IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

回

Canadian Institute for Historical Microreproductions / Institut cenadian de microreproductione historiques

The Institute has attempted to obtain the best original copy avallable for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagbe

Covers restored and/or laminated/
Couverture restaurde et/ou pelliculeeCover title missing/
Le titre de couverture manque

Coloured maps/

Cartes géographiques on couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. eutre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou Illustrations on coulour

Bound with other material/
Relle avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La re liure serrbe peut causer de l'ombre ou de la distortion le long de la marge interieure

Blank leaves added during reatoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajoutbes lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible, ces pages n'ont pas úte filmdes.

Additional comments:/
Commentaires supplémentaires:

L'Inatitut a microfilmé lo maillaur exemplaire qu'ill lui e d́té possible de se procurer. Les d́́talls de cet exemplaire qui sont peut-dtre unlques du point de vue bibliographique, qui peuvent madifier une image reproduite, ou qui pouvant exiger une. modification dans la móthode normale de filmage sont indiquós ci-dessous.

Coloured prages/
Pages de couleurPages damaged/
Pages endommagbes
Pages restored and/or laminated/
Pages restaurées at/ou pelliculsesPages discoloured, stained or foxed/
Pages décolorées, tachatbes ou piquées

Pages datached/
Pages dótachbes

Showthrough/
Transparence
Quality of print varies/
Quallt' inégale de l'impreasion
Includes supplementary moterial/
Comprend du matóriel supplémenteire

Only edition evailable/
Seule edition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ansure the best possible image/ Les pages totalament ou partiellement obscurcles par un feullot d'errate, une polure. etc., ont óte filmdes nouveau de façon a obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generoalty of:

D. B. Weldon Library
Univeralty of Weatern Ontario

The images appearing here are the best quality posslble concidering the condition and logibility of the original copy and in keeping with the filming contrect specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or Illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impresslon, and ending on the last page with a printed or Illustrated Impression.

The last recorded frame on each microfiche shall contaln the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichevar applies.

Maps, plates, charts, etc., moy be filmed at different reduction ratios. Those too large to be entiroly included in one exposure are filmed beginning in the upper left hand corner, ieft to right and top to bottom, as many frames as required. The following diagrame lilustrate the mothod:

L'oxemplaire filmb fut reproduit grace al la générocité de:
D. B. Woidon Libbrary

University of Western Ontario
Los images sulvantes ont óté reprodultes avec le plus grend soln, compte tenu de la condition ot de la nettot' de l'exemplaire filmb, et en conformite avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papler est imprimée sont flimes en sommençant par le premier plat ot en terminant solt par la dernidre page qui comporte une empreinte dimpression ou d'illustration, soit par le seciond plat, selon lo cas. Tous les autres exemplaires originaux sont filmes on commencant par la premidere page qui comporte une empreinte d'impression ou d'illustration et en terminant par le dernidre page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifio "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, plenches, tableaux, otc., peuvent être filmés à des taux de róduction differente. Lorsque le document est trop grand pour ©tre reprodult on un seul clizhé, il est filme a partir de l'angle supérieur gauche, de gauche à droite, et de haut on bas, on prenant lo nombre d'images nécessaire. Les diagrammes suivents illustrent la méthode.

(ancen

SIMPLE EXERCISES

MENSURATION;

DESIGNED FOR THE USK OF

CANADIAN COMMON AND GRAMMAR SCHOOLS

BY

JOHN Herbert sangster, M.A., M.D., HEAD KAGTGR NORMAL GCEOOL FOR ONTARIO.

Montreal:

PRINTED AND PUBLISHED BY JOHN LOVELL, and for sale at ter boorgtorib.
1872.

Entered, according to the Act of the Provincial Parliament, in the year one thousand eight hundred and sixty-seven, by John Lovell, in the Office of the Registrar of the Dominion of Canada.

PREFACE.

This little book is not intended to supersede the more elaborate text-books upon the same subject, in use in our Schools, but rather to serve as an introduction to one or other of them. The great mass of Common and Grammar School pupils have not time, amid the many other important studies claiming their attention, to devote to any lengthened course of instruction upon Mensuration. All that the teacher can ordinarily hope, under existing circumstances, to aecomplish in this department, is to make his scholars capable of readily computing the area of regular surfaces and the volume or capacity of regular solids. Where more is attempted, it is, as a general thing, done at the expense of other important branches of instruction. Those who are intended for professions which require an intimate knowledge of Land Surveying, Astronomy, Gauging, \&c., may, of course, profitably devote one or more entire years to the study of the various departments of mensuration, but for general purposes-for the farmer, the mechanic, the merchant, a knowledge of the mensuration of ordinary surfaces and solids is amply sufficient, and it is for such that the following pages have been thrown together.

The rules are given in the form of formulas, beeause it is believed that they are thus much more readily and lastingly remembered, and a very little effort on the part of the teacher will enable the pupil both to understand the dependence of the rules upon one another, and the interpretation and application of the formulas.

Toronto, October, 1867.
(and

CONTENTIS.

PAGE.
Defnitions 7
Formulas for Mensuration of Surfaces 17
Formulas for Mensuration of Solids 20
Illustrations and Exercises 23
Miscellaneous Exercises 54
Problems for Practice 65
Tables 72

mensuration.

DEFINITIONS.

The teacher is expected to draw on the blackboard or slate, figures illustrating those definitions.
1 A figure is that which is enclosed by one or more boundaries.
2. A plane figure is enclosed by one or more lines, which lie on the same plane or flat surface.
3. A solid body is that which is contained or bounded by one or more surfaces.
4. A plane figure or surface is said to have two dimensions, viz : length and breadth; a solid is said to have three dimensions, viz: length, breadth and thickness.
5. The area of a plane figure is the number of square units of measurement contained within its bounding line or lines; the volume of a solid body is the number of cubic units of measurement contained within its bounding surface or surfaces.
6. Mensuration consists in the determination of the areas of surfaces and the volume of solids from their linear dimensions.
7. A plane rectilineal angle is the mutual inclination of two straight lines towards one another-which meet but are not in the same straight line.
Nore.-The magnitude of the angle depends unon the rate of divergence of the lines-not upon their length.
8. When one straight line, standing upon another, makes the adjacent angles equal, each of them is called a right angle; and the line which stands upon the other is called a perpendicular to it.
9. An angle less than a right angle is called an acute angle; an angle greater than a right angle is called an oltuse angle.
10. Parallel straiylut lines are those that lie in the same plane and which have the same direction, so that being produced ever so far, both ways, they never meet.
11. A triangle is a figure contained by three straight lines.
12. An equilateral triangle has all-of its sides equal; an isosceles triangle has two of its sides equal; and a scalene triangle has all of its sides unequal.
13. A right-angled triangle bas one of its angles a right angle ; an obtuse-angled triangle has one of its angles an obtuse angle; and an acute-angled triangle has all three of its angles acuto angles. The two latter are often called oblique-angled triangles.
14. A quadrilateral figure is that which is onclosed by four straight lines.
15. A trapezium is a quadrilateral figure having no two of its sides parallel.
16. A trapezoid is a quadrilateral figure having one pair of opposite sides parallel.
17. A parallelogram is a quadrilateral figure having each pair of opposite sides parallel.
18. A rectangle or oblong is a parallelogram whose angles are all right angles, but its adjacent sides are not equal, i. e., its length is greater than its breadth.
19. A square is a parallelogram whose angles are all right angles and its sides are all equal.
20. The diagonal of a quadrilateral figure is a straight line joining its opposite angles.
21. A polygon or multilateral figure is a figure contained by more than four straight lines.
22. A regilar polygon is one whose sides are all equal to one another, as also are its angles.
23. Polygons are named from the number of their sides - thus a five-sided polygon is called a pentagon; a sixsides polygon, is called a hexagon; a seven-sided polygon is called a heptagon; an eight-sided polygon is called an octagon, \&c.
24. The apothem of a regular polygon is a perpendicular from its centre on any of its sides ; as AB, Fig. 1 or 2.
25. A circle is a plane figure, bounded by one line, called the circumference,
 htlines. pal; ; an ; and a
a right s angles has all itter are
by four
two of
ne pair
gg each
angles tequal,

11 right and is such that every part of the Fig. 2-Hexagon. circumference is equally distant from a point within, called the centre.
Notr.-The circumference is the bounding line-the circle the space inclosed.
26. The diameter of a circle is a straight line passing through the eentre, and terminated both ways in the circumference.
27. A semicircle is the figure contained by the diameter and the part of the circumference cut off by the diameter.
28. The radius of a circle is half the diameter, or is a straight line joining the centre of the circle with the circumference.
29. $\mathrm{An} \operatorname{arc}$ of a circle is any part of the circumference.
30. A chord of a circle is any straight line joining the extremities of an arc.
31. A segment of a circle is the figure contained by a chord and the are of the circumference cut of by the chord.
32. A sector of a circle is the figure contained by an arc of the circumference, and the two radii joining its extremities with the centre of the circle.
33. A lune is the figure contained between the circular ares of two dissimilar circular segments which have a common chord.

Fig. 3.

Thus in Fig. 3 AB is a chord, $A C B$ and ADB are two dissimilar circular segments, ACBD is a lune.
34. A degree is the 360th part of the circumference or a circle.
Note.-The length of the degree depends upon the magnitude of the circle.
35. Concentric circles are such as have a common centre. 36. A circular annulus is the figure inclosod between the circumferences of two concentric circles.
37. The perimeter or periphery of any figure is its circumference, or the aggregate length of all its boundaries.
38. A polyhedron is any solid contained by planes, which planes are called its siucs or faces. The lines bounding its sides are called its edges.
ference. oining the
ined by a of: by the by an arc joining its
rcular ares ave a com-
o dissimilar
rence or a agnitude of on centre. tween the
its circumundaries.
les, which bounding
39. A regular polyhedron is one whose sides are equal and regular figures of the same kind, and whose solid angles are equal.
40. There are only five regular polyhedrons, viz. :The tetrahedron contained by four equilateral triangles. Fig. 4.
The hexaliedron contained by six squares. Fig. 5. The octahedron contained by eight equilateral triangles. Fig. 6.
The dodecahedron contained by twelve pentagons. Fig. 7.
The icosaluedron contained by twenty equilateral triangles. Fig. 8.

Fig. 5.

Fig. 4.

Fig. 6.

Fig. 7.

41. A prism is a solid contained by plane figures, of which two are equal, similar and opposite; with their sides parallel each to each, and the other sides are parallelograms.
42. The ends or terminating planes of the prism are the two similar sides, and the edges of these are called terminating edges to distinguish them from the lateral a Polygonal Right sides and edges. The prism is Prism; ABCDE and triangular, rectangular, square or $\mathrm{FGH}, \mathrm{CD}$ its ends. AB , terminatpolygonal, according as its termi-ing edges. AF, GB, CH, nating planes or ends are tri-\&c., its lateral edges. angles, rectangles, squares or polygons. When the lateral edges are perpendicular to the end, the prism

Fig. 9.
 is called a right prism, when otherwise, an oblique prism. The line joiuing the centres of the terminating planes of a prism is called its axis.
43. A parallelopiped is a prism having parallelograms for its terminating planes or ends.
44. A cube is a solid contained by six equal squares.
45. A pyramid is a solid having any rectilineal figure for its base; and for its other sides triangles, which have a common vertex. The pyramid is trianguiar, square, reotangular, \&c., according as its base is a triangle, a square, a rectangle, \&c.
46. When the base is a regular figure, a line joining its centre with the vertex or the pyramid is called the axis of the pyramid. When

IIg. 10.

A Regular Pyramid ABCDE its base. BCS, the axis is at right angles to the ACS, \&c., its sides. base, the pyramid is called a regular pyramid.
47. A cone is a round pyramid having a circle for its base, and is conceived to be produced by the revolution of a right-angled triangle about its perpendicular side which remains fixed. The line joining the vertex of the cone with the centre of the base is called the axis of the cone. Fig. 11.

48. A right cone is one in which the axis is perpendicular to the base-all other cones are called oblique.
49. A cylinder is a prism having circles for its ends or terminating planes, and is conceived to be produced by the revolution of a rectangle about one of its sides, which remains fized. Fig. 12.
50. A spluere or globe is a solid body which may be supposed to be produced by the revolution of a semi-circle about its diameter which remains fized. Fig. 13.
51. A segment of a sphere is a part of it cut off by a plane; a segment of a pyramid, cone, cylin-
 der or other solid, with a plane base is a portion cut off from the top by a plane parallel to the base.
52. A frustum of a solid is the portion contained between the base and a plane parallel to the base as in fig. 14 ; the frustum or zone of a sphere is the portion cut off by two paralle! planes as ADGH in Fig. 13:
53. An cllipse or oval (Fig. 15) is a plane figure bounded by a curved line such that the sum of the distances of any point in its ${ }^{2}$ circumference from two given points in it is constant, i. e., is
 equal to a given straight line.
Thus Fig. 15 atbd is.an ellipse because $p f^{\prime} \div p f^{\prime}$ is constant: f and f^{\prime} are the focl, c the centre, $t d$ the transverse and $a b$ the conjugate diameter or axis, $\dot{s} m$ is an ordinate and $s p$ a double ordinate, $t m$ and $m d$ are the abscisses to the ordinate sm .
54. The two given points are called the foci of the ellipse, and the middle of the line joining them is called the centre of the ellipse. The distance of either focus from the centre is called the eccentricity of the ellipse.
55. The major or long axis or transverse diameter of an ellipse, is a line through both foci, and terminating in the bounding curve.
56. The minor or short axis or conjugate diameter, is a line passing through the centre, at right angles to the major axis, and terminating both ways in the bounding curve. 57. An ordinate to either axis is a line drawn from any point in the curve perpendicular to the axis; when it is continued to meet the curve on the other side, it is called a double ordinate.
58. Each of the segments into which the ordinate divides the axis is called an alsciss.
59. A parabola is a curve such that any point of it is equally distant from a given point within the curve, and a given line without it.
Thus if the curve mvn is such that any point p in it is equaliy distant.from the point f, and the line $a b$, that is, if $p a$ is equai to $p f$, than the curve $m v n$ is a para. m
 doln. Also f is the focus; po is the ordinate, and $p e$ the double ordinate or base v is the vertex, and $o v$ is the absciss. The double ordinate through f is c.llied the parameter.
60. An hyperbola is a curve, such that the difference between the distances of any point in it from two given points, one within, and the other without the curve, is equal to a given line.

Thus it any point p in the curve $p b e$ is such that $p f^{\prime}-p f=a b$, a givem [ine, then the curve pbe is an hyperbola. Also f and $f^{\prime \prime}$ are the foci, $a b$ is
the fransrerse axfs, e. is the centre; $m n$ is the conjugate axis, the points m and n being distant from a or b by of or $q f, i$. e., by the eccentricity; po is the ordinate; and pe the double ordinate or base; $a b$ is the smaller absciss; and oa the greater absciss.
61. A paraboloid or parabolic conoid is a solid generated by the revolution of a parabola about its axis, which remains fixed.

NoTe,-A frustum of a paraboloid is a portion contained between twe parallel planes perpendicular to its axis.
62. A spheroid is a solid generated by the revolution of an ellipse about one of its axis which remains fixed.
63: A spheroid is said to be oblate or prolate, according as it is the conjugate or the transverse axis that is fixed.
Note.-The fixed axis is called the polar axis, and the revolving axis the equatorial axds.
64. A segment of a spheroid is a portion cut off by a plane perpendicular to one of its axes.
Note.-When the plane is perpendicular to the fixed axis, the base is a oircle, and the segment is said to be circular; when the plane is perpendicular to the revolving axis, the segment is called an elliptical one, because the base is an ellipse.
65. The middle zone of a spheroid or' of a sphere is a portion contained between two parallel planes perpendicular to an axis and equally distant from the centre. 66. An hyperboloid or hyperbolic conoid is a solid gencrated by an hyperbola about its axis which remains fixed.

Nore-A frustum of an hyperbolold is a portion of it contained between two parallel planes perpendicular to its axis.
points m ; po is smaller
crated which , because re is a perpencentre. gencemains

MENSURATION OF SURFACES.

SYNOPSIS OF FORMOLAS.

Let $A=$ area, $b=$ base, $p=$ perpendicular or altitude, $d=$ diagonal.

