The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.


Coloured covers/
Couverture de couleur


Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée


Cover title missing/
Le titre de couverture manque


Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure


Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires•

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaireOnly edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de facon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.


## REPORT

# RAILWAY COMMISSIONERS, 

of me
-

## PROVINCE OF NEW BRUNSWICK;

## FOR THE YEAR 1858.

When ex ice

REPORTS OO THE CHIDE ENGINEER; WM. PARKER, ESD, CE; THE SUPERINTENDENT,

ANT





 1859.

## REPORT

OP THE

## RAILWAY COMMISSIONERS,

OF THE

## PROVINCE OF NEW-BRUNSWICK,

FOR THE YEAR

1858. 

SAINT JOHN, N. B.,
J. \& A. Momillan, printers, z8, prince william street. 1859.
$\beta 1641$

$\square$

# Tailwas Commissioners Office, Scaint John, No. B., 2d Feb., 1859. 

## 

THE PROVINCIAL BEORETARY

3si,

The Commissioners beg to submit for the information of His Excellency the Lieutenant Governor in Council, a Report on the state of the Railway Works under their charge.

Quarterly Accounts of all expenditures, liabilities, and receipts, have already been furnished to the Auditor General as the law directs.

The following Balance. Sheet and Abstracts of Accounts, made up to the end of the financial year (31st Oct., 1858, will show the oxpenditure and receipts from the commeneemant of operations under the Government, including the amount paid Mesars. Peto, Betts, Brasey \& Jactsion.

## Dr.

CAPITAT ACCOUNT,


## REVENUE ACCOUNT TO






## RAIIWAY. <br> 31st October, 1858:



## Abstract A.-5ingineoriag.






## Abstrect 2.-MNIscollameous Stack.

| Purniture in General Officor, | $\begin{array}{rr}\text { ¢966 } \\ 351 & 6\end{array}$ |  |  |
| :---: | :---: | :---: | :---: |
| Pürniture in Stations, |  |  |  |
| Hoxsea and Carriages for Engincers and Police, | 245 | 6 |  |
|  | £1563 | 9 |  |


| Abstract \% --Chomoral wixyerises. | : |  |  |
| :---: | :---: | :---: | :---: |
| Galayies and Office Exponses, Booke and Atationary, Rente, \&re., | £2915 |  |  |
| Insurance, | 164 | 19 |  |
| Interest and Commission, | 292 | 8 | 2 |
| Posthges, Printing and Telegraph Expensen, | Y 632 | 11 |  |
| Police Expenses, | 1019 | 1 | 2 |
| Miscellaneous, including Travelling Expenses, | 826 | 17 | 6 |
|  | £ 5851 | 8 |  |



## Abstract 苒--Bection Contracts:



## Abstract Z.-\$undry Contracts.

John Brookfield, Station Grounds and Buildings, \&ce,
Fleming \& Humbert, Locomotives,
Moreton \& Earle, Fencing Sec: No 5 and 6,
2186139

Frederick James, Passenger Gars, \&c.,
George Craig. Frugs and Switches,

## Abstract \$I.-Tocomotive Power.




## Abstract Den-Mraintenance of Way and Buildings.


"Abstract wioneral Chargeq.


## Turopean and Torth American Railway.

GTATEMENT BAEWING THE AMOUNT OF EXPENDITUER TO THE DIFRERENT PERIODS HRREIMAFTER KAMBD.
1856
duly 6. Purchase of rọad and materiats from:Mearr. Poto, Betts, Brassey \& Jackson $£ 90,00000$ Stg. or $\mathbf{x 1 0 8 0 0 0} 00$ 1887
Aprll 1. Dependiture under superintendence of A. L. Light, Chief Engineer,
Aug. 15. Expenditure under first Board of Commissioners, W. H. Scovil, Chairman,

41344117 1858
Oct. 81. Expenditure under present Bóard of Commissioners, R. Jardine, Chairman,

$$
\text { Total; } \quad \underline{E 525089186}
$$

Statement shewing the actual cost of the Railway, from Gilbert's Lane, St. John, to Kennebeccasis Station.

| Labour of Grading, Masonry, Rock and Earth Excavation, \&iac paid Myers, Brookfield and Walker \& Co., | $\ldots 6956514$ |
| :---: | :---: |
| Proportion of work done by Jackson \& Co., | 218710 |
| Rails, Chairs, Spikes, Girders, Frogs and Switches, Sleepers, \&cc., | 179710.5 |
| Fencing, | 2029 9 10 |
| Levelling, Ridging, Siding, Sloping, Ditching, \&c. . Sc., | 2842.136 |
| Materials, Iron, Timber, Pile Shoes, \&c. \&c., | 607616 |
| Proportion of Engineering Expenses, | $\begin{array}{llll}6396 & 4 & 1\end{array}$ |
| $93-5$ miles @ $£ 10528$ 0s. 5d. per mile. Total, | £101069 8 2 |

Staiement shewing the actual cost of the Railoay from Moncton to Shediac.


Statement shewing the actual Cost of Construction, Grading, Roadway, \&e., of Station Grounds from Mill Street to Gilbert's Lane, St. John, to 30th April, 1857.
Labour of Grading, Masonry, Pile Driving, \&e., paid Walker, Brookfield \& Myers,
Materials, Timber, Iron, Rails, Spikes, Pile Shoes, \&c. \&cr.,


In the Appendix will be found,
Report by the Chief Engineer on the state of the works, with estimate of probable cost.

Reports by Wm. Parker, Esq., C. E.,

On the Railway Works.
On the Rolling Stoek, and
On the Staff of Officers.
Report by the Superintendent with summary of Plant Stores and Materials purchased from Jackson \& Co., and since acquired by the Province.
Report by the Superintendent, with traffic returns,
Statement of proposed Stations on the line.
Statement of amounts, claimed awarded and paid, for land damages.

It will be seen by the Chief Engineer's report that the probable cost of the Railway between Saint John and Shediac completed, including station buildings, wharves, rolling stock, land damages, and the $£ 90,000$ sterling, paid to Messuri Jaekson \& Co., will be £927,976 92 currency or $£ 773,3131410$ sterling, equal to $£ 8,500$ currency or $£ 7,083$ sterling per mile.

The Commissioners have every reason to believe that the final cost will not exceed this sum.
It will be observed from this Report that the railitway will be of a very substantial character, capable of being run at high speed, and keptin repair at a minimum rate of cost: All the bridges over 40 feet span will be of iron, the rails of thie best Staiffordshire iron, and the width of embankments, slopes, ballasting, and drainage, such as to ensure permanence.
The following comparative estimate will show that this Railway, especially when the permanent character of its structure is considered, will, as regards cost and quality; compare favorably with any other on the continent.

Btatement shewing the average cost per mile of the E. \& N. A. Railway compared with that of Nova Scotia and the Railways of the State of New York,

AVRRAGE COST PER MILE.

| ${ }^{\text {if }}$ particulars. | Nova Scotia Railway, 928.10 milles, including 5.910 Track and Sldings. | New York Rail wayn 2617 thlles in cluding 670 pilles Double Trick and Sidinge. | K. \& N. A. Rail way +109 18-100 milees, fncluding 1-2 miles of Double Track and Siding |
| :---: | :---: | :---: | :---: |
| Grading, Masonry and Bridges, | ${ }^{\mathbf{E} 6086} 8{ }^{8}$ | f3614 154 | £4091140 |
| Superstructure, including Iron. | 2898 | 3299 5 | 2281.90 |
| Station, Buildings and Fixtures | 4352.2 | 557 | 22410 |
| Locomotive Engines, and Cars. | 1113.11 | 1521.6 | 786160 |
| Land, Land Damg's. and Fences. | 167178 | 1106150 | 493100 |
| Engineering and Salaries. | 3561111 | 409100 | 253120 |
| Other items not included in ab | $986,13 \quad 7$ | 218950 | 36719 |
|  | ¢11,043 16 | ¢12,698 4 | £8,499. 10 |

It is stated in the Report for 1858 of the Grand Trunk Railway Company of Canada that the cost of that railway will be $£ 10,000$ sterling per mile.

The Great Western Railway, the next road in point of importance in Canada extending from the Niagara river to Windsor opposite Detroit, a distance of 228 miles through a much more level and easy country, with an alignment, gradients, road bed, superstructure and general finish certainly not superior to the proposed European and North American Railway, with wooden bridges which are being renewed with iron superstructures, has cost by the last reports upwards of $£ 15,000$ currency per mile.

The traffic returns show a profit over working expenses of 2747191.

When it is considered that to ensure safety and accommadation to the public, nearly as large a staff has to be employed for the short lengths now run as would suffice for a much greater distance, there is good reason to suppose that with the extension of the railway a more than corresponding increase in the profits may be expected, and the Commissioners feel satisfied that when Hampton and Sussex are reached; a considerable per centage on the cost of the roadover worlsing expenses will be realised.

The Books are now kept on the system in use by the Grand Trunk Railway of Canada. All accounts from the commencement of the railway operations have been brought up in the new set of books.

The Stations on the Line have been fixed at. places which, from all the information in the possession of the Commissioners, will, best serve the public and the requirements of the road.

There will be Ten Wood and Water Stations, and Eighteen Intermediate or Flag Stations.

Three Bridges will be required over the Kennebecasis River in connection with the Railway, at or near Millstream, the Finger Board, and the site of the former Toll Bridge.

It will be observed that the cost of land and grading for the Terminal Station at Saint John, amounts to a large sum. Under the Company the Station grounds'were selected to the Eastward of the Marsh Bridge, as will be seen from the following extract from the Minutes of the Directors:-
"Ata special meeting of the Directors of the European and North American Railway Company, held 15th Sept.; 1853, at noon-present
R. Jardine, President;

| Geo. Botsford; | Hon. Mr. | Chandler ; |
| :---: | :---: | :---: |
| D. J. McLauchlan ; | " " | Hazen; |
| S. L. Tilley; | " " | Wilmot |
| W. J. Ritchie; | " " | Montgomer |
| Hon. John Robertson ; | "" " | Gray; |

Moved by Mr. Gray-seconded by Mr. Wilmot--
Resolved, That the Terminus at Saint John be on the Lands of Henry Gilbert, Esq., in the vicinity of the Marsh Bridge, and on the lands in Courtney Bay; and that Mr. Giles be requested to prepare a plan showing the quantity and position of land required in both places; and that an application be made to the Government for a grant of so much of the said lands at Courtrey Bay as may be necessary for such purpose, and negotiations forthwith entered into to purchase the same from Mr. Gilbert, or otherwise obtain possession thereof agreeably to law."

The Land selected by Mr. Giles; in accordance with this Resolution, was about Ten acres between the Marsh Road and the Creek, on which no grading would have been roquired, and no buildings or building lots interfered with.

Soon after the railway was transferred to the Government, It would appear that a different terminus was selected, as the sail way track, after crossing the Creek at about a mile to the

Eastward of the Marsh bridge，was altẹ⿱一𫝀口灬 so as to pass in a straight line North of the Creek close to Gilbert＇s Island atid through the valley and mill pond to a station at mill bridge：

This line avoided the level station grounds selected by the Company，and passed over a sumnit of twenty feet neat the Valley Church，by an ascending grade of 70 feet per mile，and a descending grade to the station in the mill pond of 100 feet per mile．

The railway：was constructed by the Government over this summit although it was then well known that no grade on any other portion of the road would exceed 45 feet to the mile and that consequently the railway could not be worked eco：－ nomically until this grade was reduced to the maximum．

On the 1st August，1857，the Commissioners Messrs．W．H． Scovil，F．W．Hatheway and Joseph Myshral put upon record the track between Gilbert＇s Island and the mill bridge，and five acres in the mill pond and three acres at Gilbert＇s Lane for station grounds．

Immediately thereafter several of the persons whose land had been taken applied for damages，and the present Commis－ sioners whe took office on 15 th August，having no power un－ der the law to give up or re－convey lands so taken，had to pay for a considerable portion of it，and in such circumstances did not feel warranted in entertaining the question of a change of station grounds．

Finding that the price demanded for the five acres in the mill pond was $£ 39,000$ ；that to fill it up，and make this site suitable for a station would cost at least $£ 10,000$ more，and that a deep cutting would have to be made through the summit to bring it to the level necessary for station grounds，the Commis－ sioners；after much consultation with the Chief Engineer anid Mr．Parker，determined to place the passenger station on the track between Dorchester and Garden streets；to cut dow the summit 9 feet so as to reduce the grade between the passent－ ger station and the engine and car station at Gilbert＇s Lane to a grade of 45 feet to the mile，$;$ but even with this modification the cost of the station grounds is much greater than is desirable．

As a passenger station，＇engine house and car sheds had tô be provided for the traffic consequent on opening the road to Hampton next summer，the Commissioners had to：decide between erecting temporary buildings，and incurring a＇con－ miderable expense in grading the track and station grounds
to the necessary level and erecting permanent buildinge. The latter course was adopted, and on reflection the Commissioners do not see that they could with propriety bave decided otherwise.
The Commissioners have not yet determined on a mode of communication with the tide waters of St. John.
There are three ways by which this can be obtained,
First, by placing the freight terminus at Courtney Bay, and constructing wharves and a wet dock on the flats there ae was originally determined on by the Company, and eventually ${ }_{0}$ if found necessary skirting the peninsula on which St. John is built and running round the head of the wharves from the breakwater to the Market wharf.

Sccond, by ruuning from Mill street across the head of North Slip, Hare's Wharf, and Hon. John Robertson's whar? to the Market wharf.
Third, by extending the line of railway westwardly towards the Falls of the river St. John by the ends of Long and St. Helena wharves, and so forming a deep sea wharf from Mill street to Rankin's wharf.
Whichever of the three modes is determined on, it will we doubt not be found necessary in time to have a larger space for freight terminus than can be found between Gilbert's Lane and Mill Street, and land for this purpose can only be obtained in sufficient quantity and at a moderate price on the flats at Courtney Bay.

As there is some doubt whether the Commissioners have power under the law to take or construct wharves, or branch lines, further legislation will probably be required regarding this.

It would be also desirable to give power to the Commist sioners to re-convey land taken and found not to be required.

The estimate of $£ 30,000$ for Land Damages is based on the present mode of appraisement being continued. If the law is altered so as to meet the views of land owners, it is hard to say what the damages would amount to.

The only portion of the track on which no appraisements have been made, between Sussex and Salisbury, is mostly in wilderness.
In England the cost of land taken for railways averaged ten thonsand pounds per mile, although it has since been ascertained that the increase of value to land through which
railways passed would have been an ample equivalent to landewners for all the land taken, and that it will be so to even a greater extent in this country there is no reason to doubt.

In any County of the Province, landowners generally would be willing, with a railway in prospect, to grant free right of way, in the belief that the benefits would compensate the damages, and in Kings and Westmorland Countics, nearly three fourths of the track, as originally laid out, was granted. Nothing has since occurred to lessen the beneficial effect of railways.

There are four level erossings of the main post road between Saiat John and Shediac ; at Sussex, Petitcodiac, Moncton, and Dorchester road. At all other crossings bridges aro erected.

Although not provided for by law, level crossings have been made on every farm where practicable. In cases whero bridges over or under the railway would have been necessary, the Commissioners have considered it more for the public interest to pay damages for want of access.

The Tariff has been a subject of much consideration to the Commissioners. In Nova Scotia the fare for first class passengers has been fixed at $2 d$ currency per mile, in the United State; it ranges from two to four cents, and in England is about 2 d sterling.

It has been aseertained that the cost of carrying passengers in the United States is 27 -12 cents per mile, and that the paying point is three cents per mile.

The Commissioners have determined on a rate of three cents per mile with the usual deductions for family and season tickets.

The Locomotive manufactured by Messrs. Fleming \& Humbert last year has proved an efficient machine, equal in all respects to specification. A contract has been made with the same firm for two more locomotives to be delivered this eeason at United States prices.

Passenger, freightand platform cars have all been subjected to competition in this market, and are now being constructed at rather less than U. S. prices.

Wheels and Axles for passenger and freight cars have been procured from known makers in England and the United States. Some made here are now being proved under ballast cars.


The Commissioners have purchased rails, chairs, and iron girders in England through Messes. Baring Brothers. Instructions have been given to ask tenders for these materials from the first houses in the trade and to accept the lowest.

Tenders are also to be taken in Liverpool for freight as cargoes are ready.

All articles are manufactured under the supervision of an Inspector appointed by the Commissioners.

Full insurance is kept on all the railway property.
The Contracts have been made and the work apportioned, with a view to the expenditure of Two Hundred Thousand Pounds, sterling, per annum, as provided by law.

The Commissioners are of opinion that in the present state of the money market, and with labor and materials so low as they now are, it will be for the public interest to push the Works to completion as rapidly as can be done economically.

Respectfully submitted,
By Order of the Board,
R. JARDINE, Chairman.

R. W. CROOKSHANK, Jer., Sec'y.

 *

APPERDIX.

# $\mathbb{R E P O} \mathbb{R} T$ <br> ON TIIE <br> european \& Nortii ambrican rallway, <br> I's <br> PROGREAS, PROBABLA COST, \& 8 ., <br> BY <br> ALEXANDER L. LIGHT3 OLIEE ENGINEER. 

Temruary, 1859.

## Engineer's. Office, St. John, February 2nd 1859. <br> Chairman of the Board of Railvay Commissioners.

 ToROBERT JARDINE, Esquire,
flana
I have the honor to submit the following Report on the Ruropean and North American Railway.

I mm, Sir,
Your obedient Servant,
ALEX. L. LIGHT,
Orvil Enainebro

## INTRODUCTORY REMARKS.

On reference to my Report, (made and submitted in March 1858,) upon the Works of the European and North American Railway, it will be found that the state of the Line and the prospects relative to the completion of the several "Sections" thon"eontracted for, were as follow :-

The Division from Moncton to Shediac, including the Moncton Branch, with the exception of a small portion of the Ballasting, had been completed. This Division, twenty and* one third miles in extent, had been opened for traffic.

The locations between Saint John and the Nine Mile House had been adjusted, and the Sections contracted for. The Gruding, with the exception of a small portion near the Tive Mile Ifouse, had been nearly completed. The Materials: for all the Bridges required on this portion of the Line had been obtained.

Sections live and Six, extending from the Nine Mile House to "Groom's Cove," near ITampton, a distance of eleven miles, had been put under Contract; but, although by the terms of the Contracts, it was required that thereworks should be completed in November, 1858 ; owing to peculiar circumstanees, which the Contractors had not anticipated. there was but little probability of this partion of the Lino: being completed before July, 1859.

The Ifammond River Viaduct had been contracted for:but it was not expected that the Gontractors would fulfil theis ${ }^{2}$ engagement to complete the work in Ootober, 1858-the time specified for finishing it.

The location between Groom's Cove and Sussex Vale, and that between Pitfields' Corner and Moncton, had been'completed; and Sections 7, 8 and 9, Hampton, and 4 and 5 Salisibury Districts comprised in the above, had been contractedp for.

The terms on which the several Contracts had been taken. and the expectations entertained with regard to their probable fultilment, within the time specified in the Contracts were'stated.

The Division between Sussex Vale and Salisbury ( 28 miles in length) had not been located; but it had been ascertained. Dy proliminary examination and survey, that this wouldb

## prove the least expensive Section between Saint John and

 Shediac.Of the whole Line from St. Join to Shediac, one hundred and cight miles and three tenths ( 1083 -10ths;)-there had been opened for traftic twenty-three miles and-a-half ( 23 1-2;) there were under Contract fifty-seven miles;-and yet to bo located, between twenty-seven and twenty-cight miles.

The advantage of selecting a course of Line, differing in some degree from that located by Messrs. Peto, Brassey, Betts and Jackson, were pointed ont and referred to.

From this brief abstract from, and reference to my former Refort, some general idea may be formed of the condition of the Line when that Report was made, and the prospects then entertained with regard to the progress of the works.

Attached to that Report was an estimate of the probablo cost of the whole Line; and, it affords ime some satistaction: to be able to state, there is no reason to anticipate that the general cost of the work will exceed the estimate then made.

## REPORT.-1859.

On its again becoming my duty to submit a Report upon the European and North American Railway, I have to say, that during the past summer the remaining Division letweenSussex and Salisbury has been located, and the sections composing it were let at very moderate rates, on the 8th of last October. Thus the portions of the Road, that are not completed, are all under Contract, and with two or three exceptions, I am happy to be ciabled to state, are progressing favorably.

The whole distance from Mill Strect, St. John, io Shehthes Harbor (105 3-10ths miles), has heen divided into Twenty One Sections, which were severally let out in pursuance of advertrsements, inviting Sealed Proposals for the performance of the work.

I ivould here remark, that the Contracts for work of every description entered into subsequently to the 1st Decembier, 1857, have been, (I think without exception), let to the lowest responsible bidder, who could procure the necessaty secutriey required by law. It having beefi insisted upon that the Epecifications in every instance shotild be strictly followed.

The Contractsunder which these Works are being executed, (with some exceptions,) provide for the entire completion of the Railway; including grading, masonry, bridging and tracklaying, upon each Section, for a gross sum. The Contractors "maintaining" the works for a twelve-month after their final completion-the Government finding iron rails, spikes, chairs, and iron girders for bridges, and the Contractors furnishing all other materials of every descriptionprovision being made for additions and deductions by a Schedule of fixed prices, by which the Contracting parties are bound, should any alterations in the Alignment become absolutely necessary, by which the quantities or nature of the work would be unavoidably alterenl.*

Table A, No. 9, in the $A_{1+p e n d i x, ~ e x h i b i t s ~ a t ~ o n e ~ v i e w, ~ t h e ~}^{\text {P }}$ numbers of Sections; the names of Contractors; dates of letting; amount of Contracts; value of work done up to 31st December, 1858, and amount still remaining to be done. The continuation of this Table shows all other work of every description, that has been executed by Contract or otherwise, since the commencement of the work, including that already finished, Surveys made, and "plant" furnished by the former Contractors as well as work still to be done-not yet contracted for.

This Table, in fact, contains all actual work done and to be done, in reference to which, the time required to complete the Railway needs specially to be regarded. The balance of money in the final estimate, outside of the sum stated in this Table, is required for Superstructure, Iron Girders, Rolling Stock, (which ean be easily purchased whenever required, and for Land Damages and Contingencies, the former of which can be ascertained and adjusted at any time; and here I may observe that more than half of the three heaviest items, viz.; the Superstructure, Iron Girders, and Rolling Stock, are already delivered.

On examining this Table it will be seen, that the whole value of actual work to be executed, in the construction of the Railway, is $£ 557,100121 \mathrm{~d}$., of which $£ 371,973128 \mathrm{~d}$. was done up to the 31st December, leaving $£ 185,12619 \quad 5 \mathrm{~d}$., or about one third, still to be performed. A careful perusal of this Table will furnish the best criterion by which the progress of the work may be correctly ascertained.

[^0]The quantity of Earth and Rock work on each of these Sections; the proportion done up to 31st December; the balance still remaining; the aggregate of the whole; and the value of the same at current prices, are stated in Table A., No. 10, by which it will appear that the whole Earth work amounts to 3,$383 ; 572$ cubic yards, and the total Rock Work is 148,620 cubic yards ; and that of the former $1,907,200$ cubic yards, or nearly three-fifths; and of the latter 125,034 cubic yards, or five-sixths are already completed; or regarding the money value of these proportions of each at one shilling and three pence per cubic yard for earth, and five shillings and six pence for rock, and adding up the amounts thus obtained, it will be seen that three-fifths (in point of value) of the aggregate excavation is done.

## ESTIMATED COST.

The cost of the whole Line from Mill Street, St. John, to Shediac Harbor, including the Moncton Branch, stationa, wharves, rolling stock and land damages, amounts to $£ 927,976$ currency or $£ 773,313$ sterling, or an average per mile; of $£ 8500$ currency, or $£ 7083$ sterling, as will be seen by referring to Table A No. 1, appended to this Report, which contains the final estimate, being a summary of the cost of the portions already completed - the work done by the former Contractors, previous to the Railway reverting to the Province-the "Superstructure" (in which term is included the'sleepers, iron rails, chairs, and spikes, \&c., )-the Sections, under Contract, as well as the stations and rolling stock; the cost of which are severally enumerated in separate taibles eonsecutively numbered, and attached to the final estimate of which they furnish the basis.

This estimate is grounded upon the actual cost of tha Divisions from Moncton to Shediac, and from St. John to Balmon Brook, which are finished; and the several contraotes, with but one exception, are finally closed and the accounts settled. The sums at which the unfinished Divisions hava been taken by the several contractors, have been assamed, and as usual in Railway Estimates fifteon per cent on the whole now under construction, has been added for contingencien.

In the Estimate for the superstructure, the value of raite chairs, spikes, \&c. is based upon the cost of the latest impontation made of these articles; whatever variation may aris in the price of iron from that stated, will of course vary the cost of the track.

The sleepers are estimated, by taking as a standard, the average of the prices bid by the several contractors, which is a sufficient basis of estimate. The track-laying and ballasting are included in the section contracts.

The sidings are assumed at five per cent. of the whole length of superstructure; this will be sufficient for the purposes of traffic for some time; but as the business increases, they will require to be much enlarged.

The Rolling Stock estimate is the same as stated by Jackson \& Co. in their specification; it will be sufficient for the business of the Road for one or two years; it is what, ordinarily would be called, a moderate equipment, as the quantity needed, depends entirely upon the business to be done, and it can be easily augmented as the traffic increases.

A Repair shop has been erected, and suitably furnished at Shediac; but no buildings of this kind have been included in the estimate for St. John, as it is considered that the Repairs can be made at the several machine shops already established in the city, at a cheaper rate for some time to come;-this however is problematical.

The Estimate for the Stations, includes several buildings in addition to those contemplated ly the original Contractors; more than half the principal portion of which is cither already built or contracted for, and it is believed that the remainder can be finished for the amount stated in the estimate.

I now proceed to review the progress of the several Divisions and Sections of the work in detail, in the order in which they were let and have been completed.

## MONCTON DIVISION.

First, the Division from Moncton Station to Point du Chene in Shediac Harhor, ( $1042-100$ miles) as well as the Moncton Branch-(88-100 of a mile) making a total of 20 3-10 miles, was let on the 1st of August, 1856, and opened for traffic on the 20th August, 1857- The earth works throughout the whole of this distance having consolidated during the winter of 1857-8, the work was thoroughly finished during
the past summer, and delivered over to the C.ammissioners, by the Engineer Department, with parsenger and feight otations, engine houses, tum-tables, wharesamd all necessary appliances complete.

This Division is in parfect "running order." and perminently finished with the exception of the eastern"abutment of the Scadouc viaduct, and two wooden trestle bridges; these structures were erected by the former Contractors; the latter have become so "shakey" from indiffirent timber having been used in their construction, and from the piles beng inperfectly driven, that they are fist becoming unsafe. As these last temporary structures are erected over insignificant streams, I would recommend that stone culverts be put mider them this winter, and the space occupied by the bridges be filled in with enbankment in the ensuing spring.

The eost of this alteration will not exceed one thousand pounds; should an aceilent oeciur hero, ten times that amount might not pay even the pecumiury damages which might accrue or be awarded.

The eastern abutment of the Scadoua viaduct above mentioned is not now tilled in with earth. This was tried, but, owing to cracks immediately making their appearance in the masonyy, it was found necessary to remore the earth as the 'abutment could not withstand the pressure. Trestles have therefore been erected inside, upon which the track has hithérto been sustained.

The cost of this Division, exclusive of the Moncton and Shediae wharves, Stations and lolling Stock, has been $£ 6,485$ per mile, as will be seen by Table A, No. 3 in the appendix to this Report.

## ST JOIIN DIVISION.

Secondly, the portion of Division No. 2 extending from Mill street, St. John, to Salmon Braok boyond the Kennebecasis station, comprising a distance of $96-10$ miles-put under contract on the 10th of January, 1857 and opened for traffic on the 1st of June, 1858-has been completed.

The cost of this portion of the work, exclusive of Stations, Rolling Stock, and Land Damages, has been $£ 10,809$ per inile, as may be seen by referring to Table A, No. 2, annexed.*

[^1]When the heary nature of the work comprising this Division, tho number of britges for the purposes of the Railway, including the several crossings of the different public Roads (over and under the same), as well as the numerous and expensive level crossings of priwate roads that occur at nearly every division of property, when likewise the number of intermediate stations, and the superior character of the works generatly, are taken into consideration (of which I do not Incitate to say that they will compare favorably with any of a similar character and cxtent executed elsewhere in Americal, cverything, I say, being regarded-the cost will be satiofactorily accounted for.

Some of the causes why this Division has proved the most exponsive portion of the whole Line, may be aseribed to the following facts: -

That here nearly half of the rock excavation on the whole Line had to be performed, and that of the very hardest description.

That there was an entipe absence of any good natural batlast uron this part of the Division, this defieiency having to be remedied by the substitution of a costly foundation of broken stone, finished by a "top dressing" of very superior gravel ballast brought by tug boats and scows at an enhanced expense from the opposite shores of the Kennebecasis Bay.":

That, along the shores of the Kennebecasis, it becamo necessary to protect the embankment from the action of the water and the cffects of fieshet, by means of stone walls, thronghout their whole cxtent.

That the ground was of a soft and yielding nature at the four mile bridge, Robinson's Meadow and Lawlor Lakc.

The borings at these last mentioned. places were taken bofore the work was commenced, discorering twenty five, forty and abont one hundred fect of sofe material, at the deepest points beneath the original surface of mud or water, (as the case might be), and these places there was no possible way of avoiding with propricty.

The difficulties were overcome as follows: first, at the 4 Mile Bridge the seat of the embankment was well drained, and then carefully covered withisix feet of strong green brush. The slopes of the embankment were made very flat, and the first half of the embankment made up of the peat bog itself, placed on in layers; the top of the embankment and outside
of slopes being completed with clay from the adjoining cuttings. This method had the double effect of combining extreme lightness with breadth of base, and distributing the superincumbent weight over more surface. I am glad to say, the work now referred to has been entirely successful, as the settlement of material has been trifling, indeed not much more than would naturally be produced by the consolidation of the particles of earth forming the mass.

Secondly, at the Robinson's Meadow in the vicinity of the Fiye Mile IIonse, difficultics of a nature similar to those encountered at the Four Mile Bridge, presented themselves, only on a more extended scale, the bog being decper and the embankment higher.

