The Institute has attempted to obtain the best original copy avalable for filming. Features of this copy which may be bibliograplically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/ Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Car tes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmèes.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

Price in Canada $\$ 150$ per An. United States - \$200

THE NEW POST OFFICE, MONTREAL.

THE NEW POST OFFJCE, MONTREAL.

This extensive building is beinz erected by tho Dominion Gosemment on the site of the old Banque du Peuple, St. James Street, coner of St. François Xevier Street, and adjoining the Montreal Bank. The toundation was, it will be remombered, laid by the Hon. the Alinister of Public Works. 'The rtructure is to ra"e 120 feet frontige ou St. James Strat, and 32 fert fiontager on St. François Xavier Street, the whole beins built of Montreal grey stone, the inti ralal faces having an air space and brick laning for protection ugainst dampness.

The façade ou St. James Street will have an imposing appearance, the grunn! floor etory beagg in the Doric tyle, and the secoud and third st,ries having full carved Corinthian columne, pilasters and window dr ssings of a rich destgn. In St. Jnmes sthect front there will be au arcade or portico for summer and wintur e tranare, with the latest improvemunts for the conveuience of the public, with letter and paper slides inside and out of the bui ding. The fagale on St. Prançis Davier Strect will be in keeping with St. dames Street front, this façade having Curinthian pilaters, and being finished in every ull.er respe ct similar to the m un frist. The other fronts will be of a plain r character. I'he top cornice for the two principal fonts is of a rich tinish, with ornamemal fa ia with pateras, d'ntal blocks and carved modh lions with panelled and moulded top finish to the roof. Th ruofas well as the towers will be in the fre i.il style, with crescent work lor top finish; the centre or main tower terminating above the Mansard ruof with a comice and creti f work, will have a clok hewing three facts. This clock will have stroll and ornamental fioish. The angle p de-tals above the cornice includiog returns, as alno chi naty stacks, will be highly moulded and tinished with top finials. The mann lucarnes or dormer windows including the circ ilar roof lights, $\&$., will be of a neat style, giving an imposing appearance. The int rtor will be finished in kee ping with the guneral design, and will have the latest and most approved araogements for the public, and the Post-Office officials and employets. There will be strong fire-proof safes for all documents, letter, papers, δc., and hydrants and hose will also be provided in the buidding. 'Ihe bs ement story will be occupied by the ve"spapers and mail-bags department, also keepers' apartments, cual cellars, furnaces, (ic., dr.. The groun I or pribitial Roor, will be ou upied by the l'ost Office department, incluling Post Masters' offices, Assistant Post Master, \&c, \&c. The sccond story will be vecupicil by Pust Office In. spector, and others, leaviog a third story to be laid out hereafter as occasion miy rejuire. The contractors are Messrs. Allord \& Dufort, and the architect is H. M. Perrault, Esq., of this city.

THE MEASUREMENT OF FLOWING WATER.

There is probably no point which has occasioned more dispute and litigation than the coaficting rights of persons entitled to take wates power, in certain proportinns, from a common source, where the demand exceeds the supply. The experiments, conducted by mathematicians and philosophers, have been, many of them, conducted on a small scale, and the results are not regarded as entirely conclusive, as the causes of contraction and other phenomena in a vein of water an iuch in diameter would hardly bear the same proportion to the waters of a river discharged through a sluice. As a consequence, persons having charge of large works have endeavonted to form rulcs based on their own experience Euglish eugineers, on the ir own account, have made many expuiments to determine the difference between the theoretic discbarge (romputed by the laws of gravitation) and the actual dixcharge, as modified by friction, lateral retardation, reaction of adjacent fluid, aud other causes of diminished velocity and volume, and consequently of quantity. The Fuench Guverament also, sume twenty-five years ago, appointed a commission to determin: the question, and clabutate experments on a very extensive seale were made by competeat engineers, and the results of these experiments have brought the question within narrow limits.
lu the "Philusophical Transactions" of the Royal Sociuty of London, we have the folluwing conclusions, which bave been deduced from the experiments just referred to: 1 . That
the quantities discharged in equal times, are as the areas' orifices. 2. That the quantities discharged in equil times inder different heights, are to each other nearly in the compound ratio of the areas of the apertures and of the equare roots of the beights. The heightsare measured f_{1} itho centris of the apertures. The mean result, also, of several experiments, all the openings being formed in brass plates 120 of an inch thick, showing that, for round, triangular, and rectangular holes, the average of the numbers showing the proportion, between the theoretic discharge of the water calculated as a falling body, an ithe actual discharge as measured, was 61, and for the rectangular holes it was 6. It has also been found that the effect of gravity may be represented by 64 feet 4 inches, or $4 \& 3$-that is, the height in feet through which the body ialls, beiag multipued by 643. will give the square of its velocity in tect per second. Fur the actual discharge per second in cubic fect, mulliply the product of the altitude or heal of water in feet, the area of the orifice in square feet, and the tims in seconds, by 643 , then extract the square root, and multiply by 6 . It is found also, that with small orifices the effect of a high head is to contract the vein and to dimmish the discharys, so that the nearer the orifice can be brought to the surface, and yet the water be kept running with a full stream and without causiug any eddy or dopression of the surface, the greater will bs the discharge. But with larger apertures, as, for instance, one with 3 f feet in length by 15 feet in width, or 38 square feet of area, the discharge increases with the increase of head.
As to the discharge of water from open notehes in dams it is found to be equal to $\frac{3}{3}$ of the discharge from an oritice of the same size with a toll stream under the same hedd. The proportion between the theoretic and the achal discharge from the opea notches varies with the depths, the factors used being less with the greater depths. Au Earlish haadbook of tables gives 214 cubic feet per minute as the quantity which would ru, over every foot in width of a regular notch 1 fuot in depth from the water's surface. The amount discharged depends very much on the furm of the notch ir aperture. A plain rectangular notch, cut with square edges in a three inch plank, will discharge viry nuch less than one which has its inner edges bevelled or rounded off in the parabolic form of the cuntracted stream or vein of water. If the ayerture be sinall, the diffireace may amount to a fourth of the whole quantity. Care should alisu be taken to form the wing-walls to sluices with curved or trum, et-shaped approaches, conformed to the natural contraction which may be produced by the overflow or slute way.
'io obtain the quantity which passes through a parallel channel in a given time, the sectional areas should be muttiphed by the mean velocity, the latter element being obtained by adding the velocity of the water at the surface and that at the buttom of the current and dividing the sum by two. As it may not be convenient, in every case, to ascertain the velocity at the bottom, the mean velocity may be determined, with accuracy sufficient for practical purposes, by ascertaining the surface velocity in inches per second in the middle of the stream, and the mean velo.ity will be equal to this velocity less the square root of this velocity minus five. If, for example, the surface velocity in the stream is equal to 36 inches per second, the mean velocity will be found by subtractiag 5 from 36 , leaving 31, then extracting the square root of 31 , which is 55 , and subtractiay this last figure from 36, giving 305 inches per secoud ior the m an velocity: Multiplying this number by 60 and dividing by 12 , or, which is the same thing, multaplyng it by 5, will give the velocity in feet per minute. In the case just supposed the velocity per minute will be 152 J fect. If, then, the water course be 4 feet wide and 2 feet decp, the amount of wa'er discharged per minute would b, 1525×8 or 1,220 cubic feet.

When the overfall is a thin plate, it will discharg: a greater proportionate quantity when the stream is only ne inch deep than with greater depths. When the overfall is oi two inch plank, the flow of water is more retarded, a greater he is requisite, and the maximum diseharge is given by a hed of seven inches. When the length of the overflow pank is ten tect, the coefficient is greater with a depth of five inches, and when wing boards are added, causing the stream to converge toward the overfall at an angle of 64°, the coefficient to
greater even when the head is less, shoving the utility of proper wing walls on sluices.

To determine the height of the waterfall in a ronning stream a small temporary dam, unless one exists, must be made, so as to secure s still surface. Take two poles sufficiently long to reach from the bottom of the water to the required lino level. Make a plain mark or notch on both sticks, at a dis. tance from the upprr end equal to the distance of the intend. ed line level above the water, marking that distance in feet and inches. Push the noles down through the water into the earth at the bottom until the notches are both at the level surface of the water, care being taken to have the poles plumb and at a convenient distunce apart. Sight across the tops of these two, and set as many more as may be desired to run the line of level to the desired point, and the tops, being ranged accurately by the first two, will show a water level so many feet above that of the water. It is estimated that this is a more accurate way than the use of the ordinary spirit Ievel.-Boston Lamber Trude.

CURIOT'S STORY OF A QUICKSILVER FIND.

The Californ'a Borax Company once had a good business in borix and sulphur, but the competition of other and more available fields gradually drove them out of the business, and for the past five or six years the California Borax Company has rested from its labours at Borax Lake. It has preserved its organisrtions an I its property, and yet was held at little worth by stockholders beyond the value of the real estat- and the privileges owned by the company. During the renewed search for qui, ksilver, stimulated by the recent advances in the pric. ot the urticle, the lucky thought struck some one to assay the dark porous, coke-looking rock which covered much of the grquad of the Calilornia Borax Company. The result of that frest assay was so encouraging that other samples were assayed, with still more gratifying results.

The facts were made known confidentially only to seven capitalists and frie $J d$, who made the Califorais Borax Compary an offer fer therr entire property. During the negotiations nothing was dropped which could put the Borax Company on its guard. On their side they had what they once belleved astounding wealth in boiax and sulphur, but these dreams of perpetual dividends had been diesipated for years, and an offir equivalent to 10 dollars a share for the stock all round stemed a very good chance of washing their liands of an unproductive property.

The sale was completed to the entire satisfaction of the vendors; but no sooner was it concluded than they learned that they had sold for a mere song what is believed to be the richest and most promising quicksilver mine in the world. It is needless to say there was much discatisfaction on one side and corresponding elation on the other. Those who were out thought that the "ins" should have given them a show, and the "ins" said that the Borax Company should have infurmed themselves of what their properiy was worth-the old company could not expect the lucky finders of the treasure to go to the directors and say: "Gentlemen, you have quickeilver at Borax Lak', and are neglecting a fortune." To make the matter mor vexatious, some of the Borax Company have been intimately connected with quichoilver mining, and ought to have made the discovery themselves, but do not appear to have given it a thought. Yet, where there were large quantities of borax, of sulphur, of soda, soda springs, and medicated waters, was not the unlikeliest spot in California to look for cinnabar.

The sulphur banks are found to contain, by assay, forty, fifty, and in some cases sixty per cent. of the valuable liquid metal. The assays of ore, taken almost promiscuously from clunks of the material of which these banks are composed, yield more than the selected ores of the New Almaden ever did even in its best dass. Add to this, that the prices which now rule in the quicksilver market are double, or more than double, what the New Almbuen got for its production when a little of its stock wes a small fortane. Two car loads of this sulphurcus ore have been brought to San Francisco, and will shortly be reduced, which will solve the last problem. Can the ore be easily reduced, or is it rebellious? The assoyers and analysts say, that from the facility with which it asssys, so far from being rebellious, it will, in their judgment, prove as easy to work for quicksilver as it is for sulphur. The new owners are in high spirits, and will, as soon as they have satisfied themselves with the preliminary experiments, erect
first class reduction works, furnaces, etc., and go into the business on the largest scalc.

The prospect of a large increase in the prodnction of quicksilver is good news for miners, especially Americinn miners, for unless new and important discoveries had been made, either the busiuces of silver mining must stop at its present dimits, or the price advance to that point which would prevent all milling of low grade ores. This question of quicksilver for the future, says the Post of San Francisco, is one that has harrassed the miners for years, and during tho past f:w montlas the sulvance in price lias made it sasume tho most formidable proportions. L'he question of who is the sellerand who the buyer is secondary. The fact that hundreds or thousands of tons of ore yielding from furty to sixty per cent of metal are lying in loose banks in Lake county, ready for shipment to ary reduction works that can resolve them into a merchantable article, is the important fact. New Almoden only produced 11,042 flasks in 1873, and New Idria nud the Redington 11,708 flasks between them. All the other quickgilver mines in the State, including Cerro Bunito, San I, uis Obispo county, which produces ahout fifty flasks per week, do not produce over 500 fiasks per moath. I'he New Almaden yielded, in 1865, with forty-seven per cent, ore insteal of five per cent., which it is now working on 47,194 tlasks. If the Borax Lake answers to its present promises it will, When fully developed, and the requisite works erected, yicld 100,000 flasks a year, and be a far mote valuable property than all the present quicksilver mines in the world.

The area of the Burax Cumpans's estate, which it has now parted with, is 4000 acres, well wooded, finely watered, and with nine miles of frentage on the lake. There are many buildings on the ground, but most of them have gone to wreck for want of occupation. 'The site is very beautiful for residences, hotels, and sanitaria, and when the mining business makes ample returna, there is no doult tho company will build up a town that, while profiting by the busiaess of the mines, will become a pleasant aud fashonable resort.

It may be remenbered that some years ago the American baby jumper att acted considerable attention in liagland, becoming rather popular with many people; but one aiter another of those worthy gentlemen whom one does not like. to have to see professionally, but to whom one fites in sicsness, pronounced against it, and its popularity fled. A few weeks ago, however, Alrs. Catherine T'ardy, of "aterson, New Jersey, applied for a patent fur what she calla an "improved baby-exercising corset." Her account of the invention is thus worded :- 'lisis is a device which will enable mothers, nurses, aud others having the care of childeen to let thein exercise ',y moviug their limbs without crecping about the floor. It consists of an improved baby-exercising corset formed of two parts, connected in front by a cord or lace, and in the rear by cords, straps, or ribbons, and provided with long loops at their upper edges. The long loops enable the attendant to support the child while standing in an erect positiou." Of course, lize all inventors, Mrs. 'Lardy hopes to make a little fortune out of her device; but from what we know of the medical profession, thourh lazy nut ees may approve of the corset, the gentlemen of the pill and draught will ignore the nurses, and try to protect the rising generation from compressed lungs and bandy legs.

Br a series of experiments Mr. Robert Hunt has succeeded in proving that heat does not continue increasing in proportion to depth. Down to 100 fathoms at certainly does so, to the extent of 1 deg. for every 50 ft . But in the second 100 this falls to 1 deg. in 70 ft .; and in the third to 1 deg. in 85 ft . It follows that since great depths do nat necussarily involve excessively high temperature, coal working can be carried on below the level previously considered possible. This is practically proved at Charleroi, in Belgium, where coals are won without any difficulty at the stupenduus depth of 4000 ft ., or about three quarturs of a mile. By including the quantity remaining in our coal fields down to that level, the supply would probably be sufficient to last for another 1000 years, even at thes present rate of consumption. But it is quite possible that before long considerable saving will result from more economical methods of burning fuel. Tne quantity of coals required to produce a ton of pig iron fell to 51 cwt . in 1872 from 60 cwt. in $1871 \rightarrow$ hich implied a saving of 9 cpt . perton on a total production of nearly seven millon tons.

STEEL PEN MAKING.

The manufacture of this most useful articlo is quite modern. No rescarch has yet discovered that any of the nations of antiquity ha I anticipated Birmiogham in making the discovery of how to cunvert a piece of stee! into a pen as flexible and freo in action as one made of the feather plucked from the wing of a gooso The ancient stylus was doubtless made of metal, but this was a fur uifferent instrument from the steel pen of to-day. The stecl ped, is as it were, a thing of yosterday. A few years cover its introduction and its history, its rudimentary atage, up to its present state of comparative perfection. It was in Birmingham that it first became known, and this town is at the present time the great seat of its manufacture. It is, in fact, a specially Birmingham industry. In an introductory articlo, wo gavo the brief history of its invention and introduction, and we now propose to explain the method of its prodaction. For this purpose we select the well-known works of Blessrs. Hinks and Wells, of Buclingham Street, and with our readers' permission, will act as cicerone, alld describe for them the many processes through which this usefnl and extraordinary cheap article has to pars before it is fit for the market.

