clearmg house was proposed to embrace the whole world. It is obvious that there can be no more a singie cleaing housc for the whole world tha.. that there can be a single stock evehange for the whole world.

The iden, howevel, is not, strictly speaking, that of a clearing house at all, but of a com-
"This aniuc hat beca surfested thy aperual of the work on New Yort iiften by Mr M R Rothell, edtut of the
mittee of intelligent persons who shall settle this matter on a given basis to commence with, and determine that an ounce of gold is exchangeable for a certain number of ounces of silver, and then that this committee shall sit en permanence, and determine the same ratio from time to time, and deal with all the circumstances that might occur and disturb it. Now it would be perfectly easy to organize a committee for the purpose, provided men of sufficient ability had a sufficient inducement to set aside other engagements, and mect in some central place to consider the question. It would be easy for them to discuss, as has been discussed already, what this ratio should be. But experience has shown that the probability of their coming to an agreement would be extremely remote. Let us, however, suppose that an agreement was reached; and that it were promulgated throughout the world, that in the opinion of this International Committee, a proper ratio between gold and silver was so much, no more, and no less. That, however, would only be the initial step of a difficult business, for unless all the governments of the world, with no single exception, agreed to be bound by this decision, the mecting of this committe would be a mere academic mecting, and result in nothing but an academic copinion. But let us suppose that all the governments of the world, which is most improbable, agreed to be bound by the decision of this committee, and by all future arrangements and decisions of this committee, does any one suppose that in the multifarious operations of mining, commerce, banking, and exchange, going on das by day all over the world, that any government could pretend to enforce the decisions of such a committee, that they could by any possibility punish those . ho conducted their business without regard to its decisions, that they could fine or imprison the merchant or silver mine owner who differed in judgment in conducting his business. Such an iden is a transparent absurdity. On the first attempt to enforce by pains and penalties the decision of this committee, the whole mercantile world would be up in arms in every country, and demand from every govermment that the sittings of this committee and their arbitrary rulings should be put an end to.

We have looked carefully over the statements and proposals in this volume of Mr. Rothwell's and have come to the following conclusions about it :

First: There is in it an enormously exaggerated iden of the importance of the part played hy gold and silver in the monetary transactions of the world. In all mercantile and civilized countries the actual handling of the metals is confined almost exclum:aly to the settlement of mermational balances-not international transactions by any means-but smply international balances. These balances are the merest fraction of the total transactions. In the vast volume of the monctary transactions of the United States, gold plays such an insignuficant part, so far as actual handing is concerned, that it is
scarcely ever seen. Still more is this the case in Canad. The monetary transactions of the larger class of banks in Canada amount to between five hundred millions and a thousand millions in a jear. In all this enormous mass of transactions not $\$ 100,000$ of gold will be handled, and often much less. Gold plays a part in Camadn of less than one in ten thousand. 'The clearing house transactions of New lork have averaged about 32,000 millions of dotlars for several years back, all which was settled without the intervention of gold. The transactions of the l.ondon clearing house last year, reduced to dollars, amount to 35,000 millions, and though the gold socereign is part of the daily currency of Enghand, owing to the fact that no notes less than $\pm .5$ can be circulated, even this prodigious volume of tramsactions was setthed without the intervemion of gold. The gold metal is a support to currency and business transactions, and furnishes the basis on which they rest, and also the standard by which they are measured. There, practically, its function ceases, so far as the C'inted States and Canada are concemed. It is therefore an utter delasion to imagine that there exists any necessity to mcrease the stock on sold in consequence of some supposedaction looking to the future de-monetration of silver. For in practice solver has long been demonetied in the Unted states, and it is demonetized both in practice and theory in Great Prtain and in Camada.
Second: Mr. Kothwell has committed a very grave blumser in estimating the bearing of the use of silver in the combries of the world aceording to population. The population of the countries who carry oin business on a silter standard alone is stated to be 67 per cent of the whole population of the world. But how much business commerce, banking and currency have these hundreds of millions in China and India, as compared with the much smaller populations of European coun:rics. (ireat Britain alone, with one-tenth of the population of Chima, has certainly at least ten times as much in volume of monetary transactions. And it is not to be forgoten that the whole of the banking carried on in these countrics of vast population is by British hanking institutions: and that all their foreign commerce has to be carried on on a gold basis.

Mr. Rothwell's treatise bristles with misstatements, misapprehensions, and delusive ideas respecting advances in the zalue of gold (we might as well talk of the advance in weight of a ton), reductions in the rate of wages, the possible demoralization in consequence of an increased demand for gold, and other matters, in all of which his ideas are contrary to the exper.* ence of the past, and to the actual wevelopments of business and finance as we see them in the world today, and the idea of a double standard and of an international clearing hnuse, so-called, to maintain it not the least of these delusions.

It may be pointed out that in the table given oi the approximate stocks of money in the world,
some most astonishing blunders have been allowed to creep in. In the column contaning what is supposed to be the gross total of money in the world, there is an entire omission of 810 millions for Russin, together with an error of 56 millions in the column for Camada, and 60 millions in the column for Cuba and Hayti. These gross and enormous errors should not have been allowed in a filal revision of a work in which so much is made of figures. But we may be allowed to say that not the slightest dependence can be placed on the greater part of these figures, even where they are correctly printed. They are evidently; in many cases, the merest guesses, and to those who have practical knowledge of the subject, some of them look like very wide guesses.

EN PASSANT.

For having the temerity to protest against the notorious tardiness that characterises the p ublication of that much abused volume of mineral statistics issued by the (ieological Surse), Mr. W. Hamilton Merritt has provoked the ire of the ofticer in charge and drawn from his pen a flood of sour and ill-natured verbosity: This tabored dirguisition occupies a full column in the Eimpire and seems to have involved the vocabulary of the staff. From all we can gather it occupied in its composition nearly as much time as the precious Annual Report itself. In parts it sparkles with the peculiar genius of the director: in others the master hand of "Honest John" has evidently been reguisitioned to give that sicety of "twist and turn" (not the in-turn) for which the learned lil.arian is noted. Io us it has hod more than a passing interest inasmuch as, strange to relate, the greater portion is devoted to an execedingly minute review of our Canadian Minums Manmal-the number of its pages, the character of its contents, the known reputation of its contributors, yea verily even tise price is not forgoted-facts, evidently quoted to give force to the remark that the Mamal "in its own sphere of uility has many excellencies." Such gratuitous advertising does not come our way every day and we are profoundly grateful. The remainder of the letter is a fling at Mr. Merritt, somewhat offensive in its personalities. As a reply to his remarks it is a complete failure.

As if to justify and more fully emphasise Mr. Merritt's comments w have before us fresh from the press the Annual Keport for the jear 189r, the main feature of which, as in preceding issues, is its remarkable antiquity. Hoary and mildewed with age, it contes to us with its copious repetition of figures from Customs returns, and reprints from Provincial Mines Reports which, having been printed and distributed from their original sources nearly two years ago,
are now practically obsolete and uscless as an up to date reference. In 200 pages (including an index) we find littie that is original or of value. Nearly fifty pages are culled holus-bolus from the report of the Minister of Mines for British Columbia for 1891; about thirly from Dr. Gilpin's report for Nova Scotia of the same period, while ten pages are given over to a reprint of Mr. Klein's paper on the asbestos industry read in July, 1891, before the General Mining Association of the Province of Quebec. Add to these the space occupied by the bulks reproduction of figures copied from the Custom's Reports and one can readily sympathise with the onerous responsibility entailed upon Mr. Ingall and his staff which requires such "careful com. pilation and therefore must take longer to complete and issue than those carrying less responsibility:" Why we will undertake to furnish him with an office boy who, with little discrimination it the use of his scissors and paste, will reproduce three parts of his last Report inside of half an hour.

To the public and particularly foreign capitalists seeking investhent in our mines and mineral lands, there is a real and urgent necessity for an official report which will provide them with information that can be commercially applied. A volume which, while reviewing yearly the status and progress of our mineral industries, will post the enquirer on known locations in which particular minerals are found and may be looked for in workable quantity, the history and operations of working mines, the methods of working and tratment, capital invested, laior and machinery employed, cost of working, statistics of output and exports, disposition and uses, market and freights of the year, and other particulars of a like nature constantly sought atter by the new-comer with an eye to business. A report based on lines somewhat similar to these would be an immense boon to the country and would be of more real service and advantage to the mineral operator than a bushel of such antedilluvian statistical trash as the volume at present before us. Doubtless there is truth in the contention of Dr. Selwgn that commercial data is beyond the jurisdiction of a Geological Survey. But surely one has a right to look for it from a Bureau or Division of Mines, supervised by a qualified mining engineer, and equipped with a staff sufficiently large enough to acquire and prepare it for early publication.

In thus commenting upon the Report, we de sire it to be distinctily understood, that it is far from our desire and intention to cast any reflections, persomally, upon the Chief and staff of the Division of Mines and Mineral Statistics. Mr. Ingall is well known to be a capable and efficient officer, and is held in high esteem by his fellow workers and the mining men of the country. During the past year too, sore family bereavement and a severe illness interfered greatly with the supervision and work of his Jivision. We
are well nware that his work is beset with many difficulties. The narrow and limited, and comparatively valueless. lines, upon, which the Report is cast, were formulated before his day. But circumstances have changed. Each of the provinces has now its own Mining Bureau ard its special mining officers, and armed with legislative powers which the Geological Survey does not possess, they are in a far better position to obtain and publish in their yearly reports, all the statistical information u_{p} to date, that is ordinarily required by the miner. If the Survey desires to keep abreast with the times and the requirements of the Canadian mining it:dustry, it will proceed inmediately to remodel this report. Perhaps we might suggest a careful study of that published by our cousins across the line, under direction of Dr. Day. Anyway, let us have a Report that will be of some use, and, above all, let its contents be fresh.

The many friends and acquaintances of Mr. Walter W. Pickiord, for many years manager of the High Rock phosphate mine, and now superintendent of the Illinois Phosphate Co., Florida, werepleased to welcome him and hisbride in their midst for a few days during a brief visit to Canada, on their way to Florida, from England. 'I.u Review joins with Mr. Pickford's galaxy of friends in the phosphate business, in extending to him and his charming bride, its heartiest good wishes and congratulations.

Students of physics should welcome the appearance of an English rendering of Professor Mach's essay on "The Science of Mechanics." As a rule, mechanics has been treated as a branch of mathematics, and the Prague professor opened a new vein of inquiry when he began in an earlier work to regard it as one of the physical sciences. His views have since had devels .ment and confirmation from other independent sources, and the sense of his teaching on this matter was set forth for general students in the treatise which he contributed some ten years ago to Brockhaus' "Internationale Wissenschaftliche Bibliothek." It is from the second edition of that work that Mr. McCormack has made his excellent translation. The book, setting forth as it does the elements of its subject with a lucidity, clearness, and force unknown in the mathematical text books, is admirably fitted to serve students as an introduction on historical lines to the principles of mechanical science; and this business-like rendering of the treatise deserves the attention of both teachers and students of this important branch of knowledge. The work is published on this side by the Open Court Publishing Co., Chicago.

The Review desires to acknowledge the courtesy of the Engineering and Mining Journal, New York, in kindly forwarding for its use in the present issue the engravings illustrating the exhibits of nickel from the Canadian Copper Co. at the Worid's Fair, Chicago.

In this number we present our readers with a mass of information, statistical and lescriptive, respecting the mica mining industry of Canada. Of interest, too, should prove the dita given respecting the properties, operations, outout and shipments of the lake Girard Mica Mining System-probably the largest and best equ:uped mica producer on the continent. Some idea of the extensive operations of this company may be gathered from the fact that since its organization up to the end of the year ended 3 tst July last, it has expended in the acquisition of lands and buildings, $\$ 97,500$, and on machinery and plant equipment, $\$ 24,000$. 200 persons found employment in and about the mines, and $20 \mathrm{men}, 30$ boys and +5 gir's at the factory. 15 men were also emplojed in teaming mica and supplies. The distribution of its expenditure on account of wages during the same jieriod was: at the mines, $\$ 56,276$; in teaming, $\$ 6,830$; or a total of $\$ 63,106$, which, together with $\$ 2 c$, 090 at the factory and $\$ \mathrm{t}, 875$ in management, brings the amount up to $\$ 85.07$ I for a period of 26 months. The shipments of cut mica from September, 1891, to September, 1892, were 55,824, and from September, 1892, to July 1893,66 ,140 lbs . Of trimmed mica from September, 1891 , to September, $1892,36,5+5 \mathrm{lbs}$; from September, 1892 , to July, $1893,73,022$ libs. An idea of the capacity of the System's factory can be gathered from the fact that during the months of January and February, $1_{93} 8_{3} 16,315$ lbs. of cut mica and $\mathbf{1 2 , 2 9 2}$ lbs. of trimmed mica were prepared for shipment. The average monthly output has been in the neighborhood of 5,000 lbs. of cut, alid $6,000 \mathrm{lbs}$. of trimmed mica, while the stock of mica on hand at date includes some 1,200 tons of merchantable mica and about 250 tons of material fol grinding.

By agreement under date of 3 oth September, Mr. IW. R. Elmeuhurst, Montreal hastransferred and conveyed all his interest in the System to Capt. T. J. Watters, of Ottawa, who carries on the business under the same style and management as before. It is understond that the System will shortly be put before the public in theform of a joint stock enterprise with a view to enlarged capitalisation for more extended working. Until it is ascertained upon what basis the enterprise is to be floated the Review refrains from further comment merely referring those of our readers who may le interested to the facts and data reproduced elsewhere in this issue.

As all our readers know, in consequence of the depression in the fertilizcr market the production of Canadian phosplate this season has reached its lowest ebb, the majority of the mines having closed down. But the actual figures may prove of interest, so we quote the shipnients frörm Montreal to Europe during the year as given by Custons Manifests:

$$
\begin{aligned}
& \text { By Wilson \& Green } 2,606 \text { tons } \\
& \text { By British Phosphate Co. (Lid.)... } 1,590 \text { "" } \\
& \text { By General Thosphate Corporation. } 716 \text { "" }
\end{aligned}
$$

Several shipments have also been made to the United States, but no returns have been received at date of going to press.
The Otare Tixity Times of May 8th says:One of the large:t blasts that bas taken place in New Zealand with the explosi re roburite came off on Friday evening, in the Blue Spur Company's mine, under the super ision of Mr. C. E, Stokes, representative in Australasia for the Roburite Explosives Corrpany, London. The manager, Mr. J. Howard Jackson, had a tunnel driven into the face of tine cement 36 feet, from which were two drives measuring each about 30 feet, in the ends of which were deposited 700 lhs. and 300 lbs . of roburite respectively. These charges were detonated with electric fuses connected with the dynamo. The face of the cliff was about 76 feet high, and the surface operated on extended about 150 feet. The manager estimates the cement dislodged by the explosion at 22,500 tons, but a great deal more than this would be the ultimate result gained. On examining the ground above the cliff enormous fissures were found extending back to a distance of nearly 80 feet, and it is expected that when the present dislodged mass is removed fully 25,000 tons more cement will be availahle without any further blasting. This strongly illustrated the power of this explosive, which is three times inore powerful than blasting powder, and disintegrates the cement more efficiently. The cost is said to be about 25 per cent. less. In addition to this, greater safety is claimed for roburite, as it can only be exploded by a powerfut dctonator. The manager estimates that by this blast a supply for at least three months has been furnished from that portion of the claim.

One of the most important instances of the application of water power for electric power transmission in Great Britian at present is that at the Greenside silver-lead mines in Cumberhand, which was deisgned by Mr. A. T. Snell about three years ago in conjunction with the mine manager, Mr. Borlase. These mines are anong the few that find it possible to compete with foreign mines, and this is the case partly owing to a fine grade of ore which contains a large percentage of silver cheaply extracted by crystallisation, but largely because the use of electricity for winding, hauling and pumping has decreased the cost of working. On the east slopes of Hellvelyn lies a small natural lake called the Red Tarn, and on the northeast the impounded water of Keppel Cove. Between the two waters rises the hill of Catstycam, at the base of which the two overflows join, and near to which the Greenside Silver Lead Mining and Smelting Company have crected their turbinedynamo station. The water is led from an elevation of $\mathrm{x}, 75^{\circ} \mathrm{ft}$. above sea level, and flows through an open watercourse $11 / 4 \mathrm{miles}$ in length to a large reservoir, from which it is conveyed down the hillside for a distance of 360 yards in 15 in . cast iron pipes. The fall at the station is equivalent to a vertical head of 400 ft ., and the effective horse power is about 200. The generating station contains one of Gilkes \& Co's rortex
turlines of 100 hone power, driving a four pole compound dynamo made by the General Electric Power and Traction Company. The house is large enough to duplicate this plant when necessary, and pipes, watercourses, Ne., are already hid for this purpose. The electric current is convejed by two bare copper conductors on poles for six furlongs, to where it enters the mine at an elevation of $1,850 \mathrm{ft}$. ahove the sea level. The conductors from this point are in. sulated, and covered with lead. About threequarters of a mile in the mine, or one and a-hali miles from the dynmo, a 9 horse power series motor is employed to wind ore from a set of sinkers. Further into the mine another quarter
wire, and the current is fed to the locomotive by four contact pulleys. The difficulties encountered in fixing this plant and wiring the level can only be appreciated by the practical man. All main stations in the mine are lighted by incandescent lamps in series of six.

Qur Mineral Exhibits at the World's Fair.

The display made by Canada at the World's Columbian Exposition, has been one that, on the whole, did ber credit in the eges of the world. Nevertheless, it is to be regretted that the
these, there were also displayed an excellent exhibit of economic minerals, among which stood out prominently the very fine trophy of graphite and its manafactured products sent by Mr. W. H. Walker, of Oltawa.
The collection of rock specimens, exhibited by the (ieological Surves, in charge of I)r. Selwyn, contained upwards of 1,400 exhibits of rocks from definite localities and formations in Canada -from Labrador and Nova Scotia, on the East, to Yancouver Island, on the West; and from the international boundary line on the South, to the most northerly districts of this continent. Every province and known or explored district was represented.

The Exhibit of the Canadian Copper Company, Sudbury, Ont., at the World's Fair, Chicago.
of a mile, and dumn 120 jards at the lottum ; level, is fised muther y hurse puner mutur, working a three throw pump, furcung the water 360 ft . in height. About madnay between these motors there is fixed a dynanotor, which reduces the pressure inum 600 to 250 sults fur worhing an electrolucumutioe at the lowest day leat of the mine, biruugh whath ruts the water pumped from the 120 yards level and the whule of the water used by two hydraun wondug engmes. four hurses furmerly worigei this level. The lucumutue runs wath tweate waguns, the tutad weight when luaded buing 18 tuns, and dues the work of tive fuur hurses with the greatest case. The conducturs in tie ルrea are phomphor brunze
natural and econome products exhibited by the Canadhan (seulugical survey in the Mines and Munng Bualdug were not shown m a more compact form and to greater adiantage, as mught very well have been the case. The Geolugical survey, the Provinces of Untario, Quebec, Nuva scuta, New Brunswich and Britush Columbia, together with the Nurth-W est Territornes, were all represented wahn the Far grounds. Mantola had an interestung exhibnt, but just outside the grounds. Of these-the Geologicat survey collectens may be described as beng systematic and orderly-of a moretechmuat and scientufic chatacter than any of the others, as can readily be expected. Iet, wath

A notable .ollection of fussil remains, comprismg sume 2,400 specimens, iflustratug the lie history of the varoous formations in the earth's crust, as it is hnown in Canada from earlest Cambran times was also shown. These fossil remams enable the prospector or geologist to tell whether he is abuve or below the coal hine or in the neighbourhood of the petroleum or gasbearing rocks, etc. It was the most complete collection of fu-sil remams observed in the Min ing Buildang and was a credtt to Canada.
Apart from valuable economic mmerals we we have, in Cauada, an almost ine.haustible supply ot genss, prectous stones and sem-precious stones that are an interestung study in themselves.
in the Court assigned to the Gcological Survey was a collection of precious stones, most artistically arranged, exhibited by Messrs. C. P. Willimott \& Co., Ottawa, that were admired by everyone, and the exhibition of which did much to reveal to strangers, and to many Canadians, too, the great mineral wealth in this line of many localities in the Dominion. Nature's great storehouse holds many secrets of our mineral wealth hidden away from mortal ken. This live firm have pierced the Stygian darkness here and have brought out before us Canadian gems and precious stenes that but few ever dreamed were stored away in the bowels of the earth. We need no longer chase over the
as agates, jasper, porphyries, peristerites, perthites, aventurines, sodilites, wernerites, Iabradorites, etc. Near by were a variety of articles manufactured from these beantiful and precious stones, such as knives, inkstands, stanp and match boxes, pencils, penholders, papercutters, button and glove hooks, tablets, an endess variety of charms, bronches and studs.

Resting among its handsomes sister gems was to be seen in the collection, the bright, flashing quartz asteria, with its twinkling, changing, peculiar star-a Canadian gem that is now shining resplendent on more than one crowned head, and that in wealth and luxury sparkles in rivalry beside the not as handsome, even if more

Canadian ladies have but to get acquainted with, when they will wear them quite universally.

Semi-precious stones are found in many places in the lominion, and the collection in the Canadian Section of the Mines and Mining Bailding, have been adnsired, studied and most favorably criticised. Renfrew was here again to the front with aventurines that are, indeed, things of beauty and joy forever, with their artistically spangled surfaces, glistening with numerous specks of green, yellow and white. The Labradorites are always admired, while the vivid sheen of the peristerite, with its blue reflected light, makes it in every way superior to the Ceylon moonstone. The azure blue sodalite from

The Exnlbit of the Canadian Coppr Company, Sudbury, Ont., at the World's Farr, Chicago.
globe to gather up our ornamental gems and rich stones; we have them right here in Canada, right under our hands. Push and perseverance and scientific hnowledge cumbined, have spread these things out in rich profusion before us. Let us see what they are lihe.

