IMAGE EVALUATION
 TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The institute has attempted to obtain the best original copy avaliabie for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual mathod of fliming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
 Couverture endommagée

Covers restored and/or laminated/
Couverture restaurbe et/ou peiliculbe

Cover title missing/
Le titre de couverture menque
Coloured maps/
Cartes góographiques on couleur
Coloured ink (I.e. other than blue or black)/
Encre de couleur (l.e. autre que bleue ou nolre)

Coloured plates and/or Illustrations/
Pianches at/ou illustrations on couleur
Bound with other material/
Rellb avec d'autres documents
Tight binding may cause shadows or dlatortion along Interior margin/ La rellure serrbe peut causer de l'ombre ou de la diatortion le long de le marge intorioure

Blank ieaves added during restoration may appear within the text. Whenever posslble, these have been omitted from filming/ II se peut que certaines pages bianches ajoutbee lors d'une restauration apparalasent dens io texte, mals, lorsque cele útelt posslblo, ces pages n'ont pas citc fillmies.

L'Institut a microfilm' le meilour exemplaire qu'll lui a úté possible de se procurer. Les dótails de cet exemplaire qui sont peut-otre uniques du point de vue blbilographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de coulour
Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurdes et/ou pelliculies

Pages discoloured, stalned or foxed/
Pages décolortes, techotbes cu plquies
\square Pages dotached/
Pages dótachbes
Showthrough/
Transparence

Quallty of print varies/
Qualltó Ińgale de l'impressionIncludes supplementary material/ Comprend du matóriel supplómentaire

Only edition available/
seule sdition disponible

\square
Pages wholly or partially obscured by errata slips, slesues, etc., have been refilmed to ensure the best poselble image/
Lee pages totaioment ou partiblioment obecurcies par un foulliet d'orrata, une pelure. etc., ont ćt'́ filmies inouveeu de feçon i obtenir ia mollioure image poaslbie.

Additional comments:/
Commentairce supplémentaires:

Maps are photoreproductions. Pagination as foliows: 440-458 p.

This ltem is filmed at the reduction ratio cheoked below/ Ce document eat filmé eu teux de réduction Indiqub al-dessous.

The copy filmed here has been reproduced thanks to the generoulty of:

Library of the Public
Archives of Canada

The images appearing here are the best quality possible considering the condition and leglbility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illuatrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustratod impression, and ending on the last page with e printed or Illuatrated improssion.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the aymbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., moy be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, ieft to right and top to bottom, as many frames as required. The following diagrams lilustrate the method:

L'oxamplaire filme fut reprodult grace di la générosité de:

La bibllothique des Archives publiques du Canada

Les images suivantes ont óté reprodultes avec le plus grand soin, compte tenu de la condition et do la nottote de l'exemplaire filmb, ot en conformith avec lea conditions du contrat de filmage.

Les exemplaires originaux dont ia couverture en papier eat Imprimbe sont filmbs on commencant par le premier piot et en terminant solt par la dernil're page qui comporte une empreinte d'impresaion ou d'iliustration, soit par le second plat, aclon le cas. Tous ies autres exemplaires originaux sont filmbe en commençant par la premialre page qui comporte une empreinte d'impression ou d'illustration ot on terminant par le derníbre page qui comporte une telle emprointe.

Un dee aymboles suivante apparaftra sur ia dernidre image de chaque microfiche, selon le ces: io aymbole \rightarrow signifio "A SUIVRE", ie aymbole ∇ aignifle "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à doe taux de réduction diffórents. Lorsque io document eat trop grand pour otre reproduit on un soul cliché, il est film' il partir de l'angle zupúriour gauche, de gouche à drolte. ot de hefut on bas, on pronant io nombre d'Images núceseaire. Les diagrammes sulvants illustrent la mothode.

Narrative of the atlantic telegraph expedition, 1865.

The following narrative of the events which took place in the Great Eastern in her voyage with the Atlantic Tolegraph Cable is as nearly as possible a transcript from my diary written on board.
I did not join the ship until Sunday, 23d of July, when the splice was made between the main cable and the shore end, twenty-seven miles off the Irish land. I was at Valentia for a week before her arrival at Berehaven, where she anchored on Wednesday morning, the 19th of July. She left her anchorage off the Maplin Sands at the Note on Saturday, the 15th. She took the screwsteamer Caroline in tow on Monday, the 17th, off Falmouth, with the shoreend of the cable, and encountered a strong gale, with heavy sea, off the Irish coast, during which the tow-rope broke, and the Caroline was obliged to find her way to Valentin, the Great Eastern bearing up for Berehaven. On Thursday evening, July 20th, the Caroline went round from Valentia Harbour to Port Magee to be in readiness the following day, if the weather was fine, first to lay the "earth cable," and as soon as possible afterwards to attach the shoreend of the cable to the cliff of Foilhammarum, on the south side of Valentia. Foilhammurum Bay, about a mile in length at its widest part, is protected on the north side by the bold projecting headland of Bray, on the south by ledges of rock forming the northern entrance to Port Mage Channel. The bay becomer gradually narrower towards the cliffs, which rise to a height of about 300 feet. No better place could be well imagined for landing and maintraining a shore-end cable in safety. The bay was carefully surveyed and dredged by Lieut. White, in charge of the coastguard of the district; and, outside a
small line of rocks, about 60 feet from high-water mark, the cable will rest upon a bed of sand. The cable of 1858 was landed near the Castle of Ballycarberry, on the mainland opposite Knightstown, in a position where it was subjected to chafing from the force of sea sent in by the westerly gales, while at Foilhammurum the sea from the westward is broken by the islands which guard its entrance.

On Friday; July 21st, the officials connected with the Telegraph Construcion and Maintenance Company, stationed at the Telegraph House, which has been built on the plateau over the cliffs of Foilhammurum, astir very early, were actually engaged in making the necessary preparations for laying the cable called the "earth cable," on Mr. Varley's plan, which consists of a wire rope about two miles long, with a piece of zinc attached to the end -the object of this cable being to obtain what alectricians call a "good earth," or, in other words, to get the current as far away as possible from local controlling influences, such as lightning, \&c. The Caroline accordingly was towed into the bay, and anchored about two cables' length from the shore, and - dge of boats was made, the rope : ; passed from the stern of the ship across the boats until it reached the shore, where it was hauled up the clinics to the instrument house. The Caroline then proceeded out in a south-westerly direction, and dropped the earth-cable to the eastward of the little islet which is at the entrance of Port Mage.

This service having been effected, the next step, and one of the most important in the telegraph expedition, was to lay the twenty-seven miles of shore-end cable. This was commenced the next day at about nine o'clock, and
the bridge of boats already referred to was used to land the end. The scene was one which carnot be easily forgotten by those who witnessed it. It was a lovely day, and the top of the cliff was lined by the inhabitants of the island, who, in their own simple and natural way, had improvised a demonstration in the way of flags by hanging their brilliant-coloured shawls on the tops of masts, oars, poles, or anything olse which was available for that pur-. pose. Tents made of old sails, supportexl by oars and boat-hooks, lined the road at the summit of the cliff; and their proprietors did a thriving trade not only during the day, but for many days pre.. vionsly, crowds of the islanders, as well as visitors from the menland, having made up their minds that the fireat. Eastern would come into the hay. Pipers and fidlllers gathered round them groups of duncers, and the jig and reel were merrily footed during the day. Itinerant, gamesters did their stroko of business too, and "Spoil tivo". was the favourite game. While these amusemonts were going on on the top of the cliff, underneath it were engaged one hundred or more of the peasmits hanling the rope ashore, passed, as I have before described, over the brilge of honts, in each of which, on an averuge, there might have beon eight or ten men. These boats formed a gracefin curve across the bay from the stern of the ship to the shore. The end, heing landed, was passerd up the erevice in the cliff prepared for it; and, a large number of men being sent to the top, it was finally passed into the tronch dug for it, conveyed to the Telegraph Honse, and put in comexion with the electric instruments. The house itsolf is a long wooden building, about seventy feet long by thirty feet wido, containing ample accommodation for the staff. As soon as the eloctricians announced that they had got a message from the Caroline that all was right, the Knight of Kerry, stunding among his frmily and visitors, addressed the largo assemblage in n few uppropriate and earnest wordy. The Chiof Secretary for Ireland, Sir Robert

Peel, M.P., made an admirable speech, alluling to the fact that everything that science could do had been done to mako the laying of the cable a success, and commenting upon the great political importance of establishing telegraphic communication with America. He then called on the peoplo to give "Three Cheers for Her Majesty," and asked them to pay a similar compliment to the President of the United States, which was done with great huartiness.