The works of Messrs. Hincks and Wells are large and commodious, and occupy the four sides of an irregular quadrarizlo, with a splendid frontage to the street. We first enter a shed on the ground, in which we find a large quantity of steel sheets, some 18 inches broa 1, and 6 feet long. This is the best kind of Sheflield steel, and comes from the famons house of Jessop. The first process is to cut this into slips of the required width, varying from 17 to $4 f$ inches, according to the length of pen to be rade from it. This was formerly done by hand-sheare, of the ordinary kind, and exactitude could not be relud on. But Mr. Hincks soon discovered a method of acquiring this, and provided a shears by which it has been secured. He has since adapted this invention so as to be worked by steam, and now the cutting is carried on with equal rapidity and certannty. In the power-worktd shears a provision is made by which any accident to the cutter is rendered imporsible. At fromt of the she ars is placeda s'ighily raised metal bar which which prevents the workman from pushing the sheet of steel under the cutter so near the edge as to endanger his fingers. No workman has had a finger cut since the introduction of this machinc. The strips thus cet are placed in boxes of cast metal, and then put into a "mofle," in which white heat is prod ced, and the slips are thereby pruperly annealed. It takes about twelve hours to effect this. The slips are next put into r volsing barrels, and, by being rapidly turned round, are denuded of sall superfluous matter, as the scales produced by anncaling and any rough edges left by the shears. From this operation they are taken to the rolling room. This is the usual process of metal rolling. Each machine is managed by a man and a biy. The strip of stecl is passed under metal cyli, ders, which revolve on each other, and the strip comes out much thinner and much longer each time it passes under ths rollerp. We attempted to take up one of these strips after it had passed through a machine, but were glad to let it drop again, or we should have burnt our fingers, although it was was quite cold when it was put in lach strip passes through eeveral diffrently graduated rollers until the metal is of the precise thickness, or rather thinness required. Some of these 18-inch st-ips are rolled out until their length has increased to nearly 6 feit. We give an illustration of this process.
The rolled out strip is then taken to the "cutting-out room." This work i, done by women who sil before benches on which are placed the cutting-out presses. The strip is passed rapidly under the press, and a bit of flat steel in the shape of the future fen iz at each movement cut out. Two pens are cut ont of the wid' 1 in a sort of uovetail fashion. Some estimate may be formec if the speed with which this work is done from the fact that a . ood worker will cut out 200 gross, or 48,800 pens a day. But 'ven this speed is not s'fficient for the increased demand, and Mr. Hiacks has invented and introduced a machine, which is worked by steare, by which the number of pens cut out at once is duubled, and the speed considerably more than doubled. It is pleasant to wutch the quickness and accuracy with which this most obedient "slave of the pen" works cut the intention of his masters. The bits of fat metal thus produced arc called "blanks," and are next taken to the piercing-room. Here, again, women are the workers, and hand-presses the machines used. Each "blank" is separately placed on a steel die under the press, and by the nspal half.
circular pull the tool is pressed into the "blanks," and the side slits and the centre, which give flexibility to the pen, are cut at one and the same stioke.
At this stage the very niture of the stecl has to undergo a change. It is now soft, and capable of beinr bent into any shape. Before the next operation of bringing it nearor to a real pen can be perffrmed, it must however be made softer, and its presont pliancy be considerably increased. It is, therefore, sent to another department, placed in a barning hot oven, and once more annealed. All this the much suffering pen endures with the utmost complacency. As soon as the process of extra eoftening is done, the piercod, flat bits of steel are taken into the "marking room." This process has been well described by the hand of a master. "Proceeding," he says, "with these softened pens to the 'marking room,' the ear of the visitor is aroused by a continuous volley of sharp heavy sounds. An animated scene presents itself. Tpon each side and down the middle of the r jom are arranged a multitu lo of young women at work, each of whom raises a weight by the action of the foot, and daddenly allows it to fall on the pen. The rapidity of this prozess is equal to that of cut blanks, each girl marking many thousands of pens in the day. When it leaves the hand of this operator, the beak of the pen is stamped cither with the name of a retail dealer at home or abroad, a national emblem, a piece of questionable heraldy, or the representation of some notability, foreign or domestic, according to the fashion of the day. The distinctive marks of this manufactory number about 7,000."
Up to this time the future pen is only a flat bit of steel, with side slits, pentre perforation, and mark, stamped upon it. It has next to tako the shaps of a pen. This is called "raising." Each pen is placed in a groove under a hind-press, and a convex tool of the required shape pulled down tharply on it. It is thus firced into the groove, or mould, and comes out in one of the infinite forms in which puns are now made.

Still it is not a writing instrument. There is no slit in it, the nib is one solid bit of stoel. B fore this most important oper. ation can be performed the nature of the metal has once more to be changed. It has to endure annther ordeal of heat. From soft the metal has befure been made softer; it has now to be "hardened," and then to be "tempered " befors it can be sub. mitted to the delicate manipulation of slitting So having been cut, side-slitted, marked, and raised, they are agaia taken to the muffle. Here they are packed in small round jron boses, shat in, thrust into the oven, heated to a white heat, quickly pulled out again, and then plunged into a bath of oil. Whon taken out of this unpleasant place the poor bits of steel are as brittle and fragile as so many bits of glais. You can crumble them up between your fiogers as easily as a Rupert's drop This of courss has to be completely changed, and the pantomime has to undergo another transformation. This foor bit of fagile steel has to be "tempered," malo pliable, lexible, and elasic. So now. atter being thoroughly cleansed of the impurities of the oil bath, a large number are emptied into an iron cyludrical vessel, and placed over a fire. A boy turas it round, and a man standing before the mouth-end of the veisel, stirs the pens when necesary as they arc carried round and round by the motion. This is one of the prettiest actions to watch in the process. You seea perfect transformation taking place under your eyes; for under this action the colourless bits of metal assume many of the tints of the rainbow, and are turaed either a bright bronze or a lovely blue, according to the tint they ate to have when engaged in their mission of peace.

Still they are not ready tor "slititing." They have to be "clcaned" and then "ground." The cleaning process is effected by placing them in lirge tin cans, with a little sawd ust mixed with them, and then turning them round and round by steam Of course the action of the pens on each other, with the help of the sawdust, produces the desired effect This pro. cess is called "scouring." It has now to bs ground. Every steel pen has to be ground before it can be slit. "If," said Mr Hinks, as he showed us this prosess, "you were going to make a quill pen, you would, before you made the slit, scrape it on the back, with your penknife." Grinding does for the steel pen What this scraping does for tha quill. It makes it ready for the "slit." This grinding is done with almost unexampled rapidity. A girl takes up the pen by a pair of nippers, holds it over a smaill revolving wheel, called a "bob" and covered with leather and emery; andalmost before we can see the process it is ground in two ways-one across the bick of the pen, and another from the top to the point. This important part
of the work clone, our pen is at last ready for the process of slitting.

Our illustration will aftord a much more graphic idea of the process than words can give. Although so important in its results, it is one of the easiest and lightest parts of pen making. The utmort aceuracy is repuired, but this is secured by the tools, which are wade with mathe matical precision. The girl at each press has simply to place the pen in thegrocve, to give the press bandle a light pult, the tool duecend , and the pen is dit. Now the pen is complete. After passing through more than a dozen changes in its curious career, it is now a perfect instiument, which will overy the will of the legislator, make permanent the ideal thoughts, and give to the "airy nothinga," as moulded by the imagi ation of the poet, a "local habitation aud a name"-is prepired, in short, to perform its wondrous art in that development and progress of the world which we riphtly name civilisation.

The pens thus finished, as far as their making is concerned, have now only to be sorted, accordiog to th-ir quality, carded, or put in zoxes of a gross each, and then packed and sent to their destinailion through the diff rent parts of the world. It is very rare that pens are carded now ; the favourite and most useful method of packing is in boxes, and a gross is weighed, not counted, and so uniform are they in substance that the number and the weight invariably agare.

We have now given a brief description of the various processes through which every pen has to pass before it reaches the public a veritable stecl pen. It is maivellous that an article which requires such careful preparation can be produced at such exceedingly low prices. It is cstimated that somolhing 1 ke $£ 300 ?$ worth of pens are ma e in Birmingham every week. C'pwards of 4,000 persons are friployed in the trade, and millions of grosses are made in a year.

In the ma ufactory wre are now visiting the utmost care is taken of the health and comfort of the workpeople. The works were specially built for the trade and the kindly forethonght of Mr. Hincks has introduced every modern improvement in the arrangements of his var ous departments. Long before the Factories Acts were passed their most imporiant provisions had been adopted and carried into practical effect. The nitie hours movement was long anticipated, and the hours of labour reduced to that now general number for a working day Tho rooms ane lurge, lofty, and airy, Mr. Hineks baving personally attended to and made provision for the ventilation of cach room. 'Tnis difficult problem has been successfully solves by the introduction of a blow-fan, which is worked by steam. The hot air is by this instrument forced into a large tube at the top of the room, and thence carried outside the building. Thus an even and pleasant temperature is secured. the same provision has been made in the annealing and tempering departments, and in that part of the works, where, in consequence of the materials employed, peculiarly offedsive smells wt re, and still would be, produced but for this pruvision, the air is clear and comparatively pure. In ore case this result has beea efiected af er much thought, trouble, and many exi.eri. ments. In a cort of chimey tack a large blow-fan has been plac d towards the top. The immense action of this fan forces all the bad hot air ont of the shop, a sliding $d_{1} r$ is shat, and the men work in comfore in a departmer.t whic eplete with novious and deleterious cflavia. So great wan the effect form. erly produced uy the acid vapours th their watch cases b :came quite black and the ir watches spoiled by its malign influence. We thought what must have been t'se condition of the mev's lungs when breathing such air. Thanks to this caryful foresight, we, although strangers and not to the mannur born, felt not the slightest anconvenience while remaining in this department. It must also be remembered that an - normous number of young women are enployed in such rooms as those use for cutting out, grin ling, and slitting, and but for this fystern of complete ventilation much injury would be done to their health and well-being. When Lord Napier of Magdala visite I these works the coolnees and purity of atmosphere in these crowded hives struck him as one of the most remarkable succe sses of the proprietor, and elicited his frequent and hearty admiration.-Iron.

The Pembroke Observer says:-Mr. Juhuston has completed his :urvey of the southern sise of the Ottawa, and is now prosecutilg a similar survey on the north side, with a view to ascertaining which is best adapted for the location of the proposed canal.

GUATMARL'S PNEL MATIC TVLEGBAPH.

We illustrate in the engmving on nage 363 n new nystem of pneumatic telegraph, now being introduced into Enghated.

Very little explanation is required to render theconstruction of this very simple and efficient apparatus intellisible. 'I'ne principle involved is that a little belluws is provi'ed, through which a small puff or spurt of air, to use the inventor's worde, may be sent throngh a pipe. At the end of the pipe is fixed a small elastic bag of india-rabber, very thin; this brgis lightly compreseed between two plates by asmall spring, when the bellows aro closed the little bay is distended and forces the dises apait. One of the discs is cupported or a lever, which either canses a hammer to s'rike abell, or a emall escapement lever moves, which at each motion pustios a wheel over one tooth, and thereby advances a hand one letter on a dial. The result is that for every stroke of the iitic bellows the hand moves fr m one litter to another, and thusa message can easily be fpelt out. An ingenious key or cock is used, which answers the purpose of a telegraph shunt.

Fig. 1 shows a small domestic apparatus constructed for houses and distarees in general not rxceeding 175 yards, it must be attached to the wall or partition by means of the screws X . It contains no clockwork, and the key B has four movements; two to th right to work the bell, i.e., one to give a signal and one to rcceive it, and at the same tim ' to place tho hand of the dial on the cross, and two to the left i.e., one to send a message and one to receive it. The ordmary position of the turning key B is always on the point d of the plate bearing the inscription receiving bell. The person who is going to send a message has first to place B of has instrument on the point c of the plate bearing the inscruption transmitting bell, then by m ving the handle 0 of the bellows from the right to the left, he sends a cirrent of air throush the conducting tube in o the instrument in connection "ith his own and makes the bell of the former ring. Then he his to place the turning key B at once on the point d of the plate bearing the inscription receiving bell, and by the riogiag of his own bell he will be informed that his correspomient is ceady to recetve the mespage.

Fig 2 shows the interior of the cluckwork intrument, c is the bellows and c the handle working them. The mechathaso fur receiving signals consists of the branch tube m, terminating in an enlarged head, over which a very thin membrine or diaphragm x of shect india-rubber is stretched. Thes membra ie cloess the end of the tube m and becomes inflated, each time the air in tube l is compressed (tubes l and m being in communication) by the operatur workng the bellows of the instrument at the dist ent station. The movements of the dispbragmar" transmitted by means of at rod n terminatinir at one end in a dise bearing against the diaphragm x, and abutting at the other extremity aranst the projection of the anchor escapement, wherely the latter is actuated and the needle is rotated step by step over the dal. q is a diaphratgm closing the end of tube p; and z is a rod sinatar t, the diaphrigin x and rod n above described. the rod ibeing made to abot against a detent, controllios the arrangenant of alarum or bell-striking mechanism, so that on the detent being rased the mechanism is released and the atarm sound d. The detent is operated (tubes l and p bemy in communication though cock A) by the compression of teair in tube l, produced by the instrument at the other station.

Fig. 3 shows two cluckwork instruments combined. The distance between them may be as much as 400 yards. The arrangement is very similar to that just described, the pheumatic bellows, however, starting and chechmg at tran of wheclwork drivea by a sping or a weight. Ths clockwork assists the effect of the an cousiderably, and makes the movements of thes mechanism more sensitive. Dhe key B has two movernents only i.e., one to the right stuted to give and and to receive the sigena by the bell, and one to the l- it for sendiog and receiviag the message. The normal position of the key B is on the plate bearing the inscription "Bell; the call having been heard and responded to, it is to be turned on the plate bearing the inscription "Telegram." By working the handle C of the bellows, the hands on the dials of both instruments in correspondence are made to move simultancously, thus transmithng the mess.gge.

Fig. 4 shows an adaptation of the system to hutcls. For this purpose the principal apparatus is constructed in suct a manner as so indicate on the table E a given number of cy-

phers or mames, nhich refer to the places with which a correspondence is establisbed It contains a dial instrament without clockwoik, and is connected with the various dial instruments of the correspunding stations by means of conducting tubes. These instaments witheat cluckworl serve ful distances not exceeding 150 barels, by substituting instruntents with clochwork the distance natay be increased to 400 gards Accordiog to uur drawags, twelve stations, Nu. 1 to l.j, an be connected with the head oftice, and each of these stations can semd messages to and receise same from the latter. The bell of the pmeipal matrument berves to call the attentert of the attewdant at the had ullue, and whilst it is ringin ${ }_{6}$ the number or mame of the station drom which the call was issued, appeas in the blank sutare of the indicater E . The key H serves to mahe the number disappear agan if the correspon dence has ceme to an end, and reopens at the same time the communication of the bell D. In case no correspondence is carried on, the position of the hey F is on Nu. 6 on the plate G. As soon a a call by the bell has been received, the key F has to be turned on to the number corresponding with the one which appeared in the indicating table E, thus the communcation between the dial motrument of the head oflice and the station whence the call issuc d is established. 'Phe first correspondence having come to an end the attendant at the head cltice has to turn the key F on to the number referring to the next siation having called, and by working the handle (of his instrument indicates to the same that he is ready to receive the message. In order to prevent the hand of bis dal moving whilst this signal ats tamsmatted, he has to press the knob 13 .

