The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. nther than blue or black)/ Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a áté possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagées

\square
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquėesPages detached/
Pages détachées
Showthrough/
Transparence

Quality of print varies/
Quali, $̨$ inégale de l'impression

Continuous pagination/
Pagination continue

\square
Includes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tete provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraisonMasthead/
Générique (përiodiques) de la livraison
\square Additional comments:/ Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

$10 x$	$14 x$

The Potato Disoase.
If the disease which has now become so prevalent in the Potato plant, is really caused by an atmospheric agent, and 'not by the depredatious of a small insect, as we stated in the September number, then the agriculturist will have good reasbn to apprehend that no efforts of his could posstibly prevent ahis cimportant edible vegetable from disease and prematute decas. But we fiateer ourselves that the clarming fungus produotiont, is nothing more or less than the busy work of a^{\prime} emall black fly, such as described in the ar: ticle previously alluded to, and may be prevented by employing proper precautionary means at the period when the first sympiems of attack ate discovered. About the third week in June last, t. green flat bus commenced puncturing the seaves of n number of fields we exumined, and from what we could jadge of its habits, we sappose it to be the female. It appears to be remarkably lazy in its habits, and invatriably dezroys everv leaf that it a:tacks. In the course of three weeks, atter its first appearance, myriads 'of emall black insecis appear on the leaves and stalks of the plants, and immediately they become 'eiscolored, and show indubitable evidence of dise zase. There ean be no question but that the falling off of the leaves, and the decay of the atalks, are occasioned by the insect deseribed; mat it 'remains, to be sem whether the decay of ing profits. The business of manufactunng
potatoogrowing may, be carned on wath a cer-
; tainty of the grower feceiving higher remunerat-
the leaf, is the true cause of the disease of the tuber. Potatoes grown upo: land recently cleared from the forest, if charged with a liberal amount of alkaline salts, are seldom, if ever, in jured by the unsect we bave described; and to reiterate the opinion that has been no frequently advanced in this Journal, In every instance where the system can be practiced, potatoes should be planted upon new land, where a large share of wood ashes remaln on the ground undissolved. Where this system canno be practiced, ashes, lime, salt, and soat should be collecred and sown broad-cast, at the rate of about two bushels o zacit per acre, upon the plants, in the early par: of July, or when the leares begin to show symp. toms of decay. Other applications may be mades which woald produce the same favorable result; but the substances secommended are withan the reach of alt, and may be employed without costing more than a few shillings per acre.
We are quite certain that but few crops wilh pay better than the potato, and notwithstanding the great alarm that is made about the disease. it may be calizated upon an extensive scale in Canadn, with a degree of profit that few, famers are aware of. Sopposing oar speculative, notions about destroyitg the .fy, shonld prove a failure when put to a practical test, still the business of potatogrowiog may, be carned on wath a cer-
starch from the potato has never been engaged in in Canada, and probably few operations would pay better in proportion to the invested capital and akill that would have to be employed. Upon a careful caleulation, we find, that the starch at wholesale prices, from the produce of 250 bushels of Irish cup potatoes, amounts to the very yespectable sum of $£ 35$, one half of which should go to the grower, and the other half to the manufacturer. This is not ide speculation, but may be practiced with a degree of success that would equal, if not exceed, our statement. An acre of motatoes may be properly cultivated for the same expense that would be required to summer-fallow the ground; and the profits of a single crop will pay for the ground upon which it is cultivated. This being the case, we have no idea of abandoning the growth of so important'a crop, especially since it has become such a leading article of dict among all classes of the community. From what has been bere hastily submitted for the conaideration of such of our readers as are interested in this crop, we trust that a combination of enterprising farmers will put the experiment of manufacturing starch from the potato to the test. This business has been long practiced among the hardy farmers of the State of Maine, and the same has been done in some of the Western States. It is ta be hoped that the Canadians will in future book more ta the bright, and less to the dark side of the pietare. These can be no question but that, in very many respects, the people of Canada are highly favored, but we are wanting in ore main essential, to insure success to our operations, viz:-enterprise. The products of the country may be doubled with very little effort ; and almost every branch of businese may be carried an in a prosperous and flourishing manner; but in order to do this, more akill and energy will have to be brought into requisition, and the products and sapital of the country will have to be omployed very differently from what is the case at present.

The following, from the Gardener's Chromicle, fully corroborates our views in relation to the potato disease:-

The Posato Disense.-I bave watched this peculiar visitation with much interest now for urore than a tweivemonth, and although ite reap. penrance has been doubted by some, it mow begins to be generally admitted to have actually taken place, and to be carrying destruction into every
quarter. I have not been a piece of Potatoes it a cottager's garden, a farmer's field, or any other place, but what is greviously affected with whas is, and bas been "termed the disease," viz. uJceration, gengrese, putridity, mildew, and every form of mischief, and the effluvium is very dis. agreeable in every quarter.
I have the most abundant crops of Potatoes from autumn-planted sets, but the haulm and foliage of none are free from the pest, or ever have been, though to a casual observer they appeared all that could be wished, luxuriant and healthy. I had a beautiful bed of seedlings, and a quantity planted out in due timeare growing away as luxuriantly as from a good sized tuber; they are all diseased, and have long been so, although the seed was brought from Ireland, and advertised as having been saved from plants fee from disease. They were sown by me on a healthy, sweet, well prepared piece of ground, and planted, too, where a Potato to my own knowledge had not been grown for these last six sea-sone-if ever previously. I have observed that all those manured with charrings, soot, and lime, are the last to be attacked in the stalks and foliage; and I have nat as yet found a decayed or affected tuber to outward appearance amongst those madured with the above materials, but I will look sharply after them on taking up the crop, which will very soon now take place, as I have bong since burnt up all the stalk and foliage. I shall, as I did last year, dress all the Potatoes as they are taken up with the above materials; indeed I have all the early crops already done; bat then it is of but little use unless my neighbours aloo pat an effectual remedy into practice.

The real cause of all this disuruction amongat the Potato crops is a very small insect of a light yellow straw colour, with a small poined head with horns, and it has six legs. This appears to me to be the female, the male is something larger, of a darker colour, having wings and four golden coloured syips on each side of its body; these insects are remarkably active in their movements, puncturing the ribs and olher parts of the under siders of the folinge of ihe Potatoes, where they may easily be discovered with, or by the ap. plication, of a good glass; and if the stalks and green leaves are phaced in a good position in respeet to the reflection of a goed elear light, \&t, both the inseet, their weod and bunches of egga, may readily be diqcovered on: their stemsatialm,
blage, or tubert, that are to all appearance to a asaal observer healihy and unaffected ; gangrene, paridity, and mildew take place, according to utmospheric and ocher causes, very quickly after those destrucives have made punciures, which bey do astonishingly quick, proceeding on to zore bealuhy pirus. This will be clearly visible with it good microscope.
This conclusun is counded on long and close sbervalin, I collect foitage and stalks from the the must healihy plants, and if the above described insect is to be discovered on any part, the crop wifl vary eariy show symptoms of disease ; the fall-grown insect may be observed whit the naked eye, a'thógh its shape and limbs cannot be seen. By taking a handful of Potato-stalks and leaves, and placing them in a ressel of water, and covering the whole whit a bell-glass the whole progrese of both insect and disease will very readity und easily be discovered by a watchful observer. This murning i was looking through my microsoope at the industry ot tyo I had enciosed on a Potato-leaf. Their activity in making puncarres is astupughteg; they reera to stay astort sue to suck pat the jutce, as one of them ragde se punctures, and the otpeo swo, ir less chan a miqute and a hall x_{x} all of which were cieariy oberrable, some of the Pqtato fullage 1 have ren thus punctured on the anderside as quackly is a yallage green would be with a drove of pigs without riagi in their snouts, and has a somewhat mamlar appearance an one stage. It aqothtule sulisy to search tor the offender, or caseat the disease. Where it is aiready yissble to a casual weetyer, in the shape blotchings, gangrene, gatndity, mildew, \&c., the real cause wall not then be found. The real offenders must besearch. ed for on the most healithy parts, and af they ere thesre to be fuand, the crop is sure to be considerabig injured, if not a total fallare f discovered the very insect above discribediast year, bur I cou'd not imagine it to be the cause of the ril; bai the again making ats appearance this jear so early in the hor-bouses, phts, sad frames, sooped beds, borders, quarters, and every field vod garden, to bave a very strong suspicion ot him, and that this is the real canse of all the muschicf tam fally satisfed. Where soot-water and char-coal-dust is appled, it esther kulls or dnves them iway; but as to Tobacco-zmoke, it dose not ven to take any more effect of this insect than iwould or an old Cielsea pensioner. Whether

It is a emall tocust orthripos P cannot may ; but as to ituravages, theremay yet be bopeathat they may be. stopsed, and that thas uefiul vegetable will not be wholly kost ta the country. Atmespheric changes end variations of aesons have bл astontshiag effect on retarding or entitely stopped the ravages of inseces.-Gar. Cron.

Wild Goose Wasif.-This variety of whens has lately been fayouribly noticed by our freend. Mr. Evari's, in his "Canadaan Agrecultural Journal," which article has been subsequenily copied in nearly every newspaper in the colony. Itso happens that we have a long acquantance vith the variety of wheat in question, if wheat it cañ'propenly be called; and as long ago as the summer of 1830, we saw growing in the garden of a farmer in the southern diviston of Whatchurch, a small quadury, the seed of which was said th have been found in the crop of a wild guoce, shot by a farmers son, in that neigtbourhood. This grain has been a source of pretty extensive speculation, not so much, however, wih a vipw to ascertain ate origna and עminnsc trerit, as a bread-producing plant, but solely wath a vietw of guling the creduiuns out of therr money, without giring them even a shadow of value. Wild ggooge wheat has been long known among the farmers of the Coited Ṣates, and enormous prices have been patd for a few grains; and, indeed, the mania at one ume became so generai, that the term " If ith-goose opeculation," denved its origin from this source. F'or all aseful practical parposes this gran as nearly worthless: it might possibly affurd a small per centage of aicohol, but even for this purpose in would scarceiy find 2 sale in the Canacian markets.
The grower of this waeat, by whom n was sold to the farmers in the neighbourhood of Montreal, is well known to us, and if we remember correct'y, we cautioned him against its narodcc. tion among the Canadian farmers. We saw at repeatedy, while grosing on his frim, and tova. some pains to convince him thatit was precisery the eame grain so long quiarourably known by the appellation he gave it. If he had acted upon that advice, this lengith notice would have been ancalled for, but ducy to the farmers of Canadn, whose true interesis we prefess to advocate, forbade silence when there could be no doubr but that an atrmpt is ahnut be a de to scatter, as it were broideast throogh the land, an entirely
worthlets varisly of grain.

- Ondtivation of, Gfapbarsiéa

The following practical hints on the tubject of the Cultivation of the Cranbe ry is caken from our able and highly talanted cotemporary, the Mtaine Farner This fruit is ithdigenous so Canada, and might be made a ver's profitable crop. The soil best adapted to the cranberry plant is that which is generally Tound along the borders of lakes and rivers, and which is generally understood to be toa wet for profitable calíyation. They are grown extensively in the Eastern States, and, indeed, have become an important item of exportation, especially in Massachusets. The demand for this articie is constently on the increase; and wher it becomes known that a certain supply can be relied upan, there is every reason to believe, that a very profitable trade might be carrieds oa with this entirely new agricaltural artucle, in this province.

First. Select a gituation for your cranberry field on a clay soil, on such as is not liable to bake, or on a dark loam soil, or or any moist soil where there is a mixture of sand. Most of our reclaimed lands, suchas can be made moderately dry, are well adapted 19 grow the cranberry in fact, most soils that are mavalal to grow the potato are suitable for the cranberry; yet the first nientoned solls should be preferred. I think there are portions of most of the farms situated in the Middle States and their vicinity that are well adapted to grow the cranberry ; and I should propose to all desirous of commencing the busisess, to put their plants on different parts of their soil, and by so dong the better soils may be ascert ined. As far as I have observed, there are three varieties of the crahberry, viz', the barbetry, the cherry, and the bel.. I have never known any varsety of the berry that wouid naturalize to dry soll except the bell crasberry. 'this species grows much in the form of an eag. When inthe wold state, it if inclined to grour on the borders of cranberry bogs, spreading its way to upland soil. This species is much larger than the others, in its wild state. Persons engaging in the cultavan of the stricte, should commence with the last mencioned species; and by commencing with those that have been cullivated and naturalized to a dry soil, they will much sooner accomplish their object, and with much less roaHe and cxpense, as the plants multiply and increase abunuanily. Persuns commencing with ose of two thousand wull be able to abrain plants
of their pwn raising eufficient 10 traneplant sceses in two ur threc years.

Second. Prepare your soil the same as for sowing grain, by plowing, hatrowing, and mat. ing your soil e-en. Then mark it out in dule 18 or 20 inches apart, poliing the plants in tbr. drills, five of six inches apart. Hoe them sligh., ly at first, till the roots become clinched, an: afterwards no other cullivation is needed. Th, plants may be erpected to run together and core: the whole soil in two or shree years. The cranberry grown by cultiyalion usually yields from $1 / 3$ to 400 busbels per acre; its fruit is awo or thretimes as large as the wild fruit, and of a beautify flavor; it readily keeps sound from the hares time of it to the time of harvest again. Trw. fruit is generally gathered in September. In gathered with wireteeth rakes, made for the pur pose. One man will generally gather from thinto forty bushels per day, with the aid of a boyr. pick up the acattering frunt.

Manuracturef,

There is scarcely two opinions at preseri, f, this country, on the imporfance of eneouragis domestic manufacturing enterprises, as a meat of giving a permanent and profitable marketk its surplus agricultural produce, and as a cetta. antidide for the almost unparalleled coiamerti. distress that is ar generally felt at this partices: ctisis y in the Dritisti American Provinces. In argued by some, that the Colonists have nota. ficient confidence in themselves, to engage eales sively ia manafacturing even the heavy fabris, woollen, coiton, and flax gaods, on which 4 profits are bighly remumerating. and the demoz constantly on the increase'; but in repiy to satement, it may be jastly asserted, that by u reeklesshess of the importing merchaints, fortic confidence is nearly sestroyed, and the only pa cesefal coarse to be adopted, in obtain substio tial relief, is, yo retrench in erety possible mas ner; and at the same time promote home induss In every instance where it is ditected in a chapn: that is ealcolated to benefit the cecuntry. T^{2} ? important aubject is so ubundansly prolific, the we apprettend the readers of the Cultivator the considervs tedious; but to show them whath been done by their American neighbore, wéche copy the following from the Farmer \& Mechanic

Manchester is the only city in New HIampsobit Esht years dyo, it cosained scarcely one to
dred ingesbitanth, and where now standa ifa prin- apinning yool. ativenty-four of themare zended cipal mąeufacturing estapliahmeuta, and where la by giris, and 25 by boys-'is said the girls keep done the pusapess of the surpouading cpuntry, was their room in tha best order, do the best work, then pust one dwelling
The populason of Mianchester is about 12,000 souls-it is suruated on the East side of the Mer. rimack river, abuut midway between Concord 10 cents in New Orleans,) per year. You must and Neshua. There are three ancorporated cum-fbe iware that only' about iwo-thirds or thireepaties, or conyoranoni, viz;-the SLark, Amos-iquarters of each fleece is fill lor Mouslin de Laines. keagyand Mancheater.