Square. $A=b^{2}$ (I) $\therefore b=\sqrt{ } A$ (II). Also $A-\frac{1}{2} d^{2}$ (III) \therefore $d=\sqrt{ } 2 A$ (Iv).
Rectanale or Parallelogram. $A=b p$ (v) $\therefore b=\frac{A}{p}(\mathrm{vi})$ and $p=\frac{A}{b}$ (VII).
Rectangle. $\quad A=b \sqrt{(d+b)(d-b)}$ (viil).
Right-Angled Triangle. Let $b=$ the hypothenuse, ' $\boldsymbol{p}^{\prime}=$ the perpendicular from the right angle on the hypothenuse, and s and $s^{\prime}=$ the segments into which this divides the hypothenuse, s being that adjacent to the base of the triangle. Then $h=\sqrt{b^{2}+p^{2}}$ (Ix); $b=\sqrt{h^{2-p^{2}}}(\mathrm{X}) ; p=\sqrt{h^{2}-b^{2}}(\mathrm{XI}) ; s=\frac{p^{2}}{h}(\mathrm{XII}) ;$
$s^{\prime}=\frac{l^{2}}{h}(\mathrm{XIII}) ;$ and $p^{\prime}=\sqrt{s s^{\prime}}(\mathrm{XIV})$.
Triangle. $\quad A=\frac{1}{2} b p$ (xv); $\therefore b=\frac{2 A}{p}$ (xvi); and $p=\frac{2 A}{b}(\mathrm{xVII}) . \quad$ Also, if a, b, c be the three sides and $s=\frac{1}{2}(a+b+c)$ then $A=\sqrt{s(s-a)(s-b)(s-c)}$ (XVIII). In the case of an equilateral triangle this formula becomes $A=\sqrt{\frac{3 b}{2} \times \frac{b}{2} \times \frac{b}{2} \times \frac{b}{2}}=\sqrt{3 \times\binom{ b}{2}^{4}}$ $=\sqrt{ } 3 \times \frac{b^{2}}{4}=433 \ell^{2}$ (XIX).

Trapezoid. Let b and b^{\prime}.be the parallel sides, then $A=\frac{1}{2}\left(b+b^{\prime}\right) p(\mathbf{x x})$.
Quadrilateral. Let $d=$ diagonal, and p and p^{\prime} the perpendiculars from the diagonal to the opposite angles, then $A=\frac{1}{2}\left(p-p^{\prime}\right) d(\mathrm{xxI})$.
Quadrilateral ina Circle-i.e., that may be inscribed in a circle. Let a, b, c, d be the four sides, and let $s=\frac{1}{2}(a+b+c+d)$ then we have the formula $A=\sqrt{(s-a)(s-b)(s-c)(s-d)}(\mathrm{xxII})$.
Reqular Polygon. Let $a=$ apothem when side is $=1$, $s=$ a side, and $n=$ number of sides. Then $A=\frac{1}{2}$ ans (xXIII) ; $\therefore s=\frac{2 A}{a n}$ (XXIV); and $n=\frac{2 A}{a s}$ (xXV).

Circle. Let $d=$ diameter, $r=$ radius, $c=$ circumference; and $\pi=3 \cdot 1416$.
$c=\pi d(\mathbf{x x v I}) ; \therefore \mathrm{d}=\frac{c}{\pi}=c \times \frac{1}{\overline{3} .1416}=c \times 3183$ that is $d=3183 \mathrm{C}$ (xXVII).
$A=\frac{1}{4} c d$ (xxviri); $\therefore d=\frac{4 A}{c}$ (xxix); and $c=\frac{4 A}{d}$ (xxx).
$A=\pi r^{2}$ (XXXI) $\therefore r=\sqrt{\frac{\bar{A}}{\pi}}=\sqrt{A \times \cdot 3183} \quad$ (XXXII).
$A=d^{2} \times 7854$ ($\times \times \times$ xiII), since $d^{2}=4 r^{2}$, and $3.1416 \div 4$ $=785$
$A=\cdot 0796 c^{2}$ (xxxiv), since $d=\cdot 3184 c$, and $\therefore d^{2}=(\cdot 3183)^{2} c^{2}$
Circular Annulus. Let $d=$ diameter of the greater, and $d^{\prime}=$ that of smaller circle, and let c and $c^{\prime}=$ their respective circumferences.

$$
\begin{aligned}
& A=\frac{\pi}{4}\left(d+d^{\prime}\right)\left(d-d^{\prime}\right)(\operatorname{xxxv}) . \\
& A=0{ }^{-996}\left(c+c^{\prime}\right)\left(c-c^{\prime}\right)(\text { (xxvI). } \\
& A=\frac{1}{4}\left(c+c^{\prime}\right)\left(d-d^{\prime}\right)(\operatorname{xxxVII})
\end{aligned}
$$

es, then
$1 p^{\prime}$ the e angles, inscribed and let formula
le is $=1$, $4=\frac{1}{2} \mathrm{ans}$
ference;

3183 that
(xxx). XXXII). $3 \cdot 1416 \div 4$ (3183) ${ }^{2} c^{2}$ greater, ' $=$ their

Liength of Circular Arc. Let $n=$ number of degrees, in the are, $d=$ diameter of circle, and $l=$ length of arc, $k=$ chord of whole are, $k,=$ chord of half the are; $a=$ apothem or perpendicular from centre on the ohord, and conscquently $r-a=h=$ height of the segment. Then
$l=\frac{\pi n d}{360}$ that is $l=008726 n d$ (XXXVIII). $k=2 \sqrt{r^{2}-a^{2}}$ (XXXIX). $\quad a=\frac{1}{2} \sqrt{4 r^{2}-h^{2}}$ (XL). $k_{i}=\sqrt{2 r(b-a)}(\mathrm{XLI})$, and $r=\frac{\boldsymbol{k}_{1}^{2}}{2}{ }^{2}(\mathrm{XLII})$.
SECTOR. Let $l=$ length of circular are, and $r=$ radius of circle. Then $A=\frac{1}{2} l r$ (xliII.) Also from (xxxvir and XLIII.) $A=008726 n r^{2}$ (xLIV).
Segment. $A=$ area of corresponding sector \pm area of included triangle (XLV).
Lune. $A=$ area of greater segment, minus area of smaller `segment (XLVI).
Ellipse. Let $C=$ circumference, $t=$ transversc axis, $c=$ conjugate axis, $a=$ absciss, and o-ordinate.

$$
\begin{align*}
& \left.C=\pi \sqrt{\frac{1}{2}\left(t^{2}+c^{2}\right.}\right) \quad \text { (XLVII) ; } A=\frac{1}{4} \pi t c \text { (XLVIII); } \\
& o=\frac{c}{t} \sqrt{(t-a)} a \quad \text { (XLIX) } ; \quad a=\frac{t}{2} \pm \mathrm{d}, \text { where } \\
& d=\frac{t}{c} \sqrt{\frac{1}{4 c^{2}-o^{2}}}(\mathrm{~L}) ; t=\frac{c a}{0^{2}}\left\{\frac{1}{2} c+\sqrt{\frac{1}{4} c^{2}-o^{2}}\right\} \text { (LI); } \tag{LI}\\
& c=\frac{o t}{\sqrt{(t-a) a}}(\mathrm{LII}) .
\end{align*}
$$

Parabola.-Let $p=$ parameter, a and $a^{\prime}=$ any two abscisses, o and $o^{\prime}=$ the corresponding ordinates,
$b=$ base or double ordinate, and $l=$ length of parabolio curve.

$$
\begin{aligned}
& p=\frac{o^{2}}{a}(\text { LiII }) ; o^{\prime}=0 \sqrt{\frac{a^{\prime}}{a}}(\text { LIV }) ; a^{\prime}=a\left(\frac{o^{\prime}}{o}\right)^{2}(\mathrm{LV}) ; \\
& l=2 \sqrt{{b^{2}}^{2}+\frac{3}{4} a^{2}} \text { (LVI) } A=\frac{2}{3} a b(\text { LVII }) . \text { For parabolic } \\
& \text { zone } A=\frac{2}{3} h\left(l^{\prime}+\frac{b^{2}}{b+b^{\prime}}\right) \text { (LVIII), where } h=\text { height }
\end{aligned}
$$ of zone, and $b, b^{\prime}=$ bases or double ordinates.

Hyperbola. Symbols same as in ellipse and parabola.
$0=\frac{c}{t} \sqrt{(t+a)} a$ (LIX) ; $a=d \pm \frac{t}{a}$ where
$d=\frac{t}{c} \sqrt{\frac{1}{4} c^{2}+o^{2}}(\mathrm{LX}) ; c=\frac{o t}{\sqrt{(t+a) a}}(\mathrm{LXI}) ;$
$t=\frac{c a}{o}\left\{\begin{array}{l}c \\ \overline{2} \pm \sqrt{4_{4} c^{2}+o^{2}}\end{array}\right\}$ (LXII), \pm according as the smaller or greater absciss is given.
$A=\frac{4 c a}{75 t}\{3 \sqrt{7 a(7 t+5 a)}+4 \sqrt{t a}\}$ (LXIII).

MENSURATION OF SOLIDS.

SYNOPSIS OF FORMULAS.

Reqular Solids. Let $s=$ surface, and $v=$ volume or solid conteuts, and let $e=$ one edge.
Tetrahedron or Regular Triangular Pyramid. $s=e^{2} \sqrt{3}=1 \cdot 732 e$ (LXIV), and $v=\frac{1}{1} \frac{1}{2} e^{3} \sqrt{2}=117 b j e$ (LXV).
Hexahedron or Cube. $s=e^{2} e^{2}$ (LXVI); $v=e^{2}$ (LXVII). Octahedron. $s=c^{2} \sqrt{3}=3 \cdot 464 e^{2}$ (XVIII); $v=\frac{1}{3} e^{3} \sqrt{2}$. $={ }^{\prime} 474058^{8}$ (LXIX).
parabolic
(Lv);
parabolio $=$ height rabola. ng as the
lume or

RAMID. (LXV). LXVII).
$=\frac{1}{3} e^{3} \sqrt{2}$.

Dodegatidron. $s=15 e^{2} \sqrt{\frac{1}{5}(5+2 \sqrt{ } 5)}=20 \cdot 645775 e^{2}(\mathrm{LXX})$; $v=5 e^{2} \sqrt{\frac{1}{7} \sigma}\left(\overline{47}+21 \sqrt{ }{ }^{5}\right)=7 \cdot 6631 e^{2}(\mathrm{LXXI})$.
Icosahedron. $s={ }^{5} e^{2} \sqrt{3}=8 \cdot 66 e^{2}($ LXXII $)$;

$$
v=5 e^{8} \sqrt[3]{(7+3 \sqrt{5})}=2.18169 e^{3}(\text { LXXIII }) .
$$

Parallelopiped ; Prism; Cylinder. Let $a=$ area of base or end, $p=$ perimeter of base, and $p^{\prime}=p e-$ rimeter of section perpendicular to one of the edges of the solid ; also let $h=$ the height, and $s=$ the whole surface.
$v=a h$ (Lxxiv), $s=h p+2 a(\mathrm{Lxxv})$, when the solid is right, and $s=h p^{\prime}+2 a$ (LXxvr), when the solid is oblique.
Reqular Pyramid and Cone. Let $p=$ perimeter of base, $l=$ length of slant side, $h=$ height, i. e., perpendieular height of vertex above the base, and $a=$ area of base.

$$
v=\frac{1}{3} a l \text { (LXXVII) ; } s=\frac{1}{2} p l+a \text { (LXXVIII). }
$$

Frustum of Pyramid. Let a and $a^{\prime}=$ areas of the two ends, $h=$ height, e and $e^{\prime}=$ the edges of the ends, and let p and $p^{\prime}=$ perimeters of ends.
$v=\frac{1}{3} h\left(a+a^{\prime}+\sqrt{a a^{\prime}}\right) \quad(\mathbf{L X X I X}), v=\frac{1}{3} h\left(\frac{a e-a^{\prime} e^{\prime}}{e-e^{\prime}}\right)$ (LXXX),$s=\frac{1}{2}\left(p+p^{\prime}\right) l+a+a^{\prime}(\mathrm{LXXXI})$.

Frustum of Cone. Symbols as in frustum of pyramid also d and $d_{1}=$ diameters of ends.

$$
v=\frac{\overline{3}}{} h\left(a+a,+\sqrt{a a^{\prime}}\right)(\mathrm{LxxxII}) .
$$

Also $v=\cdot 7854 d\left(d^{2}+d_{1}^{2}+d d_{1}\right)_{3}^{h}=\cdot 2618 h\left(d^{2}+d_{1}^{2}+d d_{1}\right)$
(LXXXIII), since $a=\cdot 7854 d^{2}$ and $a^{\prime}={ }^{7854} d_{d_{1}^{2}}^{2}$ and $\sqrt{a a^{\prime}}$ $\left.=\sqrt{ }\left(\cdot 7854 d^{2}+7854 d_{1}^{2}\right), s=\bar{x} \cdot p+p^{\prime}\right) l+a+a^{\prime}($ Lxxxiv $)$.

Wedae. Let l and $b \doteq$ length and breadth of back, $e=$ length of edge, $h=$ height. Then $v=\sigma b h(e+2 l)$ (LxXxy).
Sphere. $v=5236 d^{3}(\mathrm{LXXXVI}), s=\pi d^{2}=(\mathrm{LXXXVII})$.
Spherical Segment. Let $r=$ radius of base, $d=$ diameter of sphere, $h=$ height, and $s=$ convex surface, $v=\cdot 5336 h\left(3 r^{2}+h^{2}\right)\left(\right.$ LXXXVIII) ; $v=\cdot 5236 h^{2}(3 d-2 h)$ (LXXXIX), $s=\pi d h$ (X).

Spierical Zone. $v=\frac{h}{2}\left(r^{2}+r_{1}^{2}+{ }_{3}^{1} l^{2}\right)($ xal $)$, where r and r, are the radii of the ends. For middle zone $v=\frac{\pi h}{4}\left(d^{2}+\frac{2}{3} h^{3}\right)(\mathrm{XCII}), v=\frac{h}{4}\left(d_{!}^{2}-{ }_{3} h^{2}\right)(\mathrm{xCIII})$, where d is the diameter of the end of the zone and d^{\prime} is the diameter of the sphere, $s=\pi d, h$ (xocv) where $s=$ convex surface.
Paraboloid. $v={ }_{5} a h=\frac{\pi d^{2} h}{8}={ }^{3} 327 d^{2} h(\mathrm{xCV})$.
Frustum of Paraboloid. Let a and $a^{\prime}=$ areas of ends; d and d, their diameters, and $h=$ height, then $v=\frac{-1}{2} h\left(a+a^{\prime}\right)(\mathrm{XCVI}) ; v=\frac{-}{\pi} \pi h\left(d^{2}+d_{t}{ }^{2}\right)=3927 h$ $\left(\mathrm{d}^{2}+d_{1}^{2}\right)$ (XCVII).
Spheroid. Let $t=$ transverse, and $c=$ conjugate axes
Then $v=5236 c t^{2}$ (xoviII) for oblate spheroid. $v=5236 c^{2} t$ (xCIX) for prolate spheroid.
Circular Segment of Spheroid.
Oblate $v=.5236(3 c-2 h) \frac{t^{2} h^{2}}{c^{2}}(\mathrm{c})$,
Prolate $v=.5230\left(3 t-{ }^{2} h\right) \frac{c^{2} h^{2}}{t^{2}}(\mathrm{cl})$.
of back, $h(e+2 l)$
diametor surfaoo, $3 d-2 h)$
where r dlo zone (XOIII), one and (xolv)

Eliliptioal Segment of Spheroid.
Oblate $v={ }^{5236}(3 t-2 h) \frac{c l^{2}}{t}(\mathrm{cII})$,
Prolate $v=.5236(3 c-2 h) \frac{t h^{2}}{c}$ (cIII).
Middle Frustum of Spheroid.
(Cireular) oblate $v=2018\left({ }^{2} t^{2}+d^{2}\right) l$ (civ),
prolate $v=: 2318\left(2 c^{2}+d^{2}\right) l(\mathrm{ov})$,
(Elliptieal $v=\cdot 2618(2 t c+d d) l(\mathrm{cvI})$ for either oblate or prolate, where $l=$ length of frustum, $d=$ diameter ; and, in (ovi), d and $d_{1}=$ the greater and less diameters of one end.

Hyperbolold. $v={ }^{5236}\left(r^{2}+d^{2}\right) / \pi$ (dvil), where $r=$ radius of base, $d=$ diameter half way between the base and vertex, and $h=$ height.

Frustum of Hyperboloid. $v=\cdot 5236\left(r^{2}+r_{1}^{2}+d^{2}\right) h$ (cviil), where r and $r=$ radii of ends, and $d=$ diameter half way between the ends.

ILLUSTRATIONS AND EXERCISES.

SQUARE.

Formule. $A=b^{2}$ (1); $l=\sqrt{ } A$ (II); $A=\frac{1}{\frac{1}{d}} l^{2}$ (III), $d=\sqrt{24}$ (IV).
Ex. 1. Find the area of a square whose base is 40 chains.

Solution.

Here $b=40$; then $A=b^{2}=40^{2}=1600$ chains $=$ Ans, 160 acres,

Ex. 2. Find the diagonal of a square whose area is 91347 yards.

Solution.

$$
\text { Hore } A=91347 ; \text { then } d=\sqrt{2} \times 9 \overline{1347}=\sqrt{182694}=427 \cdot 42 \text { yards. }
$$

Exercise 1.

1. Find the area of a square whose base is 916 yards.

$$
\text { Ans. } 173 \text { a. } 1 \text { rood } 17 \text { per. }
$$

2 Find the area of a square whose diagonal is 107.
Ans. 5724.
3. Find the base of a square whose area is $2 \frac{1}{2}$ acres.

Ans. 110 yards.
4. Required the diagonal or square whose area is 208 yards.

Ans. 20.39 yards.

RECTANGLE OR PARALLELOGRAN.

