184

 1

ROYAL MILTARY COLLEGE OF OCAMADA.
\qquad 6

SYLLABUS OF THE COURSE OF INSTRUCTION.

SEPTEMBER, 1882.
Bibliotheque, de Quét,
Le Séminaire de Iniversite,
3. Tue de IUec 4, QUE,
Quebec CONTENTS.

Artillely, $\left\{\begin{array}{l}\text { Theory and Construction of, } \\ \text { Drills, }\end{array}\right\}\{. . . .$.
Military Law, \& 67
Military Administration, 71
Tactics and Strategy, 77
Surveying-Military Tppography-Reconnaissance.. . 85
Geometrical Drawing and Descriptive Geometry, 99
Freehand Drawing and Painting... 111
English...... \&..... 115
French, 119 \&
German...... 123
Physics, 127
Chemistry... 135
-Geologỳ, :..... ...,. 145
Civil Engineering.... '...... 151
Architecture

Infantry Drills, Equitation, and Military Exercises, $\left\{\begin{array}{l}\text { Infantry Drills, } \\ \text { Gymnastics, } \\ \text { Equitation, } \\ \text { Swimming, }\end{array}\right\}$

ROYAL MILITARY COLLEGE OF CANADA.

TEXT BOOKS.

Euclid (Tôdhunter.) ${ }^{\gamma}$
Arithmetic (printed notes by Lit. Col. Kensington, \boldsymbol{R}. A,)Together with Smith and McMurchy or any other approved text-book. Scales of notation and mercantile arithmetic are omitted,

Algebra (printed notes by Lt. Col. Kensington, R.A., Todhunter's Elementary ; and Todhunter,)-The latter only for the more advanced students.

Logarithms (Chambers' or other tables)-Thorough practical use of Logarithms.

Plane Trigonometry (Todhunter.)
Spherical Trigônometry (Todhunter.)
Conio Segrions (Todhunter and printed notes by Lt. Col. Kensington, R. A.)-This subject is taught almost entirely by lecture, geometrical proofs being given whenever practical and easy. The course is founded to some extent on Salmon's conic sections.

Differential Calqulus (Wiliamson.)
 Integraí Calculúus (Williamson.)

Statics and. Dynamios (Todhunter's Mechanics for begin-ners)-The most advanced students are instructed further by lectures grounded on Todhunter's Analytical Statics, Tait's Dynamies, and other standard works, free use being made of the calculus.

Statioal Problems holved by Construdion (Tracts on Mechanics by Crofton and Kensington.) Work and Energy (Tracts on Mechanics)-Special reference to artillery problems.

Rotations considered geometrically without text books up to the resultant motion of an elongated projectile.

Hydrostatios (Besant's Elementary)-Special machines used in the Royal Artillery. Higher course of lectures with the use of the calculus.

Mmasuration-Without text book.

Applied Medeanios (Crofton's Elementary)-Higher course of lectyres grounded on Rankine, Collignon, and other works.

Mrohanism (Goodeve)—Steam Engine; general principles only taught by lecture.

Note-The whole of the above course is taught by lectures and personal instruction, aided by text books as far as possible. Shorter and easier proofs than those in the text books are given

The following shows the syllabus for each class in detail:
1st. Obligatory.

2nd. Voluntary.

The Voluntary Course for the 1st Class is less detailed than that for the other classes, to admit of some elasticity, regard being had to the previous success of each cadet.

The whole Voluntary Course is purposely framed so as to be longer than can probably be completed by any, except cadets of unusual mathematical ability. Thus any cadet who wishes to devote himself more particularly to mathematics is provided with ample employment. Such portions of the Course as may be neglected without affecting the continuity of the whole are omitted at the discretion of the Professor subject to the approval of the Commandant.

SUMMARY OF INSTRUOTION IN MATHEMATICS AND MECHANIOS.

4th Olass.
Obligatort, 1,500 Marks.
MATHEMÁTICS.

Arithmetic to Interest, Discount, Stocks, Proportional parts and extraction of square root and cube root. (Printed notes and other authorized text books.) Dec., Marks 300.
Euclid (Todhunter) to Book II. ; III. ; IV.
Algebraical explanations will also be given of the propositions in Book II. "Marks, Dec., 100 ; March, 100; June, 200. Algebra (Todhunter's for beginners, and printed notes) to Quadratics and Evolution, Dec.; to Progressions, April; to Permutations and Combinations, Binomial Theorem and Interest, omitting scales of Notation and the harder examples in Quadratics. Capters I. to XXXII.; to XL.; to end.

Marks, Dece, 100 ; June, 100 ; March, 200.
Plane Trigonometry (Todhunter and lectures or printed notes.) 1st. Initial line. Terminal liñe. Angles of any size. The rules of signs. Trigonometrical ratios. Reasons for their names. Elementary formulæ proved from definitions. Formulæ connecting each with every other. Construction of angles when the ratios are given, also by the table of chords. Changes of the rafios in sign and magnitude. Circular measure. Logarithms. Chaps. I to V, omitting § 5-9; proof of § 14; proof of § 51, $53 ;$ § 66-75, Dec, Formulæ of two angles. Chap. VI, omitting $\S 79,80$. Chap. VII, § 95, 98; the angles $18^{\circ}, 36^{\circ}, 54^{\circ}, 72^{\circ}$. Ohap. VIII, § 107-10, and note process of 113. Relation of $\sin \theta: \theta: \tan \theta$, Chap. IX, § 116-18. Complete use of Logarithms and the Natural Tables, April. Solution of triangles, Chap. XIII, XIV, omitting alternative methods § 231, 2, 7, and §219-221, 238. Marks; Dec., 50 ; March, 50 ; June, 200. Notes and recitations. Marks, 100.

Voluntary, 500 Marks.

Qualification, one-third for any section.

Sedition A.
Euclid III, IV.-Algebra, (Todhunter's, for beginners, and printed notes.) Quadratics, Evolution, Indices, Surds, Ratio

Proportion and Variation, Progressions, Permutations and Com. Formule, of two ainal Theorem, Interest. Plane Trigonometry. -
triangles; Chapters VI ; ratios for $15^{\circ}, 18^{\circ}$, \&c. Solution of the obligatory course. Marks, Dec: 100。
Section B.
Euclid:-Definitions of Book V explained Algebraically ; Book VI, omitting Props. XXVII to XXIX.

Marks, March 100.
Section 0.
Algebra (Todhunter).--Equations, Chap. XII; XIII; XIV: Anomalous forms XV to § 206. Indices XVIII to § 265, and to end. Quadratics X Surds XIX, omitting § 296-8 and 307 XXII. Imaginary express XXIV with special attention to the rest of the chapter. ngactical applications only, XXVI toportion and Variation; XXXXVIII ; XXXIX, omitting \& 549 XXVIII. Logarithm §551: Marks, March, 100.

> Section D.

Plane Trigonometry (Todhunter.) Chapters I to XVI, omit.
Marks, June, 100.
Sedtion E:
Conics and Analytical Geometry of two dimensions (Todhunter.) Straight line, Chapter I to III, omitting § 27 , 37 , 48; only, Chapter V. Change of co-ordinates, practical examples only, Chapter V. Circle. Chapter VI to § 99.

Marks, June 100:

3rd Olass,

(Obligatory, 2,000 Marks.)

MATHEMATICS AND MECHANICS.

Euclid (Todhunter)-Definitions of Book V. explained Algebraically. Book VI. omitting props. XXVII. to XXIX. and first proof of XXX., Marks, Dec., 100; June, 300. 4th Class course, particularly beginners, and printed notes) Variation, Series, and applications to Problems. Proportion,
Marks, March, 50; June, 300.

Plane Trigonometry (Todhanter's, and leetures or notos to be printed)-Heights and distances, Chapter XV. § 239-241. Properties of triangles, Chapter XVI., omitting § 253-4. Inverse ratios without examples, Chapter XYIII. § ${ }^{2} 63$.
December.

Solution of spherical triangles without proofs; polar triangles; Napier's circular parts. June.

- Mensuration (lectures or notes to be printed)-Construction of ratios as $\sqrt{2}, \sqrt{3}, \sqrt{5}, \frac{1}{\sqrt{7}}, \frac{\sqrt{3}}{2}, \sqrt{\frac{2}{3}}, \sin ^{2} \theta, \tan ^{3} \theta$, $\cot \frac{\pi}{8}$, \&cc., and combinations of these. Rectilineal aud circular areas and perimeters and combinations of these. Construction of radius of curvature of ellipse, from its value $N \sec ^{2} \psi$. Area of ellipse as the projection of a circle. Area of a parabola intercepted by any chord, proved geometrically. Polygonal approximation to the areas of curves. Simpson's rule. Weddle's approximation. Summation of shot piles. December. Marks (Trigonometry and Mensuration), Dec., 100 ; June, 400.

Conics and Analytical Geometry' (lectures or, notes to be printed)-Rectilinear and polar co-ordinates. Distance between two points. Area of triangle. Equation to a line. Equation of the 1st degree. Principle of intersections. Equation to a circle (any rectangular axes). Intersections with a straight line, three cases. General definition (Todhunter's) of a parabola, ellipse, hyperbola. Sections of a right cone shewing foci and directrices. Equation to parabola; construction of any point on a parabola by drawing a tangent: Equality of inclinations of tangent to axis and radius vector. Sub-tangent bisected by the curve. Tangents meeting on the axis. Deefinition of diameter as the bisector of chords parallel to the tangent at its. extremity. Geometrical proof that any straight line parallel to the axis is a diameter, that the tangents at the extremities of any chord meet on the diameter which bisects it, and that the portion of diameter thus intercepted is bisected by the curve. Geometrical proof of equation referred to diameter and tangent. The distance of any external point from the parabola measured parallel to the axis varies as the square of the distance along the tangent. Ellipse defined as the projection of a circle, as described by the trammel and as the locus of $r+r^{\prime}=2 a$. Equation proved from the two former defimitions. Geometrical proof from the latter definition that the tangent is equally inclined to the focal distances. Lacas of foot of the perpendicular from focus on tangent. Statement of the lengths ae, $a, \frac{a}{e}$. Conjugate diameters as the projections
of perpendicular diameters of the auxiliary circle. $a^{\prime 2}+b^{\prime 2}=a^{2}+b^{2}$ and the circumscribing parallelogram $=4 a b$. Equation referred to conjugate diameters without proof. Hyperbola compared with the ellipse without proof. Equation referred Conjugate hyperbola. Conjugate diameters. angular referred to the asymptotes without proof, Recttion. Meaning of consimilarity of curves; Newton's definiand shape. Similarity of all circles and constants of size - DissimiApplication of Statics (Todhunter's Mechanics for beginners), March, 200. Chapter I. II.—Omitting pres for beginners.)
$\S 45$ to end of Chapter.
Chapter III. IV. V.-Omitting § 78 to end.
librium of a body notes in lieu of Chapter VI. on the equi-
Constrained body and the the method of working examples.
Chapter VII, \& he principle of the lever.
Centre of parallelforces notes on § 114, 15. forces. Chapter VIII to § 113. Short Formula $\bar{x}=\frac{\sum\left(P_{x}\right)}{\Sigma(\boldsymbol{P})} . \S 116-120$.
Centre of gravity, Chapter IX to § 135. Trapezoid, alter-
native proof for § 136. Results only for native proof for § 136. Results only for pyramid and cone \S 137-140. § 141-3. Formula $\bar{x}=\frac{\sum(m x)}{\Sigma(m)} \S 144 \cdot 6$, compared
with \S 114.5.

Properties of the centre of gravity, Chapter X, omitting §154.6. Alteration of centre of gravity, Chapter X, omitting
when a portion is transferred to another a a body or system

The lever and bserred to another position.
analytical proof and balances, Chapters XI, XII; omitting
Machines; Chape requisites of a balance; § 173.
of wheels, \& \& 187, omitting all considerations a vier view of a train teeth. Machines in combination; product of their mechani-
cal advantages. cal advantages.

Pulleys; Chapter XIV; 202-6, and second case of Spanish Barton weights of pulleys,
§207. § 207. Inclined Plane ; Chapter XV.
The Screw; Chapter XVI.
principle of Virtual Vines; Chapter XVII; proved by the
Virtual Velocities : definite
Compound Machines; Cha
virtual Velocities ; definition and statement of principle;
exp ing q Prop XXV cubes matic
XXX
XXX
§ 500
only,
readir
ting §
only r
exam § 589, §604-1 Portia notes roots. Sump Inequa

9

siliary circle. g parallelogram meters without without proof. zate diameters. proof, RectTewton's defininstants of size olas. Dissimiis constant. ks, March, 200. gram of forces
on the equig examples.

102, 6, March. § 113. Short
pezoid, alterid and cone 6 , compared
X, omitting y or system I; omitting 173.

W of a train size of the ir mechani-
of pulleys, neously in
od by the
principle;

Chapter XVIII. Certain forces may be omitted from the equation of Virtual Moments.

Friction. Co-efficient of friction. . Angle of friction Limiting angle of resistance. Chapter XIX ; omitting § 255-7 and $\S 260$.

> Easy problems on the above course.

Notes and Recitations...50.
Notes and Recitations... 50.

3rd Olabs.
Voluntary, 2,000 Marks.
Qualification,-one-third for any section.
Sedtion F.
Euclid XI., to Prop: 21.
Marks, December, 200.
Setion G.
Algebra (Todhunter.) Theory of quadratics and quadratic expressions, Chapter XXII. Simultaneous equations involving quadratics, XXIII, XXIV. Imaginary expressions, Ratio, Proportion and Variation ; practical examples only, XXV to XXVIII. Progressions, including the sum of the squares, cubes, \&c., of the first n natural numbers, and thence the summation of series baving the last term rational and algebraic, XXX to XXXII, omitting §456-8. Mathematical Induction, XXXIII. Permutations and combinations, XXXIV, omitting § 500. Binomial theorem, proof for positive integral exponent only, XXXV to XXXVI, omitting \& $516.20,523-25$, and on! y reading over §527. Logarithms, XXXVIII, XXXIX, omitting §549, and only reading over § 551. Convergency of series, only reading over the investigations and applying them to examples, XL. Interest, XLI. Annuities, XLIII, omitting § 589, 90, 97-99. Continued fractions, XLIV, XLV, omitting §604-11 and 613-22. Indeterminate equations, XLVI to $\S 628$. Partial fractions and indeterminate coefficients, XLVIII, with notes on partial fractions involving multiple and irrational roots. Summation of series, L, omitting § 661-4; 666, 670-1. Summation by finite differences without proof (Notes). Inequalities, LI to § 680. Note result of § 681 .

Marks, December, 200.

Sedtion H.

Plane Trigonometry (Todhunter.) I to XVI, omitting § 180-210, but reading them over for comparison with the

Differential Oalculus, and omitting XVI \& 254. Inverse Fone-tions-Chapter XVIII, omitting § 264. Demoivre's Theorem Marks, March, 200. Seqtion J. Spherical Trigonometry (Todhunter.) Chapters I to VI, omitting proof of Napier's circular parts. $\S 68,69$. Areas VIII, § 96 to $99 . \quad$ apiers circular parts. § $^{〔} 68,69$.

Settion K.

Conics (Todhunter.) Straight Line-Chapter I to III. Transformation of co-ordinates ; practical applications only,
Chapter V.
Circle.-Chat

Circle.-Chapters VI, VII, omitting § 119, except for definition and position of centres of similitude.

Parabola.-Chapter VIII-Notes, principally geometriy $y^{1}=2 a\left(x+x^{1}\right)$; similarly for the and tangent compared; Equation to the normal: \quad arly for the circle and other conics.

Construction of tangent; inclinations to axis and focal distance. Locus of the foot of the perpendicular from the focus. Portion of tangent intercepted between the point of Tangents and the directrix subtends a right angle at the focus. and meet upon the directrix: $p^{2}=a r$; $\quad r \quad a \quad$ perpendicular Polar equation: Angle $\quad r=\frac{a}{\sin ^{2} \theta} ; r=a+x$: that between the tane between two radii vectores is double $\overline{=} 2 x$. Curve bisects sub-tangent Sub-normal $=2 a$. Sub-tangent Latus rectum as the parameter: Aength of normal $=2 p$: in an equation, both those of sizer: Explanation of the constants and those of position which may Deduction of the general equation removed by choice of axes: from the simplest equation $y^{2}\left(y-y^{1}\right)^{2}=4 a\left(x-x^{1}\right)$ all other curves, $\left(x^{1}, y^{1}\right)$ being the $=4 a x$; similarly for tion. Analytical investigation into origin for the simple equaperties (alternative with \$147) into diameters and their proany external point ; their .) Construction of tangents from cosecants of their inclinationstion to the parabola referred to diameterical proof of the equawith a proof that the chords diameter and tangent, together sected, \&o., (as in the obligatory parallel to the tangent are biTo draw a parabobigatory course.) at its vertex and one other point.

To draw a parabola point.
lines at given points; also, to constro intersecting straight triz, the latter by at least siz points.
4. Inverse Pancaoivre's Theorem Iarks, March, 200.

Chapters I to arts. § 68, 69. arks, March, 200.
apter I to III. plications only,
119, except for pally geometrigent compared; ad other conics.
axis and focal ular from the a the point of e at the focus. perpendicular $\frac{2}{2} ; r=a+x:$ ores is double Sub.tangent normal $=2 p$: the constants - parameters hoice of axes: $4 a\left(x-x^{1}\right)$ imilarly for simple equad their proingents from onal to the of the equant, together gent are bithe tangent and direo

To draw a parabola, given its vertex, axis and thence to draw it, given the axis and two points distances from the axis.

Intersections of Conics, straight lines and oth
Contact. Circle of curvature; 2ρ as limit of $\frac{y^{2}}{x}$ or $\frac{y \sin \theta}{x \sin \theta}$ $\therefore \rho=\frac{2 a}{\sin ^{8} \theta}=\frac{N}{\sin ^{2} \theta}=\frac{N^{3}}{S L^{2}} ;$ thence construction of radius of curvature, and evolute.

Intersection of circle and conic, equal inclinations of opposite chords; thence construction of radius of curvature, §208. Ellipse.-Chapter IX, X, omitting § 205 .
Equation found from the definitions of an ellipse as the projoction of a circle, as described by the trammel, and as $r+r^{\prime}=2 a$, instead of that given in Todhunter. Geometric properties proved from the definition $r+r^{1}=2 a$, as follows: Construction of a tangent; its equal inclinations to the focal distances; locus of the foot of the perpendicular from the foous. $p p^{\prime}=b^{2} ; \frac{p}{p^{\prime}}=\frac{r}{r^{\prime}} ; p^{2}=\frac{b^{2} r}{r^{\prime}}$.

Equations to tangent and normal. Points where the tangent cuts the axes.

Locus of intersection of tangent with the perpendicular at the focus to the radius vector; locus of intersection of tangents at the extremities of a focal chord ; proof of Todhunter's definition of an ellipse; the straight lines $a e, a, \frac{a}{e} ; \quad r=a \pm a x_{0}$ Polar equation referred to both focus and centre: The length $e^{2} x^{\prime}$ both analytioally and geometrically.

Equation at the vertex becomes a parabola if $e=1$ or $a=c$. Latus rectum $=2 \frac{b^{2}}{a}=2 e\left(\frac{a}{e}-a e\right)$, compared with parabola. e is the tangent of the inclination of the tangent from the foot of the directrix. Other properties compared with the parabola. Relation $p^{2}=a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha$ for perpendicular from centre on tangent ; thence locus of intersection of perpendicular tangents.

The eccentric angle; $x=a \cos \theta ; y=b \sin \theta$. Locus of a point obtained by measuring $\frac{a+b}{2}$ at an inclination θ and then $\pm \frac{a-b}{2}$ at - θ

Diameters investigated analytically as for parabole (alternative with § 187.) Conjugate diameters as the projections of two perpendicular diameters of the auxiliary circle; hence the
properties of conjugate diameters and the equation to the ellipse referred to them (instead of § 198.)
$a^{\prime 2}+b^{\prime 2}$ constant ; $p b^{\prime}=a b$. $P G . P G^{\prime}=b^{\prime 2}=r r^{\prime}$ and other properties.
${ }_{8}$ Radius of curvature (as for parabola) evolute.

To construct the fooi of an ellipse, given the axes; also to construct directrices and latus rectum.

To construct an ellipse, given a pair of conjugate diameters. Given an ellipse, to find the centre and axis.
Given either axis and one point, to describe the ellipse.
If any tangent meet two conjugate diameters, the rectangle contained by its segments is equal to the square of the parallel semi-diametdr; thence, given a pair of conjugate diameters, to construct the axes.

Hyperbola; Chapters XI, XII, omitting proof of equation referred to conjugate diameters § 252, also § 264-3; 265 .

Notes as for the ellipse wherever practicable. Equation and properties deduced from the definition $r-r^{\prime}=2 a$. Subellicion $-b^{2}$ for b^{2} or -- a^{2} for a^{2} in the equation to the volving b^{2}; geometrical meaning of the case of properties incase:

Diameters as for ellipse (alternative with 236.)
The conjugate hyperbola. The equation ($a^{2} y^{2}$
$=a^{\mathbf{4}} b^{4}$. The four foci equidistane equation $\left(a^{2} y^{2}-b^{2} x^{2}\right)^{2}$
Equation referred to the asymptot the centre.
asymptotes (as axes) and the co-ordinates Area between the General equation of the co-ordinates of any point. eral acquaintance with the 2nd degree; Chapter XIII. GenTo trace a conic, easy examples on and results of § 269 to 272 . Meaning of "discriminant of a conic." Read over § 279, 280.

Chapter XIV-General equation to
§ 281-3. Pole and polar. Read referred to the tangents, § 293-4. Simis 289-91. Equation Chapter XVI-Section of Similar curves, 296-8. given showing the foci and directri a different proof will be harmonic ratio; the ratios $A B$. 10 . Omit § 348-9. AnHarmonic pencil. Omit § 356-61. DC.: AC, DB. : AD. BO.

Chapter XVII-Projections; § 362-89, and read over the Marks-December, 500.
to th Read
equation to the
$\frac{p^{\prime}}{r^{\prime}}=\frac{p+p^{\prime}}{2 a^{\prime}}=\frac{b}{b^{\prime}}$
ies.
of points on the

The axes ; also to
agate diameters. ris.
be the ellipse.
rs, the rectangle
θ of the parallel
te diameters, to
oof of equation 2-3; 265.
ble. Equation $r^{\prime}=2 a$. Subequation to the properties ine sign in each
36.)
$\left.{ }^{2} y^{2}-b^{2} x^{2}\right)^{2}$
tre.
a between the point.
XIII. Gen§ 269 to 272. or § 279, 280.

Read over 1. Equation , 296-8. proof will be 348-9. An: AD. BO.
ead over the ecember, 500.

Differential Calculus (Williamson.)

Chapter I-Proof of $d^{\prime}\left(x^{n}\right)$ by binomial theorem, instead of § 16.18. Differentials used equally with differential coefficients. Differential of the function of a function obtained directly without the investigation of § 19. Geometrical condition for $\frac{d x}{d y} \times \frac{d y}{d x}=1$.

Chapter II-Successive differentiation; differential of the independent variable is constant. Omit § 39, 43 to end of chapter. Read over Liebnitz Theorem § 48.

Chapter III--Expansion of functions. "Remainder" noted but not used in applications of Taylor's and Maclaurin's Theorems. Expansion of $\tan ^{-1} x$ by integration. Omit § 65.68. Read over § 73 with equations (27), (28), (29), (33) or Mr. Homersham Cox's variation of Lagrange's proof. Interpretation of remainder to shew that if two points be talken on a curve, the chord joining them is parallel to the tangent at some intermediate point, $\$ 74$. Omit $\$ 75$ to end of chapter.

Chapter IV-Indeterminate forms; algabraic processes not necessary. Consider also oc $-\infty$. Read over the proof in § 91.

Chapter V-Partial difforentiation, § 95-6. Result only of § 97. Omit § 98, 101. Result only of Euler's Theorem, § 102. Read over § 103.4. Omit § 107, also § 110 to the end of ohapter.

Chapter VI-Read over the first two pages and note results.

Chapter VIII-Read over § 127 and note result.
Chapter IX-Maxima and Minima. Omit § 136-7, 143.7. Read over § 151 to the end of the chapter.

Chapter XII-Tangents and normals. Omit § 173-7, 184 to the end of the chapter except definition of inverse ourves. Read over § 195.

Chapter XIII-Asymptotes. § 196-200 explained more simply. Exception when the asymptotes are impossible.

Chapter XIV-Brief explanation of multiple points. Nodes, cusps, conjugate points.

Chapter XV-Brief explanation of envelopes, and the general methods of determining them.

Chapter XVI-Convexity and concavity. Read over the analytical investigation in §223.

Chapter XVII-Radius of curvature; Omit § 228. Omit §232-3; 236. Read over § 239. Omit § 241-2. Read over S243-8, and note conclusions. Omit § $249-54$. Read over §255, and study the approximations.

14

Chapter XVIII-Brief explanations and easy examples. The Limaçon and Trisectrix. Trisection of an angle. The conchoid § 270-71

Chapter XIX-Roulettes § 272-7. Read over § 278 . Geometrieal proof of hypocyoloid and hypotrochoid when the radius of the inner circle is half that of the outer, $\S 285$. § 302.3. § 311,315-6.
pendent Variable,
Marks, June, 500.

SECTION M:
 Integral Calculus.

This subject will be commenced as soon as the process of differentiation has become easy. The elementary formula as Substitution, and partiantion, and easy variations of them. $\tan ^{2 n} \theta d \theta$. Integration $\sin ^{m} \theta \cdot \cos ^{n} \theta d \theta$. Rational fractions. The various cases of Marks, March, 100. Notes, 100.

$$
\begin{gathered}
\text { 2nd Class. } \\
\text { Obligatory-2,500 Marks. } \\
\text { Mathematics and mechanics. }
\end{gathered}
$$

$$
\text { Notes, } 100 .
$$same or equal bases, and having the same (also prisms) on theequality of sections. Trisection the same altitude, proved bypyramids. Volume of a pyramid a prism into three equalprism on a triangle or parallelogram or cone. Truncated rightmean altitude. Wedge regalegram as base, in terms of itsor as a pyramid and right wedgad either as a truncated prism,of frustum of pyramid or wedge or semi-parallelopiped. Volume

as a solid bounded by planes between two parallel ends)
easy examples. an angle. The
ead over § 278. rochoid when the ater, § 285.
and Functions,
ndent Variable, Marks, June, 500,
the process of iary formulæ as tions of them. substitution, ious cases of ks, March, 100. Notes, 100.
assumed to be divisible into prisms, pyramids and wedges, all having the same altitude ; mean section $\frac{A+4 M+B}{6}$. General definition of a mean. Application to calculations of earth work. Surface of pyramid or cone. Centre of gravity of pyramid or cone (both volume and surface), omitting proof for former. Surface of a sphere, zone or segment, and centre of gravity of each. Volume of a spherical sector proved by summing the volume beiween two consecutive sectors, considered as a conical volume. Volume of a sphere. . Volume of prolate and oblate sphoroids and of paraboloid of revolution (without proofs.) Statement and use of Guldin's Theorems ; thence determination of the centres of gravity of the are and area of a semi-circle and quadrant. Marks, Dec., 100 ; June, 100.

Statics \qquad
Graphic Statics (Tracts1arts, Jus, 1-4, 6, 7 with alternative solution ; $8,11,12,21$.

Marks, March, 100.
Dynamics and Works-(Todhunter's Mechanies for beginners.)

Velocity. Chapter L.-Angular velocity in terms of circular measure. $v=r \alpha ; \alpha=\frac{2 \pi n}{t}$.

1st and 2nd laws of motion.-Chapter II.
Uniform acceleration and the equations of motion.-Chapters III, IV, omitting proof in § 37 .

Parabola of projection.-Chapters V, VI, omitting § 72, 73, 75-7.

Mass and 3rd law of motion. Chapters VII, VIII. Acceleration obtained directly from $P=m f$ in § 89, 92 .

Impact. Chapters IX, X. Omit § 109, proof of loss of Vis Viva in § 108-124, and continuous rebounds, § 122-3.

Motion of centre of gravity of a system $\bar{v}=\frac{\Sigma(m v)}{\Sigma(m)}$; $\bar{f}=\frac{\sum(m f)}{\Sigma(m)}$ proved from $\bar{x}=\frac{\sum(m x)}{\sum(m)}$ Chap. XI.

Laws of motion and parallologram of velocites. Chapter XII. Motion down a smooth curve, $\boldsymbol{v}^{2}=2 g h$, without proof, except for an inclined plane. The pendulum $t=\pi \sqrt{\frac{l}{g}}$ without proof. Seconds' pendulum. See Chapter XIII, § 147,
152 ,

Centrifugal force $=\frac{v^{2}}{r}$, proved differently from Chapter XIV, § 163. Gravity the resultant of the earth's attraction and centrifugal force.

Work.-Chapter XVII; also (Tracts on Mechanics, Part I,) omitting calculation for fly-wheel, § 24, and calculations of Moments of Inertia, § 28. Moment of Inertia and radius of gyration to be learnt for simple cases of rectangle and circle; also the formula $M\left(h^{2}+k^{2}\right)$, without proof. Special attention to Example 16.

Marks—December, 100; June, 300. Applied Mechanics-(Crofton's Lectures.)
Introductory Chapter: Stability of Structures (Part I). Frames. Reofs. Trussed beams. Chains and cords. Stability of walls.

