Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

BRELSAR AMRRECAM JOURNAL

OF

MEDICAL AND PHYSICAL SCIENCE.

OBSERVATIONS ON A CASE OF "POISONING BY TINCTURE OF OPIUM."

To the Editor of the British American Jourial.

Sir,-The third number of your Journal contains a Case of Poisoning by the Tincture of Opium, by C. Sewell, M.D." With your permission I will ake a few remarks on it.
There are three questions which may be asked:Is recovery after taking ten drachms of laudanum extraordinary occurrence? 2nd, What degree of ferance of opium was in reality shewn by Dr. Sewell's ient? Brd, Was the treatment pursued such as is reanmended by the best authorities?
With regard to large doses of opium, I believe that ten remedial treatment has been timely applied, refery has taken place in a majority of cases in which drachms of laudanum have been taken by adults. 0 , three, and even four ounces of laudanum have an swallowed, without fatal effects, by persons not ituated to its use. Dr. Christison relates a successcase, in which eight ounces of crude opium were mi. Mr. Taschereau, M.P.P. took, by mistake, when Kingston during the last parliament held here, ninehand a half grains of the acetate of morphia, (equal It times as much as Dr. Sewell's patien. swallowed, recovered, although it was some time before the ahe was discovered, and remedial treatment had resie to. To my mind, therefore, there is nothing exdinary in recovery from ten drachms of laudanum. lith reference to the tolerance of opium displayed by Sewell's patient, let us judge by what the Dr. him-Ways:-"I was hastily summoned," says he, " to 4-J-, mtat 40, a cabinet-maker, who liad detently swallowed laudanum for tincture of rhuHe had taken it about five hours before my arWhen seen by me he was in bed awase, and conscious. The pupils were contracted to the apin's point, and immovable ; the temporal arpulsated with great violence; speech was uttered dificicumy; skin dry; pulse 100, and jerking." Veing 's in bèd awake, and quite conscious, conwith some of the other symptoms is, I must adsomewhat anomalous, as in general patients require roused to show their consciousness. Notwith-
standing this anomaly, (which is not unprecedented Mr. Semple's case, for instance, reported in 1841), there are a sufficient number of symptoms enumerated by Dr . Sewell, to prove that his patient was labouring strongly under the influence of the narcotic when first seen by him. As Dr. Sewell has not informed us how long a time the man had been under its influence before seen by him, we are in a great neasure left in the dark as to the degree of tolerance exhibited by his patient. This perhaps unavoidable omission in the history of the case is much to be regretted, as we are ereby rendered unable to judge correctly of that part of the case which might otherwise have been interesting, namely, the protraction of the commencement of the symptoms beyond the usual time, probably half-an-hour or an hour from the time of swallowing the opium.
As proof of the tolerance of the opium, Dr. Sewell advances the fact, that " a large portion of the laudanumi swallowed was thrown up, as easily ascertained, from the circumstance of his having taken only a little tea during the day." Reasoning on false premises, and jumping to rash conclusions should be avoided where medical facts are to be ascertained. Experience has shewn that persons may vomit what may appear the eutire quantity of the laudanuun taken, and yet have suffered from its toxicological effects. That a patient may take an opium pill on going to bed at night, and vomit it next morning, after its narcotic effeets have been produced, is a fact resting on observations made as far back even as the time of Van Swieten. And the remark by Tortosa, that opium may act mottally with a very slight deficiency of weight, although questioned by high authority, has never been disproved. I maintain, therefore, that the circumstance of the "matter ejected being coloured with laudanum," is no proof that the laudanum had not acted.
Keeping in. view, then, the varieties of idiosyncrasy which exist, and the circumstance that D_{r}. Sewell's patient had taken the laudanum instead of tincture of ihubarb, tor the relief of a "peculiarly severe" solic; reflecting on the possibility of deception, with reference to the qreantity and quality of the contents of the phial; and taking into account that no description is given of the sta'ty of the patient between the time he swallowed
the contents of the phial, and his being seen by Dr. Sewell, I can see no necessity for referring the tolerance of the poison to two of the supposed causes, namely, "irritation of the mucous membrane of the stomach," and "digestion of the opium having commenced."
That the tolerance of opium in delirium sum tremore had been explained by the fact (?) that digestion is more than ordinarily strong in that disease, had escaped my notice up to the time of Dr. Sewell's observation to that effect. I have no doubt, however, that Dr. Sewell has good authority for making the statement, and I will, therefore, have much pleasure in being further informed regarding it. An extract from the author who has advanced this fact will perchance ealighten many of your readers who are as ignorant as myself on this subject, and may point out an analogy, hitherto unknown to us, between the process of digestion in the human subject in this disease, and the ordinary process of digestion of certain of the herbivora.

Respecting the treatment of Dr. Sewell's patient I may ask, why were emetics given and continued to the exclusion of the use of the stımach pump? What symptoms were there after vomiting to contra-indicate stimulants? And whether if coffee, tea, ammonia, or stimulants of a like nature had heen given instead of two ounces of vinegar every half hour, there would have been as high a degree of that increased speechlessness and augmented drowsine:s, which Dr. Sewell reports as having existed under the vinegar plan of treatment."Vinegar," says Dr. Christison "is undoubtedly one of the best remedies that can be employed as an antidote, sor the alkalies and alkaline carbonates; because it con. verts them into comparatively mactive salts. But in poisoning with metallic compounds, vegetable narcotics, and very many vegetable irritants, where it was once almost invariably used, it does barm for the most part instead of good, because it aids the solution of the active parts of the poisons." The United States Dispensatory, by Wood and Bache says"; "vin"gar has been supposed to be a powerful antidote to the narcotic poisons, but this is a mistake: In the case of opiun the best authorifies unite in considering it worse than useless, it rather gives aelivity to the poison than neutalizestit."

If, then, vinegar be repudiated as an antidote for opiam, while the opiuns remains in the stomach, becaưse it aide the solution of the active part of that poison, whatisits modus operanctias an anti-narcotic after the opium has been rejected from the stomach ? and, moreover, supposing it to bean amè -iarcotic, are two-cunce doses of undibued vinegar, is preceribed by Dr. Sewell, proferable to weak vinegar and weter combined with
coffee, as recomneended by Orfila? Again, if it bead. mitted that vinegar will increase the action of opium, if it should meet with it in the stomach or bowels, is it not necessary that the upium be evacuated from the primo vio before the vinegar be prescribed? And was the circumstance that "the water swallowed come up clear," a certain indication of this in the case of Dr_{r} Sewell's patient? Farther, will is not be better to discard vinegar altogether from practice, in poisoning with opium, if its remedial action be deubtful, and give place to therapeutical agents more powerful, andwith whosephy. siological actuons in narcotic poisoning we are better aequainted?

In asking this last question I am quite prepared forthe answer that Orfila, Paris, Pereira, and others of the greatest celebrity, although, they denounce vinegar"as an antidote to opium have nevertheless recommended it a3 an antinarcortic. I ask, however, if it is not the sheeil anchor as an antidóte in the British Hospitals $?$ In reading the recent reported cases of the British Hospital, of poisoning with opium, I do not recollect of seeing vin: egar mentioned. Taylor, a late and extremely goodat: thority, does not even notice it. What do the late editions of Orfila and Christison say with regard to it? I am, Sir,

Your obedient servant,
John S. Stewart,
Licentiate of the Royal College of Surgeons, Edinburgh, Kingston, Jaly, 1845.

ON A SOURCE OF ERROR IN SUPPOSED infanticide.

Sir,-I beg to forward to you for publication in your Journal (if you deem fil) the followirg case, which oc curred a few days since in my practice.
It is I conceive interesting in a medico-legal point of view, patticularly when taken in conuexion with the Coroners Inquest lately held at Isleworth, tingland on the body of Ann Pendry's child; the particularsiof which are repoited and ably commented upon by Wha Hyan Esq. M. R. C. S. E., in the Lancet for Jue 214 1845. I may merely here mention for the benett of those who have not seen the report, that the abary naned Ann Pendry, was delivered of a child in a privy -that the child was shotly after found dead at the bor tom of the privy, and that a verdict of wilful murderwis returned by the Coroners jury against the unfortunte: mother.*:

[^0]Case.-Mrs. B. ætal 30, married; and pregnant with her fr-t child, was seized during the night of the 20th inst, with labour pains. Being a refugee from the late fire, she orcupied part of a garret in which two or three other families. and some young men were slreping. Feeling a natural delicary, at being confined under such circumstances, she suppressed her cries till daylight, when she de-cended into a lower apartment, in which resided a woman who had been recently ronfined by one, to whom she detailed her feelings, request ing at the same time that some warm water might be given to her to "sit over,"'to relieve what she described as a great pressure at the lower pari of the bowels. She had hardly seated herself upon the edge of a rather high chair, when a severe bearing pain se:zed her, and be fure any assistance could be afforded (though one or two *omen werc in the room) the child was forcibly expelled, and fell head-foremost on the flon, being killed upon the spot.
I I should have mentioned th it was sent for immediately ufter Mrs. B. had descended into the lower chamber; but did not arrive till abont twenty minutes after the delivery. The child which was a remarkably fine one was nerfertly dead, and still attached by the cord to the placenta, which eame away shorty after the infant.
In the al:ove case not the slightest suspicion of criminality can attach to the mother; but, suppose the deliv ry to buve taken place under circumstances precisely similar to those in Pendrys case, though there would be ground for a medico-legal investigation, still, with the frict brought before them by the coroner, that cases such as I have now reported, do not unfrequently occur, a jury shnuld be extremely cautious how they blast a poor creature's charscter, by returning such a verdict as that recorded against this unfortunate woman.

[^1]I am happy to have it in my power, by a recent case in point to support the view tikken by Mr. Ryan.
I have the honour to remain, S.r, your rbetient Servt, James A. Sewell, M. D.
Quebec, July 26th 1845.

OBSERVATIONS ON CHARBON (MALIGNANT PUSTULE.)

To the Editor of the British American Journal.

Sir,--The number of your Journal of the 1 Gth June contains the report of a case of "Charbon," which was treated at the Montreal Gencral Hospital. If the following case and remarks are worth a place in your Journal, my object will be achieved.

I am, Sir, your's, \&e.
W. Marsden, M. D.

Nicolet, 23d June, 1845.

Marie Bourgeois, wetat 17, of St. Esprit, was brought to me on the morning of Sunday, June 26 th, 1842, with swelling of the right arm, extending about half-ivay up, and swelling of the fort-arm and hand, accompanied with a good deal of heat and pain. On the palmar side of the wrist, about the junction of the carpal bones with the radius, was a very dark brownish black shining pustule, about the size of an English shilling. About half an inch above, and the same distance to the ulnar side of the wrist, and at the junction of the carpal and metacarnal bones of the index finger, on the dorsal side, were three other pusitules, varying in size from five-tighths to threeeighths of an inch in diameter, with livid edges, and phlyctenous elevated centre, containing a yellowish iransparent serum.
She stated that she had on the previous Sunday morning, before mass time, assisted in skinning a steer that had died suddenly during the night. That on the Tuesday evening following, she felt a species of engourdissement in the fore-arm and hand, but not pain. On the following morning, Wednesday, she felt slight pain, which continued increasing until evening, when it became referable to the axillary glands of the same side. On Thursday morning a small pimple, (or bouton, as she described it,) appeared, and successively until Friday three others, at which time the pain was most intense. Until Saturday about noon the pustules continued growing larger and dariker, and the sweiling to extend up the arm; but as the pain did not increase, and she had not the means to hire a conveyance, she delayed calling on me until Sunday morning, a neighbour having promised to bring her down on going to mass. I will as briefly as possible describe the plan of treatment I adopted. Having first removed her to a convenient lodging in the village, I prow
ceeded to lay open the largest pustule by a crucial incision, and then divided the phlyctenæ of the others, allowing the serum to escape. I next, with a piece of lunar caustic, pencilled the edges of all the pustules freely. I then applied stimulating fermenting poultices, composed of coarse flour, yeast, and onions, from the midule of the fore-arm downwards, the onions so placed as to be in proximity with the pustules, and to be repeated every second hour; and cooling evaporating lotions from the part last mentioned upwards to the shoulder. I continued this plan of treatment from the 26 th to the 29th, when I ordered the onions to be omitted, continuing the yeast and flour only, as the sores were already beginning to slough ; and finding that the appetite had slightly failed, with sinking pulse, I ordered port wine. I continued the fermenting poultices until the 2 d July, when sloughing was complete, and the sores looking healthy. From this time until the 17th 1 used an ointment, composed of cerat. cetacei \mathcal{F}_{i}, with kreosote, git. ij., when the sores were completely healed.

During the whole course of this case there was less general derangement than 1 have seen in others, it having fallen to my lot since I have been here, to witness five cases of this dangerous and distressing disease, four of which came under my own care. I followed the same plan of local treatment, as above described, varying the general one, according to circumstances of habit, constitution, idiosyncrasy, \&e.
My reasons for opening the pustules as soon as they appear, in lieu of allowing them to break spontaneously are, that we diminish the symptomatic fever, by preventing the absorption of the virus, on the same princtple that it has been recommended to open the pustules of small pox as they ripen, and by applying caustic, we hasten sloughing, and the poultices, by their stimulant and antiseptic qualities, excite the local action of the morbid parts, and diminish the chances of a systemic tendency. Of the four cases I have treated according to this plan, the erysipelas was immediately arrested. Whether my hypothesis be correct or not, remains to be seen. From the result of my own observations and research, I have arrived at the following conclusions respecting "Charbon": -

1st. That it is a disease sui generis.

2nd. That it is the effect of a specific virus.
3rd. That it can only be obtained from the dead body.*

[^2]4th. That it may be introduced into the system with. out any breach of surface.
5th. That some idiosyncrasies are not susceptible of its influence.
6th. That no prophylactic can guard against it.
7th. That it has no fixed period of incubation or ter. mination.

ON THE CHEMICAL COMPOSITION OF THE WATERS OF THE ST. LAWRENCE AND OTTAWA.

By E. S. DeRottermund.

 Chemist to the Provincial Geological Survey.The waters of the river St. Lawrence, which flom past Montreal are of twe kinds, -the one coasting along the left side of the river, appertains to the Ottawa, the other flowing opposite the city, comes from the upper lakes. These run together for several leagues without intermingling, a fact demonstrable from the preservation of their respective colours. The St. Lawrence water posses-es a fine blue colour, that of the Ottaws appoaches to a brown. Both kinds are very pure, differing from distilled water only by . 002 or .003 , for by taking the specific gravity of distilled water as unity, the specific gravity of the St. Lawrence water is 1.0036 ; that of the Ottawa water 1.0024 , their temperature being 66° Fah., while that of the air was 82°. Taking into consideration the specific gravity of the two waters, we can understand why they do not easily intermingle; this arises not only from a difference in the amount of saline matter dissolved, but also from a difference in its nature; both contain chlorides, sulphates and carbonates, with bases of ime and magnesia, but the St. Lawrence water moreover holds in solution carbonate of lime, and in cone sequence is not so well adapted for culinary purposes, as this salt deposits itself readily when fluids containing it ars heated, and their bulk diminished by evaporation.
The brown coluur which the Ottawa water possesses, might be attributed to the presence of a very miaute quantity of Marle or Loam, held in suspension; but the amount of it must be exceedingly minute, for when specimens of the two waters, the St. Lawrence and Otava are put into tumblers, no difference in colour is perceptible between them. It is rather to be supposed that the colour of the Ottawa water is not due to colouning principles, but the two waters being impregated differ ently with saline matter,-the rays of light are refected differently, an effect which is more striking when the

[^3]two waters are in contact, and in great quantities. Seeing that the two waters contain the same salts in solution, the difference in their Specific Gravities, also demonstrates a difference in their states of impregnation.
The following are the results which I have obtained from specimens of the waters above mentioned, which I took at the beginning of July, of the present year, from the river opposite the city. They both contain equal quantities of atmospheric air in solution, to the amount of 446 per cent. From a litre (57 cubic inches, about a quart) which I evaporated to dryness, I obtained so small a quantity of residue from the Ottawa water, that I found it difficult to weigh it with perfect precision, but I estimated it at 1.5 grains; while I obtained from the same quantity of the St . Lawrence 2.87 grains of solid residue. The quantitative analysis from 57 . C. I., of each gave as follows:

Montreax, July 29th 1845.

REMARKS ON THE REV. Mr. LEACH'S OBSERVA. TIONS ON THE PREVIOUS EXISTENCE OF A FRESH WATER INLAND SEA.
by joinn rae esq., hamilion, c. w. (Continued from page 92.)
1st. Magnesia over abounds in their composition, and gives to their structure a shivery and crambling aspect. This character you will recollect, is distinctive of all the range, from its original massive bulk in South America, down through the whole branch, it shoots through the Atlantic States and Canada. We are now examining the very extremity of that branch, and may admire, but not wonder, at its preserving the characteristics of the parent stem. 2nd. The strata are of extreme tenuity ; where, you might anticipate a thickness of yards, aye hundreds of yards, you find only feet or even inches.* Itseems as if nature had run out this gigantic range to the utmost extent her materials would admit of. , 3rcl. This tenuity of stratification, placing us at almost every footstep

[^4]on a separate line of rock, renders the bearing and dip of the series very conspicuous. The former shows itself with singular regularity, holding a course very nearly due north-east, so as if carried on to strike near Quebec. The latter is at an angle of 45°, and at the point we are, is to the south-west. 4th. Every little brook, streamlet, and river, which each cloud-capp'd summit of their ridges generates, is evidently, day by day, rapidly eating up the body of its parent. To drop metaphor: from the structure of the rocks-from the disintegrating effects of the climate-from the mighty thaws of Spring, and the sudden floods of summer, the agency of water in hollowing out, and bearing off, is very great and conspicuous. You cannot look at the smallest rill without seeing that it is now busily at work, or without noting the great amount of work it bas already accomplished. The whole mountain chain is every, where cut through and gutted. 5th. You observe that the back bone and stay of the series, is the rock termed greywacke, sometimes pure, sometimes mingling with the structure of the other rocks.
Having made these observations, let us follow those mountains, or rather their south-western skirts, till we come to Quebec. As we proceed you note the increasing predominance of the greywacke; at last, a league or two from the city, it becomes the sole rock, rising out from the debris of less resisting materials, or from the mass of slaty clay which we already noted. By-and-by you partially lose it. It only appears in detached masses, rising in knolly hills over the plain, which have, however, a general bearing to the north-east, similar to that of the original chain. We have passed several of them. There is one before us worth our while to ascend. Thirty feet takes us to the top. But look down! Three hundred feet below you rolls the mighty St. Lawrence. Three quarters of a mile opposite, and rather above us, rises Cape Diamond and the City of Quebec-I should say what is called the upper town of the ancient capital ; -the lower town, with its accompaniments of shipping, rafts, and boats, fringes the opponent shore, on which from our eminence we look down. The surprise over, the view admired, I ask you how do you think this huge channel was formed? When there is a gap in strata, we know that that gap must have been produced by something; what has been that something-that agent ? Cast your eyes, I beg of you, on the mighty' stream; which, in eddying whirls, rolls far beneath our feet. Is not this a cause, a sufficient cause, for its existence? We have just been contemplating the workings of running water, and seeing it cutting ont channels of all degrees and varieties-why should not this channel have also been cut out by it? It is vast, but certainly it is not more vast than the stream is powerful. Let us riot, how
ver, be rash in our conclusions. Let us examine the evidences, and see if they bear out this prima facie view of the case. For this purpose let us cross the tide, and see of what the other shore consists. It is the very same greywacke, intermingled with limestone and slate, that has all along been meeting us, and it rises out of the same slaty clay with which we are now familiar. The rocks are evidently the same on the one side as on the other, and you may trace the greywacke on till it joins the granite of the northern chain. One locality, the-Falls of Montmorenci, where this union is easily seen, deserves to be noted. The ruisi of that great waterfall has bared a small peak of the underlying granite, and you see it, consequently; rising right out of the superjacent wacke. It is clear, then, that what is now the channel of the St . Lawrence, was once filled up by a mass of rocks, consisting chiefly of greywacke and slaty clay. How has that mass been cleared out? Surely we need to seek no other agent than the wearing powers of that great stream, which we see every day deepening and widening its bed. But if the channel be the work of the river, it must, you say, have been a gradual work, and there should be traces of this gradual progress. There are such traces. : Go to any elevated point on the north-west side of the city, and contemplate the valley which lies between you and the northern granite chain.
:Note its smooth and equal slope downward below you-its- smooth and equal rise beyond : mark its connection above at Cap Rouge, with the present channel of the St. Lawrence-its connection below by the suburb St. Roch with the same channel. Tax all your antecedent experience, and tell me is not this in reality a river scooped valley? Say must not gre:it waters have flowed through it in ancient times? Evidently there was a tume when had we two been standing on this, the site of wh.t is called the high town of Quebec, we should have seen a great stream passing to the northward of us, in addition to the great stream which now passes to the south ward of us. Where we stand had been an island washed all round by the St. Lawrence, though smaller, yet similar to what the Isle of Orleans now is. \therefore At this period the bed of the now-existing south channel could not have been greatly deeper than this ancient northern channel. Tt must then have been more than a hundred feet higher han it now. is. Hence, therefore, is one evidence of the gradual lowering of the great stream at this point of its passage. I shall only call your attention to one other. But previously to doing so, it is necessary for the distinct comprehension of the nature of the proof exhibited, that wie consider some ascertained facts concerning the mode in which a current of water works a mong rocks, and the aracos it consequenty leaves of its workings.

