Canadian Architect and Builder.

——覀国—
 Canadian Architect and Builder,

A Monthly Journal of Modern Constructive Methods, (With a Weekly Intermediate Edition-The Canadian Contract Record),

```
|ulished on tIl tuilrd saturday in each month in the interest on
```

ARCHITECTS, CIVIL AND SANITARY ENGINEERS, PLUMDERS,
DECORATORS, BUILDERS, CONTRACTORS, AND MANU.
FACTURERS OF AND DEALERS IN BUILDING
MATERIALS AND APPLIANCES.
C. H. MORTIMER, Publisher,
14 King Street West, - TORONTO, CANADA.
64 TEMPLE BUILDING, MONTREAL.

BOBSORIPTIONH. The Canadian Anchitact and Buildar will be mailed to any address in Conada or the United $\$$ totes for $\$ 2.00$ per year. The price to subucribers in forcikn countries, is $\mathbf{5 2 . 5 0}$. Sebscriptions are payabte in advance. The papet will be where no soch understanding exists, will be contintred until instractions to discontinue are reopived and all arrearages paid. ADPRERTSEMESNTS. Prices for advertising sent promptly on application. Orders for advertising should reach the office of publication not later than the rath day of the month, and changes of advertisements not later than the sth day of the month. EDITOR'S ANNOONOEMESNTS. Contributions of techaical value to the persons in whote interests this journal is published, are cordially invited. Subscribers are also requested to corward newspaper clippings or written items of interest from their respective localities. Tho "Canadant in roldtect and Builder" is the offoiat papor of the Arehitectural A esoetations of Owtario and Quebso. The publisher desires to ensure the regular and prompt delivery of this loumal to cuery swbscriber, and requests that any cause of complaint in this tarticular be reported at once to the office of pudlicalion. Subseribers who may change their address should also give prompt nolice of same, and in doing so, showld give bofh the old ant nezo address.

ONTARIO ASSOCIATION OF ARCHITECTS.

OFFICERS FOR 1891.

OFFICERS FOR 1891.

COUNCIL:
A. T. Taylor, F.R.I.B.A., R.C.A. - . Montreal.
A. C. Hutchison, R.C.A. \quad Montreal.

M. Perrault

A. F. Dunior, R.C.A. - - Montreal.
alih. Raza Montrenl.
J. F. Penchy

IT is annoumced that the Province of British Columbia will be represented at the World's Fair by a building composed of every variety of wood that grows in her forests, adorned with ferns and mosses grown within her boundaries.

The architect and decorator desirous of learning how to secure the most pleasing color effects, might profitably have spent a few of the latter days of October in studying autumn foilage in its unusually varierl and brilliant aspects.

We have been informed that previous to the publication of the October number of the ARCHITECT AND BUILDER, a misapprehension existed in the minds of many as to who was the author of the design of St. Paul's Episcopal Church, Toronto. We are pleased to know that unwittinyly we were the means of removing this misconception, and of placing the credit of the design where it properly belongs.

We would like to point out to the late secretary of the Toronto Architectural Sketch Club, who is now a resident of the "Ambitious City," a worthy object of ambition. It is that he seek to establish among the architectural students of Hamilton an organization similar to those now existing in Toronto and Montreal. There should be sufficient material available for the purpose, and Mr. Bond's enthusiasm and ability might be depended on to do the rest.

MUCH loss is said to have been caused the builders of Winnipeg by a recent strike of union plumbers. A local paper states that the employers signed an agreement to pay journeymen $\$ 4$ per day after the ist of August last, but when the time came, they claimed to be unable to carry out their promise on account of one shop in the city employing unqualified workmen at low wages. If this is the only reason the employers have to offer for the non-fulfilment of their written agreement, we unhesitatingly sity that it is not it justifiable one.

THE Inspector of Buildings and the chief of the fire brigade bave recently been encaged in making an examination of the public buildings of Toronto, with a view to determining whether sufficient means of exit exist. Their report has not yet been published, but from privite sources it is learned that some thildings in which large congregations of visitors daily assemble, have been found to be dangerous in this particular. The last inspection of this kind took place in 1879 . The public safety demands that for the future such inspection should be conducted at more frequent intervals.

Righteous indignation has been aroused at the action of the Consumers' Gas Co. in tearing up the asphalt pavement recently constructed on Bay St., Toronto, for the purpose of laying mains on the intersecting street. Citizens were under the impression that no interference with permanent pavements of this character would be allowed, otherwise they would not have consented to be heavily taxed for the improvement. The large sums spent of late on asphalt pavements in Montreal and Toronto will prove to bave been wasted if corporations of any kind are allowed to break up the roadway. Heavy penalties should follow any future attempts in this direction.
A GOOD report reaches us from Hamilton concerning the plumbers of that city, to the effect that their work is of a uniformly higher grade than can be found in most of the cities on this continent. However this may be, some work which we recently had the opportunity to examine in houses of moderate cost in that city, is certainly very creditable, while the materials and fittings used are of a substantial character and superior finish. There can be no doubt about the wisdom of sacrificing, if need be, exterior ornamentation for the purpose of making a house as perfect as possible in its sanitary appointments. We are informed that Hamilton has become too warm a place for the "skin plumber" to make a living in; and that in consequence the architects feel that they can entrust their work to any of the existing firms with confidence that it will be carried out as satisfactorily by one as by another. This must be admitted to be a gratifying condition of affairs.

In the present number of the Canadian Architect and BUILIDER is commenced the publication of a series of short bingraphical sketches of the City Engineers of the most imporlant Cinadian cities. The problems which the City Engincer of modern times is called upon to solve, demand that he should represent the highest ability in his profession. It is expected that the majority of our readers will be interested in knowing something about the gentlemen who occupy this important position, and the history of their successful efforts should prove an incentive to young men entering upon their career.

Scarcely a week passes durmg the bulding season that is not marked by serious injury or loss of life by reason of defective scaffolds. It is unfortunately true that the responsibility for most of these accidents rests with the workmen themselves rather than with their employers, and for this very reason it is impossible to guard against their recurrence. The workmen themselves construct the scaffolds, and should see that in point of material and construction they possess the necessary margin of safety. Reckless overloading of scaffolds has probably led to most of the accidents. Workmen are justified in refusing to venture upon a scaffold which they have reason to fear is too weak to support the strain to be put upon it. Difficulty is often experienced, however, in inducing them to exercise necessary caution in this direction.

AN article headed "Who is the Rumper and Where does Rumping Start?" appears in the Monthly Circular of the Stone Cutters' Association of North America, over the name of Albert llhillips, of Toronto. Mr. Phillips places the man who does more work than the average man, in a worse category than the mo called "scab," "copperhead," and "snake-in-the-grass" who works for under pay. He says: "How often do we hear the remark made ' bill spoiled this yard; it used to be a good, easy shop before be came.'" To prevent other workmen from followins Bill's bad example of working too fast, Mr. Pliillips advises : "Keep your place, and consider it two bats behind." From the above, may the inference not fairly be drawn that the teaching of unionism is that it is the duty of its members to carefully guard agitinst outstripping the efforts of the averuge workman, while at the same time endeavoring on all occasions to secure an advance in wages. This is, we take it, the meaning of "keeping two bats behind," and the reference to the "good, easy shop." It is another method of enforcing the unrensonable demand that all workmen must be paid the same wages, irrespective of their carning capacity. The workman is held to be worthy of being despised who exhibits any ambition to excel. The iden is one which, if attempted to be carried out in all branches of human industry, would speedily put a stop to the world's progress.

Tite Toronto Architectural Sketch Clul may properly be said to have been a successful organization from the outset, nevertheless its promoters think that in some respects it is open to improvement, and they are laboring earnestly to bring it up to a higher standard of perfection and of usefulness. New and more commodious quarters liave been procured, and the work for the coming winter has been entered upon in a spirit which bids faur $t 0$ result most satisfactorily. Prof. Wriglt, of the School of Architecture, has very kiudly offered to conduct the classes in mathematics, and Mr. John Kiely, the classes in modelling. These classes will meet alternately on Tuesday and Thursday evenings of each week, and are certain to be the means of afforcling nuch valuable instruction in these important branches of knowledge. The officers have also been successful in arranging a series of lectures by gentlemen of recognized experrence in the building trades on a variety of subjects pertaining to building construction. Thus means have been provided for students to make rapid advancement in the knowledge required in the practice of their profession. It remains for them to properly improve the opportunities thus placed within their reach. It is gratiffing to learn that the Club starts the season with a largely incrensed membership. The officers elect may, we think, be relied upon to put forth every effort to make the future of the Club increasingly prosperous, and if properly supported by the members, they will no doubl succeed.

A CERTAIN class of real estate owners appear to be always on the look-out to take advantage of municipal authorities. If a public improvement is proposed, and any portion ol their property is required for the purpose, they immediately piace an exorbitant price upon it. The slightest pretext is made use of to prefer claims for dạmages. The action of such persons has frequently been the means of blocking public improvernents, and in some cases the municipality, and indirectly the citizens, has thereby suffered great inconvenience and loss. In view of this, we note with satisfaction an instance which occurred in Toronto recently, wherein the tables were turned and the biter bitten. A certain speculative land owner some monthis ago brouglt suit against the city, claiming heavy damages on account of the construction of a sewer through his property, and to the public surprise, was awarded the sum of $\$ 35,000$. The city authorities thought their best course would be to purchase the land outright and convert it into a public park. The owner was asked to state a price, which lie did, but the amount, $\$ 74,000$, was considered so ex-
orbitant that the idea of purchase was abandoned. A week or two ago, the owner was surprised to learn that the assessment on this land had been appealed against by the City Solicitor_on the ground of undervaluation. The City Solicitor insists that the property shall be assessed at the valuation put upon it by the owner, which would seem to be a reasonable enough proposition, although the latter indignantly refuses to view it in this light, which may be taken as proof of the old saying, that "circumstances alter cases."