Strength of Materials (Part II). Stress and strain. Elasticity. Resistance to compression. Theory of beams. Bending moment expressed by the area of the diagram for shearing force. Culman's graphical method of treating strespes and finding centres of gravity. Moment of resistance for rectangular and cylindrical beams. Girders. Beams of uniform strength, Warren girder and lattice girder with diagrams. Method of sections. Partial loading. Allowance for weight of beams. Dead and live load. Sloping beams. Fixed beams.

Marks-December, 100 ; June, 200.
Hydrostatics - (Besant's Elementary).
Introductory chapter.
Chapter I-Omit the numbers and investigation in § 3. Alternative proof of $\S 10$. Omit examples (11), (12).

Chapter II-Omit § 22, 29, 30 .
Chapter III-Omit § 34, 35. Shorter proof of Ex. (5), § 48 . Goometrical proofs of centres of pressure of the triangles in § 49.

Chapter IV, V—Omit §80. Read over §83. Omit § 87-9 and 93 to the end of the chapter.

Chapter IV-Omit § $98-101$ and 108 to the end of the chapter.

Notes and Recitations... 100.
2ND CLASS.
Voluntary. $-2,000$ Marks.
Qualification, one-third for any Section.

- Section N.
- Integral Calcuius (Williamson).

Chapter 1-Compare (e) with §9; (f) with $\S 5$; also Ex. (1), (2), § 13. Integrate forms involving $a+2 b x+c x^{2}$ or
$\sqrt{a+2 b x+c x^{2}}$ by completing the square. Compare $\S 4,22$, 23 , 24 with $61-3$. Umit § 8.

Chapter II-Rational fractions; easy examples only with explanatory notes.

Chapter III-Formulæ of reduction; easy examples only with explanatory notes. Read over § $63-73$; omit 74 to the end of the chapter.

Chapter IV-Rationalisation, § 77 and read over $\S 78$.
Chapter V-Infinite series $\S 88$.
Chapter VI-Infegration as summation; more elementary proof of $\S 90$. Read over 92-94. Omit 95-114. Double and treble integration $\S 115$ with notes and examples. Omit $\S 116$ to the end of the chapter.

Chapter VII-Areas, § I26-131, omitting 130 (a). Closed curve; easy examples. Read over 132-4. Polar areas, § 135, 139. Omit § $136-8$; I40 7. Areas hy approximation § 148. Ansler's Planimeter § 149, or alternative investigation as given in Collignon. Asymptotic areas of rectangular hyperbola; hyperbolic logarithms.

Chapter VIII-Ares § $150-152,155,156,167$. Rectification of evolutes. Read over § 153, 4.

Chapter IX-Volumes and surfaces § 168-175; 178-181. Note process in § 184-5 ; 187.

Chapter X-Moments of Inertia. Special attention to § 196-98. Read over §206-207; 216-17. Marks-December, 500.

Skotion 0.

Analytical Geometry of three dimensions (by lecture or notes to be printed). Equations of a point in space. Distance between two points. Projections of a straight line proportional to the direction cosines. $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma$ $=1$. Equations to a straight line. To find the inclinations from the equation. Angle between two given straight lines. Equations to a surface; conditions of parallelism to one or two axes of co-ordinates. General equations to a sphere, ellipsoid, spheroid and cone, with principal axes parallel to the axes of co-ordinates. Definition of a plane (1) as described by a straightine moving parallel to one given straight line, and always intersecting wanother given straight line; (2) as the locus of a point equidistant from two given points. Equation to plane found from each definition in terms; 1st, of the inclinations of its traces and intercept on the axis of $Z ; 2 n d$, of the three intercepts on the axes; 3rd, of the perpendicular from the origin and its direction cosines. A line in space (or line of double curvature) as the intersection of two surfaces, usually two projecting cylindrical surfaces;
purticular case, a straight line. Length of a perpendicular from a given point on a given plane. Tangent to a curve; normal plane. Tangent plane to a surface; normal to a surface.

Marks-December, 200.
N.B.-The preference is given, throughout the course, to symmetrical equations.

Seotion P,
Statics and applications to Stresses. (Todhunter's Mechanics for beginners.) Harder examples and the omitted articles in the 3rd Class obligatory course, Alternative proof of § 155. Omit § 154; 156 to 158.
(Lectures or Notes to be printed.) Resolution and Com-position-1st, of forces in space; 2nd, of couples. The six equations of equilibrium (followiug the notation in Todhunter's Analytical Statics.) Any system of forces reducible of two forces. Condition that there should be a single resultant. Equilibrium of a particle constrained to move; 1st, on a smooth curve; 2nd, on a smooth surface. Centre of parallel forces, Culman's graphical method. Alteration of the centre of gravity by transposition of a part of the body. Elementary methods of finding the centre of gravity of a circular are, sector and segment. Centre of gravity of a small arc or segment respectively $\frac{2}{3}$ and $\frac{2}{5}$ of the distance from the chord to the arc. General formule for centre of gravity of area, are, volume and surface of revolution. Guldin's Theorems. Attraction of a straight bar on a particle (1) in the direction of its length; (2) in any given position. Attraction of a circular lamina on a particle in a perpendicular axis through the centre. Principle of Virtual Volocities. Proof in the cases (1) of any system of forces on a particle, whether free or restricted to a smooth curve or surface; (2) of a pair of particles connected by an inextensible rod or line; also of any number of particles similarly connected, that is, a rigid body; (3) when any pair are connected by an inextensible string round a fixed point or pulley or round a point which is one of the parts of the system. "Converse of this principle. Applications of the principle of Virtual Velocities. If any system of particles be in equilibrium under the action of gravity, their centre of gravity is (generally) in a highest or lowest position; in the former position the equilibrium is unstable, in the latter stable. Condition for stability of a heavy curved body resting on a horizontal plane; also of a flat body on a rough surface. Elementary proof that the ends of a chain over a smooth pulley must rest in a horizontal plane, but in unstable equilibrium. Parabolic curve of the suspension bridge with
perpendicular to a curve; normal to a December, 200.
the course, to
er's Mechanics od articles in roof of $\S 155$.
on and Comles. The six n Todhunter's ucible of two gle resultant. θ; 1st, on a re of parallel of the centre Elementary circular are, small are or a the chord to of area, are, 's Theorems. the direction traction of a axis through Proof in the hether free or of a pair of ; also of any rigid body; onsible string aich is one of le. Applicany system of gravity, their lowest posistable, in the curved body y on a rough chain over a t in unstable bridge with
vertical rods. The common catenary; its equation, length of are, tension at any point, similarity to a parabola near the vertex; position of equilibrium of a heavy chain resting over two smooth pegs. Suspension rods of equal strength, equation to bounding curve. Catenary of equal strength. Pressure on a curve produced by a string of given tension wrapped round it," Relation between the tensions, at the extremities of a string passing round an arc of a rough curve; application to obtain the advantage of passing the fall three times round the windlass of a gyn. The problem of the traction of a carriage; the point of contact between the axle and the pipe-box ; the angle of draught. The forces acting on a field gun carriage at the moment of discharge.

Marks-March, 400.

Section Q.

Dynamics (Todhunter's Mechanics for beginners)-Harder questions on the obligatory course. Loss of Vis Viva after impact § 108. Motion in a circle or conic, section to be read over only, more advanced proofs being furnished. Chapters XIV, XV. Kepler's laws, § 178.

Notes. -The differential equations of motion. Application to rectilinear motion under the action of a force, (1) constant; (2) vayying as the distance; (3) varying inversely as the square of the distance. Law of attraction outside and inside the attracting body. Motion of a heavy chain (1) hanging over a smooth pulley, (2) placed with part hanging over a smooth table. Body moving vertically in a resisting medium, the law being as the square of the velocity; rectilinear motion, neglecting gravity, the law of resistance being as the cube of the velocity. Curvilinear motion, the parabola of projection. Given the general equations of motion in two perpendicular directions to find the tangential and normal accelerations, also the equation of Vis Viva. Equal areas are described in equal times, under the influence of a central force. If the force varies as the inverse square of the distance, the orbit is an ellipse, parabola or hyperbola according as the velocity $<\equiv>$, the velocity of falling from infinity. Motion of a particle on a smooth curve; velocity acquired. Cycloidal pendulum ; time of an oscillation; length of "second" pendulum; oscillation through a small circular arc. Conical pendulum. D'Alembert's Theorem. Angular acceleration $=\frac{\text { Sum of moments of impressed forces }}{\text { Moment of inertia. }}$. Compound pendulum.
Centres of oscillation and suspension. Kater's method of finding the equivalent simple pendulum. Expression for the
alteration of angular velocity produced by impulses. Simple investigation into the pressure on a fixed axis, centre of percussion and axis of spontaneous rotation. Application of D'Alembert's principle to the motion of two equal heavy particles connected by a light rod and constrained to move on two axes, one vertical, the other horizontal; also, of two equal weights connected by a string over two horizontal pulleys, a third weight being suddenly attached midway. Special attention to the equation of Vis Viva wherever it occurs. Work done in stretching an elastic rod. Vibrations of a thin vertical elastic rod caused by a falling ring stopped by a projection at its lower end.

Any motion of a plane figure in its own plane represented by roulettes, combination of rotations, motion of a solid round a fixed point, rotations round intersecting axes, application to the rotation of the earth about an axis through the zenith at any latitude, application to the derivation of elongated pro-
jectiles.

Marks-March, 400.

Sedtion R.

Hydrostatics-(Besant's elementary).-Harder questions on the obligatory course, together with the omitted sections, Chapters I to VI. The units involved in $\mathrm{W}=\mathrm{V}=\mathrm{V} s w$ and
V .

Notes.-Elementary investigation into the distribution of pressures over a plane rectangular joint with application to reservoir walls; the two conditions for stability. Moments of Inertia of a square, rectangle, circle, ellipse, equilateral triangle, regular polygon and other figures, also of a sphere; of a lamina about a perpendicular axis. Proof and explanation of $\mathrm{I}=M\left(h^{2}+h^{2}\right)$. Radius of gyration. Application of the
calculus to calculus to determine the whole pressure on a surface and the pressure is pressure on a plane surface. Proot that the centre of determinationerally below the centre of gravity. Metacentre; tion for stability its height above the centre of flotation, condiThe varinus positions Application to the flotation of simple solids. its specific gravity varies stability of a square \log of timber as

Law of pressure of gases. nothing to 1. according to different laws. Barids with densities varying heights. Proof of $z=26215 \log \frac{H}{h} ; z=26215 . \frac{H-h}{h}$; $z=52430 \cdot \frac{H-h}{H+h}, \quad$ Height of the "homogeneous atmosphere."

21

ulses. Simple centre of perApplication of ual heavy paro move on two of two equal atal pulleys, a Special attenceurs. Work a thin vertical projection at
e represented a solid round application to the zenith at longated pro-
-March, 400.
r questions ted sections, $=\mathrm{V} s w$ and
distribution pplication to Moments of uilateral trisphere ; of explanation cation of the ace and the he centre of Melacentre ; ation, condimple solids. of timber as
ies varying rements of $\frac{H-h}{h}$;
mosphere,"

Stresses on boilers and thin metal oylinders, Thin hollow sphere. Relation between pressure on a surface and the tensions in the directions of principal curvature. Thick hollow cylinder $t=\frac{R^{2}+r^{2}}{\overline{R^{2}}-r^{2}}$. Resistance of tubes to collapsing under external fluid pressure.

Flow of water through pipes. Torricelli's Theorem. Vena contracta. Fluid friction independent of the pressure, proportional to the wet surface and to the square of the velocity. Calculation of the sizes of water pipes. Open channels.

$$
\text { Markg二June, } 400 \text {. }
$$

Notes, 100.

Ist OLASS.
Voluntary-1,500 Marks.

MATHEMATICS AND MECHANICS.

N.B.-Only Section V and so many of the others as make a total of 1,500 may be taken up.

Shotion S.

Algebra and Trigonometry. Re-examination on the former course, (sections C, G, H, J). Probabilities (Todhunter) Chapter LIII to $\S 737$ and examples 1-10. Theory of equations of all degrees. Transformation of equations to others having different roots. Solution of cubic equations by Horner's and other methods. Determinants; Factors by inspection; reduction to a lower order by addition of columns or rows or their multiples; application to solve simple simultaneous equations, and to processes of elimination. Demoivre's Theorem; some of the less difficult applications. (Todhunier's Plane Trigonometry). Chapter XIX § 266-72; 2746; 78. Exponential values of sine, cosine, tangent. Gregory's series. Calculation of π. Chapter XXI, omitting § 298 to the end of the chapter. Summation of the series in Chapter XXII $\S 303-4 ; 6-9$, and others of the same nature. Marks, 250:

Seotion T.

Geometry with deductions, Co-ordinate Geometry and Conics. Re-examination on, and completion of the former course, (sections A, B, F, K, O). Abridged Notation (Todhunter, Chapter IV.) Marks, 250,

Seotion U.

Differential and Integral Calculus. Re-examination on, and completion of the formor course. Easy examples of tracing curves. Elementary notes of the solution of differential equations. Finite differences considered with reference to summing rational algebraical series; interpolation and correction. Summing areas. Weddle's approximation. Marks, 500.

Section V.

Applied Mechanics. (Notes.) Re-examination on and completion of Section P. (Statics.) Moments of Inertia. The ellipse of Inertia. Graphical construction of Moments and Products of Inertia. Amsler's planimeter. Internal stresses in a plane lamina. Principal stresses; direction of pure shearing stress; Ellipse of stress. Internal stress in beams; moment of resistance; general formulæ and application to beams of symmetrical section. Shearing force the differential co-efficient of the bending moment; diagram of shearing force used to determine the bending moment. Distribution of shearing stress; application to girders. Theory of fixed beams; application to a beam fixed at both ends; (1) loaded at the centre; (2) uniformly loaded. Beams on three supports; pressures on the supports; maximum bending moment. Distribution of pressure on a plane joint; intensity assumed to be a linear function of the coordinates of the point; general formula for the intensity at any point ; application to rectangle, circle or ollipse, rhombus, circular or elliptic annulus. To find what force should be applied at any point of a rectangular joint in order that (1) the maximum intensity should not exceed a given amount, (2) the intensity should always be positive, i.e., a pressure; application to the above simple joints.

Marks, 500.

Section W.

Hydrostatics. Re-examination on, and completion of the Marks, 250.

Seotion X.

Mechanism and the Steam Engine (Goodeve, and Notes.) Omit special applications such as those to weaving and mangling machines. Omit Chapter III on Teeth of Wheels. Marks, 750.

ROYAL MILITARY COLLEGE OF CANADA.

 zamples of tracof differential h reference to ion and correcn. Marks, 500.nation on and ats of Inertia. on of Moments ter. Internal 8 ; direction of ornal stress in * and applicaring force the t diagram of moment. Disders. Theory both ends; (1) eams on three mum bending int; intensity linates of the point; applis, circular or applied at any the maximum the intensity ication to the Marks, 500.
pletion of the Marks, 250.
and Notes.) g and mangof Wheels. Marks, 750.

SYLLABUS OF INSTRUCTION IN FORTIFICATION AND MILITARY ENGINEERING.

ALLOTMENT OF MARKS.

Theoretical Part.
Marks available for entire Course.

Practical Part or Engineering Drill.
Marks available for entire course.
Obligatory. $\left\{\begin{array}{l}\text { N. C. O's. and Cadets } \\ \text { For imparting instruction, (N,C.O'ィ. } \\ \text { only)............................... } \\ 170\end{array}\right.$
Voluntary, Nil.
Distribution of Marks by Classes. (Theoretical part.) 4 th Class.
$\underset{1,000}{\text { Obligatory, }}\left\{\begin{array}{l}\left.\text { Examination. }\left\{\begin{array}{ll}\text { Yearly, } & 300 \\ \text { Tntermediato, } & 300\end{array}\right\} \begin{array}{c}600 \\ \text { Term work, } \\ \text { Notes, Exercises } \\ \text { Drawings, }\end{array}\right\}\end{array} \begin{array}{l}400\end{array}\right.$
Voluntary, Nil.

3rd Class.

2nd Class.

$\begin{gathered} \text { Obligatory, } \\ 2,000 \end{gathered}$	Examination.	Yearly,	600	1,500
		Intermediate,	900	
	Term work,	Notes, Exercises Drawing,	and	50
$\begin{gathered} \text { Voluntary } \\ 1,000 \end{gathered}$	Examination.	Yearly,	600	
		Intermedia	nil. $\}$	600
		Notes, Exercise Drawings.	d	400

Distribution of marks by Classes. (Practical part.)
4th Class Nil.
3RD Class Nil.
2ND OLASs 250
Ist Olass 250 and 170 for N.C.O's only.

25

TEXT-B00KS.

The following is a list of the text-books in use :-
Guide to the Course of Military Engineering pursued at the R.M.C., Canada, by Major Walker, R.E., and Capt. Sankey, R.E.

Text-book of Fortification and Military Engineering, tor use at the R.M.A., Woolwich. Parts I and II.

Instruction in Military Engineering, S.M.E., Chatham. Part III, Bridging; and Part V, Miscellaneous.

Explosives, their use for Military Engineering Land Operations, and Electrical Measurements, by Captain Sankey, R.E.

Books recommended to be read.
Instruction in Military Engineering, S. M. E., Chatham.
Lendy's Treatise on Fortification.
Professional papers of the Royal Engineers.
Sir Howard Douglas' Military Bridges.
Haupt's Military Bridges.
Von Scheliha's treatise on Coast Defence.
Journal of the Royal United Service Institution.
The defences of Washington, Barnard.
The Attack of Fortresses (R.E. prize essay), by Major Fraser, R.E.
The Defence of a Position (R.E. prize essay), by Major Fraser, R.E.
Brialmont' Hasty Intrenchments. Brialmont's Traité de Fortification Polygonale. Home's Precis of Modern Tactics.

[^0]
SUMMARY OF COURSE FORTIFICATION OF INSTRUCTION IN ENGINEERING.

The theoretical ccurse of Military Engineering is partly obligatory and partly voluntary. The practical course, or Engineering drill, is' entirely obligatory.

General Summary of Subjects.
Fortification, -
Field Fortification.
Permanent Fortification.
Somi-Permanent Fortification.
Coast Defence.
Attack and Defence of Fortresses. Pioñeer Duties, -

Construction, demolition and restoration of communications for the conveyance of men, horses and materials, and for the Camp Duties, transmission of messages.

Water supply, hutting, etc. Method of Instruction.- The above subjects are taught theoretically, and, as far as possible, practical instruction is given in them. The theoretical instruction is carried out by means of lectures and personal instruction, explanatory of the text-books above quoted, and of other matter given in the form of notes from time to time, as required. The Cadets have to fully the notes given to them.
The practical instruction.
carried out by executing the Engineering drill, has to be etc., to reduced scale, owing to warious works, in earth, timber, whenever possible, the work will of time and labour; but, part of the course special attention be done full size. In this Cadets in superintending.
The theoretical part of the courso will be studied in all four classes.
The practical part will be taken up in the 1st and 2nd The following shows the portions of the subject studied in each class :-

Theoretical Part.

IV Class.-Field Fortification:-Nature and construction of the

III Clorks required for the defence of a Position. Coast Defence.

RUCTION IN ITARY

ering is partly tical course, or
esses.
restoration of conveyance of and for the

8 are taught instruction is arried out by anatory of the en in the form dets have to ite out care-

Il, has to be earth, timber, labour; but, size. In this to instructing
ed in all four
st and 2nd
studied in

27
II Class.-Attack and Defence of Fortresses, including Mining, and Applied Field Fortification.
I Class.-Applied Field Fortification (continued.) Use of Field Fortification by the Attack, Pioneer duties.

Engineéring Drill.
II Class.-Field Fortification, and the Attrek of Fortresses (excluding Mining.)
I Class.--Use of Explosives, Pioneer Duties and Camp Duties.

4th Olass.

Obligatory.

FIELD FORTIFICATION.

1st Part.

1. Introduction-Principles of Defence and deductions from them of the works required to defend a Position. Sketch of the defence and attack of a Position. Wiffect of the arms at present in use.
2. Tools.-Various kinds.
3. Materials.-Raw : how obtained; earth, wood, brushwood, iron, \&c.
Manufactured: how made ; pickets, fascines, gabions, hurdles, \&c.
4. Revetments.-When required. How made. Anchoring. Comparison of the various kinds.

Work to be Done for the Defence of a Position.
5. Clearing the foreground.-Object. Requirements and how fulfilled:
6. Obstacles.-Object. Divided into natural and artificial. Principles and requirements. Description of the various kinds of artificial obstacles used, namely: Abatis of various kinds, Entanglements, Wire entanglement, Irregular pits with wire entanglement over, Chevaux de frise, Palisades, Fraises, Military pits, Inundations, \&c.

Cover for Troops.

For Infantry: -

7. To cover shooting line.-Requirements, and how, generally fulfilled. Description of the various works used namely: Shelter trenches, earthen breastworks (larger parapets under the head of redoubts), Log parapets, Stockades, Defensible walls, hedges, snake fences, \&cc.
8. To cover supports.-Requirements and how genorally
fulfilled. Description of the various works used, namely : Adaptation of natural cover, deep trenches, blinded trenches, field oasemates, \&c.
9. To cover reserves.-Requirements and how generally fulfilled. Description of the various works used, namely: adaptation of natural cover, shelters, etc. For Artillery :-
10. To cover the gun, gun detachment and ammunition.Requirements and how generally fulfilled. Description of the various works used, namely: Adaptation of natural cover, gun pits, gun-epaulments (the placing of guns in Field Works is considered under that head.)
11. To cover Limbers.-Requirements and how generally fulfilled. Description of the various works used, namely:
Adaptation of natural cover, Limber pits.

Blindages.
12. Specially considered.

Hasty Intrenchments.

13. Nature and object.

Flanks.

14. Object. Special requirements and how generally fulfilled. Description of the various special works, suitable for flanking, namely : Tambours, caponiers, \&c.
Fortification of the Strong Points of a Position and of Lsolated Posts.
15. Object and special requirements, various kinds, namely : 16. Field works. Trace, profile, details and execution. Garrison, \&ce.
16. Defensible knolls. Trace, profile, \&c.
17. Defensible houses and villages.
18. Defensible woods.

Making and Destroying Communicationsin a Defensible Position.
20. Object and statement of work to be done.

Plates.-The following is a list of the plates to be drawn:-
I. Various sections of blinded shelter trenches.

IL. Various sections of blinded communications, etc.
III. Profiles of Field redoubt.
IV. Plan of Field redoubt.
V. Gun bank with Section.
VI. Defensible Knoll.
VII. Defensible House.
VIII. Defensible Village.
IX. Defensible Wood.
used, namely : blinded trenches,
ow generally fulused, namely:
ammunition.escription of the natural cover, in Field Works
how generally used, namely:
generally fulrs, suitable for
and of 1 solated
inds, namely: nd execution.
sible Position.

Exeraises.-On the above subjects, principally numerical examples.

Subjeots for Examination :-December-Sections 1 to 6 inclusive. March-Sections 7 to 14 inclusive. June-The whole subject.

III. Olass.

Obligatory.

PERMANENT FORTIFICATION.

A. Introductory :-

Definition of permanent fortification.
Principles and object the same as in field fortification, and unchanging.
Details subject to change with the arms in use.
Situations in which permanent works are required.
Classification of fortresses with reference to the duties they perform.
B. Requirements of a Fortress-
a. Absolute security against attack with the means at the disposal of the enemy's field army, viz. :-
a. By surprise.
β. By open assault.
γ. By bombardment.
δ. By blockade.
b. The maximum amount of security against attack by regular siege.
Sketch of the attack and defence under the above heads with the object of showing the general nature of the works necessary to give effect to these requirements.
c. Elements of Permanent Works-

The fortress, in its elementary idea, consists of an enclosed space, protected from the enomy's fire, and surrounded by an obstacle which secures it from assault. Requirements and how fulfilled.
a. The rampart as a platform for artillery and musketry fire, and as affording protection to mon and gans.
b. Profle and plan of the obstacle, to secure it from assault and provide flanking fire.
c. Works outside the obstacle to watch and defend it, and to "secure the passage to the defenders.
d. Retrenchments or keeps, to prevent the enemy from securing his footing inside, even if the obstacle is forced.
a. α. The rampart; its object, command, thickness, terreplein, slopes, ramps
β. The parapet; its object, command, thickness, form, slopes.
γ. Means for use of musketry and artillery fire; the banquette, barbettes, embrasures, Haxo casemates, Moncrieff pits, mortar casemates, iron shields, cupolas.
δ. Trace ; for strong frontal fire, as straight as possible.
£. Means for shelter for men and materiel; traverses, solid or hollow, parados, bomb-proof shelter: under rampart for men, in traverses for guns, bomb-proofs for reserves, b. α. Conditions of defencen position
β. Profile; with dry ditches, with profiles must fulfil. depth of ditches in each, wet ditches, width and of wet and dry ditches. case, comparative advantagos
$\gamma_{\text {. }}$ Various kinds of revetments, their construction, comparative advantages and disadvantages of each kind. δ. The trace to obtain flanking fire ; why necessary, how obtained. Three systems-

1. The Tenaille.
2. The Bastioned.
3. The Polygonal.

Describe and comparo these systems.
c. Under this hoad are included outworks, advanced works, detached works and communications.
α. Outworks-

1. Covered way and glacis, and ravelin, with their keeps, object, construction.
2. Counterguards ; their object, construction, defects, when useful.
3. Tenaillons and demi tenaillons, mention only.
B. Advanced works -

Horn works, crown works, lunettes, flèches, their objecits and traces.
Discuss the general objects of outworks and advanced
ss, terreplein, form, slopes. fire ; the bantes, Moncrieff as. possible. erses, solid or rampart for for reserves,
st fulfil.
width and advantagos
ction, comach kind. cessary, how
ced works, with their on, defects, only. heir objects d advanced of these obsolete.
F.F.)
d out.
pupures.
acis, iron
γ. Citadels; how they differ from ordinary retrenchments, their requirements and how fulfilled.
D. Arrangement of the Elements in Fortresses.

General considerations which govern the combination of the above elements.
a. Detached Forts.

Requirements.
α. Good artillery positions.
B. Secure against assault.

How carried out.
b. Enclosed Enceintes.
α. When a regular attack is not possible:

1. Long simple fronts.
2. Simple outworks.
3. Escarps, caponiers, and keeps completely covered from viow.
β. When a regular attack is to be anticipated.
4. Shorter fronts, more elaborate in detail.
5. Strong salient outworks. Countermines under glacis.
6. Escarps, caponiers and keeps, completely covered, hence masks, iron plating, interior glacis, the latter countermined.
c. Combination of Enclosed Enceintes and Detached FortsTo form first class modern fortresses.
α. The enceinte as in ($\mathrm{D}-b-\beta$) above.
β. The detached forts.
7. The individual forts as in $(\mathrm{C}-c-\gamma)$ above.
8. Considerations which have brought into prominence in modern fortification, the combination of detached forts, with enclosed enccintes.
d. Examples of Modern Works-To illustrate the above.
E. Sketch of Progress of Permanent Fortification-vide voluntary course.

F. General Application.

Application of fortresses to the defence of a country including a general sketch of coast defence.
General strategical considerations: Method of frontier lines, its failure illustrated by examples.
Experience of the German invasion of France in 1870.71.
Discussion on the best method of defence.
Tactical use of Fortresses.
Distinction between a fortified place, or fortress, and a fortified position.

SEMI-PERMANENT FORTIFICATION.

A. Introductory-

Definition.
Objects to be attained, Requirements.
Means available for construction of semi-permanent works, including time.
Characteristics of semi-permanent works.
Cases in which they are applicable.
B. Application.
a. To semi-permanent detached forts. \quad
b. To semi-permanent enceintes.

Requirements, and how carried out under each of the
C. Various Examples of the Application of Semi-Permanent Works.
Plates:-
I. Permanent profiles.
II. Bastioned trace.
III. Sections and elevations of the modern French system.
IV. Sections and elevations of the Antwerp enceinte.
V. Detached Fort.
*VI. A semi-permanent work.
Fair Notes.-On lectures during the term.
Exerorses.-Examples of permanent profiles and bastioned traces.
Subjeots for Examination:-
December.-Sections A, B, C and D, Permanent Fortifica-
March.-Section F, Permanent Fortification, and SemiPermanont Fortification.
June.-The whole subject.

III CLASS.

Voluntary. PERMANENT FORTIFICATION
E. Sketch of progress of Permanent Fortification. a. Permanent Fortification before the introduction of Gunpowder; methods of attack to which it was exposed and means taken to resist them. Show that the principles were the same as in modern fortification.
b. The Transition Period.

[^1]Effect of the introduction of cannon, and of mining with gunpowder. On the site. On the construction. On the profile. On the trace.
c. The early Italian, Dutch and French Schools.

Introduction of the bastioned trace in Italy.
Origin of the ravelin.
Paciotto's trace, the first regular bastioned work.
Characteristics of the Dutch school, example Coevorden. Improvements by Coohorn, his principles and methods of construction.
d. The French School under Vauban and his Successors.

Vauban's systems, first and third. Cormontaingne's improvements; the school of Mezières; the school of Metz (modern French system).
Later improvements in the bastioned system and its application to detached forts in France during the present century.
e. Rise of the Polygonal System in Germany.

What it owes to Montalembert, and to the early designs of Durer (16th century).
Various examples of the application of this system in modern German works.

COAST DEFENCE.