It was now time for the Caroline to start on her mission; and, just about 2.15 , p.m. she was taken in tow by the Hawk, a screw steamer of 700 tons, belonging to the Telegraph Construction and Maintenanco Compeny, Sir Robert Peel, the Knight re Kerry, Lord John Hay, Mr. Glass (managing director), Mr. Charles Edwards, and one or two others going out a short distance in her, and returning by the Irincess Alexandra, the stean yacht of the Irish Lighthouse Board. The weather was most favourable for laying the shore cable, which was done about 10.30 r.м.

The Hawh returned to Valentia, where she arrived at 3 a.m. of the 23 d . She started agnin at 7.30 A.m., with the Knight of Kerry, Sir Kobert Peel, and a distinguished party of ladies and gentlemen, who were determined to bratve any amount of sea-sickness to seo the Great Eiastern make the splies with the shore end. The Hawk arrived at the rendervons $51^{\circ} 50^{\prime} \mathrm{N}$, Long. $11^{\circ} 2^{\prime} 20^{\prime \prime}$ W. at a quarter to 1 p.M., and found the Gireat Eastern with the Caroline close aside her stern making the splice. The Sphine sloop-of-war, one of the convoy sunt by ller Majesty's Government, was on the Caroline's weather, and the Terrible frigate nbout a mile astern of her. The Big Ship was gaily decked with flags; on her main was flying, at the instance of Mr. Cyrus Field, the identical hurgee which hlow from the mast of the Agamemeno in the Atlantic Telegraph expectition of 1858. Many loats, as well na those of the Great Eustern, as of the men-ot-war, were plying to and fro in the henvy swell which provailed, und it was a
service of no ordinary kind to get those who would visit the Great Eastern on board her. The Secretary of Ircland got his share of wetting, as well as others. Of course there was a little eating and drinking to be done, and Captain Anderson dispensed the hospitalities of the ship in his kind and genial way. It was now time to be off ; and, after hearty leave-taking and cheers for the ship from those who left her, preparations were made for the final start. The Terrible and Sphinx now appeared, the ono on our starboard and the other on our port quarter. Their respective commanders gave the order to man the rigging, and three tremendous cheers were given by the crews for the Great Eastern, which were returned from the monster ship with enthusiasm.

At length all was declared to be in readiness. The huge paddles began to revolve slowly, the screw was set in motion, and precisely at sixteen minutes after 7 P.M. Greenwich time, (Sunday, July 23d), we commenced paying out the cable, which looked like a thread as it discharged itself over the wheel at the stern of the ship.

All went on well during the night; those in charge of the paying-out apparatus and of the electric testing instruments taking their preseribed positions in watches. The weather was all that could be desired, and everything was going on most favourably, when at 3.14 A.m. on Monday, 24 th, it was intimuted by Mr. do Santy, the chief of the electric staff; that the insulation of the cable showed evident symptoms of being imperfect. Mr. Cliffurd, in charge of the cable paying-out machinery, at once reported to the chief engineer, Mr. Samuel Canning; and befors long almost all of us loft our berthe and came on deck to learn the cause of the ship being stopped and of the firing of a signul gun. We soon saw by the grave faces of those employed that there was something unnsually wrong; and; though it was searcely a time to ask questions, one lad little difficulty in getting information. There was no doubt of it now. The
cable was injured somewhere between us and the shore. Could it be that an imperfect splice had been made between the thicker or shore end and the main cable? or was the fault between that and the ship? and again, might it not be between the position where the splice was made and the Bay of Foilhammurum ${ }^{2}$ These and other speculations were advanced and discussed for many subsequent hours. Mr: Canning and his assistants looked thoughtful and grave. Captain Anderson's expression indicated that he saw the critical position in which we were placed. In fact, one and all of us on board felt that the success of the expedition was greatly imperilled. All this time signals were being received very faintly from the shore, though the electricians thought that our signals to Foilhammurum might probably be stronger than theirs to us. Mr. Canning at length resolved upon the practical step to take. He gave instructions to pass the cable from the stern to the bow, and to pick it up with the machinery placed there until the fault should be discovered This was an operation requiring great skill and care, not only from the cable-laying staff, but from Captain Anderson in the handling of the ship. It was admirably done by all ; and, at 25 minutes to 12 , the cable was on the bow-whicel, and, passing over a drum, it was put in comnexion with a small steam-engine placed on the port side of the deek, near the foremast. It was soon discovered that this engine had not sufficient boilerpower, and the rate at which the cable came on board never exceeded one mile nul a quarter an hour, and sometimes evon less. We were making up our minds now that we shond linve to get buck to Valontin, and were in unything but good spirits. Fresh boilempower was put on to the pieking-up engine, by getting a small locomotive near the donkey, with connecting bande; but this did not very materially increase the speed of hauling in the cuble: Mr. de Santy, in the mematime, putting on the Morse instruments in connexion with the shore, sent a message to Mr.

Glass, the managing director, to request that he wonll order the Caroline to the ground where the splics was made, and the Havek to the Great Eastern, with all possible speed. A reply came brek that the Caroline should be sent as soon as she coaled. The gentlemen in the testroom were, as can be easily imagined, continuing their 'est experiments with great anxiety, and virious opinions were expressed as to the locality of the " fault." Mr. Saunders, Mr. de Santy's first assistaut, steadily maintained throughout the day that he felt satisfied the cable was injured not more than eleven or twelve miles from the ship.

Before dinner we had a visit from Mr. Prowse, tirst lieutenant of the Terrible, sent by Captain Gerard Napier, to ascertain whether he could be of any use; for of course we had signalled to both ships, informing them of the uishap which had betnilen us. Mr. Saunders's opinion became stronger and stronger as to the locality of the injury ; and nlmost the last thing he said to me on my bidding him "good-night" was " that we should find that the faulty bit of the cable would be on deck carly next day."

Puff ! puff! went the little "piek-up" engine, and, as the rope cane up, it was coiled on the deck just forward of the starboand paddle-box. At 5.30 mil the moming (25th July) the Hawk came alongside. At 9 a.m., while we were all at breakfast, to our intense joy and gratification, one of the electricians came in to anmounce that Mr. Siunders's tests had proved accurate, and that, or getting the tenth mile ou borrd, the cause of all our trouble and anxiety was diseovered. A wretched bit of iron, not longer than two inches, had by some unaccountable means been pushed through the exterior covering of the cable, and, passing through the gutta-percha, had done all the misehief: Mr. Stunders whs cheered loudly as he came into the saleon to breakfast, and everybody was plensed witl, everything and everybody. How different the expression of faces from yesterday-thon all glome and disappointment, now all radiance and hopre! "Pass the cable aft now". was the word,
and it required great skill to do it. Of comse the splicings had to be mode and the tests to be carried on, and it was some time after two o'clock before we all had the pleasure of seeing the rope discharged again over the wheel at tho stern into the sea. Our pleasure, however, was not destined to be of long continuance, for at 3 p.m. an alarm was given that not a signal was received from shore. Here, indeed, was a source of deep annoyance and mortification. Faces again bocune long, and we all hegan to think the chances of laying the cahle were becoming more remote. "Pass the cable forward to the 'pick-up" " was the order now given, and we had anything but a pleasant prospect befores us. But what is that excitement outside the test-house? Has any fresh tronble arisen? Listen again! All is right. "We have got the signals from the shore!" It was true ; and ere long men who an hour previously had nearly given up the chance of laying the Atlantic Cable were now grasping hands and congratulating each other. Signals annomeing that all was "right again" were sent to the Terrible and Sphimx, and in a very short time we were prying out the eable, and receiving the most satisfactory signals from shore.