THE builders and contractors of the Australasian colonies have determined to aclopt the liritish system of basing their tenders upon Bills of Quantities prepared by competent quantity surveyors. The tendency in this direction is becoming very marked in the United States also. In Canada the uniform basis of tendering is perhaps as urgently required as in any other part of the world, but as yet no steps have bieen taken to obtain it. The Australian Builder describes the English method as follows :-"In London the Quantities are usually taken out by a quantity surveyor (or firm) appointed by the architect, and responsible for the accuracy of such Quantities. In large and important jobs two independent surveyors usually ite appointed and work together, sharing the commission between them, by which the risk of error is reduced to a minimum. The Quantities are then lithographed aloms with the Specification, before tenders are called for. The lithographed 13ills of Quantities and Specification are supplied together to tenderers, and the former bear, after the first Total, on the Summary of Trades sheet, the words, "Surveyors' Commission on the above (so much) per cent.", left blank. This, every tenderer fills in, in order to arrive at the gross amount of his legitimate estimnte (which may, or may not, form the amount of his actual tender), and the successful tenderer pays the surveyor out of the first cash instalment be receives upon his contract. The tenderer, as a rule knows nothing as to who takes out the Quantities, until they are taken out and lithographed, and cenders are called for. We know of no practice or proposal more thorouglily equitable and satisfactory to all parties than this. ${ }^{10}$

AN enterprising firm of architects in Montreal have opened a school for architectural students. We are not avare what subiects are taught that would assist students to gain a knowledge of architecture, but are informed that nothing in the shape of practical teaching relating to building construction is imparted. At a inecting of nembers and student associates of the Province of Quebec Association of Architects recently held for the purpose of listening to a paper on "Arclitectural Training" by Mr. Hutchison, a representative of this firm appeared and proceeded to advertise the merits of his scloool. In view of the fact that the Quebec Association had appointed a committee of its members to report on the institution of classes and lectures for the instruction of students who should become members of the Association, this action must be regarded as a somewhat presumptious one. It is surprising that the Association should have permitted it. It is still more surprising that some of the menbers should actually have opposed the proposition for the formation of classes and deliverance of lectures under the auspices of the Association, notwithstanding other nembers had volunteered to place their time and talent at the disposal of the students for this purpose. They surely must have overlooked the fact that they were aiming a serious blow at the prosperity of the Association, while working into the hands of those interested in preventing instruction being afforded the students by the Association. We are informed that the private school referred to, gives instruction in the French language only, and thus, no matter what may be its advantages to the French student, it is of no service to many students who are unfamiliar therewith. We were of the opinion that the education of students by means of classes, lectures, \&c., was one of the most important of the objects which the Association was designed to accomplish. The fact ought at least to be apparent that the Association cannot hope to build up a successful future if it disregards the interests of the students. If the idea of affording instruction to students is abandoned, one of the strongest inducements which could be held out to them to become members will have been taken away. We hope that those who have at heart the present and tuture welfare of the Association will see the wisdom and necessity of making it a source of benefit to the rising generation of architects, and thereby rallying them to its support.

OUR ILLUSTRATIONS.

Carved wood capitals, st. alban's cathedral, toronto.EXECUTED BY THOS. MOWBRAY, TORONTO-R. C. WINDEYER \& SON, ARCHITECTS, TORONTO.
PROPOSED NEW DRILL HALL, TORONTO,-THOS. FUILER, DEPT. OF PUBLIC WORKS, OTTAWA, ARCHITECT.
"ALPHONSO BLOCK," VICTORIA ST., TORONTO.-DICK \& WICKSON, ARCHITECTS.

The Rathbun Co., of Deseronto. Ont., rccently slipped a carlond of doors and window sashes to South Arrien.

Mr. C. S. Nellis, from the headquarters of the Adamant Munufacturing interesis of the Toronto Branch of the business.

HOW T0 ESTIMATE.

By WM. H. Hongson, Akciltrect.

IN pursuance of the announcernent made to contractors in the Canadian Architect and Builder for October, I present to the reader the first of a series of articles designed to instruct the contractor in the method of preparing estimates on an accurate basis. The quantities herewith fumished have been taken with the greatest care and accuracy from the accompanying design and specification for a residence, and consequently are reliable. They give the actual materials in the building when completed, and the method by which the quantities have been arrived at. No allowance has been made for what is termed "waste"; this has to be considered by the contractor in his prieing of the several works. No attempt las been made to affix prices, as these vary so widely in different localitics. The contractor should be familiar with prices in his own locality. The adoption of this system would place all contractors on equal footing so far as the preparation of their tenders is concerned, and would do away with all guess-work:

SPLCIFICATION

bxcavator, mason and bricklayig.

Excavate the ground as required for the crllars, and foundation of walls, chimney breasts, g'azed pipe drains, ate. All vegetable mould to be put to one side for future use as directed. Fill in and ram and use the supertluous earth in terracing and leveling the lot. or cart away, as may bo ditected. The excavation to be 9 in . larger on all sides than the huilding, and no filling to be done till the stone walls are plastered outside and inspected. The drains marked G. D. on plans to be executed in with the best vitrified salt glazed pipe (Scotch or American), lajd to proper fill is may be directed, jointed in cement; with all necessary bunds, junctions and traps complete. Connect with sewer in street. contractor paying all fees. Put M. Guire's cleaning out trap as shown, pipe from shme to be carried to within $18^{\prime \prime}$ of surface and covered with stone faig. (A l sewage drains inside of building will be of iron as per plombers specifications,) Lay $3^{\prime \prime}$ common tile weeping drains as shown properly grad-d and connected to main drains broad, flat stone $6^{\prime \prime}$ thick, projecting $4^{\prime \prime}$ on ench side. of wall above, and no stone to be less than half the totat wielth of footing. The walls to be carried up to the height shown in good rubble musonry, composed of lake or other approved stone of the best quality. laid in the lubst prepared mortar, well built and bonded logether, and having the joints on each side neatly struck with the trowel; the poit:on showing above ground and where lined is to be of brown Credit Valley courses in stone, neatly tape pointed in brown mortar, and having one border to at least every superficial yard of wall. The jambs to be tooth chiselled and to show a narrow clraft on outer face. Plaster or parge outsidf of foundation walls from footings to finished ground line with $1 / 3$ Portland centent mortar. None but hard bricks will be allowed on the premises. Brick walls in basement to be bult of hard clinker bricks, with at neat struck joint. Build in all baick walls in basement a double course of roofing slate on top of footings $1^{\prime \prime}$ wider than wall o prevent rising of damp. Pier carrying front stups to be of hard clinker bricks on atone footings. The walls from undersicie of plinth to be earried up in brickwork of best hard, well-burned bricks laid in best prepared mortar. Projecting bays to be tied to main walls at every gith course with stout hoop iron bond carried well into walls. Provide four (t) wrought iron straps $2^{\prime \prime} \times 4^{\prime \prime}$ to be forked and buitt into brickwork, and well spiked to studding of front where prepared for tiles. The wails to be faced with the very best selected Carlton or other equally approved red bricks, selected of dark color, true and straight, laid in English bond, and finished carefully with a bead tool joint in moriar colored with Cabot's or other equally approved dark brown mortar stain ; breiks to be well wetted. On comple tion of gutters, thoronvhly clean down with acid. Inside walls of back porch to be faced with white bricks finished with neat bead tool joint Turn relicving arches of at least two rings over all openings of doors vindows, \&e., and nent cut and pointed arches at openings as shown Build in strips for battens at every a feet in height in all outer walls and wherever else dorected-strips to be provided by the carpenter. Beam fill on all walls to underside of floor and roof boarding, making all spaces thoroughly tight and weather proof. Turn proper arches over fire place openings on $21 /{ }^{\prime \prime} x^{t / 2}$ wrot iron chamber bar, all flues to briformed circula $9^{\prime \prime}$ diameter, earerully built round moulds 3 f . long, which are to the drawn up a few inches at a time as the work proceeds. Provide and build in proper galvanized iron collats to one flue in each room fexcept those having fire places). Flues not connected with fireplaces to have proper iron soo doors im iron frames. Form ash dumps fron ground floor fireplaces as shown, having iron soot doors set in cast iron frames. Leave g"xiz" open ing into vent fiuc near ceiling of kitchen, and 7 diameter into same flue near ceiling of bath room Chimneys to be carried up in brickwork of aniform color with projecting courses for caps. Bed in mortar all bond imbers, plates, ctc., and buld in all lintels, wood bricks, frames, cut stone and otber work required to be set in masonty or brickwork. Suppert fool of iron soil pipes with $9^{\prime \prime} \times g^{\prime \prime}$ brick pier, three courscs high. Form substratum. foncrete foor with a 6° bayer of clean broken stone chips, pounded fla and level. The entire cellar floor to be laid in concrete $3^{\prime \prime}$ thick, of Porthand cement, sharp sund and coarse gravel in proper proportion, and all but hundry and back poreh floated to a smooth surfice wilh a conting of Portland cement nnd sand $1 / 2^{\prime \prime}$ thick. Iaundry nond porch joists will be bedded in conerete. All hearths to linve $4 / 5$ brick 1 riminer arelies and to be of con. crete as specified for cellar noors. Finished hearths will be of tile provided y the proprietor. Brickwork 10 be built from oulside senffolding which is o be left for the use of other tades till directed to be removed by the archiects, special enre being taken to prevent wrills being splashed from senffold ig. The labels and strings where shown to be one course of plinth brick et thus: (A).

Provide and set sills of Credit Valley stone to base. ment windows, to be $6^{\prime \prime} \times 9^{\prime \prime}$ and weathered ; fuel doors will huve wood sills. The sills to all other windows as tinted brown to be executed in the best quality of Portage Entry stome, or other approved brown stone. thronted, chiselled or rock faced, weathered and sented; rear sills mny be of Ohio stonc. Heads of fuel doors to be of brown stone $9^{\prime \prime}$ tone. $11 / 5$ bricks thick, cross tooth chisclled. Corbels at front pilasters to be of simitar stone similarly finished Crefully set in fine mortar and pro be of sith other trades in the expeution and for the perfect comptetion of the work:

CARIENTER AND jOINER.
The lumber for the carpenirca' work to be of erod description of white
pine thorougbly scasoned, free from sap, shakes, loose or large knots, or pine thorougbly scasoned, free from sap, shakes, loose or large knois, or
other imperfections, and to bold the full sizes shown or specified, when fixed in the building ; good sound.seasoned hemlock natay be used for joists find rafters. The joiner's work. (unless otherwise specified) to be of best descripraters. The joiners work. (unicss otherwise speeined) to be of iest descrip-
tion of white pine, clear anid thoroughly seasoned. Jnside work on ground tion of white pine, clear and thoroughly seasoned. Inside work on ground
and first floor will be varnished. Provide and fix all necessary centreings and turning pieces to openings of doois and where required. Provide and fix lintels to all openings of doors and windows, cambered at top and not less than $6^{\prime \prime}$ in dupth at centre, and resting $6^{\prime \prime}$ on walls on each sidc. Pro. vide straps $2^{\prime \prime} \times{ }^{\prime \prime}$ to be built into walls under bearings of joisis and else. vide straps 2. " x_{3} " to be built into walls under bearings of joisis and elsewhere as requiren for ixing skirings, inminings of doors, windows, ctc, and batiens. Bitten all outer walls, (including attic where necessary) and else. where as required with $2^{\prime \prime} x y^{\prime \prime}$ battens, at $16^{\prime \prime}$ centres-battens not to be placed till walls ate parged. Porches will not be plasterch. Provide proper grounds for fixing trininings, etc. Cellar floors of laundry and porch to have $3^{\prime \prime} \times 4^{\prime \prime}$ cedar joists bedded in concrete. Ground, first and attic floor oists to be $10^{\prime \prime} \times 2^{4}$ at $16^{\prime \prime}$ centre; properly trimmed at fire places, wells of stairs, etc., trimmers to be $4^{\prime \prime}$ thick or double $2^{\prime \prime}$ and framed with double tenons, Put a tier of $2^{\prime \prime \prime} \times 2^{\prime \prime}$ herring bone strutting to each bearing of joists on all floors. Prepire floors for pitgeing at gables where projecting beyond wall line with one inch boarding, Sloping roofs; $6^{\prime \prime} \times 2^{\prime \prime}$ rafters, at 16 centres, and valleys 8 in. $x 3$ in. plates 9 in. $x 3$ in., collars 6 h . स2 in. at 6 . centres. be dressed where visible, Sloping rools to be laid with iressed 3/ in, matched boarding in widths not exceeding 7 in . , free from loose knots, shakes, or sap, well and 3 in. rounded roll to ridges. Put dressed facia and 1 in. beaded soffit to enves, and bed moulding. (B) Ginbles to be 4 im . of stuiding at 18 in . centres sheeted both sides with narrow matched stuff and lined on inside bufore battening with a double thickmess of sheathing paper well tapped ; batten as specified for other walls. shect soffits with narrow, double beaded stuft matehed on double sheathing paper made close and tight at walls, etc., and (C) form eaves and bed mouldings. as shown. Benms and corlels at side gable to be dressed and moulded as shown. Front gables 10 have dentil moulded large boards, as shown, (D), secured in strongest munner. Roof of rear poreh to have