Formules. $A=b p(\mathrm{v}) ; b=\frac{A}{p}(\mathrm{VI}$,$) and p=\frac{A}{b}(\mathrm{VII})$. Also, for rectangle: $A=b_{\gamma^{\prime}}(\overline{d+b})(\overline{d-b})$ (VIII).
Ex. 1. Find the area of a rectangular field whose adjacent sides are 600 and 800 links.

Solution.

H6e $p=600$ links, and $b=800$ links; then $A=b p=600 \times 800=480000$ links, . and this divided by 100000 , the square links in an acre, we get 4.8 acres $=4$ a. 3 roods 8 per.
Ex. 1. Find the base of a parallelogram whose area is 5 a 16 per., the perpendicular distance between the sides being 200 yards.

Solution.

Here $A=5 a 16 p=24684$ yards, and $p=200$ yards; then $b=\frac{A}{p}$. $=\frac{24684}{200}=123 \cdot 42$ yards.

Ex. 3. Find the area of a rectangular field whose base is 90 yards and diagonal 160 jards.

Solution.

Here $d=160$, and $b=90$; then by formula vint, $A=b \sqrt{(u+1)(l-b)}$ $=90 \times \sqrt{160+90)(190-90)}=90 \times \sqrt{250 \times 70}=90 \times \sqrt{1600}=20$ $\times 132 \cdot 28$ yards $=11905 \cdot 2$ square yards.

Exercise II.

1. Find the area of a rectangle whose base is 11 and side 16.

Ans. 176.
2. Find the area of a rectangle whose base is 28 and diagonal 30. Ans. 301•56.
3. Required the ar a of a field in the form of a parallelogram whose base is 760 links, and altitude 250 links.

Ans. 1 a. 3 r. 24 per.
4. Required the base of a parallelogram whose area is 2 a .3 r . 17 per., and perpendicular altitude 120 links.

Ans. 2380. 208 links.
5. Find the diagonal of a rectangle whose area is 200, and base 50.

Ans. 50'159.
6. Find the distance between the sides of a parallelogram whose base is 900 yards and area 6 acres 2 r. 28 per. 17 yards. Ans. 35.915 yards.

RIGIIT-ANGLED TRIANGLE.

Formule. Let $l=$ base, $p=$ perpendicular, $h=$ hypothenuse, $p^{\prime}=$ perpendicular from right angle on the hypothenuse, s and $s^{\prime}=$ the segments into which this
divides the hypothenuse, s being that adjacent to the base of the triangle; then $h=\sqrt{b^{2}+p^{2}}$ (Ix);

$$
\begin{aligned}
& l=\sqrt{ } h^{2}-p^{2}(\mathrm{x}) ; p=\sqrt{h^{2}-l^{2}}(\mathrm{xI}) ; s=\frac{p^{2}}{h^{2}}(\mathrm{XII}) ; \\
& s=\frac{l^{2}}{h}(\mathrm{XIII}) ; \text { and } p^{\prime}=\sqrt{s s^{\prime}}(\mathrm{XIV}) .
\end{aligned}
$$

Ex. 1. Find the hypothenuse of a right-angled triangle whose base is 10 and perpendicular 15.

Solution.

Here $b=10$, and $p=15$; then by formula ((x)), $h=\sqrt{6 \overline{2}+p^{2}}=\sqrt{100+225}$ $=\sqrt{ } 3 \overline{25}=18 \cdot 0277$.
Ex. 2. Find the base of a right-angled triangle whose hypothenuse is 605 and perpendicular 20.

Solution.

Here $h=605$, and $p=20$; then by formula $(x), b=\sqrt{h^{2}-p^{2}}=\sqrt{360-400}$

$$
=\sqrt{3200}=56.568 .
$$

Ex. 3. Find the perpendicular let fall from the right angle of right-ingled triangle to the hypothenuse, and also the segment of the hypothenuse-the base and perpendicular of the given triangle being 20 and 25 yards.

Solution.

First $h=\sqrt{b^{2}+p^{2}}=\sqrt{400+62 \overline{5}}=\sqrt{1025}=32 \cdot 0156$ yards.
Then $s=\frac{p}{h}=\frac{625}{32 \cdot 015 \overline{0}}=19 \cdot 52$ yards; and $s^{\prime}=h-s=32 \cdot 0156-1952=$ 124956.

Lastly $p=\sqrt{8 s^{\prime}}=\sqrt{19 \cdot 52 \times 12 \cdot 49}=\sqrt{243 \cdot} \cdot \overline{048}=15 \cdot 61$ yards.
Exercise III.

1. Find the perpendicular of a right-angled triangle whose base is 9 and hypothenuse 30.

Ans. $28 \cdot 618$.
2. Find the hypothenuse of a right-angled triangle whose base is 11 and perpendicular 17 .

Ans. 20.248.
ent to the (IX); (xIf); gle whose $=\sqrt{100+225}$ hypothe-
angle of gment of triangle
$-1952=$
base is $28 \cdot 618$. base is 20.248.
3. Required the base of a right-angled triangle whose hypothenuse is 40 and perpendicular 20.

Ans. 34.641 .
4. Find the perpendicular on the hypothenuse, and also find the segments of the hypothenuse of a right-angled triangle, whose base and perpendicular are 50 and 60 .

Ans. Perpendicular $\doteq 38 \cdot 4$.
Greater segment $=46.093$;
Smaller segment $=32.009$.
5. Find the perpendicular on the hypothenuse and also the segments of the hypothenuse of a right-angled triangle whose perpendicular and base are 30 and 35 .

Ans. Greater segment $=26.574$;
Smaller segment $=19.5237$;
Perpen. on hypo. $=22 \cdot 77$.

TRIANGLE.

Formulet. $\quad A=\frac{1}{2} b p(\mathrm{xv}) ; b=\frac{2 A}{p}(\mathrm{xVI}) ; p=\frac{2 A}{b}$ (XVII) ; $A=\sqrt{s(s-a)(s-b(s-c)}$ (XVIII), where a, b, and c are the sides, and $s=\frac{1}{2}(a+l+c)$. Also; for equilateral triangle, $A=433 b^{2}$ (xix).
Ex. 1. Find the area of a triangle whose base is 91 and altitude 24 chains.

Solution.

Here $b=91$, and $p=24$; ;then by formula (xv), $A=\frac{1}{2} b p=\frac{1}{2} \times 91 \times 24$
$=1092$ chains $=109 \cdot 2$ acres $=109$ acres 0 r .32 per.
Hix. 2. Required the area of a triangle whose three sides are 100, 120, aud 140 links.

Solution.

Here $a=100, b=120$, and $c=140 ;$ then $s=\frac{1}{2}(a+b+c)=\frac{1}{2}(100+120$ $+140=180$.
Then by formula (xviII) $A=\sqrt{1 \overline{80 \times(180-100)(180-120)(180-140}}$ $=\sqrt{180 \times 80 \times 60 \times 40}=\sqrt{34560000}=6878.7$ sq. links $={ }^{058787}$ acres $=0$ a. 0 r. 9 sq. per. 12 sq. yards.

Ex. 3. Find the area of an equilateral triangle whose base is 1000 yards.

Solution.

Here $b=1000$, then by formula (xix) $A=433 b^{2}=433 \times 1000^{2}=\cdot 433 \times$ $100000=433000 \mathrm{sq}$. yards $=89$ a. 1 r. 34 per. $1 \frac{1}{2}$ yards.

Ex. 4. Find the length of a side of an equilateral garden which contains 4 a. 3 r. 30 1er. $19 \frac{1}{2}$ yards.

Solution.

Here $A=4$ a. 3 r. 30 per. $19 \frac{1}{1}$ yards $=23917$ yards.
Then by formula (xIx) $A=\cdot 433 b^{2} \cdot b^{2}=\frac{A}{-433}$ and $\cdot \cdot b=\sqrt{{ }_{-433}^{A}}$

$$
=\sqrt{\frac{23917}{433}}=\sqrt{52926}=230.05 \mathrm{yards} .
$$

Exercise Iv.

1. Find the area of a triangle whose base is 9 and oltitude 11 .

$$
\text { Ans. } 49 \frac{1}{2}
$$

2. What is the perpendicular altitude of a triangle whose base is 750 chains and area 500 acres? Ans. 13$\}$ claains.
3. Find the area of a triangle whose three sides are 40,60 and 80 yards.

Ans. 1161.8 yards.
4. What is the area of a triangle whose three sides are 420,480 and 700 links?

Ans. 3 r. 37 per. 24 yards.

TRAPEZOID ; TRAPEZIUM ; QUADRILATERAL INSCRIBED IN A CIRCLE.
Formule. Trapezoid, $A=\frac{1}{2} p\left(b+b^{\prime}\right)(\mathrm{xx})$ where b and b^{\prime} are the parallel sides.
le whose base is
$\times 1000^{2}=\cdot 433 \times$ ds.
al garden which
$\because \nu=\sqrt{{ }_{433}^{A}}$
altitude 11.
Ans. 49 그․
lle whose base is Ans. 13$\}$ chains. are 40,60 and 80 ins. 1161.8 yards. ides are 420,480 37 per. 24 yads. lare yards, what Ans. $145 \cdot 2$ yards. 7196 square feet Ans. 11993 feet.

AL INSCRIBED
) where b and b^{\prime}

Trapezium, $A=\frac{1}{2} d\left(p+p^{\prime}\right)$ (xxI) where p and p^{\prime} are the perpendiculars from opposite angles to diagonal.
Quadrilateral in Circle, $A=\sqrt{(s-a() s-b)(s-c(s-d)}$ (xxiI). where a, b, c, d, are the four sides, and $c=\frac{1}{2}$ $(a+b+c+d)$.
Ex. 1. What is the area of a trapezoid whose parallel sides are 19 and 25 chains, and the perpendicular distance between them 13 chains?

Solution.

Here $p=13, b=19$ and $b^{\prime}=25$. Then by formula (xX), $A=\frac{1}{2} p\left(b \times b^{\prime}\right)=$ $\frac{1}{2} \times 13+(19+25)=\therefore 13 \times 44=286$ chains $=28$ a. 2 r. 16 per.
Ex. 2. What is the area of a trapezium whose diagonal is 700 yards and the perpendiculars from it to the opposite angles, 120 and 80 yards?

Solution.

Here $d=700, p=(120$ and $p)=80$, then by formula (xxx$), A=\frac{1}{2} d(p+\mathrm{p})$ $=\frac{1}{2} \times 700 \times(120+80)=\frac{1}{2} \times 700 \times 200=70000$ square yards $=14 \mathrm{a} .1 \mathrm{r}$, 85 per. 1 yard. Ans.
Ex. 3. Find the area of a field in the form of a quadrilateral whose opposite angles are equal to two right angles ; i.e., a quadrilateral which may be inscribed in a circle, whose four sides are $9,11,20$ and 8 chains respectively.

Solution.

Here $a=9, b=11, c=20$ and $d=8$ chains $\therefore 8=\frac{1}{2}(9+11 \times 20+8)=$ 24 chains.
Then by formula (XxxiI), $A=\sqrt{(s-a)(s-b)(s-c,(s-d)}$
$=\sqrt{(24-9)(24-11)(24-20), 24-8)}=\sqrt{15 \times 13 \times 4 \times 16}=111.7139$
chains $=11 \cdot 11139$ acres $=11 \mathrm{a} .0 \mathrm{r} .2 \mathrm{f}$ per. 12.7 yards.

Exercise v.

1. Find the area of a field in the form of a quadrilateral, which may be inscribed in a circle, its four sides being $40,50,60$ and 70 yards.
2. Find the area of a quadrilateral field whose diagonal is 640 links and the perpendiculars on it from the opposite angles 240 links and 300 links.

Ans. 1 a. 2 r. 36 per. 14 yds.
3. What is the area of a park in the form of a trapezoid, whose parallel sides are 90 and 110 , and the perpendicular distance between them 60 ?

Ans. 6000.

REGULAR POLYGON.

Formolet. $A=\frac{1}{2} a n s\left(\right.$ xXIII;) $s=\frac{2 A}{a n}$ (XXIV); and $n=\frac{2 A}{a s}(\mathrm{XXV}$,$) where a=$ apothem or perpendicular from the centre on a side, $n=$ number of sides, and $s=$ length of a side.
Ex. 1. Find the area of a regular pentagon whose side is 20 feet.

Solution.

Here, from table of apothems, it appears that for pentagon whose side is 20 feet, the apothem $=0.68319 \times 20=137638$ feet. Then by formula (XXIII), $A=\frac{1}{2} \times 13.7638 \times 5 \times 20=68819$ square feet.

Ex. 2. Find the length of the side of a regular octagon whose area is 3 a. 2 r. 14.56 per., and apothem 72.42 yards.

Solution.

Here $A=3 \mathrm{a} .2 \mathrm{r} .14 .56$ per. $=17350.44 \mathrm{sq}$. yds., $n=8$, and $a=7242$.
Then by formula (xxiv), $s=\frac{2 A}{a n}=\frac{17330 \cdot 44 \times 2}{72 \cdot 42 \times .8}=59 \cdot 998, i$. e., say 60 yds .

Exercise vi.

1. What is the area of a regular undecagon whose side is 20 ?

Ans. $3746 \cdot 248$.
2. What is the area of a regular heptagon whose side is 60 yards? Ans. 13082.076 square yards \cdot
nal is 640 site angles er. 14 yds. ioid, whose ar distance Ans. 6000.
IV) ; and endicular sides, and se side is
hose side is by formula gon whose
$=7242$.
say 60 jds.
is 20 ?
s. $3746 \cdot 248$. 60 yards? uare yards
3. Find the number of sides in a regular polygon whose area is $123 \cdot 1072$ square yards, its side being 4 yards and apothem 6. 15536 yards. Ans. 10 'sides, a decagon.
4. Find the length of each side of a regular heragon whose area is 4156.915 square yards, and apothem 34.6408 .

Ans. 40 yards.

CIRCLE

Formule. Let $d=$ diameter, $r=$ radius, $c=$ circumference, and $\pi=3.1416$.

Then $c=\pi d(X X V I) ; d=\frac{c}{\pi}=10183!$ (XXVII); $A=\frac{1}{4} c d(\mathrm{XXVIII}) ; d=\frac{9 A}{c}(\mathrm{XXIX}) ; c=\frac{4 A}{d}(\mathrm{XXX}) ;$ $A=\pi r^{2}$ (XXXI); $r=\sqrt{\frac{\bar{A}}{\pi}}=\sqrt{\overline{3183} A}$ (XXXII); $A=\cdot 7854 d^{2}$ (XXXIII) ; and $A=\cdot 796 c^{2}$ (XXXIV).
Ex. 1. Find the diameter and circumference of a circular garden which contains as much ground as an equilateral triangle whose side is 600 links.

Solution.

Area of equilateral triangle by formula (xix) $=4330^{2}=433 \times 360000=$ 155880 links.
Then by formula (xxxir), $d=2 r=2 \times \sqrt{3183 \times 155880}=2 \sqrt{49618004}$ $=2 \times 222 \cdot 74=445 \cdot 48$ links.
Also by formula ($\mathrm{xxv1}$), $=c_{\pi} d=3 \cdot 1416 \times 445 \cdot 48=1899 \cdot 52$ links.
Ex. 2. Find the area of a circle whose diameter is 200 yards.

Solution.

Here $d=200 \therefore r=100$; then by formula (xxxi), $A=\pi r_{2}=3.1416 \times 1002$ $=3.1416 \times 10000=31416 \mathrm{sq} . \mathrm{yd}$; or, by formula (xxyili), $A=7864 \mathbf{d}^{2}$ $=\cdot 7854 \times 40000=81416$ square yards.

Exercise vir.

1. Find the area of a circle whose circumference is 91 .

Ans. 659.1676.
2. Find the area of a circle whose circumference is 100 perches. Ans. 4 acres 3 roods 36 perches.
3. What is the diameter of a circle whose area is 125664 square yards?

Ans. 40 yards.
4. What is the circumference of the earth, the mean diameter being 7921 miles?

Ans. $24884 \cdot 6136$ miles.
5. What is the diameter of a circle whose circumference is $\mathbf{6 8 5 0}$?

Ans. $2180 \cdot 4176$.
6. A man has a circular meadow of which the diameter is 875 yards and wishes to exchange it for a square one of equal size : what must be the side of the square? Ans. 775•425.

CIRCULAR ANNULUS.

Formitle. $A=\frac{\pi}{4}\left(d+d^{\prime}\right)\left(d-d^{\prime}\right)(\operatorname{xxxv})$ where d and d^{\prime} are the diameters.
$A=.0796\left(c+c^{\prime}\right)\left(c-c^{\prime}\right)$ (XXXVI) where c and c^{\prime} are the two circumferences.

$$
A=\frac{1}{4}\left(c+c^{\prime}\right)\left(d-d^{\prime}\right)(\text { XXXVII })
$$

Ex. 1. Find the area of the annulus contained between two concentric circles whose diameters are 12 and 8 feet.

Solution.
By formula (xxxv), $A=\frac{3.1416}{4} \times(12 \times 8)(12-8)=\frac{3.1416 \times 20 \times 4}{4}$
$=3 \cdot 1416 \times 20=62.832$ square feet.
Ex. 2. What is the area of a circular annulus, the circumferences of the circles being 60 and 40 feet?