Tuly 26 th. -During the whole of the night the cable was paid out withont a mistake, the paying-out appratus working to perfaction. By morning, wo were distant 150 miles from Valentia, and hat paid out $161 \frac{1}{2}$ miles. The duy broke thick and hazy, and the Big Ship began to show the Terrible and Sphine what she can do in the way of steaming. The sea was rather rough, and the wind was blowing what one would designate a double-reefed-topsail breeze; and yet we were ns stendy and upright in the water as if we hal been alongside a wharf. The Terrible sent down her topgallant masts, atud sigmalled to us that wo wore going too fast for the Sphinx. We roplied that we could not slacken our speed - - The insulation of the cable improves as wH get into deap wator. We are now in 1,750 fathoms. The Sphine is barely visible on the horizon.

July 27th.--There is but one opinion on board in reference to the singular adaptability of tho Great Eastern for a telegraphic cable laying ship. There is quite enough of head-sea to enable us to judge of what sort of weather smaller vessels would make. The Terrible plunged her bow Into it, whilo we were as upright as a house. At 8.30 A.M. we had run 302 miles, 235 from the last splice, being an average of 5.87 miles an hour of paying out. The average depth to-day, according to the chart, was 2,000 fathoms. The cable first reaches the water at a distance of about 213 feet from the paying-out wheel astern. The paddle-engines were making $6 \frac{1}{2}$ revolutions, the screw 26 , and the average speed was 6 knots. Observations at noon gun, lat. $52^{\circ} 34^{\prime}$ N., long. $19^{\circ} \mathrm{W}$. Distance run since yesterday, 142 miles. Terrible on our port-beam, Sphinx not visible.

The electricians report the signals as being most satisfactory between the ship and the shore. Assuming all to go on well, between this and Sunday at noon the after-tank will be emptied of its contents. There are three iron tanks which contain the cable-one near the stern, from which it is going now ; another situated in tho middle; and a third in the fore part of the ship. The after-tank is 58 feet in diameter and 26 in height, the main-tank is 58 feet 6 inches by 26 , and the fore is 51 feet 6 in. by 26 feet. In the main-tank there are 798 miles; in the fore, 633.75. The after-tank, now happily so near exhaustion, contained 837 milos. There are 3 miles of shore-end in the maintank. The Caroline laid 27 ; and thus the total amount of cable in miles and bound, when the ship left the Nore, was 2,300, weighing 4,100 tons. To this must be added 1,198 tons of water put in the tanks, which made the total weight 5,600 tons.
We next pay out from the fore-tank, and the passing of the cable from there to the stern will be a nice operation. It is hoped that this may happen in the early part of Sunday ; far, though the cable staff are quite prepared to dó it at
night, yet it is far better that they should have daylight for their work.

July 28th. Our course has been N.W. $\frac{1}{2}$ W. ; wind, N.N.W. All night every thing worked as smoothly as possible. At 7 r.m. 119 miles of distance had been gone over. The index of the paying-out wheel showed 152,905 revolutions, equal to $476 \cdot 6$ miles distance ; so that we had payed out 176.78 miles of cable. It is calculated that, during our voyage (the distance betweon Valentia and Heart's Content being 1,663 miles), the revolutions of the paying-out machine will amount to about 600,000 , and each of these revolutions represents a cost of rather more than a pound sterling.
The paying-out machinery for the Atlantic Telegraph cable on board the Great Eastern differs in many material respects from that used in the former expeditions. I shall endeavour to describe it. Over the hold is a light wrought-iron V wheel, the speed of which is regulaied by a friction-wheel on the same shaft. This is connected with the paying-out machinery by a wrought-iron trough, in which at intervals are smaller iron V wheels, and, at the angles, vertical guide-wheels. The paying-out machinory consists of a series of V wheels, and jockey or riding-wheols (six in number). Upon the shafts of the V wheels are friction-wheels, with break-straps weighted by levers and running on tanks filled with water, and upon the shafts of the jockey-wheels and also friction-straps, with weights, to hold the cable and keep it taut round the drum. Immediately before the drum is a small guide-wheel, placed under an apparatus called the knife, for keeping the first turn of the cable on the drum from riding, or guiting over another turn. The dinives, of which there are two, can be removed and adjusted with the greatest ease by alidos similar to a slido-rest of an ordinary turning-lathe. One knife ouly is in use, the other heing kept ready to replace it if necessary. The druu round which the cable passes is six feet in dianeter and one foot broad, and upon the same
shaft are fixed two Appold's breaks, running in tanks filled with water. There is also a duplicate drum and pair of Appold's breaks fitted for position, and ready for use in case of accident. Upon the overhanging ends of the shafts of the drums, driving pulleys are fitted, which can be connected by leather belts for the purpose of bringing into use the duplicate breaks if the working breaks should be out of order. Detween the duplicate-drum and the storn-wheel are placed the dynamometer and intermediate wheels for indicating the strain upon the cable. The dynamometerwheel is placed midway between the two intermediate wheels, and the strain is indicated by the rising or falling of the dynamometer-wheel on a graduated scalo of cuts attached to the guide-rods of the dynamometor slide. The stern-wheel over which the cable passes when leaving the ship is a strong V wheel, supported on wroughtiron girders overhanging the stem; and the cable is protected from injury by the flanges of the wheel by a bell-monthed cast-iron shield surrounding half its circumference. Close to the dynamometer is placed an apparatus similar to a double-purchase crah or winch, fitiod with two steering wheels for lifting the jockey or riding-wheels with their weights, and the main weights of the drum, as indications are thrown on the dynanometer seale. All the breakwheels are ruuning in tanks supplied with water by pipos from the paidlebox tanks of the ship. The cable passes over the wrought-iron V wheels, over the tank, along the trough, between the V whoels and jookey-wheels in a straight line, four turns round the drum, when the knife comes into action, over the first intermediato wheel, and over the other intermediate and stern wheel, out into the sea.

This beantiful and ingeniousmachinery has heen invented by Messrs. Canning and Clifford, and has worked up to this time with admirable regularity and precision. At noon yestorday, $531 \cdot 57$ nautical miles had been paid out, between 1,529 to 1,950 fathoms. Distance from

Valentia 476 miles. We asked the Terrible to prevent any ships from crossing the cable astern, and she replied, "Yes, if possible."

July 29th.-The observations at noon placed the ship in $52^{\circ} 38^{\prime \prime} 3^{\prime} \mathrm{N}$. long. $27 \cdot 40 \mathrm{hrs}$. Distance from Valentia 634, and from Heart's Content 1,028. The night passed over very favourably, in respect to the ship's progress, the amount of cable paid out, and the satisfactory manner in which the machinery worked. We were all in the highest spirits; and, though the morning opened with a misty sort of fog, and it continued drizaling during the day, we walked the deck, inspecting the machinery by which the cable was discharged from the ship, and looked down occasionally into the tank, which every moment was lessening its contents. We heard from the electricians that there was an undeviating accuracy in the transmission of the signals; and, turning our eyes to the western horizon, we speculated as to the day, if not the hour, we should arrive at Heart's Content. At ten minutes after l. r.m., ship's time (Greenwich time 3, $3^{\prime} 30^{\prime \prime}$ r.m.), one of the electricians was seen to come hastily out of the test-room and to run towards the stern of the ship. I was standing looking down at the paddle-engines at the time. He returned hastily, and it was quite clear that something was wrong. The order was at once given to stop, and it seem.! vonderful how the huge engines cea ed to move by the simple turning of a wheel. The whole population of this floating town were soon mado aware that another mishap had oceurred. A very serious ouo it turned out to be. All communication was stopped between us and the shore, the instantaneous expression of the fairy light on Professor Thomson's marine galvanometer indicating this mortifying fact. It was not a " fault," as it was on the moming of the $24 t h$, but infinitely worse--a "dead earth," as the eloctricians call it, showing that there oxisted a serious injury to the cable. Mr. Canning, the chicf engineor, at once conferred with Mr. de Santy, and it was dotermined again to "pick up." Mean-
time, the tests showed that the injury was not more than three miles from the ship, and we had now to ascertain practically whether the "pick-up" machinery would perform its duty as well in the deep water (we were now in 2,000 fathoms) as it did when we were in 600. The word was passed to get up steam for the donkey engines forward, and very speedily they were declared ready. Then came the passing of the rope from the stern, along the huge wallsides of the ship, to the bew ; and, notwithstanding the very great difficulties of this operation, owing to the projections of the paddle-box, the bonts, \&c., it was effected at 9.45 ship's time. The engines worked away very satisfactorily. The thee miles of cable were gat on board; and, the injured portion having been cut out, and connexion made with the instruments, immediate communication was established between us and the shore, signals having been sent and received before half-past 11 r.m. Captain Anderson never left the bridge for a moment, and it was owing to his admirable management of the ship at this trying juucture that the cable was successfully got to the bows of the Great Eastern. The slightest inaccuracy in handling the ship would have been fatal, and he had to watch her to prevent her from breaking the eable, on which, at times, there was a strain of over $2 \frac{1}{2}$ tons. Mr. Halpin, his ablo chief officer, was of the greatest assistance to him in this emergency. We of course signalled to the Terrible to let her know what occured; and, stopping her engines, sho remained close by us on the starboard quarter during the night, Mr. Canning resolving to wait for daylight before he passed the cable aft to the stern wheel.