*A. Introduotory-
Principles unaltered.
Considerations which influence the modifications in detail, characteristic of coast defences.
Considerations which influence the selection of the points to be defended.
Sketch of methods of attack to which such defences are liable.
Requirements and means of carrying them out.
a. By special arrangement of batterios-sito.
b. By constructive details for protection of guns and facilitating their service.
c. By utilization of natural obstacles and creation of artificial ones.
B. Combination of these principles in works for doast Defenol-

Nature of defences:

[^2]a. Batteries.
b. Obstructions.
c. Submarine mines.
d. General discussion on method of defending coasts by the combination of the above.
a. Batteries.-Requirements and how fulfilled for the
following:-following:-
\qquad
α. Earthen batteries with or without Moncrieff carriages
β. do do with iron embrasure shields.
γ. Casemated batteries with do do
δ. Iron fronted batteries fixed or revolving. tively.
suitable, respec-
b. Obstructions.-Requirements and how fulfilled for the
α. Sunken obstructions.
B. Floating do

Situations in which they are suitable, respectively:the following:- Submarines.-Requirements and how fulfilled for a. Defensive.

1. Mechanical
2. Electrical.

Situations in which they are suitable, respectively. Attack on submarine mines. (For explosives used, see Explosives).
B. Offensive (Torpedoes.)

1. Locomotive.
2. Outrigger.

Brief sketch of the use of torpedoes.
d. Gerieral discussion on method of defending coasts by the combination of the above.
C. General Military Operations for the Defenge of Coasts. Plates.-VII, VIII, IX. Coast Defences. Fair Notes.-On lectures during the term.

II CLASs.

Obligatory.

ATTACK OF FORTRESSES

A. Introduotory

Modes of dealing with fortresses-how determined,
Various methods of attack which can be carried out with the means at the disposal of a field army. When they are applicable respectively, and how carried out.
a. By Surprise.
b. By Open Assault.

Application in connection with the regular attack.
c. By Bombardment.
α. For destruction of arsenals, \&c.
乃. For obtaining possession of the place.
Application in connection with other methods of attack.
d. By Blockade.

Methods a, b and c may be used in connection with blockade.
Application of blockade in connection with the regular attack.

B. The Reqular attagk.

a. Introductory.-When used, general sketch of the method of approaching the fortress.
Corps of observation, necessity for.
Siege corps ; its strength and composition.
Siege train; Artillery and Engineer.
b. Investment-

Object, strength and composition of the investing force. Method of execution.
Sketch of the arrangement and fortification of the investing line. (See applied F. F.)
c. Preparation for the regular siege.

Choice of front of attack.
Project of attack.
Site and arrangement of siege parks.
Preparation of materials.
Preliminary batteries, discussion as to whether they are to be recommended.
d. The regular siege.
α. The first artillery position ; object, requirements of batteries, considerations affecting their site.
Type of battery employed, method of execution.
β. Progress of attack up to the formation of the first parallel.
Object of first parallel, requirements, former method of opening, present method.
Tracing, and extending.
Execution by common trench work.
The approaches.
Extent of the parallel.
Covering troops.
γ. The second artillery position-
Ats object; duties of the batteries; their sites; number of gunsrequired, and their distribution; requirements of the batteries.

Type of battery used; modifications of typical battery. Screens ; their object and mode of construction. Communications to batteries.
Arming batteries and opening fire.
δ. Advance from first to third parallel.

1. The second parallel ; its object and position.

Requirements, execution of the second parallel and its approaches, generally by flying trench work. Advance in front of second parallel, generally by sapping.
2. Definition of sapping and requirements.

Single saps shallow and doep; when used, how executed.
3. Demi-parallels ; their object and position.
4. Third parallel; its object and position, requirements and method of execution.
ع. Advance to the covered way.

1. Special difficulties to be encountered in front of the third parallel.
2. Circular portions.
3. Mine attack necessary, if counter mines exist. (See Mining.)
4. Advance from circular portions by double sap on the capitals.
5. Demi-parallels; their object and position.
6. Fourth parallel ; its object and position, and requirements.
7. Crowning the covered way by sap-lodgments.
8. Double and cube saps ; object, requirements, how executed.
9. Crowning the covered way by assault, when attempted.
10. Fifth parallel ; its object, position and requirements.
૬. Breaking into enceinte.
11. General arrangements, and usual order of procedure against the various works in succession.
12. Breaching escarp, position and range of the breaching batteries, method of forming the breach, observation of effect of fire. Batteries in the lodgments when required, position, execution and armament.
13. Breaching by mines, silencing flanks, descent into ditch, passage of ditch.
14. Occupation of the breach.

By assault, preparations for assault, disposition of troops, execution.
By gradual occupation, method of execution.
5. Further proceedings against retrenchments, if they

Breaching by distant curved fire if the escarps are not well covered.
Attack by mining.
C. Examples-
a. Application to the attack of a front of the modern French system.
b. Probable course of attack on a polygonal front.
c. Attack on a chain of detached forts.

DEFENCE OF FORTRESSES.

A. Introduotory-

Readiness to resist attack. State of preparation during peace with respect to works and stores.
Garrison ; peace and war establishments.
Armament; guard and full, nature of pieces, amount of ammunition.
Engineer stores.
Provisions.
Preparations for defence if threatened; interior organization of the place.
Works which require to be carried out by the Engineers and Artillery. Distribution of troops.
Measures required to resist attack.
By the enemy's field army undor the heads given in syllabus of attack, section A, viz.:
a and b. By surprise or open assault.
c. By bombardment.
d. By blockade.
B. Againgt regular attack-
a. Preparatory arrangements.
b. Resistance to investment.
c. Obstructions of the preparations of the regular siege.
d. Resistance to the operations of the regular siege.
α. Against the first artillery position.
Modifications of armament. Retrenchment commenced. Special for first class fortresses,-intermediate batteries between, and retrenchments behind, the detached forts.
β. Against progress of attack to first parallel.
Defence of advanced posts, largensontiesr
Lighting up ground at night and careful observation.
Firing on working parties; large sorties.
8, Against the second artillery position.
Concentration of fire on batteries in succession.
Interruption of working parties if discovered by shrapnel fire.
d. Against advance to third parallel.

1. Same operations against second parallel as against first.

2, 3 and 4. Against saps, demi-parallels and third parallel. Fire upon sap heads. Small sorties. Counter approaches.
ع. Against advance to covered way.

1. Creation of difficulties ; obstacles, mines.
2. Same as against other saps.
3. Counter mines to oppose besiegers' mines. (See also mining.)
4,5,6,7 and 8. Against double saps, demi-parallels, fourth parallel, crowning covered way by sap.
Concentration of fire and small sorties as against other saps. Wall pieces in Place of Arms, plunging fire from Cavaliers.
4. Against crowning covered way by assault.

Concentration of fire as before ; sorties on flank.
10. Against fifth parallel.

Same as against other saps.
5. Against breaking into enceinte.

1. General preparations.
2. Against breaching of escarp.

Concentration of fire, and sortie, against breaching batteries in lodgment, and gallery of descent, retaining possession of covered way as long as possible.
3. Against breaching by mines, \&c.

Sorties and vertical fire in the ditch. Water manœuvres in wet ditch. Shells rolled over and flank fire against 4, Against occupation of the therminss under ditch. Scarp and countermine breach.
Retrenchments in the ditch and. Arrango obstacles. restored. Concentration of fire on breach and approaches. Strong bodies of troops under cover close to breach. Strong fire from keep on breach. 5. Against attack on retrenchments.

Countermines under glacis, strong fire of musketry, facilities for counter attack with bayonet. Final defence of citadel or of a second fortress.
C. Examplef of the Defenge of Fortresses-

Various.
D. General Discussion-

On the relative gains and losses of the attack and defence under modern conditions, and on the probable course of the attack in the future.
as against first. third parallel. ter approaches.
nes. (See also arallels, fourth against other plunging fire
reaching batont, retaining ssible.
r mancouvres k fire against litch.
ge obstacles. irt. Flanks breach and under cover n breach.
f musketry, net. Final
and defence le course of

MINING.

A. Introdudtory-

Brief sketch of methods of mining in use before the application of gunpowder to this purpose.
Application of gunpowder to mining operations.
a. By the attack.

Object, to breach escarps and blow in counterscarps; means of defenders to resist such attack.
Countermines, galleries behind escarp, under ditch, behind counterscarp.
b. Offensively by the defence.

Object, to blow up the enemy's works, and so delay his advance.
Measures taken for this purpose.
Countermines; galleries arranged systematically under the glacis, in one or more planes (undercharged mines.)
Measures take: by the attack to neutralize this means of defence.
Countermines offensive (overcharged mines.)
c. Submarine mines. (See Coast Defence.)
a Defensive use, submarine mines proper.
(δ. Offénsive use, torpedoes.
B. Requirements.-Means for placing charges.
a. Land mines ; offensive and defensive.
α Shafts and galleries; object, dimensions, method of executions and lining. Tools appliances and time required.
β Bored mines; object, dimensions and method of ezecution.
γ Ventilation of mines; requirements, method of carrying them out.
δ Preparation of charges, loading, tamping and firing mines. (See Explosives.)
b. Submarine mines.

See for details, Coast Defence, Section B, Sub-section c.
C. Explosives generally used.-Their different effects, and the quantity of each required.
a. Explosives.
α Gunpowder, gun cottonand dynamite ; comparison of their offect, and when they should be used respectively. Sketch only.
β Calculation of charges, land mines; definitions; overcharged and undercharged mines; camonflets; radii of rupture. Rules for calculating the charges and effects of mines. Influence of the nature of the soil upon the charge.
γ For Submarine Mines, see Coast Defence and Explosives, as above.
For the applfeation of mines, see Syllabus of Voluntary Course.

FIELD FORTIFICATION.
 2nd PART.

Applidation to the Ground of the work to be done for the Defenge of a Position-
Object of defending a Position. Subdivision of the defence into two kinds: offensive-defensive and purely defensive.
Application of the different kinds of defence.
The positions of the works must conform to that of the troops. ${ }^{\text {a }}$
Statement * of the tactical requirements and of the consequent distribution of the troops.
General arrangement of works to conform to this distribu. tion, namely, Lines with Intervals. Comparison of Lines with Intervals and Continuous Lines. Influence of the kind of defence and of the object for which the Position is defended on the arrangement of the works.
Object of advanced works and of a second line of defence and general arrangement for each.
Choice of a Position.-The approximate site depends on strategical considerations, the accurate site mainly on tactical and slightly on technical considerations. General requirements. Special requirements according to the kind of defence. Defects that may occur in
Positions, and how best to neutralize them. Description of various kinds of Positions.
Choice of site for works.-The site must be chosen principally on tactical and slightly on technical considerations. Requirements, and how fulfilled, in each of the following cases:-
a. Infantry: shooting line, supports and rescrves.
b. Artillery: guns and limbers.
c. Strong points: Advanced posts, Main line pivots, 2nd. line pivots, Keeps of Position, Works covering retreat.
d. Flanks.
e. Communications, sadial and lateral.
. Order in which the various works should be executed.
The consideration of these tactical requirements belongs to the Course
ce and Explos of Voluntary

BE DONE FOR of the defence and purely ce. to that of the I of the consethis distribu. omparison of s. Influence or which the f the works. e of defence
depends on te mainly on nsiderations. ts according ay occur in them. Des-

0sen princiasiderations. the follow-
sorves.
line pivots, orks cover-
recuted.
to the Course

Inquiry into the effect of intrenching on the field of battle.
Application of the foregoing to the defence of Positions occupied for the following purposes, giving in each case the object of defending the Position, the special requirements and how they are fulfilled :-

1. Field of battle. Offensive-defensive and pure defensive.
2. Lines of investment.
3. Defence of the environs of a fortress.
4. Defence of defiles-bridge heads and mountain passes.
5. Intronched camps, depots, etc.
6. Rearguard Positions.

Attack and Defence of field works.
Plates:-
I. The attack to the third parallel.
II. The altack to the summit of the main breach.
III. Siege Works.
IV. Defence.
V. Mining.
VI. Applied field fortification (project).

Fair Notes.-On lectures during the term.
Exercises.-Journal of Attack. Report on project.
Subjects for Examination-
December-To end of attack.
March-To end of defence and mining. (Sections A to C inclusive.)
June-Atlack, Defence, Mining, (Sections A to C) and application of field fortification to the defence of a Position.

2ND Olass.
Voluntary,
ATTACK.
Sicction B.-Obligatory course.
Sub seotion $d,-\alpha, \gamma, \delta, \varepsilon, 5$, more in detail. MINING.
D. Application of Mines-
a. To the defence.
α. Defence of glacis : object, requirements, how carried out. Countermine systems for defence of glacis.
β. Defence of breach, object, requirements, how earried out. Countermine systems.
b. To the Attack.
α. On countermines under glacis, tactics of assailant, ordinary method of attack by galleries, attack by shaft mines
β. On countermines for defence of breach.
γ. On escarp and counterscarp revetments to form breach.
c. To the demolition of permanent works after capture or during peace.
Plates-
VII. Siege works.
VIII. Countermine systems.

IX, Attack on a system of countermines.
Fair Notes.-On lectures during the term.
Exeroises.-Examples on application of mining; Journal of attack on countermines.
Subjeots of Examination-
June-Whole subject.

ist Olabs.

Obligatory.
FIRLD FORTIFICATION.

Use of Field Fortification by the Attack.

Object.-The assailant may employ Field Fortification for two distinct purposes, namely: A purely offensive and a purely defensive use. Cases in which Field Fortification would thus
be used.

Purely Offensive Use.

Nature of Works.-The same as those for defence, of a very hasty description. But includes, besides, the destruction of enemy's works when captured; methods of doing this.
Application to the ground.-The sites of the works depend on the tactics of the attack. Statement of the tactics of the attack and deduction therefrom of the arrangement of the works.
Choice of Sites for Works.-Very limited. Requirements and how generally fulfilled for Infantry, Artillery, and communications.

Purely Defensive use.

Nature of Works.-The same as those for defence, of a hasty description. But includes, besides, the adaptation of the enemy's works, when oapturel, for defence against him ; methods of doing this.
Application to the ground.-As in the defence of a position, an 1 in some cases the choice of sites will be influenced by the
tactics of the attack (see \dot{a} and b below). Consideration of the following cases:-
a. Intreñching front to assist flank attack.
b. Securing captured position,
c. Preparing rear guard positions in case of reverse: connection between the above use of Field Fortification and the "regular" attack by means of siege works.

EXPLOSIVES.

Their Ube for Military Engineering Land Operations.
Qualities and capabilities of the various explosives used. Detonation.
Construction of magazines for the storage of explosives.
Use of Explosives.
Fuzes.-Electrical and for use with slow or instantaneous leader.
Preparation of Charge.-Primer ; preparation of charges for various purposes.

Preparation of Firing Arrangements.-Slow and instantaneous leaders.

Firing by Electricity.-Voltaic batteries, quantity and tension dynamos, arrangement of circuit, jointing.

Testing.

Examination of explosives.
Electrical testing (with the apparatus contained in the Field Service Testing and Jointing box) of fuzes, firing apparatus, batteries, dynamos, calculation of battery power, Circuit, testing circuit wires and complete circuit.
The following paragraphs of the text-book on explosives form the obligatory course:-
§§ 1 to 126,153 to $156,163,165,167,170,189,190,199,200$, 20 s to $213,221,234,235,241,242,244$ to 248.

PIONEER DUTIES.

Communications considered under three heads: Construction, Demolition and Restoration.
COMMUNTOATIONS FOR THE OONVEYANOR OF MEN, HORSE' AND MATERTALS.

Construction.

Bridaing (Railway bridging omitted).-Object, requirements, methods of determining dimensions of opening, considerations regulating the class of bridge to be made according to the nature and dimensions of the opening, namely: Frame and suspension bridges for narrow, deep openings ; Trestle bridges
for shallow, wide openings; and floating bridges for wide openings containing deep water.

Approximate rules for rapidly calculating the dimensions of spars whon the stross in them is known.* General considerations as regards the roadway, road-bearers, trussed beam and shore ends.
Methods of connecting spars together ; lashing, tree-nails, spikes
Plant used for bridging.-Tackle, Spanish windlass, derricks, shears, gyns, earth anchors of various holding power.

Frame bridging.-.-General description of such bridges. Materials required. Details of construction. Methods of erecting and calculation of stresses for the following kinds of framebridges: Single lock, double lock, single sling, ordinary and stiffened treble sling; in each case with and without vertical frames at shore ends.

Trestle bridging.-General description of such bridges. Materials required. Details of construction. Method of making and calculation of stresses for the following kinds of trestles: Two-legged, four-legged and tripod. Advantages and disadvantages of each kind. Forming up into bridge. Miscellaneous methods of obtaining points of support, crib piers, piles, \&c.

Floating bridges.-General description of such bridges. Materials required. Details of construction. Calculation of dimensions and buoyancy required for floating bridges comof ped of pontoons, barrel-piers of various kinds, timber rafts the shore ends. but little; 2. When there is a considerable narialter or varies Flying bridges.-Their requirements ande variation of level. Miscellaneous.-Rough bridges madd construction. weights across wide openinge by means of trees; passing

Roads.-Object, requirem by means of shears, etc. ordinary road (militequirements, method of construction of road engines, repairing roads. Railways.-Object of of war. Requirements gauge, engines and rolling stock of military selection of route, tation of existing stations to military

Trench railway.-Object, requicry purposes. section of route, gauge encinements, considerations as to required and how executed (bridging rolling stock. Works

[^3]
Demolition.

Object. Description of methods generally adopted: By hand. 2. By use of explosives. 3. By fire.
Roads.-Vulnerable points: bridges, cuttings and embankments. Demolition of each.
Railways.-Vulnerable points: bridges, cuttings, tunnels,
Jembankments, permanent way, engines and rolling stock. Hasty demolition by cavalry, and deliberate demolition of each.
Canals.-Válnerable points: locks, cuttinge and embankments. Demolition of each.

Restoration.

Object. General considerations.
Roads.-Repairing bridges, or replacing the original structure by a temporary one. Repairing cuttings and embankments, or other works undertaken to replace them, if not repairable in time.
Railways.-General considerations only.
COMMUNICATIONS FOR THE transmission of MESBAGes.
Construction.
Object and general considerations.
Signalling.-Object. Alphabet. Code. Cypher. Means of signalling: flags, lamps, shatters, heliograph. Selection and arrangement of signal stations and method of working them.

Telegraphs.-Object. Short sketch of method of working without introducing technical matters.
Combination of cavalry scoute, signalling and telography for the service of an army.

Demolition.
Teregraphs.-Breaking the circuit. Tapping the circuit.
Restoration.
Telegraphs.-Same as making.

CAMP DUTIES.

Water Supply.-Sources of water supply. Purifying water. Distribation of water. Methods ofobtaining water. Morton's Abyssinian tube wells. Boring for water.

Hutting.-Requirements. Huts of various kinds. Bivouacs.
Misolilaneous.-Field kitehens and ovens. Latrines.

Plates:-

I. Project for the defence of a Position.
II. Demolition project.
III. Project for a military bridge.
IV. Store gunpowder magazine.

Fair Notes.- On lectures during the term, when ordered. Exercises.-Roports on projects.
Subjects for eagh Examination-
December-Field fortification ; use of explosives and bridg. ing, as far as trestle bridging, inclusive.
March-Permanent fortification and remainder of pioneer duties.
June-Attack and defence, and whole course for class.

> Ist CLASS.

Voluntary.

ELEOTRICAL TESTING.

General Considerations. Units to which these measurements are referred.
Instruments.- Description and method of using the following instruments: Contact keys, standard cells, galvanometers (detector, sine, tangent, Thomson's reflecting and Clark's differential galvano-meteris,) resistance coils, condenser.

Testing.-Various methods of obtaining measurements of: resistance, (resistance of a conductor, of a galvanometer, of "earths," ctc., internal resistance of a cell), difference of potential, electromotive force, strength of a current, and capacity.
The paragraphs in Text-book forming the Voluntary
Course are § 127 to 243 .

PIONEER DUTIES.

COMMUNICATIONT FOR THE OONVEYYNOE OF MEN, HORSESS
BRIDGING— AND MATVRIALA.
Bridging-
MMUNICATIONT FOR THE GONVEYANOE OFP MRN, HORSES
AND MATHRIALS.
Suspension Bridges.-General description of such bridges. Materials required. Details of construction. Method of erecting and calculation of stresses, and dimensions for the following kinds: Ordinary suspension bridges, tension bridges and strutted tension bridges.
Railway Bridges (temporary).-Object and requirements. Materials used. Details of construction. Method of erecting, and calculation of stresses and dimensions for the following kinds: Frame bridges for small openings, trestles for wide shallow openings, and trestles in tiers for wide deep openings.
COMMUNIOATIONS FOR THE TRANSMTSAION OF MESSAGESS.
Ballooning.-General considerations.
Observatories.-Object, requirements and method of con-

Plates.-Project for a military bridge.
Fair Notes.-On lectures during the term, when ordered.
Exerorses.-Report on project.

* Subjects for Examination-June-The whole subject.

ENGINEERING DRILL.

2ND OLASS.
Field Fortifioation.
Preliminary.
Carrying tool drill and extending working parties. Field Geometry.

Obstacles.

Abatis ordinary. German bough abatis. Shallow military pits. Irregular pits with wire entanglement stretched over. Wire entanglements. Palisades. Fraises. Chevaux-de-Frise.

Cover for Troops.

Infantry.

Shooting Line.--Shelter pits and rifle pits. Shelter trench exercise. Blinded shelter trenches, defensible hedges, walls and snake fences. Log, hurdle and plank parapets. Stockades of various kinds.

Supports.-Deep shelter trenches. Blinded shelter trenches. Field casemates of various kinds.

Reserves.-Lean to shed covered with earth.

Artillery.

Guns and Detachment.-Gun pits. Gun epaulements.
Ammunition. Ammunition recesses in above.
Limbers.-Limber pits.

Use of brushwood.

Making pickets, gabions, fascines and hurdles.

Revetments.

Made of the following materials:-Gabions, casks, fascines, logs, planks, hurdles, continuous hardle work, sand-bags, bricks, stone, miscellaneous.

Field Redoubt.

Tracing, profiling and defilading full size. Executing in

[^4]model. The redoubt to contain splinter proofs, traverses and occasionally gun-banks.

AT'AOK OF' ${ }^{\prime} O R T R E A S E S$.
First Artillery position.-Execution in model of suitable
Up to 1st Parallel.- Oommon trench work for parallels and approaches.

Second Artillery position.-Tracing of full size siege-gun battery and execution in model, with magazines, screen, platforms and approaches.

Up to 2nd Parallel.-Flying trench work.
Up to 3rd Parallel.- Single sap shallow and deep.
Advance to covered way.-Circular portions. Double saps, Blinded saps. Crowning the covered way.
Breaking into enceinte.-Batteries in lodgment on covered way. Descent into the ditch. Passage of ditch (1) when dry, (2) when wet. Occupation of breach.

> Ist CLASS.
> Attaok of Fortresses-(Continued.)

Mining.-Sinking shafts with cases and frames.* Driving galleries with cases and frames. Preparing charge for mine.

Usi of Explobiveg.
Preparing charges of gunpowder, guncotton and dynamite or various purposes.
Preparation of firing arrangements.-Firing charges by means of slow or instantaneous leader and by electricity.
Testing.-Practical application of the theoretical course.
Pionerer Dutirs.
Signalling.
Flag drill.-Practice with flage. Lamp drill with dummy lamps. Practice with lamps. Practice with heliograph. Selecting stations. Transmission of messages.

Bridging.

Preliminary.-Reconnaissance of site. Measuring width, taking sections (boning and levelling). Knotting. Lashing spars. Making Derricks, Shears and Gyns. Trussed beams. Trame Bridges.-Single lock, double lock, single sling. Trestle Bridges.-Making two legged, threel legged and four

[^5]legged trestles with various materials. Forming up into bridge.

Miscellaneors.-Points of support formed by gabions, casks, crib piers, \&c.

Water Bridging.-Barrel pier drill. Preparing boata. Forming the above into bridge.

Camp Duties.
Bivouacs. Field kitchens and ovens. Latrines.

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUOTION IN ARTILLERY.

ALLOTMENT OF MARKS.

	(Obligatory	3,000
For Entire Course.	Voluntary	1,000
	Dril	400
4,560		
	Communicating Drill (N. C. Officer's	160

For 3rd Olass. $\left\{\begin{array}{lr}\text { Obligatory-Yearly Examination.... } & \mathbf{1 , 0 0 0} \\ \text { Intermediate Examinations............. } & 500 \\ \text { Drill............ } & 200\end{array}\right.$

For 1st Class. $\left\{\begin{array}{c}\text { Communicating Drill (N. C. Offlicers } \\ \text { only).................................... }\end{array} 160\right.$

TEXT BOOKS AND BOOKS OF REFERENCE.

Text Books:
Practical and Theoretical Course.
Drill Book for the Field Artillery (Militia). Manual of Siege and Garrison Artillery. Notes on S. B. Ordnance.

Treatise on the Construction of Ordnance (Royal Gun Factory).
Treatise on Ammunition (Royal Laboratory).
Treatise on Carriages (Royal Carriage Department).
Sladen's Gunnery (Voluntary).
,Tracts on Mechanics (Voluntary).

Books of Reference:

Instructions for the Service of the Siege Train.
Field Artillery Exercises (Royal Artillery and R. H. A,
Notes on Manufacture of Gunpowder and Guncotton.
Reports of Experiments with Bashforth's Chronograph.
The Penetration of Iron Armour by Steel Shot (Noble.)
Owen's Modern Artillery.
Transactions of Royal Artillery Institution.
Reports of the Department of Director General of Artillery.
one o simul

SUMMARY OF INSTRUCTION IN ARTILLERY.

Each Cadet fires annually two rounds of Common, and one of Shrapnel, shell.

Both the practical and theoretical courses are carried on simultaneously during the 2nd and 3rd Terms.

PRACTICAL COURSE.

THIRD CLASS,
(Obligatory.)
Standing gun drill and simple manœuvres of a Field Battery. Disabled ordnance. Drill of Garrison gans on standing carriages and on traversing platforms. Mortars. Drill with Armstrong B. L. R. 12 Pr. and 7 -inch guns.

SEOOND CLASS.

(Obligatory.)

Material and appliances, knotting and splicing.
Elementary shifts of ordnance such as slewing, pinching, rowing, raising a gun on skidding, parbuckling and moving a gun on rollers, and on temporary sleighs.

Gyns and sheers.
Special marks for N. C. Officers as Drill Instructors in First Class, 160.

THEORETICAL COURSE.

THIRD OLASS.
(Obligatory.)
Brief History of Artillery to the present day. Definitions of various terms in Gunnery.
S. B. ORDNANCE.

Notes and Chaptrer III. of Treatige.
Guns, Howitzers, Mortars and Carronades.-A short description of their natures and uses. The names of the difforent parts of a gun.
Chambers,-Cylindrical and gomer.

54
Vents.-The necessity for a vent " bush." "The cone" and "through" vent.

Sighting S. B. Ordnance.

The various lines on a smooth bored gun. Dispart. Line of metal elevation. Clearance Angle. Means of giving direction and elevation: Wooden and brass tangent scales. Millar's Sights.
Mode of graduating sights.
Examination of S. B. Ordnance.
RIFLED ORDNANCE.
Chapter V.
Short sketch of the history of rifled ordnance.
Classification as Guns, Howitzers and Mortars.
Classification as Rifted breech-loading and Rifted muzzle loading ordnance.
Chapter VI.
Description of an Armstrong R. B. L. gun and its various parts and fittings, including sighting.
The modern construction of Breech-loaders.
Chapter VII.
List of Service B. L. R. Guns with weights and charges.
The purposes for which each nature is designed.
Chapters VIII and $\overline{\text { I }}$.
General description of the construction and form of the Service R. M. L. Ordnance. Classification as:-

1. Mountain or boat guns.
2. Field, boat or Field marine.
3. Siege or position.
4. Medium.
5. Heavy.

List of Service Ordnance, weights and charges.
General construction of the converted guns in the service with their fittings and sights.

Chapter IX.
Ordinary Sights.
Sights for Woolwich, Armstrong and converted guns.
Number of sights used for 64 Prs, and upwards. Number of sights used for 40 Prs, and under.

55

"The cone"
noe Angle.
ce.
Rifled muzzle
and its various
and charges. gned.
nd form of the on as:-

ges.

 in the servicerted guns. vards.

Spedial Sights and means of giving dibeotions.

1. Turret sights.
2. Moncrieff sights.
3. Chase sights.
4. Wood scales.
5. Index plates and readers.
6. Clinometers and quadrants.
7. Hanging scales.
8. Graduated arcs.
9. Experimental sights.

Hind Sights.

Tangent sights, centre hind sights.
Graduation of above for the various guns.
Peculiarities of Howitzer tangent seales.

Fore Sights.

Trunnion sights, centre fore sights and muzzle sights, for guns and Howitzers.
Description of the more important special sights and their uses.
List of modern B. L. guns, their fittings and sights.
Description and use of hanging scales and quadrants.
Capt. French's sights.
Shot bearers, muzzle derricks, common and spring spikes.

Chapter XII.:

Examination, preservation and repairs of ordnance and and stores.
Examination and condemnation of ordnance.
Periods of examination.
Mode of examination.
Examination of bore.
Defects to be looked for.
Importance of various defects under various circumstances.
Examination of vent.
Examination of R. B. L. fittings.
Examination of exterior.
Preservation of guns, sights and fittings.
Preparation for transport.
AMMUNITION.
Chapter I.:
Gunpowder, its ingredients and properties, The various natures used,

Classification of gunpowder. Method of packing and storing.
The chief points to be attended to in the selection of a material for a cartridge bag.
Various natures of cartridges for saluting, reduced, service and battering charges.
Lubricators, paper cylinders and wooden sticks.
Powder barrels, metal-lined cases, zinc cylinders.
Mode of packing and storing cartridges for rifled and smooth-bore guns, siege and garrison service.
Paper bags and packing in limbers.