Solution.

By formula ($\mathbf{x \times 2 V I}$), $A=0796 \times(60 \times 40) \times(60-40)=.0796 \times 100 \times 20$ $=150-2$ square feet.

Exerdise vili.

1. Find the area of an annulus contained between two concentric circles whose circumferences are 20 and 50 feet.

Ans. 167.16 square feet.
2. Find the area of an annulus contained between two concentric circles whose diameters are 30 and 20 yards.

Ans. $392 \cdot 7$ square yards.
3. What is the area of a circular annulus, the diameters of the circle being 20 and 50 and the circumferences 62.832 and 157.08? Ans. 1649:54.

LENGTH OF OIRCULAR ARC; CHORD OF ARC; OHORD OF half the arc.
Formolan. $l=\frac{\pi n d}{360}=\cdot 008726 n d$ ($\mathbf{x X X V I I I}$) where $n=$ number of degrees in the are and $d=$ the diameter of the circle. $k=2 \sqrt{r^{2}-a^{2}}$ (XXXIX) ; $a=\frac{1}{2} \sqrt{4 r^{2}-k^{2}}$ (XL); $k^{\prime}=\sqrt{2 r(r-a)}(\mathrm{XLI})$; and $r=\frac{k_{1}{ }^{2}}{2 h}(\mathrm{XLII})$.
Where $k=$ chord of whole arc, $k^{\prime}=$ chord of half the arc, $r=$ radius, $a=$ apothem or perpendicular from centre on the chord, and consequently $r-a=h$ $=$ height of the segment.
Ex. 1. Find the length of a circular arc of $140{ }^{\circ}$, the diameter of the circle being 80 yards.

Solution.

By formula (xxxvin), $l=\cdot 008726 \times 140 \times 80=97 \cdot 7312$ yards.
Ex. 2. Find the chord of the arc whose apothem is 12 and radius $15 \cdot 205$.

Solution.

By formula ($\mathrm{x} \times \mathrm{xIx}$),$k=2 \sqrt{r^{2}-a^{2}}=2 \sqrt{15 \cdot 6205^{2}-12^{2}}=2 \sqrt{244-144}$

$$
=2 \sqrt{100}=2 \times 10=20 .
$$

Ex. 3. Find the chord of half the arc whose height is 6 and radius 18.75 .

Solution.

By formula (xLi), $\left.k_{1}=\sqrt{2 r(r-a}\right)=\sqrt{2 r h, \text { sinco } h=\left(r-a_{j}\right.}=\sqrt{2 \times 18 \cdot 76 \times 6}$ $=\sqrt{225}=15$.

Exercise Ix.

1. The radius of a circle is $30 \cdot 8058$ yards, the chord of an arc theroof is 36 yards, required its apothem and the chord of half the arc.

Ans. 25 yards; 18.91 yards.
2. What is the chord of an arc whose height is 4 , the radius of the circle being 56t?

Ans. 4166.
3. Find the length of a circular are of 108°, the radius of the circle being 75 feet.

Ans. $141 \cdot 3612$ feet.
4. Find the chord of an arc whose apothem is 20 and the radius of the circle 40 yards.

Ans. $69 \cdot 282$ yards.
b. What is the apothem of an arc whose chord is 90 and radius 70 feet?

Ans. 53.619 feet.

seotor of circle; segment ; lune.

Formoles. $A=\frac{1}{2} l r$ (xliit). Also, from (xxxviii) and (XLIII), $A=\cdot 008 ; 26 n r^{2}$ (XLIV) where $l=$ length of are, $n=$ number of degrees it contains, and $r=$ radius. Segments. Let $A=$ area of corresponding sector and $A^{\prime}=$ area of associate triangle; then area $=A+A^{\prime}$ (xLV) according as the segment is greater or less than a semicircle.
Lune. Let $A=$ area of greater segment and $A^{\prime}=$ area of smaller; then area $=A-A^{\prime}$ (XLVI).
Ex. 1. Find the area of a sector of a circle whose radius is 90 yards, the arc of the sector being 80 yards in length.

Solution.

By formula (xLini), $A=\frac{1}{2} \times 80 \times 90=3600$ sqquare yards.

Ex. 1. Find the area of a circular sector whose are contains 120°, the radius of the circle being 40 feet.

Solution.

By formula (xliv), $A=\cdot 008726 \times 120 \times 40^{2}=1675 \cdot 892$ square feet.
Ex 3. Find the area of a circular segment whose arc containg 150°, the diameter of the circle being 60 yards and the apothem of
arc therebrd of half 3.91 yards. dius of the Ans. 41.66. the circle - 3612 feet. e radius of 282 yards. 1 radius 70 53.619 feet.
VIII) and ength of $=$ radius. ctor and $=A+A^{A}$ r or less $A^{\prime}=\operatorname{area}$ adius is 90 arc 6 yards.

Solution.

Here length of are, by formula (xxxviII), $=\cdot 008726 \times 150 \times 60=78 \cdot 684$. Area of sector $=\frac{1}{2} l r=\frac{1}{2} \times 78.534 \times 30=1178.01$ square yards.
Area of triangle whose base is 58.787 and altitude (apothem), 6
$=\frac{1}{2} \times 58.787 \times 6=176.36$.
Hence area of segmient $=1178.01-176 \cdot 361=1001.649$ square yards.
Note.-We subtract because the segment is less than a semicircle.
. Ex. 4. Find the area of a lune the outer arc containing 240° and the inner one 32°, the radius of the smaller circle being 23 feet and of the larger 80 feet, the common chord being 38.

Solution.

Here by formula (XI), apothem of larger arc $=\frac{1}{2} \times \sqrt{4 \times 28^{2}}-88^{2}$ $=\frac{1}{2} \times \sqrt{2116-1444}=+\times \sqrt{6 \overline{6} 2}=\frac{1}{2} \times 25.9229=12.96$ square feet, and length of are $=95225$.
Similarly apothem of smaller are $=77.7$ feet and length of are $=44.68$. Of smaller circle area of sector $=A \frac{1}{2} \ell r=\frac{1}{2} \times 96.225 \times 23=1106.587 \mathrm{sq}$. feet, and area of triangle $=\frac{1}{2} \times 38 \times 12.96=246.24$ sq. ft. Then since segment is greater than semicircle; A of segment $=1106.587+246.24$ $=1352 \cdot 827$ square feet $=$ area of greater segment.
Of greater circle, area ot sector $=A=\frac{1}{2} l r=\frac{1}{2} \times 44.68 \times 80=1787.2 \mathrm{sq}$. ft. and of associate triangle, area $=\frac{1}{2} b p=\frac{1}{2} \times 38 \times 77.7=1476.3$ square feet $\therefore A$ of smaller segment $=1787 \cdot 2-1476.3=810 \cdot 9$ qquare feet.
Hence area of lune $=A-A^{\prime}=1352 \cdot 827-310 \cdot 9=1011 \cdot 927$ square feet.

Exercise x.

1. What is the area of a sector whose arc contains 36° and whose radius is 3 feet?

Ans. 2.8272,
2. What is the area of a circular sector whose are is 650 feet in length and whose radius is 325 foet? Ans. 105625 sq. feet.
3. Find the area of a segment of a circle, the arc containing 280°, the radius being 5 feet and apothem 3 feet.

Ans. 73.082.

ELLIPSE.

Formule. Let $C=$ circumference, $t=$ transverse axis; $c=$ conjugate axis, $a=$ absciss, $o=$ ordinate.
Then $C=\pi \sqrt{\frac{t^{2}+c^{2}}{2}}$ (xLviI) $A=\frac{\pi t c}{4}=7884 t c$ (xLviI)) ;

$$
\begin{aligned}
& o=\frac{c}{t} \sqrt{(t-a) a}(\mathrm{XLIX}) ; a=\frac{t}{2} \pm d \text { and } d^{\prime} \\
& =\frac{t}{c} \sqrt{\left(\frac{c}{2}+a\right)\left(\frac{c}{2}-o\right)}(\mathrm{L}) ; t=\frac{c u}{o^{2}}\left\{\frac{c}{2}+\sqrt{\frac{c^{2}}{4}}-o^{2}\right\}(\mathrm{LI} ;) \\
& c-\frac{o t}{\sqrt{(t-a) a}}(\mathrm{LII}) .
\end{aligned}
$$

Ex. 1. Find the transverse axis of an ellipse whose conjugate axis is 15 , an ordinate 6 and the smaller absciss 9.

Solution.
Fo
By formula (LI), $t=\frac{c a}{0^{2}}\left\{\frac{c}{\frac{1}{2}}+\sqrt{\frac{c^{2}}{4}-0^{4}}\right\}=\frac{15 \times 9}{6^{2}}\left\{\frac{15}{2}+\sqrt{\frac{225}{4}-36}\right\}$

$$
=\frac{135}{36}\left\{\frac{18}{2}+\sqrt{\frac{18}{4}}\right\}=\frac{15}{4}\left(\frac{1}{2} \frac{2}{2}+\frac{9}{2}\right)=15 \times 12=45 .
$$

Ex. 2. Find the ordinate of an ellipse whose axes are 45 and 15 and one absciss 9.

Solution.

By formula (xLux), $o=\frac{c}{t} \sqrt{(t-a) a}=\frac{15}{45} \times \sqrt{(45-9) \times 9}=\frac{1}{3} \sqrt{36 \times 9}$

$$
=\frac{1}{5} \times \sqrt{324}=-\frac{1}{3} \times 18=6 .
$$

Ex. 3. Find the area of an ellipse whose axes are 30 and 40.

By formula (xLvinl, $A=\frac{\pi t o}{4}=\cdot 7854 \times 80 \times 40=942 \cdot 48$.

Exeruise xi.

1. Find the circumference of an ellipse whose axes are 20 and 16. Ans. 56.8943.
2. What are the abscisses of an ellipse whose axes are 80 and 120 and an ordinate 25 ?

Ans. $106 \cdot 836$ and $13 \cdot 163$.
3. What is the area of an ellipse whose axes are 28 and 20 chains? Ans. 43 a. 3 r. 37 per. 5 yds.
4. What is the ordinate of an ellipse of which the axes are $25 \frac{1}{2}$ and $18 \frac{1}{2}$ and one absciss $7 \frac{1}{2}$?

Ans. 8.429.
b. What is the area of an elliptical park of which the conjugate axis is 1800 links, an ordinate 400 links, and the smaller absciss 600 links? Ans. 162 a. 3 r. 10 per. 28 yds.
6. What is the area of an ellipse whose transverse axis is 100 , an ordinate being 20 and the greater absciss 75? Ans. 3627.44.

PARABOLA.

Formules. Let $p=$ parameter, a and $a^{\prime}=a n y$ two abscisses, o and o^{\prime} their corresponding ordinates, $b=$ base or double ordinate, and $l=$ length of parabolic curve. Then $p=\frac{o^{2}}{a}(\mathrm{LIII}) ; o^{\prime}=0 \sqrt{ }\left(\frac{a^{\prime}}{a}\right)(\mathrm{LIV}) ; a^{\prime}=a\left(\frac{o^{\prime}}{o}\right)^{2}(\mathrm{LV}) ;$ $l=2 \sqrt{ }\left(o^{2}+\frac{4}{3} a^{2}\right)(\mathrm{LVI}) ; A=\frac{3}{3} a b(\mathrm{LVII})$.
For parabolic zone, $A=\frac{2}{3} h\left(b^{\prime}+\frac{b^{2}}{b+b^{\prime}}\right)$ (LVIII) where h $=$ height of zone and b and $b^{\prime}=$ bases or double ordinates.

Ex. 1. Find the parameter of a parabola whose ordinate is 25 and absciss 12.

Solution.
By formula (LIII), $p=\frac{0^{2}}{a}=\frac{25^{9}}{12}=\frac{625}{12}=52 \frac{1}{12}$.
Ex. 2. Find the areu of a parabola whose base or double ordinate is 30 and height 22.

Solution.

By formula ($\mathrm{L} \nabla \mathrm{IIII}$), $\boldsymbol{A}=2 \mathrm{i} a b=\frac{2}{3} \times 30 \times 22=440$.
Ex. 3. Find the length of a parabolic curve of which the ordinate and absciss are respectively 30 and 8.

By formula (LVI), $l=2 \sqrt{0^{2}+\frac{3 a^{2}}{3}}=2 \sqrt{200+\frac{4}{2} \times 64}-2 \sqrt{900+2 \frac{10}{2} 6}$ $=2 \sqrt{2} \sqrt{9 / 36}=\frac{2}{3} \sqrt{8868}=\frac{2}{3} \times 94 \cdot 17=62 \cdot 78$.

ExERCISE XII.

1. Given an ordinate of a parabola, 60 and its absciss 42, find, the parameter.

Ans. 85•7.
2. Two ordinates are 40 and 30 and the absciss of the furmer 21, find that of the lat tior.

Ans. 11.8125.
3. Find the area of a parabola wlose base is 75 and height 48 chains.

Ans. 240 acres.
4. Find the area of parabolic zone whoso parallel ends are 12 and 16 and height 8.

Ans. 112.76.
5. Find the length of a parabolic curve whose absciss is 12 and ordinate 15.

Ans. 40.841 .
6. What is the ordinate of a parabola whose absciss is 20 ; a second absciss and ordinate being 6 and 4 respectively.

Ans. 7.302.

hyperbola.

Symbols same as for ellipse and parabola.
FORMULE $\quad 0=\frac{c}{t} \sqrt{(t+a) a}$. (LIX); $a=-d \pm \frac{t}{2}$ and

$$
\begin{align*}
& d=\frac{t}{c} \sqrt{\frac{c^{2}}{4}+o^{2}}(\mathrm{LX}) ; c=\frac{o t}{\sqrt{(t+a) a}} \tag{LXI}\\
& t=\frac{c a}{o^{2}}\left\{\frac{c}{2} \pm \sqrt{\frac{c^{2}}{4} \div o^{2}}\right\}(\mathrm{LXII}) ; \\
& A=\frac{4 c a}{75 t}\{3 \sqrt{7} a(7 t+5 a)+4 \sqrt{t a\}}(\mathrm{LXIII}) .
\end{align*}
$$

1. What is the ordinate of an hyperbola of which the axes are 30 and 15 , and the smaller absciss 10 ?

Solution.

By formula (LIX), $0=\frac{c}{t} \sqrt{(t+a) x}=\frac{15}{30} \sqrt{(30+10)} \times \overline{10}=\frac{1}{2} \sqrt{400}=10$.
Ex. 2. What is the transverse axis of an hyperbola whose conjugate axis is 36 , ordinate 12 and smaller absciss 20 ?

Solution.

By formula (LXII), $t=\frac{c a}{o^{2}}\left\{\frac{c}{\frac{2}{2}} \sqrt{\frac{l^{2}}{\frac{2}{4}+o^{2}}}\right\}_{144^{3}}^{33 \times 20}\left\{\frac{3 B}{\frac{3 B}{2}}+\sqrt{\frac{1298}{4}+144}\right\}$

$$
=5 \times\left(18+\sqrt{\frac{1872}{4}}\right)=5 \times\left(18+\frac{4326}{2^{-}}\right)=5 \times \frac{36+48 \cdot 2}{2}=198.16 .
$$

Ex. 3. Find the area of an hyperbola whose axes are 60 and 45, the smaller absciss being $7 \frac{1}{2}$.

Solution.

By formula (LxIII), $\left.A=\frac{4 c a}{7 \sigma \bar{t}}\{3 \sqrt{7 a(7 t}+5 a)+4 \sqrt{t a}\right\}=\frac{4 \times 45}{75 \times 70} \times 7$

$$
\times\{3 \sqrt{7 \times 7.5(7 \times 60+6 \times 7.5}+4 \sqrt{60 \times 7.5}\}
$$

$$
=i^{8} \delta\{\sqrt{52} 5 \times(420-37.5)+\sqrt{450}\}=1^{3} 5 \times(2 \times 141 \cdot 708+8 \times 28 \cdot 284
$$

$$
={ }_{70}(141 \cdot 708+28 \cdot 234)-152 \cdot 90 .
$$

Exerdise XiII.

1. Find the transverse axis of an hyperbola whose ordinate is 20 , smaller absciss 103 , and conjugate axis 30 .

Ans. 50.
2. What are the abscisses of an hyperbola whose axes are 30 and 25 and the ordinate 10 ? Ans. $39 \cdot 36$ and $9 \cdot 36$
3. What is the area of an hyperbola whose axes are 45 and 90 , the smaller absciss being 30 ?
4. The conjugate axis of an hyperbola is 45 , the ordinate 90 , and the smaller absciss $7 \frac{1}{2}$, find the transverse axis. Ans. 22.5.
5. The axes of an hyperbola are 15 and 20 , and an ordinate 10 , find the abscisses.

Ans. $26 \frac{2}{3}$ and $6 \frac{3}{3}$.
6. Find the area of an hyperbola whose axes are 55 and 33 chains, and smaller absciss $18 \frac{3}{3}$ chains.

Ans. 50 a. 3. r. 37 per.

MENSURATION OF SOLIDS.

The Five Regular Solids.