Every large rocky mass has different degrees of tenacity. When, therefore, a stream of water has to work its way through such a mass, it has a tendency to form islands. Wherever a portion of the rocks, possessing gre ter hardness and density than the adjoining parts, presents a firmer front to the stream, the action of the: water is diverted from the point, and turned to wearing out channels on each side of it. Hence arises an island of an oval form. . The force of the stream, warded off from the upper end, being expended on the sides, and: leaving the lower end nearly in tranquillity, and conse: quently extending somewhat largely down the stream.

Again, water in moving by such an island, impresses on it very distinct marks of its action. We know that the velocity of a stream is always much the greatest at its surface. It is on the surface illso that ice and other matters are floated along. There is, consequently, an intensity of action at this level, whirh impresses on the rock a horizontal indentation or groove. The thing is to be witnessed in Norway, and in that strange miniature alpine tract of granite and limestone, which lies between Perth and Kingstof. I am cognisant of the fact, as I know both regions by personal observation.

Having thus formed a distinct perception of general principles, let us go to the farm about two miles north of Cap Rouge, on which twelve years since the late Andrew Stuart had his summer residence; and some hundred yards to the south of the road, we find one or two rocky knolls rising from the surface. Let us examine thrm. Here are the traces which the living waters impressed on them in long antecedent ages. You see iheir oval form--you see those deeply graved indentations, the working of a current gradually subsiding. Time, the old destroyer, rejoicing in the power in these regions of his great workers-summer, with her sun and rainwinter, with his frost and ice,-has, no doubr, succeeded in somewhat crumbling away the original smoothness of their water-worn surface;-in making here a dint, and there a gap, in the horizontal grooves, and intervening protuberances, and in burying their bases in confusion; but enough remains to satisfy you that the great stream of the St. Lawrence once swept them. When it did so its surface was two hundred feet above its present level.

Having brought you, my dear Sir, to this scene, the evidence of the ancient elevation of ihe waters, I find I must here leave you; for, counting the pages of my manuscript I see we have already exceeded the limits 1 had assigned to our journey. I take my lea ve unwillingty, and, with many rock recorded facts on all sides of us, which I should be glad to point out to you, yet probably, we have aimed at enough to warrant the conclusion at which I arrived, and further continuance might be tedious.

It is a rule in philosophy that when we are in search of the cause of certain effects, and are fortunate enough to discover a really working and sufficient cause, we ought to rest contented with it. Now, here we certainly have one. If any one doubts it, I would request him to station himself on Point Levi some day in spring, or, if the expression be objected to as anti-Canadian, some day in the days of thaw, which usher in our summer, when the ebbing tide is hurrying out, and masses of ire are tumbling round in the bosom of the stream; and mark as any great mass is plunged by the whirl froin the surface to the bottom of the current, and again emerging, rears itself over the waters, how it shows the work it has been at below, by exposing to our glance its sheeny surface, shivered by the downward plunge, darkened by fragments of the opposing rocks, whose frame work in its dive down it was digging into. It is quite impossible for any one to look at the St. Lawrence at Quebec, and below Quebec, and not to see that it is now actually, year by year, moulding its channel into new forms. The difficulty we have in conceiving the whole chasm to have been formed by the stream, is that the amount of work done by it each year is so small, in comparison of the whole mas: wrought out. We cannot easily bring ourselves to conceive, that so vast an operation has been performed by an agent, whose doings year by year are so minute. We must, however, recollect two things.-1st. That time is the most potent of the forces with which geologists have to deal. The greater proportion of the rocks which we sce, are acknowleliged to have been formed and moulded by exceedingly minute operations, if the extent of these operations is measured by years. It is the vast, the illimitable succession of years, during which they are continually carried on, that does the mass of great geological works, forms grouns of rocks, heaves them out of their bed, and shapes them into the mountain masses we see. ${ }^{\text {and }}$. When the waters to the south-west of Quebec were in the earther stages of their progress of working out a passage, they had a far more rapid descent than at present, and, consequently, much greater force.
If, then, as is undeniable, according to all legitimate evidence, the waters now flowing along what we call the St. Lawrence, were, at no very :ncient daie, geologically speaking, dammed up about this point, then is it evident that all above the restraining dam must have been flooded, and what is now nearly a plain surface, been then the bottom of a wide extending lake of fresh water. The depth and extent of it would necessarily depend on the height of the barrier. There is sufficient evidence that just at Quebec this was about three hundred feet. This clevation would flood all the country from Quebec to Hamilton; and make a lake of darble the length, and
nearly of the breadth of Lake Superior. It is the shores of this ancient and gradually subsiding Lake, that constitute the most distinctly marked of those marginal lines referred to by Mr. Jeach, as unquestionably indicating the action of water. The mountain of Montreal, with its rotes, may be cited as a good example of these. At the time referred to, it must have been all submerged, with the exception of its two rounded summits. The terraces with which it is skirtel, give us the successive lowerings of the level of the Lake.
Thus far all is to my apprehension very clear and apparent, and resting on the evidence of facts which any one can ascertain, and having done so, will admit to be conclusive. But Mr. Leach advances to other grounds, and complicates the examination of the subject, by bringing into consideration the revolutions that have oceurred, or may have occurred, in the rocky' strata themselves, which compose this our Province of Canada. What, then, are these strata? And what, from the science of geology, and the phenomena they exisibit, can we ascertain or conjecture concerning the revolutions they may have undergone? As to the strata themselves, they begin with granite, and rise as high as the lower strata of the mountain limestone. There is no rocky series of more modern date than this in Canada. Every geologist knows that these strata are very ancient, If he is to fix a date for their formation, he reckons it by milliuns or billions of years. If he is to give a guess at the revolutions to which they may have been subjected, he would say, juiging from what we know has taken place at other points of the surface of our planer, that they have heen submerged at least a dozen times beneath the level of the ocean, and as many times upreared. Their present appearance is familiar to us all. To the unassisted cye, unless of the very nicest, they seem perfectly horizontal, but they in reality have a dip southward of something under thirty feet in a mile. I am perlectly at a loss to understand what Mr. Leach means by asserting that these strata, along the banks of the Canadian Lakes, exhibit inuumerable instances of disruption from a sinking down of the surface in one quarter, and its elevatom in another. I should, on the contrary, say that the most remarkable fact with regard to the whole region. is the absence of any of those breaks in the continuity of strata, which in other continents ever and anon meet us. I have examined these margins from Kingston to Amheristhurgh, Sandwich, and Penetarguishine, and at various points of the snuthern shores, and I must confess I have looked in vain everywhere for a single instance of disruption of strata, produced by elevation or depression. It can scarce be but that some instance of such disruption is somewhore to be found, but I have net seen one, nor,
after all my enquiries, have I learned anything of one. Mr. Leach will, therefore, confer a favour on me, and I am persuaded on other inquirers into these matters, by pointing out the localities of the disruptions he talks of. One thing is very clear: the beds of Lakes Ontario and Erie, the most immediately interesting to Canadians, have not beea produced by any such disruptions of strata, but are hollowed out of strata, equivalent, the one to the old red sand stone, and the other to the anagenite red sand stone of Brongniart, the best authority I can just now lay my hands on.*

What then can be said of the changes these strata may have witnessed since their final deposition? Surely very little that is certain or satisfactory. Many questions may indeed be put concerning them, but they are questions that have not, so far as I am aware, been solved and which I apprehend admit not of easy solution. What, for instance, was the extent of strata once incumbent over thems? Each dozen miles or so that we travel southward of Lake Erie takes us to the out-crops of more recent strata. Did these once extend over Canadian regions? If so, how were they removed? Again we have a deposit of blue clay,-what produced it? That blue clay has been washed off at various points, and our granite rocks also have marks of a northern flood. How was that produced, and when? Yellow clay overlies the blue clay, and it also seems floodwashed. How is this?
I. shall not attempt any answer to these, or to any other possible enquiries.' Were they solved, they would leave the fact of the gradual issuing forth of the waters of the great lake or lakes, and the successive formation of new shores, exactly where it was. Our Canadian strata were formed at a period a hundred times more remote from the origin of the lakes, than is the era of the French revolution. There seems to me a scientific incongruity in mingling together eras so very distant.

But to deal immediately with Mr. Leach's hypothesis, that there has been a groudual elevation of the continent. In so far as geological theories go, it is certainly a very probable one. All existing continents are supposed to have been so elevated. Yet, if we adopt this hypothesis, provided I have given a correct statement of the actual geological facts, which an examination of Canada presents, it would by no means alter received opinions. Granting that the land has been upheaved, it is very certain that during these upheavings, its present rocky strata suffered but little alteration. Were I to image

[^5]forth the process, first would appear out of the waste of waters, the summits and the sides of the three mcuntain chains I have described in the beginning of this paper, they would have enclosed a vast salt water lake. But the waters of this lake, clevated more or less over the general level of the ocean, would seek an exit. They would find an exit at some gap in the brim of the containing mountain riuges. Through this gap, or through these gaps, if there were more of them than one, the interior waters would be continually sending one great stream, or several such streams. Observe now, that, continually discharging, they would discharge salt water, and also, that being continually recipient, and receiving only fresh water, either river water, or rain water, the salt water would gradually be washed out,-the salt water lake would be converted irto one of fresh water.* If we conccive successive elevations, following at long intervals, these might undoubtedly be connected with the farther depression of the waters, and formation of new shores. Though it is evident that there has been io great displacement of strata, still I think it probable that, at each fresh elevation, there might have been some such irregular heave, as to have shattered, at some point or points, the containing mountain brim, and to have given a begiming to fresh exits for the inland waters. This supposition would give a plausible explanation of the change they have made of the points at which they discharge themselves.

Let me, however, observe, that this, the hypothesis, which in so far as I know Mr. Leach has been the first publicly to broach, connecting the firmation of ancient lake shores with extensive elevation of the continent, might be tested by an examination. of the shores of the valleys opening into the Gulf of the St. Lawrence. If the continent rose gradually, it is scarce to be doubted that traces of this gradual elevation will be found in these regions in more points than one, in the shape of well defined beaches. It is, indeed, well known that such exist. The accurate measurement of the eleva-

[^6]tions of these, compared with an equally accurate measurement of the more recent of the ancient shores of the interior lake, could scarcely fail to give us facts, very in teresting, and probably very conclusive, with regard to this whole argument.

Now, these localities must all be within the reach of some of the readers of your Journal, and these may be induced to ascertain by actual measurement their exact elevation. I would venture to suggest the mountain of Montreal, that of Yamaska, probably the adjoining mounts, and the township of Shefford, as affording very distinct terraces of the sort. For lower levels the banks of the St. Lawrence iteelf, from Point aux Tremble to Three Rivers. Below Quebec, near Cape Mailliard, at the head of the settlement of La Petite Riviere, about, I should think, five hundred feet in heght, there is a very distinct terrace, either an ancient beach or a lake shore. There are also at Malbay, both on the river valley, and by the road passing about a mile in the rear of Cape Blanc, distinct traces of the same sort. But it is below this that such observations would be most desirable. The existence of such beaches is stated, and, unless I mistake, the localities of some of them given, in the first and second volumes of the transactions of the Quebee Historical Suciety. Each fact of this sort, ascertained accuratels, by careful observation and measurement, is important. A series of them would give us aubentic data for our reasonings.

To conclude, I hold that the fact of there having been a vast fresh water lake occupying the interior of this continent, discharging its waters by various passages into the Atlantic, and gradually receding, and leaving marks of its recession, is unquestionable. The cause of the original formation of this lake, and of its successive recessions, is another que:tion. We have as yet only probable, not certain, grounds on which to determine it.

Hamilton, 2% th June, $184 \overline{1}$.

Message from His Excellency the Governor General, with Reports on a Geological Survey of the Province of Canada, presented to the House on the 27th. Jun., 1845. By W. E. Logan, Esq. Provincial Geologi-t.

We propose to furnish the readers of the British American Journăl, by the publication of copious pxtracts from these Reports, with some account of the labours of the Provincial Geologist and his assistant, and of the progress shey have made in their vast field of observation. It is but seldom that the cultivators of the arts and sciences have the enjoyment of seeing a work of this description undertaken and faroured by the Legislature here, and at the same time prusecuted mith real and talents proportioned to tue iumbinces ani
magnitude. The encouragement which the Legislature has bestowed upon this work, is deserving of all praise ; and apart from the immediate interest and advantage which the Colony unquestionably bas in the accomplishment of it, it evinces a just appreciation of the spirit which now characterises all enlightened conimunities, adding its contribution to the grand stock of information, in a department where the enterprise of individuals requires to be facilitated and sustained by every public means, in order to secure a successful prosecution of such works. There is no doubt but that these Reports will be received with great interest in Great Britain and other countries, conveying, as they will be confidently believed to do, accurate views and details of the physical history of a very extensive, and hitherto litile known portion of North America.

So much, even upon the principle of honour, every country is bound to undertake and carry out ; but it happens that its own interest is always concerned in the result. Its own resources are disclosed, and consequently its wealth and general prosperity are directly promoted; and though it should be found that these resources do uot consist in a prodigality of the preciuns metals, and that there is no hope that-
"Here the molten silver
Runs out like cream on cakes of gold;
"And rubies
Do grow like strawberries."
Yet the very "saving" which authentic information upon the subject must occasion, by preventing fruitless searches and idle speculations, more than justifies the expenditure of a Provincial Survey, were that expenditure ten times greater than what the Government have undertaken to provide for. There are few States of the Union, probably none, in which many thousands of pounds have not been sacrificed in speculations for minerals, which a geological report, constructed upon accurate observation of the district, might not have prevented. The disappointment and ruinous consequences of these speculations, render it matter of prudence to guard against them in Canada, where few will be found hardy enough to adventure in them, when authentic information on the subject shall have previously demonstated the impossibility of success. If the revenues: of the Province, and of individuals, are hereby saved from the misapplications, which the history of other parts of America shews to have been not unfrequent, the Report of the Provincial Geologist, when he shall have brought his observations to a close, we regard as an invaluable safeguard of the public weahh, and of private prosperity. In point of faet, howerer, the mineral resources of the country are such as camot fail amply to repay the labour of investigatiwn. Jany valuabe materals might long remain tik
known, but for the divining rod of the geologist; and these at innumerable points, scattered over a large ex. tent of country, will amount in the aggregate to a large increase of the wealth of the Colony. The Peovincial Geologist, as we shall see, carefully indicates these in the course of his observations, and has shown, indeed, throughout the whole of his labours, a desire to render them available to the public good, and to point out every valuable property in' the objects that fall under his inspection, with a view to their application to the useful arts.
The immense field of observation is thus described summarily at the commencement of the Report :-
"And when attention js given to the wide expsanse of surface to be examined, which, stretching from the North Western shore of Lake Superior to the mouth of the Great River that unwaters the whole area, spreads across twenty-five degrees oî longitude and ten of latitude. and comprises in the mere narrow strip parthally settied along the River and its Latics upuards of 60,000 square miles, tite udvantage and absolute neccssity of a judicious and systematic plan of operations, so as to attain a satisfactury result in a reasonible time, are too obvious to be insisted on."
"Confining attention to those regions which more immediately werve to illustrate the probable structure of Canada, it appears that n nucleus of coal measures coming from the south west is greatly spread out in Ohis and Pennsylvania. That portion of deposit which betongs to Pensylvania alone extends in an unbroken body from the south west comer of the State, a diatance of 200 milcs in a north east direction, while it occupies a breadih of 120 milica, from within twelve leugues of Lake Eric to the Apalachian range of nountanns. Its hne of contour cxhibits on the North East a number of salient portions, pointing like fingers in thit direction, and separated fom one arother by the effect of a series of parallel anticlinal axes, along which have been worn deep vallers in the varinus soft ocposits below.* These salient portions in the carbo. niferous outcrup are therefore minor coal troughs subardinate to the greal one, and though as paris of the great urbroken body of the deptrit they reactin no further than the road between Buffalo and Philadelphia, there contimues from the extremity of each a serics of oullyng patches resting on the sinclinal mountain tops, which in sume cases iun quite across the State and enter tinat of New York. The most enstern out-lier is the anthracite coal region of Wyoming, the position of which is within 20 miles of the Delnware river, where it forms the dividing line of the two States mentioned, at the nurtineastern angle of Pennsylvania."
"From beneath this enormous coal.field, with all its outying patches, thero crops out in succession a variety of conformable depusits, which on the surface roughly follow the contour of their carbinifcrous central nucleus; in parallel belts of unequal breadth. and accommodate themselves to all the sinuosities occasioned by geoligical ur geographicul undulations."
"The zones of course take a wider and a wider sweep as the deposits descend in the scries; and the range of those at the base shew that the accumulated thickness of the whole must be very considerable, however flut the trough may be: As measared on the south side of the trough. this thickness hes been ascertained to amount to $30,000 \mathrm{fect}$ and thungh it is possible several mem. bers of tho series may thin down towards the north, it cannot fail to be of great atuotut on that side also."
"Thu lowest of these conformable deposits consists of silicious and calcifcrous sandstones of variable quality, which give support to a thick und conspicuuus formation of blue limestone and asso. ciated shale, well marked by its organic remains. In its souihern developoment, this limestone has been traced across the state of Penisylvasia into that of New York, where guining the Hudson River.it pastec on to Laté Champlain and uence runs into Cu. nuda."
"Having, when in this country upwards of a year past, made a collcetion of the fossils of this formation and sitbeequently submit.
ted them to the inspection of British Geologists, they have examined them with much interest, and pronounced them with some degree of cautious hesitation to belong to the lower silurian rochy of Murchison. The collcction is, at present, in the possession of Mr. John Phillips of York, Paloontologist to the Ordinance Gco. logical Survey of Great Britan, who is at thas tirne engaged in making an extensive review of the fossils of the silurian epoch generally, and the favourable opportunity thus occurring for accurato comparison, will, it is hoped, enable him to pronounce a decided opinion on the quertion. But whaterer be the precise equivalent of this rock in Britain, it is strongly marked by its or. ganic remains in this country, and the formation is of a very per. ristant choracter. The surface over which it spreads in Canadn ${ }^{26}$ very great. Commencing at Lake Champlain, its southern margin keeps considerably to the south of the St. Lavrence. Of the distance between its outcrop and the siver, however, I am, as yet, duabtrul, not having, either from personal inspection or the information of othere, uscertaincd it lower down than Yamaska, where I understand a stratificd limestune answering its character is guarried for building and burning. This is about twenty-five miles from the bank of the St. Lawrence, and whatever be the distance further on, the base of formation ultimately rewches the vicinity of Cape Tourment below Quebec."
"Turning at this point and following its northern outerop up the St. Lawrence, it is found to run along the foot of a range of sye. nitic hills of a genisoid order, which preserve a very even and direct south-western course on the north-western bank, and over the face of which various tributaries of the great river are succesxively precipitated in rapids and carcadee, that, at once cutting deep into a thick and wide spreading deposit of an argillaceous character, (supposed from the remains of marine shells with wheh it is asso, ciated, to be of the most recent tertiary age, in many places, expase the solid stratified rocks buried bencath. On the Maskinonge, the syenitic range is about twelve miles from the \$t. Lawrence; on the Achigan about twenty ; and it strikes the Rivise du Nord about balf a mile to the south of the village of St. Jerome. Fol. lowing this etream down, the primary rocks, which are close on its northern bank, gradually assume a course with less of southing in it until they reach Lachute Mille, where their dirction becomes nearly due west."
"Aloug thisline from Cape Tourment In Lachute, the outcrop of the limertone does not in all casca come quite close to the primary rocls. There is oecasionally a space left between them for the calciferous sandstone on which it rests;and along Riviere da Nord this ruck. capped by the limestone, is seen in scveral places in a well defined cscarpment about half a mile from the syenitic range, dipping southward at an angle of six degrees, which is probably one or two more than the average dip along the whole line of strike from the neighbourhood of Quebec."
"The distance from Lachute to the exit of Lake Champlain in a straght eouth-east line across the upper end of the Island of Mon. treal is abuut fifty miles; and from what has been said, it wond appear that the limestone under examination, from this line to the north east constifuter a shallow trough, which in the neighbourhood of Montreal is of the breadth specified, and which gradually fapering to a point, terminates at Cape '1'ourment, a distance of 180 miles down the St. Lawrence, which flows through the-midde of it the whole way. Whether any superior rock resia upon this formation in the district described, I am not prepared to say; but from the abundant presence of limestune in the Island of Montreal, which occupies the very centre of the basin, if any doea "xist (and the position of a conglomerate on the Ieland of St. Helens renders it not unlikely) it will probably be of emall extent.
"Following the limestone formation to the weal ward; the basin which has been mentioncd, after paesing the line up to which it has been brought, splits into two parts against an extensive tract of primary country in the state of New York, rising up betwcen Lake Champlam and the lower end of Lake Ontario, passing into Canada at the Thousand Islunds. Of hese divis:ons, one arm comprehends the calciferous rock already spoken of as oxisting along Lake Champlain, and the other constintice a trough, a few miles within the southern rim of which ruus the St. Lawrence from the Thoueand Islandes to Iuke St. Francis; while its northern' outcrop burdering on the Ottawa, rests upon a continuation of the syenitio runge of yocks describod, which, ploceeding from Eachule. firtot touch this river at Grenvillo, and keep on its northern bunk tho whole way to the Township of Hull, with the exception of one point in tho Township of Alfred, whore the river making an elbow to the north, ites tho primsery roaks on both siden. Purauing tho