Altogether this is the most trying day we have had; and, while we rejoice that the mischief has been repaired, yet none of us, however sangaine, dare speak with too much confidence as to the final result. These "ups and downs" in Ocenn Telegraph Cable-laying life keep our in a perpetual state of excitement. Our consi essay, Iossibly, will be with
the Buoys ; and, if we bring them into use practically, we shall have then tested all the machinery and appliances so thoughtfully devised for the expedition by Mr. Canning. . I hope it may not come to the buoying.

Sunday, July 30th.-Mr. Canning and his staff commenced transferring the cable from the bow to the stern as soon as day broke, but unfortunately it got uff the drum, and fastened in the asle. Where it received such chafing that it was resolved to cut and splice again. This involved a delay of several hours, and it was not until 10.8 A.m: Greenwich time, or 8.10 by our ship's time, that the cable was passed to the stern-wheel again, and once more payed out. By this time but 133 miles romained in the after-tank. Staff-Commander Moriarty, R.N., who was in the former Atlantic Telegraph Cable expedition, has been permitted by the Admiralty to join the Gireat Eastern to assist in seientific navigation. His observations, which agree with those taken by Captain Auderson independently, place the ship at noon, lat. $52^{\circ} 30^{\prime}$, long. $28^{\circ} 17^{\prime}$, distance from Valentia, 650 miles; cable paid out, 745 miles. We had divine service performed in the dining-saloon. Our course still N.W. by W. Terrible on our starboard quarter. The Sphinx must have passed us in the night. Our delay of 19 hours has given her a fair chance.

Monday, July 31st:-The 133 miles of cable which remained in the aftertank heing nearly run out by $2.30 \mathrm{~A}, \mathrm{~m}$., the chief engineer and his staff made the necessary arrangements to connect the cable in the fore-tank with the pay-ing-out machinery. At 3 A.m. the screwengines were stopped, at 3.30 the pad-dle-enginos were slowed, and in about an hour the Great Eastern was steaning wheud ugain. By noon we had run 753 miles, and had paid out 903 miles of cable ; lat. $52^{\circ} 99^{\prime}$, long. $31^{\circ} 63^{\prime}$. After breakfast, Mr. Canning and Mr. De Santy proceeded to make an examination of the piece of cable in which the 'dead earth ' was found, and in the course of a short time the electricians disco-
vered it. That wonderful instrument designed by Professor Thomson gave its significant jump across the graduated paper, and told us the position of the injury. We all clustered around Mr. Canning to examine the cable, and the conclusion, I may say, then unanimously arrived at, was that the injury was the deed of an assassin's hand-some demon in human form, who had deliberately driven into the external heunp apioce of the wire used in the manufacture of the cable, having made an incision right through the gutta percha. One end of the piece of iron was sharp, as if it had been cut with a nippers ; the end coming out at the other side was broken off abruptly. One may easily imagine the indignation which this dreaulul act created. Mr. Canning conferred with his assistants as to what was the best course to be taken. It was ultimately decided that the cablemen should be asked to examine the injury, and to give their opinion to the chief engineer. A meeting was hold, and they arrived at the unaninous conclusion that it was done by wicked design. Mr. Canning then appealed to the gentlemen on board acting in various capacities in connexion with the expedition, and they formed themselves into a volunteer gnard, each agreeing to take a watch of six hours daily, and remain in the tank during the paying-out of the cable. Mr. Cyrus Field took the first watch.

The Atlantic has been literally like a mill-pond all day. Up to this noment, save in the delay oecasioned by the unfortunate incidents I havo described, we have been singularly favoured.

Yuesday, Augest list.-A charming day of monotonous prying out. The ship's position at noon, lat. $51^{\circ} 52^{\prime} 30^{\prime \prime}$, long, $36^{\circ} \cdot 3^{\prime} \cdot 30^{\prime \prime}$. Distance from Valontin, 946 ; to Heart's Coutent, 7.17. Cable paid out, 1081 miles. We passed
1 the burial-place of three Atlantic cables to-day, and are approaching the deepest soundings-that is, between 1,975 and 2,250 fathoms. The weather has been a little hazy; wind from N.W. to S.W. Ship's course, N.W. by W. 33 W. Terrible on our starboard quarter, quite close. We
have only seen two sail since we left. One ran down quite close to have a look at us. At night we must present a strunge sight to a ship unacquainted with the service in which we are engagel. Betweon the fore tank and the paying-out gear, there is erected a wooden trough for the cable to run in, and powerful lamps are placed at intervals of about twenty feet all along its length -two-thirds of the upper dock. Looking at it from the bridge, it is not unlike a street at might.

Wednesday, dugust 2ud.-A day never to be forgotten. The wind rose shortly after miduight, increasing to a strong gale from the S.W. Our grand ship, however, received little, if any, impression from its force. Away went the cable over the paying-out wheel at seven miles an hour, and all on board were in great spirits at the prospect of soon seeing the Atlantic cable at its American terminus. At 5.45 a.m. (ship's time) the ship was stopperd, a roport having been made by the electricians that the gatvanometer indicnted a fault, and, as far as they conld then form an opinion, not very fir astern. They could make signals to and receive them from Valentia ; but, as there could be no deceiving the instrument, the fault was overboard, and therefore the sooner it was on board the better. Shortly before the engines were stopped, a grating noise was heard in the tank from which the cuble was being paid out. Mr. Cyrus Field, whose watch it was, stated that one of the hands called out to the man on duty immediately over the tank, "There is a piece of wire;" but this intimation does not appear to thave been passed aft. Subsequently a wire was found in the tank, projecting out of the cable in one of the Hakes being then paid out, and evidently that in which the fault was supposed to exist. It was brought by the foreman to Mr. Caming for exmmination. It was about three inches in longth; and, when it was broken off, which it was very easily, it appeared to be of ill. tempered steel. Here, then, was a fair reason for arriving at the conclusion that
the recent fault may have arisen from accident, and not from design ; but there was the singular fact staring us in the face that, whether by accident or whether by design, the "fault" was discovered overboard duting the same watch. Mr. de Santy reported to Mr. Cimning that the fault was of such a kind as could not be well passed over ; and so the piekup apparatus was put into requisition again-previonsly to which, tests were applied to the cable in the tank, and it was pronounced all right.

Another experiment showed the fault to be overboard about six miles. Tha chief cugineer set his men to work, and, with much more swartuess than thry showed uron the former fimlt leing found, the cable was passed from the stern and hatuled in over the bow of the whip. This was at $10.30 \mathrm{a} . \mathrm{m}$. We were then in about 2,000 fathoms somdings. Tho engive being set going, the mope passed over the drum very slowly, only wa mile being hauled in after the expiration of an hour and forty-five minutes. Just at this time the ecerentrie gear of the engine got adrift, and m adlition to this mishap stean friled, owing to a want of a supply of water ta the boiles; ; and so the picking.11, eeased altogether, light bells (12 ricloek) hat heen madu somo time, and we hal all goue down to huch. There we were diachesing the locality of the fault, and it was a great considition to find that the electricians urreed that it lay only about six uilesmertoard. Jwo mites hal atramy been got in, and son we lonked forward to a few moro hours' work to get in the rest, make the splies, and "gain resumb baying out. Suddenly Mr. Canning rashed into the salonn, and, with amexression on his free which told how deeply he was moved, exclainod, "It is all over; the cable has pared!" Mr. Cyrus bield also came down, and with ahmirable composure and tortitulo ronvoged to us the sad intelligenen. Wo ware all on recek in a moment, and I shall never forget tho acemos as loug as I hase. Ther men who ware engagex in thes hows of the ship lind wandemed histlomsly aft after the aceident, arol in their sad counthances you at once saw the
effect which the disaster had on their minds. A deep silence prevailed. The ship was drifting away over the course of the cable. The Atlantic was as culm and as placid as a lake, its very stillness adding to the melancholy which pervaded all. Groujs stood about in varions fositions on the vast deck of the great ship, combling with each other on the great misfortune which had ocoured. " I have put into the enterprise my all," said oun to me; "but with God's blessing, I shall live to see the Athantie cable laid. In spite of what has occurred, I am more than ever satisfied of the practicability of laying it." "Let us not despair," said Cyrus Fiold. "I have seen worso disasters than this in Atlantic telegraphy, and I know we must eventually succeed." From one no less sincere, with whom I conversed shortly after Mr. Field had thes expressed himself, I head a quiet remark which struck me forcibly. "I have but a small stake in this undertaking," said he, "as compared with others: lut I ann more than ever satisfied that the cable can be suscessfully had, and there are men in England who will not fail to give us the means to do so when they hoow the truth."