Let $s=$ surface, $v=$ volume or solid contents, and $e=$ one of the edges.
Tetrahedron or Regular Thiangular Pyramid. $s=e^{2} \sqrt{3}=1 \cdot 732 e(\mathrm{Lxvv}) ;$ and $v=\frac{1}{2} e^{3} \sqrt{2}=\cdot 11785 e^{3}$ (Lxv).
Hexahedron or Cube. $s=6 e^{2}$ (LXVI); $v=e^{2}$ (LXVII).
Octahedron.

$$
\begin{aligned}
& s=2 e^{2} \sqrt{ } 3=3 \cdot 464 e^{2} \text { (LXvIII) } \\
& v=\frac{1}{2} e^{3} \sqrt{ } 2=\cdot 471405 e^{3} \text { (LxII). }
\end{aligned}
$$

Dodecahedron.

$$
\begin{aligned}
& s=15 e^{2} \sqrt{\frac{1}{5}} \overline{(8+2 \sqrt{5})}=20 \cdot 645775 e^{2}(\mathrm{LxX}) ; \\
& v=5 e^{3} \sqrt{\frac{45+21}{} \sqrt{5}}=7 \cdot 6631 e^{3}(\mathrm{LxxI}),
\end{aligned}
$$

Ioosahedron.

$s=5 e^{2} \sqrt{3}=8 \cdot 66 e^{2}$ (LXẊ̀t);
$v=\frac{5}{6} e^{3} \sqrt{\frac{1}{2}(7+3 \sqrt{5})}=2 \cdot 18169 e^{3}$ (LXXIII).
Ex. 1. Find the surface and volume of a tetrahedron whose edge is 20 feet.

Solution.

By formula (Lxiv), $8=1.732 e^{2}=1.732 \times 20^{2}=692.8$ square feet.
By formul爪 (LXV), $v=\cdot 11785 e^{3}=\cdot 11785 \times 20^{3}=942 \cdot 8$ cubic feet.
Ex. 2. Find the surface and solidity of a hexahedron or cube whose edge is 9 feet.

Solution.

By formulas (LXVI) and (LXVII), $s=6 e^{2}=6 \times 9^{2}=486$ square feet, and $v=e^{3}=93=729$ cubic feet.
Ex. 3. Find the surface and cubic contents of a dodecahedron whose edge is 4 feet 2 inches.

Solution.

By formula($L X X$), $s=20.645775 e^{2}=20.645785 \times 502$ (since $4 \mathrm{ft} .5 \mathrm{in} .=$ 60 In .) $=51614 \cdot 4375$ square inches $=358 \cdot 433$ square feet.
By formula (Lxxi), $v=5 \cdot 6631 e^{3}=7 \cdot 6681 \times 50^{3}=957913 \cdot 75$ cubic inches $=$ E54 849 cubic feet.

Exerctse xiv.

1. Find the surface and cubic contents of an icosahedron whose edge is 4.

Ans. $138 \cdot 56$ and $139 \cdot 628$.
2. Find the surface and solidity of a cube or hexahedron whose edge is 20.

Ans. 2400 and 8000 .
3. Find the surface and volume of a tetrahedron whose edge is 8.

Ans. 110.848 and 60.339 .
4. Find the surface and solid contents of a dodecahedron whose edge is 10 .

Ans. $2064 \cdot 5775$ and 7663.1.
5. Find the surface and volume of an octahedron whose edge is 11.

Ans. $419 \cdot 144$ and $627 \cdot 44$.
6. Find the surface and cubic contents of an icosahedron whose edge is 5 yds. Ans. $216 \cdot 506 \mathrm{sq}$. $\mathbf{y d s}$. and 272.711 cub. yds.

RIGHT AND OBLIQUE PARALLELOPIPEDS, PRISMS, • CYLINDERS.

Let $a=$ arca of base or end, $p=$ perimeter of base, and p^{\prime} $=$ the perimeter of a section perpendicular to one of the edges of the solid; also let $h=$ the height, $s=$ the whole surface.
Then $v=a h$ (LXXIV), $s=h p+2 a$ (LXXV) when the solid is right, $s=h p^{\prime}+2 a$ (LXXV1) when the solid is oblique.
Ex. 1. What are the surface and volume of a prism whose height is 20 feet and base an equilateral triangle, each side of which is 24 leet?

Solution.

By formula (x1x), $a=\cdot 483 b^{2}=\cdot 433 \times 4^{2}=6.928$ square feet $=$ area of base and perimeter $=4 \times 3=12$.
Then by formula (LXXV), $s=h p+2 a=20 \times 12+2 \times 6.928=240+13.356$ $=253.856$ square feet - surface.
Also by formule (LXXIV), $v=a h=6.928 \times 20=138.56$ cubic feet.
Ex. 2. Find the surface and solid contents of an oblique prism whuse base is a regular hexagon, with edge $=10$ inches, the lateral edges of the prism being 40 feet long and the perimeter of a section perpendicular to them $4 \frac{1}{2}$ feet.

Solution.

By formula (XIII), area of base $=A=\frac{1}{2}$ ans $=\frac{1}{2} \times 8.66025 \times 6 \times 10$ $=259 \cdot 8075$ square inches $=1.8(42$ square feet.
Then $s=h p^{\prime}+2 a=40 \times 4 \frac{1}{2}+2 \times 1 \cdot 8042=180+3.6084=188 \cdot 6084 \mathrm{sq}$. ft. Also $v=a h=1.8042 \times 40=72 \cdot 168$ cubic feet.

Ex. 3. Find the surface and solidity of a right cylinder whose height is 20 feet and diameter 12 feet.

Solution.

By formula ($\mathbf{x X x I}$), area of the base $=A=\pi r^{2}=8 \cdot 1416 \times 8^{2}=118 \cdot 0976$ aq. it.
Also $e=12 \times 8.1416=87.6992$ feet.

Then by formula (LIXV), $s=h p+2 a=20 \times 37.6992+2 \times 118.0976=$ $753 \cdot 984+226 \cdot 1952=983 \cdot 1732$ sq uare feet.
Also $r=a h=113.0976 \times 20=2261 \cdot 95{ }^{\circ} 2$ oubic feet.
Ex.4. How many gallons of water will a cylindrical cistern contain, whose diameter is 6 feet and depth 7 feet?

Solution.

Area of base $=3 \cdot 1416 \times 32=37 \cdot 2744$ square feet.
Hence volume $=a h=37.2 \overline{7} 44<7=260.9208$ cubic feet.
Then since each cubic foot contains 64 gallons $\times 64=1628.88$ gallons.

Exercise xv.

1. Find the surface and cubic contents of a rectangular parallelopiped whose height is 25 feet, its base being 4 feet wide and 5 feet long.

Ang. 490 sq. ft.; 500 cub. ft.
2. How many gallons of water are contained in a circular cistern whose diameter is 12 feet and depth 10 feet?

Ans. $7068 \cdot 6$ gallons.
3. Find surface and solidity of a right prism whose base is an octagon, cach side of which is 2 feet, the edges of the prism being each 18 feet long.

Ans. 326.6274 sq. ft. and 347.6448 cub. ft.
4. Find the surface and solidity of an oblique prism, each end being a regular nonagon whose side is 20 inches, the edges of the prisin being 14 feet long and the perimeter of a section perpendicular to them being 13 feet.

Ans. 216.3434 sq. ft. ; $240 \cdot 4038$ cub. ft.
5. How many pails of water are contained in a pentagonal cistern whose depth is 15 feet, each edge of the bottom being 6 feet ? Ans. 2322.6446 pails.

Note. A pail holds 10 quarts.
6. Find the surface and solidity of a right cylinder whose height is 42 feet and circumference 22 inches.

Ans. 77.535 sq. ft. and $11 \cdot 2368$ cub. ft.

REGULAR PYRAMID OR CONE.

Formules. Let $p=$ perimeter of base, $l=$ length of slant side, $h=$ height of vertex above the base, and $a=$ area of the base.
Then $v=\frac{1}{3} a h$ (IXXVII); and $s=\frac{1}{2} p l+a$ (LXXVIII.)
Ex. 1. Find the surface and solidity of a regular cone whose slant side is 20 feet and the diameter of the base 10 feet.

Solution.

By formula (xl), $h=\overline{\sqrt{20^{2}-5}}=\sqrt{400-25}=\sqrt{375}=19 \cdot 3649$.
By formula (xxvI), $\quad c=\pi d=3 \cdot 1416 \times 10=31 \cdot 416$.
By formula ($\left\{x \times 1\right.$), $\quad a=\pi r^{2}=3.1416 \times{ }^{52}=3.1416 \times 25=78.54$.
By formula (Lxxvil), $v=\frac{1}{d} a h=\frac{1}{8} \times 78.54 \times 19 \cdot 3649=1520 \cdot 9192$ cub. ft .
By formula (Lxxviil), $s=t p l+a=\frac{1}{2} \times 31 \cdot 416 \times 20+78 \cdot 54=392 \cdot 7$ sq. ft.
Ex. 2. Find the solidity and surface of a right pyramid whose slant side is 24 feet, the base being a pentagon whose diameter is 10 feet.

Solution.

By formula (XXIII), $\quad a=\frac{1}{2}$ ans $=\frac{1}{2} \times 0.68819 \times 5 \times 10=17 \cdot 204$.
Also perimeter $=5 \times 10=50$ feet.
By formula (xI), $\quad h=\sqrt{24^{2}-6 \cdot 882}=\sqrt{576-47 \cdot 33}=\sqrt{528 \cdot 66=22 \cdot 99}$.
By formula (LXXVII), $v_{p}=j a h=\$ \times 17 \cdot 204 \times 22 \cdot 99=131 \cdot 839 \mathrm{cub}$. ft.
By formula ((XXXIII),) $=\frac{1}{2} p l+a=\frac{1}{2} \times 50 \times 24+17 \cdot 204=617 \cdot 204$ sq. ff.

Exercise xvi.

1. Find the solidity and surface of a right cone whose slant side is 10 feet and the diameter of the base 6 feet.

Ans. $122 \cdot 552 \mathrm{sq} . \mathrm{ft}$; $89 \cdot 905$ cub. ft.
2. Find the surface and solidity of a regular square pyramid whose slant side is 20 feet and area of the base $576 \mathrm{sq} . \mathrm{ft}$.

Ans. 1536 sq. ft. ; 3072 cub. ft.
3. Find the surface and solidity of a right cone whose base has a diameter of 14 feet and whose height is 10 feet.

Ans. $422 \cdot 3629$ sq. ft. ; $513 \cdot 139$ cub. ft.
4. Find the surface and solidity of a right pyramid whose height is 18 feet, its base being a regular hexagon whose side is 9 feet.

Ang. $500 \cdot 955 \mathrm{sq}$. ft. ; $1262 \cdot 664$ cub..f

FRUSTUM OF PYRAMID OR CONE.

Formules. Let a and $a^{\prime}=$ areas of the ends, $h=$ height, e and $e^{\prime}=$ edges of ends of pyramid, p and $p^{\prime}=$ perimeters of ends; and, in case of cone, d and d^{\prime} $\sqrt{a a^{\prime}}=$ diameters of ends.
$v=\frac{1}{3} h\left(a+a^{\prime}+\sqrt{ } a a^{\prime}\right)$ (LXXIX);
$v=\frac{1}{3} h\binom{a e-a^{\prime} e^{\prime}}{-\bar{e}-e^{\prime}}(\mathrm{LXXX})$;
$v=\cdot 2618 h\left(d^{2}+d^{2}+d l_{1}\right)(\mathrm{LXXXIII}) ;$
$s=\frac{1}{2}\left(p+p^{\prime}\right) l+a+u^{\prime}$ (LXXXI).
Ex. 1. Find the surface and solidity of a right cone, whose slant side is 20 feet, the diameters of the end being 4 and 2 feet.

Solution.

Here the radii are 1 and 2 feet and their difference is 1 foot.
Hence height $=\sqrt{20^{2}-12}=\sqrt{400-1}=\sqrt{399}=199749$.
By Formula (Lxxxiv), $v=2618 h\left(d^{2}+d,^{2}+d d_{1}\right.$)
$=2618 \times 199749 \times(22+42+2 \times 4)=\cdot 2618 \times 19.9749 \times 28$ $=146.424$ cub. feet.
By formula (Lxxxi) $s=\frac{1}{2}\left(p+p^{\prime}\right)+a+a$,
$=\frac{1}{2} \times 18 \cdot 849 i \times 20+12 \cdot 5 f \mathrm{CA}+3 \cdot 1416=188 \cdot 493+15 \cdot 708=204 \cdot 204 \mathrm{sq} . \mathrm{ft}$
Ex. 2. Required the surface and solidity of a frustum of a regular hexagonal nyramid, the sides of its ends being 6 and 4 feet respectively, and its length 24 feet.

Solution.

By formula ($\times \times 111$), areas of ends $=\frac{1}{2}$ ans $=\frac{1}{2} \times 5 \cdot 19615 \times 6 \times 6=93.6807$; and $\frac{1}{2} \times 3.4641 \times 6 \times 4=415692$.
Difference of apothems of huxagons whose sides are 6 and 4 feet $=5$ 1981 and $3 \cdot 4641=1 \cdot 732$.
Hence by formula ($\mathbf{x I}$), height of frustum $=\sqrt{2 t^{2}-1} \cdot \sqrt{73} z^{2}$
$=\sqrt{576-3 \text { (neariy) }}=\sqrt{5} \overline{73}=33.037$.
Then by formila (LxXix), $v=\frac{1}{3} \times h \times\left(a+a_{c}+\sqrt{u} a^{4}\right.$.
$=\$ \times 23.937 \times\left(93.5307+41.5592+1^{\prime} 03.5307 \times 41 \cdot 5693\right)$
$=7.979 \times(135.0799=\sqrt{3887.996374)}=7.979+135.0959+62.353)$
$=7 \cdot 979 \times 19 \cdot \cdot 4529=1575 \cdot 476 \mathrm{cub}$. ft.
By formula (LXXXI), $s=1(33+24) \times 24+93 \cdot 5307+41 \cdot 5692$.
$=80 \times 24+135 \cdot 0999=720+135 \cdot 0999=855 \cdot 0999$ sq. ft.

WEDGE.

Formula. Let $l=$ length of back and $b=$ breadth of back, $e=$ length of edge, and $h=$ height.
Then $v=\frac{1}{6} l h(e+2 l)$ (LXXXV).
Ex. 1. The length and breadth of the base of a wedge are 70 inches and 15 inches, the edge is 110 inches in length, and the height is 17.145 inches; what are its solid contents?

Solution.

Here $b=15 \mathrm{in}=1.25 \mathrm{ft}$.; $h=17 \cdot 145 \mathrm{in}=1.42875 \mathrm{ft} . ; \quad t=110 \mathrm{in}=91 \mathrm{ft}$. and $l=70 \mathrm{in}=55 \mathrm{ft}$.
By formula (LXXxV). $v=\frac{1}{6} b h\left(e+2 l\left(=\frac{1}{6} \times 1 \cdot 25 \times 1 \cdot 42875\right) \times 9 \frac{1}{6}+5 \frac{8}{6} \times 2\right)$ $=\frac{1}{6} \times 1.25 \times 1.42875 \times 205=5.767 \mathrm{cub} . \mathrm{ft}$.
Ex. 2. Find the solidity of a wedge whose base is 6 inches long and 4 wide, its edge being 16 inches in length and height $\$ 5.8745$ inches.

Solution.

By formula (Lxxxv) $v=\frac{1}{6} b h(e+2 l)=\frac{1}{6} \times 4 \times 15.8745 \times(16+2 \times 6$ $=\frac{1}{6} \times 4 \times 15.8745 \times 28=\frac{1}{2} \times 15.8745 \times 56=56 \times 5 \cdot 2915=286.324$ cub. in

Exercise xvif.

1. Find the solid contents of a wedge whose length is 64 inches, the edge being 42 inches long, the base 9 inches broad, and the height of the wedge 28 inches.

Ans. 4 cub. ft 288 cub. in.
2. Find the solid contents of a wedge whose height is 20 inches, the base 12 inches wide and 15 inches long, the edge being 24 inches.

Ans. 1 cub. ft. 432 cub. in.
3. Find the solidity of a wedge whose edge is 2.7 feet long, and back 3.2 feet long, the breadth of the back being 40 inches and the height of the wedge 4 feet.

Ans. 20 cub. ft. 384 cub. in.

SPEEBE, BPHERICAI SEGMENT.

dth of

0 inches height is
$\mathrm{in}=91 \mathrm{ft}$.
$+55 \times 2)$
ches long ht $\mathbf{i} 5.8745$
$(16+2 \times 6$
6.324 cub. in
s 64 inches, broad, and

288 cub. inis 20 inches, edge being

432 cub. in. et long, and ing40 inches i. 384 cub, in.

Formular. Let $d=$ diameter. Then
FOR SPHERE; $v=\cdot 5236 d^{s}$ (LXXXVI); and $s=\pi d^{2}$ (LXXXVII).

For, sphekical segment, let $r=$ radius of base, and $h=$ height of segment, $d=$ diameter of sphere and $8=$ convex surface.
$v=-5236 h\left(3 r^{2}+h^{2}\right)$ (LXXXVIII);
$v=\cdot 6226 h^{2}\left({ }^{3} d-2 h\right.$ (LXXXIX); and $s=\pi d h$ (XC).
Ex. 1. The diameter of a sphere is 50 inches, required its solidity and surface.

