The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommage

Covers restored and/or laminated/
Couverture restaurie et/ou pelliculse

Cover titie missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other then blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en coulour

Bound with other material/
Relif avec doutres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serríe peut causer de l'ombre ou de la distorsion ie long de la marge intiorieure

Blank leaves added during restoration may appear within the text. Whenever possibie, these have been omitted from filming/
II se peut que certinines pages blanches ajouties lors drune restruration apparaissent dans le texte, mais, lorsque cola útnit possible, ces pages n'ont pas éto filmies.

L'Institut a microfilmó le meillour exemplaire qu'il lui a dte possible de se procurer. Les details de cet exemplaire qui sont peut-ftre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagiesPages restored and/or laminated/
Pages restauries et/ou pelliculies

\square
Pages discoloured, stained or foxed/
Pages discolories, tacheties ou piquiesPages detached/
Pages dítzehies

Showthrough/
Transparence

Quality of print varies/
Qualite inkgale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Titie on header taken from:/ Le titre de l'en-tite provient:Titfe pace of issua/
Page de titre de la livraison

Caption of issuc/
Titre de depart de la livraison

Masthead/
Genivique (périodiques) de la livraison

\squareAdditional comments:/
Commentaires supplimentivires:

This item is filmed at the reduction ratio chrecked below/ Ce document est filmet an trux de reflection indigine ci-desous.

THE PARMER ANE MBCHMNL,

Dovoted to Agricultural, Horticultaral, Mechanical, and Domestic Subjects.

Fol. I.

Sugar Making.

-

The scason for manufacturing sugar is at hand, and a few practical directions may be found useful to those who intend to devote attention to the business. In consequence of the severe frosts that have prevailed this suason, it will, doubtless, be favourable for the manufacture of sugar from the maple. Some suppose, that, on the score of economy, the time expendin making maple sugar might be more profitably employed in prosecuting other branches of labour on the farm. We can confident'y adviee those who have a good sugar bush to pay every properattention to it, as it will be fouad, upon a strict investigation of the matter, to al:ord :s profitable a return as almost any other batach of farm labour.

In a season, tolerably favourable for the business', three pounds of sugar may be cataxeied from the sap produced from cach tree, besides a considerable quantity o? molasses and vineqar. The saccharine matter produced, suited on! io: the manufncture of the latter, will, ia imaverage of years, be equal to one-sixth of the who: quantity yielded by the bush.

Two men will atiend to five handred tre"s, without any inconvenience, proviled ihat :reper appliances and fixtures be provices!. The season, in an average of cases, doos not coxceed four weeks, and by using ordinary ccoromy, in that time, two men may make 1500 ths. of sugar and upwards, besides molasses and vinegar sufficient for a common-size:? f:amily, for a twelvemouth. A good quality of mamic sugar is worth 52 per 100 lbs ., which, on the above amount, without including the molasses and vinegar, would give a cost return oi $_30$. The writer is acquainted with Ca:adian farmers who make a practice of tapping fiom one in two thousand trecs annually, ased from which they derive an annual income of from $\mathbf{x}: 50$ to syioo; but the usual practice is to manufacthet only what would be required for dom"stic Tine, beiag, the product from two to threc hun-

The most northern portions of Canada settlements will produce the greatest quantities of sugar from the maple. The forests on the south shore of Lake Huron, as well as those on numerous jslands, on that extensive sheet of water, comtain a very large quantity of the largest sized sugar maple; and in that region of country, the sugar season lasts one-third longer than it does on the borders of Lakes Ontario and Erie. A merchant, who trades extensively in the article of maple sugar, manufactured by the Indians, has repeated!y assured us, that if ponpur encouragement was given to the bisiness, the sugar manafactured in that region, by the Indians and white popuhation, mast be made to yich an anmal return of apwards of $£ 100,000$. On the great Mamatoulin Island, even as unfavourable as was last year for the business, the aborigines made and sold upwards of $100,000 \mathrm{lbs}$. of sugar : a considerathe proportion of which was bought by Michigan merchants, in exchange for woolten and cotton goods.

This proviase contains an abundance of suar mapie to supply its population with subgit for a hundred years to come ; but it dues ne: follow, from this fact, that sugar will be ma:tr in a stiffeient quamity to meet that deman'. To argue on such a basis asthis, woald accomplish no gocd, and besides, it would r:siat in aisappomment to those who might favour the opinion. Because the soil of Canatia contai:s the matural cle::ents for the production of a haadred or more times the ganaty of grams and vegrnhles that are anmally proluced, it would be wrong to argue that any atmoonch towarits such an abundant yield, coud be harvested f:m our soil. But, nercatieciess, it would be fair to iafer, that the average yield might be greatly increased. So it is with the protuction of sigar from our exteasive forests of maples, with the difference in fivour of the latier, arising from the fact, that, in the business of making sugar, no cultivation whaterer is required, the trees being the natural
products of the soil. This, upon a close investigation, will be found to be the most favourable feature of the whole matter; and it would be well, for those whose circumstances would admit of such an arrangement, to engage in the business, upon a respectable scale, for the purpose of ascertainiag the catact cost of producing a certain quantity of sugar from the maphe. In an average of seazons it will be fumed, that the profits on making maple sugar will be cqual to fifty per cent. on its value. The only correct method of determining the real value and importance of any particular agricultural prodect, is for the producer to note down carefally every item of cost, which should be based strietly upon the interest of invested capital, and the value of labour and board, and in the vicinity in which the experiment or operation is made. We yenture the opinion, that if this cxedlent rule be acted upon, the manufacture of ithaple sugar will show, on an ancrage of yars, as large a net profit as that of any vilher branch of farm labour.

The single item of sugar alune, costs this colony many hundred thousamd pouads amually, which has to h : paid for pincipally in cash. If only half the quatity required for constimption be produced at hoine, it would be a saving of a large sum of money, which would be retained in circulation among the producing and commercial clases, and thus bencfit every branch, of industry. Without fartherattempting to show the advantages of manfacturing sugar from our mapic furests, to supply either the whole or a part of the demand for home consumption, we shall, in as bricf a manner as posslble, give some plain, practical directions, which, for convenience sake, will appear uuder their difierent heads or departments :-

Tapring pae Trees.-This operation is performed in a variciy of waya, but the one, in every particular the least objectionable, is that of using the augur. The instrument should not be more than three-quartess of an inch bore, and the hole in the tree should not exeeed three-fourths of an inch. The spiles oulget to be so constructed, thax they would fit the hole so completely, on the edge next to the
bark of the tree, that not the slightest particle of sap would be wasted; whilst the inner point of the spile should be beveled so as to allow the sap to freely press between the spile and the edge of the bore in the tree. They should be from 12 to 20 inches in length, having a fourth of an inch hole in the centre of the point that enters the tree, through which the sap will pass to the channel gouged ont in the centre of the upper sufface of the spile. It will require some pains and labour to make spiles of this lsind, but when properly made, they will last many years. In using the augror, the hole shoudd have an inclination upwards, so that the water, after the sugar season is over, will not lodge in it, and thus cause that payt of the tree to decay. On most trees a three-fourtas of an inch angur hule will grow up in four years, and as soon as this is the case the tree may be retapped in the same place. On large trees from two to three taps may be made leading to the same vessel, and the spiles should be made of various lengths, to be $s^{\text {lapted }}$ for that parpose. By employing the augar and the hollow spile, the air; yill be completely excluded from the incission in the tree, and, besider, no sap will be lost.

Apranates for Bohnsg.-When the business of sugar making is carried on upon a pretty large scale, the best appararis for boiling down the sap that can be employed is one or more large sized potash kettles, set in an arcls of stones. More sap can be craporated in vessels of this kind than any other, unless perfeetly flat-bottomed boilers be used, such as are cmployed in many salt works. Boilers may be made of sheets of iron, about seven feet long, two feet wide, and two feet deep, which, if set in an arch, will be found very efficient in boiling down or cvaporating sap. The ends and sides may be made of well-seasoned boards, and, by a little care in the construction of the arch, the wood may be completely protected from the action of fire. A house for boiling sap is very desirable, as it will enable the business to be prosecuted both night and day, if it should be required. The most convenient method of supplying the boilers with a regelar supply of sap is to place a long trough or vessel direcity alöngside or over them, from withich a smill tep,
by means of a spile, can be made to convey a stcady, amall stream to them, which must be regulated by the rate with which the sap is cvaporated. The sap is usually stored in a large trough or puncheon; but a much better plan is to make a cement cistern, under the boiling-house, and by the use of a pump, the feeding trough may, with much expedition, be regularly supplied. The foregoing suggestions are by no means indispensable, but in many cases they might be carried out with much advantage. The great point to be observed in sugar making is perfect cleanliness; and, when this principle is acted upon, it matters not whether the boilers be large or small; whether cement cisterns, or a trough made from the trunk of a tree, or puncheons be used for the storing of sap; nor is it essential that the boilers should be set in an arch; but they are here mentioned so that those who may be desirons of doing a large and profitable business might, if they are disposed, adopt them.

Clarifying and Granulating Syrup.-This operation is performed in a great variety of ways. If a large busincss be done, the methuds practiced by the clarifying establishments might, wilh advantage, be adopted. But as it would require some exponse, and a nicety in caecuting the matter, that could not well be observed by inexperienced persons, having only written directions, we shall not at this time make mention of this, for fuur that evil, rather than good might result from it. We spcak advisedly, when we say, that with a very trifling expense, sugar fully. equal to the double refined cane loaf sugar way be wanfactured, by our farmers, from syrup extracted from the sap of the Maple. For ordinary domestic use so fine an article is not requircd, and a quality equal to that bought in the stores, being the product of the Indies or the Southern States, would fully satisfy most people. The usual method of making either cake or atirred sugar is not udapted to make an article that would be souglat aftof by persons of culcivated tatate; and in order that it jmight beoome an important itent of commerce, sfor slocal conuntmption, it would be atrell to andons. a thiore
enlightened system of clarifying and granulating it.

To clarify the syrup for 100 lb . of sugar, the whites of six eggs well beaten, a quart of sweet milk, and a tablespoonful of salcratus should be used, the whole to be mixed with the syrup beforo it becomes scalding hot. The fire employed for sugaring off should be regulated, so as to make the syrup boil very moderately ; but; before it is allowed to come to a boil, the syrup should be carcfully skimmed off, and much muoh care sbould be observed in preventing it coming to a boiling heat until the whole of the scum has been removed, or, in other words, until it becomes perfectly white.

Many object to the use of maple sugar for swectening tea, and for many pastry and culinary purposes, as it imparts a taste that is peculiar to the maple, which may probably be traced to the fact, that the wood of the maple contains a very large quantity of alkanine substance und pretoxide of iron, which are extracted from the tree, and form a portion of the eap. Be this as it may, it is quite cortain that this flavour may be extracted by a very simple process, which will be found neither difficult nor expensive. Instpad of making the sugar in brown cekes, or stirring it while hot until it becomes perfectly fine, it should be reduced to a praner consistency for making drained sugar, and then be poured into vessele made of wood, in the shape of a cone, which will each hold about 80 or 100 ibs. of sugar. A number of holes must be bored in the bottom of those boxes, as soon as the sugar becomes: thoroughly granulated, which generally will be the case within three or four days from. the time it is mado. To keap the entire mass, or loaf, in a moist state, it is only. necesary to cover the top closely with a number of layers of a thick woollen blanket, which for a fortnight will require to be rinsed daily in clear, cold water, If it be required to make an article that, to appearance and flapbur, will compare with doable refia-. ed loaf sugar, to effect that purpose it xidl only: be necessaty ta idiroolve the sugar; and repeat the phocess alrieady pointed out.

The molaswes extracted from the sugar will be of an inferior quality, but for many purposes it will be found useful in a farmhouse. Whether the foregoing method be practiced or not, it will be found, upon trial, to be a much better plan to make wet sugar, and afterwards drain out the molasses, than to make it into hard; or dry sugar in the first instance.

Annexed we give the process of maling sngar from the cane, in which mention is made of using lime; this, as far as we are aware; has not been tried in making maple sugar, but would doubtless be of service, and would probably re: move its peculiar taste: we would, therefore, suggest to our readers to make a trial, on a small scale, so that its effects would be fully. tested:-
"In the manufacture of gugar from the cane, the first process consists in obtaining the jurice, which is done by grinding and pressura. This is then evaporated by a gentle heat, during which a quantity of lime is added, partly for the purposc of neutralizing any free acid, and partly for the purpose of separating extractive matter which unites with the lime, and forme ascum on the surface of the liquid. The evaporation is continued until it acquires the consistency of syrup, when it is transferred into wooden coolers, where a portion concretes into a crystalline mass, and in this state forms what is called muscovado or ravo sugar. It is then placed in vessels with apertures in the botiom, where the more fluid parts drain off, and from the well known sweet syrup, molasse\%.
"Refined sugar.-Raw sugar is tefined by the following process: The gugar being diseolved in water, is mixed with the whites of eggs or the serum* of blood, and boiled. The albumen or serum is thus cosamiated by the heat; and rising on the surface, brings with it such impurities as the sugar contained, which are removed liy a skimmer. When the syrup is judged to be sufficiently clear, it is placed in smaller pans, and farther concentrated by boiling, and then transfurred into coolers, where it is agitated with wooden oars, until it appears thick and granulated. It now becomes white, arid the crystals being broken by the agitation, facilizates the draining off the colored inatter which remains.
"İt is next plaged in contical cup 3 of earthenware, of the well known form called axgar louf. These hiaving aperitures at the boitom, a portion

[^0]of molasoes drains off; leaving the sugur much whiter than before. Laatly, a quantity of pipe clay is mixed with water to the consistency of cream, anid poured on the loaves to the thickness of an inch. The water from this slowly percolates 'hrough the loaves, and washes all remains of the coloring matter from the sugar. The loaves are then dried by heat, and put in paper for sale.
"Refined sugar uitdergoes no chatige when exposed to the air, the damprress of raw sugar being caused by impurities.
"Sugar is decomposed by the sulphuric and nitric acids. By analysis it is resolved into the usual constituents of vegetaoles, oxygen, carbon, and hydrogen."