Fig. 5 shows an mgemous adaptation of the system to the ordmary recordug or printing telegraph instrument It contains clockwork wheh must be wound up by means of the key J. The clockwork serves to put the bell in motion to call the attention of the attendant and to draw the strip of paper on wheh the figures art printed. The lever 8 serves to give the sirnal of call to the opposite side on transmitting a messige, and in order to send the message itself. The despateh is transmitted by hgures ace rding to the Mcrse alphabet. The lines and dots composing this alphabet are produced by pressing the liver B, and by keeping it duwn a londer or shorter apace of thme ; for instance, a short pressure produces a dot and a prodonged one prints a lioe. In order to obtan an exact division and print of the various figures some practice is of course nectsmay liy pressing the knob of the lever B, jets of air are sent through the tube L into the receivang appara. tus. atring thus the lever C to act. A pressur of the strip of paper aganst the printing wheed H causes the whed E , wet withatoc pombins Han , to produce the desired tigures. In order to set in motion the clockwork, which serves to unroll the strip of paper, the hand:e k must be turned to the right. The hey D must be placed on Transmitting or Hecelving, according to the me an 3 , ze., if one is to be sent or recerved. The normal position of this key, when the instruments are not in use, is aluays on liecerving.

We may add in con luston that we have seen these instruments at work and that they appear to us to fulfil the anticipations of the inventor. They are really ingenions and well thought out. The Alexandra Palace is to lee fitted, we understaud, with a complete set fur communcation with the stables, a divance of 780 yards. Mr. Guattari is a gentleman who las devoted many years to the study of pheumatic telegraphy, and we venture to think that he has achaced a fair success.-The Engıneer.

PECULIARITIES IN' THE MANUFACTURE OF SEWING MACHINES.

At a gathering of the employen of the Howe Scriog Machne Company held recently in Glargow, Mr. F. M. Tower (one of the directore) wave an mutresting description of the process of manufature. After some remake on other mathines, he eard the Huwe Company had always stiven to manufacture every component part themselves, from the wood-work in the table, and the cartiogs from the foundry, down through all the great vaitel of pieces to the m bt minuto screw pin, or Fasher. In the ondinary machinc " family use th. re were abuut budibunct pieses, cxclusivec sle or stand on which it nas worked, and which compaised about thisty more. There were duplications of many of these which would bring the
whole number rer, ired for the machine actually in sewing order up to about 160 , or all complete with the stand, close upon 200. Uf these 130 distinct pitces twolve only were plain irun castings from the fundry, requiring, howeve r, very numerul, cuttings aud thapings before they were ready to take the 1 , place. Forty pieces more were screws, all varying in sbape an ! size, according tu the duty they were to peiform. Theirma. nufacture was a most curious and important part of their worl, accomplished by means of special touls, not known, ixcept it one other lindred establishment, to exist on thi, side of the: Atlantic. Alout forty more pieces were punchings from - hect metal, either brass or steel, viry many of them aterwahls pressed into peculiar shapes, and rectiving more or less ma. chinery to suit them to lie purpose. About two dozen mure pieces consisted of pins, a part of which, under the technital name of studs, formed the bearings of rotation in the sewing machine, for wheels and levers were a'so among the mont difficult and most interesting purtion of their work, requirite: alsc special tools kuown only to themselves and one or two tablishments in Furope. About a dozen stamped forgiagr, roquiring also the importation of special stamping mathine's fir their manufacture, went through a great variety of operatiuns before they were fitted to join with the other parts in makios the whole machine The weight of the machine in ordiaary family use, without the stai d, was $18 \mathrm{li} .$, of which 14 lb . was taken upl by the foundry castings alone-twelve in numberleaving, therefore, the remaining 4 lb . to $: 48$ different piects of metal These were all manuf ctured within the walls of the company's works, in lots of $10,000,25,001$, or 50,000 at a time, by means and appliances which enabled them to tura thim out far better and far cheaper than they conld order them elstwhere, the quantity required by their business being such as to justify their obtaining plant and implements necessary is the nauufactur. In some smaller itecs the consumpion lat been known to reach 30,000 or 40,000 per week in the mother establishment in America, and in needles far more than that.

Of the 130 distinct pieces comprising the machine itself, they enumerated 915 separate operations to complete thein for the hands of the iuspector before they whre put torether in the furm of a complete machine. The whole system of gausing their work when finished, so that all the parts of a kiad mosht be interchangeabie, and the difterent parts might go togethr when t.sen at randum without special fitting by haud, wasanother very marked listinction in the ir system of manufactura Much more so was the plan, yervading their whole establi h. ment, of gaugiog the wotk itself while in operation, and all the very expensive ajparatus, not only for refuring machaur; and steam power to do ar much as possible of the worl., hut for confining the application of power in eachinstance, sol last the work should always be done at the same sp tand distare with all exactness possible. It was this beyond all desput. which distinguished thelr manufactare from any other, and which had been carried furthe r in the manufacture of th Howe machinc than in any other adortiy whatevor. Mr Juner alow pointed out that anolher advantage of their syat masthat it cosabled them to empioy unskilied labour throughwat thin cstab ishment Steadiness and fidelity quickly ewable I the wh. skilled labour with smaller outlay of manual ifiort and berveto earn far better picce-work wages than the shilled worhma, under the regulations of bis guild or the custerms of las trate. If the invenion of the sewing machine was a boon to the prople, the manner of making it as there carried out vats a sull greater one, and if it could be transferred to the manotacture of other thiogs would most assuredly make itself feit as sw!. The capacity of the machinery now placed in the large woths of the comprany in the east end of Glaggow, was stated twit the production of from 200 to 250 machioes per day.

COMMONS

There are a good many more vaults betrixt the fou dations of the Houses of Parliament and the fioor if the Hom of Com uons than is dreamt of by honourable memb r, Without a guide it is of no use leliberately trying to fin 1 the buler ruom. But if he is wot looking for it, he may pe adventure come anexpectedly upon it at the end of one of the passag-s There aro bere four cinormous boilers, ca able of sulplying steam for engines of the aggregate of 480 horse power it present, there being no need of artifical heat in the (hambers,
only one boiler is in use, its fuctiuns being confined to the culinary department, and to the supply of power to the small engilue that works the new ventilating apparatus ithis later is planted i_{i} chamber adjoinine the great vault that underlies the octagon hall of the Hounes of Parliament It is through this vault that the supply of air for the House of Lummons is uririnally drawn. 'lhrough duors and windows opening on to the sunthera spuate the balmy breeze of the Thames thats, and rushes across the hall towards a chamber on the lath ha d side. Here it s faced by a broad spray of constantly falling wates, through which it must pass before entering the chamber, atd with which it leaves all possible particles of undesirable du-t. Inside the hamber there is uuthing on view more striking than a conjile of shafts, which, worked noiselessly by a puir of large wheels, worh buckwards and forwards into something which, if appearances were not drceptive, might be a corn bin. 'This hin is a chamber eight fret high, and extends the full breadth of the vault, a distance of thirteen fect. It is composed of a series of bands on rails of wood, with india \cdot,uber flays falling down from each, and when shat cluse fittime inside the bands. As the shaft is driven forward it will be ubserved that the flaps violently fluter inward, as if a strong wind were b owing against them, and as the shaft returns they close firmly against the wooden mils At the other side of the chamber there is a precisely similar motion, the fresh arr from the spray-guarded entiance from the central vault running round hither by a short gallory, and rushing in through the flutteriug flaps as the shafto are withdrawn This mution comprebends the prime s. cret of the ventilation of the House of Commons. Inside the bin is a tort of moverable but clost fitting door or shuttet, nhach travels bathards and forwards as the shafts drive it. As they pluth it forward the air in the bin, haviog no other means of escape, passes upwad through a pan.l into another bin prepared for its reception 1 hs: closely-fitting shuter advancing, of course leaves a vacuum behind it, into which the outer air comes rushing through the fluttering flaps, ju-t in time to find itself driven $u p$ by the return of the relentless shutter. And s'all night long whilst toncues are wagging above tho almost si'ent shutter moves backwardsand forwards crushing out the air on one eide only to find that a fresh supply has entered by the treacherous flaps, on the other, and corstantly discovering that if the bin is to be emptaed of nir there is yet anotler journey to be made. The air thets dexterously trapped is breathed out from the upper bin into a ga!lery, along which it passes tall it finds itself righ! underneath the House of Comm.ns. I birty feet above the lights of the house shine, twinkling through the close iron grating of the floor, and down throtgh the orveral iron galleries which cross the great space. It in very sjent down here, and we can hear quite distenctly the voice of Mr. Synan, who is apparentIy demanding justice for the Irish National School Teacher, a class which we ga her is expected to exist on a pittance equal to that on whica a well-known Irich sillage pastor was beld to be passing rich. "(inly £ 40 a year," says Mr. Synan's voice, which at llis distance is sit gularly soft. "What can you expect for tio a year?" (limbing up a series of steep tron ladiders we come upon the several galleries, and find in each pieces of ice laid on wits of stick. By these the air passing cools itself, and so enters the House of Commons through the grating whi hextends weross the breadth of the floor and follows the track of all the gangrays, but is so cunningly hidden by a matting of twine ihat the casual fasser by would nuer guess that it was there. This is how the frest airget into the Hounc. How the vitiated atmosphere gets out is a simpler process, and may be de cribed in fewer words. Along the edge of the cenling are panels which open upon a space between it and the ronf. The used-up air rushes up and through these panels as the spaiks fly upwards, and, conducted ly flues downward to the basement, is delivered in a gallery which ends in a sbast that opens up to the Clock Tower, a height of 230 feet. Here on an open hearth a great fire bnghtly buras, and drawing to the are that fills the gallery, bears it up the shaft and so into tue ufiaity of space.

It is said tho laying of iron upon the Grand Junction Railmay, will commence at Bellevill. in June. The old Atasonic Music Hall, purcbased last scavon fur a passenger station is luing fitted up ss such, and therv is irumise of its completion in about six weeks.

TIIE NEW゙ UPERA HUUSE, MAMSS.

Uur iltuatation on page s6u represents a vaew of the side entrance to the new Graid Upera livise of laris. L pon this remarkable buhhug, on which more than a million of pounds sterling has alsuady been spent, munters, sualptors, metal woikers, mosaticists, artsists in fact of all kimds, have evhousted their skill, and avother munumeat if added to l'aris to asbist in attracting to it travellers of all nations. The grand stancase or l'escalier dhonnear, now treed ol its scafloliding and finished, with he exception of sume hose patutites by Mr. Pals, which will fill four cumpartments of the valted calinz, has cextorted admiration from all b! its coltelent manablicance, and the Eey-note thas struck is maninane 1 throughout the work. The nu nber of seats pruvided is but 2,192 , but every spectator, in respect of spate comfurt, elegauce, and calases of deltioht, is treated inke a priuce.

Sult worhs as this, saly the liuliter, to whin journal we are indebted for our illustration, of cuurse withan certain wide limits, are wise aud prohitablo investmentsor. the part of a country, stimulating artists, encuraraging the ogress of art, and aftording pleasure to mallions.

WAPER-PRESSITRE ENGINE.
The engine which we illustrate in the engr tving on page 3 tit has been devigned chiefly fur working machinery hitherto driven hy manual labour in t wns and other placen where steam power is either too eaprnaive or prohibited because of its danger and ollar inc nvenit nes The iutroduction of waterwork 4 and conduits with high-pressure water for the domestic suplily of towns has male it derirable to obtain a convenient m tuve power for driving lithographic and printing presses, wood and iron working machifuery, puops for distillery purposef, hoists, and other machinery nut requiring very great power. Messrs Wyss and Stud r pinint out that its application is not limited to tow.r industries, hut that it may be used advanta courly in larger preportions for natural falls of water from twenty metres upwards, at least where the water does not contain pebhles or rough saud It may further be applied for raising and forcing liguds, such as sew age, fur cleaning pits, as tire yumps, or for contractors purposes.

The cylinder of this engine is osellating, deriving its motion in the ordinary way by the crank leing direcily cunnected to the head of the pieto i-rod, and is supported on its trunnions by fixed beari gir ast in one piece, and directly connected with the crank shaft bearings. These two double bearmgs are bolter upon a finndation plate, supporting an ant vessel on its after part. They are further counected by stay*, as shown. The cylinder carries at both right and left sifes flat faces turned and adjustred truly rectangular to the axis of its trunnion. Into these face-oprn the ports of the two water passages contained in the lower part of the cylinder budy communicating at their other ends with the bor. of the yinder. Adjusted truly to them, and so held up as to be ea. but tight against the cylinder taces, are two boses, one at welh side, which receive in the first place the water from the conduits and distribute it by a corra sponding port contained in its face alternately to the two cylinder ports, and consequently fore and aft of the piston. A fly-wheel is provided to overcome the dead points which occur at each end of the stroke. The water which has performed its work is expelled by the returning piston back through its paskage, and caters the above-named boxes through two sepainte ports to the right and lett of the admission yort, "hence it llows though sustable conduits to the drain pipe into the sewer, or other receptacle whence it may be used again The screws are used for the purpose of setting and fixing the valve buxes in their proper positions in reference to the cylinder ports. By means of the set screws they are scruwed shightly up to the vilinder to make a tight joiut between their faces, and still allow of free motion of the cylinder betreen the boxes. If the cugine is used as a otea n or air motor the air vessel is, of course, omilted.

Herr V. A. Burki-7acgler, tupn engineer, Zurich, has carried out a set of experiments with one of these cogines working with a high water pressure, and has otmined extremely high economical resulte, the efficincy of the eugine approaching, according to his figures, as much as 90 per cent.

Mechanics' Magazine.

MONTREAL, MAFCH, 1874.

Illugtrations :New Post Omice, Mont-real 355Manufacture of stcel
pens...
Manufacture of steel355
pens........................359
Manufacture of steel pens 62
Guathat's383
The new npern house,Parls....................... 3366
Water pressure engine
Canatian a\&w-dust furnaces.
so-ton double acionsteam hammerat SirW.Armsirong'skorks 371Patent machinery formaking casks...........Patent machinery tormaking casks :New dumestlc steam
\qquadImproved wind wheeland water elevator... 379Hydraulle is vetting ma-oblne 379Steam plougling en-glne with straw burnlilg appraratus(..... 352
Sudlow's rotary engine 383
Overhead steam cranes 386
Contents:
Tue new Post-Office, Montreal 356
The uneasurement offlowing water..350
Curlous storyofa qulek-sllver find................ 357
Steel pen making........ 35Guattart's pneumatictelegraph361

Pecultarities in the manufacture of sewing machines.....................
The lungs of the Engtish llouse of Commons...... 384
New Brunswick rallway.. 364
The new opera house,
Parls.
385
Water-pressure engine..................... 806 Restoration of burnt steel 368
Chaln-tug, Montreal har buer

308
Nimes of Nova Ficolla...... 368
Transit across Niagara
Hiver...... 3
watent for utilaing waste liquors 300
Uecillations of water in
\qquad
Lake ontario............... 364
Inplex telegraphy............ 368
Canadian saredust furnaces

370
35-ıon strum hammer..... 371
Principles of shop mantputation.

372
Fatent caik-making ma-
chinery 373
Plaresque Jabour and muchinery 3
New domestic s;eam ea-
gine.............................. 377
Hydraalic rivetting ma-
chine........ 3
Wind-wheel and wate: elevator.
news.
. 380
Sclentific news.................. 381
Miscelianeous.................... 381
Steam ploughing englne.. 333
Sudtow's rotary engine..... 384
New steam hammer at
Woolwleh.
....................... 384
Overbend ste.ım cranes.... 385
Coral mines in Cuina.. 385

the restoration of burnt steel.