Ottawa, against the stream, the river makes a considerable bend to the southward above the point where it thunders down the Chaudieres at Bytown (a catarsct inferior in importance only to Nisgara, and thus in Hull the limestone has a breadth of abou: five miles on the north of the river. Bat how much farther up the stream the formation extends I have not yet ascertained, though, I belicve, it is known to reach the neighbourhood of the Lac des Chats. Froin the Rapides des Chats to Brociville, the distance in a straicht line is about seventy milea, and about ten to the westward of this line, the hasset edge of the westurn extremity of the trough under description, gently rises up to rest upon the castern side of a great promontory of syenitic country coming from the North to connect the vast primary regions of Ca nada, by the very narrow isthmus of the Thousand Islands, with those which epread ont like a huge penmsula in New York."
"Between these primary rocks and the southern outcrop of the limestone, the calciferous sandstone assuming a very silicious character, is largely developed; but on the northern side of the trough I did not any where detect it coming to the surface, though the limestone was in no place seen to approach the prim. ary rocks ro neal as to determine its absence, and the lowest calcareous beds always poseessed so much of an arenacenus mirture as to deteriorate the quality of the stone for the purpose of making lime. On the wastern side of the trough the sandstone with the limestone resting on it, is visible, among other places, at the Upper Narrows on Rideau Lake, dipping a little to the north of east nt an angle of four degrees."
"On the weatem side of the syenitic promontory which has been mentioned, the randstone appears to thin down and dio away altogether, and the limestone. which after passing round from the Hudson River by the valley of the Mohawk River and Trenton Falls comes into Canada by Huwe and Wolfe Islande, is seen at Cedar Island, in the vicinity of Kingston, to rest immediately on the syenite,"
"Continuing to trace this formation westward, its northern boundary from the lower extremity of Howe Island has a strike to the W. N. W., which carries it to the iron works in the 'Cown. ships of Madre and Murmora, where, cut out into promuntories, peninsulas, and outlving islands, it is a mbossed on the primary moks below, and resting on which unconformably at so small an angle that, without much difficulty, it is impracticable to estimate what the ayerage dip may be, it horizontally fills up the undulations and cavities in their surface. On closer caramination it will probably be fonnd that a similar fringe garnishes the outerop of the deposit the whole way from the Thousand Islands, not on! y in the direction of Marmura, but also in that of Lac des Chats. The top of the formation is said to stri'te into Canada at Newcastle, on Lake Ontario, and if such be the case, its breadth to Marmora may be taken at above thirty miles."
"My information as to the developement of this calcareous band farther west is not very precise, but in its progress in that direction it is known to cume upon the shores of Lake Simecue, and to strike those of Lake Huron in Nottawasaga Bay. From this, taking a more northerly course, it constitutes the south-west boundary of Georgian Bay, forming Cabot's Head.* It then gains the Manitoulin and Drummend Islands, where it has been described by Dr. Bigsby, and thence reaching St. Joseph's Island, the formation termina!es in Canada."
"The important figure which the formation thus followed will make on the map of Canadan Geology may be retimated, when it is stated, that in this Province it is in all probability the upper. most solid rock not much less than 30,000 square miles of its surface, t thus constituting nearly one half of that which is lisely t, engage the early attention of the survey."
It is obvious, that as the geological features of $\mathrm{Ca}-$ nada, form but a part of an extended atea on the continent of North America, that any general view of them must comprehend a much larger tervitory than the Geographical boundaries of the province. A peneral

[^7]sketch therefore, of the whole of this ext n nded area, serves to connect and make intelligible the detalied observations that are made on the sectional portinms of it; and in this short account of the general strarn, which Mr. Logan has judicinusly furn' ired. there in a manifest advantage derived from the investigations that have been before instifuted and carrifd on br las diffrent States of the American Union, some of thesp States bordering on Canada in nealy her whole le seth In availing himself of the labours of the Ametican Geologists to illusirate the general relations of the ruck formations of the province Mo. LogAN say: :-
It will be convenient to divide the subject into two parts, and drating a line along the Hudson River and Lake Chumplain to Missisquoi Bay and thence to Quebec, to consider the region to to the west of this line separately from that on the south side of the Saint Lawrence to the east, there being certain condutions in the one that do not prevail in the other.

WESTERN DIVISION.

The western division, as connected with the geology of Canada, may be described us a gigantic trough of fossiliferous strata, cono furmahle from the summit of the coal to the bothim of the very luwest formations containing organic remuins, with a transverse axis reaching from the Wisconsin River and Green Bay in Lake Michigan to the neighbourhood of Washington, a distance of nearly seven hnndred miies; and a longitudinal one extending from Quebec in a south.weaterly direction, to some point, with which 1 am unacquainted, beyond the TenesseeRiver in Alabama.*

Contained within this rast trough a.od resulting from gentle undulations in the strata, giving origin to broad and anticlinal forms, there are three important subordinate basing, in the certre of each of which preads om an enormmes coal.field. One of these extends in lengtis from the County of Login to the southern horders of Kentuckv, in a north-westerly direction to the R chs River in Illinois, where it falls into the Mississippi, a distince of three handred and sizty miles, and in breadth from the month of the Mis. sourn to the County of Tippecanoe, on the Wabasin in Iudiuna, two handred miles. Presenting an ova! form intersected by the Rivers Illinois, Wabash and Ohio, and bounded by the Missigsippi, which sweeps along nearly the thule of its western margin, this coal-field covers an area of 55,007 square miles. The second occupies the heart of the State of Michigan, and reaching 1.30 miles in an east and west direction from within thirteen leagues of the Lake of that name to Saginaw Bay in Like Huron, and 150 miles in a north and south line from the neighbourhood of the Rivers Manistee and Ausable, to the source of the Grand River near Jackson, on the road between Detroit and St. Josephs, it cxhihits an irregular pentagonal shape and comprises a superfities of 12,00 square miles. The third carboniferous arca stretches longitudinally about 600 miles in a north.casterly course from the Stut: of of Tennessec to the north.castern corner of Pennsylvania, where many outlying patches belong to it, and 170 miles transversely from the north branch of the Potomac in Maryland, to the southeastern corner of Summit Connty in Ohio, just twelve leagues south of Cleveland on Lake Eric. It possesscs a sinuous sub. rhomboidal form and spreading over a surface som what larger than the first named coal.field, may comprise about 6000 square miles. The Ohio and its tributaries unwater nearly the whole of it, and the main trunk of this great river serpentines through the centre of the region for about 400 miles of the upper part of its course. The Susqueharna and its tributaries intersect the north. eaftern extremity of the depocit, and the vallies of denodation in which these waters flow, ansisting the effect of a series nearly equidistant undulations in the strata, there break its continuity into the oulliers alloded to, which generally rest on sinclinal mountain tons, in the internpted prolongation of a number of narrow sabsidiary louglos resulting from the undulations in guestion, and giving an irregular and decply indented ejntour to she outcrop of the main body of the coal. The chief part of the outliers, as well as the

[^8]mam body of the deposit, and also the other two great conl-fields describch, yield fuel of the bitnminous quality ; but to the east. ward of the Susquehanna, there are threc large outliers almost sufficiently impertant to deserve the designation of another coal. ficld, in which the fuel contained is of the anthracitie kind.

From beneath the three great coal-fields which have been mentioned, the subjacent furmations crop ont in succession, surroundiner their carboniferous nuclii with rudely concentric belts of greater or less breadth, according to the thickness or dip of the deposit, and taking a wider and a wider sweep as thev uescend in the order of superposition, while they conform at the *ame time in their superficiai distribution to all the sinursitios and irrogularities occasioned by geographical and genlogical undulations. The organic remains of these rocks proclaim them to be contemporaneous with the Silurian and Devonian cpochs of Enrope, including the old red sandstone; and the Pennsylvanian geologists conpute that in their southeastern develupment they ftam the aygregate thickness of about 30,060 feft. But in the state of New York, where the quict conditen of the northern outcrop affords an admiable opportunity of detemining with errainty all the relations of the deposist to one another, nut more than one third of that amount can be made out. It would seem, therefore, if the many complicated folds existiug on the siuth-cast side have occasioned no error in the estimate, that the formations must thin down greatly towards the north.
series of fossillaferocs deposits.
Having thes tracet as far as nocersary the centour of the lowest deposits of the fiselliferous area under descr.pion, and having given the position and superficics of the coal-fields which spread out at the summit of the series, it will be underst od that the whole of the space between the perimeter of the latter and the houndary of the former is occupied by the varions belts or zones resulting from the outcrop of the successive formatons.

The lowest of these fussilliferous sedimentary deposits is the sandstone, which has already been menioncd. It asamues various lithological appearances in different places, and in difficent parts of its vertical thickness.* At its base it is cometimes a quartz rock, so hard and vitreous as scarcely to be distinguished from the primary masses on which it reste, and it frequently presents the aspect of a conglomerate, as at Gananoqu, with larce quariz pebbles in a matrix of fine sand, It is often an eren-hedd d, even-grained sandstone, yellowish brown and compact, or white, taccharine and friable. It is occasionally of a dee pred colour in the lower past; and at Montmorency, near Queliec, Profussor Emmons, of the New York surviy, states it to he sta ned in parts by green cartorate of copper. The highest portion of the formation sometimes exnibuts the character of a brecea, with fagments of a dingy calcareous rock united by an arenaceous rement. But the tupical quality of the whole mass, as seen at Posdam, in New York, where it is extentively quarried for cconomic purposcs, is is yellowish brown sandstone, splitting into rectangular parallelopipeds of almost any required sizc. It is said to contain few fossils; a bivalve shell (lingula oratn) is considrred characicristic, and at the top of the depesit fucoids exist. The total thichners of the formation is upwards of 300 feet. +

This silicious deposit pass's into a sandetone of a calcifcrous quality, which the geologists of Penasylvania class with the fremer, but those of New-York consider sufficicntiy, marked to be takon as a distinct formation. It is in general a fine grained arenaceous limestone, with some beds of a pure calcareous qual. ity. Towards the lower part it is sometimes drab coloured, yiolding ocectisional beds fit for the purposes of water lime, and a little higher it is geodiferous, the geodes containing calcarcous spar, sulphate of strontian, sulphate of barytcs and sulphuret of zinc. The fussils of the deposit appear to be characteristic, and they consist of univalve and bivalve shells, corals and fucoids. Its thelkness is about 250 feet.

To this succeeds the important calcareous deposit of which the course had been so extensively traced. In Pennsylvania it is taken as one formation, but in New-York it has been divided into two. The lower part consists of a dark irregular thick bed.

[^9]ded limestone, containing frequert and irregular shapes of chert. replacing coratime organic remains. It has a thickness of onc hundred and thirty feet, and upon it rests a darh bluish, evenbedded, compact, britie, pure, limestone, occasionally yiclding. marble capable of a good polish but liahle to fracture in the working. Atribe top of the general deposit, the bituminons shale predominates over the limestone, and aftords a passage to the suceceding formation. To the student of North American geo$\log v$, no fromation deserves closer attention than the one just noticed. It is ont of the must persistent of the whole scries, both geographically and lithologically considered, and it abounds in peculiar and characteristic fossls, crustacean, molluscan, and coralline. In the New. York survey it is called the Trenton limestone, taking its name from the locality of its greatest observed thickness, which is about 400 fect.

The next deposit in the order of superposition is a black bitwminous shale, differing very little from the argillaceous part of the previous formation, except that is is said to be a little firmer, and to have a double system of natural joints. It disintegrates fasily under the general influence of weather, which change its colour to an ash gray. It has distinctive fossils, crusiaceans, mollnibs and graptolites, and a trilobite, to which the name of triorthus teckii has been given, is considered characteristic. I'le gratest observed thichness of the deposit in the State of New. York duce not excecd 100 feet.

Upon the preceding lies a deposit of thin gray sendetone strata, alternating with fine easily disintegrating areillacoons shale beds of a grecmith colome. 'This formation is considered to possess dis. linctive fussts, but the Pennsylamian geologists have united it with the argillateons hales that underlie it. Its thickness may be stimated at 1400 feet.

The next superimposed deposit is a rray, even-bedded sand. stone of a rather fite gratined, hard and durable quality, used for buitding purposes, and occasonally for flags and grindstones, with thin interposed layers of at greensh sitale simifar to that of the previous formation. It has some few fossils, and its thickroses is about 100 feet.

The next in sucee ssion to the gray sandstone is a variegated red and green marly and shaly sandstone, of a crumbly mature, with which are associated some bands of guarlzose gray sandstone, in some places viclding good fanstonss, and in others good build. ing sfones. Brine springs issue from the formation, abundant in number, but scarcely strong enough to he eonverted to profitabie use in the manufucture of sat. One of these exists at St. Catherines, in Upper Canada. 'The fussils of the formation are characteristic. They consist of bivalve and univalve shells and fucoids, and one of these (fucoides la ranii) is considered an anfaling guide in iracing the drposit, of which the thickness mity be estimated at about. C00 feet.

Upon the preceding rests a ect of straia, consisting of bright green shales, associated with a partial brd of oolite fossillijerous iron ore, of which the greatest observed thickness, in any place is I wo fet, and interstratified with two bands of more or less impure limestone containing silicifiod organic rernains. These remains are sometimes replaced by catco dony and agrate, and geodes oceur containing a nnmber of beantifui silicious mincrals, with sulphate of barytes, sulphate and carbonate of lime, and, in small guan. titics, yellow sulphuret and and green casbenate of copper. The fossils are numerous, and consist of tribhites, univalve and biralve shells, graptolites and fuco ds. Among the shells, pentamerus obs. longus is abundant and characteristic. The thickness of the deposit is variable and may be taken at cighty fect.

To be continued.

SURGERY.

CASE OF OBSTRUCTION OF THE LARGE INTESTINE IN WIICH THE ASCENDING COLON WAS OPENED WITH SUCCESS; THE PATIENT DYING THREE MONTHS AFLERWARDS OF ANOTHER DISEASEby Samuel Evans Esq., of Derby-commtinicated by Wm Bowman Esq., F.R.S. Assistant Surgeon to King ${ }^{2} \mathbf{s}^{2}$ College Hospital.-Procecilings of the Medico-Chirurgical Society of London.
Lewis Street, et. 23, a farmer, has been liable for sever al years to attacks of diarrhca. In September 1843, he was seized with violent pains in the bowels resembling
colic, which lasted 13 hours; about the third week in Jan. the attacks recurred and became more severe on the 5 th of Feb. The author caw him for the first time on the 7th.He was suffering from severe intermittent pains in the abdomen, which was distended but free from tenderness. There was a distinct swelling in the right iliac region. His bowels had not been relieved since the 5th; opiates, active aperients, and stimulating injections were administered duing five days without relieving pain or sickness, or pro curing poacuations. On the 12 th, and 13 th, his sufferings were relinved by lare doses of iq. opii. sedativus. From this time to the beginning of April, the size of the belly gradually increased ; he also daily sufferet many paroxisms of pain. At intervals, large quantities of flatus, and small quantities of clay coloured feces escaped from the howels. The patient's health became much impaired, and vomiting recurred almost daily. On the 25 th of March, Callisen's operation as modified by Amussat for the formation of an artificial anus in the loins was proposed, but the patient yielded to the wishes of his friends in postponing 1t. The emaciation increased, and the abdomen became extended to the qreatest possible degree ; the evacuations entirely ceased, and the pulse became feeble and fluttering. April 9th:--the operation was performed; a transverse incision fori inches long, was made in the right loin, the ascenciing colon was opened, and more than two gallons of semi-fluid clay coloured feces were discharged. He recovered from the operation, and by May the 9th had gained flesh, and the wound in the intestine healeo, but the evacuations escaped entirely by the artificial anus, heing restrained by a plug in the oifice, which was removed four or five times a day. At the end of June he commenced passing diabetic urine, and suffered from thrist. July 2 nd :- he rode a distance of 6 miles in an uneasy cart, and shortly after, symptoms of peritunitis supervened, and be died on the 5 th . On examination of the body, the cause of obstruction was found to be a stricture in the colon. just beyond the angle formed by the junction of the ascemding and transverse portions of the gut. The contracted part was almost as hard as cartilage, and would just admit a crow quihi ; its inner surface was tilcerated. The coccuin was enormously distended and neariy as large as a stomach of ordinary size; the ascending colon was much enlarged.

The author remarks that this is the eleventh case on record, in which Callisen's operation (modified by Amussat) has been performed in the adult, in consequence of the obstruction in the intestinal canal. From the previous history of the case, it would appear that the discase had been of slow progress and long duration, but at the perind to which the operation was delayed, owing to the interference of the patient's friends, he was in so alarming a condition that it is impossible to imagine a case more unfavourable for it. Two months afterwards he was so much recovered that there appeared every prospect of his restoration to health, tut these hopes were disappoipted by his imprudence with regard to diet and exercise; as far as the operation was concerned the case was successful.