dressed rafters, and $1 / 6 \mathrm{in}$. matehed and beaded Aressed roof boarding. Partitions to the heads, sills and braces 4 in,$x 3$ in.; door studs 4 in. $x 4$ in., or double $4 \mathrm{in}, x 2 \mathrm{in}$.; conmon studs $4 \mathrm{in} . \times 2 \mathrm{in}$., 16 in , centres, all to be properly framed and cross braced, those carrying joists or rafters to have heads 3 in. $x+$ in., and upper studs to be carrued down to them and to be
 well biaced. Studs to be placed onflat in confmed places. The ground and firs
floors to be laid with foors to be laid with on in. dressed the best quality, in boards not exceeding the best quality, in boards not excecding
$31 / 2$ in. in width, blind nailed to joists, $3 / 2 \mathrm{in}$ in width, blind nailed to joists;
and properly cleaned off on completion ; altic and basement, (where called for) 10 be laid with 76 in. whiched thooring of good quality, in boards not exceeding 5 in. in width, floors in attic to extend to
wall line. Ground and. first floors to b Inid on thicknessed in. boarding laid diagonally with a double thickness of lay any floors till all gas or olticr pipes are put in, and finished floors not to be laid till completion of plastering. Put mitred margins to hearths. Main stairs to be built on $11 / 4 \mathrm{in}$. moulded strings, 13 in . wall strings to have $1 \$ \mathrm{in}$. Ireads, rounded and returned nosings, civetto and fillet and cut brackets, $/ 8 \mathrm{in}$. risers, two 7 in . panelled and moulded newelsEnt foot, and the rest 5 in. turned and moulded cherry mewels, 3 in. $x 3$ in. moulded cherry bandrail with 2 in. roll, and 2 in. turned pine balusters. Stairs to be buil on proper carriages, well bracketed with I in. brackets mailed to each carriage under each step. Spandril at side of stair and forming enclosure o coat closet of 1% in. framed and moulded panelling, all according to drawings: panclled door to closet under. End of stair facing entrance to bave balustrade as shown. (F). Back stairs to have 3 in, rounded hard wood inil, 4 in . Inrdwood newels, and square balusters, to have 136 in . reads, rounded and returned nosings and scotia 3 in . risers, put togethe in the best manner, with 14 in . wall strings. Stairs to cellar to have close strings, 2 in . treads. 3 in. rounded tail, $4 \mathrm{in}, \mathrm{x} 4 \mathrm{in}$. clammered newels. The kitchen, back stairs and pantries to be hected with $\%$ in. matched and beaded sheeting 3 ft . high, and bath roum 5 n . high, biind nailed to proper grounds, and finished with moulded capping; boards not to excced 4 in . in width, except in bath room, where they will not execed $25 / 4$ and to be double beaded or moulded, Drawing and dining coons, hall, vestifhule and staircase to have 10 in. double facia moulded skirtngs, and the ooms and hall on first loor 9 in . single facia $3 /$ ith. thick, all properly scribed to floors and nailed to proper grounds. Nail fillet to floor at at revisters and cut for plumbers, and at registers and cut for plumbers, and
hot nir pipes. Put $7 / 1$ in. staff beads 10 all projecting angles inkitchen and attic,
 Bracket down for plaster nrehes on ground fioor and first floor, as sliown by dotted lines, bmeket down for cove in drawint room. The cellnr windows (except where otherwise specified) to bave $6 \mathrm{in}, \mathrm{x} 4 \mathrm{in}$. solit rebated and chamfered frames, $11 / 4 \mathrm{in}$. sash
hung at top with 3 in. bults, and to be furnished with iron water-bars, 4 in. barrel boins ap with stout wills, to be i ${ }^{2}$. panelled and prepared with stops for plazing $2 \mathrm{in.cak}$ sils, to be 13, in. panelled and prepared with stops for glazing,
hung at top and furnished with hooks and 6 in. holts. The whole of the hung at top and furnished with hooks and 6 in. bolts. The whole of the windows above cellar (except where otherwise specificd) to have proper boxed frames, 2 in . double sunk silis, oulside thangings stiles, ${ }^{13 / 2}$ in. Front dmwing room window to have boxed head, fixed fanliglta, moulded rantom as shown. Four (4) windows on fiont elevalion to have 2* in. sashes with stops in preparation for plate glass. Windows to be fastened with approvel fasteniers of the value of $\$ 4.50$ per doz. and furnished with best bronze window lifis, Bed room windovs, first floor, front elevation. o have simple moulded pilasters, sills, heards and transoms as shown, lanlights to be fixed and prepared with siops for lead glazing. Short window al first main stair landing, and that in linen closet, to have solid rebated frames, with slops for lend work. Windows in coat closet under main stairs, and side windows in autic to have cnsement sash with drip and water bar, properly hinged, to have knobs, and secured with brass bolts. Dormers to be according to details and to have casement sash with drip and water bar, 10 be property bung and fastened with spring catches and brass olt. Fit to four windows in west clevation 1% in outside venctians properly hung and fastened. Prepare four windows in front elcvition for Willer sliding blinds with all necessary stops, fillets, blocks, etc, complete. Tbat on ground floor will be made 10 sidce in pockets, behin wind.w berck and moulded frame, 2 in. staff bead, and 2 in. rounded oak sill, door to be $2 \% \mathrm{in}$. oak veneered on outside, panelled and moulded and prepared with mouldings above for glazing, to be hung with three 5 in. loose butt lronzu hinges, and furnished with hall door lock of the value or $\$ 4$, and having 2% in. bronze knobs. Vestibule doors to be $21 / \mathrm{in}$. panelled and moulded below, and prepared with mouldings above for glass, doors hung in rebated and moulded jambs with three pairs of 4 in. loose butt bronze hingcs, and furnisbed with 4 in. American rebate mortice locks. brass bolts. keys. bronze knobs and furniture, g in. bronze fush bolts. BAnck porch door 10 be $53 / 2$ panelled and bead flush, hung on 6 in. $x 3$ in. retated and cbanifered jambs, having 2 io. ank sill, to be properly hung and furnistbed with Carpenters' rim lock, white furniture and 8 in . burrel boles, hinged and bolted fanlight. Side porch door io be similiar, but to hive hall door lock of the value of $\$ 2$, porcelain and platert firniture. The doors to the two principal floors to be 1% panclied and moulded and hung to 1% in. cbated jambs. Doors to principal sooms, ground floor, to be hung and furnished as specified for vestibule doors, those to first floor to be hung with in. loose butt Berlin bronze hinges nind furnished with 4 in. American mortise locks, brass bolts and keys, and porcelain and plated forniture Shing doors to have proper overiend rack, nind to be furnished with Clarke's patent hangers, and with sliding door look and fush handles The other noors thronghout (uniess othervise specificd) 10 be 173 in panelled and with America morlise locks bross bolls and poorechin and lated furniture two doors in attic 10 live pivoted fanlights. Closet doors plaice furniture, two doors in attic to lave pivoter fanlights. Closet doors
 niekle plated, Chieago spring hinges, and fnrnished with porcelain finger plates, both sides, and bras* bolts. Opening marked "curtains" will not have doors but to be prepared for them, with rebated jambs, casings, ete. Doors in basement to be $1 \% / \mathrm{in}$. batten in $1 \% / \mathrm{in}$. jamms. baving stops planted on, hung with 4 in. butts, andl furnished with rim locks and mineral furniture. Architraves on ground floor main building to be 5% in. double laced with band moulding. Architraves on first foor to ve stmilar $41 / 2 \mathrm{in}$. wide. Architraves in small rooms, passages, kitchen, attic, etc., to be 4 in moulded with plain chamfered blocks. Put at/ in. picture mauld at spring of cove in drawing room. Windows, except these to two principal rooms ground floor, to have it/ in. moulded window boards, bed nooulds and moukded aprons. Windows of drawing and diaing rooms to have panelled and moulded window backs. Front steps to have turned newats, moulder rail and balustrade ns shown, trads to be $13 / \mathrm{in}$. and slatted. Kitchen pamry to be fitted up with six tiers of a in. Uressed and beaded shelving supported on proper bearings. Fit up dressers in kitchen and service pantry, having 1% in. panclied and moulded doors, properly lhing and fastened, 3 in. beaded shelving-lower portion to be wiker and to bave drawers and cupboards Delow, having properly hinged and Eastened doors, all according to detall $;$ top of whider portion of dresser will be flush with to or sink, abed shetves as shown. 5 in. bearded mil and stiong broszels to have beaded shetves as shown. 5 in . bended mil and strong bronzed metal hooks, 9 in. apart. Provide 30 fect or beaded rail with hooks 9 in apart. io be paced where directed, also ioo feet of shelving on vearers, al in addition 10 that specificd for closels. Hanging shelf in larder to be of Fit up two tiers of $1 \$ / 2 \mathrm{in}$. shelving at cach end of larder on proper supports. Finen closet to have wide shelves six in height, at ends, and enclose those at one end with hinged cedar fronts, fastened with spring eatches. The steps in back porch to be of pine $13 / 4 \mathrm{in}$. treads, I in. risers, 2 in. strings rounded rail, bar balusters and chamlered newels. Fit upstands for kitchen and cellar sinks with hardwood capping. Do all necessiry attendance and fitting for bath, basin and water closets (not including plumbers' work). Case plumbers work where required with narrow sheeting hinged and bolted at front. The capping of bath and lids and seats of w. c.'s to be of cherry, the latter supported on moulded brackets ; w. e's to have double noom: panelled, hinged and bolted doors to frons of basin. Provide for room ; panelled, hinged and bolted doors to front of basin. Provide all neecessnry boxing and beaded runs to pipes; do nny necessary cutting tor and hung and furnished os other basement doors. Door to be kept 6 in and hung and furnished as orher basement doors. Door to be kept 6 in yord at doorway as shown, on 4 in. $\times 4 \mathrm{in}$, cedar stecpers. Form slatied walks as shown with $2 \mathrm{in} . \times 2 \mathrm{~K}_{1} \mathrm{in}$. dressed sturf, dressed three sides, on 4 in. $x 3$ in. cedar sleepers; put rounded curb at edges of that 10 mnin entrance. Put slde gate as shown, formed with narrow pickets, and sirong framing, bung with strowg T binges and furnished with wrought iron thumb latch, bolt and padlock, dressed and rounded cedar posis, fooled, and having chamfered head piece. Erect short piece of picket fence 6 feet high on south side to harmonize with gate, also a short picee on north side of porch. Fuel bins to be constructed of 2 in . horizontal planking, strongly nalled to 4 in. $x 4$ in. posts extending from floor to ceiling: the front to be made to slide in grooves for removal if necessary. Construct cold and fresh air ducts of dry in. matched stuff with hinged valve, which will close inle from floor when opening that from outside. Carpenter to attend on other trades in the execution and for the perfect completion of the work.

slater.