But there is Mr. Caming hurrying along to the how of the ship: he has never for a moment lost his self-possession. He soen returns midships and is atcompanied by Mr. Clifford, his able assistant, and a staff of workmen. A brief ennsultation is held. IJe mounts the bridga and confers with Captain Anderson, mad soon we learn what they resolve to do-to grapite for the able! What, at 2500 fathoms derp? Such it thing has never been heard of before. Chbles have been grappled for in the shallow waters in the Meditertanean and olsewhery at from 400 to 600 fathoms ; butat 2500 fathoms it is simply absurd! Thn experienced chief, however, hat issued his orders, and immediato proo parations wero made to grapple. Thon it was that the functions of the menvigator were called into activo request ; for what use would there be in attompting to hook up the cablo unless we knew
the line in which it lay? Captain Anderson and Stalf Commmenter Moriarty immediatoly conferred, aml it was determined that the ship should be stemed in an easterly direction, and to windward, and drift down with the grapnel across the track in which the cable was lying.

But I ought to go back a littlo before I describe the grapmel operations, and dwell on the eircumstances comected with the parting of the cable. Those who visited the ship before she left the Nore will recollect a large V-wheel at tho. bow, similar in construction to that over which the cablo is paid ont a-stern. This wheel, overhanging the bow, is supported on wrought iron girlers. On each side of it we smaller V wheels moving on the same axis. Over the larger V-wheel the rope was passed lending aft to a large drum on which it was coiled and kept in position by a knife, precisely in the fame manner as in the paying-ont machinery, which I have already deseribed. The cable, with the wire rope by which it was brought from the stern to the bow, was coming in the groove of the larger \backslash-wheel. The cable going to the drum, the wirerope to the capstan, the stmin was very great; the cable being out at an anglo in the sea at the starbard bow, to which side it was lmuled over, atter having received some chafing from one of the ship's hawse-holes over which it passed, hating proviously been under the Great Eiastern's forefoot. The wind had shifted, and Captain Anderson found it almost impossible to keep the ship's heud so as to give a chance to tho cable to keep up and down. Up, however, came the cuble, and the wire-mpe over the wheel, tugether ; and those engaged in directing its movements suw that it had been considerably damaged, and were congratulating themselves that the injured part was on homd, when suddenly a jork was given to the dynamometor, which indiented a strain of something like sixty ewt. Away the cable, wirerope, and chain-slackling flew off the larger V-wheel on to one of the smaller V-wheels: ant, just as it passed the in-

No. il.--VOL. xil.
strument which had measured the severo test to which it had been subjected, shapped with a booming sound, and dashed into the sea, leaving a curl of eccentric foam after it. I have already very faintly attempted to lescribe tho sensation produced on board our ship by this sad and untoward event, lacking worls to convey the dismay which it nceasioned. It was indeed a day of mourning. Pit there was a quiet settled purpose and determination upon the face of Mr. Canning which showed that he would leave nothing undone; and, as I have already told you, he resolved, with thorough English pluck, to sweep the track in which the calile lay in the hope of bringing it up froma depth exceeding two natitical miles.

The observations at noon place the ship in lat. $51^{\circ} 255^{\prime}$, long. $39^{\circ} 6^{\prime}$, courso $765 \mathrm{~S}, 25 \mathrm{~W}$. We had run 1,062 miles from Valentia, were just 606 from Heart's Content, and had paid out since yesterday 116.4 miles of cable. Nothing conld be more beautiful tham the weather or more favourable for carrying out what appeared to all a forlorn hope. However, the grapnel-a sort of anchor weighing nbout three ewt., with five very strong thukes in it-was soon brought up from the stores, and bent on to the wire rope, of which we had a supply of five miles on boati. We stemed away some fourteen miles from the place where the callo parted, and in the smoothest of water. The Terribie, to whom we nalled tho disaster, was quite closo - us at the time. The graphel was let go at 3.20 ship's time on its doep-sentishing errmd. The small engine was set going, and its wheels and drums revolved at a terrifie pace as the wire rope wont down, buckets of water being constantly thrown on them to keep them cool. let hissing clonds of stem arose.

Down, down went the rope, and one began to realize at overy turn of the drum asking for fresh supply, what a grameur there is in the depth of this mighty orean. At © P.M. intimation war given that the stmin was beeoming gradually lows ; amd, in a few minutes more, the graphel had arrived below in
just 2,500 fathoms, having ocenpied, with the intervals of stopping the machinery, over two hours in lits woudrons journey to the caverns of the deep. From 5 until quite dark the callemen, as well as the ship's crew, were actively engaged in getting one of the huge buays over the port bow with the aid of the shears. When it hung over the sile, all had been then done for the day that was deemed necessary; and the Gireat Eastern, broadside on to the track of the cable, trawled the grapuel over the groumd in search of a prize worth, with all its belongings, not less than a million sterling. We halla mournful party in the grand saloon at night ; and one by one dropped away from the table to the privacy of his cabin, to reflect on the events of a day ever memorable in the numals of ocean telegraphy.
Thursplay, August 3d.-Broadside on to the line in which the cable lay, the Great E'astern tugged the grapnel during the night. There were indications now and then, towards break of day, that it had hold of something, and one hite which was given induced the fishermen to haul up and see what had been canght. About $\frac{1}{4}$ before 7 (Greenwich time) the pick-up engine was put in motion, and, to aid its feeble efforts, the rope was passed round the capstan close by. It came up kindly at first, and by 8 o'clock a.s. three hundred fithoms were on board. 'The dynamumeter, which had been registering as ligh a strain as 70 ewt., suddenly indicated an increase to 75 ewt., and it was clear toevery one that the flukes of the grapnel had laid hold of something. Even the most sceptical almitted that, if it was anything, it must be the cable. Alout 8 o'clock one of the wheels of the pickingup gar hegan to comphain; and very shortly afterwarls it broke. "'ihis disuster threw a very dmagerous sert of work on the eablestuff in hauling in the rope, which sprung oceasionally with such force as to impuril the lives of those who were hear it. As it was, two men received rather serious injuries, mad were tuken to hospital to receive the tender and efficient care of our excellent boetor

Ward. It now became very thick and hazy. The engine worked on, and our spirits rose as ench fathom of the rope coiled oyer the drum. But, alas ! all of a sudden, with one bound, the rope, springing into the nir with a ringing noise, left the rapidly revolving drum; and, before it could be stopped with the hempen stops which men were $\}$,reparing to roll round it near the wheel at the bow, it slipped away from them and darted down to the mysterious Atlantic waters again.