Sir George Lefevre observed that at all events this was a practical naper, and one of considerable interest. He was of opinion that in such cases, there was not only the mere local injury to be regarded, but that the whole alimentary canal suffered; the patient after such an operation should be kept in the recurobent position, and on spoon diet for months afterwards. The case showed what great liberties may be taken with the intestines; some time since he drew up the detaits of two cases, in which the intestine had been punctured, at St. Petersburgh, and had intended to lay them before the society, but he subsequently withdrew them, and published them in one of the journals. The operation was not performed with the view of producing an artificial anus, but to relieve the pain and other inconveniences caused by distension. In one of these cases the
patient, a lady of high rank, was greatly relieved by the operation, which was performed by pushing a trocar into the disteaded colon, but she died in about eightcen homs after. Is the other case, in which the same operation was performed, and was attended with immediate relief, the patient died in twenty hours. Sir George Lefeyre then enquired whether this operation of puncturing the intestine for the discharge of flatus, bad ever been performed in this country, with the riew of affording transient relief in those cases where permarent benefit was not to be ansicipated. In such cases relief may be ohtained even at the eleventh hour, as was evinced by the details of the case which had been read before the society that evening, hut he thought it a question whether it was altogether adrisable to wait so long.
Mr. Benjamin Philips said there could not be any doubt as to the importance of this operation. It had been performed several times with more or less snccess, either to relieve obstruction in the bowels, or to remedy an imperforate anus, but as far as his knowledge extended, there iad been generally a want of success attending it. The difficulties connected with it did not depend on the nature of the operation, but on the diagnosss, as it is not easy to discover the cause of the obstuction. It may be produced by an accumulation of feces, which may exist for weeks, and yet be ultimately removed vithout there existing any necessity for an operation. If the obstruction were produced by disease in the rectum, by carcinoma, for instance, as was said to have heen the case with Bronssais, inore perhaps might be said in its favoi, as it would then offer a better chance of prolonging life. Even under such circumstances it might be doubiful whether the artificial anus would not prove a greater inconvenience than the existing disease. Disease in the rectum however affords a better reason for the performance of the operation, than when it is situated higher up in the intestine. In these later instances it is dificult to ascertain the cause of the obstruction, and with regard to the case which had just been read, there was not any circumstance from which to draw conclusions as to the cause of the obstruction, whilst from the occasional passing of clay-colored feces, it might have been regarded as caused by an accumulation of indurated foces, instead of being a case of constriction, as it eventually proved to bc. At the same time there would be a difficulty in making the selection of the part of the intestine which should be opened, as it might happen that the operation would be performed at the exact spot where the obstruction was situated.

Dr. Powell mentioned the case of an hysterical patient, who was liable to great obstruction of the bowels, which was always relieved by opiates and croton oil. The last time that obstruction existed, the buwels were not relieved for two months ; injections wete not of any service, but the constipation was removed by half grain doses of morphia: with two drops of croton oil, exhibited night and morning, four doses being required before they took effect. He concluded therefore, that the attack of constipation was: dependent on hysteria.

Mr. Davis of Hampstead mentioned the case of a man, who returned an invalid from the West Indies in the year 1800, and who was subject to attacks of spasmodic colic and constipation, for which aperients renerally were inefifcacious. His appetite was very gond, but he occasi nally rejected his food. This state would continue for founteen or fifteen days, the man walking ahont the while, when it would be requisite to administer gamboge pill and smalt doses of the sulphate of magnesin, by which means the bowels were unloaded, and ary halous foeces discharged. In this state he would go on for thont three weeks, when a similar train of symptoms would arise, and the same plan of treatment was of necessity resumed. This man contintied to be subject to these atiacks as long as he continued under

Mr. Davis' care. In another case, that of a lady, who had been recently confined, and who was very ill from the bnwels having been much neglected, he exhibited appropriate remedies, and brought away numerous scybale. He (Mr. Davis,) mentioned thesi cases to show what might be effected by proper treatment in cases of obstinate constipation.

Mr. Solly thought that Mr. Phillips had very propetlv called attention to the difficulty of deciding in what cases it would be right to have recourse to this operation, and he believed thut every one in practice must have met with cases in which they were not able to decide as to the nature and couse of the obstruction. : A few years since he had seen a case in which a patient, labouring under a disiended condition of the colon from a diseased state of the rectum, was tapped by mistake for dropsy, and died atterwards from peritunitis which supervened from the operation. He also alladed to cases in which the intestine was constrcted by the formation of adventitious bands, as serving to complicate the dinglisisis, and stated that about eleren years since he had attended 0 case with Dr. Sutton, of Greenwich, where he was called upon to pass a bougie. The patient died shortly afterwards, and when the hody was cxamined after death, the colon was found to he frmiy bound down and constricted by bands stretching acress frum the mesentery.
Dr. Jumes Johnison was of opinion that in the case wheh had beci described by Mr. Evans, that there could have been but litile difificulty in forming a diagnosis as to the situation of the obvituction, inasmuch as a bougic conld be passed very readily, and there was not any difficulty in throwing up two or three pinis of fuid At the same time the seat of the distension silewed that the obstruction must he in the colon itself, and not in the recturn nor in the sigmid flexure. The operation was, therefore, in evory respect, falled for, and requisite. It is astonishing how long accumulations of feeces may continue without inducing serions mischicf. In the case of a patient of his, there had not been any passage of freces by the rettum for three months, and yet he ate and drank well, and was apparently in good health. The feeces were discharged by the mouth a few hours after taking food. There cxistod a larze inelastic tumour in the hypogastric region. He did not think there was any reason to anticipate fatal termination in this case, and it became a question whecther it would be advisabie to perform the operation; and he was rather inclined to helicye that an artificlal anus would prove a greater source of annoyance than that which already existed.
Mi. Dumn mentioned the case of a child who was born with imperiorate anus; an operation was attempted, but the colon could' not be reached. After death, the body was examined, and the gut was found not to be larger in size than a crow-quill.
Mr. Blizard Curling observed that he was about to remark that it was not an easy thing to reach the colon, especially in infants when, it is not in a state of disterision. In one case that he had heird of, the surgeon had cut down upan the kidney, instead of the intestinc. In a case of imperforate anus, in which the usual plan of proccecting was adopted unavailingly, he had proposed the operation in question, but it had nut been acceded to. He had performed it, however, after death; and had found it not to be s., eusy as it is supposed to be. By, going a litle too near the spine he had come upon the kidney and he had reason to believe that the same accident had occurred in operations on the living body. The operation might, however, be readily performed, by making the incision a littio moore externaily, and then there would tint be any difficulty in opening the intestine, if it were at all distended. He fully agreed with Dr. Johnien in the observa. tions, which he had made on Mr. Evans case, and he said that he had never met with any instance in which the situation of the obstriction had been more clearly made ouf." He thought too, that the result of the operation was such as to justify surgeons on future orcasions in adopting it under similar circumstances.
Dr. Taylor said that if Mr. Evans was clear about the seat of thé.olisfriction, he could not have done otherwise than operate, as his patient must else have died soon, and it was evident that his life had been prolonged by the proceeding. With regard to the nature of the obstruction, it had not been stated whether it was of a carcinomatous character or not that, however, was probably a qucstion which the microscope aline could settle. From the previous history of the case, it appearred to have been prodaced by simple inflemmation., The patient had been subject to diarthen for years, which had most probably bees caused by

quent contraction. Of this he had seen sereral examples subse. quent to fever, in most of which the question as to the propriety of operating was not entertained, because the patients died of chronic peritonitis hefore the symptoms had assumed characters of sufficient severily to warrant such a procceding. He had seen this conitraction in different parts of the bowels after fever attended op inflammation, ulecration, and contraction in that canal, and he thought it might he regarded as a useful diagnos: tic sign in cases of obstruction, that the diseasc depended on a stricturc and not on a mere accumulation of feces, if the patient had been known previously to have laboured under inflammation of the bowels.
Mr. Hilton commended the proceedings in Mr. Evans' cabo, and stated that cases were now aud then met with, in which tho ebsiruction was caused by a twisting of the colon on itsclf. He had seen a case of this kind, and had proposed the operation. which, however, was not performed, until after death, when it was cficieted by means of a vertical, and not a transverse incis. ion. "it extended from the false ribs to near the crista of the ilivar and was parallel to the abdominal muscles. He did not ex. perience any difficulty in reaching the colon. He then alluded to Sir Geoige Lefevre's observations on puncturing the colon, as conuered with this operation, and said there was a marked distinction between the two proccedings, as in sir George's cascs, the peritoneum was wounded, an additional risk which was studicusly avoided in Amussal's operation.
Dr. Watson observed that the cunclusions which he drow from what he had read and heard respecting this operation, were that in some cases it was perfectly justifiable, providing that the patient's consent had been previously obaianed, and the nature of the operation, with its disatreceable consequences had been fully explained to him. In that light he regarded the case in which Mr. Evans had operated, and he thought the adoption of that proceeding fully warranted by the history of the patient. On the other hand, the case which had been narrated by Dr. Johnson, was one not at all suitable for it; for although it must be very uncomfortable to use the throat instead of the anus for the evac. uation of the focees, he believed that the formation of an artificial anus would be a still greater evil. Other cases would, however, occasionally vecur, in which it would be difficult to decide on the propriety of operating, without a due regard to all the attendant circumstances.-Medical Times.

In the Boston Medical and Surgical Journal of July 23rd, we find reported an interesting case of Gastrotomy, which was read before the Tennessee State Medical society by Dr. Manlove. The cause of the obstruction which led to the necessity of an operation, was in the author's opinion a retardation of the peristaltic motion of the intestines, the effect of adhesions formed between the peritoneum and the bowels. This, frominatention to the regular evacuation of the intestinal canal, induced accumulations of fæces at the point of greatest adhesion, and these increasing in quantity, by the obstruction of the canal, and the bending of it upon itself, caused a valvular impediment which no ordinary means could surmount. Coupled with the article which precedes the present one, which details a very important conversation occurring upon an interesting case of a similar nature laid before the Royal Medical and Chirurgical Society of London, the fortunate issue of the present operation, ought to direct attention to a means of relief in cases which if unassisted, would certainly prove fatal.
On the 7th of July, 1844, I was called to see Alfred, a colored boyj aged 17 years: Re complained of some gened
ral uneasiness of the abdomen, was labouring under f-brile excitement, pulse 110. Learned that he did not recollect bavint a passage from the nowels for 12 or 15 days. On the tih haid walked several miles to a harbecue, and probably had indulsed freely in eating. He had taken Epsom salts and castor oil ; also several enemata had been adminintered by his master. I bled " ad deliguium animi," gave him a general warm bath, and directed 4 grams of calomel and $\frac{2}{2}$ grain of opium every tour hours, until three portions should be taken, to be foilowed by castor oil and spts. turpentine.
8th.-Medicine had been all taken; no evacuation of the bowels; had vomited once, thtowing up the medicine. Pulse 130. Bled him, administered a stimulating enema, and directed calomel and onium as on the previous day. Visited him again in the afternoon. Condtion found to be the same; no evacuation. Spent the night with him, and made every effort I could to procure evacuation of the bowels, but they all proved ineffectual. Vomitel several kimes during the night. Pulse 120 and feeble. Abdomen tympanitic.
9th.-Dr. Ford was called in consultation. His condi tion remained the same, except that all the symptoms were now growing more and more alarming, with the certainty that death must speedily en-ne without relief. Flexible tuber were introduced as far as possible into the intestines, and stimulating artichs were thrown up so as literally to fill the lower bowels. These were all soon thrown off without any appearance of faces. About 60 stains of tart. antimony were dissolved in water and introduced at two injections, with little or no iniluence on the general system. An emetic also of ipecac. was alministered: emes. is was readily produced, but no alteration in the symptoms. Being now night, it was thought advisable to wait on the means which had been use: until morning.
10th.-Abdomen enormously distended; difficulty of breathing; extremities coll! ; pulse very feehle and quick; cumtenance arxious; no evacuation. Gastrotomy was considered the only possible means of even prolonging his life; and although the operation promised but little benefit, yet the certainty of death without it, justified us, in our estimation at least, in undertaking its performance. An incision was made in the median line, commencing about two inches below the umbilicus, and extending down towards the pubis four or five inches. The paritoneum and bowel along the lower half of the incision had formed a most intimate adhesion, and in cutting through the former an opening of about one fourth of an inch in extent was made into the latter. From the opening there proceeded large quantities of flatus and liquid licces, as well as the oil and turpentine which had been taken. On further examination, it was discovered that the intestines were united to the peritoncum by extensive adhesions at various points within reach of the finger and probe. The wound was closed by sutures and adhesive straps, except the opening into the intestine. The amendment in all the symptoms in one bour was astonishing; the extremities became warm, the pulse slower and fuller, and during the morning the was able to fan himself, the weather being excessively warm. On the next day bis appetite was good, and he continued to improve and to discharge the contents of the howels through the artificial anus until the 17 th day after the operation, when the bowels acted naturally, the opening having nearly closed.
It will be proper to state, that about six months, before his present illiness, the boy received an injury from the falling of a piece of timber on the abdomen. The hurt caused him to keep his bed several weeks, and hence, no doubt: the adhesions which were discovered in the operation. The boy is nose wells (nine months after the operation.)

ON HARE-LIP.

By Professar P.Debogs.

In this communication it is my intention to draw the attention of the Academy to a questi n still enveloped in douth, and on whish 1 hope to throw some light; i mean congenital hare-iip, and the age at which the operation ought to be performed. The reflections here presented are fomuded on facts observed by myself, and therefore must be rapidly and briefly indicated, and I trust that the objections made by a great number of eminent surgeons, will be successfully combated by the recital of these facts, and by the examination of three children now present. (1)-Case 1. Abnut four years ago, a colleague requested me to examine his child, affected with Jabium leporinum; he wished the opration to be performed inmediately, but I reminded him that such was not the opinion of mit father, whose pupil he had been, however, as ine insisted, and as I was prevented operating on account of a phleymon of the arm, Dr. Jobert de Lamballe was called in and performed the operation with his usudl skill. The child took the breast iminediately after, and cicatriza ion was complete in a few days; unfortunately six monihs after, the infant died of a discase quite different from that under consideration. Case 2.-A tew months after I was called in by a sage femme, pupil of the Maternite, to see a child just born with a hare-lip; emboldened by the success of the preceding case, I operated the next day; a cure was effected, but the child, brought up by hand, died for want of proper care. Case 3.- A month after, I operated on a child born the day belore ; the hate-lip was on the left side ; the cure was immediate and complete. Case 4.-On the Sih of last April, one of my patients was delivered of a child "affected with a hare-lip on the left side; the operation performed the next day succeeded. Case 5.--A fortnight after, Dr. Sestier reguested me to examine a child born about the same time as the preceding, affected with hare-lip on the left side, complicated with bissure of the velum palati and the bones of the palate; operation performed immediately with success. Case 6.A short time ago a child was born in the Lying-in-Hospital with hare-lip on the left side, complicated with fissure of the velum palati alone; I operated on it successfully five days after birth.-Case 7.-Finally, Dr. Depaul, my former Chef de Clinique, has performed it with a similar result.
From these facts it may be concluded that hare-lip may be operated on with success in very roung infants, and that the facts recorded are too numerous to be considered as exceptions. As to the modus operandi, after cutting off the edges oi the division, they were united by means of the pins employed by naturalists, and the twisted suture (the pins are scarcely strong enough;) no bandage was applied hecause it is easily put out of order, nor did I have recourse to the hands of an assistant on each side, as recommended by Dr. Bonfils, of Nancy; the pain was acute, but soon over aud forgotten; the dressing was so simple that oflen it was done without waking the child. Professor A. Berard : Might I ask Prolessor Dubois what is meant by dressing? Piofessor Dubois: I mean changing the threads, which was performed twenty or twenty-four hours after the operation; the pins were removed on the third or fourth day on account of there being no bandage; in none of these infants did the pins divide the tissues, for though it is true that they are softer, still their vascularity being greater renders them capable of resisting effectually: very little blood, except in one case, was lost; in two it was swallowed and vomited up again in one, whilst in the other it passed in the stools, without giving rise to any accident. The
(i) These three children were examined by me. In one the operation was too recent to present any definite rtsult; in the other two the cicuirices were perfect and hardly perceptible:-[G. de B.]
breast was given immediately after the operation; this is important, since it forms one of the counter-indications to its immediate performance, and it was on this account that when operated on at a very early age, the infants were made to fast ; now I consider the unsuccessful results might rather be attributed to this abstinence, than to the operation itself. As to my patients, two were fed by band, the others suckled, and that immediately after the operation, except in one case, in which a few hours intervened. Another objection is the screams to which the operation gives rise, but, in general, children do not ery much, and even when they do, if the pins have been properly placed, they will not be put out of place; I had a proof of this in one of my little patients, who screamed so much that I regretted having performed the operation; but the cicatrization was more perfect than in the others. But it may be said, nothing is gained in operating so young, since it is as successful at a later period, but is it not natural to suppose that the earlier it is performed the less the cicatrix will be visible? A distinction ought here to be made as to the necessity of operating, for instance, if the child is sickly and affected with hare-lip complicated with division of the bones, it ought not to be performed, but only in strong and healthy children, and when the division affects only the lips. As to the consecutive accidents they were very, slight, and sometimes ahsent altogether. A curious coincidence here exists, which is deserving of being recorded, viz.:- that during the month of May, not only numerous cas 's of hare-lip were observed, but likewise several other deformities of the extremities. .From what precedes it may be concluded, 1st that the operation may. be successfully performed in very young children; 2nd that it gives rise to no accidents ; 3rd that the objections made against it are not sufficient to cause it to be rejected; 4th and that the opinions generally ought to be modified, if not abandoned. This memoir was received with marks of satisfaction by the whole assembly. Dr. Husson,-I thought I heard Professor Dubois explain why the left side is more frequently affected than the right. Professor Dubois in reply, said, that he had stated nothing of the kind, besides which, he could give no plausihle cause of this extraordinary circumstance. Professor Roux, after thanking Professor Dubois for bis interesting communication, said that he considered it would be unfortunate, if, on the authority of Prof. D's name, it was concluded that the operation ought to be peiformed early is every case. The ficts recorded are relative to simple uncomplicated hare-lip, and in this respect he; (Prof: R.) coincided in a great measure with Prof. D., although he is always fearfil of dangerous results, consecutive to operations in very young children, the more so as he has witnessed several which terminated fatally. There is, bowever, considerable advantage in operating when there is a fissure of the roof of the mouth, because the soft parts being united, the anterior portion of the bony palate is closed, leaving only the posterior, which would require, at a later period, the operation of staphyloraphy. As to the cause of the frequency of the disease on the left side, Professor Roux attributed it to the inequality of the primordial forces distributed to the left side of the body. Professor Dubois in reply said he thought the operation ought never to be performed when complications exist ; that the junction of the lips" of the wound is sufficient to stop the hemorrhage; that it is on this account that the suture is drawn some what more tightiy at first; and that he does not consider it npecessary to détach the upper part of the solution of continuity from the maxillary bone.

An epidemic raged among horses in England in June last. Mr. Percivall describes the post mortem appearances to be, signis of inflammation of the Pleura; exudation of albuminous matter on its coats, hydrothorax, hepatization of the lungs, with tendency to development of tubercle.

PRAGTICE OF MEDICINE AND PATHOLCGY.

CONTRIBUTIONS TO THE DIAGNOSIS AND PATHO. LOGY of thoracic diseases.

By Rodr. M•Donarlel. M.D. Leecturer on the Institutes of Medicine, University of M- Gill College, Montreal; Liccritiate of the King and Queen's Collcge of Physicians, and of the Royal College of Surgeons, Ireland; Mamber of the Patholo. gical and Surgical Societies of Dublin; Corresponding Member of the Medical Society of Genera. [Continucl from page 96.]
 abborition of pheurtict epfugun.
1 have frequently been struck with the occurrence of a particular physical sign in cases where a pleuritic effusion has been absorbed, and, as I do not perceive any allusion made to it in recent works on this subject, not ever in that excellent and elaborate article on Empyema, in the Cyclopedia of Surgery, by Protessor Walshe, of London, or in his treatise on Auscultation, I conclude that it has escaped the attention of observers. This sign is a peculiar form of crcpitation, so completely resembling that of pueumonia that I have known it mistaken for the rale so characteristic of that disease, and to have led the practitioner to adopt a course of treatment, which, it is needless to add, would not have been pursued, had he been acquainted with the frequent occurrence of this phenomenon in cases similar to those I am about to describe. In the first case I obscrved it, the pleuitic effusion was attended with extensive bronchial respiration, which, as is usual, gradually diminished as the effusion was absorbed, when just as it was concluded that the whole quantity of the fluid was removed, a distinct, loud, and sharp crepitus was heard, nearly all over the lung pieviously the seat of bronchial respiration. The crepitus gradually became less evident, and finally disappeared, leaving the lung free, and the respiratory murmur pure and loud. I had afterwards other opportunities of examining this sign, but in no instance were the peculiar characters of it better marked, than in the case of a young woman of a full plethoric habit- admitted intn the Meath Hospital under the care of Dr. Lees. On examination she was lound to labour under effusion into the right pleura, extending up as high as the spine of the scapula, and, in addition, she complained of the ustal symptoms of this affiection. She was treated energetically, and ahout a fortnight after, all traces of the disease had disappeared, except a slight amount of dulness, and, during inspiration, a sharp and distinct crepitus, conveying the idea of tits being generated on the surface of the lung. It extended over almost every part previously occupied by the dulness, and was not accompanied by any other rale or bronchal respiration. There was no dyspnea, cough, rusty-coloured expectoration, or pyrexia, yet from the slight dulness which remained after the absorption of the fluid, and the sharp crepitus, it was almost impossible to distinguish the signs from those of preumonia. In a few days, however, this crepitus gave way to pure and distinct respiratory sound, and the patient gradually improved, and was soon discharged, perfectly free from the least trace of pectoral affection.