Among the rich specjmens to be seen on exhibition were the lovely gems of quartz astcria, jacinths, grossularites and tourmalines. "Oh" what beautiful stones:" the lady visitor daily cried. Here were beautiful dress buttors made from the much priza Amizon stone of Ottawa county, in another case the most per fect dessert huises, with baudies of the rich agates from the frumning cliff, of Blomidon, in Nova Scotia. In all shapes and forms of bright polished slabs, appuarealsuch Canadian buaties
costly, diamond. The owners and wearers of this pretty stone say its brilliancy can be equalled by the diamond alone.

One striking feature of our Canadian gems is the variety and beauty of their tints. The grossularites and tourmalines from the County of Ottawa are resplendent in this respect. The former are found in this rich mineral district from colon.ess varieties to those of a golden yellow, while the tcurmalines arc of cvery shade of green and sellow, and have been mistaken for Orinntal stones by expert mincralogists. These later stones could be substituted, according to their shades, for a great mumber of other well known gerns.

From the Renfrew district, Ontario, were the greatly admired jacinths bcautiful gems that

Ontario and the distant Rocky Mountains is another beauty, and surpasses the far-famed lapis lazuli, as it is slightly harder, takes a higher pulish and is nut matred by anclusions of aron pyrites.

The whole of this section was well worth secing.

Ontario had a strikingly goud exhibit. This-go-ahead Provinue certainly did credit to herself. Mr. A. Blue, Director of Mines, Cummissioner Anrey, and the able staff, of n hich Mr. Boyle was a conspicuous figure, have reason to be proud of the result of their months of arduous labor. The Ontariu Court presented an attractuve front, and the nickel trophy in the centre formed a unique and massive pr ramid, impressive to the sight, and never to be forgutten by the passer
by. Iron ores, copper, mica, graphite, zinc, galena, asbestos, building stone, petroleum and its products, fire and brick clays, soapstone and apatite, or phosphate of lime, with its products, were shown in abundance and tastefully and artistically displayed. Due regard to the economic aspect of the exbibits was to be seen on all sides. The gold and silver ores also formed salient features in this Court, whilst salt, marbles, sandstones, granites, clays and cement stones served to complete the exhibits of a province whose mineral wealth is only now just being appreciated. Ontario's display of its mineral wealth was indeed an instructive one. To the economic collection was added a mineralogical one of considerable extent, furnished by a private collector in the person of Mr. W. G. Kidd, of Kingston, Ont. The nickel trophy deserves more than a passing mention. It was undoubt edly the most complete and extensive display of the kind ever made in the world. The exhibit of the only country which could compete with Canada was New Caledonia-a colony of France-and whilst its exhibit was certainly instruc tive and interesting, yet it was small and inconspicuous. Some of Ontario's specimens of nickel ore weighed 6,000 , 8,000 and $12,000 \mathrm{lbs}$. respectively, and gave a capital idea of the extent and richness of our far-famed nickel deposits. Nickel anodes, nickel shot plates and ingots of nickel were also exhibited.

On a side wall hung a large and most instructive map of Ontario, which gave at a glance the location of the principal mining districts of the province. This province possesses a number of metalliferous belts which will eventually prove more remunerative even than at present anticipated, and with the increased population, an influx of capital, and careful and economic mining, there is no doubt a future bright and hopeful is in store for Ontario mining.

Next to Ontario came Quebec and British Columbia. Both had very attractive exhibits.

British Columbia had a thoroughly systematic and well arranged display, and one could get from the descriptive matter on the labels attached to the exhibits more information than from almost any of the exhibits observed in any of the Courts within the Mining Building. A conspicuous pyramid of gilt bricks, with the figures $\$ 53,5 \mathbf{1 2}, 652$ being the ambunt of gold produced by British Columbia in about 30 years time from its placer fields, showed what that province can produce, and promises well when hopes are entertained of equalling some day the output of California, whose display in an adjoining Court shows the ores, placer deposits and other min-
eral products to be much the same, similar in character, nature and origin. Samples of the gold from Cariboo, Cherry Creek, Okanagan, Yale, Bear River, Antler Creek, California Creek, Mosquito Creek, and from the Ophir mine, Cassiar, and other localities too numerous to mention, were attractively displayed in a handsome and neatly arranged case. Every known mineral district was represented and carefully looked after by the Provincial Commissioner, due prominence being given to the new promising argentiferous galena regions now being opened up. The Province of Quebec exhibit deserves especial notice, inasmuch as the display (though not comprising all the minerals which the province produces), nevertheless showed clearly and to advantage its industries and mineral products. The magnificent display of mica, second to none in the world, came in for a large share of attention. Quebec had indeed a beautiful exhibit of the different varieties of that useful
or Florida phosphates, and when the present depression in the fertilizer market vanishes, as surely it will in the near future, its production will again assume a leading place in the industries of the country.

The iron and copper ores of Quebec were well exhibited, together with their products. From the historic mines of the St. Maurice Forges to the more recent finds, there was an interesting display. Besides these, were samples of petroleum from Gaspé, a new oil field, which is now attracting special attention; mineral pigments, plumbago, galena and other minerals were so displayed as to form a first-rate commercial exhilbit, reflecting the greatest credit upon Commissioner McIntosh and his staff.
Leaving out of consideration a comparatively insignificant gold exhibit from Nova Scotia, the display made by the Maritime Provinces at the Columbian Exposition was certainly not by any means creditable.

General View of Canada's Mineral Exhibit at the World's Fair.
mineral-muscovite, phlogopite and biotite micas. The Lake (iirard and Haycock exhibits were the most conspicuous and formed attractive
features features.

Asbestos-naturally-came in for a large share of attention. Canada is well known to "beat the world" in this product. The trophy and glass cases with the numerous and magnifi. cent specimens displayed at once attracted the eyes of all the visitors, a good proportion of whom purchased asbestos souvenirs, which will do much to spread the fame of one of our most remunerative mineral industries.
Phosphate of lime, or apatite, formed an attractive series of pyramids. Canada's apatite deposits are so well known, and especially to Canadians, that a description of the various localities from which they were derived is deemed unnecessary here. One point is certain, that Canada's apatite deposits are rich and of a very high grade, being superior in quality to Carolina

In the first place, there were hundreds of small specimens lying helter skelter in glass cases, which ought to have been arranged and properly labelled, or else thrown out as unworthy to represent the products of such an important mineral field.
Nova Scotia, with her coal, gold, iron, gypsum and building stones, might have made a magnificent display. Pyramids of attractive height, laden with such samples of its numerous mines as only this province can show, should have been erected, and the world could have seen at a glance what great wealth she actually possesses.

New Brunswick had one specimen worthy of note, ${ }^{2}$ large block of sandstone, but this, unfortunately, was hidden in a corner out of sight. All told this Court was not what it should have
been. been.
The coa's of the North-West were very partially and sparingly represented. Specimens and blocks from the Bow River Pass, from Lethbridge, from Edmonton and Anthracite, were to be seen beside some building stones paced on a table in a corner near the Quebec Court.
On the whole, however, it must be admitted that Canada's exhibit at the World's Fair, whether judged by the excellent display made by the Geological Survey or by those of the various provinces, gave a very comprehensive idea to visitors of her great natural resources and the splendid field they offer for investment.

THE CANADIAN MICA INDUSTRY.

The Occurrence, Production, Exports and Uses of the Mincral, together with a Description of Canadian Mines.

Since the application of ..aica for electrical purpmene the proxluctuon of this maneral has anoumed turme the pas two year- con-iderable importance and han attracted, on account of its abmadant oceurrence in Canalla, the attention of mining men and caputalist to the bomumon. The United States, and more erpecially the State of Noreh Carolina, has latgely contributed to the wortd - supply but owing it is cait, to the comparatiocly limited chame ter of the workable deposits, the output from this wuree. as mas be seen froma comparion of the lave con-ureturns, has materially, dimini-hed. Guoting (romm Dr. David . T. Day', " Nineral Rerource of the t'med
 ume inued by the U'nited states (ieological simer, we find the return of cut muca produced in that combery tron tSSO to 1890 given as follows:-

Writing f the יccurrence of the mineral in the tureal unato Mt: L. J. Childs, "While depeoss hase becn nued in near
 the Aphatachian mumbersern werder of the Appalachian mumbtain yatem, it is only in Aess I latsphare and Notth Carolina that the induatry han asounced at anas time much importance. In lue West the most
 W) ounng, and ang the Croblenoville dhatrict .f Nen Vlaia

The importation of mea into the United state- nas steadily increased, the scurces of supply being werniany, Irumsh Eas! Indies, Brilish Luaralavia, ihe United Kingdon and Canath, the official returns for a period of ten gears endiag 31st Decemater, ibge, leeing es follow:

 CNADA.

Canada has long being known to be sich in the occurrence of economic mica deposits. Dore than thitly years ago, Sir William Logan, (Geolory of Canada, 1863, pp. 494-5, and 795) referred to the deposits of mascovate, then known to exiet on Yeo's Island, Cape Tourmente and other sections of the Province of (Juebec. Mewtion s also made of the Phlogopites at Grenville, Qale, and in North and Suuth lBurges; Ontario. "in all of which," says Sir William, "the mica is obtained in large sheets, which being transparent and free from tlaws ari wrought and employed for the same purposes as the muscovite cr potash varieties." A crystal from (irenville was so large as to furnish sheets measuring twenty-four by ourteen inches. Goorl muca we are told was found on the tenth lut of the fift range, and on the first lut of the tenth range of Grenville, as well as farther to the westward in the augmentation of this township. Un the 176 lot of the Tuwnship of North Burgess, lange crystals of magnesian mica were found in albundance in a bed of soft pyroxenic rock. The mica was traced for alx,ut 300 cet and considerable quantities were extracted. "It aj cears" concludes Sir William, "that in thes regtom, an in Grenville, sufficient quantities of mica could be obtained to supply a larger dematul." In 1884 an important deponit of muscuvite was opened at the Villencuve mine, in the Township of Villencuve, Ottawa County, and a considerable quantity has been mined at different times up to the present date. Another early producer was the Syilenham Mica and Mining Co., in the Kingston district.

ANADIAS PKOHt elion of vit d.

I'ntil the pant thece years, the production of the mineral in Canada was limited, the out-put heing almond whally concumed by fombders for the panicilling of stoves and fur nace dewors. A cortain quantity, hosever, was prenthe for fubricants, fireproof jaints and cement- Keformy to the etatintical report inated by the Divivon of Mines,
 return:-

The dseovery of ats walue as an inathator and the rapme Ntension of its ue in clectrical practice, atoweter hiv h.ted a marhed reffect in stimulating the development
 increaced in value to $\$ 71.510$, whil, in i 892 and in the

P.rtifettan, to the L°
$\$ 54,729 . \mathrm{S}_{2}$ Brexckille, to the

6,60S. 44 Kington, to the C.S...
san mimen, whtel iskiown in the matket as amiker mica loxing of amber colour and clear. It is exsentialthat the mica should be smooth, free from wrinkles and crevires, it must split readily and must be flexible, so mur's so that a piece of nica .oto in. thick would bend to a in'v. ature of atout 3 in . diameter without craching. Naca that has dark spots or spots similar to ricinbow colour os what is known as smohy mica, is not at all suitable for electrical purposes. Nitica muct also stand a flame of intence heat without crumbling u_{1} or showing any dis integration. We give yor below the princ pal size of mica used by us, and would say that at the present time we have orders out for some of the sizes ranging from 200 in 600 prounds:-Commulator mica: 1 1/2 $\times 4$ in., $11 /$
 A 5, $2 \times 7,2 \times 12,2 \frac{1}{2} \times 12,4 \times 4,5 \times 8$. Ilinding mic. 1 tí in. wide."
"The insulating power of mica," says an eminent elecirict..n, ts stperior to that of any other sulastance applicable to armatures. An advantage peculiar to it self, is ts even laminated structure. The builderso aramatures can split the sheets into any dosired and ani form thickness with great ease and accuracy. A valu able property of muca in connection with commutato invulation is its proper degree of hardnes, it does not wear away (oo rapidly under the action of the brushes. Of all substances mica is probalsly the best material for use in armatures, if it i desired to obtain not only efficient elecaric insulation, but also durability under the influence of heat. The highest temperature to which an armature is subpected even by short circuits or lad constructions, will have no injurious affect on mica. Mica thick or thin may le held in a gas dame without burning or melting.
Mica for electrical purposes must be flexible and non-conductive. Color does no mattec, but perfect cleavage is of the highest inyortance, as " electrical mica" must le of tuiform thickness, and is often gauged to the thousandth jart of an meh. thesizes and shapes of sheets wary greatly 450 different patterns haing been called upwards per Ib and vares with the size of sheet and ditficuliy of cutting, the pattern
Mtcanite-One of the most recent uses to which mica is commercially applied is in the manufacture of micanate, by which large quantities of serap or inferior qualities ate utilized, and by means of a patented pro cess, small pieces of waste muca are built up into sheets 40 inches spuare and larger if necessary. The prounct can abo be ullode in any desired form and is largely supplied to the electrical trade for insulating pur poses.
Painis, Walit baper and Ornamen. TAL USES-Another use for nuch is its application, when previously colored or metalized, to ormamental purposes. From its unalierable nature the material preserves gilding, silvering or coloring from deterior ation; and from its diaphanity, the articles so treated will preserve all their brilliancy. Finely ground uica, or colored gelatin, also shows handsome effects, and when mixed with a solution of gumarabic, it makes a gool silver ink. The gelatin combination is used for inlaying louttons. Another beatutiful application of mea is in the production of bronse-like colors, which bear the name, brocades, crystal colors and mica bronzes. Among the advantages of these are that they are indifierent to sul phurous exhalations, are very light in weight, and in some colors are even more brilliant than weight, and in some colors are en noore mriliant than the metal bronzes. When suan particles of mica sitver are spreat over articles coared with asphatt varnish, the result is a good imatation of granite. The crystal colors are also satitable for calico printing; and fabrics to which they are appliced curpasis in brilliancy the heavy bronze and glass dust fancy fabrics of Lyous. Such colors have been used to decorate procelain and glassware, the articles undergoing a second heating up to the fusing point of their glazing. By suitable dyes, the material is colored to a variety of hues.

Mica for Gr.asses And Sibctictes-The beet employment of the immense quantities of scrap; and fraginents of waste mica whieh suggests itself as worthy of a witer fiell than it now posesses is the substitution of mica for glass in spectacles worn by workmen, especially stone and metal workers, to protect their eyes from chips and splinters. As already made in Germary, these nimea glasses are concaved in the shape of watch glasses, and ace about whe twenty -fifth of an inch in taichness. The ablantages gainel by this utilization are greater than would at first he imagined. Mica spectacles cannot be brohen. Pounding with a sledge hammer nerely flattens them, nor does molten metal poured on the mica affect it. The shower of pronted iron particles which issues from lathes merely rebounds from the clastic mica glasses.

As a Lubkicant-The mineral is somewhat extenarely used in the manufacture of mica grease. As a lubricant for railroad purposes its salue lies in the fact that it is absolutely anti-friction, and it is claimed with its use hot boxes or journals ate simply impossbile.

OTHER USES-Mica has been used oa board war ves-

View of a portion of Surface Works at Lake Girard Mica Mines, Township of Wakefield, Que.

sels, in localities where ghas would lee lowken by the concurson due to the frang of heavy gum. It wimade intoretictor, wa comp.awe whay ing for word insteal of enamel. It watoocny ayed for renting purposes, and in severat patented proceves forms a water and tifeprond concring for verata of rabler, tar, canvas, felt, and similar materail. Its movt iecent applicatomanap whered state, is to the wecalled wavepmed cloth as shopn at the Wordd, lear Chasge. There cloth ate made ly ap-: plyang melied wax to the cluth wath a stech mefere hand designs, and lefore the was is dis fowdered mict is safted over it. The eftect in sat to tex remarhably rich.

CokotNt, Mra- In secent years the preparation of gromad mica hav ixcoulte an industry of itselt, and sercral C"nifed sate tirnv lave gone into the lasines. Wiave of ecrap mian is keneraliy unch. The ditticulties of whming are groat, owing tos the tough and scaley mature of the materal. Nalls ishich work well on almone everybl ing alee fait utteily ea mica. Kecently there has locen a recurn to ald. fathionet! burr stomes, though movt of the manulactures heep their proces; a secret. The grinding is whally wet. Some manufacturers grind mica to a wery time pendier for "speciaitio," hat the sizes of ground mica uobally made are $2.4 .40,60,70$, So, 800, t 40 , tex), and 200 tiediev to the inch, and the priee range fomm je bot jor panad. Scray mica lor gramd
 lefere irom zus of verek, wheh wonld affert the color and lavise of the premluat.
 (o) atobit drilling thengh the mica cratah, of to latak them usduh. The mos zhrown lown ly hivaing under

 emplates of the vires to tee cat. An everimeraced nicacutter can tell at a ghance the larger wo whinch can lv cut from n wisea pisce of vila mica: he selects the proper template, held, at on the misen, and wear the
 Fach sise hered iv witawas ly iself. The vers ate sheared liy farther walmes, if necewarg, and tinalty jached in paper in peound pachages. A the tactury of the Iahe
 greatly reduced and agteat viong stiecacil by the we of patented cutang manhenoperated hy electacty. Thene are dexalicel twore fally in ena levription of the factory. The pormetion of merchamable vicets iv twally from \& 05 per cent. of the lowek maca liought from the mane, nod may run as high as S or to per cent.

(ANABHN WIITE: MH'X B.OMBN:

Wub tagasd to the occurtence of nata in mature, we

 alkalice, chactly pertan, ofon whis hatia atul hatothe, in cluding musconte and lopiololite and the magnevian

 hav tecn fuand to erecur, ate:-
(1) The Whoncuse nine, inis 30 and 34, Towswlip of

Vil! nenve, Ottawa Comaty, Ouc., where it is found ${ }^{-}$fre. ghently assucateil wath tourmaline, and occurs ahundantly ir ctystals in a coarse fegatatite sein.
(2) . It fofiotte lahe, at Montgomery, lienfrew County, Ontario, where large plates and crstals vecur, in a vein Ontarne, where targhitic zranite.
(3) Teo INanit, on the Upper St. Maurice River, Jortneuf County, Eueloce, in asouciation with hack tourmalne and anclusinin of whte sub-transparent quariz. (.a) Inc l'avd dis Monts, alonat sta miles from Murray Mas: Gatelve.
(5) Excomaine mane, 25 miles from Tadousac, (bue. (b) Lot S, sange Vil, Township of Masham, Oltawa Connty, IUc.
((s) I.ot $\%$ range XI, of Town hip of Muller, Frontenac County, Untario.

I'rominent amon: these locations iv the Villeneuse mine, the ponecr pronducer of the commery. The tirst operations daie hack to 1884 , when it was firnt opened by Mr. W. A. A has, (3itawa, by whom it was tranferied to the British as,! Candian Mica and Jining Company, who
 it into the hatho of Dr. S. I'. liranchot, of Buchiugham, the present owner.

With slight interruption the mune Inav leeen operated up to date. F rom 185.4 to $18 S \$$, about 35,000 Hos. of cut maca was seported as havimg leent tathen out, the product tering of the yualaty, ctear and tree trom sputs, realized
 teldopar, shepments of the latter phoduct licting mate to longtand and the statev, whese at is motized th the manu. facture ot porectan and pottorsware. 111 the entitut of then trom the mine stace isss, to there ase at hand.
 wedn the conatact of 1 kitantute and pine-ase toch and

 divectom. blach and wi tommatine is trequenty met "ath and the lammae show trequently ted or blach spots of tha maternat.
large quantite oot tha mica have lnew -hpped to Eng. land and dutra. [he mane wequpped wats a veam and ar compereor platit and a vintable working lorce is emplayed.

Recent develophem worb in the Jac liond des Monts
 hav guen rery mandetory realts: large ctovals up to
 mathally lime galay, the singe laminaev dow frequenty ithe "ucurvice of tommathere of blach, ted and

 inside two and a balt mombin. l.arge qumbtere of this mica are to lee shyperl tho month to (iermany;

IHE OCCURRFWCE OF AMAER MICA.

Concerning the second variety, the phlowopite or amber mica, its occurence is very common among the laturenthan fimestones, sometinnes in more or les athmiandy dissemmated small scate or cesptais of pare limestone atnd dolomite. The colors of these cijsial are generally some shade of gellow or hown ; but in rare case they are of a deep olive geten or silver white. "slt the Calunee Falls," (Geologs of Canada, ISoj), "delicate wive green prisms of phogopite, sometimes an inch in diameter and several inches in lengh, are found imbectded with crysials of pyronene in a pinh lamellar limestonc. In llurgess, pyonene in a pink hamellar limestonc. in
Umargess, what metallic dustre, arc found in a simbar limestone with crystallized apatite, a prism of uhich was in one case foand imbedded in a crystal of mica." The largest specimens of phlog p pite are gemenally found in leefs near to bands of guratzite or proxene pheiss, which olten linnit the crystalline limestones, or are merstratilied with them. The mica occus in large talular cry: bs with pjroxene and calcite and often with guatiz, onthochase and rater minerals. The prancipal areas whese these phogopite deposits base feen dount in Cabada are in the Protinces of chetre and Untatio, and more especially in the counties of Uttawa, l'erthan nd Nouh liuserss

The often expresed opinion that the nica deposits sete of superitenal character or were downwaze to a lim ited depth, has been fully diproved by the great development work carried on by the largest Ganadian mica comjany, "The lake (iarad Mica system." It lins been froted loy the operations of this cotaptany that the de-

View of Lake Girard Mica Mine, looking from Lake.
posits though frequently interrupted by dead ground, continue to the depth and are for the greater part in con hection with each other ly chains of small sized mica crystals, hy fissures filled with mica natter or by bands of soft reddish limestone. In following this theory valuable discoveries have leen made in considerable depth.

canadian amber mica locations.