AGRICULTURAL REPORTS.

On a former occasion, we published the proceedings of the Township of Gueiph Agricultural Society, which embodied some excellent speeches on Agricultural topics, made at a public. dinder. Farmers, unlike many other classes of acciety; do not have frequent opportanities of comentingling together in large masses, for the purpose of concentrating their infltenice and talents in effecting improvements in their arts; and when they do meet at their annual festivities, it certainly appears consintent that the greatest possibte amoumt of intellectual enjoymeitt and benefit should be obtained. The amount of practical information that might be brought before the public, through the Prese of the country; by reporting experiments made in Agrictltare, would doubtiess be very great, if societies could be induced to do, in this reapect, what has been done in some isolated cases.

The great national Institation of the State af New York has set mozt excellent example in establishing a high order of Agricultaral Literature; and it would be well if Cattadu would adopt similar ateps in developing the latent talents of her Agricultural peopile: It is the busin ss of Agricaitural Societien to lonk well to this matter, for unless mare efficient means be adopted by them, for promoting sabetantial improvements, the propriety 'of making large amnual grants of pablic mowny in their behalf will ecrtainly be brouglt into anemim. .
The herisome of Agricultare man, in thin
rnlightence age, be reduced, as far as possible, to a correct practical science. The effects produced in the various departments of husbandry are capable of being truced to their legitimate cause; and this being the fact, why should so important an interest be allowed any longer to be enshrouded in mystery? It need not be the case if the most intelligent farmers, combined with the influence that Agricultural Societies are capable of bringing to bear on the matter, would do their duty to themselves and their common country. The few paltry premiums that are distributed among the members of Societies do not more than compensate for the extra expense and trouble that competitors subject themselves $t a$, for the purpose of obtaining them ; and many cautoos and senisible farmers, seeing this to be the case, do not take any interest in supporting Agricultural Instituticns. But how different would be their feelings if step; were taken by the officers ant managers of societies in collecting and distibuting useful information on the various bramehes of their useful profession!

Vie publisit the following Report, copied from the Vermont State Agriculturist, on breeling horses, which will serve as an excellent mode! for such of our Societies as are desircu, of prometing improvements in Canadian Agrauture:-

breining horses.

W, extract the foilowing from a report made at the last fair of the Windsor County Agriculural Society, by the Comaittee on Hoises. The !eport is the best paper we have seen among those yet produced by the agency of our Cunnty susictits. The reasons for making the awarls re given in full, with excellent practical rewarks on the buiness of breeding horses:-

Your Commitre are of opinion that there is no batarla of stock-raising more profitable than the rearing of the best of horses; and they consider there is no trouble in accomplishing this, provided that none but, the very best stallions are beed to, and none are bred from, any but excellent horses, which, by the way, are very scarce, and hard to be obtained, and for the following reasons:-Owing to the high price good " horee !esh" will ever command, the majority of our best mares, as soon as they come to maturity, ind their wey inito our vilhage and city markets, mad are never allowed
to breed, save a few that may be returned to the country after becoming unsound in limb, or having their constitution broken down with hard usage and old age; and many that remain among the farmers are valued so highly for their labour and fine appearance that they are never permitted to breed until they are in a similar condition to those returned from our business markets. The conseqence is, that nearly the whole of our horses are produced from the most ordinary marrs, or unsound ones. An unsounduess of the limbs majnot impair the value of a breeding mare, but if she has a weakened constitution, it must, more or less, impair the strength, speed, and endurnnce of the offeping, although they may have fine forma. Your Committec believe it would be far more proftable to purchaze and breed from mares worth one hundred and fifty dollars, than from those whose average value, for the last ten years, in a sound state, hay been no more than forty dollars, (and this, we believe, is the class of a majority of our breeding mares.) From mares of this stamp. and to good stallions, we cannot raise colts w. hh, at four years old, would have sold, through the abovementioned time, higher thon fifty dollars to seventy-five dollars; whereas, from the first class of mares, and to the same stallions, we could with equal cerianty raise colts that would command double these prices, and oceasionally one may cominand four tines as much.

Another thing that has a great tendency to multiply the number of huor hoises is, that farmers too often estimate the profit of raising cols by the first cost of geting thein-bestowing their patronage where they cau be insured with a foal for the least monys, and frequently to a horec of ordinary qualities; when, by the addition of a few dollars, they might eecure thic senvices of a horse whose stock would afford them a piont similar to that spoken of with the best class of breeding mares, It sipould be remarked, however, that stallious ure of a muob higher quality than the breeding mares. Take these as a whole, there has bren a great improvement in them within a few years. And a!though we may have only a few but whatare valuable horses, yet there is a great difference between them-and even among those of a very high order. Independent of the pecuniary advantages of breeding from none but the very bers of horses and sires, one may enjoy, according to the fancy of the owner, from five do'lars to twenty dolla:s' worth of satisfaction, in producing a superior animal.

Allow your Committee to uhrow out a fow hints in relation to breeding coltos-docking. nicking, framing. Colts should alwaye be kept in a good condition; not extravaganuly fed; pet they should have nomething more:phapudry food the first two winters. The ntaring of colle

140 Hussey's Reapers-Culture and Preservation of Potatoes.

will not only impede their growth, but will bring on a contraction of the ribs, cords, and muscles, cepecinlly about the chests and shoulders, that will, more or less, impair their power, action, epeed, and endurance, after coming to maturity.

It is she opinion of your Commitice that a horse will have the most perfect strength and action with a natural tail ; yet, for appearance, they would recommend a moderate docking, which should be governed by the build of the animal asi the character of the tail ; hut we should very seldom leave a dock of less than twelve inches; and the docking whould be performed when the colts are one or two years old, (one year old is preferable.) Colts may be docked at these ages with less injury to them than when nearly grown; they will have more of a bush to the tail th longer bair, and will be inclined to carry , a a more elevated position. Nicking should be looked upon as a cruel and useless pisctice, which undoubtedly impairs the strength and action of the horse, and may sometimes seriously injure the constitution.

Great care should be used, in breaking colts, to have them kind; and there is but little difficulty in this, provided they have proper and gentle trestment. They very seldom need but little, if any whipping. They should be learned to do their work in an easy and handsome manner, and without fretting. A horse that is trained to chafe and dance in the harness, or under the saddle, may do very well for fops and horse-jockeys, but it is not what in sensible man wants in a horse designed for service, as it is, a waste of strength and action, without accomplishing any useful purpose. And in forming an opinion of a restless horse, it will be well to consider whether the apparent energy and action is natural, or whether it is brought about by training, and the foar of the braid.

All of which is respectfully submited.
In behalf of the Committec.

> Ebenezrr Brange, Chaitman.

Husser's Reafers.

A correspondent in the "Ohio Cuitivator," in relation to these machines. says, that he had used one of them during the pant harvest, and was well satisfied with its performance-having cut 50 acres of his own wheat, and 150 acres for his neighbours.

He also states that he has made a slight improveirent in the machine, to obviate a dificulty which occurred by the falling of considerable wheat, after it was cut, over the edge next to the standing grain. The upright edge on thai
side was lengthened and made bigher; and this improvement caused all the grain which was cut to fall upon the platiorm.

This machine was also used by the same correspendent, for the purpase of cutting up corn. To adapt it to cutting corn it only requires the platform to be made wider, so as to hold the stalks, and prevent them from falling off, which was done by one piece of board, about 15 inches wide, nailed to cleats, on the back part of the platform, and which can be easily removed when it is wanted to cut wheat. From eight to ten acres of corn may be cut with this machine, which is an additional claim that this excellent implement has upon the public.

Oniture amd Freservation of Potatoes.

In the January number of the "Agriculturist;' of New Yorl, a communication from the pen of Mr. John Wilkinzon, of "The Mount Airy Agricultural Institute,' on the above subjeet, has been read by us with much interest. The average yield throughout the field was 250 bushels per acre. The principtes embodied in the practice of cultivating and preserv:ig potatoes, at the above institution, are almost precisely such as have been frequently arged upon the consideration of the Canadianfarmers by the editor of this paper. The mode of cultivation we can confidently recommend, having tested it repeatedly on a large scale. A potato crop, managed in the manner deacribed, would cost but a trifle more than making a naked summer-fallow, and with very diffirent results in the pocket. Spring wheat, barliy, amd fax, may be made to follow the potuto crop with most perfect success in uine cases out of ten; and with those crops, the land may be sown with elover with much advantage and profit.

The great point, after all. since the prevalence of the potato epidemic, is the snving of the crop after they are grown. Until more light be thrown upon this difficult subject, it would be unwise to cultivate the potato to any great extent. Without further comment, we give the following extract from the letter in question:-
"About the frot of May, I planted five acres in the following manner: the soil was a dry, micaccous, sandy loam, gradually rolling with
a southers exposure; the seed used was both white and purple Mercers, principally large ones, cut into three pieces, and rolled in gypsum, and allowed to lie but a few hours after cutting.The field was an oid sward, chiefly of moss and garlics ; the manure employed was entirciy from the yards, made from the cow and horse stables and the styes, about twenty-five twohorse luads per acre, spread broadcast before the plough-the land having been heavily limed several years previous. The planting process commenced with the tillage, by dropping the pieces of the tubers (prepared as above) about one foot apart in the bottom of every other furrow, which was five inches in depth and ten inches wide, strewing them with ashes and fine charcoal (from a locomotive, in which pine wood was consumed), about twenty bushels per acre. The ploughing was performed in the usual mancer, in the lands of twenty-five yards each.
"Immediately afier planting, the ground was thoroughily rolled. After it had lain a few days, it received repeated harrowings, lengthwise of the furrows, in the warm part of the day, which was continued until the tops were three inches in height, after which they remained without tillage until they were some eight inches high, when the cultivator was passed through, between the rows, and the weeds, if any, removed. They then received a light top dressing of gypsum, after which they remained untourhed until fit to harvest, which was done as soon as the skins of the new tubers were firmly set, but before all the tops were entirely dead. We began to dig aboat the first of Sep tember, before the autumnal rains commenced. They were placed in a cool, dark cellar, and spread on the ground floor, about eighteen inches thick, wisere they remained for two months, when they were assorted and placed in bins about four feet deep, there to remain until marketed in the spring. They have so far kept perfectly, there being no visible traces of disease in the eatire crop."

> Origin of the Soil.
> " scientifc A GRiculune."

We have received, in pamplilet form, the Address of Professor Norton, of Yale College, delivered on the occasion of the great fair at Buffalo, in September last. It affords a rich repast. The following is an extract:-

The farmer of the present day, who desires to improve, and to thoroughly understand his profession, has a wide range open before him. All of the natural sciences offer advantageous fields for exploration. In the air, the earth, the water, in the vegetable and animal worlds,
the mind once aroused, finds safficient spece for its utmost energies.
Each one of the subjects that I have indicated, affords ample scope for a host of observers during a long serics of yeurs; even with the great progress already made in research, each possesses within itself a multitude of unresolyed problems waiting for solution, and harmonious laws which we only need to understand, to be impressed with a still greater admiration than that we now feel when we are only able to sec their incomprehensible workings.

These assertions it is my purpose to illustrate to-day, by some observations upon one of the above topics.
I have selected the soil-not that it affords a broader field than some of the others, but it scems naturally to come first when we speak of improvement, and because it is the foundation froun which all progress must be made. I shall contine myself to one part of this great subject -the structure, the physical properties, and the chemical composition of the soil. This may seem to some a narrow limit, but there will be no difficulty in proving it far too broad for the limits of a single address.

The soile which now exist upon the face of our earth, have been produced by a varicty of agencies; the chief of these have been, the gradual decomposition and crumbling down of the rocks themselves, and deposition by water. We know that the external outline of the earth has undergone must extensive changes. In some places it has sunk, in others risen. Sometimes it is cvidelt, from the present conformation of surface, that violent currents of water have swept across strata of rocks, wearing away the uppermost, and transporting their ruins to fill up depressions elsewhere. We often find strata upheaved and dislocated by accident from helow, and in many cases ece the inferior rock presenting itself on the surface, having burst upwards in a state of fusion, in spite of every obstacle. Scarcely a region can be found which does not present striking evidences of the throes, convulsions, and changes, which took place before man became an inhabitant of this planet. It is for geclogists to decide, if they can, how long a time was occupied in these changes; suffice it for our present purpose that they have taken place, and that they seem to have been especially ordered for our benefit. Had the stratum last deposited or formed, continued unbroken and unchanged around the whole carth, we should have none of the beautiful variety of scenery which now. greets our eyes on every side; no alternation of hill and dale, mountain, plain, and valley, with the attendant variations of climate and production, which now remind us of perfection itself.

The soil would have been identical in com-
position over vast districts, if not over the whole earth, being all formed from at least allied species of rocks. Now as few rocks contain all the material for a good soil, this soil would doubtless have been imperfectly fitted to sustain most of the plants necessary for our existence and comfort. When exhausted, too, we should have had no stores of mineral substances in forms convenient for supplying the deficiency.

The convulsions of nature, however, have been directel for our good, and they seem to have continued in a very long series befure this earth was deemed fit for the abole of man.

Geological researches have shown us the existence of races of animals, tha: lived and died and succeeded each other in countless nyriads, through long and indefinite periods of time. We find them all changed to stone, entombed in rocky sepulchies. Sometimes the appearance of the rock denotes that it was depositcd from a calm and quiet sea, where the animals died naturally, and in consequence seldom remain whole or unharmed. In other cases life and its functions seem to have been suspended by some sudden change, so that we find large fish with smaller ones in their mouth but half swallowed, and others with their thorny fins yet erect in the attitude of fear or rage with which they reccived their death shock, when that sudden mysterious destruction came upon them. In some of these periods also, upon that part of the land elevated above the water, there flourished a vegetation of exceeding luxuriance.
Internal fires have borne a decided part in all these changes, if they have not been the chief agents. It is well known that even now, as we go towards the centre of the earth, for each foot in depth the heat increases, indicating interior combustion still active. In the early history of our globe these fires must have burst forth many times. The masses of melted matter may be plainly seen, penetrating the stratified rocks, filling cracks in their substance, flowing over their surfaces, or uphenving or contorting them.