Line valleys with galvanized iron $\mathbf{2 5} \mathbf{i n}$, wide, merensing to 18 in . nca foot: Joints 10 be soldered where in danger of snow backing up water, nnd
to have 4 in. lap in other places. Cover ridges, etc., with No. 28 iron.

Step and cloak flash ngainst all walls, chimneys and checks and apron of dormer. Put strip of galvanized iron 5 in. wide. 3 int. on roof and 2 in .
drip over back of gutter, well secured.
Cover fat of cornice over threc windows on first floor with ralvanized iron lapped, tacked and soldered wind turned up 6 in . behind tifing. Cover the sloping roor, including back and curned up 6 in. behind uing.t. Cover the sloping roof, including back porch and ehecks of dormer, with best quality or canadian roofing sinte courses at eaves. Slates to be laid on heavy feit provided and laid by stater. All exposed portions of dormer to be carcfully covered with selt well lapped. Cover cast and south gables as shown with Dancy's, Ontario or other equally dpproved tiles, of good rich, dark red color, well secured to walls, and linid on heavy sett, well tapped and tacked.

TJNSMHTH.

Put 4 in. eave troughs of gnivanized iron to caves of back porch, and 5 in. do. 10 eaves of house of No. 28 gunge iron. Gutters to be stiffened have backs carried up to slotios. have backs carried up to sinces. Put three (3) shacks of 4 in. octagon down
pipes to house and one 3 in. to back porch, all to be of the very best iron pipes to house und olle 3 in. to back porch, all to be of the very best iron
No. 28 giagc, approved brand. properly connecled with guiters, secured to walls with iron holdfasts, aud extemding to surface of ground and there connected with drinin pipes with proper caps to pipes. Carry 3 in. down pipes from gutters on south gable to main eaves.
plumber and gas fitter.
Lay on through house best tested iron piping, leginning with $工 3 / 4 \mathrm{in}$. at meter, and connected with various points marked on plans with letters for pendents and B or brackets, nipples left capped ready for fixtures.
Pipes to diminish according to position to I in., $i s$ in. and $1 / 2 \mathrm{in}$, all to be Pipes to diminish according to position to 1 in., , in. and a in., all to be thoroughly tested. Drop inghts to be taken out or the side on supplies and from pipes overhead. Lay on separate supply from separate meter, to tivo fire-places on ground floor and to gas-stove in kitchen, beginning with $\geqslant 4$ in.
 and diminishing to
water to in.
inks. bath. basin and water closets with
y water to sinks, bath, trasin and water closets with
Service from sitrect line to line of branches to fixtures to be stin. 8 lbs. lead. Provide hose conncetion at window of furnace room, with key cock, and provide stop and waste cock near fioor. Put 34 in. brass stop and waste cuck inmedinely inside wall of house, aed all pipes to be graded to this point. Fit up in bath room ka st No. 19 guage, tinned and planistred coppoer wath 6 fl . long, with $1 / 2$ in. 6 lbs. lesid, hot and cold supply, and blest heavy plated Foller double bath cocks, plated rose and $1 / 2$ in. overflow,
i/f in, waste, Dubois tmp, and brass trup serew, and plated plug and choin. $11 /$ in, waste, Dubois imp, and brass inip screw, and plated plug and chain. Wash basin of best marbled carthenware, oval, and having Mouts stunding waste, $11 /$ in. counter sunk marble top, 1 in. back and end, 12 in, high, heavy plated Fuller cocks, Y/ in. hot and cold lead supply and $11 / 2$ in. kead waste, Dubois irap and brass lap screct. Dasin to be allached to marble top by means of brass champs. Provide and fit up on first foor an all porwith las ling inat havg brackels valves, supply ovarfow, inill cock with lead lined tank, having brackecs, valves, supply, overhow, balili cock Sc., complete. Provide porcelain drip tray. Soil pipe to be 4 in, of cast iron carricd front drain 2 fect beyond wall to 4 cet above roof at point of exit and to down pipes nt surface of ground, to be coated both sides with pipes and rephace earth properly leveled, and cut nway surplus if any, Pipe to be of weiglt called for in city by-hw. Provide all mecessary traps, and hand-holes, with brass cleaning screws as shown. Foot of soil pipe will be supported on brick pier built by mason. Carry 2 in. cast iron waste from kitchen siuk along eciling of cellar to main soll pipe, supporied on wrot iron langers. Carry a 3 in. cast iron vent pipe from basement eloset connecting to soil pipe nbove highest fixture (in Luah room), and leave connections for vents from the various trips as required. The 4 in. soil pipe to be enlarged to 6 in , nbove roof line, and to have opened moulhed top. Carefully liash on 10 roof with 16 oz. copper, into hul) which must be kept clear of roor. W. e. in basement to be a flusthing rim, cane ware wash out with 4 in, crap, syphon, cistern, etc., complete. Ventilate from seat to
special fue in hundry with 3 in. gnlvanized iron pipe. Put a 7 im . diameter speciat fluc in hundry with 3 in . gnivanized iron pipe. Put $7_{7} \mathrm{im}$. diametcr enameted valve register in vent nive near ceiling of bathroom. Put a 9 in. $x 12$ in. enameled valve receister near ceiling of kitchen into vent fluc. Ventilate dinin by menns of a 4 in. cost iron pipe connected to drin and earried $21 /$ feet above finished ground line with return bend top. Put under buth and wast liasin on firss floor proper safes of 3 lbs. lend with x in. waste. proper safes under all pipes croscing ceilings. soct under w sme. chary proper safes under all pipes crossing ceilings. Safe under w.c. on first fioor to be of marble, 13 jn . thick and counter sunk; put brass strainer on ottlet of waste and connect 10 other safe wastes. 11 up in kitchen best galvanized iron sink 2 ft .6 in, long, with brackets and enameled back nidd
having If in. heavy lead woste with Dubois tmp, and brass trap screws and horiant cold supply of 3 in. lead pipe with brass Fuller cocks. Fit up in kitchen at back of stove on proper stand a henvy galvanized iron round topped cylinder of 40 gallons capacity, with $\% / \%$ in. heavy lead hot and cold topped cylinder of 40 gallons capacily, with sin in, heavy lead hot and cold
supply, $1 / 4$ in. brass connections will stove in kitelen with shut-off cock connect to stove with y in. fron pipe. Cylinder to have ξ_{6} in. sediment pipe and cock at bottom ; also place,\not, in. stop coek on supply pipe.
Boiler to be supplied from pressure ; provide combiued safo and vacuum valve. Fit up small cests iron sink in cellar, having x, in. lead waste. trapped and supplied as other sink. Overflow pipe from basin and batt to be branchend into dip of traps from same. Make all necessary Y branclies
for work as required, all waste pipes to have vents of r in. and 2 in. lead for work as required, all waste pipes to have vents of 11 in. nnd 2 in. lead pipe, carried into 3 im . pipe befors mentioned. Vents for w, e.'s to be 3 in.
dinmeter. Provido and fix from hall near head of main stairs to kitchen n dinmeter. Provide and fix from hall near head or main stairs to kitchecn n^{n}. proper tin speiking tube, with siver phated mouth pieces, etc, comptete.
All to be teft comptete and perfect in cuery particular. All work to be in All to be left comptetc and per
conformily with city by-laws.

plasterer.

Inner face of all oulside wills, including nulice, to be well rendered with best hair mortar after being built and before battening is executed, and make thoroughly tight also between anl joists, etc, entering therein, also about all door and window framess Floors at gable in attic to be deafened with mortar riz in. thiok. Lath the partitions, eelijings, soffits of stnirs and other places prepared for hathing, with the best sawn pine laths, in in. wide for ceilings and $11 / 3$ in. for walls, $5-16$ in, apart, ends butted and joints broken everv 18 in. Outer walls will be battened for lathing. Porch will not be plastered. Plastering to be of the best two coat work hard white finish. The first coat of plaster in alli eases to be eontinued behind skirtings. trimmings; etc. Form slichily rounded corners to all projecting angles to principall rooms and ball on ground and frst floors. Simple cove in drawing room springing from wooden pieture mould. Plaster cornice in dining room to be 24 in . yirth, in hall 20 in , and in vestibule is is. Put at it, moulded centres to dining and ddawing rooms, andl 18 in, diameter to hall. Form simple moullded beams in ground and first foors as shown
by dotied lines. Twice time whiten walls of cellars. The whole to be executed with the best deseription of material and workmanship, and to be

Vol. IV] IThe Ganadian Architect and ßuilder.
[No. II.

Vol. IV.] Johe Ganadian Architect

Carved Wood Capitals.
R. C. Winney:s \& Sons, St. Alaan's Cathrdral.,

Exhcut(in ns Thomas Mowhear.

"Alfonso "Block," Victoria Street, Toronto.
Dick \& Wiekson, Arcifitects.

left sound and perfect nfter making good nfter other trades. Plasterer to remove rubbish and broom out floors on completion. Leave woodwork clean and ready for painter.

PAINTER AND GLAZIER.
The whole of the internal and external dressed woodwork usunily painted and except where othernise specified. including outside steps und slatted and except wherc othernise specited. including outside steps ind shated
walks, and dressed fence and gate to be painted three conts of white lead walks, and dressed tence and gate to be painted three conts of whice
and limseed oil point of approved lints. I he work to be property knoted and stopped, and well rubbed down after first and second coals. The woodwork of ground and first floors to be stained, olled and twice varnished woodwork of ground and first floors lo be stained, olledand twice varnished
with best copal varnish. Trends and risers of main and back stairs to be stained and twice oiled. No inside blinds to be included in tender. Outside venetians to four rear windows to be painted threc'coats after priming. The visible galvanized iron work to be painted three coats. Except wbere The visible galvanized iron work to be painted three coats. Except wbere
otherwise specificd, the whole of the windows and fanlights, glass doors, etc., to be glazed with double diamond star glass, selected free from flaws atc, to be glazed with putied and back putied, and bradded, the whole of the sashes to be primed before glazing. Glaze foir windows on east elevation with K in. polished plate glass, and the small square lights of east tion with x in. polished plate glass, and the smalt square lights of cast wind doors to be $\%$ in. rough rolied plate sectred with stops. Other glass in celtar to be diamond star. The ivo windows at slaircase landings and in celtar to be dampond star. The two windows at slaincase landings and
fanlights of four windows in east elevation to be glazed with stained glass fanights of four windows in east elevation to be glazed with stained giass
provided by proprietor. Glass in vestibule doors will lie provided by proprovided by proprietor. Glass in vestibule doors will lie provided by pro* prietor. Glass in entrance door to 36 in. be polished plate, bevelled, Glass in fanlights as marked to be ground ; glaze-borrowed light in basement w.c. with ground diamond star glass. Clean windows, scrub fioors before
and after painting, and leave all clean and perfect on completion. Put in and after painting, and leave all clean and perfect on completion

> EXCAVATION, DRAINAGE, ETC.