This subject is just now receiving considerable attention. A correspondent writes to lron as follows:-
"I propose now to explain a simple and efficacions plan of restoring to steel which has once been burnt its usual valuable qualities, and that by the use of a fluid which leaves scarcely anything more to be desired on the score of cheapness and utiltty.
"I have found that resin oil, with which is intimately mised one-fourth (more or less) its weight of the residue of paraffin stille, has this wonderful effect upon burnt steel.
"Chisels which have been burnt and rendered useless may be by means of this fluid restored and made as valuable as ever. 'This fluid, which was many months ago christened ' restitutor chalybis,' may be used as follows:-Burnt steel must be heated red hot, then plunged into the restitntor for a few seconds; then re-heated and cooled in the ordinary, way. The steel after this process is perfectly restored.
"Experience in the use of the restitutor will quickly enablo persons to give any desired temper to their tools, but it may be stated that tools can be made especially hard by heating th -m red hot, dipping into the restitutor, then re-heating to a slightly white heat, and immediately cooling in pure water."

Visitors to the Harbour of Montreal may have noticed a recent addition to the steamboats in the "A.G. Nish." This rather peculias looking boat is the new chain tug. It was built recently by order of the Harbour Commissioners for the purpose of towing vessels up the St. Mary's Current. Previous to the existence of the chain tug much difficulty and expense was incurred by havily laden sailing vessels in reaching the harbour. The new tug, however, seems to work admirably and to be powerful enough to haul up ships that fout ordin. ary tugs could hardly handle. The power is exerted on a subuncrged chain one enci of which is fastened to a wharf above the current. The chain extends along the bed of the channel 7,500 feet to the foot of the current. It is lifted from the bed of the river as the tug advances and pass ng with four turns round a crank in the bow leaves the boat and again reaches the bottom of the river. The engines were plannedand built by Mr. E. E. Gllbert. The total cost of the vessel was but $\$ 25,000$, and the expense of running her is about $\$ 20$ a day. The gain of power by use of the submergeri chain is stated as follows in Engıneering .
"The advantages derived trom the use of a submerged cable when towing against stream, depend on the actual rate of speed, compared with the speed of the current and on the slip of the paddle wheels when such are usel if, for instance, the speed of the strcam is equal to the actual rate of towing while a tug hauling on a submorged cible makes 3 miles in an hour, one working with paddle wheels making i miles in the same time, an 1 the resistance being the eanue, the a aving would be ${ }_{6}^{3}=0.5$. If, however, while towing a heavy load at a rate of 6 miles an hour with padide wheels, the loss through slip equals one-half (and in practice it is often more at low speeds), then the expenditure of power and consequently of coal is as $1: 0.25$. Thus in working on a cable comparatively little power is required, the speed being reduc ed to a minimum, without those losses which attend such re. duction on the usual plan."

Mrnes of Nova Scotia.-The Commissoner of Mines has made his report on the mines of Nova Scotia in the year 15 i .3 . There were twenty-eicht coal-mines in working operation. From these wer- turned out $1,051,467$ tons, of the value of $2,699,347$ dols. The price in the course of a siagle twelvemonth rose from 2 dols. 25 c . (free on board) to 3 dols. 30 c The produce has increased from 673, 242 tons in 1871 to what we have slready mentioned in 1873. The Commissioner calculates that in all probability the output for 1874 will amount to at least $1,250,000$ tons; in all likelhood it will be much larger. The chief consumption was in the home market, but 266,760 tons were exported to the Cuited Sintes. It is curious to notice that while the United States exported in 1873 to the West Indics 47,08 tons of coal, of which 30,363 tons were bituminous, or what is produced in Nova Scotia, the Nova scotians managed to send to the same quarter only 1,538 tons, while Great Britain sent during the previous year to these same West Indies 147,997 tons. The gold mining for the year presents no noticeable feature. The yield has been smaller, and the modes of working tine mines are still so primitive as to cause no surprise at the comparatively unsatisfactury results. The jield was 11,852 o7., valued at 219270 dols, from 17,708 tons of quartz. Iron was produced in small quantities. The two iron works of Acadia and Annapolis were not worked con. tinuously, and between them produced only 1,226 tons of pig metal. The total produce of the mines ot Nora scotia in the year was 3,485 tons, of the value of 10,455 dols.

A Bul has been introduced into the New York Legislature incorporating the Niagara River Transit Company, which proposes to construct a second means of international transit at Buffalo either over or under the Niagara river. Twenty years ago it was estimated that a tunvel would cost $1,000,000$ dols., but that amount would probably have to be doubled or treb. led to-day. I'he Canada Southern and Great Western Rail. roads are intereated in the construction of some means of transit other than the Suspension Bridge, so that the cost of the tunnel, if the scheme is otherwise practicable, need be no obstacle in the way.

Mr. J. Docalas, jun., of Quebec, has just token out a patent in the United Slates for a process of utilising the waste liquors of the ordinary ore-chloridising process, by allowong the insoluble matters contained in the liquors to precipitate, and then evaporsting the clear supernatant liquid to ob. tain the soluble cblorides, which are re-applied in treating fresh ore. In an experiment resent y madu in a inill at weorge Town, Culorado, sfiltered solution of salts, of 12 deg. B tume, coutained 4437 grains of saline matier in an ounce of eolution, the chlorides beipg chit fly chloride of zinc and undecomposed chluide of sodurm. This saline matter, mixed with ore in the proportion of ore part of the salt to cight parts of eightyounce silver ore, chluridised it as perfectly as when one part of chloride of sodium was mixed with te 1 parts of ore. In this mill each pan contains seventy-five gillons of liquor, and thirty-five panfuls of this strong saline solution, or 26.5 g tlons are thrown away daily, and with it 2051 ib . of salts, almost as serviceable for chloridisiug fresh ore as chloride of sodium. This mill is now prepar.ng to evaporate these wiste li juors by means of the waste furnace heat, und the manager thus expects to save, at a trifling cost, moro than half tho salt here. tofore consumed.
"Recent Extraordinary Oscillations of the Watrrs in Lake Uatabio" is the subject of a paper conir buted to the last number of Crookes' Quarlerly Journal of Science by Mr. Richard Edmonds. The phenomena to which he alludes are very noticeable in many places situated on the shores of our great lakes, and many attempts have been made to expasin them, but with no great success. This rise and fall of the level of the water is more readily seen in deep bays along the coast, and is a matter of almost constant occurreuce. A very remarkable instance, however, occurred near Hochester on the 13 th of June, 1872 , and is thus described by the local paners: "While some gentlemen of Rochester were in a boat uear the beach, where the wator is usually two feet deep at least, their boat suddenly grounded, and the waters receding, lett her on a sand bank. The gentlemen got out and strolled away, but looking back sho:tly after, they saw to their surprise the boat dailing about in apparently deep water. Securing the boat with some difficulty, they found her suddenly aground again, and as suddenly fluated after a short interval. Becoming now interested in this curious ebb and tlow of the lake, they diligently observed it for ubout three hours. The ebb and flow occurred every twenty minutes, that is, for ten minutes the water would gradually recede, then commence rising, and continue to rise for about ten minu'es. The woater rose two fe:t and thrce or four tnches above the ordinary level, then rcceded about the same distance below the usthis leveb, making a variation in the height of the water of nearly or quite four and a half feet every tcenty minutes." It has been attempted to accouric for this and smilas surprising lake undulations by the antiuence of long-cuntinued win 1s, or by changes of barometric pressure; but the regularity in $t \mathrm{l}$. nd other cases of the rise and fall secms to some investig. to point to some less changeablo caust. Mr. E Imonds attribute, them to eartbquake shocks at the botto a of t te lakes, and adduces many mistances of great waves accompauied by hhocks waich have beeu felt on land. He ackuowledges thit undulatory sh reks would not prodace the effects obsirved, but he satisfes himself that a vertical shock yassing upwards and striking an inclined portion of the lake bed would give rise to the undulations described in the above estract. We aro propare 1 to grant the existence of those subter ranean commotions to a certain extent under our
country's soil, and also that mar; would reach to the height of a lake bottom without boing perceived higher up; but wo would submit that we have no reason to buliove that they are of such constant occurrence as to cause tho great number of undulations that are observed in our lakes. The influence of winds and changes in the barometric condition of the atmosphere are far more probable causes of the Great Lako Tides. - Nation.

PROGRES: IN TEIEERAPHY—THE DUPLEX SYSTEM

The duplex system is not altogether new, for it had been known for some time that currents travel both ways on the same wire and at the same time; but it had never been utefully applied till Mr. Joseph B. Stearns, having worked out the ol Jer ideas and obtained a practical result from them, revived it in an improred form. That Mr. Stearns is fairly entitled to be known as the inventor of the duplex system, few we imaginu will dispute; at all event, his merit-have been recugnized by the American Institute of New York who presented hin with their great meda! of honour, a medal that is reserved for inventions of special importance. Since the publication of Mr. Stearns' method renewed attention has been drawn to the subject, sad more than one method of practically carrying out the plan has been tried, with a very gratif.'ng measure of succes. As mentioned above, the principle as discovered by the fact that when two operators disp itefur as possession of a circuit, the signals of each are aftected by thoze of the other Thus whon the instrum ant is the ordinary single needle, if the direction of the two currents is the same the needle moves more st ongly than usual, while if the currents travel in different dircctious it scarcely moves. This fact having been clearly apprehended, it became obvious that if the two effects could he scparated the effert of the outgoing current from that of the received current-the sigaals from he distantstation night be read. In testing for resistance a line wiro between two stations with the differential galvanometer, it is lound that, until the resistance of the rheostat (resistance coils) has been made equal to that of the line, the currents sent move the needle in one direction if the resistance of the rheostat is too small, and in the other, if it is too great. Immediately, however, the two resistances are made equal, currents sent by the key at one station (A) do not move the needle al taat station, because the current divides equally between the coil connected to the rheostat, and that connected to the liae, these coils being wounil in opposite directions counteracting one another; but each of the currents or signals reaches the other station (B), and can be read on the instrument there if it is in circuit. If B, then holds down his key, his current will either aid or oppose the current sent by A, on the line, but has no effect on that passing through the rheostat. A.'s galvanometer will therefore move, because the balance has been disturbed. Now, if instead of a stiody current, B sends the dot and dashes of llorse, the balance at A. will be disturbed by each carrent, and the signals of B. will cousequently be legible to $A \quad B$ it B. cannot rea i the sigaals sent by A. because the currents he himself is sending pass through his instrument and confase A.'s signals. If, however B. places a differential in circuit, and obtains a balance by his resistance coils, as if he were testing the wire to A, his signals will not then affect his needle, but A's will move it, as B s signals move A's needle. The reason of this is thus explained by Mr. Culley :-The currents sent by each divide equally between the line and the rneostat, passing through the galvanometer coils in opposite dire ctions. The needle of the seading instrument therefore is removed. But when the distant station seals a current it either aids or opposes the home current, in the first case adding its force to that portion whi.h passes through the coil connected to the line, so that more flo as to line than to rheostat, and the necdle moves, in the second case it diminishes the current passing to line, and the greater amount then flows through the rheostat, the needle cons quentIy moving in the opposite direction. From this it will bs understood that the two currents do not pass on. been imagined, but that when both stati,sns signal at th \rightarrow same time, the current seat by either station acts upon the distant instrument by duternini ig whether the line or the rheostat shall offer the easier patl for the currents originated there. The batteries are gencrally coanected so that when both keys are pressed the current, flow in the same direction and assist each other; but opposed batteries may be used

CANADIAN SAWDUST FURNACES
The system of burning sam-dust which weillustrate on page runing at sixty revolutions per minute with 60 lb. steam. 370 is that which is followed in the best oaw-mills in ('anada., It our engrowing A A is the saw-dust carrier box; B B, sawAll the steam required is raised from saw-inast only, and suci waste ecraps of wood as will not work into laths. Nothing having a saleable quality is hurned.

Tho cagraving shows a portion of a bed of nine boilers, which supply steam to two cagines, 2lin. cylinder, 36in. stroke, duel wirpels, (C. girders to support hoppers, D, srooke pipe toc chimuey, E LE E, sawdust hopper valves, F, feed-water pipes, ((i , combiacd stop valvo and expansion joint; H H, dcad plates. The action will be easily understood. The sawdust cat froia logs just out of the nver, is carned by drags

35-TONS DOUBLE-ACTION STEAM HAMVER AT SIR W G. ARMSIRONG \& CO.'S WORES, ELSWICK

through the box A A and deliver'd over the valves E E, in upnang theres, the siw-dustiallo on top of the fire and tequires little spreadiug.

In some mills tulular builits are used with ain. tubes, the shills being 4 ft dara ter and lift. lour. To burn saw-dust w th sucuess pleury of buhlir power is essental, large grate - rifices, in rp furbaien, aud the fael muat be fed in from the top.

35-TON DOUHLE STEAM HAMMER

The visit of the Czir to Woolwich has directed public attentson to the use of iarge steam ham ners in the manufacture of heavy guns. It 18 a matter for some surprise, and bears no small testimung to the shill and enersy of those in charge of the gun factories at woolwich, that they have been able with a haminer Wughnig nu more than ntiven cons to produce such $\}$
guns as the Woolwirh Infant, as in other establishments much heavier hammers have long Leen at work. At ar William Armstrong's worhs, Messrs Thwaites and Carbutt, of Bradford, erected some time since a fine haminer about as powerful as the new Woolwich hammer We illustrate this hammer above The tollowing are the principal particulars.-The diancter of cylinder is 4 min., wath a stroke of 12 ft . clear; distance between standards at base, 20ft. ; beight under standand, 8 ft . Gin.; distance between the hammer guides, 5 ft . 6 in . The total height of this uammer is 43 ft . The hammer itseli, exclusive of anvil block and ied-plates, neighs 150 tons. The cylinder and entablature weich 35 tons. Each of the standards reigha 40 tons, and is made in three pieces, firmly set ured and beld together with futed bolts and turued wrought aron boops shunk on hot. The reason of these standards being made in three pid ces is that ifauy of the parts give way they can be replaced at anthit-s cost and in shorter time than if tho standard was all in une It is wall knowd that in very largo
castags there is grast rok and lability of weak, laces in the interiur of the costing which cannot be detected at firat, but soon show themselves whes straiued by work. The design of the standard, it will be feen from the illustration, is new. It colisists of a round pillar of great thickues, wilh fianges cast on one side to reccive the hammer guide. This atyle of standard was desirnet urder tho superintendence of Mr. lendel, ot sir W. Armstrong and Co., the round pillar being the bist form to with-tand the torsional strain dite to hammernir coils out of centre of hamuer faces. There is no doubt that it makes a very strong job, and well calculated to withsiand severe work.

The piston 18 cast steel, of V shape, to secure greater streugth than if madea plain flat disc. The piston-rod is fixed into spheriral wnithors firmly held into the hammer head with a wrought iron cotter on either side of the rod. Upon th. hottom uf the hammer head is cast a projection to receive the hammer face. I'his is contrary to general pratice, but is considered an improvement for large hammer hearis. The working valveis a circular pt-ton balnaced valve, and is easily worked by the attendunt upon a raised platform.

PIRINCIPLES OF SHOP MANIPULATION FOR ENGINEERI (G APYRENIICES.

By J Richards, Pilladelphia

plass of studying.

By examining applied mechantes and shop manipulation, the learner will sece that th kuowledge to be acquir d can bu divided into two aepartonents-special and general : general knowledge, relating to tools, processes and operations, the nature and action of which may be understood from general principles, and without special or axperimental instruction; the special knowledge, that which is based npon experiment, and can only be acquired by special, as distinguished from gentral sources.

To make this plainer it may, for example, be said that a knowledge of how to gen, rate the teeth of wheels and their proportions, as a geometrical prubicm, is general knowledge that mog be learned frum bouks, and understood without the and of an acquaiatan t with the technical conditions of cither the mode of constructing or the manner of operating wheels; but how patterns should be made for casting wheeli, or how wheels should be moulded or fitted, is sprial knowledge, and must have reference to particular cases.