The unavoidable arrangement of the Grade Line at this point was such, that the rock cattings on each side were entirely insufficient in quantity to make up the embankment; all that could be spared from the southern cliff was put into this Meadow. It was soon found that rock was an improper material to make up this embankment with, as from its gieat weight it broke through the ernst, and sunk down to the bottom of the bog, throwing up the Marsh in ridges on either side. It was decided to reserve all the rock in the cutting North of the Meadow, to put into the Lawlor Lake, (where it was required and would be exceedingly valuable) and make up the deficiency in the Robinson Meadow Embankment from side cutting formed in layers, with material carted from the adjoining hills; by which means it was hoped that a portion of the settlement could be in some measure prevented.

But here another obstacle presented itself, as the hills turned out to be composed of rock with a thin layer of earth on the surface, and no sufficient side cutting could be obtained with a reasonable lead, though search by means of trial pits was made.

The nearest side cutting that could be obtained was at McCullough's Farm at the further side of the Lawlor Lake; but it was obvious, that to get there the Lake must be first filled; and as there was no probability of this being eompleted with the greatest exertion before June, 1858, and as the Robinson Meadow Embankment, from its requiring nearly the same quantity of material as the Lake, would take another season to complete, it was therefore decided that a tim-
ber viaduct which would last some fifteen years, by means of which the earth could be conveyed to complete the embankment at some fature day.

The embankment at Lawlor's Lake, with the heavy rock euttings on either side of it, presented another serious obstarele; in fact, the most difficult point in the whole line as eventually located.

On a revision of the Location being made, with a view if possible, to avoid the heavy work in this neighbourhood, it was ascertained by the borings, that it was necessary to descend 60 feet deeper, (to find solid bottom), than shewn on the original plans of survey made by former Contractors and upon which the works had becn let. The whole depth being as sheady stated about 100 feet instead of 40 as shewn, of which about 40 was water and 60 feet of very light vegetable deposit. To counteract this, the original gradient through this portion of the work was lowered as much as possible.

After most of the rock cattings on either side had been put into the Lake, there was still a deficiency, of about 90,000 cubic yards of material, (as nearly as could be ascertained by st careful series of cross sectional soundings made on so treacherons a bottom,) required to be supplied to complete the embankment. To provide for this, recourse was had to a borrow pit near Torryburn; and after a month's incessant labor, and some ten thousand yards had been put in, it was ascertained by another set of soundings instituted during the progress of the operations, that the works had progressed but little, as the carth had been dissolved and washed away by the action of the water; and it became cvident that if this system was persisted in, the embankment, if completed in this manner, would require a mach greater amount of material than was originally anticipated, and even as much perhaps, as would bo requisite to fill up the greater portion of the Lake. Under all these circumstances, it was decided to take advantage of the ice, and construct a temporary pile bridge, -which was of fected by splicing long spars of spruce; this bridge to be of sulficient width to contain three tracks: the centre track (in case of emergency) to be used for Passenger Traffic: the two side tracks to be used exclusively for "construction purposes," to accelerate the "tipping" of the carth, as by this moans a whole train of cars could be tipped at once. While the bridge was in process of construction, two rows of side c ${ }^{3}$
piles were driven extending longitudinally, parallel to the Railway; the piles being placed at intervals of twenty feet, and driven until their tops were level with the surface of the ice; these rows were placed 75 feet from the centre of the bridge, and on each side of it; enclosing a space of 150 feet in width, or a little narrowerthan the seat of the proposed combankment. Between these side piles and extending under the temporary bridge, a flooring of timber and brush wood several feet in thickness; was laid all over the surface of the ice, which was sawn away and pressed under it. After the floor had been finished, hundrouls of tons of stone were brought on by means of the temporary bridge, and carefully loaded all over the flooring equally, until the latter was sunk to the level "of the surface of the water; then large "cribs" were built upon the floor, and on each side of the bridge, and bonded in with the floor, by placing long untrimmed trees in the alternate tiereg, with the butts to the outside of the cribs and their tops overlapping in the centre space between. These side cribs were composed of alternate layers of timber, brushwood, and stone, untilthey were brought up nearly to the surface of the water, being held in position by the side piles during their settlement. On this floor, andbetween theseside cribs, the tipying was commenced in the following manner;-waggon loads of rock were conveyed along the outer tracks of the bridge and cast as far ozer the outside, as the men were able to throw the stone; after this had been continued for some time, earth was tipped through the three tracks into the or centre space between the stone: This mode of operating succeeded admi-rably-the lake was filled in a very short space of time-and the settlement since the completion of the work has been very trifling indiced. The cost of this work, including the expense of the flooring of timber and temporary bridge, wat much less than it could possibly have been done for; by any other method than that adopited-while from the fact of the brush and timber being permanently under water, this portion of the work will be almost as durable as though the whole mass had been composed of stone.

## LAKETIETAD DTVISION.

Sections Eive andSix-from Salmon Brook to Groom's Cove dear Hampton, eleven miles in length, forming the balance of the Second Division, are the next in order.
ft is bere necessary to remark, that on the first of these sec-
tions the most extensive departure from the original locations of the former Contractors was made; and the very serions difficulties, well known to exist in the neighborbood of Gondola Poim, including the large viaduct through the deep water at Harris' Cove, were entirely avoided-difficulties of far greater magnitude than any that occur on the line else where.

It was ascertained by a carefully revised serics of preliminaly surveys, that a more direct line by the way of the Lakeficld Settlement, up the valley of the Salmon Brook, and thence downwards to Hammond River, coinciding there with the old. line and crossing the river at the same point, could be selected at a yeduced cost.

This alteration, without involving a steeper gradient thans the maximum of 45 feet to the mile, as adopted upon this Railway, effected a saving of upwards of 400 degrees of curvature and nearly one and a half miles of distance.

In addition to these manifest advartages, the direct saving, inchoding damages to land and buildings was estimated at $\mathfrak{L} 35,000$. Besides this, however, there was a prospective and perpetual saving provided for by this important change, which is equivalent to a further sum of 232,216 ; this latter represents the capital which would accrue from the present and consolidated value of the yearly interest on the money ( $£ 19,070$ ) which would have been required to build this unnecessary $1 \frac{1}{2}$ miles of Railway,-added to the yearly running expensem and wear and tear. These two sums therefore taken together, exhibit a total saving of $£ 67,216$ effected by this alteration."

The attainment of this great desideratum was hardly to be expected, as the line of country between these points had already been repeatedly explored without the object in view being accomplished.

For the purpose of obtaining an impartial opinion, where so many conflicting interests were at stake, the Commissioners in order to verify the estimate, concluded to open each line to the competition of experienced contractors; this resulted in offers being received to construct the line through the Lakefield settlement for sums varying from' $£ 30,000$ to $£ 50,000$ less than the shore line by the Gondola Point.

The Tender of Messrs Walker \& Co., which was accepted, was $£ 30,917$ less than their offer for the Gondola Point. This rection was Jet to them in June, 1857, to be completed in

[^2]November, 185s. The terms of this contract with regard to the time of completion have not been fulfilled for reasons hereinafter explained.

This part of the Division is peculiarly situated, being about $6{ }_{3}^{2}$ miles in length; the earth work is heavy, averaging nearly 60,000 cubic yards to the mile ; the heaviest portion of it, situated at or near the summit, has to be conveyed by engine power, either way to embankments situated at, and near the foot of each incline.

By the terms of the contract it was stipulated to furnish a llocomotive Engine, and forty ballast Cars to the Contractors; these should have been in their hands as carly as possible in the season, the Engine was not delivered before the latter end of October, 1857, and the Cars in the following December; so that on the heavy or governing points of the work, a good portion of the first season was virtually lost. The want of the Locomotive Engine, prevented the Contractor from "stripping" the earth off the principal rock cutting near Otty's, hefore the setting in of the frost-and for this reason, but little rock was excavated at this point, during the winter of 1857-8, when properly the whole of it should have been finished.

An additional Engine, and 45 extra Earth Waggons, were furnished to the Contractors in July, 1858, after the works at Dawlor's Lake had been completed.; and these have been working steadily since that date.

A Steam Excavator was likewise procured at the suggestion of Mr. Parker, the Consulting Engineer; it has been kept at work near the summit up to this time; but, notwithstanding this assistance, the works still require a period of time;-including some months of summer to complete them; and these, in justice to the Coutractor, should be allowed him in consideration of the delay caused by the want of the Locomotive and Cars.

It should also be borne in mind, that in such a confined working area as is here presented, only a limited number of men can be simultaneously employed. If the Contractor is allowed three months from the 1st of April uext, his will afford a sufficient tume to open the Road, if the work is energetically urged forward.

The Locomotive has already passed six times over the wholo axtent of the Line from St John to Hammond River during the past year

Section 6, which forms the eastern portion of this Division, extending from Hammond River to Groom's Cove, near Hampton, was let to the same parties ' (Messrs. Walker \& Co.) to be completed at the same time with the above work. Upon this Section, the Government were to furuish no Plant of any kind; the works are not so backward as those on Section 5, but they are still far from being complete ; a portion of the Grading and all the bridges are unfinished, although nearly halfof the Grading is done and the Track laid upon it.

Some excuse should however be made for the contractors on this Section also, as the exact location of the eastern portion, including the heaviest embankment through Groom's Cove, could not be definitely decided upon, for some months after they took the Contract. The position of the line across this Cove was controlled by the fact of questious arising whether the Railway should pass throngh Ifampton Village or the Ossekeag Valley, questions which tho Commissioners were not in a position to decide, until the completion of the locations to Sussex in October, 1857, gave the preference to the route adopted.

From the limited time allowed in preparing the plans of construction for this Division from the absence of that knowledge that more definite surveys could alone supply, and from the fact that at this time the Enginecring Staff was far from complete, some of Mr. Giles' general plaus were (in order to save time) adopted, which, as well as others prepared under'my own supervision, had in some cases to be modified to suit the altered circumstances.

At this time too, a system of letting the Contracts, different to that which had hitherto been adopted at Shediac, and from St. John to Kennebecasis Station, was decided upon for this Division ; those Divisions having been let and tendered for upon a Schedule of prices only. By this latter mode of proceeding it was to a certain extent immaterial to the Contractor how much or how little work was to be executed, or what plan the Engineer decided to adopt; the former merely being paid by the cubic yard for any description of work at his Schedule price, this system giving the Engineer the advantage of preparing his plans as the works progressed, exactly suited to the nature of the case, or such as a further experience of the particular locality may have shown to be necessary and expedient to adopt.

It will be borno in mind, moreover, that these lettings embraced proposals for the Gondola Point Line, as well as for
that by the Lakefield Settlement, as the adoption of the latter, as already stated, was dependent upon the comparison of the tenders for each route.

The two lines, with the Hammond River Fiaduct and Section 6, embraced an extent of some twenty miles in length, and included the wery heaviest portions of the road : much care and time were obviously requisite for the preparation of the necessary drawings.

Even if the same system of letting had been adopted on these, as that on the former Sections, (which it was nyy expectation at the time would have been done), the addition of the Gondola Point Line was alone sufficient to have doubled the office work. But, it was not until a short time before the period appointed for receising the tenders, that $I$ was informed that the Government insisted upon the works being let upor "gross" sums for each Section and all it contained.

On this account, previously to the letting, it became necessary to prepare a distinct set of Contracts, Specifications, Schedules, Estimates and Plans of every description, necessary for each route; as likewise drawings in detail of every separate piece of work required in both.

For the proper carrying out of this arrangement, there was not sufficient time, nor were there means to prepare the plans required, even had there been time. No draughtsman had been appointed, although I had several times remonstrated on the impossibility of perfectirg works of the maguitude hene involved, with an insufficient standing staff.

Hewever, the most that could be done ander the circumstances, was alone; but, after the location of a portion of the Grades and Alignment had been revised, some of the structures thad to be modified; this caused some delay in getting the designs ready, and it was not until March, 1858, that, all tho drafts were finally arranged for this Section, though it is proper to state, that they generally were preparod as fast as they ware required by the Contractor.

## RANMOND RIVER VIADUCT.

The 䧄mmond River Viaduct, sitmated midway between 'Sections 5 and 6, was let at the same time to Messrs. Small! $\&$ Crosby, to be completed in October, 1858.

This is a massive structure, and the most extensive of the fisind on the whole route, being composed of stoue andiron,
or rather the most substantial Iron Girders of "Fairbairn's Patent," supported upon Piers and Abutments of dressed. Granite, resting upon elaborately constructed pile foundations, which have been laid some 12 feet below the summer water lovel, and executed with the greatest care and regard to permanency, in order to withstand therush of water:that annually takes place, upon this very hazardous stream at the periodical breaking up of the ice.
The Contractors have had a good many difficulties to contend with, in the preparation of their artificial foundations, which have been some what more expensive than at first;contemplated; they have therefore had to execute more work, than it was expected would be , required, at the time arhen they entered intp the contract.

The site of the Viaduct is peculiar; thelipe of Railway necessarily crossing the river ata point where the stream is divided ;by an island.

The Viaduct as originally designed;by Jacksparik Co. was composed of seven spans of 80 feet each, crossing a portion of both branches of the stream and the intervening island; necessitating the construction of two abutments and six piers.

As all the water passed through a span of 235 feet, half a . anile above at the crossing of the post road, this number of -piers, requiring wewy expensive fopndations and great.width of costly spperstructure, appeared excessive; and at the letting of June, 1857, a different ${ }_{\text {plan }}$ was prepared for threpe Spans of one handred feet each, supported on two Piers and two Abptments, to be epected over the Eastern of Main Channel, in which the boringstaken, disclosed a hard bottom some 30 feet below the surface of the general depth of water during the summer; and drawings of the fopndations were prepared accordingly. As sopn after the letting, however, as an Engineer could be spared from the office, an claborate Survey was made of the whole river, half a mile above and belaw the intended Bridge site, which fully demonstrated, that it was better to erect the proposed structure on the intervening island, and that a new water way should the, prade through the same, the original channels, being filled up on either side with embank. prents.

This site was therefore adopted; thus dispensing with four Piers, including their costly foundations, besides 260 feet $\mathrm{q}^{f}$ unnecessary superstructure, and thereby enhancing the peq-
manent safety of the Railway, besides effecting a very considerable reduction of cost.

This arrangement, by placing the longitudinal centre line of the Bridge, at right angles to the general direction of the current, allowed the water to pass freely between the Piers, and gave the Contractor the advantage of working upon dry land during the period of construction.

This alteration, has also been of service, in reducing the cost of "unwatering" the coffer dams for the Piers and Abutments.

When the bearing Piles muder the foundation came to be driven, it was found that the specified depth of eighteen feet, which was deemed at the time as the utmost they could have been made to penetrate into the gravelly substralum-was insufficient. From the fact of quick-sand unexpectedly presenting itself, it was necessary ta drive the piles forty feet below the bottom of the dam, instead of the distance specified.

This, of course, caused an extra expense to the Coutractor, in consequence of more pumping being required during the driving of the longer piles, as well as the expense of the additional length of pile.

The upper surfaces of the foundations, are laid at a depth of about twelve feet below the level of sumnier water; there fore the piles composing their support, extend to a depth of fifty two feet below this level.

From the fact of all the Coffer Dams, being more or less moderlaid with Gravel and Quicksand, the continued and simultaneous tase of three of "Gwymn's Patent" Steam Punips, has been required in each dam, dmring the greater portion of the time. These dificulties, 1 am happy to be enabled to slate, are now entirely overcome.

In the Spring of 1858 , after due deliberation, and after the Stream had been carefully watched through the previous winter, to observe the effects of the ice, it was decided, that it would be safer to raise the level of the Bridge three feet higher, to ensure it against damage from iee, in ease of an extraordinarily high freshet. This was effected; by putting in three feet more masonry in the footing courses of the Piers and Abutments, without making any material change in the Plan or description of the work. This additional masonry was found to be necessary, and would have been inserted at first, if the same knowledge of the stream had existed at the time of letting, as was afterwards obtained by more extended observatiou.

As any elevation of the Bridge, necessitated a corresponding elevation of the embankment on either side, the quantity in the latter was thereby largely increased. It may be as well here to observe, that at the letting in June, 1857, it was an object to keep these embankments as low as possible to save expense, it being known that they could be easily raised after-wards-if required.

These alterations of detail, will now be paid for as extras, upon a just and fair Schednle of prices, instead of appearing, as they would have done at first, in the Contract

It may be as well here to state that I consider it better policy to pay afterwards as an extra, upon a fair Schedule of prices, (as is fully provided for in this Contract) for what is really required than to use so large a margin in the calculation of quantities (on work that may be to a certain extent problematical) for the sake of avoiding the popular outery against extras, and thus run the risk of having to pay Contractors a price for work that they may never do ; for it is well known that in "gross sum" Contracts (particularly with governments,) they generally manage to get an additional price for any extras that may arise; while on the other hand, no matter what the deductions may have been, they endeavour to get the full amount of the orginal price in the Contract.

The present condition of the Work may be stated as follows:
The Foundation of the Piers and Abutments are all laid; the two centre Piers are nearly completed; the Eastern Abutment is above the level of the water, and the Contractor is now laying the Masoury in the footing courses of the Western Abutment, which is being laid "dry," to admit of the 'work being prosecuted during the winter.

Nearly the whole of the Granite for the completion of the Bridge, is delivered and dressed; and if ordinary exertion is used, to get the two Abutments during the present winter above the level of the usual spring freshet--so that the works may not be stopped during the recurrence of the same in June and Jnly next; there will be no difficulty in finishing the Masonry by the beginning of August, 1859. The Iron Girders areall delivered and housed, a waiting the completion of the Masonry. in the Piers, before a commencement is made towards erecting the former into position.

As the Girders can be raised upon a scaffolding before the

Abutments are completed, it follows that the whole Viaduct may be finished simultaneously with the Masonry, and the Railway carried over it about the first of August next. In case it should be desired to open at an earlier day, a temporary pile:bridge can easily be erected in the Spring, at a small oxpense.

This ${ }^{7}$ iaduct though it has progressed slowly, so far as completed, is well done-; andwould be acknowledged by competent judges to be good work any where, and considering the low price at which this work was undertaken, the expecution reflects credit on the Superintending partner, Mr.W. H. Grosby.

$$
\text { SECTIONS 7, } 8 \text { AND } 9 .
$$

Sections 7, 8 and 9 , Hampton District, and 5 and 4, SalisBury, nextin order, were let an the 15th of December, 1857, to Messrs. Blackie \& Johuston,-Dillon P. Myers,-Thomas King \& Co.,-Walker \& Co., aud MeDonald \& Mc, secutively,-to be completed on the 1 st November, $1 \$ 59$.

The two first, and the last of these Sections are well advanced; a reference to Table A, No. 9, in the Appendix, will show that if they proceed at the same rate during each portion of the allotted period, that they have hitherto, they will be completed within the time specified.
'Sections, No. 9, Hampton, and No. 5, Salishury Distriet, aye not nearly in so satisfactory a state, and redoubled exqations will be required uponthese Sections, duringithe ensuing Sunpmer, to complete them in accordance with the terms of the Contracts-otherwise the final opening of the Railway may be delayed.

Duriug the past Summer, the location between Sussex and Salisbury, 28 miles in extent, has been completed. This division was divided moto seven Scctions of about fopr miles .each; and the Grading, Masonvy and Bridging, put.under Confract on the Bth day of October last. The Track-laying and \$Ballasting, being reserved, to be let hereafter as.a separate ,Contract.

This latter course was adopted, in.consequence of it being found, that, where these items were, included.with the other swork, the Contractors injured the Permanent Material (Rails, Chairs, Spikes and Sleepers,) by using them for their owia ,temporary purpose, in the construction of their work; the damage thus caused, exceeded the additional cost of doing the .Work without such aid. The Irou Rails were frequently so
injured in removing a few trifling yards of earth, from neglect in not " packing" the sleepers, \&cc., as to render them unfit for Permanent Track.

These Contracts, whieh are for the last remaining portion of the Road to be let, are to be completed by the ist of June, 1860. The "clearing" throughout this Division is completed, and the Grading as well as the delivery of stone for Bridges, materials for Fencing and Sleepers, sxc., have been comm menaed upon all the Sections.

From the light nature of the Grading upen this Division, averaging under 24,000 cubic yards of carth to the mile, there is not the least doubt but that the Contractors will be enabled to finish their work within the time specified.

Should circumstances occur to render it an object of imporrance to open the whole Railway before the first of July, 1860, there would be no great difficulty in so doing ; as by giving a small ibouras to the several Contractors, the Earth work on at the Sections above referred to, could be completed by the 1 st of October, 1859, iustead of 1 sst June, 1860.

A portion of the ballast could in the meantime be carted on the sevaral Sections; and as soon as the 出ailway is ready for the Cars, over the Hampton and Salisbury Divisions, so that the Rails can be delivered at Sussex and Salisbury respectively, the laying of the Track between these points may be immediately commenced, and successfully prosecuted to completion during the Winter of 185.9-60.; and suffigient ballast can bo easity lait on diring the Spring, to admit of the whole Road fibeing certainly opened with safety by the 1 st of July, 1860, or by the 1st June, if necessary.

From what has now heen said, in reference to the completed and still progressive portions of the Road, its state of progress may be ibriefly summed up as follows:


It having been recommended that the locations, as completed by Messrs. Peto, Brassey, Betts and Jackson, should be revised. I now proceed to give the chamacteristics of both locations, as well as a description of the character of work proposed to have been built by that firm, as compared with that now in course of construction.

## CIIARACTERISTICS OF TIIE ROAD AS ORIGINALLY LOCATED.

The Line, as originally located, commenced on the eastern side of the Marsh Creck, outside the bounds of the City of Saint John, and proceeded up the flat of the Marsh, crossing nobend of the Creek near the One Mile IIouse, (so called) until it struck the rough and broken ground near the "Moose Path," here passing the present Post Road on the level, thence to beyond Torryburn, when the location followed the general contour of the shore of the Kennebecasis Bay, intersecting Davidson's Cove, and thence having passed over the points of land intervening between Davidson's Cove and Sandy Cove; it again met the Kemebecasis, afterwards pursuing with but little variation its sinuosities, until it reached Harris's Cove-one quarter of a mile East of Gondola Point.

From this place, still skirting the shore line to the head of Forrester's Cove, the Road would have passed over the intervening points of land to the Hammond River, and crossed the River by an Iron Girder Bridge, 560 feetin length. Proceeding from thence the line skirted the shores of Darling's Lake, crossing Groom's Cove, and was carried over to the head of the Ossekeag, and from thence following to the south side of the Kennebecasis River-the present Channel of that River being crossed on the interval near the mouth of the Passekeag Creek, thas rendering (if this location had been adopted) an expensive diversion of the river necessary.

Between this point and Sussex Vale, the line was intended to have been carried over the several brooks, requiring to bo crossed, by means of wooden trestle bridges, varying from 30 to 180 fect in length.

From Sussex Vale, by this location, the Road would have crossed Trout Brook and Salmon River, by wooden and iron Girder Bridges, 600 feet, and 420 feet respectively in length; and passing through Upper Sussex and turning up, the Valley of Stonc's Brook, following the same until it struck the head waters of the Anagance. From hence the Line kept the Southern side of the A nagance-still holding an Easterly direction, and erossing that river a little below its confluence with the North liver, at which place the name of the river becomes the Petiteodiac; from thence keeping the Petitcodiac to the South, the Line followed nearly the general bends of the Pose Road to Moncton ; crossing the brooks which fall from the Northward into the Petitcodiac, near their mouths by wooden trestle Bridges,- thas continuing till it reached the Station at AOncton.

From Moncton, the Line wound round the rear of the town, crossed IIall's Creek, and proceeded circuitously up the Valley of Larris' Mill Stream to its crossing-thence to Cook's Brook, passing over the summit 161.9 feet above high watep opring tide level at Saint John Harbor-passing on through the Shediac Sitation to Cape Brule, a distance of 110 miles from the Marsh Bridge at Saiut John.

## CIIARACTERISTICS OF TIIE LINE AS AT PRESENT LOCATED.

The Line as at present located, begins at the Mill Pond Station, St. John, and takes an Easterly course, keeping on the Northern side of the Marsh Creek, until it crosscs it, opposite the residence of Robert Jardine, Esquire, where it joins the Line previonsly located; this portion of the original loca tion having been previously partially constructed. From the Three Mile Ilouse, the Line diverges from that first located, and taking a direct course passing fourteen feet above the level of the Post Road at the Four Mile Bridge and under the same at Lawlor's Lake, where it again intersects the old Iine; from thence to the Nine Mile Ilouse, the new line does not differ materially from the old one. But from the Nine.Mile House to IIammond River, it will be seen by reference to a former portion of this Report, that the new line deviates widely from that originally located, being also much shorter and in every way preferable. From Hammond River to IIendricks', the two lines vary but'little. Leaving this point, a marked deviation is obscrvable; the new line passes over
the summit near the corner of the Passakeag Road, winding round the large bend in the Kennebecasis, and again joining the former location at a distance of 27 miles firom $\mathrm{St}_{\mathrm{t}}$ John. By this detour the heavy excavations which would otherwise have been required for the alteration of the Channel of the River, and the effects of the amnual heavy freshets (often of a most disastrous nature) have been avoided.

From the point-last named, to within a mile of the bowndary between Kings and Westmorland Counties, the new line, pursuing the same general direction, differs in many essential points from that originalby located. Curves of larger radii and tangents of greater length have been sulstituted. From hence to Moncton the whole location consists of only four very long tangents and four curves of large radii. A great saving in Curvature has been effected thereby, whilo the Gradients are not in any way heavier than those designed for the former road.

From Moncton to Shediac, the lime having been partly constructed by Messrs. Jackson \& Co., it became necessary to adopt the previous lecation ; but here some changes were made, longer tangents being adopted in several places, thereby effecting a direct saving in the curvature and distance. From Shediac Station to Point du Cheme, the constructed line was followed for a short distance, but for the remainder a new line was located down to the present wharf.

The whole distance from Mill street, St. John, to Point ${ }^{\text {d }} \mathrm{d}$ e Chene in Shediac harbor, is $1083-10$ miles or only eight per cent longer than a straight or "air" line, and it is also shorter than the original lucation by $2,2-3$ miles.

A Brauch Line 88-100 of a mile in length has been constructed from the Station in Moncton to the prblic wharf in that place. As this line crosses the heads of the wharves in this town, Sidings and Loading Platforms have been provided for the accommodation of those using them. The public wharf has been entirely remodelled, repaired and furnished with a moveable loading and landing Slip. Additions have also been made to the bed, so that vessels may lay at low tide with safety. A commodious Freight house has also been fitted up with conveniences for loading and storing freights.

The maximum Gradients on either location, are at the rate of forty-five feet per mile.

Table B., No. 2, contains a summary, shewing the lengths of each description as designed for both lines. On the ori-
ginal location the minimum radius of curvature between St John and Shediac was 1584 feet,-the maximum was 5280 feet.

On the revised location, the minimum radius of curvature is 2565 feet between St. John and Moncton, and the maximums 12,278 feet. Between Moncton and Shediac the radii of the corves are the same as those of the original location. On the original location, the total amount of curvature between. St. John and Shediac was 3901 degrees or 35 degrees per mile:

On the revised location to Point du Chene, the total amount of curvature is 2173 degrees or 20 degrees per mile.

On the original location the total amount of straight line was 70.9 miles, and of corved line 40.1 miles.

On the revised location, the total amornt of straight line, is 79.7 miles, and of curved line 28.6 miles, making a giain of 8.7 miles of straight line, and a reduction of curvature expressed in length of 11.4 miles.

The whole amount of the ascents on the revised location from St. John to Shediac, is 1063 feet, and the amount of the descents, is 8075 feet.

The summitor highest point on the line, is twelve and a half miles from St. John, and has an elevation ofl 65 feet above the level of high water in St. John Harbotur.

Table B. No. 2, exhibits the details of the gradients as designed for the new location-shewing their length,-total distance from St. John-rate per 100 feet-grade per mile, ascent and descent, and elevation above the tide water at Saint John.

Table 13., No. B, gives a summary of the curves and tangents as designed for both routes
'Table B., No. l, shew's the lengths between the differens locations.

From the foregoing remarks, it will appear that the advantages that have resulted from revising the locations previously made by Messrs. Peto, Brassey, Betts \& Jackson are very decided, and may be stated in general terms as follow :-

Seventy five curves have been dispensed with, and straighs lines substituted; ten of them being dangerous "reversed". curves, and sixteen others, connected by short tangents of from twenty to ninety feet, between the points of "reversion"that are scarcely less dangerous.

On the revised location, the shortest tangent line between
two curves in opposite directionsis 400 feet ; the minimum radius of curvature has been increased from 1584 to 2865 feet.

By these reductions of curvature and elongations of radia, the Railway will admit of very greatly increased speed with safety, and these improvements will also be the cause of a great permanent saving of wear and tear in the working of the road.

Sharp curves are alway's highly objectionable, particularly on passenger roads, from their "wear and tear"; of Engines nnd Cars, and displacement of Rails, \&c.; and the danger of ruming of the track, is very muchincreased thercby, especially at high velocities.

The actual saving in distance effected from St. John to the end of the wharf at Shediac, is tivo and two thirds miles, while at the high rate of speed that can and will be maintained upon this Railway, should its connection with proposed lines from East and West be effected, the absolute reduction of 1727 degrees of angular deflection, (techmically termed "cturvature,") equal to four and eight tenths entire circles, will be equivalent so a further reduction in the working expenses of the road, of six miles; or, in other woyds, the amount of curvature here stated, had it remained in the line, would have entailed an expense in friction and loss of power, (exclusive of wear and (ear) equivalent to that on six straight and level miles.*

These two items therefore, I maintain, virlually make a permanent saving in the wouking expenses of the passenger fraffic equivalent to a reduction of eight and two thirds mileg of diskance.

## OLIARACTERISTICS OF CONSTIRUCIION ON PRE SENT ROAD.

The Railway is laid out as a single line of five feet six inches guage ; although the ample quantity of 100 feet in width of land taken, as well as the location of the centre line, likewise the Station Buildings, are arranged for a donble Track, di required hereafter.

The Permanent Way consists of a single Trail, of the latest Improved American pattern, 63 lhs . to the yard, of Staftordshire hammered iron, fastened down at the rail joints only, (with east chains, of 24 lbs . weight each, manufactured from " best

[^3]Welsh cold blast" iron,) to sleepers, of cedar, hacmatac or pine, níne feet in length, ten inches wide, and six inches deep, laid two feet four inches apart from centres, the largest being at the joints, and all bedded in clean ballast, twelve feet wide at the base of rail, and extending twenty inches in depth below the same level. 'The width of the Roadbed is not less than twenty feet, on embankments, and twenty-four feet $\mathrm{m}^{2}$ excavations at "formation level" which is two feet below rail height.