The Stark (which was commenced in 1838, hes one mill 500 feet by 50 , and live atories high, will 23,000 epindies, 660 loonis, and gives employment so 750 females, and 200 males, and a new mill now recerving her mackinery, that will contain 20,000 epindtes, 550 loonds, saú require about 900 huids.
The Amoskeag Corporation has three mills in opetdtion, called the Amoskeag new mills. No. 3 mill 1340 feet by 60,4 atories, besides attic and lasement-has 120 cards, 30 speeders, 160 spinning frames, of 128 spimdles each, (making 20,450 spindles,) and $530 \mathrm{looms}, 500$ of which are in one room, with one girl to erery three looms-a rich speciacle, I assupe you. The 90 looms are fur weaving cotton flannel. This company now employ 1400 males and femeles, and use in the three mills over 12,000 bales of cotton, and make from $14,900,000$ to $15,000,000$ yards, No. 14 goods, per year. This company is now laying the foundation for a new mill 350 feet by 62, , ond 6 stones high, to contain $20,00 d$ spindles. The ground is sarreged for two more of equal size, but will be delayeduntil the effect of the new tariff is ascertained.

Elpon this corporation, and belonging, as I understand, to the land and water power company, is a machine shop and Foundry, that gives employment to some 300 men, and boys in the manufacture of mast kinds of coltor and woollen machinery!

Noxt below is the Manchester Corporation, with one mill for the manufacture of Monslin de Laines-of suficipht size for 20,000 spinales for cotton, and 19,000 for worsted- 10,000 for coteas and 13,000 for worsted are all that is yet in -and the company have countermanded the ordete for the balance of theit maclinety for the present; fearing they might not be able to manufacture Mouslin de Laines to compete with imFortations under the new law;)-and 1000 looms. The Ecotch improved male is nsed in this mill fot

The printing establishment of bis Company is 276 by 50 feel. and 5 'stories high, and will print 1000 pieces per day.
Thits Company also intend to erect a new mill for making fine print godeds, which would requiro 5,000 bales best cotton per year 10 supply it, but will delay for the present.
As a sample of what thees Jarge corporationg are obliged to expend in advance to any profit, I will say that this company paid out in money ior American labot and machinery, $\$ 800,000$, and for fordign machinery, such ds was not made inthis country, (Mouslin' dé Lalne printing máachinery, abour \$50,000.
Besides the loregoing, there is much of interest that might be said of this cily of the Grante State, but I have spun my yarn quite too long already, and will only remind you that there is two steatu sad and planing mills, one mill for the manufacture of flour, and one tor lumber of any valriety, and one or tivo for sash and blinds, \&e.
P. S. Below the Mouslin de Laine mill the canal is being exiended, 1200 feet, whuch affords a splendid site fur a "few more (milla) of the same sort."
At Amoskeag, is the old Amoskeng Ticking Mill, wihh 4000 spindles, 132 looms, and employing 200 hands, in the manufacture of a very su. perior licking, well known to the mercanule community,
At thi - place, in the shop of W. P. Newell, \& Co, I saw the splendid cracker cutting machine, tuentioned in my last, which dors much credat to the fureman of the shop, Mr. Baldwin, to whom it is indebted for several valuable mprovements.

Manciester, N. MI., August 20ih, 1846.

To Cure Corns.-Scrape the corn so as to neariy couse it to bleed; apply a salve composed of calomel and lard ; renew the application three or fout times a wcek; keep the feet clean, and weat loose shoes.

Provinclal Agtiontimel Aesoclation,

 -Our readera will observe, that the first Provincial Show will be held in Toronto, on the 2 lst and $22 d$ inst. The arrangemonte may not be as complete as would have been the case had more time been given the Committee of Management, but at all events a commencement hasheen made, and us the Associstion will be in future governed by a Board of Agriculture, there can be noquestoon, bat that its govemment and management will favorably compare with that of any sumilar Assaciation in being. It must be bofne in mind, that the collective wisdum of Western Canada will be semi-annually concentrated in the Board of Agriculture, and that this Board will have the entire controul of the Agricultural Associationthe publication of its proceedings-the Model Farm-the Agncultural Museum-and of the various other interests which will leguthately come under its management. In all probability a meeting of the Board will take place before the close of navigation this artumn, and then, and not till then, will the public be able to judge correctly of the benefits which will accrue to the country through its powerful agency.
Preparations are being made on a grand scale, for ale Éshibition, and it is confidently expected that the competition for the prizes, and attendance of visitors, will be equal to the first efforts of similar Associations in Great Britain and uther countries where they have been antroduced. The citizens of Toronto appear quite determined to acguit themeelves with credit on the occasio , and we doubt not but all who vist the Shuw will return home strongly impressed with the inportant influence that exch mamianol exhibitions will have upon the productive inferests of the couniry. It might not be out of place to menion, that any persnn in Western Canada may compete for one or all of the prizes, by paying to the Tressurer the small subscription of five shinings.

Nety Yors Agricustoral Subw.-Agreeat bly to the announcement to our readers, we visited the Auburn Exhibtion, and while there saw much to admure. Indecd theimprovements made donng the past twelve months have been so great. expecially in some departments of Agricultural Machunery, that we deem it a daty we awe our mumerous readers, to publisi a report of the exhibitua in the November number of our journal

This inlght have been dohe in time for the Octop ber number, had nof argent business on the fatm prevented us from doing so; however, we shall endeavour to prepare it previous to our bext issue.

Agricultukal Waremouse.-Erom the notice of this proposed establishment, given in our last, our readners would be led to expect that it would be opened by the Ist inst., but owing iothe active part we are obliged to take in making preparations for the Provincial Agricultural Show, it will be the lapse of some weeks before theW arebouse can be properiy opened, or orders for machinery at all satisfactorily attended to.
A number of inquiries respecting the potatadigging machine, separators, and other improved machinery, have come to land, but owing to the great distance we have been residing from Toronto, it has been quite impraclicabl- 10 pitend 10 them. The machine for digging potatoes has been tested by the edijor, and it is with regret he has to state, that it has pot equalled his expectations.

Extruordinary Ino Orop of Eeacies,

It has long been our opinion shat the Canadiar market might be fully and very profiably supplied with a superior quality of peaches, being the produce of this country, provided whe proper steps were taken to secure this desurable object. The peach may be growin in open culiare in the southern partiona of the Western, London, Talbot, Nagara, and Gore Districts, and in those sections where it is found a profitable crop, danns should be token to introduce and culuvats the best variecies, and such as are peculiarly hardy and adapted to the climate of ith nuntry. Dised peaches cannot be had in Canada without paying two or three prices for them; but if a few enterprising cultivators would engage in the businers of growing thip fruit extensizely in some lceation in Canada suited for the enterprise, wa see mo reason u hy this fruit, could not be had an any desired quantity, both in a.green and dred state, at prices that would not seem exorbitanily high, and at the same time liberally remunerate the growers and dealers in the arucle. To show what has been done elsewhere in this line, we would mention, that in the small state of Delaware, a single orchardist, has, at the present perrod, upwards of 50 acres of a peach orehasd.
from which he sends some thousands of baskets of fruit to the Allanuc cilucs, and obiains the rery bughent price in the market. A similar enter, prise might be engaged in along the north shure of Lake Erie, where the soil and climate are peculiarly favourable for this delicate fruit, with a reasonable prospeci of his turning out a lucrative business; but in order that such an undertaking should be succeesful, it must be conducted with a Ideral amount of capital snd ekill. Judging from the manner in which matters of this kind has been heretofore managed in Canada, it is scarcely; reasonable to hope that persons çan be found whop would be willing to undertake to supply the home market with an article of home produce when a similar artiole could be quite ts profitably imported from the neighbouring States. Every thing, as ueual, we suppose, will have to be done by an isolated effort, and that, too, upon a small scale; but, nevertheless, it does sot follow that even by this mode of management, the country could not be made to produce this and nearly all the lusuries of life we require, of as good a description, and which might be afforded at as cheap a rate as can be supplied from other countries. As an eridence of what may be done in the cultivation of the peach, we would mention the success of two gentiemen farmers of the Home District. Some scorés of justances of a similar description might be givea, but as lhe quality of the fruit under notice was of such a superior description, we consider it due to the parties who who grew them, io instance them in particalar: ; Alexander Mackechnie, Esq., Rüchmond Hill, Yonge Street, has two seedling peach trees in his garden, which grew the present season upwards of one bushel of excellent fruit, and which woo'd, in point of size and flavour, favourably compare with the best fruit of this kind sold, in the Toronto market. The other case we would mention, to prove that peaches may be grown even farther' noth thain Toronto, is that of Franklin 'Jackés', Esg q', Yongé Sireet, Mr. Jackes also had two trees, from which he grthered five bushets of fruit.' They were of an improved cultivated variety; and that out féaders may judge correctly of their very superior quality, we would mention a few facts that came directly uoder our notice. One of the largest sized wrighed ten ounces, and measured in circnmference eleven tithes, and guite a number of othese measured from nine to ten inches in cir-
cumference. A portion of this fruit was sold to Mrs. Dunlop, of this city, at the rate of five dollars per bushel, wheh was retailed again at from 2s. ©d. to 3s. per dozen, and found a ready sale at these prices. It is due to the enterprising late proprietor of Mr. Jackes's estate, Jas. Hervey Price, Eqq., M.P.P., to mention that these trees were planted by ham some tour or five yeats ence, when the farm was in his possession.

Application of Gypsum or Plaster of Paris.-. Ground plaster, spplied as a fertilizar, is so well known, and ats properties and uses so well estabhiehed, that at is presumed that most antelligent farmers are perfectly acquainted with everything concerniug it. It is extensively used, and is very adsantageeus to clover, beans, peas, turnips, cabbages, \&ec. ; but it does not nppear to answer so well on natural meadows, for grain crops, nor on wet, or very poor lands, containing but little vegetable mater, nor is thought to le of much uee in places approximate to the sea. It is extensively used in composts in barn-yards and stables, and in neatralizing decayed or putrescent substances, in vauths, urine tanks, \&c.; and is advantageously employed with green manures, and as a top-dressing of rotted dung or composs, io which it gives remarkable activity.
The quantity of gypsum used per acre variea from half a bushelio five bushels, depending apon the quantum of substances in the ground on which the componont parts of the gypsum operate, or are by them operated upou. In proportion as these are scarce or abundant, the effects are pron dueed in a greater or less degree. And when they are exhausted, or where they do not exist, no quanaty whatever will produce any agriculcural benefit. If a greater quantity be used, than is reqaired to exhaust the subjects of its operation, the excess will remain inert and inaclive until new subjecte call forth itspowers. Still the gypsum remaining in the suil, on a renewed applica. (ion of dung, animal, or vegetable matter, will operate, but leps powerfully, althcugh it may have remained in the ground for years. Therefore, small quantites, by fregnent applications, are much the best, notwithstanding the excess, if apv plied too profusely, or beyond what the substan, ces in the earth require, will reman in its ornguas state of composition.-Am. Ag.
Rub Chillbains with a mixiture of seven parks. water and eve part mantiatic acid, to remoye them.

Eints for Young Men.

It is well remarked by an intelligent author of our day, that "a young man, be his profession what it will, whether he be a merchant, manufacturer, lawyer, physician, chemist, architect, soldier, firmer, mechanic, or artisan, should be profoundly impressed with these principles: 'I will not linger,' he should say to himself, ' In barren and disgraceful mediocrity: I will strive to find sufficient resources in my own genius, aided by observation and study, or in persevering and active industry, in firm resolution, in constant meditation, seconded by the intelligence and the examples which have preceded or which surround me, to deserve to be pointed out as a model, to raise myself above the obscure and insignificent multitude, to act a distinguished part, to be happy, by making myself.' The necessary conseqnence then is, that he requires fortune and celebrity by means of the immense power of continuity of action, and by the determination to attain them.-Such a person does not vegetate on the earth-he lives, and is worthy of living."
" Let it be your unceasing aim," says another writer, " to learn what you can from everybody, but to think and act for yourselt." It is said that Sir Walter Scott never met with any man, let his calling be what it might, even the most stupid fellow that ever rubbed down a horse, from whom he could not, by a few moment's conversation, learn something which did not before know, and which was valuable to him. No man ever became great by mere imitation. You must have a character of your own, and rules by which that character is regulated. It has been said If Franklin, that he was a philosopher because in his childhood he formed those rules which regulated his conduct ev:n in old age. Whatever you do, do it well; do it methodically, yet do not make yourself the slave of method.

A certain well-regulated habit of looking beyond our inmediate situations is justly considered the parent of all laudable enterprises. This is that noble ambition, which cooly regarding the indistinct expanse of the future, traces out a road of consistent well-doing.

The weak man casts his eye across the sea of time, and, viewing no furrowed path, commits his vessel at random to the waves: the prudent a nd keen-slighted, looss out upon the same trackless way, but he has a compass to guide him to
the haven of prosperity and fame. The one yields to every struggle with the storm, he is tossed about without pity or succour, or wrecked upon the quicksands which he has not learnt to shun : the other, however harassed or retarded, however, borne down by the current of unavoidable secessity, overcomes the dangers and difficulties of his course, and oblains the prize for which he has contended; he has exclaimed with Milion,
"I argue not
Against Heaven's hand or will; nor hate one jot Of heart or hope; but still bear up, and steer Right onwards."