325 cubic yards of excavation, includes filling, levelling, ctc., and carting away surplus carth
6 lineal yards of 6 in. vitrified tile drains, complete
5% lineal yards of 4 in . vitrified fresh air inlet, complete
36% lineal yards of 3 in. tile weeping drains
1 McGuire's cleaning out trap.and stone fag covering, complete
None - Excavations are mensured " cubc," that is, length, breadth and depth, thus : $54 \mathrm{ft} .9 \mathrm{in} . \times 22 \mathrm{ft} .6 \mathrm{in} . \times 5 \mathrm{ft}$. 6 in . $=$ equal 106775 ft .4 in .
 dess (ift. 8 in.). Tile drains are measured lineal, that is, running measure, as indicated in above items.

MASONRY AND CUT STONE.

29 loise of masonry (86 ft. cube English neasure) in foutadation walls, (pargetted in cenernt ontside)
168 f. 9 in suph. R1. Credit Valley eut stome base, inch draft and chiseled to jimbs, comptele
4 Credit Valley stone sills, fine buchard, to cellar windows, 3 ft. $9 \mathrm{in} . \times 9 \mathrm{in}$. $\times 6 \mathrm{in}$., weathered
Credit Vallcy stone sill, fine buchard. to cellar winciuw, 3 ft. 3 in. $\times 9$ in. $\times 6$ in., weathered
Credit Valley stone sill, fine buchard, to cellar window, 2 ft . $9 \mathrm{in}, \times 9 \mathrm{in} . \times 6 \mathrm{in}$. weathered
I portage entry stone sill, chiseled, to front window, $7 \mathbf{f 1}, 6$ in, \times II in. x. 9 in., weathered and sented
portage entry stane silt, chiseled, north window, 4 ft .9 in, x It in. $x 6$ in., weathered and scated
Fortage eniry stone sills, chiscled, north and south windows, $4^{1} \mathrm{~L}$ oin. x It in. $x 6$ in., weathered and seated
7 portage entry stone sills, chiscled, north and south windows, 3 ft. $9 \mathrm{in}, \times 11 \mathrm{in}, \times 6 \mathrm{in}$. , wenthered and sented
portage entry stone sill, chisted, north and south window, 3 ff . $6 \mathrm{in}, \times 11 \mathrm{in}, \times 6 \mathrm{in}$., weathered and seated
portage entry stone sill, chiseled, south window, $2 \mathrm{ft}, 9 \mathrm{in}, \mathrm{x}$ II in. $x 6$ in., weathered and seat'd
3 portage entry stone sills, chiscled, 2 ft. 0 in. $\times 11$ in. $\times 6$ in., weathered and scated
3 Otio stone sill, chiseled, rear windows, 4 f. o in. x it in. $\times 6$ in., weathered and seated
Ohio stone sill. chiseled. 3 ft , oin. \times II in. $\times 6$ in., weathered and seated
brown stome fine Bouchard heads to fuel doors, 3 f. 0 in. $\times 9$ in. $x 9$ in., checked for frames
x portage entry slone head to iront doors. 7 f . 0 in . $x 13 \mathrm{in}$, $\times 1.4$ in., chiseled and with curved sunk fice
z portage entry corbels, curved face, 2 fi. 0 in, $x 9$ in, $x 10$ in., - temporary protected with boards

Bidding to frames; lintels, etc.
NOTE. - Masonry is measured cube and the totals of dimensions added together, divided by 86, the number of cubje feet in a $10 i s e$. The French measure per toise beink 6 ft . $\times 6 \mathrm{ft}$. $\times 2 \mathrm{ft}$, equivalent to 6 ft . 4 t in. $\times 6 \mathrm{ft}$. $4 \frac{1}{} \mathrm{in}, x 2 \mathrm{ft}, 1 \frac{10}{} \mathrm{in}$. English measure, the French foot being $1 / 4$ of an inch onger thus: 0 on square, thus : 20 ft . $x 20 \mathrm{ft}$. gives 400 superficial feet. Sills, heads. sleps, ete, are connted and the number g.ven according to sizes and quality of
work, as stown in abovs itcms of quantities.

> nRickwonk.
7.648 hard clinker brick in cellar walls
37.725 best hard common brick

18,889 best Carliton facing brick, cleaned down with acid
1.375 white brick, inside porch

252 lineal feet of bevil and projucting bricks, labels, strings, etc.
t6 liveal feet of curved labels, strings, erc.
77 lineal ft . of a rows shtte on footings of brick walls, 20 in . wide roo lineal ft, of hoop iton for ties
24 relleving arches
6 curved arches (senli-circular and elliptic)
4 fireplace arches on $23 / 2 \mathrm{in}$. $\times 56$ in. iron camber bars
4 brick trimmer arches in conerete, to hearths
8 circular flues (built round monlds) to chimneys
4 wrought iron forked stmps, $2 \times 1 / 4 \mathrm{in}$., and spikes
7 galvanized iron collars to flues
5 iron soot doors and frames to ash dumps and flues 2 openings to vent hlue, kitchen and bath roon near celling
3 chimney caps of projecting brick coursen
ricklnycr to build in strips for lantens in otter walls and where directed, beam filling to floors and roof timbers. Iked bond timbers, lintels, plates, wood bricks, fratmes, Sxc., and nttendance on other trades

Scaffolding on outside for brick work (left for other imales)
105 square yards of concrete. 3 in. thick, and substratum 6 in. thick, broken stone chips
80\%s square yards of Portland cenient and sand. floated $/ 3$ in. thick
Bedding, laundry and porch joists in cenuent
Nore.-Brickwork is measurtul cube and in Montreal the number of bricks given in estimating, is zo brkes to the cube foot, and is aseertained thus:

The openings are measured and deducted from the solid work Concrete when noe doep is mensured by the superficinl yard, thus. 3 ft . 3 ft. gives one yard. Concrete in heavy work is mensured cabe, 3 , items noted as above.

ARCHITECTURAL TRAINING.

By A. C. Hutcinson, R.C.A.
THE following paper on the above subject was rend by the author at a meeling of architects and students of architecture field in the rooms of the Province of Quebec Association of Architects, Montreal, on Thursday, the silh inst.:
I take it for granted that the olject of architectural training is to properly qunlify any person wishing to practice the profession of an architect by such a course of scientific and art instruction as will render him a competent architect. The question will at once arise, when can any architect be termed competent? I think the least that can be expected of any claiming to be competent is, that leaving aside any special skill that may be required in clesigning works of a monumental character or special technical knowledge required for designing a building for some novel or extraordinary use, lie should be able to design a building for any ordinary purpose or situa. tion so that its construction shall be sife and its appearance such that no violence shall be done to any canon of Art. For illustrating and working out of his design he should be able to prepare atl the plans, elevations, sections, etc., as will make his intentions clear and to be unclerstood by others. He should also be able to make a perspective drawing of any portion of his design, by which he can better illustrate his intentions to nonprofessionals who might not be able to appreciate them from the examination of geometrical drawings. iis siouid aito be able to prepare a specification in which the guality of materiats, modes of construction and quality of workmanship are defined in such manner as to make his intentions clear to the workmen charged with the carrying of his design into execution. He should further be able to determine by an inspection of the work as it progresses whether lis instructions are being carried out in a proper manner. To do this satisfacturily to himself and his client, he should by previous training be familiar with building materials and their use, and be able by a knowledge of construction to apply them in such manner that they are not wasted, and that his building is safe and perfectly able to fulfil the purpose for which it was intended. He should also have a knowledge of sanitary science, heating and ventilation, so that the building designed by him shall not only be comfortable to live in, but also free from anything prejudicial to health. In addition to this, he should have it general knowledge of the different styles of architecture, ind such a definite knowledge of the styles or the style be alopis for his design as will enalle bim to apply it correctly.
J think it will be admitted that in the interests of the profession and of the public, a lower qualificition than I lave just indicated should not be entertained.
Before entering upon the question as to the character and scope of the scientific and art training necessary to qualify a person to become a competent acclitect and how such training can be obtained, let us bricfly considler the position of the profession in the Dominion, its relations to the public and to the training required to qualify as an architect.
Until the oblaining of Acts of Incorporation from the Provincial Legislature by the Ontario Association of Architects some eighteen months ago, and still more recently by the Association of Architects for the Province of Quebec, there was nothing to prevent anyone, whether qualififed or not qualified, fiom practising as an architect. In both of these Acts provision has been made for passing examinations before entering upon the study of architecture, and beforc entering upon active practice as an arclitect. The first or preliminary examination required by these Acts is to deternine whether the candidate wishing to study architecture is qualified by his previous educitlon to enter upon such study; the second or final eximnination is to ascerrain whether the candidate after completing his course of study has obtained such scientific and art knowledge as will qualify him to practice is an architect. As both of these examinations are of a compulsory chartacter, it is evident that the guestion of architectural training necessary to qualify for such examinations is one of vital importiance, especially to those who have atready entered upon or propose to enter upon the study of architectuse.
Heretofore and at the present time, the only means for obtain-
ing such instruction is for a pupil to enter an architect's office, where, cluring three years pupilage, he is expected to acquire all the instruction and traininer required to qualify hitn to pass the final examinations required by the Association.
1 think you will adnit that the office work usually allotted to a student during his pupilage, while giving him a good training in practical work which could not be otherwise so well obtained, does not really afford the training in many subjects with which be should be familiar, the acquisition of knowledge in these suljects depending almost wholly upon his own diligence in the study of such works on atchitectural subjects as may be within his reach. When we consider the cost of architectural works, and the usually very linnited means which an arclitect's student has for purchasing them, it is cvident that his means for olstaining information in this way is somewhat linited, and unfortunately, it is to be regretted that the public libraries of Montreal do not contain the class of architectural works most useful to the student who might bave the privilege of consulting them

Until within a comparatively recent period, the same condicions as exist here for acquiring the training necessary to qualify for the practice of aiclitecture existed elsewhere, but during the last thirty years many members of the profession in Britain, France, and the United States, have realized the fact that while the pupilage system has many atvantages which cannot be ignored, it does not really afford a training in many subjects with which the student should be familiar if he expects to rench a high position in the profession.
It was probably owing to a realization of the defects of the pupilage system some thirty years ago by eminent members of lie R.I.B.A, that an agitation was commenced for the establish. ment of a standard of qualification to which a candidate should attain before he was considered fit for practice as an architect, and that his fitnes; should be proved by passing examinations in prescribed subjects in the same manner as was required by the members of other professional bodies. The result of the agitation was, that the Institule prepared a scheme for voluntary examinations in subjects prescribed by them, the first of which tonk place in 1863. As the successful passing of the examinations under this scloeme conferred no distinction upon the candidate, nor did it give him a position in the profession over those who did not attempt to qualify under the conditions, it is not surprising that the scheme, leading to no practical result, was in a great measure a failure, and the examinations carried out under it gradually linguished. After af fow years trial of the scheme, some modifications were made in it which had the effect for a time of giving it new life and bringing forward more candiclates for voluntary examination. These modifications consisted princupally in the dividing of the examinations into two classes, termed "preliminary;" and "proficiency", and the ranting of certificates to successful candidates with the title of "Graduates of the Institure," but still leaving them entirely voluntary. After the scheme thus modified had been in operacion for some time, it was felt by many of the leading minds in the profession that though connection with the Institute as Associate had a vety considerable value, it did not alvays give the holders of it the standing in the eyes of the public that they should have: it wats, therefore, proposed some ten years ayo, with a viev to increase the value of the title A.R.I.B.A., to make the examinations compulsory on all future candidates for Associateship of the Institute. This proposal was, after considerable discussion, adopted, and a scheme of examinations prepared, the successful passing of which entitled the candidate to rank as an Associate; this scheme has now been in operation for about ten years.