But while some rocks were thrust upivards, others sunk in crrresponding depressions; and vast currents of water produced by these convulsions, seas and lakes turned out of their beds, seem to have swept over the world; completing the scene of confusion by tearing away and grinding down strata, bearing the materials to other regions, there te form beds of sand, clay, or gravel, acearding to the nature of the original rock. The vegetation, at such periods, seems tc have been carried into hollows, and baried deep by succeeding or continuing shocks, to form, under enormous pressure and a high temperature, beds of coal, for the advantage of beings yet to be created.

Thus all these tremendous revulaions and changes of surface, seem to have been made with the great end of preparing the earth for
the habitation of nan, making ts resources available to him.

In such a view the globe appears to have been a vast manufactory for our benefit. lis beds of limestone, of marl, of gypsum, are dispersed in every direction, that they may be accessible to all ; the various composition of its rucks, produces soils capable of growing every neceseary plant ; its ores are abumdant in proportion as they are the more indi-pensable for the framation of necessary implenients; while os the walls of our coal mines, we may still trace the furms of a gigantic vegetation which flourished long ages ago, and was then stored for our use.

It is not to be supposed that the present surface assumed its present shope, in every place at the same time. Some regions, wathout deubt, became tranqual long before others, but all must at first have presented a strauge naked aspect. There was of course no soil, except in the tract of some former current where matter in suspension had been deposited. This appearance of absolute raggedness and sterility, could not have continued long unaltered. Atmorpheric influences, heat and cold, moisture and drynesss, worked surely then as now, und after a tune the most enduring rocks began to crumble. As the decomposing fragnents became minute. litt'e patches of soll were formed her" and there. If it were on the side of a hill the fine particles had a tendency to descend into the hollows, being washed down by the rain. In ordinary circumstances, therefore, soil must have first appeared in the valleys in every litic: hollow of the hill sides. The durability of each particular species of rock, had of course much influence upon the readiness with which the soil formed. Thus most of the slates, many limestones and sand stones, soften and decay readily when exposed to the air ; on these were to be seen soils at a comparativcly early period, and such soils soon became deep. But the granites, and some of the harder linestones, remain almnst unchanged for a long p-riod of years, and we see even at this day that the soils upon those furmations are thin, while at ficquent intervals project masses of the native rock, yet defying the influence of time.-[Michigan Former.

Agricultare the leading Interest.

It is supposed that three-fourths of the ponulation of the country are employed in agriculture; the other quarter being divided among all other employments and professions. Besides, the mechanic, the manufacturer, the merchant, and the professional man are all mainly dependent upon the farmers for patronage and support. When the farmers, as a claso, are prosperous, all the others participate in their prosperity. From this it follows, that whatever benefits the
agricultural class, directly benefits three-fourths of the people, and indirectly benefits the other fourth.

Suraly, then, the farmers have a right to demand of goverement the means to sustain their agricultural societies, ard to collect and diseeminate impertant informsion relating to their calling. Let the light of acience and education be brought to the aid of agriculture. Let our resources be developed, and the skill and industry of the husbandman be directed into their proper channels, and results would soon be attained in which not only the farmer would rejoice, but the whole community with him.-[Maine Far.

Marke of a Good Working Ox.,

Mr. Asa G. Sheldon, of Wilmington, who has great experience in cattle, particularly in working oxen, and is regarded as the best authority, gives the following:-

Long head, broad and oval between the (yes; the ege fult, keen and pleasant. Such marks denote ability to receive instruction and a readiness to obey. The short-faced ox starts quick at the whip, and soon forgets it. The black-eyed ox is inclined to run away. An ox with very large horns near the head is apt to be lazy, and he cannot endure heat well.

Forward legs straight ; toes straight forward; hoof broad, not piked; the distance short between the ankle and knee. These properties enable an ox to travel on pavement and hard ground. If the ox toes out, the strain comes on the inside claw, and when travelling on a hard road, he will be lame at the joint between the hoof and the hair. When the toes turn out the knees bend in. An ox with crooked knees is apt to become lame by holding heary loads down hill.

Breast full ; straight on the back ; round ribs, projecting out as wide as the hip bones. These are indications of strength and a good constitution,

Diseases of Swine.-Dry warm beds, free from winds or storms, and suitable food, will most effectually prevent fatal attacks. The hog has little external covering to protect him against cold ; nature has provided this imediately within the skin in a deep layer of fat which surrounds the full plump hog. Fat being one of the bot non-conductors of heat, the pig that is well fed bidsdefiance to the intese cold which would produce suffering and disease in the ill-conditioned animal.

Glass may be drilled like metal by keeping the inatrument (a common iron drill) moist with a solution of camphor in furpentine.

SCIENCE OF PARMING.

BY LEVI EARTLETT.

There are four other elementary bodies that enter into the growth and composition of plants, and it is from these that the greater part or bulk of plauts and animale are composed.These four substances are oxygen, nitrogen, hydrogen, and at bon. The three first of these are known to us only in a gaseous form. Carbon is pure charcoal, and, when burned, it combines with the oxygen of the air in certain and exact proportions, forming carbonic acid. These fuur are termed by chemists organic bodies, and they are susceptible among them: selves (and with the organic constitucnts of plants) of forming an infinity of clemical combinations, and yielding an endless variety of products.
The atmosphere we breathe, and in which plants grow and live, is composed principally of a mixture of oxygen and nitrogen gases, in the proportion, very nearly, of 21 of the former to 79 of the latter. It also contains, as a consituent necessary to the very existence of vegetable life, a small per centage of carbonic acid, on an average of about one twenty-five hundredth part, and however incredible it may seem to those unacquainted with agricultural chem'stry, yet it is a fact, that from this source is derived about $=. . c$ half of the solid substance of all plants that grow upon the face of the whole globe.

At the first view it would seem impossible that this apparently small amount of carbonic acid diffused through the atmosphere could supply to growing plants the carbon found in their solid parts, as it amounts to from 40 to 50 per cent. of all trees, plants, and vegetables, in fact, all the parts of plants which are cultivated for the food of man or animals, and unquestionably most of this carbon is derived directly from the air, by the agency of the leaves of plants, although there can be no doubt but a small portion of it is taken up by the roots mixed with water, and some of the inorganic matters that are in solution, such as potash, lime, \&c.

When we reflect that the atmosphere not only entirely surrounds the earth, but extends in every direction about forty-five miles, " and if the whole acid were collected in a stratum or bed accupying the lower part of the atmosphere, such a stratum would have the thickness of about thirteen feet," and this would be spread over the entire waters of the oceans, seas, lakes, rivers, the deserts of sand, the frozen regions of the poles, and, in fact, over every part and place of the globe, and, by the wiodom of the Great Contriver, this gas is, in
innumerable ways, returned to the air as fast as abstracted, by growing plants. Here, then, our wcader ceases.

We know, if we take a given quantity, by weight, of well-seasoned wood, and distil it in a close vessel, or burn it in heaps, covered over so as to exclude the free access of air, wood chareoal is left behind. When this process is well performed, the charcoal will weigh from 40 to 50 per cent. as much as the wood did. The charcoal consists of carbun, with a slight admixture only of earthy matter and saline matter, which remains behind when the coal or carbon is burned in the open air. When the charcoal or carbon is burned in the open air, it combines with the oxygen of the air, to keep up the combustion, and the whole of the coni enters into a chemical union with the oxygen, and forms carbonic acid, or, in other words, carbunic acid consists of oxygen, with a definite or fixed quantity of charcoal or carbon dissolved in it. This gas is conyposed of two proportions of oxygen and onc of carbon. In this state it is taken in by the leaves of plants. The laves of plants are their lungs, and the y possess the power of nbsorbing from the air carhonic acid, and in daylight it is decomposcd, but much more rapidly in clear sun light. When thus decomposed in the leaf, the oxygen is set frec, and is again restored to the atmosphere, but the carbon is retained and mingled with the true sap of the plant; and, in obedience to those mysterious laws of chemical combination, is made to form a moirty of the endless wariety of wood, fruits, seeds. \&c. Sc., which are the results of vergetable life.

It may secm a mystery how the leaf of a phant can take from the air the carbonic acad, when in such apparent small quantity, and separate the carbon from its oxygen. We grant it is a mystery; but then we know for a certainty the fact of the Ieaves of plants possessing this power of absorption and decomposition; it is the way the srowth of a plamt has been provided for-the Creator has so willed it.

Plants take from the atmosphere, by their leaves, carbonic acid. a de.eterious gas, and decompose it, and restore to it the oxygen that is taken into the lungs of mimals, which combines with the carbon of the food, and ly the process of respiration is given off to the nimosphere in the form of carbonic acid, the food of plants.

It is sometimes said that politicians and trambers play into each other's hands for their own private good. Animals and planis perform a more honoumble operation: they play into each other's thouths for the general good.

A axfort zooronsmaxe is the chenpeat oothmodity ever used by a farmer.-[Cobbett.

BLIND BRIDLES.

" Yes, use your thinking powers, friends: they were given you to use, and not abuec. Blind bridles ! Truly named, surely. Art never invented a more fatal thing to the eyes of horses than when she devised this plan of depriving the horse of what nature intended he should enjoy. But, says one, how are blinders injurious to the horse? Because they gather dirt and heat around the eyes. Dirt irritates the eye, and heat produces inflanmation. These bridles so entrammel the cyes of the horse that he is compelled to be constantly straining them, to see his way. The over exertion of the nerve brings on diseasc. Eves were not made in vain. Had they been needless, the Creator would not have located them in the head. They were placed on the corner of the head, that he might have the adramage of looking in different directions. Men, in the abuntance of their wisdom, concluded the horse had too much sight, and they wished to curtail it; hence the origin of blind bridles. Think of this seriously, and you will abandon the use of so destructive an appendage. Remember, thai blind bridles and disensed eyes are inseparably connected. Custom hoodwinks the senses of men as much as blind bridles do the vision of horses."-[J. Maddock, Farrier.

Agricultaral Address.

We are glad to be able to record the fact that the fine agricultural county of Lenawee has at last wiped off that reproach of having no agricultural society-n reproach under which several of our oldest and most populous counties sull rest.-How long will they suffer this reproach ? The following is an extract from the interesting address of John Gibbons, Esq., delivered on the occasion of the organization of the above named socicty. We shall give more of it in our next :-

One farmer belicves, (and I am sorry to sey that so far from this being a mere imagnary case, there: appear to be many such inen,) that he has arrived at the "ne plus ultra" of agricyltural knowledge-that "no man can teach him much about farming -he was brought up to it and has followed it all his life-he would not give a cent for all 'the book knowledge' con tained in all the agriculiural papers in the country." Another by careful oboervation and enquiry into the natural history and habits of the animal and regetable kingdome, by making himself acquaiated with the experimente and facts ascertained by others, and by investigntian
the laws of chemical analysis, and ascertaining the constituent prine:ples that compros the various kinds of plants and vegetable proluctions of the carth, and the soil nat prodaces them, togetiker with the relation and effectis of hurat, heat, electricity, air, water, \&.c., upon them, and discovering by the researches of geologists in relation to orgatic remains, that the earth has at some former period of its existence, produced phats of immensely farger growth than any of the same species to be found at the present time, and knowing from the fixed and established laws of nature twat exnctly similar circumstances would necessar:ly produce similar results now, he concludes like the great New:on, that so far from having nothing more to learn in relation to agriculture, he is hut "as a child playing on the sea shore and grthering a few triling prebles, while the who! ocean of trath lays unexpiored before him !"' 'That man. thea, has the best aght to his opiaions, who has taken the most pans to investigate, and the best means to arrive at a just conclusion in relation to any proposition. But few, if any of nis, have a rery sood right to think we know much about farmang yet ; that is, we so understand the true scientitic principles of Agriculare and Horticulture, as to reduce them to the greatest practical benefit, and therefore, that in forming our cpinions we should not only pay a due and proper regard to the views of these who have gwen greaterattration to the subjeet. but in additon to their investigation and experiments, we should make use of the best means within our power to arrive at the just and correct conclusions, founded on experiment to test theories, establish facts, \&e. No dombt but many a self-conccited proiessed practical farmer woudd ridicule such sentiments as some of the preceding, calling them "staff, mere theory, book furming,: Suppose we should set such at one to work side by side with a "book farmer," a rral jull-blooded, thorough-going bonk jarmer, such as that eminent French Chemist, Lavosier, (who, although he probably never performed a day's manuall-jour at farming in his life, so instructed those who laboured for him, that from his farm of 240 actes, he is soid to have obtamed double the produce of the neighbours on the same quantity of land.) or at, the late Judge Buel, or David Thomas, or Lewis F. Allen, or Doctor Lee, or very m: ny others that might be mentioned in our own country, all "book farmers," (though to confess the truh, I do not know that I should call thera, or that any of them would claim to be tharough bred book farmers, as that, in my cstimation, would require in addition to the facts and experiments of practical farmers, a knowledge of almost the whole range of natural sciences, among which geology, chemistry, and vegetable physiology would claim very prominent places.) But I scem to hear some one say, "what! is
he so simple and visionary as to suppose that every farmer must thoroughly understand chemistry, and botany, and geology, minerology, ortnitholony; catomologr, phisiology, and all other oluytes?" Not bs any meand; for great as the pleasure and advantage of such knowledge woudd be to him. I very well know that every furmer has not the thme or means, or even the capacity. for acguiring euch knowleige. But some tarmers should understand them and apply them to practical use, and we should be wilthis to avail ourselves of the benefit of their knowledge, and pay due respect to their sughestions in making exprriments to test the truth and availability of proncuples they have dheovered, and in obtaining through their agency, the analysis of our solls, \&c. In this way we might commence a set of rational expermants that would probably lead to very great improvements in your agriciltural operations; for is there not just ground to believe from well authemicated fats that are constantly reaching our ears, that such improvementamay be made. Some of us have repeatedly seen in this county, on sone of the lightest soil in the vicinity, more than one hundred, even as high as une handred and thirteen buthels of corn grown to the acre, by our highly respected and much lamented friend and fellow-citizen, the late Darius Comstock, (another 'book farmer ;') and he assured me in the strongest terms, that it was a great mistake in any one to suppose that the increased trouble and expense, were in proportion to the increased yseld- 113 bushels of such a crop probably not costing more than two thirds as much as they would have done raised in the same way, on three acres of land, which I think would be a full average yield in this county. Now, the probability is, that, were we fully nequanted with the principles of ciemistry, gcolo, F , vegetable phisiology, and oher branches a science that relate to, or have some connect. 12 with agriculture, so as to adopt a proper sy ...m of rotation, and to give to every crop oni: :hase manures or substances necessary for "- tull development, reserving those not n, , ...ary for other crops of a different atatr: . : might increase them all in at least a twn told proportion, which you readily admit woalt be as great a change as any that has licen going on in the public mind within the last year or two. Not only so, but while making these inppovements in our agricultural operatians, we should be very likely to make corresponding improvements in our buildings, our orchards, our gardens, \&c., converting our country into a second Eden, a real Paradise, if we were equally carcful at the same time, that the improvement in our minds axd mamers should keep pace with our other improvements.