Some idea of the extensive occurrence of amber mica in Canada may be gathered from a reference to the follow ng localities where it has been found:-

Lot I, Range II., of the Augmentation of Grenville, Argenteuil County, Que.

Lot 9, Range VI., of Grenville, Argenteuil County, Que. Lot ${ }^{17}$, Kange VII.,
$\begin{array}{cccc}\text { " } & \text { I, } & \text { V. } \\ \text { "، } & \text { 19, } & \text { V. } & \text { VIII., of Portland, Ottawa County, Que. }\end{array}$
$\begin{array}{ccc}\text { 19, } & \text { ". } & \text { ViII., of Portland, } \\ \text { Io, } & \text { ". } & \text { X., of Templeton, } \\ 9, & \text { X } & \text { Xi., }\end{array}$
文.
V., of Hull,
XII.,
IV., Masham,

Aylwin, Ottawa County, Que
L.ot 22, Range II., Cawool.

South Burgess, Leerls County, Ont.
Lot 6, Range VILI., North Burgess, Ont.
Neerlless to say, not all are workable deposits, nor do all N cenless to say, not all are workable depor mining. In many cases we find small and limited deposits containing contorted and twisted mica, yielding only a very small percentage of cut sheets. Very promising properties, however, have been discovered in great number in the

Mr. C. C. Symons, Mine Captain, Lake Girard Mine
district of Wakefield, Templeton, and on the Lievres River. Among the many localities which have been worked with success are :-
(1) Lot 15 , in the 1 ith Range of Templeton, owned by the Templeton and North Ottawa Mining Co. There were on the surface two veinlike deposits with small contorted crystals at a distance of aloout of ft , the walls being parallel in width from two to four feet; these were tested by a shaft, and in a depth of 15 ft . the two bodies came by a shaft, and in a depth of 15 ft . the two bodies came
together forming a single vein of eight feet wide and together forming a single vein of
crossing the whole size of the shaft.
crossing the whole size of the shaft.
This vein continued most regularly and in about 25 ft . depth a large phosphate booly was struck, the vein split up and the crystals were distributed over the whole body. They were large sized and most regular in their structure, yielding a large amount of flat sheets. The output with a small force of men for two and a-half months working (including all preliminary work), is reported to be sixty barrels or nearly $20,000 \mathrm{lbs}$. of selected mica; about 90 tons of phosphate of lime of 84% were also taken out.
phosphate of has been worked with very satisfactory results. (2) Lot 15, Range 8, in the Township of Templeton (2) Lot 15, Range 8, in the Township of Templeton owned formerly by Mr. A. W. Stevenson, C.A., Montreal, in about two months work yieldel considerable quantities of large sized crystals and a good output of phosphate of lime. Exact figures regarding output are not to hand. The principal opening is situated on a mountain ridge, and consists of an open cut of 20 ft . wide, 25 ft . long, and 30 ft . deep, and shows on the walls and in the bottom large sized crystals with well defined sheets. One crystal taken out weighed 300 lbs , and cut 12×8 inches square.
This mine has been examined by experts and is considered to be one of the richest mica and phosphate mines in that district : it is to be regretted that operations had in that district; it is to he regretted ligitation as to title. to be suspended last year owing to ligitation as to
It may here be stated that since the commencement of pending litigation, the rights of Mr. Stevenson have been
purchased and are now possessed by Capt. Thoma Watters, the owner of the Lake Girard Mica System. Mr (3) Lot I7, in Range 8, Ter for four months. The J. Wallingford, has been wor ercavation 15 ft . wide, principal opening consists of a 8 ft wide con25 ft . long, and 28 ft . deep. A vin 88 the shaft in taining well defined mica cryals an tainimg west direction, showing large sizel pockets and ag eastantes of mica in pyroxenic rock, frequently intermixed gregates of 4 tons of selected mica have been taken with apatite. 4iage number of eight men, and shipped to out with to large electrical concern. Five men have been Boston to a large en cutting sheets.
steadily employed in cutting sheets. west part Templeton,
(4) Lot 15, in the Montreal. There are three owned by Judge Dugas, , whe which runs across the proopenings on the mountain the show a vein-like occurrence perty. The largest excanaion in and 3 ft . wide have of mica ; crystals of about 40 has ben followed by a shaft been taken out. This ven viclled a large quantity of to a depth of 12 ft ., and has well defined mica crystals. The three operins have been worked for nearly two months, and opeching. The heen worded on account of the lack of machinery. The been suspended on account was 80 barrels of 350 lhs . each output during that blick mica. $5,500 \mathrm{lbs}$. run of mine or were also cut and yielded :-

$\$ 412.50$

Capt. T. J. Watters, Ottawa, Owner Lake Girard Mica Mining System.

The largest and most notable producer of Canadian mica, however, is :-
the lake girard mica mining system
organized in the latter end of 1891, and which at date owns and operates an area of 3,210 acres of mica land in the provinces of Ontario and (yuebec. The disposition of this large property is as follows :

Province of Ontario.
Name of Mine.
Tou"nship.
Acreage.
Martha.
Pike Lake
North Burgess
100

Province of Querec.
Alice
Bradley.
Cassidy.
Cassidy............... ،.................... 200

Foley.Hull. 200
Lake Girardefield.................. 210
Murphy, P.
Murphy, B. J.
Nellie \& Blanche

. 1000

Prulhomme.
80
Stevenson
Templeton.
Snapshot.
. IHull
White mica.
Portland west

* The prices obtained last month for trimmed mica sheets $1-16$

The promoter and leading spirit of the Lake Girard Mica Mining System is Captain Thos. J. Watters, Assistant Comminsioner of Customs, Ottawa, to whose energy and capacity more than to any other is due not only the position of the System as one of the largest producers of mica in the world, but also the development of the mica trade into an important Camadian industry. This gentleman is reported to have spent during the past two years, not less than a quarter of a million dollars in acquiring lands, erecting buildings and machinery and in the outlay lands, necessary wo place Donc. Watar colluct Ousa whe of the System on Besserer street, of the system is located. A ting and dressing establishment of the system is located. A brief description of the occurrence of the mineral on some of the more prominent properties operated by the System an! the methods of mining and treating the product may not be out of place. Our information is gathered mainly from the official reports of Mr. F. Cirkel, M.E., who has just completed an examination of the mines, from data furnished us by the system, and from a personal inspection by a representative of the Review. Our engravings are reduced from Mr. Cirkel's drawings and photographs kindly furnished us by the System.
photographsfoctly safe to say that the mine which has proved tole the most profitable source of its supply has been

THE IAKE (iRARD MICA MINE.
situated on the 2 nd range of the Township of Wakefield, county of Ottawa, Que. This mine is connected by good roads with Wakefield station on the line of the new roads with Gatineau Valley Railway and is distant from the works at
Ottawa about 22 miles. Mining has been carried on in Otawa about 22 miles. Mining has been carried on in
the southern portion of the property on the border of

Mr. Don. C. Watters, Ottawa, Manager Lake Girard Mica Mining System.

Lake Girard. The country is hilly and covered for the greater portion with good hardwood suitable for building, burning and mining purposes.
System of Working-The principal work at the mine Sas been done on shaft No. 1. Mr. Cirkel in his report says :--
" Shaft No. 1, which has leen sunk at an incline of from 73 to 75 degrees in a chain of large sized mica deposits, measures near the surface 15 to 20 feet square, and widens gralually out at a depth of about 120 feet until it reaches the dimensions of 25 to 30 feet square in the 165 feet level. At a depth of 90 feet, or 6 feet above lake level, a drift marked E (map 2) of a size of from 8 to 15 feet square has been made in the western continuation of feet mica deposits found in the shaft. At this level a test hele in the south wall of the shaft has shown four feet rock and eight feet mica, and to reach this apparently lack and deposit a cross-cut in southern direction, (marked A), large deposit in operation. At the time of my visit this crosshas been put 8 fopt long and its head-wall showed small cut was 28 feet long and th small mica crystals.
pockets of reddish limestone where the shatt is widening
"Above the 165 feet level, where the shatt is widening out considerably, extensive deposits have been worked out, the continuation of which coul
ing to the west in I 33 feet length. a distance of 14 feet from the shaft and in a height of 10 teet, a deposit of from las measuring 9 feet in wilth in the bottom has been crysure; these contain throughout crystals of a well deland from characco up to $1 / 4 /$ feet in diameter. It is the infrom $1 / 2$ a foot up 1,4 which will continue accordtention to work this deposit, whe from the i65 feet level by ing to its outline to the depth, fro
the southern cross-cut marked
Drift 6 , to the east on the same level, shows in the botom in $121 / 2$ feet distance from the shaft an of mica crystals, measuring in the end of the drift 8 feet of mica crystals, marge sized crystals occasionally show
in width ; the la
CANADIAN MICA INDUSTRY. Reproduced from the Drawings of Mr. F. Cirkel. M. E.
Sot isigitestipange.

Property owned by Mr. A. W. Stevenson, C A.,
cracks in the lamimats, hat not of suticient importance to prevent them from yielding a large quantity of commercial mica sheets.
"The honirontal southern continuation of the mica deposits in the 165 feet level ted to the necesity of simking a second slopre at a diviance of 25 fect from the first baft; a this sloper is at present 45 feet sleep, and has an incline of 75 degrees. Two drifts (marlied (D) and A) in ditlerent levels, to the south and to the cast hase led to the dis. covery of valuable mica deprosits. Drift H_{1} to the east shoned at the time of mys sisit, in the lottom, heat-wall and roof, crjstals measuring in size from half a foot up to 34. feet in cliameter, imbedded in a soft reddish lime. ton: frequenty intermined with large srystals of perox. ene. Drusy cavities have leen met with very fegtently and the crystals obsained therefrom are characterized by their sharpness of outline: these crstals wers for the most part complete in their structure, fielal laminaes of 3 mon part complete in their siructure, fief fammaer of 3 and crevice. The dejasits measured in the frotiom of and crevices. The dejosits measured in the lrottom ot
the drift $\$$ fect in widh and 12 feet lone; large vied the drift S fect in widih and 12 feet lone; large died
crystals were alw irsegularly distributed oner the lime erystals were alw irsegularly distributed oner the limestone in the head-wall and especiatly on the teof, so that this deposit may likely prove to lee a contimution of the deposit in drift (; of the toj feet level."
In a supplementary report, under date of 13 th Augu-t last, writtenafter a later ciamination, Mr. Cirkel writes:"In a beight of 25 feet from the lxottom of the pit, a drift marked U, S feet high and 10 feet wite hav laid Fore entensive pockets of reddish limestone, one of which contained an ageregation of crystals in size from oto $\$$ inches in diameter; this deposit measured at the time of my visit S feet in width.
"Taking all the oberoations with regard to this vein together, I have to state that according to my experience, this deporit is the mose extemsive which has ever heen discovered in the l.anemtinn syem, auil with such great results on hand, I only can repeat that the lake Girard shaft at the prevent day is, and will be, the richest and largest prodacing mica mine so far known on the Aneriican continemt.
Oferatious in Shaft and Equifment-The jwints of operation are at present crowedt A in the go leet level, cross-cut C in the 165 feet level, drifi 11 and ctoss-cut D in the 45 foon slope. Three 3 -inch Interoll rock drills supplied with coupresed air, ate at work during day and night. The rock is hoisted from the loottom of the 45 foot shafe to the 105 forot letel by buchets which empty; by means of a dumping' car into another bucket which goes lizough the upleer haft to the pit's mounh. This coes though the upper hant to the pits mounh. This

 to the 105 eet heret. Heng made will to hoot in one large ear to the dumping gremud on the eavt side of the haft.
On account of the generally safe wall, the shaft is imbered only near the vurface, but is fitued with sis atety phatforms at an aserage dintance of 25 feet from each other, and comected by melined hadders. bramage iv provided for ly two 3 theh pramp, wolled by compresed air, in ats and 105 feet level, respectively: the pramps are in we only tempmarily as the quantity of water in the bottom of the thatt insery vall. The shaft is equipiped throughout on all platomes and working
(N.B. - The months of Nowember and December, 1S92, and lanuary, 1S93, are not included on acenumt of a boiler explovion; dutring months of the May and june, $1 \mathrm{~S}_{2} 3$, an interruption of the regular operations was caused hy some repairs to the air compressor plant.)

Month. $18,2 .$	Outgut intonsof 2000 11.s.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { shifts. } \end{aligned}$	Average Ibily Output	$\begin{aligned} & \text { Average } \\ & \text { shifus of } \\ & \text { shily. } \end{aligned}$
May....	St.935	1206.5	3.1317	4 S
Junc. . . .	91•1322	73 S	3.1285	29
July.	S5-1160	79 S	$3 \cdot 8.46$	31.8
August..	1161976	791	4.1311	31
Supt....	106.479	946	$4 \cdot 499$	37. S
October. . 183.	$66 \cdot 1029$	890	2-1321	$35 \cdot 6$
February.	1171814	1150	4.140.4	40
March...	122 S\$6	1836	4.1755	53
April....	\$2.186	1177	3.567	47

Average outpus daily in six months, 3.3838 tons. Average number of shifis daily in 6 months, $35^{\circ} 5^{\text {. }}$. Average output daily in 3 month, $4{ }^{2} 88{ }_{3}^{3}$ tons. Average number of shilts daily in 3 months, $4 S^{-6}$.
For the aboneg mombs the aserage daily output was, therefore, 3 lust
The lisihnoss of the late Gitard Defosit-In conclud. ing his report on this property, Mr. Cirkel, after reviewing the work tone on the various openings, remarks: "Taking all olecrations withregard to the occurtence of mica deposit, tengether in comparison with all the other mica mine: wor hing in the I aurentain I must state that the broxenic lelt of lime lake Girard mine is the richest

Interior of Cutting and Dressing Works of the Lake Girard Mica System, Ottawa.
" Drift If to the east has leen continuel for a length of $5 S$ feet from the shaft middle and in a width expanding from 16 feet to 22 feet near the head-wall. The exjected results, as described in my last repors, with regard to the continuation of the deposit have greatly surpasoct my ex pectations; not only is the vein consinuing in regular width, but thequality and largenessof the crystals is inproving the farther work is prosecuted to the east. Numerous crystals from hall a foot up to 3 feet in diameterare dietributed over the tottom head-wall and the reof. They are of very well defined characters, do not contain wrinkles or crevices, and yield a large quantity of com. or crevices, anid yield a large quantity of cont-
mercial shects. One crystal pardy lying in the solid mercial shects. One erystal partly lying in the solid neck measured 2 feet $10 x 1$ fool 6 , one of the largest ctystals
of nuica of geot qualiyy which has ever lecen found in the of mica of georl qualiyy which has ever leen found in the
mining district of Otrawa. The vein has in the middleof the mining district of Othawa. The vein has in the middlleof the
drift a width of eight feet and is split up near the head-wall in to twolmanches. ench measuring six fect in width; the whole vein exposed shows a length of 34 fect.
"There is no doult thas tahing into consideration the tength of this vein, the great distribution of enstals on the roof and in the botion, the abundance of limestone as an essential companion of mice, that this deprosit is atrue fissure vein and is undoubtedly identical with the deposit di-covered 40 fect higher indefig of the 165 f level, ithus piving the total dimensions of this vein tole 34 ft . long, 40 ft . high, and S fi. wide. Ilasell on these measurenients -not counting the catension of the deposit to the depth and to the cast-the estimated guantity that can le raised very readily is 325 tons of targe sized mica sheets. Beyond doult this deposit will continue to the cast and to the depth, and according to all appearanecs, the largest extension of the vein is not jet apparent.
points ly electric light supplied by a 100 lamp dynamo Butidims:-This mine is equipperl with encellen accommolation for a large wobing force, while the various buidhngs necesary for the operations consisting of engine and haft houre, biach with's and carpenter's shops, cobbing sheds, stables, oftice and dweltiag house are strongly buik and admirably smited for their requirements. lit is moteworthy that ench and all are strpplied with the electric light.
Hotkime /'ant-This comprices two Imilers of 3 Sand 54 h.p. revectively, and two 55 h.p. tespectively; ome secen drill and one three drili. Infercoll compresisor and equipment : one doulite cylinder hoisting engine (Cope-
 Wothington and other pumpls (three in number); Kay dynamo for 100 Edlison lamps; derricks, elc.

Hiznding and Thansfortation-The mica as it comes from the pit is weighed and delivered to the dressing shed on the west side of the shatt where it is sejpara'sl in different sizes: it is then carried ly a ear athomatically hamillet on an incline track to the foot of the hill where the loarts are taten up loy waggons and transported to the cutting amd dressing worke at Ottawa. En roife a stop is mate at the vero commonious stables owned by the system at the village of Cantley (see photo). IIere the wageons usually meet those coming from Othawa with supplies for the mines and the loads are iransposed the horses from the nines returning to Lake Girast with the lighter loads and the niea going on with the Ottawn the lighter loads a
teamis to the city.

Outfut fiom Lake Girarit-The following talle shows the output during six months in 1 S9z and during three months in IS93, according to statements kindly fernished by the manager of the System:-
mica learing lelt at the present day so far discovered in the Laurenain system.
As already stated the average daily output amounted to close upon four tons withanaveroge number of shifts 39.5 ; it is evident that in consideration of the number of workiable depocits as descrikel alove this output can be langely inetcased when the difticulties caused thy double handling of the material in the 165 f . Ievel angl by the limited capacity of the present machinery plant has been overcome; uithout inereating the number of men the shaft should five, after an installation of the new plant, not less than five tons mexchantalise mica daily:

As a result of my caamination I have no hesitation in saying the Iake Girard mica mine, according to the present prospects and with regard to the proved richness of the provene lelt on nica deposits, is at present and will be the largest producing mica mine so far known in the mien indusiry of the Americin continent."

CUTtiNg anis dressing factori:

This commodious structure is located at 504 to $5: 0$ Besserer strect, Ottawa. There are at present in use at the Late Girard Miea System's factory twenty-three power preses for catting irregular shaped dises and segments. These power presses are all of American manufacture ; twonty of them from of American manufacture; twenty of then from the E. W. Bliss Co., l.ta., of Brooklyn, N. Y, two of then ate mate the the Fermacute Jachine Co., of Brage-
ton, N.J., and the other manafactured by the long and ton, N.J., and the other manufactured by the long and
Altstatier Co., of Ilamition, Ohio. Eighteen of the Miss Altstatter Co., of Ilamilton, Ohio, Eighteen of the Bils
machines are the well known Bench presses and specially machines are the well known Bench presses and specially
suitable for cutting patterns most in diemand at the pre suitable for culting patterns most in demand at the pre-
sent time. The dies usel in this factory are the most

Plan VI.--Showing Occurrence of Mica in the Main Shaft of the Martha Mine, North Burgess,

Plan I.-Showing Underground Work at Lake Girard Mine.
complete at present in use for this purpose, and include some sixteen different matterns ranging in size from 5 ${ }^{1 /} \times 10^{\prime \prime}$ to $7 / 8 \times 3^{\prime \prime}$, and with a few exceptions are nill made in Oltawa. The electric current usdd is supplied by the Chaudiere Electric Light and Power Co., of Ottava. From this m? (or a dynamo is run which supplies light for the entire pi mises.
In addition to the cutting presses already mentioned, there are in use ten cutting shears for two-siding and cutting material of unusually large size.

During the past year there have been on sn average of 70 men and women employed in this factory; the women's work is divided into three departments, viz:Punching at the press, scribing mica for the shears, and cleaning and packing material for shipment. The other departments, in which the men are employed, is the spliting and culling when received from the mines, and cutting with shears.
From figures of the quantities shipped from the factory, supplied by the courtesy of the management, we gather the following:-

cut mica.

From September, 1891, to September, 1892, 55,824 lbs. ; from September, 1892 , to July, $1893,66,140 \mathrm{lbs}$.

TRIMMED MICA.

From September, 1891, to September, 1892, 36,545 bs. ; from September, 1892 , to Juiy, 1893, 73,022 lbs. An idea of the capacity of this factory can be gathered from the fact that during the months of January and February, 1893 , $16,315 \mathrm{lbs}$. of cut mica and $\mathbf{t 2 , 2 9 2} \mathrm{lbs}$. of trimmed mica were prepared for shipment. The average monthly output has been in the neighborhood of 5,00 lbs. of cut, and 6,000 lbs. of trimmed mica, while the stock of mica on hand at date includes some 1,200 tons of merchantable mica and about 250 tons of material for grinding.
Stables at Oltazua-One of the most completely equipped stables in Ottawa is that belonging to the Lake Girard Mica System. This stable is situated on the same property as the Ottawa factory and storehouse, and is 85 feet criy as ine Ottawa factory and storehouse, and is 85 feet long and 40 fect wide, with accommodation for forty
horses. It is lighted by electricity from the dynamo horses. it is lighted by electricity from the dynamo
in the factory, and is. most complete in every respect.
the martila mine.
Another property on which the Lake Girard Mica Mining System has done considerable work during the present scason is the Martha mine, situated on Iot 13 , in the 6th range of North Burgess, County of Perth, Ontatio. In the north portion of the property extensive mining work was carried on for about six months in shaft sinking, prospecting and general development work. The resulte obtained were satisfactory. The nica has proved of good merchantable value, and the indications point io a large production when the steam and air plant contema lated by the system has been put in. It is noteworthy plated by the system has been put in. It is noteworthy that in the production of mica at this mine several hand-
red tons of apatite of high quality was raised, and this will undoubtedly form a valuable source of revenue when the present temporary depression in the phosphate business has passed avay. The mine is equipped with suitable accommodation for a good working force, but the plant equipment is only of a preliminary character.

the fike lake mine.