The side slopes are nowhere less than one and a half horizontal, to one perpendicular, though, where required, these have been reduced to one and thiree quarters, and two to one.

In construction, the road-bed has invariably been kept two or three feet above the general level of the ground whenever practicable, in order to ensure a good drainage and facilitate the removal of the snow, (a very necessary precaution in this climate; ) when this could not bo effected withott incurring too much expense, and when material obtained from excavation of ordinary widt, was insufficient to complete the adjoining cmbankment, the low and wet cuttingsliable to be deluged with water, have been increased to thirty-five feet in width at formation level, and capacious ditches opened on either side; thereby forming as it were cmbankments throushout the cut-ting.s-a desideratum very, essential for the efficient working of railways in the severe winters in this climate.

On steep side hill cuttings also, where ice would be liable to ${ }^{\text {a }}$ be formed over the rails, the excavations on the double treck side, have been enlarged to twenty feet from centre, or thirtytwo feet in all, and a "catch water" drain ten feet in width and two feet in depth, below formation level, has been inserted between the side hill and the Railway; wherever the depth of cmbankments exceeded thirty-feet, the formatiou width has been increased to twenty-two feet, and the side slopes made two to one; and wherever the action of water had to be especially guarded aga'ust," rip rap" or bank paving has been placed as a protection. The rock excavations, are not less than twenty-four feet in width, with side slopes of three inches to the foot.

The Masonry for the large and more important bridges, is the best "Ashlar" with "hammer dressed" beds, and rough or quarry faces, laid in hydraulic cement; white that of the smaller elass bridges, is of good substantial punched rubble laid dry.

The superstructure of all bridges of spans above forty-feet is composed of wrought iron; all of these bridges have been so designed, as to ensure safety and stability, with proper regard to economy.

The patterns adopted, are of three kinds, viz. :-"Stephen, son's. Fairbairn's, and Warren \& Kcunard's patents." Those that have hitherto been executed, may rank with the best of their respective kinds in other lands.

Imay here remark, that latterly, all the iron rails and girders, have been prepared under the superintendence of Charles May, Esq., C. E., of No. 3, Great Gcorge Street, Westmin-ster-and it is but an act of justice to that gentleman to observe, that he has executed this duty with abihty and fidelity.
The superstructure of Bridges of Spans unde forty feet, is of Wood, composed of the best well selected St. John pine timber. Table B., No. 4, gives a statement of the quantity offiron and wooden bridging, that was to have been erected by the former Contractors, and also she ws the greatly reduced guantity of bridging now being completed. A perusal of this Table will show, that although iron superstructure has been extended to the ten primeipal bridges, or to all spans of upwards of torty feet, while the original Specification only contcmplated appiying iron, to four Bridges of Spans of one hundred feet and upwards, yet the total quantity of Iron Bridges has been reduced, from eighteen hundred and twenty, to thirtern humdred and ten lmeal fiect. The wooden superstructure, has also been reduced, from four thousand and eighty-fomr, to two thousand three hnudred and eighty-six leet, or nealy one-hait. It is likewise worthy of remank, that nearly all the wooden bridering, was originally intended to have been composed of trestle work, with the a ath sopes rammardarectle thronria ine powsa method of all others, the least perminent. The woolen bridges now beiur constructed, are the best of their se weral kinds; the materal and workmanship, in all, are to be of the best description, carefilly planed and painted, and protected from the weather as much as possible, by a covermer of asphaltum or zinc. They comprise twelve of woodworh alone, and twenty two, having a similar superstructure whit the former, but with the addition of stone abuments,- ihe span between which (with a special view to permanency) has been contracted to the shortest length, consistent with the requisite space for the water:-this will sccount for a portion of this re-

## 51

duction. A further reduction of trestlo bridging has been effected; by the substitution of arch and box culverts of stone, with embankments, wherever practicable; by which the consequent demand'for repairs and liability to accident, has been greatly reduced.

- Nearly all the main roads intersected by the Railway, have been crossed either over or under, by means of substantial bridges,-level crossinga, (as originally intended,) being the exception rather than the rule.

The arch culverts on the Line, vary from 4 to 12 feet span; they are of the ver $f$ best description of material and workmanship, and laid in hydranlic cement.
The box culverts are of different sizes, and are with a few. exceptions, of a very good description of strong punched rubble masonry laid dry; no wooden culverts on the main-Line, covered by earth-work, have been permitted.
From Moncton to Point du Chene, the superstructure is composed of the $\mathbf{U}$ or bridge rails imported by Messrs. Jack(w) \& Co. As a previons and extended experience of this Rail on the St. Audrews and (Qullowe Railway, had confirmed me on the opinion that the single $\mathbf{T}$ or American pattern, was a superior form of rail ior this climate, tis adoption was secommended, for the residue of the line between Monctou and St. John, as already stated.*

In crossing the several viaducts and bridges between St. Johu and Moncton, "Winslow's Compound," or continuous tearing Rail has been adopted. This dispenses with bothpoints and fishes \&e., and thus alds largely to the safety of the R'ulway.
A pier, 1850 fect in length, has been binilt at the Sliediac termmus al Point du Chenc,- $\mathbf{- 1 0 0 0}$ feet of which, is thirty leet wide; and $7 i 0$ teen, forty fert in width; at the end an L $80: 150$ has been placed. A single Track has been laid . lown and a carriage road constructed alongside the rail way throughout its whole lengh ; suitable mooring posts and rings have been provided, thus onsuring (as far as possible) safety to ships moned alungside the Pier. Loading Platforms have also heen erected, and cranes have been procured to facilitate the shipment of freight or cargo.

In further explanation of the style on which the works are

[^4]being executed, I beg to refer to the form of Specification attached to the Contract at the end of this Report ; and I take this opportunity of stating, that a strict adherence to the terms of these Specifications, is invariably insisted upon.

In concluding these remarks upon the several constructions in this Railway, I beg to say, that the works generally are being built in a thorough and substantial manner, and with a due regard to the ultimate requirements and permanent efliciency of the Road, and at the same time with every attention to a proper economy.

As some test of the goodness and safety of the Road, it is worthy of remark, that since the two divisious from Moncton to Shediac, and from St. John to Kennebecasis have been opened, doing a considerable traflic, and at an average rate of speed of about 30 miles per hour, (while the train is in motion,) and extending over a period collectively of nearly two seasons, during which no accident, or failure of any kind has taken place, arising from imperfections in construction, or from any mherent defect in the way, works, or rolling stock.

And I believe I am justified in saying, that no Engine or Train has been thrown off the Main Line, through any of the above causes; indeed, no accident of this kind has occurred, and this is the more remarkable, when is remembered, that both the above Divisions were opened for Tratlic, before the Ballasting was completed, and while a cousiderable proportion of the work was in an unfinished state.

## ROLLING STOCK.

Table A, No. 8, shows a list of required quantity of Engines; Cars, Snow-ploughs and equipment generally designed for the Railway; it will be sufficient to say that they are of the newest and most approved American pattern, and are, in my opinion, better adapted to the climate of this country and the traffic to be anticipated, than any other.

The experiment of building the Locomotives in this city (St. John,) has been entirely successful, and I have no doubt that the enterprising builders, Messrs. Fleming and Humbert, having perfected their arrangements, can make Engines cqual to those imported from Boston.

The Passenger Cars on this Railway, are especially worthy of notice ; in point of interor capacity and general arrango-
ment, I do not hesitate to say, (although made in this city) that they are unsurpassed in America, and reflect much credit on Mr. James the Contractor, who has spared no pains in their completion.

As it is very desirable that all the Rolling Stock of a Railway, each of their respective kinds, be of uniform size and pattern so that they may be as much as possible duplicates of each other; and as there is now a large proportion of the stock required already on the road, prepared in accordance with well digested designs, I cannot conclude this notice without recommending that the original patterns be generally adhered to.

Exception has beemtaken to the wrought iron trucks under the Freight and Platform Cars as being liable to get out of adjustment ; buit, as this only happens in the event of Cars rumbing off the rail, which very rarely occurs on this Railway, it is questionable whether the objection would not be overruled by the superior permanency of the iron truck.

## OBSERVATIONS ON TIIE CONTRACT MADE WITH MESSRS. JACKSON \& Co.

The superiority of the Road now being constructed, over that which would have been made under the original contracts with Messrs. Jackson \& Co. having been asspumed in this Report, it is proper to state succinctly and clearly, the grounds on which a comparison of the two lines, is presumed to be favourable to the former.

Such a eomparison cannot be fairly made, without adopting some standard, by which the merits of both lines can be measured.

Assuming, therefore, that a road is in every point of view the best,-which is the shortest, the most level, durable-and, at the same time, -the cheapest which can be made-the following comparison may be instituted.

To ficilitate this enquiry it is well to refer to, and thoroughly examine, the original specification (marked A) a copy of which is annexed.

It must be remembered, that it has been considered judicious to substitute work of a superior charracter to that specified and as exhibited on the drawings-and to add thereto.

From the character of the specification it will also be evident that extra work (not provided for therein) would have beon imperatively required.

The points here briefly referred to, as particularly demanding attention, are more fully discussed in Note C. The additional, cost to that which would have been incurred, by strict adherence to the former contracts, was rendered necessary for the attainment of the following objects; -

1st, additional cost of Iron for superstructure.
2nd, widening, straightening, and perfecting the grading.
3 d , the substitution of areh eulverts, covered by embankments, and permanent bridging-in place of trestle work (occasional) wooden culverts, or level crossings.
4th, the erection of five additional wood and water stations. 5th, grading depot grounds.
6th, the construction of Shediac, Moncton and Torryburn wharves.

7th, making 35 miles additional Fencing and liquidating land damages.

* The proper value of these several additional items is as follows:-
Origiual contract price $£ 6,500 \mathrm{stg}$. per mile $£ 7,800$
Additional cost of Tron above that specified, at per mile 240
Additional earth work for widening, straightening, and perfecting grading, at por mite

633
Additional cost of permanent britging in
lieu of trestle work, wooden culverts, and level crossings,
at per mile 351
Additional wood and water stations, at per mile 35
Additional depot grounds, at per mile 138
Additional wharves, at per mile 83
Additional fencing, - at per mile 51
Land damages, at per mile 277

Total cost of present road by original contraet per mile |  |
| :--- |
| $, 6,608$ |

Present estimated cost per mile
Saving per mile, : $\overline{£ 1,108}$

[^5]From this it is evident, that it was only by the substitution of less perfect and permanent work, that the Road could have been built cheaper than it is now being constructed.

It may not be improper here to call attention to the comparative estimate, which has been furnished to you, of the - average cost per mile of the Nova Scotian, New York, and European and North American Railways.* It will therein be perceived that, in the items of Grading, Masonry and Bridging, the cost of this Road is large in proportion - this increase it must be remombered, is for work of an enduring and permanent character, (which governs the annual outlay for repairs)-while in rolling stock, buildings, engineering and contingencies, the proportion of this is small.

This Table is worthy of study and is very significant, affording, as it does, a true criterion by which the permanent character and cconomy of expenditure on the European and North Americau Railway, may be judged.

The system of allowing contractors to prepare their own specifications - select their engineers - design their loca-tions-and suporintend their own constructions-is one which renders them to a great degree irresponsible,- enabling them in fact, to make a liailway to suit their own pecuniary advantage, and is altogether incompatible with the true interests of a Provincial undertaking, especially one of the magnitude and importance here involved.

While investigating the comparative merits of the two mentioned methods of Railway construction, it has been my somewhat uncwiable duty, to institute a comparison between the Line as first located, and the works as now being comple-ted,-and I trust, that in so doing, I have not laid myself open to the charge of drawing invidious conclusions or of making contrasts further than was necessary to render the subject fully intelligible.

It is far from my intention, to convey the impression, that the contractors or eugineers did not fulfil their sereral engr:gements, as defincel and ascertained, by a strict construction of the terms of the original contract. On the contrary, 1 do not hesitate to say that these gentlemen fully executed the works as specified, which were, as far as completed, construeted in accordance with the contract. If just cause for complaint here exists, it is to be attributed to the want of

[^6]definiteness in the specifications, which admitted of such latitude of iuterpretation.

The line as at first located was such a one as a judicious engincer, whose special duty it was to study the pecuniary interest of his employers - without any regard to the subsequent cost of maintenance and running expenses - would have designed. It was, it is true, very eurvilinear: but,when it is taken into consideration, that it was to have been paid for by the mile and therefore rendering it a requisite object that the road should be made as long, and as easy to build as'possible, - this should canse no great surprise;in fact, it might hare been much less direct than it was, and still have fultilled all the requirements of the contract.

The present excellent location of the European and North American Railway, is mainly attribntable to the numerous surveys and plans previously made of it by several eminent civil engineers.

The first survey was made by John Wilkinson, Esq., an exceedingly careful and scientitic geodetic surveyor, whose accurate and very superior topographical plans have been of the most essential service - a survey subsequently prosecuted by Messrs. Beattie and Campbell, well known in the profes-sion-afterwards by Frank Giles, Esq., assisted by a very competent staff, whose comprehensive profiles and plans were of the greatest value in selecting the present location, (these being subject to the approval of A. C. Morton, Esq., the consulting engineer'). All the gentlemen above referred to, contributed to render the final survey andlocation, compara tively easy, and gave to their successor and the Province the benefits of all their previous labors and experience.

Before speaking of the Engineering Staff I must first beg to acknowledge the very valuable advice, and courteous consideration which I have invariably received from Mr. Parker, C. E., of Boston, who was employed by the Government to Inspect and Report upon the Works.

The staff has been organized upon the American system, which is considered the best adapted for the requirements of the construction of Public Works on this Continent wherever the general and promiscuous way of letting works
to men of all classes is entertained, without any special regard being had to their qualifications, and so long as the lowest tender for work must necessarily be accepted, such an organization of the statt will be imperatively requisite.

In England a different system is adopted; the P'ublio Works are rarely let except to bona fide contractors, well known to have extensive experience and capital; such men have generally a thorough knowledge of their business, and keep in their employ a regular staff of Engineers. The woriks are gencrally, let to the contractors, after the locations and plains have been carefully arranged and decided upon, -they becoming responsible for the works; and executing them under the supervision of their own Enginecrs; the Company or the Govermment, as the case may be, merely employing a Chief Engineer and such a limited staff of Resident Engincers and-Inspectors, as may be sufficient for the general supervision of the Works.

This, it is evident, could not be done in this country, as for the reasons already stated the contractors have not the experience as a general thing, nor have they the Engineers in their employ - and the result would be that if works were let to them under the English system the Engineering (if done at all) would be done very badly, while the construction generally would be "scamped."

The English system has to a certain extent been tried in Nova Scotia, and I find from the very able Report of Mr . Taurie, the Civil Engineer appointed by the Government' of that Province, to examine and report upon the Nova Scotia Railway, that the result has not been satistactory.
'Extract from Mr. Lauric's Report. page 41 :-

[^7]be made up to them in the shape of allowances or otherwise. The duties of Chief Engineer are such, in the office, as prevents his spending much of his time upon the line during the construction oi a road."

With the above view, the Fngincering Staff has been latterly organized upon as limited a scale as was compatible with thorough efficiency, and the work has been systematically carried on in the following manner. As soon as the surveys and locations had been completed, the plans and drawings prepared and the contracts let and signed-the lioad was divided into eight separate Divisions-cach averaging about 13 miles in length and phaced under the charge of Division Engineers.

The duty of these Engineeri, was to attend to the carcful "setting out" of the numerous works and structures, to see that they wew built of the best material, in a proper manner and in aceordance with the specifications, to make to the Chief Engineer regular returns of all work dome and material delivered on their respective Divisions, for each month then ending, so that the Contractors could receive monthly payments for the exact amount of work done:-In fact, to take sole and full charge of all the Works on. their respective Divisions receiving orders from, and reporting weekly to the ('hief lingineer, who by this means is kept constantly and correctly informed of everything transpiring on each Divi-ion ol the Road.

A principal assistant Engineer, of matured experience, was also appointed, whone duty it was to take the general supervision of the whole of the works and act under and carry out the particular views and orders of the Chief lingineer and pass over the Work, as olten an possible, consulting and advising with the several Division Eugineers on the state of the works generally and on any particular difliculty that might at any time arise.

In the principal Office at St. John a Draughtsman and two Assistants, and also a Clerk have been ippointed. The duty of the former was to prepare all maps, plans, and drawings of structures of erery deseription, under the especial direction of the Chief Engineer and the Principal Asşistant. This important service has been very onerous, from the fact of each Section being let separately for a "gross sum," necessitating the preparation of distinct sets of drawings in full detail for each Contract in duplicate; and it is but justice to say, that the execution of these latter reflects the greatest
credit upon the gentlemen to whom this service has been entrusted. In addition to his special duties ass Clerk, Mr. Stone has made out all the Contrictors monthly accounts as well as the pay lists and vouchers of the Engincering Department.

The following list shows the names and special duties of the Officers of the Staff; but it should be stated that some of the situations referred to are not at present occupied by their original holders:-

## LIS' OF ENGINEERLNG STAFF.



In justice to the whole Staff, I cannot allow this gencral notice of its various members to pass withont gratefully acknowledging the ability, assiduity and faithfulness which have distinguished the entire corps. In this Report it would be out
of place to particularize individual claims to regard; nor would it be in accordance with my own feelings, to contrast the merits of the several Officers mentioned, who have each and all, manifested an untiring zeal for the success of the Road, and whose general conduct has been such as to entitle them to the warmest commendation; it is indeed to their zeal, fidelity and ability, that the degree of success attained in the prosecution of the details of the work, to which I can refer with satisfaction, is in a great measure attributable.

Of every member of the Staff I can with sincerity say, that he has established a claim to a higher position than that which he now occupies.

As Weads of Departments, Messrs. Burrowes, Wightman and King, are obviously entitled to special atteution. If the position, of these gentlemen in the Corps, did not even demand this notice, my own grateful sense of the valuable and ready assistance (which, whenever required,) they have afforded me, calls for my warmest acknowledgement.

As Principal Assistant Engineer-his superior general Engineering talents, practical knowledge of Mechanics, and a previous expericnce as Contraktor as well as Engineer, have enabled Mr. Burrowes to afford me invalable co-operation. To Mr. Wightman's skill as Locating Engineer, added to great expericnce and very superior judgment in selecting routes throngh a difficult and paitly wilderuess country-the superiority of the present location of the road, over that formerly adopted, is mainly attributable.

Mr. King's unremitting attention to the onerous duties, which devolved upon him, as Resident Engineer in charge of the very heavy Division between St. John and Iampton-together with his strict adherence to approved system, and thorough practical knowledge, rendered his services of great value.

As Resident Engineer on the Moncton and Shediac Division, Mr. II. F. Perley's mdefatigable zeal during the completion of this portion of the road, entitle hum to great credit. To Mr. Perley also, as well as to the reliable assistance of Mr. H. G. C. Ketchum, I am much indebted for the aid they have afforded me in collecting many particulars, and arranging a portion of the data, to be found in the tables which accompanythis Report.

In conclusion, I have to observe, that although this Report has exceeded the limits in which I had supposed it could be comprised, I trust it will not be regarded as unnecessarily prolix or minute. When the great interest is considered, which is justly attached to the European and North American Rail-way-an interest not confined to this Province :-when the powerful influence which the success of the road must have on the present fortunes, and in (its widest sense) the future welfare of our people:-when especially it is considerd, that not hastily adopted or perhaps ill founded expecfations, are entertained, that this road will ere long become the great thoroughfare of British North America-to form, it may not be presumptous to hope, before many years elapee, the Eastern portion of a great highway from the Atlantic to the Pacific-all these momentous topics for consideration being regarded,--it is surely most desirable, that every official statement or report relative to the road, should be comprehensive and thorough.

I have the honor to be,
Sir, your obedient servant,

AI EX. L. LAGIT,

Enginerb.

## NOTE A.

In further explanation of the amount virtually saved by the adoption of the shorter route through Lakefield, it it necessary that the data forming the bisfls of the calcutations made in the body of the Report, should be moref fally entarged upon.
The cost of the original line from Salmon Brook to Hammond Hiver, apound Gondola Point, 8.12 miles in length, would have been by the thwest tender $£ 106,794$, or at the rate of $£ 13,152$ per mile, 'including superstructure, stations, rolling stock, and land damager.
The saving in distance, effected by adopting the line through Lakefichl, was 1.45 miles, which at the before mentioned rate would amount to $£ 19,070$, thio annual interest on which sum at six per cent. is $E_{1144}$.
The annual wear and teat, and repairs, as well as the cost of running the trains, that would have arisen upon this unnecessary 1.45 miles of railway, will be ascertained by the following investigations:-
The expense for repairs of iron raile, aftor allowing for the value of the old materina, has hern found to be equal to the cost of anentre renewal once in every fourteen years-that for cross ties to a renewal oure in eught yrars.

The annual cost of repairs per mile upon a substantially finished way and works mav be stated as $£ 100$.
Thus we oltain for annual wear and tear and repairs the sum of $£ 370$ upon this distance saved.
Assuining four as the least number of trains that would daily have passed each way over this 1.45 miles of Railway, of it had been coustructed, we have an aggregate saving per anuum of 3500 miles of distance, eflected by the adoption of the Lakefield route.
The cost of running a train may be stated at two shillings and nine. pence per mile, inchuding all incidental expenser, except wear and tear and repairs of Track; this makes a saving of $£ 419$ for this item.
In a word, assuming the cost of this 1.45 miles of railway to be as nobove $£ 18,152$ per mile, or $\mathcal{L 1 0 , 0 7 0}$ for the wbole distance, the interest of which is £1 i.44; the annual repairs as well as wear and tenr of supcrstructure, to be $£ 370$, and the annual rumning expenses also $\mathrm{f119}$; the total annual exprise will then be $\mathcal{L 1 9 3 3}$, which is the interest of $£ 32,216$ at $\mathcal{L 6}$ per cent., which sum night puditably have been expended in shortening the Railway 145 miles.
It so happened that the line through the Lakefield settement, instead of requiring this sum to be expended upon it over and abnve the cost of the Gondola Point Line, was actually obtained for $£ 31,500$ less money than the longer line-ndding together, therefore, the sum actually saved and the sum that might properly have been expended t) obtain the shorter route; we have the fum of $\mathcal{A} s, 710$ as the victual saving by the adoption of the line by Lakefield, whech was in cvery way supetior.

The following is an extract from.a work ly W. M. Giilespie, C. E., Professor of Civil Enginecring, entitled "Roads and Railroads," wherein, as he himsolf expresses it, "the results of an engineeling experienco in all parts of the United States, \&c., have been combined.
This oxtract, from such a well known and undoubted authority, so fully embodies my own viows upon this important sulject that I will make no apology for inserting it.

## " ECONOMY OF STRAIGIITNESS.:

"From the great cant of, the maperstructure of a Railroad, and the continually increasing expense of keepipg it in repair, it is highly desirable that it should be' as atraight; undiconsequently at short as possible.
"As the earthwotk of a railroad costs almont nothing for repairs, while those of its perishable superstructure are very great and proportioned to its length, as ia also the cost in fuel, wages, and wear and tear of the engines of running the road, It will offen be adrantageous to make large expenditures for the former:eloment of cost, in order to lessećn the fength of the road, and consequently the anpual expenditures for the lutterer ${ }_{3}$,
-..
"Suppose the total cost of a railroad to be $\$ 30,000$ per mile, the interest of which is $\$ 1800$; the annual repairs' of the superstructure $\$ 1000$ per mitio; and the expanses of engines also $\$ 10: 50$ per mile. The total'annual oxpense will then be $\$ 3830$, which is the intorest of $\$ 63,000$, which sum might profitably be expended to shorten the road ono mile, or $\$ 12$ to shorten it one foot of length. If this single foot gained was the only rosult of a day's labor of a locating party, it would be a satislactory equivalont for the expenses of such a day's work.
-. On these grounds, a short route, which has the faulte of steep grades and curves of small radius, may protitably receive an outlay of capital upor it, for the purpose of lessening these defecta, equivalent to the cost of the difference of distance between it and a longer line, which has hetter grades and curves:

From these cungidatations it ia also suen that a line ought not to diverge from the direct eourgo botweon itu extremitios, and thus increasa its distance, for the stad of the trale of a small town, for whose benefit the time and fure of all the paseengers aud freight on the whole line would thus be taxed. It would he prefeable to unde a bianch prack to the town."-See "Ruads and Railroads"pagre $27 \%$.

## NOTE 13.

## REMAEKS ON CURVES.

The theory of a perfert railway requires that it shall follow a right line on plan and be uniformily level from end to end.
These tivo conditions are maile impracticablo by the interposition of natural obstacles. such as hills, rivers, buildings \&c., which must be avoided, or crossed, or paissed within certain limits.

The principles regalating all fateral deviation are, first, that they can bo made only in curves, angles being itcompatible equally with the speed to be attained on Railways, and with the constantly parallel axes of the four or six wheeled machifes impofled upon thon; and sccondly that'ns the prefect condition is a right lime, so dves comparative perfection consist in the nitnimum amount of deviation from it, that is, in the laitgost possible radius of curvature.
'The Count Dle Prambour', in his work on Locomotive Engines, says "Carves in. raitivags present inconvenienges which are by so much the greater as their degree of curvature is greater.

These inconigniences arg of throo kinds : 1st when a wagon moves in a curve the wheet which followt the outer rail necesqaity gqes aver more ground than thit which folldwe the inver' riall. Now, in wagons at present in use, the two wheels of the dime pair are not independant of each other, but are fixed invarially on the axle" which turnse with'them. "Thercfare the diatance described liy the one cannot be less than the distance deserilied by the other, cicept the latter be druwn'
 'Ihis in im conmquence an additional remintance tfirred' to the motion.
and The centrifugal forec created in the passage of the curve, by virtue of the velocity of the motion, may urge the wagon outwards, so far as to produce a contact and consequently a friction of more or less energy of the flange of the wheel against the outer rail; and the resistance produced by this cause is much more injurious than the former one, because the friction takes place on the whole of the: distance performed by the wheel, and not merely on the difference of the distances porformed by the two wheels.

3rd Finally, the centrifugal force of the motion may be such as not only to press the flange of the outer whed against the outer rail, but by pushing the wheel violently in a direction tangentiul to the curve, it may drive the flange of the whecl over the rail, and thus throw the train out of the rails."

The following tabular statement, compiled from the "Third- Report of the offcers of the Railway Department;" in England, in 1813, exhibits the average velocities attained on five different railways - the great difference in which was mainly attributed to the difference in their Eurves only:-

Average velocity attuined.


The "Northern and Eastern Railway," with the exception of one sharp curvo where it joins the "Eastern Counties," line is very straight, occasionally extending for several miles in a perfectly straight direction.

The "London and Birmingham"- constructed through a difficult country has moderate corves and gradients. The "Manchester and Leeds" Railwny has curres generally of $\frac{3}{4}$ of a mile radius, and some still less.

Thus it would appear that the sharper the curve, the greater the resistanco offered to the impelfing power, and consequently the griater expenditure of fuel in the Locomotive Engine to overcome that resistance; an increased anount of wear and tear to the rails.unt flanges; and it may he added, as the result of actual experience, entails an additional outlay for maintenance of nearly 25 per cent.

The following fact may also be deduced, namely - that reducing the curvalure oñ a line of Railoond, not only achually slwortens the distance to be travelled over, but virtually reajuces that distance still further by enabling a much greater rate of speed to be attained, with safety and economy.

From this brief compiled history of the disadvantages of curves upon railwaya, I now proceed to analyze as nearly as possible (from such data as are extant upon the subject) the approximate value of the virtual saving made by the reduction of curvature upon this road.

It is much to be regretted that the experiments which have hitherto been made relative to the resistance caused by curvature at high rates of speed have not been conducted upon a more enlarged scale and in a more comprehensive manner; al though sufficient is known to warrant very decidedsenclusions being made upon the eulject.

From various experiments made upon Curves of different radii to ascertains 4 . resistance due to curvature, it has heen found that the resistance at the same sfoed is inversely in proportion to the radii, commencing with a curve of 6000 feet rudius and merely moving the load, the ratio of increase of resistance, as the radii we:e reduced. shosvs that 200 feet radius is the Curvature upon which theoretically the resistance would he doubled, or upon which it would require double the power to: draw a given load that would be required upon a level straight line.

A full circle of this latter radius would be ahout 1256 fect in length; it followin therefore, that in passing round a full circle of this radius the consumption of power
which would be required suill ba twice that which would be necessary upon a level straight line of 1256 feet in quagth; or in other words, the extea consumption of power required by the rosiatanes due to the curve, would, have drawn the load an addtional distance of 1256 feot on a lovel straight line.

- The resistance due to curvaturo boing found, bofore stated, to be pracisely in inverse pröportion to the radius, it follows that the total amount of resistance due to a full circle, or 360 degredo of Curvature, would bo the same whatever the radius might be; and that tho extra consumption of power, required to overcome thas amount of Curvature, would be aufficient to draw tho load 1266 feet of additional distance upon a level straight line.

It must, however, be understood. that this result is deduced from experiments made upon a load merely moving at a very slow rato of apued.

No satisfactory experimenta have yet boen made in this country, toidetermine the resstance on a given curve due to high ratas of velocity, but it cannot be doubted that the increased resistance upon a given curve, would bo precisoly in proportion to the speed.

In mercly moving a load upon a levol straight line, no revistance except friction is developed; this having been assumed in these experiments to be about 8 pounds per ten, and the power necessary to move the load on a curve of 200 feet radius, being double that amount, it follows that oight pounds per ton is the resistance due to that curvature when a load is merely unoved.

In estimating therefore, the value of a road designed for moving heavy loads at a very low speed, that is to say, in reducing the length of such a road to its equivalent length of.straight line, it would bo a fuir nate to udd to the measured length, 1256 feet for every 360 degrees of curvature.

Applying this rule to the line under consideration, the saving of distance upon the new location, in consequence of the reduction of curvature would be about one, mile and a quarter; but when tuking into view tho fact, that we are constructing a Railway for moving trains ut a specd of from 20 to 00 miles per hour, the actual saving of distance that will be found upon a proper equation will be far greater.