The next case is that of a small boy, aged eleven, who had laboured under pleurisy with the effusion of the right side, which had undergone absorption, leaving the side quite. clear. on percussion. On placing the stethoscope to the chest, a dry crepitus was extremely audible; it was only heard on forced inspiration, and was not audible either during expiration or ordinary inspiration, and was unaccompanied by any other kind of rale. The boy had not, during any part of his illness, exhibited a sign or symptom of pneamonia, and his expectoration had never displayed the least trace of the pneumonic character. When listened to atfen-
tively, the sound gave the idea of being formed by the rushing of air into cells partially compressed and the seat of slight infiltration of thin fluid, and to proceed from the surface of the lung as if generated in the superficial cells, an opinion confirmed by the fact of its being protuced only on his taking a deep inspiration. I examined this boy dualy for the next five days, and thourh at each time the sound had diminished greatly in its intensity, it still preserved its diy crackling quality, exactly like the dry crepitus of preumonia.
Another instance is that of a strong, healthy woman, ahout thirty years of age, who was admitted into the Meath Hospital, under the care of Dr. Stokes, with extensive effusion in the left pleura. Previous to her admission she had been attended at her own residence, by my fiiend, Professor Geoghan, and the treatment he commenced was continuied while in hospital. The dulness extended up the spinc of the scapula, and was accompanied by bronchial respiration and agophony, but no crepitus or bronchitic raie could be heard, nor had she any of the characteristic symptoms of pneumonia. The bronchial respiration was soon replaced by respiratory murmur, at first feeble, but it soon became louder and more distinct, and now a well marked, $d r y$, crepitating rale was andible during oriinary inspiration, but hecoming more evident on takmg in a deep hreath,-it was unaccompanied by dulness, bronchitıc rales, friction, or any other abuormal sound, and she had no cough, expectoration, difficulty of breathing, or pyrexia. It continued to present the above characters for the next four or five days, and then gradnally disappeared.
In the case of a gentleman whem I have lately been attending, the same sign was observed. He had laboured under plemisy with effusion into the right side of the chest, for nearly a month before I saw him. The whole posterior and lateral portions of the side were perfectly dull, as hish up as the spine of the scapula and to the axilla, and all over this portion the respiratory murmur was scarcely andible, but there was no trace of bronchial respiration. He had cough, without any expectoration, of a hacking, teazing character, and his pulse was 120 , full and strong ; besides these signs he presented the usual group of symptoins noticed in such cases. A fortnight after, the dulness had greatly diminished, and the respiratory murmur could be heard throughout the entire lung, attended with a sharp dry crepitus, at the end of the inspiration, presenting quite the character noticed in the preceding, cases. It was in this instance the more likely to lead to error, from its being attended with dulness, the result of the pleurisy, but at the same time the patient's state indicated no new invasion of disease. His breathing was easy, his cough gone, his countenance placid, and his pulse, which for several days, remained at 120 and 100 , had fallen down to 80 , a combination of favourable symptoms irreconcileable with the notion of a new inflammation being set up.
In the foregoing cases, I have only given so much of the details as have borne upon the point, to which I wish to draw attention, and 1 have purposely omitted a minute history of the diseases, or of the treatment employed. for their removal, for in neither of these particulars was there anything sutficiently remarkable to be worthy of record. Since my attention was first attracted to this point, I have found it follow pleuritic effusion so frequently, that it is surprising it should have escaped the notice of the many acute observers who have laboured in this field, and I cannot account for the fact, only, by supposing that they have looked upon it as an indication of pneumonia, and have probably been led to pursue modes of treatment calculated to interfere seriously with the convalescence of their patients. It may be asked what condition of the lung does it indicate, or how is it produced? At one time I considered that it was produced by the rushing of air into cells that had been completely or partially compressed by the fluid, but on making
patients with healthy lungs, empty these organs to the greatest degree, and then inspire decply, so as to fill the superficial cells, I could hear nothing more than the rustlins sound necasioned by the air rushing into innamerable cells, but in no instance could I hear the crepitating rale, already alluded to. With the same view I examined most carefully a patient of Dr. Stok's's, on whom the nperation of paracentesis was perfoumed for chronic hydhothorax of the left cavity of the chest, producing gieal displacement of the heart; and dilatation of the side. When the fluid began to flow, we could hear the gradual expansion of the lung, indicated by a rustling murmur, which ceased as soon as the finger was placed on the opening, and was again resumed the moment the fluid began to flow out. Now, in this instance, we had an excellent opportunity of examining the phenomena attending the expansion of ait cells preriously compressed (for in the lower portion of the chest the respiratory murmur was dull), and yet neither during their expansion, nor after their return to their normal state, could the least approch to crepitus be heard. We cannot, therefore, I think, refer this phenomenon solely to the entrance of air into the compressed cells, for we should then expect to find it occurring in every instance, where an effusion, giving rise to bronchial respiration, becomes so diminished, as to allow of the cells being dilated, and a healthy respiratory murmur to take the place of the bronchial breathing-but such is not the case. But if, in addition to the compression of the cells, we have them infiltrated with serum, the result of congestion produced by the impediment offered to the free circulation of the blook, through the compressed lung, as no doabt is the case in some instances (for we know that compression of the vessels of the lung from plearitic effasion, may take place to such an extent, as actually 10 produce gangrene of the organ, and consequently may, in a less sevcre degree, produce congestion and edema of its surface), we have a condition of parts that may account for the sign. If the cells were fully expanded and filled with serum, as in the ordinary form of cedema of the lung the rale would present the loose suhcrepitant character, but being partially compressed and infiltrated, the rale produced by the entrance of air acquires the sharp and fine tone heard in pneumonia. As, however, I have had no opportunity of confirming this opinion by anatomical examination, I merely offer it as the best I have been able to form, and shall leave the reader to adopt any other he may think capable of affording a more satisfactory explanation of the fact.
When this $\mathrm{si} n$ is accompanied with the dulness that so frequently remains after a pleuritic effusion has been quite absorbed, it is, of course, more likely to lead to the opinion; that the patient is latouring under pneumonia, than when it presents itself alone, particularly if there be still some pain in the side, and quickness of pulse; but in all the cases in which I observed it, the symptoms of pleurisy had nearly or completely disappeared, and the easy and comfortahle condition of the patient, the quiet pulse, cool skin, absence of cough and characteristic sputa--all were opposed to the supposition of inflammation being yresent. But it is not to be wendered at, should mistakes of the kind be frequently made, for writers of the highest repute have spoken so oracularly upon the yalue of a fine dry crepitus as pathognomic of pneumonia, that it may appear almost a heresy to dispute the value of the sign, or assert its occasional occurrence in other conditions of the lungs.
Thus we find an excellent lecturer state, that "if the ear be applied to the surface of the chest. with or without the intervention of the stethoscope, and the portion of the lung subjacent to that surface happen to be in the first stage of inflammation, that of engorgemert, what does the lung. say? what audible notice does it give of its morbid con-dition?-Why it speaks very plainly. You hear a peculiar crackling sound; the smallest and finest possible kind of
crepitation; which has been happily illustrated by saying that it resembles the multitudinous little crackling explosions made by salt, when it is scattered over red hot coals. Andral has another resemblan e and not a had one; he says - The no:se is often like that which is produced by rumpling a very fine pirce of parchment.' Dr. Williams ohserves that a pretty correct idea of this sound may be obtain d in a ready way, by rub'ing between the fingers and thumh a lock of one's own hair, close to the ear. Laennec calls this crepitant ronchus; I would speak of it as minute crepitation; or the crackling of pneumonia. This may be lieard in a very limited apot in the berinning. And what an important sound it is! It is a direct symplom, having immediate reference to the strusture of the part. 'Anm' (says Dr. Latham) 'if we consider what the part is, and whet the disease-the part the lungs, and the disease inflammation we cannot too highly value this single symptom (simple and mean as it may seem) which sives the earliest and surest intimation that such a disease has begun, as tends t. disorgaization, and the inevitable lo.s of life, unless quickly arrested by its connteracting remed.," (Watson's Lectures on the Pracitce of Physic. vol. ii. p. 75).
In the above extract we fin! two ist inguished physicians declare that the existance of a crepitation alone is sufficient for the liagnosis of pneumonia, and were it not that this view is extensively entertained, I shonld not have put together the remarks contained in the forcgoing pages. Most assuredly crepitation is an invaluable sign, taken with other symptoms; but, if taken alone, uncombined with dulness, pain, difficulty or treathing, alixiety, quick pulse, and other febile symptoms, it is not (as I think the foregoing observations satistactorily prove) sulficient for the diagnosis of pneumonia.
hif.-A pecelar forb of disebcting aneurigh of the thoracic aORTA.
A woman about fifty years old, an inmate of the South Dublin Union, got permission to go out into the town, an? remained absent for six or seven hous. On her return in the evening, she ate her supper as well as usual, and nothing remarkable. was observed about her. She went to bed at the usual hour, and slept well till towards morning, when she awoke, complaining of excruciating agony in the epigastric segion. The resident medical officer visited her, and from the fact of her heing subject to attacks of colic, ordered her an anodyne draught, and warm stupes to the abdomen. In about an hour after his visit, she sudtenly expired; and on examination the following appearances were detected:

Tle pericardium, on being openeit, was found to contain about four ounces of serum tinged with blood, and some coagula; the membrane was, in other respects, heallhy and free from any trace of chronic or recent intlammation. Toward the apex of the pericardium, we were struck with the remarkable appearance presented at the origin of the great vesselis, where there was a large and firm rass of coagulated blood, completely surrounding them, and bound down by the thin layer of serous membrane, which passes up from the heart along the vessels, to be refficted on the fibrous layer of the pericardium. This coagulum was firm, and of a dark colour, and uniform consistence; the membrane covering it was quite transparent: We next cut into the left ventricle; which was both dilated and bypertrophied, and then we slit up the aorta as far as the drscending portion when the apearances, deline ated in the drawing, were exhibited. The semilunar valrest were all in that condition termed atrophy, viz., they were perforated in diffierst paris but more especially towards their free margins, with stnall round, and oral-shaped holes's, and in other situations they were much thinned. The aorta, in the situation of the attachment of the valves was healthy, but abont an inch from this situation, we discotered a laceration extending trana-
versely, and with edges as well defined as cut with a scalpel; it penetrated the internal and middle roats of the artery, hut left the external one quite whole; it was oue inch and three-"ights in extent, and from it, a probe could be passed downwards, hetween the external and middle coats, as lar as to a level with the upper border of the semilunar valves, but farther than this, i. e. behind the sinuses of Morgauni, it could not he passed. The orifice of this slit was partially closed by a congulum of pale fibrine, and on tracing this up we founil that it lay between the external and minhle coats of the vessel, but did not ex'end far, and and was not attached. We then passed a probe upwards, and found that it advanced as far on the fight side as to the division of the innominata, and for about half an inch along the course of the l-ft subclavian and carotid arteries, to which extent the midale tunic of these vessels was separated from the outer one, but the space was not occupied by a coa ulum, it appeared as if the separation had been the effect of a violent pumping of blood hetween the coats of the vessels, which had alterwards burst into some other situation, leaving this space empty except towards the laceration, where, as I before stated, we found a pale fibrinous clot.
On proceeding with the dissection, we found the opening in the cellular coat, through which the blood escaped; it was round, about the size of a fourpenny prece; and was filled with a dark coagulum which extended downwards, closely embracing the aorta, and separating this vessel from the pulmonary artery, at the exact point where, in health, they lie in apposition. In this sitnation, the coagulum exprcised a considerable compression on the pulmonary artery by which the vessel was much flattened. The coagulum lay beneath all that portion of the reflected layer of nericardium, extending from the zone tendinese of the right and left ventricles to where it is reflected on the under surface of the fibrous layer of the membrane. The serous membrane was perfectly whole, excppt at a small point corresponding to the junction of the right ventricle with the left auricle, where there was a small aperture, through which the small quantity of hlond in the hag of the pericardium had evidently escaped. The clot was hard and solid, and was fixed in its position, from its being completely entangied in the cellular tissue lying betreen the serous membrane and the outer coat of the arteries, and between these two vessels, at the point where the pulmonary artery passes anterior to the aorta; in this spot the coagulum was thicker than in ary other.
The coaguinm occupied, exclusively, all that space extermal to the vess 1 l , and underneath the serous membrane; it passed downwards on the auicles to where they join the ventricles, and it also prsseid some way upwards, beneath that membrane which anatomists describe as descending from the deep layer of the cervical fascia, to become continuous with the fibrous layer of the pericardium.
In other respects the aorta was extensively diseased, being thickity coated from the commencement of its transverse portion, all along its descerding course, with bony plates and atheromatous deposits. Indeed, the only part of the artery which appeared free from this disease, was the very situation where the lareration took place, for immeiately to the left of the opening there was another large osseots deposit. On comparing the midde and internal coats of the artery at the seat of the rupture, with other parts, they were found to possess scarcely balf the thickness. ania were much more friable, though the vessel did not present, in any pats, traces of acute infammation. Towards. the comosencement of the arch, the vessel was somewhat oiten, but not to a greater extent than is ordinarily obseryed in individuals of her age.
The mouth of the innominata was filled with a dark and firm clot, which extended for some distance along this vesseland its two divisions; and appeared to have becu produA
ced by the mechanical pressure exercised on it by the clotted blood which lay between its outer and middle coats. The lungs and liver were greatly engorged, no doubt the result of the mechanial pressure exercised on the veins leading from them, and of the almost complete obliteration of the cavities of the auricles.
-The very able paper, in a late Number of the Edinburgh Medical and Surgical Journal, by Dr. Peacock, on Dissecting Aneurisms, renders it unnecessary for me to make any remarks on this affection ; but though he has collected and analyzed aimost every case now on record, I do not find that there is one resembling that now detaited. In all those mentioned in his elaborate essay, the blood after separating for a distance, more or less extensive, the outer fiom the unidde coat of the vessel, male its escape at once in o some of the contiguous cavities. In my case it not only followed the ordinary method of dissection, but on escaping theough the outer coat of the artery, insinuated itselfinto the celInlar tissue connecting this coit with the serons coppring derived from the pericardium, and lying between the aorta and pulmonary artery, thus forming a firm circumscibed coagulum.
This case afforded a good illustration of what has been noticed by various writers, riz., the great facility with which the external coat can be separated from the midule, in dissecting aneurism. This circumstance has been alluded to by Morgagni* (who was, I believe, the first to describe this disease, and has giren two cases of it, with great minuteness of detail), as also by Guthrie, t and Henderson. \ddagger

IPECACUANHA IN EMETIC DOSES, AS A POWERFUL RESTORA'TIVE IN SOME CASES OF EX. haUstion and sinking.

By John Higennootrom, F.R.C.S., Nottingham.

(Read before the Nottingham Medico.Chirurgical Society, May 23, 1345.)
In the year 1814, I was first led to see the extraordinary beneficial effects of ipecacuanha as an emetic, in a female forly years of age, who was in a sinking state, in the last stage of cholera; her countenance was shrunk, extremities cold, cramp in the legs, and other symptoms of approaching dissolution. I had previnusly attended two similar cases, where I had given opium, brandy, and medicinal cordials, and both patients died. I was induced, in this instance, to give a scuple of ipecacuanh, from baving frequentiy seen the good effects of it in the early stage of the ci- ease. After the lapse of two or three hours, I again visited my patient, fearing I should find her dead, bui, to my great pleasure any surprise, so great a change for the better had taken place as to appear almost incredible ; the whole of her body was of a natural warmth, the dangerous symptoms had disappeared. and she made no complaint, except that she war very weak. She had no further unfavourable symptom of the disease, and was soon convalescent.
My contidence in the ipecacuanba, as a remedy in such cases, has now been confirmed during the practice of thirty years; the purging, vomiting, and cramp, often entire!y cease after the emetic operation of the ipecacuanha, hut I have thought it proper to give, in about two or three hours after the emetic, a pill, with a grain of opium and five grains of the blue pill, to allay any remaining irritation of the stomach and intesines, and an aperient, with one scru-

[^10]ple of rhubarb, and two of the sulphate of potash, to assist the natural action of the bowels, and a simple saline effervescing draught every two or three hours atterwards; weak tea, well-boiled gruel, milk, with sage or arrow-root as nu. triment, and diluents.

CTERINE MAMORRHAGE.

The next case which attracted my particular observation was the utility of ipecacuanba in's severe uterine hæmorrhage. I attended the patient three times in labour, in the years 1821, 1823, and 1826, and each time with most severe flooding immediately after the separation of the placenta. I employed the usual remedies, such is the sudden application of cold water to the abdomen, pressure to cause contraction of the uterus, with the administration of opiates, wine, and bramiy, which were at that time common remedies. These were cases of great anxiety, and I had to remain with my patient several hours before 1 thought it was sare to leave ber.
In her third confinement, I was afraid she would die.After having used all my remedies, and having given her halt a pint of brandy and a pint of port wine, which swas of "o avail, it occurred to me, that in the former cases in wisich I had attended her, when thad used the means to checis the hemorthage, that there was no amendment until she had ejected the contents of the stomach. I was, then, most anxious that vomiting sliould take place, in hope of relief, as she was rapidly sinking. I thought that as vomiting had been so benificial to her before, I, was in this case justified in producing it by giving an emetic. 1 directly gave her a drachm of ipecacuanha; a full vomiting succeeded, and a large quantity of fluid was ejected. I was much struck with an expression of my patient, which 1 had several times heard before in similar cases, after vomiting. After a deep sigh, she said, "0! I'm better; I'm better now." The hæmorrhage ceased directly, and did not return ; the symptoms of sinking abated, and the patient appeared in her natural state of body, but very feeble. A little plain gruel was all the mutriment given her, and she recovered gradually from her weak state. I attended the same patient three times afterwarts, in the years 1827, 1829, and 1831, and what is very satisfactory in favour of the secale cornutum, which was about that time becoming more used in this iocality, I gave, in every case, half a drachin of the powder before the birth of the child, a second such dose after the birth, befors the separation of placenta. This remedy had the desired effect of preventing hæmorrhage, so that I had no further need of the ipecacuanha, or, indeec', of any other remedy.

Several years ago, I had a patient, on whom the secale cornutum had no effect in preventing hæmorrhage, and I gave th ipecacuanta with a favourable result.
For neary twenty years, 1 had lost all confidence in the diffusible stimulants, such as wine, brandy, \&c., tin uterine hæmorthage, from a conviction that they increase the arterial cicculation, and, consequently, the hæmorihape, and I find that opinion corrohorated by the writiniss of Drs. Clutterbuck and Ramshotham.
The ntility of ipecacuanha in uterine hxinorihage has been proved by Doctor Osturn of Dublin, but I am not awa e that he has tecommended it in extreme cases of exhaustion or sinking.

bronchitis.

I have found an emetic dose of ipecacuanhata very valuable remoily at that tage of bronchits where a sudden! low, or sink.ng state has come on with oppression at the chest, and the expectoration difincult, endangering suffocation:Vomiting with ipecacuantia has not only soon relieved these symptoms, but has roused the whole system, and has produced such a decided change, as to render the patient convalescent in a feio dayb. i have never seen the same good
effects in such circumstance produced by any other remedy. The two following cases are of that description.:-
"Mr. D-, aged sixty, an innkesper, of a gross habit, but not considered intemperate, and had been much reduced in consequence of a neglected erysipelatous inflammation of the leg and thigh ; this had in some measure subsided, but he bad at the same time bronchitis, attended with a troublesome cough, difficult respiration and expectoration. A sudden state of sinking came on, with increased dyspncea, and a feeble quick pulse. I gave half a drachm of ipecacuanha in a little water; be vomited at different times for two hours: the cough and dangerous symptoms were much relieved; he had no relapse of the low or sinking state, and he gradually recovered under a common mild treaiment."
"Mrs. C——, aged seventy-eight, had an attack of the prevailing influenza; saline aperients, with diaphoretic and expectorant medicines had been given for abut five days, when a low, sinking state came on, with difficulty of breathing. I was inclined to gire an emetic of ipecacuanha as the most probable remedy to afford relief. Inamed it to her daughter, fraring the old lady would object to it. I was glad to find my patient would take it ; and 1 may here mention the favourable idea patients sometimes have of an emetic, imagining that vomiting enables them to throw up the phlegm. I gave her half a drachm dose of ipecacuanha which had the desired effrct of completely relieving her.I was only required to visit my patient for five more days, she being then quite convalescent."