Solution.

By formula (LXXXVI), v=-5236d ${ }^{3}=5236 \times 503=\cdot 5236 \times 125000=523.6$ $\times 125=65400$ cub. in.
By formula (LXXXVII), $s=\pi d \varepsilon=3.1416 \times 50^{2}=3.1416 \times 2500=314 \cdot 16$ $\times 25=7854$ sq. inches.
Ex. 2. Find the convex surface and the solidity of a spherical segment whose height is 2 feet, the diameter of the sphere being 5 feet.

Solution.

By formula (LXXXIX), $v=5236 h^{2}(3 d-2 h)=5236 \times 2^{2} \times(15-4)=5236$ $\times 4 \times 11=23.0384$ cub. ft .
By formula (xo), $s=\pi d h=3 \cdot 1416 \times 5 \times 2=31 \cdot 416$ square feet for convex surface.

Exercise xviil.

1. Find the solidity of a sphere whose diam 'ter is 16 feet:

Ans. 2144.6656 cub. ft. 2. Find the surface of a globe whose diameter is 24 feet.

Ans. 1809 ft .80 .87 sq , in.
3. What is the solidity of a sphere whose diameter is 6 .feet?

Ans. 113.0976 cub. ft .
4. What is the surface of a sphere whose diameter is 16 inches? Ans. 5 sq. ft. $84 \cdot 24$ sq. in.
5. Find the solidity and surface of a sphere whose diameter is 12 feet.

Ans. $409 \cdot 7808$ cub. ft.; $452 \cdot 3904$ sq. ft.
6. Find the solidity and surface of a sphere whose diameter is 15 feet.

Ans. $1767 \cdot 15$ cub. ft. ; 706.86 sq. ft.
7. What is the solidity of a spherical segment, the height being 4 feet and diameter of the base 14 feet? Ans. $341 \cdot 387$ cub. ft .
8. What is the solidity of a spherical segment whose height is 2 feet, the diameter of the spluere being 8 feet ?

Ans. 41.888 cub. ft.
9. Fird the solidity and surface of a spherical segment whose height is 5 feet, the diameter of the sphere being 12 feet.

Ans $340 \cdot 34$ cub. ft.; $188 \cdot 496 \mathrm{sq}$. ft.
10. What are the solid contents and convex surface of a spherical seguent whose height is 4 feet, the diameter of the sphere being 16 feet?

Ans. $335 \cdot 104$ cub. ft. ; 201•0624 sq. ft.

SPHERICAL ZONE.

Let r and $r_{1}=$ radii of the ends, $d=$ diameter of end of zone, $d_{1}=$ diameter of sphere, and $s=$ convex surface. Then $v=\frac{\pi h}{2}\left(r^{2}+r_{1}^{2}+\frac{1}{3} h^{2}\right)(\mathrm{XCI})$; for other thau middle zone. For middle zone $v=\frac{\pi h}{4}\left(d^{2}+\frac{2}{3} h^{2}\right)(x O I I)$;

$$
v=\frac{\pi h}{4}\left(d_{1}^{2}-\frac{1}{3} h^{2}\right)(\mathrm{xCIII}), \text { and } s=\pi d, h \text { (xCIV) }
$$

Ex. 1. Find the solidity of the middle zone of a sphere, the. height of which is 5 inches, the diameter of the end being 25 inches.

Solution.

By formula (xOL1), solidity $=\frac{\pi^{h}}{4}(d+3 / 2)=\frac{3.1416 \times 5}{4}\left(25^{2}+\frac{2}{2} \times 68\right.$ $=7854 \times 8(625+163)=8.928 \times 6411_{3}=2520 \cdot 466$ cub. in.

Ex. 2. Find the convex surface of a spherical zone whose height is B inches, the diameter of the sphere being 25 inches.

Solution.

By formula ($\mathbf{x c I \nabla}$), surface $=\pi d h=8.1416 \times 25 \times 5=392.7$ inches.
Ex. 3. Find the solidity of a spherical zone whose height is 3 feet, the diameters of the ends being 4 feet and 5 feet.

Solution.

By formula $(\mathbf{x c t}), v=\frac{\pi h}{2}\left(r^{2}+r_{1}{ }^{2}+j h^{2}\right)=\frac{3 \cdot 1418 \times 3}{2}\left(4^{2}+6+j\right.$ of8 2$)$
$1.6708 \times 8 \times(16+25+8)=1.5 .08 \times 3 \times 44=207.3456$ cub. feot.

Exercise xix.

1. Find the convex surface of a spherical zone whose height is 3 feet, the diameter of the sphere being 9 feet.

Ans. $84: 8232 \mathrm{sq}$. ft.
2. Find the solidity of a spherical zone whose height is 4 feet, the radii of its ends being 7 feet and 9 feet.

Ans. 850.3264 cub. ft.
3. Find the solidity of a middle spherical zone whose height is 5 feet, the diameter of the end being 8 feet.

Ans. 316.778 cub . ft.
4. Find the convex surface of a spherical zone whose height is 4 inches, the diameter of the sphere being 25 inches.

Ans. $314 \cdot 16$ sq. in.
5. Find the solidity of the middle zone of a sphere whose height is 2 feet 8 inches, the siameter of the ends being 2 feet.

Ans. 24•1242 cub. ft.
6. Find the volume of a spherical zone whose height is 4 feet, the diameter of its ends being 6 feet.

Ans. 146.608.
7. Find the solidity of the middle zone of a sphere whose height is $\mathbf{7}$ feet, the diameter of the ophere being 12 feet.

Ans. 701.8858 cub. ft-

PAKABOLOID; FRUSTUM OF PARABOLOID.

Let $a=$ area of base of paraboloid and $h=$ height; also let a and $a^{\prime}=$ areas of ends of frustum, and d and d_{1} their diameters.
Then for Paraboloid, $v=\frac{1}{2} a h=\frac{\pi d^{2} h}{8}=3927 d^{2} h$ (XCV). " Frustum of Paraboloid, $v=\frac{1}{2} h\left(a+a^{\prime}\right)(x d v i)$,

$$
\text { or } v=\frac{\pi h}{8}\left(d^{2}+d_{1}^{2}\right)=3327 h\left(d^{2}+d_{1}^{2}\right) \quad(\mathrm{XOVII})
$$

Ex. 1. Find the solidity of a paraboloid whose height is 10 feet, the diameter of the base being 20 feet.

Solution.

By formula (xCV), $v=3927 d^{9} h=8927 \times 202 \times 10=8927 \times 400 \times 10$ $=1670.8$ cubic feet.

Ex. 2. What is the volume of the frustum of a paraboloid whose end diameters are 30 and 24 inches, the heig ${ }^{\prime}$ the frustum being 9 inches?

Solution.

By formula (XOVII), $v=3927 h\left(d^{2}+d^{\prime} \varepsilon\right)=8927 \times 9 \times(900+576)$ $=8227 \times 9 \times 1476=5216 \cdot 628 \mathrm{cub}$. in.

Exercise Xx.

1. Find the solidity of a paraboloid whose end diameter is 12 and height 15 feet.

Ans. $848 \cdot 232$ cub. ft.
2. Find the solid contents of a paraboloid whose height is 12 inches, the end diameter being 10 inches.

Ans. $471 \cdot 24$ cub. in.
3. What is the volume of the frustum of a paraboloid whose end diameters are 20 and 28 , the height of the frustum being 14 ? Ans. 6509-3952.
4. What is the volume of the frustum of a paraboloid whose end

SPHEROID ; SEGMENT OF SPHEROID.

Let $t=$ transverse and $c=$ conjugate axis ; $h=$ height of segment. Then $v=5238 c t^{2}$ (XCVIII) for oblate, and $v=5230 t c^{2}$ (XCIX) for prolate spheroid;
$v={ }^{5238}(3 c-2 h) \frac{t^{2} h^{2}}{c^{2}}$ (c) for circular segment of oblate spheroid, and $v=\cdot 5288(: i t-2 \dot{h}) \frac{c^{2} h^{2}}{t}$ (CI) for circular segment of prolate spheroid ; $v={ }^{5} 238(3 t-2 h) \frac{c h^{2}}{t}(\mathrm{cII})$ for elliptical segment of oblate, and

$$
\begin{aligned}
v= & \cdot 5236(3 c-2 h) \frac{t p^{2}}{c}(\mathrm{cIII}) \text { for elliptical segment } \\
& \text { of prolate spheroid. }
\end{aligned}
$$

Ex. 1. Find the solidity of a prolate spheroid whose transverse axis is 7 feet and conjugate axis 5 feet.

Solution.

By formula ($\mathbf{x C 1 X})_{\lambda} v=\cdot 5236 t c^{2}+5236 \times 7 \times 25=91 \cdot 63$ cub. ft.
Ex. 2. Find the solid contents of a circular segment of an oblate spheroid, the height of the segment being 3 inches and the axes of the spheroid 25 and 15 inches.

Solution:

By formula (c), $v=\cdot 5236(3 c 26)^{\frac{t 2 h^{2}}{c 2}}=\cdot 5236(3 \times 15-2 \times 3) \times \frac{625}{c^{2}} \times \frac{9}{225}$ $=\cdot 5286 \times 39 \times 25=510.51$ cub. in.

Ex. 3. Fina ue solidity of an elliptical segment of a prolate spheroid whose height is 10 , the axes being 100 and 60.

Solution.
By forthula (cIII), $v=.5235(3 c-2 h)^{t h^{2}} \frac{c}{c}=\cdot 5136(3 \times 00-210) \times \frac{100 \times 102}{00}$
$=\cdot 5236 \times 160 \times{ }^{100.0}=139523$.

Exercise Xxi.

1. Find the solid contents of a prolate spheroid whose diameters are 12 and 16 feet.

Ans. 1206.3744 cub. ft.
2. Find the solid contents of a circular segment of a prolate spheroid whose diameters are 24 and 40 inches, the height of the segment being 4 inches.

Ans. 337.7748.
3. Find the solidity of an elliptical segment of an oblate spheroid whose diameters are 20 and 24 , the haight of the seginent being 5 inches.

Ans. 2028.95 cub. in.
4. Find the solidity of an oblate spheroid whose diameters are 16 and 20 inches.

Ans. 5663.2576 cub. in.
5. What is the volume of a circular segment of an oblate spheroid whose diameters are 10 and 16 inches, the height of the segment being 4 inches.

Ans. 471.8264 cub. in.
6. What is the volume of an elliptical segment of a prolate spheroid whose diameters are 11 and 15 feet, the height of the segment being 6 feet?

Ans. 539.884 cub. ft-

MIDDLE FRUSTUM OF SPAEROID.

Let $l=$ length of frustum, and $d=$ end diameter. Then for circular frustum of oblate spheroid,

$$
v=-2618 l\left(2 t^{2}+d^{2}\right)(\mathrm{CIV}) ;
$$

For prolate spheroid $v=\cdot 2618 l\left(2 c^{2}+d^{2}\right)$ (cv.)
For elliptical frustum let d 'and $d_{1}=$ diameters of ends, then whether the frustum is a portion of an oblate or prolate spheroid, $v=-2618 l\left(t c+d d_{1}\right)$ (cVI.)

Ex. 1. Find the solid contents of the middle circular frustum of an oblate spheroid, the axis of the spheroid being 25 inches, the end diameters 20 and the length 9 inches.

Solution.

By formula (CIV), $v=-2618 l\left(2 f^{2}+d^{2}\right)=2618\left(2 \times 95^{2}+202\right) \times 9$ $\doteq \cdot 2618(1250+400)+9=-2618 \times 1650 \times 9=3887 \cdot 73$ cub. In.
Ex. 2. Find the solid contents of an elliptic middle frustum of a prolate spheroid whose axes are 24 and 30 , the cnd diameters being 16 and 20 , and the length 10 inches.

Solution.

By formula (c大I), $v=\cdot 2618\left(2 f c+d d^{\prime}\right) l=\cdot 2618(2 \times 30 \times 24+16 \times 20) \times$ $10=\cdot 2618(1440)+320) \times 10=2618 \times 1760 \times 10=4607 \cdot 68$ cub. $\mathbf{n n}$.

Exercise xxif.

1. Find the solid contents of a circular middle frustum of an oblate spheroid whose middle axis (i.e. the transverse uxis) is 20 , the diameter of the end being 14 and the height 10.

Ans. 2607.528.
2. Find the solid contents of an elliptical middle frustum of a spheroid whose axes are 30 and 50 inches, the end diameters of the frustum being 18 and 30 inches and its length 40 inches.

Ans. 21 cub. ft. 782.88 cub. in.
3. Find the cubic contents of a circular middle frustum of a prolate spheroid whose middle or conjugate axis is 20 inches, the end diameter of the frustum being 15 and its length 30 inches.

Ans. $8050 \cdot 35$ cub. in.

HYPERBOLOID; FRUSTUM OF HYPERBOLOID.
Let $r=$ radius of base, and $d=$ diameter half way between base and vertex, and $h=$ height. Also for frustum let r and $r_{1}=$ radii of ends, and $d=$ diameter of section half way between the ends. Then for Hyperboloid, $v=5236\left(r^{2}+d^{2}\right) h$ (CVII).
Frustum of hyperboloid, $v=5236\left(r^{2}+r_{1}^{2}+d^{2}\right) h$ (cvirI).

Ex. 1. Find the solidity of a hyperboloid whose altitude is 4 feet
4.
5.
6.
7.
8.

9
10.
11.

Exerdise xxiti.

1. Find the solid contents of a hyperboloid whose middle diameter is 30, end diameter 50, and altitude 24. Ans. 19163.76.
2. Find the solidity of a frustum of hyperboloid whose end diameters are 16 and 30 , middle diameter 26 , and altitude 20.

Ans. $10105 \cdot 48$.
3. Find the solid contents of a hyperboloid whose middle diameter is 15 , end diameter 24 , aiad height 20.

Ans. 3864-168.
4. Find the solid contents of a frustum of a hyperbolold whose middle diameter is 40 , end diameters 20 and 50 , and altitude 42.

Ans. 51129.54.

Miscellaneous Exercises.

1. How many acres are there in a square field whose side contains 809 links?

Ans 6 a. 2 r. 7 $\frac{1}{6}$ per.
2. What is the side of a square whose area is 3025 yards?

Ans. 55 yards.
3. How many square feet of carpet are required for a square room whose diagonal is 31 feet?

Ans. $408 \frac{1}{2}$ feet.
4. Required the diagonal of $_$square table whose area is 16 square feet.

Ans. 5 ft. 7.8822 in.
5. Find the number of square inches in a sheet of paper whose length is 11 inches and breadth $8 \frac{1}{3}$ inches. Ans. $93 \frac{1}{2} \mathrm{sq}$. in.
6. A rectangle whose end is 11 yards long, contains 2112 square yards, what is the length of its base? Ans. 192 yds.
7. The area of a rectangular pond is 43,750 square yards-one side is 350 yards, what is the length of the other?

Ans. 125 yards.
8. Find the area of a rectangle whose base is 21 and diagonal 35 yards.

Ans. 588 sq. yds.
9 Find the area of a parallelogram whose base is 90 and perpendicular altitude $12 \frac{1}{2}$ feet in length.

Ans. 1125 sq . ft.
10. Required the area of a triangle whose base is 81 feet and altitude 46 feet in length.

Ans. 1863 sq. feet.
11. What is the length of the base of a triangle whose area is 2560 square feet and altitude 40 feet?

Ans. 128 feet.
12. Required the altitude of a triangle which contains 117.5625 square yards-its base being 49 feet 6 inches in length.

Ans. 42 feet 9 in .
13. Find the area of a triangular field whose sides are respectively $\mathbf{1 2 0 0}, 1800,2400$ links in length.

Ans. 10 a. 1 r. 33 per.
14. Find the area of an equilateral flower bed whose side is 25 yards long. Ans. 270 sq. yards $\mathbf{5} 5625$ sq. feet.
15. The four sides of a quadrilateral, inseribed in a circle, are 75, 40,60 , and 55 chains, what is its area?

Ans. 314 a. 2 r. 22 per. 26 yards.
16. Find the area of a park in the form of an octagon whose side is 12 chains and apothem $14 \cdot 485$ chains.

Ans. 69 a. 2 r. 4.6 per.
17. What is the circumference of a circle whose diameter is 44 feet?

Ans. $138 \cdot 23$ feet.
18. Required the diameter of a circle whose circumference is 78.54 yards? Ans. 25 yards.
19. What is the area of a circle whose diameter is 80 feet?

Ans. 5026.56 feet.
20. Find an area of a circular garden whose diameter is 200 yards
"Ars. 6 a. 1 r. 38 per. 16 jards.
21. Find the area of a circle whose circumference is 200 feet.

Ans. 3184 sq. feet.
22. What is the area of a sector of a circle whose radius is 50 feet, the arc of the sector being 30 feet in length ?

Ans. 750 sq. feet.
36.
37.
38.
23. Find the area of a sector whose are contains 40° - the diameter of the circle being 60 feet. Ans. 314.16 sq. feet.
24. Find the area of a circular annulus-the circumferences of the containing circles being 90 and 60.