IThe ahove deductions from the experiments of Mr. Latrobe the Chief Engineer of the Bultimore and Ohio Railway, which wero mado with great care, are perfectly reliable: they fully demonatrate the value of the resistance of curvature, when tho load is merely moved; but no oxact proportion has" yet been accurately ascer. taimed, of the value of the additional resistance, due to any increased rate of speed.

In the autumn of $1855, \mathrm{Mr}$. McCallum, tho eminent superintendent of the New York and Erie railroad, instituted a careful ecrins of experiments for the purpose of determining the relative power required upon the several divisions of the Road, tor the transportation of heavy freight.

Previous to the date of these exprriments-mit had been customary to estimate the friction of cars with wheels of 30 inches and journuls of 3 inches diameter at about 7 lbs. per ton, or 8 lis per ton, for wheels of 33 inchos - hut the average of six experiments at a speed of ton miles per hour, conclusively shewed that the friction of the loaded cars did not exceed 45 to 5 pounds por ton.

After a careful examination and comparison of the loads, moved upon the ruling grades and curves of various sections of the road, it was certainly ascertained that the friction of the cars was 44 lls , per ton (of $2,000 \mathrm{lbs}$.) 'The resistance of curves being $\frac{1}{2} \mathrm{lb}$. per ton for a deflection of one degree of curvature per 100 feet, at the © same rate of speed. Assuming the friction at 5 lbs per ton, the resistance upon the deflection of one degree of curvatu:e per 100 feet, would be 10 per cent. additional; and as the resistance at the same speed is inversely in proportion to the radius as already stated, it follows, that a curve with a deflection of 10 degrees per 100 fect, or of 573 feet radius, would dúuble the resistance : a full circle of this radius would be
about 3618 feet in circamference, therefore in pasising round this curve the consumpa tion' of power, which would be required, 'would bo doubled, or otherwise, the power ree quisite to carty the load around this curvo, would have drawn it an additional distance of 3618 feet upon a straight and level line:. By this it will be apparent that the redaction of every three hundred and siaty degrees of curvature; would be tantamotint to a reduction of $\mathbf{3 6 1 8}$ feet of distance.

In estimating therefore the value of a road, designed exelusively for freight, at a speed of ten miles per hour, that is to, say-in reducing such a road as previously stated, to its equivalent length of atraight line, it would be a fair rato to add to tha: measured length 3618 feet for every 360 degrees of currvature or vice versa $;$ applying this rule to the line under consideration;-the saving of distance in consequence of the reduction of 17279 of cutvature, would be about' 3 miles.

The only reliable experiments on the resistance of curvature at high velocities aro thase of that eminent Civil and Mechanical Engineer;' Daniel Kinnear Clark, Esq. These trials were made in England, on one continuous run on varying gradients, and: with various curves, of and under one mile radius.

Mr. Clark found that at a speed of forty-five miles per hour, on curves of one milo radius and under, the resistance was upwards of 20 per cent. more than on a straight line. As.he does not state what proportion of the curves were less than a mile radius, the data are to a certain extent indefinite. It.is well known that by the Statute law of England, curves having a radius less than a mile, are the exception upon Railways; it would therefore not be improper to assume a mile as the radius upon which the resistance will be increased 20 per cent. at the above speed. This point being established, the following results will be a natural consequence.

It being borne in mind that the resistance increases in inverse proportion to the radus, it follows that a radius of one-fifth of a mile, or a deflection of five degrees and twenty-five minutes per hundred feet, would double the resistance. The periphery of a full circle of the latter radius, will be about 6635 feet, consequently, in parsing round such a circle, the consumption of power required will be twice that which would be necessary on a level straight line of 6635 feet in length.

- Applying this calculation and deduction, therefore to the line under consideration, and to the data previously given, we have a direct proportion as follows :- as tho number of degrees in an entio circle, is to the number of degrees of curvature aaved by the present location, so is the circumference of a curve of one-fith of a milo radius, to the total virtual saving of distance (in consequence of the reduction of curvature) upon the new location, which saving has been ascertained to be 31,829 feet or a little more than six straight and level miles--adding this, therefore, to the direct saving of 2.66 miles before shown, we bave altogether a saving equivalent to eight and tworthirds miles of distance.

Assuming these deductions and conclusions to be correct-(as it may safely be presumed they are)-being based upon the oxperiments of three of the most distin: enished Engineers of the age. The question next arises-what expense might have profitably been incurred, to obtain this permanent virtual reduction of friction, and consequent diminution of running exponses?

Assume the duect qaving of 23 miles road, at a cost of $£ 7,800$ per mile (the origunal contract price,) the total will be $\mathrm{C} 20,800$, the interest of which is $£ 1248$; to this add, the annual saving of reduced running expenses over the wholn 83 miles, (virtually saved.) which (by using the same figures already explained in Note A. is found to he equal to that upon 21,000 miles of detance, and which at the rate of two shillings

 at 6 per cent, vieh sum I mantain might profitably have been expended in virtually shortening the Ralway the above distance.
 lown: The additiongl, cos of grading an.atated in the report, was EG33.per.mile; of this item, - one half was due to widening embankments and penfecting, grading generally, which would have bepp required, on any line . - $^{\text {- }}$ the other half, chargeable to shortehing and gifraightering, was equal' io $£ 34,458$ as above stated.

Thus, it will be seen, that the clear gain effected by the shortening and straightering alope, (exchupive of wepr, and tear of s, wherstructure, already stated ta be twenty-five per लenti,) wifhouf faking into pgcauni thp increased safaty: insurad tharehy, amoungts



## NOTE C .

In diriving at the conclusion which I have, with regard to the extra sums that munt be added to the original contract price of $\mathrm{f}^{7} 7800$ per mile to bring the road, as designed by former '(Jontractots'to the' same standard of excelfence as the Railway now bullditig, as stated in the estimate in the body of the Report, the following data the vo' beeth 'emptloyed :-

1at. Thpse obtained by a careful examination of the several very explicit pitans, profles and estinates for the route originally intended to hiave been pursued, which were len by the former Contractors, and transferred to me by order of the Government.

Secondly, Those furnished by an intimate knowledge of the character of the works executed between Moncton and Shediac, on this line, as well as by p close illapoction of all the works in Casada completed by the samé firm,

I'hirdly, The final cost of the latter, and the remarks of the several Enginedrs who have roported therem-in seddition to those afforded by a careful study of the Speoification (marked A. appended to this Report) which confirmed the opinion adopted in refereuce to thie aubject, and which I now proceed to analyze.

1st. 'The Contract, of which this Speecification forms a part, defines thát should the first eont of iron in England exceed £6 per ton, the additional cost should be regarded'as in extra. The iron used upon this railway has cost $\mathrm{E}^{8}$ per ton terling, making $n$ difference on the required quantity (at the rate of 100 tons per mile) equal to お $\$ 40$ currency.

Socon'dly, 'The ombankments are required by the Specifications to be 15 feet wiade at forination lível, with slopes of one and a half horizontal to one perpendiculat ; this has been found insufficient, and they have been iacreased to 20 feet in width, and the slopes in many instances on high embankments have been increased to two to one; this adled to the addational quantity required in straightening the line, increnined the enthwork thy $1,300.000$ cubic y nedn. The Rock work has been reducetl from 194,000 to 125,000 cubic yards, by the charige from the Gondola Point to the liakeffeld route. By equating these differences of quantities at their rekpectiyo values, it in found that hero $f 03$ per mile has to be'charged to the origimal contrect.

Tho next item in the extra expensb occudioned by the substitution of pernitarnt brilginy in fru of tresth önck, trouden cütverte, and la vel crossings; fere, the eppecificitions atated is that hidges unger the-lianwfy, of 100 that sian and upworda, to bo nonstructed of irm, and under that span, of tim', r on tone, or holh, at tho discretion of ; the. Contrgetms, die.". On reference heing had to the Plans itiwaz found That thero wera "fyun, bridges cmarined "iron"- of an aggregate lengit of 1800 tect over Sicadouc, Sulmon, Trout and IIammond Rivers, twenty-two narked "woome"

As these bridges were all dosigned with spans less than 100 feet-ind as there was no necessity for making more than the specified width of iron, 'it would have been in excess of contract if thoy had been so completed.

It is impossible to say of what character of work these bridges might havo ultimately been; though in this comparison it has been assumed that they would be completed with iron.
There were bridges designated in the plans as "wooden viaducts" of an aggregate length of 4084 fect. If those bridges buitt between 'Shediac and Moncton by the former Contractors, and which were specified in a similar way upon the Plan, may be taken as a criterion of the character of work in which the remainder would have been completed, the price stated of $£ 5$ per lineal foot would be considered as ample compensation for the construction of the whole.

I'he actual cost (by contract), of completing the permanent bridging between St. Juhn and Moncton, exclusive of the three Iron bridges common to both lines, is $\pm 58,497$; deducting $£ 20,420$ as the value of the trestle work above stated, there is a balance of $£ 35,077$, or $£ 351$ per mile to be added to the original contract.

It will be seen by comparing Table A, No, 6 with the list of Stations in Specificasion A, befure mentioned, that there have been added to the latter, five wood and water stations-amounting in the aggregate to the sum of $£ 3750$-equal to $£ 35$ per mile.

Grading of Depot grounds, is an extra, and is the same as charged in Table A, No. $1, £ 14,982$ which is equal to $£ 138$ per mile.

The additional wharves (at Shediac, Moncton, and Torryburn) are the same as charged in Table A, No. 1, and equal in the aggregate cost to $£ 9022$ or $£ 83$ per mile. These wharves were not included in the original Apecification.

The fencing was only to be "where required, of post and rail." As a considerable portion of the original location was through a wilderness country, it is considered that for at least one third of the whole distance, the fencing would have been entirely dispensed with. On the present lucation the fencing is constructed on both sides of the line (of a very permanent character) for the entire length; therefore the charge of $£ 5,600$ for a distance of 35 miles (or at the rate of five shillings per rod), equal to £5l per mile on the aggregate distance, is deemed a just one.

The Land Damages, it will be seen by reference to the Specifiration were not taken into account; the proper liquidation of this item is estimated in Table A, Nu. 1 to be $£ 30,000$, equivalent to the sum of $£ 277$ per mile.

All these items tuken together, make up the sum of $\mathcal{X} 1808$-which, added to the original contract price of 56.500 sterling, or $£ 7,800$ currency, makes an increase (as previounly shown in tabular form) over and above our present estimated cost equivalent to $£ 1108$ per mile.

As the selection of the best form of Rail is a matter of paramount importanco, I beg leave in confirmation of my previously expressed opinion, to refer to the following quotations from the Report of Mr. Charles Hutton Gregory, (the eminent Civil Enginecr sent out from England by the Grand Trunk Railway Company) "upon the construction of the Railway, the character of the Works, and the quality of the Rolling Stock supplied under the Contracts" of that Railway.

## PERMANENT WAY.

uThe description of Permanent Way specified and executed on your Railway was, I understand, settled after a consideration of the forms and dotails found to be most successful on the lines of the Northern States.

4The action of the eevero:frosts and rapid thaws diatots the whole atructure of the rodd to sach bn extent that the Guglish system on coptinuous bearing, or cask. iron chaits, with fittinga, "ore' alike inadmissible; and, it, was necessary, to. adopt a, form offgreat simplicity.
"The Rail of 63 lbse per yard, which is either of the form called the Bridgo rail, or that called the single $T$ rail, reste directly ons sleepers, 2 feet 6 inches apart, and is. gecured to them by spikes. The jofnts are supported on a wrought ironchair, weighing, in some casess: \& tbs, and in some cases 12 lbs; the former being the prevailing . weight.
"Sinaplicity is na doubt thus rattained; and from all the inquiries-I made, I am led. ${ }^{2}$ to the conclusion that thic 'arrangement adopted is the one approved by most of the local Engineers; and an identical arrangement has been adopted by eminent English Engineers on tho Haddiscoe and Halesworth Railway, in England, on the Altona and Kiel, on the Royal Danish Railway, and, I believe, on other lines on the Continent.
"These circumstances. undoubtedly justified the adoption of such a system in the Specifications.' This road is certainly superior to the road laid with liglit ceast-iron chairs; so common in the Northern-States; and where it is fully ballasted pnd well, maintainod with good material it runs well; but from a study of those parts of your line' where it has been most severely tried, I have concluded that present experience might lead you to the adoption, in future works, of the: single . $T$. rail with fished joints, or with Adam's Bracket Chair of wrought iron, either of which, I believe, would make a more perfect road; but it is right to add that even the first and best known of these was not generally accepted as an improvement when your road was designed. Meanwhile, on the existing portions of your system, I believe that a sensible improvement might be effected by putting in large-sized Sleepers at the joints, and arranging the spaces between the Sleepers so as to be least next the joint sleepers.
"The crossings of your permanent way are of good construetion, and the simple shifting rall adopted for Switches is, in my opinion, the best suited for this climate." -See Report (page 34) Grand Trunk Railway, 1857.
"The Earthworks appear to have been properly executed; but the contract width of 15 feet was found to be insufficient for the embankments, which were subsequently increased, and the additional work allowed for in the final settlement."-See same Report, page 25.
" Many of the culverts have been made with timber tops to facilitate the clearing of them, and I do not consider this variation from the Spectication to be oljectionable, whi'e the saving to the Contractors, where any exists, would be inconsiderable."See same Report-page 26.
"It is also noteworthy that the permanent character of the important Bridges on the Grand Trunk Railway proper, will in the course of years be productive of great saving, from the absence of those lusses by decay, or fire, or flood, which as you know to your cost are too prevalent elsewhere, both in Canada and the United States."-Sce same Report-page 37.

Extract from Report of W. Shanly, Esq., Chief Engineer of the Grand Trunk Railway.-See page 11-Report, December 1858.
"East of the St. 1awrence the whole line to Portland, having been originally constructed without that view to permanency, which characterizes it between Toronto and Montreal, and between Richmond and Quebec, the outlay called for in the renewal of wooden bridges, the reconstruction of imperfect masonry, and the ballasting of the permanent way, \&c., has necessarily been very large, and must continue
to be large for nome yeats to come, The Wooden Bridges are the maim source of expense. There were originally upwards of 9000 feet in length of this perisbable: description of structure between Longueuil and Portland. Renewals in iron have, to a certain extent, taken place already-the most important being, that of the Bridge. over the river Richelieu where 900 feet in length, of tubular girder, have been subatituted for the original wooden bridge; which was far advanced in decay. A good many other bridges, also, whicls were 'no longer ade, have been renawed in wood; and the work of reconstruction is dtill:going forwant, and the road gradually assuming in other respectis, as well as in the bridge work, a stable and permanent cha racter.
"The largest proportion of the expendisure is due to the American section of the Line-149 miles-from Island Pond to Portland, where the outley chargeable:ta capital for the past year amounts to $£ 438$ 10ar 2 d . per mile."
N. B.-I may state that the approved portion of this super-structure-as well as the improvements recommended, (with the exception of the "Adams bracket chair") were adopted on this railway as early as the winter of 1856-7.

$$
\therefore \quad \therefore, \therefore \quad . \quad \cdots \ldots
$$

## TABLES REPERRED TO

IN

## THE FOREGOING REPORT.

## TABLE A.-NO. 1.

 EAILWAY FICOM MLLL ETREET, ST, JOHN, TO SHEDIAC MAEBORMEXCEUDIVG BTATIONS, HOLLING STOCK; AND KAND DAMAGES.

Grading, Masonry, Bridging; Feneıng, laying Track and Ballasting, First Division, from St. John to Salmon Brook, as per Table, No. 2,
(5 $86,784-6$
Grading, Masonry, Bridging, Fencing, laying
Track and Ballasting from Salmon Brook to Sussex Vale as per table No. 8 ,
Fencing, as per table No. 9,
Grading, Masonfy, Bridging and Fencing from
Sussex to Salisbury, as per Table-No. 9 ,
Clearing, as per Table, No. 9,
Track laying and ballasting,


Grading, Masonry, Bridging, Fencing, laying Track and Bollasting from Salisbury to Monctón,
Clearing, . . ' Fas per Table Nb. $\boldsymbol{g}_{\boldsymbol{\prime}}$,
Grading, Masonry, Bridging, Fencing, laying Track and Ballasting, from Moncton and Shediac, as per Table No. 3,


Total distance including Moncton Branch equal to 109.18 miles, making cost per mile $£ 8,500$ currency., or $£ 7,083$ aterling.

## TABLE A.-NO. 2.'


 DAMAGES.

BECTION.
No. 1. Charles Walker, Dillon 'P. Myers \& J.

Brookfield,
No. 2. Dillon P. Myers,
No. 3. Walker Rankin \& Walker, No. 4. John Brookfield,

Miscellaneous account, Iron and Girders, Fencing,
Leyelling and Ridging,
Proportion of Engineering,
Work done by Jackson \& Co.,
9.60 Mies of superstructure at
$£ 1,653$ per mile, $\quad 15,86816 \quad 0$
Sidings on ditto
$1,114 \quad 0 \quad 0$

Equal to $£ 10,809$ per mile


## TABLE A-MO. 3:'


 atock anp Land mamages. :

20.30 miles of superstructnre at $£ 1,653$ per mile,
Sidings, sloping and soiling,
Iron Girders for Scadouc Viaduct, (charged in Table No. 7.

Equal to $\mathbf{E 6 , 4 8 5}$ per mile.

## TABEE A.-NO 4

APPROEIMATR ESTMATE OF ONE MELE OR SUPEMSTMUCTURE AND BALEAOT:

N. B. Tracklaying included in Contracte.

TABLE A.-No. 5.


 WOSE.
gEND AND SHEDIAC DIBTRICT.

Clearing.
W orkmanship on Scadouc Bridge, 125,800 Cubic yards Earth Excavation, (0) 1s 3d.
1500 Cubic yards Masonry, 20a, 180 Lineal feet Wooden Bridging ain 80s 2900 Tons Iron Distributed © 8s.

| 8570 | 0 | 0 |
| ---: | ---: | ---: |
| 6000 | 0 | 0 |
| 7862 | 10 | 0 |
| 1500 | 0 | 0 |
| 720 | 0 | 0 |
| 1160 | 0 | 0 |

£17,912 10

MAINT JOKN DIERRICT.
18,750 Cubic yards Earth Excazation, a 1a. ${ }_{4}^{6} 000$ Cubic yards Rock Excavation, (a) 63 3d.
$93710 \quad 0$ 125000
$\begin{array}{r}2,187 \quad 10 \quad 0 \\ \hline 220,000 \quad 0 \quad 0 \\ \hline\end{array}$

## TABLE A:-No. 6.

ABBTRACT OI ETATIONS
No. 1 "Saint John" Class No. 1.
Passenger station(wooden) including shed, $\boldsymbol{£ 1 , 5 2 6} 000$
Car House, 45 W 335 , $\quad 1,33100$
Engine House, (brick) 175ft. diameter, 2,941 50
Wood shed $30 \times 100: 25600$
Freight House $\quad 50 \times 150 \quad 1,000 \quad 0$
IVo. 2 "Kennebecasis"
Clasis No. 2
Passenger atation 50 м. 28 platform \&c. $\quad \begin{array}{llll}655 & 0 & 0 \\ & 586 & 1 & 10\end{array}$
$\begin{array}{llll}\text { Tank House, Woodshed, Privies \&ct. } & 586 & 1 & 10\end{array}$
7,054 50

| 1,241 | 1 | 10 |
| ---: | ---: | ---: |
| 150 | 0 | 0 |
| $\because$ |  |  |
| 1,455 | 0 | 0 |
| 150 | 0 | 0 |
| 970 | 0 | 0 |
| 150 | 0 | 0 |


| 1,675 | 13 | 6 |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 111 | 5 | 0 |  |  |  |  |
| 303 | 10 | 0 |  |  |  |  |
| 553 | 0 | 0 |  |  |  |  |
| 1,468 | 0 | 1 |  |  |  |  |
| 466 | 10 | 0 |  | 4,572 | 18 | 7 |

No. 9 "Plumwemeep" Flag Station and platform, Clams No. 4
No. 10 "Penobsquis" Flag Station and platform,
Class No 4.
No. 11 "Anagance" Passenger Station, stc. Class No. 3
No. 12 "Portage"' Flag Btation and platform,
No. 19 "Poticodiac" Class No. 4,
No. 14 "Salisbury" Class No. 2
IN. 15 "Boundary Creek" Flag Station and Platform, Clams No. 4,
Ho. 16 "Moncton" Station and Turntable,
Class
No. 2,
Woodehed required, Freight ahed on wharf,
No. 17 m Shediac" Station and Turntable,

Woodshed Required,
Prẹight House on wharf at Point du Chéno
$1,947 \quad 13 \quad 5$ 26600

Class No Class No. 2 including Passenger Station, Freight House, Tank and Woolshed,
No. 5 "Passekeag", Flag Station and platform Class No. 4, , F't House, Class No. 3, and Platform, Class No. 4, Class No. 2

| 50~28 | 1,675 13 | 6 |
| :---: | :---: | :---: |
| $18 \times 18$ | 1115 | 0 |
| 100 m 30 | 30310 | 0 |
| $70 \times 15$ | 5530 | 0 |
| $70 \times 60 \cdot(3$ pits) | 1,468 0 | 1 |
| 45f. diameter | 46610 | 0 |

$4,572 \quad 18 \quad 7$


TABLE A:-No. $7 .{ }^{\circ}$

 Is accoveted ron.

Amount paid Jackson \& Co.r, for Surveys,' Work, Iron, Rails and Permanent Material delivered, and Plant furnished $£ 90,000$ sterlingy equivalent to
Rails, chairs, spikes, sleepers in St. John, Bend \& Shediac, delivered by Jackson $\&_{i}$ Co., and included in estimate of superstructure,
Stationary Engine, and Fixings for Shediac Stav, included in estimate of Rolling Stock,
£46,888 211

Pormanent wheels for Carriages, included in estimate of Rolling Stock,
Locomotive Eugines "Hercules" and "Sampson," included in estimate of Rolling Stock,
Iron Girders for Scadouc Viaduct, included in estimate from Moncton to Shedrac,
Probable value of Plant remaining after completion of the Railway,


Actual value of work done by Jackson \& Co. ir as shewn in Table A, No. 5,
Balance charged in Estimate A, No. 1,



TABLE A.-No. 9.-Continued.

| Cotnract Work | Namea of Contractors. | Amount of | Value of Work done under Contract to Dec. 31, '58 | Amount of Contract still to be done. |
| :---: | :---: | :---: | :---: | :---: |
|  | [Total amounts brought forward, | ¢405,701 3 | 263,020 90 | 142,680 145 |
| Passenger Station, St. John, | John Brookfield, | $\begin{array}{ccc}1,526 & 0 & 0 \\ 1,331 & 0 & 0\end{array}$ | $\begin{array}{lll}1,200 & 0 & 0 \\ 1,200 & 0 & 0\end{array}$ | $\begin{array}{lll}326 & 0 & 0 \\ 131 & 0 & 0\end{array}$ |
| Cat Siea, "* | John Brookfield, | 1,331 000 | 1,200 000 | $\begin{array}{rrr}131 & 0\end{array}$ |
| Engine Ifouse, | W. H. Crosby, | 2,941 510 | 515 0 0 | 2,426 '5 0 |
| Kenncbecasis Station, | Alfred Harris, | $\begin{array}{llll}1,241 & 1 & 10\end{array}$ | 1,241 110 | 276 |
| Hampton Station, | Johnstun \& Blackie, | $\begin{array}{lll}1,455 & 0 & 0 \\ 3,995 & 3 & 7\end{array}$ | 1,178 150 | 276 $\mathbf{2 7 9 5}$ $\mathbf{9 9 5}$ |
| Sussive Station, | Thomas King, | 3,995 317 |  | $\begin{array}{ccc}\mathbf{3 , 9 9 5} & 3 & 7 \\ 1,342 & 1 & 10\end{array}$ |
| Sahnoury Station, | McKay \& Butcher, Johr Brookfield, | $\begin{array}{rrr}1,342 & 1 & 10 \\ 1,556 & 7 & 5\end{array}$ |  | 1,342110 |
| Moncton Suation, | John Brookfield, <br> McKay, | 1,556 7 5 <br> 274 6 0 | $\begin{array}{rrrr}1,556 & 7 & 5 \\ 274 & 6 & 0 \\ 1,947\end{array}$ |  |
| Freight Shed. Thoncton, SheJiac Station, | Walker \& Co., | $\begin{array}{rrr}274 & 6 & \\ 1,947 & 13 & 5\end{array}$ | 1,947 13 13 5 |  |
| Appleby's Wharf, | Samuel Mayes, | $373-15 \quad 3$ | $\begin{array}{llll}373 & 15 & 3\end{array}$ |  |
| Moncton Wharf, | Constantine \& Stevens, | 498127 | 498127 |  |
| Shediac Wharf, | Fitzgerald \& Wálker \& Co., | 8,150 2 28 | 8,150 2 8 |  |
| Depôt Crounls, | J. Brookfield and D. P. Myers. | $\begin{array}{lllll}14 & 982 & 17 & 8\end{array}$ | 8,1521319 | 6,830 311 |
| Leveling and Ridgıng, | - Donovan, | $12^{4} 0000$ | $120=0 \quad 0$ |  |
| Fencing St. John to Kennebecasis Station, | C. W. Allin, | 2,029800 | 2.029 - 0 |  |
| Fencing Sections 5 and 6, | Morton \& Earl, | 2,409 00 | 1,186 96 | 1,213 $10 \quad 8$ |
| Feneing Moncton to Shediac, |  | 2,768 303 | 2,768 303 |  |
| Clearing Sussex to Salishury, | Freeze, Price \& ${ }^{\text {c, }}$ | 1.500 0-1 | 1,500, 0 |  |
| Clearing Salisbury to Moncton, | W. H. T. Sumner, | $185016 \quad 5$ | 1,850 16 5 |  |

table a.-No. 10.-EARTH AND ROCK WORE.

| Sections and Divisions. | Names of Contractors. | $\begin{gathered} \text { Work on } \\ \text { Cublec yands } \\ \text { Eaith. } \end{gathered}$ | Contract. <br> Cubic yards Rock. | $\begin{aligned} & \text { Work done } \\ & \text { tra } \\ & \text { Cuble yan } \\ & \text { Earth. } \end{aligned}$ | Rock. | Work atill Cubic yal ds Earth. | to be done. Cubic yards Rock. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Section No 1, St. John, | Walker, Brookfield and Myers, | 23,046 | 14,102 | 23,046 | 14,102 |  |  |
| " " 2, " | Dilion P. Myers, | 142,193 | 44,507. | 142.193 | 44,507 |  |  |
| " " 3, | Walker Rankin \& Walker, | 51,303 | 4,509 | 51,303 | 4,509 |  |  |
| ", " 4, " | John Brookfield, | 80,450 | 5;182 | 80,450 | 5,182 |  |  |
| " " 5, " | Walker \& Co., | 431,399 | 17,921 | 263,481 | 13,830 | 167,918 | 4.091 |
| Hammond River Viaduct, | Small \& Crosby, | 6,483 |  | 5.894 |  | 589 |  |
| Section No 6, " | Walker \& Co., | 205,170 | 4.400 | 139,490 | 2,359 | 65,680 | 2,041 |
| " " 7, Hampton, | Johnston \& Blackie, | 296,851 | 9,240 | 185.307 | 5,422 | 111,544 | 3,818 |
| " " 8, " | Dillon P. Myers, | 310,654 | 2,000 | 163.824 | 1,458 | 146,830 | 542 |
| " " 9, " | 'I'homas King, | 229.563 | 5,000 | 96.535 | 2,977 | 133,028 | 2,023 |
| " " 10, Sussex, | Beckwith Foster \& | 89,262 |  | 5.208 |  | 84,054 |  |
| " "11, " | John Brookfield, | 63,187 |  | 26,497 |  | 36,690 |  |
| " " 12, " | John Brookfield, | 74.914 |  | 11,158 |  | 63,756 |  |
| " " 13, | Dillon P. Myers, | 102,828 |  | 13,226 |  | -89,602 |  |
| " 14, " , | Willam Stevens, | 73.653 |  | 8,000 |  | ' 65,653 |  |
| . ${ }^{\text {c }} 15$, " | W. H. 'T. Sumner, | 83.322 | 2,035 | 1.568 | 392 | -81,754 | 1,643 |
| " " 16, Salisbury, | Beckwith Foster \& Co., | 104,104 |  | 2,012 |  | 102,092 |  |
| " " 5 , " | Walker \& Co.. | \% 253,604 | 11.100 | 66,006 | 7,492 | \| 187.598 | 3,608 |
| " " 4, " | McDonald \& McBean, | 302.742 | 300 | 176,247 | 208 | 126,495 | 92 |
| " " 3, Moncton, | John Brookfield, | \| 78.084 | 8.500 | 78,084 | 8,500 |  |  |
| " " 2, " | William Stevens, | ; 87,707 | 2.007 | 87,707 | 2,007 |  |  |
| " "، 1, Shediac, | Walker \& Co., | 112.007 | 3,817 | 112,007 | 3,817 |  |  |
| " 1, 2, 3, Shediac, | Jackson \& Co., | \|, 12.5800 |  | 125.800 |  | , | - |
| " 1, \& 2. St. John, | Jackson \& Co., | 18,750 | 4,000 | 18.750 | 4,000 |  |  |
| Branch Line, Moncton, | Wilham Stevens, | 6,496 |  | 6,496 |  |  |  |
| Depot Grounds | Jobn Brookfeld, Total | 30.000 | 10,000 | 16.911 | 4.272 | 13,089 | 5,728, |
| 2 |  | $\overline{3,383,572}, \overline{148,620}$ |  | 1,907,200 125 |  | 1,476,372 | 23.586 |
| Earth at average price of 1 s 3 d per Cubic yard |  | ¢211,473 5 |  | £119,200 0 |  | £92,273 5 |  |
| Rock " * | 5s 6d., , " | 40,870 10 |  | 34,384 |  | 6,486 3 |  |
|  | Total, | £252,343 15 |  | £153,534 |  | ¢98,759 8 |  |

## 81

## TABLE B-No. 1.

Statement showing the difference between the original locations from Saint John to Cape Brule, and the revised Location from Saint John to Point Du Chene.


revised location to point do chend.

From Mill P'ond Station to Zero St. John .878
" Zero St. John to Moncton - - 88.085
" Moncton to Point Du Chene - - 19,075
Add for Wharf at Point Du Chene - - $\quad .350$
Total Distance 108.388 Miles.