Another hlow to our hopes! But still we reasoned upon what had oceurred, and the probability of grappling the prize did not seem so distant as it was yesterday. To persevere while we had a foot of the buoy rope left was the resolve which those in command at once arrived at; and it was ngreed to get to westward of where the grapmel and cable lay, and drift across its line again. The wind, hitherto favourable for this operation, now somewhat changod, and thero was a very thick fog. At 1.30 r.m. (ship's time), and just before we started, we tired guns and blew the steam-whistle, to let the Terrible know we had moved; and it was some time before we heard one of her 100 -jounders boom a reply. We soon steamed the fifteen miles--the distance Captain Anderson determined upon; and we lay to during the night, the weather being very fine, and the sen as smooth as glass.
Friday, August 4th. -There is very littlu to recorl to-day. We were drifting still nway, to get at the desired place - to rench which whe rendered more diffente by the tiact of our mot leing able to gett observations. Au attempt to souml was made and beeane fruitless, sis far na learring the sature of the bottom was emererned, by the hime having hroken. It was said that the low tomelied the hottom at 2,300 fathoms. Early in the morning, the Terrible appraved to leeward of us quite close, and her tirst limutenant, Mr. Prowse, came on bueurd to nseertain what wo propused to do. He suw intrumations made for lowering one of the smaller buoy-which was phaced en a raft compreed of phanksumd
casks, so as to keep it as nearly as possible in an upright position. The observations were not very good, owing to a bad hori m, and placed the ship in lat. $51^{\circ} 3 \quad i 0^{\prime \prime}$, long. $27^{\prime} 54^{\prime \prime}$. Shortly before $10 \therefore \mathrm{Am}$. (Greenwich time) we had reached a position calculated to be as nearly as possible where we parted with the grapmel. The buoy was hove overboard, and floated on the sea, but not as high as could have been wished. On the top was a flagstaff bearing a red and white fiag, and in large letters on the red painted surface of the bnoy itself werc printed the words "Atlantic Telegraph." It is in lat. $51^{\circ} 28^{\prime}$, long. $38^{\circ} 42^{\prime} 40 .^{\prime \prime}$ Again we steamed away, intending, if the wind favoured us, to let the ship drift across the line of the cable the first thing in the morning.

Saturday, August 5th.--Drifting, drifting again all night. In the morning we had very hazy and foggy sky, but smooth water. 'Towards noon we saw our companion, the Ter rible, the curtain of fog having lifted just to make her visible. She sigmulled to us at $2 \cdot 30$, giving us the kearings of the buoy at three miles distunt, which we came up to at $3 \cdot 45$. Weasked her to remain by it during the night. Course N.W. by N. for six miles, mad then, if the wind suited, to drift down and try our grapuel.

Sunduy, August Gilh.-Thick weather still. We saw the Terrible very early, but afterwards lost sight of her, the fog increasing in thickness. Divine service was performed in the dining saloon by Captain Anderson. No observations. It was said that we must have the buoy on our north-west some fifteen or sixteen miles. Fog increasing, fog horns and steum whistles went during tho night.

Monday, August 7th.-The weather continued "dirty" nll night. We made out the Terrible shortly after the day broke, and informed her, in maswer to her question, that we were about to grapple for the cable. We atso gave her our lat. and long. About half past 8 we came up with the bwoy, then stemmed N.W. fortwelve miles. At 11.10 , being then
1.47 by Greenwich, the grapmel went over for the second time. It was much quicker in its voyago to the bottom than on the former occasion. At 12.5 we concluded that it reached the ground, the dynamometer showing a great diminution of strain. The northerly wind we wished for blew steadily all day, and we drifted on the course of the cable with every possible favourable circumstance. Shortly after six the dynmometer markel 48 cwt. and the head of the Big Ship answered slightly to the strain and came up to the wind. Still the grapuel asked her to do more, and by-and-by she replied by altering her head from E. and by S. $\frac{1}{2}$ south to E. $\frac{3}{4}$ N. Even the sailors, hitherto unbelievers in the success of the deep-sea fishing we were engaged in, admitted that we must havo caught hold of the prize now, and joined the cable-crew in hope that wo might yet have it on board. All went on well until 8.10 P. M., when the machinery again showed its utter inadequacy. The chief engineer called on the capstan to aid it, and 150 fathoms an hour cane np stendily, and, to all a appeaknces, with a better chance of ultimate success than had yet presented itself. We told tho T'errible that we were "going on hopefully."

I'uesday, Angust 8th.-All night the greatest care was devoted to watching tho strain on the cable, and Captain Anderson never left the bows of the ship, comning her course, signalling to "stop," "ease," and "reverse" theongines, according to the angle and position which the rope-now coming in smoothly over the wheel and round the capstan-made to the ship. About 5.30 a.s. the dynamometer went up as high wis 87 ewt., inrlicating a fair amount of probability that the grapuel with the cable had left tho bottom. In a couple of hours afterwards the one mile mark on the ropo hauled in showed what good ground of hope there was for getting the rest on bourd, and it was felt that, if we succeeded in doing so, wo should have accomplished a feat unparalleled in ocean telegraph-laying. In fact, the landing of the line in Trinity Bay was felt to be
secondary in point of interest. No one entertained a doult as to the practicability of the one; but to bring up a cable from a depth of over two miles was to overeme dificulties searcely to be estimated.

Our hopes are again destroyed. At 17 minutes to 8 a.m. away went the cable acain. A shackle had passed in apparent safety over the V wheel at the bow, thence to the drum, and so on to the capstan, where, after three turns had been taken, the swivel came out, and, with a force which those who saw it can never forget, whizzed into the air like a ship's rocket, and, nftor lashing its tail with fury, lived down under the frowning lows of the ship. We came to the breakfast-table almost broken-hearted ; and Captain Auderson, Mr. (inouls, and Mr. Canning intimated that we should soon know the decision as to what course should bo pursued.

The indomitalle Camning, it was understool, had urged another "try ;" and, as mough rope was on boaril of the tive miles, to cuable him to try the experiment, it was resolvel to look once more for the cable. Lientenant Prowse, of the Terrilice, had by this time come on bond, and leamed what wo intended to do. He told ns that on the Sunday they eame up with the first buoy we threw in, aml close alongside of it a small selwoner ealled the Fiost Fruits, of Bridport, out Lwenty days from Cardiff, ane lomed to Harbener Grace. The captain of the T'errible sent Lieutenant l'rowse on board of the little verssel, and harned from her eaptain that he had seen the buoy, and, on making out what it was, hal determined to remain near it fur a while, in the hope of being enabled to give information to any ship in the telegraph expedition which happeneal to be near. Ho expressal the greatest sorrow on learning that the cable had jarted. Wo all hope that the conduet of this warm-hourted and excullent sailor, whose mano we did not lean, may be rowarded hy thosis who have it in their power to to so.

At 9.50 another booy was hove overboard, of the same size as the former
one, painted red, with the word "Telegraph." On the top of the flag-staff there was a canvass-ball painted black, and the flag itselt' was red, white, and red, horizontal. The buoy is in lat. $51^{\circ} 25^{\prime} 30^{\prime \prime}$, lon. $38^{\circ} 56^{\prime}$. Mr. Canning and Mr. Gooch now conterred with respect to the coming attempt to get at the cable; and it was resolved to trust to the capstan, which has nut only shown what it can do, with the engine to which it has been attar' ed, in getting up the huge anchors of the Great Eastera, but has proved itself an excellent auxiliary to the machinery which was too crednlously supposed to be able to do the work of picking up. Round the capstan a casing of wood is to be placed, so as to increase its dianneter for the coiling of the rope. The dynmometer and its two wheels are to be shifted narer the capstan; and it is believed that the strain will be by these means made more even, and that sudden jerks can be more readily controlled. The swivels, too, will all be taken out, and either now ones made at une of the forges on deck (fir we have two) or the old ones strengthened. All this work will take over forty-eight hours to get through.

Up to 5 r.m. we kept company with the Terrible, but the wind was freshening every moment to what Captain Andirson called a summer galo. Wo steered W.N.W. up to midnight, and congratulated curselves that the increasing sea had so little effect on our grat ship.