Mr .George Stephenson, the eminent engineer, at a recent entertainment at Newcastle, gave the following account of himself:-"The first locomotive that I made was at Killingworth colliery, and with Lord Ravensworth's money. Yes! Lord Ravensworth \& Co. were the first parties that would intrust me with money to make a locomotive engine. That engine was nade 32 years ago. and we called it 'My Lord.' I said to my friends that there was no limit to the speed of such an engine, provided the works could be made to stand. In this respect great perfection has been reached, and in consequence a very high velocity has been attained. In what has been done under my management, the merit is only in my own: I have been most ably seconded and assisted by my son. In the earlier period of my carreer, and when he was a boy, I saw how deficient I was in education, and made up my mind, that he should not labor under the same defect, but that he would put him to a good school, and give him a liberal training. I was, however, a poor man, and how do you think I managed? I betook myself to mending my neighiors' clocks and watches at night, after my daily labor was done; and thus I procured the means of educat. ing my son. He became my assistant and companion. He got an appointment as under-reviewer, and at nights we worked together at our engineering. I got leave to go to Killingworth to lay down a railway at Hetton, and next to Darlington; and after that I went Liverpool, 10 plan a line to Manchester. I there pledged myself to attain a speed of 10 miles an hour. I said I had no doubt the locomntive might be made to go much faster, but we had better be moderate at the beginning. The directors said I was quite right; for if, when they went to Parliament, I talked of going at a greater rate than ten miles
sa hour, it would put a cross on the concern. It wea hot an eacy task for me to keep the engine down to ten miles an houf, but at muet be done, and I did my beat. I had to place riyself in that most unpleasant of all postions-the withess-box of a Parliamentary commituce. I was not long in it, I eseare you, before I began to wish for a bole to creep out at. I could not tind words to mitify efther the committee or mysell. Some one inquired if I were a foreigner, and another binted that I was mad. But I putup with every rebuff, and went on with my plath, determined, not to be put down. Ascistance gradually in-creased-improvements wero mado every dayand to-day a train, which staried from London; in the morning, has brought me in the afternoon। to my natuve soil, and enabled me to take my flace in this room, and see around me many faces which I have great pleasure in looking upon."
The complaining impatience of caprice or dis. content, remote as it is from everything like exalted determination, has often been mistaken for this noble consistency in looking beyond the pres. eat. The difference is sufficiently clear. He who pursues a future happiness, or prosperity, or bonor, by the right path, does not cast away the good in his possession, nor neglect the duties which lie before him ; but he endeavors to shape them, by slow degrees, to that model of perfection which his feelings or his reason have set up.
The great American plulosopher and states. man, Benjamin Franklin, drew up the following list of moral virtues:
Temperance.-Eat not to fullness; drink not to eleration.
Silence.-Speak not but what may benefit others or yourself; avoid trifing conversation.
Order.-Let all your things have theirplaces; tet each part of your business have its time.
Resolution-Resolve to perform what you ought; perform without fail what you resolve.
Frugality.-Make no expense, but do good 10 others or yourself, that is, waste nothing.

Industry.-Lose no time ; be always employt 1 in something useful; cut off all unntcessary actions.

Sincerity.-Use no hurfful deceit; think innocently and justly; and if you speak, speak accordingly.

Juatice.-Wrong ware by doing injaries; or omiting the benefirs that are your daty.

Noderationm-Avoid enremes; forbear re*enting injuries.

Clenalinece.-Sufter no uncleanlineses in body, clothen, or habilation.

Tranguility.-Be not disturbed abuut trifes, or at accidenis common or unayoldable. Humility.-Imitate Jesus Chriat.
The same great man llikewise drew up the tollowing plan for the regular emplogment of his time; examining hunself each morming and evening as to wha: he had to do, what he he had done, or left undone; by which prastuce he was better able to improve lis futare conduct:
мовмsso. novzs. -
The questuon, () Ris wash, and address At-

What good shall I do today?

\qquad

\qquad

[^0]
The evening. The question, What good have I done today 3 what have left
undone "hicht undone"hichIought to have done 3

${ }^{2}$

2 counts, and dine.

Work.
nours.

 ing Milton, the Poet of Paradise Low, who, dur '. was anctive life in the most troublesome times, whan unceasing in the cultivation of his under. standing, thus describes his own habits:
"Those morning launts are where they should be, at home; not sleeping or concocting the surfeits of an irregular feast, but up and stirring ; in winter, often ere the sound of a bell awake men to labor or devotion; in summer as of with the bird that first aronses, or not much tardier; to read good authors, or cause them to be read, till the attention be weary or memory haye ats f full fraught ; then with nsefal and generous jabors (preserving she body's luealth and hardiness, to frender lightsome, clear, and not lempant, obedi-:
ence to the mind, to the cause of religion and our and I always did $40 ;$, whefeas two hours' altentive, country's liberty." Energy of mind, likestrength, reading of a common-sense author, and, an hoar of body, must be aequired by esercise, and chat or wha of abstract thought woudd converce shem the constibasness of desert in encounterit g daffi- of the error and folly of the prejudices they act culties, must be felt to enable us to accomplish any great work. All oureminent men have been distinguished by fizing upon some greas object, and possessing themselves with such a luvely conception of it that has led them on through years of toil.

©orcespanderce.

A Wot Day, No. 2.
Dear Sir,-
The highly complimentary manner io which you noticed my former communication, has induced the to take up my pen a second timo, to offer a few remarks for your consideration; atd If you think them worthy a column in your paper, :hey are at your scrvice. I had intended writing you some two months ago, but having an unusdally large harvest to attend to, my time has been so much taken up, that I have had hitle incinauon for writing. I make this remark, lest you mght think this the only wet day that has elapsed suace I last wrote you.

My feelings are sull deeply interested in aiding and forwarding the cause of Agriculture and raising our farmers to thatstandard which their calling and station demands; and that which I think to be the most effectual means of increasing their prospenty and improving their social condition. is, an earnest appeal to their intellect for improvement. Not that a man should go to a book to learn to hold a plough, but to understand the nature and foundation of his soils, thesr component parts, their susceptiblities of varted culture, and what crops are suited to their varied characterall these things, and they are essential to the profitable accupation of our soils, should be pertecty understood, and yet how few do understand them. I am fully satisfed that our farmers do not reald enoagh on such subjects as relate to their own personal interest. I am often amused with the prejudice which exists against innovations, and blush for my calling, when I hearmen possessing an ordinary share of common sense, talking of killing pork in the newe of the moon, planting potatoes in another stage, sowing peas in a thitd stage of $i t$, aind a hundred other equally rediculous and absurd asections. If you ank them tho, rexson of all this, they say, my father did or eaid so,
npon.. .
"The business of husbandry," scys an author in drawing a comparison, may be likened to the healing art; the farmer, as well as the physician, may plod on mechanically without the aid. of study or of science, happy, if you please, in his own conceit, and in bis ignorance; both may have tulerable success, ty' adopting the example of enlightened neighbors, or following the impulse of their own diserminating minds, yet, both wonld do better, were they to underatand perfectly the organizatiom and properties of the subjects upon which they are to operate or are to employ. Generations have been engaged in investigating the business of both professions, and bave handed down to us the result of their observations and experience; these lessons of wisdom are considered indispensible to the student of medicinethey are no less beneficial to the student of agriculture.
A iarmer can be, and when he understands his rights and privelidge, is one of the most indpen- . dent minn on earth. The wife of a farmer is one of labor, it is 'true', buy labor, unless carried to excess, is far from being prejudicial to the body or mind ; vigorous excercist, such is the law of our niature, is necessary to the full development of either onr bodily or mental posers; and unless the necessity is forced upon ns in part, we are apt to evade it. I trust you will bear wath me, Mr. Editor; if my remarks are verbose, when I tell you, that the subject of mental culture deeply interests me, and it affords me a secret satisfacton in giving an expression to some of my ideas upon it. I sincerely wish that more of our farmers knew the calm satisfaction of taking an improving volume by the peaceful fire-side, or the lusury of improving the mind How few men rho love their homes and their book, that are vicious! Employment, roused by some noble object, is the secret road 'to happiness, and of all employments, mental labor lasts the longest. The body soon wearies, but the mind is immortal.
"The fuan," says Robert Hall, "who has' gained a taste for books, will in all likelihood become thpegatal; and wher wn beve given hirs 4. habt of thinking, you bave curbu.- lign much greater favor than by the gift of a large som
of money, since you have put mito his possession the priuciple of all legitiminte prosperity."

Bat I twill conclude ; in my hext I propose giving some af my own experience and observations on farming. Though I' make no pretensions to philosophy or science in'my'practical experiense, yet I'tuust to be benefited by an investigation of them, and am not afraid of their practical application to my profession.

Yours respeetfolly,
Cuarles E. Cajomice.
Deteham, Brock District,
September, 1846.
Bones Dissolved in Sulphuric Acid as Manure for. Turnips.-The application of bones dissolved in salphunc acid as.a manure for turnips being now so general, perhaps the following hint may be acceptable to your readers, as it isthe opinion of several practical farmers who tried the experiment last year, and are about to repeat it. Take an large but shallow tab, about 18 inches deep (regnlating the size according tr the quantity required) spread the bones at the bottom of the tub, and add sufficient water bearly to cover them, then pour in the acid, stirring the whole mass with a strong fork; an immediate fermentation takes place, and the bones will be safficiently dissolved for use in 48 hours, or even less. The best way to prepare the compost for the drill; 13 to mix half the quantity of peat or wood ashes according to quantity of bones used, passing it if necessary, through a coaree sive-and afierwards adding as much dry monld as the drill requires. This plan is, we think, better than dissolving the bones in a heap of dry mould (as recominended by Mr. Pasey,) because, without great care, the scid when poured on to the bones, is apt to escape into the mould, therefore we prefer adding the water first; a tub is better than an iron vessel, the sulphuric acid having a great affinity for metal will soon destroy it, bat it has no affect upon wood. The proper proportion per acre is 4 bashels of bone dust, with 40 pints of sulphuric acid, which meigh about 70 lbs . if bought in small quantities; 3d. a pint is the price of the acid in the conntry. Ag. Gaz.

Infuctice of Knotoledge upon Agriculture. -Here, then, there is an opportunity for the highest degree of intelligence, as tpplicable to the jmatoremeat of agriculare; for who cein donbt
that these extraordinary results are the conse. quence of tint intelligence and enlightened skult, walich are' equally 'the listruments of success in every orher art. Bat it seems ide to argue this point. 'All the indprovements which have been made in agriculture; are as much the result of the application of mind and of knowledge to the subject, as any of the improvements made i: manufactures or the mechandic aits. Aecident has produced nothirig. The dull, glodding lotorer originates nothing, any more than the beast sohich he drives.' The present balvanced siate of agriculture as a pracrical art, all the intiprovements which have beet effected'in it, are tue to the highly-ittelligent minds, the men of sience, of learning, of observation, of skill, who have applied their attention and have devoted their time, tatents, ind fortunes, to it.

- Scours in Sheep.-Mr. Editor:-Below I give you a recipe to cure the scours in sheep, that I have thoroughly tested and never knew to fail.
Cure for Sonurs in Sheep.-First take your sheep shears and tag them, as the fith thatadheres to them in such cases seems to augment the disease; and then give from 4 to 6 table spoonstul of good rennet, prepared the same as cheese makersuse it to set their curds for cheese. To a lamb 8 or 10 months old, 1 give 4 spoonsful-and af it is not well in twenty-four hours, I repeat the dose; but one dose generally cures. I seep it on hand, in a bottle, at all umes. As above stated, I have never znown this remedy to fall. R. Burritt.

Burdett, 1846.-Gen. Far.
Care for Sweency in Horses.-Take half a pint ofgrease, tried from old rusty bacon; halfan ounce of gum-camphor, shaved fine; four or five red peppers ; simmer altogether till thoroughly mixed. Apply this every other moming to the effected shouldet, rubbing it briskly with a smooth stone until it becomes quite hot. Pulling up the skin two or three times a day, where the fesh is wasted, will expedite the cure.-Ohio Cult.
Scab in Harscs.-The Author of the "Handbook if Farriery;" in the Mark Lane (Eng.,)Erpress, says the following recipe bas invariably croved successinl in curing this disorder: Take of mild mercurial wintment, 6 oz ; sublimated solphur, powdered white belebore, of each 1 oz .; palm oil, 402 . Mix an ointment. It is essential thas it be well rabbed into she effected parts.

On Agricultaral Improvementa,

The year which in apow drawing rapidly po a close will long be remembered and marked as a important and instractive one in the annals of agriculture. Never before, in the same space of time, have so many and varied experiments been performed---never before could the sciences boast of such a band of experimenialists-- nor has such a sum of money been previously expended in endeavours to increase the fertility of the land and the luxuriance of the crops. We have now arrived at a period of comparative insctivity ; and our time may be very profitably employed an intquiring what preparations we can make for next year's investigations, and what subjects will be most likely to gield important resaits to our inquiries. In short, this is the period at which we must plan our experinents for the next season, examine the precautions necessary to insure success, determine the details of the operations we intend to carry out, and obtain all the prelimipasy information that we require. There are many farmers throughout the country who are most anxious to join the ranks of the expermmentalists but who feel at a loss what snbjects to fix on tor examinations; and we fear that there are not a few who, having proceeded without method, have, as might been expected, experienced failures, are ready to class agricultural improvements wath the whims and absurdities of the day, and are determining to return to the gond old plans of operation to which they were accustomed before guano and themical manures had turned the heads and empted the pockets of the tarmers.
To these two classes these notes are particularly aduressed; and an attempt will be made to show that it is probable that improved methods of cultivation may be ascetrained by means of experiments, if they be carried on in a proper manner: and care be taken to observe and recort with accuracy the results. For example, let us now confine our attention to one branch of this extensive subject, and one branch is perfectly sufficient to occupy the spare time of the farmer for at least one season. Attempting to accomplish too much is one of the mostfrequent and certain causes of failure.
The greatest purtion of all plants are composed of the bodies known to chemasss undex the names of carbos, hydrogen, oxygen and nitrogen, ot charcoal, water, end nitrogep; but thee do not 1
we burn 11 , these substances are consumed or dri, ven off, and a manter called ash remains, which is smal| in quanury, but sull important, nar etsenual to the well-being of the plant. Those portuons watch are disapated by heat, are collectively termed the organic patt; those which remann, the unorganic. All the ingredients of the organac portung are fonnd in the anr, and.prob. ably it is from the air that plants derive them; but it is from the soii, and the sotl alone, that they can obtan the inorganic materials; and hence an answer to the question, Does my soil contain all these matters that a particular crop requires? is of the greatest importance to every farmer. As yet, unfortunately, our acquaintance wah the composution and qualities of the athes of plants is extremely limited; so that the fer remarks offered must be looked on, not as the whole, but merely a very small portion of the truth.

The quantity of inorganic matter we know vanes with the plant, and also the part of the plant subject to examination. Ono thonsand pounds of what yield two pounds of ash. The same quanuly of wheat straw about fifty pounds. The proportuons in one or two others are given in this table:-

1000 lb turnips yield of ash	-8 lb.			
$"$	beech	"	"	-4 lb
"	oak	a	"	-2 lb.