Distanco per original location from St. John


Distance per original location from Moncton


Total Saving by Revised location from St. John to Point du Chene over original do. to Cape Brule
2.665 Miles.

## TABLE B.-No. 2.

Table of Curves and Tangents, as originally located on the European and North American Railway, between St. John and Shediac.-Beginniug at Mill Pond Station.


Total No. of Curves from St. John to Shedac, $158=3001.00$
Amount of Cirvature per Mile,
35.11

## TABEE B: No. 2:-CONTINURD.

Table of Curves and Tangents on the revised location of the European and North American Railway between St. John and Shediac.-Beginning at Mill Pond Station:


## TABLE B.-No. 3.

TABLE OR GRADIERTB ON MEVIGED LOCATION EROM GT. JOEN TO gRBDIAC.

| Dist. from Saint Johu. BI. dec. | $\begin{aligned} & \text { Lyth. } \\ & \text { of } \\ & \text { Grado. } \\ & \text { M. dec. } \end{aligned}$ | Inclination of Grado. per 100ft | $\begin{aligned} & \text { Grade } \\ & \text { per } \\ & \text { mile. } \end{aligned}$ | Ageont $\stackrel{\text { af }}{\text { Grado. }}$ ft. | $\begin{aligned} & \text { Descent } \\ & \text { of } \\ & \text { Grado, } \end{aligned}$ | Elev. above High wtr., spg. tides, St. John. | Locality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 000 |  |  |  |  | 5.25 |  |
| . 253 | . 253 | . 727 | 38.38 | 9.75 |  | 15.00 |  |
| . 385 | . 132 | Level. |  |  |  | 15.00 | Stat., Garden Street. |
| . 689 | . 304 | . 812 | 42.87 |  | 13.00 | 2.00 |  |
| 3.538 | 2.849 | Level. |  |  |  | 2.00 | Marsh. |
| 4.098 | 560. | . 44 | 23.23 | 13.00 |  | 15.00 |  |
| 4.334 | . 236 | Level. |  |  |  | 15.00 |  |
| 5.378 | 1.044 | . 853 | 45.00 | 47.00 |  | 62.00 | Lawlor's Lake. |
| 5.544 | . 166 | Level. |  |  |  | 62.00 |  |
| 7.054 | 1.510 | . 69 | 36.43 |  | 55.00 | 7.00 | Torryburn. |
| 7.886 | . 832 | Level. |  |  |  | 7.00 |  |
| 8.075 | . 189 | . 40 | 21.12 | 4.00 |  | 11.00 |  |
| 8.264 | . 189 | . 40 | 21.12 |  | 4.00 | 7.00 | Nine mile. |
| 8.453 | . 189 | Level. |  |  |  | 7.00 | Station. |
| 8.832 | . 379 | . 15 | 7.92 | 3.00 |  | 10.00 |  |
| 9.245 | . 413 | . 25 | 13.20 | 5.44 |  | 15.44 |  |
| 12.582 | 3.337 | . 853 | 45.00 | 150.32 |  | 165.76 | Summit. |
| 12.616 | . 034 | Level. |  |  |  | 165.76 |  |
| 15.996 | 3.380 | . 85 | 44.88 |  | 151.76 | 14.00 |  |
| 16.276 | . 280 | Level. |  |  |  | 14.00 | Hammond Rivor. |
| 16.901 | . 625 | -15 | 7.92 |  | 6.00 | 8.00 |  |
| 17.166 | . 265 | Level. |  |  |  | 9.00 |  |
| 17.431 | . 265 | . 57 | 30.00 | 8.00 |  | 16.00 |  |
| 17.506 | . 075 | Level. |  |  |  | 16.00 |  |
| 17.771 | . 265 | . 57 | 30.00 |  | 8.00 | 8.00 |  |
| 17.865 | . 094 | Level. |  |  |  | 8.00 | Darling's, Mill-strm. |
| 18.149 | . 284 | . 40 | 21.12 | 6.00 |  | 14.00 |  |
| 19.058 | . 909 | Level. |  |  |  | 14.00 |  |
| 19.172 | . 114 | . 50 | 26.40 | 3.00 |  | 17.00 |  |
| 19.211 | -039 | I evel. |  |  |  | 17.00 |  |
| 19.438 | . 227 | . 57 | 30.00 |  | 6.84 | 10.16 | Matthews' Ferry. |
| 19.476 | . 038 | level. |  |  |  | 10.16 |  |
| 19.817 | . 341 | . 85 | 44.88 | 15.30 |  | 25.46 |  |
| 19.855 | . 038 | Level. |  |  |  | 25.46 |  |
| 20.265 | . 410 | . 76 | 40.12 |  | 16.46 | 9.00 | Groom's Cove. |
| 20.441 | . 176 | Level. |  |  |  | 9.00 |  |
| 20.744 | . 303 | . 52 | 27.45 | 8.30 |  | 17.30 |  |
| 22.715 | 1.971 | . 05 | 2.64 |  | 5.25 | 12.05 | Hampton Station. |
| 23.435 | . 720 | . 45 | 23.76 | 17.10 |  | 29.15 |  |
| 23.510 | . 075 | Levol. |  |  |  | 29.15 |  |
| 23.983 | . 473 | . 25 | 13.20 |  | 6.25 | 22.90 |  |
| 25.119 | 1.136 | . 65 | 34.62 | 39.00 |  | 61.90 |  |
| 25.175 | . 056 | Level. |  |  |  | 61.90 |  |
| 26.482 | 1.307 | . 716 | 37.80 |  | 49.40 | 18.50 | Passekeag. |

TABLEB.-No: $3 ;$ Contriveldi.

| Dint. from Naint John M. dec. | $\begin{gathered} \text { Lgtb. } \\ \text { of. } \\ \text { Grade. } \\ \text { M. doc. } \end{gathered}$ | Inclination Grade. per 100 ft | Grodo per Accont of <br> milto. Gradte. <br> ft. | $\begin{aligned} & \text { Doscent } \\ & \text { of } \\ & \text { Grade. } \end{aligned}$ $\mathrm{ft} .$ | Mev.abova <br> High wtr. spre tidey, St. John, | Locallty: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27.362 | ,880 | Level |  |  | 12.50 | - : $\quad \therefore \quad$ : |
| 27694 | . 332 | . 57 | 30.00 10.00. |  | 22.50 | $\because$ |
| 27.959 | . 265 | : 25 | $13.20 \cdot 3.50$ |  | 26.00 |  |
| 28.850 | . 891 | . 28 | 14.70 | 13.16. | 12.84 |  |
| 28.944 | . 094 | Level |  |  | 12.84 |  |
| 29.835 | . 891 | . 25 | 13:20 11.75, |  | 24.59 | Mcose horn Brook. ' ${ }^{\text {a }}$ |
| 30,877 : | 1.042 | Level |  |  | 24.59 |  |
| 31.824 | . 947 | . 05 | 2.64. | 2.50 | :22,09 | : : . . . . . |
| 31.892 | . 068 | Level |  |  | 22.09 |  |
| 33.074 | 1.182 | . 40 | 21.10-24.86 | $\because$ | 46.05 |  |
| 33.112 | .038 | . Leved | -. |  | 46.95 : | Stark's Brook. |
| 33.510 | . 398 | . 85 | 44.88 | 17.86 | 29:10 |  |
| 33.863 | . 353 | Level |  |  | 2910 |  |
| 34.381 | . 518 | . 49 | 25.80. 13.32 |  | 42.42 | : |
| 34.419 | . 038 | Level | . |  | 42:42 |  |
| 34.742 | .323 | . 00 | 31.60 | 10.20 | 32.22 |  |
| 35.409 | . 667 | Level |  |  | 32222 | Drummond's Brook. |
| 36.503 | 1.094 | . 29 | 15.30, 16.08 |  | 48.28 |  |
| 36.873 | . 370 | . 40 | 21.12 | 7.80 | 40.48 |  |
| 38.086 | 1.213 | Level |  |  | 40.48 | Sproul's Ferry. |
| 39.010 | . 924 | . 48 | 25.3423 .44 |  | 63.92 |  |
| 39.080 | . 070 | Level |  |  | 63.92 |  |
| 39.894 | . 814 | . 44 | 21.64 | 17.63 | 46.29 | Musquash Brook. |
| 40.936 | 1.042 | Level |  |  | 46.29 |  |
| 41.163 | . 227 | . 52 | $27 / 46 \quad 6.24$ |  | 5253 |  |
| 42.507 | 1.344 | . 10 | 6;28 | 7.10 | 45.43 |  |
| 43.570 | 1.063 | . 18 | 9,50-10.10 |  | 55.53 | Sussex Station. |
| 43.814 | . 244 | Level |  |  | 55.53 | .. |
| 43.947 | . 133 | . 21 | 11.081 .47 |  | 57.00 | -. |
| 44.761 | . 814 | . 0544 | $2.87 \quad 2.34$ |  | 59.34 |  |
| 45.102 | . 341 | . 44 | $23.64 \quad 7.99$ |  | 67.33 |  |
| 45.139 | . 037 | Level |  |  | 67:33 |  |
| 45.925 | . 786 | . 36 | 19.00 | 15.33 | 52.00 | Balmon River. |
| 46.579 | . 654 | Level | ... |  | 52.00 |  |
| 46.957 | . 378 . | . 186 |  |  | 54.00 |  |
| 47.525 | , 568 | Level | . |  | 54.00 |  |
| 48.869 | 1.344 | . 073 | $3: 845.16$ |  | 69.16 | Wallace's Road! |
| 49.437 | . 568 | . 600 | 31.70 - 18.00 |  | 77.18 |  |
| 49,569 | . 132 | Level | . |  | 77.16 |  |
| 51.213 | . 644 | . 2038 | 10.76 | 6.93 | 70.23 |  |
| 51.237 | 1.024 | . 19 | $10.00 \cdot 10.26$ |  | 80.49 | Salmon River. |
| 52.013. | 2776 | . 22 | 11.60, 9.08 |  | 89.57 | $\cdots \cdot$ |
| 52.525 | . 512 | Level | : $:$ |  | 89.67 |  |
| 53.301 | .776 | . 60 | 31:70 ${ }^{24,43}$ |  | 114.00 | Stone's Brook, or Pe |
| 53.585 | . 284 | Level |  |  | 114,000 | nohsquis. |
| 55.232 | 1.647 | . 46 | 24.28 : 40.00 |  | -154.00 |  |
| 55.470 | . 238 | Level |  |  | 154.00 |  |
| 56.586 | 1.116 | . 56 | 29.66 | 33.00 | 121:00 |  |
| 59.271 | 2.685 | . 0141 | . 75 | 2.00 | 119.00 | Anagance River |
| 60.271 | 1.000 | . 75 | 39.60 39.75 |  | 158.75 | A |

## TABBHE BuNO: 3.-CONTINUED.

| Dlat. from Saint John. M dec. | $\begin{aligned} & \text { Lgth. } \\ & \text { of } \\ & \text { Grado. } \\ & \text { Mr. dec. } \end{aligned}$ |  | $\begin{gathered} \text { Grado } \\ \text { prar } \\ \text { milo. } \end{gathered}$ | Abcont Grade: f. | Descont of ft. | Elov: abovo High wtr. spg. tides, St. John | Locality: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60.335 | . 064 | Level | '.' |  |  | 158.75 |  |
| 61.410 | 1.075 | . 4923 | 26:00 |  | 27.95 | 130.80 | - . . י., |
| 61.447 | . 037 | Level |  |  |  | 130.80 | $\}^{\text {lieela's Brook, or Por- }}$ |
| 61,882 | . 435 | . 391 | 20.50 | 9.00 | \% | 139880 | \} tage': |
| 61.958 | . 076 | Level | : |  |  | 139.80 |  |
| 62.545 | . 587 | 1515 | 27.40 |  | 16.00. | 123.80 |  |
| 62.602 | . 057 | Level |  |  |  | 123.80 | Mayward's Mill Brook, |
| 63.114 | . 512 | . 518 | 27,40 | 14.00 |  | 137.80 |  |
| 63.189 | . 075 | Level |  |  |  | 137.80 |  |
| 64.344 | 1.155 | . 77 | 40.70 |  | 47.00 | 90.80 |  |
| 67.033 | 2.689 | . 0352 | 1:84 |  | 5.00 | 85.80 | Steves' Brook. |
| 67.980 | . 947 | - 40 | 21:12 | 20.00 | , | 105.80 |  |
| 68.055 | . 075 | Level |  |  |  | 105.80 |  |
| 68.567 | ,512 | . 296 | 15.60 |  | 8.00 | 97.80 | $\therefore$ : |
| 69.331 | .764 | . 77 | 40.70 |  | 31.00 | 66.80 |  |
| 71.987 | 2.656 | Level |  |  |  | 66.80 | Peticodiac River. |
| 72.529 | :542 | . 675 | 38.00 | 19.35 |  | 86.15 |  |
| 74.421 | 1.892 | . 12 | 6.33 |  | 12.03 | 74.12 |  |
| 74.934 | . 513 | Level |  |  |  | 74.12 |  |
| 75.447 | . 613 | .73 | 38.54 | 19.68 |  | 93.80 |  |
| 75.560 | . 113 | Level |  |  |  | 93.80 | \%. |
| 76.033 | . 473 | . 20 | 10:56 |  | 5.00 | 8880 |  |
| 76.108 | . 075 | Levial |  |  |  | 88.80 | Salisbury Station. |
| 76.539 | . 431 | . 20 | 10.56 | 4.60 |  | 93.40 |  |
| 76.633 | . 094 | Level |  |  |  | 93.40 | Wortman's Creeld. |
| 77.011 | . 378 | . 20 | 10.56 |  | 4.00 | 89.40 |  |
| 77.087 | . 076 | Level |  |  |  | 89.40 |  |
| 77.352 | ,265 | . 20 | 10.56 | 2.80 |  | 93.20 |  |
| 77.409 | . 057 | Level |  |  |  | 93.20 . |  |
| 77.636 | . 227 | . 20 | 10.56 |  | 2.40 | 89.80 |  |
| 77.693 | . 057 | Level |  |  |  | 89.80 |  |
| 78.016 | . 323 | . 20 | 10.56 | 3.40 |  | 93.20 |  |
| 78.187 | .171 | Level |  |  |  | 93.20 | - |
| 79.420 | 1.233 | . 513 | 27,00 |  | 33.40 | 59.80 | ' |
| 79.974 | . 554 | Level |  |  |  | 59.80 | Niton's Brook. |
| 81.089 | 1.055 | . 70 | 36.50 |  | 39,00 | 20.80 |  |
| 81.120 | ,091 | Level |  |  |  | 20.80 | Steves' Lake. |
| 82.840 | 1.720 | . 83 | 43.98 | 75.42 |  | 96.22 |  |
| 83.340 | . 500 | . 061 | 3.20 | 1.58 |  | 97.80 |  |
| 83.378 | . 038 | Level |  |  |  | 97.80 |  |
| 83.643 | . 265. | . 28 | 14.70 |  | 3.92 | 93.88 |  |
| 83.700 | . 057 | Level |  |  |  | 93.88 | Chartres' Brook. |
| 83.908 | . 208 | . 14 | 7.40 | 1.55 |  | 95.43 |  |
| 83.946 | . 038 | Level | , |  |  | 95.43 |  |
| 84.381 | . 435 | . 25 | 13.20 |  | 5.75 | 89.68 | , |
| 84.419 | . 038 | Level |  |  |  | 89.68 | $\cdots$ |
| 85.129 | .710 | . 11 | 5.80 | 4.12 |  | 93.80 | ¢ . . |
| 85.583 | . 454 | . 46 | 24.29 |  | 11,00 | 82.80 |  |
| 86.152 | . 569 | . 833 | 43,98 |  | - 25.00 | 57.80 | Horsman's Creek. |
| 86.195 | . 043 | Level |  |  |  | 57.80 | ${ }^{\prime} \cdot$ |

## TAble B.-No. "3.-Conhinued.

| Dist. from Saint John. <br> M. dec. | $\begin{aligned} & \text { Lgth. I } \\ & \text { of } \\ & \text { Grado. } \\ & \text { M. dec. } \end{aligned}$ | $\begin{aligned} & \text { Inolination } \\ & \text { of } \text { Grade. } \\ & \text { per 100ft. } \end{aligned}$ | grade par mile. | Ascont Grade. ft. | $\begin{gathered} \text { Doseent } \\ \text { of } \\ \text { Grado. } \\ \text { ft. } \end{gathered}$ | Elev, above IIigh wtr, spg. thder, St.a John. | Locality. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 86.422 | .227 | . 80 | 42.24 | 9.00 |  | 66.80 |  |
| 86.811 | . 389 | Level |  |  |  | 66.80 |  |
| 87.700 | . 889 | . 833 | 49,98 |  | 39.00 | 27.80 |  |
| 87.769 | -. 0.169 | Level |  |  |  | 27.80 | Post Road, Min |
| 88.110 | . 341 | . 833 | 43.98 | 15.00 |  | 42.80 |  |
| 88.280 | . 178 | Level |  |  |  | 42.80 |  |
| 88.667 | . 387 | . 833 | '43.98 |  | 17.00 | 25.80 |  |
| 88.799 | . 132 | Level |  |  |  | 25.80 | Jonathan's Creok |
| 88.963 | S. 164 | . 80 | 42.24 | 6.92 |  | 32.72 | Zero, Moncton. |
| 89.063 | 2.100 | . 80 | .4.2.24 | 4.02 |  | 36.74 |  |
| 89.463 | 400 | Level |  |  |  | 36.74 | Station Moncto |
| 89.738 | 275 | ${ }^{80}$ | 12.24 | 11.76 |  | 48.50 | , . |
| 89.850 | . $112{ }^{\prime \prime}$ | Level |  |  |  | 48.50 |  |
| 90.350 | . 500 | . 833 | 43.98 |  | 22.40 | 26.10 | Halls ©reat |
| 90.531 | . 181 | Level |  |  |  | 26.10 | Halls Crea |
| 90.702 | .171 | . 636 | 33.58 | 6.38 |  | 32.48 |  |
| 90.849 | . 147 | . 861 | 44.90 |  | 6.68 | 25.80 | Chandler's Marsh |
| 90.924 | . 075 | Level |  |  |  | 60.01 | Chandera Mara |
| 91.699 | . 775 | . 833 | 43.98 | 34.2, |  | 60.01 |  |
| 91.764 | ,065 | Level |  |  |  | 60.01 52.04 |  |
| 91.942 | . 178 | . 833 | 43.98 |  | 7.97 | 52.04 |  |
| 92.162 | . 220 | Level |  |  |  | 93.04 |  |
| 93.271 | 1.109 | . 71 | 37.48 | 41.06 |  | 93.10 | Harris, Mill |
| 93446 | .175 | T.evel |  |  |  | 93.10 |  |
| 93.833 | . 387 | . 80 | 42.24 | 16.05 |  | 109.15 |  |
| 94.033 | . 200 | . 636 | 33.58 | 5.95 |  | 115.10 |  |
| 94.183 | . 150 | . 833 | 43.98 | 6.60 |  | 121.70 |  |
| 94.258 | . 075 | Level |  |  |  | 121.70 |  |
| 94.533 | . 275 | . 833 | 43.98 | 12.10 |  | 133.80 |  |
| 94.595 | . 062 | Level |  |  |  | 133.80 |  |
| 94.770 | . 175 | . 33 | 17.42 |  | 2.94 | 130.86 |  |
| 95.082 | . 312 | . 833 | 43.98 |  | 13.75 | 117.11 | Cook's Brook. |
| 95.182 | . 100 | . 15 | 7.92 |  | . 80 | 116.31 | Cooks Brook. |
| 95.297 | . 115 | . 363 | 19.16 | 2.16 |  | 118.47 |  |
| 95.619 | . 322 | . 863 | 45.56 | 14.82 |  | 133.29 |  |
| 95.894 | . 275 | 5 Level |  |  |  | 133.29 | - |
| 96.081 | . 187 | 7 . 275 | 14.52 | : 2.73 |  | 136.02 | - |
| 96.143 | . 062 | 2.50 | 26.40 |  | 1.65 | 134.37 |  |
| 96.693 | . 550 | O . 13 | 6.86 | 3.96 |  | 138.33 |  |
| 97.230 | . 537 | 7 . 81 | 42.76 | 23.27 |  | 161.60 |  |
| 97.280 | . 050 | 0 , . 11 | 5.80 | . 30 |  | 161.90 | Summit. |
| 98.155 | . 875 | 5 , 833 | 43.98 |  | 38.50 | 123.40 |  |
| 98.205 | . 050 | 0 Level |  |  |  | 123.40 138.80 |  |
| 98.555 | . 350 | 0.833 | 43.98 | 15.40 |  | 138.80 | Hemlock Hill |
| 99.217 | . 662 | 2.833 | 43.98 |  | 29.00 | 109.80 |  |
| 99.642 | . 425 | 5 Level |  |  |  | 109.80 113.80 |  |
| 99.879 | . 237 | 7 . 31 | 16.36 | 4.00 |  | 113.80 |  |
| 100.154 | . 275 | 5 . 833 | 43.98 | 12.00 |  | 125.80 |  |
| 100.289 | . 135 | 5 Level |  |  |  | 125.80 |  |

TABLE B.-No. 3.-Conyhuyad.

| Wist. from Saint sohn. ar. dec | $\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { Grade } \\ & \text { Ma. dec. } \end{aligned}$ |  | $\begin{aligned} & \text { n Crade } \\ & \text { pror } \\ & \text { mall. } \end{aligned}$ | Ascent of Grade ft : | $\begin{aligned} & \text { Descent } \\ & \text { of } \\ & \text { Grade. } \end{aligned}$ $\mathrm{ft} .$ | Elev. abovo High wtr. spg. tides., St. John. | Locality. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100.476 | . 187 | . 79 | 41.71 |  | 8.00 | 117.80 | ; |
| 100.798 | . 322 | . 33 | 17.42 |  | 5.50 | 112,30 |  |
| 101.235 | . 437 | Hevel |  |  |  | 112.30 |  |
| 101.458 | . 223 | . 79 | 41.71 | A | 8.50 | 103.80 |  |
| 101.745 | . 287 | Level |  |  |  | 103.80 |  |
| 102.180 | -. 435 | . 69 | 36.43 |  | 16,00 | 87.80 | Post Road so 2 |
| 102.305 | . 125 | Level |  |  |  | 87.80 | Dorchester. $\}$ |
| 102.542 | . 237 | . 833 | 43.98 | 10.00 |  | 97.80 |  |
| 102.592 | . 050 | Level |  |  |  | 97.80 |  |
| 102.717 | .125. | . 45 | 23:76 |  | 3.00 | 94.80 |  |
| 103.057 | . 340 | . 833 | 43.98 |  | 15.00 | 79.80 | , |
| 103.234 | . 177 | Level |  |  |  | 79.80 |  |
| 104.552 | 1.318 | . 833 | 43.98 |  | 58.00 | 21.80 | Girder Bridge, |
| 104.702 | .150 | Level |  |  |  | 21.80 | Scadouc River. $\}$ |
| 105.327 | . 625 | . 64 | 33.79 | 20.00 |  | 41.80 |  |
| 105.389 | . 062 | . 188 | 9:92 | 1.00 |  | 42.80 |  |
| 105.641 | . 252 | . 68 | 35.90 |  | 9.00 | 33.80 |  |
| 106.144 | . 503 | Leval |  |  |  | 33.80 | Shediac Station. |
| 106.644 | . 500 | . 60 | 31.68 |  | 17.00 | 16.80 |  |
| 106.769 | . 125 | Level |  |  |  | 16.80 |  |
| 107.382 | .612 | . 60 | 31.68 |  | 19.00 | -2.20 |  |
| 107.925 | . 543 | Level |  |  |  | -2.20 |  |
| 108,038 | . 113 | . 70 | 39.60 |  | $1)^{400}$ | -6.70 |  |
| 108.388 | . 350 | Level |  |  |  | -6.70 | Wharf Pt. du Chene. |
| Total | of ascen | ts and de | escents | 1063.15 | 1075.1 |  | Shediac Harbor. |

N. B. It will be observed that the Level of Rails on Shediac wharf is 6.70 below high water at St . John, and the level of high tide at the latter place is $\mathbf{1 0 . 7 0}$ feet above that at Shediac Harbor.

Abstract of gradients.
Description. . No. Length. Total Length.


TABLE B.-No. 3.-CONCLUD̈RD.
Abstract of Gradients originally designed for the European and North American Railway, between St. John and Cape Brule, Shediac, (beginning at Zero St. John.)

111.053 Miles.
(2x

## TABLE B-No. 4.

Statement showing the length of Tron and Wooden Bridging originally designed for the European and North American Railway, from St. John to Shediac.

|  | Lin. ft. Iran. | Lin. ft. Wood. |
| :--- | :---: | :---: | :--- |
| Saint John to Sussex Vale | 560 | 2192 |
| Sussex Vale to Shediac | 1260 | 1892 |
|  | $\overline{1820}$ | $\overline{4084}$ lin. ft. |

Statement showing the length of Iron and Wooden Bridging as now being constructed upon the European and North American Railway, from St. John to Shediac.

|  | IRON. | WOOD. |  |
| :--- | :---: | :--- | :--- |
|  | LiN. FT. | LIN. FT. |  |
| Saint John to Sussex Vale | 510 | 1343 |  |
| Sussex Vale to Shediac | $\boxed{800}$ | 1043 |  |
|  | $\overline{1.310}$ | $\boxed{2.386}$ lin. ft. |  |
|  |  |  |  |

## REPORTS

OF

## W. PARKER, ESQ., C. E.

(Copy)
Secretary's Office, IFredericton, 7th May 1858.
Sir,-By direction of His Excellency the Lieut. Governor, I am to request you to examife and report on the construction and general character of the E. \&. N. A. Railway in this Province, and on the location of that part of the Line now under contract.

I am also to request you to afford to the Commissionens of that Railway and to the Chief Engineer the benefit of your advice on any matter connected therewith which they may refer to you. I have, \&c.,
(Signed) S. L. TíLLEY.
Wm. Parier, Esq., C. E., St. John.
(Copy)
Boston, Massachusetts, Juily 5th, 1858.
HON. S. L. THLLEY,
Provincial'Secretary, ZTredericton, New Brunswick. SIR:-

In accordance with your letter to me, dated May, 7 th ult., I have "examined the construction and general character"of the E. \& N. American Rail way in this (your) Province, and the location of that part of the line now under contract," and have the honor to report as follows:
....
The Railway on leaving St. John runs in the direction of Lawlor's Lake, rendered famous for the difficulty which has attached its filling up for the tranṣit, but which has now happily been overcome, and thence proceeds in the same coarse until it enters the valley of the Kennebecasis River, at the distance of six or seven miles from the City." It then pursiles the said falley on' its southerly side all the way to Sussex Vale or its vicinty excepting two diversions therefrom, made to avoid sinuosities or to secure better ground for the Line to occupy.
$\Rightarrow$ These diversions are-the first, from:" Henderson's Cove," near the Nine Mile House, and the mouth of Salmon Creek to a point nearly opposite the mouth of Hammond River, which 'is crossed on the way. The second, from near Groom's Cove, two miles West of Hampton over a dividing ridge, to Patticake Creek, in order to secure a favorable crossing of the intervale lands of that stream, which are exceedingly wide nearer its mouth,' and 'w'ould have there exposed a Railway embankment over them to frequent damage, and even risk of destruction.
By the first of these diversions a saving both of distance and cost is secured. By the second a saving of cost and improved alignment and gradients are obtained at a small sacrifice of distance.

From Sussex Vale the line as projected leaves the immediate valley of the Kennebecasis river for one of its tributaries, which it follows to near its source, and thence across the dividing ridge of land, there very lightly defined to the valley of the Petitcodiac.

Pursuing this last named valley to the "Bend" at Moncton, the line avoids the sidelong ground near the river, indeuted as it is, by deep creeks of soft and treacherous bottom, and keeps a higher leyel and more direct course over the more even back grauads, thereby securing greater regularity of gradients, and saving bath distance and cost.

From Moncton to Shediac as from Saint John to the "Nine Mile House"'the line is completed and in use, its location being generally favorable and judicious.
Twenty-eight miles are yet to be placed under Contract, but the line:is determined and well nigh definitely marked out'; this portion extends from Sussex Vale into the valley of the Peticodiac, and is over very favourable ground.

The location of that part of, the line now under Contract is judiciously made and admits of little or no amendment. It extends from Kennebecasis Station near ihe "Nine "Mile House" to Sussex Vale, and from a few miles West of Salisbuty to Moncton, an agtregate distance of about fifty-one mites:

Where the line traverses the sidelong ground of the Kemebecasis Valley; which it does for a distance of about thintyfive miles, it might be supposed at first sight that, by: a free use of curves, accompanied by, some: undulation of gradient, much saving might have been realized of the cost, as set forth in the estimate of the Engineer and in the Coutracts; but it has so happened that the level at which the exposure to freshet has determined the grade line, finds the hill side full of project ing knolls or head lands; and deep gulfs, or cross valleys, with wide and flat intervale, which preclude much of the benefit that a tortuous line would have otherwise secured; and after a careful examination I am, of the opinion that the line is located along that part of the route as economically, with slight exceptions, (it any) as it couldenvell have been done.

The greatest rise or fall per mile in the whole line will be forty-five feet.

The most severe curvature will have a radius of nearly three thousand feet.

## SECONDLY-THE CONSTRUCTION.

The construction, so far as it has proceeded is of good character, and the specifications and contracts look to its continuance.

The width of the road bed at subgrade or formation level has been assumed at twenty feet in embankment, and not less than twenty-four feet in excavation, with slopes varying from one and a half to two feet horizontal for every foot vertical, according to the nature of the earth to be sustained. These dimensions and slopes I regard as liberal, and think that they may be reduced in some instances without hazard to the character or permanency of the worl-the qualities of the prevailing earth will, however, require much catition in doing so.

The Masonry consists of abutments and piers for bridges, walls aud arches or other covering for culverts-these are of a high quality, well adapted for durability, and generally very creditable to those concerned.

It is int improbable indeed that it may be found safe in some of the works yet io be built, to lowier the standard of quality or substitute a different class of masonry, and thereby reduce somewhat the cost. This, however, must be confined to the less conspicuous and lighter works which are only important as a matter of expense in their number and aggregate amount.