The proportions of pulleys, betarings, screws, or other regular details of machiuery, may also be learned from general rules and principles, but the hand skall that enters into their manufactuge cannot be so learaed.

The general design, or the usoposition of metal in machine framing, can be to a great extent predicated upon rules and constants that have general application, but, as in the case of whecls, the plans of in ulding such michine frames are not governed by constant rules or performed in a uniform manaer ; moulds may be marie in various ways, and at a greater or less expense ; the metal can be mixed to produce a hard or a soft casting, a strong or a wrak one; the conditions under which the metal is poured may govern the soundness or shrinkagethings that are determined by special instead of genersl conditions.

The importance of a beginner learning to divide what he bas to learn anto these two departments-special and general -has the duuble advantage of giviag syotem to his plans, and pontang out such part of his education as must be acquired in the workshop and by practical experience, the time and opportunttes that might be devoted to learning the technical manipulations of a fuundry would be improperly spent if devoted tu metallurgic chemistry, because the latter may be studed apart from practical foundry manipulation, and without spectal opportunities for observation.

It may also be remarked that the special knowledge involved 11 applied mechanics is mainly to be gathered and rotained by personal abservition and memory. and that the the teron-, tearnet when the mont is interested and acuve, shoudd as tar as pussibie inchlatu whatever is special, in shist, no - pportunity ot learning npectal manipulation should be lost It a woeel pattorn come under notice, examine the manner in which it is framed tugether, the amount of draught, and how it is monlded, as well as to determine whether the tecth have trac cyclotal curves.

Ouce, nuarly all mechanical knowledge was of the chass tormed special, and shop manipulations wero governerd by empirical rules and the arbitrary opinions of the sklled; the apprentice entered the shop to learn a number of mysterians operations, which could not be d*fined upon principles, and only understood by special practico and experiment. The arrangements and pr portions of mechanism were also dotermined by the opinions of the skilled, and, like the manipulation of the shop, were often hid from the apprentice, and what he carried in his memory at the end of an apprenticeship was all that he had gained. The tuadency of this was to elevate those who were the fortunate possessors of a strong natural capacity, and to depress the position of those less fortunate in the matter of mechanical "genias," no it was called.

The ability to prepare proper designs, and to succeed in original plans, was attributed to a kind of intuitive faculty of the mind; in short, the mechanic arts were fifty years ago surrounded by a superstition, of a different nature, but in its irfluences the samo as superstition in other brauchers of knowledge.
But now all is changed; natural phenomena has been explained as being but the op ration of regular laws, 80 has mechanical manipulation been explained as consisting in the application of general principles, not yet fully understood, but far enough so that the apprentice may, with a substantial education, good reasoning powers, and determined effort, force his way where once it had to be benged.

The amount of special knowledge in mechanical mauipulation, that which is irregular and modified by special conditions, is continually growing less as generalisation and improvements go on.

The engineering apprentice, in estimating what be will bave to learn, must not lose sight of the fact that what qualifies an engineer of to-day will fall far short of the standard that another generation will fix, and of that period in which his practice will fall. This I mention because it will have much to do with the conceptions that a learner will form of what he sees around him. To anticipate improvement and chanye is not only the highest power to which a mechanical engineer can hope to attain, but is the key to success By exanining the history of great achievements in mechanical science it will be seen that their suscess bas been sainly dependent upon predicating future wants, as well as upon the ability to su ply such wants, and that the commercial valne of muchanical improvements i; often measured hy conditions that the im. provements themselves anticipate, tha invention of machine'made drills, for instance, was but a small matter, but the want that hes grown up since their existe ice has renidered this improvement one of great value; moulded bearings for sh ifts was also a trifing improvem nt when first wade, but it has siane influenced machine constuction in America in a way that has gisen great value to the inveution.

It is generally useless and injudicious to either expect or to search after radical changes, or sweeping improvements in machine manufacture or machine application, but it is im. portant in learning how to construct and apply machinery that the means of foresceing what is to come should st the same time be re-studied. The attention of the lcarner can b. directed to the division of labuur, improvements in shop system, how and where commercial interests are influnnced by machinery, what countries are likely to develop manufactures, the influence of steam bammers on furging, the more extcnited use of stecl when cheape ied by impr ived processes for producin: it, th:\% division of mechanical industry into sperial branches, what kinds of mat:hinery may become staple, such as shafting, pulleys, or wheels, und 80 on ; these are mention at random, to indicate what is meant by looking to the future as well as at the present.

Follnwing this subject of future improv ment further, it may be assumed that an engineer who undurstinds the afplication in 1 operation of some spe ial mashine, the priscigl's th t govern its movements, tho endurance of the wearing surlaces, thedrection and m acure of the straius and who alio understands the general principles of the distributi un of material arrangement and propurtions, that such an engin ar wall be able t_{0} cunstruct a michine, the p!ans of which wi'! not be matern thy departed from sol long ass th: nature of the operations to which the machine is applted rem it is th. izm . A proof of this proposition is furaistued in the rase of standard machine tools, a class of machinery that has receiv.d
the inst thorough attention at the hands of our heat mechan-ical-engiaters. Standard tools fur turuing, driltiug, plauing, boring, and so on, have been changed but little during twenty years past, and bid fair 10 remain nearly the gamo in fature.

A lathe or a planing machine mado by a first-class establishment twenty years ago has, in many cases, the same capacity, and is wot th nearly as much in value at the present titue as the machines of modern construction-a ted that more than any other determises their comparative efficioncy and the value of improvements made.

The plans of the framing for machine tools have been altere 1, and many impruvements in details have been added; yet, upon the whole, it is safe to assume that machine tools hove reached a state of improvement that precludes any radical changes in future, s o long as the operations in metal cutting remain the same.

This state of improvement, which has beon reached in machine to il manufacture, is not only the reailt of the skill cxpended on such tools, but because they are the agents of their own productiou; machine tools produce machine tools, and a workman should certainly become skilled in the construction of implements that he uses continually in his own business.

Noting the causes and conditions that have led to this yerfection in tool manufacture, and how far they apply in the case of other classes of macilnery, will indicate the probable improvements and changes that the future will protuce. The functious and adaptation of machinery constitute, as already explained, the science of mechanical engineering. The functioos of a machine is a foundation on which its plans ase based; h. nce, machine functions and machine effects are matters to which the attention of an apprentice should be first directed. In the class uf mechanical knowledge that l.as bcen defined as general, construction comes in the third place; first, machine functions; next, plans or adaptation of machines; and third, construction of machines. This should be the order of study pursued in learning mechanical manipulation Instead of studying how drilling machincs, planing machines, or lathes are arranged, and rext plans of constructing them, and then the principles of their operation, which is the u ual course, the le.rncr should reverse the order, studging first drilling, paning, and turaing as operations, next the adoption of tools for the purposes, and third plans of constructing such tools.

Applicd to steam engines the same rule holds good. Steam, as a motive agent, should first be studied, then the operation of steam machinery, and finally the construction of steam engines. This is a rule that may not apply in a'l cases, but will serve to assist the learntr in forming pláns in most cases, and adopting a regular mode of proceeding in his studies.

To follnw the same chain of reasoning further, and to show What may be gained by method and system in learning mechanics, it may next be assumed that machine functions consist in the application of power, aud that power should therefore le first studied; of this there can be but one opinion. The leazner who ats out to learn even the elementary principles of mechanics without first having formed a true couctption or an appreciation of power as an element, is, in a measure, wasting his time and squandering his efforts. Any truth in mechanics, even the action of the "mechanical powers" before alluded to, is received with an air of mystery, unless the nature of power is first understood, prautical demonstration a huadred times repeated does not create a conviction of truth in mechanical propositions, unless the principles of operation ar, understood. An apprentice may learn that power is not increased or diminished by being transmitted through a train of wheels that change both speed and force, and he may believe the propusition without having 8 "conviction" of its truth Eie must first learn to regard power as a coustant and indestructible element, s,metbing which can be weighed, measurel, and transmitted, but not created or destroyed by mechanidm-then the nature of the mechanism may be understoud, but not before.

To obtain a truc understauding of the anture of power is by no means the difficulty, fur a leginner, that is generally sup. posed, aud when once reached, the truth will break upon the mind like a sudden discovery, and ever after .rards be associated with ouechanism and motion wheuever seun. The learner will alterwards fiud bimself analysing the fluw of water, the traffic in the streets, the movement of ships and trains; or even the act of walking will become a manifestation of power,
all clear and intelligible, without that air of invatery that is otberwise inseparablu from the photiomena of motion

If the learrer will go on further, asd study the connexion between heat and force, the mecbanical equivalent of heat when developed into force and motion, and the reconversion of power into heat, ho will have commencel at the base of what must constitute a thorough knowleige of mechanira

I am wull aware of the popular opinion that sutch subirets are too abstruse to be nuderstuod by beginnere-an assumption that is founded mainly in the fact that the subject of herat and motion are not generally stuwied, nod have been too recently demonstrated in a scientific way to command ronfidence and attention; but the subject .s really no more difficult to undarstand in an elementary sense than that of the relation between movement and force illustrated in the "mechanical powers" of scbonl-books, which no npprentice ever did or ever will understand, except by first studying the principles of force and motion independent of mechanical agents.

It is to be regretted that there have been books especinily prepared to instruct mechanical students in the relations between heat, force, motion, and mecbanism. The subject is, of coursc, treated at great leugth in modern scientific works, but is not connected with the operations of machinery in a way to be understood by beginners.

A treatise on the subject, called " t he Correlation and Conservation of Forces," published by D. Appleton, of New York, is perhaps as good a book on the subject as can at this time be referred to. The work contains papers contribited by Professors Grove, Helmotz, Faraday, and others, and has the advantage of arrangement in short sections, that compass the subjuct without making it th dious.

In respect to books and reading, the apprentice should supp'y himself with teferences; a single bouk, and the best one i,hat can bo obtained on easch of the different branches of engiluecring is enough to begin with.

A pocket-book for reference, such as Molesworth's or Nystrom's, is of use, and shouta always bo at hand.

For general reading, nothing compares with the sirientific and technical journsis, which are now so replete rith all kinds of information that, beside noting the present progress of engineering industry in all parts of the world, they centain nearly all besides that the learner will require.

It will be found that information of improvements and mechanical progress that the learner may grther from serial publications can always be excnanged for special knowledge in his intercourse with skilled men, and what the asprentice may read in an hour can often be "exchanyed" En experi. mental knowledge that has cost years to acquire.

Finally, I will say to the learner, set out de novo in gour plan8, with a determination to succeed, and if your judgment commends it, with originality, only have system anci method from the first, avoiding, however, suly course that will provoke ripalry or resentment on the part of others around yoa.
(To be continued.)

GAILLON'S PATENT MACHINERY FOR MAHING CASK.S.

At page 374 we illustrate improved machinery for making caske, recently patented in Eas'laid. 'Ihis machanery is appli ablos to furming casks of the ordinary shape, but is preterably employed for makiny cabks of a cyliudrical shase, the staveq beit g made of a rectan rular sha e lostead of tapering towards the ends, as usuri, by which meany an ciuncumy of wood is effected, the surface of the staves is pretiantyly made flat, but they may be curved if required, and ma. alco be tapered.

In the illostration page 374, Fig. 1 is an end elevation of a double-faced planin: machine or lathe tor shaviog or dress ug the surfaces and beveling the edies of the staves, and also for chiming or dres ing and groovins the ende of the: staves. This machine is constructed of two spindles or watres, warrying at the ir ads rotiry circular face platen pruviden with cutters for bevel ng the ediges of the piece of wood, a, to curm the stave. The bearings ot the spindles can be moved towards or from each other on the beds or tables $A A$, by turning the hand sc ews as shown. The spindles or slafts must be arranged so that they may be placed at any requaed anyle to

GAILLON'S Patent machinery for making casks.

sutt the size and bevel uf the stave to be made, and two ar- ' The platform is provided with a hinged rack and lever, or a rangements are shown for thus inclining the shafts In the |cramp, for pressing on and fixing one or more staves to be eircular bearing the ends of the centre shaft work in slots, dressed a ω-and-fro movement is given to the platform by and the shaft is fixed at the angle required by wedges. The \mid an endless chain and chain wheel, or a rack or a screm arranother bearing moves on a crntre or pivot, and is provided gement may be employed. with s toothet 4 uadrant into which gears a pininn By turn- Figs. 2 and 3 show convex and concave catters or planea ing this pinion the angle of the bearing may be varied as re- ' monnted on the face plates for planing or shaving the surquired. The spiudes have fast and loose pulieys for driving' faces of the stares, and Figs. 4 and 5 show cactors for chiminy the same by means of straps from the driving shaft. The or cutting ronad and grooving the ends of the staves. This framing B of the carnabe may be male of wood or irnn Thbe marhine works as followe. The piece or pieces of wood a, to top or bed ca ries a platform or sliding table, which is curvi- ' form the stave or staves, being fixed on the platform, and the cutlinear or square, according to the form of stave to be made. ters set at the required angle to bevel the edges of the stavis

GAILLON'S PATENT MACHINERY FOR MAKING CASKS.
as above described, and also at the required distance apart by staves will be grooved and dressed or chimed by the cutters means of the screws, the platform ur slidiag table and the; as shown. For planing or shaving the surfaces and beveling shaits are set in motion, and the staves being dramn along be-, the edges of the pieces to form the heads of the casks, the matween the revolving cutters the edges of the staves will be beveled thereby. The surfaces of the staves are then planed or shaved by means of the cutters shown in Figs. 2 and 3 respectively, which are substitat.d for the beveling cutters. The spindles or shafts may now be set in a horizuntal position, and the bearings moved sufficiently apart to allow of the ; stave a being placed crosswise on the platform. Then by substitnting the cutters shown in Figs. 4 and 5 for the carved, cutters, and setting the machine in motion, the ends of the chine or lathe shown in Fig. o is omployed, and is safticiently clear without further explanation.

Fig. 7 shows a view of a combined machine for cutting round, chiming, or grooving the endis of the staves, and cutting out the heads of the ciasks at the same time. It is constructed of two parallel endless saws a a, having movable bcarings actuated liy set screws, so that the saws may be inclined as required for catting the different lengthe of staves, and for giving the required bevel to the ends. Between the saws is
placed the tevolving drum C, having screw levers and racks or camimik fo. fixm; the staves on the dram At the side of the machine is a vertical lathe. The heals to be cut out by the saws are carifel lictwen the plates on the upper centre or shast and the luwer support or centre of this latho. The plates hatre muvable inatinge to alluw of adjusting the plates at the iequact distance from tue saw, accorting to the size of the hend to be cut out If desired a similar vertical lathe may the placed at the ober side of the machine, so that both the enlless saws mas he used for cutting out the h ads of caske at the same time that they cut the ends of the stapes. B. mirans of this combind machane it will ho easily reen that If the staves and fixed un the revolving drum, and tha pirces to form the heade are fixe I betweo, the said plates, and if the machune buset in motion the raw will, as the dium ro olve: cut the ends of the staves so as to make them of equal length, and will also cut the pieces to form the heads of the rasks; and as the drum C revolves the twols o cutters k will chime, of turuand proove the ends of the staves aft r they have been cut by the raws. By rem viar the drum C, and placiag between the sawo at carriage add platiorm si ulan to that ho ciubelone dereribel and shown in F. .1 , the endless sars may, by being brougint neaser together, be used for cutting out the slaves lengthwiee and with beveled edges. The staves thas cut are chictly applicable for casks nos intended to coutain luyus ts.