Projectiles for S. B. Ordnanoe.

Solid, case, grape and sand shot.
Common, naval and mortar shells.
Hand grenades, carcasses, ground light balls. Parachute light balls. Smoke balls. Grummet wads. Wood bottoms. General service plugs.

Projectiles for Rifled Guns.

Chapters X., XI., XII., XIII., XIV.:
Solid shot. Palliser shot. Case shot.
Common, double, battering, Palliser, Shrapnel, Segment and Star shell. Carcasses.
Length and thickness of shells.
General form and construction of service projectiles.
Advantages gained by the use of elongated projectiles.
Pecularities in the construction of Palliser and battering projectiles.
Gas checks, ordinary and driving.
Primers for Shrapnel shell and vent piecee.
Tin cups. Wedge wads, \&c.

Fuzes.

Chaptrer III.:

Fuzo-hole gauges.
General remarks on time-fuzes.
Causes which alter the time of burning. Method of packing fuses.
Causes of blind shells and premature bursts,

57

Common, diaphragm, large and small mortar, parachute and hand grenade fuzes.
Time fuzes for R. M. L. and R. B. L. ordnance.-The difference between them.
Times of flight to which each fuze can be graduated.
The 5 -seconds, 9 -seconds, 15 -seconds, 20 -seconds and 30 seconds fuze.
Armstrong's E time fuze, the special time fuze for the new pattern Shrapnel shell.
Rules to find length of fuze for various ranges.

Percussion Fuzrs.

Chapter V.:

The Pettman's land service and general service fuze. Armstrong's plain percussion fuze. Royal Laboratory, Marks I. and II. Difference between the two last fuzes.
The direct action, the delay and the sensitive fuze.

Means of Firing Ordnanof.

Chapter VIII.:

Copper friction tubes, quill tubes, electric tubes. Port fires-common and slow. Quick and slow match.

Rockets.

Chapter XVI.:
Hale's war rocket, signal and life-saving rockets. Rocket troughs.

Appendix

Regulations to be observed in making up cartridges, filling shell or examining powder.

Part II.-Manual of Artillery Exergisgs.

Practical instruction in making up various naturos of cartridges, in filling shell and in boring and fixing fuzes,

Hints on examination of ammunition.
Small arm and Gatling ammunition.

SECOND OLASS.

(Obligatory.)

MILITARY CARRIAGES.

Figld and Simge Carriages.

Principles of construction, pointing out the considerations that govern the height of wheels and the dimensions of the various parts.
The effect of firing on a field or siege carriage.
Considerations by which the various strains on a field gun carriage may be minimized.
Advantages and disadvantages of iron as compared with wood for the construction of a gun carriage.
Construction of wheels and axles, naming the various parts. The dish of a wheel and why necessary. The inconveniences arising from the dish, and how they are overcome. Definition of hollow, lead, strut and set.
Description of the "old pattern" and "new pattern" or "Madras" wheel, pointing out the great advantages of a metal over a wooden nave,
Classification of wheels and axles.

Wooden Carriagrs.

Description of the carriage for a 12 Pr. B. L. R. gun, with traversing saddle.
Points of difference between this and the carriages for S. B. guns.
Limber for above gun carriage.
Description of the mode of shifting shafts for single or double draught and four abreast. Pole versus shaft draught. The question of driving with reins or from horse's back. The ammunition wagon.
The heavier natures of wooden carriages.
Mortar beds.
Iron Carriagrs.
The carriage for the 9 Pr. R. M. L. gun, Mark II, described in
detail, it being the pattern on which all the larger ones
are constructed. are constructed.
The limber for above, its boxes and fittings.
The proposed "Limber System" of carrying ammunition. The ammunition wagon and its fittings.

The chief points of difference between the above carriages and those for the 16 Pr., 25 Pr ., 40 Pr , and 64 Pr.
The overbank attachment and its uses.
The carriages and beds for the 6.3 -inch howitzer and 8 -inch howitzer.
Methods of checking excessive recoil in field and siege carriages.

Stege Platforms, \&o.

The ground platform; Clarke's platform; special platform for the howitzer beds.
Detail of carriages, \&cc., in a siege unit.
The various other artillery carriages, such as sling and platform wagons, general service wagons, forge wagons, \&c.

Garrison Carriages and Platforms.

General principles of construction.
Wooden carriages and platforms.
The garrison standing carriage, with Allen's break.
The rear chock carriage.
The sliding carriage and wooden compressor, both dwarf and casemate.

Traverging Platforms.

The common, dwarf and casemate platform.
Racers and pivots, real and imaginary.

Iron Carriages and Platforms.

Wrought iron standing carriage.
Single plate construction of sliding carriage.
The Elswick compressor.
The double plate construction of sliding carriage.
The small port carriage.
The hydraulic buffer.
The elevating screw and quoins.
Worm wheel elevating gear.
The arc and indicator.
Iron traversing platforms, pivots and racers.
Various methods in use for running in and out, traversing and loading guns. Mantlets.
The Moncrieff system, its advantages and disadvantages.
The preservation and care of carriages and their partis.

- December

ELEMENTARY GUNNERY.

Part I.-Segtion I. Definition of Gunnery Terms.

Section II.-The Gun.

1. Material for ordnance.
2. Rifling.
3. Muzzle versus breech-loading.
4. Proportion of weight to calibre.

Segtion III.-The Charae.

1. Gunpowder and its action in the bore of a gun.
2. Quality of the ingredients.
3. Proportion of the ingredients.
4. Density.
5. Hardness.
6. Proportion of moisture.
7. Size of grain.
8. Amount of space occupied by charge.
9. Point of ignition of charge.
10. Length of the bore of the gun.
11. Size of the powder chamber.
12. Calibre.
13. Amount of the charge.
14. Weight of the projectile.
15. Windage.
16. Rifling.

Short description of the methods of measuring pressure in the bore and the velocity of the projectile.

The Projectile.

the forges afting on a projectile in the bore of a gun,
The force of projection of the powder gas.
The rotation imparted by the grooves.
THE FORCES AOTING ON A PROJECTILE DURING FLIGHT.
The force of projection.
The force of gravity.
The resistance of the air. The rotation due to rifling.
The rotation of the earth.

variable forces acting on a projectile.

- Variability of the charge.

Variability of space occupied by charge in bore. Difference of level of wheels.
Force and direction of wind.
PRACTICAL GUNNERY-EFFECT OF PROJECTILEG.
Common shell.
Shrapnel shell.
Battering projectiles.
Case shot.
Star shells.
Carcasses.

ARTILLERY FIRE.

Part I.-Srgt. IV.-Firld Artillery.

Shrapnel shell.
Common shell.
Firing at moving objects.
Practice with reduced charges.
Use of range tables, times of flight, angles of descent.
Part III., Segt. IX.-Siegr Artillery.
Methods of Laying,-
A. When object is visible.
I. The tangent scale is used.
B. When object is visible from battery, but not from gun.
2. Laying by plumb line.
3. Laying by hanging scales and quadrant.
4. Laying by an auxiliary mark in front.
5. Laying by an anxiliary mark in rear.
6. Laying by Capt. French's scales.
7. Laying on plumb line and mark to rear with service sights.
C. When object is not visible from battery.
8. Obtaining line of fire.
9. Laying the gun.
10. Firing by night.

Projectiles deed from Siege Gune, -

Their mode of use and effect.
Common shell
Battering shell.
Shrapnel, case and star shells.
Observations on the effects of firo.
Mode of using rockets.
Part IIt., Seot. X—Gagrison and Coast Artillery.
Land fronts and sea fronts.
Nature of work to be done.
Principal projectiles-Palliser shot and shell.
Whes each will be used.
Common shell.
Shrapnel and case.
Notes on penetration of iron plates by chilled projectiles.
Description and Uses of "Range Finders,"-
Siege Train Manual and Fifld Artillery Drill Book.
Nolan's and Watkins range finders.
Principle of Weldon's range finder; the objections to its general use.

Part IV., Seot. IV.,-
The hydroclinometer for elevated battorios,
Arming batteries by night.
Hasty disablement and destruction of ordnance.
Manual Garrison Artillery.
Part V.-
Material and appliances.
Part VI.-
Elementary instruction.

Part VII.-

Machines and transporting carriages.

Part VIII.-

Moving, mounting and dismounting ordnance, carriages and
platforms,

Part IX.-
Gun sleighs.
Part X.—
Sheers and derricks.
 SEOCOND OLASS.

Section A.-(Voluntary.)

Construdtion and Manufaoture of Ordnanof, Garriages, Ammunition and Stores.

Metals used in Gun Construotion.

Chapter I. 8
Physical properties of metals generally.
Modes of measuring tenacity and elasticity.
Metals used for construction of ordnance.
Bronze, including "phosphor bronze," and "Uchatius bronze," and so called "steel bronze."
Iron, including cast iron, wrought iron and steel:
The peculiar properties of the above as applied to gun construction, drawing special attention to wrought iron and steel.
Defects and advantages of each of the above pointed out.
Tests applied to wrought iron and steel for gun purposes.

Gun Construotion Generally.

Chapter II.:
Casting and building up.
Tangential and longitudinal stresses.
System of initial tension and varying elasticities.
Armstrong principles. Arrangement of fibre, tangentially and longitudinally. Palliser guns.
Disposition of metal in service gun.
Construction of service Armstrong B. L. R. gun.
Frazer construction. Reasons for using steel for the barrels of Woolwich guns and wrought iron for the converted guns.

Principal Operations in the Manufauture of our Riflad Ordnanoe.

Ciaptrr V.:
Machinery. Steam bammers and their power.
Steel ingots. Testing of steol.
Manufacture of bars. Coils and coiling. Welding.
Solid forging. Trunnion ring. Uniting coils to form a tube. Shrinking. Mode of cooling. Manufacture of a jacket. Centering. Turning: Boring. Broaching. Lapping. Rifing. Uniform twist. Increasing twist. Drilling. Sorew cutting. Slotting and planing. Viewing and gauging.
Detalls of Mantfacture of Woolmioh Gung. Guaptra Vili.:

Details of a 7 -inch gan, Mark IV and upwards.
Steel tube and its manufacture and treatment.
The Breech Piece.
I. B. Coil or Belt.
B. tabe.

The Jacket.
Building up the gun, or shrinking the parts together.
The cascable.
The difference in the construction of 10 inch gun mark II, the 16 -inch gun of 80 tons, and the 100 ton Armstrong gun.
Construction of natures bolow 7 -inch.
10 -inch Rifled M. L. Howitzer.
8 -inch R. M. 1 . Howitzer. 64 Pr., Mark III.
40 Pr., R. M. L. gun, 25 Pr. and under.
The 7 Pr. mountain gan of 200 lb . The serew gun.
Processes before proof. The necessity for the shoulder on
A tubes
Examination and proof.
Processes after proof and before issue.
Conversion of S. B. into Rifled Guns.
Chapter X.
Early experiments. Palliser's system.
Nature of S. B. pieces converted.
Mode of conversion.
Process of conversion of an $8^{\prime \prime}$ S. B. gun of 65 cwt. into a
M. L. R. gun of 71 cwt . throwing a shell of 64 tbs .

f our Riflimd

er.
Welding. oils to form a nufacture of a Broaching. reasing twist. and planing.

Guns.

d_{8}.
it.
together.
gun mark II, n Armstrong
w gun. shoulder on

זs.
cwt. into a 64 tbs.

Construotion of Carriages, \&u., in Royal Carbiage Department.
Notes.
Notes on tho various woods, British and Foreign, used in the construction of carriages, \&c.
Form and quality of iron used.
Nature of Bronze uscd.
Care and preservation of leather, \&c.
Sizes of cordage and uses.
Manufacture of Projeotiles and Fuzes.
Notes.
Selection of iron for shells. Preparation of core and mould.
Casting of common shell and shrapnel.
Peculiarities in the manufacture of Palliser projectiles.
Fitting studs and gas checks.
Lacquering inside of shells.
Construction of wooden and metal time fuzes.
Construction of Tubes, port fires and rockets.
Various Laboratory compositions.
Notes on the Manufacture of Gunpowder.
Manufacture of gun powder.
Manufacture of gun cotton.
Seqtion B.
Sladen's Principles of Gunnery.
Chapter I.
Definition of terms used in gunnery.

Chapter II.

Relation between and problems upon the "angle of spiral" and " twist of rifling." Velocity of Rotation determined from that of translation. Energy due both to translation and rotation, omitting the note to pages 15, 16. Velocity of recoil without noticing the weight of the cartridge and without the considerations in pages 18, 19, which should howover be read over, the causes of inaccuracy being noticed. Energy of recoil, omitting the cartridge as before. Omit Major Kemmis' table.

Chapter III.
Pressure in the bore of a gun.

Chaprer IV.
Work done by a charge of powder, omitting the table of work and its applications. "Factor of Effect." Velocity in the bore and muzzle velocity, omitting details in pages 31, 32.
Chapter V.
Resistance of the air. History up to Bashforth's experiments and conclusions. Calculations leading to $v=\frac{V}{1+c V_{s}}$ and to the tables of remaining Velocity. Practical use of these tables. Consider the table of K, page 48. Omit table page 54.
Chapter VI.
Calculation of Trajectories; vertical height and angle of descent. Omit pages 69 to 84.

Chapter VII.
Drift of elongated projectiles. See also manual of Canadian Artillery.

Chapter VIII.

Probability of fire.
Chapter IX.
Penetration of projectiles. General principles without
detail. detail.

Appendix.
General acquaintance with the principles of L_{e} Boulenge's Chronograph; Bashforth's Clock and gravity Chronograph; Watkin's Electric Chronograph; Crusher Gauge and Chronoscope.

Skotion C.
(Tragts on Meghanics, Part III).
Application of mathematics to artillery machines, including tackles and purchases; hydraulic and other jaciks ; elevating screws; triangle gyn, shears, derricks, \&c.

ROYAL MILITARY COLLEGE OF CANADA.

ng the table of "ect." Velocity aitting details

3ashforth's exas leading to ning Velocity. he table of K,
and angle of tal of Canadian iples without

Le Boulengé's wity Chronorusher Gauge
nes, including jacizs ; elevat\&o.

TEXT BOOKS.

TEXT BOOK ON MILITARY LAW.
(Major Douglas Jones, R.A.)
\qquad
Books recommended for reference:
The Army Acts.
Militia and Defence Act of the Dominion of Canada.
The Queen's Regulations and Orders for the Army.
All Official Orders, Regulations, Rules of Procedure, and Official Instructions bearing upon the subjeots specified.

SUMMARY OF INSTRUCTION IN MILITARY LAW.

Comparison between Military Law and Civil Law. Army ${ }^{*}$ Act contains written part of Military Law.

MARTLAL LAW.
Martial Law, contrasted with Military Law, when it may be proclaimed, and by what authority.

The classification of Martial Law under three heads :-

1. Applicable to Officers and Soldiers.
2. Applicable to Provinces during War.
3. Applicable to the whole community in time of Rebellion.

Lessons to be derived from the past and opinions of eminent Lawyers on the subject.

MILITARY LAW.

Brief historical summary of the growth of a code of Military Law in England and causes which led to it.

Circumstances which led to the introduction of the first Mutiny Act.

Statutory Courts and Prerogative Courts.
Powers of the Crown as to Articles of War and Rules o Procedure.

Short description of the Army Act. Classification of Contents: Discipline, Enlistment, Billeting, General Provisions, Application of Military Law, Saving Provisions and Definitions.

Canada.
Army.
Procedure, and the subjeots

Annual passing of the Army Act by Parliament.
Persons subject to Military Law.
Military Law as it concerns the Militia of Canada.
Maintenance of good order and military discipline: Chain of responsibility.

Course of procedure on commission of offences.
Military custody.
Power of Commanding Officer, with remarks on the punishments he can award.

Duties of the Provost Marshal.
Courts Martial. Descriptions, warrants, convening, composition, jurisdiction, order for assembling.

Scale of punishments, when special punishments may be awarded and how combinod.

Special application of the Army Act to warrant officers, non-commissioned officers, and to persons not belonging to Her Majesty's forces.

Preliminaries to trial, framing and investigation of charges, warning the prisoner for trial.

Responsibilities, duties, and privileges of persons attending Courts Martial:-President, Members, Prisoner, Prosecutor, Deputy Judge Advocate, Witnesses, Interpreter.

Description of proceedings at Courts Martial, rules as to challenges, arraignment of prisoner, rules for addresses, examination of witnesses, the finding and sentence.
Confirmation: Persons having authority to confirm. Duties and powers of the confirming authority.

Revision of findings and sentences. Quashing proceedings.
Persons hâking power to alter the sentences after confirmation.

Execution of sentence. Disposal of proceedings.
Special provisions relating to Field General Courts Martial and to Summary Courts Martial.

Crimes. Their classification and punishments for ea e Orimes punishable only by Civil Law, with exceptions.

Definitions of some legal terms with explanations. MalicePrincipal of the first and second degree. Accessories. Treason. Misprision of treason. Felony and misdemeanor. Homicide, theft, robbery, arson, forgery, \&c., \&c.

OOURTS OF INQUIRY AND BOARDS.

1. Royal Commissions; 2. Courts held under the Statute ; 3. Ordinary Courts assembled by a commanding officer.

How assembled, duties of members, order of proceedings, powers, \&c.

EVIDENOE.

The five general rules as to the admissibility of evidence:-

1. Evidence as to character, and evidence in res gestec.
2. Direct and positive evidence, satisfactory evidence. Presumptions of the law, presumptions drawn from the evidence (circumstantial evidence).
3. Evidence to be confined to the charge.
4. Hearsay evidence.
5. Documentary and secondary evidence, when admissible ; public records, private writings, proof of handwriting. Confessions by prisoners. Depositions.

Witnesses.-Number required, their competency; examination of witnesses.

Form of proceedings of Courts Martial, how' recorded ${ }_{2}$ etc. Form of Proceedings of Courts of Inquiry and Boards. Oaths and solemn declarations;
persons attendisoner, Prosecureter.
ial, rules as to Idresses, exami-
onfirm. Duties
ng proceedings. aces after con-
dings.
Courts Mar-
ents for ea c eptions.
ions. Maliceories. Treason. r. Homicide,
or the Statute;
g officer.
f proceedings,
nissibility of
res gestre.
ory evidence. nthe evidence

When admissihandwriting.
ney; examin-
recorded, eto. d Boards.

ROYAL MILITARY COLLEGE OF CANADA.

syllabos of instrudotion in military ADMINISTRATION.

ALLOTMENT OF MARKS.

- TEXT BOOKS,
\qquad

MILITARY ADMINISTRATION.
(Major Douglas Jones, R.A.)
Regulations and Orders for the Militia of Canada
\qquad
Books recommended and sources from which information may be
obtained:
The Queen's Regulations and Orders for the Army.
Regulations and Instructions for Encampments.
Army Circulars and General Orders.
Précis of Modern Tactics. (Colonel Home.)
The Armies of Europe and Asia. (General Upton.)
Sir Garnet Wolseleg's Soldièr's Pocket Book.
Official Military Regulations governing the various branches of the Military Service both of Groat Britain and of Foreign Countries.

SUMMARY OF INSTRUOTION IN MILITARY ADMINISTRATION.

General principles of the organization and maintenance of armies, and the special laws relating to soldiers.

Maintenance of discipline, and chain of responsibility.
Birtish Military Units :-from eompanies, troops and batteries, up to army corps.

W'ar Establishments of the different units of the British Army.

formation and maintenance of armies.

Systems of recruiting, terms of service, etc. Comparison between voluntary and compulsory enlistment; relative advantages and disadvantages of each system. Comparison between long and short service.

Rules of Enlistment in the British Army,
Reserves of the British Army.--Army reserve; militia reserve. Auxiliary forces-Militia, yeomanry, volunteers. Organization, composition, mode of recruiting or enrolment, training and exercise, bounty and allowances, numbers, and liabilities of each. Organization of the Regular Army:

1. Combatant branches-Infantry, cavalry, artillery, engineers.
2. Non-combatant branches-Commissariat and transport department, ordnance store department, army pay department, veterinary department-organization and general functions of each. Army medical dopartment-organization in peace and war, field hospitals, general hospitals, convalescent depôts, transport and care of siek and wounded in war.

Pay and Allowances, and a brief description of the accounts to be kept by the captain of a company. Gratuities and pensions.

Supply and Transport in time of Peace.-Rations, quarters, medical attendance, equipment, èlothing, necessaries.

Sketch of different Military Systems.-Germany, Franee Austria, Russia, Italy, United States, Canada, Switzerland.

Appointment and promotion of officers in different armies.
Organization and distribution of the Staff of the British Army.-Staff at headquarders, corps, divisional, brigade, and regimental staff.

The Prussian General Staff.

Subdivision of Duties.-Office work and method of conducting official correspondence.

Supply of ammunition in the field; expenditure in battle.

Reserves of ammunition. Equipment.-Arms, ammunition, etc. Rations-Amount of nutriment required, nutritous properties of different kinds of diet, daily rations per man and horse ; how carried, and amount required by an army in the field.

systems of supply of food and forage by an army in the FIELD.

1. From home magazines.
2. By contract to deliver at base or depôt of operations.
3. By purchase in the country.
4. By requisition or seizures.

Relative advantages and disadvantages of each system. Billeting of troops, with calculations for billeting. Forage and ration depôts; railway depôts.
The Prussian system of Supply.
MILITARY TRANBPORT.

1. Inland water transport, by means of navigable rivers, lakes and canals. of military railways.
2. Transport by means of wheeled vehicles.
3. Transport by means of pack animals and human carriers.

Comparison between the different methods, and their relative advantages and disadvan'tages.

Requisites of a good military carriage; relative merits of two-wheeled and four-wheeled vehicles. Traction engines.

ORGANIZATION OF TRANSPORT FOR AN ARMY IN THE FIELD.

1. "Regimental transport" of a battalion, regiment of cavalry and battery of artillery.
2. "Departmental transport" of different units from brigades to army corps. Organization and expansion of the Commissariat and Transport Corps. Calculation of length of road occupied by military transport. Difficulties ot'supply.
3. "General transport." Organization required. Advantages of working it on the stagesystem.

RAILWAYS.

Their value and use for concentration and supply at the outbreak of war, and for conveyance of troops and stores during the operations. Their influence on supply and the movements of armies.

Organization required for the working of railwaye. Administrative and executive staffs. Duties of officer in charge of a station.

Arrangements for forwarding a force by railway. Num.

1s, ammunition, , nutritous pros per man and an army in the

IN ARMY IN THE
of operations.
aach system. illeting.
vigable rivers, r, construction
uman carriers. ds , and their
tive merits of on engines.
the field.
giment of cav-
nits from briansion of the of length of of supply. ired. Advan-
upply at the stores during e movements
of railways. cor in charge
way. Num.
ber of trains that can be despatched in one day. Entraining and detraining troops. Rate of travelling. Requiroments of a railway station for military purposes.

the line of dommunioations of an army in the field.

Duties and responsibilities of the Inspector General, and under him of the officers in oharge of the Base of Operations, Advanced Depôt, and of the "Road Commandant."

Railways on the Line of Communications.
Foree required for the defence of the Line of Communications.

enoampments, bivodags, oantonments.

Military and sanitary requiremonts as well as principlesfor encampments. Spaces required by different units. For mations for encampments. Eslimates of water supply required and watering arrangements.

Bivouacs. Prussian system.
Cantonmenta. Area over which troops can spread. Calculation as to number of troops that can be cantoned in a town or district, on the mareh or for lengthy occupation. Arrangements for cantoning troops and billeting on the line of march.

marches.

Number of roads to be used by an army; seleotion of roads; rates of march; length of marches; general arrangements for a march; order of march in proximity to and at a distance from the enemy.

Length of column of route for British divisions and army corps. Calculations of space required. Considerations limiting the size of columns that can march on one road. Marching in "Echelon." Framing orders for a march.

TMBARKATIONS AND DISEMBARKATIONS.

Transport and freight ships. Vessels, how chartered and by whom. Boards of survey. Description of vessels most suitable for troops, capacity requied. Fittings and interior arrangements of transports. Calculations as to the number of men and horses a ship will accommodate.

Operation of embarking troops and horses. Disembarkation in presence of an enemy, orders for. Selection of landing places.

7^{7}
 ROYAL MILITARY COLLEGE OF CANADA.

Syllabus of instrudtion in military ART, HISTORY, AND GEOGRAPHY.

ALLOTMENT OF MARKS.

TEXT BOOKS.
——:0:-

MINOR TACTICS. (Lieut.-Colonel Clery.)
OPERATIONS OF WAR. (Gen. Sir Edward Hamley, K.C.

INFANTRY FIELD EXERCISE.
TACTICAL NOTES. (Major Douglas Jonos, R.A.)
——:0:-
Books recommended to be read and sources from which information may be obtained.

Précis of Modern Tactics. (Colonel Home.)
Great Campaigns in Europe. (Major Adams.)
Tactical Deductions from the War of 1870-71. (Colonel Boguslawski.)

Official Report on the conduct of the American Civil War
Cavalry Regulations.
Instructions for Cavalry by General Von Schmidt. (Translated.)

German Official Accounts of the Wars of 1866 and 1870-71
Russo-Turkish War. (Lt. Green, U. S. Engineers.)
War in Bulgaria. (General Baker.)
Daity Nows Correspondence of the Rasso-Turkish War. (A. Forbes.)

War in Armenia. (Norman.)
Journal of the Royal United Service Institution.
R. A. and R. E. Institution Papers.

1 Clery.)
d Hamley, K.C.

E.

ones, R.A.)
hich information
e.)
ms .)
$0-71$. (Colonel
ican Civil War
chmidt.

66 and 1870-71
pineers.)

Turkish War.
enemy．Manner of occupying positions，special care required on the flanks．Withdrawal in presence of the enemy．Gen－ eral disposition on the march．Retiring through a defile． Degree of resistance to be offered by Rear Guards．
information about Necessity for obtaining ample and accurate Importarice of sereenem，and surest manner of obtaining this． siderable force of caval．movements from enemy．How a con－ reconnoitring duties in advance of an aryed in screening and noitring partios，infantry and of an army．Small recon－ tion and strength．Qualitiog cavalry patrols，their composi－ information is obtained；transmiuired in commander．How rear．Points to be noted in country of intelligence to the tring the enemy＇s position．

GROUND in relation to tadtios．

Character of ground best suited to each arm．How nature of ground affects the view and affords concealment．Danger nature of ground affer from view with cover from fire．How of soil，\＆\＆

TAOTIOAL EMPLOYMENT OF THE THREE ARMS．

Principles of employment of infantry in aotion，both in attack and defence．Modern infantry fire．

Principles of employment of cavalry in action．Offensive and defensive tactics．Dismounted service of cavalry． Mounted infantry． tions and objective of oyment of artillery in action．The posi－ of field intrenchments．Dery in attack and defence．Attack tical employment of machine guns．

Primciples of employment of tion－in attaok，in defence，in pure three arins in combina．
parsuit，in retreat．
DUTIES AND RESPONSIBILITIES OF A OOMMANDER OF A MIXED FORCE

TENDENCY OF MODERN TACTIOS．
Prinoiples to be kept in view in considering the tactics of occupation of positions．
Principles on which ground should be ocoupied．Re－ quirements of a good defensive position．The oceupation of a position selected as a field of battle，
ecial care required the enemy. Gonthrough a defile. Guards.
ample and accurate of obtaining this. emy. How a condin screening and y. Small recon. ols, their composiommander. How atelligence to the over. Reconnoi-

©8.

m. How nature alment. Danger from fire. How r of roads, nature

e Arms.

aotion, both in tion. Offensive θ of cavalry. tion. The posifence. Attack ry fire. Tac-
ns in combina. at.

NDER OF A
the tactics of
cupied. Re. cupation of a

GBNERAL COUREE OF AN ENGAGMMENT
Attack and defence of positions. Night attacks. Coun-ter-attacks and offensive returns.
indreased use of field fortifioations by the assailant.
Issue of iatrenching tools to soldiers has a direet bearing on tactics. Used by assailant to secure ground won, to contain defender in position, \&c.

MARCHES.

Objects and requirements. Pace and halts. Length of marches dependent on the condition of the men, weight carried. Nature of roads, etc. Length of column. Use of several roads, Importance of accurate timing of marchos. Connection to be kept up between different columns. Place of each arm on the line of march. Discipline.

Flank Marches.-Their danger in presence of an enemy. Exposed flank to be protected. Distribution of force. Defiles on exposed flank to be guarded.

Night Marches.-Disadvantages attending them; precautions necessary.

BIV販R.

Defence of a river line, and general principles for distribution of force; active defence of a river line.

Forcing a river line; different methods. Selection of point of passage; what constitutes favorable pointso Tributary streams. . Islands.

Preparation of materials and assembly of troops. Secrecy and stratagem necessary. Covering party. Secondary crossings.

DEFILES.

Definition of a defile. Different kinds of dofles: their importance. Manner of defending defiles and of conducting a rotreat through them. Mode of defending and attacking. Mountain defiles. Bridges. Fords. Causewaye.
houses and villages.
Their importance and use. Conditions that affect their utility in a military sonse. Isolated houses and villages form "tactical points" if in front, on the flank, in rear, or in the line of a position.

General mode of putting them in a state of deferice. Importance of exterior line of defence, inner lines and citadel. Disposition of troops. Positions of artillery.

Attack of isolated houses and villages-1. by infantry alone ; 2. by infantry supported by artillery.
woods.
Advantages afforded by woods to the defence or to the attack, according to their nature, extent, position. Disadvantages attending fighting within a wood.

Manner of putting woods in a state of defence. arms.
.
Attack of a wood : disposition of troops for attack; movements of attacking force within a wood.

CONVOYS.