The superstructures of three of the bridges on the line-one of them erected some time ago over dhe Scadouc Creek, near Shediac, by the former Contractors-one over the Post Road near Saint John, and the bridge over Hammond River, are-or are to be-of the Iron Girder class made of Boiler Iron-a form of structure which, though some what expensive, is preferred by many Engineers to all others for its simplicity, for its permanent adjustment, and for its great strength when well proportioned. Permaneucy, including proof against fire, seems to have been thought especially called for in the logalities above named.

All other bridge superstructures are-or are to be-of wood, and in some cases in which the exposure did not forbid, even the abutments and piers are provided for, of the same; but in all instances they are well planned for substance and durability, so far as compatible with the material used.
The buildings thus far erected seem to be judicious and appropriate, and as far as I have been able to learn, will meet the probable wants of the several localities.

The Track or Railway proper is of an excellent character and will compare favorably with the best railways in the United States.

Care has thus far been taken both in the formation of the road bed, and in the supply of "ballast," to secure good and rapid drainage, obviously so important in your climate; the Sleepers or Cross Ties are good and substantial, and the Railway Bars which are of the $\mathbf{T}$ pattern, prevalent in this country, are of approved proportion and quality, the latter indeed is much better than usual, offering a reasonable warrant of economy in the future repairs of the line.

I hope, Sir, that the above statements and remarks are sufficiently comprehensive and explicit to satisfy His Excellency the Lieutenant Governor, yourself, and the members of the Government with whom you are associated. I am glad that I can offer so favorable a Report on the subject, and I trust that the delay of it to this time may not have caused disappointment to any one.

On entering upon the duty assigned me much of my time was first demanded by the second portion of your letter, viz,, unadvising, with the Commissioners and Chief Engineer upon matters of detail, requiring immediate decision and then held in suspense; and I was desirous to make careful personal examination of the line, as well as of all other matters, before I should venture to express an opinion. This I have done, traversing much of the line on foot for that purpose.

It would have been extraordinary if nothing open to criticism, modification, or improvement had been found ; but I take pleasure in say ing that comparatively little has appeared; that little has been and will be the subject of conference, with the Commissioners and Chief Engineer, to which the close of your letter invites me, with a view to restraining the cost of the line, as much as consists with securing a good practicat Railway. . I am, \&c., (Sigued)

WM PARKER, Civil Engineer.

St. John; N. B., June 26, 1858.
ROBERT JARDINE, Esquire, Chairman of the Railway Commissioncrs of New Brunswick: STIR,
$\therefore$ Yours of the 25th:inst., asking my opinion as to the policy proper to be followed in procuring Rolling Stock for the Rails way, and upon the proper rates for passenger fares, is before me.

It must be apparent that the greatest care in selecting Rolling Stock with reference to safety is of the utmost importance, and that nothing in the way of trial of new makers should be attempted without extreme calution. This is especially true. of Wheels and Axles, and I recommend that for Passenger Cars wholly, and for Freight Cars mainly, you resort only to those makers of wheels and axles, whose work has been proved and stands in the front rank for excellence, giving at the same time such encouragement to home enterprise as may be de: rived from orders of these articles for use on your ballast or gravel cars, and a few of your freight cars, until hy continned and successful trial they shall be found certainly worthy of more extended usé. Axles may, I think, bé had best with
reference to cost and quality combined, from England; wheels (being of cast Iron) from the United States, where they are (of cast Iron) almost exclusively used:

In selecting makers of Locomotives a like course should be pursued, adhering to one pattern for each class of machines without deviation, that their repair and maintenance may be simplified and cheapened: There is little difference in essential properties among the several forms of Locomotives now made; 'but a usifformity of pattern has beer found, whenever adhered to, connceted with marked cconomy of repairs.

Those maclines which yoin have already procured are of good quality and éstablished repute ; and I would adhere to the same makers, while they continue to do as well, at noderate prices, encouraging at the same time your home mechitinics, by occasional orders, made proportionately more frequent as their results shall be satisfactory-always, however, without variety of pattern,

Curs, whether for passengers, freight, or other uses, stand in a somewhat different position than wheels and axles, being stibject to the forcgoing, remarks. The frames and bodies of cart are bulky, and subject to heavy charges for their transportation from abroad, while their manuacture does not call for any great degrec of experience superadded to mechanical skill and faithfiness.

Materials for their construction are abundant in this Province; so, I believe, is good mechanical labor; and I see no unavoidable hazard, in preferring home artizans in this department at like prices. Looking, therefore, first to quality and to proper seasoning of lumber, and under a rigid inspection, I recommend that your Cars be made at home, allowing reasonable competition if it shall arise-the wheels and axles having been procured, as before stated.

Rates of fare for passenger travel have beèn exteusively experimented on in the Uuited States, and with the exception of a fow densely populated lines, and for very long travel it is believed now that thrce cents per mile is the lowest rate expedient. Commutation for families, resident near the City, and for oncasional excursion trains may be judiciously adopted at a reduction of not exceeding one half.

I am your obed't servant,
WM. PAKKER,
Civil Engineer.
(Copy)
Boston, Dec. 2d 1858.
HON. S. L. TILLEY,
Provincial Secretary, Fredericton, N. B.
SIR:-
When last in St. John with the opportunity to confor with the Chief Engineer and Commissioner, upon the list of "Staff,": submitted to me in yours of August 31st, it was apparent that much of that list had been changed in consequence of the completion of the location and laying out of the Railway, from Sussex to Salisbury, preparatory to its being offered for contract ; and I therefore deemed it proper to obtain a revised list, presenting the "Staff," as at present organized.

Such a list has recently been received and accompanies this communication.

In carefully considering it as requested by you, I do not perceive that any material reduction could be made with due regard to the public service. The organization in both departments appear simple and well ordered, and the rates of compensation as low as could be expected to procure the services of persons well qualified for the several duties.
(Signed) WM. PARKER,
Civil Ingineer.

## EUROPEAN AND NORTH AMERICAII RAILWAY.



## REPORTS

09 THE

GMNERAL SUPBRINTENDENT.


## EUROPEAN

## , AND.

## NORTH MMRRICAN RAILWAP.

Saint John, N. B., 4th March, 1858
Sir-
Having been furnished on the 12th day of November last with an inventory of the plant and stores, made by Messrs. Peto, Betts', Jackson and Brassey, the 31st December, 1854, which was supposed on hand, when their right to the samo was conveyed to the Province; and having been directed to take a particular account of all plant, stores or stock, now on hand, as well of that then received, as of that which has since been received by the European and North American Railway; and after comparing the same ascertain the deficiency, if any.

I have now, therefore, to report from the information of the Board of Commissioners, that in compliance with such instructions I have carefully taken an inventory of all the stores, Plant, or other property belonging to the "European and North American Railway," on the line or elsewhere, and having made the same up, find as follows:-

|  | Old. |  | New. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Office Furniture | $£ 15016$ | 0 | $£ 180$ | 19 | 6 |
| Eingineering Stock | 120 0 | 0 | 347 | 3 | 5 |
| General Stores | 240618 | 1 | 730 | 14 | 8 |
| Rolling Stock | 52170 | 0 | 18,343 | 2 |  |
| Earth Wagous | 49670 | 0 |  |  |  |
| Buildings and Stations | 202510 | 0 | 3033 | 10 |  |
| Permanent Way Stock | 97759 | 3 | 18,603 | 13 |  |
| Miscellaneous Stock | 25268 | 7 | 2151 | 1 |  |
| Station Furniture, \&c. |  |  | 56 | 1 |  |

Making the value of the Old Stock and Stores now on hand, at their prices $£ 27,189111$-and the value of the stock acquired, since the line was handed over to the Province, $£ 43,44661$,as per stock account herewith submitted.

With reference to the balance of the Plant, Stores, \&c., delivered by Messrs. Peto, Bettts, \& Co., to the Province, I have to remark that $£ 42,683: 15,8$ d. has been used in the construction, found worthless, or disposed of for the benefit of the roud, as will appear by a statement herewith submitted, (No.1) with explanations therein, by Alex. L. Light, Esq., the Chief Eigineer in charge of the woiks That stores were sold Messis. Walker, Rankin and Walker, John Brookfield, and William Stevens, Esqre.; Contractors as per copies of accounts herewith submitted-Nos.1,2 and 3, respectively as follows-viz.:

| Walker, Rankin \& Walker | - | - | $£ 553$ | 11 | 9 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| William Stevens | - | - | - | - | 328 | 5 | 8 |
| John Brookfield | - | - | - | - | - | 259 | 0 |

That sales by auction was made at Monctor, on the 15 th day of December last, to the extent of $£ 10312$ 6d., and that Plant and Stores' to the value of $£ 2685$ 10 2d. have been found to be deficient, as per Account Sales No. 4, and statcment No. 5, also submitted.

The small prices of the chief part of the articles sold at. Moncton on the day referred to, was caused by their being chiefly woin out and of little value.

I may say that, during my stay of two months between Shediae and Moncton, during which time my attention, bo fay as was consistent with my other duties, was directed to this subject, I have been quite unable to obtain any clue to the articles represented as deficient in: statement No. 5 ; accompanying this Report.

I am sir, your obedient servant;
(Signed)
L. CARVELL,

Gen. Superintendent.

## 1. Jabdinery Eqq., <br> Chairman Railway Cammiasioners. $\}$

## STATEMENT No. 5.

(REFERRED TO IN FOREGOING REDORT.)

## EUROPEAN \& NORTH.AMERICAN RAILWAY.

Statemsnt of Piant and Stores found to be deficient upon taking an inventory of tho Miterials surrendored to tho Province by Messis. Peto, Beits, Jackson and Brassey, and not accounted for.

16 Chairs,.............................................. 4s. 6d. L3 20
3 Drawing Tables, . . . . . . . . . . . . . . . . . . . . . . . . 60s. . $\boldsymbol{y}^{2} 0$
\# Cupboards for Stationery, . .... . . . . . . . . . . . . . 45s. . . 1100
1 Wash Stand,......................................... 1 10

1 Axe,......................................................... 6
1 Iron Safe, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 0
1 Satt Drawers and Cuphoard, $\ldots \ldots \ldots . \ldots \ldots .$.
2 Japaned Candlosticks,.............................. . $\quad$. 3 .
1 Office Clock, ........................................ 310 0
6 lumps with Shades, . . . . . . . . . . . . . . . . . . . . . 10 0
2 Chatrs, .......................................... 6s. 3d. 0.126
1 Bed and Bjiding-W. A. Rox's house,..... 1200
1 Tobbin-Sart,.................................. $10 \quad 0 \quad 0$
98 Navvy Barrows,..................................... $8515 \quad 0$
572 a6 Wagon Wheols 5 m 6 guage............ $128: 50$
31 New. Wrought Iron Axles,..................... 37. 37. 6d. $58 \quad 2 \quad 6$
200 Large and Simall Wagon Pelestals,.......... $\quad 7613 \quad 9$
41 Setts New Iton Work, . . . . . . . . . . . . . . . . . . . 20 25s. 420.50
6 Hurse Sleds, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . . 48 0

6 Rond Wagons,.................................................. 13 78 0

140 feet Pile Fongine, . . . . . . . . . . . . . . . . . . . . . so 0
'1 R:mmer Chain, . . .......... lewt. 3qrs. Olbs. 30s. 21410

2 Bolts and 2 Keys for dor.. . . Lewt. 2qrs. 3126
2 New Girder Repes, . . . . . . . . . . . . . 3qrs. 12lbs. 55s. . 2 . 7


39 'Tons 'lemporary Rails, . . . . . . . . . . . . . . . . . . . . 8 10s 33110 0;
13 Temporary Frogs, ................................ 40s. 26 0. 0
650 Temporary Slecpers, . . . . . . . . . . . . . . . . . . . . . . © 1315 ( 0
3 1t yds. Earth Wagons,.......................... $\operatorname{Li5}$. 4500
1 Pile Engine,......................................... . 1710 . 0
50 Corn Sacks, ...................................... 2 m. fid. 6:5 0
1 Seoteh Cart,...................................... . . 0 . 0
$4 \frac{1}{2}$ Bushel Measures, . . . . . . . . . . . . . . . . . . . . . . . . . 10s. . . 2 0
13 Pails, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1s. 3d. 0 16 3
6 Shovela, ............................................ 3s. Gd. 1 10
10 IIay Forks, . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4s. 2 0

| 8 |
| ---: | :--- |

Amount bro't forward, £2425 134
1 d Tallow,.................................. 10d. 4134

57cwt. 3qrs. 9lbs. Chairr,......................... 27̈s. 6d. 79104
-910 inch Dobbin Cart Knees................... 2s. 6d. I 26
39 pair Boxes for Dobbins,...................... 4s. 5160
\$ Carpenters' Adzes, . . . . . . . . . . . . . . . . . . . . . . . . 8s. 20 0 0
4 Hand Saws, . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7s. 1.80
5 Cross Cut Savs, . . . . . . . . . . . . . . . . . . . . . . . . 18s. 4100
1 Pit Saw,........................................ 115 0
2 cwt . Rope and Tar Cord,...................... 4100
1 Iron Snateh Block,............................... 0120

32 "Iron ".......................
22 " " ".......................
21 " " "............................... 20s. 20 0
3 Iron Shears,. ..................................... 2 . 2s. 6d. $0 \quad 76$
3 Seam Shoes, ................................... 10s. 110 0
24 Horse Shee Knives, . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 . 6d. 1160
28 Horse Brushes, . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4s. 7d. 684
4 Brass Barrel Taps,. .............................. . . 1s. 6d, 0 0
6 W'atchmen's Lamps, . . . . . . . . . . . . . . . . . . . . . . 7s. 6d. 250
136 lbs. Mould Candles, . . . . . . . . . . . . . . . . . . . . . . 1s. 6160
108" Dip " .................................... 9d. 410
2 Plate Liyyers Adzes,.............................. 12s 6d. 1 5 0
9 Rim Locks, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5s. 6d. 2 9 6
10 Iron Cupboard Locks, . . . . . . . . . . . . . . . . . . . . . 1s. 6d. 0150


391 gross Screws, ................................... 7s. 6d. 14163
2 "Brass Screws,.............................. 6s, 6d. 0130
5 Crib Whenls,.................................. 20s. 5000
2 Post Screw Tackles,. ............................ . 19s. 6d. 19 o
4 pair Lewesiч,. . ................................ 10s. 20 . 0
10 Hand Saw Files, $^{2} . . . .$. . . . . . . . . . . . . . . . . . 1 . 0 . 10 . 0
735 inch " " ............................. $7 \frac{1}{2} \mathrm{~d} .25$
3 Ladders, . ......................................... 20s. 300

3 Tarpaulins,.......................................................... 150
1 Panted Tool Bnx.
0106
$54 \mathrm{cwt} 2 q$.rs . 10 lb . Wagon Iron-old.
$42 \quad 0 \quad 0$

$$
\begin{array}{lll}
£ 2685 & 10 & 2
\end{array}
$$

(Signed)

\author{
Saint John, N. R., <br> 1st Feb. 1858. $\}$

}

## EUROPEAN \& NORTH AMERICAN RAILWAY.

## General Superintendent's Office,

Shediac, 1st December, 1858.

Sir,-As the period has arrived for closing the Railway Accounts for the year, it becomes my duty to render you a statement of the proceedings of this Department, since my appointment to office, and to furnish you with the Accounts and Tables required to show the nature and extent of the operations on cach working division of the Road since it was opened for traffic.

In submitting this my first Annual Report I may remark, that when called upon to assume the duties of this oflice they were entirely new to me; and consequenily, all the energies I possessed were necessarily taxed to overcome the difficulties of my position, in addition to which a large amount of work, which, even to a person well versed in Railway malters would be discouraging, was rendered necessary in consequence of the disorderly condition in which things were found, and the entire absence of system in the commencement. I found that no attention, whatever, had been paid to the proper arrangement and delivery of the stores, that they were seattered far and wide, and all privileged alike to assist themselves to whatever they thought their necessities required; that a very irregular and by no means correct account was kept with the Contractors and others; and that no separate account had been kept of the expenses connected with the working department of the Railway, nor any record of the employment of the Locomotives, while everything was, to all appearance, in the greatest possible confusion. Under these circumstances it is obvious that my duties were rendered difficult and unsatisfactory; and the possibility of giving you a complete and minute statistical report from the beginning is hence quite out of the question.

My first step was, in conformity with your instructions, to proceed along the line of Railway and take a complete inventory of the stock and stores on hand, and to endeavor to trace the wherabouts of the stores and plant acquired by the Province from Messrs. P'eto, Betts, Jackson and Brassay, as well as that which had since the transfer, been acquired by the Board of Commissioners, and to place those articles in charge of competent and responsible persons, accompanied with particular instructions relating thereto. After performing this duty at Shediac, and after carefully checking the traftic receipts and attending to other duties, until the Trains on this Division had been stopped for the season, 1 left for St. John and performed the same duty there; and the result of that enquiry I was enabled to present to you, in the shape of a Special Report, on the 4th day of March last.

My next step was to proceed to make arrangements for having a proper and efficient system of doing the business of this department, inaugurated; but this was rendered almost impossible by the loose manner in which the general accounts were being kept; I foresaw that the whole thing must be upset. This was a work of time and delicacy, and although much has been accomplished, and indeed by far the largest part overcome, still, as the line proceeds to eompletion much remains to do. I found, as in almost all such casez, officers, who, like myself were inexperienced, had each acquired certain habloits and systems of their own, and were each unwilling to substitute another. I had had a glance into the different systems of Railway accounts in the United States and the Oanadas, and felt satisfied on mature reflection that nothing short of a complete abolition of the system, and the substitution of a moditication of the Canadian Railway clas sification was required, before any proper and uniform system throughout the entire Railway management could be effected. The Board approved, as you are aware, of this couse; a compotent and efficient Accountant was procured; the change has been effected, and I am persuaded that the statementa which will now, no doubt, shortly be presented by the Accountant, (based upon this classification) for your consideration, will be entirely satisfactory to the Board, and to the Country.

I allude to this because it was a necessary preliminary step to be taken before any effeetual remedy could be applied to the defects in this ])epartment of the Railway; and now that it has been aecomplished, I antieipate very little difliculty in the future, and hope to be enabled from time to time to pro-
sent you with full and particular information on all matters connected with the operating portion of the Line, as occasion may require.

It will not be necessary in this Report to allude particularly to the different projects I have under consideration, for the better government of the staff under my control, and the more economical working of the Line; but I may say that a proper and efficient system, together with the employment of competent and faithful officers to carry the same into effect, are at the foundation of all economy and good management, and will be productive of the best results..

The staff of this Department, on the whole line, may be briefly stated as fullows:-

1 General Superintendent;
1 Div'n. Superintendent;
4 Station Masters;
2 Freight Agents;
2 Conductors,
3 Brakemen;
4 Switchmen;
1 Locomotive Foreman and Driver;
6 Drivers;
6 Firemen;
1 Blacksmith;
1 Car Repairer;
5 Watchmen ;
1 Track Master;
16 Trackmen.
The Trackmaster's services hare since been dispensed with, and so soon as the Shediac and Moncton Trains are taken off-iwo Station Masters, two Freight Agents, ono Conductor, one Brakeman, two Switchmen, one Watchman, and the sixteen Trackmen will be relieved for the winter, and the remainder of the hands on this Division consisting of-

1 Locomotive Forernan and Driver;
1 Driver;
1 Fireman;
I Blacksmith:
1 Carpenter and Car Repairer-
will be profitably employed for the Winter, in repairing the Engines and Cars, and in making the IIand Cars which will be required for the whole Line.

The Receipts and Expenditure; the number of Passengers; Mileage of Engines, and Traffic generally on cach Division of the Line, will be best shown on reference to the following Accounts-Abstracts and Statements :-

## SATMH HOEIT DTTEETOTN.

Railway Board in Account with the Traffic Department.

E. O. E.

Shediac, 31st Octobcr, 1858

## Abstract A.

TRAFFIC RECEIPTS.-From opening of the Line to 30th, Oct., 1858.


The following statcmont will show the number of Passengers carried since the opering, say-


Stutement showing name, capacity, and cost of cach Locomotice on this District of the Railuray.

| Samb. | $\left\lvert\, \begin{gathered} \text { YIZE OF } \\ \text { WYID'S } \end{gathered}\right.$ | DIANCTER OI DRIT. WHIT. | CIP'TY OV tender. | MAKERS. | cont on IINE. | $\begin{gathered} \left\lvert\, \begin{array}{c} \text { hilin pliaced } \\ \text { on hine. } \end{array}\right. \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| St. John | 12.423 | 4 froct | 1200 gls | Poitland Co. Loe Worls, | £1575 160 | 2th Dec 1858 |
| Kennebecrais | $12 \times 20$ | 46 | 800 " | Boston Luc. Wolks, | 17000 | 15th Der. " |
| Poticodias | 14ッ22 | 5 | 1510 " | " 6 | 23.3000 | 14t.Jan 1858. |
| Anamanco | $15 \times 2$ | 51/3 | 1700 * | " ${ }^{6}$ | 273162 | 30th Jumb," |
| Inottauk | $14 \times 2.1$ | 517 ${ }^{\text {a }}$ | $1610 \cdot$ | Fleming \& Mumbert, | 232500 | 131st 4 ug "6 |

List of Rolling Stock on this Division, (cxcept the Engine and T'enders) with the collective ralue of each description.

The following Abstract of Locomotive Returns will show the performances of Engines，\＆c．．\＆c．，from the

| 1838 | $\begin{gathered} \text { Name } \\ \text { of } \\ \text { Engine. } \end{gathered}$ |  | 品 | Consymption |  |  |  | lleage of cars by farse emgin |  |  |  |  | Total Car Mileage |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\xrightarrow[\substack{\text { Time } \\ \text { Ris．date } \\ \text { from．}}]{\text {（stas }}$ |  |  |  | Wood <br> in <br> Cords | in ${ }_{\text {in }}^{\text {Gals．}}$ | Tallow in Lbs． | Waste Lbss． Lin | st．Cl． | 2d． C | Freight． | Pl | Ballast． |  |  |  |  |  |  |  |
| 1. | Peticôdiac | ，350 | 13 | 326 |  |  |  |  |  |  |  | 15.415 |  |  |  | 69 | 13.32 | 44.7 | 3.44 |
| June 30， | gance | 236 | 5.876 | 193 | 65 | $116 \frac{3}{4}$ | 105 | 6.661 | 3.578 | 4.521 | 1.1 |  | 15.91 | 4.7 | 30.34 | 90.4 | 50.33 | 55.96 | 2.70 |
| Sep．1， | Loostauk | $450 \frac{1}{2}$ | 2.186 | $60 \frac{1}{2}$ | 26 | 50 | 46 | 1530 | 900 | 72 | 2.526 | 4.506 | 9534 | 4.85 | 36.1 | 8 | 48.72 | 47.52 | 4.36 |
|  |  |  |  |  |  |  | ， |  |  |  |  |  |  |  | 6.86 |  |  |  | 3.3 |
| April 5 ． May 14， | $\left\lvert\, \begin{aligned} & \text { St. John, } \\ & \text { Kennebes } \end{aligned}\right.$ | 2.066 8.428 <br> 2.176 4.759 <br> 4.242 13.187 |  |  |  |  |  |  |  |  | 6.398- | 84.951 56.693 | $\left\lvert\, \begin{aligned} & 91.349 \\ & 56.693\end{aligned}\right.$ | $\left\|\begin{array}{l}4 . \\ 2.15 \\ -3.1\end{array}\right\|$ | $1$ |  |  |  | 1 |
|  |  |  |  | 141.644 |  |  |  |  |  |  |  | 11.22 |  |  |  |  |  |  |  |

＊These Locomotives are employed in service of Contractors who find fuel，oil and waste．


## GETEDIAC ANTD MONCTOIT DITEFIOMT

## Railway Board in Account with the Traffic Department:

Date. DR. Particulars. $_{\text {1858. }}$ - Amotantio

Oet. 30, To Walker \& Co.-This amount recieved for wages of Fireman and Driver, while constructing Sect. 1,
£361 10 -8
" . . This amount received for wages of Firemen and Drivers, Shediac Wharf,
$12210 \quad 0$
" This amount for Robert Atkinson, (Station Mäster at Shediac,) services inspecting Shediac Wharf,
c William Stevens.-This amount received
for wages of Firemen and Drivers, while constructing Section 2 ,

198110
" Permanent Way, Nu. 2.-This amount charged for time of Willim Steadman, (Station Master at Moncton,) inspecting Sleepers,
Permanent Way, No. 4.-This àmount charged for time of Diiver, Fireman and Cléaner and use of Engines "Sampson" and "Hercules," taking down slecpers from 4th May to 5th Aug', 1858, Walker \& Co.- Time of Driver and Fireman, and Watchman, and use of Engine and Cars, from 29th;March to 3rd May, ballasting at Moncton,

12400
Oct. 31, Permanent Way, No. 4.-Proportion of depreciation in value of Machinery used in construction on Sections 1 and 2, Shediac Wharf, and charged in Locomotive Power Acct., No.. 11 .,
Receipts.-This amount being Traffic Receipts, from opening to date per Abstract B.,
$247619 \quad 7$ £3715 7 10
1858.

Oct. 31 By Iocomotive Power.-Per Abstract F.,
1767111
" "Merchandize \& Passengerg. "-" G., 602. 6 9.
" - " Maintenance of Way and Buildings. $\begin{array}{llll}\text { Per Abstract If., } & 327 & 13 & 9\end{array}$


* " Balance at the Debit of Railway Board,
£3715
7.10

E. 0 . .

Shediac, Octuker 31st, 1858.:

## 111

## Abstract

TRAFFIC RECEIPTS.-From opening of the Line to 30 Ch Oct., $\$ 858$.

| $\begin{aligned} & \text { Date. } \\ & \text { 1858. } \end{aligned}$ |  | Fienght | W'ifage \& Storago. | Totals. |
| :---: | :---: | :---: | :---: | :---: |
| Jan, | 451.10.11 | $\begin{array}{lll}333 & 3 & 0\end{array}$ |  | 7852 |
| Oct. 30 | 80419 7 | 872.75 | $\begin{array}{lll}14 & 9 & 7\end{array}$ | 169116 |
| T,otals, | 12561961 | $120510^{-1} 51$ | 14 9 7 | 247619 |

The following statement will show the number of passengers carried siace the opering.


Statement showing the name, capacity, and cost bf each Locomotive on this District of the Raizuay.

| Name. | size of Cylinder Diamin. of D. | fap'ty |  | Cost on Line. | Date when placad <br> \| on line. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Hercules | $17 \times 20$ 5 feet | 1.701 | Boston Io. Works | $£ 2,60000$ |  |
| Sampson | $17 \times 2015$ feet | 1.700 | Boston Lo. Works | $2.600 \quad 0 \quad 0$ |  |
| Scadouc | $14 \times 225$ feet | $1.50{ }^{\circ}$ | Bóston L.o. Works | 2,350 0 | 11st. Jan. 1858. |

- These two Engines were imported by Messrs. Pcto, Betts, Jackson and Brapaey apd I am not enabled to say when they were first received.

List of Rolling Stock on this Division, (except the Engine and Tenders) with the eollective value of each dessription.


Tay following statement will show the character and quantity of the principal
Freight which passed East and West over this District of Railway from 19th Aprifto 30th Oct., inst.


## GT.JOHN DIVISION.

## Abstract ©.-Mocomotive \%ower.

Sularics and Wages, connected with running the Locomotives,. ...E1i45 i4 5
Firewood, ..............................:............................. 616 18 11
Oil, Tallow, and Waste, .................................................. 183. is 8
Materials for repairing Engines and Tenders,............................. 1. 3
Work not done ly the Railway, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 16 1
Repairs to Tools and Implements, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 9 is

Binall Btores, : : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15
Wutchmen, . ............................................................. 253 . 5
Miscellancous, .............................................................. . 67 -1 4
£25 2769


Abstract 氩-Moncral Charges.

Advertising, Printing and Stationery,............. :................. 124. 3. 9
Insurance, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 13 . 6
Miscollaneoùs. . . . . ............................................................ $38 \cdot 0$
£444 6 3

## SHEDIAC AND MONCTON DIVISION. <br> Abstract w.-Tocomotive Rower.

Salaries and Wages connected with running the Locomotives....... 583288
Firowood,. ............................................................... 4513 . 5
Dil, Tallow, and Waste,................................................... 140 14 14
Materials for repairing Engines and Tenders,......................... . $4018 \quad 0$
Wages for repairing Engines and Tenders, ............................. 48 . 16 .
Work not done by the Railway,. . ............ ......................... . 42 . 6
Repairs to Tools, \&c., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ${ }^{2}$
Small Stores, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 18 i'
Watchmen and Miscrllaneous.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1991310
$1 \longdiv { 1 7 6 7 1 1 1 }$

## Abstract ct. Miserchandize and Passenger Cars.

Wrages to Conductors, Brakemen and Porters,........ . . . . . . . . . . . £ £339 11 o
Oil, Tallow and Waste,.................................................. 22126
Materials for Repairing Cars, .............................................. 110 . 10
Wages for Repairing Cars, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3111 1
Work not done by the Railway, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 3
Small Stores, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 3 .
Wrages to Switchmen, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7
Miscellaneous, . . . . . . ............................................................. 55 . 8

| 16026 |
| :--- |



Abstract T.-Choneral Gharges.
\&alaries to Officors and Clerks, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5575710
Advertising, Printing, and Stationery, . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 . 15 3
Insurance,. ............................................................. . 5800
Miscollancous, . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................... 108 2 g
$812 \quad 510$
The casualities, I am happy to say, have been few. It is worthy of remark that but one, of a fatal character, has occurred in connexion with the Traffic Trains, since the opening of the line on the Shediac and Moncton Division on the 20th Aug., 1857 ; or on the St. John Division, since the 20th July of the same year; and this present year they have been entirely free from anything of the kind.
The following is a statement of each accident, with the cause of the same, and the date, as far as can be ascertained, when they severally occurred.

The following will show the Receipts on Shedias and Moncton District for Passengers, Freight, Wharfage and Storage, for the corresponding months of Eeptember, October, November, in

apery considerable increass.

I have no doubt, whatever, as the facilities are afforded, a large and increasing trade will be carried on via this line, with the Northern districts of New Brunswick, the Northern side of the Restigouche, Gaspe, and the Island of Prince Edward, and, when the whole line is completed, with the Canadas.

The placing good and sufficient steam communication on the route between Point Duchene and Dalhousie, touching at the intermediate ports of Buctouche, Richibucto, Miramichi and Bathurst, is of the utmost importance to the trade via this Line, and cannot fail to add materially to the making it a paying operation.