Ans. $358 \cdot 2$.
25. The diameters of two concentric circles are 50 and 30 feetfind the area of the included annulus.

Ans. 1256 64.
26. What is the area of a triangle whose hasis is $12 \ddagger$ chains and altitude $8 \frac{2}{6}$ chains ? Ans. 5 a. 0 r. 33 per.
27. What is the area of a trapezoid whose parallel sides are $7 \frac{1}{2}$ chains and $12 \frac{1}{4}$ chains, the perpendicular distance between them being $15 \frac{1}{4}$ chains. Ans. 15 a. 0 r. 33 per. 6 yards.
28. The circumference of a circular fish pond is 400 yards-what is the side of a square pond of equal area?

Ans. $112 \cdot 85$ yards.
29. What is the area of a triangle whose sides are 24,36 and 48 yards respectively? Ans. $418 \cdot 282$ sq. yards.
30. Find the area of a square field whose side is 19 chains.

Ans. 36 a. 0 r. 16 per-
31. Find the area of a triangular field whose three sides are respectively 120,140 , and 160 yards.

Ans. 1 a. 2 r. 28 per. 26 yards.
32. Required the area of a field in the form of a rectangle whose adjacent sides are 740 yards and 180 yards.

Ans. 27 a. 2 r. 3 per. 9 yards.
33. What is the area of a circle whose circumference is 92 ?

Ans. 673.734.
34. Find the area of a quadrilateral inscribed in a circle-ita four sides being $400,360,300$, and 280 links.

Ans. 1 a. 15 por. 25 yardg.
35. Find the area of an equilateral triangle whose base is 20 . Ans. 173.2.
36. Find the area of a circle whose radius is 35 . Ans. $3848 \cdot 46$.
37. Find the area of a quadrilateral whose diagonal is 87 chains and perpendiculars from it to the opposite angles 29 chains and 23 chains respectively.

Ans. 208 acres.
38. Find the area of a trapezoid whose parallel sides are 750 and 600 links, and the perpendicular distance between them 240 links.

Ans. 1 a. 2 r. 19 per. 6 yards.
39. Find the area of a triangle whose sides are respectively 90,70 , and 60 chains in length. Ans. 209 a. 3 r. 1 per. 6 yds.
40. A circular garden is to be formed so as to contain as much land as an equilateral triangle whose side is 56 chains. Required the diameter of the circular garden and also its area. Ans. 914.76 ; 13 à a. 3 r. 6 per. 6 yds.
41. Find the area of a circular annulus contained between two circles whose diameters are respectively 100 and 160.

Ans. 12252:24.
42. Required the length of a circular arc of 68°, the diameter of the circle being 250 feet.

Ans. 14834.
43. Fing the area of the sector of a circle whose radius is 50 feet, the arc of the sector containing 70°.

Ans. 1527:05.
44. Find the area of the segment of a circle whose diameter is 60 chains, the circular arc containing 130°, and its chord being 52 chains in length. Ans. 63 a. 0 r. 29 per. $6 \frac{1}{2}$ yds.
45. Find the area of a regular decagon whose side is 11 and apothem $9 \cdot 526279$.

Ans. 523.9453.
46. Find the area of the sector of a circle whose radius is 60 yards, the arc of the sector being 280 yards in length.

Ans. 1 a. 2 r. 37 per. 20 yds. 6 ft.
47. Find the area of a field whose opposite sides are parallel, the base beimg 620 yards, and the perpendicular altitudc 108 yards.

Ans. 13 a. 3 r. 13 per. 16 yards.
48. What is the length of an arc of 1971° of a circle whose diameter is 240 yards? Ans. 4136124 yards.
49. Required the circumference of an ellipse whose diametere are 600 and 400.

Ans. 1570.8.
50. A field containing 7 a. 3 r. 21 per. 17 yds. is divided into two parts, the one forming a circle whose diameter is 80 yards, what must be the dimensions of an equilateral triangle whose area shall be equal to the remainder?

Ans. 276.63 yards.
51. Find the area of a circular annulus contained between two circles whose circumferences are 360 and 240 chains.

Ans. 573 a. 0 r. 19 per. 6 yards.
52. What is the area of an ellipse whose diameters are 5 and 10 ?

Ans. 39.27.
53. The axes of an ellipse are 30 and 10 , and one absciss is 24 ; what is the ordinate?

Ans. 4.
54. The axes of an ellipse are 70 and 50 , and an ordinate 20 ; what are the abscisses?

Ans. 56 and 14.
55. The conjugate axis of an ellipse is 10 , the smaller absciss 6 , and the ordinate 4 ; what is the transverse axis?

Ans. 30.
56. The transverse axis is 280 , and ordinate 80 , and one absciss 56 ; what is the conjugate axis?

Ans. 200.
57. If an ordinate of a parabola is 20 and its absciss 36 , what is the parameter?

Ans. 11•1.
58. The two abscisses are 9 and 16 , and the ordinate of the former is 6 ; find that of the latter.

Ans. 8:
59. Given the two ordinates 6 and 8 , and the absciss of the former 9 , to find that of the latter.

Ans. 16.
60. Find the area of a parabola whose base or double ordinate is 15 , and height or absciss 22.

Ans. 220.
61. Required the length of a parabolic curve whose absciss is 6 and ordinate 12.

Ans. 27•71.
62. 'The transverse axis of an hyperbola is 15 , the conjugate axis 9 , the smaller absciss 5, required the ordinate.

Ans. 6.
63. The transverse and conjugate axes of an hyperbola are 60 and 45 , and one ordinate is 30 ; what are the abscisses?

Ans. $67 \frac{1}{2}$ and $7 \frac{1}{2}$.
64. The transverse axis of an hyperbola is 60 , an ordinate 24 , and the smaller absciss 20 ; what is the conjugate axis?

Ans. 36. riangle d 10 ? s. $39 \cdot 27$. 3 is $24 ;$ Ans. 4. ; what and 14. s 6 , and Ans. 30. зciss 56 ; ns. 200.
what is ns. $11 \cdot 1$. former Ans. 8: former Ans. 16. linate is ins. 220. ciss is 6 s. 27.71 . e axis 9 , Ans. 6. e 60 and and $7 \frac{1}{2}$. 24, and

Ans. 36.
65. The conjugate axis of an hyperbola is 45 , the smaller absciss 30 , and the ordinate 30 ; what is the transverse axis?

Ans. 90.
66. What is the area of an hyperbola whose axes are 15 and 9 , and the smaller absciss 52 ?

Ans. $37 \cdot 919$.
67. Find the volume and surface of a tetrahedron whose edge is 8 .

Ans. 60.3 and 110.85 .
68. Find the volume and surface of a hexahedron whose edge. is 11 .

Ans. 1331 and 726,
69. Find the volume and surface of an octahedron whose edge is 10 .

Ans. $471 \cdot 4$ and $346 \cdot 4$.
70. Find the volume and surface of a dodecahedron whose edge is 4 .

Ans. $490 \cdot 44$ and $330 \cdot 33$.
71. Find the volume and surfact of an icosahedron whose edge is $6 . \quad$ Ans. $471 \cdot 245$ and $311 \cdot 76$.
72. What is the surface of a right cylinder whose length is 20 and circumference 6 ?

Ans. 125•73.
73. What is the surface of a regular pentagonal pyramid, each side of its base being $1_{\frac{1}{3}}^{\frac{1}{3}}$ feet and its slant side 10 feet in length?

Ans. 46.4456.
74. Find the surface of a frustum of a right cone, its length being 31 , and the circumference of its two ends being 62.832 and 37-6992.

Ans. 1985•49.
75. What is the surface of a sphere whose diameter is 800 inches. Ans. 2010624 sq . inches.
76. Find the surface of a globe whose diameter is 13 and circumference $37 \cdot 6992$.

Ans. 452.39.
77. Find the surface of a spherical segment whose height is 2 , the diameter of the sphere being 10 .

Ans. 62.832.
78. What is the volume of a prism whose length is 18 feet, its base being a reg ular hexagon whose side is 16 inches and apothem 13•8564 inches?

Ans. $83 \cdot 138$ cub. feet. 79. If the volume of a triangular prism is 7.656 and its length is 102 ; what is the area of its base? Ans. 729.
80. Required the volume of a frustum of a square pyramid, the side of the greater base being 16 , of the lesser 10 , and its length 18.

Ans. 37-152.
81. What is the solidity of a cone whose altitude is 12 feet, the diameter of its base being 10 feet?

Ans. $314 \cdot 16$.
82. Find the area of the base of a cone whose volume is 282.74 and altitude 30.

Ans. 28.274.
83. What is the solidity of a sphere whose diameter is 30 ?

Any. 14137.3.
84. What is the diameter of a sphere whose volume is equal to $65449 \cdot 85$ feet?

Ans. 50 feet.
85. What is the solidity of a segment of a sphere, the height of the segmeat being 2 , the diameter of the sphere 10 ?

Ans. 54-4544.
86. What is the volume of a spherical segment, whose height is 10 , and the diameter of its base 20 ?

Ans. 2094 4.
87. Find the volume of a spherical zone, the diameter of its end being 10 and 12 , and its heigbt 2 .

Ans. $195 \cdot 9159$.
88. Required the solidity of the middle zone of a sphere, its height being 32 feet, and the diameter of the sphere 40 .

Ans. $31633 \cdot 8$.
89. Find the volume of the middle zone of a sphere, its height being 8 , and end diameters 6.

Ans. 494.278.
90. Find the solidity of an oblate spheroid whose ares are 20 and 12.

Ans. 2513.28.
91. What is the volume of a prolate spheroid, its polar axis being 7, and equitorial axis 5 ?

Ans. 91.63.
92. Find the area of the segment of a circle whose radius is $\mathbf{4 0}$ yards-the arc containing 136°, the chord being 60 yards in length.

Ans. 1105.0523 yds .
93. What is the transverse axis of an ellipse whose conjugate axis is 90 and area is equal to that of an equilateral triangle, whose side is 70 and a circle whose circumference is 240 ?

Ans. 94:87.
94. Find the area of an equilateral triangle whose side is 90 .

Ans. 3507.3 .
95: What is the area of a triangle whose sides are 48,54 , and 60 respectively? Lns. 1231.09.
96. Find the area of an ellipse whose diameters are 40 and 48.

Ans. 1507.968.
97. Find the length of a rectangular field whose breadth is 220 yards, and which contains as much ground as an ellipse whose axes are 900 and 1100 yards.

Ans. $3534 \cdot 3$ yards.
98. Find the diameter of a circle whose area is 5 acres, 3 roods, 27 per., 20 yards.

Ans. 191.04.
99. Find the altitude of a parallelogram whose base is 500 yards, and area equal to the combined areas of a circle whose circumference is 200 yards, and a circular sector whose are contains 200° and whose radius is 40 yards.

Aus. 11.95 yarde.
100. Find the area of a sector, a circle whose radius is 300 links, the arc being 500 links in length. Ans. 3 roods.
101. Find the solidity and surface of a hazahedron whose edge is 7.

Ans. 343 and 294.
102. Find the surface and volume of a dodecahedron whose edge is 4.

Ans. $330 \cdot 3324$ and $490 \cdot 4384$.
103. Find the surface and solidity of a cone whose height is 20 feet, and diameter of base 10 feet. \quad Ans. $\mathbf{4 0 2} \cdot 36$ and 523.6.
104 Required the surface and solidity of a right priam whose base is a regular hoptagon, haring each of its sides 8 feet, the edges of the priam being eaoh 24 foet in length.

Ane. 661.14 and 813.9965
105. How many pails of water (each containing 10 qta.) may be contained in a circular cistern whose diameter is 7 feet, and depth 11 feet?

An. 1058.3265 pails.
106. What must be the depth of a pentagonal cistern which con tains as much water as a circular cistern 8 ft. in diameter and $4 \frac{1}{2}$ feet deep, and a rectangular tank 7 feet long, 5 feet wide and $3 \frac{1}{}$ feet deep-one side of the pentagonal cistern. being 5 feet.

Ans. 12.667 feet.
107. Find the surfaee and solidity of a pyramid whose height is 9 feet-the base being a regular heragon whose edge is 3 . feet. Ans. 10769 and 70.148.
100. Find the surface and solidity of an oblique prism whose bageis a pentagon with each edge 4 feet-the edges of the prism being each 10 feet long, and the perimeter of a section parpendicular or to them 18 feet.

Ans. $235 \cdot 055$ sq. fl. $275 \cdot 276$ cub. $\mathbf{f t}$.
109. Find the area of triangular field whose sides are 8,12 and 14 chains.

Ans. 4 a. 3 r. 6 per. 15 yds.
110. Find the surface and solidity of an icosahedron whose edge is 3 feet.

Ans. 77.94 and $58 \cdot 90563$.
111. Find the solidity and surface of the frustum of a right cone whose slant side is 60 feet-the diameters of the ends being 10 and 20 feet.

Ans. $10957 \cdot 11$ cub. feet and $3220 \cdot 14$ sq. ft.
112. Find the solidity and surface of the frustum of a right pyramid whose ends are squares with edges 10 and 12 feet respectively and height 8 feet. Ans. $970 \cdot 66$ and 508.653.
113. How many cubic feet are there in a squared stick of timber whose end edges are respectively 28 and 20 inches, th length of the stick being 42 feet ? Ans. 169 cub. feet.
1114. What is the solidity and surface of a hexagonal frustum whose height is 6 feet, the edges of the enas being respectively 2 feet and $1 \frac{1}{2}$ feet?

Ans. 48.054 cub. feet; $\mathbf{6 3} .147$ sq. feet.
1115. Find the aren of a triangular park whose three sides are 900, 1100 and 1300 links respectively.

Ans. 4 a. 8 r. 20 per. 27 yds.
1116. Find the diameter of a circle which shall contain as much . ground as a quadrilateral inacribed in a circle, whose four sides are $900,1000,600$ and 800 yards respectively.

Ans. 916-48 yards.
117. Find the area of a square whose diagonal is 44.

Ana. $968 \mathrm{sq} . \mathrm{yds}$.
c118. Find the area of an annulus inclosed between two concentric circles whose circumferences are 180 and 225 yards respectively. Ans. $1450 \cdot 71$ sq. yds.
;119. Find the area of an elliptical field whose diameters aie 980 and 1250 links.

Ans. 9 a. 2 r. 19 per. $11 \cdot 6$ yds.
120. Find the area of a parabolic zone whose height is 25 yards, its double ordinates being respectively 90 and 70 yards.

Ans. $2010 \cdot 416$ sq. yds.
121. Find the surface and solidity of an icosahedron whose edge is $8 \frac{1}{2}$ feet. .Ans. $\mathbf{6 2 5} \cdot \mathbf{6 8 5}$ sq. ft. ; $\mathbf{1 3 3 9} \cdot \mathbf{8 3}$ cub. ft.
122. Find the solidity of an oblique triangular prism, the edges of the ends being 10,16 , and 24 feet, the height 20 feet.

Ans. 1161 1894 cub. feet.
123. Find the surface and solidity of a right cone whose height is 20 feet-the diameter of the end being 12 feet.

Ans. $506 \cdot 68$ sq. ft.; $753 \cdot 984$ cub. ft.
124. Find the solidity of a prolate spheroid, whose axes are 11 , and 7 respectively.

Ans. 282.22.
125. Find the solidity of an oblate spheroid, whose axes are 20 and 15 respectively. Ans. 3141.6.
126. Find the surface and solidity of a sphere, whose diameter is 26 feet.

Ans. $2123 \cdot 7216$ sq. ft. ; $9202 \cdot 7936$ cub. ft.
127. Find the surface and solidity of a spherical segment, whose height is 2 inches, the diameter of the sphere being 5 inches. Ans. 31.416 sq.in. ; 23.0384 cub. in.
128. Find the solidity of the middle zone of a sphere, the diameters of its ends being 7 feet and its height $6 \frac{1}{2}$ feet.

Ans. 393.943 cub . ft.
129. Find the convex surface of a spherical segment, whose height is 9 inches, the diameter of the sphere being 3 feet 6 inches.

Ans. 1187.52 sq. in.
130. Find the surface and solidity of a frustum of a right cone whose height is 9 feet, the diameters of the ends being 10 feet and 6 feet. Ans. 461.815 cub . ft. ; 461.81 sq . ft.
131. Find the solidity and surface of an octagonal pyramid whose height is 8 feet, each edge of the base being 5 feet.

Ans. 321.89 cub. ft.; $321 \cdot 13 \mathrm{sq}$. ft.
132. Find the area of a field in the form of a circle, having a diameter of 11 chains, 64 links.

Ans. 10 a. 2 r. 26 per. $19 \cdot 23$ yds.
133. Find the area of a triangle whose three sides are respectively 79,80 , and 90 yards long.

Ans. 2 r. 8 per. 21 yds. 1.8 ft . 134. Required the area of a qundrilateral field whose diagonal is 29 chains, the perpendiculars upon it from the opposite angles being 9 and 17 chains respectively.

Ans. 37 a. 2 r. 32 per.
185. What is the area of a regular nonagon whose side if 13 yards? $\quad A$ ne. 1 r. 37 per. 2 yde. 1.6 fl
186. Find the solidity and surface of a right cone whose height is 12 feet, the circumference of the base being $31 \cdot 416$ feet.