So that land may contain enough to supply the moderate requirements of trees, but not suff. cient to satisfy the demands of grain crops. The quantity varies with the variety of the plani, atd also with the solt on which it is grown, the proportion in the same variety varying from 6 to 10 per cent, according te the soll. So that a plant may grow with a small proportion of inorganic matter, but to produce periect and healthy individuals, the larger proportion is requisite. Not only, however, must these substances be present in the soil, and they must exist in considerable abundance, and in a much greater proportion than the plant absolutely requires; for its roots, even it they penetrate to a considerable distance, can absorb by therr extremulues alone; and these can come in contact with only a very small proportion of the soil. The more abuadanuly the plant is supplied with food, the more rapid and more perfect will be ats development.
Hughero arantuynhas beer aione alluded vo, constute the whole bulk of the vegetable. If but the differences in it spe not greaser, than what
pocor in quality. "Whéat contains muteh more poitass then oats; while oats, on the other hand, contain a much grealer proporion of silica, so thas the ane will exhaust the soil of the ingrediont which it possesses in a large guantity, much nore rapidly than the other; and land, which Gom its deficieney of polass, will not bear wheat with advantage, may, if it contain silica, produce large crops of oats ; and further', alternate crops will not exhaust the landso rapidly, as cantinuing, gear after year, to culivate the same species.
As plants can only have their food in a liquid sate, the land must not only contaln the ingredients they require, but there must also exist in it agents which have power of dissolving them; for it is quite possible to suppose a piece of ground containing all the necessary ingredients, being barren; if they be in a solid state; so that we bust not rest satisfied with merely ascertaining that the required substances be present, but we must also ascertain the form in which they exist, and whether they can be rendered easily soluble in water.
One object of the application of manures is, to restore to the land what the crop has taken away. If all the crop were consumed on the farm, and the refuse, as well as the bones and carcasses of the different animals fed on it, were returned regularly to the soil, then its present fertilty would be kept up. And, to we have seen, that the greatest portion of those sabstunces are in the straw, if it be applied to the land, the largest proprortion of what the plant took away will be restored; bat if no such return he made, it is clear, that, in time, the land will be exhausted and unable to bear a similar crop. In many parts of the United States we have examples of the ceterioration of land caused in this manner. Large tracts in Virginia, after such treatment, have been given up to hopeless barrenness; and, if farther proof of the correctness of these statements be required, we shail find it abondantiy in Cheshire. The old pastures, which have been drained of their phosphates, by the cheese prepared from the milk of the cows fed on them, and which, in many instances, were very mach deteriorated, have been completely renewed by the restoration of the phosphates in the application of bone dust

I have made the foregoing statements to shew that an attcative examination of the composition of the aches of plactes with that of the soil on whick they bave been crown, is a subject which
will yield infomation of the highest value; indeed, I beheve, us careful study will lead to greater m provements ahnn nny oiher quesuoa at.present agitated, and will afford data, from which general laws of the greasest smportance will be deduced, and tend to place agnculture among the cettain, instead of, as it is now among the uncertain sciences. Threc separate objects of examination have been indicated....

1. The examination of the ashes of plants.
2. Are these ingredients present in the particles of soil?
3. If present, whether they be soluble, or agents required to render them so?
The determination of the two later questions will point out whether a direct or indirect fertilizer be dequired; direct, by supplying the deficient ingredients; undireqt, renderiug soluble the matters already there, but not in thes present state fitted for the nourishment of the crop.
The difficulty of performing the analysis required, ought, at least in Scotlend, not to be pleaded, as an excuse for neglecting this most important subject; for, if the farmer be unable to do it himself, he can get it done, at a very low rate be the officers of that most valuable institution, the Agricularal Chemical Association. .
G. Atiln, M. D.

Berwick, 28ih December, 1844.

- West. Ag.

Potato Onions..--We take land in th good state of cultivation, (not green sward,) manure libera!ly with well rolted manare, plough it in from four to six inches deep, harrow well, dramn drills 15 inches apart, 2 or 3 inches in depth, we use the caltivator with two tecth, lor the parpose, set the seed 10 or 12 inches apart in the drills, cover it from sight, keep the ground free from weeds, and hoe evenly. Each serd produces 2 tiers, the lower tier from two to five-onions, each onion is at this time, June 20 , from 1 to 3 inches in diameter. The upper orcentral tier from 3 to 7 onions 1-2 to 11 -2 inches in daameter, these are, many of them, ripe, and are beng detached from their hold in the groand by the tier below, they are to be used forseed. The lower tier will continue ta grow until about the middle of July, and will average larger than the onions found in your market, and are very mild. There is growing on our farm 1.4 of an acre of these onions, and if the yield is nat 125 bushels, or five handred to the. acte we shall pe disappointed,--ubot., Cult.

Tho Oolloges me metacoBdecation of. Farmer,

 Sons.
An extract from Colman's Observations on Eurogean Agriculture.

It is quite certain that the course of edocation pursued at most colleges and universities, is quite unsuited to qualify men for the common busithess and pursuits of life. Indeed, it would seem, \mathfrak{m} many cases, to operate as a positive disqualificaton; and men who may have distinguished themselves at our universities for their classical and scholastic attainments, are often thrown upon society as hetpless and as incompetent to provide for themselves, or to serve the commanity, as children. We have small encouragement at present, I conless, to lonk for any thing better. The system of education at our colleges and universities, has undergone little substantial alteration for a century; and what is called classical learning, and the subtleties and 'pueritities of scholastic divinity, occupy as 'much attention as formerly, and hold a place in these ancient sehts of learning so high in the estimation of those to whom the management of these places is intrusted, that there is little hope of dislodging them. Iam no enemy to classical acquirements, as a matter of elegant omament and taste, as a source of delightful recreation, and as an essenual efement in a enmplete eduration But in give them a preference in any wav to learning mare uspfol, substantial, and practical, is not to estimate things acrording to their real importance The time and expense devored to them. might be gives to studies infinitelv more valuable * * * A collige. therefore, of the practical arts, and of those scipnces which directly bear npon practice, must be greall degired by that portion of the community whose education most be to them a muane of subsistence and who have little time to colicata the arts hut with a view to opply them ar onco in the parposes of practical lite
fr must be admitred likewise that many of these arts and sciences are. properly speaking, the rreations of modern times. and could not be Nancted in find their place in schemes of educa tron formed in a remote period. Chemistry, minetologv, geoligr, and electricity, are all of modern date. There are those living, who may br said to have assisted at their birth and have rocked the crade of their infancy. All these are intimstely connected with the practimat arts and !

of agriculure; and wa may confidently look for the moat important benefits to agriculture from the study and application of these sciences. Botany, likewise, and the nature, habits, and uses of plants; comparative anatomy and phy siology the study of which may prove so usefu in the improvement of the breeds of domestic an. mals, and in the treatment of the diseases ani injurtes to which they are fable; the art of met. suring superfices and solids, an art so constants in demand in practical agriculture; mechapies, and the construction of farming implements ane buildings; hydraulics, a scerence so important ir. drainng, urigation, and the general managemen, of water, and the uses of steam, that wonderfu, agent, whach seems destmed to exert a mors pawertul influeace over the affairs and common business of the world, than any or than all olifes agents besides; the pranciples of enguneering, in the canstruction of roads and embankments;-all these are matters to be learned and studied, as furnshing direct uses and aid in the practice of agnculture, and bearing immediately upon its advancempnt. These corsiderations demonstrate the importance of an institution, where such branchec may be taught under the advantages of competent teachers, and means and apparaus adapted to their illustration.

No one will pretend that agriculture, even in the mare improved form in, which it is any whero to be found, hes yet approximated the perfection of the art. The pertection of the art of agricultare is that in which the largest amount of product is obtained at the least expense of labor and manure, ind with the exhaustion to the land. Indeed there is renses to bope that we may, presently. reach a system of cultivation in which, though the crops may be large, the land itself stall no: only not be exhausted, but be in a coursa of.continual amelioration. I bnow well there muse be a limit; but that limit no one can yet defiae. We know already that crops with large leaves, and therefore large powers of absorpnon, are commonly improving crops, and we know equal'y well that thr growth of a forest upon land, so far from exhausting it, is, in fact, an improver of the soil There is every reason to hope, therefore, that euch o system of husbandry may presantly be found, when, wathout any extranequs. aid end from the resources of the facm uself, the lapgest erops masy be obtained, sud the posvers ou pradretion extended. Tho system of naxacom
bery where, if man performs his duy, is a byatem of ameioration, and not of deterioration; it is erery where a system of recuperative compenasjons, if man dnes not controvert or pervert ite aws.
That our craps, for example, are not what they urght be, 15 aniversally admoted. Within the ast few years, crops of many kinds have increased inmensely. A fow years since, fifty bushels of Indian corn, to an acre, was deemed a large erop. One hundred have been frequently prolaced. Thirty bushels of wheat has heretofore been deemed more than an ordanary yield. Fifty ts now not uncommon. I have known sixty, and nearly seventy, to have been grown, and over a large farm, the crop to have averaged fift-six bushels. Thirty tons of carro:s per acre is the ordinary crop of a farmer within my knowledge; and I have on my table before me the authenticated statement of righty-erght tons of mange!warzel to the acre. I am willing to admit that these are rare instances. Some of them may be considered as single instances; but it is obvious that one well-established case is as good as a thousand in demonstrating the practicability of that which 15 claimed to be done.

French Mode of mating Apple Entter.

In France, a kind of jam, or apple batter, called ratzine compose, is prepared by boiling apples in unfermented wine. The must or wine should be reduced by bolling to one-half of iis bulk, to be contunually skimmed as frest scum arises, and afterwards strained through a cloth or a fine sive. The apples are then pared, cut into quarters, and put into this liguor (raisine) and left to simmer gently over a fice, with a conunual strrmg with a wooden spatula or elice, till the apple becomes thoroughly amalgamated with hquor, and the whole forms a kind of marmalade, whech is cxtremely agreeable to the taste.

- Wher prepared in the northern departments of France, the rasine after the first boiling, skimming and stranung, is set in a cool place for twen-tg-four hours, when a saline hquar, like a scam, appears on the surface. This is remor ad, and the liquor stramed, before it is mas 4 with the apples, as above. Thus scum consists principally of tartanc acid, which would epoul the raisine, sidd preveats it from keepring sweet, but which is wot percenvabie, when the grapes, from which the

mate. The raigine, when properly prepared, is siveet, but with' a slight flavor of acidity, like le-anon-juice mixed with honeg. The best raisne is made in Burgundy. In Normandy, a similar marmalade is composed of cider and pears, muck resembling the "apple-butter," of " apgle-sauce," of the United States; butit is not so good as the rajsine, being apt to ferment. Irrome cases, the pears are putinto an earthen vessel withont water, and placed in a baker,s oven, after the bread has been drawn, prevously to mixıng with water.

The best raisine isconsidered very wholesome, particularly for children, who eat it spread on bread, and for nersons in delicate health, whose stomachs will not bear butter. In Italy, the raisins is eaten with gnocchz and other preparations of Indian corn, and with maccaroni, to give a flavor to these dishes. There is nothing better to make a dinner relish. and we would always have it, or apple, or cranberry sauce, if possble. -dm. Ag.

Preservation of Apples,-Apples intentiled is be preserved for 'winter and spring use, should remain upon the trees until quite ripe, which usually takes place at the coming of the first heavy frosts. They should then be plycked from the trees by band, in a fair day, and pached np immediately in casks, in alternate layers of dry sand, plaster, chaff, saw-dust, or bran, and conveged to a cool, dry place, as sount as possuble. The sand or saw-dust may te dried in the heat of suinmer, or may be baked in an oren at tho ume required so be used. The peculiar hdvantages aprsing trom paching apples in sand, are explaned and commented upon as fullows, iy the late Mr. Webster, auhor of the "Americin thenonary of the English Laruyuage." ic Ist, "Whe sand teeps the, apples from the air, which is c's. gentual to theup preservations; 2d The sand checks the evaporation or peropration of he, apples, this preserving in them their tull navor-at the sawe tump ang monsure fielded by the appies is absorbed by the sand-so that the apples are bept dry, and all mustiness is prevented. My pippins, in Mlay and June, are as tresh as when fist pucked. Eren the ends of the stems look as if just separgred from the twigs; 3d, The sand is equally a preservauve from frost, rats, \&c:, But after the exueme heat of Jane takies plice," apples speredily

This implement has been in use for several years, and many persons consider it the most approved and convenient Churn now used. The particular advantages claimed for it over other patent chums, are-" the facility with which it can be worked, from its quick and powerful motion; the ease with which it can be cleaned; and that it is not liable to get out of order."-Gen. Far.

Kotion for Sore Legs-Copperas (green,) 6 drachms; alum, 4 drachms; verdigres (erystalized,) 1 drachm; sal ammonac, 1 drachm; water, 7 qnarts. Mix and dissolve.

Potato Rots a Proposed Remedy.-We very much regret to hear that this destructive disease has again made us appearance, and, hat in several parts of our State its ravages are quite alarming. A correspondent of the Bclfast Journal, setting aside all sugestions, theories, and surmases on the subjeet, proposes the following remedy. His plan, to say the least, is simple and not altogether now, but he speaks with boldness and confidence backed up by bis own expenence, and seems to be somewhat acquainted with the sabject. He says. "There is but one semedy-hat is mow off the vines as soon as the potatoes have blos. somed, cr as soon as the potatoes have set, and are as blg as pistol balls.-This is a care or preventation of the plague.-niothing else will reach it. It is a disorder which tan blope be secuted
by decapitation. All who bave written on the subject, have mistaken the cause and the cure, and as Dr . Franklin would say, have come out at the little end of the hom? I rried the experiment last summer; it did well. There is no mistake, if the vines are cut off near the ground before the poison of the insect desends to the foot of the potato, they are safe. It is a winged insect that does all the mischief. This is the fact, let philosophers humbug as they will about honey dew, fungus, mildew, dew rust, young seed, old seed. wet land, dry land, manures, new or old seed, bot weather, cold weather, too wet, too dry, \&c, \&e. All are wrong, and do not look to the way, or even squint, whence all the evil comes. Potatoes should be planted early in order to be forward ennugh to part with their tops by the 25th of July or the first day of August. The insect was ten'or twelve dayoearliet last year than this, or it may not come at wall, which I hope. Where I cut of the vines last summer on the lst day of August, the petatoes were cound, perfectly good; and I am selling them for seed at one dollar per bushel. Thuse I cut off on the 18th day were injured some, say one-eighth lost." -N. X. Far. © , Mech.

To prevent Pumps and Water-pipes freexing in Winter.-Thake up the vaive or stecker, wactet all the water out of the tratus or pire.

SELLEACTING MAOMTHE FOR RAISING WATER.'