Different kind of
Difficulty of conducting ays, either by railway, road or wate: governing strength and convoy. Length of convoy. Causes Disposition of composition of escort.
guard, main body, and ren the march; its duties. Advanced Mode of parkinga convoy. guard. Conduct in case of attack. Convoys by water.
ethod of attack.
battles.
The principles of tactics illustrated by the study of battlos

General principles of strategy, objects to be attained by
tegic operations. strategic operations.

Difference between offensive and defonsive war; advantages and disadvantages of each. Success of strategy dependont on mobility, and the result Success of strategy dependont on mobility, and the result
of it on tactical successs.

The difference in the art of strategy between the Feudal period and the present time. How the introduction of standing armies and civilization effected this change.

Improvement in the art of strategy by Napoleon.
the three mpobtant prinolples of strategy.

1. The "object." Selection of objective and theatre of operations. What generally must conjective the " oheatre of
2. Base of Operations. The requirements "object."
line. stra at different periods.

STRATEGY.

 Angular bases. Offensive and defensiguration and position. 3. Line of Operations. Necensive basos. operations. Distinction between Disadvantages of several lines, but single and doublo lines.
-1. by infantry
lefence or to the ition. Disadvan-
efence.
ns of the three
or attack ; moro.
y, road or watei: ronvoy. Causes
ties. Advanced n case of attack.
study of battles
attained by - war; advanand the result
n the Feudal ion of stand.
leon.
ateay.
d theatre of " object." of a baso, nd position.
for a line of louble lines. using one
line. Independent lines. Limits of use of a single road for strategic purposes and advantages of operating by several roads.

Point of junction of different fractions of an army; danger of concentrating too near an enemy.

Combined armies operating from divergent bases, and armies operating on interior lines.

offensive strategy.
Offensive strategy classified under three heads:

1. Endeavour to turn a single flank.
2. The advance against the centre of a strategic lino.
3. Operating against both flanks.

Advantage of compelling an enemy to form "front to a flank."

An army throwing itself across the adversary's communications.

defensive strategy.

Direct and indirect defence. The evils of dispersion in defensive strategy. The strategical advantage gained by abandỏning a certain amount of territory under certain circumstances. Employment of retarding forces.

LINES OF COMMUNICATION.

Influence of good communications, such as good roads navigable rivers, canals and railways on strategical operations; also telegraphs.

Necessity of fortified points on the line of communications. The disadvantages of a long line of communications, and especially in the enemy's country.

OBSTACLES.

Influence of obstaeles, such as mountain ranges and rivers, on offensive and defensive operations, whon their general direction is parallel or perpendicular to the line of ϕ perations. Fortreeses viewed as obstacles.

FORTRESSES.

The effects fortresses have on strategical operations. The cause of the establishment of fortresses. How they first affected strategy causing sieges to be so numerous. The causes of sieges being reduced in these days in proportion to the number of battles.

CAMPAIGNS.
The science of strategy illustrated by the study of campaigns at various epochs.

GEOGRAPHY.

Special study of the theatre of war of suoh campaigns as may be selected. General study of the military geography of Dominion of Canada.
N. B.-The campaigns and battles solected for study are varied from time to time, and no special text books are used for these, original lectures being given.

ESSA Y S.

Original essays on the subjects of instruction will be required to be written according to the time available.
N. B.-In the examinations, as well as in essays which may be written on the subjects of instruction, great stress will legibility of heass and conciseness of style and expression, statement. Allowance will be correctness and precision in Lower Provinces who may not be thor those Residents of the the English language.

ROYAL MILITARY COLLEGE OF CANADA.

suoh campaigns as itary geography of scted for study are xt books are used

SYLLABUS OF INSTRUOTION IN SURVEYING, MILITARY SKETCHING AND -RECONNAISSANCE, Λ ND PRACTICAL ASTRONOMY.

ALLOTMENT OF MARKS.

Note.-The proportions shown for Drawings, Examinations, \&c., are not absolutely adhered to.

86

TEXT BOOKS.

\qquad

Roberts's Military Surveying. Gillespie's Land Surveying.
Notes on Practical Astronomy by Lt. Col. Oliver.
Deville's Examples of Astronomic and Geodetic Calculations. The Canadian Manual of Survey.

Books recommended for reference.
\qquad

Heather's Surveying and Astronomical Instruments, Gillespie's Higher Survejing.
Clarke's Geodesy.
Itoomis' Practical Astronomy.
Chauvenct's Spherical and Practical Astronomy. The U. S, Naval Academy Toxt Book on Surveying. U. S. Coast Survey Reports.

SUMMARY OF INSTRUOTION IN SURVEYING, MILITARY SKETOHING AND RECONNAISSANOE, AND PRAOTICAL ASTRONOMY.

(The practical work oydinarily done by the Cadets is shown between brackets.)

3rd CLASS.

(Obligatory).

SURVEYING AND MILITARY SKETCHING.

Goneral principles of surveying and map making. The amount of accuracy expected in a survey dependant on the purpose for which it is made and the time available. Military zketches often hurriedly made against time.

Scales generally used, both in military sketches and civil surveys.

Conventional signs and colours used in map making. Copying plans by tracing, pricking off, squares, eidograph, and photography.
(After a little practico in conventional signs each Cadet makes from memory a map of some piece of country with which he is well acquainted.)

The necessity of a preliminary examination of the ground before commencing a survey.

Description of Gunter's and the 100 -foot chain, the steel tape, surveyor's cross, and offset staff. Relative advantages of the two chains. The method of chaining a line. Precautions to be taken and amount of accuracy to be expectod. Allowance for slopes. Chain surveying. Cutting up tho ground into triangles. Necessity of getting good intersections to fix points. The details of the survey, how obtained.

Methods of calculating areas. (1) By measurement on the ground; (2) by measurements on the plan ; (3) by division into squares; (4) by reducing a figure to a triangle; (5) by latitudes and departures.

Surveying by tio lines. Chain angles. Perpendiculars. Various methods of keeping the field book in chain surveying.

Ground problems in chain surveying. Erecting perpendiculars to a line. Running parallel lines. Passing obstacles. Interpolating points in a line. Finding the distance between points where the intorvening space cannot be chained.
Methods of checking a chain survey by measuring proof lines and by the test of points that lie in a straight line.
(The Cadets are shown how to make and plot a small chain survey. They then survey and plot a fresh piece of ground, keoping and plotting from their own field books.)

The principles of angular surveying.
The limits of well-conditioned triangles.
it.
Measuring a base line and expanding a triangulation from ${ }^{4}$
The construction and uses of the pocket sextant and pris. matic compass., Tho adjustments of the sextant. The defects tages. Tho variation Their relative advantages and disadvanit. Fixing points by interpolation.
(The Cadets are practised in.
tant and bearings with the in taking angles with the sexThey then make a triangulation of and in plotting them. measured base with the sextant, a piece of ground from a details by the compass and pacing and afterwards fill in the tained the length of his pace. pacing, each having first ascer-

The cadets next pace. and pacing alone. Theye a sketch survey by the compass reys-one with the sextant, thards do two examination surthose surveys they are taken to other with the compass In given a certain number of hours a rrosh pieco of ground and and the sketches boing given in on it in, each working alone

Triangles plotted oither by on the ground.) lengths of the sides. How to construgles or by the calculated protractor. Plotting angles by thet a large paper or card Forms of field-book used in the scale of chords. ing with the compass, used in angular surreying. Traversin traversing. Restoring the attraction-how to get rid of it in the variation. Surveying landetism of' a compass. Changes Latitudes and departures-their by the compass and chain. Given the bearings and lengths of the in checking a survey. lineal figure, to calculate its acreago by lines bounding a rectiand departure.

Contours-their nature and use. The horizontal equivalent. Use of the hand-level and clinometer for contouring a plan roughly. Definitions of "water course," "watershed " by shading. "Orthonal." The different methods of showing slopes shading g. Horizontal hachuring, vertical hachuing slopes a little to the left work. The light supposed to come from best adapted for-their of each mothod. The seales each is The seale of shade. Its uses oyment on the Ordanance Survey. (The Cadets are practiced Mounting plans on calico. bachuring in Indian Ink.

If time allows, inst and Transit Theodolite is commenced.)
and plot a small chain sh picce of ground,
books.)

өs.

a triahgulation from

at sextant and pris. xtant. The defects agos and disadvancts connected with
ngles with the sex. in plotting them. of ground from a rwards fill in the having first ascer-
y by the compass examination surthe compass In co of ground and ch working alone d.)
by the calculated
e paper or card aords. ying. Traversto get rid of it mpass. Changes pass and ohain. king a survey. punding a reetibles of latitude
izontal equivar contouring a "watershed" howing slopes huring, stump to come from scales each is ance Surrey. n calico. of horizontal

2nd Clabs.

(Oblig.tory.)

surveying and military sketching (Cont.)

The construction, adjustments, and uses of the theodolite and transit theodolite. How they give the horizontal and veltical angles. Taking a round of horizontal angles. Reason for reading both verniers. Repeating angles. Correcting the angles of a triangle when all three are measured. Methods of traversing with the theodolite. Plotting the traverse from moridians and the advantage gained by doing so. Use of the circular card protractor. Uses of the attached compass. Replacing broken level tubes and spider lines. Use of the theodolite in ranging out a base line and reducing the slopes to the horizontal. Measuring across obstacles (such as wido creeks) and up to the point immediately under an inaccossible object, such as the top of a church spire. Making a triangulation. Choice of trigonometrical stations. Plotting the triangles from the calculated lengths of the sides. Use of the beam compasses. Finding the points approximately by plotting the angles. Finding the relative hoights of the stations, taking into account the allowances for curvature and refraction.

Mothod of plotting by means of rectangular co-ordinates. Proving the accuracy of a traverse by closing it on a known point. Proving a traverse by eastings and westings and northings and southings.

Making sections by the theodolite.
(The Cadets are practised in taking angles with the theodolite and in running a traverse. Thoy afterwards plot a traverse from the field book, and also a given triangulation by the method of eq-ordinates.)

How to check a triangulation by calculating the same side from different triangles. Measuring a base of verification. Methods of tilling in the details of a triangulation. Plotting a triangulation on a large scale. Expansion and contraction of paper. The scale to bo laid down on the paper. Plotting on different sheets. How this is done by means of the calculated co-ordivates.

Principle and uses of the plane table. The stadiameter. (Survey with tho chain and plane table.)
Problems in dividing up, parting off, and laying out land.
The regulations contained in the Dominion Manual of Survey.
(The Cadets are practived in copying models of hills, putting in the slopes by horizontal hachuring, first in pencil and then in ink. They are afterwards given a contoured plan of a
convenient piece of ground which they take out and hachure by scale of shade. Those who are sufficiently expert practise shading in brush work.)

The principles of laying out roads with reference to the gradients.

The methods of laying out railway curves.
tive and refractes of levelling, with the corrections for curvaferent kinds of level. The water lerel andments of the difForms of field book used. water level and reflecting level.
(A traverse is run with
of it made by levelling.) the transit theodolite and a section Surveying without instruments.
(llxamination survey of a piece of ground without instru.

PRACTICAL ASTRONOMY.

Elementary facts of astronomy. Apparent motions of the heavenly bodies. Theiseasons. Short description of the solar ${ }_{0} T$ The principal northern to distances. The celestial globe. the ordinary astronomical terms. The Explanations of ployed. Altitude and azi terms. The co-ordinates emDeclination and right ascension. Latitude and longitude. ing time. Civil and astronomical timerent methods of reckonthe other. Apparent solat mical time. To convert one into reason of the difference betwean solar, and sidereal time; cen the two first. The equation
Use of the large sextant and artificial horizon. How to measure the altitude of a heavenly body, both by the natural tion, parallax, semi-diameter.

Tho Nautical Almanac.
Simple interpolation. Correction for longitude. Hour angles. Numorical expression of hour anglos in time and are. Time at different meridians. To convert the apparent time at a given meridian into mean time, and vice versa. Given the Given the mean time to find thant to find the mean time. mical clock. To find at what the sidereal time. The astronomeridian. To find the what time a given star will be on the a given moridian. Given thangle of a star at a given time at meridian to find the local mean angle of a star at a given equal altitudes of a fixed stean time. Finding the time by a heavenly body to find its hour From an observed altitude of mean time.

To find altitude.

Method pass. 1: By meridian, a from the N same vertic
2. By
3. By
4. By
5. By

Findin a star.

Findin difference telegraph:

Sun di
Practi
All ast ropeated in
,The
(The tado and a:

Neces: naissances. tain all poi climate, to] armed stre and any of generally details inse width of t of the soil, points tha always ace Scales Repor Maps lation.

Penci chalks. 1 railways,

Road
ad hachure
rt practise
ince to the
for curvaof the dif. ting level.
a section
ut instru.
ns of the the solar al globe. tions of tes em. ngitude. reckonone into 1 time; quation

How to natural refrac-

Hour nd are. ime at on the time. tronoon the me at given e by ide of local

To find the azimuth of a heavenly body from its observed altitude.

Methods of finding the meridian and variation of the compass. 1. By finding the instant the pole or other star is on the meridian, and observing it ; the instant bein found either from the Nautical Almanae or from its being observed in the same vertical plane with certain other stars.
2. By equal altitudes of a star.
3. By the greatest elongation of a circumpolar star.
4. By transits of high and low stars.
5. By the sun's azimuth.

Finding the latitude by the moridian altitude of the sun or e a star.

Finding the longitude by differences of local time; the difference being aseertained either by signal or electric telegraph:

Sun dials, both horizontal and vertical.
Pratical examples of the above problems.
All astronomical observations with the theodolite to be ropeated in reversed positions of the telescope:
-The Canadian method of laying out public lands. .
(The cadets have to work out gbservations for time, latitude and azimuth, using both sextant and transit theodolite.)

MILITARY RECONNAISSANCE.

Necessity of reconnaissances. General and special reconnaissances. The former usually made in poace time to ascertain all points necessary to be known in case of war ; such as climate, topography, inhabitants, supplies, transport, fortresses, o armed strength, \&c. Special reconnaissances always required, and any officer may have to make them. Maps of a country generally on too small a scale and have to be enlarged, and details inserted. Besides, maps do not show the state and width of the roads, the depth and current of rivers, the naturo of the soil, the kind of woods met with, and a host of other points that it is necessary to know. Therefore a report must always accompany the eketch.

Scales used for the sketches.
Reports to becwritten on foolscap with half margin.
Maps to be enlarged in preference to making a triangulation.

Pencil work to be neat and clean. Use of colored chalks. Different kinds of special reconnaissance. Roads, railways, rivers, woods, positions, encamping grounds, districts.

Road reconnaissances.-Made either on foot or on horseback. A note book may be used and the work plotted in the
evening. A few bearings taken and distances judged by the time occupied in traversing them. Rates of a horse's paces. Points to be specially observed. Form of sketch and report. Estimate of accommodation afforded by villages and towne.

Eailways.-Points to be noted:
Rivers.-Points to be noted: Depth, rapidity of current, liability to floods, bends,fords, bridges, boats, banks, islands, \&c.

Woods.-Points to be noted
Positions.-Both offensive and defensito: Their selection. the (The following reconnaissances are generally made by

1:' A rapid pencil sketch, with report, of some convenient ground, such as the banks and islands of a portion of a river: of road.
3. A farre copy of No. 2 in ink and colours.'
4. A more oxtended road reconnaissance, with a special report on any tactical positions it passes.
5. A sketch of a defensive position in sections, each Cadet taking a section.
6. A rapid sketch of a piece of country in sections.) p;eted in the 1st Class. meridian f of latitude

Geode tion. Lay tracing th a measure The usual verificatio angulation

Acco lines. Tb cription 0 sụrveys m

Preli
Division for chang rods to t obstacle. be considered.
(A pieco of ground on whick to oncamp a given forco is selected by each Cadet, and a plan of tha camp, with report,
(Selecting base linos and stations for an extensive triangulation.)
(Extending the ordnance maps of the district round Kingston.)

Reconnaissances of districts, how carried out. Combining reconnaissance plans made by different individuals.
(An extended reconnaissanco of country, if transport is available.)

Ist Olass.

(Obligatory.)

RECONNAISSANCE (Cont.)

Astronom level:

Trial pal trian tries. St from, as polished marks. successefu

Moa sizes of Comparit

Tor
red by the rse's paces. and report. towns.
of current, cs, islands,
selection. made by
onvenient f a river: four miles
a special ach Cadot
as.) 3 is com.
oints to force is report,
e trian-
round
bining
port is

(Voluntary.)

GEODESY.
Meaning of the word "Geedesy:" The true figure of the earth an oblate spheroid. Methods by which this has been preved. Measurements of arcs of the meridian at different fatitudes. Pendulum observations. Abnormal deviations of the plumb line. How caused. Method of detecting them.

Definitions of "compression," "eccentricity," " geocontric latitude," "geegraphical" and "astronomical latitude," "reduction of the latitude."

To find the reduction of the latitude for the compression of the earth. Development of the expression for it-in series. To find the radius of the terrestrial spheroid, the normal terminating in the axis, and the radius of curvature of the meridian for a given latitude. To find the length of a second of latitude and of a second of longitude at a given latitude.

Geodetical operations. Mapping a country by triangulation. Laying out the earth's surface in certain figures and tracing them on the ground. Expanding a triangulation from a measured base. Primary, secondary, and tertiary triangles. The usual size of each. Well conditioned triangles. Basee of verification. Examples of the latter. Networks of triangulation. Intorsecting chains of triangulation:

Account of the measurement of certain celebrated base lines. The different means and materials employed. Dest cription of the American compensating bars. Bases for small surveys measured by steel tapes or pine rods.

Preliminary measurement and levelling of a base line. Division into sections. Permanent monuments. Correction for changes of temperature of rods. Reduction of inclined rods to the horizontal. Distanc across a creek or other obstacle. The broken base. Measurement of bases by sound: Astronomical base lines. Reduction of the base to the sea level:

Triangulation. Selection of stations, Size of the principal triangles in various triangulations. Signals for flat counrtries. Stations to be selected so that they can be observed from, as well as to. Various forms of signals: tripods, poles, polished cones and hemispheres. Scaffoldings, towers, station marks. The heliograph. The electrie light. Thelatter used successfully at very great distances. Lamps.

Measuring the angles. Instruments employed Various sizes of theodolites. Repeating and reiterating theodolites. Comparison between them. Method of repeating an angle., To reduce a measured angle to the centre of a station.

Correction for phase of signal. To reduce an inclined angle to the horizontal plane.

Calculation of the spherical excess. Correcting the observed angles of a triangle. Calculating the sides of the trianglès. Legendre's theorem.
Reduction of a difference of latitude on the spheroid to the corresponding difference of latitude on the sphere, the radius of Which is equal to the normal of the spheroid for the mean
latitude.

Calculating the atitudes, longitudes, and azimuths of the points of a triangulation, taking into account the ellipticity of the earth. The convergence of meridians. Co-ordinates of the points of a triangulation referred to the meridian and a: perpendicular to it.

Given the latitude and longitude of two points to find their distance and the azimuth of the line joining them ; given the other, to find their dis and the azimuth from one point to the azimuth from this point to , given the latitude of a point, their longitudes, to find the distance between the difference of Geodesic lines.
To find the area comprisèd between two meridians and two parallels (spherical solution).
To find the offsets to a parallel of latitude.
Deville's method of solving the following problems:
To find the convergence between two points; to find the difference of latitude and longitude of two points when their known ; to correct a azimuth of the line joining them are running a line to correct it by the sun's azimuth; when on the ground; to lay out a por azimuths'; to lay out a figure by off sets.

Methods of delineating a spherical surface on a plane. The orthographic, stereographic, central, globular, Mercator's, and ordinary polyconic projections.

Trigonometrical levelling by reciprocal zenith_distancés; by the zenith distance measured at one station; by the observed zenith distance of the sea horizon.

To determine the co-efficient of terrestrial refraction from reciprocal zenith distances.

The barometrical measurement of heights. water.

General explanation of the use of the pendulum in determining the cempression of the earth. Kater's reversible pen-

To find angle of a gi Difforen second differ to"a given ri polation by

Star Ca
Paralla heavenly b earth.

To find as a sphere tion. Tabl ters of celes to the cent

Findin
To fin when findi on the tim altitude.
from a $\sin _{8}$
Time
Findir the time is time, to th Effect of tude by th tude by between

Long
Gene by lunar

Find by the an By the az of two possible: about 12 superior

ASTRONC
The
Brightne and chro

95

SPHERICAL ASTRONOMY.

ined angle
ceting the les of the oid to the the radius the mean
ths of the pticity of linates of ian and a
ts to find m ; given point to a point erence of points.
ans and

8:
find the ien their hem are ; when a figure rd_{8} and about 12 hours difference of right ascension. Meridian by the superior and inferior transits of a circumpolar star.
ASTRONOMICAL INSTRUMENTS AND PRACTICAL ASTRONOMY.
The telescope. Magnifying power and field of view. Brightness of images and intensity of their light. Spherical and chromatic aberration. Achromatic eye-pieces. Diagonal
eye-pieces. To measure the magnifying power of a telescope. The measurement of angles and arcs in general. Circles. of runs E Ecene vernier. The reading micruscope. Error eceentricity. To find the

- The
revolution of a for measuring time. Cheter screw. The level. Instruments
a Correction for temperaturelers. Winding. Transporting.
Comparison by coincident beats, comparison of chronometers. Clooks The eats.
The large lectro-chronograph.
horizon plass, and telest. Adjustments of the index glass, Method of observing equal altitnine the coloured glasses, The simple reflecting circle. The repeating reflecting circle The prismatic reflecting circle and sextant. The transit instrument; its general formulas. transit instrument in a give of a star on a given thread of the The transit instrumen position of the rotation axis. Approximate adjuent in the meridian. in the meridian. Thread int in the meridian. Its equations thread. Reduction to the minvals. Reduction to the middle constant. The collimation mean of the threads. The level Transits of the sun constant. The azimutb collstant. Transits of the sun, moon, and planets. oter.
with a mean time chronom-
The meridian mark. Personal equation. Personal scale,
Determination of the geographical latitude by a transit instrument in the prime vertical. - Approximate adjustment in the prime vertical. given star over a given from the observed time of transit of a the rotation axis being in the east and west of the meridian, tions.

To find the latitude when the in
tween the east and west transits instrument is reversed benight.

To find the latitude from the observed transits of a star over the prime vertical east and west of the meridian, when ations of the star on opposite transit between the observ(Struve's method.) on opposite sides of the prime vertical-

The altitude and azimuth instrument.
The zenith telescope.
Talcott's method of finding the latitude.

92.

The correction for level.
Reduction to the meridiagn.
Selection of stars.
To determine the value of a division of the level,
To find the value of a revolution of the micrometer. Application of the portable transit instrument as a zenith telescope.

Definition of the term "probable error." Formula of the probable error (withoutadomonstration.)
ad of the axis.
equations e middle The level colistant. chronom al scale. a transit
asit of a eridian, bserva
sed bo10. same a star when observ. tical-

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUOTION IN GEOMETRIOAL

 DRAWING AND DESORIPTIVE GEOMETRY.ALLOTMENT OF MARKS.
Marks available for the entire course.
Geometrioal Drawing.

Obligatory, 600		Yearly,	220	340
	xamination.	Intermediate,	120 \}	
	Term work,	$\left\{\begin{array}{l}\text { Notes, exercises } \\ \text { drawings, }\end{array}\right.$	nd	260
	Examination.	Yearly,	240	240
Voluntary,	Examination.	Intermediate,	il	
500	Term work.	$\left\{\begin{array}{l}\text { Notes, exercises } \\ \text { drawings, }\end{array}\right.$	$n d\}$	260

Desoriptive Geometry.
 4th Class.

Geometrioal Drawing.

100
3rd Class.
Geometrigal Drawing and Descriptive Geometry.

2nd Class.
'Degoriptive Geometry.
Obligatory

For the drawing no notes.

The tex tive geometr ing," by G.

Heather Edgar a Woolle De Rhe
fometry.

Heather's Descriptive Geometry, Weale's series.
Edgar and Pritchard's Solid or Descriptive Geometry.
Woolley's Descriptive Geometry.
De Rheim's Geometrical Drawing.

- Only those books, at present in the Library at R. M. O., have been quoted.

SUMMARY OF THE COURSES OF INSTRUCTION IN GEOMETRICAL DRAWING AND DESCRIPTIVE GEOMETRY.

Geometrical Drawing.-Only simple constructions are attempted in the Obligatory part of the course, those for the Voluntary part are more difficult. The course is throughout designed so as to teach ease, accuracy and neatness in drawing with instruments.

Descriptive Geometry.-The Obligatory course consists of such simple problems as are necessary for Field and SemiPermanent Fortification. The Voluntary course is of a higher nature, containing such problems as are useful for Civil and Mechanical Engineering.

Method of Instruction.

The instruction is carried on by means of lectures and personal instruction. Fair notes will be compiled by each Cadet from the lectures delivered for the Obligatory part of the courses, and for the Voluntary course in Geometrical Drawing. The lectures for the Voluntary course of Descriptive Geometry will be explanatory of the text-book, and occasionally
additional matter made. The cadets will given, of which fair notes will be ous plates and exercises.
The course of Geometrical Drawing (Obligatory and Vol untary) will be studied in the 4th class, and the Obligatory course of Descriptive Geometry in the 3rd class. The Voluntary course of Descriptive Geometry will be commenced in the 3rd class and will be continued during the 2nd class.
fully detailed when syllabus of the courses for each class fully detailed when no text book is available for reference).

4th CLASS.

GEOMETRICAL DRAWING. Obhigatory.

General rules for the use of instruments, construction and use of ordinary, comparative and diagonal scales and verniers. Explanation of the problems contained in the plates.
through a gi lines, this in by means of to a given equal parts. IV. Ordir V. Comps VI. To dr given points points. To segment of a given an VII. To tangent to straight lin
VIII. To lines, vario
IX. To finite strai extreme an
X. To equal area. gon in a g given the XI. To in a given of sides, g polygon o a figure portion b given are
XII. T

To draw
tangent
XIII.
XIV.

Exero
Laying f
Subjeote
Dec
Mar
June
I. Printing plate.
II. To bisect a
and parallels to a give straight line. To draw perpondiculars
渞en straight line.
III. To biseat a given angle. To draw a straight line
¿UOTION
-
ctions are , those for is throughneatness in
consists of and Semiof a higher r Civil and
stures and by each part of the Drawing. ve Geomcasionally will be te numer-
and Vol bligatory The Vol. mmenced class. ch class ence). erniers. liculars at line
through a given point to the intersection of two given straight lines, this intersection being unattainable. To plot an angle by means of a table of natural sines. To plot an angle equal to a given angle. To divide a finite straight line into n equal parts.
IV. Ordinary scales.
V. Comparative scales,
VI. To draw a circle a circle to pass through three given given points. To draw ercle in a given triangle. To draw the points. To inseribe a cirole a siven chord, and containing segment of a ci
a given angle.
VII. To draw a tangent to a given circle. To draw a tangent to two given circles. To draw circles tangent to given straight lines, various conditions.
VIII. To draw circles tangent to given circles, and straight lines, various conditions.
IX. To find a fourth, third, or mean proportional to given finite straight lines. To divide a given finite straight line in extreme and mean ratio.
\mathbf{X}. To reduce an irregular rectilineal figure to a triangle of qual area. To inscribe a square, regular pentagon, or hexagon in a given circle. To draw the same regular polygons, given the length of side. a given circle. To draw a regular polygon of any number of sides, given the length of side. To circumscribe a regular polygon of any number of sides about a given circle. To draw a figure similar to a given irregular figure, given the proportion between the sides. To draw rectilineal figures of given area (explanation only).
XII. To draw an ellipse given the major and minor axes.

To draw an ellipse given two conjugate diameters. To draw a
tangent to an ellipse. To draw a normal to an ellipse.
XIII. Geometrical figure.
XIV.

Exerarsms.-Various exercises to teach use of instruments.
Laying flat washes of colour.
Subieqts for Examination. December-From beginning up to PliI.
June-The whole course.

Voluntary.

Explanation of the problems contained in the plates,

* Fair Notes.-Of the above explanations.

Plates.-The following is a list of the plates :-
XVI. To draw a parabola. To draw a tangen to

To draw an hyperbola. To draw a tan a tangen to a parabola. XVII. To draw various loci. XVIII. Copying a drawing. XIX.
XX. " "

The drawing for Plates "
pally parts of machines XVIII, XIX and XX will be princi-Exeroises.-Nil. Subjects for Ex
ination in June, and pation.- There will only be one examvoluntary courses will be set. based on the obligatory and

3RD CLASS.
 DESCRIPTIVE GEOMETRY.

Obligatory.

Object of desariptive geometry.
means of representing points, lines Necessity for some space on a plane sheet of paper. methods of doing this, namely. Explanation of the two method. Reasons why the indice the two plane and indice fortification: (N.B.-The problemethod is more suitable for will therefore be worked by the ind in the obligatory course Definition of the follo by the indice method.) jector, projecting plane of of terms,-Plane of projection, protion of a point or a straight straight line, ground line, projec"side view, unit, index of a point, figlan, elevation, end view, straight line, horizontals of a plant, figured plan of a point or of a scale of slope of a plane, trace of a stre of quickest descent, contours, projection of a plane angle straight line, of a plane, line to a plane, dihedral angle containedination of a straight meaning of inclination of a straight lised by two planes, usual aight line, inclination of a plane. Theorems of solid geometry required for the prosecution of
the subject ; stated only. Proof of the follonly.
I. The plan or elering theorems and deductions therefrom: line, at right angles to the of any point must lie in a straight
II. The distanges to the ground line. ground line is equal the elevation of any point from the point and the horizontal plae difference of level between the

[^6]III. The on any pla multiplied straight lin

1. To fin from its fig 2. To fir ground lin finite strai straight lit 3. To fi The angle ence of lev
2. To fi parallel to inclination 5. To fi Points 6. To f Atraight 1 7. To plane.