But as our book and anti-book farmenw are all this time waiting to be at work, let ue give. ihera. farms of the same quality side by aide, and
watch their operations awhile. B. being a chemist, and acquainted with the elementary principles that constitute the different crops he wishe's to cultivate, and knowing that no organic body can be formed in perfection without a due proportion of all the constituent principles that enter into its composition, he thanks a careful analysis of the soil of his farm is necessary before he can go to work understandingly and economically. Perhaps he tinds it sufficiently supplied with all the organic and inorganic substances necessary to produco 35 or 40 bushels of wheat to the acre, except phosphate of lime, silicate of potash, or some other material of which it requires but an exceedingly small quantity, and yet without which he knows that he could no more obtain a good crop of wheat than he could make soap without oil, or egg shells without lime. Now suppose the soil is so deficient in phosphate of line as to be incapable of producing more than ten or fificen bushels of wheat to the acre-instead of incurring much trouble and expense in giving the land a heavy coating of manure that might add but little if anything more than such materials as were alrendy in the soil, he knows that aboat fifteen pounds of cld bones dissolved in a litte diluted sulphuric arid, (and that he might find in some corncr of his neighbour's fields, le.ft there by a vinable horse or cow that had died of the botts or murrain, or some ohher disorder, because its owner had not read in some agricultural paper how he might have prevented or cured the diseace, would furnish all that is lacking so far as the soil is concerned, to produce forty bushels to the acre. Will any man of obeervation at the present time, pretend to say that it is impossible for fifteen poumls of bone dust, or any other substance, to increase a crop from tifieen to forty bushels to the acte? Which of us have not had oculardemonstration that from a peck to haifa bushelsf gypsum will add at least a ton of clover hay to the acre? And it appears, (if I remember right.) by experiments recently made in France, that one quart of sulphuric acid, diluted in a large quantity of water, and sprinkled over an acre, has produced as great an effect. Nor is this at all strange when we underatand that all plants "require certain salts for the suetenance of their vital functions, the acid of which salts either exist in the soil, (such as the silicir. phosphoric or sulphuric acids,) or are genezated from nutriment derived from the atmosphere; thence if these salts are not contained in the soil, or if the bases necessary for their production be absent, they cannot be formed, or in other words, plants cannot grow in such soil-and as different plants requre different salts, and in different quantities, the aptitude of a soil to produce one, bat not another kind of plant. is due to the prewence of a base which the former requires,
and the absence of that, indispensable for the development of the latter;" therefore it is evident that upon the correct knowledge of the bases and salts requisite for the sustenance of each plant, and of the composition of the soil upon which it is grown, depends the whole system of a rational theory of agriculture. By unde standing these, then, our thorough-bred scientific "book farmer," with the least possible expense, may go on as Lavoisier did, increasing the products of his farm, orchard, or garden, until they are double or treble those of his antibook farming neighbor, who we will suppose is a groul, industrous thorough-going " practical farmer," linowing well how so plungh and sow, harrow and hoc, reap and mow, and perform all the mamual operations relating to his occupat!on, well ; and having come, perhaps, from a part of the country where he has seen great effects produced by the application of lime, finding his land does not produce well, and not posisessing that scientific or " book knowledge," that would discover to him that his land is already sufficiently supplied with it, he goes to much expense in giving it a coating of that material, and to his surprise finds it produces but very little if any good effect - or perhaps he has sten very beneficial results from the use of ashes, and applies a coating with like success, because the salts of potash were already in the soil in sufficient quantity.

Thus, then, may he toil on with wealth ready at his hand, on!y that he does net, like his acient.fic neighbour, know how to take hold of it..
As two such farmers once I knew,
Could I but fairiy bring to view
Why one had ever good success
In raising crop=, the other less:
You'd see, perhaps, whth some surprise, Why " one was foolish," one was wise. A trifing difference I could see, Which made the reason plain to me: One laughed at scientific men, Who labour only with the pen, Puetendag that they understand How working men s.ould till the mand, And how thry might improve the soil With surer hope, and less of toil, By help of analytic ant
To show them each constituent part. That forms the land and the grain, That springs from out the fertile plain, And where there might for barren ground, Whe lacking element he fonnd, And thus with scientific skill, There lengthened barms and granaries firt.
The other deeming wisdom's part, Would be, to give to every art
Relating to his avocation.
A little time and observation;
That thus he might perhaps discover
That all improvement was not over;

And Javing early learned to read, Within his mind at once decreed, He'd hand some money to a triend, And for a farmer's paper send, And read its pages o'er with care, To see if ought presented there, Might to his benefit acrue, And now, what I would ask of you, Is just to come along wath me To these two neiphtoming farms and see A working man, wath pans and labour
Much greater than his book-learn'd neighbour, Posessing, too, as good a soil,
Get far less produce for his toil, Merely because he does not know
That not a plant on earth can grow, To form a crop both larse and good, Without its own appropriate food,That never yet a plamt was made, By all the help of hoe and spade, (So Nature's Author did provide, Unless its growth were well supplied Both from the enith and from the air, By Ielp of mam, or Nature's care, With every element we find In every plant "after its kind, If then a farmer still " would thrive," Not only must he " hold or drive," But wisely study Nature's laws, And learn the "wherefore and because."

I hed no thought of ruming into such a "douggeral strain as this. It come a little like the bay's whisting that " did'nt wheite-it whisted itself." But as variety is said to be " the spice of life," I thought I woald not supp:ess it. It may serve to "please the boys," and may possibly catrh some semm corner in their minds in which to p'ant a new idea.-[Michigan Farmer.

Treatment of S:ck Animals.

There are many erre ta , ,as notions prevalent in, the community, re ? winur injured or decased domestic amma's and such unatural or injurious practices ats a consequence of these incorrect views, that no apology is necessary for an attempt to subserve the cause and interest of these usefil creatures which, if they had tongues to speak, would tell sad tales of the wrongs to which they have been, and still are, too otten subject.

We do not propose to give an essay on the particular cases that require attention-our object is rather very briefly to ask the owners of domestic animals to be guided by a few correct principles, which are applicable to nearly all cases, and which will at least prevent us from doing harm, and be the means, probably, of doing much good.

In the first place, then, we would insist that
when an animal is well he never requires any medicine ; and when he his sick, we would protest against his being dosed with articles that are said to be 'gool' for a particular disease, withont any reference to its violence or the symptoms, as common sense would dictate, that remedies the must opresite in their character and effets, may be equally advamagous in different periods of the case.

Always distrust a man and the remedy, when your friend deciates that an article is alwaays gaud, or a cerialu cure for a disiase, without refremee to its symptums-preseribing for the name of the discase itself-this is the very essence of quackery, in man or beast.

A large prrion of the di-atees of animals clocely resemble those of the human family, and requise a treatment condacted upon the same greneral principles-wath some variations and some peculiaritirs, it is true ; bat none of those outrageous departures from common sense, which are too frequently wituessed.

A horse with pleursy, or inflamation in the lungi, or apoplexy, requires a widely difierent treatment from one with cholic or worms. There is no more mystery about the disease of a horec or an ox than about those of a man, and a violation of natural laws is as productive of patin and injury in one as in the other.

There is too great a propenity, everywhere, to resort to active treatment in aii creve-a feeling that is encouraged by the ignorant or designing for selfish purpuses. An advizer in sick-ne-s is often most useful, and shows most skill, where he only tells us what is to be avoided and waits for modcations for more active measuresdoing littl- more than preventing ignorant but well-meaning persons from iuterterng with the saluary and uscful changes that may be going on.

Remember the: there is a restorative power in nature, to which it is always beiter to trust, than to dire.t ac.ive remedies without knowing for what particular purpose they are given.

There is never occasion for the administration of the ï gusting combination which the ponr animal is made to swallow, from the mere whim of an ignorant horse or cow-doctor. Many a fine beast has been lost by his owner trasting to such prescriptions.

When your animal has fever, nature would dictate that all stimulating erteles of diet or medicine should be avoided. Bleeding may be necessary to reduce the force of the circulationpnrging, to remove irritating substances from the bowels-moist, light, and oasily digested food, that his weakened digestion may not be oppreseed-cool drinks, to allay his thirst, and to soine extent, compensate for diminished se-cretiong-reat and quiet, to prevent undue excite-

154 Cough in Horses-Flax-Steep Water as a Manure for Flowers.

ment in his system, and so on through the whole catalogue of diseases-but nothing to be done without a reason. Carry out this principle, and you will probably do much good-hardly great ham ; go on any other, and your measures are more likely to be productive of injury than benefit. But as we have before said, our object now is not to speak of diseases in detail; it is rather to encourage our agricultural friends to think before they act ; to have a reason that will bear examination for every step in the management of a sick or injured animal ; to remember they have a powerful assistant in nature, (being fairly used.) and that specifics, as they are called, are much fewer and les to be trusted, than their proprietors would have us believe.

We might, indeed, almost sum up what we would desire, in one general dircction of five words:-treat your brutes lige men.[Farmer's Cabinet.

> Cough in Horses.

In all disorders accompanied by a cough, the true cause should be ascertained. Sometimes the cough is only a consequence of a chronic or seated discase, as is the case in heaves, \&c. At other times it is symptomic of recent inflamation of the mucous membranes of the head and glands about the throat. We have found salt, given frecly, together with an occasional dose of saltpetre, to be an excellen remedy in cases where a horse has had the horse-ail, and the cough holds on after the original disease seems to have gone. For a dry, husky cough, not attended with the heaves, green or laxative food, such as roots, or mashes of sralded bran, in which is put the pulverized root of elecampane and lovage, has been found beacticial. If there should be found indications of heaves, put a spoonful of ginger, onee per day, in his provender, and allow him fo drink freely of lime water. Horses that are kept on musty hay will cery soon begin to cough. The best remedy for musty hay cough is, to change the diet to good swect clover.-[Maine Farmer.

Another Remedy.-Human urine put into a bucket of water, and given to the horse, or sprinkled rn his fodder. This remedy has been much used by some, and with excellent success.

Another-The boughs of the cedar have been used as a remedy, with complete success. They should be cut fine, and mixed with the grain given to the horse.

Another.-Arse-smart. as dry fodder, has often been given to horses for cough, with good success. A dose of this fodder occasionally, in the winter', is good for the health of the horses ; and it should be saved for that purpose.

Another.-We once cured a horse of an ob-
stinate cough, on which a number of medicines were tried without effect, by feeding him exclusively on sheep's orts. They have peculiar medicinal properties, which they imbibe from the dung and urine.

Another.-Boil a small quantity of flax seed; mix it in a mash of scalded bran, adding a few ounces of coarse sugar, or some molasses or honey.

FLAX-STEEP WATER AS A MANURE FOR FLOWERS.
" I used the water in which I had flax steeped as a manure for flowers last year. I followed up the experinent this year; and although I was from home $1 . . r$: $:$, weks, during which time none of t_{i},, in - in dineen watered with the flax-steep,,$\therefore 1 ; 11,: 1,1$. to say that those dahlias to whis. I $: \therefore-\therefore$.. w:ter early contin-
 later grew frma inc: al alaf to three feet high, while those to whech -i. p-water was applied, grew from seven w alits bet high, when thre of them broke down, une :twis bei...' too weak to support them against the wind; but their beauty, from the abundance of bloom, surpassed any thang that I have seen. I have not manured my garden for these last four years, being determined to keep it poor, in order to try what effiect flax-water would have in producing good full-grown flowers in cold wornout soil. I am now able to assert that none of my neighbours had such a blow of roses or dahlias as I have had; and to them I can refer, as they were wimess of the fact. I had, by the use of flax-water last year, dahlins from ten to twelve feet high, londed with the most perfect flowers. This rich liquid manere (for it deserves the name) will be found invaluable 10 market gardeners and growers of flowers. I find it to amnihilate the green fly."-[J. Dickson, British Flan Mills.

How much Lime ovgit a sone to hate ?Prof. Jousston considers that a proportion of lime is indispensible to the fertility of a soil. He thinks that the proportion of three per cent. of the carbonate, (or common lime-stone,) is not too much, and there are not many cases inwhich it would be advisable to increase the quantity beyond six to 10 percent, provided the carbonate is in a sufficiently minute state of division.

Drating low lands will contribute to promore health and profit. Generally speaking, our wet and marshy lands are the richest in organic inatters, and become the most profitable to the owner, when thoroughly drained. Buel's Far. Com.