Our attention bas been directed to an interesting article republished some time a 50 in the Farmers Cabinet; and it has ellcited consideroble attention from gentlemen who have sall of water on their premizes, and who would gladly avail themselves ot a simple means for raising water to the top of their farm-hous s, or to cis. ternis for supplying their barn-yards, or gardens, we feel that we chall gratify many of our readers by insetting a sketch of an expenmental waterram , made by one of our subscribers in this city, and which we examined with considerable interest. Its construction was so simple, that any of our readers may make one of these machines, and try further experiments at a trifing expense; while those who wish to have more perfect ortes, can obtain all the requisite information relative to the oullay, by applying to Mr . J. Elgar, Balt., who has given his attention to the subject, and has made some important improvements, It Will be necessary for applicants to etate the perpendicular height the water falls, and the quantity which fowsper minute; also the height and distanta to which it is required to be raised-in
order that we may be able to obtain the requisite information, and to furnish machines of Mir. Elgar's manufacture.

The experimental machine we examined, was made as the piace A, of cast-iron pipe, 2 inches in the bore, and about 2 feet long, having two flanch nozzles cast on it, B and C. One end of the pipe was closed, and the other open, with a flanch to connect it to about 35 feet of 2 -inch cast or wroug.t iron pipe, E. The other end of the pipe, E, led to an open water cask, F, placed 7 feet above the water-ram, and this cask was supplied by a hose, at the rate of 8 , galions of water per minute. Of course the fall from the level of the water in this cask, is equal to a fall of 7 feet, with a stream giving 8 gallons a minate. To the flanch nozzle, B, was attached a brass spindle valve, G, inverting or opening into:. the nozzle. When this valve is held down, water can ran through the seat of the valre, as shown in the sketch, but the tendency of water fowing rapidiy throagh the pipe, E, and ram, A, woqld be to.press the valve, Ge, sguinst ins seal, apd clope the opening; the water would then tun oup.
through the nozzle, C, by: on, this nozzie, C, an feat high, in 11 minutes, $\overline{3} \beta$ fect high in 7 m upward or lifing brase pindle unicc, II, was ai-
 feet high, corering it. This pipe, I, was closed' It the top, tut had a lateral branch pipe, J, of one inch bore inserted in : it above and near the valve, H The pipe, J, formed the rising main through which the water to be raised had to ascend. The upper spare in the pipe, I, acied as an, air-chamber or air cushion. In large machines, a vacuum valve is ingerted in the end of this airchamber, to supply any deficiency of air, but in this experimental machine it was omited.
The upright p.pe, J, was oü feet high, mersured from the ram, or 3 feet abuve the tevel of the water in the suppiy cask. It was furmoshed wath 3 outiet cocksat vartous herghts. The object of these cocks was metely to ascerrain the difference in the volume of water, which would be thrown ap by the ram at different heigbts.

The acion of the machune, as detailed in Mn_{n} Latrobe, letter, may appear complicated to vur readers, but, with the help of the diagram, we think it can be easily understood.

Having filled the water cask, F, the water runs down the pipe, E, and by the time it reaches the valve, B, it has acquired a momentum, which closes the valve, and the only escape is by the valve, C. Through this vaive it rushea up into the airchamber, I , and into the pipe, J . The momentum having been expended, the valve, B, falls," and a quantity of the water rushes out, through the open valve. The water again acquires a fresh momentum, closes the valve, B, and part of it again forces open the valve, C, increasing the column in the pipe, J. The fall and closing of the valves is like a smart blow of a hammer, and they close and open with great precision. In the machine we saw, the strokes were 70 each minute, and plainly heard at the distance of 150 feet. In the course of two or three ml nates, the pipe, J, became full, and ran over at the top On measuring the quancity of water! which was thus thrown up in 312 minutes, 73 feet above the level in the water cask, 12 was found to-be 4 gallons; and as during the 12 minutes, 96 gallons of water had passed from the water cask, into the ram, thapears, that it required 23 gat-: loas of water to ratse one gallon to 10 f times ats own height.

The experiment was continaed, and the same: quascity of water, 4 gallous, was hrowa ap 66
nuies, and 42 feet high in 4 minutes. Thas, in the jast ariai, the machine requared 28 gailons of water to throw up 4 gallons to 6 tumes the height of the fall. It would bave been easy to bare made the head of watet 10,20 , ut 30 feet bigh and a series of interesting espetrmenss might be made, to ascertain expermatatally the relative differences in the momemuin of the water descending from a greater us less distance, the fall oi 7 feet, however, was picietred, in order to give the machine the ability to throw ap water to more than ten times the height of the fali, a dofference which would not often virut. Whe her a fall of 70 feet instead of 7 wou'd have thrown up the same relative quantity of ha.ft 420 feet, is a question we confess we are fiol abie to solve.
The pipe, E , it is found, must b: 30 or 40 feet long, or the valve, G, wi.' $n+$ work, almost all the water ran out of it, whin the water cask was put direetly over the ram. The valve made 50 strokes in a minute. It is not necessary to have the pipe E a perfectly atraight one, but it may be bent to suit the inequalities of the ground, and may even be bent at right angles, as shown in the sketch at K.-Am. Ag.

THE HOOSEVIFE'S DEPARTMENT.

RECIPES FOR MABING CAEES.

-

Composition Cakr.-One pound of flour, one of sugar, half a pound of butter, sevên eggs, half a pint of cream.

Tea Cake.-Three cups of sugar, three egns ${ }_{r}$ one cup of milk, two cups of flour, a small larop. of pearl ash, and make it not quite as stiffas pound cake.
Lonf Cake.-Five pounds of flour, one of sagar, three-quarters of a pound of lard, and the same quanuty of butter, one pint of yeast, egght egrs, one quart of milk; roll the sugar into the flour, and the rasins and spice after the first rising.
Soft Gingerbread.-Six tea cups of flour, three of molasses, one of cream, one ot butter, one table spoonful of ginger, one glass of wine, and a nutmeg.
Jumbles.-Three pounds of flour, two of Eugar, one of butter, eaght eggs, wuth a hutue caraway seed, and a litule milk, if the eggs are not gaffe' cient.

Soft Cakes in little pans-mine and a balf pounds of butter rabbed antic two pounds of sour ;
add oue wane giase of wane, one of tose waste, two of yeast, nuimeg, cinnamon, and carranco,
Spoage Cane.-Five eggsi halia a pound of su-, gar, and a quarter of a pound of flour. ,
Pound Cahe.-Three eggs, nane spoonsful of butter, three of sugar, and three handsful of fipur.
Shrewsbury Cuhe.-One pouind of Alour, three quarters of a prouid φ l sugar, three quarters of a pound of butcer, fuut egts, a, ad une nutyes.
Clove Cahe.-Thrye puunds of flour, one of. batter, one 4 sugar, three egre, two spuongfup of cores-mix a whih molasses.
Wonders.-Twu puands of Allur, three quarters of a pound of sugat, half a puund of buster, nine eggs, a خibie muce and ruse water.
Gread Puddins. -OMe puund ur sufl bread or bipcuit, soafed ial whe yuart of suith, rua through a sieve or cullender, add seven egge, three qquarters of a pound uf sugar, une yuarter of, a pound of huttor, nutang, cinnaprou, one ghi of rose water, one pound of raisins half a pint of. milk; bake fbree quarte ts of an hour, middling hot oven. --N. Y. Far. \& Mech.

To Pickle Red Cabbage -Choose two firm red rabbages, shred them very fine, first pulling off the outaide leaves, mix with them nearly halfa potud of salt, tie it up in a thin cloth, and let it hang, for three hours, to drain, then put it in small jars, ; boil, in a quart of good vinegar,' three bits of ginger, one pod of pepper, quarter of an ounce of cloves, one pod of garhe, and pour it over the oabbage boiling hot.

MEOHANIOS' NOTE BOOK

Fire and Water-proof Cement.-To halfa pint of milk, put an equal quantity of vinegar, in order to crudle it; then seperate the curd from the whey, and mix the whey wish four or five eggs, beating the whole well together. When it is well mixed add. a little quicklime through asieve, until it has acquired the consstatence of thick paste. With this cement, broken vessels and cracks of all kinds may be mended. It dries quickly, and resists the action of water, as well as of a considerable degree of fire.

A Cement for stopping the Fissures of Iron Wessels - Toke ewo nunces of mutiate of ammonia, one ounce of flowers of sulphar, and sisseen oances of cast-1ron filings or turmings; mix shem well in mortar, and keep the powder dry. Wheo the cement is wanted, the one part of thia
and twenty parcoand cican aun inage or bennge, grind them lugather in a murtar, mas hem wah watet io a propet cunastenec, and apply themi botween the joints.

The manner of soldering Ferrules for Thoolhandles, \&c.-Take your fernule, lap round the joinang a small prece of brass-wire, then just k :t the ferrate, scatler on the joming-ground, borax, put it on the end of a wre, hold it in the fire till the brass fuses. It will nil up the joining, and from a perfect soider. It may afterwards bo turnedin the lathe.
Eary way of cleaning the Hands, for dyers, Coluarers, \&c.-Take a small quantuty ofput-ash or peari-ash in your hand, pourinto it a small quanuty of water, rab at well all over your hands with a hule sand, then wash 1 off, take in your hand a smail quanuty of chemic, pour a littlo water into it, and rub it weil on the hands in a semi-hquid state; wish the hands welh in water, and they will be clean, If not perfeetly clean, ropeat the operation.
To Prevent Iron from Rusting.-Warm your irorl till you cannot bear your hand on it without pan to yourself. Then rabit wath new and clean whise was. Put it again to the fire cull it has soaked in the wax. When done, rub it over with a piece of serge. This prevents the iron from rusting afterw.rds.-N. F. Far. \& Mech.

Presercation of Apples.-A correspondent of the Maine Cultrvator, gives the following account of the most e:traodinary preservation of apples we recollect th have seen. He says:---
"I sent you'an apple which I bought in the fall, of 1843, of my neighbor, Thomas Meirs. Anong others, it was put into my cellar, it open casks and about the first of January, 1844, I overhauled them, and put three barrels away, packed in plaster of Parns---first a layer of plaster, then at layer of apples-and so aliernately, till the barrels were filled -..They were then headed up and stood till the early part of last summer, when I overbauled and assorted them, and put them in a box in layers of dry oak saw-dust. The box had a lock and key, and has been kept locked up, only when we got apples out to use. We concinued using out of the box, tull some time after early apples were npe, and I supposed they were all useat out, but on town-meeting day, the 11 th of Narch, 1845, (it being stormy) I told my mar. to assort my apples, and fil that box again with saw-dust" and apples. Upon aniocking the box and taking the saw-dust out, to ouc surpuse there were three apples in the box, and all of them perfectly sound The apple Isend you having kept ini a warm ronm has commenced, as you perceive io rot. Tho above ss subraised respectfolly for sho bexeft of all levers of good, apples.

Soldoring Liotals

To unite two peices of the same or different metals, by fusing some metallic aubptance upen them, is called soldering. it is a general rule, that the solder should be easter offusion than the metal to be soldered by it. It is, in the next place, desirable, though seldom absolutely necessary, nor always attempted, that the solder and the metal to which it is intended to be applied, should be of the same color, and of the same degree of hardness and malleability.

Solders are distinguished into two different classes, viz., the hard and the soft solders. For the hard soldera, which are ducile, and admut of being hammered, some of the same sort of metal as that to be soldered 19 , in the greatest number of instances, alloyed with some other which increases its fusibility. Some of the facts already detailed, respecting the metals prove that the addition made with this view need not always be itself easier of fusion.
The solder for platina is gold, and the expense of it will, therefore, contribute to hudes the general use of platina vessels, even in chemical experiments.

The hatd solder for gold and silver; gold and copper; or gold, silver, and copper. Goldsmiths usually make four kinds, viz., solder of eight, in which, to seven parts of silver, there is one of brass or copper, solder of six, where oniy a sixih part is copper, solder of four, and solder of three. Butamany who may have occasion to solder gold cennot encumber themselves with these.varieties.

For general purposes, thereiore, the following composition may bo provided; melt two pares of gold with one of silver and one of copper; stir the mass well to make it uniform, add a little borax in powder, and pour is out immediately. If cast into very thin narrow slips, it will be the more handy for subsequent use. To cleaase gold which has been soldered. heat it almost to ignuon, let it cool, and then boil it in urine and sal ammoriac.

The hand solder for ailver may be prepared by melting two parts of silver with one of bass. It must not be kept long in fusion, least the ane of the brass fly off in fumes. If the silver to be soldered be alloyed with mbeh copper, the proportion ot brass may be increased for example the following composition may be used; four paris of silver and three of brese, rendered easily of fusion
by a nixleenth part of zinc. Sulver which has been soldered, may be cleaned by heating it and lelting it cool, as direcied for gold, but at must bo boiled in alum watet.

The hard solder for copper and brass is a soft fusible sort of granulated brass, known to artists by the name of apeltre. It consists of brass mixed with an eighth, or a sixth or even one-half of zinc. The braziers use no other kind of hard solder. As speltre melts sooner then common brass it eetves for the solder of the latter as well as for copper.
Standard silver makes excellent solder for breses, It is more fusible than spelire, proportoonarely casier to manage, and equally as durable. A slight demand for silver solder may, to many, be supplled at a cheap rate, in consequence of the number of the small silver artucles in use, and which are irequently wearing out.
Iron may be soldered with copper, gold or silver. Brass or speltre is most commonly used, attd the operationis then calledbrazing ; but a carbonate of the some metal, viz, the dark gray or most fasible sort of pig iron, called No. 1, is the most durable solder that can be used. The pig iron loses some britteness, and the malleable metal becomes harder in the proximity of the parts soldered.

The parts upon which hard solder is intended to operate, are touched wah a finely powdered borax monstened with water. They must, also, as in all soldering and tinming operations, be perfectly clean: The borax quickly running into a kind of glass, promotes the fusion of the eolder, and preserves from oxdation, the surtaces to which it is applied. The pieces intended to be soldered are fastened together with iron wire, or secured by some contrivance having the same effect. Spetre beang composed ot so many grains, 13 apt to spread when the borax bouls up; but just as it becomes fused, the workmen bring it to the place where it is wanted, by a slender iron rod. The flame of a lamp directed by a blow-pipe against the solder covering the itnended joint, which must be laid upon charcoal, is sufficient for small things For large work a common culinary fire may be made to effect the desired fusion, though a forge is still more convenient. The firethould not touch the work, nor the ashes be allowed to fall upon it.

The soltsoider mele easily, but are patity oritula and therefore cannot be hammered. The-whifer
for lead is usually composed of twoparts of lead and one of tin. lis goodnest is tried iy metting it, und pouring about the size of a crown-plece a table : litties shining sters will arise upon it, if It is good. By diminiahing the proportion of - lead, wo form what is called atray solder; we may also increaso the proportion, which is advisable when we trish to sonder vescels for conlaint ing acids; because lead is not so easily corroded or dissolved as tin.

The lining of tea chests has been used for solder, as it sometimes cumes mixed about the right proportion. These valuable portions of tea-lead may be distinguished by their brilliancy, having suffered litte from oxidation; also, when they principally conaist of tin, by the crackling noise while bending? which is peculiar to this metal, and some of the alloys into which it largely entors.