Since the settlements of the Fishery question, and the introduction of the Reciprocity Treaty, the trade of the Northern districts of New Brunswick, with the United States, has increased with extraordinary rapidity ; and it only remains now, that this trade, which has been carried on in the face of delays and risks, via Cape Breton and the Gut of Canso, should be brought up the Bay of Fundy and over this line, and so on to its destination.

The facilities which a large and commodions Store and Freight House, on the wharf at Poiut du Chene, would afford to fishermen in the Gulf, is worthy of the most careful consideration. It would, I belicve, be one means of inducing them to send the produce of their labors over this line to market. I do not, however, anticipate that much can be effected in this way until the completion of the Line to the City, which will render the difficult and hazardous navigation of the upper Bay of Fundy and the Peticodiac River umecessary.

I am, Sir, your very obedient Servant,
L. CARVELL,
R. Jardine, Esquire,
Chairman Railway Board, St. John, N. R. $\}$

## EUROPEAN \& NORTH AMERICAN RAILWAY.

St. John, N. B., 31st Jan., 1859.

Sir,-
In conformity with your directions, T now beg to hand you statement of amount collected in Cars, by Conductor, between St: John and Moose Path, to 1st February, 1858. Statement showing daily passenger receipts in Cars, by Conductor, to 1st June, 1858. Statement showing daily passenger reccipts in Cars and at each. Station, between St. John and Kennebecasis, from 1st Jine to 30th Oct. last, with amount received for Freight since the opening of the line on this division. Also-a statement showing the amount of receipts for passengers, freight, \&c., during the season just closed, on the Shediac and Moncton Division.

> I am, Sir, your ob't. Servant, L. CARVELI,
R. Jardine, Esquire.

Chairman Railuay Board, St. John. \}

## TRAFFIC RECEIPTS

In Cars by "Conductor" between. Saint John and Moose Path, from 1st February to 1st June, 1858.


## STATEMENT

Showing Daily Passenger Traffic Receipts between Saint John and Kennebecasis, from 1 st June to 30th October, 1858.




## RECAPITULAATION.

| June. | £212 |  | $\frac{4}{2}$ | 65 | 4 | 4 | 35 | 16 | 2 | 313 | 11 | 61 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July. | 299 | 5 | 114 | 94 |  | 10 | 64 | 16 | 0 | 458 | 4 | 91 |
| Aug. | 289 | 10 | 61 | 87 | 3 | 1 | 72 | 7 | 11 | 449 | 1 | 61 |
| Sept. | 316 | 4 | 11.8 | 92 | 3 | 11 | 91 | 2 | 9 | 498 | 11 | 61 |
| Oct. | 103 | 3 | 9 | 85 | 7 | 6 | 32 | 13 | 9 | 221 | 5 | 0 |
|  | $£ 1 \overline{220}$ |  | $2$ | $4 \longdiv { 2 4 }$ |  | 8 |  | $16$ |  | $1941$ |  | 5 |

## SUMMARY.



Statement showing the Traffic receipts on the Shediac and Moncton district for Passengers, Freight, Wharfage and Storage, from 19th April to 25 th Dec., 1858.


## L. CARVELL.

Statement of Than Damme Fixims.

Statement of Tand Damage Oraims-Continued.

| CLAMMANT. | Forward. |  |
| :---: | :---: | :---: |
| Hon. R, L. Hazen, . | Land and Dámage, [Brought Horward. | 275 n $0 \cdot 1500^{0} 0$ |
| Hon. W Botsford, | do. |  |
| John McSweeney, | do. to Marble quarry. | 3678 0 0 112 5 0 250 0 0 <br>  June 7 \%       |
| Geo. N. Robinson and Sisters, | do. |  |
| Mrs. S. E. Quinton, | do. | : $\ldots$............ $\mid$........... 4 43 10 0 |
| Mrs. C. G. Stockford, . | do. | $\ldots . . \mid$................. ${ }^{\text {S }}$ Sep. 13 " |
| Israel Hoyt, : | do. |  |
| Henry McCullough, . . | do. Digging Thial |  |
| Benj. Appleby, - | Land and Damage and Land for Wharf, | $\left.\left\|\begin{array}{ccccc} 1300 & 0 & 0, & \ldots & \ldots \end{array}\right\| \begin{array}{llll} 35 & 0 & 0 \end{array} \right\rvert\,$ |
| Neill Bradlej̀, | Land and Damage, |  |
| J. Ferguson, . | do. |  |
| C.: G: Stewart; . . | do. | [1525 000 |
| J. A. Scribner, | do. |  |
| LeBaron Drary, - | do. | , $808049 \ldots \ldots$ |
| Johin Henderson, | do. |  |
| Jainies Henderson, . . | do. |  |
| James Duplex. . . | do. |  |
| Mrs. Anthony Dobbin, | do. |  |
| J. Mirnderson, Jr., . | do. |  |
| Abel Doughty, . . . | do. | $\left.\begin{array}{\|ccccccccc}100 & 0 & 0 & \ldots & \ldots & 20 & 0 & 0 & \text { July } 2\end{array}\right]$ |
|  | Damage to Crop, |  |
| Lamei Rafferty, . . . | Land and Damage, | 840 0 0 ............. 80 0 0.July 20 " |
| P. O. Kane, | 'Damage to Crop, |  |
| W. Maynes, | Building House for Abel Doughty, |  |

Statement of Fand Damage Hialms-Continued.

日tatement of 覴and Samage Claims.-Continued.

Statement of \#and Bamage Claims.-Continued.

Statement of Jand Damage Claims.-Continued.

sitatement of gand Damage Claims.-Continued.

£25 per acre,

Brought Forward.

Notatement of Hand Bamage Claims.-Concluded.


- STATIONS ON THE LINE.



## CHERTHEIED COPY OR

## JACKSON \& Co.'s SPECIFICATION A., fon building a <br> SINGLE TRACIK RAILWAY,

## From Saint John to Shediac.

> EUROPEAN \& NORTH AMERICAN RAILWAY. Saint John to Shediac, - -107 Miles The Bend to Nora Scotia, - $-\frac{37}{}$ "Single Track. Total - -144 Singe TRACK.-

Rails. Permanent Way Rails 63 lls. to the Cineal yard.
chair. Wrought Iron Chairs at the Joints each 12 lbs. weight.
pins. Wrought Iron Pins, Hackmatack or other suitable wood ties $8 \frac{1}{2}$ to 9 feet long.
sathast. Ballast, $2 \frac{1}{2}$ Cubie yards for every Lineal yard.
Fencing.
Earthwork.
Fencing, where required, l'ost and Rail.
Earthwork, Excavations 24 feet in width with slopes on ordinary Cuttings of $1 \frac{1}{2}$ to 1 and in Rock $\frac{1}{4}$ to 1 .
smbantmonts. Embankments 15 feet in width at formation level, with slopes of $1 \frac{1}{2}$ to 1 .

Giadea.

Curver.

Bridgea.
Gradcs, Maximum Grade not to excced 45 feet per mile.

Cures, Minimum Radius on Main Line 1500 fect.

Bridges, under the Railway of 100 feet span and upwards to be constructed of Iron, under that span of Stone or Timber, or both, at the discretion of the Contractors, sceured with Iron bolts and fasten-ings;-over the Railway to be constructed of Stone or Brick.

Culverts, to be constructed of Stone or Timber,

Culverte.

Croseingo. of the Railway to be constructed in the usual way, and a Notice Board erected at all the public road crossings.

Road Stations, to be provided at or near (1) Nine Mile House, (2) Hammond River, (3)Hampton, (4) Finger Board, (5) Sussex Vale, (6) Head of Petitcodiac River, (7) Pittficld's and two intermediate between the Bend and Nova Scotia boundary, with 300 yards siding at each, and also at the Bend, Shediac and Nova Scotia boundary, with a length of siding not exceeding half a mile at each.

ROLLING STOCK AS FOLLOWS: -
$10^{2}$ Passenger Engines, 20 Horse Boxes.
5 Goods do. 15 Ballast Wagons,
14 First Class Cars,
6 Second Class Cars, 4 Snow Ploughs,
50.Goods Wagons, 342 Engine Turn-tables
for St. John, Sussex Vale, and Boundary,
50 Box Cars for Dry Goods,
50 Timber Wagons, 2015 Turn-tables, 20 Cattle Cars.

The Road Slations, To be constructed of Wood, Brick or Stone, as the Contractors may find convenient, and to consist of a House with two upper and two lower rooms for the Station Master, with Out buildings and other conveniences together with a Ladies' Reception Room, Booking Office and open Shed for Gencral Passengers, complete with Urinal and Water Closets; also a Platform for loading and unloading Cattle, Carriages, \&c., \&c., and at Sussex Vale, the Bend, Shediac, and Nova Scotia Boundary, Merchandize Sheds to be erected with Cranes and every necessary appliance, also Water Tanks and Woodsheds at Hampton, Sussex Vale, Pittfield's, the Bend, Shediac, and the frontier.

The Terminal Stations at Saint John to consist of a Carriage Shed roofed over for Passengers, with Platforms, Booking offices, Porters offices, Waiting
rooms, Luggage rooms, Store rooms, Urinal and Water closets, Superintendent's residence complete, Board room, Secretary's office, Clerk's, do., Telegraph do., Refreshment room, and all requisite conveniences, Covered Goods Shed with Platforms, Cranes and Appliances, Cattle said Carriage Platforms with one mile of sidings to be built of Brick, with Slate or Zinc Roof; an estimate of such buildings in both Wood and Brick to be first made, and should the estimate in Brick exceed the estimate in Wood then the excess or difference to be equally divided and borne by the Contractor and Company. Signed,
R. JARDINE, President. W. JACKSON,

I certify the foregoing to be a true copy of the Specification or Shedule A. attached to the original agreement.

Signed, ROBT. D. WILMOT. the Government.]

## NEW BRUNSWICX RAILWAYS, 1859.

## EUROPEAN \& NORTH AMERICAN RAILWAY.

## CONTRACT, SECTION NO.

Mrticlos $\mathfrak{d f}$ Sgremurut made and entered into this day of in the -Year of Our Lord, One Thousand Eight Hundred and and made in pursuance of the Act of Assembly of the Province of Néw Brunswick to authorize the Construction of Railways in the said Province, in duplicate between of the first part, and IIer Majesty, Queen Victorin,represented herein by Robert Jardine, Chairman of the Board of Railway Commissiouers of the Province of New Brunswick, appointed under Act of Assembly 19 Victoria, Cap. 15, of the second part:

Witnessetir that the said part of the first part, for and in consideration of the payments to them in hand, well and truly made, as hereinafter set forth by the said part of the second part, do hereby for Heirs, Exccutors, Administrators and Assigns, covenant, promise, and agree to and with Her said Majesty, Queen Victoria, Her Heirs and Successors, represented herein as aforesaid, to construct, build, complete and finish in a good, substantial and workmanlike manner, under the superintendence of the Chief Engineer appointed under the said Act, and in every respect to the satisfaction of the said Board of Commissioners and the said Chief Engineer for the time being, all the work contained in Section No. on the Division of the European and North American Railway, commencing at a Station numbered and extending to a Station numbered being a distance of
miles
yards, more or less according to the Specifications and plans hereunto annexed and referred to, and to provide all necessary plant and materials therefor of the very best description, and to do all said work, and to provide
all said plant and material, subject to the inspection, supervision, approval, and rejection of the said Chief Engineer, and upon the terms and conditions hereinafter specified.

The whole to be completed and finished, and in every respect ready for use, on or before the day of One Thousand Eight Hundred and and to be conducted and carried out upon the terms, conditions and stipulations hereinafter specified, and which terms, conditions, stipulations, specifications and plans, are to be considered in every respect as part and parcel of this Contract.

In Consideration Whereof, Mer said Majesty, Quceu Victoria, represented as aforesaid, doth promise and agree to pay to the part of the first part, the lump sum of
pounds, shillings and pence, of the lawful currency of New Brunswick, the said sum to be paid the part of the tirst part, by monthly instalments, as the work proceeds, according to the rates and prices in the tender and Schedule herewith attached:

## CONDITIONS.

## Materials.

Firstly. That the part of the first part shall receive and use in the work herein contracted for, such Timber, Iron, Stone, Cement or Lime, and other materials as shall be furuished by the said Commissioners, and allow therefore such sum or sums of money as the Engineer may deem equitable: provided the same is not included in Schedule of prices attached to this Contract, and that the amount thereof shall be deducted from the amount of work done under this Contract.

Secondly. The constructing and finishing of said
Work to be work is to be done in all respects according to the $\underset{ }{\text { done }}$ to mpeccording dion, directions and instructions contained in, which may be implied from, or are incidental to the specifications hereunto annexed, and any plan or plans referred to in the said annexed specifications, which specifications and plan or plans therein referred to are hereby mutually agreed and declared to be incorporated in, and form a part of this Contract.
Paymente.
Thirdly. The payments of the prices herein beforementioned shall be made monthly by the said Commissioners upon certificate being reccived by
them from the Chief Engineer and approved of, that the work for or on account of which such paya ments shall be claimed has been duly and faithfully executed, such certificate to be given by the Chief Engineer within ten days after he shall have received an Estimate from his Assistant Engineer or officer in charge of the work, specifying the amount of work done during the month theu ending.

But that nevertheless it shall be lawful for Her retuinod monoy said Majesty to withhold from the part of the first part, and retain Ten per cent. out of the amount of the estimates, until the perfect completion of the work to the satisfaction of the said Commissioners: which Ten per cent. so withheld and retained shall be paid with the last instalment, after the Engineer or officer in charge shall have delivered to the Chief Engineer his final estimate of the work performed and materials furnished in virtue of these presents, with detailed measurements, weights, \&c., and upon approved certificate by the said Chief Engineer of the work having been fully completed and finished : Provided, that in forming his final estimate the Engineer or other officer shall not be bound or governed by the preceding monthly estimates which shall be taken and considered merely as approximate. Provided always, and it is further agreed, That Her said Majesty from time to time by the said Commissioners, during the progress of the work, may pay to the part of the first part the whole, or any portion of the Ten per cent. so withheld and retained.

- Functhly. That the work hereby contracted for, work not to obto be done by the part of the first part, shall as far contracts. as may be required by the said Engineer, be prosecuted so as to facilitate and not to incommode or obstruct the prosecution of Contracts for adjoining, or contiguous works.
Fifthly. That this Contract shall in every respect Work to bo be prosecuted in stich order and at such places in the Euginoerdithe work and at such times and seasons as the Chief ${ }^{\text {rects. }}$ Engineer shall direct:

Sixthly. That if by report of the Engineer, or Chief EngiSuperintendent employed by the Commissioners in noer from conn that behalf; it shall appear that the establishment
tractor and re-and rate of progress at and in the said work are not
ret tho such as to iusure the completion of the same within the time hercin prescribed, or if part of the first part shall persist in any course violating the provisions of this Contract, Her said Majesty shall have the power at her discretion, by order of the said Board of Commissioners, without previous notice or protest and without process or suit at Law, either to take the work or any part thereof out of the hands of the part of the first part, and to relet the same to any Coutractor or Contractors without its being previously advertised, or to employ additional workmen and provide materials, tools, and other necessary things at the expense of the part of the first part. And the part of the first part, in either case, shall be liable for all damages and extra costs and expenditure which may be incurred by reason thereof, and shall, in either of such cases, like wise forfeit all monies then due under the conditions and stipulations, or any, or either of them herein contaiued.
Hanuo an con- Seventhly. That in case of failure in the Contract. tract, the part of the first part shall thereby forfeit all right and claim to the said Ten per cent., or any part thereof remaining unpaid, as well as to any monies whatever due on this Contract.
Ail work and Eighthly. That all work of every description may ${ }^{\text {mastranald }}$ to to be be inspected during construction, either by the Chief Engineer or such olficer as he from time to time may appoint to superintend the same, and should any work be disapproved of, it shall immediately be removed or taken down and replaced by such as shall be satisfactory to the Engincer or the officer in charge. And no further estimate shall be made upon the same section so long as any work sliall remain imperfect; and any omission to disapprove of any work at the time of a monthly estimate being made, shall not be construed to be acceptance of any defective work; likewise any material disapproved of shall not be used in the work, and if nat removed by the part of the first part when directed by the Chief Engineer, or person in charge, then the rejected materials shall be removed by the aforesaid Chief Eugineer, or person in charge, to such place as he may deem proper, at the cost and charge,
and at the risk of the part of the first part. And it is hereby expressly declared and agreed by and between the parties hereto that all materials, of every nature and description, and the property therein, which from time to time may be procured and furnished by the said part of the first part, to be used in and about the construction of the said works hereby contracted for, so soon as the same shall be inspected, approved of and marked by the Chief Engineer, or his officer for the time being in charge of aud superintending the said works, shall absolutely vest in Her Majesty, the Queen, and the same may be included in the estimate of the Engineer or otficer in charge, all which materials so inspected, approved of and marked shall not thereafter in aty way be liable or subject to the debts, contracts or engagements or otherwise affected by any act of the said part of the first part to the prejudice of the said part of the second part. But it is distinctly moderstood and agreed that the inspection and approval of materials shall not in any way subject Her said Majesty to pay for the said materials, or any portion thereof unless employed or used in the said works, nor prevent the rejection afterwards of any portion thereof which may turn out to be unsomod or unfit to be used in the work; nor shall such inspection be considered as any waiver of objestion to the work on account of the unsoundness or imperfection of the materials used.

Ninthly. That, in the opinion of the Engineer, should any overseer, mechanic or workman, employ - drym, \&on, worked on or about the work, give any just cause of complaint, the part of the first part, shall immediately upon the application of the Chief Engincer or person in charge, dismiss such person or persons forthwith from the works, and he shall not be employed again thereon without the consent of the Chief Engineer; and should the part of the first part continue to employ. such oversees, mechanic or workman, the part of the first part shall forfeit to Her said Majesty, Her Heirs and Suceessors, the sum of five pounds current money aforesaid, for each and every day during which such overseer, mechanic or Workman shall be employed on the works after
such application as aforesaid: and all the sums so forfeited shall be deducted from and out of the amount which the part of the first part may be entitled to receive from her said Majesty at the commencement of the month next ensuing such forfeit, or at a later period as Her said Majesty may deem proper.

Tenthly. That to prevent all disputes, it is here-

Engineor to detormino quantities, interpiet Bpecifications, $4 c$. by mutually agreed that the Chicf Engineer for the time being, shall in all cases determine the amount or quantity of the several kiuds of work which are to be paid for under this Contract, and the amount of compensation at Contract prices which are to be paid therefor, and also that the said Engineer shall in all cases decide as to the construction to be put upon any part of the Plans or Specifications, or any other question which can or may arise relating to the exccution of this Contract, and his measurements and decisions shall in all cases be conclusive and binding between all parties, subject, however, to the final approval of the said Commissioners.

Eleventhly. That if any change or alteration,
C.nntractor bound to make alterations or
changes in post work shall be required by the said Chief Engireer tion or detals of during the progress thereof, the part of the first work af requined by the Chief Engincer. part is hereby bound to make such alterations or change, and if alteration or change shall entail ex- tra expense on the said part of the first part, either in labour or materials, the same shall be allowed the said part of the first part; or should it be saving to the said part of the first part, either in labour or materials, the same shall be deducted from the amount of this Contract; in either case the amount is to be determined by the estimate made by the Engineer or officer in charge. But no such change or alteration, whatever may be the exteint or quality thereof, or whatever time the same may be required to be made, pending the said Contract, shall in anywise have the effect of suspending, sutperseding, annulling, or rescinding this Contract, which shall contiute to subsist, notwithstanding such change or alteration; and every such change or alteration shall be performed and made by the said part of the first pait, under and subject to the
condinons, stipulations, and covenants herein expressed, as if such change or alteration had been expressed and specified in the terms of this Con. tract, and should the said part of the-first part be required by Her Majesty, represented as aforesaid, to do auy work, or furnish any materials for which there is not any price specified in this Contract, the same shall be paid for at the estimated prices of the Engineer, subject to the approval of the said Commissioners; but no change or alteration as aforesaid whatever, and no extra work whatever shall be done without the written authority of the Engincer in charge, given prior to the execution of such work, nor will any allowance or payment whatever ${ }^{\text {s. }}$ be made for the same in case it should be done without such authority. All bills for extra work, when ordered by the Engineer, ninst be returued monthly, or within one week from any time that may-be called for by him; failing so to do, payment of them shall be diseretionary with the said Commissioners.

Twelfthly. That the part of the first part will Ardent spirita. not by or agents, give or sell any ardent spirits to worlsmen, or any other person on or uear the said work; or allow any to be brought on the work by لaboarers or other persons.

Thirteenthly. That the part of the first part Fork not to bo shall not in any way dispose of, or sub-let, or re-let sub-let. any portion of the work embraced in this Contract: but the whole shall beg done by labourers under immediate superintendence, with the exception of procuing materials.

Fourteenthly. That any notice or other paper serving so connected with these prosents which may l.c requir- ${ }^{\text {teges. }}$ ed or desired on behalf of IIer said Majesty to be served on the part of the first part, may be addressed to the part of the first part at residence, or usual place of busipess, or at the place where the work hereby contracted for is carried on, and left at the Post Office in and any paper so addressed and left at the Post Office shall to all intents and purposes be considered legally served,

Fifteenthly. That should the part, of the first part not complete the work herein contracted for at
of Work within the period agreed upon as above mentioned, the time gpecified. said part of the first part shall be liable for and shall cause to be paid to the part of the second part, all salaries of wages which shall become due to the person or persons superintending the work on behalf of the said Chief Engineer, from the above. named period for completion until the same shall be completed and received.

Sixteenthly. That in case it shall happen that the Chior Enginei said part of the first part shall not fully complete
 $\substack{\text { ceod with work } \\ \text { if not completel }}$ before specified, the said Commissioners may, if Finthu time rpo-they shall think fit, permit the said Contractor to proceed with and complete the said work as if such time had not elapsed; and that in such case, such

- permission shall not be deemed to be a waiver in any respect of any forfeiture or liability for damages or expenses otherwise incurred by said Contractor in consequence of such failure to complete this Contract within such time, or incurred by him under any of the stipulations or provisions contained in this Contract, or in the annexed specifications; but this present Coutract and every such forfeiture and liabilty so incurred, shall still continue in full force against such Contractor as if such permission had not been granted; and the said work shall in such case be performed, completed and paid for, in every respect according to the terms, stipulations and conditions contained in this Contract, and in the Specifications amexed, subject to the same forfeitures, liabilities and deductions, as are herein mentioned, which had been incurred by virtue hereof before such permission, and subject also to such forfeitures and liabilities, and the deduction of all such costs and expenses as shall or may, by the decision of the Chicf Engineer, have been incurred after such permission, by reason of the non-completion, of such work within the time herein before specified for its completion, or by reason of the breach by such Contractor of any of the stipulations contained in this Contract, or in the annexed Specifications.

Diucharged zame

Seventeenthly. That the part of the first part shall not hire any men that may be in the employ of, or have been discharged for misconduct from
any other section of the work, unless by consent of the parties who discharged them. It is likewise distiuctly understood that the Contractors themselves will make such arrangements as shall establish a uniform rate of wages throughout the works, and that such arrangements shall not be departed from except by a majority of the other Contractors.

Eighteenthly. That the said part of the first
Laborare to bo part shall pay all labourers in employ monthly ; paid monthy. and in case of failure of the part of the first part so to do, the said Commissioners shall have full right aud authority to retain in their hands, for the payment of the workmein employed by the said part
of the first part, on any-work hereby contracted for, such an amount of any monthly estimate as the said Engineer may report to be requisite for that purpose. And the said Commissioners may adopt such measures for the disbursement of such retained money as they may consider the most judicious for the interest of all parties concerned.

Ninetecoplhly. It is hereby also expressly condi- Sngene on of tioned and understood that the Governor in Council Work. may suspend the progress of the said Works hereby agreed for, or any part thereof, according to the provisions of Act of Assembly, 19 Victoria, Cap 15, entituled, "An Act to authorize the construction of Railways in this Province." And in case the execution of this Contract shall be suspended as aforesaid at any time, and for any cause, 10 claim for prospective profits on work not done shall be made or allowed; but such an allowance for actnal expenses incurred as the said Commissioners, upon the report by the said Chief Engineer, may deem fair and reasonable, which amount, when settled by the said Commissioners, shall be conclusive upon all parties; but the part of the first part shall have the right to complete the work when the part of the second part shall order it to be resumed.

## 

## dUROPEAI AIID NORTH AMERICAI RALLWAY.

## SPECIFICATION FOR WORKS.

General duscription of Work.

This Specification comprehends all works and every operation necessary for the formation of the Line of Railway, as a Single Line of Way from Station shewn ou the Drawing, No. on the Gencral plan to Station also shewn on the Drawing, No. on the Plan (with the exception of Tracklaying and Ballasting the Permanent way, which is not included in the present Contract.) and inchades all diversions of Roads and Sireams, and the completion of all Bridges and Masonry, and the maintenance all the works, exclusive of Permanent Way for twelve calender months, after the Works have been finally delivered over and accepted.

Drawings
The accompanying Drawings referred to in this Specification and in accordance with which the Works are to be cxecuted, are , in number, as hereafter particularized; and they are strictly to be attended to in the execution of the Works, with the particulars and description thereon, as well as such explanatory or detailed Drawings as may be furnished by the Engineer during the progress of the Work.
Conditions of The Works included in this Specification are to be undertaken for a lump sum of money, the details and prices of which, based upon the quantites given on the Plans, to be stated in the Schedule; and it is distinctly to be understood that cach item is to be monied out at a fair and reasonable rate, and the prices for additions and deductions and extra work, is also to be filled up; failing in either of these particulars the Tender will not be recognized. Should any alteration, addition, variation, or diminution, be made to, in, or from said Works, or should other Works be substituted for those shewn or specified by order of the Engineer, then such altered,
additional, varied, diminished, or substituted Work, to be measured by the Engineer and to be valued by him at the prices quoted in the Schedule annexed to the Tender; or if there be no prices spplicable in the said Schedule, then the price to be fixed by the Engineer; aud in all such cases the amount or value thereof to be added to, or deducted from the lump sum tondered, as the case may be:

The Engincer will set out the work and carefully stake out the centre line and half widths upon Work. the ground at every fifty feet, and mark the cuts and fills, upon the stakes, after which the Contractor must be responsible for the correctness of the alignment and gradients, as no allowance will be made for errors by reason of the Works being out of line or level, and the whole must be delivered over finished and complete, in accordance with the Plans and Sections.

Entire changes in the location of the Railway, Chaves. with a view of perfecting an alignment of the same, together with variations in the grade line, may be made by the Engineer, and no extra allowance beyond the additional measurement (if any) shall be claimed therefor.

The length of any Section may be increased or Longth of secdiminished by the Engineer if he consider the same tions. necessary. or expedient for the benefit of the Work.

The quantities marked upon the Section, whether
'Quantizises. of Excavation or Embankment, are deduced from cross section measurement taken upon the ground, which has been tested with numerous pits: also an allowance of ten per cent. is made upon the actual cubic measurement of the embankment for shrinkage. The Masonry also has been carefully calculated, and is in the opinion of the Eligineer correct. These quantities are guaranteed to be correct, but should any considerable excess or deficiency arise, a correesponding addition or deduction will be made.

The various Works are to be executed according to the accompanying Drawings. These drawings works to bo are supposed to be correct, but the Contractor must ${ }^{\text {ing to Drawiogs. }}$ satisfy himself on this point by taking and testing the levels, or by any other means, as no altowance
whatever, will be made on the ground of any mistáke.
Engineer to in- If in any case it should happen that the dimenterprot specufl- sions written or described on the Drawing do not
cettons and

Drawinga

Clearing.

Grubbing.

Louso Earth. correspond with measurements taker by the scales, the Engineer in all such cases is to be the sole judge which of the two is correct, and to be taken, and the work is to be executed according to his decision.

The ground occupied by, and set apart for the Railway, is to be cleared for a distance of fifty feet each side of the Centrc Line, of all butildings, timber, fences, stimps, bushes, logs, brush and other vegetable matter, which are to be removed to such places as the Engineer may direct ; the buildings, crops and fences, to remain the property of the Commissioners; the loose brush, rotten logs, and other materials liable to catch fire, for a further distance of ten feet, or sixty feet each side of the Centre Line, are likewise to be brought out to it and burned, and in no case will they be allowed to be cast back on the adjacent land.

The trees, stumps and bushes, to be cut close to the surface of the ground, removed, and piled npon the Centre Line, and the whole burned, or otherwise got rid of as the Engineer shall direct. No grading of any kind shall be commenced upon a Scction until the clearing is finished to the satisfaction of the Engineer.

Where Embankments are less than two feet in height, all stumps, large roots, and other vegetablo matter, must be thoroughly grubbed out and burned as specified above.

All vegetable or loose earth, which may be unsuitable for Embankments, must be removed, and no stumps, logs, or other perishable material, shall be placed in the Embankments. Should peat or any other materials be found in any of the Excavations, which the Engineer may deem unfit to be used in Embankments, it must be carried to spoil, and any deficiency which may thereby" be occasioned must be provided for by the Contractor at his own cost.
Hrrsto boex- In Excavating the cuttings and forming the Emmoutd nacoriinim bankments, the Contractor must strictly adhere to to longitudinal
Section Section. the depths and heights figured (or drawn) on tho
longitudinal Section，and form the slopes and width of Road－bed in accordance with dimensions marked upon the Section ，upless where otherwise ordered by the Engineer．

In carrying on the Embankments due allowance －must be made for Settlement，and sufficient width at all times maintained，that no additions to the side of any Embankment shall at any tine have to be made，and when by reason of side－lying ground the Embankment may have a tendency to slip，proper Benchings shall be cut according to the directions of the Engineer to receive the Embankment．

The，road generally will be graded for a single Track，excepting at Statious，＇Turnouts，and similar places，which shall be graded wider，if required by the Engineer．The width of the Line，generally，at formation through all cuttings，is to be thirty－two feet，and ou all Embankments twenty feet in the clear，when finished and delivered over，as shewn in the Cross Sections．On sidelons and sloping ground，the cuts in all cases will be excavated fhirty－two feet in width on formation，twenty feet from Centre on the upper，and twelve feel from centre on the lower side．Where the Embankments are in Excess，the Excavations will be taken out thirty－five feet in width at formation level，if re－ quired by the Engineer．The Centre of the forma－ tiou will in all cases be raised six inches higher than the sides，and the whole finished and ditched in ac－ cordance with the respective Cross Sections for Cuttings and Embankments，as shewn in Drawing， No． Figures at the end of this Specification．

Such variations in the width of Excavations and Embankments，Slopes and dimensions of the Side Drains to be made as the Engineer shall from time to time direct．

All．Earth excavated from Road－bed is to be car－ ried into Embankment，unless otherwise directed by the Enginecr，the surplus material to widen the embankments regularly，or form Double Track Em－ bankment；；and where there may be a deficiency of material，the Excavations will either be regularly widened all through，or an even and regular ditch

Sctrlement

Shegh Than．

Fansation－in thin wilth of Cutimas rad Bank s．

「x•品，はitonn
of sufficient capacity to furnish the deficiency of earth required will be staked ont by the Engineer and excavated by the Contractor upon one or both sides of the Railway. No borrotwing pits bf any kind will be allowed, unless especially ordered by the Engineer in writing.
Surplus Earth.
The Surplus Earth from Excavations not carried into Embankment, shall be deposited in a regular manner upon one or both sides of the Excavation, with regular slopes, as the Engineer shall direct, and so arranged as to convey the drainage or falling water from the Railway, leaving a space or berm of not less than six feet in width between the same and the outside line of the slopes of the Excavations, as shewn in Drawing, No.