The adoption of compalsory examinations by the Institute soon made it evident that a better system of training than was then in vogue was required to enable candidates to successfully pass them, consequently we find that in University College and Kings College, London, in which the study of architecture formed part of the regular course of instruction, modifications were made in their curriculums which better adapted them to furnish, if not the praciical, at least the theoretical knowledge necessary to enable their sturlents to pass the examinations fixed by the Institute. Besides these colleges there were a number of institutions of various kinds in London and elsewhere throughout Britain that offered pupils in architects offices an opprertunity of obtaining instruction in subjects necessary to qualify for such examinations.
At this distance it woukd appear as if the opportunities for architectural training in Britain were ample, but judging from the action lately taken by the Architectural Associntion composed principally of the younger members of the profession, they do not consider the existing system of education entirely satisfactory, and during the last two years have promulgated a sclieme, which is now in actual operation. The promoters of this scheme, while disclaining any intention of being antagonistic to existing institutions in which architecture is taught, or of interfering in any way with the present pupilage system, think they can supply the particular education required better than can otherwisc be obtained and better calculated to enable their students to pass the examinations prescribed by the R.I.B.A.
On referring to the proposed curriculum of the Architectural Association, Ifind that it extends over a period of four years divided as folows:-
First year-The orders of Greck and Roman architecture,
their origin, development and application; the several varicties of classic ornament ; the nature of ordinary building materials and the elementary principles of construction ; plane geometry applied to actual work; projection of solids and development of surfaces; elementary plysics as applied to building ; the rudiments of perspective mensuration, chennistry, geology, feometrical drawing of ancient examples and free hand drawing

Second year-English architecture from the Conquest to A. D. 1500 and the successive development of the styles; the characteristic mouldings and ornaments of each period; the nature of ordinary building materials and the elementary principles of construction continued from the first year; the calculation of the strength of materials; land surveying and levelling; chemistry of building materials; elementary ornament and color decoration; drawings of ancient examples; free hand drawing ; solid geomety.

Third year-History of architecture and features of mouldings and ormancont materials and their application in building; strength of materials; specification writing and taking of quantities; ornament and color decoration; sanitary science as applied to dratinage ; elementary natural philosophy, including light, sound, heat, hydrostatics and electricity; rlesigning and construction of modern buildings; free hand drawing ; perspective ; construction masonry
Fourth yenr-History of architecture; materials and their application in buikdins; sanitary science, including water supply, ventilation, lighting and heating; measurement and valuation of buildings; professional practice; design and construction of modern buiklings; drawings of ancient buildings ; graphic statics and perspective; modelling and water color.
From this brief description of what is being done in Britain for arclitectural training, it is evident that it is a subject of vital interest to the profession, and one which at the present time is receiving greater attention than has ever before been given to it.
This interest in the education of architects is not confined to Britain. In France the subject has received the attention of the State, so that some two years ago an Official Commission in Paris was appointed to examine the legal conditions under which the profession of an architect is exercised, the system of study which gives access to it and the character of the diplomas granted in connection with this study. This Commission after a year's investigation, in which they were assisted by provincial societies of architecture, made a report respecting the training to be obtained in Provinriai Etues des Dcaux Arts, and called attention to witasi they considered defects in the system, the principal defect being that after providing a course of training to qualify as an architect no diploma was granted that would give the holder of it a status as an architect duly qualified to practice his profession. In the report the Commission also calls attention to the peculiar legal responsibility for his work which the law imposes upon an architect in France, and points to the anomaly that while the State exacts certificates of proficiency from contractors doing work of the most common character, it requires no certificate of proficiency or diploma from the architect who is supposed to be a compendium of knowledge in all that relates to building. The Commission recommend the establishment of district schools in affiliation with faculties of the State for the study of architecture, and that entrance to them should only be obtained after the candidate has shown by examination that he is sufficiently advanced in his stuclies to enable him to follove the special course of instruc. tion necessay for his training as an architect.
The course of instruction reconmended for these schools embraces pretty much the same subjects as are provided for in the curriculum of the Architectural Association to which I have already referred, and consists of the study of architectural forms, analysis of monuments, study of design, decorative art, history, archeology, perspective stereotomy, hygiene, theoretic, technical and practical construction, ventilating, heating, lighting and professional practice.

The Commission strongly recommend the granting of diplomas to those who pursue the full course of construction and pass the examinations, and to make the diplomas of value they suggest that only those holding diplomas shall be entrusted with government or municipal work.

The subject of architectural training has of late years received a large share of attention in the United States, where in addition to many art and teclinical schools of local character that afford assistance to architects' pupils in the prosecution of their studies, there are screral universities, colleges and institutions which have Clairs of Architecture in which a full course of architectural training may be obtained. Among the institutions 1 may mention the Universities of Cornell, Illinois, Philadelphia, Columbia College and the Institute of Technology, Boston. In each the course of instruction extends over four years, and their curriculums embrace all the subjects of a scientific and art character necessary to qualify their graduates for practice. In the first two years other subjects are taught which do not pertain directly to architecture, but in the last two years of the course the studies are almost wholly confined to architectural subjects. The art schools of the Mctropolitan Museum of Art in New York also conduct courses in architecture, which are so arranged as to prepare pupils who desire it for admission to the Ecoles des Beaux Arts in l’aris, while for pupils who are engaped in architects' offices anil cannot devote the time necessary for a full course, special classes and lectures are arranged to occupy only
part of the day or evenings for special subjects, instruction in which could not be obtained in their offices:

From the brief description of what is being done for architectural training in Britain, France and the United Statss, it will, I think, be cvident that it is a subject which at the present time is considered of great importance, and is receiving a large share of attention. From the experience gained during the last twenty year; the consensus of opinion appears to be that study in the scientific and art subjects before referred to are essential to fully equip an architect for fulfilling the duties of his profession:
While the subject of architectural training has of late years and in other lands ieceived great attention, and facilities more or less complere have been provided for imparting instruction in the special subjects required by an architect, no attempt has yet been made in the Dominion for the foundation of a Chair of Architecture in connection with any of our universities or colleges, nor are there any schools of art or technology in which pupils who have already entered upon the study of architecture in offices can oblain any praclical assistance in the prosecution of their studies. Some time ago there was a rumor that the Minister of Education for the Province of Ontario intended founding a Chair of Architecture in the University of Toronto, but the scheme has not yet materalized.

It is to be hoped, however, that the Associntions of Arclitects now formed in Ontario and Quebec will in the interests of the architects agitate for some means of affording the special instruction required by present and future pupils in preparing them to pass the exammations required by the respective Associations, either by the foundation of Chairs of Architecture in connection with our existing universities or colleges, or by the establishment of lectures and classes in immediate connection with the Associations. It would be premature at this carly stage in the history of the Associations to suggest any particular scheme of education, but I feel that the necessity for affording some means of instruction in special subjects to present and future student associates, to en able them to pass the final examinations for registration, will -oon force itself upon the attention of the associations.

For the present it would be a step towards and preparation for a more complete sclieme if the Faculties of Applied Science of one or more of our universities would add a Chair of Architec. ture, and by means of lectures or classes in special subjects, afford instruction in such subjects as cannot very well be oltained in the daily routine of an architect's office.

At the present time the facul ties of law in connection, I believe, with McGill and Laval Universities, while providing for a full course of instruction quali fying their groduates to pass the examinations for admission to the bar, also provide for lectures at such hours as will admit of students in law offices attending them, and that attendance on these lectures are compulsory on the students. If some such arrangement as this could be carried out, it would meet the present requirements.
Nort:-Since preparing this paper Inm ghd to learn that n Chair or Architecture, hns been foumted in the University of Toronto, nnd that Mir. C. H. Wright bas been appointed in Professor, and hope that other universities miny soon follow the example set them by Toronto.

CANADIAN CITY ENGINEERS.

THE subject of the accompanying portrait, Mr. Percival Walter St. Gcorge, City Surveyor of Montreal, was born at Torres, Morayshire, Scotland, on the 22nd of October, 1849, being the youngest son of Lieut.-Col. James D. N. St, George. After having spent seven years in France and at the University of Edinburgh in acquiring an education, he came to Canada in the year 1866 .
The first two years of residence in this country were spent on the Nova Scotia Railway, and the succeeding four years, from 1868 to 1872, on the construction of the Intercolonial Railway. During the year 1873 Mr. St. George was engaged on the North Shore Railroad; 1874 saw him back again on the Intercolonial road. The following year his services were given on behalf of the Northern Colonization Railway.

From 1875 to 1873 , he held the position of Deputy City Sur: veyor of the city of Montreal. In the latter year he was appointed engincer-in-charge of maintenance way on the Norfolk and Western Railrond, of Virginia. In December of the sanne year, he received the appointment of City Surveyor of Montical.

He was a member, in $\mathbf{1 8 8 6}$, of the Royal Flood Commission of Montreal; associated with him were Messrs. Thos. Keefer, John Kennedy and Henry Perley.

Mr. St. George is a meniber of the Institution of Civil Engineers, of London, of the Council of the Canadian Society of Civil Engineers, also of the Association of Municipal Engineers of Great Britain. He inarried in 1872 Fhora Stunrt, only daughter of the Rev. Canon Townshend, rector of Amherst, Nova Scotia, and has issue six children.

MADIEAX, N. A.