The solder for tin may consist of four parts of pewter, one of tin, and one of bismuth, or two parts of tin, and one of lead the latter is z composition much used.
Tie soldering iron of the tin-plate workers is an ingot of copper, flattened at the point in a pentamidal form, it is screwed or riveted to an iron stem fastened to a wooden handle. The copper is seldom more than fonr or five inches long, and when it is worn away, the same stem and handle are used tor another piece. The bar of copper is prepared for use, by filing it bright, ond tinning it, when sufficiently hot, it will melt and reke wn the solder, so as to afford a ready means of spelying it to the intended juncture Powdered rosin, and sometimes pitch, is used along with the coft solders, to preserve the metals employed from uxidation.

Tin foit, applied between the joints offine brasswork, first wetted with a solution of sal ammonac, and held firmly together while heated, makes an -xcelfent juncture, care being taken to avod too much heat--N. Y. Far. \& Mech.

TVind Wheel.-On Friday last we vistted a sew and we think, hughly valuable invention of Mr. A. Judd, of this village, called a "Cenunfic Wind-Wheel." For simplicity of constrnction and eferciency of action, it exceeds anything in the shape ot a wind-mill that we have ever seen. The principles on which at is constructed are entirely new; and the inventor, in conjunctien with Dr. J. B. Bridgman, who as' joint pro-
prietor, bave obtained leiters patent tor the inrenion. The whecl resembies a common ovesshot or breats water-whecl, except its motion is horizontal; and is propelled by the application of wind upon the inuer surface. By dusapplication, the entire circumference of the wheel is kept constantly before the wind, the whole force of which is brought to bear square upon the lever, producing a power three or four nmes as great as any other wind-wheel in operation.... What adds greatly to the value of this wheel is the fact that it is enclosed in a bui'ding, and consequently entirely excluded from the wealher. This together with the simplicity of us construction, must extend its durability almost beyond the power of calculation The bnilding is covered withstrips of boards, about a foot wide, hung upon pivore, and connected with rods on the smer side like common Venetian window-shutters, andcan be opened and shut at pleasure. By this armngement, any quantity of wind can be admitted and excluded; and the wheel is as easily manageci in a gale of wind as in a breeze; and is as completely under the control of the operator, as any water-power. The building 18 two and a half stories high, the wheel being located in the upper half story. By opening the shatters to the windward, in the secand stary, and to the leeward, in the upper halt story, the wheel is set in motion by the passage of the wind up through the centro of the wheel pressing upon the inner surface of the buckets. The wheel which the patentee has erected, is a temporary one, merely to exemplify the principles, fourteen feet in dameter, and seven feet high; and produces from one to tive horse power according to the strength of the wind, and propels a grandstone. a c!eculat encr, and he intends to add a pair of mill-stones for grinding provender. It operates admirably.
What constitutes the great value of thls novel and highly ingenions invention, is the cheapnass of its conatruchion, and its consequent adaption to the almost infinite variety of objects for which power is required. It can be constructed of any size, to produce from one ciog pover to a hundred horse power, and fiviu dis sumpucity and consequent ease of management, is brought wihin the reach of every farinet and mechanic By its and the farmer may thresh his grain, sav his wood, draw water for hue stock, cu: his feed, grind his provender, charn his baner, grind his axes and |scythes, \&c. \&c. \&c. The mechanic, by its aid can propel his planing machines, his turning lathe, his trip hammer, h.s circular saw, grand hisbats, split his leacher, saw his shing!es, grond his tools, slit out his stuff, saw out his felloes., \&c., \&e.
In fact, we can see no reason why itis not destined to become one of the most valuable inventions of this invenuve age. And we sincerely hope and tuast, that, the ingenious inventor and his enterprising partner, Dr. Bridbman, will teceive that ample remuneration which ss ever due, though not atways aywarded to genius and en-terprise.-Alb. Cult.

A Good Bank.-We are not panticularly in farour of banks as a general thing for certain xea so.n of our own, but we have somowhere read of a bank that we would vote for, the vauli should be muther earth seccure and alwaysprofitable, the exchanges the traneplanting of the nursary and sarden, alwaya natural and therefore aqual in value. The Jeposits should be happiness, silliety and noble independence, a rehable saurce of investment; the assents would be smaling fields waving woth golden harvests to gladden the beholders' hearts, the liabnities would be unavoldable yet agreeabie indebtedness to God alone. while dividends would be health, wealth and honest goy. There is a bank worth sustaining and one that may have a million of branches and still the business would never be overdone--Fiar. Mech.
"e 'King Cranberries.-Toeach quart or bernes very shorly after the cooking of them is commenced, add a tea-rpoonful of salaratus. This will so much neutralize the acidiferous juice, which they consin, as to make st necesary to use cnly one fourth patt as much sugar as would have been requi. 'ip had they been cooked withour using salaratus.-Mıch Far.

Improvement in Leather.-The durability Which tannang gives to leather, without destroyng its elasucity, is an dllustration of the adaptation © Our subsiance to enchance the value of another. The immense consumption of leather, and the great difficulty in augmenung its quantity, renders any improvement in quailty ot no ordnary im. portance. Vanous eflorts heve been made to lessen the ume, labor, and expense of tanning leatherThey have been successful in a degree; but I am not aware that any very decided improvements have been made in giving to the leather any greater durability. A gentleman of German birth, who has had much experience as a practical dyer, has been for three or four years past experimenting on leacher. He extracts the tannin with greater facility, and in greater quantity by the aid of a moderate portion of alkali. The liquid tannia afterwardsundergoes a fermentation, when it becomes ready for the immersion of the hides. The time required for the thickest hides i_{3} thisty days, but by the ald of Lander's air pump, the time is reduced to three, four, or fire days. Some have spent much money in attemptting to exhaust the air after the hides have been
aramersed in the liquad. In this way but very liule effect is produced. If, however, the afis is first exbausted, and sho sanning liquid then let in upon the hides, it will readily enter the poret of the leather, from which the air has been extracted. Mr. G. the inventor of his process, conaiders thas tannin, in the ordinary method, crystillizes in the pores, and thus lessens the elasticity of the leath. er, and cuis the fibres under the hammer of the shoemaker, and under the pressare of the weares. Fermentation destroys the tendenty to crystalise, and gives a much increased affinity for the leather. Mir. G. estimates the leather made by this prooes to be 20 to 50 per cens. superior to any other.
S. F.

How to make Soap-First, set your tab us usual with sticks ond straw, and then put your lime (slaked) on the straw, to the depth of 3 or 4 incheq-then take a long stick that will comè a few inches above the top.of the tub-wind a hay rope around the stick, nearly 1 its whole lengthlet the stick go through the finb two or three inches, then you can draw your lye without putting your hands into it underneath. Put your grease into the kettle, and turn in about two quarts jor enough to cover the bottom of the kettle) of your strongest lye. Boil a few minutes, and then turn in a little more lye, and continue to pour in as the lye boils over, until your kettle is about twothirds or three-fourths fall, when you can fill up the kettie, and after skimming the contents well, dip out and empty it in the barrel. Put in two pounds of rosin to one barrel of soap If your lye is of sufficient strength, you will be sure to have good coap. I have heard people complain a great deal that they did not have good luck in making soap; but if the above directions are carefully followed, I can assure them that they will have no xeason to complain of poor luck, or anything of the kind.-Maine Cult.

A Durable and Caeap Cexient.-Talse two parts of fine and clean ashes, three parts of pure clay, and one part of sand ; mix all well together; then add linseed oil, and have allintimately mixed to the consistence of thin mortar. This, if well applied will resiat the inclemency of the weather and will be found useful to stop the leaks round chimnejs, and leaks in gatters on roofs of honses, and where buildingsjoin together,

Su.. -Pra, Ear.

Propatation of Troniatog

We condense the following modes of cooking and preserving fie fomato from the Ohio Culti-1 raton which appear to us to be worthy of the attention of housewives and cooks.
To make Tomato, $Q_{\text {melẹt.-Thake a atew-pan }}$ and melt a prece of butter the size of a nutmeg. Mace up an onoon very fine, and fry at untul quite brown. Add ten peeled tomatos, season with pepper and salt, and aur them until cooked to a soft pulp. Then stir in four beaten eggs, until the underside of the mass becomes brown. Lay a plate on top, turn the pan upside down, and the diah is ready for the table.
Tomato Mermalade.-Gather full-grown tomatos whule quito green. Take out the stems and stew them untij soft, then pub them through a sieve, put the pal p :over the fire, season highly wuth pepper, salt, ald powdered cloves, and let it stew until quite thlys. The article will keep well, and is excellent for seasoning graves.
French Mode of Cooking Tomatos.-Cut ten oc a dozen tomatos into quarters, and put them tato a sauce-pan with four slaced onions, a little parsley, thyme, one cloye, and a quarter of a pound of butter. Set the pan over the fire, stur the maxture occasionally for three-fourths of an hour, and then strain it through a coarse sieve or colandar. It may be served, with mutton-chops or a beef-steak.
Tomato Preserve.-Take good npe tomatos, peel and boil them, and preserve them with good brown or loaf sugar, or with molasses. If noi peeled they burs, and do not so well retan them consistency. :
Tomato Catsup.—One gallon skinned tomatos, 4 tablespoons of salt, 4 do black pepper, 2 do allspice, 8 do mustard seed, 8 pods red pepper, These arucles to be bruised fine and simmered slowly in a pint of vinegar three hours, then strained through a hair sieve. To be stewed down to a half-a-gallon of catsup.

Saccotash.

Succotash in Winter.-Take, when green, your corn eyther on the cob or catefully shelled, and your beans in the pod, dip them in boiling water, and carefally dry them in the shade where there is a fregcirculation of air. Pack theầ up \mathfrak{n} a box or bag, in whiçh uley, should be kept in a dry plact; and saccotash may; he made from them as well in viater as in summer.

How to make Succotadh.-To about halla pound of salt pork add three quarta of cold waker, and set it to boil. Now cat off three quartis of green corn from the cobs, set the corn aside, and put the cols to boll with the pork, as they will add much to to the richness of the mixture.' When the pork has boiled, say half an hoar, remove the cobs and pui in one quart of freshily. gathéred, green, shelled beans; boil again for fifteen minutes; then add the three'quarts of corn and let it boil anothet fifteen minutes. Now, turn the whole out into a dish, add five or six large apoonsful of butter, season it with pepper to your tasie, and with salt, also, if the salt of the pork has not proved safficient. If the liquor has bolled away, it will be necessary to add a little more to it before taking it away from the fire, as this is an essential part of the affair.- Wrest. Farmer and Gardener.

Manufacture of Glass...A correspondent of the Christian Mirror gives the following account of of the manufacture of tumblers:
As the manufacture of the pressed glass tumblers may not have been witnessed by many ot your readers, I will describe it in a fers words. In the first place, they bave a brass mould, consisting of a solid mass, about as large over as a half-peck meayure, containing a hollow in it, exactly in the form of the tumbler to be made, with a follower of brass, of the same form, but so mach smaller as to fit the inside of the tumbler. When the twoparts of the monld are put together, the space between them is the exact thickness of the vesse! required.

In the process of manufacturing, three men aud two boys are required. The first thang done, is. for one of the men to dip uniron rod in the melting glass, and move it about till he has a sufficien quantity of the fluid mass on the end of his rod; he then holds it over the hollow of the mould, and with a pair of shears, cuts of what he judges to be just enough to constitute the tumbler. Instantly the other man brings down the follower with level power, and the melted glass is so compressed, as to fill the cavity of the mould. He then turns his moukd bottom up, with a little blow, and the tambler drops red hot upon a stone table. Onc of the boys, ritit an iron rod having a little melted glass on its and; pressed it on the bottom of the tumbler, and it slightif adheres. He then holdsit in the mouth of a glowing furnace, turning it rapidly, till it is altasost in a melting state, when the third man takes it, and whirling the rod and tumbler on a sort of arm of a chair, be holds a smooth iron tool against the edge of the tumbler till all the roughness is removed from its edges, then a boy takes the rod from him, and by a slight stroke to the end of it, drops the tumbler , and places it in a hot oven, to cool gradually. These are hands will make a beautiful tumbles in about 40 seconds, or'about 100 in an hour.

SUrer and Loud.

A very considerable item of the mineral wealth of the West, consists in the silver wh.ch is found to extst in leạd. The mines of Dubuque and vicinity are understood to be particularly rich in this respect, some specimens furmshing as mach as one luudred qunces of silver to the ton of lead, though it is estumated that ffve ounces to the ton will pay for the process of separating it.

The process of separation, as followed at the upper mines, we learn, is as follows:-A number of cast ron vessels, capable oi halding five or sis tons of lead each, are prepared. In these the metal is melted and suffered :o cool slowly, being stirred constantly with an rron rod. As the liqua coods, a partical chrystalization takes place; this contains a targe proportion of salver, and falls to the bottom ; it is removed by means uf perforated ladles, and subjected again to a similar process in other vessels, while the resudue in the first set of vessels conumues to be heated and strred tif itceases to chrystalize. Finally, the richest parts ecparated by this precess are placed in what is called a cunel. This is a shallow vessel, made of bone ashes, and very porous. The metal is subjected to a high degree of temperature, and then a stream of cold air from a bellows passed over it. Oxidation of the remaining portion of lead takes place, in the form of liharge, and the pure silyer falls to the bottom. The luharage is valuable in commerce, and the lead which failed to clargotalize by the first process, is run into pigs, and is just as usefal for ordnary purposes as though the separation liad not been made.
At some of the manufactories the iron pots are entirely dispensed with. This is when it is intended that the entire portion of the lead shall be turned into litharge. A large earthen receiver is formed, under which is a furnace. Above the receiver is an arched covering, communicating with a bellows, and an aperture for the free egress of air. The mass oflead in the receiver is now kept at the melting point, while a current of air continually passes over it, faciliating the process of oxidation. As the cxide of lead, litharge-or what is commonly known as dross-is formed an aperture in the side of the receiver is cat below the level of the melted liquid, and the oxide thas escapes. This continued unil the process ofoxsdation ceases, and nothing but the pure silver is Left. Eventaally the oxide oflead is either pre-
pared for commerce as, lithayse or reconverted into a metallic state.-Wt .Louis Republicom.

Age of Oattle by their Teath.