This is situated on the south half of Lots 26 and 17, in the gth Range, township of North Burgess, county of Perth, and is about eight miles distart from Perth station on the main line of the Canadian Pacific Railway.
The most extensive opening is the shaft marked A on plan IV, which has a vertical depth of 65 feet. At a depth of 30 feet two parallel veins, at a distance of 8 feet from each other run across the shaft under an incline of 30 degrees, being apparenily fissures filled with mica matter and crystals. The upper vein, having an average width of two fect, goes off into two small branch veirs in the middle, and expands near the botzom of the shaft to a width of six fect. The latter shows crystals of silver mica in sizes of one foot six inches imbedded in pyroxene and pyroxene gneiss, and yielding a large quantity of well defined laminaes of commercial value. "According to all appearances," says Mr. Cirkel, "the rein expands in width considerably in the bottom of the drift, and will undoubtedly join in decper levels with vein No. 2."
Vein No. 2 has an average width of one and a half feet, widens out in the middle to a pocket of irregular shape and shows near and in the bottom of the drift, crystals of well defined character. Besides these two veins severat well defined character. Besides these two veins several large sized pocticts have been uncovered in drift
and many crystals distributed over the botiom indieate the presence of aggregates or pockets of mica in deeper levels. Small pockets have also been worked in the two drifts marked "A" and "B."
The botiom of the shaft and drift " C " could not be examined on account of being partially filled with water.
With regard to the prospects for this shaft they seem to me to le very good. Numerous mica crystals are to be found in the dump of the shaft as a sign for the richness of mica deposits; not less than about 50 tons of commercial mica have been won by cobbing over the dump. mercial mica have been woa by cobbing over the dump. pockets in the soutli wall of the shaft, the great distribupockets in the south wall of the shaft, the great distribu-
tion of crystals over the botton of the drif " D " gives, tion of crystals over the botion of the drift "D" gives,
it seems to me, suffeient evidence for a richness of mica; it secms to me, sufficien evidence for a richness of mica;
and thad the work of developnient been carried on, especially in driff "D" to the depih, the same amount of

Plen III.-Showing Location of Lake Girard Mica Mine.
work would have furnished more data for above expressed opinion ; but cren as it is, it issuffi cient to show that this part of the pyroxenic belt is rich in mica de posits, and leads to the posits, and leads to the
strong belief that other deposits will occur in the horizontal as well as in horizontal as well as in
the depth. It may, therefore, be safely said that the average output of mica will be of considerable cxtent and value if the present slow and hand-power plant is replaced by a regular machincry plant of such cas pacity as to meet all difficulties caused by following the deposits to the depth. It is difficult to depth. It is difficuit io
estimate the output inestimate the outpat in
fature, because no exact fature, because no exact
data as to the previous work in the shaft are to hand; bet compared with other mica mines, and taking into consideration the large quantity of mica alrcady taken out, and the mode of O currence of the deposits, there-should be no diff. chere should be no raising by meanis
cult of a plant of full capacity of a plant of full capacity
not less than one and a not less than ont and
half to two tons daily.

Aggregation of Mica Crystals in Drif H, Lalke Girard Shaft, from a Drawing by Mr. E. Circkel, M. E.

The Choice of Coarse and Fine Crushing Machinery and Processes of Ore Treatment.

Br A. g. Cunakertos.

Pabr lit-The Csinion Process.

The phant requited for the Machehur- Forest proces concish of crublurs (stampor or roll) to pulerize the ore to 20 to 60 mbh , and leaching and precipitating tank of muth the same description a thooe used bor chotorimation: Thut as in professed object is the treatment of the ore in butk, she mumber of tanhs, etc., required for this methoxi of treatment are of necewity much lagger than in chatorination work. The cont of erection of weh aphant ona banis of treating 50 tons per day, would mat, wit is sad. ontinariby eveed $6,6,250$, es erybhing incluted.

The report of Mr. J. R. Dinadhaw (ow,yer, etc., of Charter Towers), sates, withom going emto detaile, that from information be receised at kasemoood, forsh Queensland, it can be worked there to protit at a cout of
 divtrict and surfounding circtumstace
Mr. Bradhaw clains, moreoser, cconomy for the pro. cess in regard to time occupied in treatment, as compared with raw amalgamation in pans, vating that with an ordinary whecker, 15 ton of amiferous stone of alout 212 ounce grade is decomposed in 6 hours, tepresenting the capacity of one whecler as being equal to treating te tons per week. Mr. Mclmyse, the companys, manayer at Ravenwood, he goes of to tate, is ecccing two wheder pans, meavarfng 5 feet in diameter, capable of carring a charge of 3 tons of ore each, and it will thes 10 ecen that with two pans, 24 tons of ore can lee decompoened in 2.4 hours.
It would lex interesting to learn how those arithmetical calculations panned out in actual practice as regards power con-mined and other detail-
A test of the Rivernword ore makle by Mr. Mradhaw gave an extraction of $S 9$ per cent. of the gold and 70 per ent. of the silver.
If the success of the process demanded the mechanical incorporation of the cyanite solution with the ore in pans, it would seem lihely to be foredomed to failure, and on this account the iden is now almost entirely alandoned.
It would probably be foumd that, for convenience and speed, inarrels could be advantageouly suintituted for pans, hut modern developments of the proces have done away whithe original notion of ausiliary agitation.

Tur Chemistey of the Chavibe Proces.
This has been ably dealt with by Meses. Chates latters, Mh. I., and J. E. Ciennel, 33. Sc., in a series of papers which appeared in the New York D/amne Joun ofl, in October hast, from which the following exiracts are taken :-
Blaner has shown that the very tincly divided gold obtained hy precipitating a solution of the chloride with ferrous sulphate may be disolved by porassium cyanide, provided there is an exeess of ongen present.

The compound formed may be loroked upon as a double cyanide of gold and whassium (KCyAuCy), and the reaction which takes place may therefore probably be represented by the following equation:-
$2 \mathrm{Au}+4 \mathrm{KCy}+\mathrm{O}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{KAuCy}_{2}+2 \mathrm{~K} 11 \mathrm{O}$.
Twomteresting points are indheated by the alwove equation, which it is well to bear in mind, it applying potas. sum cyamde as a gool solient un a commercial scalh. -

1. That the quantity of cyanale theoretucally capable of alossulving a given amount of gold is infintestimal, combpared with the weght actually reguired in practice. Taking $\lambda u=196.8$, $\mathcal{K}=3904$, and $\mathrm{C} y=259 \mathrm{~S}$, it will he olserved that ijo o4 parts ios weight of potassum y amde should le capable of diswolving $106 \$$ parts of gold, or approximately two parts of the cyanide salt should dissole three parts of gull. The manamanacual consumption in treating free-milling ore, assaying, let us say, to dwis. per ton, is alout 3 lis. per vinct of guld recuereded, or zoughts, torty parts by weight of cyanate fur one part cenerall. consumed per ton of materal treated.
2. That an extremely small quantuty of surplus enygen is sufterent tocause the sulutionot the gotd, 1590 parts icing required for 393.6 parts of gold, or say as $1: 25$. The air present in a porous mass of tailings, with that dissolved air present in a porots mass of tailings, with that dissoved in the water uscd in mahing up the sulution, is in fact
more than ample to effect the reaction. To explain the more than anyle to effect the reaction. To explain the
enormous excessuc consumptron of cyanule, we must bear enornous excessuce consumpton of cyande, we murs.
Hydrocyanic acid is literated from ats satis by all mineral aculs, carlonic actd, and all common organic acids. Atmospheric cartonic acid is sufficient to set up a cetain amount of decomposition, in which a constamt evolution of hydrocyame acod takes place as follows:-
$2 \mathrm{KCy}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{HC}+\mathrm{K}_{2} \mathrm{CO}_{3}$.
Then, again, we must comsiter the broneness to ovidaton which the cyanates exhalnt, and wheh in fact lies at the base of mont of their techmeal applientions. l'uassum a sanude readily changes anto cyanate and ultiriately into carlionate:-
$\mathrm{KCN}+\mathrm{O}=\mathrm{KCNO}:$
$2 \mathrm{KCNO}+3.0=\mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{3}+\mathrm{N}_{2}$
The presence of athaties, wheth always occor in com mercial cyanule, tends to induce the pecultar and datie understood decomposition termed hydrolysis, which seems
to be montis produced in the ranc bunes by the presence of that metal.

In the reaction altuted to atrove, the alkals appears to determane a chemacal change, in which water plays a pan, while the alkals atself is not in the least affected.

There are good grounds for supposing that in dilute solutions a dissociation of the cyande takes place, so that what we term at weak solution of potascium cyanide is in reality a mixed solution of potasuam hyalrate and hydro. cyanic acill:-

$$
\mathrm{H}_{2} \mathrm{O}=\mathrm{KL}, \| C, \text {, } \mathrm{H}_{3} \| \mathrm{O}
$$

Thi leing the case it is only natural atat bydrocyanic acid shoult te constantly given off from all vessels in which weak cyanite solutions are frecly exposed to the air, and its amell is, in fact, generally noticeable in the neighlourhood of the tanks in which it is stored.

The consumption of the reagent is on these grounds evidently enhanced ty the agataton or circulation sjstems, since these methods involve a constant exposure of fresh surfaces.

Another source of waste is due to the tendency of the simple cyanides to form double salts with each other, or with other metallic comperants.
Salts of iron, and to a lesser extent of aluminium, magnesium, calcium, and the alkali metals are liable to occur in the tailings, especially after long exprosure in atmospheric influences.

It seems, therefore, that under the most favourable circumstances an cnormous waste of cyanide must take place, which may partly, however, be mitigated by the use of closed tanks and carefal attention to the purity bme of the cyanide itself and the water employed to dissolve it.

Actaon of Cyantile or I'yrstic .1/ateriat-Varsous addituonal decompositions take place, when cyanale is applied to the treatment of pr ruce wres of taitings. Ilac surface otes of the celebrated lanhet formation of South Africa consists almost exclusively of silica and oxide of iron, the silica occurring in the form of rounded pebbles, embedted In a softer matrix highly charged with ferric oxide, which

Hatir

Plan VII. - Profile of Main Shaft at Pike Lake Mica Mine, North Burgess, Ont.
ganes it a characterastic reddish tinge. The gold - is futnd in this matria assuctated with the oxide of iron, or sumetmes in small scales on the susfaze of the pebbles. The pebbles themselves carry litile or none.
At a lower level this free-miling lanhet passes into an ure precasely sumilar in structure, but much harler, and containing the iron in the form of sulphite instead of ovide, which gives it a peculiar bluish tint.

There can le nu doubt that the free-milling ores have been formed by the gradual oxidation of the pyrites through the influence of air and in jisture duing a lung
 periok of tame, and in fact we see this change in prugress,
wherewer pyrntic naterial has leen exposed to the action whereber pyritic material has leen exposed to the action
of the atmosphere. The first effect observed is the conof the atmosphere. The first effect observed is the con-
verston of ferric silphitle into a soluble sulphate, free verston of ferric stilphitle into a soluble sulphate, free
sulphuric acd leing liberated. By the action of the air agitn on the ferrous sulphate, certain insoluble basic sulphates of variable and somewhat complex composition are found to result, whitst a certain amount of soluble ferric sulphate is likely to be prorluced at the same time.

The pyritic ores or the Witwatersrandt contain also small amounts of copper, arsenic, and sometimes cobal: and nickel, but the amount of these forcign inetals has hitherto been sosmall that it has not practically interfered with the process.

As the fact has been observed, however, at the Robinson chlorination works, that copper and arsenic seem to occur in gradually increasing quantities with the increasing clepths of the mines from which these concentrates were purchased, it is possible that these elements may be a sertous source of trouble in the future.
If one attempts to treat a charge partially oxidized pyrutic tailings directly with cyanide solution, the free

- Taking into account the production from cäilings and concen. trates the average yield of the Witwatersrindt ore uas 12 dwies
grans jer ton in isgitand iz dwts. 23 grains in 1892 At the end of
 pet ton by direct amalganiation, whilst the average of free-gold
 the close of the jear; the total yield havint increased rather than
fallen of goes so show that thoagh the ore with depth has become falien of koes io show that thoagh the ore with depth has
more sulphuretied, it has so far leen suceesfully treated.

Plan V.-Showing location of Martha and Pike Lake Mica Mines, North Burgess, Ont.
(from drawings by Mr. F. Cirkel, M. E.)
sulphuric acid present which renders the moisture they contain distinctly acid, sets free hydrocyanic acid. : arrous sulphate (green vitriol) reacts upon the cyanide with the formation of ferrous cyanide, a yellowist-red flocthe formation of ferr
culent precipitate :-

$$
\mathrm{FeSO}_{4}+2 \mathrm{KCy}^{2}=\mathrm{FeCy}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}
$$

This, however, under ordinary circunstances is slowly converted into potassium ferrocyanide by the excess of cyanide present:-

$$
\mathrm{FeCy}_{2}+4 \mathrm{KCy}=\mathrm{K}_{4} \mathrm{FeC}_{4} .
$$

If sufficient acid be present, the ferrocyanile reacts on an additional quantity of the ferrous salt, ultimately giving rise to a blue precipitate or coloration (Prussian blue) : -
$3 \mathrm{~K}_{6} \mathrm{FeCy}_{8}+6 \mathrm{FeSO}_{4}+30=\mathrm{Fe}_{3} \mathrm{O}_{3}+6 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Fe}_{7} \mathrm{Cy}_{2}$
A coloration of that sort on the surface of the tailings or in the solution is therefore a sure indication that acid rron salts are present, and that a large waste of cyanide is taking place.

Ferric salts, when present unmixed with any ferrous compounds, decompose the cyanide solution with evoluthon of hydrocyanic acid, and precipitation of ferric hydrate:-

$$
\begin{gathered}
\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{KCy}+6 \mathrm{H}_{2} \mathrm{O}=\mathrm{Fe}_{2}(\mathrm{OH})_{6}+6 \mathrm{HCy}+ \\
3 \mathrm{~K}_{2} \mathrm{SO}_{4} .
\end{gathered}
$$

$$
3 \mathrm{~K}_{2} \mathrm{SO}_{4}
$$

This reaction takes place in two stages, the first being the furmation of a solublie but very unstable ferric cyanide, giving a dark brown solution :-

$$
\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{KCy}_{y}=\mathrm{Fe}_{2} \mathrm{Cy}_{4}+3 \mathrm{~K}_{2} \mathrm{SO}_{4},
$$

which decomposes as follows:-

$$
\mathrm{Fe}_{2} \mathrm{Cy}_{6}+6 \mathrm{H}_{2} \mathrm{O}=\mathrm{Fe}_{2}(\mathrm{OH})_{6}+6 \mathrm{HCy}
$$

This gives rise to ferric hydrate part of which, being in a fincly divided coiloidal condition, is with difficulty removed, as it chokes the pores of the filters.
A mixture of ferrous and ferric sulphates, such as is probably always present in partially oxidized pyritic tailings, causes the appearance of a blue colour on the addition of cyanide, after the free alkali of the commercial product has been neutralized, Prussian blue (ferricferrocyanide), $\mathrm{Fe}_{4}\left(\mathrm{FeCy}_{6}\right)_{3}$, being produced when the ferric salt is in excess, and Turnbull's blue (ferrousferricyanide), $\mathrm{Fe}_{3}\left(\mathrm{FeCy}_{0}\right)_{2}$, when the ferrous salt predominates.
Before attempling to treat pyritic material or products with cyanide, it is necessary therefore to get rid of the free sulphuric acid and solable iron compounds. This is gencrally done by leaching with water until the liquid running off the tanks no longer shows a coloration with ammonium suiphide. After this treatment the insoluble basic sulphates which still remain, and being gradually decomposed by water, would act upon the cyanide solution, are dealt with by washing vith caustic sola or lime water. This converts the basic salts into ferric hydrate and sodium or calcium sulphates. When the quanity of free acid and iron salts is smali, the preliminary washwater may be advantagenusly omitted.

Lime in the dry state is sometimes mixed with the tailings before the cyanide treatment commences. When this method is adopted the iron is precipitated as a mixture of ferrous and ferris hydrates. After the washing with alkali is completed, the tanks are allowed to drain, and strong cyanide solution of about 6 per cent. is pumped on.
Even after this treatment the consumption of cyanide with moderately pyritic tailings, which have heen partially decomposed by exposure, is found to be four times that which occurs with free-milling material.
The presence of a large excess of alkali in the solution brings about various secondary reactions, which lead to a loss of cyanide, such as the hydrolysis before referred to, and a peculiar action in the zinc lox nentioned later
Lime though slower in its action is preferable to caustic soda as a neutralizing agent, as it is . दuady effective in decomposing the iron salts, less active in producing secondary reactions on the cyanide, and also less anergetic in attacking the zinc in the precipitating-boves.
Feric hydrate does'not appear to be acted upot by potassium cyanide, but ferrous hydrate, which is formed on the neutralization of the iron salts by aikalies, reacts on the cyanide in excess, with the formation of ferrocyanide of potassium :-
$\mathrm{Fc}(\mathrm{OH})_{2}+6 \mathrm{KCy}=\mathrm{K}_{4} \mathrm{FCCy}_{4}+2 \mathrm{KOH}$.
Deposition of Gold from Cyanide Solutions.-Vnder certain conditions, such 35 the alsence of sufficient oxygen in the solution, a partial precipitation of the previously dissolved gold appears to occur. If by any chance the solution should become acid, there is a decomposition of the double cyanide of gold and potassium, in whech the gold is generally supposed to be thrown down as (insolubile) aurous cyanide :-

$\mathrm{KAuCy}_{2}+\mathrm{HCl}=\mathrm{KCl}+\mathrm{HC}+\mathrm{AuCy}$.

In working on the circulation-and-transfer system it is found that where pyritic maserial is under treatment it is not safe to transfer a solation alrendy rich in gold to a fresh lot of uilinifs, as the extensive decomposition of the solution which takes place may lead to a final loss of ${ }^{3}$ ghd.
Selective Action of Cyanide.-It is claimed by the inventors of the MacArthur-Forrest process, that in a mixture containing metallic gold, silver, copper, añal bisc metals, cyanide of potassium exerts a selective action, dissolving first the gold, then the silver, and afterwardis rissolving first the gold, then the silver
attacking, the copper and buser metals.
The process, however, does not appear to have been successfully applied to ores, such as are met with in parts of California and Australia, containing considerable quantities or forcign metals.
Ores containing sulphides or silver and copper produce considerable decomposition of cyanide, the copper being partially dissolved as subsulpho-cyanide, the silver, howcver, remaining unattacket.
In two experiments carried out by Mr. Wm. Bettel, an ore from of the Rolinson Gold Mining Company, on an ore from the Allert silver mine (containing 30 ounces of silver per ton and 10 per cent. of copper), it was found
that no extraction of silver occurred, this metal being present as sulphide.
Action of the Zine Shavimgs on the Solution'-We must now consider the action of the zinc on the gold cyanide solution. Theoretically, a simple substitution of zine for gold occurs in accordance with the following equation:-

$$
2 \mathrm{KAuC}_{2}+\mathrm{Zn}=\mathrm{K}_{2} \mathrm{ZnCl}_{4}+2 \mathrm{Au}
$$

Taking $Z \mathrm{n}=65^{\circ} 1$, Au $=196 \cdot 8$, it follows that $65^{\prime} 1$ parts by weight of zinc should he sufficient to precipitate $393^{\circ} 6$ parts of gold, or 1 lb . of zinc should precipitate 6 lbs of gold. The actual consumption of zins is about 1 lb . per troy ounce of gold recovered. It is evident, then, that zinc is consumed in some other way than in mere replacement of s lit.
During the passage of the solution through the zine boxes a const.nt vigorous evolution of small bubbles may
be noticed, which are found to consist chicfy be noticed, which are found to consist chichly of hydrogen. The outfowing liquid is found to possess a greater degree of alkalinity than it had on entering at the head of the box, and a smell of hydrocyanic acid and sometimes of ammonia is constantly observed in the neighbourhood of the boxes.
It is clear, then, that a decomposition of the potassium cyanide solution itself by the zinc is in progress, and this is not to be wondered at when we consider the powerful elect.o-chemical effect which must be produced by the contact of stuch a hip., ly positive, metal as zunc wath a strongly negative metal such as gold.
Ordinary commercial zinc loses weight when immersed It is doubt inte in cyanide solution, but the action is slow. It is doubtful whether pure potassium cyande would have any action at all on chemically pure zinc. It is well known that the copper -zine couple produced by immersing
zinc in a solution of a copper salt decomposes water.
An analogous reaction of the zinc couple accounts for the evolution of hydrogen above-mentioned :-

$$
\mathrm{Zn}+2 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{H}+\mathrm{Zn}(\mathrm{OH})_{2} .
$$

The hydrate of zinc is at once dissolved in the excess of cyanide:-

$$
\mathrm{Zn}(\mathrm{OH})_{2}+4 \mathrm{KCy}=\mathrm{K}_{2} \mathrm{ZnCy}_{4}+2 \mathrm{KOH},
$$

which reaction accounts for the increased alkalinity of the solution

There are reasons for believing that the black deposits formed on the zine shavings is an actual che: fical compound of gold and zinc, which acts as the negative element in the electrre couple, the andesomposed zine forming the positive element.
When strong solutions of caustic soda have been used for neutralizing the acid salts of the ore, a white deposit is frequently observed on the zinc. The alkali first attacks the metal to form a zinc-sodium oxide :-

$\mathrm{Zn}+2 \mathrm{NaHO}=\mathrm{Zn}(\mathrm{ONa})_{3}+2 \mathrm{H}$.

This then reacts on the double cyanide of xine and potassium always present in the solution, and precipitates the white insoluble simple cyanide of ziñe:-

Cantley Stables of the Lake Girard Mica Mining System.