(Correspondence of the Canadian Arciutect and builubr.) trade difficulties.
In this city each trade has lis own association, and mearly nll city tradesmen are members of their respective associations. Then lyent is the Amalgamated Trades and Lobor Union. When any inember of on associciation has a greviance to complain of against bis employor, or whan an employtionalcs the rules of an association. the case is inesigaced by the and if the investigating committee find itat the employer hans deali unjustly with an employer, or contra to the rules of the asseciation, or violated the rules of the association in any way, and refuses to cornply or rectify wrongs, the matter is laid before the amalgamated union, and all members are under oblipation to quit work on that employer's job untill le has nade amends, \&e. One of the rules of the Painters' Association was that no master painter should have more than three apprentices in his employ. The firm of Thomas Reardon \& Co. took on a fourh apprentice, insisted on retaining him, and set him to work on the City Club building, now in course of erection, whoch resuled in a strike of all workinen on that job. Reardon's entire staff of painters being union nien, quit work on his other jobs. Other naster painters andeavored to assist Reardon, which caused incir union men to strike also. This strike on the City Chsb building oceurred durisg the last week of Angust. About a forenight ifter. nutster painter Davikl Roclue, tho wits one of the parties that wied to assist Reardon, and who had the sub-conract for painting the now Citholic Glebe House, now in course of crection, sent an appremtice to prime work on that job. when all lanils there stuck work. Then followed strikes on several other jols from similar cruses.
Manufacturers and master workmen of the marious trakes then formed an Astociation, when commintees from this and the Arualganialed Trades and Labor Union met a number of imes o try and arrange a settlement. Two difficulties stood in the way of a settlement. First, Rearlon positively re: fused to adtuere to ile painters' rice regarding the number of apprentices to be eniployed. and the other muster painters sided sith him inthis respect; secontly, a duty or two after the strite on the City Clitu bltikling. (wo union minters went lack to work with Renr. con, thereby naking thenseives liatble to a fine of \$S mur day according to the rules of tie Aainters Association, und which the patmers demanded before agreeing to H setlemem with the mas. er workmen's Association. The lniter, however, considered it unfair to these nien who stuck to their work dur. ar the strike to leave them unprotec: ed by their Aseociation. Jinally, afier many meetings, it was agreed io leave the case of these men 10 be deall with by the Painters Association. As to the apprentice question, an ngreenient was reached by the itanufictitrers' and Master Mechanics Association and the Trades and Labor Conncil, which provicles: That all strikers shall at onee resume work, the matter of the suspend 'd members of the Panters' Union to be left with the Union to be dealt with ; the pay of painiers' apprenifees 10 be $\$ 2.50$ pur week the first year, with nn increase of $\$ 1.50$ per week each year, including vication, but excluding bonuses: every apprentice must be nble to read and write the English langunge, nad be not less than 16, nor above $2 x$ years of nge ; avery apprentice must agree to abide by the rules jointly agreel upon by the Associations: manser painlers must keep apprentices under legitimate in.
struetion and otherwisc comply with the conditions of aprecneent. struetion and otherwisc comply with the coaditions of agreenkent: a record to be kept of nil apprentices emproved, and the term of their npprenticuship; the joint committee of the two Astociations to supervise the enuploynient of nind for cause larminitepprenticeship or phey an apprentice with new. employer: nuprentices to to monited to and to be pricl for one week's employer: nupraificate to furwisted tie joint committer by one weck's when an apprentice thas complelat his rerm and the seal of boit anployr when an apprenice has compieterl his term, and the seal of boits Associaevidence of tho hodder's ithe to rank is journoyman. 'The nepenien furtiser prouldes pate have been submitied to the Manufncturers* and Maeter Mechanics: Association and the Trudes ind Manur Council ond of neecsenty cemanics Associne to arbitmion. If the later comre is niopted, the deciqion of the arbitrators is to be finat. Should an nember of citlicr Associntion infringe in any way the conditions of this agreement, the Associntion 10 which be belongs shall forfeit the sum or stoo. Unfortunately, strone opposilion hats developed in the Tractes and Labor Conncil to the maticalion of this ancrement assented to by its reprecentatives, while the union painters refine to go to work until the question regarding the non-union men is setuled. consequently a finnl adjustment of the entire difficulty, which was supposerl to have been well-nigh reached, seems to be almost as far distant ns cuer.

If lend and oil paints do not wear as well as of odd, as so many claim, they have at kens imen partially replaced ly tire Cibot slifugle creosote staits, which wear as well, are chenper, aiml give a cotoring effect far more agreealile ned artistic than is obainable by tuy of the okl nettrols.

TORONTO ARCHITECTURAL SKETCH CLUB.

At the meeting held on Nov, 9th, Mr. John Millar, of the J. F. P'ease Furnace C_{0}., addressed the members on the subject of "Heating." The president of the Club, Mr. Pearson, occupied the chair.

Mr. Millar said: "I appear before you to night to give a talk upon the important subject of heating buildings. My experience has been gained in a practical way, and from this point of view I propose to talk to you this evening; it is possible that views may be advanced that will conflict with your ideas, but a great deal of knowledge is gained by hearing the opinions and experiences of different men engaged in every given line, and I will leave you to form your own conclusions.
"The three grent systems of heating are by the use of steam, hot water and warm air." (The speaker here explained the meaning of the terms "direct," "indirect," and "direct-indirect" heating by steam and hot water, and went on to explain further heating by the system known as the "combination.") "This can be done by a combination of steam and warm air, and by hot water and warm air. The advantages of this system over steam and hot water are, that perfect ventilation can be secured at less expense, and perfectly free from any danger of the system freezing up. The pure air from the outside of the building is passed into the heater and out through the registers, warmed, giving forth sufficient pure warm air for ventilating. The balince of the heat required is given by the radiators which may be placed in rooms at a distance from the heater.

Of the different systems, heating by warm air is the cheapest, and in greater demand than any other, but there are many difficulties in the way to secure good results. These to a great extent can be removed by you, and I propose now to deal with some of them and point out to you how they can be obviated.
"It is of great importance that a good location be secured for the heater, and just here you can assist the heating man to advantage; arrange your cellar rooms so that the heater can be centrally located, if necessary giving the rooms to the north and west the advantage."

Here the speaker made a sketch of the ground floor of a building, showing how it could be heated with the very best results, and without taking up very mucli room in the cellar. In Fig. I, dotted lines show the furnace and pipes in the cellar. Another sketch was made (Fig. 2) showing how some archilects would like to have the work done.
"It would be of great advantage to the furnace men if larger space could be secured to run pipes to large and exposed rooms. This can be done by using 2×6 studding in place of the 2×4 which is generilly used. A little forethought on this particular point will make a beating system a success that would otherwise be a complete failure."
"Cround floor registers should be placed in the floor. They may be placed in the wall provided there is capacity enough in the space between the studding for the size of pipe required, but
hearing apparntus, so we have to do the best we can with the house presented for the work.
"Steam and hot water radiators should be phaced near or under windows; they radiate beat and warm the air coming in contact with them. Warm air from the furnace is conducted, and if conducted into the roon near a window, the warm air is cooled quickly by coming in contact with the cold surface of the glass, and falling to the floor cold, cannot be heated."
As there is no rule to guide in laying out a system of heating by warm air, the speaker's advice was that architects should not

attempt the work, but leave it to the heating expert, especially as a guarantee is always given to lieat the building.
In conclusion he thanked the Club for the close attention they had given hinn, and sitid be would be pleased to answer any questions, or explain any points that might not have been made as clear to them as he would have wished.
${ }^{\sim}$ An interesting discussion took place, Messrs. Curry, Gregg, Johnson, and others taking part.
Mr. Curry explained some very interesting points, and referring to the lecturer, said "we have had one of the most instructive lectures given to us in a long time."
A hearty vote of thanks was passed to Mr. Millar, the chairman expressing the opinon that the speaker had fully covered the subject.
The following is a synopsis of the "Talk" on Classic Architecture" at the Club rooms, Oct. 26th, by Mr. Gambier-13ousfield, A.R.I.B.A. (Mr. Bousfield had prepared some rougls cratyon sketches of details of proto-classic caps and a map of the countries in which the art flourished before the birth of Clurist, and these were exhibited together with prints from variouts profes. sional journals bearing upon the subject.)

The lecturer called the attention of the chairman to the absence of note books among the students, and urged upon them the necessity of taking notes, as he also advocated very strongly that the students should come prepared to ask questions ar the conclusion of the "talk," as discussion was the only way to bring out points that a lecturer might have omitted, especially in an extemporary "talk" like the present. He said he was gratified at being invited to give the opening "talk" of the season, and only regretted that more time had not been allowed hom for the preparation of a paper, but he crusted that his audience would exercise patience townrds a man unaccustomed to extemporary speaking. He did not intend to treat so much upon the sulject of proportion as to show bow false was the notion that the Greeks "invented" the orders, and to explain how the orders were developed from previous and distant enapires. The Grecks were, as a nation, the most conceited people that ever lived; they attempted to show to their posterity that they invented everything they made use of-that they even invented ast tonomy -even if they did not go so far as to pretend they invented the stars. Certainly they were a wonderful people, possessed of a genius unknown before, bit had it not been for the foundlation of art laid in other countries hundreds of years before, upon which the Greeks added a superstructure, they could never have attained to such perfection in the art as they did.

To understand this, it would be necessary to take a glance at the map, which exhibited the boundaries of some eight or ten great empires that preceded the republics of Greece. There was the Egyptian cmpite, dating from $\mathrm{B}_{\mathbf{S}} \mathrm{C}: 4,000$ to $\mathrm{B} . \mathrm{C} .600$; the newly discovered, but no less imporiant, empire of the Hittites, covering the whole of Asia Minor and holding away altemately with Epypt over Syrin, where history ran concurrently with that of Egjpt, or froin about 2,300 B. C. to $1,300 \mathrm{~B}$. C. (The lecturer here called attention to the fact that he was purposely making use of round numbers in his dates to simplify the sulject:) Then in the centre of that area which had at its four comers the lblack

Sea, the Caspian Sea, the Persian Gulf and the Dead Sea, four great empires succeed one to the other. There was the Chaldean, 13. C. 2,300 to 13. C. 1,600, swallowed up by the Egyptians; then the rise of the Assyrian empire, about B. C. 1,320 , sighe by side with Cgypt and the land of the Hittiles, until its subjugation by the Egyptians in B. C. 625. Twenty years litter the empire of the Babylonians sprang into existence, to be in its turn subxlued by the all-conquering Persians, who, subduing the Babylonians and Egyptians, extended their empire from the centre of India in the east to the shores of Greece in the west.
But besides these great enpires, there was the country of of Phenicia on the border of Palestine with the powerfal republics of Tyre and Sidon. Of the earlier history of these singular people little was known prior to B. C. 1,046, but discoveries have proved that they were an enterprising people, havin! colonies in Spain. Italy, Greece, Asia Minor, the islands of the Mediterranean and North Africa, before the year 1,000 13. C. Phomicia flourished from 1,250 13. C., when Tyre is believed to have been built, to 860 B. C., when the celebrated Elissa or Dido, together with all the atistocmey of the country, emigrated to Carthage, already a colony of plowina, and there founded her colebrated empire. The Plownicians were the sailors of the ancient world; each untion in turn hired the Pbonician ships and sailors for its maritime expeditions.
The kingdem of David and Solommn must not be forgoten; its position was clearly to be seen on the map. Another important empire was that occupying the western part of Asin Minor -that of the Syrians-from which neighborhood came the early Grecks. Then canne the history of the republics of Athens and Sparti, with their colonics in the Mediterranean islands, followed by the career of the youthful conquerer Alexander the Great, King of Macedonia, who extencled his kingdom into an empire reaching from Macedon and Greece on the west to India on the east.

The bistory in connection with the subject closes with the Romans, who overran ill previous countries.
An important fact in this early history was, that everywhere Greek soldiers took part in the wars that were being waged by one ruler against another. As the ships of Phoenicia were hired for transport, so the Greek mercenaries were hired to Gght.
Thus by this outline of history it will be scen how intimately connected were all these ancient mitions one with another. There was no such thing as isolation; each mation and people was well known to every other; so that it is impossible to reject this and the further confirmatory evidence in the details of - chitecture in an enquiry as to whence the Greeks got their first notions of aut. Of their detnils, move will be said later.