As soon as part of an Embankment has beentipped, the Contractor shall trim and form such portions of the same as shall be directed by the Engineer, in order to enable him to judge of the proper allowance necessary for settlement and other causes.

All Embankments and Excavations required for Road and Farm Crossings, and Bridges, shall be completed by the Contractor.

In case the Engineer shall determine to obtain Sudo Cuttings. any earth from Side Cuttings, the Contractor minst execute such side cuttings wherever directed, and in such form and to such depth and extent as the Engineer stall determine, and shall dispose of the earth as directed by the Engineer.

The bottoms of the Cuttings to be trimmed truly to the form shewn on the Cross Sections, for the purpose of draining the water from the surface into the side drains and ditches to be formed at the bottom of all Cuttings and Embankments, and ailong the tops of slopes in Cuttings of not less dimensions than shewn in the Drawings, and as much larger as the Engineer shall direct.

The Contractor is to keep all the Cuttings free from water, and to construct all such water courses and drains as may be necessary to preserve the slopes from injury by the action of water during the progress of the work or during the time of maintenance.

The description above given, as to the Cuttings
and Embankments, shall equally apply, as to manner of work, to all cases of Bridges, Approaches Diversion of Roads and Occupation Roads, or to any other purpose of a similar character, and to every other matter and thing as above specified, or that shall in the opifion of the Engineer be needful for the proper execution of the Work.

In carrying the Embankment over any Bridge or
Temporary Culvert which is to be covered thereby, care must $\begin{gathered}\text { Bridiges, } \alpha \mathrm{dc}, \\ \text { required. }\end{gathered}$ be taken, by the use of a temporary bridge or staging, to have the Embankment brought up equally on bath sides of such Bridge or Culvert, and carefully phnned in layers not exceeding six inches in thickness, so that the weight of the earth may be brought equally upon each side thereof at the same time; and should any injury or derangement arise to any, Bridge or Culvert, the Contractor will be required to make good the damage, or rebuild it at his own expense to the satisfaction of the Engineer.

Before the Road is considered finished the Embankments and. Excavations must be neatly TrimTrimming. med, and the whole surface made to conform accurately to the given widths and slopes and plane of graduation.

It is distinctly stated that no Permanent Materials
Contractor to will be allowed to be used in carrying on the Works, poraride all tembut that the Contractor is to provide at his own cost all requisite Plant and materials, including temporary Rails, Bridges, Coffer Dams, Crossings, Roads, Water Courses and Drains for keeping up communications and drainage during the progress of the Work.

The Contractor is to take upon himself all risks Raks and Conand contingencies whatever, that may arise in respect of the Works. He is to replace and make good at his own cost any work which may fail from whatever cause, whether from bad workmanship or materials, or from slips, slides, or freshets.

The Blasting of all Rocks during the progress of Blasting. the Work shall be entirely at the risk of the Contractor, and all damages occasioned thereby, or any injury done by him or his workmen to the crops, fences, buildings, or other property of the adjoining
land owners or occupants, in any way whatever, shall be paid for by him.
Roada not to be ubstructed.

Road Diversions

Public or private Roads which intersect the Line of Railway shall not' be obstructed by Excavation or otherwise, until direction shall be given by the Engineer for completing the Road across the same, and convenient passing places or crossings shall be kept open for the accommodation of all having occasion to use them during the progress of the Work'.
'Public, or occupation Roads across the Railway, shall be not less than twenty feet in width. Between the Rails, and over the side ditches of the Railway, they shall be planked with merchantable Spruce Deals, not less than fifteen' feet long and three inches thick, which shall'be well spiked to the cross sleepers.

Two Cattle Guards, five feet in width and three feet in depth, and two open Culverts, two feet in width, to' pass the water along the Railway ditches; composed of Dry Rubble Masonry, shall be inserted at every such Crossing.

The Approaches, if sunk, shall be built in accordance with Drawings, No. The width of the Road bed, (if sunk,) shall be twenty fest in the clear, with a ditch on each side, six feet wide at' the top one foot six inches wide at the bottom, and one foot six inches deep.' If raised, it shall be twenty-four feet wide on the top. In either case, the Cross Section of the Road must be raised or barrelled in the middle ten inches, and the longitudinal slope or grade is not to exceed one foot vertical to twenty feet horizontal ; also the side slopes of the Cuttings and Embankments are not to be less than one and a half to one.

All Road Diversions will bé located hereafter by the Engineer, and they shall be evenly graded with no longitudinal slope exceeding one in twenty.

The Road-bed, "in stich Diversions, shall be graded twenty feet wide on the surface between the ditches, and barrelled in the centre ten inches; the ditches on each side shall be not less, than six feet wide upon the surface, one foot six inches deep, and one foot'six inches wide on the bottom, and so arranged as to draw all the water off the Road and
discharge ịt through the Culverts, which shall be inserted at proper intervals under the Road way.

When the diversion is of considerable length and runs parallel to the Railway, the same number and description of Culverts shall be in the diversion as are in the Railway between the same common points, and they shall be inserted at such levels as will completely dry the ditches. When from the nature of the ground it is necessary to go into Cüttings or Embankments to preserve the inclination, the side slopes shall be made not less than one and a half to one, and neatly dressed.

After the grading has sufficiently settled, the surface of the Road shall be covered over for a width of twelve feet in the centre with twelve inches of clean gravel or broken stone, in cubes of not more than two inches square, and the whole shall be neatly finished in accordance with Drawing, No.

The Works are to be carried on under the direction of the Chief Engineer, and such resident and carrueclon,under Assistant Engineers and Inspectors as he may ap- finch others as Asist he may apponto spoint, and they are to be executed in all respects to his entire satisfaction ; and his decision on all questions relating to the Works, or to the construction and meaning of this Specification, or of the accompanying Drawings, or of any Drawings that may be furnished at any time to the Contractor, is to be final and binding on all parties.

As a check to the monthly estimates, it is dis-: Contractor to tinctly understood and agreed, that the Contractor rwoik done, \&ce. is required to return to the Engineer, at the end of cvery month, true Bills of the total quantity of work done, and materials furnished by him up to that, time, before any payment will be made. These Bills shall include all extra work, labour and materials, (if auy,) done and furnished up to the date of the estimate; failing so to do, payment of extras shall be discretionary with the Commissioners.

For the simplification of the monthly measure- Deseription of ments, it is understood that the various kinds of Work. Excavation will be classified under two heads; viz. :-Earth, and Solid Rack, and paid for as such. Earth, comprising all material of every kind except Solid Rock. Solid Rock, comprising all Rock in
places which requires blasting, and all detached stones or isolated masses measuring more than five cubic yards.

Fvery description of material required to be raised and removed in forming the Road bed, is to be estimated as Excavation, and the quantity ascertained by measuring, either in Excavation or Embankment as the Engineer may determine, making such allowance in measuring Embankments for shrinkage as he may deem proper.

## EXCAVATION FOR FOUNDATIONS.

Excaration for Foundations.

The Excavations for Foundations of all Bridges, Culverts, Walls, or other Masonry, shall be made of such a depth and of such dimensions as the nature of the ground will require, the Engineer to decide in this respect without reference to the Drawings; but whatever the depth may be, no extra allowance will be made in that respect, and no work shall be commenced in any such Excavations, until the Engineer shall have inspected and approved of the same. The Excavations, during the progress of the work, to be kept entirely free from water by pumping or otherwise, and the carth arising from such excavation to be placed in the Embankment, or other part of the Work, as the Engineer may direct; and in case no such depository can be found, the Contractor to remove the same from the Work entirely. When the erection, whatever it may be, is completed, the Foundations are to be filled in and punned round and about the Masonry, and the top smoothly levelled and made good to the satisfaction of the Engineer;

## ¿MASONRY.

The Masonry will be classified under eight heads, viz: Ashlar Masonry, first class laid in Cement, Dry Rubble Masonry in Abutments, Rubble Masonry in Cement, Rubble masonry in Lime, Ashlar Masonry in Arches, Rubble Masonry in Arches, Dry Rubble Masonry in Culverts, and Rip Rap or Bank Paving,

All Masonry will be estimated and paid for in the monthly estimates, by the yard of twenty seven cubic feet.

## ASHLAR MASONRY.

'Ashlar Masonry, first class, to be laid in the best
Ahhlar Mia. quality of approved fresh Newark, or Rosendale cement, and clean sharp sand, mixed in such proportions as the Engineer shall direct.

All the stones to be used in this class of Masonry must be of the best ledge or split stone, of large and suitable size and of good quality, and well adapted for substantial and durable structures, and in all respects such aș the Engineer shall approve. Each stone must be dressed fair on the beds throughout, the the joints to be dressed square back from the face not less than nine inches, and to have chisel drafts up the arrises. To be laid in courses at least twelve inches in thickness, and so that there shall be one Header to every Stretcher, and so arranged with each other and with the backing as to make a good bond throughout.

The Headers must have at least two and a half times as much bed as face, measuring from the face to wards the interior, and not less than two feet long on the face. The Stretchers must have a breadth on the bed at least once and a half the height of the course, and not less than eighteen inches, and they shall in no cace be more than six feet in length, and the joints must overlap at least nine inches, the beds must be rectangular, being as long on back as face, as no trapezoidal shaped stones will be allo wed.

Great care must be taken to have all the beds dressed to accurate planes; the face work quarry dressed and brought to the required lines. No pinning of any kind shall be permitted in setting any part of the work. Each stone shall be set in a full bed of mortar, and beaten solid; each course must be well and carefully grouted; all the strings and copings to be chisel dressed on the face. The filling in between the Ashlar and Bond stones of Piers, and backing of Abutments, shall be of large flat bedded stones, and no stone to be less than six inches thick, nor more than two thicknesses of stone to make the height of the course. The beds to be punched off. so as to have a good bearing on the stone below, and in all cases the stones to belaid on their broadest beds,
and they must bond at least six inches with the Ashlar work and with each other. If any levelling is necessary upon the upper bed it shall be done before the next course is laid upon it. And each course of backing shall be cut do wn level with the face work. At least two thirds of the upper bed shall be of full thickness of course, so as to give the next stone a firm bearing upon it, And vio levellers or'spalls shall be allowed under a stone that will raise it from its bed. There are to be Headers in the backing midway between those of the face. When the walls are not more than three feet thick, the bond shall be in one stone tbree feet long, so as to pass through the wall to back and front. When the walls are of greater thickness than three feet, as in Peirs or Abutments of Bridges, the Header shall be not less than three feet in length, and put in alternately in the front and back of the wall. The course above to have large stones crossing the joints of the bond stones, so as to give effectual bond. 'When the work is finished it is to be neatly pointed at a proper season of the year.

## RUBBLE MASONRY IN BRIDGE ABUTMENTS.

Rubll Ma- Rubble Masoury in Abutments to be of large flat Abutuents. ${ }^{\text {sing }}$ bedded stones of good size, not less than one foot rise, and containing at least six cubic feet, the bed being at least twice the rise. The whole shall be laid in horizontal beds in irregular courses, free from pinners, the beds being punched so as to insure an equal bearing throughout. The joints not to exceed three quarters of an inch; the vertical joints to be squared from the face nine inches, and the horizontal joints to overlap one foot. The Header shall be not less than three feet in length, and laid alterinately in back and front of the wall. The coping and steps to the wings to be of stone split to dimension with squared joints and edges, and carefully bedded. Great care must be taken to effect the best bond, and make the closest and neatest work.

## ARCH MASONRY.

arch Masonry. Arch Masonry, whether in Ashlar or Rubble, shall include Arches only. The Ashlar Arch Stones
must be of the full depth or thickness of the Arch and worked on the radial joints to three eigths of an inch ;'they must be not less than two feet in length, and must break joints not less than nine inches. They must be of good, sound durable stone, and laid in: a full bed of mortar, of the best fresh Newark or Rosendate Cement.

In Rubble Arches, the stone muct be of the full depth or thickness of the Arch, and rough hammered to fit the radial joints without the introduction of pinners. No stone to be less than one foot long, and they must all bond or break joints with cach other at least six inches, and be laid in a full bed of Hydraulic Cement. The joints whether of Ashlar or of Rubble must be brought in line with the radius of the curve of the Arch.

## ARCH CULVERTS.

The Gulverts will be built upon the site that shall ach Curerta. be set out by the Engineer in charge of the work, and exactly in accordance with the lines and dimensions of the accompanying Working Drawings, No. All the stonc used in the Culverts to be good and sound Free or other stone, that shall be approved of by the Engincer.

## FOUNDATIONS.

The ground to be excavated to the depth and of sufficient width to allow of the Masonry being put to its full dimensions, as shewn upon the Drawing.

The Footing Courses shall be of large, flat bedded stone, hammer scabbled, the upper beds rough

Foundations.

Footing Courses.

The Invert to be of Ashlar, laid in Cement, one Invert. foot deep, and neatly punched on the beds and joints, and pitched off square on the top and bottom, the joints not to exceed three eighths of an inch,
each stone to be dressed to the proper radius, set in a full bed of Hydranlic Cement and well grouted. No stone to be less than two feet long, and to break joints nine inches.

## SKEWBACK.

The Skewbacks to be of dressed Ashlar, of the form and dimensions shewn upon the Drawings, and no stone to be less than two feet in length.

## ABUTMENT WALLS.

The Abutment Walls to be block in course, neatly hammer dressed, no stone to be less than seven inches in thickness and eighteen inches in length, and to have three times as much bed as rise, measuring from the face toward the interior of the work. The beds to be carefully dressed throughout, the joints not to exceed three eighths of an inch. The joints must be dressed back square at least nine inches from the face, and must overlap nine inches.

## BOND STONES.

arond Stonea.

Racking of Abutments.

- \& Stomes.

Through bond stones not less than twelve inches thick, eighteen inches wide, and not less than three feet long, are to be put in every superficial yard of face.

## BACKING OF ABUTMENTS.

The Backing of the Abutments to consist of large flat, bedded stone, not less than three feet area on the hed. The greatest care must be taken to affect the the best bond with the face work, and to make the closest and neatest work. The whole must be laid solid in lime mortar and brought up to a level with every course of the tace work.

## ARCH STONES.

The Arch stones to be of Ashlar, of the full depth of bed, as shewn, upon the Drawing, and no stone shall be less than two feet in length and nine inches thick on the soffit. The thickest course to be laid at the springing of the Arch and gradually decrease to the crown. The key stone to be twelve inches thick on the soffit. The beds of each, stone to be fair dressed to the proper radius, and the end joints squared to full depth of bed. The faces to be pitched off to a line and roughed punched; all the
stones to break joint at least twelve inches; and no joint shall be more than one quarter inch. No pinning of any kind will be allowed in setting. Each stone to be set in a full bed of Cement aud beaten solid. The vaussoirs or ring stones of the Arch to be neatly pitched off, and to have a two inch arris draft around the edge of the extrados and intrados, and along the joints.

WING AND END WALLS.
The Masonry of the Wing and End Walls to be wing and Ead of the same character as specified for the abutments: they will be built exactly as she wh upon the Drawing. The stones in this work must be not less than eighteen inches long, and one half of them must extend completely through the walls.
COPING.

The Coping to Wings and Entrance to be the full thickness of the walls, projecting three inches over the face, and to be in stones not less than threc feet long, neatly pointed and pitched to a line.

All the face work to the thickness of two feet to be laid in Cement, and the remainder of the Masonry, in good Lime Mortar, grouted solid at every one foot in height.

## PUNNING.

The Earth to be carefully punned in layers of not more than six inches at a time to ten feet in heigth above the crown of the Arch, and descending each side on a slope, of not less than one and a half to one to the surface, each side to be carried up simultaneously.

## BRIDGES.

Small Bridges under the Railway shall not exceed spans of thirty feet, they shall be built in accordance with Drawings, Nos. The Pilasters and Quoins shall be hammer-dressed rough. Ashlar, with chisel-drafts up the arrises: The face of abutments and wing walls shall be best coursed Rubble, the courses to correspond with the Ashlar in the Quoins and Pilasters. The whole to be faced in Cement:to a depth not less than two feet, and the backing laid with Lime Mortar well grouted. The coping on the Road Bridges to be tooled Ashlar.

Bridyes avor Railway

Footing Courses.

Culvirt Mn soury Masonry, they' will be from two to four feet span, and from three to four feet high, the thickness of walls varying according to circumstances. The stones of which they are built must be strong, durable and well shaped, and laid in such a manner as to form a perfect bond throughout. One third of the stones shall be of sufficient length to extend completely through the walls where they do not exceed three feet, where the walls' exceed three feet the headers shall be not less than three feet in length, and put in alternately in the front and back of the wall. The top courses shall be composed entirely of bond stones, extending throughout the walls, and not less than six inches in thiekness. The covering shall be of large that stones, nine to fifteen inches in thickness, as the Engineer shall direct; they shall be fitted so closely together as to prevent the earth of the embankment from running through into the Culvert. The quoins of all walls shall be not less than three feet long and nine inches thick, and $\mathrm{c}^{\prime}$ ter laid up plumb or stepped regularly back to suit the proposed batter. The foundatious shall be paved with flat stones in
a similar manner to that described above for Arch Culverts. The end 'walls will be of rough hammer dressed Masonry, with regular coping of two and a half feet wide, not less than six inches thick, projecting three inches over the gencral face of the wall and laid in a full bed of Cement mortar. Culverts of the above description are to be built, if required with one or more openings with a pier wall or walls between them. After the' Work is accepted the earth is to be carefully punned in layers of not more than six inches at-a time, to a height of three feet above and around the top and sides of the Culvert as shewn on the Drawing, No.

## RITP RAP:

Under the head of Rip Rap will be included the Rip Rap or bottom ballasting of the Embankments; the ùnder- Bank Pavur. piming in Culvert foundations as well as the aprons of Culverts; likewise the coating of the sides of the Embaukments with loose stonas and brush to protect them from washing, and such coatings shall be placed two feet iu thickness, (measuring at right angles to the line of slope) along the slopes of all Embankments that are below extreme high freshet level.

## CEMENT AND LIME MORTAR.

Cement shall be of the best quality of Fresh New-
Cement and ark, of Rosendale Cement, in papered barrels, and approved of the Engineer, and shall be mixed with an equal measure of clean sharp approved sand, or in such other proportions as the Enginear may determine, and only prepared as required for immediate use.

Lime Mortar shall consist of the best lime in the Province, to be approved of by the Engincer, and mixed with clean sharp approved sand, in the proportion of two measures of sand and one of lime, or in such other proportions as the Eugineer may determine. It shall be well mixed and thoroughly ground in a mortar mill that will be furnished by the Government, and tempered with a proper quantity of water, and only made as recuired for use.

Mortar in all cases to be prepared under the immediate direction of the Inspector, by labourers
employed by the Contractor ; or the Inspector may employ other men to mix it and charge their wages to the Contractor, which amount shall be deducted from the monthly estimates.

None but competent Masons to be employed in laying walls of any kind.

The prices per yard for Masenry shall include the cost of all Coffer Dams, the purnping and bailing of water found in the pits, both before and after the foundations are prepared; (furnishing arificial foundations will be extra, except when they are delineated upon the Plans;) also the scaffolding, centering fot arches, and the preparation of all roads that may be required in order to transport the stones and other materials to the Work.

All the materials that are to be used in Culverts and Bridges must be examined and approved of by the Engineer, or such person as he may appoint, and those considered unsuitable must be immediately removed to such distance as may be deemed necessary, in order to prevent them from being used in the Work.

No Masonry shall be commenced without orders from the Engineer, or before the foundation has been inspected, or covered up before being inspected and approved. The Contractor will be required to have an approved Derrick on the Work before he will be allowed to commence Masonry of any kiud.

The proportions and dimensions of the several parts of the Culverts and Bridge Abutments will be represented on the Plans.

No Masonry shall be laid in Mortar, unless by special direction, between the first day of November and the first day of. April.

## TIMBER AND WORKMANSTIP. IN BRIDGES AND VIADUCTS.

Timber and Workinanship An Bridges und
Fladucts
as shewn on the respective Drawings. The timber work in Viaducts and Road Bridges, over and under the Railway, shall be of the bost Saint John White Pine, with the exception, of the Cendre Stringers under the Rails, which shall be of the best Sguthern or Savannah Piine, and of sufficient lengths
to extend over two spans so as to break joint. All the timber shall be free from sap, heart shakes, bad knots, or ainy unsoundness whatsoever.

It shall be all neatly planed exactly to the dimensions shewn on the different plans, and the workmanship throughout must be of the best description of carpentry, good, sound, firm, and well bolted, and such as shall be approved of by the Engineer. It must be painted with three coats of oil paint of an approved colour.

The upper surfaces of all the Viaducts and Bridges under the Railway shall be covered with Warren's improved Fire and Waterproof Roofing.

## WROUGTIT IRON WORK.

All wrought Iron, in plates, bolts, nuts, straps, Wrouglt hon cramps, bars, leys or wedges, or made tuse of in any other form or mamer whatsoever, in any of the Bridges or other Works, is to be of the best Pembroke lron or such other description of Iron as shall in the Engineer's opinion, be of equal quality. The greatest care must be taken in any welds that may be required, to ensure perfect'soundness, and all other workmanship, whether forging or fitting up, must be of first rate quality.

The heads of all bolts must be forged in one with the bolts, and must be as thick as the bolt is in diameter, all nuts must also be of the same thickness as the bolt is in diameter, and the thread both of nuts and bolts must be well and deeply cut, and must be of such quality as the Engineer shall approve.

## SLEEPERS.

Sleepers will be furnished by the Contractor, they shall be of Hacmatac, Pine, Hemlock, or Cedar; the respective prices of which to be stated in the Schedule. They must be exactly nine feet long and six inches thick, and smoothly and evenly hewed to a uniform thickness with two parallel faces, which shall not be less than eight inches wide upon the narrowest part.

The Hacmatac and Pine may be sawed out of large timber, but the Hemlock and Cedar Sleepers must be hewed out of green straight thrifty timber, just large enough to make one Slecper. The whole
to be sound and merchantable, entirely free from shakes, crooks, bad or rotten knots, or any unsoundness whatsoever.

For more full and perfect explanation of the form and dimensinns of materials and parts, and of the manner of constructing the works, it is understood that detailed Plans and Specifications with bills of timber and iron, will be furnished from time to time by the Engineer, who will also give süch directions from time to time during the progress of the work, as may appear to him necessary and proper, in order to make all the work, in every respect complete and perfect, and the said Plans', Specifications, bills of timber and iron, and directions, shall in every respect be complied with.

The Fencing on each side of the Railway is to be of Poles as shewn in Drawing, No. or of boards, built with posts and T's, as shewn in Drawing, No. 7. The posts are green cedar, five by five inches, and five feet long. The T's are six by six inches, and seven feet long; they are spiked together at the dovetail with a seven inch spike, and further secured with half inch iron bolt, dogged into both post and sill, as shewn on the Drawing, the point or return part of the dog being six inches in length and clinched on the end to prevent its being withdrawn. The T's are placed eight feet apart from centre to centre, and such a distance above or below the level of the surface of the ground, and at a uniform distance of fifty feet from the centre line, so as to make the Fence uniform and symmetrical, as no crooks or sudden rises and falls will be permitted. The boards must be of good sound merchantable spruce, sixteen feet in length andi one inch thick, and of the uniform dimensions shewn upon the Plan, being of the respective widths of five, six, seven, and eight inches, and breaking joints on alternate posts. There will be a cap board six inches wide and sixteen feet long, spiked along the top of the posts, and a face board six inches wide and five feet long, spiked on the face of each post. All the boards to be well and carefully nailed with two twelve penny nails at each crossing of the posts, and two nails in the butt of every board.

No Grading is to be commenced or farm fence taken down between the first of May and the first of November, until the permanent fence on both sides of the Railway has been erected. When Grading has been commenced the previous winter, the permanent Fencing must be completed before the first of May. The Contractor will be held responsible for all damage sustained from want of Fencing, or from injuries done to crops by labourers in their employment.

The whole of the above specified Works to be executed in a substantial, faithful, and workmanlike manner, and to the entire satisfaction of the Chief Engineer, and subject to the constant supervision and inspection of such persons as he may appoint to superintend the same, and to be delivered over finished and ready for use on or before the first day of June, Eighteen hundred and sixty.

ALEXANDER L. LIGHT.
Chief Engincer.

## EUROPEAN \& NORTH AMERICAN RAILWAY.

## Tender for Work, Section No.

## SUS\$EX DISTRICT.

the undersigned hereby propose and agree to complete the Railway commencing at Station No. and extending to Station No. as shewn on Gencral Plan, Drawing No. '. being a distance of Four Miles, Yards, or thereabouts, more or less, according to the Plans, Sections, and Specifications, as now exhibited to in the Enginecr's Office, Saint John, comprising Clearing, Grubbing, Pencing, Excavation, Embankments, Drains in Cuttings, Drains on the top of Slopes of Cuttings and foot of Enıbankments, Diversion of Roads and Streams, build Culverts and Bridges, erect Temporary Bridges and make Temporary Diversion of Roads where required, and to do all other labour and work connected therewith, (with the exception of Track Laying and Ballasting the Permanent Way, in accordance with the Centre Line, Reduced Levels and Inclined Planes, Cross Sections and Bench Marks, as shewn on the Plans; and to keep the same in repair for a period of twelve months after the completion of the whole of the Works included in this Contract ; to provide all the necessary materials, tools, implements, \&c., that may be required for the due fulfilment of this Contract, for the sum of

## $\mathfrak{E}$


hereby undertake to execute the ContractDeeds prepared by the Railway Commissioners, within fourteen days from the date hereof. Witness hand this day of One Thousand Eight Hundred and Fifty Fight.

## Disw

N. B.-The following Quantities and Prices are the details of the above Tender, upon which the Estimate is computed, and the Prices attached are those at which all Extra Works, Additions to and Deductions from the Contract Amount shall be made.


## Prices at which the following will be executed, if required.

## DESORIPTION:

Pricat, Amt.

 Spruce Sheeting Pilem, 20 Seet long: $12 \mathrm{w}^{7} \mathrm{in}$. at per Cubic ft. " Walinge, 12x6 inches, . - . - " " 4 Earth Excavation run to Spoil, - - - at per Cubie yd.
Excavated Stream Diversions, (where required,) and Fanm Crowsingey
Out fall Draine,

4 inches thick; and sowing the same with Clover and Timothy Seed.
esoh
4
$\qquad$
46

4

$$
\begin{aligned}
& \text { Level Crasings for Farma, as per Drawing }\} \\
& \text { No. 8, }
\end{aligned}
$$

Carriage of Iron Raile, Chaiss and Epiken, from Saint. Johan or Moncton, (Froight ovar at por ton. Railway free to Susisex or Selisbury,]


«Ballatt, including lead, if found on the Contract, ? meanured in Excavation, . . - $\}$ at per Cub. yd.

## Quantities. <br> DESCRIPTION.

" Ballast for every additional half-mile lead, beyond \} the extent of the Contract,
$\left.\begin{array}{c}\text { * Upholding line for } 12 \text { mos. after the acceptance } \\ \text { of the worls, }\end{array}\right\}$ at per mile.

| Witress hand , this day of One Thousand |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Names of Sureties who are willing to become personally bound for the due fulfilment of this Contract.
$\left.\begin{array}{l}\text { Names of } \\ \text { Stureties, }\end{array}\right\}$
J. \& A. M'MILLAN, PRINTERS, PRINCE WM. STREET, ST. JOHN, N. B.


[^0]:    - See blank form of Contract, Specification and Schedule, upon which Worko have been let, at end of Report.

[^1]:    - It is worthy of remark that both Mr. Jackson and Mr. Giles (as I havo heen 'informed on reliable authority)' háve frequentíy stated it to be their opinion' that chis work would cost $£ 10,000$ Stg. per mile.

[^2]:    - Fer further explanation so note A in the Appendix.

[^3]:    - Eed Note 13. at end of Report.

[^4]:    * See latter part of Note C. on thin suliject.

[^5]:    * For a further explanation of this comparative estinate, I refer to Note $\mathbb{C}$, where the causes of these items being charged, are enlarged upon; and I also eall attention to the significant quotations from the Report of Mr. Chates Hutton Gregory, and Mr. Walter Shanly on the/Gand Trunk Railway.

[^6]:    - Sce page 14.

[^7]:    "It may be proper to state, that I consider the Engineer Department of the road as having been organized on too limited a seale, originating, no doubt, in the laudable desire of economy, but in this it is quite possible tor go too far. The force employed has not been sufficient to give the requate levels and stakes during the progress of the work, and we consequertly find, at several places, the grading out of line, excavations and embankments too wide, and at others not wide enough, improper ballasting used, and other matters of detail imperfectly executed. Somo of the bogs and lakes which have swallowed up such lay pe quantities of material, could have been partially or wholly avoided, and no doubt would have been, had proper soundings been taken to determine their depths on the original nurveys. The services of one or two well qualified assiatant Engineers in addition to thoso who have been employed on the road, to have given a personal superintendence to the work, would have saved large expenditures at muny points-expenditures which, although nominally borne by the contractora, have generally in the end to