Werlnesday, trogust 9 the.-We had a gentle intimation last night that the Great Liastern could be induced to roll like other ships if she only had a chance. There was a heravy benms sea on. It rainal in the enely part of the morning ; but fiterwarls the weather eleared, and by forn the wind changed from N.W. to N.N.E., and we went along in seareh of Buyy No, 2 at hald-sperd serew and paldle, with a henvy following sea, the result of last night's wime. Our navigaturs have an idea that they ought not to ery more than 1 y parter of a mile or so in my of their "placings," and we were tefl to look out for Buay No. 3 on
the port beam. The Terrible was in sight right ahead on our starboard how, and we thought she was close to it. She came down on us, and signalled that she had not seen the Broy. She told us that the Buoy bore SS.E. of her. We steved S. by E. half E., and at 4.40 r.m. were abreast of it. Just as we made it from the bridge the Terrible signalled that she also had seen it. Thus, Captain Anderson and Staff-Commander Moriarty were right to a nicety in their calcula-tions-a special chart of the tracks in searching for the Bnoys has been drawn by Staff-Commander Moriarty, and will be lithographed on board. ${ }^{1}$ Buny No. 1 is distant as mearly as possible 9 miles from the second Bany we placed; and between where the cable parted and the first Buoy is about $2 \frac{1}{2}$ miles. Our lat. tu-day was $61^{\circ}, 19^{\prime} \mathrm{W}$. ; our lon. $31_{2}^{\circ} 6^{\prime}$. The fore part of the deek is alive with artificers of all kinds. The capstion is nearly cased with wood nine inches thick, and is ready to receive its iron-clad covering, which will be finished betore daylight. 'The night was perfectly calm ; and, as the sparks Hew aloft from the seething iron, hammered by the brawny Vulcans, we were all impressed with the picturesqueness of tha scene-a picture that Rembrandt would have painted.

I'hursdey, Aupust loth. - A calm night. Towards 3 a.m, a slight breeze. Tho ship was taken by a current to the enstward sono 6 or 7 miles between 9 P.M. last night and 4 this morning. Shortly before this we made out Boy No. 1, und thon steered away for Buoy No. 2. As on former vecasions, we hore nway to get the ship loroadside on aud drift on over the calle, steoring N.W. Thes grapmel left the bows nt 10.30 a.m. Grenwich time with $2,+60$ lathoms of wire ropo and eable attuched, and found bottom at II.1s a.m. We then set the fore and aft sail and also our topsails to assist our Irifting. Strain varying from 40 to 45 cwt . s'ill drifting. At 1 p.m. struin on the index of the dynamometer 60 cwt . beyond which pinit

[^0]it did not show any inclination to go ; and Mr. Canning and Captain Anderson arrived at the conclusion that we had moved the cable this time. Orders wero then given to haul the grapnel in, and the machinery was set in motion. By 11.30 over 1,400 fathoms had been got in, the eapstan working very satisfactorily.

Friday, Aufust 11th.-At 5.20 а.м., the whole staft having remained faithful to their respective posts during tho night, the grapnel made its appearance under the V wheel at the bow. Wo were dismayed to find that the chain which fastened the slank had taken nu ugly half hiteh round one of the flukes, so that it was impossible to hook the cable effectually. Captuin Anderson said that he was pretty sure wo had eaught hold of it at one o'elock yesterday; but the discovery which was now made showed that, even if he had, the grapmel never could have got a proper hold. It was calculated from the length of the rope covered with ooze, that we were in 1,950 fathoms, though we sent down 2,460 . There was a great desire among all on board to get some of the stufl from the bottom which adhered to the grapnel and the rope; and all of us collected specimens. Dr. Ward showed me some sunall shells, which were examined in a microseope. Sir Roderick Murchison will have an opportunity of seeing tho ooze, ins a bottlo of it will bo sent to the Geographical Society.
"What! A uother trial, Mr. Canning?" "Yes," said ho, "as long as I have enough rope--but I fear it has been sadly tried in the last work it had to do." Siwh were the chiof engineer's conclusions. and his stat were set at once to work to patch it up. On examination it was fomod that the strands land beem unlaid; so it was mesolved that the defective pioces should be replaced. When complete, it was made up of 1,600 fithotis of wire rope, 22() fathoms of hemp ropu, and 50 fathoms of Manilln. A new grapmel was bent on. At 7.23 a.s. Wo were ahreast of Buoy No. 2, and at 11.30 we signalled our

454 Narrative of the Allantic Telegraph Expedition, 1865.

companion, the Terrible, "We are going to make a tinal effort," and "We are sorry you have had such uncomfortable waiting,"

When the ship's head was W. by S. and the bury bore E. by N. about two mile, the grapnel was let go. This was at 1.56 Greenwich time. We again set the canvas on the ship to regulate our drift. At 3.50 p.m. ship's time strain was marked to be 60 ewt. and the cable came in with the utmonst ease and regularity round the capstan. The strain now became greater, the dynamometer indicating 80 ewt., and shortly afterwards, in a jerk which the shackle made in coming in, it marked 105 cwt. There was only one opinion now on board as to our having the cable on the grapmel, and at no period of the trying time which we had gone through was there more real hope ; for, though men openly said, "We dure not hope," yet there was confilence inspired in us from Mr. Canning's and Captain Auderson's manner, which made us, spite of all, believe that we should pick up the cable We all sat down to dinner in better spinits than we hal been in for some days.

About a puarter to 7 I strolled up to the bows, and stood at the barier, separating the capstan and machinery from the fore part of the deck, put there in order to leave the cable men amplo space to work, und to prevent them heing interfered with. The eapstan was bringing in the manilla rope very stendily, which was being passed aft by the cable erew for coiling. A dozen or more hands were on the elevated grating on deck, at the how, watehing the progress of the rope after it hand come over the V wheel, and stanting by with hempen stops to stop its progress on getting the signal. Captain Anderson stool at the port side of the bow, watching the strain of the rope, and occasionally speaking through tho tube which leals aft to tho liridge, and giving instructions to "stop her," "reverse," in "po om," as octasion might demand. All of a sudden a whistling noise was hearel, and all was over! The rope broke liko a carrot, and
dived into the Atlantic to join the mute cable which lay below.

Now then for home! What more could be done? Thought, zeal, energy, labour, had all been honestly and faithfully applied; every available resource at the Engineer's command had been used to recover the cable; but, these having failed, there was only one course to pursue. After a short conference with Mr. Gooch and Mr. Camning, Captain Auderson gave the necessary instructions to prepare for our return. Lientenant Prowse, of the Terrible, hat dome on bourd as soon as we signalled our failure, and informed us that the frigate would at once proceed to St. John's, and would take mispatches for us. She came up quite close to our storn. Her captain, becoming impatient at the delay of the pinnace- the seabegiming torise rapidly with the increasing wind-fired a recall gru; aul soon afterwards Mr. Prowso put off from the ship, lighting a blue light in the boat to show the Terrible where he was. He soon got on board, and Colomb's signal-lights, which have been used in looth ships during the expedition, flashed the worl "Farewell" from the trigate, to which we replied, "Goodhye, thank you." Captain Auderson then said, "Full speed, and keep her head cast," and the Gireat Eirstern pointed her obedient bow towards England.

The Fastnet Lighthouse, off Crookhaven, was made ently on Thurstay, the 17th of August, and despatehes were sent ashore by a small steamer. The following statement, having been unanimously agreed to on board, was telegraphed to London. It is a summary of the farts connected with the diseovery of the fimilts and of the parting of the cuble: and it is impossible for my one whe, like myself, witnessed the events of this memorablo expedition to disagree with the conclusion at which the practical men have nerived.

"Athintio Thimghapil Expebition, "Great Binsern, A ughat 16th, 1865.