Ans. $314 \cdot 16 \mathrm{cub}$. ft. ; $382 \cdot 74 \mathrm{sq}$. th.
187. Find the solidity and surface of a hexagonal pyramid whose beight is 24 feet, each edge of the base being 7 feet.

Ans. $1018 \cdot 44$ cub. ft. ; $647 \cdot 13$ sq. ft .
148. What must be the diameter of a circular garden to contain as much ground as a field in the form of an equilateral tria ngle, whose side is 250 yards long?

Ans. 185.6 yd.
\$9. Find the ares of an annulus contained between two conc tric circles, whose diameters are 12 and 16 feet.

Ans. 63.6174 sq . ft.
110. Find the aren of a circular sector whose arc contains 40 degrees, the diameter of the circle being 20 yards.
fns. 34.905 sq. jde.
15. Find the volume of a spherical zone, the diameters of its ends being 20 and 28 inches, and its height $7 \frac{1}{2}$ inches.

$$
\text { Ang. } 3708 \cdot 0697 \text { cub. in. }
$$

19. Find the area of a sector whose are is 500 links long, the diameter of the circle being 500 links. Ans. 2 roods, 20 pon
M3. Required the solidity of a cone whose height is 12 feet, the circumference of the base being 50 feet.

Ans. 796 cub . tt.
14. Required the solidity of an oblique octaronal prism, each side of the hase being 9 feet, the height of the prism being 12 . feet and each edge 20 feet, the perimeter of a section perpendicular to the edges being 60 feet.

Ans. $6008 \cdot 7 \mathrm{cub}$. ft.
145. Find the aurface and solidity of a sphere whose diameter is 30 feet. Ans. 14137.2 cub. ft. ; $2827 \cdot 44$ sq. ft.
146. Find the surface of a spherical segment whose height is 4 inches, the diameter of the sphere being 6 feet.

Ans. 904.78 sq. ft.
187. Find tie colid contents of a hyperboloid, whose middle dismeter is 30 , end diameter $\mathbf{4 0}$, and altitude 24. Ans. $25132 \cdot 8$.
148. Find the solidity and surface of a regular pyramid, whote base is a square, each side being 6 feet, the apothem or per. pendicular on the side of the pyramid being 40 feet.

Ans. Surfuce $=516$ sq. th.
149. Find the volume of a middle zone of a sphere, whose height in 8 'eet, the diameters of the ends being 6 feet. Ans. 494278.
180. Find the contents of a regular hexagonal frustum, whose altstude is 6 feet, the side of the greater end 18 inches, and of the smaller end 12 inches. Ans. 24.6817 cub. ft.

Problems for Practice.

1. Find the area of a square, whose side is 13 chains.
2. Find the side of a square, whose area is 3 acres, 14 per., 18 yards.
3. What is the area of a square, whose diagonal is 260 yards ?
4. The area of a square is 7 acres, 1 rood, 30 per., required the length of its diagonal in yards.
b. (a) Find the area of a rectangle, whose length is 700 and breadth 500 links.
(b) Find the area of a parallelogram, whose base is $\mathbf{6 0 0}$ and perpendicular 250 yards. Answer in acres, roods, \&c.
5. (a) The area of a rectangle is 700 , its breadth is 35 , what is its length?
(b) The area of a parallelogram is 4 acres, 3 roods, 16 yards, its breadth is 120 yards, what is its length?
6. (a) The area of a rectangle is 17 acres, 1 rood, 16 per., its length is 1600 links, what is its breadth?
(b) The area of a parallelogram is 1600 . its length is 240 , what is the perpendicular distance between its sides?
7. Find the area of a rectangle, whose diagonal is 500 links, and breadth 300 links.
8. Find the hypothenuse of a right angled triangle, whose base is 75 yards and perpendicular 48 yards.
9. The hypothenuse of a right angled triangle is 600 , the perpendicular is 230 , what is the base?
i1. The hypothenuse of a right angled triangle is 73, the base is 29 , what is the perpendicular?
10. In a right angled triangle the hypothenuse is 50 , the perpendicular 20, what are the segments into which a perpendicular from the right angle cuts the hypothenuse?
11. In a right angled triangle the hypothenuse is 40 , the base 15 , into what two segments does a perpendicular from the right angle cut the hypothenuse?
12. In a right angled triangle the segments into which a perpendicular from the right angle cuts the hypothenuse are 40 and 30 , what is the perpendicular distance of the rightangle from the hypothenuse?
13. Find the area of a triangle, whose base is 750 and altitude 340 links.
14. The area of a triangle is 1% acres, 4 per., 16 yards, the altitude is 570 yurds, what is the length of the base?
15. The area of a triangle is 640 , the base is 120 , what is the altitude?
16. Find the area of a triangle, whose three sides are respectively 640, 320, 480 links.
17. What is the area of an equilateral triangle, whose base is $\mathbf{1 6 0}$ yards long?
18. Find the area of a trapezoid, whose parallel sides are 500 and 300 links, the perpendicular distance between them being 120 links.
19. Find the area of a quadrilateral field, whose diagonal is 420 yards, the nerpend:culars or the diagonal from the opposite angle being 70 and 130 yords.
20. Find the area of a quadrilateral which may be inscribed in a circle, its four sides being respectively 80, 90, 100 and 120 yards long.
21. Find the area of a regular octagn, whose side is 13 feet. (See Table I. for apothem, page 72).
22. The area of a regular heptagon is 5 acres, 1 rood, $27 \frac{1}{2}$ per., find the length of Ω side. (Sea Table I.; page 72).
23. The area of a regular polygon is 4278.4 square feet, each side is 20 feet long and the apothera 37.32 feet, how many sides has the polygon?
24. Find the circunference of a circle whose diameter is 123 .
25. Find the diameter of a circle whose circumference is 180 yds .
26. Find the area of a circle whose diameter is 14 and circumference 439824 feet.
27. .Required the diameter of a circle whose area is 490.875 square yards, and circumference 7854 yards.
28. Required the circumference of a circle, whose area is $\mathbf{1 2 5 6} \cdot 64$ square feet and diameter 20.40 feet.
29. Find the area of a circle, whose diameter is 840 links.
30. The area of a circle is 15 acres, 2 roods, 16 per., 20 yards, what is its diameter in links?
31. Find the area of a circle whose diameter is 220 yards.
32. Find the area of a circle whose circumference is 330 links.
33. What is the area of a circular annulus, the diameters of the concentric circles being 70 and 50 feet?
34. What is the area of a circular annulus, the circumferences of cuntaining circles being 80 and 280 ?
35. Required the area of a circu!ar annulus, the containing circles having circumferences 251.328 and 439.824 links, and diameters 80 and 140 liaks.
36. The diameter of a circle is 60 feet, what is the length of an arc of 872° of the circumference?
37. What is the length of the chord of a circle, the diameter of the circle being 61.6116 and apothem 25 ?
38. Find the apothem on the rhord of a circle, whose diameter is $24 \cdot 4$, the length of the chord being 24 .
39. Find the chord of half the arc of a circle, whose radius is 18.75, the height of the whole arc being 6 .
40. Find the radins of a circle, the height of the arc being 4, and the chord of half the arc being 20 .
41. Find the area of the segment of a circle, whose diameter is $45 \cdot 3$ feet, the arc containing 2409 , the chord being 40 feet and apothem 10 feet.
42. Find the area of a sector of a circle, whose radius is 50 yards, the length of the arc being 90 yards.
43. Find the area of the sector of a circle, whose radius is 80 feet, the circular arc containing 72 degrees.
44. Find the area of a lune, whose common chord is 40 feet, the length of the outer arc is 94.876 and of the inner one 60 feet; the apothem of the outer smaller circle being 12.65 feet, and
its diameter $45 \cdot 3$ feet, the apothem of the larger circle boing 48 feet and its diameter 200 feet.
45. Find the circumference of an ellipse whose axes are 16 and 28.
46. Find the area of an ellipse whose diameters are 20 and 14.
47. Required the ordinate of an ellipse, whose diameters are 30 and 10 , and one absciss 24.
48. Find the abscisses of an ellipse, whone axes are 60 and 80 , and an ordinate 30 .
49. What is the transverse axis of an ellipse, whose conjugate axis is 70 , an ordinate 28 , and one absciss 168 ?
50. What is the conjugate axis of an ellipse, whose major axis is 70 , an ordinate 20 , and the smaller absciss 14 ?
51. Find the parameter of a parabola, the ordinate and one abscisa being 12 and 28.
52. Two abscisses of a parabola are 9 and 16, the ordinate of the former is 6 , find that of the latter.
53. An absciss of a parabola is 32 and its ordinate 24 , a second ordinate is 18 ; what is its absciss?
54. Find the length of the arc of a parabola, whose absciss and ordinate are 3 and 5.
55. Find the area of a parabola, whose base and height are $\dot{20}$ and 28.
56. Find the area of a parabola zone, whose bases are 7 and 10 and height 6 feet.
57. In an hyperbola the axes are 90 and 45 , the less absciss is 30 ; find the ordinate.
58. The axes are 15 and $7 \frac{1}{2}$, the ordinate 5 ; what are the abscisses of the hyperbola?
59. What is the solidity of a tetrahedron, whose edge is 5 inches ?
60. In an hyperbola, the transverse axis is 25 , the less absciss 8$\}$, and its ordinate 10 ; required the conjugateaxis.
61. The conjugate axis is $31 \frac{1}{2}$, the smaller absciss 12 , the ordinate 21 ; what is the transverse axis of the hyperbole?
62. What is the area of an hyperbola, whose axes are 15 and 9 , the smaller absciss being 5 ?
63. What is the surface of a regular triangular pyramid, whoss edge is 7 feet?
64. What is the aggregate surface of a cube whose edge is $8 \frac{1}{2}$ feet ?
65. What art the solid contents of a herahedron whose edge is 1$\}$ feet long?
66. Find the surface of an octahedron whose edge is $4 \frac{1}{2}$ feet?
67. Required the eubic contente of an octahodron whose edge is 15 inches.
68. The edge of a dodecahedron is 6 inohos, what is its entine surface?
69. Find the volume of a dodecahedron whose edge is $1 \frac{7}{3}$ feet.
70. Required the surface of an icosahedron whose edge is 101 inches.
71. What are the cubic contents of an icosahedron, whose edge is 20 inches?
72. (a) What is the volume of a right rectangular parallelopiped, whose length is 20 feet, breadth $4 \frac{1}{2}$ feet, and height 18 feet?
(b) What is the volume of an oblique triangular prism, the edges of the end being 7, 9 and 11 inohes, and the length of the prism 45 inches?
(c) What is the volume of a hexagonal prism, whose length is 22 feet, each edge of the end being 20 inches.
73. (a) Find the surface of a right rectangular parallelopiped, whose base is 16 inches by 9 inches, the height of the solid being 4 feet.
(b) Find the surface of a right octagonal prism, whose height is 12 feet, each edge of the end being $2 \frac{1}{2}$ feet.
74. Required the solidity of the frustum of a cone, whose height is 5 feet and end diameters 4 and 2 feet.
75. Find the surface of an oblique pentagonal prism, whose length is $4 \frac{1}{2}$ feet and edge 3 feet, the perimeter of a section perpendicular to one of the lateral edges being 16 feet.
76. (a) Find the volume of a regular pyramid, whose height is 10 feet, the base being a heptagon, whose side is 2 feet.
(b.) Find the volume of a regular cone, whose base has a diameter of 7 feet, the height of the cone being 9 feet.
77. (a) Find the entire surface of a regular octagonal pyramid, whose height is 11 feet, each edge of the base being 5 feet.
(b.) Find the entire surface of a right cone, whose height is 14 feet, the diameter of the base being $7 \frac{1}{2}$ feet.
78. Find the solidity of a frustum of a pyramid, whose height is 5 feet, the areas of the two ends being 12 and 18 square feet.
79. Find the volume of the frustum of a right pentagonal pyramid, the upper end edges being 32 feet and the lower 5 feet each, and the height of the frustum 7 feet.
80. Find the volume of the frustum of a hexagonal pyramid, the edge of the bottom being 4 feet and of the top $2 \frac{2}{2}$ feet, while the height of the frustum is 6 feet.
81. What are the solid contents of the frustum of a cone, whose height is 10 feet, the end diameters being 5 and 3 feet?
82. What is the whole surface of the frustum of a cone, whose end diameters are 4 and 8 feet, the slant side being $6 \frac{1}{2} \mathrm{ft}$. long?
83. Find the volume of a wedge, whose edge is 12 inches and back 10 inches long, the breadth of the back being $4 \frac{1}{2}$ inches and the length of the wedge 2 feet.
84. Find the solidity of a spherical segment, whose height is 6 feet, the radius of the base being 2 feet.
85. What are the solid contents of a spherical segment, whose beight is 7 inches, the diameter of the sphere being ${ }^{2} 10$ inches?
86. Find the convex surface of a spherical segment, whose height is 10 inches, the diameter of the sphere being 4 feet, ${ }_{2}$ inches.
87. Find the volume of a sphere whose diameter is $8 \downarrow$ feet.
88. Fiud the surface of a sphere whose diameter is 7924 miles.
89. Fine the volume of a spherical zone, whose height is 2 feet, the racii of the ends being 3 feet and 4 feet.
90. Find the volume of the middle zone of a sphere, the height of the zone being 4 feet and the diameter of either end 3 feet.
91. What is the volume of the middle zone of a sphere, the height of the zone being 6 feet and the diameter of the sphere 10 feet?
92. Find the conver surface of the middle zone of a sphere, the height of the zone being 7 feet and the diameter of the sphere 20 feet.
93. Find the volume of a paraboloid, whose height is 10 feet and diameter 8 feet.
94. Find the volume of the frustum of a paraboloid, whose beight is 5 feet, the areas of the ends being 7 and 9 square feet.
95. What is the volume of the frustum of a paraboloid, whose height is 8 feet and end diameters 10 and 4 feet?
96. Find the volume of an oblate spheroid, whose diameters are 18 and 17 feet.
97. Find the volume of a prolate spheroid, whoso axes are 7 and 11 feet.
98. What is the volume of a circular segment of an oblate spheroid, the axes being 18 and 12 feat, and the height 4 feet?
99. What is the volume of a circular segment of a prolate spheroid, the axes being 10 and 15 and the height 6 feet.
100. Find the volume of an elliptical segment of an oblate spheroid, whose height is 4 feet, the axes being 12 and 16 feet.
101. Find the volume of an elliptical segment of a prolate spheroid, whose height is 6 feet, the axes being 18 and 20 feet.
102. Find the solid contents of a circular middle frustum of a prolate spheroid, whose cunjugate axis is 12 feet, the diametor of the frustum being 6 feet and its height 7 feet.
103. Find the vr!ume of a circular middle frustum of an oblate spheroid, the diameter of the frustum being 6 feet, the transverse axis 20 feet, and the length of the frustum 8 feet.
104. Find the cubic contents of an elliptical middle segment of a spheroid, whose axes are 16 and 24 , the length of the frustum being 12 feet, and the greater and less diameters of either end 6 and 4 feet.
105. Find the solidity of an hyperboloid, whose base has a diameter of 10 feet, the diameter half way between the base and vertex is 6 feet, and the height of the hyperboloid 8 feet.
106. Find the solidity of a frustum of an hyperboloid, whose height is 6 feet, the radii of the ends being 3 and 7 feet, and the diameter half way between the ends 12 feet.

Table I.,
 Showing Apothem and area of Polygons.

Name of Polygon.	No. of Sides.	Apothem when side $=1$.	$\begin{gathered} \text { Area } \\ \text { vhen } \text { side }= \end{gathered}$
Triangle..	3	$0 \cdot 2886751$	0.4330127
Square	4	0.5	
Pentagon.................	5	0.6881910	1-7204774
Hexagon..................	6	0.8660254	2.5980762
Heptagon.................	7	1.0382607	$3 \cdot 6339124$
Octagon..................	8	1-2071068	4.8284271
Nonagon	9	1-3737387	6-818242
Decagon..................	10	1.5388418	$7 \cdot 6942088$
Undecagon	11	$1 \cdot 7028436$	$9 \cdot 3656399$
Dodecagon................	12	1-8660254	11-1961524

Table II.

A gallon of water weighs 10 lbs . avoir.
A cubic foot of water weighs $62 \mathrm{lbs}=1000 \mathrm{oz}$.
A pail of water $=2 \frac{1}{2}$ gallons $=25 \mathrm{lbs}$.
A gallon is equal to $\mathbf{2 7 \%} \mathbf{2 7 4}$ cubic inches.

Table III.

LAND MRAGURE.

7.92 inches $=1$ link.

100 links $=1$ chain.
80 chains $=1$ mile.
10000 square links $=1$ square chain.
10 square chains $=$ or 100,000 square links $=1$ acre.
1 chain $=4$ rods.
1 acre $=160$ square rods $=4840$ square jards.

[^0]

[^0]: Notr.-If we desire to compute area of polygon by tabular area, we must remember that similar poiygons are to each other as squares of homologous sides; hence $1^{\text {² }}$; sidex : : tabular arem : required area.