Another matter to be borne in mind, wis tbat of the materials to be found for building in the countries occupied by the nations mentioned. In Egypt, stone was used, but this country really does not, in this particular, help the investigation, because the stone used rias not local but brought chiefly fiom 500 miles up the country. In the land of the Chaldeans, Assyrians and Babylonians was lonmy clay; in Persia was stone, in the land of the Medes, the ancestors of the Persians, was wood.
Material exerted a strong influence on the art. Persian and Lydians, or early Greek architecture, was executed in stone, but in the principle, of wooden construction, while the architecture of the Chaldeans, Assyrians and Batbylonians was of brick.
The lecturer then proceedled to describe the forms of Greck temples and the details of the orders, and went on to show by means of his crayon sketches of caps from Egypt and Phoenicia, the origin of the Doric, Ionic and Corinthian details.
From temples at Mediuct Habon and Bern Hassam in Egypt were obtained the rough forms of the Doric; Phomicia at Kitron furnished examples of lonic scrolls as decorative features for capitals, while in Egypt nt Philae, were found caps of decidedly Corintbian outline--all of which were designed and executed long before the Roman occupation of these countries.
The Cornithian order was not, properly speaking, a Greek order; it was the Romans who fully developed it. The lecturer produced a number of beautiful illustrations of the Roman order as exemplified by buildings principally in the north of Africa, Algiers and Tunis, and explained how in the Roman order the column as a structural feature sunk into a decorative adjunct, while the arch came into prominence constructurally.

In concluding, the lecturer said he had to thater his audience very much for the attentive manner in which each member bad listened to him during the whole three-quarters of an hour he had been speaking.

In the course of the discussion which followed it was stated, that a belief existerd that the "Tuscan order"-which the lecturer lad included as an early form of Grecian Doric, which was misnamed "Tuscan" just as "Corinthian" was misnamed-had an independent origin, and was not derived from any source, as the lecturer showed the others were. In answer to this he remarked that though he land not alluded to Tuscany individually, be had shown how linly (or Etruria) was an early colnny of the Phainicians, and was no more isolated than was Greece or Persia, and he did not believe in any theory of independent origin or spontaneous invention, but hekd that there was a system of development in the art which overran all these countries, outside of which it was impossible to seek for origins. As a-matter of fact, Etruria was peopled from Asia Minor in the twelfth century
B. C., prior to the arrival of the Phonicians, which adds another proof to the development of the art of architecture.

A very hearty vole of thanks was passed, and in answer to the chairman the lecturer snid he would be happy to give his map and sketches to the Club if they would be of use.

"CANADIAN ARCHITECT AND BUILDER" COMPETITION.

THE designs received in the CANADIAN ARCHITECT AND BUILDER competition for a suburban residence have been forwarded to Ottawa. We hope to publish the judge's report thercupon in our December issuc.

PASSING EVENTS.

T'the " smoking" concerts with which the regular nreeting of the Montreal Uivlerwrilers' Associntion were - matugurated recently, strike me us being
 somewhat incongruous with its objects. which are popularly sup
The new Brak of Hamilton in course of erection at the corner of King and Janles streets, Hamilton, will cost the architect little for draughtsman ship, as it is simply an abbrevinicd copy of the Bink of Commerce at Toronto. It niny beadded that the process of abbreviation lias not enhroced the merits of the origimal design.
Municipal authority was enforsed in an unusual and ludicrous manner at the town of Niagarn Falls, the other dny. The Michigan Central Railroad officials resisted the allemph of the town to lay water mains under the tracks. The mayor, constables and fire brigade turned out and put the enemy to night by curning on them the hose.
A despatch from Otawa nnnounces that Mr. Pcrley, late chief engineer of the Department of Public Works, is sinking to lis death. The news of the Departnent of public works, is sinking to his deati. The "tews brigs th mex, as to many oners, a seep has of soughor. upor the aged man who Which the exposure of his one mis-step has brought upon the aged man who
for many years gave valuable service to this couniry, proves beyond question
 his uniness io ba che recent the prolessional bood lish of public crooked pris
The college simdents of Toranto took a new departure this year from the estalisished custons of doing mischiel for mischiefs sutke on Hallowe'en, by pulling down the unsighty fence surrounding the Normal School grounds. For several years the citizens and the press hatd urged the government to replace the eyesore with something of a more plessing character, but their entrenties went for nought. The sludents accomplished the dessired result in n few minutes. But for the knowledge that the artistic mstinet exists but feebly in the management of ilic provineial art schools, I would be astonished that they would live so contentedly amid such "surroundings.". Let us hope ihat the removal of the minss of ugliness upon which their eyes have so long rested, will resuht in guickening their artistic perceptions, and secure improvement in the idenls placed belore their pupils.

Passerisy.

PERSONAL.

Mtr. W. H. Taul bos received appointment to the position of City Englneer of Guelph, Ont.
Mr. M. A. Piggot, contractor, of Haniilton, Ont., is spoken of as a caudidate for municipal honors in that city.
Mr. J. B. Reid, arclitect, of Kingston, who went to Europe recently, presumalay only on a visit, is said to have decided not to return to that city. His business in Kingsion has been transferred to Mr. Arthur Ellis. who has been in clarge during his nlsence.
Mr. James Balfour. of Hamilton, has submitted a design in the competition for the Carnegie lilumry to be creeted at Pitsburgh, Pa. There ate siz prizes of $\$ 2.000$ mach offered in addition to the carrying oul of the work which will reward the arehitect whose design shall be nuarded first posituon. Mr. Balfour's pluck in entering such a competition is vortiny of commondation.
Mr. C. If. Acton-Bond, who for two years past las discharged in a courticous and efficient manner, the duties of secretary of the Toramto Architectural Sketch Club, has been compelled to resign the office, on account of having removed to Hamilton, where he has entered the office of Mr. Janmes Balfour, archliect. Mr. Murray White, who was appointed assistant secretary of the Sketch Club at the recent election of officers, has be'n chosen as Mr. Bond's successor.

PROVINCE OF QUEBEC ASSOCIATION OF ARCHITECTS.

The Committee appointed by the Council of the Province of Quebec Association of Arelitects at the meeting held in Quebec on the Inth of Association of Aredidects at desirnbility of urranging for lectures, chasses,
September, to constder the Septemiber, to consider the desirnbibity of arranging for lectures, eliasses,
de. during the ensuing winter season, held a meeting in the Council roon ac. during the ensuing winter senson, held a meeting in the Council roon
on Thursdiny, the sth instant, ni which all the members of the Committee
 were present, when it was resolved to make the following reconmendations to the Council: (1). That monithy meetings of the Association be held to which stuktent associates shookd be invited, and at whicht papers on speceral subjects be rend, followed by discl1ssions. (2). That steps should be taken to have a conversutione and exhibition of arenitectuml drawings about the month of February or March next. (3). That clastes should be organized for the benefit of students in the following subjects: Design, pen nnd ink drawing. cotouring of designs. conslruction, modeling. perspective. (t) Treseribed for final exnminations (5) That opporturity should be fur. prescribed forts to visit and inspect works of importance from time to time.

PUBLICATIONS.

We have received a copy of ilustented catalogue No. 2, of the Rathbun Co. Deseronto, containing illustrations and particulars of their terra colta fire-proofing material, and niso cuts of vatious important buildings recently creeted wherein the material is in use.
The Engincering A/agarine is a high-chass, beautifully illustrated magrzine like live Century nad Harper's, but devoled exclusively to engineeriag amil industrial subjects. All necvs stands, 25 ecnts; or by mnil, $\$ 3.00$ n year. Engincering Magazine Company, World Building, New York city.
The American Etcher; of New York, is doing an admirable serviee to Art by the pullication every month of a high-class etching from the hands of leading American artists. A list of the piates already pubtisiod is fornished by the publishers, George F, Kelley \& Co., is Union Square, New York, on request. A remarkable feature or this periodieal is its extremely moderate price, viz: 35 cents a month, or $\$ 3$ a year.

FINE GRADE PRESSED BRICKS

in all designs and COLORS．

DON

Valley Pre

T．POLITO，

 DOMINION GLASS BENDING WORKS， 356 St．Hypolite Streef，Montreal． Glass Bending in all its branclues． PAINTER AND DECORATOR． Bell Trelephone 6728．Federal Telephone 1544．ANDREW MUIRHEAD， TOROKTE
manufactulfe of

VARNISHES
 Of every alescription．

Wood Fillers，Paints \＆Painters＇ Supplies generally．

AGENT FOR

Samuel Cabol＇s Celbbrated Mortar Colors and Creosoit Stains． Office： Factory：
82 Bay St．St．Lawrence St． Warchouse： 15 and r_{7} Mincing Lane．
WILLER＇S SLIDING BLINDS

EXCELSIOR PAVEMENT CO.

Sidewalks，Carriage Drives，Corridors，Landings，Steps，
malt，gellar \＆stable floors，vases：
Estmater piven promplly on application．
Office， 271 College Street，
－
T．J．WHITTARD，Superintendent．
TORONTO．

Wharo making a apecialty of emporting through our Jivarpool Howac the beat quilltex Wor \＆heet Aretal for Rooling，and can now anpply tho forlopling：

GALVANIZED SHEET IRON．
BLACK SHEET IRON．
ROOFING COPPER，soft rolled．
ROOFING COPPER，hard rolled polished．
M．L．S．＂Old Process＂Terne Plate．
Alasha and Budd＇s Patent Terne Plate．
Architects and Builders will tind ic to their odvantage to specily for any of the above special brands．
Arch shall Le_{e} pleased so reply to all communications from dealem，should there not be any metal workers in their vicinity who are handling ihese goods．
Eneligh House：
Mi．\＆L．SAMUEL，BENJAMIN \＆CO．
SAMUEL，SONS \＆BENJAMIN，
Nos．26， 28 and 80 Front St．West，Toponto．
 MEMORNAL LO TORONTOON CF MEDALISTS CHURCH ESECULAP

Give the soft velvety coloring effect so de． sirable for exteriors．
The only Exterior Coloring
That does not Blacken．
Houses all over the country have been treated with this Stnin in the lass ten years．
For samples on 2000 d ，with book of croasoted houses，apply to

SAMUEL CABOT， Sole Manufacturer，
70 Killby Street，－BOSTON，MASS． Andrew Muirhead， 82 Bay Strcet，Toronto． Agent for Ontario．

WHEN YOU COHSIDER

that Adamant on your walls means getting into your new house at least two weeks earlier，isn＇t it worth worth while thinking over？ Your walls will be whiter， harder and more durable by using Adamant．Try it and be convinced．

ADAMANT MFG．CO．， 100 Esplanade East，－TORONTO． TELEPRIONE 2I8O．

freel

Painting and Decorating

An Illustrated Monthly Magazine．

Each nutnber contains a colored plate and about to pages of tending matter，many practical articlea and recipies，and jllustrations useful not only to the painter
but to arehitects and those about to build．
A sample copy will be sent to any one who forward name and addrees and mentions this journal in his application．Address
house painting amd degorating publishina co．，
P．O．Box 7118，＝Philadalphia，Pa