Fig. 8 shows an enil tiew of the drum C, with its dr.ving pimo and pin on for driving the cutters.
ligg 9 and 10 show the machune employed for fo ming hoop. for contial cask. This malline is constructel of a conical Irum mountel on a shaft provided with a toothed wheel, ducen by a pinari on the shaft e. The drum shaft wooks in movable hearmani, actuated by hand screw, h is a hoop or runio in two pats, fixel by kess on the drum, and varying in dimmeter accord hig to the siac of hoops to be made: is a cylander piaced owiquely so as to be parallel with the per phery of the arums; k, eceentric, the ring of which is pro.ile.l with a punch, and is opurated b; the lever ha de-wi by other suitahle ineans-for punching holes on the hoops for the rivets; r, - hears to cutting the iton.
'I'las ma hine operates as follows:-'the end of the pi cet of iron to form the hoop is fised to the ring h by a wedgy, and the machane leing sit a motion the iron is carried ryund the hoop or ring h, any passing through the space betwern the pripheries of the drum i sud the hoop h it 18 gui led by the ginite rolleis and is form ad into a complete circle or hoop, at the same time recciving the contcal fo-m necessary to adapt it to the conical form to the cask. The eccentric is threa torna ed hy means of its handie, th reloy punch og the hotes in the hoop liy menns of the pinch: the shears or cutter is neat op rated-liv treans of an eccentric or a lev r-and tue hoop, is cut oft as seen at Fig. 9, auil myy be removed from the marhine.
F ig 11 shows the lathe employed for turning up, chiming, an i grooving the enil of the staves after therr edyes have been beveled onlv. On the lathe spintlo or centre is lixed a drum round which the staves are tixed by movable hoops The movahie centre of the lathe is hingel or pivoted at f, and is operated br acrew; two sl'de rests are provided each carrying thre - tools or catters. The first cutters serve for turning up the ends of the staves, the second cutters for turning up the outer surface of the end: of the staves, and the third cutters serve for turning up the inner surfices of the ends of staves and for grooving them at the same time. Ono of the slide rest, is tix-d to and moves with the h nged besrinc ; 0 is a If ngul lever arm, which can be ratsed when require 1 , so as to with traw with it the staves formug the barrel part of the ca-h when they have been turned up an I grooved at the ends, a.) ahove stated, and the barrel is theu ready to receive the herds and the hoops to complete the cash.

Fige 12 and 13, planan 1 elevation of an improved hoop for cylimirical casks. In making thesc honps a heel or shoulder is forme't nuar each and of ithe piece of iron forminir the hoop, the ald heels or s^{\prime} oulders lieng reversed; the ents of the iron being overlapped are ineld together by two straps or loops, a a, of ron. When the hoop is placed on a cask it may be tightened as require lly drivi ga koy or keys, d, $i \cdot$ the space between the shoul lers or hesls. To removo the hoop the kevs ar. 'Iriven out so as to loosen the hoop, which can then be removed from the cask. - The Engineer.

PICTURESQUE LABOGR AND MACHINERY.

(From the Builder.)

Tho preciso position at any particular time of the working. or labouring classes, as they are cominonly turm. $d_{\text {, mant of }}$ necessity bo interesting to architects, and to all who employ, howeverindirectlv, working men. This is interesting, as wo bav, at all times, but at the present moment it is more erpecially so, not on account of any particular or important "strike," or diapute, but on the broad ground of the change, the organic change, that would seem to be now going on in the condition of one particular section of Iabour. A d this the more so from its infiuence on other portions necesearily consequent on such change in this particular one. We allude to the org nic change that is taking place in the co rdition of the agricultural labourer, as he is termed, or the agriculumal working man. A f w thoughts havo occurrel to us which may interest a thoughfil reader here and there. It has a bearing, too, on bricks and mortar, and perhaps fiue art, and is worth at any rate a little cugitation.

It would be curious to note, sccording tu, dato and place, one after the other, tha various degrees of estimation in which the "husbandman," or tiller of the ground has been heldi. Ile is, perhaps, above must others an historic man,-nay, ho is y et older than history itpelf. In the most rem it: nges wo may hear mention made of him, and his praises, and tho dignity and importance of his occupation dwelt on in glowiog terme.

In the oldest of human records the first man born into tho world was 8 tiller of the ground; and in the most refined, and polished. and artistic of nations, the Greek, cultivation of the arll was an occupation not disdained by the mo-t illustrio's of men. How needless to cite instances, for so many are they that to hint at them is almost enough to bewilder the keenest mumory with the coowd of images which the bare suggestion calls up. Whole volumes of sweet poetry have come into existence written to the music of the pastoral reed, from the earliest of days down to the present hour. Wesay, and must repeat, the present hour, for things are indeed bout to cbange in this department of human do "ugs which bid far to remove the "husbaniman" at least iron the range and ken of poetic eiforts. The useful, and the prostical, and the getting the most out of overythin by the chortest and che rp. est of methods, is over-riding all things, and the word-skill of the poet himse'f, however keen it may bo, must nueds ful at lant, not from want of power, but ram inaccessibility of enbject.

The old-fashioved husbandman, or tilles of the soil, the ploughman, the sower of the seed, and the reaper, sll so preturesque, and so full of country lift and attractiveness, liava as it is more than one half of them disappeared, we are told staristically, and in but a few years' time thry will and must totally disappear, and make way for the "ploughing eogate" driven by steam, the sowing-engine, and the reaping-machine Six thrusand reapiog-machines made in one single jear by one firm, to do the work of sixty thousand men. Sixty thousand husbandmon and nictur sque tillers of $t l \rightarrow$ snil turned to other vocations by the practical and unpaniable, and not to be described, except in a epecification - "reaping. machine" In trolve days only (it has been accurately cal. culated) 80,000 reapers may do the work practically and well of no fewer than 800,000 poctic-looking hisbandimen. All know well of the use made of the ploughman, and the fower, and reaper, by the clever sculptor. ann wood carvers of the old Goth'c days. The Dark-Age c thedrals and churches, hers and ever where, are full of them, and a right good and interesting collection might bo readily m ide of these stove and carved wood representations of the agricultural life of the Gothic ages; and not a littlo light thrown on the forms of the rude implementa of the husbanciman as then in use. Tho sculptor could hardly go wrong. The rude machine pemel almost ma to for the sculptor's us", and the man and the ma. chine seemed made to fit each other, and designed almost to be copied in ftone or wood. We are never tired of looking at them, and speculating on their artistic way f work. But compare such things with sucb terrific-looking engines and masses of machincry as the modern and most approved "ploughing engine." What shall the sculptor or the panter do with it? How monld it into artistic shape? It would secm to be a veritable impossihidity to wor: into a picture a
complicated nud ponderons mass of new nad impremed machinery. The rude nud rough old "engincry" beemed to fill into picturesqun forms of themselves, almost as though they had been de.jgned epecinlly for such artistic purposes. Rouph and huge wheels, and ponderous cranke, and huge suppuring gear trinsferred themselves readily to the stono and wood, and became without nny uventive effort picturesque and sculpturerque, an l "archatecturesque." But wial can we fay of the modern clean-made an I delicate and perfectlymoving improved and perfected machinery, all of bright clein met 1 , and all so accurntely fited together and so poli-hed? ''o pant it is imporsible, and to carve it almost as much so. It is really mot a littlecurious tu look into an old worm-eaten look with re; resentations of the eld machinery fior whatever purpose it may have been made; all ngricultural implements If the roughest and rudest, but yet, by the byo, effective, lifting arparatus used in building oper., toons,-effective as wo know by what they hase done, -and a host of other strange things all obsolete in this improved mechnnicalage and count'y, but wonder-working indeed in their own distant day. There are but few thitgs more siugular than this of the oldfashioned mechanical appliances of past days,-see but the work it did, the masees it moved, and helped to mould into form and artistic slape!

But there is amother and a more practical view to be taken of this phase of human labour, and it is perhaps yet more curious than that we have been commenting on and wondering at It is the surprising change that is thking plare in the condition and proepects of the husbandman or countryman through the powir of machinery. Machinery anl enginery are, to say plain trath, putting away the paetic husbandman : be is no longer required; the steam-engive, the ploughong-marhite, the sewing-malbine, and the reaper are gone into the: field-, ardare driving him out of it. There is really but litte now to do but to lock on and see how the all-conquerint machinery does its clean and quick and ettective work. One man can nowadays with a machine, and ly dint of but little elee than looking on, do the work of multitudes, und apparently rejoice in the fear, the multitudes having more to e t in consequence. The small field is despised, that mighty machine demands a larger and a langer sweep of work; and, what must meeds grieve the artistic mind, it rudes over all picturesque hedrerows, and fairly "levels everything. It secms a pity this, the destruction of h. dgerows and quaint and picture-mahing coruers; but what is to be done? The times, and the machine, and extending population, and education, und fate itself will have it so. It can hardly be expected that all these influences shall stop and "ase to act for the mrre sake of furnishing to the picturesque tullist, all.1 to the Gainsburougn of the hour, a somethiag to look it, and to love, an ! to scatil malise over, and to talk about, tuet to pant! What is the loss and gain here may exeretse the ingenaity of the curious.

And thus are the picluresque hosbandman, and tiller of the soil disappearing from human ken; but this is not all by a long way, for not only is the al -powerfll machine driving him out of the green fielde, and doing his work for him, lut he is, -t,ange to say, running away fast from the fields himself All sorts of vocat ons, so we are assured, are calling out for him, and erticeng him frim his rumal ife and helcngings to the rities and towns, and to the work done in them and about them. Mines, manufactories, building in the metropili", and in lirge towns, and even watering-places are demanding his h.lp, so that the tiller of the earth, like the earth itself, is the real source which cupplies the world with what it needs primari'y. Out of the earth all things come. And t ' is is the country supplying the town with its nerdful quantity, if not 'uality, of labour ; and thus lanving the poor carth itself to the tender mercies of the insensible machine, - the warline, per se, with the human element of labour or work at a minimun, if there can be said to be any human work at all in it. We I ave :aid nothing, as being may be a little out of place, of that great coming "exodus of labour" which is to be sonn maugurated, and which promises to provide in distant lands an Ei borato of planty for the favoured husbandman. But why, looking to facts, provided so kiudly for him oיly? 'The cottager truly may at times need belp, even in the most fovoured locili i s; but thern are cottagers, and plenty of them, in great London, in Liverpool, and in all other great towns we ever saw, and their inmates are to the full, does

Mr Arch know it ? _quite no belpless as ever their country cousins can be. Nothing cin well surpass the interior of a town cottage. This is, indeed, an architectural aved buiding subject, and not a litlion importa t, for nathing cam a rpass the evil armogements and surroundings of a linndon cottage and its inmates, and this may bring ne tw : nother strange result of his chavge in the condition and duink of the primitive hasbandman or countryman. I is the probabio "fort on the labour-r in tomben and the onse guent change evin in his prospects. The Britioh labourer, it would ser m, hay a mpital prospect before him if he will but be rontent to slay at home and bide his cbance. The sround is clearing for him day by das, intelligence is apreading, and the diver workman, whether of cown or country bringing up, is pre tty curtain of occupation, so that fur the mere hewers of woml nad draucre of water there is a plenty to do, and ample ronm io do it in Their pro petts are imiroving, and competition is no so keen, or, at any rale, will not be so in the future All this, we are confliently assured, is se, and it in not a litthe curinus to think of the causes which have brought al' thin ahous Letbour, mere latour, is the simple st and commonest of all human vocations. 'The la' urer is always ready at cill, and his simple work is soun learnt, whe th r in town or comintry, whether in a ditch, or in helping to build up or to pull down a hou-e. A strang." enough fate is the "labourer"e" Ife fits into all positions, from high poetry to the merest common. place. If the paintur wants a picture q ie figure anywin re, why, the labourer is always ready for him, properly clothed in picturesque diversity of costume both in shape and colour if bat a crowd be required in the dam background, how could it be made ap without the gronps of worki:g men, - labourera alway, somelow or other, to be found everywhere hanging idly about? Practically, not poctically, what is the poor labour r to do when the mughty "machine" has totally ruu him down? He must cultivate him- f , and becomen profesriunal nan: learn to look nfter machinen, -priaps invent them. Weil, thus we chl go on advancing. Thus it has been, and thus it will be.

A NEW HOMESTIC STEAM ENGINE.

M. Fontane has recently received a prize of $\$ 200$ from the Freach tociéte dinc, uragement, for the inveution of the domestac steam motor repreented in the annered engratings. The boiler of the desice contains enoush water to furnish sume 42 loot pounds, during the continuous period of work of a womal - some fuar or five hours, and the derign is to renew the supply during weal hours, allowing such interval for the gencration of sterm, ready to begin work again. The device io composed of a generator - an ensine and a gas furnace with autowatic register. The endraving shows the exteriol of the inventiou, and also a sectioual view. A is the bedy of the boiler, in the lower side of which are twenty-fo r copper tabis B, the upper ends of which enter the smoke box, C. D is a sleeve through which the gases of combustiun descend to the chimney, and E is a superheating tube which is closed at the botwm and exteuds duwn though the smoke box, as shown. F is the feed water tube, cl red by a ocrew plag, in,icated oy dutied lines. Water cannot be put into the boller cacept when here ie no pressute of steam. At G, doth d liner, is a cock which diaws of the steam when water is to be supplied, through a pipe, H , and thence into the chimney. I is the lue conne cting with the sleeve, D . J is the furmace composed if twentyfive Buanen burners. 'Th': gas, wh leaving the ieter, goes to the upper part of the machine and enters at L Here it meets a flexible tube, M, whelh tesembles a bellows, and furms a pressure er gulator. N is a counterweight suspended to the tube, M, snamaiaining it it a length eur respondin: to the desired pressure. Whan the limir tixad is excueded, the tube alongates and checko the flow of gas by "lusing the smaller orffier, L. I is the tube conducting the gas fiom this apparatus to the burners. Steam is taken foom the superheating pipe by the tube, O, and is led to the nlide valve, P, wh:ch cominumeat so with the cylinder, 4 . R is the rlide cceentric.
 the cimmuey, V the manomolet, and W the oupouting legs of the apparatus. X in the wouden eavelope, having ditatable jomes whech suroound the builer and cylider, ant is lined with thick felting. Y is a suall inclined mirior, whic hallows the operator to see a reflectiou of the gas burners, and so to judge of the heat of the fire.

('ylinder, valve, chest, slides, and frame of the engine are all cast in a single bloct, in which the necessary apertures are bored. No cores are used in the moulding. steam goes to a simple slide valve operated by an eccentric, and is admitted during one third, and exhausted during five-sixthe, of the stroke. The shatt, crank, and eccentric are cast in one piece. All rubling surfaces are of steel. The piston is made in segmonte, of cast iron, on the Ramsbotiom ystem, and all the ports are circular.

The uldect of the device is to do any light work now perfurmed by hand, such as driving sewing or washing mach:nos, tumang wringers, o, elatin! pumps, etc. Its heipht from floor to top of tly wheel is about 43 inches, and exterior dameter, It inches. Si ientfic Amertican.

HYDRALLIC RIVETING MACHINE.