 2kOH.
Thi seacton io of what mantance as affording ene means by whoth the
 (k.lut) : מppeas to be whe of the mose stable of the
 that the atfinity of cinc, tugether "ith potasium, for
 the same radicle. Hence a wolathon of potasium cyanide cannot diwolve gold whech is in contact with anc, bether can gold replace rine in a woluthon of the double cyanide of zinc and kotawdum, So long as any zethc is presemt therefore, we need but fear that the precapmated guld will
 through the tones.

It in evedent aho that the clanugen contanei in the
 disolking gold, nor when a voluton charted with ziac a employed in the treathent of a tresh lot of taling t^{2} a only effectuce in of far as it centam a cettan quanuly

 dum and ammonam and tho of the ohathac cathe
 assum cyande. sodnam cyande is more dithecule manufacture than the putasum compound, but a gact werght of a should tre mure effectue than the same wergh of potassum ceantle, masmuch as 49 pats of the forme are erguivalent to 65 of the hatter.
The advantages of Dolloy" process and others which employ wolum or potasum analagan will be referred to later. The alkah metal is obtamed by the electrolysis of the carbonate between electrodes of lead and mercurs :-

$$
\mathrm{Na} \mathrm{~A}_{2} \mathrm{CO}-\mathrm{Na} \mathrm{a}_{2}-(\mathrm{CO})_{2}+O .
$$

The sodiam forms an amalgan: with the mercury. Sotiun amalgatm mas aloo lee manufactured direct from Sotimu amagant mas ano we manuactured direct from

Comenshant of the Zome stimes, -iny hase metats which happen to be in solutuon an the çande hutur are hable to be precputated by the zanc aiung wath the fold. Hable to be precpurated by the anc alugg with the fold.
Hence the ane simes are fuund to contan a certan per Hence the ante shames are found so comtan a certann per
centage of copper as weil as trace, of arsenic and antacentage of copper as well as trace, of atsence and ants-
mony. Moreover, any mpurtes in the zape will alse tand ther was ato the slmes, as manc will te ubsolied ing the cyamde in preterence to any kes watuable metah, c.g., un and lead. sherer is disulical ty the cyante and repreciptated by aine by a set of reactuons precisely analogrous to theoce of gold :-
$2 \mathrm{Ig}-4 \mathrm{KCy}-\mathrm{O}-1 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{KAg}\left(\mathrm{y}_{2}+2 \mathrm{KOH}\right.$, and

It has lean ulsersed that the propurtion of silver to
 from the latteries, and this is explained by suppong that the lows of stiser in amalgamation is greater thin that of giold.
Theatment of the Zint Slames. - The remuval of the

 ilicate of zimp.
A prostion of the situ a whatilized athe burns at the mouth of the criwhte wath a bicenth thanc, productige
 flues, and no douln cortacs wath it nu incenoiderath yuantity of gold aud silke. The mow phonising methoul of treatiog inese slistes apprats to to that suggested hos Mad lettel of fuxing with acid supphate of soda and fluorspar.

Altempts to remone the atie prow the meltang have leen only partathy wecovinh, wath rich methexts in. volse the filtrathon of a stur. maw, whach retams soluisle ati- "ith great temathy.
the vag trom the tuan of the neme shames contan a convederable antumb of gote, vime of whech is in the form ot sound shot, and may be remosed by potading up the lag. pawimg through a course stese, and panming of. The tevadue from the tres fuson should alwass be lused apan wati athotanal lead to form an alloy with the gold. The same lead bars may tee wed tor a number of succene fanom of the lag, and when vufticiently enriched the gold can le recosered by cupeltaton.

Tistmy of Cyamdic Solutions.--It a a matter of im. portume bedectumak ewally what strengh of cyanide

 1) soluble to eaccos of priasimen cramic, with the form-

 the praphtate bewnes promathth, what, in fact, the
 permanim prechpatate of the mostulle rample eyanide ot sller.

$\mathrm{K} \mathrm{AgCy}_{2}+\mathrm{AgNO}_{5}=\mathrm{KNO}_{3}+2 \mathrm{~A}_{2} \mathrm{C} \%$

From these reactions 10766 part, in weight of silver are equivalens to 130 of parts of potansium chanide. A consenient standari vher solution is wae of ewh strength that etery cubic centimetre added to to cubic centimetres of the solution to be testenl, conresponi- to 012 per cent. of pure polas»um cyanide.
lhis methes gives gexel resuit, when pare cyanide solutions are nimier examination, hat when the solutions
 the end of the reaction. A white lleceutem precipitate occurs at a selain tage, brobalds combining of simple (anolulite) cyanide of zinc, formed ly the decompocition of the sulutile duilte cganide.

Thi pre ipmation ucent lung lefore the whule amount
 double salt of silier ($\mathrm{K} \mathrm{AgCl}_{2}$) for the sulution after the ppratance of the tlocculent precipitate still pives the Irwaw lhan waction with a bilulated fertens sulphate.
 in "wed with groul aceuracy fir tetermining the total amonat of cyanugen in a sulution whether in combination with zinc or not, mahing use of the reaction

$K\left(y+I_{4}=K I+I C y\right.$.

The colour of the iodine is discharged so long as an acess of cyanite is preient. The sharpness of the acrmanal reaction may be increased by audding a small quantily of starch to the solation under examination, whith given a permanent blue cedear as soon as an excess of iodine has been added.
What is most needed, however, is a rapid method of Actemming the amount of cyanile atajlable for tissolving tuld, fur, as "as panted out alme, the cyanide in com lination with yiac is not available for that purpose
The method of testing solutions enntaining zine for awailahh cyanide which was introduce 1 by Mr. Mettel at the Rubson, Compants 's works is as follows: Two perfecth) clean llanhs of equal size are tatien To each of thase, added a consideraide buik, say 50 cubse centimetros withe sulation to be tested and 50 cubic centimetres of water. The liquid in both llasks will probably appear slightly turbid, but the degree of tutbidity wilt be the same in cach. Standard silver nitmite solution is run
into one thask until the slightest posible increase in turbidity is obsersed in compation with the liquid in the other llask. This point in taken as indicatiog the conversion of the whole of the free potassitm cyanide inte the soluble silver salt, and therefore av determining the amount of asaihble cyanide present.

The mount of gold in the solution is generally foumd by evaporating a known buth with litharge, fluxing the residue and cupelling the resulting lead lumliom. Exaportion on lead foil may likewive te emplused.
 not le out of place in this comestion. Altheugh one of the mox rapietly and deadls of hnowa poimms when tahe in internally, its action as a hool frisom is nuich ters siolent. Nerertheles, when intrudaced into cuts it produces erery painful sures. The men employed in cleaning ap and in melting the slimes, are stilject to a
 headache, giddinew, and general depresion.
Ferrocg:nide of potassium has been recommended as a remedy for the erpution; it may be taken intermally and also applied as a lotion. Comsidering the dangervas nature of the repgent 11 in remarhable hos fen fatal cases have occurred through the use of cyanide on a large scale. In cases of poisoning precipitated carbonate of iron, chatined by mising solntions of sodimm carhmate and ferroms sulphatc, ming ln wol to .un austitute, fotwing in-

11ydrocyanic acha acts directly on the nerr uns system, cousing inslant paralysia, hence any treatment which will excte the action of the nersess steh as applacations of cold water to the spine, inhalation of ammonia, etce, may lec vapour.

The disponal of waste eyanide liquors is a matter of erivis culsideration. Sulations containing of tor 0.2 per cent. of potasium cyanide mant occasionally be discharged and are lihely to cuntaminate the water of the dams of siteans which recone them to a dangerous extent. If sume effictive means of precipitating the zinc, or better stall of dhypensing with the use of zinc altogether, could be devised there would never be any necessity for alluwing cyamile liguns to the works.

aplat itions of the ciane pioness.

Mr. Almarin 13. Paul appears to have originated the idea of using cyanide solution in the batery crushing the ore wet. This he clams to have done with success at the Calamu mill, Shasta County, Carlifornia. He states that his plan is in all cases to crush with a weak solution, and ,hnuld the ore require a higher percentage of cyanide when the firt solution has percolated below the surface of the ore, afler the tanks bave leen filled, a utronger nne can, if neceosary, be introduced. All the dlust and disagrecable effects of dry crushing is thes avoided. The agreeable eftects of drycrushing is thus avided. The
loss of cyanile in crohing is hat nominal, and is off-set hy the cheapmeso of working and emmpleteness of distri. bution of the ramitle hrough the pulp in the tanks. Thi - plan has heen followed of hate at the May Consotidated work in South Vriea, hut it does not appear to he apylicoble on all rases, as generally when ores have heen crushed wet and run direct to the tanks the pulp has packed so hard as to tre inpenetrable to the leach higuor. Ores comaning impurities, such as assenic and tellurium, have proved obtinate to deal with.
The consumption of available potassiun cyanide may for practical purposes be diviled into avoidable and unavoidable decomposition ; each of these factors sarying with the comprosition of the ore, the strength of the solution, tince of contact, and method of theatment
Tests made on a heasy, mw sulphide gold ore by Mr. C. W. Merrill, using a 2 per cent. solution, showed that it was capable of decomposing available cyanide at the rate of 12 llse . per ton in 24 hours, but that ly taking all nossille precautions this loss could be reduced to 3 libs. per 24 hours.
The reduction in loss of cyanide seems, however, to have been set oft by an extravagant loss of time, as it is necessary to continue the treatment for 7 to to days.
A series of extractinn teests poved that a $1 / 4$ per cent. solution when reinforced cach day gave as groil results as a stronger one, and with a decomposition of only 5 to 7 los. of cyanide per ton. As the ore contained acid salts of iron and fine copper sulphides, Inth anf which decompose polassinm cyanide, the probability is that the weak olutions were rend-red inent after a few hours' contact with the ore, hence the necessity of reinforcing them.
A series of experiments, published in detail in the New Lork Alining lournal of December 2;th, 1892, were made by Mr. G. E. Kectzie, M.E., to determine how far the gold bearing pyritic ores of Ouray, Colorado, could Le successfutly treated by the cyanide process, and also to learn the conditions under which the most complete extraction could be obtained, together with the anount of traction could be oblained, together with the amount of
cyanide consumed. These caperiments throw much light cyanide consumed. These cxpenments throw much light
on the question of how far it is practicalle to treat ores of on the question of how far it is practicable to
a similar description by the cyanide method.

The samples under treatment contained gold and silver in sarying proportions, ranging from 0.27 ounce to $145 \% 0$ ounces of the former, and 0 obs ounce to 458 ounces of the hatter metal, the value of the high grate ores and tailings being determined by triplicate coorificati n assays, and that of the lon grade ores and tailings ly duplicate crucible fusions. The gangue in some cases was quarizose, in others calcarcous or clayey, and contained iton pyrites, copper pyrites, and magnetite, cither alone or in adnixture.
(To is Continued).

QUARTERLY MEETING
Mining Socicty of Nora Scotia.

FULL REPORT OF PROCEEDINGS

The septeander guarterly meetang of the socuety opened at llahfa, on Tharsel.-, sith mutant. Among those present were. Mesiss. M1.S. l'wole, M. i., F.G.S. Stellartun; Juhn i:. IIardaman, S. B., M. E.., Oldham; J. 11. Austen, Ilahfax; K. II. Brown, Sydney Dines, C. 13.; Charles Fergie, M. E., Westille; F. II. Mason, F.C.S., Trutu, W. K. Thumas, Montague; A. A. Hay. ward. Waverley; 13. C. Wilson, Waverley; Inr. E.
Gilpin, Jr., Inspectur of Sines, Halifax Hown Gilpin, Jr., Inspectur of Mines, Malifax; I Ioward Clarke, Ihalifax; George IV. Stuart, Truro; A. Drystale, IIahfax; Ceoffrey Morrow, Malifax; M. M. Wylde, Hahfax Messrs. S. 1'. Franchot, lauckingham, and 13. T. A. Bell, Othawa, fficers of the (ieneral Miming Association of the Province of guelec, were also present as delegates from that organization.
Mr. I1. S. Poole, President, in the chair.
The ninutes of presults meeting hasing teen confirmed and Mr. A. Dick, Joggin, Mines, basing been elected a member, the mecting adjourned untal the afternoon.

The Introduction of New Mining LegislationInterview with Premicr Fielding.

A depatation, consitting of the President and aght members, waited upon the Ilon. W. S. Fielding, Premier of the Province, at his office in the Couernment Bualdang at $12 o^{\circ}$ clock.
MR. POOLE stated that the object of this visit by the menblers of the Mining Suciety, was in respect to mining
legislation legishation legislation which is intruduced as a castal matter into the Howse. He ashed that an upportamy be given so that all sides of the question might tre presented to the Govermment. A goud deal of mining legishation had been intrellaced into the Hunse, withuat the oppportumty beeng given to those who are engagaed in mining, of discussing
it. He would submit that it should tex an unurten law, that all legistation respecting mining shuuld pass through the Xines Departaren.
Mr. FILILDING replied that the Government cannot put any restriction upon any member of the House introducing legislation respecting mining, In matters of import-
 proposed that the Government should meterfere with the liberty of action of any member to bring forward legislation, that he could not assent to.
Mrk. POOLEE-There can be an sumbitten practice-a priate memaber mas awe a pertect raght to bring in any amendmemt he pleases, hut the Government could say: " You cannot expect the Government to consider this care:
fully or endorse it, unless it has had an opportunity of having it discussed by those it is going to alfect."
Mr. FIELDING-That inghes shat no legislation is to be introduced withunt leeng consudered and endursed by the Govermment.
Mk. POOLE-In the matter of education does not the MR. FIELDING to a general extent, any anendment of auportance to the cducation law is brought forward by the Government, but all amendments do not emanate from the Government, but fonm private members as well. If you mean that you would like to urge, not as a practicc, hat as a reason, thatall mininglegislation should be consuldered and not done hastily, I fancy that merely passing through the Department would not satusfy you-the Department is not infal. lible. I assume yout would the to know what was going on, and that you should thave an opportumity to present your views.

Mo. MOLE-It would lead to that. the ku MARDMAN--Lcgishation whech may appear on the surface as alt right, and, therefore, mon spectally attract
the attention of the Commassioner of Mines, maght hate an effect sery apparent to a person in the profession. we had an opportunty of knowing in due season, what legistation is proposed, we maght have a vorce in the matter, I will smply mention one case whach occurred last uinter, the changing of the courses from the truc meridian to that of the magnetic merdian.
Mik. FIELDING; If that was a mistake, it was done without the consideration of the Department. The. Dc-
partment may not have had it under full consideration. It may have been in consequerce of being introducen late
in the Sesong. fiou winh to have an opportunity to in the Sespion. Sout winh to have an opportunity to
present your viens from the vandpoint of practical miners present yous vie n s from the sandpoint of pr

- that 1 take it is the main powint you ugge.
-that take it in the man point yon utge fefor to the amendments brenght forward by private members. We desite a chance to know what legishation is introduced, and a chance to presebt our whectom, of we hate any.
 town, therefore, is that mining legislation should not only
receive the attention of th: Departmemt of Nine, lat receive the attention of the: Department of Mines, hut hearing? All that I agree to.

Mk. POOLE - Thereare mans evintiag incumstemans c.sr. Why should a louy un a coal antae hase horter hours c.5an a bos in an iron mine? New /ealand apparently took the lingtish act and copiod whole sections from it,
 wound up

Mk. FIBLDAIA: ;-Thi, may not have been the intentwon of the du. Voll math withagine that if wou hase the superation of the Mase Departumet and a clannee to discuss the Act that this will prevent any errors creeping into legislation alfecting mines. The best of draughtsmen may be employed in framing an Act and yet millouss of dollars may les suent in fiuling out what certain sec tuns of an Act ueans. Pur instance, thite the Liquor License Act of Canada.
Mr. HARDMAN \rightarrow a judgment was given in Quebec not more than twelve months ago to the effect that all persons are obliged, under an Act, to have a powder magazine with walls of masumb wina a ruof of irun.

Ndirating the fact that no lrody of men can make perfect laws, still would it not be better to hase a chance to discuss meanures which are brought forward.

Mk. FIELDING-()unte so.
If you gentlemen agree among yourseles and furnish as with a mentrandan of the amembenents jue propes we will endeature to entertain them. I fancy some witl be subject to contention, yet some palpable errors may le remored. If some of your memerers were to make a list of the ameniments som propuse, but the amenchuents themselves, but the subatance of tinem, we may have an opportunity of eliminating errots in the Act--do not wait
until Parliament meets for some suggetion-and do not until Parliament meets for some suggestion-and do not take it for gramed that everything you ask for will be given. We do not want to impose upon you the duty ol revising our mining law; that is our business. If you furnish us with a memorandum of what sour society considers defects in our law, and a statement of what amendments
should be uade, tt would le in order. The Guvernment should be made, it would es
would then seframe the det.
Ma. HAKDMAN $-1 W_{c}$ sinply came as petitioners to ask the attention of the coovermment, to obviate as fas as possible all future crrors whech my be mate. The eaamples we have cated are of what has treen done in the past. We wish also to coll witention to one wher matter -formerly "was the cutum, under an old 1 iv heep a recurd ut at different mine worhins, in the Manes Office.
DR. Ls..I'IN - I mught mmplif, masters ly stating that
Act.
Act. Pr. POLE-If it was not in accordance with the Act, at was in accurdance with the practice of the office.
Mx. FIELDNK -Gold mines chielly ?

MR. HARDNA, Now, we would like to see some record kept, and a memorandum published from time to time of the depthe of the workings; also of the evtent of the workings in this and that district, etc., which could be amended from year to year as the workings progressed.
DR. GILIIN-Would you extend that further to Dr. GILPIN-Wonld you ex
locate the position of such shafts?
locate the position of
M1. Poolti-lics.
Mk. WAKDMAN-1 have nuthing mure to say in suggesti:g anythine to the Government, but I will beg that the Dimug society hould have the fullest opportunity of a public hearing, in order to show Parliament whether a measure was advantageots or dindvaniageo
In regard to the plans of deep worhings, I subanit that such plans would be of more value to the Province than to the medividual.
Mk. FIELDLN(, - But I should thinh it would be desirable durang the sessum for the Socicty to have one of its members present watching againt wrong doing

MR. HARDMAN-A lobyist?
Mk. FIIELDING-I anticipated your suggestion. I am not imposing such duty upon you, lua I wonld suggest that a menber of the Mining Society should watch closely the daly newspapers, and the moment he saw that any manng legislation was mitroduced, he could get a cons. It would not mean a lobty ist; it would smply mean an observer.
Mk. ILAKDMAN-In ISS5 such maters could be lrought before the Mlines Department, and a public hearing could be olvained.
Mr. FIELDING-I think there should not be much dofficulty in watching the newspapers, and getung copnes of any measures introduced into the louse, for your own protection I thank you would fand it useful. I would no mpese thas on you as an obligation hut for your protection. body would come in whth a private bill which would have the effect we complan of. I tried to do as you suggest last session, but the special matter of the "meridian" already mentuned, had already reacheti its fimal stage, and I was too late

Mk. FIBLDDN(:This hill must have passed through some critical stafe.
Dr. Gililn
Dr. GlliPLN -some propte came to Mir. Church and mate representations-(interrupting)-That is the very point we are driving at. "Some beople," not representing the industry, made "representations" to the Commissioner, and he acceded to them without giving us a hearing. Is a matter of fact, tinis amenduent means that the sur wejurs jou have in the Province are too lazy to get the truc meridan, and instead, prefer laying a mangnetic course. It is a serious matter, for we have hat various instances where the varation of companses has cansed direct loss and litigation. The matter of changing to the true mernlian was thorughly theshod out hy the Society's prelecessor, the Cood Mmers' Association, and the change to true meridian received the unanimuas endorsement of the (iold Miners' ne that time.
 time that it was a mistake and it shoukd be corrected. From what you tell me, it is against the opinion of the Mining Society?
ML. HARDM! AN-The matter was theshed ont in the , olld Mmers Assuciation, anil was recommended by that hody for nloption.
Mr. FIELDNG-Are you alt of the same opinion? I think it is a matter upon which experts may be divided. Mk. I'OOLE-Siune pants had been established in the cual fielts years lefoure, anit the legislature hat confirmed them as the correct corners, so that we have had no occasion to look into the matter.
Mk. HARDMAN-I mught say further, that this amendment did net affect the old areas, it was only to appis to licw ground haid vat sulsequently to the passing affy to tew ground haty uat subsequently the the passing
of the Act. It was only in regard to new areas, they were to le laid out by the true neeridian. I simply miention it as an example where legislation was passed which was not representative of the opinion of gentlemen connected with mining work.

Mk. FIELDDING; I remember hearing the eliscussion at the tine the Governor-in-Council gave a hearing. (To Mr. IIardman)-At what stage of the bill did you offer your oljections?
Mr. IARRDMAN-I went up to the House on the afternoon of the day I saw the amendment in the news-
papers, and asked fo: Mr. Dryshale. He informed me it papers, and asked fo: Mr. Drysclale. He informed me it was too lite to object, that the bill was passed.
Mk. POOLE-We think most of these amendments to the mining laws would be better if more time was given to their discussion.

Mr. FILLDLNG-Suppose a session is approaching the ead, the Commissioner nay have his attention directed to something erreneous, then lee would try and remedy it. to something erreneous, then le would try and remedy to
it the end of last seision we had many things to at the end of last session we had many things to
do which should have been done earher in the session. do which should have been done earrher on the session.
When the Commissioner believes a mistake has been made When the Conmimsioner believes a mistake has been Wade
the rushes in to make an amendment. Every member of the llouse has his undoulted righ to bring forward any legishaton with respect to manes, but to say that no legislabon should be introduced without supervision as you suggest, is toung too far. An opportunity should be afforded the Minagg Socrety and gentemen interested in muning to present thers vews, and to represent what is most desirable, but the government cannot make it a positive and unlending rule.
The deputation having thanked the premier for his comrteous hearing then setired.