The Oow-Her Disoaces and Maxagoment

Grain Sick.-This disease is caused by improper feeding, in allowing the animal too great a quantity of grain at one time, particularly those which have been subject to the process of distillation.

The first symptoms are a dull, heavy appearance of the eyes of the animal; she frequently shifts about from one side to the other, and when she is let loose and driven about, she complains or grunts more or less. On examination, a fullness may be perceived between the hip and ribs, on the opnosite side to the milking one, if pressed down with the hand. This fullness is produced by the extension of the stomach.

Bleeding and purging is believed to be the only remedy; the first to relieve the urgent symptoms-the second to remove the cause of the disease. The quantity of blood to be taken away may vary from three to five pints; after which the following purging drink may be given, milk warm, at one dose, in two quarts of water gruel, and half a pint of molasses:-

Sulphur, from 9 oz . to llb . ; grains of Paradise (cardamoms), 3 drachns; salupetre, $1 \frac{1}{2}$ oz.; tumeric, 3 oz.; cummin secd, $\frac{7}{4} \mathrm{oz}$.

When it has fully operated in unloading the stomach, the weakness of the organ, the loss of appetite that ensues, and the defficiency of milk comected wi'h it, will be repaired by medicines of an aromait. and bracing nature; like the following pres...;tion :-

Gentian, cumain, coriander, valerian, and anise seed, each, ${ }^{3} \mathrm{oz}$; grains of Paradise, $\frac{1}{4}$ oz.; flour of sulphur, 12 oz .

To be mixed, and given at one dose, in a quart of mild ale or beer, after having previously boiled it with a handful of chopped ruc. This should be given when warn, and repeated once a day, or every other day, till recovery takes place, which usually happens in a few days.

The regimen should consist of diluted lifuors and mashes for some days after; and grains are entirely to be given up till the stomach gains its former strength aud tone. They are then to be given with caution in order that no relapse may ensue.

Losing of the Cud.-This malady arises from a relaxed state of the bowels, and the accumulation of food in the first stomach, which, in not being able to be returned by the cow into her mouth, does not undergo the second process of chewing, so essential to the preservation and maintenance of health.

This disease readily yields to the treatment recommended in " Grain Sick," first by purging, and then bracing up by tonics, diluent washes, \&c.
Hydrophobia, or Madnesi. - This disease
arises from the bite of a dog, or other anmmal affected by madness, or rabies. Although it is regarded as incurable, it is proper to know its symptoms. These are a constant distress and lowing of the cow, a great flow of froth from the throat and tongue, with the breathing some what irregular ; the malady at last breaks out into an ungovernable frenzy, or madness, and the loss of power over the voluniary muscles extend throughout her whole frame, and in four or five days from the comm ncement of the dispase she dies.

The cow, as well as the hog, the sheep, and the horse, does not appear to be able to transmit this nalady by biting, like the dog, the cat, the volf, and the fox.

Wou vds by Goring, or Pokes.-Cows, when they get together in the yard, or elsewhere, are liable to be gored by each other in different parts of the body, especially if any one of them is wounded, and they see or smell the blood. This renders them furious, and they fight and poke at each other with thei: horns.

The treatment of all such wounds is to be couducted, first by endeavouring to stop the effiusion of blood, either by styptics, by pressure (bindine up), or else by sutures, or stitching of the part. The styptics commonly used consist of

Oil of vitriol (sulphuric acid), and brandy, each, $1 \frac{1}{2}$ oz. ; or common salt and netles, a handful each.

T'o be beaten together in a mortar till it becomes a pulp, and then placed on the wound. If not sufficient to stop the blood, it may be assisted by pressure or a bandage' ; it it stall fails, and should the situation adenit of t, the lips of the wound, or the divided skm, may be brought together with crooked needles or pins specially made for the purpose. When this is done, everything is to be lefi for the first twenty-four hours, in order that the blood vessels may collapse, and a further effusion of blood may be prevented. At the cad of that time the wound should be dressed.

In case the external opening of the wound is confined and the gore very deep, a small candle should be thinly wound round with flax or tow; and after it has been well soaked in the following balsam, and dipped in the digestive ointment prescribed below, it may be conveyed into the wound and there left:-

wound balsax.

Take compound tincture of myrrh, 4 oz .; cold drawn linseed oil, $\frac{1}{2}$ pint; spirits of turpentine, 4 oz .; and mix well together.
dIGESTIVE ONTTMENT.
Take common turpentine, 802 . : epirits of turpentine, 5 on . ; linseed oil, 2 am . ; and mix over a alow fro.

156 Choosing a Horse-The Horse's Eye-Durability of Rails.

The swelling is then to be rubbed once a-day with the following stimulant oils :-
Linseed oil, 8 oz ; oil of turpentine, 2 oz .; oil of vitriol, 1 oz .

The last-named article is to be gradually mixed with the other two. The application of this will prevent any tendency to mortification, and also produce a quick suppuration, or running of the sore. These dressings may be repeated twenty-four hours. If the parts are much swollen and inflamed.a dose of epsom salts may be given, and the following fomentatation used once a-day :-

Camomile flowers, \ddagger lb.; wormwood, a large handful ; bayberries (Lauris nobilis), and juniper berries, each, 4 oz. ; beer, or ale grounds, 6 quarts ; vinegar, 1 quart.

The whole to be boiled for a quarter of an hour, and then to be applied, while quite hot, by dipying in it a large piece of flamel, and fomenting the inflamed parts. When this operation is fimished, the flannel should be allowed to remain, and the animal covered up so as to avoid catching cold.

CHOOSING A HORSE.

There is much pleasure and profit in the service of a good horse, but very litte of either in a bad one. There are many mean horses that make a good appearance when taken from the hands of a juckey. In purchasing a horse, then, trust not to the sellers words ; let your own judgment, or that of a friend, be chiefly relied on. See that he has good fore feet and joints, and that he suands well on his legs. See that his fore teeth shut even; for many horses have the under jaw the shortest: these will grow poor at grass. See that his hair is short and fine; for this denotes a good horse. Observe his eyes, that they are clear, and free from blemish-that he is not moon-eyed or whiteeyed ; for such are apt to start in the night. A large, hazel-coloured eye is the best.

Look at his knee; see that the hair or skin is not brokeen, for this denotes a stumbler. Take care that his wind is good; for a trial of this, let him be fed on good hay for twentyfour hours, take him to water, and let hm drink his fill, placing him with his head the lowest; if, then, $h:$ will breathe free, there is no danger. Sec that iis countenance is bright and cheerful: this, an excellent mirror to discover his goodness .n. If his nostrels are broad, it is a sign that hee is well winded; narrow nostrels the contrary

See that his epirits are good, but that he is gentle and casily governed; not inclined to start. In travelling, mind that he lifts his feet neither too high nor too low; that he does not interfere or overreach, and that he carries his
hind legs the widest. See that he is wellribbed back, and not high-boned. The size may be determined by the purchaser. Age, from five to ten is the best. There are many tricks practised by jockeys to make horses appear young, but it is not consistent with the size of my book to detect them; all I would say, is, that horse's teeth, when young, are wide, white, and even; the inside of their mouths is fleshy, and thrir lips hard and firm. On the contrary, the mon'h of an old horse is lean above and below; the lips are soft and easily turned up; their tecth grow longer, and are of a yellower colour.-[Selected.

THE HORSES EYE.

I will now inform you how, for cestain, yoa may know whether a hurse has a strong and good eye, or a weak eye, and likely, to go blind. People in general turn a house's head to a bright light to examine his eyes. Youcan know very litule, by this method, what sort of an eye the horse has, unless it be a very defective one. You must examine the ege first, when the horse stands with his head to the manger. Look carefully at the papil of the eye, in the horse; it is of an oblong form; carry the size of the pupil in your miad, then turn the horse about, bring him to a bright light, and if, in thr bright light, the pupil of the cye contracts, and appears much smaller than it was in the darker light, then you may be sure the horse has a strong, good eye ; but, provided the pupil remains nranly of the same size as it apporared in the darker light, the horse has a weak eye; therefore, have nothing to do with him.-[From an old Almanac.

DC゙RabIfity of Rails.

Rails split in the spring when the bark will : leave them, laat much bether han tho: espit in : winter, as the bark remaining on the wood causes it to retain moisture, which soon rots the rail. When there is batk on the rails, to turn down so that, as it becomes loose, it can fall off, will promote their last. Small rails last much longer than large ones. All fences should be torn down and re-set within three years after they are first built. The rails are not then so rotten as to break in throwing about, while the bark has generally become sntifiently loose to jar off. For durability, Spanish oak is much better than either red or post oak.-[Southerm Cultivator.

Do not wait for extraordinary opportunities for good actions, but make use of common situations.

From the New England Farmer.

TH: THPPI EARMISR.

ET MRS E. C. LOOMIS.

His home's a cot embowered in trees, A garden filled wish fruit and flowers, Where singing birds and humming bees

Make gay the smiling summer hours,A range ci $\operatorname{srcadows~green~and~tair,~}$ And fields which well repay his care.
With joy he greets each rising sun, And gladly hastens to his toil ; In fancy, sees the harvest won,

As covering with the mellow soil The tiny seed, which yet will bring A glorious autumn offering.
The golden hours, how quick they fly ! The happy day, how soon 'tis fled! Then homeward doth the farmer hie, And finds a table neatly spread
With many a dainty, which the field And garden-plot so richly yield.
The evening hour is fraught with joy,
For loved ones cluster round him there ;
He tastes a bliss without alloy
Which e'en a king might wish to share ;
Then seeks his couch and finds repose
Which only he who toileth knows.

Asparagus.

Asparagus seed may be planted in drilis in the fall as soon as ripe, or early in the spring. If the ground is rich, light, well cultivated, and kept free from weeds, the plants will be large enough to transplant when they are one year old.

Having the plants one or two years old, select a epot where the soil is dry, light, rich, and well exposed to the snn. Lay out the bed the size you wish; spread upon it a quantity of well rotted manure, sufficient to cover it to the depth of three or four inches. Trench this in, at least twelve or fifteen inches deep. This is done by standing upon the bed and opening a trench, say a spade and a half deep, and one foot wide, acrose the head of the bed. Throw the dung which is immedintely under your feet, into the trench, spreading it evenly; then take the earth upon which you stand, and throw it upon the manure. By this process the first thench is filled, and a new one opened, and the bed is raised six or eight inches. Having trenched the whole bed in this manner, spread a coat of well rotted manure upon it and dig it in, incorporating it well with the soil: this done, level the bed and rake it smooth. Now strain a line along the bed six inches from the edge, and open a trench about six inches deep. Place the plants
along the back of the trench, ten or twelve inches apart in a row, and the crowns three or four inches below the surface. Finish the first row before commencing the second. Let the lows be eighteen to twenty inches apart.

Asparagus should not be cut in lese than three years from the time of transplanting, but in four years it will bear extensive cutting. After planting the first row, it is well to place a board on the bed to walk upon, in order not to tread the earth while planting the succeeding rows.[Michigan Farmer.

farticultaral.

From the New England Farmer.

Transplanting Trees.

Mr. Editor: As the season is approaching when the transplanting of trees will again commence, I propose, as briefly as the nature of the subject will admit, to state my own experience as to the best method of accomplishing this objeot.

And first, as to the season of transplanting. I am well satisfied that, for deciduous trees of all kinds, the spring months are minst favourable; and the sooner this can be done after the frost is out of the ground the better. My plan is to have the holes prepared in the autumn, when it is practicable, because the action of the frost and the snow and the rain tend to loosen the earth beyond the hole upon all sides, and thus give the new fibres from the roots a better chance for penetrating the earth. Another advantage is, that by digging the holes in the fall, the decay of weeds, leaves, and uther vegetable matter that collects in them, forms the best nutriment for the roots.

Evergreen trees may be planted a litle later than deciduous trees; but I cannot recommend a later period than the 20 ch of May, and they will be sure to do well if planted at any time for a month previous.

We have all been cautioned against deep planting sufficiently to prevent the pratice being very common; nevertheless we are apt to commit a very great error, causing a similar resulh, by loosening the earth too deeply. We propose now to speak of the manner of preparing the ground for the reception of the tree, by which this error will appear manifest.
In digging'the holes, reference, of course, must be had to the size of the tree to be planted. The holes should be at least a foot wider in circumference than the roots, but no deeper than is sufficient to sink the crown of the stem where it rises from the roots to a level with the natural level of the ground, or, if anything, a little above it. If we examine a ree growing in its natural
state, we shall always find that the tree buiges out of the ground, and that the diverging roots are generally visble; while the tree which we plant is set so low that it looks more like a stake driven into the ground than a trec. It is a common practice, after digging the holes as deep as the tree is intended to be placed, to loosen the earth sill deeper down, sometimes throwing it out, and putting in mould, sods, or manure. The effect of this is, that the tree settles down with the earth, as it hardens, and gets below its natural level, to its great and lasting injury.

In taking up the tree to be transplanted, we are apt to be short-sighted and careless, and we cut away and break the roots without mercy. The proper method of proceeding is, to take off the earth carcfully above the ronts, and then proceed weh outside. and trench round the tree till the operator gets below the tier of ronts; then, by passing the spade under and towards the centre of the tree, he can loosen it in its bed, and draw it out. Before secting it out, let him examine the roots carefully, and cut off smoothly every end of a root; that has been broken, and it is then ready for planting. To do this in the best manner, it should be placed as near as possible in a similar position to the old one, the roots should be carefully straightened out, and the carth filled in among them by the hand. It should not be trodden down until this has been done, ard the earth all in, and then only preseed upon with the foot. No water is necessary; on the contrary, in nine cases out of ten, it is hurfful. If a tree has been out of the ground for a long time. and the roots have become dry, it is advisable to make a pudde of mud, and $\mathrm{dij}_{\mathrm{p}}$ the roots in it before setting the treé.