Straigh
8. To
through
9. To
to a gives
10. To
given pla
11. To
parallel 1
12. To
pendicul:
13. To
pendicul
14. To
through
Plane
15. To
given p
16. Th
two give
17. T
given pl
o a parabola. hyperbola.
ll be princiloured.
one examgatory and
III. The length of the projection of any finite straight line on any plane is equal to the length of the finite straight line multiplied by the cosine of the angle of inclination of the straight line to the plane.

Fundamental Problems-1 to 23 .

1. To find the elevation of a point, on any given ground line, from its figured plane.
2. To find the elevation of a given straight line on any ground line. Corollaries: (a) To find the true length of a finite straight line. (b) To find the inclination of a given straight line.
3. To find the figured plan of a straight line, given; (a) The angle of inclination; (b) The true length and the difference of level between two points.
4. To find the vertical trace of a plane on a ground line parallel to the scale of slope. Corollary. To find the angle of inclination of a given plane.
5. To find the soale of slope of a plane of given inclination.

Points fulfilling conditions.
6. To find the conditions that a point may lie in a given Atraight line.
7. To find the sonditions that a point may lie in a given plane.
Straight lines fulfilling conditions.
8. To find the conditions that a straight line may pass through a given point.
9. To find the conditions that a straight line may be parallel to a given straight line.
10. To find the conditions that a straight line may lie in a given plane.
11. To find the conditions that a straight line may be parallel to a given plane.
12. To find the conditions that a straight line may be pera pendicular to a given straight line.
13. To find the conditions that a straight line may be perpendicular to a given plane.
14. To find the conditions fhat a straight line may pass through a given point and have a given inclination.

Planes fulfilling conditions.
15. To find the conditions that a plane may pass through a given point.
16. To find the conditions that a plane may pass through two given points, or, contain a given straight line.
17. To find the conditions that a plane may be parallel to a given plane.
18. To find the conditions that a piane may be parallel to a given straight line
19. To find the conditions that a plane may be perpendicular to a given straight line.
20. To find the conditions that a plane may be perpendicular g
given point may have a condions that a plane passing through a Principle of "
their true form: "onstructing" or exhibiting plane figures in
22. By finding the true lengths of the sides and diagonals. 23. By "turning down" into the horizontal plane.

Combination of the above for the solution of the following problems: 24 to 43.
24. To determine a straight line of given inclination, lying in a given plane; also when parallel to a given plane.
25. To draw a straight line through a given point perpendicular to a given plane.
26. To find a plane passing through three given points. Corollary. To find a plane passing through two intersecting git lines.
27. To find a plane of given inclination containing a given
straight line; also when parallel to a given straight line. perpendicular to a plane containing a given straight line, and Problems on intersections:
29. To ascertain whether two given lines intersect.
30. To find the intersection of two given planes.
31. To find the intersection of a straight line and a plane

Problems on measurement:
32. To measure the angle contained by two intersecting 33. To measure the angle of inclination of a straight line to 34. To measiare the dihedral angle contained by two planes. ${ }^{35}$. To measure the distance between two parallel planes. Problems relating to ground. 36. To find the plan of a line
rising up the face of a hill. 37. To find
of a plane with ground given by 38. To find the intersection of a straight line with ground given by its contours. 39. To determine a plane containing a given straight line
and tangent to one hill.
40. To det gent to two h
41. To det to a given po
42. 'I'o find
(a) To
(b) To

Fair Note
Plates.

1. Prc
II. Co
III. Pro

Exerdises written expl
Subjects
Decemb
March
June-T
of ger

Definition (Clarke pp.

Notation.
Theorems
Fundamen to the funda The followir methods :-
44. To fil through ag given angle 45. To fi through ag 46. 'To given point tion to this
47. To fir given point 48. To fin position of are given. problems 4 Applicati lems on stre figures. (

107

parallel to a orpendicular orpendicular
; through a
e figures in
liagonals.
θ.
owing prob-
ion, lying
at perpen.
n points. ersecting
a given
ine.
line, and
olane.
secting
line to
planes. nes. ation, on by
cound
line
40. To determine a plane containing a given point and tangent to two hills.
41. To determine the most commanding hill with reference to a given point.
42. 'L'o find the planes of defilade for a work.
(a) To be defiladed from one hill.
(b) To be defiladed from two hills.

Fair Notes.-On the whole of the above subjects.
Plates.-The following is a list of the plates:-

1. Problems, varions.
II. Contoured field work.
III. Problems relating to ground.

Exercises - Numerous problems to be drawn in pencil, a written explanation of process to be given.
Subjeots for Examination-
December-From beginning to problem 23 inclusive.
March-Problems 244 to 36 inclusive.
June-The whole course and revision of obligatory course of genmetrical drawing.

Voluntary.

Definitions of the terms required by two-plane method. (Clarke pp. 13, 16 and 21.)
Notation. (Clarke, p. 13 and notes.)
Theorems. (Clarke, theorems 1 to 26.)
Fundamental Problems.-Adaption of the two-plane method to the fundamental problems given in the obligatory course. The following additional problems will be adapted to both methods :-
44. To find the conditions that a straight line passing through a given point in a given straight line may make a given angle with this straight line.
45. To find the conditions that a straight line passing through a given point may make a given angle.
46. To tind the coudition that a plane passing through a given point in a given straight line may have a given inclination to this straight line.
47. To find the condition that a plane may pass through a given point and make given angle with a given plane.
48. To find the horizontal and vertical traces of a cone, the position of whose axis, and the angle at the vertex of which are given. (This problem is required for the solution of problems 44 to 48.)
Application of the above problems to the solution of problems on straight lines and planes, and to the projection of planefigures. (Clarke, chapters II and III.)

Fatr Not
Plates.-The following ister as is not given in text-book.
IV. Problems relating to straight the plates:-
V. Problems relating to plane rectilineal planes.
VI. Problems relating to plane rectilineal figures.

Exeroises.- Various problems curved figures.
Subjects for Exious problems worked out in pencil. examination, in June, comprising the whole of the course.

2ND OLASS.

DESCRIPTIVE GEOMETRY'

Voluntary.

Projection of Solids. (Clarke, chapter V.) Description of
the most usual solids. Projection of solids in simple positions. into the followinger be the data the problem resolves itself the plane of one face and the projections of a solid given face; solution of this problem position of an edge lying in that in any position. (Notes.) Prond hence: Projection of solids cones. (a) When the position of axion of right cylibders and the inclination of plane of base is axis is given. (b) When on right cylinders and cones, and given. Projection of helices screws. Contouring a solid. (Note.) projection of orainary

Section of solids by planes, (Note.)
Interpenetration of solids. (Clarke, chapter VI.)
Development of surfaces. (Clarke, chapter VII.)
Tangent planes to surfaces, slarke, chapter VII.)
and surfaces of revolution.
Projection of curved surfaces (clarke, chapter VIII.)
Determination of shadows, (angent to each other. (Note.)
To determine which faces. (Clarke, chapter IX.) are in shadow, and which in light. (Note) Isometric projection, (Clarke, (Note.).)
Perspective projection-Definition (Chapter XI.) the following terms: Object To show that the perspective project. Plane of projection. obtained from its orthographic projection of any point can be the perspective projection of any object in and hence to obtain its orthographic projections. Variation any position from special case where there are systems of of the method in the Vanishing point. Comparison of this of parallel straight lines, method. (Notes.)
e two-plane n text-book. anes. ures.
ncil.
ly be one course.

Fair Notes.- Of such matter as is not contained in textbook.

Plates.-The following is a list of the plates:-
VII. Interpenetration of solids.
VIII. Shadows.
IX. Isometric projection.
X. Perspective projection.

Exeroises.-Various problems solved either by the Indice .or the two-plane method.

Subjeots for Examination-
-December-Projection of solids.
March-Section of solids by planes. Interpenetration of solids. Development of surfaces.
June-The whole course of Descriptive Geometry.
sription of positions. ves itself olid given g in that of solids ders and When of helices orainary

Drawing

royal military college of canada.

SYLLABUS OF INSTRUOTION-FREEHAND DRAWING AND PAINTING.

ALLOTMENT OF MARKS.
For entire course $\left\{\begin{array}{lll}\text { Obligatory } 2,600 \\ \text { Voluntary } & 900\end{array}\right\} 3,500$
4th Class.
Obligatony- 300 Marks.
Drawing from copies and $\left\{\begin{array}{l}\text { Examinations. (Annual,) 100. }\end{array}\right.$ objects.

Term work, 200.
3rd Class.
Obligatory- 400 Marks.
Drawing from copies and $\{$ Examinations. (Annual, 150. objects.
$\{$ Term work, 250.
Voluntary-100 Mares.
Painting from copies, objects and nature......Term work, 100.

${ }^{\circ}$

2nd Class.
Obligatory- 800 Marke.
Drawing from copies,objects $\left\{\begin{array}{l}\text { Examinations. (Annual,) } 100 . \\ \text { Trins }\end{array}\right.$ and nature.
Painting from copies
Term work, 400.
Examination, 50.
$\{$ Term work, 250.
Voluntarx- 300 Maris.
Drawing from copies,objects $\}$ Term work, 200

Painting from copies,objects and nature.

1st Class.
Obligatory- $\mathbf{1 , 1 0 0}$ Marks.
Drawing from objects and \{ Examinations. (Annual,) 100. nature.
$\{$ Term work, 500.
$\left\{\begin{array}{l}\text { Examinations. (Annual, 100.) }\end{array}\right.$
Painting from copies
Term work, 400.
Voluntary-500 Marks.
Drawing from objects and nature. Term work, 200.
Painting from objects and nature
Term work, 300.

TEXT BOOKS USED.

Redgrave's Catechism on Colour. Warren's Artistic Anatomy of the Human Figure. do
do do
Horse.
Merrifield's Manual of Light and Shade, with reference to Model Drawing

Green's Sketching from Nature.

BOOKS RECOMMENDED TO BE READ.

Bonomi's Proportions of the Human Figure.
Ruskin's Modern Painters. Publishers, C. Robinson, LonMon, W.C.; Smith \& Elder, London, or. Wiley \& Sons, New

Ruskin's Stones of Venice. Publishers, C. Robinson, London, W.O.; Smith \& Elder, London, or Wiley \& Sons, New
York, U.S.
J. D. Harding's Principles and Practice of Art. Chapman
Hall, London. Fiold's Chromatography. Winsor \& Newton.

Prelimina Freehand and models. Freehand and orname Shading f Shading f Time ske Drawing outline.

Drawing
(Obligatc eral drawin (Volunta applied des (Volunta muscles wi (Obligat from the " (Obligat cast in mo (Volunt flowers or
(Obliga of the pr compositic coloring.

Paintin copies and
Time st

SUMMARY OF INSTRUCTION, FREEHAND DRAWING.

Gradi 1.-(Obliqatory).

Preliminary courses in linear perspective.
Freehand outline drawing from copies of ornament, objects and models.
Freehand outline drawing from the round models, objects and ornament.
Shading from flat examples or copies.
Shading from the round or solid forms.
Time sketching and sketching from memory.
Drawing the human figure and animal forms from copies in outline.
Drawing flowers, foliage and landsoape details from nature.

Grade 2.

(Obligatory). Practical application of perspective to general drawing-landscape, architecture, \&c.
(Voluntary). Stadies of historic styles of ornament and applied design.
(Voluntary). Drawing in a given time the bones and muscles within the outline of the antique figure.
(Obligatory). Drawing the human figure and animal forms from the "round."
(Obligatory). Painting from flat examples and from the cast in monochrome and colour.
(Voluntary). Painting direct from nature in wator colour, flowers or still life, landscapes and views of buildings.
(Obligatory). This grade to embrace a general knowledge of the principles and practice of art, i.e., light and shade compositions, science of color and principles of harmonious coloring.

Gradm 3.-(Voluntary).

Painting the human figure or animals in water-color from oopies and from nature.
Time studies from the living model.

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUOTION IN ENGLISH LANGUAGE AND LITERATURE.

- LLLOTMENT OF MARKS.

For Entire Course.

Third Class.

Second Class.
Voluntary, $\left\{\begin{array}{l}\text { Examination (Annual). } \\ \text { Term Wind }\end{array}\right.$
$\left.\begin{array}{l}300 \\ 400\end{array}\right\} 700$

First Class.
Voluntary, $\left\{\begin{array}{l}\text { Examination } \\ \text { Term Work }\end{array}\right.$
$\left.\begin{array}{l}300 \\ 400\end{array}\right\} 500$

BOOKS RECOMMENDED TO BE READ.

Earle's "Philology of the English Language."
Marsh's "Leetures on the English Language."
Max Muiler's "Science of Language."
Moetzner's "English Grammar."
Taine's "English Literature."
Bain's "English Rhetoric and Composition."

Practice i grammatical the Obligato criticisms of course of th

Section I

Section II

Section II

Sedtion
Seotion
Skotion I

SUMMARY OF INSTRUOTION IN ENGLISH LANGUAGE AND LITTERATURE.

Practice in writing letters, reports and essays, and also in grammatical and critical exercises, form an important par' it the Obligatory course of the 4 th and 3rd Classes. Lissays and criticisms of a higher order form a portion of the Voluntary course of the 2nd and 1st Classes.

4th Class.

(Obligatory.)

Section I.-On the philological relations of the English
Srotion II.- On the historical changes in the English language.
(1) From the inflected form in Anglo-Saxon.
(2) Through the influence of Romanic and other languages.
Section III.-On composition.
(1) Philosophy of style.
(2) Formation of sentences.
(3) Figures of speech.
(4) Different style of writing illustrated by readinge frum various authors, viz.:-Addison, Macaulay, Johnson, Alison, Sir James Stephens, Carlyle, Helps, Ruskin.
(5) Formation of a good style considered as narrative; Descriptive; Didactic.

3rd Class.
(Obligatory.)
Section I.-Poetry-different kinds:
(1) Epic; (2) Lyric; (3) Didactic.

Station II.-Different metres.
Srotion III.-Critical examinations of poetical works:Scott's "Lady of the Lake;" Tennyson's "Princess;" Byron's "Manfred;" Shakespeare's "Hamlet."

2nd and Ist Clasbes.

(Voluntary.)

Seotion' I.-Early English-Spencer's "Faerie
Book I; Chaucer's "Canterbury
Proen," Tales,"

Note.-Cadets of the
by the tre-Cadets of the 2nd and 1st
to continue in thes being deficient in knses who are at any time and 3rd Classes. No Classes the practice of the of English maybe reported in the higher Classes. the higher Classes. ROYAL

royal military college of canada.

SYLLABUS OF INSTRUCTION IN FRENCH.

ALLOTMENT OF MARKS.

For Entire Course (Obligatory)............3,000.

4th Class.
Marks (Obligatory).... $500\left\{\begin{array}{l}\text { Examinations } 200 \\ \text { Notes and Recitationi.. } 300\end{array}\right.$
3rd Class.
Marks (Obligatory).... . $600\left\{\begin{array}{l}\text { Examinationsi.............. } 250 \\ \text { Notes and Reeitations.. } 350\end{array}\right.$
2nd Class.
Marks (Obligatory) $\ldots . .800\left\{\begin{array}{l}\text { Examinations } 350 \\ \text { Notes and Recitations... } 450\end{array}\right.$
1st Class.
Marks (Obligatory)... 1,000 $\left\{\begin{array}{l}\text { Examinations............... } 500 \\ \text { Notes and Recitations... } 600\end{array}\right.$

TEXT BOOKS USED.

Contanseau's Frepch Diotionary.
do Grammar.
French Classics, Gustave Masson.
Horace, Corneille.
Cinna
do
Lee Ecrivains Militaires de la France, Kareher.
Fistoire de Gharles XII par Foltaire
Frederick the Great, by Lord Macaulay.
Le Page's "French Master for Beginners."
do "Petit lecteur des colleges."
do "Juvenile treasury of French conversation."

SUMMARY OF COURSE OF INSTRUCTION IN FRENCH

Grammar ; reading; dictation ; exercises for translation from French into Englisb, and English into French; vocabularies and conversational lessons; comparison of the most usual French and English idioms.
The exercises are graduated in difficulty, according to the ability of cadets.
Special importance is attached to the acquisition at an early stage of the knowledge and correct pronunciation of the sentences, most ordinarily employed in conversation.
A complete course of literature is also given for those who sufficiently understand the French language.

ROYAL

royal military college of canada.

SYLLABUS OF INSTRUCTION IN THE GERMAN LANGUAGE.

ALLOTMENT OF MARKS.

Total marks (Voluntary), ,.o.03,000

4th Class.
Marks (Voluntary).... $500\left\{\begin{array}{l}\text { Examinations } 375 \\ \text { Notes and Recitations... } 125\end{array}\right.$
3rd Class
Marks (Voluntary).... $600\left\{\begin{array}{l}\text { Examinations.............. } 450 \\ \text { Notes and Recitations... } 130\end{array}\right.$
2nd Class.
Marks (Voluntary).... $8000\left\{\begin{array}{l}\text { Examinations............... } 600 \\ \text { Notes and Recitations. . } 200\end{array}\right.$ 1st Class.

Marks (Voluntary)...1,160 $\left\{\begin{array}{l}\text { Examinations............... } 800 \\ \text { Notes and Recitations... } 300\end{array}\right.$

SUMMARY OF COURSE OF INSTRUCTION IN GERMAN

Grammar; reading; exercises for tranilating from German into English; German conversation ; the construction of German sentences; critical examination of the works read; loctures on the philological connection of the German language.
$(9)^{2}$

Obligator

Voluntar

Obligato
Voluntal

Note.
or for
Class, Class.

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUOTION IN PHYSICS.
aLLOTMENT OF MARKS.

For Entire Course.

For Second Class.
$\left.\begin{array}{l}\text { Obligatory. }\left\{\begin{array}{l}\text { Examinations............... } \\ \text { Recitation } \\ 100 \\ \text { Voluntary: }\{\text { Examinations............... }\end{array} 2^{200}\right.\end{array}\right\}$ Total

For First Class.

Note.-In order to qualify for any Certificate of Graduation or for "Pass" in Physics, a Cadet must study in the Second Class, the course of Elementary Inorganic Chemistry of that Class.

TEXT BOOK.

Ganot's Physics translated by Alkinson (ninth edition.)

Matter : its molecules. ment. The Energy : it Atomic an ard adhesion Universal at causes modif Hydrostatics-
General of pressure Hydrostatic Hydraulic p Principle Spec.fic gra Capillarit Endosmose, PneumaticsGeneral pressure.
kinds of bal
and tempor:
Measuren
meters.
Archime
pump, Biar
Babinet sto
tion and
Intermitte
Direction,
Mariotte's
Sound-
Sound al velocity, resonnanc Measurem
Syren. I
Musical semitones
each note
Wave

OLASS II.
EXPERIMENTAL PHYSICS.

(Obligatory.)

Matter : its constitution and physical conditions. Atoms and molecules. General properties of matter. Units of measuremont. The metric system.
Energy : its varieties, transmutation and conservation.
Atomic and molecular forcer. Chemical affinity, cohesion ard adbesion. Elasticity of traction, torsion and flexure. Universal attraction ; its laws. Terrestrial gravitation, and causes modifying its intensity.

Hydrostatics-

General character of liquids. Equality of pressures. Laws of pressure. Pressure independent of shape of vessel. Hydrostatic paradox. Condition of the equilibrium of liquids. Hydraulic press. Water and spirit level, Artesian wells. Principle of Archimedes. Equilibrium of floating bodies. Spec.fic gravity. Hydrometers.
Capillarity: its laws and explanation of capillary phenomena. Endosmose, diffusion.

Pneumatics-

General properties of gases. Atmosphere. Atmospheric pressure. Toricelli's and Pascal's experiments. Different kinds of barometers. Corrections of barometers for capillarity and temporature. Barometric variations.
Measurement of olastic force of gases. Boyle's law. Manometers. Aneroid larometer.
Archimedes principle applied to gases. Air balloons. Airpump, Bianchi's, Sprengel's, Bunsen's and Morren's-Gauge and Babinet stopeock. Uses of air pump. Condensing pump. Suction and force pumps. Fire engine. Fountain in vacuo. Intermittent fountains. Velocity of efflux. Quantity of efflux. Direction, form and beight of jet. Water wheels and turbines: Mariotte's botule.
Sound-
Sound and noise. Canse of sound. Propagation, intensity, velocity, rellection and refraction of sound. Euhoes and resonnances. Speaking and ear trumpet. Stethescope. Measurement of number of vibrations. Savart's apparatus. Syron. Limit of perceptible sounds.
Musical tones. Pitch, intensity and timbre. Diâtonic scale, semitones, chromatic scale. Number of vibrations producing each note. Musical notation.

Wave length. Production and perception of sound, Vibra-

-130

Hygrometic state of atmosphere. Hygrometers. Conductivity of solids, liquids, and Hyges. Aprs. Radiation of heat; its laws, and gaves, Applications. Reflecting, radiating and absorbing powers of substan cooling, Dynamical theory of heat powers of substances. tation of ohscure rays. Application a spectrum. Transmuing, emitting, and reflecting heat. Thermal unit. Specifing heat. Radiometer.
Steam engine. Double and. Dulong and Petit's law. motives. Low and high pressure angle acting engines. Loco. ongines.
Sources of heat: frition aetion. Solar and terrestrial peat presure, percussion, chemical Methods of heating. water. Cold produced by expani-places, stovos, steam, hot Dissipation of energy. Light.-Definition.
light. Shadows." Image Theories of light. Propagation of locity of light. Laws of intensity by small apertures. VeReflection; its laws of intensity. Photometer. rors. Virtual and real imation of images by plane mirlight. Concave and cenvex . Multiple images. Diffused Parabolic mirrors. Refraction; its laws and effects. Total reflection. Mirage. Prism and its effect on light.
Lenses; their effect on light, foci, and formation of images.
Relative magnitude of image and object. Laryngoscope. Solar spectrum. Recomposition of white light. Color. Mixed and complementary colors. Spectrum and pigment troscope and its application. Properties of spectrum. SpecMi Microscope, simple and compound.
Telescope, astronomical and terrestrial.
Camera obscura and lucida. Magic lantern, Solar microThe eye;-its parts apparatus.
visual angle. Estimation of of rays; inversion of images; distinct vision. Accommodation. Stance and size. Distance of impression on retina. Use of eye-glereoscope. Persistence of Magnetism.-Definitions, Teye-glasses. Opthalmoscope. induction. Coercive force. Cheories of magnetism. Magnetic Durective action of earth netic couple. Declination magnets. Terreatrial and mag. compass. Inclination. Astationd its variation. Mariner's magnetism. Laws of attractic needle. Intensity of earth's curves. Magnetio Methods of magnetising; single, separate and double touch
ion of strings stringed instr

Motion in Work; mes The Balanc Atwood's a bodies. Cor Sound-

Calculatio sound in var

Compoun analysis of

Verificati Nodes and

Vibration of represen flames.

Text Boo portions) a

Heat. of heat. manufacto Celsius an mometers Maximum Linear Practical tion pend Expan
sion. M Expan thermom Fusiol Solidific volume Vapo Ebulliti Latent $]$ refriger

Distil
ters. pplications w of cooling ubstances.
m. Transmu.
ies of absorb.
tit's law. gines. Loco. thair and gas
on, chemical
, steam, hot bsolute zero.
pagation of rtures. Ve.
plane mir. 3. Diffused and images.
n. Mirage.
of images. scope.
at. Color.
d pigment
m. Spec.

Heat.-Theories of emission and ares. Thermometers, their manufacture and graduation. Comparison of Fahrenheit, Celsius and Reaumur scales. Corrections on readings of thermometers. Alcohol, differential and metallic thermometers. Maximum and minimum thermometers. Pyrometers.

Linear and cabical expansion; coefficient of expansion. Practical application of principle of expansion. Compensation pendulum and balance.

Expansion of liquids. Force exerted by liquids in expansion. Maximum density of water.

Expansion of gases; its laws. Practical applications. Air thermometers. Density of gases. Latent heat of fusion Fusion ; influence of pressure retarding it. Change of Solidifiaation and circumstances mixtures. volume on solidifying. Evic force of vapors. Evaporation. Vaporisation. Elastic force of eifecting it. Papin's digester. Ebullition and circuition. Cold due to evaporation. Carré's Latent heat of ebullition. refrigerators.
frigerators.
Distillation. Liquefaction of gases. Spheroidal conditions,
touch
tion of strings. Nodes and loops. Wind, mouth, reed and stringed instruments. Chemical harmonicon. Phonograph.

Voluntary.

Motion in a circle. Centrifugal force.
Work; measure of work; unit of work.
The Balance. Conditions
bodies. Compound pendulum.
Soundsound in various gases. Doppler's principle.
Compouñ musical tones and harmonics. Helmholtz's analysis of Sounds. Beats. Musical chords. Nodes and loops of an organ pipe. Vibrations of rods, plates and Phonautograph. Manometric of representing vibration
flames Text Book.-Ganot's Physics; book
portions) and books 3rd, 4th and 5th.

Class I.

Obligatory.

lar micro-
images
stance of
istence of oscope.
Magnetic
nd mag.
Mariner's earth's Magnetic
and action of earth. Magnetism of iron ships. Magnetic bat. Statical Eleatrices influencing the power of maguets. age, heat. 'Conductors -Developed by friction, pressure, clear. electricity. Theories of electricity. Positive and negative Laws of electrical attraction and repulsion. Distribution of electricity: Loss of charge. Electroscopes. Limit to its action. Motion of electrified bodies, Electrophorus. Plateand cylinder mum of charge. Holtz's electrical mectric machines, Maxi. Chime and whorl. Condensers. Slow discharge and instantaneove ". spark. ing pane. Leyden Jar. Residual charge. Electric Fulminat. Electric electroscope. Electric discharge; its physiological, luminous, heating, Dynamical Elanical and chemical effects.
Electricity from chemict - Gaivani's and Volta's experiments, motive series. Electrodes. action. Voltaic couple. Electro. Enfeeblement of current. Voltaic pile. Wollaston's battery. Leclanchess batteries. Amalgamiell's, Grove's, Bunsen's and Detection and measurement of Voltion of plates. Dry piles. Tangent and sine galvanoment of Voltaic currents. Multiplier. Heating, luminous and chemi. Ohm's law. Electric light; its properties and intects of current. Electroplating. Electrolysis. Action of currents on currents, of magnets on currents ourrents on magnets. Ampères's theory mats on currents and netization by currents. Electromagnets. magnetism. MagTelegraphy. Single neetromagnets.
Electric alarum and clocks. needle, dial and Morse-Sounder. Induction by currents. Electromoter.
Electric current. Propertienz'slaw. Induction by magnets. Magneto-electrical merchin and laws of induced currents. coil, and effects produced by it; commutator. Rhumkorff's

Principles of diamagnetism and teissler's tubes. Telephone. Meteorology.-Winds; their direction, electricity. rotation.
Fogs and mists, clouds, rain, waterspouts.
Influence of aqueous vapour on climate.
Dew, hoar-frost, snow, sleet, hail, glaciers.
return shock, lightning conductors, rainty, lightning, thunder,
Climate and influences modifying it.
Heat,-Measurement of coefficient
of linear
expansion.

Measurement 0 and coefficient and thermome of gases and de Tonsion of mixtures of ga Recent reses Measuremen mission of hea of screen on t gases and ∇a molecular sta Measuremes and cooling. equivalent of Light.-Fiz Formulæ f Measureme gasees. Sphe

Formulæ escence and Galileo's, N Photo-electri Undulator refraction.

Interferen Polarization

Magnetisn of determir Total action magnetism

Frictiona capacity an Faraday' duction. Armstro Limit to force. Ch battery. absolute el effects of Duration Dynami of voltaic of differen of battery

Laws 0

133

Magnetic bat. maguets. ressure, clear. and negative

Distribution of
trified bodies,
hines, Maxi.
etric spark.
Fulminat.
ic battery.
us, heating,
xperiments.
Electro.
n's battery. ry piles.
Multiplier.
deasurement of absolute and apparent expansion of mercury, and coefficient of expansion of glass. Corrections of barometric and thermometric readings. Determination of the expansion of gases and density of vapours. Tension of aqueous vapour a
mixtures of gases and vapours.
Recont researches in liquefaction of gases.
Mecont researches in liquorat. Reflection of heat. Trans-
mission of heat rays. Influence of nature of heat and character of screen on transmission. Diffasion of heat. Relation of gases and vapours to radiant heat, and of absorption to molecular state. Measurement of specific heat ors. Calorimeters. Mechanical and cooling. Specific heat of gasen. Calorimeters. Mechanical equivalent of heat. Ligh.
Light.-
Measurement of index of refraction in solids, liquids and gasés. Spherical aberrations. Causticb.
Formulæ relating to lenses. Combination of lenses. Fluorescence and phosphorescence. Achromatism of microscope.
Galileo's, Newton's, Gregory's and Herschell's telesoopes. Photo-electric microscope. Lighthouse lenses. Stereoscopes.
Undulatory theory of light; its explanation of reflection and
refraction. Double refraction.
Interference of light. Diffraction. Newton's ringe.
Polarization, its effects. saccharometer.
Magnetism.-Deciws of magnetic attraction and repulsion. of determining low magnets on each other. Determination of magnetism in absolute measure. Portative force of magnets. Frictional Electricity.--Electric density. Potential and capacity and their measurement. Potential of a sphere. Faraday's experiments on induction and theory of induction. Specific inductive eapacity.
Armstrong's hydro-electrio and Carre's dielectric machines. Limit to charge of condensers and calculation of condensing force. Charging by cascade. Measurement of charge of a battery. Laws of electric charge. Thomson's quadrant and absolute electrometers. Potential of a Leyden jar. Heating effeots of electric discharge. Application in firing mines. Duration of electric spark. Volocity of electricity.