Afternoon Session.

The members assembled at two oclork, the President in the chnir.
The first puper for consideration was :
Effect of a Lightning Discharge at the Scott Pit.

By Cuarlfs Fuggi, \bar{M}.E., Westhale, N.S.

The Scott pit shaft is 226 fee: deep and down to the second seam, which is 12 feet thich, some enght feet being worked. For some months past the only work done on this seam has been the driving of a parr of slopes to the eleep to intersect the main seam by way of a tunnel already driven. These slopes ase 2,00 feet down, and the driving of them was proceeted with untul ahout the end of Juby last, when, in consequence of the colliery supply of water for steanm purposes showing signs of glving out, they were stopped, and all work confined to the main slopes, the Scolt pit being laid idle. Previous to this the mine had been ventilated ly a Schicle fan but having no steam to spare, in consequence of the scarcity of water, the fan was stopped and the mune receved its supply of ar by natural ventalation only. The serm being a very gassy one this mode of eentitation woukd not be sufficent to teep the mane clear, but as no person was to enter the mine until the normal state of affairs was again restored, it was not anticipated that any danger from an epploswon of gas could possibly occar. The air of the nune being hughly charged wht hire damp, the necessary means of gatiton were soon to be fortheoming On the afternoon of the Sth of August, about 4.50 ; there was an clectric storm passing over the vicmaty of the collery, and which discharged itself. The gencral office was struck by lightning and the front part of the brulding demolished. At the same tume t struck the ron pulleys of the head.frame at the Scolt pit and travelled down the steel winding rope entering the mine, ard instantly igniting the gas accumulated therein which wealsed a
severe explosion, the foree of which demolished the bulkuges on the surfiace at the upeast, and at another shallow shaft called the "stair pit."' The witer, who was situing "riting ly his whice "mons, coubd not thas
tinguishang lapee of time tetween the thumer clap and tinguishang hape of time letween the thumeder clap, and
the explusion of the mine, so smultancous were they: It being the opinion after the explosion that hre existed below, it was decided without delay, secing that the vemilating shaft and fan were damaged, also the cages of the winding shaft, to seal up the mine, and this was dlone without mishap within alwout an hour and a halt. The mine has since remaned seated and will belely be reppened about the end of Uctuker when the buys shap. ping season is over. The writer will then be in a better pootion to state the actual ellects of the explosion underground and proposes to supplement thas ppper at a later
dite. Though having read of lughumg having eatered a date. Though hasiug read of hghtung having entered a ming la was of steel ropes, etc., the writer is not aware
of any explosion having been difectly traced to that cause of any caplosion hasing been directis traced to that canse
before the one now referred to. This accudent, and which was happuls unattended by losis of liee, clearly demonstrates that no mue where gas is allowed to accumalate to an explosive pomt can be consudered afe from an explowion when th sombected whth the surface b) some cunducturs of electrecty such as wire ropes, water pqpes, steal rails. etc. It also sernes to pomt out that where loore holes are $1^{\text {mat }}$ down from the surface for the parpose of rope haulage underground these holes and gas is likely nut pas athrough a return arway or where percentages.

Discussion.

Mk. POOLIF-That lightning can damage a pit has Ween jpoken off, after the mire cunclusise case cuuld le had, and the electric fluid finding its way into the recesses of a mine and causing an whlosinn if inthamable gas, has
been on weral uccasiuns discused, hat 1 do nut re. been on eeveral necasions discussed, hat 1 do nut re
member having read of any case that so conclusiely proved thar lightning had actually thred tases in a pit
than the presem one. No other alternative was posibile, than the present one. No other alternative was possible, no one was belou, no one was alnut the mine at the time,
and simultaneouly with the ${ }^{2}$, electric discharge which injured the gable of a bulding some 200 feet divant the earth tremor frum the eaplosion was felt at Stellartun and caused those who noticed it tn remark that they never letive nutied thander to shake the grimad as did this partucular requent.
On several oceasions lightenimg has theen seen ho run along the iron rails underground and in some cases men have complained of leing partially stunned. Mr. G. I. Burns in Vol 111, lart 4 nf the Trans. Fed. Instit. MI E., 1892 , mentions seseral case where lightnung was
seen to enter coal mines in New Z caland and a prenature seen to emter coal mines in New Zealand and a preabature
blast in the Hoosac tunnel which hilled some siteen blast in the lhoosac tunnel which hilled sume siteen
men was imputed to lightning entering the tunned his the battery wires.
The question amme up hefore the Accidents in Pines Commissinn in 1 SSo, and in answer 1 , an enguiny frum "The electrical "x citement consequent urn "rot storm which ocerreced at the time of the explusuon as explosive' in other words the exploving hane mure explowive in other words the explosive properties of electrical cacitement.
Filectrical means of signalling may le used in
with explosive nitures of gasses with localities filled with explosive mintures of gasses with
perfect safety, provided the hattery employ ed will not produce a spark under any circumstances likely to occur in the working of the signals.
"There is no difficulty in obtaining batteries which are perfectly safe.
"We think it right to point out that it appears to us no: impossible, considering the arrangements frequently in the ordinary means of signalling, that during a violent stom a portion of an electrical discharge may find its way into workings and fulfil conditions necessary for the igmion of gas even at some distance from the pit's muuth.
MR. FERGIE-There is no doubt but that the caplosion vecurred through the lightning strihing the winding rope and entering the mine. Simultaneous with the
striking of the head-frame it struck the luidding. The striking of the head frame it struck the luilding. The conditions underground wer
MR. BAIRD-I thought I had an instance of the same kind in my mind, but I cannot recall it just now.
Mr. For an explosion many not have the same condi. years-that is for the lightning to strike that spot and have the air in the sante condition-the ant was at an explosive point.
Mk. CLARKE-How would this effect the working of mines with electrical machincry?
Mr. FERGIE-
Mr. FERGIE, Where you have your ventilation up to an explosive puint electrical machinery would affect; therwise not.
MR. HARDMAN-At what point would the lightning prolably leave the cable?-t.e. where was the flash underground?
Mk. FEKGIE- The cage was hanging at the end of the cable alout 25 or 30 feet frum the Imotom and the lischarge erccurred at this $p^{\text {nnat. }}$. It would be impure art right up 10 the eage from the inutton. It would be Mr. IIARDMAN-So that

Mr. FERGIE-Yes.

Dr. GILIPIN-There was a case on the continent where ant explosion occurred which was attrinted to
hightung. There is a case where lightang entered a pit and traversed the worhongs but dul not do any damage. It was alout twelve years ago.

A vole of thanhs, moved by, Mr. Ilardman, seconded by Mr. Clarke, was accorded to Mr. Fergee for has valualse paper, aud was passed unammonsly.

Notes on Practical Mining, Applicable to some Gold Mining Districts in Nova Scotia.

H. Me W. R. Tunsas, M.E., Muntague, NS.

In treating this subject I propose to erade the much disensed and dehatable question, as to formation of the "hels", with the contained auriferous quartz " leats," as fumbl ia Nuta Scotia; leaving the solving of thin pro-
bem to far mure able geologists than mysulf, as well as bem to far mure alde geologists than myself, as well as
to men who hase had far greater equeritnce in guld mining gellerally.
I incend ashing gou to cunsiler a foll priaciples, which maj: te appliced in cunducting mining uperation, in sume guld mining divtricts of Nuta Scutia, practically tahing mis) shand un enperience in the Montague district, tugether with infurmation gancel from conersation with people engaged in other districts in the province.
I also desite gua to luoh on the following as being the conclusions of one who has had thet a comparaticely shurt experience, not only in gold mining, hat in gold mining in Nion Scotia. However, I mast candidly state :hat I when thes speah of the alsurdity of men, who have only When they speak of the alsurdity of men, who have only
previously had epperience in mining for other ores or previonsly had experience in mining for other ores or
metals, entering the professiun of guld mining. I lout on commons sense ant judbment as theing the first and foremuy princuldes which men in all the various branches comprising the manag profession shouhd pussess, and if possible, cultinate.
Sertich. Orferations-In this, as well as in many other countries, sume huge blunders have leen made, nut only in the erectun of suitable machinery, but in the evtent of the phant required. I venture to sas that hat the amount of money which has been unalvisedly ex. pended an erecting eatcosite mituing plants, been spent in mine derchumem, the list of stucessful Nina Soutian mines would le much larger than at present. It is highly essential to hase a sutticient quantity of machinery,
enabling one to easily deal with the preseat output, but th cumaence the erection, on the laying out of a plant which the present duclopments do nut warrant, lushing a long way ahead in the dim future, is most certainly monstruus in its atsurdity, and, in fact, a suctual police.
If a fie stamp, mill is of sufficient puwer to mull all the available quartr, why erect a 10 or 15 stamp mint? Or if a $30 \mathrm{~h} . \mathrm{p}$. engune is equal to norhing zous pumpnes and huistuge navelinict, is it econumy to erect an enghe of $S 0$ or 10 h.p.?

Aatwally, when water power is wahn reasmonalle reach, it is wise twutuize it, assunning that after full consideratiun from a basiness puiat of view, the profit derised will be sufficient to warramt the neccosary outhay.
Where the mach cuteted poulct is nut wathin reach, procure the strongest, cheapest and most economical style of machuners, of sufficient puwer to cupe with, war present requirements, remembering that the less machinery you have the correspondingly less will be gour account for supervision, fuel, rates and taxes, Nc., isc.
One of, perhaps, my strongest reasons for conservatism on the pount is, that it is especially, tiscrete where actual mining is so expensive-surrounding roch hard, and "leads" small-to reduce the surface eapenditure to a minimum. Of course this policy should te practised in all cases.

It is nut possible to develop a mine in a day, weeh, month or even a year, as mining uperations are not
carried on as rapid:, as one night bring himself to conceive when using the parailel ruler, scale and pencil. To" mine "in the rock and to "mine" on paper ate
slighty different in their natures; the result in many cases not comparing as favorallys as one might desire, one with another.
I have not had any experience in importation of machinery in this province, but am of the opinion that the government of this country would, by the alolition of importation duties, create a confidence between themseives and foregn investors which, in the future, they might not regret. I say this not thinking disparagingly of the class of mining machinery locally manufactured ; in fact I have pleasure at having an opportunity to state that, in my opinion, the machinery manufactured in this country is of a first class order, and difficult to surpass; and I also feel assured that the local- manufacturers are not afraid of competition.
Locatisi; of Plant-It is also highly amportant in the laying ont of a minc, that is the commencement of the necessary surface erections, to localise your plant as much as posssible with a vacu to practusing econonyy in the amount of lalwer employed in the superision, \&c.

In many countries, including Nova Scoua, economy in lalxor is an mportant natter, which should not be overlooked. I am personally açuainted with many instances
where vast sums of money have been expended in the where vast sums of moncy have been expended in the
crection of munng machiners before even the most erection of mining machiners before even the most
important considerations have been thought of. For important considerations have been thought of. For
instance, arr compressing machinery on the top of a mstance, ar compressing machinery on the top of a
mountam, rendering the item, carringe of fuel, excessive;
all of which might be saved by the purchase of 1,500 or 2,000 ft. of ais pipes.
CVBFRGROED Oprbatins - We have all heard discussions as to the advisability of vertical shafts in preference to the inclined shaft sunk on the dip of the ceat. The former appear to me to the ments when large quantities of rock are heimg handled, the surrounding comantry rock is exceedingly hard and where practically small quantities of rock are being Where practically smal quantities of rock are being
handed, I frelieve that the inclined shaft sumh on the dip handed, I believe that the inclined shaft sunh on the dij
of the wein, proving the protion of "lead" sumb through is the more advinalite.
The consideration is whether the amount saved in howting by application of cages against skips, is sufficient to warratat the outhay necessary to sink a vertical shaft, which has, ur doubtedt, to be classed as dead work.
When sceeral "leads" are known to exist in close proximit', where the intention is to cross.cut and devclop them all from one centre, and especially where these prolalsy be adisalle to sink a vertical shait
Trolnaby adsalt
The moreint will of deep mining, will he dealt with at the conclusion of This paper, under pay streaks, their persistency in depth. that systematic mining -the develophathts carried on lyy means of thifts alsout 100 ft . apart which are connected by winzes-is far ahead of the method-sinking sevenal shafts and carrying on underhand stoping at the same time - which has been applied in masy cases in this province. Assuming that the former system be adopted, the next consideration is what method of stoping should be applied. This, I tahe it, is a matter in which the mitee manager has to exercine his discretion and judgnemt.
Ihave seen some portions of ground in the Muntague district where, in my upinion, ly applying overhand stoping, one is likely to not onty lose a portion of the quartz among the delris deposited on the scafold, but lays himself open, in all probability, to losing the gold, especially heaiy gold.
This most coleted metal is unduabedly highly attractive in its appearance and one gets so entranced by its
sight, that he momentaril) furgets who is the rightful owner.
large quantities of ruch can lie handle, more cheaply Is the application of the owerhand system, no shouts can tre teared up with the stope, the imersening spaces leing filled with debris.

I am a great believer in the application of the contract system in carrying on the develupheetits of the mine. By doing so you employ the miner's loains, in adhtion to his manual habor. What interest can one eypect the day's pay man will take in his work or in its resuls? Manipulation of halor is a very important factor in mine management.
A great deal more attention might be pait to crosscutting, particularly at depths where the pay streahs are known to lee es 'intous in ri-hness. The application of ruch drilling machinery is essential for this worh, as well as for the general development of a mine.
Pay Siefaks-Theik Persistenci in Deith-I look on this as being really the most important of all consideratiuns relative tu the future success of gold mining as an industry in this province.
When une louks around at the many gold districts and sees a large numiker of mines that were once successful
closed down, the first question that presents jiself is: What is the reason why operations have been suspended? The usual local reply generally consisting of: Could not cope with the water, reckless managencent; had a barren streak for a few feet, and just before closing down, rich guartz was discovered right at the lootom of the deepest shaft ; never should have stopped, \&c.
It is, in fact, nearly impossible, according to local opinion, to find a mine that has been really clised down through barrenness. In nearly ecery country one hears the same, what should be terned sentiment.
The next question, at what depth was the mine when operations were suspended, fogether with the reply, is something that requires consideration

I have found when making this encuiry, that the approxin:ate depth of alandoned Nova Scotian mines is from 200 to 350 ft .
When one gets this information he naturally concludes this must surcly be the depth where the pay streak discovered at the surface ceases to be continuous in richness. There is one argument which may be fairly raised against this conclusion, that is on account of the former primiticic system of mining applied. The cost of pumping, hoisting, \&c., was excessive, and as depth was atained the genera working cost proportionately increased, until the streak which paid from the point discovered to ats present depth uould no longer pay to work
At present I am inclined to support the former conclusion, that is that the pay streahs becone practically barren at a comparatively shallow depth-from 200 to 400 feet, but hope that this paper will be the means of creating a discussion which will enable the Society's mem bers engaged in gold mming, to place on record their views, together with experience on this all-important subject.
As the extent of the mining machinery required for the Horking of our mines, depends very largely on this c)n-
sideration it is essentina facts of the case, thercfore we, as a mining socicty, having the interest of the mining industry at heart, should openly the inferest of the miseuss a matter of this kind, seeking to aid the industry
dist discuss a matter of this kind, secking to aid
by placing it on a sound and creditable basis.

The inference drawn at first sight appears to tre decidedy derngatory to the pold mining industry.
Seeing that there are an inmumerable quantity of unesplored guart, "leads," running parallel to those on which good pay sireaks have heen found, I ana of the opinion that it would be more alvisable to ask investors to place their capital for the exploiting of these "leads," rather than to work abmudoned "leads" possessing a good record.
Some perple may argue that in every probability there are oher pay treaks which occur beluw those already say 600 to 800 feet, these streaks should be diseovered. Assuming this to be a feasible theory, it would be a Aery difficult matter to seacure capital with simply this object in view, as the development of Nowa Scotian mines below 30 feet, through a hard dense quartrite, is an expensive business.
If the government of the country takes any inetrest in their gotd mining industry, and if those in charge of the Deparment of Dines, by making the necessary impuiries, and gathering together the requisite informathum, arrive at the conclusion that the prospects of deep mining are fasorable, would it not be putting it in a practical form, if they - the government - were to offer a lwoms as an encouragement or rather inducement, to any innestors attemphing this form of speculation?
I am informed that the govermment, of Qucensland and Victoria, on two or more eccasiuns, vuted stums of £ 1,000 and upwards, to promote the principle of deep mining together with other branches of inclustry closely allied to the same.
While on the subject, I would like to take this opportunity of calling attention to the mines inspection, as conducted by the representatives of the Department of Mines.
I have been engaged in mining in this province for nearly a year, and have never leen officially called on, by
either the inspector or deputy inspector, although, It beeither the inspector or depuly inspector, although, I be-
lieve, an inspection of the mine has recently leen made by the depury inspector.
I anxiously await the publication of Mines Report, 1893, when ,he work will prolably be particularized in
the deputies' annual report the deputies' annual report.
Canclidly, what good does the publication of small matters of this kind do? In fact, it surely assists in keep. ing cayital out of the country; for what specul. tor would for one moment think of the importance of go d muming in Nova Scotia ater reading the extract from the official
Mines Report (1892), as published in the critic of April 14 ?
There is undoultedly plenty of room for improvement in this direction. It appears to me that elther the gov-
ernment or its officials might plead-" We have done ernment or its officials might plead-"We have done
those things which we cught not to have dune, and we those things which we cught not to have done, and we
have left undone those chings which we ought po have done."
I may state in cunclusion, that many of the rich deposits of tin-oxide in Cornwall were discosered at a great depth, and that districts, where this mineral is found practically near the surface, are luoked on as shallow dis-
tricts, where the chances of deep mining are not as favorable as in the former districts.
I make this statement, with a view of calling attention to the many large quartz " leads," existing m the province,
which on account of their not showing gold at their outwhich on account of their not showing gold at thei
crop, have been apparently passed by as worthless.

Discussion.

MR. HARDMAN-This Society is much indebted to Mr. Thomas for his valuable paper. I want to endorse Mr. Thomas' conclusions in almost every respect, but at the present time I cannot agree with his conclusions in regard to pay streaks. It may be true, and it may not
be true, and the following case may be the "exception be true, and the following case may be the "exception
proving the rule." Last week in Oldham on ihe Stand. proving the rule." Last week in Oldham on the Standtop of our pay streak, I simply state the fact we got the lead, at any rate, the pay streak has been cut at 520 feet depth on the incline.

Mr. POOLE-At about what angle of inclenation? Mr. HARDMAN-At 43 degrecs.
MR. POOLE-The Wellington
that inclination, was it not? hat inclination, was it not?
Mr. HARDMAN-T
on the incline of 45 degrees, then the pay chute was followed for 300 feet to the westward at a dip of 35 degrees. The length of the winding rope was 600 feet, but the depth on the incline was 500 .
Mr. WOODIIOUSE-I would like to ask any gentle.
man present who has been looking man present who has been looking up the theory of pay streaks and taking vertical depths
gold 400 feet below the surface?
Mr. POOLE HOW Hepep is the Salmon River mine? Mr. STUAR- inow deep
Mr. HARDMAN feet.
Mr. HARDMAN-Taking our 520 fect on the incline would make about 340 feet vertical.
M. WOODHO
Mr. WOODHOUSE-I think Mr. Thomas can give us some pretty valuable advice on this point. He is down
about 300 feet. One of the deprest was ion the Rose lead, worked by Mr. Lawson-at one place it is 345 feet and the other 380 feet.
Mr. THOMAS-The Rose lead is 365 feet, and the other lead worked was cut of by 2 dislocation.
Mr. WOODHOUSE-W Wes hat 365 act
Mr. THOMAS
Mr. THOMAS-Pretty nearly vertical.
Mr. HARDMAN-In this particular
Mr. HARDMAN-In this particular chute I have
reference to it is as one continuous strenk for nerty reference to it is as one continuous streak for nearly 1,700
feet in length, and will extend to probably 2,000 feet.