The following observation in Dr. Johnson's Review, of April, 1844, is corroborated by the above case, and, I have no doubt, will hold good in a variety of diseases, both in the commencement and in the sinking stage of disease:-"The use of emetics (I would say ipecacuanha, from the great safety of its operation) is far too much neglected in the present day, and most practitioners are unnecessarily timid abcut using them to old patients; a single emetic will often effect more good in the course of a day or two than other remedies in a week or two."

CASE F F SUSPENDED ANMMATION.

I was called', about ten p.m., to visit Miss S—, aged eighteen. The messenger, her sister, informed me she was alraid she was dying. I saw her in about ten minutes: my first impression was, that she had taken poison, until assured of the contrary by her mother. She appeared in a state of asphyxia. Her extremities were cold, face livid and swollen, or the appearance of being puffed up; no pulsation at all perceptable in cither wrist; her muiuth, was open and her lower jaw tallen; indeed she appeared to be dead. I ordered her tect and legs to be fomented directly with hot water by means of flannel, and a hot oven shelf, enclosed in flannel, to be placed under the leys. I poured down her throat balf a diachm of ipecacuanha in water,-for she was incapable of swallowing, -then 1 rutbed very freely the whole length of the spine with the acetum cantiuaides. The emetic not operaling in a few minutes, I gave another half drachim of ipecacuanha, and, shortly after, there was a convulsive motion of the diaphrag:n, followed by vomiting she ejected some very thick, slimy mucus. On still rubbing the blistering vinegar along the spine, she gave signs of uneasinessin her countenance, and expressed her pain by sayine "O" remained with her until after midnight. Before I left her, she bad become generally warm throughout the body, and could speak in a very low voice, but there was no pulsation in either wrist." I prescribed a mixture with aromatic confection and camphor mixture, to be given gery hourg and a little gruel, or other light nourisbment, ccasionally. Lleft particular difections to send for me if she had any unfavourable change." The following moming she was quite, recovered, but very feeble; she had no recollection of her illacs,' anit could give no account of the
cause. She had heen sewing during the evening, sitting with her back to the fire, had only taken a potato for supper, and on going out of doors into the yard, she became suddenly chill and faint, complained of pain between her shoulders, and felt very ill indeed. She then went to bed and became sick, and vomited a little watery fluid, and said she was going to die. A sudden swelling of the face came on, succeeded by a convulsive motion and stretching of the whole body; then followed the state in which I found her. No further medical treatment was required but an occasional aperient, the swelling of the face was several days in subsiuing.

sinking during the puerperal state.

Mrs. B—, aged twenty three years, very delicate, and pale complexion, I attended in her first labour on the 12 h of March ult., which was very protracted and severe, and and being attacked with puerperal convulsions, 1 had to take about twenty ounces of blood from the arm, and found it necessary to perform embryotomy. She was exceedingly low attenwards, but gradually recovered for eight or nine days, requiring no other medical treatment than mild aperients and injections. About the ninth day she complained of severe pains in the course of the colon, particularly at the caput coli and the sigmoid flexure. Mustard plasters were applied, and active purgatives, with benefit, but a continued vomiting came on, attended with considerable lowness. Dr. Hutchinson was called in to visit her with me. Injections of half a pint of beef-broth with half an ounce of spirits of turpentine were administered every four hours; a common blister of cantharides was applied to the scrobiculus cordis; plain gruel or other light nutriment was given as most likely to remain in the stomach. The vomiting still continued ; the turpentine injections occasioned much pain after they were administered, and there was a very alaming increase of exhaustion and sinking.

In this case it occurred to me that an emetic dose of ipecacuanha was the most probable remedy to rally the sinking powers, and with the concurrence of Dr. Hutchinson, I gave half a drachm and remained with ber during its opeation.
A fuller vomiting was produced than I could have expected, althorigh it was small in quantity, yet it eccurred to me that the natural effort had long been exerted in vain to accomplish what the ipecacuanha directly effected-that of completely emptying the stomach. I remained with my patient an thour, and left her somewhat better. After I had gone she turned herself on her left side, and remained so still for several hours as to alarm her husband, who sent for me directly, fearing she was dying. I found her pulse much improved ; she was still lying on her left side; the sickness: had abated. A little plain gruel was given, and a hall pint: injection, with equal parts of milk and gruel, was administered every four hours. A slight vomiting came on after this time, but did not continue; her appetite improved so much that there was a difficulty in restraining her from taking improper food, such as beef-steak, \&c.: Her stomach was disordered twice during ber recovery from this cause; so as to require two emetics of ipecacuanha, which were: given with advaniage. The patient sully recovered, and is. now in her usual health.

I was impressed in the ahove case, not only with the great value of ipecacuanha, but also from the benefit arising from the glysters, in conveying nouristiment to the system when in anæmated state, and when food could not be received or retained in the stomach; indeed; I have often. thought, from the great absorbent power of the colon, that glysters might supersede the necessity of transfusion, having this advantage - the perfect safety and facility of the opery ation.-London Lancet, June 28, 1845.
\therefore
?
ascos

ON IODIDE OF POTASSIUM AND IODINE.
The physiological effects of Iodide of Potassium have been accurately ohserved by M. Ricord. The skin is very susceptible of the action of this salt, and persons under its influence frequently exbibit eruptions on the face and shoulders or even all over the body. The digestive function is frequently improved by its use, the appetite increases, and the patient gains flesh. It however, frequently produces gastralgia, which may sometimes be mistaken for pleurodynia, but there is no diminution of the appetite, nor is that induced. The iocide frequently gives sise to ptyalism similar to that seen in pregnant women. The mucous membranes are not inflamed, the silivary glands are not swollen nor is the breath fetid as in mercurial salivation. The quantity is almost always increased under the influence of the action of this salt. The circulation is not sensibly influenced, but it predisposes to attacks of hæmorrhage, and a species of ophthalmia is often induced. Coryza frequently comes on, but the mucous secretion from the nose has no tendency to pass into a purulent state. This coryza is sometimes attended with intense cephalalgia, and comes on in some cases after very smali doses of the salt. It is sometimes replaced by a peculiar bronchitis with a slight cough. Its effects are not often developed on the nervous system, bur a slight degree of cerebral excitement, spasmodic cramps and subsultus tendinum have been observed after its use by Mr . Ricord. Slight swellings of the joints have been observed in some cases after the use of iodide of potassium.

The dose of this salt administered by Mr. Ricord in constitutional syphilis is generally about a gramme and a half (22 grains) in the course of 24 hours. It seldom requires to be given in large doses, but where the symptoms indicate an increase, the dose may be increased to six grammes (one drachin and a half) in the twenty-four hours. Mr. Lisfranc has also used the iodide of potassium, in constitatonal syphilis: he begins with the dose of a gramme (fifteen grains) in the twenty-four hours gradually increasing according to the crrcumstances of the patient. It should however be discontinued as soon as any of its constitutional effects appear. The action of this medicine continues long after it has ceased to be taken, and its use should not be resumed till its therapeutic effect has entirely ceased. The iodide of potassium has also been administered in cases of scrofula with great success, and its effect on the ulcers is not less decided. Mr. Bomage reports most favourably of the action of this salt in chronic rheumatism and even in acute cheumatism, where antiphlogistic remedies have been first employed. Mr . Gearsley of London has employed successfully the iodide in deafness produced by suppurating phlogosis of the mucous membranes of the nose and ears. In these cases it produces the symptoms of an ordinary catarrh which at first increases the deafness, but is afterwards followed by improvement. It does not ordinasily produce its beneficial effects until the catarrhal symptoms are produced and have yielded.

IM. Velpeau has employed iodine as an injection in the treatment of dropsy. He first injected the tincture of iodine into the peritoneum of the dog and although a strong tincture killed the animal yet a diluted solution, when injected into the peritoneum produced only a slight inflammation which was attended with adhesion between the intestines and other viscera. At first he used the tincture of iodine in hydrocele, then in encysted and congenital hydrocele, and afterwards in dropsies of the subcataneous bursæ. In all these cases he met with the greatest success. Introduced through a puncture into shut sacs, the tincture of iodine, diluted with water, almost invariably produced adhesion of the opposite parietes of the cavity which it tunched: when introduced into the cellular tissue it does not produce gangrene. M: Velpeau has also used this
remedy in certain cases of goitre, when the tumour contains a transparent or opaque liquid substance. Six cases were thus successfully treated by M. Velpeau. The same treatment has been extended by Velpeau to cases of hydrarthrosis which had resisted other modes of treatment, and with decided success. M. Velpeau asks the question if we may not hope that certain varieties of spina bifida, of hydropericardium, of hydrothorax, and ascites will yield to this mode of treatment.-Medical Iimes Pharmaceutical Number, Aug. 1844.

CHEMISTRY, MATERIA MEDICA AND PHARMACY.

PRESTAT'S ADHESIVE PLASTER.

The following composition is said never to crack, and not to inflame the skin;-Empl. diachyl, gunt, 400 grains; purified rosin, 50 grains; tereb. venet., 38 grains, are mixed together at a gentle heat, and then 12 grains of gum mastich and 12 grains of gum ammoniac incorporated, and the mass spread on linen. In winter it is advisable to add 10 grains more turpentine, and 12 grs.ol. amygdal.--Journ. für. Prakt. Chem.-Amer. Journ. of Dental Science.--June 1845.

A NEW METHOD OF DETECTING THE ADUL. TERATION OF ESSENTTIAL OILS.

The sophistication of the different essential oils with oil of turpentine occurs daily in commerce, and no process capable of discovering the fraud with certainty is known; the odour and the various chemical tests have hitherto been insufficient. The essential oils of marjoram, lavender, spikenard, sage, thyme, rosemary, wormwood, and peppermint, are the most subject to this adulteration.
In 1838, M. Mero discovered a method of detecting the presence of oil of turpentine, founded on the circumstance that this oil dissolves the fixed oils wiih great facility, while the essential oils above mentioned do not. He considered, therefore, that it might serve to indicate the presence of oil of turpentine mired with pure essential oils, whose powerful smell conceals that of the turpentine.

After a great number of experiments, he found that the oil of poppies deserved the preference, because it always possesses the same consistence. It gave the most accurate results in the detection of the presence of oil of turpentine, in small proportions, in the above-mentioned essential oils.

About three grms. of oil of poppies are poured into a graduated tube, and an equal quantity of the essential oil to be tested added; the mixture is then shaked, and should become of a milky white, if the essential oil is pure, whilst it remains transparent if it contain any oil of turpentine.
The value of this process may reabily be ascertained, by first testing a pure essential oil, and then some essential oil of turpentine; if the essential oil is then mixed with the oil of turpentine, even in proportions so small that no advantage could accrue to traders in mixing it, it is found to behave like the essential oil of turpentine itself-that is to say, the mixture is not rendered turnid.
To make this experiment successfully, the mixture of the two essential oilsshould be very intimate. The method employed in commerce for the purpose is this :-The pure essential oil, and the quantity of oil of curpentine which is to be added to it, are placed in a bot water-bath basin, and: this is heated until the mixture, which is at first turbial; becomes transparent.

The mixture which is obtained by adding oil of turpentine in the process of distilling the plants, is detected in the same manner.

It is to be regretted that the process of M. Mero cannot be applied in a general manner. It will not detect the ese
sential oil of turpentine in the essential oils of thyme and of rosemary. However, it furnisties the means of recognising the adulteration of several of the essential oils most in use.
The Society for the Encouragement- of Industry has voted a medal to M. Mero. In some experiments betore the committee, he proved that he could determine at once the mixtures which contain 5 per cent. of oit of turpentine, and was, moreover, athe to tell very nearly the proportions of the mixtures.- Journal de Pharmacie.

OY THE CHANGES IN THE URINE EFFECTED BY DISEASE, AND THE TESTS TO DISTINGUISH THEM.
By E. J. Sueaman, M. D., Member of the Royal College of Physicians of London, \&c.

(Read at the Sheffeld Medical Society, March 20, 1845.)

Before it is possible to ascertain the effect of discase upon the secretion of urine, it is necessary to become aequainted with the secture of healthy urine; and this will be best understiod by stadying the changes which the food undergocs in omnivorous aninals, from its introduction into the stomach, to its cxcretion from the body in the different forms of respiration, perspiration, urine, and freces. In conciscly drawing your attention to this sulject, it will be impossible to overlook the manner in which animal heat is kept up.

Our alinent is composed of carbon, nitrogen, hydrogen, and oxygen, with small quantities of sja, lime, potash, magnesia and iron, together forming animal and vegetable albumen. fibrine, ant cascin. After mixing with the animal sceretions of the monh and stomach, it is called chyme; the bile unites with it in the duodenum, from whence it proceeds into the small intestines, where it becomes chyle and excrement; the chyle is taken by the Iacteals and receptaculum chyli into the thoracic dact; then into the right side of the heart, where it mises with the venous blood. In the right side of the heart we have, then, the proteine of the venous blood, (consisting of aboumen, fibrine, and cascin, with an additional quantity of these three substances added; together with the salts, converted by the hydrochinric acid of the rastric wuice (derived from commoni salt) into hydrochlorates; and the red globules of the blood, which contain the carbonate of the protoxide of iron. There is an execss of curbon in our food. The yenous blood is now conveyed by the pulmonary artery into the lungs, surcharged with this carbon, a combustion ni part of which takes place with the oxygen of the atmosphere, and is respired in the form of earbonic acid gas, the rest being carried by the arteries to form fat and bile. Another portion of oxygen combines with some of the hydrogen, zand is respired in tie form of watery vapour. The carbonate of protoxide of tron of the red globules of the blood unites with another portion of oxgen and hydrogen, and is converted into hydrated poroxide of iron. This ohemical decomposition disengages caloric, and thus accounts for the animal beat of the lunge. The blood is now called arterial, is conveyod into the lett side of the heart, from thence to the arteries, and from thence to the capillaries, in which yessels the hydrated peroxide of iron of the red globules of the blond gives off its oxygen to the carbon and hydrogen of the metamurphosed or decayed tissues which they inect with in the capiltaries, forming carbonic acid and water, and are reconverted into carbonate of protoxide of iron, thus disengaging a sufficient quantity of caloric to keep up the animal heat ull over the body; the animal fibrine and albumen (or, if you please, the protcine of the blood.) replacing those parts of the decayed lissues which require it, by the vital lurce; and the nitrogen, bydrogen, and carboan of the decayed tissucs filling up the vacuam in the capillaries caused by that organism. The bluod now agaia becomes venous. It is eharged with carbon, fiydrogen, and nitrogen, from the decayed tigeues, and a great portion of it goes, by the vena porta. to the liver, from which is secreted the carbon and seda, which brms the bile; the nitrogen being conveyed again in'o the lungs with a frose suply of albumen, fibrine, \&ce, from the thoracic duct. The same proce s goes on again. The renal arteries convey the blood to tho kidnejs in very large quantities, which secrete from the extra quantity of nitrogen brought into it by the decayed tissues, in the forin of urem end uric acid in the urins.

The above is the theory of riebig, which easily accounts for animal heat: But since this has been before the scientific world, Professor Mulder, of Utrecht, has produced another very beautiful theory, not depending upon the chemical changes iron is supposed to undergo by Liebig. His theory is, that the iron is in the same state in both venous and arterial blood; that the pro. tein of the blood, when in the capillary vessels of the lunge, combines with oxygen, and is converted into oxy protein; changing the blood corpuseles of the venous blood from trans. parent convex bodies into semi-opaque, double-concave lenses, by which means they reflect more light, and make the blood look lighter-arterial blood. This combination of oxygen produces the catoric in the lungs. The blood being then circulated through the arterics, is conveyed into the general capillary system, where this oxyger: of the arterial blond-corpuscles is given off to dis. solve the old tisste; and the protein supplies its place. The bhood-corpuseles lose their coneave lens figure, and becone again convex and more frameparant, and give a darker eolour to the blood, becoming again venons. This change of oxygen also gives off caloric sufficient to keep up the animal heat of the whole body.

Which of these theories is correct is not for me to determine; they both account for animal heat very satisfactorlf.

We thus sce that the kidneys are the organs destined to purify the blood of its decayed nitrogen, as the liver and longs are of its decayed carbon; and the natural healthy secretion from the kidneys is urea and uric acid, combined with some of the salts which have been introduecd into the blood by the fovd.

Oxygen is absorbed by the skin, combines with some of the hydrogen of the decayed tissues, and forms, water, which is given out, along with the nitrogen gas taken with the food, in the form of perspiration; and the reet of the carbon of the decayed tissues is excreted in the feeces, with the insoluble salts, \&e.

It is quite impossible, in a short paper, to enter fully into this very important and interesting subjeet, but I have endeavoured to bring at tew striking facts together, in order to induce some of you, more able than myself, to follow up the investigation; and I propose to do so muder the four following divisions:-

1. 'T'o show what licalthy urme is, and how produced.
2. To draw your attention to a number of diseases generallf accompanied by a certain abonormal state of the urine.
3. To point out the easiest modes of detceting these diseased conditions.
4. Shortly to recapitulate those parts of the subject most fre. guently mel with in practice

1. Nature of heulthy urine, and how produced.

The kidneys are the organs destined to remove from the syatem any excess of fiuid, any inal-assimilated food, and the whole of the nitrogen, with some carbon of the decayed tissucs. The amount of tissue metamorphosed in a given tinte may always be measured by the quamity of nitrogen in the urine. 'That condinon of the body which is cailed henlth involves the conception of an aquilibriun ataong all the enuses of waste and supply. If the kidneys ceasc to secrete, the nitrogen and water are then absorbed into the bloud, and produce disease of a very serous niture.

Healtly urine, then, consists of wator impregnated with wrea and uric acidaloays; often with, hippuric acid, phosphate of soda and ammonia, magnesia, potash, and chloride of sodium sometimes with sulpiates; the muens of the bledder und debrio of epithelium, with the colouring mater.

Urea and uric acid are composed of carbon, hydrogen, nitrogen and oxygen, and ate formed by the rearranerment of the atoms of water, nitrogen, and curbon, sent to the kidneys by the renal arteries.

In a heallhy adult, from thity io forty ounces of acid arine are secreted in twenty four hours, of the specific gmvity of 1 aefor thereabouts, containing about eight grains of inic acid, 255 grains of urea, 138 of fixed satfe, and 160 of organic matters; and is of a pale umber colour, owing to it substance called bemaphacin.
Urine passed suon alter drinking water (urina potus) is about 1.005 ; secreted eun after a hetrity moal (arina, chyh,) 1.035 ; after a night's rest, (urina sanguinis, 1020 . $:$ To be quite sure of the gravity, these three specimens should be mixed. Urinealways contains more water, and is lighter after drinling frecly of water: and contains lesy, and is beavier, fftor copicun perspiration and. In hot wsisther.

In order to ascertinin the guantity of solid matter in urine of any specific gravity, Dr. Christison has invented a table, by which you see, in a moment, the solid contents in 100 grains of urine, first finding the specific gravity. And if you save the whole urine of a patient for twenty-four hours, weigh it, and take the specific gravity. you have then, by a simple rule of proportion, without farther trouble, the whole solid contents in twenty-four hours.
The urine of carnivorous animals is acid, bat the urine of herbivorous animals is alkstine. The natural state of the human urinc is acid, but becomes alkaline ly living entirely ou vegetable food.
Urine, left to itself, is converted into a solution of carbonate of ammonia. The carbon of the urca combincs with the oxygen of the water, and is converted into carbonic acid; the nitrugen combines with the hydrogen of the water, and is converted into ammonia.