Dynamical Electricity.-Electromotive force. Recent forms of voltaic battery. Gravity batteries. Comparison of power of different batteries. Marine galvanometer. Arrangement of battery for maximum effect.
Laws of heating effects of current. Regulators for electric
light. Comparison between
tameter. Polarization. Gas tangent galvanometer and Laws of angular and sinas battery.
by currents and by magnets. currents.

Induction in telegraph Duplex telegraphy. Earth current Inductive action of Leales. Electromagnetic machines.
in motion, and of earth. Magneto-electrical m
Gramme's. Siemen's armines: Clarke's, Wild's, Ladd's and Microphone. Tasimeter. Diamagnetism.
Different forms
thermometer and pyrometer
Determination of elemeter.
Meteorograph. electric constants.
Text Book.
Ganot's Physies. Books 6th to 10th
aLLOTMENT OF MARKS.

	For Entire Course.	
 2,200	2,500
	\{ Examinations 300 \}	
Voluntary	Recitations	

For Second Class.
Voluntary. $\left\{\begin{array}{l}\text { Examinations....................... } \\ \text { Recitations............... } \\ \text { R }\end{array}\right\} \quad 500$
For First Class.

Note.-In order to qualify for any Cortificate of Graduation, or for "Pass" in Physics, a cadet masic Chemistry of the Classe. Class the course of elementary Inorganic Chemistry of

136

Gencral prin Solid, liquid Eloments an weights.
Chemical af mixture. Solv The non-me physical and c Compounds of motals.

Water.-It electric spark water, and th proportionHydrogen. chemical. D Hydrogen a Oxygen.phorus, sulp? differences ir acter of the Rôle of oxy Reciprocal nomenclatu volume of a Analysis
tures. Ox in natu'e. organic ma Chumical quescence, Ozone, its Nitrogen Eudiometr of compos mixture.

Carbon.
Diamond,
tinguishe
carbon.
varieties
lampblac

137

SUMMARY OF INSTRUCTION IN CHEMTSTRY.

CLASS II.
 Inorganio Chemistry-Voluntary.
 Gencral principles. Constitution of matter.

Solid, liquid and gaseous condition of matter.
Elements and their classification. Symbols and atomic weights.
Chemical affinity. Chemicsl combination and mechanical mixture. Solution.
The non-metallic elements: their occurrence in nature, physical and chemical propertios, and modes of preparation. Compounds of those elements with each other and with the motals.
Water--Ite decomposition by the galvanic battery, heat, electric spark and chemical action. Constituent elements of water, and their relative weight and volume. Laws of definite proportion-atomic theory of its properties, physical and Hydrogen.-Mllustration oretical unit of weight and volume. chemical.
Hydrogen a metal. Oxygen. - Its history/ source and properties. Carbon, phosphorus, sulphur, potassium, iron and zinc burnt in oxygen; differences in the emission of heat and light, and in the character of the products. Oxides, anhydrides, acids, bases and salts. Rôle of oxygen in nature; combustion, respiration, decay. Reciprocal character of combustion. Chemions. Relation of nomenclature. - se of formature and pressure. Analysis and Synthesis of Water.-Explosive gase of water tures. Oxyhydrogen blow-pipe. purity and hardness. Presence of in nature. Tests for its purity atrifying springs; stalactites. organic matter. Action on lead Hydrates, efflorescence, deliChumical relations of water. distlation. Peroxide of hydrogen. quescence, crystallization, droperties.
Uzone, its produe air, its constituents and methods of analysis;
Nitrogen -The
Nitrogen.-The Rôle of its several components. Uniformity of composition, how maintained. Proof that air a mechanical
mixture. Natural and artificial varieties. Allotropes. Carbon. - Natural polishing, valuation and uses ; how disDiamond, its cutting, polsbstances; proot that diamond is pure tinguished from other sabstance A morphous carbon, different carbon. Graphite, its uses. in the arts. Peculiar value of varieties and their applications in mperfect combastion of lampblack as a printing material. Imperion of

Guncotton.-Abel's process of manufacture. Effoct of tamp ing g Bloxam's Inorganic Chemistry, pages 1 to 146 ; 411 to 433 .
511 to 518 .
rood in meilers oloring matter pecial uses. P Carbonic Anh formentation, F ventilation. R Bromides. Fluorine.
bonic acid; θ liquefaction of carbonic anhyd Carbonic ()xi ous and other tion; composit Marsh gas. lamps.

Chemistry common salt History, occurrence in nature and extraction from of chlorine for hydrogen. Oxidical properties. Attraction ing properties, Applications ing, bleaching and disinfectchloric acid-Preparation and in industrial arts. Hydro. solution in water. Action of theroperties of the gas and its oxides. Chlorides. Analysise acid on metals and metallic Aqua regia. Hypochlorous anhydrid. Molecular weight. lime. Uses of hypochlorites. Chydride and acid. Chloride of Preparation and uses of chlorate of poric acid and chlorates. position. Chlorous acid and chlorites. Colored fire comPerchloric acid. Review of oxides of Chloric peroxide. with oxides of nitrogen. Chlorides of chlorine-Comparison Bromine. - Extraction from mide of nitrogen.
blance to chlorine. Oxidem mineral water and uses. Resem. Hydrobromic acid. and uses. Iodic and from sea-weed ashes. Characteristises Iodide of nitrogen. periodic acids. Hydriodic acid. Iodides.
Etching on glass-curcence in nature. Hydrofluoric acid. fluosilicic acid. (1) dull, (2) clear. Fluorides. Hydro. Review of Chlorine Group.-Group characteristios and dual differences. Group.-Group characteristics and indiviquantivalence of elements and radiclesties. Atomicity and radicles. Types. Sulphur Grudp.
Sulphur.-Its occurrence free and combined. Extraction and refining of sulphur. Commercial varieties. Extraction forms. Electronegative and electropositive sulphur, Allotropic explanation of allotropy and dimorphism. sulphur. Roceived tallization: (1), sublimation; (2), fusion; Methods of crys. of sulphur. Influence of heat on specific (3), solution. Uses c gravity of vapors,

Class I.

INORGANIC CHEMISTRY.

tion continued.

Chlorine Group.

of combustiou ture of flame; and smokeles and oxidation Coal Gas.gas works.

Silicon.-S phous. Dia glass and th ling of glas

Boron.-

General 0

Ammonia traction of Liquor am refrigerato Analysis 0 Molecular Molecular stances.
Nascent Nitric cations an Nitrates. Nitrous perties. Review of definit Gunpo Properti fired gu

Effoct of tamp eory of expl ; 411 to 433 :
s of prepara.
raction from Attraction ad disinfectHydro. gas and its nd metallic ar weight. Chloride of chlorates. d fire comperoxide. omparison
8. Resommic acid.
cteristises Iodides.
ric acid. Hydro.
d indivi. sity and
raction
otropic
sceived
erys.
Uses apors,
ood in meilers or retorts. Absorption of odors, gases and oloring matters by carbon of combustiou. Smoke nuisance. pecial uses, Products.-Evolved in respiration, combustion, Carbonic Anhydriaction, \&e. Effect on flame and life; fermentation, putreaco of animal and vegetable world to carrentiation. Peffervescent drinks. Babcock's extinguisher ;
bonic acid; liquefaction of carbonic anhydride; carbonates; analysis of carbonic anhydride and of organic substances. Carbonic ()xide. - Its formasion of heat by incomplete combusous and other characters. Ler by and weight of carbonic oxide. tion; composition by vorry of explosions in coal mines; safety Marsh gas. Chemistry
${ }^{\text {lamps. }}$ Chemistry of fuel; temperature of ignitiond the candle; strucof combustion. Chemistry of the lamp render flame luminous ture of flame; conditions necer. Blow-pipe flame. Reduction and smokeless; Bunsen Host blow-pipe.
and oxidation. Hot blaction and purification. Description of Coal Gas.- Subsidiary products in distillation of coal. gas works. Subsidiary pies in nature, crystallized and amor-

Silicon.-Silica: Varieties : methods of fusion. Varieties of phous. Dialysis. Silicates. Annerling, coloring and enamelglass and their Manufacture of glass atensils.
ling of glass. Manufactic acid.
General Cearacteristios of Carbon Group of Elements.
Ammonia.-Preparation of the gas and its properties. Extraction of salts from the ammoniacal liquor of gas-works. tracior ammoniae. Liquefaction of ammonia. Ammonia refrigerator. Ammonium theory. Salts of ammonium. Analysis of ammonia. Atomic weight Atomicity of elements. Molecular weights and volumes. of nitrogen in organic subMolecular types. Determination of and nitrates in nature. stances. Production of properties, industrial appliNitric Acid.-Its manufacture, propertio, ight of nitric acid. cations and laboratory uses. Combid. Nitric anhydride.
Nitrates. Tests for nitrio Oxide.-Thoir preparation and proNitrous Oxide and Nutride and nitrous acid. Nitrites. perties. Nitrous anhy Nitrogen.-Anhydrides and acids. Laws Review of definite, reciprocal and multiple proportions. manufacture. Gunpowder.- Preparation of ingred. Calculation of force of Properties and products of expowder.
fired gunpowder. Blasting pow

Hydrosulphuric acid, its preparation, properties and labon tory uses. Sulphides, their separation into groups. Action
of hydrosulphuric and salts. Action of air on sulphides, Sulphur acids, base sulphuric acid. Persulphide of phides. Analysis of hydro dride and acid. Bleaching, deaydrogen. Sulphurous anhy perties. Dibasic acids. Acid and norg and antiseptic pra Tests. Sulphuric anhydride and acid. normal salts. Sulphites, of manufacture. Theory of the andid. Old and new methods pedients in manufacture. Importance process. Economic ex. arts. Physical and chemical propertie of acid in industrial tion of steps in hydration of the anher. Tabalar representa. tests. Sulphates. Acid, normal anhyde. Impurities and acid seriention of composition of sulphuri double sulphates, of sulphur. Biructural formulæ of oxides and alid. Polythionio Sulpho-carbonisulphide of carbon, its pre hydrated oxides Selenium.-Ces. Chlorides and iodides of aration and uses. Tellurium. - Compounds with hydrogen and sulphar.
Review of sulppounds with hydrogen and oxygen. of properties. Relations to oxygen.

Phosphorus Group.

Phosphorus.-Distribution in nature. Preparation. Varieties, Manufacture of red variety. Physical, physiological and yellow varieties. Reducinghorus. Comparison of red and (1) lucifer, (2) silent, (3) safety. Uses. Friction matches, tion.
Oxides of phosphorn
Structural formulæ. Table of anhydrides and acids.
Phosphoric anhy phosphoric acid and salte and acid. Meta-, pyro-, and orthoalts. Uses and chemical tests for acids
Phosphorus anhydride and acid. Hypophosphorus acid. phosphorus. hydrogen. Chlorides, iodides and sulphides of Arsenic.-Oceuranes pickel. Propertios and in nature. Extraction from mis-

Review of P nembers of gro p properties. General Revi Ionobasic, dibs Wretals and their Double Salt operations.

Potassium.Nitre. Chlor Sodium.-C Canstic soda. of soda.
Ammonium. Lithium, R acteristics of

Barium, S Salts.-Lime Tests. Rela

Aluminium cates. Clay marine. O Tests.

Iron.-Or
Blast furna Grey, mott puddling.
Catalan pr
Mangan
Cobalt a
Chromiu
istics of g

Zinc.iren.

Cadmiu

Copper.
brase, br

141

ies and labons roups. Action ysis of hydrom phurous anhy. intiseptic pro 8. Sulphites, now methods Economic es. in industrial ar representa. purities and ${ }^{\ominus}$, sulphates, Polythionic rated oxides n and uses,
en.
gen. Gradation

Varieties. gical and red and matches, composind acids.
ad orthoor acids
is acid. hides of
m missenious uses.
st for
des of ny. Flake

Review of Phosphorus Group.-Chemical relationship of nembers of group to each other and to nitrogen. Gradation i properties. Gradual pasange from metalloids to metals. General Review of Metalloids.-A tomicity and quantivalence. Ionobasic, dibasic and tribasic acids. Structural formulw. Nretals and their classifcation, Alloys, Haloid Salts, Cxysalts and Double Salts. Theory of Types. Principal Metallurgical operations.

Metals of the Alikailibs.
Potassium.-Canstic potash. Carbonate and bicarbonate Nitre. Chlorate of potash. Manufactures of carbonate of soda. Sodium.-Common salt. Moluble glass. Sulphate and phosphate Canstic soda. Borax. Soluble glass. Sulphate and phosphate of soda.
Ammonium.-Its principal salts.
Lithium, Rubidium and Cesium.-Spoctrum analysis. Characteristics of alkali group.

Murals of Alkaline Earthe.
Barium, Strontium, Calcium and Magnesium and their chief Salts.-Limo. Gypsum. Mortars. Characteristics of group. Tests. Relation between specific heats and atomic weights.

Metals of the Earthe.
Aluminium.-Its preparation and uses. Chief salts. Silicates. Clay. Porcelain. Pottery. Cements. Alum. Ultramarine. Other metals of the earths. Characteristics of group. Tests.

> Iron Grout.

Iron.-Ores of iron. Cast iron, wrought iron and steel. Blast furnace. Chemistry of process of smelting. Hot blast. Grey, mottled and white iron. Chill casting. Refining and puddling. Bessemer process. Different varieties of steel. Catalan process of extracting iron. Oxides and salts of iron. Manganese.-Oxides and salts.
Cobalt and Nickel and their ehicf compounds. CharacterChromium and Uraniu
tics of group. Tests.

Zinc.-Methods of extraction from ores. Uses. Galvanized iren.
Cadmium and Indium.-Characteristics and tests.
Copper Groutr.
Copper.-Smelting of copper ores. Uses of metal. Alloys: brass, bronze, \&c.

Lead-Metallurgy of lead. Extraction of silver from ores. Type metal, shot, solder, \&c. Salts of lead. Manuf ture of white lead Thallium.-Discovery by spectroscope. Characteristics tests of group. Tin.-Extratiotin Group. cipal salts. in platealloys. Prin tests.

Propyl Con tones and th glycerine. Butyl Com Acids and ot Amyl and \&c. Mannit Fats and Sugar.-I rofining. B Noble Metals.
silver. Electroplating. Prom copper by liquation. Standard Mercury.-Extraction. Principal salts. Salts. de purification, Uses. Amalgams, assaying of gold. Gidtracting. Standard gold. Testing and Platinum. - Sources ing. Purple of Cassius
Plutinum black. Salts. preparation. Spongy platinum. Tridium, Palladium
Bloxames Inorganic Chereneral characteristics and tests. to 417 ; selected portions from : pages 146 to 256 , and 411

Organio Chemistry.

Analysis of Organic Compounds.-Determination of molecular wismht. Empirical and rational farmulæ. Substitution. Isomepounds. Classification of Organic Compounds basel upon atomicity cohols. Mercaptans. Anhydrides. Amines Lthers. Aldehydes. Ketones. Acids. Marsh Gas and Sues. Organo-metallic compounds. products and their generation Products. - Halogen substitution rubstitution products; general reactionsoroform. Hydroxyl Ether and aldehyde, Eeneral reactions of Alcohols. Mothyl products. Nitrogen derivatives ; Acid. Sulphur substitution und Nitro compounds. Urea. ; Amines, Amides, \&c.,Nitriles Hydrocyanic pounds. Urea. anides and similar comp Cyanides.-Ferrocyanides and Ferricy. Cyanuric Acid. Fulminates. Cyanogen, \&c. Cyanic Acid; Methyl with Phosphorus, Arsenion Polymerism. Compounds of Compound Ethers. Ethyl Compounds tives. Preparation - Ethylene and Acetylene and their dreiva. Aldehyde. Chloral. Acepertios of Ethyl Alcohol, Ether, Anhydride. Oxalic Acid, Glycols. Mcid and its Salts. Acetic Glycols. Mercaptan.
f silver from le lead. Manufe aracteristics an te alloys. Prin.
acteristics and
tion. Standard
Amalgams.
Testing and
gy platinum.
${ }^{c s}$ and tests.
256, and 411
of molecular
tion. Isome
rated com-
atomicity. bons. Alles. Acids. ds. abstitution Hydroxyl Mothyl Mal Co,Nitriles
d Ferricy nic Acid; ounds of e metals.
rdreiva.
Ether, Acetic

Propyl Compounds.--Propylene. Allylene. Acetone. Ketones and their properties. Lactic Acid. Glycerine. Nitroglycerine. Dynamite. Isomeric compounds.
Butyl Compounds.-Butyric, Succinié, Malic and Tartaric Acids and other derivatives. Amyl and Hexyl Compounds.-Valerianic and Citric Acid, 8c. Mannite. Faugar.-Its varieties. Extraction of Cane Sügar. Sugar refining. Beetroot Sugar. Production of Sugar from cotton, paper, \&c.
Starch.-From potato, wheat, rice, ango, tapioca, \&o. Dextrine. Cellalose. Gun-cotton, its preparation and propertios. Collodion. - Alcoholic, lactic, butyric, mucous and acetous-Fermentation-A Acohor formentation and circumstances inConditions necessary of heat, acids, alkalies, \&c. Wines and fluencing it. Action Germation of Seeds. Malting and brewing (Ter sumationy Aromatic Series of Organic Compounds.- Aneory of Toluol, constitution.
X
Benzole
Cumol,
and
Cymol Xy\#f, Cumol, Cymol. Resins, Alkaloids, Coffee, Tea, Cocoa, Tobacco.
Coloring Matters.-Their general properties and prepara
tion. Dyeing and Calico printing. Coal-tar dyes, Produots
of the destructive distillation of wood and coal. Vegetable Chenistry.-of vegetable. Growth chemistry of milk, blood and flesh. Animal Chemistry.-Cnts. Putrefaction and disinfectants. Excrementitious product
Text Book.-Selected portions from Bloxam's Organic Ohemistry, pages 439 to 646. Notes from Lectures.

Qualitative analysis of sabstances containing a single metal and a single inorganic or organic acid.

Use of the blowpipe.
Flame reactions. Qualitative analysis of a few mixtures.
nalysis of substances insoluble in water and acids.
Analysis of sloxt book.-Blozam Laboratory Teaching.
Blozam's Laboratory Teachag.
Printed table of course of analyses of mixtures.

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUOTION IN GEOLOGY AND MINERALOGY.

ALLOTMENT OF MARKS.

1st Class.
Voluntary,
1,000. $\left\{\begin{array}{l}\text { For Eizaminations, } \\ \text { For Term. }\end{array}, \begin{array}{l}\text { Yearly, } \\ \text { Intermediate. } \\ \text { Notes and } \\ \text { Recitations. }\end{array}\right\} \begin{aligned} & 800 \\ & 200\end{aligned}$

System in and north-eas System in

TEXT BOOKS.

Dana's Manual of Geology, third edition; pages 1 to 114 and selected portions from pages 605 to 831. pages 1 to 114 Outlines of Historical Geology.

Dana's Manual of Mineralogy : -
currents ; co
Atmosphes currents of fortility.
Lithologic composing Silica and micas, horn bonates, S origin: Co Kinds of tion of rocl used in des Fragme Limesto marble, \& Metam syenite, 8 Erupti Exami varieties Conditi Stratif arranger strata, d Unstr Short Histo
contem
Geogra

147

SUMMARY OF INSTRUCTION IN GEOLOGY AND

MINERALOGY.

Relations of Geology.-Relations of Earth to the Universe.-
Object of Geology.-Sub-divisions of Subject.
Physiographic Geology.-Earth's general contour. Form of arth and probable causes. Sub divisions of its surface and character of its reliefs. Mountains, river systems, 'Continents System in the surface form of coratively low interiors and bounded by high boring deepest oceans. North-western highest borders facing der Earth's Feature Lines; North-western and north-eastern trends.
System in Oceanic Movements and Temperatures; Oceanic ourrents; courses, causes and effects. Atmospheric Currents ocean, on distribution of sterility and currents of air anegions, prairies, deserts, \&c.
fertility. Forest regions, pranstitution of rocks. Eloments Lithological Geology. minerals consituting rocks.
composing mineralsand Quartz and its varieties, feldspars,
Silica and Silicates: Quartz arpentine, \&c. Mineral Car-
micas, hornblende, pyr and Phosphates. Materials of organic
bonates, Sulphat coal, phosphates, \&c.
origin : Corals, coal, phosphaies to be observed in the determina-
Kinds of Rocks: Prop hardness ; specific gravity, \&c. Terms
tion of rocks; used in describing rocks. merate, sandstone, shale, \&cc.
Fragmental rocks: Conglomerate, dolomite, chalk, marl,
Limestones: massive limeston,
marble, \&c.
te, dioryte, doleryte, \&c.
syenite, \&cC.
Eruptive
Rocks: Trachyte, dioryte,
Examination of specimens of principa
varieties of rocks. and Arrangement of Rock Masses-
Condition, Structure and Rocks: nature of stratification. Structure and Stratified Rocks: nature or portions and dislocations of arrangement of strata. Nop, taults, \&cc. Fossils.
strata, dip, strike, outcrop, taps, dikes, \&cc.
Unstratified Ros system of Animal and Vegetable Life- and contemporaneous events in geological histo
Geographical progress. Progress of life. Life.- Its protective, transporting and destructive effect Coral islands and reefock formations. Peat and coal deposits Molecular Forces
Capillary attraction: Cohesion, crystallization, texture of rocks crusts, \&c. - effects on soils and rocks, efflorescent Atmosphere.-Its rending and abrading effects. Transporta tion of inorganic matter and living species. Transporta. Water.-Fresh water rivers and lakes; their mechanical sand, \&c., and distribution and rocks; transportation of gravel, effects of subterranean of material transported. Mechanical Oceanic Waters: their waters. Land slides. the general system of current manical effects arising from (1) effects in waves and currents, (4) wind waves and currents, in the formationg, transporting and distribuake waves; their Freezing Water deposits. porting agent. I its disintegrating effects. cause, manner Icebergs. Glaciers: thicts. Ice as a trans.

Chemical effect movement and eroding in nature, formation, properties, (2) the of Water: in consequence of (1) effects. into solution. , (3) substances taken (1) sun, (2) earth's inting its distribution. Sources of heat: action. Effects of heat in dil, (3) chemical and mechanical amorphosis of rocks. Volcanoes.-Their
varieties of volcanic cones, and geographical distribution, Heat of lavas and cones, non-volcanic igneons eribution, waters, geysers. condition. of volcanic seous eruptions. Metamorphism. - Definition. Thermal
action of heat and water, \&c. the term; phenomenon due to materials, crystallization, loss ifects of metamorphism, as metamorphism. Origin of heat causing vaporizable of soiuble Mineral veins, lodes and metamorphism-Local structure; origin and filling local ore deposits.-Positions, forms, Effects of the cooling of of fissures. level. Formation of mount earth on its crust.-Changes of of action of mountain making, origin of mountains. Results making. Flexures, fracturing force. Epochs of mountain borderstion of the Earth's fundamental. Earthquakes. developments. system of trends, how features.-Continental developments. of trends, how developed. Climatal

149

Summary of Instritction in Mineraloat.
development structive effectu ad coal deposity
exture of rock ks, efflorescent

Transporta. ir mechanical on of gravel, Mechanical
ing from (1) and currents, Waves ; their material and
e as a trang. , formation, effects. its solvent ances taken
es of heat: nechanical a and met-
tribation, oruptions. Thermal
on due to hism, as soinble -Local
forms,
ages of Results untain
nental
imatal

General characteristics of Mineralls. Crystallization. Systems of Crystal of Angles. Orystalline age. Dimorphism. Measurement of Angles. Crystaline Agregates. Physical and Chemical properties of Minerals. Action of acids, blowpipe, \&c.
Classification of Minerals. Description of Minerals in detail.
Ores. Chemical composition of Minerals.
Methods of determination of Min Lithology Text Boaks.-Dana's Manual of Minerag and (third edition).

This Cou Class and is C of two years the whole be

For Entire
5,60

Sectio
ub-Secti
M:
Sub-Sect
M

Sub-Sec

royal military college of canada.

 SYLLABUS OF INSTRUCTION IN CIVIL yThis Course is Voluntary-It is taken up in the Second Class and is continued in the First, and extends over a period of two years. No marks aro allowed for the Second the whole being assigned to the First Class.

ALLOTMENT OF MARKS.

Section I-Nature, Production and Use of Materials of Construction.

> Marks............. 1,900.

Sub-Section A-Materials, descriptive and processes. 400 Marks Examinations

Sub-Section B-Strength of Materials.

Marks. 200

Sub-Section C-Stresses on Framed Structures.
Marks.
\{ Examinations

Section II-Design and Execution of Structures. Marks. $1,900$.

152

Sub-Section A-Field and Office Work relating to Survers and Construction of Railways and Highways, in. cluding Locations, Drafting Culverts, Piers, Marks. \qquad $\left\{\begin{array}{l}\text { Examinations } \\ \text { Notes }\end{array}\right.$ \qquad600
\{ Notes and Recitations 400
Sub-Section B-Construction routine, Mason Work, Founda tions, Line Excavations and Permanent Way Common Roads. Marks.

Examinations
Section III-Estimating and Supervision. Marks. \qquad TEXT B
Sub-Section 400.

Principally Lec
Rankine's
Section IV-Hydraulic Engineering.
Marks............1,100.
Sub-Section A-Storage, Evaporations, flow through orifices and through pipes under pressure. Marks. \qquad Examinations
Sub-Section B-Practical Construction of Water Works. Marks \qquad $\left\{\begin{array}{l}\text { Examinations......... } \\ \text { Drawings and Notes. }\end{array}\right.$

$$
\begin{aligned}
& \text { Section V-Mechanism and Prime Movers. } \\
& \text { Marks........... } 300
\end{aligned}
$$

Sub-Section A-Steam Engines and Water Engines. Marks. \qquad Examinations \qquad
Nore.-If a Cadet takes both

TEXT BOOKS.

TEXT BOOKS IN CIVIL ENGINEERING.

Principally Lectures.
Rankine's Civil Engineering.
Henck on Railway Curver.
Trautwine's Pocket Book.
Fanning's "Treatise on Water Supply."
BOOKS RECOMMENDED TO BE READ.

Tate's Mechanical Philosophy.
Twisden's Mechanics.
Pock's Mechanics.
Vose on Railway Construction.
Stevenson's "Canals and Harbors."

Exercises in Resistance of Exercises on Cross section Modulus of r Allowance fo Limiting len Distribution Deflection 0 Proportion Summary o Suddenly a] Expansion Beam fixed Beam fixed

This cours of beams and P labus.

Resistance formula.

Practical loads when act Formula beam to resist

Formula beam to resist

Condition system of forc

Conditior system of for

Rankine' ing on one sic

Expansi tions.

Dead los
Effectiv
Section
Infinity
Positive
Kinds 0 section.

Stresse
Stresse
Stresse

Exercises in ditto.
Resistance of beams to cross breaking.
Exercises on moments of resistance.
Cross section of equal strength.
Modulus of rupture of cast iron beams.
Allowance for weight of beam.
Limiting length of beam.
Distribution of shearing stress in beama.
Deflection of beams.
Proportion of the grentest depth of a beam to the span.
Summary of the process of designing a beam.
Suddenly applied load; swiftly moving load.
Expansion and contraction of beams.
Beam fixed at both ends.
Beam fixed at one end.
Subsiotion (C)-Determination of Stresses on Framed Struotures.-(Bridges and Roofs.)
This course is begun by considering the internal strength of beams and pillars as referred to in the part B of the syllabus.

Resistance of a beam to crushing or buckling, Gordon's formula.

Practical problems for designing beams to support given loads when acting as pillars.

Formula for the sum of the moments of the fibres of a beam to resist cross-bending.

Formula for the sum of the moments of the fibres of a beam to resist croes-bending with a given factor of safety.

Conditions of equilibrium of any rigid body acted on by a system of forces in space.

Conditions of equilibrium of any rigid body acted on by a system of forces, for a frame.

Rankine's theorem of the equilibrium of all the forces acting on one side of a section.

Expansion of this theorem so as to form a method of sections.

Dead loads, live load, special loads, apex loads.
Effective reactions at the atutments.
Section to cut three bars.
Infinity to right or left for centre of moments.
Positive and negative rotations.
Kinds of stress-Red, towards the soction; blue, from the section.

Stresses on the chords.
Stresses on the verticals.
Stresses on the diagonals.

Braces-Counter braces. Definition of the Howe truss
Separation into systems.
Determination in detail of the stresses on every membe of the Howe truss

Designing of a Howe truss.
Testing of a Howe truss. erolling load to produce maximum stress on
Position of the rolling load to produce maximum stress on the counters.

Position of the rolling load to produce maximum stress on the chords.

Definition, designing, testing and calculation of the Pratt truss in iron (the Whipple.)

The Phœenixville truss and the Keystone truss.
Calculation into systems. truss

Definition truss and its defects.
Warren girder. designing and calculating and testing of the
The Fink truss,
The Bollman truss.
Practical specification for bridges of wood and iron
The tobular girirder type forms of bridge trusses,
Other forms of bridge trusses.
Snow and wind pressure on
tions of the Tay bridge. Stresses on cranes.

SECTION II.
 Design and erection of structnres.