Mulching trecs, after transplanting, is a most simple and ready mode of protecting them from heat and drought. I have never known th to fail in kerpiag a tree healhy and vigorous ngainst the severest drought. Grass, weeds, stable litter. or even stones around the trees, is a sufficeent mulching. This, in our climate, is an essential never to be disregarded, either in fall or spring planting.

Pruning is another important essential to be observed in transplanting. deciduous trees. Every tree, when transplanted, loses some portion of its roots; and it follows, of course, that it loses a part of its ability to support its branches, and to furnish the requisite stipply of food for a vigorous growth the ensuing season. It becomes necessary, therefore, to sacrifice a part of the tree ahove the ground, somewhat in proportion to that which has been lost beneath. Now, there "re several modes of doing this. I have tried thrm all, and am convinced that the best, simplest, and the only one that does not detract from the beauty of the tree is, to cut off
from every branch, except the topmost leading shoot, the whole of the previous year's growth dnwn to a vigorous bud on the stem. A few more words about transplanting, and I will finish my desultory remarks. A damp day is better than a bright day; and a still day is preferable to a windy one, for tral splanting trees; and never expose for a moment, if possible, the roots of ainy tree, particularly an evergreen tree, to the wind. I have never seen this sufficiently attended to. Where a tree is to lie, if only for a few moments, exposed to wind or sun. a mat should be at hand to protect it. More trees are lost from a desiccation of the roots by a drying wind than from any other cause.

$$
\text { Lixx, Jan. } 1849 . \quad \text { R. S.F. }
$$

From the March Number of the Michigan Farmer.

PEAR CULTURE.
In consequence of the difficulty experienced in rasing pear seedlings, in sufficient quantities to supply the demind; also, of the length of time which is required to bring some varieties of pears into bearing, when worked on their own stocks, many experiments have been made in order to overcome these difficulties, The pear has been worked upon apple, quince, thom, mountain ash and other stiocks. None have been found to answer the purpose so well as the quince. When engrafted upon the apple or thorn, they will thrive well for a few years and then die. If engrafted into the root of either of these, and planted sufficiently deep for the scion to strike root, it will be found in two or three years, that the pear has taken root, and now stands on its own bottom. This method obviates one daficulty only, viz, the want of pear stocks. With the quince for bottoms, many difficulties are overcome. Quince stocks are easily raised, and can be had in abundance. The pear takes very readily upon it, with the exception of a few varieties, and these can be made to grow upon it by double working ; this is done by budding a variety upon the quince that will grow them freely. When this is one year old, b ad the refractory one into it, and it will grow as freely as any other.

Many varieties of pear do better on quince than on their own stocks, and will come into bearing in two or three years, from the bud, bear larger, fairer fruit, and more regular crops. A variety that grows ireely on the quince, will attain the height of twelve or fifteen feet ; and if properly praned, will make beautiful pyramidal trees, branching from within one or two feet of the ground. There are many specimens of them in this country, and in France, that have been in bearing from 25 to 30 years, and are
ill as healthy and vigorous as ever, and bid ir to continue so for many years.
Dwarf pears, or those on quince bottoms, are eculiary adapted to gardens, for many trees fay be planted in a small space. They may e planted eight or ten feet apart, thus giving fany varieties in a smnll space, without doing fury to the surrounding shrubbery. Pears, hen on their own stock, should be set at least wenty feet apart ; thirty feet would do better. these trees not only overshadow the garden, ut their roots require much more room than he quince. We prefer pears on their own focks for orchards, on quince for gardens.

scions.

Scions for grafing may be rut now. The est mode of preserving them, is to pack them a damp saw dust, and place them in a cellar. packed in t'is way, they can be had for use at ny time, and they come out clean from grit, thich saves the trouble 6 - sharpening the knife o often as is necessary when they are packed n sand.
sEPERIOR GRAFTING WAS.
Take 1 pint linsced oil,
6 pounds rosin,
2 pound bees-wax.
This makes a better and cheaper wax than my I have used made from rosin. tallow and peeswax. The oil will admit of a much greater proportion of rosin than the tallow. This wax will give entire satisfaction to whoever shall use t.--[Horticulturist.

MELON CULTCRE.

Hovey, in his Magazine of Horticulture for December, in speaking of a visit to the garden of H. N. Langworthy, Esq., situated on the Genesee River, near Rochester, says:-
We have stated that Mr. Langworty gives great attention to the culture of the melon. The kinds he cultivates are principally the Imperial and the Black Spanish, but the greatesi guanuity of the former, which, though so late a variety, that, in the latitude of Boston, it will not come to perfection in the ordinary modes of culture, by Mr. Langworthy's plan, ripens an immense crop. His mode is to start the plants in a hot bed-the same as for cucumbers: the plants are removed to the hills where they are to grow, as soon as the weather is favourable, but they are not immediately exposed to the weather: boxes, covered with a course gauze or millinet, about two feet square, are placed orer each hill, and as the plants become inured wo the open air, the boxes are removed, and the plants continue to flourish; soon coveriag the
ground. Melons of the Imperial variety are produced, weighing about thirty pounds ench. This is a profitable crop as managed by Mr. Langworthy, and it is almost unnecessaryto add. that no crop, either of melons, cucumbers, or squashes, can be grown without a great deal of care, especially, in attending to the destruction of insects, \&c.

Hints to Lovers of Flowers.-A most beautiful and easily attained show of evergreens in winter may be had by a very simple plan, which has been found to answer remarkably well on a small scale. If geranium branches are taken from healthy and luxuriant trees, just before the winter sets in, cut as for slips, and immersed in soap and water, they will, after drouping for a fow days, shed their leaves, and put forth fresh ones, and continue in the finest vigor all winter. By placing a number of bottles thus filled in flower baskets, with moss to conceal the bottles, a show of evergreen is easily insured for a whole season. They require no fresh water.-[Court Journal.

Green House Plants.

Where green house plants :ure kept in warm dry rooms, they are apt to be infested with insects, such as plant lice, red spider, \&c. A good remedy for plant lice, is to take a basin of warm soap suds and zurn the ends of the branches on which they are found, into it. This will destroy then immediately. Wash the plants afterwards in clear water.-The red spider increases rapidly in a dry atmosphere; a moist atmosphere is denth to them.

Hydrangens, Oleanders, and plants of that class, may be kept safely in a dry cellar, with some light. where the mercury does not fall more than five or =ix degree sbelow the freeaing point.-[Michigen Farmer.

> Importance of good tools.

Those mechanics only who have excellent tools can duly estimate their importance. Many work year after year with poor tools. when a little time or expense would supply them with good tools, enabling them to do far more work and do it better.
Sometimes a mechanic will use a poor implement, when a good one could be obtained for one or two dollars that would last for years, and would annually make a saving of more than double the cost of the implement.

A blacksmith who had far better and more tools than was common with others in the same business, hired an Englishman to assist him. The first thing the stranger did was to make tools, and for more than a week he plied-him-

160 Hales's Rotary Pump-Indian Meal Puddings-Mufins.

self closely to making tools, before he would do any other work. His time was well spent, as was shown by the neatmess and despatch with which be worked, after being properly prepared.

A poor saw often requires twenty-five per cent. more strength than a good one. If it be used one sixth of the time, the loss would be about one day a month, which in a year would be equal to a sum sufficient to buy a dozen good snws. Mechanics shouldmake estimates occasionally. They will present results in a long run that are highly important though they may seem trifing for a single day.-[New England Farmer.

Altedfanical.

Fiale's Rotary Pump.

An unusual article in the way of pumps was introduced to our notice a short thate since at the store of thompen \& Hale of the city. It is a suction and lareng panpt cunstructed on the rotary plan. The valves, of which there are wo. work in a cylintrical cines, or box, scooping in the water by an orifice on one side, and drving is out on the ether. The position and workings of the valves or buokets is regulated by a heart--haipeid thove-as they revolve horizonia!!y wiblin tise chest.

The punp is provided with gearing, and is worked by a cianh. ho opetation so tar as we saw it wis v ty satisfutury, delavering a strean
 and a haif tube; the size of the ehamber being six inches in dameter by three in depila.

The advantagres wish decurred to us in examining it, were that it 1 s wholy constructed of meta!-rio leather berng used for packmy a siagle joint; an! that the mole in which tt is geared would admit of nsbeing used in wells of great depth wath an economy of force. The ordinary force puap reques a rod reaching from the: hamile to the patan; and when the well is derp this mu t be of great weight, and no inconsen mable fore is required to move it up and dovan. The rod on Hate's pump would not be reguired to be baked at all, but would be used merely is a shaft to turn the buckets.

The inventor also claims to snve a great amount of firce in working the pump: but of this we could not judge. We threw a stream of water himougly an engine hose to the height of perhaps thrity feet, without any difficulty. And the inventor claims that two men on an engine of this sort will throw a volume of water equal to that thrown by eight men on the common brake.- [Prairic Farmer.

To Make a Gold Powder.-Disoolve gol in aqua regia, or 2 parts nitric and 1 of muriat acid. The leaf gold is best to use for this pu: pose. Then take cotton aud soak up all the nitro muriate of gold, suffer it to dry and afte: wards barn it on a suucer. Take up the ashe of the cotton and wash them, allowing thx water to settle before pouring off, when a fing gold powder will be found at the bottom of th. saucer, which must be dried and can be usel afierwards in the arts, such as ornament fu leather or paper.-Scientific American.

Uscful Recipes.

Indian Meal Puddings.
Baked Pudding without Eggs. - Boil quart of milk, and turn it upon three pints of sifted Indian meal, when it is cool stir in half? tea-cup of butter, and half a tea-cup of suga melted together, a teaspoonful of salt, and 2 grated numeg. Mix them well, and bake thre hours.

Cheap Bafed Pudding.-To one quart od boiled milk, while hot, stir in a tea-cup of mor dian meal, a tablespoonful of ginger, abouta gill of molasses, and halfa tea-cup of suet chop. ped rery fine. Bake two hours.

Avother Plain Baked Pudding.-To two quarts of milk, add half a tea-cup of molases, and a teaspoonful of salt, scald it, and while in is boiling stir in Indian meal until it has about the consistency of griddle cakes. Put the mixbure in a batter pan, and just before you bake pour on a tea-cup of cold milk. Bake two hours.

Bancd Afpie Pudding.- Pare and core sis: large apples, chop them very fine, and mus them whith a pint of sified Indian meal, two eggs, a tablespoonful of butter, and about a quart of malk. Bake in a buttered dish about two hours.

Baked Plum Pudding.-Seven tablespoonfuls of sifted Indian meal, three pints of mill, seven eggs, half a pound of raisins, quarter of a pound of butter, and a quarter of a pound of sugar, a grated nutmeg, a tablespoonful of cinnamon, and half a teaspoonful of salt.-Scald the milk, and while it is boiling stir in the meal -let it cool, stone and put in the raisins, the salt and spice. Beat the eggs well, and sur altogether very hard. Put it in a buttered dish, and bake an hour and a half-good heat.

Muffins.-Scald a quart of Indian med, and add a little salt. Beat four egge, white and yolks separately. Stir them into the meal afier it has become cold. If the batter should be very thick, put in a little water. Bake in buttered muffin rings.

Fritters, Quickly Made.-One egg, two boonfuls of flour, a little sifted sugar and giner, milk sufficient to make a smooth batter; it middling-sized apple into thickish slices, nd put into the batter, and with a spoon put hem into the frying-pan, with just the batter hich is taken up in the spoon; have asieve ith the bottom up, and, as fried, lay the fritters pon it to drain. The above quantity is sufiient for a small dish.
Galifs from the Marness or Saddle.Ir. Editor: White lead, finely pulverized, is he most effective application. Rubbed on dry, r made into a paste, with milk, and applied a Fw times, it will also prevent white hairs growig on galled places. In our fatiguing marches Mexico, the above was found to be an invaluble remedy by

A Voluntecr.
To make Yeast.-To two middhng-sized oiled potatoes, add a pint of boiling water and wo tablespoonfuls of bruwn sugar. One pint f hot water should be applied to every half fint of the compound. Hot water is better in rarm weather. This yeast, being madr withput flour, will keep longer, and is said to be puch better, than any previously in use.
Rich Buckwheat Cakes.-Take two pints of fresh buckwheat flour and half a pint of siftfd corn meal, mix with milk to a thin batter, Idd one tablespoonful of fine salt, and two tea poonfuls of brewer's yeast, or an equivalent of other yeast. Leave the whole in a stone jar, In a warm place, to rise over night. In the morning, add a teaspoonful of saleratus dissolved in a tablespoonful of hot water, and then bake immediately.
Bean Sour.-Put two quarts of dried white beans into soak the night before you make the soup, which should be put on as early in the day as posisible. Take live pounds of the lean of fresh beef-the conte pieces will do. Cut them up, and put then :nto your soup pot with the bones belonger.; io them (shich should be broken to pieces) and a pound of bacon cut sery small. If \cdot : have the remains of a piece of beef that: been roasted the day before, and so much underdone that the juices remain in it, you may put it into the pot, and its bones along with it. Season the meat with pepper and salt, and pour on it six quarts of water. As soon as it boils, take off the scum, and put in the beans, having first drained them, and a head of celery, cut small, or a tablespoonful of pounded celery seed. Boil it slowly till the meat is boiled to shreds, and the beans all dissolved. Then strain it through a collander into the tureen, and put into it small squares of toasted bread, with the crust cut off. Some prefer it with the beans boiled soft, but not quite dissolved. In this case, do not strain it ; but take out the meat and bones with a fork.

fitistcllancoms.

rural manners of england.
Although England abounds with misery, and too much gilded show yet there is much that is beautiful and benevolent.