"The Gireat Litatern satiled from Valentin, ofter making the spliee with the shore-end, (n)
$23 d$ July, and continued on her voyage to Lat. $51^{\circ} 25^{\prime}$, Long. $39^{\circ} 6^{\prime}$, being 1063 miles from Valentia and 600 miles from Heart's Content, Trinity Bay, having paid out 1,212 miles of cable, when the cable parted on the 2d August, at $12.35 \mathrm{p} . \mathrm{m}$. in soundings 3,900 yds. under the following circumstances :-
" A partial loss of insulation having been discovered, the ship was stopped to recover that portion of the cable in which the fault lay-electrical tests placing it probably within 6 miles. The cable was passed from the stern to the bow of the ship for this purpose; and, after getting in two miles of cable, the fault being still overboard, the cable broke abont 10 yds. inboard of the wheel at the bow, having been injured by chating on the stern of the ship.
"I'wo previous fanlts had been discovered-the first in soundings of about $1,000 \mathrm{yds}$. and the second in about 4,100 yds.-and had been successfully recovered and made good. In the first case 10 miles, and in the second $2 \frac{1}{2}$ miles of cable, were hauled in.
"After the cable parted, a grapnel with $2 \frac{1}{2}$ nautical miles of rope was lowered down, the ship being so placed as to drift over the line of cable. The cable was hooked on the 3d ; and, when $2,200 \mathrm{yds}$. of the rope had been hauled in, a swivel in the latter gave way, and 2,800 yds. of rope were lost-the cable having been lifted 1,200 yds. from the hottom.
"On the 4th a buoy with Hag and bull was moored with 5,000 yids. of rope to mark the place. It is in lat. $51^{\circ} 25^{\prime}$, long. $38^{\circ} 42^{\prime} 30^{\prime}$.
"From the 4th, fogs and adverse winds prevented a further attempt until the 7th, which was then made nearer the end of the cable, and was unsuccessfinl from the same cause when the cable had been lifted about $\mathbf{1 , 0 \%})$ yds. Another buoy was then placed in lat. $51^{\circ} 25^{\prime} 30^{\prime \prime}$, long. $38^{\circ} 56^{\prime}$.
"A third attempt was made on the 10th, which failed on account of the grapnel chain having fouled the thakes of the grapinel. The grapnel and last sut yds. of rope came up covered with ooze.
" A fourth attempt was made on the 1lth, at 3 P ., which also failed through the break. ing of the grapnel rope when the cable had been raised 600 yds . from the bottom. Having now exhausted the stock of rope, it becane absolutely necessary to proceed to lingland for more and stronger tackle."
Practical conclusions unanimously arrived at by those engaged in various capacities in the expedition.
"1st. That the steam-ship Oreat Eastern, from her size and consequent stendiness, together with the better control obtained over her by having hoth the paddles and screw, render it possible and suffe to lay an Atlantic T'elegraph in any weather.
" 2 d . That the paying-out machinery, constructed for the purpose by Messrs. Caming and Clifford, worked perfectly, and can be confidently relied on.
"3d. That the insulation of the gutta-perchacovered conductor improved when submerged to more than double what it had been betore starting, and has proved itself to be the best insulated cable ever manufactured, and many times higher than the standard required by the contract. The cause of the two faults which were recovered was, in each case, a perforation of the gutta percha through to the copper conductor, by a piece of iron wire found sticking in the cable. Electrically the third fault was analogous to the first. The difficulty may be provided against in future.
" 4th. That nothing has occurred to create the least doult in the minds of all those engaged in the expedition of the practicability of successfully laying and working an Atlantic Telegraph cable; but, on the contrary, their confidence has been largely increased by the experience oltained on this voyage.
"5th. That, the Great Eustern steam-ship supplied with sufficiently strong tackle and hauling in machinery for depths of 4,000 to $5,000 \mathrm{yds}$., there is little or no dount of the possibility of recovering the lust end of the cable, and completing the line already about two-thirds laid.
"S. Canning, Chief Engineer.
"James Anderson, Condr.
"Danl. Gooch, Chairman of the Gt. "Ship Co and Director of the Tele" graph C. \& M. Co.
" Hanry Clifford, Engineer, T. C. \& " M. Co.
"Cromweli F. Varley, Electrician of " the Electric \& International Tel. "Co. and Atlantic Tel. Co.
" Wilimam Tnomson, L.L.D. F.R.S. "Professor of Natural Philosophy in " the University of Glasgow.
"C. V. De Santy, Chief Electrician, Tele" graph Constn. Compy.
" Hexry A. Murianty, Staff Comman"der, R.N."
The expedition of 1865 has proved, not only the practicability of liyying a cable, but a fact of very great importance to all interested in ocean tele-graphy-namely, that it can be picked up from a depth of two nautical miles. Already there has been expended, up to the present moment, in Athantic: Tolegraph expeditions, a sum not less than $1,162,820 l$. of which, in monnd numbers, Fingland has contributed the million, and Ameriea has found the rest. The present cable, which eost 700,0001 . has heen two-thinds luid, mul that it ean be recovered and taken to its destination in Heart's Content, is the conclusion at which the practical men engaged in the expedition have arrived. lut
this is not all that is required. Another cable should be constructed at once ; but whether the external protector of the conductor and insulator is to be of a different kind will have yet to be determined. Beyond all doubt the protector ${ }^{1}$ was pierced through, and the core was wounded; but still the cable has so many other admirable qualities, particularly in its flexibility for paying out, and its general streugth, that those interested may hesitate before they abandon the form which has been approved
${ }^{1}$ Conductor-Copper strand consisting of 7 wires (6 laid round one), and weighing 300 lbs . per nautical mile, embedided for solidity in Chatterton's Compound. Gauge of single wire $048=$ ordinary 18 gauge. Gauge of strand $\cdot 144=$ ordinary No. 10 gange.

Insulation-Gutta percha, 4 layers of which are laid on alternately with four thin layers of Chatterton's Compound. The weight of the entire insulatiou 400 lbs . per nautical mile. Diameter of core - 464 , circumference of core 1392 .

Esternal proteciion-Ten solid wires of the gauge '095 No. 13 gauge), drawn from Webster and Horsfall's ITomogeneous Iron, each wire surrounded separately with five strands of Manilla yarn, saturated with a preservative compound, and the whole laid apirally round the core, which latter is padded with ordinary hemp, saturated with preservative mixture.

Weight in air 35 cwt .3 qrs. per nautical mile.

Weight in water 14 cwt per nautical mile, or cqual to eleven tinues its weight in water per knot ; that is to say, it will bear its own weight in eleven miles denth of water.
Breaking strain 7 tons 15 cwt .
Deepest water to be encountered 2,400 fathoms, or less than $2 \frac{1}{2}$ nautical miles in depth.

The comtract strain is equal to eleven times its weight per naution mile in water.
of by the scientific committeo. ${ }^{2}$ Possibly it may be thought desirable to strand the solid wires and thus give additional protection.

Captain Anderson is of opinion-and no one is moro competent now than he is to form a correct one-that the Great Eastern is the ship of all others best calculated to pick up the cable. By the early part of the month of May, next year, proper and efficient machinery and gear could be got ready; a new cable could be manufactured by the Telegraph Construction and Maintenance Company, and the Great Eastor n, having laid it at Heart's Content, coald then return to the spot where the cable of 1865 parted, raise it and bring it to the American terminus. By these means the lines (if the expedition be successful) will be brought into commercial dperation.

Englishmen, at all events, are notaccustomed to be beaten in any enterplise they take up, and nothing has occurred in the Atlantic Telegraph expedition of 1865 to create doubt as to ultimate success.
${ }^{9}$ Captain Douglas Galton, R.E., F.R.C.S. F.G.S., F.R.S., William Fairbairn, Kisq., E.E. F.R.S., Charles Wheatstone, Esq., F.R.S. William Thomson, Esq., LL.D., F.R.S., snd Joseph Whitworth, Eisq., C.E., F.R.S.-who formed the Scientific Committee, appointed by the Directors of the Atlantic Telegraph Company to examine all specimena and tendere submitted to the Company-unanimously recommeuded that Messrs. Glass, Elliot, and Co.'s specimen be adopted, and that theirf tender for making and laying the cable be nccepted.
sibly
rand
ional than the hers By

> A skela/h sheving the posilions of the "Great Eiastern", When tiying to recover the end of THA ATHANTIC TMLEGNAPH CABLER, Augiust $2^{n \prime 4}$ to $9^{\text {th }}$

and.

Aviantic Tillegraph Cable -186s
(2.) $\operatorname{lin}^{2} \mathrm{E}$
 ON. HER - VOYAGE FROM - VALENTIA - TO - NEWFOLNDLAND - WITH.THE SOUNDINGS - THE DAILY• LATITUDE. AND• LONGITUDE - THE - DISTANCE RUN - AND • THE - NUMBER - OF - MILES - OF • CABLE•PAID•OUT •

LTTHOCRAPHEID.AND PRINTED. ONVRARAD the "Cife.it EASTE.QN".-_n nucust-1865.

prining.cerceze.

On the Natural Scate of 1 fooc Vertical io Ift, Morixontal.

S ection of eage of the Irish

ion of edge of the Irish Bank; from to Bon the Plan. Shewing the incline from the depth of 290 fms: to the bed
Shingle N N N N

$\%$

NA FRONT VAIGFN'JIA TO TRINITY BAY NEWFOUNDIAAND.

FAC-SIAMLLE BY VINCENT BROCAS.
FROM THE ORIGINAL ON GGAAD THE GAEAT GASTERN.

[^0]: I A fne-simile of thin Chart, ne well ne one showing the track of the Cireat Bitstery, accompuies this artive.