2. Certain diseases accompanied by abnormal condition of urine.

Excessive indulgence in animal food, with too litte bodily exercise, dyspepsia, and want of perspiration, are allways attended by increase in the quantity of uric acid and urates.
Uric achd is frequently produced in great quantity in the bladder, by the hydrochloric aid formed in the stomach fron disease of that organ; which, being absorbed into the blood, and secreted by the kidneys, forms hydrochlurate of amonia, and deposits the uric acid.
In fever, and all discases accompanied by rapid emaciation, the urine is of a high specific gravity, a dark brown-red colour from excess of urea, uric acid, urate of ammonia, and sometimes blood and purpurinc. The latertious sediment is urate of ammonia. And in extreme cases of acute rheumatism and hypertrophy of the heart, very large quantities of uric acid and urate of ammonia are commonly found.
In all acute diseases attended by great emaciation, inflammation, or disorganization, with unhealihy digestive organs, as long as the kidneys remain healthy, uric acid is secreted in abundance; but if the kidnics become discascd, as in morlus Brightii, diabctes, \&c., then the secretion from the kidncys is perverted; part of the nitrogen remaining in the circulation, and the carbon, hydrogen, and oxygen, assuning the forms of albumen, sugar, hippuric and uxalic acids, \&c. In diabetes mellitus, when starch. sugar; \&e., do not undergo the changes required to be couverted into carbon or fat, the starch is converted into grape-sugar by oxygen, and the sugar is excreted by the kidncys.
In gout and rheamatisn,, urate of suda is found both in the yrine and deposited in the joints and sheaths of the tendons.
When pressure on the renal veins uxists to such an extent as to prevent the return of blood to the cavee, as from a tumour, pregnancy, or discased viscera, the elements of the blood are often puured out by the kidncys; and, on examination, we find albumen, blood.dises, and the colouring matter of the blood, (hematosinc.). And in granular disease of the kidneys, and anasares after acute disease of the skin-as scarlatina and extensive burns-albumen in lierge quantities is detected; but when the kidneys and skin regain their natural functions, uric acid and urea are again sccreted in the place of albumen.
In all diseasos of an anæmic or chlorotic nature, attended by languid circulation and extreme debility, independent of acute discase, a deficiency of urea and uric acid is found, and no deposit takes place unless there is a very small secretion of urine. In hysteria, there is a large flow of limpid urine, of low specific gravity, and of a grecn colour. In chlorusis, the urine is also of adow specific gravity, and green; and this green colour is owing to the mixture of cystine with hemaphaein.
When the functions of the skin arc impaired only, an excess of urea and urate of ammonia is always the result: and if, in this case, , profuse perspiration occurs, the fluid goes uff by that process instead of the kidncys, the specific gravity of the urine becomes increased, and deposits frequently take place in the bladder in consequence, forming calculi, owing to deficiency of fuid; but, if the skin is inperspirable, then the kidneys carry off the extra quanity of water, and the urine becomes lighter; but the animal ncid (lactic or butyric) which ought to go off by the skin, is
secreted by the kidnes, and, combining with the ammonia or secreted by the kidnes, and, combining with the ammonia or eoda of the urates, produces uric acid.
When the functions of the liver are deranged, carbon is eliminated with hydrogen and cholesterine from the kidncys, which gives the peculiar colour to the urine in all cases of jaundice.

In organic mischief in the liver and splecn, or great enndes. tion of the vena porte, the urine is very red, purple, or coppercoloured, owing to purpurine and urate of amminna; bat when bile is circulating in the system from discase of the rallducts \&c., the urine is very brown, and casily shows bile by the proper tests. In contracted, hobnail, or cirriosed lirer, the extent of the disease may generally be mensured by the quantity of purpurine in the urme; and usually in ascities from disensedf liver, we find purpurine; but in ascites from peritoncal disease we find none. The purpurine appears to proceed from the atter. ed condition in the portal circulation.
When the liver and lungs are both so diseased as to prevent the ploper quantity of carbon being carried off by their functions, hippuric acid is sure to he found in the urinc.
In cases where organic nischicf exists in the kidncys, the urne is frequently scmi solid when cold, and of a dark colorr, like a mass of black currant jelly. And when hemorthage from some part of the urinary orrans takes place, the urine is red, and shows quantities of blood.discs under the microseope. In fungus heematodes of the kidncy, the urine looks like infusion of roses while warm, and like red currant jelly when cold, taking the form of the vessel.
During the progress of pneumonia, less carbon will be eliminated from the lungs, and therefore more will be in the urine and kiver: conscquently. hippuric acid is often found. And in confined situations, where animals are obliged to breath impure air, the glabules of the hlood are not sufficiently suyplicd with oxygen. carbon cannot be converted into carbonic acia is the lunys, and life could not go on unless the bidncys secreted mine nitrogenand carbon in the forms of urate of ammonia and hippuic acid.
In hepattis, the carbon is converted into bile; and, as long as the other secretions are going on properly, the carbon which ought tof form the bile is converted into fat and oil, and is found in the blood and urine.
We often meet with melancholy, highly-netrous, emaciated patients, simulating diahetes mellitus, but cven more depresied in spirits, who merely complain of great debility und exhaustion; wilh some litle pain in the back or lions, for which we find it very difficult to prescribe effectually. Dr. Golding Bird (to whom I am greatly indebted for much of the contents of his paper) has clearly shown that most of these cases are owing to imperfect: assimilation in digestion, converting the urea of the nitrogenous part of the food into that state which is secreted by the tidneys. as oxalic acid and ammonia instcad of sugar, which, combining with the lime of the phosihates, produces the oxalate of lime diathesis; and it is to the derangement of the stomach; duodenum and liver, that we must look for success in the Ireatinent of these cases. I have met with two patients of this description latterly. whose cascs would have puzzled me very much bofore I read Dr. Bird's paper.
Alkaline Urine. - When, from any cause, as the consequenee of wcar and tear in old age, excess of study, or great excitcment of the brain, an injury to the spine, or stone in the bladder, the kidneys or bladder are deprived of their natural supply of nervons power, the elements of urea combine with the elements of water. and are converted into cartonate of ammonia, which, by irritating the mucous membrane, and neutralizing the solvent phosphoric acid, throws down the triple phosphates, and phosphato and carbonate of lime, and renders the urine alkaline. Thus we find, in alinust all cases of long-continued calculi in the bladder-let the calculus be composed of what it may-that the urine is strongly alkaline, ammoniacal, and deposits phosphate of lime, which stick to the bottom of the vessel like birdime. The fusible culculus in composed of the ammonio.phosphate of magnesia and phosphato of lime.
In persons who are confined to very sedentary habits, with great mental exertion, for a length of time, and then obliged to use violent muscular excercise for a few days, as clergymen with small livings, lawyers, and schoolmasters, alkaline urine, with abundance of earthy phospliates, is usually the consequence; and this unnatural sccretion brings on a degree of dcbility not easily accounted for in any other manner.
In irritative dyspepsia in geaty babits, the urine often contains the phosplates in abundance; and whenever the triple phosphates, with alkaline urine, are ceposited for a length of time together, both in the night and morning urine, accompanied by emaciation, there will always be found organic discase, either ia the digestive orgens, kidneys, or bladder, if not in the spine. \because.

Dr. Golding Bird gives the following rule respecting the phos. phates, which will be found very useful in practice:-That where the presence of phosphates is only found in the evening urine, organic discase is rarsly the cause of it ; but where they are found equally in the morning and evening urine, you may de sure organic disease exists.

In bad cases of typhus fever, the urine is frequently ammoniacal towards the close of the disease, the nervous systern of the kidneys being too depressed to secrete urea, and its elements being converted into earbonate of ammonia, just as they would be in common chemical decomposition out of ihe hody.

During retention of urine from: diseased prostate gland, stricture of the urethra, or where a catheter is obliged to be worn, the urine is always alkaline, owing to irritation in the mucous membrane.

These observations might be carried to an almost indefnite extent, but enough has been remarked to convince any one of the value of observing the chemical nature of urino in diseasc. To arrange these cases scientifically, would take up too much time on this occasion.

该 d be cortinded.

LIQUID COMPOUND OE IODINE AND MORPHIA.

Mr. Taylor recommends to the notice of the profession, a compound of the atove remedial agents. He first forms an aqueos solution of iodine, in accordance with one of Lugol's formula, containing iodine " ${ }^{\text {i. }}$; hydriod potassa, Эij ; dissolved in soft water, 3 i. The compound mixture is then prepared as follows, viz. :-Of the above solution, 3i.; sulphate of morphia, gr. i.; alcohol, 3iv.; soft water, warm, 3iij. First dissolve the morphia in the water, then add the alcohol, and lastly the solution of iodine. Dose for a child two years old, 8 to 16 drops, repeated during the day ; for an adult, 40 drops. The diseases in which he has used it to best advantage, are chronic dysentery, chronic diarrhea, mesenteric diseases of children, and scrofulous diseases generally, where there is considerable nervous irritation or looseness of the bowels. In cases of scrofulous diseases, attended with great debility, and an atonic condition of the system, he has combined sulphuric acid with it with benefit.-Abridged from Boston Medical and Surgical Journalg:July 23.

THE

MONTREAZ, AUGUST 15, 1845.

MEDICO-CHIRURGICAL SOCIETY.

An extraordinary meeting of this society was held at its rooms on the 21 st July last, to adopt measures for co-operating with the sister society of Quebec, and the District societies of Niagara and Toronto, for the organization of a Provincial Medical Association, the principal object of which is the expression of a deliberative voice in the details of a Medical Bill, and other, matters affecting the interests of the Profession in this Province.
Dr. A.F. Holmes having been called to the chair, the objects of the meeting having been fully detailed, and the correspondence that täd taken place between the sectetary ($\mathrm{D}:$ Badgley) and the other societies in the natter, having been read, the following resolutions were proposed and adopted," which we copy from the
local papers, in which they have already appeared as their inmediate publicity was imperative.
1st. Moved by Dr. Badgley, seconded by Dr. Crawford.-That delegates be now sclected by the Miedico-Chirurgical Society of Montreal, to meet those to be named by the Quebec, Toronto, and Nragara District Medical Societics, in this city, on the 20th day of August, io adopt measures for the, foundation of a 'rovincial Miedical Association, the formation of by-laws for its governance and the zencral purposes contemplated, for advancing the interests of the Profession in this Province.
2d. Moved by Dr. Hall, seconded by Dr. Trestler,-That Drs. Crawford, Badgley, Fraser, David and MacDonnell be the delegates from this Society, to meet those to be named by the other Socicties, for furthoring the objects referred to in the preceding resolution.
3d. Moved by Dr. David, scconded by. Dr. Crawford,-That the Secretary be requested to notify the Medical Societies of Quebec, Toronto, and the Niagara Districts, that the MedicoChirurgical Socicty of Montreal has elected delegates to meet and confer with those to be named by them respectively, on the 20 th day of August next, at Montreal.
4th. Moved by Dr. David, seconded by Dr. Scott.-That the proceedings of this mecting be published in one of the French and one of the Englishl newspapers of this city.

Francis Badgley, M.D.,
Sec. of the Med. Chir. Socy., Montreal.
Montreal, Juily 23, 1845.
All the above resolutions were carried without a dissentient voice, with the exception of the first. Dr. Arnoldi, Jun., proposed an amendment to the effect:That the Medico-Chirurgical Society of Montreal do call a meeting of the members of the Profession, practising in this District and the Western District of Three Rivers, for the purpose of electing delegates to represent the Profession in these portions of the Province, at the general meeting of delegates proposed to be held on the 20th Inst. No member seconding Dr. Arnoldi's metion, the amendment was not proposed from the chair, and the orgioal motion was carried. Dr. Arnoldi then notified the members present of his determination to inave a general meeting of the Profession of the districts summoned at an early day. It appears in us that as this measure has orginated with the Medico-Chirurgical Society of this city, and is now approved of and sustained by the sister societies of the Province; as to them, and them only, belongs the credit of the scheme, and as they have already taken the initiative steps for the success of the project, in the actual appointment of delegates to adopt measures for the formation of the association, any ulterior measures which might bedeemed necessary for its thoroughly successful completion, might with the greatest propriety have been left to them. Should the general meeting above mentioned take place, and a comittee, as one of its acts, be nominated, we then fear the super vention of difficulties,-one of which may be, the refusal on the part of the delegates of the societies to incet the delegates of the geberal meeting, on the ground of a violation of the authority under which they are appointed, as expressed in the first resolution above recorded, which restricts them to a conference
only with the delegates of the Medical Societies of the Province: Such a result is by no means improbable, and we regret it the more, as with an object of sach importance in view, the greatest unanimity should prevail. We hope however that all elements of discord will yet not only be most carefully avoided, but if raised most determinately put down.

While on the subject of the Medico-Chirurgical Society, we may mention that the society of this city bas altered its system of management. A new code of rules, after having undergone the prescribed ordeal, was adopted at a meeting held on the 2nd Instant, and in pursuance of them, the following gentlemen were nominated oifice-bearers for the ensuing year.

President-Dr. Holmes.
Vice Presidents-Dr. Crawford and Dr. Badgley. .Secretary-Dr. MacDonnell.
Treasurer-Dr. Fraser. Committee of Management.
Dr. Arnoldi, jr., Dr. Hail, Dr. Sutherland.

PROVINCIAL MEDICAL ASSOCIATION.

Since the preceding article was placed in the hands of the publisher, we have noticed that Dr. Arnoldi, jun., persevering in his determination, expressed at the meeting of the Medico-Chirurgical Society, has, after some trouble, managed to obtain a list of twenty-one names to a requisition, calling upon Dr. Arnoldi, sen., as Doyen of the Profession, to summon a meeting of the Medical Practitioners of "the District and the Western portion of the District of Three Rivers," "for the purpose of organizing a General Association." We subjoin the advertisement from the Montreal Herald:-

ADVERTISEMENT.

PROVINCIAL MEDICAL ASSOCIATION.

Dear Sir,

We, the undersigned, Mcdical Practitioners in the City of Montreal, respeeffully request you, as the Doyen, to convene a Meeting of the Medical Faculty of this District and also of the Western purtion of the District of Threc Rivers, to be held on the 19th day of August, at the Court House, at ten o'clock, A.M., for the purpose of co-operating with the Medical Faculty of the District of Quebec and the Eastern -portion of the District of Three Rivers, in the measures about to be adopted for the formation of a Provincial Medical Assoczation.
And whereas Delegates from the Districts of Toronto, Kingston and Niagara, are expected to meet in this city on the 20 th August; to hold a Conyention with the Delegates who will be named by the Districts of Qucbec, Three Rivers and Montreal, to organize the Provincial Medical Association, we earnestly hope that every Medical: Ptactitioner in this.District, will appreciate tae importance of the meeting which we desirc yon to convene, as otherwise they will not bo represented at the Convention of Delegates nor in the general proceedings of the Association.
The main wojects for: forming a Provincial Mcdical Association is to create a better understanding among all the Members of the Profession; to watch over their general intercests; to appeal, when necessary, as one body to the Legislature, for the protection of the
privileges and the supplying of the wants of the Profession; to regulate the studies of Pupils and the duties of Practitioners; in short, to provide for all such matters as may elevate the present standard of the Profession and to protect the public from Charla. tanic impositions.
We most respectfully subscribe oursclves,

> Dear Sir,
> Yous obedient servants,

Wd. Nelson.
J. B. LeBourdais.
B. H. Charlebois.
A. Rowand, M. D.

Horace Nelson, M. D.
Frs. C. T. Arnoldi, M. D.
L. T. Tavernier.
J. Emery Coderre.
W. Sutherland, M. D.
W. P. Smith.
P. E. Picault.

August 9.
J. McGale.
C. Carter:
J. H. Grenier.
E. A. Regnault, M.A.P.
P. A. C. Munro.
A. C. Regnier.
G. J. Bibaud.
E. H. Trudel, M. P.
J. B. L. Papineau.
J. H. L. Richelieu.

In consequence of, and in conformity with the desirc expressed by the Members of the Profession, who have done me the honor to request me to call a.Mesting of the Medical Faculty in the whole District of Montreal, and the Western Portion of the District of Thrce Rivers, for the purposes expressed in their Address. I therefore notify, that a CONVOCATION of the whole of the MEDICAL PRACTITIONERS in the District and portion of the District above mentioned, will be held at the COURTHOUSE on the 19th day of the present Month of AUGUST, 1845, for the purpose of organizing a GENERAL ASSOCIATION, and good intelligence among the whole Faculty, as likewise to concert measures to maintain their high standing in So ciety, and to watch over their general interests.

It is to be hoped that cvery Member of the Profession in the Districts alluded to, who can possibly attend will do so, as interests of vital importance to the Faculty will be discussed.

August 11, 1845.
DANL. ARNOLDI.
In the observations which we feel ourselves constrained to make upon the above document, we are compelled to enter upon some explanatory details, which we shall render as brief as may be consistent with our object.

The Medico-Chirurgical Society, of this city, was constituted about two rears ago, for the purpose of establishing a more friendly intercourse among the members of the Medical Profession in this city, and for affording opportunities for familiar communication on professional subjects. The announcement of these proceedings excited the profession in Niagara, Toronto and Quebec, to follow the example; and sister societies, for the prosecution of a similar design, were established in the three places alluded to; those of the two former embracing the respective Districts, that of the latter city and of Montreal, being restricted to the cities alone. A desire was shortly afterwards expressed by the Society of this sity, for a more general union of the Profession throughout the Province, by the organization of a General Association, to be represented on occasions of assembly, by delegates from the societies already in existence, as well as from any others that might subsequently be formed. We may now observe that a most cordial and ready reception was given to this project by the. Societies already named, evincing how highly the prospective advantages which would certainly accompany such an association, if properly conducted, were appreciated.

The objects which were contemplated in the proposed formation of a Provincial Medical Association, are clearly and well enough set forth in the last paragraph of the requisition above placed on record. We were not, however, previously aware, that the regulation "of the duties of Practitioners', was to form any part of the objects of the contemplated association; and we shall wait with no little impatience, the expected denouement on this head.
A communication was lately received by the Society in this city from the Medical Society of Quebec, conveying the information, that that Society not only coincided in the views of the Society in this city, but also that it would send delegates to Montreal on the 20th of the current month. This zetl and haste, on the part of the Quebec Society, in appointing so early a day for convention, will, it is much to be feared, render it almost impossible for the Societies in Canada West to avail themselves of the opportunity to be present by their delegates. On an important matter of this nature, we think that full time should have been allowed for the assembly of delegates from the most distant parts of the Province, (if any Medical Societies there existed,) and that the meeting, by being so much the more numerous, which would have been the sure result of its postponement to a more distant day, would have carried far more influence with it.

But why was this assembly of delegates from the Medical Societies of the Province to meer 1 . This is readily, answered by a reference to the first of the resolutions of the Medico-Chirurgical Society of this city, which will be found in another column, and in which their duties are thus stated: "To adoptmeasures for the foundution of a Provincial Medical Association, the formation of bye-laws for its government, and the general purposes contemplated for advancing the interest of the profession in this Province." The meeting called for the 20th inst., can be viewed in no otherlight, than a conference of the different Medical Societies by their delegates, for the purpose offounding the association; themselves constituting as it were, the nucleus around which the profession generally mey rally, after the establishment of certain regulations which may be brought to bear upon every section of the Province, in which branches may spring up. The means of communication with each other would thus be rendered easy-the business of the Association be managed with facility, and no unusual or unnecessary demands, would be made upon the time of individual members of the profession, by an occasional protracted absence from the scene of their labours to attend meetings, it might be at distant places. Dr. Arnoldis amendment, noticed in the preceding article,
that the Medico-Chirurgical Society should summon a meeting of the profession of the Districts alluded to, was not entertained by the Society, on the ground, not only of such a procedure being a departure from its already determined plan of action, but because being a city Society, it did not conceive that its position warranted any such authoritative pretensions, and it would have savoured less of factious opposition, had Dr. A. not pushed his determination to extremes.

Without entering into any minute critical examination of the requisition, for there is ample material for such a task, did our inclination at the present moment tend to it, one thing cannot but arrest the attention of even a superficial observer, viz., that proceeding beyond the District of Montreal, the summons to the meeting is made to extend to the profession of the Western portion of the District of Three Rivers, while that of the Eastern Townships is excluded. Could not the decanate voice, so powerful as to reach one distant section of this Province, in contiguity with this District, reach another equally as distant? What the barrier which has presented its impenetrable walls to the "important" invitation? Why the ban thus laid upon our brethren of the Eaztern Townships? Let those who have signed the requisition reply, for they only can.