The true English gentleman, living, remote from the din of cities, and abstracted from the turmoil of political life, upon his own acres managing his own estate; seeking the best means for its imp: wement, and superintending, nuder his own personal inspection, their application ; doing what good he can to all around him; making those dependant upon him comfortable and contented ; giving labor, counsel, encouragemunt, and all needful aid, to his poor meigbors, and causing them, and their wives, and their children, to look up to him as a friend and a parent, to whose kindness their good conduct is always a certain claim: whom when the eye sees, it sparkles with grateful joy, and when the ear hears his footsteps, the somds go like melody to the heart; who is in his neighbor hood the avowed and unostentatious supporter of good morals, temperance, education, peace and religion; and in whose house you find an open-hearted hospitality and abundant resources for innocent gratification, and for the improvement of the mind, with a perfect gentleness of manners, and unafficted piety presiding over the whole :-I say, such a man-and it has been my happiness to find many examples-need envy no one save the possessor of more power, and a wider sphere of doing good; and need not covet he brightest triumphs of political ambition, nor the splendors and luxuries of royal courts.

Whatever contributes, then, in any way, to elevate the agricultural profession, to raise it' from a mere servile or mercenery labor, to the digniny of a liberal profession, and to commend it not merely for its profit and usefulness, but as a delightiol resource and recreation for a cultivated mind, will certainly find favor with those who form rational views of life. who wish well to the cause of good morals, and would muliply and strengthen the safeguards of human virtue.

The class of individuals whom I have described-and I assure my readers I have drawn from real life and deal in no fictionsfind often their own efforts seconded and aided by those whose encouragement and sympathy always give new life and vigor to their exer-
tions, and new pleasure to their pleasures,I mean their own wives and children; and the farming operations, in all their history and details, and all their expediency and fitness, are as much matter of familiar und interested discussion at the fireside, as, in many other circles, the most recent novel, the change in fashion, or the latest triumph of party. Indeed I have seen in many cases, the wives and the daughters-and these, too, often persons of the highest rank and refinement -as well acquainted with every field and crop, their management and their yield, and with every implement and animal on the place, as the farmer himself; and I always put it down to the credit of their good sense. - [Coleman's Tour.

FRIENDSHIP.
What finer feeling can resido in the heart of man than tinat of Friendship? It yields a delight where it is felt, andigives a pleasure not to be found in any other tecling. Love is its basis, and from fraternal love springs ull its actious. True friendship, indeed, is rarely to be met with; but even the spurious everyday friendship which we all experience, is pleasint, and passes very well for genuine until calledinto actual service-then, indeed, its deformities appear. But true friendship is'a jowel which cannot be too highly appre-ciated-top dearly cherished.

Some men are prone, from a nataral inherent friendly fecling, to look upon the great bulk of mankind is pomessing similar teelings, and to be quite ready to serve any one with whom they have been long acquainted, or from whom they have been receiviag little acts of kindness and attention, not doubting that, it they stood in need of like services, they could be obtained as readily from others. If such were the general disposition of maukind, how happy might men be! The cares of life would be randered light by the kind hand of friendship, and few besides the really worthless would kipow real distress.

While trie friendship sweetens life and molifies its cares, that which is not true, like everything else which bears but a semblance of what it professes to be, adds to the poignancyof the affliction, and aggravates misfortune. He who, in his days of attluence, always felt for the misfortunes of otherswhose hand was always open to their relief -who never doubted that, were he similarly
situated, they wonld do as much for him must very keenly feel the disappointment when, upon suffering the reverse, he find mankind tardy in rendering to him that asistance which he was wont so freely to gin to others. His disappointment is render still more keen, when he finds persons whom he has rendered essential service desert him in the hour of need,--or cve such as he has, from long acquaintance, cor sidered friends. At such a time false frien: ship assumes its real appearance, which : as disgusting as that the true is lovely. Symbol.

Friendship.

In young minds there is commonly a stron; propensity to p :ainion intimacies amd frient. ships. Youth. \therefore i. \therefore, !, the season what friendships are orb' - .. rmed, which na only continue through . . . :...g life, but whid glow to the last, with a i.a', , ess unknown on the connexions begun in cooler years. The propensity, therefore, is not to be discouraged. though. at the time, it must be regulated with much circumspection and care.
'Too many of the pretended friend:hips a youth are mere combinations in pleasure. Ther are often founded on capricious likings, suddent contracted, and as suddenly dissolved. Sometimes they are the effect ot interested complasance and flattery on the one side, and of credulous fondness on the other. Such rash and dangrrous connexions should be avoided, ha they :fferwards load us with dishonour.

We should ever have it fixed in our memories, that by the character of those we choose for our fients, our own is hikely to be formed, and will certainiy be judged of by the world. Wt ought, therefore, to be slow and cautious ta contracting intimacy ; but when a virtuou f.iendship is once established, we must eret consider it as a sacred engagement.-[Dr. Blair.

Oivility.

This is the opposite of rudeness, and in its practical manifestation gives evidence of good breeding, gentleness of disposition, kindness of feeling, and goodness of heart. They who manifest the possession of thuse attributes alwaft attract the bind regards and secure the warm affections of all who come within the sphere d their influence. Flowers spring up in their footsteps, and sunshine illumines their brow; their advent brings with it peace and pleasare, and their departure leaves behind a pense of serene enjoyment. It is easy to be civil, if pox will but be'so. Practical civility calls for pe
zacrifice on the part of the morally good, the rally well-bred, or the truly right-minded. These find their own happiness in that which hey create and diffuse around them, and which Fonstitutes n moral atmosphere delightful to mhnic. They live in a region of agrecable inbluences, and fertile of delicious moral sensaions, entirely unknown to the rude and tuncivil, whether these are so by nature, or made so by false and vicious system of 1 rai training.

THE SHEEP IN ITS VARIOUS FORMS.
Wise men regard with suspicious eye the assertions of those who profess to accomplish a variety of dissimilar effects by a single cause. It is customary to be jealous of the hreten.ions of "Universal Restorative," "Heal All," or any other panacea warranted o cure diseases of all symptomsor all origins. And the proposal to adopt one breed of sheep to all circumstanes of food, climate, and situaion, making it answer all the purjoses for which sheep are usually employed, scems justly to meet with similar distrust and suspicion.
From the varied habits of sheep, the wideIr different circumstances in which they are fritered, and the opposite results which the several kinds are intended to produce, we are at once lnd to doubt the practicability and value of the scheme. We are induced still further to view the proposition as contrary to the order of Nature, when we consider the fact that there is scarcely any animal which appears under so many forms as the sheep. In Persia and other parts of the east it is found with a tail of twenty pounds weight; at the Cape of Good Hope the tail is worth as much as all the rest of the carcass; there and in other parts of Africa the sheep have clusters of horns, to the number of five or six; in Madagascar the same horns and tails are to be scen, the ears hanging down like those of a hound; about Auregabad, hetween Agra and Bengal, they are found without any horns at all, but so strong that, being bridled and saddied, they will carry children of ten or twelve years of age; the so-called sheep of Chili somewhat resemble camols, being hair-mouthed and hunch-backed, and they are used for carriage and field labour; those of China are small, with short tails, which, however, are a lump of fat; Tercen, in his voyage to Surat, mentions sheep with bent snouts and pendent ears, with wool more coarse and stiff than goai's hait; in Africa, to the north of the Cape of Good Hope, they
never cat grass, only succulent plants and shrubs; in Thibet the shecp have large broad tails; in Natolia these tails are laid in carts on wheels; in Ansptech, in Germany, a small sort exist that are shom twice a year, and also lamb every spring and autumn ; in Juliers and Cleves, also, thrv are said to lamb twice a year, and bring tww or three at a time -five sheep have brought twenty-fve lambs in a year; on the slave coast of Alrica, the sheep have no wool, "but," says the old Dutch traveller, Bosman, "the want is supplied with hair, so that here the world seems inverted, for the sheep are hairy and the men are woolly"-this hair forms a sort of mane, like that of the lion, on the neck, and the same on the rump, with a bunch at the end of the tail; the Javanese sheep have tails weighing occasionally forty or fifty pounds, having a coat of red and white hair; fourhorned sheep are numerous in several parts of Tartary, and a few have six horns, with wattles under the throat. - [Agricultural Gazette.

Applithg Dung to Whe.t.-The operations of life are on the surface of the earth, and the most plausible theory of the food of plants supposes that it is derived as much from the atmosphere as from the soil. We may also infer that new elements will be produced from the manure and the air, and which may be imbibed by plants. From these grounds, I have long been of opinion that the farm-yard dung, which is now laid on the bare fallows for wheat, might be more br neficially applied as a top-dressing in March on the growing plants. The dung being evenly and thinly spread over the land, it may lie for one or two months; and being harrowed, it will form a top-dressing for the plants, of no common value, of the minute particles of dung and soil. and a bed for grass-seeds of a sort they never receive. A matrix of different substances, in a fincly reduced and comminuted state, resembles the "alluvium" of nature, in which plants so very much delight to grow.
J. D.

> A GUDE PROVERB.

The Scotch have this proverb: "A gude word is as soon said as an ill one." Will not every child, when he hears others use protane, indecent, ill wards, or is tempted to use thetn himself, remember that "a gude word is as soom said as an ill one!"-[Well-Spring.

164 Progress of Industry and Harmony of Labour-Maxims.

Progress of Indastry and Harmony of Labour.

This, then, is the grand moral lesson of the hour - the phaness on industry and the harmony of hapme. That progress is already proved and hte: :r.ed when this society remembers, on the o:: :.and, what its fatherssaw, and what they das., and on the other, casts its eye on the exmbitious, and gathers up the instructions, of this clay. That mansoss, in interest and growth, in sentiment and purpose, is substantiated by this present re-union of all the sons of labour at this amnal civic trimmph. These exhibitions are reaching us that we are all produers and all consumers. These holidaye are proving to us that the circle of all business and all pursuits is a charmed circle, and that a single jar anywhere spreads discord and disaster through the whole. There is no such thing here as an isolated interest, nor any such man as an isolated labourer. In the formation and growth of commun:ties, labour divides and subdivides itself-:o the end, not that this pursuit or that may become easier or more honourable than the other, but that each an:l all may be the more profitable and the more productive. Would you say that the divisions and snblivisions of human itevention in the machinery we have wronessed to-day, with all their mee and varied improvements from year to year, involve any encroachmeat on the rights of labour? Neither with any more truth woul: 1 you mantain that any fixed domatment of human pursuit, whether of the hand or the heall, in the field or the shop, in the counting-room or the office, could be stricken out withont imparting disturbanes to the whole. There is one harmonious iden ruuning through the whale scheme and the whole ta:nic of wociety, the whole theory and the whole practice of the worliand that is, increased poolit and increased pro-duction,-greater capacity for produring, sisitainang, educating, advancing the race. The smanll and deepised stream which flows through the heart of this city, is a wiser witness and a anure liberal philosopher than we. What growth, and upbuitding, and expansion of industry has it not witnessed! It very early beckoned to its banks a scattered, humble, dependent colony of machanics. It kept them up through prosperous and adverse fortune, till now a saore of emoking shafts penetrate the sky, and from the reservoir on the north to.its southern outlet, its banks are vozal with the hammer and the axe, the whirling wire and the building machine, the forming plough and the noisyplane, the fierce glow of the furnace and the heary working of iron, the whiz of the car-shop and the crack of the pistol-while a host of children, whom no man can number, look towards it in the moraing and in the evening for their daily bread. If $\frac{1}{2}$ were to en " npon this productive rivulet for its testimony, what; think you, would
it be? Why, to be sure, that the wire-mak and the machine-builder combined to supply it cotton and woollen mill-that the plough-mat: furnished his wares for the whole agriculter world-that the iron man, with his tive ors scores of hands, was at work for every bodr. and so on to the end of the chapter, concluds with this essential and impressive fact, that this community has increased from year to ye new chuaches and new schools, a little m counse! and a little more medicine, yet ons stores for wholesale and retail, more boardin houses, and shoe-shops, and tailors and hatis and grocere, and dress-makers, were demand and came in unon us, till the town has becon what we behold it to-day-all helping one a other, and the farmer feeding the whole. hold him to be a suspicious friend who we scatter the seeds of dissension where Provides and nataral causes have established a con: dence of interest ; and against his testimons place thyt ever speaking and benevolent stres as it carries down to the waters of the Blat: stone, to be diffused over yet larger communiz between this and the Bay of the Narragansers that large, universal truth of American li:the harmony of cibotia.- [Bullock's Aidde before Worcester Ary. Soeicty.

Maxims of Waikington.

Every aetion in company ought to be wi some sign of respect to those present.

Speak not wate othors sperak, sit not wid others stand, and walk not when oihers stop.

Be no flaterer; neither play wath any e that delights not to be plaged w.h.

Let your comatename be pieasant, but in s rious matters somewhat grave.

Show not yourself giad at the misfor:unt another, though he were your e:emy.

In writing or sipeating, give to every one tis due tille, aciording :o his degree, and the ca tom of the plaue.

Strive not with your suf. :iors in argunabut nlways submat your juadgucat to otherss undes!y.
Undertake not to teach your cqual in the an: himself proiesses; it savors of atrogance.

Being to advige or repriminnd any one.cot sider whether it curght to be in nublic or phat presently or at some other time, $\&$ in what ters to do it ; and in reproving, show no sigks choler, but do it with sweetness and mildnros

Wherein you reprove another, be unblarax youreelf; for cxample is more prevailing it precept.
Be not hasty to beliove flying reporta, wi di-paragement of any one.

In your apparel be modest, and endeavour to ecomodate nature more than procure admiraion. Kecp to the fashion of your equals, such it are civil and orderly, with respect to time Ind place.
Associate yourself with men of good quality; f you esteem your own reputation; for it is peter to be alone than in bad company.
Uter not base and frivolous things among trown and learned men; nor very duficult fuestions or subjects among the ignoram, or hings hard to be believed.
Be not forward, but friendly and courtcous, the first to salute, hear, and answer; and be hot pensive when it is time to converse.
Gaze not on the marks or blemishest of others, nd ask not how they came. What you may peak in secret to your fricnd, detiver not betiore pithers.
Thisuk before you speak ; pronounce not imberfectly, nor bring out your words too hastily, put orderly and distinctly.
Treat with men at fit times about business, thd whisper not in the company of others.
When you speak of God or his attributcs, let be seriously, in reverence and honour, and bbey your natural parents.