Subsection (A)-Principles of Enainerring, Field and
Office Work as appled to Suryeys and a, Field and tion of Railways and Common Roads. Engineering Exploration Organization of staff. Methods penetraff. Aneroid ponetrating country. Traverses of Trial lines with and rivers. Topography, watempass and transit. Governing points, overning points, ruling gradients and curves.

Approxim: Projected 1 Profile and Grade con Approxim Actual lo Limit of a Reduction ments of a loc Balancing Borrowin Engineer Plans, pr sections.

General
Special stances.

Estimate
Monthly
The fore
by the cadet surveys, as is performed
Sub-beotion
Carpon halved, \&c., Built
Brick
Mason
This
cations for Governmer by excursi tures on th

Const
ments, an
Desig abutment: retaining

Diffe
abutment
Meth
Meth
on slopin

1. Exper
ally.

157

Approximate estimates off the trial line.
Projected locations-from the trial line.
Profile and alignment, cross sections.
Grade contours, compiled profile.
Approximate quantities.
Actual locations-Tangents, curves, gradients.
Limit of accuracy desirable.
Reduction of quantities of work by successive improve-
imum stress on ments of a location.

Balancing the excav.
Borrowing, wasting.
mum stress or mum stress on of the Pratt

Phœnixvill $_{\theta}$
ting of the
iron.

Calcula.

ELD AND STRUC.

Engineering office work.
Plans, profiles, cross-sections, estimate of quantifes off the sections.

General drawings for structures.
Special drawing for each structure to suit local circum stances.

Estimate of gross cost.
Monthly measurements, railway engineering is performed
The foregoing course of their running trial and location by the cadets in the field, by their service, and the office work is performed in the same manner.
Sub-settion (B)-Construation and Design in Wood, Stone,
Carpentry-Framing of wood-work, mortised, scarfed, halved, \&c., joints.

Built up beams.
Brick work-bond, string courses, chimneys mensuration. Mason-work.
This comprises a full course of instruction on the specifications for the various classes of mason work used on the Government Railway Works of Canada, and is supplemented by excursions to inspect and explain existing railway structures on the Intercolonial or other railways.

Construction of the mason work of bridge piers and abutments, and culverts and cattle-guards.

Designing the dimensions at base and top of piers and abutments, and the length of abutments and thickness of retaining walls.

Difference between " wing wall" abutments and "tower" abutments.

Methods of finding lengths of inclined or skew culverts Methode of finding level ground by the following methods:on sloping or on level gy analytical geometry. 3. Graphic1. Experimentally. 2. By analytical geomotry. ally.

Principles of economizing mason work in culverts, by reducing their lengths, by use of wing walls and coping, \&c.

Principles of economizing masonry in abutments by using cells and wells.

Foundations of structures.
General explanations of the
in forming foundations.
Principles governi
permanence of foundations, set. piles, foundations under ws, piling, platiorms, concrete, sand

Coffer dam,
Designing and
embankments, tunnels, suting earth and rock excavations and
Crib-work, rip-rap strea, ditches, drainage, fencing, snow.
Railway perman
gauges, sidings, switches, way, ballast, ties, rails, track laying,
Common reads on stations.
section, line excavation, drainays, surveys, gradients, crossfor metalling, traction. drainage, road-bed, suitable materials

SECTION III.
Estimating, setting out and supervision of Works, Sub-section (A)-Construction and use of Tables of

$$
\begin{aligned}
& \text { EXCAVATIoN and Embanikment on } \\
& \text { on necossant }
\end{aligned}
$$

Information necessary before estimate of quantities can be made for earth and rock excavation on a line of railway or Calculation of cubic contents of line cuttings and ombankCalculation of
Cof mean heights and tables. formula and tables. do do by the method of prismoidal Calculation of do do by the method of mean areas. Comparison of the advantages and disadvantages of areas. methods as regards accuracy in theory, and accuracy in prace. Construction of tables, Me computor.

> do

Methods used on the Canadian Pacific Railway.
Pacific Railway, and the Quebec Govilway, the Canadian final estimates for contractors. Government Railways for

Setting out of Exoavation and Culvenfas.

Measurement of line excavations, and borrow pits by level, rod and tape in the field, and degree of accuracy required lets, \&c., \&c.

Setting ou field.

Setting ou field.

Four met syllabus.

Limit of
Paving stream.

Gauging
Discharg
Precauti
Frost lev tions, \&c., \&c

Methods length by m Estima
In abut Tabular

General Fc
Allowa
bankment Details
do
Variou Schedu Lump Compa

Subsectio
FL
Introductic
logical Of

Quan Stati
Anci
Incr

159

culverts, by coping, \&e. ents by using
ls met with
dations, set. crete, sand
rations and cing, snow. ck laying,
nts, crossmaterials

LES OF
ities can ilway or
ombank-
ismoidal
areas.
f these n prac.
nadian ys for

Setting out position and lengths of level culverts in the field. Setting out position and lengths of inclined culverts in the field. Four methods as shown in the preceding part of this syllabus. Limit of the safe inclination of a culvert.

Paving to be a few inches below the original level of stream.

Gauging freshet areas, ice marks of floods.
Discharge capacities of various types of culverts.
Precautions with the foundations.
Frost level, springs, scour, wing wall, artificial foundations, \&c., \&c.

Methods of economising masonry in culverts by reducing length by means of wing walls, coping, \&c., \&c.

Estimating Quantities of Masonky and Paving.
In abuiments, piers and culverts off the drawings.
Tabular form for culvert quantities.
General Form for Estimates of Quantitibs from a Railway Profile.
Allowance for shrinkage, balancing, excavation and embankment waste, borrowing.

Details of items.
do prices.
Various methods of letting contracts.
Schedule of prices for limit of work.
Lump sum.
Comparison and history of these methods.

SECTION IV.

Hydraulic Engineering.

Subseotion (A)-Watrr Supply; Storagr Evaporations; Flow throdgh Orifiors and through Pipes
under Pressure.
Introduction:-Necessity of Public Water Supplies ; Physiological Office of Water; Sanitary Office of Water Supply.

Congumption.

Quantity of water required.
Statistics of consumption.
Ancient cities; European cities; American cities. Increasing consumption.
Relations of supply per capita to total population.

Monthly and hourly variations in the draught. Ratio of monthly consumption. Reserve for fire purposes.

Rainfall.
The liquid and gaseous successions. General rainfall statistics. Climatic effects-sections
American western rain systemaximum rainfall. American central rain system. American eastern Influence of elern coast rain system. River basin rains. Grouped rainfall statistics. Monthly fluctuations of rainfall,
Secular do do
Local physical influences.
Uniform effects of natural laws.
Great rainfalls.
Maximum ratios of floods to rainfalls. Golume of water from given rainfalls.
Gauging rainfalls.

Fuow of Stream.
Flood volumes inversely as the areas of basins.
Formulas for flood volumes,
Tables of do Seasons of floods.
Influence of absor
Flow in seasons oftion and evaporation upon flow.
Summaries of monthinimum rainfall.
Minimum mean and fy flow statistics.
Ratios of month and flood flow of streams.
Mean annual floy flow of streams.
Tables of flow,
Storage and Etaporation.
Artificial storage.
Losses incident to storage.
Sub-strata of storage basin.
Percolation from storage basin.
Evaporation loss from a reservoir.
Evaporation from water.
do sand.
do earth.
evaporation.
Ratios of evaporation.
Resultant effect of rain and evaporation,

Practica

Estimat
Estimat
Additio
Utilizat
Qualific
Influen
Artific

Subter
Porosi
Causes
Subter
Overfl
Ameri
Suppl

Comp
Soluti
Mine
Orga
Table
Deep
Vege
Vege
Prop
Puri
Intir of water.

Agr
impuriti
Loc
Spr
Lal
Pre
Riv
Spc
Ar
Su_{\S}
Flow
W

Practical effect upon storage.
Supplying oapacity of Water Shed.
Estimate of available annual flow of streams.
Estimate of monthly available storage required.
Additional storage required.
Utilization of flood flows.
Qualifications of deduced ratios.
Influence of storage upon continuous supply.
Artificial gathering areas.

Springs and Wells.

Subterranean waters.
Porosity of earths and rocks.
Causes of percolations.
Subterranean reservoirs.
Overflowing wells.
American artesian wells.
Supplying capacity of wells and springs.
Impurities of Water.
Composition of water.
Solutions in water.
Mineral impurities.
Organic impurities.
Tables of analysis of potable waters.
Deep well and surface impurities.
Vegetal organic impuritios.
Vegetal organisms in water pipes.
Propagation of aquatic organisms.
Purifjing office of aquatic life.
Intimate relation between grade of organisms and quality of water.

Agricultural; mineral; manufacturing and sewage impurities.

Well, Spring, Lake and River Supplies.
Locations for we.ls; fouling of old wells.
Spring waters ; impregnations; mineral springs.
Lake waters; impounding; plant growth.
Preservation of purity; natural clarification.
River waters ; pollutions; sanitary discussions.
Spontaneous clarification.
Artificial do
Sugar test of the quality of water.
Flow of Water through Sluioes, Pipes and Channels.
Weight, pressure and motion of water,

Atomic Theory-Molecular Theory.
Influence of Caloric-Relative densities and volumes
Crystalline form and its constituents.
ms of water.
Weight of pond water different temperatures.
Compressibility and elasticity.
Weights of single molecules,
Pressure of water.
Pressure proportional to depth.
Individual molecular reaction.
water.
Pressure on unit of surface.
Equivalent forces; weight
Line a measure of weight. lin measure of pressure.
on a surface.
asure of pressure upsented.
pressures graphically repre. of the angle.
oded by sine and cosine
Pressure upon aximum effect.
ted plane.
Centre of pressuro upon a circular area.
Sustaining pressures upon submarged and
Upward pressure from a submerged lintel floating bodies.
Syphon-Inverted syphon.
Flow of wans of pressure to a distance.
Individual molecules.
Accoleration of motion.
Equations of motion,
Parabolic path of the jet.
Colocity of efflux proportional to the head.
Maximu
Factors
Experir
Co-effic
Effects orifice.

Co-effic
Variab
Jets of
Flow
Adjuts
Diver
Exper
Range
Flov
Defin
'Theor
Mean
Sub-d ріря ; ${ }^{\prime}$ resistance

Resis
and as (a the circu

Vari
Effer
Equ
Equ
Equ
Equ
Equ
Rel
of the force of gravity from
Resultant effects of of a jet.

Resistance of the air-Theorotical velocities.
Flow of Water through Orifioes.
Theoretical volume of effux.
Converging path of particles.
Classes of orifices.
Form of submerged orifice jet.
Volume of efflux section of jet.
Volume of efflux \rightarrow Co-efficient of efflux,

163

Maximum velocity of the jet.
Factors of the co-efficient of efllux.
Experimental co-efficients, from Michellotti, Bossuot, Rennie, Castel, Lospinesse, Ellis.

Co-efficients diagramed.
Effects of varying the head or the proportions of the orifice.

Co-efficients of volocity and of contraction.
Variable value of velocity and contraction.
Jets of various cross-sections.
Flow of water through short tubes.
Adjutage - Vacuum of adjutage, and its effects.
Divergent tube-Inward projecting adjutage.
Experiments with cylindrical and compound tubes.
Range of Eytelwein's Tables.
Flow of Water terough Pipes under Pressure.
Definitions of pipe and conduit.
Theoretical volume of discharge:
Mean efflux from pipes.
Sub-division of the head H into h , to generate velocity in pipe; h^{\prime} to overcome resistance to entry; $h^{\prime \prime}$, to overcome resistance of pipe wall.

Resistance of the pipe wall varies directly as the length, and as (approximately) the velocity, and as (approximately) the circumference divided by a function of the area.

Variable values of co-efficient m, and its peculiarities.
Effects of tubercules.
Equation of velocity neutralized by resistance to flow.
Equation of resistance head.
Equation of total head.
Equation of diameter.
Equation of volume.
Relative value of subdivision of total head.
Classified equations for the above.
Mean co-efficients for smooth, rough, and foul pipes.
Bends.
Branches.
How to economize head.
Sub-Seotion (B)-Praotical Construotion of Water-Works,
Reservoir, Embankments and Ceambers.
Ultimate economy of skilful construction; embankmenl foundations; springs under foundations; surface soils; concrete cut-off walls; treacherous strata; embankment core materials; reconnoissance for site; frost covering; slope paving puddle wall; distribution reservoirs; masonry-faced
embankment; embankment sluices and pipes; gate cham-
bers; sluice valve areas; gate chamber foundations. gate cham-
Retaining Walls-Equations of stability ; materials ; dimensions and cross-sections of retaining-walls actually con-
structed.

Masonry conduits.
Mains and distribution pipes.
Distribution Systems-Hydrants; fire supply.
SEOTION V .

Mechanism and Prime Movers.

Sub-segtion A.-Steam Engines and Water Engines.

Laboring Forces - Vital, water, steam, wind.
Friction-Laws, co-efficients, tables.
Water-Measure, equality of moments, modulus.
Steam-Boilers, Whiels, pumps, ram.
Steam-Engines, tue, tubular Cornish.
ing, rotative, rotary, componsing, non-condensing, direct act-
motive engine, the compound engin marine engine, the loco-
Heat-Combustion, radiationine.
ing surface.

Expansion of Steam and Aution of thi Valves.

(a) Application of the calculus to find analyticall
mean pressure of the steam during expansion analytically the
Formula for work performed expansion.
Work of steam having a mearing expansion.
Work of steam considered in pressure.
in relation to the quantity of
Tables of volume of steam derived from one cubic foet of water when evaporated under different pressures.

Modes of Estimating the Pown of Engines and Bollers.
Horse-power.
Duty of engines and boilers.
The indicator.
Dynamometer and gauges.
Proportions of boilers.
Evaporation powers of boilers.
The blast in locomotion.
Steam room and priming.
Strength of boilers.
Stoiler explosions.
Air pump-Fly-wheel. Strength of Strength of

Cor

Pumping e Various for Cylinders,
Air pumpPumps, co Details of Details of The locom

Loss of
(b) Inves
(c) Inves by friction on

Practical
friction of tur
(d) Inve by the frictio

Calculati pully.
(e) Inve in compressi

Applical work absorb engines of th

Applica work done d

Applica work done d

165

ate cham-
rials ; dially con.

Air pump-Condenser and hot and cold water pumps. Fly-wheel.
Strength of land engines.
Strength of marine engines.

Construotion Details of Engines.

Pumping engines.

Various forms of marine engines.
Cylinders, pistons and valves.
Air pump-Condenser.
Pumps, cocks and pipes.
Details of the screw and screw shaft.
Details of the paddles and paddie shaft.
The locomotive engine.
Loss of Work due to Friction of Machines.
(b) Investigation to find analytically the work absorbed by friction of an axle in a journal.

Practical problems on the friction of an axle.
(c) Investigation to find analytically the work absorbed by friction on a flat pivot.

Practical problems relating to the work absorbed by the friction of turbine wheels on their pivots.
(d) Investigation to find analytically the work absorbed by the friction between a belt and a pully.
Calculations to find work absorbed by friction of belt on a
(e) Investigation to find analytically the work absorbed in compressing an elastic gas, steam or air.

Application of the investigation (e) to the calculation of work absorbed (and given out again) by the ar compressing engines of the Mont Cenis tunnel.
application of investigation (e) to the calculation of the work done during expansion of a high pressure engine.

Application of investigation (e) to the calculation of the work done during expansion of a condensing engine.

ROYAL M

sYLLABUS

1
This Course Class and is cor of two years. whole being as

For Entire Col 3,200

Section I-

Sub-Section A
Sub-Section
Mar
Sub-Section
Ma

Sub-Section

Sect

Su.b-Section
do
do
Mar

royal military college of canada.

SYLLABUS OF INSTRUCTION IN ARCHITECTURE.

This Course is Voluntary-It is taken up in the Second Class and is continued in the First, and extends over a period of two years. No marks are allowed for the Second Slass, the whole being assigned to the First Class.

ALLOTMENT OF MARKS.

For Entire Course, 3,200

∞	(Yearly and Intermediate Examinations 1,900
$\begin{aligned} & \text { U } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$	$\left\{\begin{array}{c} \text { Term } \\ \text { Work. }\left\{\begin{array}{c} \text { Notes, Draw- } \\ \text { ings and } \\ \text { Recitations. } \end{array}\right\} 1,300 \end{array}\right.$

Section I-Nature, Production and Use of Materials of Construction.
Marks. .1,900.
Sub-Section A-Materials: Description and processes.
Marks-Examinations.
Sub-Section B-Strength of materials.
Marks
$\left\{\begin{array}{l}\text { Examinations } \\ \text { Notes and Recitations. }\end{array}\right.$200

Sub-Section C-Stresses on Framed Structures.
$\left\{\begin{array}{l}\text { Examinations...a............... } 500 \\ \text { Notes and Recitations...... } 500\end{array}\right.$
Marks500

Section II—History and Principles.
Marks \qquad .200.
Sub-Section A-History and Prnciples.
Marks-Examinations...... 200
Section III-Design and Execution of Structures. Marks. .700.

Su.b-Section A—Buildings, Domestic.
$\begin{array}{llll}\text { do } & \underset{\text { B- }}{\text { do }} & \text { do } & \text { Public-Civil. } \\ \text { do } & \text { do Military. }\end{array}$
.... $\left\{\begin{array}{l}\text { Fxaminations } 300\end{array}\right.$

Section IV-Estimating and Supervision.

Marks.. 400
Sub-Section A-Measurements, quantities, prices.
Marks.... Marks \qquad $\left\{\begin{array}{l}\text { Examinations } \\ \text { Notes and Re }\end{array}\right.$ 2 Nore,-If a Cadet takes up both and Recitations 200 Civil Engineering Courses, one-half only Architectural and the to Sections I and IV (being common of the marks assigniod Architecture), will be available for each to Engineering and Architecture only, then the full marks subject. If he takes and IV are available for that subject.

TEXT BOOKS.

Principally Lectures.
Michells' Elements of Architecture.

BOOK RECOMMENDED TO BE READ.

- Ferguson's " History of Architecture."
(Commo see Syllabus

Sub-s]
Early \mathbf{b}
Greek
Roman
Byzant
Roman
Mediæ
Englis Elizab
Renai
Mode

Foun draulic lis piles.

Unc
Stones, b

171

SUMMARY OF COURSE OF INSTRUOTION IN ARCHITECTURE.

Ist OLASS.

SECTION I.

Nature, Production and Use of Materials of Construction.
Sub-sections A, B \& C.
(Common to engineering and architecture. For details see Syllabus of Engineering Course.)

SECTION II.

History and Principles.

Sub-section (A)-Desoriptive and Historical.
Early history.
Greek architecture.
Roman do
Byzantine do
Romanesque architecture.
Mediæval pointed do
English mediæval do Elizabethan do Renaissance Modern

SECTION III.

Design and Execution of Buildings.
Sub section (A)-Bulldina' Cunstikution.
Foundations, natural and artificial, concrete Béton, hydraulic lime, foundátions under water, piles, pile-driving, iron piles.

Masonay.
Uncoursed rubble, coursed rubble, ashlar work, through stones, bond beds, joints, tools used.

Brickwork.

Bricks, size, thickness of brick walls. Principles of walling, headers an. Plans and elevations of elevations of walls in English bond. Plevation of walls in lake walls in Flemish bond. and herring-bone bond.

172

Protection against frost, application of wall-plates, tem. plates, discharging arches, lintels, construction oll-plates, temgeneral rule as to brick-work, tools used in brick-work arches,

Drawing for Bricklayers.

 Drawing for brick headed windows, extrados, intradomples of rough arch, square. doors, with relieving arch and tie-rod, centreing, squaro-headed Gothic arch in birch wood, with centreing.
WOODWORK,

Scantling, modes of length
ing, fishing, halving, scarfingthening timbers, strapping, bolt, notching, morticing, fox-tail jointsed girders, joints in timbers,

Constructing of Roofs.
Gable, hip, mansard, tie beam, rafters, principal and common rafters, king-post, strap, queen posts, arch track, straining and snow pressure. determination of stresses in roofs, wind

Construction of Floors.
Single floors, trimming, arch and joist, herring-bone truss, floors, floor boards, square edge binders, ceiling joists, framed and dowelled.

Partitions.

 carcass.rinciples of construction, fire-proof, must form portion of

Joinery.

joint, staircase, general from carpentry, mitre.joint, dove-tail legged staircase. al construction, bracket staircase, dog.

Fire-Proof Construction.
Behaviour of various building materials under fire, fireproof layers.

General Arrañgements.

Cellars, drainage, sewerage connections, ventilation, traps, warming, water supply, ready egress, in case of fire, doors, opening outwards.

Sub . Sub Seotions B and C. designing of domestic buildinge continued so as to embrace the civil and military purposes.

Stone worl shingling, pain

173

SECTION IV.

Estimating and Supervision.
Sob Section (A)-Methods of Estimatina Quantities in
Stone work, brick work, wood work, plastering, slatingshingling, painting, glazing.
ing, bolt, timbers,
nd com. training

θ truss,

 framed onguedion of
e-tail
dog.
fire-

Total ma N. C. 0

4th Clas $3 r d$ $2 n d$ 1st Clas onl

Total
1st Clas

Total
$4 t \mathrm{~h} \mathrm{Cl}$
$3 r d$
2nd
1st

Total
2nd
1st

Tota
$4 t h$
$3 r d$

175
 ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUCTION IN INFANTRY DRILL. EQUITATION, AND MILITARY EXERCISES.

Sect. I.-Infantry Drille.

allotment of marks.

Total marks Cadets and N. C. O. (obligatory)........ 500
N. C. Officers.

4th Class (obligatory).. 200
3 rd do 100
2nd $\stackrel{\text { do }}{\text { Communicating Drill (N. C. Officers }}$
1st Class, Communicating Drill (N. C.............. 170
onls eligible)
Segt II.-Equitation.
300
Total marks (obligatory)
1 st Class (obligatory)
Sect. III.-Gymnastics.
Total marks, $400\left\{\begin{array}{l}\text { Obligatory........................ } 200 \\ \text { Voluntary } 200\end{array}\right.$
4th Class (obligatory)... 100
$3 r d$ do do .. 100
2nd do voluntary... 100
1st do do
Sect. IV.-Swordsmanship.
Total marks (voluntary)'............................ 300
2nd Class (voluntary)......... 150
1st do do
Seot. V.--Swimming.
Total marks (obligatory) 100
4th Class, do .. 50
$3 r d$ do do

TEXT-BOOK.

Infantry Drill.-Field Exercises.
Rifle Exercises and Musketry Instruction.
Regulations and Instructions for Ercampments.
Equitation.-Nil.
Gymnastics.-Nil.
Swordsmanship.-Infantry Sword and Carbine Sword.
onet Exercises.

Squad Dr Exercises,"

Rifle Exe exercises. Sec. 1 to 13

Company to Sec .20 i Miscellan to 21 inclu

Musketry drill, judg as follows:

100 yar
200 " 500
Volley
Indepe
" Rifle IV and

Note (1)

turn,
(2). - nhe

$(2,-$ The
range and
13). -The
complete

17%

SUMMARY OF INSTRUOTION IN INFANTRY DRILL, EQUITATION AND MILITARY EXERCISES.

Section I.

INFANTRY DRILL.

4th Class

Squad Drill (E)-Instruction and communicating.* "Field Exercises," Part I.

Rifle Exercises-Instruction in manual, firing, and bayonet exercises. "Rifle Exercisos and Musketry Instruction." Sec. 1 to 13 inclusive.

Company Drill-Instruction. "Field Exercises," Part II. up to Sec. 20 inclusive.

Ifiscellaneous-Guards. "Field Exercises," Part VII, Sec. 15 to 21 inclusive.

Musketry Instruction-Theoretical principles, preliminary drill, judging distance and target practice ; firing 50 rounds as follows:

RECRUITS PRELIMINARY PRACTICE.

a Vote (1).-. "rommanicating the various drills, etc., to the remainder. urn, and imparts instructionfle Instruction is necessarily determin (2).-The entire course of to Cadets. range and Kecrult Practice
completed before 30 th A oril.

3rd Class.

Company Drill-Instruction in "Fiold Exercises," Part II, Sec. 21 to 28 inclusive. Revision of the whole of Company
drill.
Advanced and Rear Guards, and Outposts (E)-Instruction. "Field Exercises;" Part VI, Sec. 1 and 2, and paragraphs I, , VI, VII, VIII and IX of Sec. 3.
) tions for encampments, pitching. "Regulations and instruc. exercise

Musketry Instru judging distance; fion-Preliminary drill, target practice, 200 yards.
\(\left.\begin{array}{rl}500 \& "

800 \& (Reduced

(Rarget.)\end{array}\right\}\)| 10 | " | Any military position. | |
| :---: | :---: | :---: | :---: |
| 10 | " | " | " |
| 10 | " | " | " |

200 "\{ $\left.\begin{array}{c}\text { (Redinced } \\ \text { Target.) }\end{array}\right\} \begin{array}{cccc}5 & \text { " } & \text { Volley firing. } \\ 5 & " & \text { Independent fing }\end{array}$ Judging distance from 100 to 1,000 rardopendent firing. Riffeexercises and Muskotry Instructions." Parts III, IV 2nd CLASS
Company Drill (E).-Commixicatins. "Field Exercises,"
 up to Sect. 3 B̄ inclusive. Musketry Instruction.-Ay for 3rd Class.
$D_{\text {rill }}$ Ist Class.
Part III., Secs, 36 to 49 inclustruction. "Field Exercises," ing the whole of battalion drill. "Revision and communicat. Advanced and Rear Guarls, "Fidd Exercises," Part III. cating "Field Exercises," Part VI. Outposts (E).-CommuniMusketry Instruction.-As for 3rd

Note (1).-Examivatinns parlile witlen
In ug, or at the end of the term, in written and partly oral will be held incidental instruction in , the 3 rd and sth , liassects marked (\mathbb{E}).
rear guards, and in outpost duty, whd battallones, when in the ranks, obtain
instructed in, or are enmmunicat, whilst the lst and and in advanced and (2.-The annual course of Hifle Instructin drils. and 2nd Class are being

别
Leading th Mounting a Extension Scat while Dressing.
Walking a
Riding in
Saddling.
Bridling.
Fitting th
Mounting
Aids in tu

Formation
Bending 1
Turns in
The cant
Position
Position
Mounting
Riding w
Leaping.
Salute w

Formatic
Bending
Element
treatment

First P
Second
Third

179

Section II.

Doub'e Ride.

Formation of the ride, \&c.
Bending lesson.
Elementary instruction on care, managoment and vetorinary treatment of horses.
r Section III.
GYMNASTICS.
4th :CLASS,

Simple Exercises.

First Cıurse-Introductory Exercises.
First Practice-TMovements and positions.
Second " With dumb bells.
Third
/ With bar belle.

Second Class—Simple Exercises.
Running-To run at slow time short distances.
Vaulting Bar -To vault the bar, three movements.
" " two one movement.
Vaulting Horse -To vault on the horse, two moremente, standing.
To vault on the horse, one movement, standing.
To vault on the horse, one movement, running.
To vault over horse, running.
Parallel Bars-The single march, forwards.
The double march "
The single march, backwards.
The double march "
To clear the right bar by the front, oscillating.
To rest on the right bar and clear the left by the front, oscillating.
To rest on the right bar, in the rear and clear it in front, oscillating.
Pair of Rings -The single circle, evoluting.
The double circle "
To turn with fee f in the rings, evoluting. The row of Rings-The single step.
Horizontal Bar-To march with right hand leading. ") To turn round the bar, raising above the bar. ed, raising above the bar.
To raise above the bar, right and left. " " both hands at once. Bridge Ladder -To climb both hands at once, backwards. Vertical forwards.

Running The Leap The Vault The Vail

Pair of R
Row of P Bridge L

Fencin
Sword
Bayou
Sword
Quart
Note.
structed
ie., sw

181

3rd CLASS.

Advanoed and Arduous Exerctses.

Third Course.

Running-To run at speed short distance.
The Leaping Stand-To leap height, running.
The Vaulting Bar-To vault over the bar by the back lift. The Vaulting Horse-To vault to the right, running.
Fo leap clear over
"

Pair of Rings-To form a straight line by the back.
Row of Rings-The single step backwards.
Bridge Ladder-To climb with both bands at once back" wards, by the spars.
To climb with both hands at once forwards, . by the spars.
" To climb with right hand leading, by the sides.

Fencing.
Sword vs. Sword.
Bayonet vs. Bayonet.
Sword vs. Bayonet.
Quarter Staff.
Note.- Voluntary classes of I, II, III, IV Classes are instructed in any branch of gymnastics, or, of defensive exercises, i.e., sword, bayonet, boxing, \&c.

Storton IV.

- SWORDSMANSHIP.

Infantry Sword and Sword-Bayonet Exercises:
Extension motions and positions.
Preparatory instruction with the sword and sword-bayonet. Review and inspection exercise Attack and defenco.
Stick drill.
Officer's salute.

Section V.

SWIMMING.

TEXT BOOKS USED.

[^7]
[^0]: - Only those books at present in the Library at R.M.C., have been quoted.

[^1]: *These plates are llable to alteration from time to time.

[^2]: *Portions of Sections A, B and C Coast Defence are included in Obligas tory Course under Section F.

[^3]: Courses.
 \dagger The laying and construction of the road are not considered, being pat of the Oivil Engineering Course.

[^4]: The details of Plates given for each class are suject to alteration from

[^5]: -The actual sinking of shafts, \&e., will not, as a rule, be possible.

[^6]: - The various plates will be sub

[^7]: Otto's Conversaitional Grammar and Exercises. Kramer's German Dictionary.
 "Das Fahr, 1813," (Clarendon Series). Schiller's Wilhelm Tell.
 Goethe's Egmont.