Mr. THOMAS-We had a streak at Montague. I drove a level at 264 feet from the surface and found that
throughout, the streah was fairly profiable for every too throughout, the streah was fairly profitable for every 100
feet. With regard to the lawson streaks--I think they feet. With regard to the Lawson streaks-I think they
were the resulf of intersections-so I would gather from were the result from informations-sul received from miners living in the district.
Mr. IIARDMAN-That lode would lee similar to the streak found in Oldham in 1877 by T. N. Baker. It was made ly intersections of angling veins with the main lode
Mr. Thomids - What would lwe the law of
Ma. Thomas - What would le the law of streaks in the Windsor lunction property at Waverley?
MR. HARDMAN-I do not think there are any facts recorded to show nany hw. The haft is nearly down to 400 feet on the Tutlor lisle. I have lreen told the inclination of the streak is 35 degrees to the east -but so far as our own working went we failed to discoter any streak whatever.
MR. HAYINARD-Un the Lahe Vew propertyDominion Lead-the streak extented from the sur
and was cut of by a break at 360 feet on the meline.
Mr. WOODIOOUSE: I would like to know the reason why some of the mines have been closed down-I would mention the Rose for example, also the Lawson. I would like to know the reason fur closing down these mines.
Perhaps the pumps did nut coupere Perhaps the pumps did nut compete with the water-or perhaps they did not wish to make any more mones.
Mr. SI UART-I think I know something about the
Iawson. I was the last man who worked it. I had had just such favorable reports as that made to me-"It is as good at the bottom as any part of the old workings." Dir. Lawson told me the last was poor and had not paid for several months. But my object in pumping out the mine was to drise some cross-cuts in what I call the "stide lead." I think that side lead had something to do with the richness of the Lawson mane, yet it did not make the streah enturely, nor was there any reguiar gold streak. The gold was more in pochets and not in line. They were at different parts of the whole workings, not contin-
uous but distributed over the whole ground that was worked, but the quartz taken out between these workings was not barren. At 360 feet at was panched to about two inches and only gave me two pennyweights to the ton, but in the western end where the lead was laiger, it gave from 15 to 20 pennyweights, but the pay ground was short. The plan kept by Mr. Lawson showed conclustrely that theremas no renular pay streak. He crushed by cuntract for each cre" of then separately each month, and indicated on his plan the exact amount of quartz tahen out of each portion of the ground, and the exact amount of golit obthined.
Mr. WOUDHUUSE-A copy of that plan is in the
Mines Office, is not? Mines Office, is nt not?
Mk. STUART-I think it is.
Mk. POULE-I thank it is published in the report
MR. STUART-I quite agree whith Mr. Thomas in regard to the vanous reports of the mines which shat doun, and that it would be well to compel mine owners to keep a plan on file in the munes office when the mane is shut down; it would present a great deal of tonl.
Mr. CLARKE-Is there not a provision to that effect
now?
Mir.
MR. STUART-It occurs to me that there is something to that effect.
$\mathrm{D}_{\text {r }}$ GILIIN-That punt has been talked of for some time and my idea was to have a man make it his business to go and get that information and put it on a plan, so that it would be placed on record.
MR. STUART-Would it be too much to have that attached to the inspector's duty?
Dr. GILPIN--1 am afraid it would. At first it would take a great deal of work to get the thing up; after that not so much.
Mr. POOLE-Appoint another officer.
Dr. GILPIN-There was an amendment put in the Act by James A. Fraser to that effect. To do that would simply mean another officer. Now that the royalty is getting better it has come up again.
MR. STUART-I think it would not be too much to make it obligatory on the mine owner.
Mr. THOMAS-In the west of England all mine owners are bound to keep plans and data up to date, and when the inspector comes on his round he sees that the work is done.

Government Aid to Mining-A Suggestion ?

MR. JOHN HARDMAN - The title of my remarks as printed ly the secretary" is "Government Aid to the Mining Industry - A Suggestion ?" I was careful to have at the end "A Suggestion," and I beg that it be kept in mind, but from the interview of our committee with the Premier this morning, and from the discussion on Mr. Thomas's paper this afternoon, it is quite evident that the suggestion is an opportune one. As a government suggesion we would have good precedents for the government's undertaking to give aid to the mining industryI notice that Mr. Thomas in his paper speaks of the sum
of $£ 6000$ being voted in Victoria, In the fiscal year of of $£ 1000$ being voted in Victoria, In the fiscal year of
1886 the government of New Zcaland spent over $\$ 50,000$ in water races, nearly $\$ 150,000$ in zoads, and over
$\$ 180,000$ in actual construction or subsidizing of other $\$ 180,000$ in actual construction or subsidizing of other
works and for the purposes of deep mining and of furthering the interests of mining geencrauy. The total
amount appropriated for cold fields alone in that year amount appropriated for gold fields alone in that year
being nearly $\$ 400,000$.

The Spmish government recently spent over $\$ 200,000$ for a new building for a mining school in lishon, and in New South Wales they are spending large sums every year-- 40,000 I believe. So that we have very good precelents when we go to the government of this country am now speaking particularly as a gold miner, but I do not see why the idea should not be equally servicable and valuable to other hinds of mining. At the outset the guestion arises if the government is to extend nid to mungr, is it to the Provnectal, or to the Dominion Govermment we should apply? I think it will be remembered by some here that in the year 188t the Provincial and Dominion united in having surveys made of Lawrencetown and one or two other districts and they contemplated making surveys of more districts but uppens was discontmued because it was found to be too Dominion Government in this matter, as all the royalties are payable to the provincal treasury, and I do not see, therefore, any reason why the poovincial government
should not bear all the expenses should not bear all the expenses. There have been some previous effots in this line of asking govermment help; propositions were made as far back as 1887 . Mr. Thomas suggests in his paper that the government should give a
lonus. I thmk the origual form in which vovernment lonus. I thubk the origual form in which povernment
aid was asked was that the government should sink a test shaft in such a place as should be desirable in order that the existence of workable veins at great depths might be provel. But a difficulty arose at once; in which district should this shaft be sunk? Each district could put forward chaims that would make a decision difficult, if not impossible, and this proved a tatal objection.
haft down to $1, \infty 0$ feet should receive a mon put his Shaft down to 1,00 feet should receive a bonus of $\$ 10$,-
000 or like sum. But there were certein 000 or like sum. But there were certain valid objections rased to this propostion. A shaft sunk in Montague might not tell us about the strata in Renfrew, or Wine Harbor, or any of the other districts. Again it was sug-
gested by the Jate John Kelly that the government should gested by the late John Kelly that the government should remit the royalty on all godd coming from certain depths. Gold from below 500 feet to 1,000 feet should pay a royalty of only 1 per cent., and from below 1,000 feet should be free of royalty, in other words the amount involved was a bagatelle and not worth considering.
that the government should purchase a diamond drill, and bore from 3 to 4 holes in each district to test the existence or otherwise of workable veins. All of you here know that a bore hole might go down within 12 or 13 feet of a pay streak and yet the core show poor ground, the drill again may go through a punched portion and fail to indicate any quartz lode at all.
In spite of the fallure of these several schemes to materinlize, yet it is highly desirable that the government should eatend such and and help to the gold industry as would tend to advance the output and increase t.. knowledge we now possess of the resources of the industry. Therefore, venture to bring forward at this time an idea which I loelieve would be of permanent value and materWal bencfit to the whole metalhe mining interests of the province, and espectally to gold mines.
I suggest the construction of detailed topographical maps of each promunent district, accompanied by a monogive fuller letter-press descriptions than the scale of the map nay allow.
The details yet remain to be worked out, but the salient points I nay describe as follows :-
Teet to the inch, constructed on a scale of not less than 200 feet to the inch, and preferably 100 feet to the inch would show-first, the area lines, distinctly and clearly
indicated by a faint green tine, the area indicated by a faint green line, the area nambers being
also printed in the same color ; secondly, in a brintew in the same color; secondly, the roads, lines of faults or breaks by a conventional dotted or broken black line; fourthly, the out-crops, or worked portions of the out-crops, of all discovered veins by red lines; fifthly, all streams, swamps and wet ground in blue lines, tints or hatching; sixthly, showing contour lines, faint black lines.
In addition, the location of each shaft or incline, over buildings of a permanent ne noted and the position of buildings of a permanent nature, as mills and steam hoists,
etc., should be marked. etc., should be marked.
By a system of letters, with corresponding references in
the margin, a great deal of information could the margin, a great deal of information could lie placed in
small compass, directly on the map sheet, which should, small compass, directly on the map sheet, which should,
of course, be detachable from the pamphiet for convenience of reference.
To simplify matters and explain the scheme to you much more graphically than I can talk, I have prepared a map of a portion of the Oldham district, shoving about owing to the time invelved in is to be regretled that of Mr. Hardman's map, we are not in a position to publish it in this issue.-Ed.) I may say here, that the intention is to confine the map closcly to the limits within which gold bearing lodes have been found, and not to extend the map beyond the worked limits of any district. I regret that the time at my disposal has not permitted ine to put the contour lines upon this sketch of Oldham district, but I am sure you will agree with me that they should be an essential part of the map.
The monograph accompanying each map could be made the Dominion Gcolofical Survey, supplend the reports of ation obtained during the actual mapping of each district.

This monograph should contain, amongst other things, a
full official record for each year of the amounts raised and milled and the yield therefrom: descriptions of raised and important veins and their workings ; the peculiarities mineralogical and lithological, of the district ; sections of the district at important points, and simple line drawings of the underground workings of the chief producing lodes. Also such other available information, technical, economic and geological, as would help to make a complete history
Doubtless one of the first qustions I shall be asked is : "What will it cost?" To this I am prepared to give an Survey, on this matter, and have availed myself of his experience and advice. Primarily, there are but thitteen or fourteen districts which I would map as suggested ; I would say that a district which has not produced a minimum of 5,000 ounces since discovery, was not important enough for this map. Starting therefore with 15 districts the cost of fieldwork, plotting, compiling, printing and tricts will cost more than others, for example: Sherbrooke and Waverley, the two largest and greatest prollucing districts, would probably cost $\$ 2,000$ each. While Wine Much of the work could lee done cheaply. A pro vincial land surveyor with assistant could go over the wround first, laying out area lines, marking each corner with small temporary stakes, and at each tenth stake putting in a more permanent monument; after him let
two men come on with a level-engineering students two men come on with a level-engineering students
from Dalhousie or McGill, who would be glad of the experience in the field-and run the contours. Finally let the chief, or geologist, come last with one good assistant ; marking on the map as plotted by the two corps preceding him, the various veins, faults, etc., etc., as I the large mass of valuable matter now solely arranging the heads of the older local residents whose ranks time is steadily thinning.
maps and mon tour, or an average of three, of these maps and monographs could be completed each year,
putting on the Provincial Treasury a strain of not over $\$ 4,000$ to $\$ 5,000$ per year. After these maps are once published it is only a matter of local statutory regulation I do not believe up to date by the Mines Office.
I do not believe that there is a gold mining corporation or firm represented in this room but would have saved thousands of dollars in preliminary exploitation work had such maps as are proposed been availalle to him before
he began work. began work.
I may go further and say that I do not believe the abroad than ly the dissemination of such maps and documents. It appears to me to be a case of killing two and substantially helping the mining industry at the same time.
And I close by urging upon you the necessity of preserving in some form the data we now have in the
memories of the older miners. Twenty years from now they will all be dead, and information gained will be dead, and information gained will be at second-hand.
Dr. GILPIN-There in
Dr. GILPIN-There is no doubt about it now is the Mr. Hardman's paper about the survey the remarks in Dawson-the facts were that an agreement was by Mr. between the Dominion Government and the reached Government in I880 that they would join in bearing the expense of a topographical survey of the gold district projected in order to and extending eastward. This was the Geological Survey which was working from the east struck the ground which had been previously surveyed struck the ground which had been previously surveyed
he could yet through his work more quickly. The
amount of amount of expense was considered too great and
the survey stopped at the end of the first season. plan of the work of Mr. Dawson became the propererty of the proved very useful for many purposes conemand and proved very useful for many purposes connected with surveys and location of waterworks, etc., and has undoubtedly saved expenditures in surveys, and paid for
itself many times over. itself many times over.
A vote of thanks was unanimously accorded Mr. Hard
man for his valuable remarks.

Members Dine Together.

Promptly at eight o'clock the members to the number of thirty filed into the St. Julian dining room and sat
down to an excellent dinner served the Halifax Hotel. Mr. H. S. Poole, I'residepretors of Society, occupied the chair. Among the other guests pre-
sent were noticed the IIon. W. sent were noticed the IIon. W. S. Fielding, P'remier of Nova Scotia, and Mr. S. I'. Franchot, Vice-President of
the General Mining Association of the Prover the General Mining Association of the Province of Quebec.
Ample justice having been done to the Ample justice having been done to the generous bill of
fare, a number of toasts were given, evening being Premier Fielding, Mr. Iohn F. Siven the M.P., Mr. Arthur Drysdale, Mr. R. II. Brown, and Mr.
S. P. Franchot. The gramme of songs and choruses to which ened by a pro Partington, W. R. Thomas, Alfred Woodhouse, B. T. A.
Bell and others Bell and others contributed, Mlfred Woodhouse, B. T. A. Ernie Wylde officiating
with much acceptance at with much acceptance at the piano. Considerable diver-
sion was caused by the droll most effectively delivered by Mr. Frederick Taylor, of Lowell, Mass. The fun was kept up until a late hour,
indeed as far as we recollect "the wee small hours ayont the twal were well advanced hefore the members dis
persed, theroughly pleased with their evening's enjoy ment

Excursion to the Montague and Waverley Gold

 Districts.On Friday morning a number of the members drove out in a four-in-hand to the Montague and Waverley gold mines where an interesting time was spent at the properties of the Symon-Kay Syndicate, the Nova Scotia Gold Mines (Ltd.), and the West Waverley Gold Co. (Ltd.) An inspection was also made of the work being conducted in the Laidlaw's Hill tunnel at Waverley. In a future issue we hope to be able to make a more extended reference to he hope to and prospects of these districts, which lack of space, it is to be regretted, prevents in this issue. An excellent luncheon was served at Beech's Hotel. The members reached town shortly after dark, having, notwithstanding the wet weather which prevailed, greatly enjoyed the drive and the outing at the mines. and each and all returned with a keen appreciation of the many courtesies that had been extended to them, notably by Messrs. Hardman, Wilson, Thomas and Woodhouse. It is greatly to be regretted that on account of other engagements a large number of the members of the Quebec Association were unavoidably prevented from participating with their brethern in Nova. Scotia in the pleasures and excursions
of this meeting.

Ontario Mining Association--President Hammond's Address.

At the annual meeting of the Provincial Mining AssoMr Mr. . R. Hammond, of Sudbury, President of the
'I wish upon the occasion of our annual meeting to recall for a moment the work we have done in the interests of mining and the formation and direction of mining policy in this province since we organized in this town on the 7 th of October, 1891, and to touch briefly on the work we may in future aid in accomplishing, as well as the means at our disposal for bringing this work to a successful issue.
It was due largely to the suddenly expressed intention, and as sudden action of the Ontario Government regard-
ing its mining policy, without previously sounding the ing its mining policy, without previously sounding the
opinion of our citizens at the polls or otherwise, pimion of our citizens at the polls or otherwise, except
the few days allowed between the rapidly succeeding readings of Bill that thereupon became law, that our infant mining industry suddenly found itself more tightly than ever wrapped in the swaddling cloths of what we then believer, and still have reason to believe, is an extremely tight-fitting and restrictive mining policy; in spite of the fact that a Royal Commission, appointed by this same Government, had but lately finished a comparatively exhaustive examination, not only of our mineral resources but of ways and means, and had ended by unanimously
advising liberality and urging that room be made f advising liberality and urging that room be made for ex-
pansion. Failure to take the advice thus asked for, at pansion. Failure to take the advice thus asked for, at
vast expense, and the fact that exactly the opposite wa vast expense, and the fact that exactly the opposite was
nade law, at a time when the industry showed some sign of revival after a long period of depression and inaction, rapidly bred sharp criticism and the desire for the creation of a society whose chief object would be the safeguardin of interests, than which none are more important to indi vidual and national prosperity. How far this was don and what has since been accomplished, is already become matter of history, but I might be permitted to note as some of the more important events with which we have been so closely identified, the pressing of our just claims upon the attention of the Government and the electorate at large, by means of petitions and addresses, and the en
listment of the sympaty with the positive resuly and co-operation of the press, and recede from an untenable position, and the a watenine of the people to the vital importance of the iswakening
of us. To be factors in endeavoring to achieve isuch before ant results we have conceived to be our privilege
British subjects British subjects and as Canadians, and our duty and our presence and influence here to-day, gathered, as we are, from far and near, is the lest proof we could have that
there is work sill here is work still to be accomplished in this cause. throughout all this gat province; difficulie now united le faced in the development of our mineral have still to sources which, as year by year goes by, are proving themselves as rich and varied as those of any country in the world, and we are met to devise ways and means for loringing their legitimate claims still more prominently to world at large not only of our own citizens, but of the world at large. Our field is the world, and to the world
we must appeal. we must appeal. We must continue to show it what we have got and cultivate its acquaintance and assistance,
and unite our efforts with those of cone and unite our efforts with those of competent and willing outsiders in building up a mighty mining industry. This has been done by other countries, and it can, and will, be done by us. As a well organized association we can but aid in this. great work, and with all the assistance we can obtain, bring it to pass.
As to ways and means, though it might yet be said that we are a feeble folk, yet let no one despise the day of when we shall hreat oaks out of acorns grow,-and and power in petty party politics and shall have for place and power in petty party politics and shall have really and
truly begun to study the lasting interests of a young and
struggling country, we shall then truly recognize as individuals and as a country what we need to aid us in extracting a livelihood whence it is pre-eminently honor able to deprive it from mother earth. That the mining industry can lay claim to the best right to existence has never been or can be disputed, and I say it is a sorry spectacle to see unnecessary restrictions put upon manual dividual or government. Such restrictions we charge to dividual or government. Such restrictions we charge to-
day upon a government which is responsille for the best day upon a government which is responsille for the best
utilization of not only our mineral, lual I may also add utilization of not only our mineral, but I may also add
incidentally our agricultural and other resources in a manner that leaves honest labor freedom to work out it salvation. Time and again, as also during the presen year, have we appealed for aid, or mere recognition in our feeble endeavors, only to be turned away with promises unfulfilled and anounting to nothing, or told that it would not do. We care most for this country which we clain as our birthright, and upon which we are at liberty to ex pend our labor and reap the fruits thereof, and not for any political party chiefly eager to wield a power we should yield only on an honourable and definite understanding and agreement that ours will be fulfilled, and not upon an unseemly and hasty party struggle in outdoing their op ad its consequen emoluments a but expense of this country. But this not only desirable ment can only be fully in all economic and honest govern ment can only be fully obtained by thorough organization and presistence of endeavor on our part.
It is believed, and some would know, that we are on the eve of a provincial election, and that the usual squabble for votes will ensue. Gentlemen, vote for no man who is not in sympathy, heart and hand, with the temporal welfare of his country, and especially of his im mediate neighborhood, or who will not, on the day of testing, in or out of legislature or parliament, stand out irrespective of mere party politics or personal interest for where the stand he row ex-president, James Conmee, for legisland he took in the late sessions of our provincial legislature, and honor to faithful workers everywhere in the interests of the development of our young country.
The day will cone when the territory now enlbraced in this District of Algoma, will teen with millions of happy would have us people, nor is the time so distant as some as such a us think. Germany is about twice as larg while supporting upwards of forty-five millions, besides having thousands of sons to spare each year.
Prominent in Algoma for all time to come, will be her stores of mineral, vast beyond conception. Her iron, her liberal her copper, her gold and her silver will, under a only supplying her own mining policy yet be found, not every land ing her own growing wants, but also those We stand, in return for the treasures of other climes We stand to-day upon the silent hills, as prospectors, as pittle more a vast country, and can, it would seem, but him think of a time when the chimney tops in the valleys and the hum of industry in our mines shall speak the more precise language of latoor, of prosperity and peace. But as regards the duty lying next to hand, it is ours not to fail of its performance, and selves and in the land of their birth or adoption.

The Ophir Gold Mine.*

By W. R. Wallace, Bruce Mines, Ont

The Ophir Mine has within the year just closing been prospected in the following manner:-One vertical shaft 95 feet deep to cut the incline or dip of the vein, which width was cut. One incline shaft in vein of 12 feet in whaft was sunk to One incline shaft to connect with this which dips 45105 feet. Along the font-wall of the veli which dips 45 degrees south, this entire incline was in mich ore and the values more as depth was reached, only one wall was exposed in the incline. The hanging o made four this and along the outcrop of the vein I have first, or tunnels, the length of ehe a feet above this, is 80 feet in length with an uprise from the first for ore chuttles from dumps above; No. 3 is now 53 feet in length, and No. 485 feet, making 205 feet of upright cutting and 268 feet of drifting. In the drifts I upright cutting and 268 feet of drifting. In the drifts the lower boils of the drift is the pay streak, and this at towards the surface to about 16 feet. wide and narrows exposed 578 feet in about 16 feet. The vein is thus exposed 578 feet in length and 230 in depth. I esti mate 7,000 tons of ore on the dumps and 200,000 in sight on the pay streak alone, with twice that in ore that will mill $\$ 10$ and $\$ 12$ per ton. The mill runs made by Prof. Sharpless, of the Michigan Mining School, on 5 tons of ore from the pay streak, which I made as fair an average as possible, returned $\$ 46$ per ton in free gold without the concentrates, which can be estimated to contain as much more value.

Our mill is now nearly completed, and by the first week and hope to be ablect to commence milling in earnest, winter without interruption.
The mill has been carefully designed (with the latest patents for saving refractory ores), and I think it is one the best. I shall be pleased to America, and as grood as workings to your honourable body at any future meeting.
*Paper read before recent meeting of the Ontario Mining Associa

MINING NOTES.

[From ouk own Corksefondenti.)

Nova Scotia.

Caribou.

The property formerly owned by the Lake Lode Com. pany, now owned by Mesurs. Gue, Wilson and others, is being reopened by im. W. A. Saunders under agreemenh. The water has been taken out to a depth of nearly 200 feet, and the shaff re-timbered and made secture. The lode will tee opened laterally at different depths and tests taken therfrom. The property formerly was remuner ative, and that under cery hat management.

Brookfield,

Mr. John McGuire, formerls connected with the Molega Mining Co., is doing some work at the North Brooktied minh, preparatory to keting some new leaching process for entractugy gold. The quartz from the mone has the reputatuon of carry ing gold too fine to be sated by stamp mill amalgamatom. the detail and chemitry of the leaching proces wall not tee made public unthl after the test.

Moose River.

It is rumored tha: Mr. Stephens nud others will commence work on a block of unprospected areas in the 1st of Octoler. The same rumor says rich lloat has been found.

Oldham.
The Statuard property, uwned by Taslor and Hardman, is heepng up its record. Several tons raised and milled in August yielded at the rate of 100 ozs. per ton. The output from this district for 1893 is expectel to exceed all pres ions outputs.
The Columbia Company are still developing their property; a cross-cut being carried to the north to cut on the Wallace lute at a depth of 100 feet.

Renfrew.

Mr. D. A. MeDonald is reported to be getting average ore in the New llaven property. No quariz has yet been millet. The syndicate operating is composed of lictou men.

Mooseland.

The reports fion, the Mooseland Company's property are good, the quartz gaining in value, and the lode holding its size.