We object not to a general meeting of the Profession, for any purpose whatever for which it may be called, but we do think that this one was perfectly unnecessary for the present; we view it as a most decided interference with the plans and projects of the Medical Societies of the Province, and regarding it as a most likely method of engendering feelings of animosity where none should exist, we must condemn it. We regard it as a highly injudicious and ill-timed measure.

TITLES TO THE ARTICLES OF CORRESPONDENTS.

The following is from our esteemed contemporary the Boston Medical and Surgical Journal. The sugs gestion is a good one, and we earnestly recommend it to the particular attention of our correspondents, for we have already, on several occasions, experienced considerable difficulty on this subject :-
Were authors of original cssays, and correspondents of the Journal generally, always particular to give a title to their com. munications, they would confer a special favors' It is essential that every paper worth reading, should be made come-at-a.ble by an index. Without some appropriate caption, expressive of tho main character of an article, an editor sometimes finds himself perplexed-espeeially when be ascertains that one cannot be con: structed without the risk of disapproval on the part of the author: Each volume is provided with a tolerably minute index, without. which there would be utter cenfusion, and it is important that each article should be there appropriately placed: Being per: suaded that we sometimes fall short of the expectations of the writers of really excellent papers, in affixing a name, we shäll esteem it a favor if each one will remember to christen his own, both to save himself from veration, and us from the liability or blunders or mistakes.

REPORT OF THE MONTREAL GENERAL HOSPITAL FOR JULY.
 Dr. Hall,

Attending Medical Officers.
number of patients treated dunng the month of julf.
Remained, 103
Admitted, 162
Total treated,.. $\frac{265}{2}$
in-door patients treated.
Belonging to Montreal, . . 161
Immigrants, 80
Seamen,

*Of these scveral were cases of Typhus with dispositinn to bowels or chest affection; four cases of Scarlatina; two of Intermittent fever.
\dagger Generally chronic ; a few oases sdmitted under the acute form.
\ddagger Imported; one fatal case.
\$ One case of Hydro-thorax, ane of Hydroccle, one of CEdema of the lower extremitics.
|| Several cases with secondary symptoms of the worst character ; some complicated with phagedenic uleers.
IThrec cases of fracture of the cranium; seven of the thigh, of which one was compound; four of the arm; two of the neck of the scapula; one of the acromion process; two of the leg; one of the ilium : one of the metacarpal banes, and one of the ribs, all doing well.

* Of these one was of the left lung. The man was stabbed through that organ with a Jack.knife, which seems to have penetrated as far as the handle. Great hemorrhage at the time in consequence of the waund of one of the thoracic artencs. The man has been discharged cured.
† Of a great portion of the Lower Maxillary with the lege of five seeth.
\ddagger Trifling and less than usual : the amputations were, three of the fingers, two of these from the metacarpal bones; one of the great toe from the middle of the metatarsal bonc in consequence of diseased intcrarticular cartilages, and the amputation of right toes on one individual in consequence of frost-bite.

Out Fatients 121.
J. E. J. Landry.

House Surgeon.

MONTREAL MEDICAL BOARD.

The following gentlemen obtained their licences to practice, at the quarterly meeting of the Medical Board of this district, adjourned from the 5th Inst.

As Physicians and Surgeons, Pierre Fortin, M.D.; John A. Sturgeon, M.D.

As Apothecary, Chemist and Druggist, Richard William Rexford.

BOOKS, \&c. RECEIVED DURING THE MONTH.

Experiments on Febrile Caloricity, (Post Morten Fever,) by Bennet Dowler, M, D., New Orleans.

The Boston Medisal and Surgical Journal-regularly
The Buffalo Medical and Surgical Journal.
The Philadelphia Medical Examiner. August No.
The Southern Medical and Surgical Journal. August No.
The St. Louis Medical and Surgical Journal.
The American Journal of Dental Science (Baltimore). June, Annual Announcement of the Medical Department of the University of the State of New Yurk, 1845-6.

Circular of the Medical Faculty of Harvard University, 1845. Annual Announcement of Jefficson Medical College, 1845. Annual Announcement of the Philadelphia School of Anatomy. Wiley \& Putnam's Literary News-Letter. August, 1845.

NOTICE TO CORRESPONDENTS

Letters have been received since our last issue, with enclosures from Dr. Cartier, (Vandreuil), Dr. Hope, (Belleville), Dr. Jobinstone, (Sherbrooke), Dr. Burritt, (Smith's Falls), Dr. Newell (Durham.)

The Journal toill be forwarded to Dr. Grenicre, (Lotbiniere), Dr. Mi'Mahon, (St. Rose), Dr. Cartier, "(Beauharnois), Dr. Noel. (St. Antoine). Dr. Mewburn, (Danby House, Quecnston); will perceive that his request is complied with.

We are indebted to Dr. Grasset for the interesting napers read brfore the Medico.Chirurgical Society of Toronto. They will receive early attention. Dr. Spier, (Toronto), has our thanke for the valuable packet transmitted.

We are again compelled, unwillingly, to postpone several com. munications. Dr. Bowie's report will, however, certainly receive insertion in the next number; and so also will Dr. Johnston'a very important case of poisoning by Tincture of Opiums in"an infant.

MONTHLY METEOROLOGICAL REGISTER AT MONTREAL-JULY, 1845.

$\begin{gathered} \text { \& } \\ \stackrel{y y}{*} \end{gathered}$	Thermometer.				Barometer.				Winds.			Weatier.		
	7 A.m.	3 г,m.	10 р.му:	Mean.	.	3 р.м.	10 р.м.	Mean.	$7 \mathrm{n} . \mathrm{m}$.	Noon.	6 Р. м.	7 А.м.		
1,	$+58$	$+70$	$+57$	64	30.00	29.96	29.87	29.94						
2 ,	" 59	" 77	" 64	68	29.75	29.75	29.76	29.75	S. S. E	S.	S.E. by E	Fair	Fair	Fair
3;	"63	"72	" 58	675	29.77	29.78	29.80	29.78	S. W.	w. by s.	W. by S.	Rain	Fair	Rain
4	" 60	"74	"60	67	29.84	29.86	29.89	29:86	W.	$\stackrel{\text { by }}{\text { w. }}$		Fair	Fair	Fair
5	" 64.	" 85	" 67	74.5	29.93	29.92	29.90	29.92	W. by S.	W. by s.	W. by S.	Fair	Sh'wrs	Cloud
6,	"68	" 82	" 72	75	29.94	29.90	29.90	29.91	w. by S.	W. S. W.	W.by W.	Fair	Fair	Fair
7,	$" 71$	" 80	" 71	75.5	29.83	29.83	29.82	29.83	W. by N.	W. by N.	W. by N .	Fair	Fair	Fair
8,	" 70	"85	${ }^{4} 62$	77.5	29.84	29.87	29.93	29.88	W.	W. ${ }_{\text {W. }}$	N. by W .	Shower	Fair	Fair
9,	" 60	" 80	" 64	70	30.07	30.07	30.05	30.06	N. W.	N. W.	N.	Fair	Fair	Fair
10,	"65	" 84	" 70	74.5	30.13	29.98	29.90	30.00	W:		W. by N .	Fair	Fair	Fair
I1,	" 73	"92	" 75	82.5	29.89	29.87	29.84	29.87	w.bys.		N. W.	Fair	Fair	Fair
12,	" 78	"82	" 57	80	29.78	29.70	2967	29.72	N. W.	W by S.	W.	Fair	Fair	Fair
13,	" 62	" 76	"60	69	29.75	29.70	29.66	29.70	N. E.		N.E.	Fair	Rain	Thun.
14,	" 60	" 84	" 65	72	29.70	29.70	29.69	${ }_{29}^{29.67}$	N. E.	N.	E.	Fair	Fair	Rain
15.	"70	"86	" 71	78	29.69	29.73	29.80	29.74	N.W.byN.			R. \& T.	Fair	Thun.
16,	"72	"96	" 80	84	29.85	29.79	29.70	29.78	N.	N.	N. W.	Fa	Fair	Fair
17,	${ }^{\prime} 79$	"86	" 72	82.5	29.63	29.61	29.68	29.63	S.W. by S.	W. by	W	Fa	Fair	Fair
18,	"67	" 74	' 59	70.5	29.89	29.94	30.04	29.99	W.W.by ${ }^{\text {W. }}$	W. N. W		Fa	Rain	Fair
19,	" 59	"72	" 62	65.5	30.13	30.11	30.08	30.11	W. N. W.	W. by N.	N.W.byW	Fair	Fair	Fair
20,	" 64	47	" 66	76.5	29.94	29:78	29.73	29.82	S.W.byW.	S. W.	W. by N.	Fa	Fair	Fair
21,	"68	" 86	${ }^{4} 76$	77	29.78	29.73	29.62	29.71	S.W.byW.	S.W.byw.	S.	Fi	Rain	Rain
22,	" 73	${ }^{6} 71$	" 65	72	29.58	29.61	29.67				S.W.byW.	Fai	Fair	Thun.
23,	" 58	476	" 56	67	29.76	29.79	29.85	29.80	$\stackrel{\text { N. W. }}{\text { N. }}$	N. W.	N. W.	R. \& T.	Fair	Cloudy
24,	" 54	"71	" 58	62.5	29.87	29.85	29.84	29.85	N. W.	N. W. W.	N. W.	Rain	Fair	Fair
25,-	" 57	- 376	" 60	66.5	29.80	29.80	29.78	29.78	N.W.	N.W. W.W.	N. W.by w	Fair	Fair	Fair
26,	"64:	4 79	$\because 65$	71.5	29.77	29.75	${ }_{29.72}$	29.75	W.	N.W.byW	N.W.by ${ }_{\text {W }}$	Rain	Rain	Cloudy
27;	"63	"79	"63	71	29.70	29.66	29.64	29.67	N:W.	N.W.byN.	N.W.byN	Fair	Fair	Cloudy
28,	" 62	" 76	" 59	69	29.61	29.63	29.67	29.64	N:N:	N.W.byN.		Fair	Fair	R. \&T,
29,	" 60	" 74	" 61	67	29.68	29.65	29.59	29.64	$\stackrel{\mathrm{N}}{\mathrm{N}}$.	N	N. N.	Fair	Rain	Fair
	" 58	" 75	* 62	665	29.50	29.57	29.69	29.59	N.W.byN.		N. N. W. N. W.	Cloudy	Rain	Rain
31,	" 60	3	* 63	66.5	29.76	29.88	29.96	29.87	N. W.	N. N W. ${ }^{\text {When }}$	N. W. N. W.	Rain Rain	Fair	Fair

Thermometer, $\left\{\begin{array}{l}\text { Maximum Temperature, } 960 \text { on the } 16 \text { th } \\ \text { Minimum }\end{array}\right.$ Mean of the Month, $71 \circ 8$,
 Biroseter, $\left\{\begin{array}{l}\text { Maximum, } 30.13 \text { Inches on the 10th \& 19th. } \\ \text { Minimum, } 29.50 \text { 4...6 30th. }\end{array}\right.$ Mean of Month. 29.803 Inches.

OBSERVATIONS METEOROLOGIQUES POUR LA HAUTE VILLE DE QUEBEC,-JUIN, 1845.

	Thermometre.			Barometre à 60°, \mathbf{F}			Vents.			Etat du Ciel.		
	6h.A.m.	Did.	6h.p.s.	6haind	I.	6h.r.m.	6h. A.ar.	D.	${ }^{6 \text { h. p.s. }}$	6h.a.m.	Midr.	6 th P.M.
	65	75	75	30,072	29,971	29,870						
2	61,75	81.	78	29,893	29,838	29,826	S 0	S S	$\begin{array}{ll}S & 0 \\ S & 0\end{array}$	beau nuages	beau	beau
3	74	89	83	29,894	29,815	29,979	S 0	S 0	S 0	$\begin{aligned} & \text { nuages } \\ & \text { beau } \end{aligned}$	beau beau	courert
4	72	83	79	29;811	29,805	29;760	S 0	S 0	$\stackrel{1}{5} 0$	beau	beau bcau	boau
5	63		-55,5	29,663		29,723	N. E		$\mathrm{N} \cdot \mathrm{O}$	bea		
6	56	59		29,807	29,765		S 0	N 0		cau	quelq. nuages	uages
8	59	${ }^{67}$	65.5	29;991	29,956	29,774	$\mathrm{S}^{\circ} \mathrm{O}$	S 0	S 0	u	nuages	beau
	55	73	75	29,857	29,768	29,559	S 0	S 0	S 0	couvert	couvert	beau
10	73 72	83	79	29,540	29;519	29,529	S°	S 0	S 0	nuages	nuages	nuages
11			76 64,5	29,798	29,806 29,828	29,781	S 0	$\stackrel{\mathrm{S}}{\mathbf{N}}$	${ }^{5} \mathrm{O}$	beau	nuages	quelq. nuages:
12	52,5		56.	29,777	2,828	29,463	N E		N N E		nuages	beau
13	65	76	69,5	29,430	29,451	29,571	S 0	S 0	S 0			pluie
14.	60	61,5	58	29,680	29,727	29,723	N	N E	S 0	couvert	uel	nuages
15	63		64	30,007		29,940	SO	S. 0	S. 0	nuages	pluie nuages	nuages convert
16	52.	60	63	29,7571	29,776	29,766.	N E	N. E	S 0	pleic.	couvert	couvert
77	54,5	61	55	129,649	29,616	29,728	S 0	S 0:	S 0	pluie	nuagés	couvert nuares
18	\%68		\% 69	29,975	-29,973	29,948	S O	S: ${ }^{\text {S }}$	S	bcau	\|nuages	
20	62	78,5	-74	29,007	29,906	29,747.	S 0	S	S \mathbf{S} \mathbf{S}	nuages. nuages		beau
21		67	62	29,608	29,744	29,754	$N^{*} E$	N 0	S. 0	couvert		nuages.
22	57	68	66	29,856	29,800	29,716,	$\mathrm{S}^{1} \mathrm{O}$	${ }^{\mathbf{S}} \mathrm{S} 0$	${ }^{5} \mathrm{~S} .0$	beau	$\left.\right\|_{\text {quelq. }} ^{\text {nuages }}$	nuages: Le
23	58,5	78,5	69	29,679	29,592	29,54it	TS O	S^{2}	S O	nuages	couvert	beatu beatai
24	63,75	72	65,5	29;523	29,461	29,482	So	$\mathrm{S}^{\mathrm{S}} \mathrm{O}$	S 0	nuages	nuages	beatu
25	50,5.	64	58	29,675	29;627	29,6973 ${ }^{\text {a }}$	S O	$\mathrm{N} \mathrm{O}^{\text {' }}$	S 0	.couvert	couvert	beau
26	61	68	67,5	29;727.	29,678	29,658	\% ${ }^{5} 0$	N°	N.O	beau		nuages:
27.	59.5	61	-61,5	29,715	29,776	29,763	N O	$\mathrm{N}^{0} \mathrm{O}$	NO	couvert	nuasea	nuages
28	50,5	63,5	620	297791	29,756	29,760	$\therefore \mathrm{NO}$	S	N'E.	nuages.	nuages.	
29	60,5 6	62	60,5	29,904.	29,898	29,943	N \mathbf{N}	N- \mathbf{E}^{6}	N E.	nuages*:	nuages:	nuages couvert
	61,5	66		30,089	30,011	29,961	NE.	N E	N E	beau.		nuages

[^0]: *'On the 28 h of Pebruary, Ann Pendry was known to heabout ten minutes in the water-closet.: From appearing in a ${ }^{3}$ eably stato on her return, and being seen to wipe her hands in her appon the suspicions of Mr. Wupsholt were excited;' (the girl" baving previously been sugpected of being enceinte, , and he immediately wevt to the watef-closet, and say something darly lying in ths

[^1]: Moil; on moving it with a stick he found it was the head of an infant. The gint, sn a surgeon and her mother arriving, at once declared, that while sitting on the seat of the watcr.closet, the pains ceme on so suddenly that she was unable to get off."
 "Plue surgeon deposed, that on visiting her she appeared to have lost a good deal of blond ; that the internal organs of the infint were healthy; that air had entered the lungs, although not to their full extent; and that the child had been horn alive'; that under the scalp, over one of the parictal bonce, was effused half a drachm of blood, and in the bone a fracture, (a fissure?) Which might have been two or three inches in length; that there was no indentation, no depression, and that the brain and its membranes were uninjured ; that there were no marksof violence *acept at the umbilical cord, which was broken an inch and a naliffom the belly. The pargcon-could not depose as to the cause of death."
 In the first place, it was the girls, fourth illegitimate child, and therefore, as she was "used to it,", the deed conld not be promp. ted by those feelings of shame which might actuate a more unblemished, character. This must be particularly recollected as the 6irs great incentive to infanticide.

[^2]: * Now, although Gibson "attributed the cause of his disease to have originated in the introduction of his arm into the rectum of a bull labouring under dysentery," zon sequitar that such was the cause, as he afterioards assisted in skinning the animal. I am not aware that charbon "ever occurred from "raking" an animal; (as it is vulgarly termed, even where the death of the animal has followed. It is the custom of butchers and others, in skinning dead anmals; after having removed a portion of the hide,

[^3]: to use the bare elbow to tear away the remainder from the cellid lar membrane. In the case of Gibson, the first pustule was ob.; served "about three inches below the bend of the elbow, on tho anterier part of the fore-arm. On enquiry l doubt not it will ipp pear that he had used the modus operandi I have just described, and that the part where the first pustule appeared, was the one most cxposed to the action of the virus.

[^4]: A remarkable instance of this tenuity of strataoccurs a hundred miles to the South West of this, about four miles to the West of Stanstead. There a regular stratum of granite, of httle more than y,yardin thickness, comes distinctly into view; the very same stratum, I think is crossed at. Montpellier in Vermont. where it has thirty times the thickness. In both localities the stone is much used for building, and it must therefore at both be well nnown. This circumstance leads me to instance it, and also, that. grante distinctly stratified, and conformable with other rocks, is a yery singular phenomenon.

[^5]: - This may be seen in the very excellent geological section of the Province, executed bo the late Mr. Roy, and which some years since was in the office of the Surveyor-Gcneral, where, I presume, it still remains.

[^6]: * The nature of the fish we have in the upper lakes, comes in, I may observe, as an auxiliary to the settioment of any question or this sort. If it be the fact, as is I think most likely, that there was an original great inland sult Jake changed into fresh water by degrees, then we may suppose the mhabitants of the waters to have boen gradually brought to exdure the change, by corresponding changes in their constitution and habits. I am not sufficient. naturalist to say any thing decided on the subject; only looking at the salmon trout of Lake Huron, and the herring and white fish of the other lakes, such a change seems indicated. It is won-: derful how one departmont of natural history may help another Suppose, for instance, it were decided as altogether probable, that the trout of Lake Ifuron were the result of such a revolution on the waters, then would it be a curious question how these trout: exist on Lake Ontario. Salmon we know visit it from the ocean: To convert, therefore, the salt to the fresh water fish, there must, have at one time been an obstruction in the channel, not now cx: isting. Therefore there must have been a cataract about Quc: bec.-Q.E.D.

[^7]: * On farther fuvestigntion it is found that Cabot's Heat and the Manitouha ind Drummond Islands are conposed of a fimestone which probably orejpies a highter position in the series of deposits, and that the primary refs inf the north-easte:n and northern shores of Lake Hurna will probably mark the boundary of the calcareous formation mentioned in the text.

[^8]: * See the geolngient Map of the Millle and Weetern Stateg; lately pubm lished by James मull, E:q., one of the Statis Gcolosisti of New York,

[^9]: - See Professor:Emmons' State Reports on the Geology of New Yurk. \dagger The thicknesses given in this general description are generally taken from Incalities in the'state of New York where the formations approach Cauade

[^10]: * "Animadvaraumque est exteriorem tunicam a trunco, ramisque perfacile derryh non secus ac se diu in aqua estet macerata."-Morgagni. Epist, An Med, xvif. 28.

 F"The coats of the aorta wore all easily senarable, by the tingers. from each other, and softar and more readily brolen than natural.":Guthrie. P. 44:
 ${ }^{6}{ }^{6}$ The outer coat, with in adhering lamina of the middle, having admiluad of being detached with a facility not much leas than that with which two molatened ploces of paper may bo saperated.".-Henderoon, w=Cormacis Journal. vol. 1f. R. 62s.