A subscriber asks, cañ you give me any information concerning the telling the age of catte by' their teeth ?-say yearlings, two-years olds, and from six monihs and upwards.
A calf at birth, in respect to its teeth, presenis no uniform appearance'? the state of these organs as in other animals, depending upon the maturity it has obtained.-Sonetimes there will be no teeth? but usually it will have two incisors on the front of the lower-jaw. About the midalie of the second week a tooth will be added on each side, making four; at the end of 'thethird week thrre will be six, and in a month eight; which is the full complement of its temporary incisor teeth. At the end of the fourth month the two front ones will begin slowly to wear down on the edges, and to diminish in size, and assume a triangular shape till the end of the eighth month; these two will scarcely be one half the size of the others, which will be sensibly lessened. The dimunition now extends to the four ceniral teeth, which at eleven months will be plainly separated from each other. At fifteen months the same will be true of the six central ones, at eighteen months the whole eight will be so diminished tiat i: would seem difficult for him to procure his food.

The process of diminution is now a little retarded and continued to the two central teeth, which waste away to the size of ctow quills.

At the age of two years two plump permanent teeth have come up in front, while the other six milk teetin remain.
A little before the commencement of the third year, the second pair of incisors will disappear, and in their place will come up two permanent teeth, the four outside milk reeth still remaining. These latter will now diminish very fast, bat will not give way. At the age of four years there will be six permanent teeth, and appareully no milk teeth but if the mouth is examined the tooth that should have disappeared, and milk tooth that is to remain, will be foand huddled together behind the six permanent ones. At the curimencement of the fint year the eight permanearincisors will be up, but the curside one will be sarell. When the animal is six years old it will be fall mouhed,

QRAND
 PROVINCIAL EXHIBITION

of
agrioulturala, manu'acturing, and horticulitural products, THE FINE AR'TS, \&c.

To be held at Caer Howell Grounds, Toronto, on Wednesday, 21 :t Oct., 1846.

LIST OF The premions to bL Avarded.

Class A-Horïcl Callle.—Durhams. ${ }_{2 d}^{12 t}$ Best arged Bull $\quad \bullet \quad-\quad-5710$ 2d do do Farmers Encyclopedia. 3 d do do. Diploma.
1st best Bull calved since the 1st Jon. 184550 2 d do !' do Youitt on Cattle. 3 d do "do Diploma.
1st best Cow, milk or in c.lf - - 50
$2 d$ do do Skimner's Farmers' Library. 3d do dn-Diploma. 1st best three ye 'rs' oid Heifer in calf - 40 $2 d$ do do 1 st \& 2 d vol. on Brit. Husb. $\begin{array}{lll}3 \mathrm{~d} & \mathrm{do} \text { do Diploma. } \\ \text { ist best'Bull Calf not excecding } 1 \text { gear oid } 2 & 0\end{array}$
 3 d do do Comptndium of Catlle Med. 1st best aged Ram 1st best Yearling Heiter - - 20 2 d
2 do do 3 vols. Anerican As.
2 do do Diplonna. 1st best Fat Bullock
2 d do do 3 vois. Albany Cultacator. 3. do do Diploma.

Class B-Herefords, Dewons, and oilier Improved Breeds.
1st best aged Bull - $\quad-\quad-710$
${ }_{2 \mathrm{~d}}^{1 \text { st best aged Bull }}{ }_{\mathrm{do}}$ Firmers' Encyclopedia. ${ }^{-} 10$ $3 \mathrm{~d} . . \mathrm{do}$ do Dipioma.
Ist iicst Cow, in milk or in calr - -. 50 2d do do Farmers'. Eneyclonedia. 1st best Yearing Hicifer 2 d do do 3 vols. Abany Culltoator. 31 do do Diplima. 1st best Buill calved since 1st Jan., 1S45, - 2' 0沓 do do 3 vols, American Ag. 3d do do Diyleman.
1st best Fat Bulleck - - 210
2d do do Foroiti's Rural Life of Eng. 3d do do Diplomn.

> Class C-Horses.

1st beat Stallion for Agricultursl parposes- 100 21 do do İunden's Encyclopedta. 3 d do do Diploma.
1st best 3 gears old Stallion for Ats pur. - 50 24 to: to Colenan's Eur. Ag. Jour. $3 d$ do do Dipionn.
1st best 2 jerrs old Stallion for Ag. pur. - 30 4al do do Farithers Encpilopedia.
3 d
do do Ditloma.

Agricultural Implements-(continuutd.) : Domestic Manufactures-(continued.) Ist beat horse-poser Threcter \& Sepa'r, $\mathfrak{x 5} 50$ 1st best haif-dozen Narrow Axes - \quad f0 10 2nd do do Lindley's Guide to " nnd do do Johnson's Ag. Chemistry
the Orchard, \&c.
3rd do do Diploma
lot best Drill-barrow - $\quad-\quad 210$
2nd do do Coleman's Ag. Tour
3rd do do Diploma
1st best Scarifier - - 20
2nd do do 2 vols Far. \& Mech.
3rd do do Diploma
$18 t$ bnst Straw-cutter, - $\quad 210$
2nd do do Thomson's Ele. of Botany 3rd do do Diploma
1 st best Hay-rack for Waggon - 10
2nd do do Farmer and Mechanic
3rd do do Diploma
1 st best Corn and Cob-crusher . - 15
2nd do do Ele. of Chemical Analysis
3rd do do Diploma
18t best Clover-dressing Machine - 210
2ad do do Coleman's Ag. Journal
3rd do do Diploma
1st best Hemp and Flax Dressing Machine
2nd do do Farmer's Library
3rd do do Diploma
lat best Horse-cart 2 vols Farmer \& Mechanic 110
end do do 2 vols Farmer \& Mechanic
3rd do do Diploma 2 -horse Waggon - 210
2nd do do Farmers' Encyclopodia
3rd do do Diploma
lst best Horse-rake - 015
2nd do do Farmer's Treasure
3rd do do Diploma
list best Roller 110
and do do 2 vols Far. \& Míechanic
zrd do do Diploma
710.

1st best Reaping Machine - do do Ure's Dict. of Arts
3rd do do Diploma
Ist best Stump Eztracior -
2nd do
do Farmers Library
3rd do do Diploma
let best Mowiog Machine -
2nd. du do Treatise on Cattle
3d. do do Diploma .
1st best Potato Picking Machine - 20
2nd do do Downinga Land. Gard'g
3rd do do Diploma :
210 1st best side of Calskin 15
210 2nd do do Gray's Bot. Text Book
3rd do do Diploma
1st best side of Skining - 015
50 2nd. do do Clater's Cattle Doctor. 3rd do do Diploma
lst bést four or six Pannelled Door - 015
2nd do do Far. \& Mechanic 3rd do do Diploma
Ist best Window Sash, not less then 12 lighta 10 2nd do do The Am. Orcoardist 3rd do do Diploma.
${ }_{\text {2nd }}^{\text {1st }}$ best Fur Hat do Fruit Culturist
3rd do do Diploma
3st best Fur Cap,
$\begin{array}{lll}\text { Int best Fur Cap, } \\ \text { 2nd do do } & 010 \\ \text { did }\end{array}$ 3rd do do Diplome
1st best Fur Robe -
2nd -do do Buist on the Rose
3rd do do Diplome
10 Ist best 3 specimen Shoemakers, Work 10
Ind: do do Flower Garden Directory
3rd do do Diploma
3rd do do Diploma
1st best half-dozen Manure Forks - 0.10
2nd do do Parnel's Ap. Cremistry 3rd do do Diploma
1st best half dozen Hay Forks - 010
2nd ' do do 1 vol Am. Agriculturist
3rd do do Diploma
ist best half dozen Scythe Snaiths - 010
2nd do do 1 vol Albany Cultivator 3rd do do Diploma
1st best Grain Cradle
2nd do do Am. Far. \& Mechanic 3rd do do Diploma
1st best hall dozen Crain Shovels - 010
2nd . do do Com. Far. and Ruraleca.
3rd do do Diploma
1st best oue horse Pleasure Waggon $\mathfrak{g} 0$
2nd do do Downing's L'dscape Gard.
3rd do do Diploma
1st best two horse Pleasure Waggon 210 2nd do do Am. Turf Register
3rd. do do Diploma
19t best set of Farm Hurness - 110
2nd do do Youitt on the Horse
3rd do do Dipluma
1st best set of Pleasure Harness - 110
2nd. do do Rural Fcoonomy
3rd do do Diploma
1st best Travelling 'Trunk -
10
2nd do do Gard'g on Phisophie Prin.
3rd do do Diploma
Ist best side of Sole Leather
015
2nd do do Gray's Botanical Text Book 3rd do do Diploma
1st best side of Upper Leather
2nd do do Clater's Cattle Doctor
3nd do do Diploma
3id best side of Calskin

1st best Farm Gate - - 1'
3nd do do Far. \& Mechanic
3rd do do Diploma
Iot best model of Farm Fence - - ó 15
2nd do do Gardner's Farmer's Dict.
Srd. do do Diploma
1 st best Cqlitivalor - - 110
2nd do do Complete Farmer
3rd do do Diploma
Guss G-Domestic Mranufactures.
lat bex half-dozen Hand Rakes - 010

2nd do do Downing's Cot Besidesce 3id do to Diploma

Class H-W Woollen and Flaxens Goods. let teat piece of not leas than. 13 yds. of, Woolled Carpeting is is 2nd do do New England Frut Book 3id do do Diploma.
let best piece Oil Cloth Carpeting, of not less than 12 yards 015
ind. do do Young Gards Aspistant 3 rd do do Diploma. ins best pair Woolieen Blankets - 010 2nd. do do Gardening for Ladies 3rd do do Diploma
lst best piece Flannel, not less than 12 yds 010 2ad do do Farmer \& Mechnaic : 3 3d do do Diploma lst best plece Winter Tweed, not less than 12 yards: 010 2nd do . do Lang's Highand Cotazges 3 3d do do Diplama
lat best pieceW oollen Cloth, fulled and fin. 210 2nd do do Landscape Gardening 3 rd do do Diploma
lst best piece Linen Goods, not less than 12
yards -

2nd do do Gardaers Far, Dictionary 3rd. do do Diploma
let best 3 samples Fiax or Hemp Cordage 1 , 0
nd do do Johnson's Ag. Chemistry 3 red
sit best 40 lbs. Hemp
And do do Sock Raiser's Mannal
ifd do do Diploma
10

und do do Diploma
Class I-Dairy Products and Sugar.
Ist best Cheese. not less than 20 lbs
?nd do do Treatise on Catlle Ifd do do Diploma
lst best Futter, not less than 20 lbs-
2nd to do American Hend Boos
?ed da do Diploma
lst best Maple Sugari, nov less than 20 lbs. 110
had do do Raral Economy
3 fd do do Diploma
lst best Beet Sugrar, not lees than 10 lbs 110 2hd do do Johnson's Ag. Chemistry Hha do do Diploms
las beest Corn Stalk Sugar, not less than 20
sod do do Veg, Kingdom of Plants 1 3.d do do Diphoma
lst best Sugar, manufictured by the Abo2nd do do Ciardner's Farmer's Dict 3t2 do do Diglomx

Ceass J-Cabinet Ware.
Iti best Centre Table
2nd do do Parnell'a Cbemistry 3 rd do do Diptomz
${ }_{1 s t}$ bent Dining Table - 015
2nd do do Nat. Hist. of the Bee
3ґd do do Diploma

Cabinet Ware-(continued).

Iet best Easy Chair \quad EtO. 10
2nu. do da Downing's Frt, \& For.Tren 3rd do do Diploma Ist best Sofa
Ind do do Vegetable Kingdom
3rd do do Diploma
1st best. Dining-room Chairs $\quad-10$
2nd do do Gardening for Ladies
4rd do do Diploma $\quad \stackrel{0}{10} 10$
2nd do da Gardening on Phil. Pria. 3rd do do Diploma
1st best-Screws - 010
2nd a do . do Townley on the H. Bee
3rd do do Diploma
1st best Ottoman - $\quad-120$ od
2nd do do Flower Garden Dircciory 3rd do do Diploma
1st best Work-box ${ }^{-}$10s 0d
2nd do do Gard.for Ladies
3rd do do Diploma
lst best Dressiag case $-{ }^{-}{ }^{78} \mathrm{Cl}$
2nd da do Cream of Scientific. Knowl. 3rid do do Diploma
1st best Writing Desk \ldots-.... $\mathrm{zs}_{\mathrm{gd}}^{\mathrm{Gd}}$
2nd do do Bosweli's Poultry Yard
3rd do do Diploma

Class K-Horticultural Products.

Ist best and greatest number of choiçe

1. variety of Apples - 1.0 2nd" do do Bridgeman's Gard. Astr. 3rd do do Diploma
Ist best. 12 Table Apples - 015
2nd do da Downing's Fruit \& ForTrees
3rd do do Diploma
1 1st לest 12 Winter Apples -
035
2nd \because do . , do Vegetable Kingdom
3rd do do Diploma
110 1st best and greatest variety of Pears 1 '0
2nd do do Transsc. Am. Instituice
3rd do da Diploma
1st best 12 Table Pears - - 015
2nd do do Gerdentr's Assistant
3rd" do do Diploms
1st best 12 Wiater Pears - 015
2nd do do 1 yol Albany Cultivator
3rd do do Diploma
1st best Assortment of Culinary Vegetables
2nd do do Gardening for Ladies 3rd do do Diploma
1st best and greatest variety of Vegetable
Roots 10
2nd do do Gray's Bolan. Text Book
3rd do do Diploma
1 1at best 6 heeds Brocecli
2nd do do 1 vol Am. Agriculteriss
3rd do do Diploma
10 1st best 6 heads of Caulifower - 010
2nd do do 1 vol Alb. Coltirator
3rd do do Diploma
25 Ist hast 12 heads Drumhead Cabbaga
Ind do do 1 vol Generee Farmea
3rd do do Diploma

Horticullural Productst-(continued.) | Sobds and Roots-i'(cotitinted:y"

 1st best twelve Carrots for table - $\quad 0 \quad 3 \mathrm{~d}$ do do Diplonia
$2 d$ do do Fruit Culturist 3d do do Diploma
1st twelve roots of white solid Celery
$2 d$ do do Kitchen Gardener
3d da do Diploma

- O 0 lst lest 1 bushel Hemp seed
$\begin{array}{lll}2 \mathrm{~d} & \text { do do Farmere' } \\ \text { 3d } & \text { ditrucior } \\ \text { do } & \text { do Fiplonai }\end{array}$
- 05 1st best 1 bushel Flax seed

2d		
3 d	do	do
do	do	Diperican Gardener

1st best twelve roots of red Celery

- 05 1st best Swedish Turnip seed not less 10lbs. 05
id do do Fruit Cuiturist
3 d do do Diploma
$3 \mathrm{~d}{ }^{10}$ do Diploma
1st best bag of Hops
2d do do Cream of Scientific Knowl. $12 d$ do do Fruit Culturist
3 d do do Diploma $\mathrm{S}^{3 \mathrm{~d}}$ do do Diplona
1st best peck of Blood Beets
- 05

2 d , do do Fruzt Cultivators' ATanual 3 d do do Diploma
1st best peck of white Onions
1st best 2 bushels Potatoes
$2 d$ do do Farmers' Instructor ,
3d do do Diplcma
Ist best 2 bushels Swedish Turnips - 010
2d do do Kitchen Gardener
3 d do do Diploma
2 d do do Canadian Ag. Keader
ist best peck of yellow Onions
3 d do do Diploma
2 d do do The American Orchardist
3 d do do Diploma
1st best peck of red Onions - - 0
1d. do do Florists Guide
3 d do do Diploma
1st beat twelve roots of Salsify"
1st best 1 bushel Carrois' - - 0 -
2d do do Nat. Hie. of the Honey Bee 3d do do Dipicma
1st best 1 lushel Sugar beets - - 05
2d do do Complete Farmer \& Florist
3d do do Diploma
1 1st best 1 bushel Parsnips - - 05
2d do do American Gardener
3d do do Diplome
1st best half-dozen Pumpkins - 05
2d do do Ameritan Poultcrers' Book
3d do dó Diplama
1st best hilfdozen Squash - - 05
2 d do do Clater's Cattle Doctor
$3 d^{\circ}$ do do Diploma

Class M-Iron and Hollow-ware.