Female Education.
"She has finished her cducation," says my fiend. Finished her educstion, said \mathcal{I}; just as hough a young lady's education wasa stocking pr a bomet, and now it was to be placed in a bandbox, to be displayed to visitors, anil to be form only on set occasions. I protest against he doing up, and finishing off a young lady's ducation with her 'teens-just at the time when he begins, if ever she docs begin, to think. A roang inan has just acquired, atone-and-twenty, be clements of education, and is prepared to kudy advantageously according to his own diszetion; buta young lady has done-finishedle circle of her sciences is complete, and she s ready for any sitution for life that may bo hrowa in her way. Now, why, in the name of oumon se:nse, moy not a woman think; and ishr may think, why may she not study, anad equire profitable food for thought? There is lady of whom I have some knowledge, that finished her education" by having peculiarly od aldrantages at an carly agc. She is now wife, and mother of six children. She plays ell ufion the plano, singa sweetly, ba: her husthd inust, and actially does, put all the chilen so bed, and has the care of them through t night. And as for her table, the bread is ecrable to one who has ever visted his grandoher's pantry; and her coffee, oh! her coffie !
it wou!d cost her head if it reached the Grand ${ }^{\prime}$ Turk's palace; and yet the lady has a "finished education."-[Selected.
Mrsic.

Fvery woman who has an ap:itude for music or for singing, should bless Gud tor the gift, and cultivate with daligence, not that she may dazzle stangers or win applause from a crowd, ba' that she may bring ghatness to her own fireside. The influence of muse in strenghening the af fections is far frombeing perceived by many of its admirers; a swect melody brings all hearts together, as it were with a golden cord, it makes the pule beat in unisen, and the heart thrili with sympathy. But the mucie of the fireside must be simple aad unpretending, it does not require brilliancy of execution, but tendernes of feelng-a merry tunc for th" young, and a more sublued strain for the agei, but none of the noisy clap-trap which is so popular in public. It is a mistake to suppose that to enjoy music reguires cuhtivation ; and the degree of enjoyment will, of course, vary with our power of appreciation, but like all other great influences, it is able to attract even the ignorant, and this is what the poets taught when they made Orphens and his brethren the civilizers of the earth. In cases where musicel instruments are not within :each, we may modulate our own voices and nake them give forth sweet sounds, we may sing those simple strains which require neither tcaching nor skill, bat which, if they come from one heart, are sure of finding their way into another.
POL:TENESS.

Be polite at a!l times, and to all persons. Remeniber that you will lose nething by thus doing; you will be more respeted, and certainIy more beleved, than you will be if you are in the hnhit of answering in an abript or unkind manner. It will aifo render you happier to do this; for if polist yourself, you will generally mect whth politeness in rearn; and if you do no:, you will still have the inward conscionaess of havin: yourself acted correctly.-[WellSpring.

tid batometer.

Torricelli inventel, and Pascal perfected thia instrument, and it is of great uee, not only in ferctelling the changes of the weather and thum eaving the lives of navigators, and preventiag the loss of millions of property on the ocenn, but aloo in enabling us readily to asseertain the

106 Aid Children in their Studies-Habit-Economy in Sleeping.

height of mountains, or of any other situation to which it can be taken.

This instrument falsifies the ancient maxim that " nature abhons a vacoum." The barometer is constructed upon the principle of atmospheric pressure. 'The amo-phere on a clear day will support in a vacumen a column of mercury 30 inches in heigrat. It is therefore ruled in this height in the tube be the pressure of the atmozinere, and this is the reatson why the baroneter is not affected in honses to indicate the nature of the weather. 'The baronacter is emplojed to measure heights, as the mereury falls the higher we aseend. The rising mercury indicates the approach of fair weather, and the falling merenry indacates foul weather. No captain should go to sea without a good barometer, and the vertical kind are the beet. There is no perion but can easily male one for himaself. -[Scientific American.
aid chitdren in their ettome.
The good mother, or wher discreet member of the family, can do mich to encourage chaldren in their stadies. Eveniwhen the parent is not well shilled in the brateches the child is attending to, she may exerrise a powerfal influence by showing to the child that she is interestcid in its success.

If ehildren sit down to what they consider a task, and see no other member of the family attending to st...ly, or taking any incerest in their progress, it may be irksome, expecially when all the rest of the family seem to bee free from care or labor, and eajoying hitic in a cheerful manaer, apparently without the labor of thought or reliection.

Many are qualitied to aid children esenen:ially in theitetudies, and all have the power of ono sumgement, which ofien operates like: a charm upon the juven!le mind. and causes difficulties that loomed up to a discouragement in the distance, to diminish or vanish away, on near approach, or familiar acquaintance, through the aid of a hind friend.-[New England Farmer.

jabrt.

Parents should endeavour to form good habits in their children-it makes all difficultues casy. Make zobricty, mys Lord Brougham, a habit, and intempernnee will be hateful nat hard; mase prudence a habit, and reckless profigacy will be as contrary to the nature of the child grown or an adult, as the most ntrocious crimes are to any of your jordshipa. Give a child the habit of sacredly regarding the truth, of carcfully respecting the property of others, of scrupulously sbitaining from all aots of inprudence which can involve him in dis-
tress, and he will just as likely think of rushin into an element in which he cannot breathe, of lying, or cheating in selling.
'To found these habits in children, howere is no enay task. But there are many men: splendid minds, whose lives exhibit great stry gles to break up and overcome bad habits for ined in youth either by parental neglect or delgence-[Scientific American.

economi in sleeping.

It is difficult to determine how long a perie should slecep, as different persons differ constur tionally, some requring more sleep than othe But one thing is certain-that some boys sth far more than is necessary, lying in bed ele or nine hours, when seven would be sufficesome lie so lone that they become fatigued tired with inaction.

If a boy sleep, an hour too much eachty he will lose fourteen or fifteen days in a yis whic! will amount in ten years to nearly ha: year: in fitity yeare, to more than two year 'This is an inportant subject. Life is short, uf we have a great deal to do in this brief perig How absuri. then, to waste in indolence, ,: dormant, senseless state, so large a portion precions time, which can never be cecalled

If a person would excel in any pussuit, cink in busiucess or study, he must husband his turd and sleep no more than is necessary for refos. mem. The ob?ect of sleep is to give rex. the boily and mind, and fit them for renew and vigorousaction; and he who slecps ment to kill time or waste it, that it may not hy laravy on his hande, is indulging in a habit ia will become so fixed, after a while, that it w give character to the whole boy and future tua

Let every boy consider whether he is wace in bed the most precious hour, of his life. as estinate on the loss. Let ham caleninte of much he might earn, or what useful brance of study he might pursuc, in the time now ws ed in sleop-in a staty of oblivion. Thousad of persons who shudder at the terrible thos suggested by the doctrine of annihilation, pa tiec every day upon that very principie at whi the sonl recails with horror.-[New Engla farmer.

Opinion of Dr. Watte.

Among the accomplishments of youth, the is none jreferable to a decent and agrect behaviour amang men, a modest freedom specech, a soft and elegant manner of addry a graceful and lively deportment, a chech. gravity and good humor, with a mind appeai ever serene under, the ruffing accidents of

Character-Adver6ity-Ag. Aseoci'nof U. Canada-Wages in Britain. 167

man life. Add to this, a pleasing solemnity of reverence when the discourse turns upon any thing sucred and devine; a becoming neglect of injures, a hatred of calumny and slander, a a habit of speaking well of others, a pleasing bencvolence and a readiness to do good to mankind, a special compassio: to the niserable, with an air and countemance in a natural and unaffered manar, expressive of all these excelleat qualtications

Forer of Cinmacter. - Man imputes to himself the ability to be constant by his own prop.r forere and phaces his houor in that ability. A man of his wohd, and a man of honour, are symummons terms. H, who can embrace a parperec and persist in th, who can act from a irevise numpported ley present inclimation nay, "ren in opponson to presem inclination, emoion, or pasion, of him wer say, he has a choracter," "he is a man." We: despise the man who is always only what thinge accidents, circumstancos, make of him; the fickie, the inconstant, He wavering - Wi- hounur him who can resist objeces, and the impressions which they make upon him, who knows how to maintain hunself in the fine of them. who lets himself be instructed hat mithatsed by them.

Cese or Advirsity.-Do not expect nordesire comtinued prosparity. A good spice of adversity is t'le very thing you need, to give strengli. visour, and clasucity to the mind, and, in fact, to matare and pertice the whole man, iondy and soul. Sinn and shade, wer and dry, fool ind heat, ate what is wanted so produce aud ripen suc.il fait afow storms oniy serve Io man the tece sont the de prand stand the | limee:. lamb :ab- will peoth the damond amd :akne it hine more h:illamity. Brashing wiat pantif the gata:com and make it all the bether.

achacteturat. asvociation of vipent Casisus.

The namal general mecting of the directors of this important society was held, pursumat io pubic notice, in the Court House of the ciey of Toronto, on Wednesday, 21st :inst.-Mr. Sherisi Ruttan of Cobourg, the President of the Association, in the chair. Several inportant matters were disposed of, and arrangements made for conducting the proceedings of the Association for the curront year. Ainong those, we may mention the njpointmerit of the following genilemen as a sub-committee of management at Kingstut, whire the next show will be held in Seplembir.
J. B. Marks, Esq., Vice-Presiacint of the Association.
Angus Cameron, Esq. Chairman of the Wolfe Island Agricultural Society.
Peter Davy, Esq., Chairman of the Earnestown Agricultural Society.
Hexpy Smith, Escg., M.1'.1., for Frontenac. Dn. Barкен.
Wh. Ferctisox, Esq.. Chairman of the l'itsburg Alrricuthural Suciely, and'Ireasurer of the Mid!and District-'ireasurer.
G. A. Cuming, Esq., Ireasurer of the littsburg Agricciltaral Society-siecretury.
The Hon. Adam Fergnsson being present, and on his way to Mhomireal, was requested, in conjunction with J. Wetenhall,Esq.M.P.P'. to urge upon the Government, the justice and expedicncy of allowing a bib eat gramt of money, to enable the A sociation of discharge all its outstanding habaititics. It was also resolved, that the l'resident address a circular to the agricultural scrietie's of the different districts. urging upon them the inportance of contributing to the fumsts of the Provincial Association. A vote of thanks was passed to the late executive commitee at Cobourg, for the very liberal and steceessful manner in which they sastamed the last exhibition of the suciety in that towes. It was likewise detoternimed, that the Secretary, Mr. Buckland, be instruced to draw uip a concise rejort of the origia and progress of the association; and that the directors take such means as wi:l so enabie the Financial Committee to mert :lll the semamb arainst the society. A lew individuats in the Illuron District thave set a praiseworthy ceample, by subseribing liberally toward that object; and we trust many others will be induced ta do the same. ± 500 are requirel to place the Association in at healthy condition. The direators adjonmind the meeting to the first Wednesday in May, to be then held in the city of Kingston.
h.ite of whges in great mritain.

We copy the following article from the Lowell Couriny. The writer, Mr. Aiken, is agent of the Lawrence Ninls in Lowell :-
During the autumn of 1847 I visited Europe, and, while in Great Britain, spent several weids in the manufacturing districts. I was additued with entire frecdom to the
linen factories at Belfast, Ireland; to the machine shops and cotton factorles at Greenock and Glasgow, in Scotland ; to a large woollen factory at Leeds; to several of the machine shops and cotton mills at Manchester; to a kace factory st Derby; and to the shops at Sheffield and Birmingham. All the processes in the several manufactories were shown to me, and all my inquiries were answered withont reserve and to my entire satisfaction. The rate of wages paid to the operatives and the cost of production were of course points which \mathbb{I} could not overlook: I was uniformly attended by the proprietor or manager of the factory, and the information received was immediately noted on my memorandum book, from which I take the tollowing particulars regarding wages :

The operative in all cases boards his eelf out of the wages paid.

In the linen mill at Belfast, wages from 11d. to 13 d . per day; average 6 s . a week; equal to $\$ 144$.

In the cutton mills which I visited at Greenock and Glasgow, in Scotland, wages ranged from 4 s . to 8 s . 6 d . sterling a week; average not over 7s. 6d. ; equal to $\$ 180$.

In the large woollen mill at Leeds, wages ranged from 6s. to 10 s . sterling a week; average not over 9 s . ; equal to $\$ 216$.

In the two best cotton factories I visited at Manchester, one of them spinning fine lace-thread from No. 200 to No. 400, and the other spinning No. 40 mule-twist, the average wages paid to men, women, and
children, as given me by the proprietorn, wh 12s. a week; equal to 8288 . At the sam time the proprietors informed the that thet rate of wages was considerably above th general rate; and, in accordance with thit statement, I found in these two mills mug the best clothed and best looking sets of opt ratives I saw in any factories in Gred Britain.

As another test of the cost of labour, ascertained from the proprietors themselvo who, in some instances, submitted to my it spection their private weekly minutes cost, that No. 40 mule-twist was produc and packed for market at a cost of 2 d . p_{t} pound on labour. And this embraced mas chanics and all other labour employed abot the establishments.

Skilled labour is also much cheaper Manchester than iia Lowell. In one milh much larger than the new mill of the Mer mac Company, I was intormed that the het overlooker, having a general superintendane of the whole mill, received $£ 3$ a week, equy to 240 a day; and the overseers of particuis rooms from 27 s . to 30 s . a week, equal to 08 and $\$ 20$ per day.

My general conclusion was that labour ${ }_{3}$ the cotton manufactories in Manchester wis at least thirty-three per cent, and in ${ }^{3}$ woollen at Leeds at least fifty per cent cheaper than similar labour, at the sant time, at Lowell. Very respectfully, John Aufer.

MARKET PRICES.

[^0]: '. Serum, the yellowish fluid sultounding the solid red mase of blood when coagulated.