The use of high pressure steam, especially in marine engines, which has become so universal during the la t few years, has requured a stronger construction and 'orm of boiler than hitherto employed
In order to retain the large diameter so convenient in marine boilers very strong plates are necessary, and it is now no unusual thing to have boilers in use at gea with plates of lia. and cven upwards in thickness. Such boilers require to be cun-tructed with ivets of sizes that cannot be sati-factorily set up by mere manual labour, and of lat years, after many ap plications of steam aud gearing fur this purpose, bydraulic puwer las been employed with the best results.
The fast thing that strike, an observer of this new process is the entice absetce of that most dafening noise, the usual accompanime ut of ordinary riveting, and a little further attention will show that this absence of noise is its least mer t By the quiet, steady presture rivets are enlarg d throughout their length and fill up all roughness or irregularitits insi le the r unched botes they enter, so that they rewain firmly fixed, eve. whin one or both of the 'reads are cut off, and must be drilled out altogether shonld it ever be necessary to remove them. The pressure not only forms heads on the rivits, and effects the above nined compression, but it holds them up, and the plates also, close t geiber, uotil the furmer are sufficiently cooled to bear the strain, and even draws th. plates closer tegether by subsequent contraction.
The illustration on page 379 shows Mesers. Mc Kay and McGregor's patent hydranlic riveter, which has been for some time in usk at the Millwali Docks Eogin"erng Worke, London. This machme is one of the most powerful of its class, and gives a pressure of co tons upou the rivet, an amount abundantly sufficient for the largest class of boiler work hitherte required for marine engines. Above the machine stands a powerful travelling cran-, troth whech boilers are susp \cdot bled ove it, their (ordmaiy, horizontal axiv of course then being in a vertical poiithon. Lircular seame of rivets are brought to the machine by the simple process of turning the boiler round on a bwivol and veitucal seams by rasing or loweriog it in the usual manner with mer hanioal arrangements of this class.
The pressure is derived from an accumulate, and it amounts to $\mathbf{i} 00 \mathrm{lb}$. pir square anch in the present case. This pressure is only admithed into the large cylinder when the d escume in contact with the hot rivet, the "slack" being taken up by the action of a maller cylinder. By this arrangement a considerable savi g of power is fllected : for if the large cylander took its suphly and moved the levers their entire distance by accumulalor pressure, it is evident that great waste of power would en. sue thereby, and in all direct acting stram riveting machines this waste must come from the nature of their construction.
The hydraulic cylinder, and all valves, levers, weln hts, \&ce, are plared in a pit below ground, clear out of the way of men workiug. and-afe from frost or arcidental injury. Of course the pit is covered over, and in winter carefully protected from crld, and where, as is sometitues the case, these machring stand practically out of doors, n precaution of this lind should never be neglected

The upper end of the powe rful cast iron levers which form the most conspicuous part of this machine are perfectly free fnm all surroundinge, except only a conveniendy placed handide for starting of reversing ; this handle stands bebiud one of the levere, and threfere does not appear in the uresent inIustration These leversare so strong that any accidental blow given to them can co no harm; and the readiest access is obtnined to nery - art of the machine. Steel dies are simply
placed in bored holes, and natur.aliy hold themselves there.
When all is pripared, and a heated rivet in position, a movenent of the handle admits high-pressure water to the smaller cylinder, the dies rapidly cluse upon the rivet, the self-acting valves admit water to the larger cylinder, and without noise or vibration the work is done The dull, heavy pressure crushes together the thick plates, and after holding them and the rivet together for a moment that the latter may cool, the pressure is released, the dies recede, another rivet is soon cumpleted, and a boiler is finished with astonishing ense and rapidity

The distance from the centre shaft on which hoth levers wurk to the dies ur centro hydraulic cylinder is 6 ft . in the preseut case, so that after deducing the centre bearing, and wrought iron straps to carry the tensile strain, there remains a clear epace of 5 ft. for boiler plates, and this is tound to be ample for the several classes of work for which this particular uachine is used.
To all those interested in the developmeat of high-pressur* at 8ca, such a machive as this we have described canot fail to be most interesting; and still it is only one element in thos. most numerous facilities we owe to the inventive powers of our mechanical enginetrs. Su ha machines as this comper, sate in some measure fur the enhanced value of labour anal materials, and no one who has read the pages of this journal cau have failed to notice this encouraging fact. No soon'r d, work hop requircments outstrip existiug means of production, than forthwith touls are invented, or n w processes dircovered and we still retain our control over the inert rasi tances of material things.-The Engineer.

IMPRUVE! WIND WHEEL AND WATER ELEVATUR.

Irregularity of motioc, oscillation of turning tab'e and van", unavoidable us of small wheel, on the m tin shaft preventing the transmission of quick motion when the same i - needed, linbility to gei out of repair, aud exc.ssive cost, are objecti ns to the employmant of wind power, which the inventor of the device illustrated on page 379 clams to have overcome. The fans are centrally pivotud to two circles, which constitute portious of the frame f the wheel, and the bearings for the main axle rest upon stationary post. A is a weight attached to a rod which traverses the shaft and is pivoted in a sleeve which slides back and forth between the ar.ns. To the sleeve are attached jointe I rods which are connocted with guides, at B. so that, as the sleeve passes back and forth, the rods are given an inward and outward motios. Near the outer extremity of the latter are p a.eis syntems of small rods, C, jointed tog ther to form parall lograms, operating on the priu-iple of lizy tongs. From each of these extend three arma, one pasing through the outer circle and carrying a ball, D, the sernid pisoted to the inside curner of one fan, at E, and the thiri similarly secured to the outer corner of the other adjur it fas, at F. The rode, G, connect these fans with those next to them, so that one ohifting rod, with its lazy tougs, governa cet , f four fans, which move th ough the same siace at thi same time.

In order to stup the wiudmill, the wight, A, is removerd, when the balls tend tu bring the portiuns of the lazy to gs tin a position at right angles with the shifting rods, and bence th. fan-, to a right angle wilh the wheel. The fans, it is statul, move with equal tacility in strong or light winds, n, greatir force being required to operate them than is n- cessary io overcome tue friction of tho different be ringe. The pover is, besides, through its application didgonally acros, from the μ_{1} side corner of one fan to the outside curner of the uther, transmitted to the best advantage. Fon large whe ele, WLaic informed, bydraulic pressure is s.s.d to equalize the mution
The water elevator cousists of a series of bakets, H, which are pivoted, a hittlo above their centres, between every twu links of an eadless chain or band which passes over tso palleys, oue at the bottom and the other above the well. The bottom of the bucket awings in, and a projection therco.s taheagainst the upper shaft as the vessel is carried over. This causes the 'atter to empty, wath little splash, 1 to the conduit provided, 11 whacn the water is conductel to any dexired point.
It will te seen that the constru thon of the apparatus denotes considerible strength, as it is built on the plan of a wagon wheel, the fans serving as spokes. libe inventor statas that it is almost mpossible to blow it to pieces.-Sisentijs: Amertcan.

SCIENTIFIC NEWS.

It i, a well-known fact that gum arabic will not cause some kinds of blotting-paper to adhere. This may be remedied by adding, to cight ounces of the concentrated solution, sixteen grains of al minum sulphate. Alum answers also, but not 50 well.

As a means of preserving an elevated temperature while filtering solutions, \&c., the followi g hot water funcel may be used. This connists if a thin fuanel, with a perfurated rubbir stopper in the neak, through which the glass funnel is passed, the whole is covered with thick frlt; the space between the glans and tin funnel is filted wilh hot water.
Accomping to a statement by MS. Droux, in the Annales du Gence ('zul, the use of sudic silicate, in soaps cannot be considered a faloification, as it increabes the detersive properties of the joap. It also diminisher the price and makes the loss by wrying wuch less. The neutral silicate containing 19 parts of soda to 81 of silicic acid is preferable to the alkaline silicate containing 30 parts of soda to 70 of silicic scid. The mod of making suaps with sodic silicate is given; 6 to 8 per cent. of the silicate is contained in the fuished product.
Iscombustible Paper and Ink.-An English inventor has secured letters patent for an incombustible and arc proof ink. The pulp for the paper is composed of vegetable fibre, one part, asbestos, two parts; borax, one tenth part, and alum, two tenth parts. The ink can be us d either in writing or printing, and is made according to the following recipe: Graphite, fincly ground, twenty-two drachms; copal or other resinous gum, twelve grains, sulphate of iron, two drachms, tincture of nut galls, two drachms ; and sulphate of indigo, pight drachms. These substances are thoroughly mixed and buil d in water. The graphite can be replaced by an earthy mineral pigment of any desired colour.
The following method of preserving wooden labels that are to be used on trees or in exposed places is recommended:Thoroughly sork the piece- of wond in a strong solution of sulphate of iron; then lay them, after they are dry, in lime watr- This causes the formation of sulphate of lime, a very iusoluble salt, ita the wool. The rapid destruction of the labels by the wathir is thus prevented. Bass mats, trine, and ohrr sub-tauces used in tying or covering up trees ard plants, when treat d in the same menner, are similarly preserved At a rectant meeting of the horticultural society in Berlin wooden labels thus treated were shown, which h d been constantly exposed to the weather during two years without boing affected thercby.
Is continuation of his rescarehes on the phenomenon of flight, M. Mariy has made a serits of ubservations which prove huw important a part the onward movemen of a bird plays in itcreasing he cficieticy of emb wing stroke. For rapposing that in its discent the wing did not continually come io conthit with a fresh voume of air it would act at a disadrant ge, breause the do"nward mpulse, which at the commenct ment of each stroke, it gives to the air below it, would make that air to m .ch les, elticient a resittiog medium, whilst, by continiully coming in contact with a fresh body ol air, the wing is always acting on it to the best adrantage. For this reasod, when a bird commences its flight it turns toward the wind if p sesble, to make up for its lack of motion on startugg
Tas Siraits Times, a Javanese journal, bublishes some novel information on the poisonous properties of the bamboo which heretofore bas been considered one of the most inoffensive of vegetables. The natuves of Java use the poison against their enemies, and obtain it by cuttiog the bamboo at a joint, and detaching from the saucer-shaped cavity, formed by the cane at such portions, some small black filaments, which are covered whth almost imperceptible necdles. The filaments conotitute the venom, against which no remedy has been found to act. When swallowed, instead of passing to the stomach, thev appear to catch in th. throat and work their way to the respiratory organe, where they immediately produce a violeat cough, followed by inflammation of the lungs. The poison, tried upon doys, produces loss of appetite, severe cough, burning thirst, and Eradual emaciation. The animal froths at the mouth, and finnlly dies by suffocation as if under tive influence of a deleterious gas.

MISOELLANEOU3.

Turre are some 204 blast-furnaces in Pennbglvania, about 100 of which are not blowing.
'lue Martindale Zine Works, at South St. Louis, have had four furnaces in operation during the past month. These have produced 1003 tons of zinc.
As Buffalo, New York State, a steel yacht, to be propelled by steam, is now buag constructed which, it is thught, witl travel at the rate of eightecn miles an hour.

Wiat is believed to be the longe t rope in the world has been recently on view at Messrs. Frost's " walk," Shadwell. It is a grapuel rope 10,000 fathoms long, without a splice, and has been made for the Si, mens Telegraph Company It is made of three strands, the diameter of the completed rope being 2 in.
It is proposed to roll 60ft rails at the Engar Thomson Steel Works, U.S., when they are completed, thus saving 50 per cent. of rail ends. The rolling of 30 ft . rals was once regarled as a great achievement, and two mills, Montour and Cambria, dispute the honoar of the first successful manufacture in this country of rails of that length.

The Statistic uf Paper-mahing.-Some curions statistics relative to paper makituy have been recently published at ∇ anice. It appears that there are 3.900 paper manufacturers in the world, employing 80,000 men and 180,000 women, besides 100,000 employed in the rag trade; 1 , suy millions of pounds of paper are produced annually; one-half is used in printing, a sixth fur writus, and the remamder for packing and other purposes. The United States with 3,000 machines produce yearly 200,000 tons of paper, which, for a population of $28,000,000$, averages 17 It. per head ; an Englistiman confumes $11 \frac{1}{2} \mathrm{lb}$; a German ε lb.; a Frenchman, 91 b ; an IIalian, $3 \frac{1}{2} \mathrm{lb} ;$ a Spaniard, $1 \frac{1}{2} \mathrm{lb}$; and a kussino ouly 1 lb . manally, on an average.

Tue North rn Pacife Railroad has been completed, equipped and put in succeesful operation from Duluth, the exireme westerly end of Lake Superior, to Bismark, on the Missouri river, a ditunce of 452 miles, and from Kalana, on the Columbia river, to Tacoma. on Puret Sound, a distauce of 105 d miles. At K lama commonication is extended up the Colnubia river a distance of 400 miles by means of the Oregon Stean Navigation Company, thus affoding direct means of communitaton and transportation between the territories of Idaho and Washinyton and the state of Oregon with the navigable waters of the lacific. With great cire, and after most particular invertigation, sabminan. and surveys, Tacoma has been selectel as the Patil teminus of the Nurthera facific Railtod. It is otuated un Commencrment Bay, an encellent harbour in Puget Sumbl, aud alrcady his a sumed the usual apparance of escuwitg caty. The co mandeus wharves of tho railruad colapany, the tra k and railruad conn- ctions, are far advanced toward. wipletion, and will affurd all tho necessary facilities which will tic requared by the immenso busine-s that mast wntre at this point.
Proanbly the oldest timber in the world that has been subjected to the use of man, is that which is fount in the ancient temples of Egynt It is found in conrection with ancirnt stone work, which is known to be at least 4,000 years uld. This wood, and the onl! wuod ased a comertion with the temples, is in the furm of ties, holdug the end of onc stone to another in its upper surface. Where two blochs were laid in place, it appears that an excavation about an inch deep was made in each blark, into which an hour glass shaped the was driven. It is therefore diffulult to iorce any stone fom its po-session. The ties apper to have been the tamaink, or chitim wood, of which the ark is sam to have been c nstructed, a sacred tree in ancient Esypt, and now vers rarely fuand in the valles of the Nile. These dovetail ties are just as s und now as on the day of their insertion. Although fuel is extremely scarce in that country, these bits of woud are not large enough to make it an object with Arabs to heave of layer afin layer of heavy stones for so small a prize. Had they been of bonc, balf the oid temples would have been destoyed yeara ago, so precious rould they have been for varivus purposes.-Alanefacturer and Builder.

STRAIV-BCRNING APPARATUS.

SUDLOW'S ROTARY ENGINE - (See next page.)

STEAM PLOUGHING ENGINE TVITH STRATF-BURNING APPALATUS.

We give, on these tro ages, views of a 12 -horse steam ploughing engine, fitied with a straw-burning apparatus, the ensine being one of a pair made a few months ago by Messts. John Fowler and Co. for use in Russia.

The engine is of the type ordinarily made by Messrs. Fowler for working on the double-engine system, but it is an unusually large fircbox, the font of this box, too, being entirely cut away, while the roferoing gar, ntop-ralve. clutcin leve:s, \&c., are all arranced so that they oan be worked fionn tine front end of the engine instead of from a footplate at the hind end as usual. The straw is fed into the tirebox toy the action of a pair of rolls similar to the feed rolls of a chafienter, autidriven by a belt, as shown. In addition howevet. to the simplestraw-
feeding a:rangement Messts. Fowler have provided meanz for buruing a swall quantity of pet oleam oils, he latter beiog supplied by a pipe leading from a tank on the top of the boiler and being injected into the firebox by the action of a steam jet, the injector being arranged just above the stiaw-feediag rolls, as shown by the part longitudinal section on the opyosite page. This provision fur petcolcum bu:ning was made on account of the great power such ploughing engincs are irequently called upon to cxert, a power which it was deemed somerbat doubt. fitl to be able to maintain by the combustion of straw alone, paidicularly if the latter was not in good condition. The quan. tity of dry stran used is about 2616 . per indicated horse power per hour, and as tue engines have sometimes to exert 80 horso power, there is uatumily a difficulty in consuming the necessary quantity. We may add that the en ines are also quitable for buming wood if desired

-LDIOW'S RO'AlI VNGINE.

We illustrate on page 383 a novelty in steam-motorg-a rotary engine patented by W E Sullow, of Oldham, and exbibited at the late reel Park Exhibition at Manchester. Of all mechanical contrivances, perhnps, rotary engines take the first place among problems for which a practical, successful issue has been long, and for the most part, fruitlessly sought. Yet the solution of this minticate subject offers considerable commircial aud practical udvantages, and we are dispused to think that the enfine we illustrate secems likely to prove a successful exponeut of thene a lvantages. A rotary engine in its intrinsic principle seeks to usp steram power directly as a rotary motion without the interv ntion of a reciprocating piston. This may seem in theory a very simple problem, but, practically, an engine on this principle is one of the most dilicult things to con-truct in a satisfactory manner.