1st best Cooking Stove with furniture - 0.13

| $\begin{array}{ll}2 \mathrm{~d} & \text { do do Johnson s Ag. Chemistiy } \\ 3 \mathrm{~d} \\ \text { do do Diploma }\end{array}$ |
| :--- | :--- | :--- |

1 st best Pariour Stave : \quad - 010
${ }^{2 d}$ do do Annerican Poulterero' Connp.
3 do do Diploma
1st best Hall Stove

- 010
$2 d$ do do Canadian Ag. header
3d do do Diploma
st best 2 bushels Winter Wheat - - 010
2d do do Parnell's Chemistry
3 d do do Diploma
1st best 2 bushels Spring Wheat - - 010
2d do do Johnson's Ag. Cheinistry
3d do do Diploma
1 st best 2 bushels Barley - - $\quad 0 \quad 5$ 1st best Bolance Scules - - 0 ic
2d do ds Tounley on the Foney Bee 2 d do do N. Y. Farmer $\&$ Mechanie
3 d do do Diploma
1st best 2 bushels Oats - $0-51$ do do Dip'oma
2d do do Dana's Muck Manual - 05 lsi best pair cast Andirons - - 05 3d do do Diploma
1st best 2 bushecs Peas - - - 05
2 d do do Fruit Culturist
3d do - do joiploma
2 n do do Bousingault's Organec Nat.
3 d do do Diploma
lst best Docr Scraper
2d do do Neto England Fruil Buok:
3d do do Dipicma
1st best 2 bushels Indian Cern in the car - $00 \begin{aligned} & \text { lst best Medel of Hot-air Apparatus }-015\end{aligned}$
2 d do do New England Frunt book ${ }_{\mathrm{a}}^{\mathrm{d}}$ do do N. Y. Farmer \& itcchanuc
3d do do Diplema
3d - do do Diplema
1st Vest 1 bushel Clover Seed - - 010 lst best Stcaming Apparatus fer fecde Stcch 0 it
${ }_{3 \mathrm{~d}}^{\mathrm{d}} \mathrm{do}$ do Canadiac As. Reader ${ }^{\text {do }}$ do 2 d do do Groy's Botameal Text book

2d
do do Canadian As. Reader
3d, do do Diploma .3d do do Diploma

Iron and Holldw-zeart (contipued.)

Class N-Ladieg' Department:-Useful and Ornamental.
Ist beat set of Bench Plares - - ≤ 10 2 d do do Gardnar's Farmers' Dic. $3 d$ do do Diploma

Ist best pair of Woollen Sociry:- 50 s

 2d do do Fruit Calcuriet

 2 dd do do New England Fruit Book ${ }^{2 d}$ do do Florists Guide 3d do do Diploma $\int_{\text {ad do do Diploma }}$

1st best Wash-tub - $-\quad$ - 0 :
$\begin{array}{llll}\text { id } \\ 3 \mathrm{~d} & \text { do do Dann's Farmers Manual } \\ \text { do Dipoma }\end{array}$ Ist best Washing-machine - 05 2 d do do Fruit Culturist 3 do do Diploma
$\begin{array}{ll}\text { 2. } \\ \text { dost spcci. of woollen or cotion netting } \\ \text { do An } & 5\end{array}$ 3d do Diploma
1 st best specime: of Fancy Netting " - O 10 $\left\lvert\, \begin{array}{lll}2 \mathrm{~d} & \text { do do The Ladieg Sook } \\ 3 \mathrm{~d} & \text { do do Diploma }\end{array}\right.$
1st best Pair of Hames - - 05 $2 \mathrm{~d} \quad$ do do American Poultry Book. 1st best Saddle-tree
$\begin{array}{llll}\text { 1st best Sadde-tree } \\ 2 d & \text { do do Farmers Mine } & 0 & 0 \\ 21\end{array}$ 31 do do Diploma
lst best specimen of Embroidery -- 010 $\begin{array}{lll}\text { 2d do } \\ \text { 3d } & \text { do Comp. to the Flower Garden } \\ \text { do Dinjoma }\end{array}$ 2d do do Floristr Guide
3d do do Dinloma 3 d do do Diploma
1st best specinien of Was Fruit -
2 d do do The Ladies' Book - 010 3d do do Diploma
1st best specimern of Wax Flovers - 010 2 d do do Gardening for Ladieg do Diploma
Class O-Fine Arts.
Ist best specimen of portrait oil painting 010
2d do do Gray's Botanical Texit Book 3, do do Diploma
lst best specimen of figure oil painting - 010
2 d do do Fruit Cullarist
3d do do Diploma
Ist best apecimen of landscape oit painking 010 id do do Cream of Scientific Finowl. 3d do do Diploma
tgt best specimen of portrait watercolors 010 2 d do do Gray's Botanical Text Book 3u do do Diploma
7st best specimen of figure water colors - 010 2d. do do Gardening for Ladies 3 d do do Diploma
lst best epecimen of landscape water colors 0 j0 2 d do do The Ladies' Look 3d do do Diploma
${ }^{15 t}$ pest spec. of Crayon Portrait Drawing 010 2 d do do Gardening for Ladies 3d do do Diploma
8st best spec. of Crayon Figure Drawing 010 2d do do Theory of Horticullure 3d do do Diploma
1 lst best spec. of Crayon Landscape Drawing 0, 10 2 d do do Farmers' Instructor 3d do do Diploma
1st best epecimen of pencil poruait draviin 010
2 d do do: Fegctable Kiagadom
3d do do 'Diploma

RULES AND REGULATIONS.

1st. All articles to be exhibited must be reported to the Secretary on the day previous to the exhibition, and be un the Ground before 10 o'clock of the morning of the Show day, and must be the growth, produce, or manufacture of Canada.

2nd. Each person exinbiung aricles for competition, will receive a Ticket with a number designating the article; upon the corresponding numbers on the article the Judges will decide. No incerference will be permitted with the Judges, who will report their decisions to the Executive Committee of the Association.
ar There will be a Dinner provided. Tackets for admissiun to which can be oblained from the difurent Stewards, or at the Ticket Office.

The Plourhing Tratch and trial of Imploments will take place on Thursday the

22nd, in a field convenient to the Show Ground.

The Mayor of the City of Toronto has kindly offered the use of a Field suitable for the occasion: the Carriage $\mathbf{E n}$ trance to which will be through the College Avenue. Entrance for Stock and Articles for Exhibition by the street west.

Members of the Association will se cure each a Badge, which will entitle them to admission to all the different llepartments of the Exhibition. Others will be furnished with Tickets of Admission at the Ticket Office, on payment of a small fee.

The strictest order and decorum will be maintained, and no pains spared by the Managing Committet to make the Exhibition worthy the patronage of an enlightened country.

The Bulls must be secured by rings
in their noses, to prevent accidents. Pens will be provided for the Stock,--for the use of which parties will be charged a small sum.

It is expected that the different District Agricultural Societies will send each three or more persons competent to act as Judges, fiom whun Comanittees will be appuinted to judge the several classes.
$0<$ Discretonary Premiums will be awarded for such articles as may be exhibited, and which, in the opinion of the Cummittee may be nurthy of a Premium, though not encuicrated in the Lists.
${ }^{*}$ * The enterprising Proprictor of the Royal Mall Steamers, D. Bethune, Esq., has kindly consented to convey Passengers, Stock, and Implements of Husbandry, and other articles intended for the Show, at one-half the usual rates; and the Committee of Menagement hope to make a simular arrangement with the other Steamboat Proprietors, and the Owners of the various Stage Coaches throughout the Province, so that the greatest possible inducements may be held out to Cornpetitors and Visitors from all parts of the Country.

E. W. THOMSON, President.
 W. G. EDMUNDSON, Secretary.

Toronto, Sept. 1846.
JIミT P!BLISHED,
TIE
canadian faraiers' \& mechanicy

ALMANAC FOR 1847,

Costraining, in addition to the Calendar. Descriphous of a number of the most anproved Farming Implements, Catile, Sheep, Sic., illustratod by beautuul aud correct Dravings, thus rendoring it peculiorly well adapted for the use of the Farmer and Mechanc. It also contsins a rarety of other useful and entertrining information, and can be forwarded by water, or other communication, to ans part of The Province.
Single Dozen, 1s. 10łd ; Gross, 11 ; 1000 Copies, 场 5 .

EASTWOOD \& Co
 İ shers, \&e., Yonge Strect, Toronto, and King Nltcet, Fisatilton, Oct 1,1846 .

GIGHLY IMPORTANT TO MILLERS, MERCEANTS, AND OTHERS

C. ELLIOT, \& CO.,

IRON FOUNDERS, MILLSTONE BUILDERS, for.
No. 58, Yonge Streel, Toronto,

HAVING firly tested their NEWV FATHNT COOL MILL-STONE RUNNER, are now enabled to recommend it to public notice, as combining advantages sought for in rain, in Stones buill according to the old method. These adrvantages are of the highest importance to the Milemthus: the Patent Ruuner requires LESS POWER to drrive. It docs fully ONE HALF MORE WORK in the same time; and nbove all the meal comes from the Stones in A PERFECTLY COOL STATE, AND READY FOR BOLTING.
It answers the most sanguine expectations formpd by its projeciurs. One may be seen in full operation in the Mill or P. F. Whitney, Esq., Pickenng, - from whom, as also from his Miller, Mr. Head, the Patentees have received repeated' 'assurances cf their uuqualitied approbation; and have permission to refer to them all, who feel in interest in an improvement of such rast importance as the above.
A supply of these Stones rill be kept constantly on hand, for Sale, on reasonable terms.
September, 1846.

600 BUSHELS SUPERIOR ELAX SEEI ON SALE.

THE Subseriber begs to inform the pubbio that he has now in his postession upwarcs of SIX HONDRED. BUSHELS OF FLAX SEED, of supericr quality for sowing, which was grown upon his Farm the present seasson. Price 53. per bushel, delivered at Toronto.

W. G. EDMANDSON.

Whichurch, Ang. 25, 1846.

FLAX DRESSERS WANTED.

THE subscriber is desirous of employing three pereons who are practically acquamted with handling or managing the FLAX CROP. Good wages and cosstant employment will be given to hands tuat thoroughly underst, and the business in its various departmens.
W. G. EDMLNDSSON.

Ncwmarket, Home District, July dit, 184G.

HAMLLTON TANNERY,

 (Directly East of the Court House,) hamilton, c. w.
SCC. CATHARINES NURSERY.

 HE Sulscriber stil conianues the cultivation of the most choice kinds of FRCIT TREES, and has now a good assortment of Apple, Feach, Plum, Nectarine, Apricot, Quince, and Cherry. He is growing an extensive ORCHIARD, consisting of all the varieties, which he offers for salc; and many of the trees have already borne Fruit, enaUling him to cut his Grafts from such as are true to their names.In this manner he hopes to attain that degree of securacy in cultivation which will enable him to aroid those mistakes so unpleasant to purchasers.
Apple, Pcach, and Quince Trees, are 1s. 3d. currency, each, or 55 per one hundred.
Apricot and Nectarinc are 1s. 10 d d each. Cherry and Plum 2s. 6d. A liberal discount will be made to any parsch or company that may buy one thousand.
Catalogues will be furnished gratis to all who may apply. All orders by mail for Trees or Cata. logues will receive the earliest attention if post paid.

Orders for trees must inrariably be accompanied by Cash or a satisfactory reference.
C. BEADLE

St. Cacherines, January 1st, 1846.

EASTWOOD \& Co.

Paper Manufacturers, Suationcrs, School

 Book Publishers, \&.c.YONGE STREET, TORONTO, AND
KING STREET, HAMILTON,

HAVE constantly on hand an tassortment of all the Popular and Standard SCHOOL BOOKS in use througheut the Provinee, tegciber with BLANK BJOKS of cvery description, whiting paper of all linds, pllinting PAPER of any size required, WRAPPING PAPER, various sizes ald quailucs, STATIOA. ERY, \&c

In addition to the above they keep at their Establishment in Hamilton, a full and varied assortnent of FANCY STATIONERY.

Every description of RULING and BINDING done to order.

RAGS bought and token in oxchange.
D 5 CountryMerchants taking in RAGS, as well as others, will find it to their interest to give us a call, as we can and will sell or exchange upon a liberal terins as any Establishment in Conada.
Sept. 18łj.

J. CLELAND, BOOK AND JOB PRINTER,

 KING STREET, TORONTO, Adjoining Mr. Brewer's Book Storq, leading to the Post Office.$11 T$ Every descripuon of Piain and Ornamental Printing neatly executed on moderate terms.
The British American Cultivalor,
(FOR 1846, new stilles)
Is published on the Fursi Day of eyery Mfonth, at Toronto, by E.iSTWOOD \& Co., to whom all orders must be aditressed.
$\left.\begin{array}{l}\text { W. G. EDMUNDSON, } \\ \text { EASTWOOD \& Co. }\end{array}\right\}$ Proprietors.
W. G. EDMUNDSON, Editor.

- Each number of the Cultitntor contains 32 pages, and is subject to une haffenny pospage, when directed to any Fost Oifice in Bntush America.
Adrertisements will be anserted for One Dollax if not exceeding Ticelve lines, and in the same proportion, if. excceding that number.
Terms-One Dollar per year: Four Copies for Three; Eight for Five; Twelve for Seven; and Twenty for Ten Dollars.

All payments to be made intarabiy in adpance and free of postage.

OS Editors of Prutincal newspapers will oblige the Proprietors, iy giving this adverusethens a fewr insections.

Toronto, Ján, 1845.

[^0]: \qquad