Waverley.

The West Waverley Co. are running twenty stamps double shift, and report yields to be of average value for that mine, viz., 4 to 5 dwts.

The Tunnel Co. are working one shift, and report quatz showing well.

Quebec.

Lievres River.

Mr. J. Burley Smith, M.E., is conductung a series of tests with a Bullock Diamont Drill on the . Litua and Squaw Ihll mungg property of the liritish Phosphate Co. at Glen Almond. We understand that these have proved most satisfactory, locatung deposits of phosphates which will pay to uncover. A contract to drise into one o these large bunches has been given and work is proceeding.

About 45 men are employed at the High Kuch phosphate mine where the pis sull lowh well. The depousits in put No. 3, which a few veeks ago loohed poorly, have come in again and show extremely well. A considerable quantity of low grade material continues to be ground at Basin du Leevres mill, whence it is shipped to the fertilizer works at Chicago.

Ońario.

The Ophar Gold Mining Co., Limited, operating in the townshp of Galbraith, about sixteen miles from the village of Brurn Mines, has its 20 stamps dropping and about 45 tons of io are being put through the milid daily, but inasmuch as the retort and mething furnace are not set complete, no clean-up has taken place. Muchinterest will be four storeys. The stamps have a weight of 850 lls . and drop about 80 to the minute, being driven by a Corliss engine supplied by the Doty Engine Co., of Toronto. Eught fire vanners are used for concentration. About 600 tons of quartz have been raised this year and will be put through the mill as speedily as possible. A later mine test (to those given in Review some months ago) has been made by the Michigan Mining School of 1,125 llos. of ore sent from the mine, with the following result: Silver: I 80 oz . per ton ; gold, 3.50 oz per ton. Abo 30 men are employed under Supt. W. R. Wallace.

British Columbia.

Kaslo District.
Construction work is still being pushed by the C.P.R. between Nakusp and Slocan Lake, and a rumor is current that the ownets of New Deit-re have given the railway $t, 00$ lots in that town, although as jet the rumor has not been certified.

Representatives of the Kaslo and Slocan Railway and of the Great Northern kailway are to meet in Spokane to-morrow, the 19th ins., with a view to the charter now hell by the former company being sold to the G.N.K.
sune the gtth of dugust last there has been shipped 1,37S,000 liss. of ure frum the Slucan manes, over 900,000 ton, beeng shipped tam the C.I'.R., and the balance by tons being shipped wa the C.I.R., and the balance by
was of Bumer, Ferrs and the U.S. Ketums, on the way of Bumer, Ferr) and the C.S. Returns, on the
whole, show a higher grate of ore than previous ship. ment.

Considerable disutivfaction is felt by some of the thipper unifg th the wa they have been treated both by the U.S. smelters and the railway company. They chaming a soo great shothage in weight and an overcharge in previously agreed upon freight ates, besides considerable troulle with the customs. In consequence of this some of the shippers intend sending their neat lot of ore to Swansea, Eng.

In the Noble 5 mine a wonderful rich strike has tately been made, the ore referred to being a tetrahidrite together with much soft decomposed matter, assajs of which show that it will min over 1,000 ozs. to the ton and the body is said to te unusually large for such high and the wody is said o we mananly large for such high grade ore.
vein of galena.

Ore is being hauled to town daily but the road is reported in bad shape from the wet weather that has already set in and the load, are consequently light. In. deed litte can be done whth waggons in this country, but we have seteral months of first-class sleighing.

Prospectors have all been forced out of the mountains for this year by snow.

The Josephine Mining Company (Foregn), was reglstered at Victoria on the 9 th mstant. The company's authorized capptal is $\$ 000,000$, davided into 600,000 shares. Netson is designated as the tomicile of the compiny. Its promoters' names are not mentioned, nether is the location of its mines. The East Kootenay Exploration Syndicate, limited (Foreign), was registered on the 5 th instant. This is the company that acepuired the Grifith-Galbrath hydraulic claims, on which quite an evensive phant has lieen placed, including electric light, so as to prosecute work by night as well as by day.

The government has decided that copies of all records of mineral and mining claims in West Kootenay shall hereafter be kept at Victoria, and with that olject in view has sent Charles Hayward, Jr., up from Victoria to do the clerical work. Mr. IIayward left Neison for New Denver this morning to make copies of the records at New Denver. Now, if the government will only have some competent clerk make copies of all records at Victoria relating to land in West Kootenay, and forward the same to Nelson, then create a registry district with the registry to Nelson, then create a registry district with the registry
office at some central pom, the people here would te office at some central pomt, the people here would be
accommodated, as will be the people of Victoria when copies of our mining records are kept for reference in that city.
A. $40 \cdot$ ton shipment of ore has been made from the Lekui mune in Trail Creeh district to the Tacoma smelter. Work has been resumed on the War Eagle mine, in the same district, with "Joe "Morris as superintendent.

Two of the clams in the Grady group on Four Mile creek, Slocan distriet (the Alpha and Black Bear), have been londed. The bond is for $\$ 70,000$. A cash payment of $\$ 5,000$ has been made, the balance to be paid in three, six, nine and twelve months. N. F. McNaught secured the bond for oulside capitalists. Mr. Briggs, one of the three owners, was in Nelson to day.

The Hall Mines, Limited, magnates have come and gone, and actual worh has once more been resumed on what is likely to be one of the greatest mines in the world. The survey made for the traminay shows that world. The survey made for the tramuray shows that
the distance from the Silver kiug to the water fruni, 2 the distance from the Siker houg to the water frunt, 2
mile below Nelson, is litic more than $41 / 2$ miles. The mile below Nelson, is litle more than $41 / 2$ miles. The
tramway will not be built until spring, .s the plans must first receive the approval of the board of directors-and the board meets in London. Between 300 and 400 feet of shafts, crosscut tunnels, and drifts, will be run di ing the winter, which will give employment to forty-odd men. Additions will also be made to the quarters of the men and a shaft-house erected.
A shaft will be sunk on the Kootenay Bonanzà ; a drift run botiu ways from the winze suak in the main tuinel;
and a drift run loth ways from the old shaft on the Silver King. These drifts will be started about halfway down King. These drifts "ill be started about hatway down
on toth the shaft and the winre. Most of this vark will on both the shaft and
be done by contract.

Preparations are beeing made to ship a hundred tons of the ore now in the ore-house to Swansen, Wales; and if mavigation holds out on the Columbia river, further shipments will be made. All the ore take. out this winter will be carefully'sorted for shipment, which indicates that, for a time at least, the high-grade ore will be shipped to Wales.

(From the Miner.)

The lerry creek placers will be worked next season on a more extensive scale than ever before. A syndicate of English capital is said to have been formea for the purprose of giving the ground a thurough test. A great many thumsands of dollars will lie spent in wages and materials, and the people of that sectiun consider the outlook to be more favorable than ever before.

Referring to the Silver King (Hall Mines, Leti.), the Mfoter says: J. C. I will, and A. Findlay, have the conShenter says: J. C. I will, and A. Findlay, have the con-
tract for the tunnel on the big croppings. The temporary tract for the tumnel on the big croppings. The temporary
shatt on the Kootenay llonanza is in the hands of Spencer shatt on the Kootenay Bonanza is in the hands of Spencer
and Bates. Cody and I.andrigan have secured part of and bates. Cody and L,andriz,
the drifting, and the remainder of it will becured part of tone by Mr. the drifting, and the remainder of it will be done by Mr.
Conners. Robt. Vuill, the old foreman so long connected with the property will retain his pration during the winter.
The tramway will not le convructed till spring, but Contractor Nelson of the N. \&F.S., has decided to figure on the work, and will probably winter in Nelson, provided he got an ore contract to fill in the intervial.
Among the moves contemplated for the immediate future is the making up of a trial shipment of ore. A big shipment of the best ore, carefully sorted, will be sent to Swansea, for eaperimental treatment. Upon the returns received from this shipment, will depend to a great measure, the construction of a matteing plant.

The Wild Horse creek district phacers are said to have placed $\$ 27,000$ to their credit as the gold dust production for the month past. A new town has been laid out on. this creek at a point about three miles from Ft. Stecle.

Miscellaneous.

At the recent meeting of the the newly organized Miners and Mine Lalvorers' Protective Association held at Nanaimo, the following ofticers were elected: President, Nanaimo, the fillowing ofticers were elected : Preside
A. Wilson ; viec-president, R. Smith; Secretary, A. Wilson ; vice-president, R. Smith; Secretary, ${ }^{\text {W. }}$ Wanstaft;
S. Keith.

The Kootenay Hydraulic company took out seventytwo ounces of gold, which represents fifteen days' piping.

Deliveries of coal into San Francisco from British Colunibia Coliieries, for the month of September, amounted to 51,600 tons, or 50 per cent. of the coal received at that port during the month.

Respecting the discovery of a new gold field of great promise in the Alberni district, the Colonist has the following:
"Alberni will, according to present indications, be the centre of attraction next spring for gold seckers in this province. Reports from the few prospecturs who have gone in there since the recent discoveries of rich quartz vary only in the details, for all agre that what has been found is good pay ore, and that the indications are that the veins extend over a much larger tract of country than is generally supposed. G. E. Jorgensen, the well known surveyor of this city, who has recently returned after two weeks spent in the Alberni district, is quite as enthusiastic as thuse who have already been heard from on the subject, and he has shown his faith-which is based on preject, and he has shown his faith-which is hased on pre-
vious olservations of gold quarts in other places-by vious observations of gold quarts in other places-by
associating with other gentemen in the location of a associating with other gentlemen in the location of
promising claim which is to be worked in the spring. promising claim which is to be worked in the spring yesterday, "and the mors" I saw the better I liked it. There is no dotibt that the veins are rich, and so far as has yet been ascerrfained they are continiuously so. Certainly they extend oiver a large tract of country. My belief is that they can te found almost from one coast to the other on the island, and running as they do, northeast and south-west, they head straight for the gold country in Cariboo.
"It is surprising," he continued, "how skeptical the public have shown themselves about, this matter, and I have heard people profess disbelief, for the most fanciful. reasons or for no reasons at all, of reports which I hnow to have been absolutely reliable. Of course no actual working results have yet been obtained, because there has not been time, but, next season there will assuredly be several mines in active operation. Ours will, for one. have heard that English capitalists have secured an op. tion on one of the most promising properties, and it is their intention, if they conclude the bargain, to lose notime in getting to work.
"Unili recently no one gave a thought to quartz. mining in this country, placer working being all the rage,
and thus it happened that these rich deposits which crop-
ped out and were talked of in several localities received no further attention. I was told of one discovery made a long distance from the scene of present operations, by
gentlemen from the neighborhood of Dupcan's, who gentlemen from the neighborhood of Duncan's, who, after locating a claim, allowed their title to lapse, simply
because everybody, knowing nothing because everybody, knowing nothing about the value of
the ore, said that there would be no money in quirtz the ore, said that there would be no money in quartz
mining. These gentlemen have recently come to a erent conclusion, and will again stake their come to a difffortunately for them, has not been taken up.
"The country is a difficult one to prospect in, but once a vein is struck it can be followed without difficulty, and the general situation is such that tranoways can lee constructed without abnormal expense, to take the ore down to the sea coast for transhipment to the smelters. The proximity to the coast is one great advantage that this country has."

CANADIAN COMPANIES.

Bootanie Creek Gold Mining Co.-Applicant for charter under British Columbia Companies' Act. Capital \$150,000, in shares of $\$ 100$ each. Head office: VanCouver, B.C. Trustees: Walter H. Kendall and MacPherson, High liver, Albeita, N.W.T. The new company is being formed to acpuire and work mineral claims at or near Bootanie Creek B.C.

Hamilton Iron \& Steel Co. Ltd.-Applicant for charter under Ontario Statutes. Capital, \$1,000,000, in shares of \$100. Head office : Hamilton, Ont. Directors : J. Jennings Moorehouse, New York; Wm. Van Veghten Reynolds, Reynoldsville; Wm. Foster, Ir., New York; Ed. Marris Thompson, Millerton ; Herbert Nelson Curtis, New York; J. Henry Tilden, Ilamilton Nelson Milne, Hamilton, and Robert Jaffray, Toronto. Formed to mine lands and operate mines in the I'rovince of Oormed Operations are in the County of Went worth.

East Kootenay Exploration Syndicate was reg. istered under the Foreign Companies' Act, (B.C.) at Victoria, on 5 th October. Capital, $£ 80,000$, in shares of $£$ each. The places of business of the Syndicate in Canada, is at their mines, Wild Horse Creek, East Kootenay Iistrict, B.C.

Wycott Hydraulic Mining Company has been formed or take over, purchase and acquire a certain mining lease Harvey and Thos. J. Trapp, of Ne, granted to James M. and the water privileges in connection Westminster, B.C., carry on the business of hydraulic on therewith; and to processes of mining. Co hydraulic or other process or processes of mining. Capital $\$ 500,000$, in 50,000 shares
of $\$ 10$ each. The five Trustees are : $\$$. K. Twigge John Twigge, J. M. Spinks, M. M. Hirschberg of Vancouver, and Thos. J. Trapp, of New Westminster, B.C. Head office is to be at Vancouver.

Tobique Valley Gypsum Mining \& Manufacturing a Capital of $\$ 50,000$, in shares of $\$ 100$, 10 charter with a Capital of $\$ 50,000$, in shares of $\$ 100$, to acquire and
work Gypsum lands, in the Province work Gypsum lands, in the Province of New Brunswick, and elsewhere in the Dominion of Canada, and to manufacture land plaster and other fertilizers. Head office, at Ottawa. The incorporators include the Hon. John
Costigan, Secretary of State : Costigan, Secretary of State; G. P. Brophy, Ottawa;
John Heney, Ottawa ; Ion. H. G. Connell Wor John Heney, Ottawa ; IIon. H. G. Connell, Woodstock,
N. B., and Henry A. Costigan, Winnipeg.

mANUFACTURING NOTE.

New Works of the Robb Engineering Co.

The works of the Robb Engineering Co., Ltdl., which were swept by fire August 28th, 1890, have risen Phoenix many hands as before the fire, company is employing as that they have given up the when it is remembered altogether, only making the the manufacture of stoves altogether, only making the repair pieces, it will be evident that they are now pushing their engine and
boiler business, machine work and boiler business, machine work and hot air furnaces more
extensively than before extensively than before the fire. They employ 100
hands to whom they pay hands to whom they pay out a weekly sum amploy 100
$\$ 2,500$ to $\$ 3,000$ per month to $\$ 2,500$ to $\$ 3,000$ per month. They have lately moved
into a large and well equipped brick moung to into a large and well equipped brick moulding shop,
which is 100 feet square and is fittel moved which is 100 feet square and is fitted with two large
swinging cranes for heavy work, large brick core oven, etc. and is fitted with etc. Their boiler shop is $100 \times 50 \mathrm{ft}$. good outfit of boiler orhead travelling cranes, besides a shops are 100 of boiler shop machinery. Their machine shops are $100 \times 40 \mathrm{ft}$. (two flats) and are fitted with the best and latest machine tools for building high speed enginest heaters and power pumps, which they supply with their steam plants, and for doing general machine with their all kinds. In addition to these shops, theye jobbing of salesroom in which they carry a heavy stock have a large such as beltings, hose, packings, fittings of brass and iron, etc., also engin, iron pipe and tools of every description, also engineers and sawyer's ons every description, and in their commodious
offices and drawing office are to be found every modern
convenience. Their specialties are the Roll engine, which is conecialties are the Robl Armstrong the best engine equal to the best produced in the United Canada, and fully all the parts interchangeable and embracing having points in the leading American and embracing the hest Economic boiler, which not only gives very high Monarch as its name suggests, other good points. These sis portable and has many other good points. These steam plants outfitted with heaters, and isteam or power pumps of the latest design, they are sending to Ontario, Quebec and the North-
West. In
In proof of the foregoing it may be stated that they have placed one of their compound engines in Windsor,
Ontario, which is running Ontario, which is running splendidly, and they have
lately shipped one to Lethbridge, hese engines have been placed in Mo.T. Twelve of sides other places in Ontario and (Quebec. Three of the Monarch Economic boilers were shipped for one plant alone, viz. : that of Windsor, Ontario, and the last of three more for London, Ontario, was shipped last week besides those that have been placed in Montreal and other places. In addition to these steam outfits and course still supply sawmill machinery of all kinds.

Electrical Safety Apparatus for Cages-A description of an electrical safety apparatus for mine cages is
given by Mr. J. Yates (Transtions of given by Mr. J. Yates (Transactions of the Federated
Institution of Miningr Institution of Mining Engineers, vol. ii., pp. $362-68$,
three plates). The reguirements of a three plates). The requirements of a safety apparatus for
mine cages are that it should never fail to ace mine cages are that it should never fail to act when required, and that it should not act unless the rope breaks; should not interfere with ordinary work be sinople, and consists of weighted levers, which work. The apparatus of action by horseshoe magnets, but which grip held out through the medium of cams when liberap the guides tinuous current is used to keep the maberated. A conthis current is led to the keep the magnets excited, and laid in the hemp core of the winding rope copper wires tion between these conductors and the the connecby two brushes working on two and the battery is made shaft. This method of on two copper rings on the drum shaft. This method of conveying an electric currrent to
the cage has been successfully in the cage has been successfully in use for some years for ignalling purposes in the Durham district.
. 609), of a winding indich (Electrical Reviene, vol. xxix, p. 609), of a winding indicator worked by worm gearing
from the drum from the drum shaft. Electric contacts are arranged on the dial, so that the pointer completes an alarm circuit when the cage is near the end of its travel, and circuit sounds an alarm bell. As the cage descends, and thereby lifts a spring and avoids making contact , the pointer pieces are clamped in position position can be adjusted to suit the winding.

The Behaviour of Coal during Combustion-Mr. R. Holgate (lecture delivered before the Yorkshire Col lege Engineering Society, December 7, 189, through the
Colliery Guardian, vol variations of the behaviour of p. IOI4), (lescribed the Cannel coal contains a con of coal during combustion. mains, and contains a considerable quantity of fish re the lumps retained their under water. When coked, coals aresomewhat similar in composition se. Most other that analysisalone will not determine their toone another, so The appearance of the coal is a much betterningqualities. coals require a high temperature and better guide. Some coals require a high temperature and a strong draught to As a general rule, coal whe Better Berl coal of Yorkshire. pieces will not deliver which breaks naturally into small so rapidly, but it makes the so freely and will not burn soft and breaks up easily. When the coal when it is large lumps the gas can get away more coal breaks into

The Manufacture of Nickel-Iron Alloys-Dr. H. Wedding (Ver-handlunsen des Vereins aur Beforderumo des Gezuerbfleisses, $1892, \mathrm{pp} .52-65$), refer to the results of
Riley's examination of the nickel-iron all Riley's examination of the nickel-iron alloys. With re-
gard to their mode of presuls gard to their mode of preparation, they may be made in blast furnaces with a mixture of oxide ores of iron and of
nicket. The metal produced in thic way in bon, and is not suitable for in this way is high in car-nickel-iron poor in carbon for conversion into malleable nickel-iron, oxides of nickel On puddling such a carbon solved by the metal, and renel are formed, which are dis. degree than would dissolved rer it brittle to a much greater malleable nickel-iron to the molton mallealloy, metallic nickel must be added form true alloys malleable iron. Nickel and iron added render these mixtures holves, but only mixtures, and to render these mixtures homogeneous some third and to have as aluminium, must be added. Such experd metal, have been from time to time recorded, which relate to as alloys of nickel and iron having far from relate to the subject, the German Society of Arts is about exhausted the a further and more detailed examination of to undertake Viewed from the results of Riley's experion these alloys. appear that the alloys best fitted for general uns, it would with less than 0.3 per cent of or general use are those of nickel should not cent. of carbon, and the percentage these two elements in the alloys 5 . What percentages of whole series has not as yet is wanting as to the real met been shown, and information of the alloys, and how mechanical properties of the best too will form the subject of the investigation handled. This

WILL CAPITAL HELP?

For the past two years I have devoted my time ex elusively to the prospecting and leasing of desirable gold properties in Georgia and Alabama. Am prepared to show gold prospects equal to any found elsewhere. Want ground floor put in props against Capital to develop. Strictly ground floor propositions to make to Capital meaning
business. of references. All years experience West and South. Best references. All I Ask is an Investigation.
-LAclress, SANDY Ir. CNEJ.
box 27 , bayner, es.

C. V. M. TEMPLE
 MINES AND MINING LOCATIONS FOR SALE. correspondence solicited.

47 ST. GEORGE ST., TORONTO, ONT.

Henky De (Q. Sewell, Dominion and Ontario Land Surveyor
Mining Engineer, etc., Port Arthur, Ont, A
ane, Gagige \& Andums,
R. C Campurl
R. C. Camplifll.Johnston, (of Swansea, India and the
States), Metallurgist, Mining Engineer, Vancouver, B.C.

F. H. MASON, F.C.S.

First-class Certificates in Chemistry and Metallurgy from he Royal School of Mines, London-Late Chemist and Assayer to the Newbery-Vautin (Patents) Gold Extraction Company, Limited.
Assays \& Complete Analyses of all Minerals

THE ASSAY OFFICE,

 ARLINGTON PLACE, TRURO, N.S.

Kingston (lanada) School of Mining.

The Professorship of Geology, Petrography and Ore and Ore Dressing in Professorship of Mining Engineering and Ore Dressing, in this school.
Applications for these positions will be received up to
September I 5th, by
GEO. Y. CHOWN. B.A.
Secretary, Kingston, Ontario
3000 monge vaive
Reseating Machines in Use.

This machine will reface in position any valve, flat or taper seat, from $1 / 4$ inch to 4 inch inclusive, and make 4 inch inclusive, and make
them perfectly steam-tight.

DARLING BROS.

Reliane Works,
MONTREAL,