The essential advantages of a rotary engine over the old piston eng:ne are bricfly these :-That the use of all reciprocating parts are, as a rule, an econo nical ilisadvantage. This is caused by the fact of all mass req'iring power to set it in motion, and afterwarde, if that motion is not to be continued in the same daection, an equivalent amount of power has to be applited in the contrary direction to stop the motion.

Now, as a rule, considerable power is required, pvery stroke, to fet the reciprocating part of a piston engine in motion, and then their momentum is wasted upon the crank pin and bearings. Heuce an econumical loss Again, a steady ro ary motion in one direction, we may see at aglance, throws less strain and knock upon bearings than an alternate pult and thrust. Hencea fuither lois to reciprocating ongines by friction, and wear and tear of bearings. Again the avoidance of a jarring reciprocal motion obviates the necessity of a strong frame and very sohd fuundations, and there are also ao connecting rod brasses to watch, to prevent knocking through wear, or to run hot by excessive tightrning up. These are bencfits of which a practical man can easily j.dge.

The greatest advantage, however, peculiar to the rotary class of engine is the enormuls power which may be developed in a minimum of space, and whit a smallest possibleamount of material. This is caused by the sact that in reciprocating engines the piston speed i, comparatively limited by reason of the motion berog continually stopped and reversed. Now speed is power, without any further expenditure of material, and uur on y liunt of spetd in steala eng nes is the velocity with which a supply of steam can travil along pas ages with full effect. Anuthis vilo ity is, as far as can be determined, almost infiite. Thus with a pioton nuch as that of a rotary engine, in which the motion is constant, and in the same directoon, a very high ploton rined is attaicable, without shock or jar to the engrae or foundation.

A very higle rate of expansion can with facility be obtained, with one, two, or three cylinders, set at $\frac{1}{2}$ or $\frac{1}{3}$ on the $=$ ame shaft, or by mean. of the usual tly.whe l torernlate the specd. The rotation at high opeed may be hept up by siaply succesoive puffis, as it were, a the phaton perse se the sliding-block, the great velocity enabling the stian to be expanded to the limit of uecful espan-ion With high-presoure sterm the economy of suchan engene hould be quite viluye, a, in travel of piston lo equal to abo it three times the diamoter of cylinder.

With all the avore detalled adiantiges attending this form of enginc, it may be wondered why rotary eugines should not have been, befole this, the getacrally used aud tavoured furm of bleasemotor. The rason is simply this that thereareserious pratical diffeullis to overcome in this form of engine, and the man who may have suclessfally overc me them will have confurred a grat buon on the stcam using community in particular and the world at large.

These dificultics are primipally (1) to make good steam-tight joints over the lagge burase of the peculiar pistun with the minimum of fraction, and (2) to ubtain the rapid - may, iastan-tancoub-withdrawal aud replact ment of tho shding-block befure tho advancius piston and immediately after it, not whe drawing b. fure the stroke is complete; not re enteriog with any space bitween ir and the piston, as that would rejresent wo much clearance or ecouonital loss.
Nus, refering to our illustrations, we shall see that Mr. Sudlew has bulved these difficultics iu a pactical way, with couside rable eugimeriog shall. The pis' on is metallic-packed, with a stel 1 b or on its revolving face. This is held back on its place by a spring, and is kept on to its bearing by the steam
prossur. b ing afmittud to the back of it. 'Mhe mil, a juint proportional to the pressure, and as the pressure falls the joint is relaned atid thero is no unduc lo so by fiction.

The side face joints of the swelling, ot piston, are mude bs di cs, which are fixed by set screws to tho piston, ant therefor" revolve with it. The surface on which the joint is made is thus transferred from the large surface of the piston to a narrow riog on the maiu cylinder, which is an important improvement over ordmary forms of rotary enginer.

The unavoidable expansion of the shaft, through heating by the steam, is thoronghly allow.d for, withont detitiment to the engine, by attaching the r ston to a feath..red boss with three feith rs, allowing free longituitiual action. The lose is tiruly keyeu to the shafting.

The metallic side packing can be easily examined or adjusted by removal of the end covers 'There are but two bolts to undo and no ateam joint to remake.

With regard to the abutment or sliding-block: This is uper ated in Mr. Sudlow's engine liy steam alone, acting by meius of a small auxiliary piston attached to the top of the abutment and regulatod by meuns of a shde valve and ordinary eccentric on the shaft.

This valve causes the abutment to rise casily without shoch, just as the u welliag ou th: piston reaches it aud follows it up. Then the pressure being reversed the abutment i; ma le to rade easily down tho opposite incline, and tends to move the piston forward. This causes a noiseless but rapid mation of the abutment without shock or jar, which is an essential matk of a goud and practical rotary engine.

I governor i, attached, which supples the st.am through a double-beat valve, and which cuts off the steam as soon is the requisite speed is obtaned.

We think that this engine, as a whole, is as good and practi al a specimen of a rotary eogine ats we hate set n, aud we have no doult hat, partially through its ageacy, the benefits of a good rotary motion will bo more fully uuderstood than at present.-Iron.

The new steam hammer at woolwich.

A stupendous steain hammer newly erected at the Royal diun Factories, Woolwich, was triet for the first tine on Tharsids last week, in the presence of the superintendent of the dipart ment. At the first trial it moved with the greatest possule eave, and the b g steam cranes, un elther sije, tach of whah will lift from 80 to 100 tons, swung round with perfect freedom. One of the cranes lifted intu its place a huge stuam ulinder which is to be employed to lift one of the furnace doorThe enormous power of the new hammer can oulg be fally realised by feelog it in operation ; to say it is the largest the most fuwerfal in the wodd cuav yo but a faint icica of its dasonitude and capabities. Althounh it has been de cribed as a 30-ton hammer, the weight of the fratling portion is really within a few pounds of 40 tond, and the furee of the fallno weight a accelerated many times by the use of stcam to dure it down from the tup. It as cetamated that the use of " top steam" is cqial to allowiug the haman. 5 to fall of its uwa wei int from a height of 80 fect. It hat, been allowid a striking foll of 15 feet 3 anches, and it has nut yct been deterinumed what is the actual force of the blow it wial stratic. Ihc lasurmer is 45 foct 14 heught, aud covers with its supports at bats of about 120 feet square. Above the ground it whghs juv ton, and the iron u ed in the fonadation below wighs 605 t.an, It has cost altogrthe r about $£ 50$, ouo, the greater pat of whelh has been paid to Mesors Nasayth, Willson, aud C.: the pateatcos and ma ufacturers.

On the occasion of the trial, wne of the furnaces from which the hammer is to b . fed was also set to woik. It is large nourh to make a comfurtabledwelling-house, aud an omuibus might be driven in at the dootway. The door of this furnace whishs suven tons, asd is, us Usuas, an ion fras filledia with titt bricks, of whech it required 1,500 The colsatructivu of thas furnace has hbsurbed altugether wo f wer tha: 15.000 brichs, without inciudiag the chimney; aud the casting of the lun framing and other work counecteri with the hammer hits on. cupied th: workincia of the Dial Sq aie un the Ruyal Isociash incess antly fur sevena months. The noisu caus.d by the otcamblast when th hammer was at vork cuuld be heardat a distance of two or three miles, but this sound wall be absurbed by the ase ot exhaust boilers.

OVEKHEAD ッIEAM CRANES A'L MIDDLESBRUUGH DOCKS.

These docks, which have seceutly been made by the NorthEsstern Railway Company to accommodate their greatly increased shipping traffic, possess many points of interest and novelty, proininent amongst which is the system of steam cranes employed.

After carcful consideration, on the purt of thu duck authorities, of the various types of fixed, steam, and hydraulic cranes in general use, it was found that no fixed crane could be kept constantly einployed at Middlesbrough, on accuunt of the great variation in the length of the ships, steamers, etc. while, furthermore, as the total area of quay room would be, in the first instance, somewhat limited, the space occupied by a fixed crane would be attended with serious inconvenience. The same objection existed to the adoption of the ordinary construction of portable crane, involving a separate line of rails for them to travel on. There was also the further condition that the cranes must be capable of loading and discharging vessels, the sides of which were fifteen feet to twenty feet above the level of the quag, as rapidly as lighters, whirh would frequeutly be twenty feet below the quay level, aud that in both cases the driver should have a cledr view of his work. Under these circumstances, it was decided to state the leading conditions to various manufacturers of cranes, and invite them to give tenders and prices for what appeared to them best adapted to fultill these conditions.

The design adopted was that sent in by Messrs. Appleby Brothers, of London; this design, as will be seen from the engraving, consisting of a travelling staging or gantry, on which is mounted a steam crane of the same construction as that sent by the firm to the Vienna Exh. bition, and which is in successtul use at so many of the docks and harbours in this country and on the Continent.

The travelling staging or gantry of each crane has a span of twenty-threc feet centre to centre of rails, one of the latter being laid close to the edge of the quay, and the other in the six feet between rails. 'l'he clear height is seventeen feet six inches, which allows the uninterrupted circulation of locomotives, and all kinds of rolling stock on cach of the two lines of rails which are spanned by the gantry. The travelling wheels are twelve feet centre to centre. 'l'he framing is composed of a pair of timber uprights, braced and strengthened by cast-irun brackets, and two wrought-iron plate girders which are connected to the timber uprights by four wrought-iron plate brackets, strengthened with angle irons. A strong carriage with the necessary roller path and brackets for the gear required to transmit the travelling motion, which will shortly Le referred to, is firmly bolted at the extreme end of the girders liearest to the dock, while the girders are planked over so as to form a store for coal and water. The crane and the whole of the superstruct ire, is desighed fur a worhing load of five tons at the maximum radius of twenty-une feet from centre of crane post to the plumb liac of the lifting chain, while the crane itself is, as already been stated, of precisely the same construction as thuse which have given satistactory working results elsewhere, with apparatus for altering the radus by steam from a maximura of twenty-four fect to a mionmum of fourteen feet. 'Lhe travelling motion is transmitted from the crane engines by suitable gear and shafts to the travelling wheels, add warping drums or capstans are fitted on a counter-sbatt on the suner sude of cach trame, so that these warping drums can bedrivea adependeatly of the travelling wheeds, und they are used for muviag the trucks into pomtion b low the crane, as they are required for loading and unloading. This simple addition is found to effect a very large saving in manual lahour and time, which, it is ebtimated, amounts to at least fisuu per year, because, without thio applaance, horses and lucumotives must be kept constantly employed, iavolving wuking expenses, and wear aud tear, in addition to the waintenance of the road, whilst with the capstans the tuctis are brought into pusition by the men ; mployed in ofuniog and shanging, with nofurther wear and tear of roat than that due to the praying load. As it was decided to adopt thas ngst. m ot cranc throughout the dock, the two liaes of ratospraucd by the gantry are laid with crossing; at such lulirrals as wall admat of cither line being used for full or ciapty trucks, or an fact partally for both purposes it debited.

Another is reat mivantage which has been demunstrated by practice is, that the ctance can be so readily concentrated nt ang point where they may be required, and, indeed, as is shown in the engraving, three of these cranes are brought to load a long serew steamer having three hatchways; this is evidently a most important consideration with owners and shippers, especially under circumstances which so frequently arise where great dispatch is essential. Or two cranes can be brought together tor any exceptionally heavy lift The cranes were test d with the maximum working load of tive tons, and subsequently for speed, when each delivered fifty tous per hour fiom the trucks into the steamer's hatchway.

The arrangement we have described may be modified with adv..ntage, under some conditions, by making the crane portable on its gantry, so that it will travel from end to cnd, all the other motions being retaided, the travellag motion in that case being tranomitted through a equare shaft with tumbler beasings. This coustruction is especially valuable for ust on a jetty where vessels lay on each side; to suit thes conduions the gautry is made to span the whole widith of the jutly, rand to travel over the ordinary lines of rail, and roadway. Another modification of the system cunsists in having the crane fixed on an ordanary overhead travelter gantry, or it mas be made to travel across the gautry; in such a case the fixed staging may bs constructed of square timber, or of columas and girders; his class of travelling cranc has beeu rather extensively used in the construction of public works and large buildiugs.

It might at first sight appear that the luad to carry these cranes must be of unusual streagth, but on further consideration, it will be setn that this is not absolutely necessary, because the base obtajned is su large that these is comparatively litrle straiu on the road; in fact, probably no more than on a line of rails of the ordinary gauge, carrying a portable craue of the usual type, working the same loads at the same radius. Sevi ral of these cranes have been in successful operation for some time past, and a number more are in course of construction for the Middlesburough docks.

The fystem evidently ha, great advantages under the condition above-named, as well as for workiog in crowded ral way stations, o. in stout quarries, timber yards, e c., and it appears singular that an arraugement at once so timple and efticient, should, until now, not have been brought into more extensive use, copecially for dock and railway traffic.

Coal Mines in China.-Sume infurmation is given upon this subject in an official report upon the trade of Tamsuy, ancluding Kelung, where cual abounds in great quantatics. Ihe system of working these mones-as indeed Chancse minus generally-is exceediagly paimitive and imperfect. Placts where the mineral is observed cropping out of the hill-side are selecte i, and an opening 5 ft . hagh or more by 2 ft . wide is driven hurizontally for a distance of some fonty yatds, temmat ating in a central chamber, from which worhins, lou yards ur more in length radate in a darection whala usually machats sigghtly upr ards. In tifese wurking, which in many cases can only be entered on all fours, the maser caraco ond the work of excavation, squattang in miad chad watcr, and bathan'ó a most foul atmusphere. One mine usadly cmphoys avout twelve or fiftecen maners, who carn wages equabalent tu 1 s . bid. a man per dem, which is an extre:ncly bigh rate in Chath. The usual length of a day's work is about eleven houts. 'The miner is armed with a pick ohated dike a sledge hammer wath whe head pointed and welghiag about 6 lb . The lagith of
 maner's lamp is a saucer of oil with a rush wach latideto it. The coal is drawn along the pit fluor to the mouth in a basket about 3 ft . lung, tastened un a buard wat! a rathan curd athached by whala whatul. Occastunaty the buad is fistened on rullers, and travels on platiks land down for the pilipuse of
 pertect tools cmpluyed graat waste ucours though so gicat a quantity ot the coal being reduced to a puovder. The tintalation of the mancs in Wit to itself, and it as stated that ho oystem of pumping out the water is empluy ded. I'ac water ruas out at the mouth of the mine, and an cascs where the grallersos tahe a dowaward dirciction, the unly rosuurce left is to abandou the wohbug when the water excessivily actamul. ates. Fire-damp is unkitown, but accidents oflen happea an consequence of the side or rowf falling in, whala fiom the the sulticient waty in which they are secured is almost nevitable.

OVERHEAD STEAM CRANES.-(Sce page 385.)
Generally syeaking, it may be assumed that the conl-working ' unt sufficient capital to purchase such machinery, nor do they at Kelung is litue more than a seratching of the surface and that the real coal-heds may be considered to be practically untouched. The Cbins se Government rather put drawbaks in the way of these mines than offer facilities for their working. The wwhe of hant whit a contains coal is not promitted to open a mine without previou!f oblaining th sanct on of ' he quality of tais coat has becin farourably reporend uno ato the authorities. whi h mitolves great delay and expense, and competent enginecrs, and it as stated, in far i, on good anturity is after all usuelly refased. An to the introduction of niachi- that for bousehold purposes felung coal has no supetier nery for the better woming of the mines, the proprietore bave ;

